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Abstrak 

Carta Hotelling’s T
2
 adalah alat yang popular bagi memantau kawalan proses 

berstatistik. Walau bagaimanapun, carta ini sensitif pada titik terpencil. Bagi 

mengatasi masalah ini, tiga pendekatan terhadap carta Hotelling’s T
2
 teguh telah 

dicadangkan iaitu pendekatan pemangkasan, peWinsoran dan berasaskan median.  

Kesemua pendekatan ini menggunakan penganggar lokasi teguh dan penganggar 

skala teguh yang masing-masing menggantikan min biasa dan matriks kovarians.   

Bagi setiap pendekatan, tiga penganggar skala teguh: MADn, Sn dan Tn 

diperkenalkan, dan penganggar ini berfungsi sewajarnya mengikut pendekatan.  

Pendekatan pertama, ditandai sebagai   
   menggunakan konsep pemangkasan 

melalui jarak Mahalanobis. Penganggar skala teguh digunakan untuk mengganti 

matriks kovarians dalam jarak Mahalanobis.  Min terpangkas dan matriks kovarians 

terpangkas merupakan penganggar lokasi dan skala bagi carta   
 .  Pendekatan 

kedua,   
 , menggunakan setiap penganggar skala sebagai kriteria Winsor.  

Pendekatan ini mengaplikasikan penganggar M-satu langkah terubahsuai terWinsor 

dan kovarians terWinsor yang sepadan, masing-masing sebagai penganggar lokasi 

dan matrik skala bagi carta   
 . Manakala dalam pendekatan ketiga,   

 , penganggar 

skala teguh berperanan sebagai matriks skala dengan Hodges-Lehman sebagai 

penganggar lokasi. Pendekatan ini menggunakan data asal tanpa sebarang 

pemangkasan atau peWinsoran. Secara keseluruhannya, sembilan carta kawalan 

teguh telah dicadangkan. Prestasi setiap carta kawalan teguh dinilai berdasarkan 

kadar penggera palsu dan kebarangkalian mengesan.  Bagi mengkaji kekuatan dan 

kelemahan carta yang dicadangkan, pelbagai keadaan diwujudkan dengan 

memanipulasi empat pembolehubah iaitu bilangan ciri-ciri kualiti, kadar data 

terpencil, tahap anjakan min dan sifat ciri-ciri kualiti (bebas dan bersandar).  Secara 

umumnya, carta yang dicadangkan menunjukkan prestasi yang baik dari segi kadar 

penggera palsu.  Dari sudut kebarangkalian mengesan,  prestasi kesemua carta yang 

dicadangkan mengatasi carta Hotelling's T
2
 tradisional. Keseluruhannya,  kajian 

mendapati carta Hotelling’s T
2
 teguh yang dicadangkan boleh dijadikan alternatif 

yang baik kepada carta tradisional yang dipertikaikan.   

 

Katakunci: Hotelling’s T
2
, Carta kawalan, Penganggar teguh 
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Abstract 

Hotelling’s T
2
 chart is a popular tool for monitoring statistical process control. 

However, this chart is sensitive to outliers. To alleviate the problem, three 

approaches to the robust Hotelling’s T
2 

chart namely trimming, Winsorizing and 

median based were proposed.  These approaches used robust location and scale 

estimators to substitute for the usual mean and covariance matrix, respectively. For 

each approach, three robust scale estimators: MADn, Sn and Tn were introduced, and 

these estimators functioned accordingly to the approach. The first approach, denoted 

as   
 , applied the concept of trimming via Mahalanobis distance.  The robust scale 

estimator was used to replace the covariance matrix in Mahalanobis distance. The 

trimmed mean and trimmed covariance matrix were the location and scale estimators 

for the   
 chart. The second approach,   

 , employed each scale estimator as the 

Winsorized criterion. This approach applied Winsorized modified one step M-

estimator and its corresponding Winsorized covariance as the location and the scale 

matrix for   
  chart, respectively.  Meanwhile, in the third approach,   

 , the robust 

scale estimator took the role of the scale matrix with Hodges-Lehman as the location 

estimator. This approach worked with the original data without any trimming or 

Winsorizing. Altogether, nine robust control charts were proposed. The performance 

of each robust control chart was assessed based on false alarm rates and probability 

of detection. To investigate on the strengths and weaknesses of the proposed charts, 

various conditions were created by manipulating four variables, namely number of 

quality characteristics, proportion of outliers, degree of mean shifts, and nature of 

quality characteristics (independent and dependent). In general, the proposed charts 

performed well in terms of false alarm rates. With respect to probability of detection, 

all the proposed charts outperformed the traditional Hotelling's T
2 

charts. The overall 

findings showed that, the proposed robust Hotelling's T
2 

control charts are viable 

alternatives to the disputed traditional charts. 

 

Keywords: Hotelling T
2
, Control chart, Robust estimator 
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CHAPTER ONE  

MULTIVARIATE QUALITY CONTROL CHARTS 

1.1 Introduction 

The invention of Statistical Process Control (SPC) chart was pioneered by Dr. Walter 

Shewhart while he was working for Bell Labs in 1920. He aimed to monitor the 

quality of a process mathematically. Since then, this tool has received tremendous 

attention and interest from many researchers and practitioners from various fields 

including statistics, engineering and education to name just a few. There are some 

definitions of SPC charts tool. We refer to Montgomery (2005), who defined the SPC 

charts as tool for optimizing the amount of information needed for decision-making 

purposes. In addition, Nedumaran and Pignatiello (2000) defined the charts as tools 

to monitor performance or state of the process.  

 

In general, SPC charts are graphical presentations that display the stability of a 

process. Unlike other common charts, such as bar chart, line chart or pie charts, SPC 

charts have some main features such as the following: 

(i) The upper limit and lower limit’s lines that create a range to where a process 

output is considered “in control” 

(ii) A center line which located in the middle of the lower and upper limits that 

reflects the average state of the process. 
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(iii) Data points of the collected output of the process.  

In practice, the SPC charts display the fluctuation of data points, i. e. output of a 

process, across times in a way that allows a user to determine easily whether such 

variations fall within the process limits. Later, immediate actions can be taken 

accordingly in order to adjust the process. This is to accommodate to some erratic 

behavior if in variations or they fall outside the range of limits.  

 

The earliest SPC charts found in the literature are such as the famous Shewhart control 

charts (  , S and R  control charts). They were designed to monitor a process with a 

single quality characteristic, e.g. room temperature and diameter of a ring. Hence, they 

are coined as univariate control charts. The demand of these tools have influenced 

various modifications of the control charts to suit with different type of characteristics of 

a process, C-chart, U-chart, n p-chart and p-chart are some examples to which further 

discussions, can be found in major statistical quality control textbooks. 

 

However, in real application of a production process always involve with variety of 

processes. Hence, the quality of the product is usually determined by more than one 

quality’s characteristics. Weight, degree of hardness, thickness, width, and its length for 

example, may determine the quality of a certain type of tablets. In such a case, one may 

monitor each quality separately by creating different individual control chart. Then, 

determination of the overall quality can now be conducted by summarizing all the 

variations obtained from the charts. Alternatively, one may combine all the variations 
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from the measured quality’s characteristics into a single control chart and make decision 

based on the display obtained from the chart.  

 

Monitoring each process separately by using univariate control chart is easy and one can 

identify changes in the process much faster. However, the strategy demands extra works 

as many control charts need to be built. Therefore, the conclusion of the overall state of 

the processes will be difficult. This is resulted from many control charts that need to be 

examined. At worst, this strategy assumes that each quality characteristic is independent 

to each other, which may not represent the actual variation in the process. Therefore, all 

quality variables must be treated as a set of data and must be used simultaneously in the 

monitoring process. This can be done by constructing multivariate control charts, which 

work similar to the univariate control chart. Therefore, these charts have been developed 

and become more sophisticated by the availability of the numerous data collection 

methods.  Typically, Oktay and Aricigil (2001) referred to three popular types of 

multivariate control charts namely, Hotelling’s   control charts, MEWMA (Multivariate 

exponentially weighted moving average) and MCUSUM (Multivariate Cumulative 

Sum). 

 

Subsequently, this study addresses such issue on handling multivariate variables in 

designing a control chart.    

1.2 Terminology 

In general, the process control is divided into two phases:  
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(i) Phase I the construction of control chart is made based on the analysis of 

historical data.  

(ii) Phase II involves a real time process monitoring using the constructed control 

chart in Phase I.  

Historical data set with p quality characteristics are used to construct a multivariate 

control chart in Phase I. Here, the unknown mean of the processes and variance-

covariance structure are estimated from the samples in order to compute the upper 

control limit (UCL).  Since the T
2
 statistic is non-negative the lower control limit (LCL) 

is set to zero, (Thompson & Koronacki, 1993). A good control chart should imply that 

all points fall within the lower and upper limits at random. This condition is termed as in 

control state. If the samples are unable to produce supposedly as in suggested control 

chart, it is termed as out of control chart. If this occurs, some refinements have to be 

made until the in control state is finally obtained. Usually, the refinements to the 

computation of mean of the process and the limits should be made.  

 

Once an “in control” multivariate control chart is obtained, then it is ready to be used for 

monitoring performance of future processes in Phase II. Hotelling's 2T  control chart is 

known as a tool for monitoring multi variables simultaneously (Mason &Young, 2001). 

Thus, this study focuses on such tool and detailed discussion is given in the next 

sections.   
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1.3 The Hotelling’s 2T  control chart 

The Hotelling’s 2T control chart is a multivariate extension version of a famous 

Shewhart’s control chart ( X -control chart). The Hotelling’s 2T  control chart is suitable 

to monitor the average state of p variables in a single display. In practice, there are two 

types of the Hotelling’s 2T  control charts to monitor for subgroups that contain 

individual observations and to monitor for subgroups of at least two individuals 

observations (Cheng, Away & Hasan, 2006). Both types of charts offer better 

perspective for controlling multi variables as its mathematical nature takes into 

consideration the correlation among the variables. Moreover, this aspect of the 

Hotelling’s    chart implemented to determine the covariance matrix. These charts 

enable us to detect the outliers, the shifted mean vector, and other deviations from the 

control distributions (Woodall & Ncube, 1985; Williams, Woodall, Birch & Sullivan, 

2006). Therefore, Alt (1985) and Montgomery (2005) reported that the Hotelling’s    

chart is one of the most common methods in the multivariate statistical control charts. 

 

Let us assume that a 1p  multivariate vector of variables X={         }which is observed 

from group sizes m be an independent multivariate normal ),( 0 ΣμpN . Then, the T
2
 

statistic is defined as 

               
            .                                  (1.1) 

 

such that  
 
 is the overall means and     is the inversed matrix of pooled variance-

covariance matrix with p-dimension. The higher value of 2T  indicates that the 
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observation is at distant from the overall mean,    (Mason & Young, 2002). Thus, a 

significant distant of 2T  indicates that some processes are out of control. 

 

Following Equation(1.1), it is easy to show that 2T  follows the chi-square distribution, 

2

p  if the variables are jointly distributed in a p-multivariate normal with known 

parametersµ, Σ. However, the parameters involved in this distribution are usually 

unknown and normally been  replaced by maximum likelihood estimators   andS, 

thatrepresent the arithmetic mean vector and covariance matrix, respectively. If the 

vector x is independent, the replacement of these estimators into Equation (1.1) gives 

 

               
             ~     

            

      
         .           (1.2) 

 

where         is F-distribution with its parameter p and m-p. 

For cases, when vector x is dependent of the estimators    andS then the 2T  statistic 

follows Beta distribution with parameters 2/p  and 2/)1(  pn such that  

 

                                   
               

      

 
  

 
 

 
 
     

 
 
.                     (1.3) 

Similarly, the upper control limit (UCL) is determined by the dependencies of the vector 

x to     andS. If both are independent, then the computed T
2 

in Equation (1.2) will be 

compared to 

 

                 UCL =  
            

      
         .                                                              (1.4) 
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Otherwise, T
2 

in Equation (1.3) will be compared to 

 

                     UCL =  
 

 
     

 

  
   

 

 
 
     

 
 
                                                                 (1.5) 

1.4 Some issues about the Hotelling’s 
2T  

The traditional Hotelling’s 2T  control chart introduced in Section 1.2 may face serious 

problems if the underlying populations deviate from normal distribution. The 

construction of this traditional chart in Phase I uses the computed     andS, which depend 

heavily on the assumption of a population that is normally distributed. To ignore such 

assumption and the deviation may lead to the construction of a biased control chart and 

may put us at risk by using it to monitor future processes in Phase II.     

 

The existence of outliers may lead to non normality. This phenomenon is common in 

huge data gathering and multi processes  (Jensen, Birch & Woodall, 2007). Outliers may 

easily affect the reliability of both of     and S (Alfaro & Ortega, 2009).  Hence, they 

have to be addressed with much care. The simplest strategy to cater this problem is to 

remove outliers from sample. However, this step is impractical, especially in 

multivariate case, as one may lose too much important information although even an 

individual is omitted. 

 

Alternatively, one may opt to use robust estimators in construction of a control chart. 

This strategy demands on vigilant methodology to ensure that a reliable and a valid 

control chart is produced. Many works have been conducted to produce a control chart 
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that is robust towards the occurrence of outliers. However, much extensive work on 

robust estimators is in univariate cases. Hodges and Lehmann (1963) for example 

proposed Hodges-Lehmann estimator in improvising robust location of a variable. Only 

in recent years, work on multivariate control chart has come to the limelight. Alloway 

and Raghavachari (1991) initiated a multivariate control chart based on a robust location 

called Hodges-Lehmann estimator.  However, from previous study, yet a robust control 

chart is deemed the best option. The choice is given to the users to correctly match the 

data in hand with available options of control charts. This study is aspiring to provide 

wider options for end user to use suitable robust control charts. 

1.5 Problem Statement 

From previous studies, Hotelling’s 2T  control chart is proved to be efficient and at its 

optimum performance if the data considered follows a multivariate normal distribution 

(Montgomery, 2005; Alfaro & Ortega, 2009). Therefore, any deviations from normality 

may cause bias in obtaining the range of acceptable processes. Hence, its capability to 

monitor future processes is questionable(Mason & young, 2001). Moreover, Tiku and 

Singh (1982) reported that the resistance of the traditional Hotelling’s   chart against 

the non-normality is weak and ineffective. Johnson (1987) validated this finding and 

found that the robustness of the traditional Hotelling’s   chart does not exist against the 

non-normal data. Everitt (1979) reported the non-normality of the distribution data could 

severely affect the traditional Hotelling’s   statistic.  This is due to the fact that the 

classical estimators in the traditional chart are sensitive to non normal data. Later; 

Brooks (1985) has shown that the occurrence of the errors will be increased as 
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manufacturing systems become more sophisticated and  are able to collect huge data. 

Besides; the assumptions of normality are not easily satisfied in multivariate case in 

contrast to univariate case. Moreover, Peña and Prieto (2001) stated that the existence of 

outliers makes the values of the location and the scale estimators meaningless. Hence, 

the robustness is necessary in the case of multivariate quality control approach (Crosier, 

1988). 

Previous studies showed the use of robust location estimators such as trimmed mean and 

Hodges-Lehmann, in which they have been proven effective (Abu Shawiesh & 

Abdullah, 2001; Alfaro & Ortega, 2009).  However, the trimmed mean depends heavily 

on the choice of percentage of the objects to be omitted in the computation (Alfaro & 

Ortega, 2009).  Trimming need to be done meticulously so that no information will go to 

waste.  The recommended trimming percentage by most researchers  is between 15% to 

25% (Rocke, Downs & Rocke, 1982; Wilcox & Keselman, 2003;  Othman, Keselman, 

Padmanabhan, Wilcox & Fradette, 2004).  While Hodges-Lehmann is a good choice if 

the distribution possesses slightly heavier tails, but otherwise when the distribution is 

heavy tailed. (Abu Shawiesh & Abdullah, 2001). Wilcox and Keselman (2003) later 

proposed one-step M-estimator (MOM) which trims or deletes proportion of extreme 

values according to the types of distribution considered. Unlike trimmed mean, this 

estimator empirically determines whether an observation should be trimmed, or the 

possibility of no trimming as well as different amount of trimming in the left versus the 

right tail. Meaning, the MOM estimators offer better default trimming to improve the 

Type I error opposed to other potential robust scale estimators proposed by Rousseeuw 

and Croux (1993).  
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Although many studies have discussed the process of constructing a robust Hotelling’s 

2T  chart, none has yet investigated on the use of MOM estimator. Prior work on this 

estimator by Syed Yahaya et al. (2006) showed the feasibility of this estimator in 

univariate case but its capability for multivariate case has yet to be tested. Therefore, this 

study contemplates on possibilities to  design a Hotelling’s T
2 

control chart with 

modified one-step M-estimator. 

 

The idea to replace a maximum likelihood estimator with robust estimators seemed 

straightforward. However, the methodology for integrating these robust estimators into 

the control chart needs to be critically planned and executed to ensure the outcome of the 

control chart neither over perform nor underperform the process. Besides, the control 

chart should be valid for real application.  

 

To address this issue, this study opts to use three robust location estimators - the 

trimmed mean, winsorized MOM and Hodges-Lehmann estimators. The robust scale 

estimators -the median absolute deviation     , nS  and nT  are also considered to 

replace the common S in the traditional chart. Therefore, the combination of these three 

robust location estimators and three robust scale estimators will produce nine robust 

charts. Trimmed mean, winsorized MOM and Hodges Lehmann represent three different 

approaches of estimating location measures.  The first approach is by trimming the data, 

while the second is by winsorizing i.e. trimming and then replacing the trimmed data 
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with certain values, and the last is median based approach where no trimming or 

replacing of data is needed.   

This study then continued with the measurement of the control charts’ performance 

which involved two phases namely Phase I and Phase II.  In Phase I, in control 

parameters (mean and covariance) were calculated.  While in Phase II, these parameters 

were used to construct the control charts and the performance of the charts based on 

false alarm and probability of detection were assessed.   

1.6 Research Objectives 

The goal of this study is to propose alternatives to the traditional Hotelling’s 2T  charts. 

These alternatives should be very effective to detect the occurrence of assignable causes 

of process shifts. They must also simultaneously control on the false alarms rates and 

detect the occurrence of outliers. Thus, the following objectives need to be 

accomplished.  

(a) Integrate some highly efficient robust location and scale estimators in place of 

the common location and scale estimators in the traditional Hotelling’s 2T

statistic. 

(b) Assess the performance of the modified Hotelling’s 2T control charts.  

(c) Compare the performance of the modified Hotelling’s 2T control charts with the  

traditional charts.   

(d) Apply the investigated control charts on real industrial data 
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1.7 Significance of the Study 

This study intents to contribute towards the development of the knowledge concerning 

statistical process control (SPC) charts, in particular the manufacturing sectors.  Because 

the data are not always normally distributed, statisticians believe that the use of 

Hotelling’s 2T  statistic that depending on the assumption of normality may caused 

significant risk towards the producing of control charts in real application.  Previous 

studies showed that the robust univariate alternative control charts proved to achieve 

better results than the traditional ones in the presence of the contaminated data or 

multiple outliers. These promising results have given us confidence that the 

implementation of the robust estimators in the traditional multivariate control chart may 

provide better results than their counterparts. 

 

This proposed methods offer practitioners a smart way to control multi processes. They 

can work with the original data without having to worry about the distributions of the 

data or the existence of the data outliers. Besides, it will help researchers to minimize 

concern on having to eliminate outliers in Phase I prior to the construction of the control 

chart. Subsequently, the process of analyzing and making conclusion about the processes 

will be much faster. 

1.8 The scope of this thesis  

This study focuses upon the problem of monitoring statistical process control through 

traditional Hotelling T
2
 control chart when the measured multi-quality characteristics are 

contaminated with outliers. Many robust estimators have been investigated to improve 
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the traditional control chart, such as the new estimator, i.e. modified one-step M-

estimator (MOM) has not yet been tested. Earlier work on this estimator by Syed Yahaya 

et al., (2004) has shown the feasibility of this estimator, however, it limits to the general 

use in univariate case. Therefore, this study will extend the use of MOM to the 

multivariate case and to avoid from trimming the data, we employed winsorization 

approach in the computation of the estimator.  Another alternative estimator is trimmed 

mean, where the trimming executed by using the Mahalonobis distance as we will 

explained the method of trimming later (section 3.3). Alloway and Raghavachari (1990) 

used this method but they used it for the bivariate case for subgroup data. This study 

adopted this method for the multivariate case with individual data. However, instead of 

using the classical mean and covariance to calculate the Mahalanobis Distance to 

determine the data to be trimmed, this study respectively used median and the robust 

scale estimators mentioned earlier.  In addition, the trimming percentage used followed 

the amount mostly recommended by researchers i.e. 20%. 

 

The last robust location estimator suggested for this study  is Hodges - Lehmann where 

this estimator and robust scale estimator MAD (median absolute deviation) were used by 

Abu- Shaweish and Abdullah, 2001 in constructing Hotelling T
2
 control chart for 

bivariate characteristic variables.  Nonetheless, for this study, we employed the three 

robust scale estimators (    ,    and   ) as the covariance matrix.  

 

A major concern in constructing quality control chart is to use suitable estimation 

method so that an unbiased control charts are produced. The traditional practice based 

on maximum likelihood estimators (MLE)    and s may be a good choice but it tends to 
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be unreliable when outliers exist in the measured characteristics. The use of robust 

estimators in the construction  of Hotelling T
2
 control chart could help to alleviate the 

problem. 

 

Proposals for estimating parameters in Phase I of the construction of T
2 

control chart and 

evaluating the chart in Phase II are presented in Chapter 3. The investigations and 

numerical examples are presented through the chapters 4, 5 and 6. Results show that the 

proposed methods are competitively much better than the traditional methods. 

Conclusions and suggestions for further studies for improvement are given in Chapter 7. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Introduction 

This study inspires to propose new alternatives to robust Hotelling’s    charts via the 

use of high breakdown robust location and scale estimators. This chapter is divided into 

five sections. First section aims to introduce some previous studies on multivariate 

control charts. It also concerns on the statistical methods that are used simultaneously to 

monitor the multiple characteristics variables. Second section discusses reports that 

appear in the literature on robust Hotelling’s   control charts. In addition, the third 

section describes the robust location estimators utilized in the current work as well as in 

previous works. In particular, it describes the types of estimators that will be used in this 

work such as α -trimmed mean and winsorized modified one-step M-estimator (wMOM). 

This section also includes discussion on the Hodges-Lehmann estimator. The forth 

section focuses on the four types of the robust scale estimators, i. e. the Median Absolute 

Deviation (        and   and α-Trimmed variance covariance matrix, and the final 

section is on the quality control charts. 
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1.9 Multivariate Control Charts 

The multivariate statistical process (MSP) is improving rapidly in the areas of statistical 

process control (Woodal & Montgomery, 1999). Historically, Hotelling introduced MSP 

via Hotelling’s 2T  control chart in his important worth published in 1947. Since then, 

the Hotelling’s 2T  control chart has been frequently used as a control tool for multiple 

settings which monitors multiple quality characteristics simultaneously. In practice, the 

implementation of multivariate Hotelling’s 2T  control chart passes two distinct phases: 

Phase I checks the status of the processes either they are in control or out of control, 

based on the first m subgroups which were drawn from historical data (Williams, 

Woodall, Birch & Sullivan, 2006), while Phase II checks the status of the ongoing 

processes of future subgroups.  

Jackson (1985) supported the use of MSP control charts under the following three 

conditions:  

(i) The interested processes are in control, thus considering multiple 

characteristics simultaneously. 

(ii) The existence of interdependency among processes. 

(iii) When false alarms are well-controlled. 

However, some practical drawbacks may occur to MSP control charts especially the 

possibility of the occurrence of certain bias, which may distort the signal. In such a case, 

these charts are not able to determine exactly which characteristic among all 
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characteristics is responsible for such particular signal (Jackson, 1985). Besides, the 

simplest idea for estimating the parameters of  Hotelling’s 2T  via maximum likelihood, 

i.e. sample mean vector    and covariance matrixS may lead to bias estimates as these 

estimators are known to be very sensitive to outliers and any shifts in mean and 

covariance (Vargas, 2003).  

A study by Mason and Young (1999) showed that the Hotelling’s 2T  statistics can be 

used to identify outliers in Phase I and the statistics may detect process shifts based on 

new observations in Phase II. However, several common causes that occur in the 

processes due to trends, cycles and autocorrelation, may lead to biased statistics, which 

may cause the estimation to be deviated further from the real value. This will lead to 

extreme or out of control values of the    statistics. (Mason, Chou, Sullivan, Stoumbos 

&Young, 2003). Therefore, in recent years, many investigations have been done to 

propose several alternatives such as the robust Hotelling’s 2T  charts in order to analyze 

and to monitor the multivariate quality characteristics. 

The choice of estimators is important for the successiveness of detecting and handling 

outliers in multivariate historical data. Sullivan and Woodall (1996) tackled the issue of 

biased estimators by proposing estimators based on the covariance matrix of the 

historical data. Their study aimed to rectify the poor properties in detecting the shifts in 

the mean vector when the individual observations were used. Williams et al.(2006) 

proposed an estimator, which depends on the multivariate successive differences for the 

individual observations. Such estimator increased the false alarm rate when the size of 

step shifts increases. Since the distribution of the Hotelling’s 2T  statistic has not yet able 
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to determine when the successive estimator is practically in use, hence they 

demonstrated many properties for Hotelling’s 2T  statistic, based on successive 

differences of the estimator. Their findings demonstrated: (i) an approximate distribution 

to calculate the upper control limit (UCL) of the individual observations and (ii) the 

precision of false alarm probability for the control charts would be increased if the 

successive difference covariance matrix estimator in case of in-control observations is 

independent and identically distributed. 

Recently, many researchers have started to endeavor robust statistics in multivariate 

Hotelling’s 2T chart. The following section revises on some extensive studies that have 

dealt with robust statistics which lead to robust multivariate control charts. 

1.10 Robust Multivariate Control Charts 

The traditional sample multivariate Hotelling’s 2T  control chart is solely based on the 

sample mean vector    that represents the center of the quality characteristics and the 

sample covariance matrixS that represents the dispersion of the data from   . These two 

statistics are known to be very sensitive against outliers and will be greatly influenced 

by their presence (Vargas, 2003). The multiple outliers considered are observable and 

they are the ones that occur when a large value appeared in Hotelling’s 2T  statistic 

(Croiser, 1988). Similarly, Brooks (1985) noticed that outliers increased because of the 

of huge occurrence data collection. Earlier, Johnson (1987) discovered that the 

traditional Hotelling’s 2T  statistics could not resist the departure from the normal 

distribution. For this reason, the need for robust multivariate control charts is vital and 
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practical. The robust estimators may become good alternative to eliminate the influence 

of outliers in the discussed control chart. 

Previous researchers proposed modification of Hotelling’s    charts by using insensitive 

robust location and scale estimators. As a result, various types of robust multivariate 

control charts have been proposed. Alloway and Raghavachari (1990) proposed a robust 

multivariate control chart of the Hotelling’s T
2
 based on trimmed mean and trimmed 

covariance matrix. They proved the proposed statistics are robust and resistant to the 

contamination observations in the case of symmetrical distribution. They trimmed the 

outliers by trimming paired vectors of the data containing the largest two values of the 

Mahalonobis distances. Then, they replaced them with another two vectors of data that 

have the third and fourth ordered values of Mahalonobis distance.  

This thesis discusses the robust Hotelling’s    statistic when trimming is symmetric. 

Besides, the trimming method of Alloway and Raghavachari (1990) is considered 

suitable to apply and the behavior of the control chart based on trimmed outliers is part 

of our concern. However, we modified Mahalonobis distance formula in order to ensure 

that it permits with the data of interest. This is done by replacing the arithmetic mean 

with the median and the covariance matrix with the three trimmed covariance matrices 

of the robust scale estimators, the              . The main concern of this study is 

the permitted percentage of trimming. Whereas, it is equal to 40% of the outlier’s data, 

which represent the data that have the largest 40% of the values of modified 

Mahalonobis distance and then replacing them by the next 40% of the data that have the 

next 40% of the largest values of modified Mahalonobis distance. Moreover, this study 
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used the multivariate case with the number of variables 2, 5, and 10, an extension to the 

study by Alloway and Raghavachari (1990) which only discussed the bivariate case. 

Besides, Alloway and Raghavachari (1991) proposed a control chart based on the robust 

location Hodges-Lehmann estimator with the Wilcoxon signed-rank statistic. Their 

proposed control chart is a nonparametric and maintains the nominal specifications of 

the specified Type I error. The data used were generated from the normal distribution 

approach that is then compared with Shewhart`s control chart. With regard to the 

moderate sample size and the long-tailed symmetric distribution, it has been shown 

clearly that their performance is stronger than the performance of the traditional 

approach. These properties of the distribution make these charts appropriate for early 

production. Nonetheless, it functions in limited size sample whenever the distribution of 

the process statistic is unknown. The study concluded that there is a little difference 

between the trimmed and the untrimmed method in case of heavier tails existence.  

In other similar interest on robust control charts, Abu-Shawiesh and Abdullah (2001) 

proposed a new robust Hotelling’s   chart for a bivariate data. The proposed chart 

based on the Hodges-Lehmann and Shamos-Bickel-Lehmann estimators as alternatives 

to the robust location and scale estimators, respectively. In order to judge for the 

performance of the new robust chart, they used the contaminated normal distribution 

with outliers’ percentages of 10% and 20% in the data. Then, they applied the robust 

chart on 20 subgroups data, which comprised several sample sizes for each subgroup. 

They confirmed that the new robust Hotelling’s   chart has stronger performance in 

case of symmetrical contamination application. They also concluded that there is small 
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variation between the traditional Hotelling’s    chart and the proposed robust charts 

when the distribution has a slightly heavier tail. They also concluded that the robust 

method is more dominant in its performance than the traditional one when the size of tail 

increases. Such evidence has led us to consider the robust Hodges-Lehmann estimator as 

an alternative to the arithmetic mean,    and the three covariance matrices of the three 

scale estimators,           and    as alternatives to the covariance matrix in the 

traditional Hotelling’s    chart.  

It is worth to highlight some extensive studies that have been done on an attempt to 

identify possible robust Hotelling’s T
2
 charts. Alfaro and Ortega (2008) suggested new 

robust Hotelling’s   charts where they replaced the sample mean vector and covariance 

matrix in the traditional Hotelling’s    chart with the trimmed mean vector and the 

trimmed covariance matrix, respectively. Their investigation considered p variables with 

n size of individual observations. They generated the data mixture normal density: 

                                    (1-ε)                             .                            (2.1) 

where ε denotes the proportion of outliers,   and    represent the in control parameters, 

  is out of control mean vector and    is the identity matrix for p-variables. The 

percentage of detection outliers and the rate of false alarms were computed in order to 

evalute the performance of the charts. Their results revealed that the proposed robust 

Hotelling’s   chart is more effective than the traditional Hotelling’s   chart especially 

in detecting outliers. 
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Later, Alfaro and Ortega (2009) developed four robust Hotelling’s T
2
charts; each used 

the minimum volume ellipsoid (MVE), the minimum covariance determinant (MCD), the 

reweighted MCD and the trimmed mean estimators. In order to evaluate the 

performances of these robust Hotelling’s   charts, they used various types of upper 

control limits. These involved the quantile Snedecor F- distribution, the quantile of the 

beta distribution, and the chi-square distribution. This simulation study was applied by 

taking into account that the distribution of Hotelling’s    statistic is unknown and the 

sizes of data sets are small. Their study depended on simulation, and went through two 

phases, namely, phase I and II. In phase I, they calculated the traditional and robust 

estimators whereas in phase II they generated a new observation. They ended the study 

by calculating the value of Hotelling’s    statistic for each new observation. The results 

concluded that the alternative robust Hotelling’s    charts behaved better than the 

traditional Hotelling’s    chart in terms of performance with the presence of outliers. In 

addition, they recommended the use of the robust Hotelling’s   charts that depend on 

the trimmed mean and the modified MCD estimators when the amount of outliers is 

small. While as, they recommended to use the two robust Hotelling’s    charts that are 

used the robust estimators MVE and MCD when the detection of outliers is more 

interested. 

Chenouri et al. (2009) proposed multivariate robust Hotelling’s   charts for multiple 

individual observations by using the location and scale of reweighted minimum 

covariance determinant (RMCD) estimators. These estimators are highly robust and 

more efficient if compared to the ordinary location and scale MCD estimators. To get the 

control limit formulas, they calculated the empirical quantile by using Monte Carlo 
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simulations. Then, they evaluated the performance of the robust Hotelling’s  chart by 

means of monitoring the values of false alarms rates and the probability of detection of 

outliers. They concluded that the proposed robust control charts perform as par when 

compared with the traditional control charts in terms of false alarms. However, they 

proved that these charts perform better and more efficient than the traditional chart in 

terms of detecting process shifts and outliers.  

Even though Hotelling’s T
2
 control charts using the distance based approach such as 

MVE and MCD were proven better than the traditional Hotelling’s T
2 

control charts, but 

the approach is not time efficient (Syed Yahaya, Ali & Omar, 2011).  The computation 

which requires reiteration process consume a lot of computational time.   

Another approach in computing robust Hotelling’s T
2
 statistic is via coordinate wise, 

which adopts the concept of univariate robust estimators in multivariate setting.  This 

approach provide faster computation due to its direct substation without any reiteration 

as in the distance based approach.    

This thesis proposed the use of coordinate wise approach using robust location 

estimators namely trimmed mean, winsorized modified one-step M-estimator, and 

Hodges-Lehman with three robust scale estimators,          and   .  These estimators 

were chosen based on their high breakdown point and efficiency, which will be 

discussed in the next section.   
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1.11 Robust Location Estimators 

By far, the most common measurement of location estimator is the arithmetic mean 

  that represents the center of the quality characteristics in Hotelling’s   statistic. 

However,    is known to be very sensitive to outliers. Their presence will influence 

greatly outcomes of the statistic. To overcome such problem, researchers search for 

alternatives via the use of the traditional Hotelling’s    statistic that implements the 

robust location estimators in place of    which are regarded insensitive to outliers. The 

main goal of these estimators is to give a reasonably high efficiency for a range of 

distributional shapes, such as the normal and longer tail distributions, symmetrical and 

asymmetrical distribution. Initially, the robust estimators of locations have been 

considered as symmetrical distributions. On the other hand, asymmetrical distributions 

do not imply general arguments to indicate what aspects of the distribution should be 

studied. Therefore, Ansell and Margaret (2009) provided three main properties of 

combined distribution of the potential interest (i) mean or median of the original 

uncontaminated distribution, (ii) mean of the contaminated distribution and (iii) median 

of the contaminated distributions. 

The following subsections present some important types of robust location estimators, 

which are considered in this study. These estimators are chosen as each of them will 

represent various possible shapes of the data distribution. One of these estimators is the 

trimmed mean that is efficient when used with the symmetrical distribution (Pei-Chen, 

2007). Another robust location estimator is the modified one-step M-estimator (MOM), 

which is suitable for  asymmetrical distribution (Syed Yahaya, Othman & Keselman, 

2006). While the third location estimator is the Hodges-Lehmann which is an efficient 
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median based robust estimator and need no trimming to deal with the problem of outliers 

(Brown & Kildea, 1978).   In this study, these three different types of robust location 

estimators will replace the    in the Hotelling’s    statistic. 

1.11.1 α -Trimmed Mean 

Trimming is a process that aims to remove the extreme values from each tail of the 

ordered statistics. According to Rock et al. (1982), this process resulted in providing the 

best percentage of the amount of trimming from each side of any ordered statistics in 

range of 20%-25% in symmetric distribution. Rosenberger and Gasko (1983) and 

Wilcox (1995) suggested a trim of 20% from each tail of the ordered statistics. Othman 

et al. (2004) confirmed that the best achievement of false alarms control appears when 

the percentage of trimming is moderate, i.e. 10%-15%.  

According to Pei-Chen (2007) there is a practical concern regarding trimmed data, that 

is the appropriate amount of trimming needed. He indicated that many statisticians 

suggested that trimming as much as 20% in the simulation process is unsatisfactory in 

case of asymmetric distribution with heavy tails. He added that this percentage would be 

satisfied when we assume that the data are symmetric. 

The α-trimmed mean,   is determined by removing α100% from each end of the ordered 

statistics and thereafter, calculating the mean of the remaining observations. The 

trimmed mean is simple, flexible, and easy to compute and understandable. Hence, if the 

assumption of symmetry is violated, the trimmed mean will estimate the quantity 

depending on the size of trimming on the two sides (Hogg, 1974 and Mehrotra et al., 
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1991). According to Bickel (1965) α-trimmed mean estimator will have approximate 

normal distribution when the sample size is large and this estimator is robust in the 

presence of outliers. 

Another important advantage of the trimmed mean is it can accommodate the 

dissatisfaction arises from two choices of the situation, the sensitivity of the sample 

mean and insensitive of the sample median. Therefore, the trimmed mean has been 

enhanced greatly so that it could be considered as a compromise between these two 

estimators (Siegel, 1988). The trimmed mean estimator is also considered better than the 

traditional sample mean upon the presence of data outliers. Despite this advantage, the 

implementation of the trimmed mean may cause loss of efficiency when there are no 

extreme outliers in the data. In addition, the efficiency and the robustness make the 

trimmed mean more important than the median since the efficient estimators make the 

control charts more capable of detecting outliers and allow for another departure from 

the stable process. Besides, the breakdown of the trimmed mean is equal to the 

percentage of the trimmed values of the two sides, for example if the percentage of the 

trimming is α % from each side of the ordered statistics, then the breakdown point is 

equal to 2α %. 

Mathematically, the formula of the α - trimmed mean    of n observations   ,…,    after 

k smallest and k largest observations are eliminated from each tail of order statistics is 

defined as follows:  

                                
 

      
     
   
     .                                                              (2.2) 
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where 

    :  is i-th ordered statistic of m individual observations. 

  =      denotes to greatest integer less than or equal to α m, where 0    50.0 . 

 

In multivariate case, Alloway and Raghavachavari (1990) examined three methods of 

trimming. First, the multiple outliers trimming method that is capable of trimming the 

largest and the smallest values of many variables individually. It, then, calculates the 

trimmed mean and the trimmed variance covariance matrix of the remaining data. The 

problem in this method does not lie in the calculation of the trimmed mean but in the 

calculation of the variance covariance matrix. The covariance depends on its calculation 

on the pair values of each one of the two random variables. Therefore, in this case, we 

cannot satisfy this condition. Second the trimming method based on the idea that some 

variables are more important than the other. These variables contain more outliers. The 

trimming is done according to these outliers observations. Third, one depends on all 

sample information like the covariance, variance, and the distance of the data away from 

the center. This method is called the Mahalonobis squared distance. It selects the data 

pairs in the individual observations that can be trimmed and then winsorized. The 

formula of Mahalonobis distance is written as follows:  

                                                 ).                                                  (2.3)        

where     and S depend on the original data. The procedures of this method are as 

follows: 
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1. Trim the pairs of data that have the largest values of Mahalonobis squared 

distance. 

2. Construct the winsorized sample by replacing the trimmed two pairs of data with 

the two pairs of data of the third and the fourth largest values of       . 

Previous works employed the aforementioned methods on subgroup data while in this 

study, the methods will be used on individual data. However, in this study, the 

percentage of trimming was based on the amount commonly suggested i.e. 20% on each 

tail or a total of 40% on both tails (Rock et al., 1982; Rosenberger & Gasko, 1983; 

Wilcox, 1995; Pei-Chen, 2007).   

1.11.2 Modified one step M-estimator (MOM) 

It is notable from earlier studies that the trimmed mean method suffers from two 

practical concerns. First, the amount of the trimming that is fixed priori. This implies 

that if the percentage of the trimming is 20% (Rosenberger & Gasko, 1983; Wilcox, 

1995), the efficiency is good compared to the mean under normality condition. 

However, sampling from sufficiently heavy tailed distribution may lead to poor 

efficiency in case of applying more trimming. While the second practical concern is the 

suitability of trimmed mean when the distribution is asymmetric. When using the usual 

symmetric trimmed mean, same amount of trimming is employed on both tails even 

when the data are skewed which by right, more data should be trimmed on the skewed 

tail as compared to the other.  This problem could be alleviated by using MOM and 
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furthermore MOM has high breakdown point whereas the usual trimmed mean has 

breakdown point of 2 α %, which depends on the percentage of trimming.  

 

If the above two concerns are taken care of, the next question is how to determine the 

best trimming amount that would satisfy the need of having a good false alarm rates 

control? One solution to this problem lies in the use of the modified one-step M-

estimators (MOM). Empirically MOM determines whether the observations should be 

trimmed. It also determines the possibility of non-trimming as well as the different 

amount of trimming in the left versus the right side (Wilcox & Keselman, 2003). The 

breakdown point here is not like the breakdown points of the trimmed mean, where the 

amount of trimming is fixed in MOM and equal to 0.5 (Pei-Chen, 2002). 

 

Mathematically, Wilcox and Keselman (2003) defined the MOM estimator as follows: 

 when a random sample from any distribution that represents the number of the random 

variables accordingly,  then the MOM estimator is defined as the follows: 

 

                                   
      
    
      

       
.                                                                       (2.4)                                                                             

where       =       order statistic in      characteristic variable. 

  :  Number of     that satisfies the criteria                                

  :  Number of     that satisfies the criteria                               

 : The size of the data set for each variable. 

   : The median of the data in each j-th variable. 
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and the scale estimator is the median absolute deviation (    ).  

The constant K= 2.24 is motivated to give a good efficiency for the robust scale 

estimators,      when the sample is taken from a normal distribution (Othman et al., 

2004). This study also uses MOM estimator to trim the outliers when the data are 

asymmetric. This can be done by modifying the criteria of the trimming by using 

alternative two robust scale estimators in addition to the use of the      estimator. 

Othman et al. (2004) and Wilcox and Keselman (2003) found that when correction 

factor K= 2.24 was used, they achieved high efficiency for MOM estimator. Therefore, 

in order to modify the formula of MOM estimator using the same correction factor K= 

2.24 together with the new robust scale estimators,    and    and calculate the 

efficiency of the MOM again. Syed Yahaya et al. (2006) proved that these estimators are 

able to control on Type I error even under extreme violation of the assumptions. It also 

modified the criteria to choose the sample of values in order to modify the MOM. 

1.11.3 Winsorized Modified one step M-estimator (MOM) 

The Winsorized MOM is one of the central tendency measurements. It is the arithmetic 

mean, which is resulted by replacing outliers from each end of the data with the next 

largest and smallest values of the continuity of the consistent data after performing the 

trimming by using the MOM criteria (Mahir & Al-Khazaleh, 2009). According to 

Wilcox (1997), the mean is one of the most popular location estimators. Nevertheless, 

there is a problem concerns with this measurement in the tail of the distribution that may 

affects its value. This problem becomes clearer through the unbounded influence 

function of the breakdown point of zero, where the influence function measures how the 
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estimator reacts to the small proportion of outliers and the lack of robustness against 

outliers Hampel (1974). In order to solve this problem, more attention should be given to 

the value of means whenever they are nearer to the center. Therefore, the advantage of 

using the robust measures of the center, winsorized MOM is that it can be used instead 

of the usual mean, which is thought to be another easier solution for tackling the 

sensitivity of the mean.  As winsorized mean is known to be less sensitive than the mean 

but still give a reasonable estimate of central measure (Wilcox & Keselman, 2003), thus, 

we assume that winsorized MOM should also perform better than the usual mean.  

Furthermore, an initial investigation on the performance of  Hotelling T
2
 statistic using 

MOM and winsorized MOM showed that the latter performed better. 

 

The construction of the Winsorized sample is proceeding as follows: (Wilcox, 1997). 

For each random variable,                       , the winsorized sample is 

constructed as: 

 

                           

                                                 
                                      

                                                                      

                          (2.5)                                                                                                             

where  

  : Number of the smallest outliers data. 

  : Number of the largest outliers data. 

Therefore, the estimated winsorized MOM for l-th variable as follows: 

  

                              
 

  
     

  
                                                                        (2.6)                                                                                                                                                                                                                 
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1.11.4 Median 

Median is the most popular robust estimator among the robust measures of center. Its 

application could be observed early in the statistical process control charts. According to 

Bluman and Allan (2009), the median is the midpoint of the data array.  

 

                                           

 
 
   

 
                                          

 
 
 
 
 
  

 
 
 
   

 

 
           

                      (2.7)

 

 

where             are the values of the sample order statistics (Chernobai & Rachev, 

2006). 

We illustrate main properties of the sample median, summarized as follows: 

1. The maximum value of the breakdown point is equal to 0.5 (Geyer, 2006; 

Hampel, 2000). 

2. This value is easy to calculate since it is the value of the middle point among 

data array (Bluman, 2009).  

3. The efficiency of the median in the normal distribution will be decreased as 

the sample size increased. Accordingly, its efficiency reaches to 64%. 

4. Since the calculation of the median depends only on the middle value of the 

data array, then, the data may cause confusion in the distribution of the long tails 

because it will leave out a lot of information (Janacek & Meikle, 1997).  

5. Finally, the median estimator is used when we deal with open-ended 

distribution (Blum, 2009). 
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1.11.5 Hodges–Lehmann estimator 

Hodges Lehmann estimator is a robust location measure.  In a one sample estimation, 

it is the median of a set of n(n+1)/2 Walsh averages.  According to Brown and Kildea 

(1978), the Hodges-Lehmann estimator is defined as the following: 

“A simple Hodges-Lehmann estimator for that    = θ +    , j = 1, 2, …,n where    are 

i.i.d rv’s symmetric about zero. The Hodges-Lehmann estimator of θ is the median of 

{
     

 
,           }, and an asymptotically equivalent estimator θ  is the median of 

{
     

 
,            }.”                      

The main properties of the sample Hodges-Lehmann are: 

1. The breakdown point is 29% (Hampel, 2000). 

2. There is a symmetric distribution about the parameter θ (Hodges, 1967). 

3. It is robust against the gross error, and that its asymptotic relative efficiency 

(ARE) is the same as the Wilcoxon signed rank test (Hodges, 1967). 

4. When a random sample        come from continuous distribution and is 

symmetric about the parameter θ, then the distribution of Hodges-Lehmann is 

also symmetric about θ. Therefore, the statistic HL is unbiased estimator of θ 

where the unbiased of θ is equal to    (Hodges & Lehmann, 1963; Randles & 

Wolf, 1979). 

5. It has some "robust" properties (Bickel, 1965). 

1.12 Robust Scale Estimators 

For the robust scale estimators, the sample standard deviation is the most commonly 

used scale estimator.  It has the capability to eliminate  data outliers resulting from the 
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normal distribution and according to Alfaro and Ortega 2009 this estimator is sensitive 

to outliers.  It represents the dispersion of quality and is considered as an important part 

in the Hotelling’s    statistic. To overcome the sensitivity problem, researchers 

substitute this estimator with robust scale estimators in the Hotelling’s    statistic. We 

used the median absolute deviation (    ),   ,    and α-Trimmed Covariance Matrix, 

in this thesis.  

 

Robust scale estimators, Sn and   were proposed by Rousseeuw and Croux (1993). 

Some of their characteristics are highest breakdown point, and the bounded influence 

function. These estimators are also easy to compute, have reasonable efficiency when 

the observations are from normal distribution and positively definite. 

The following subsections give more information about the construction and the main 

properties of these estimators: 

1.12.1 Median Absolute Deviation (    ) 

The median absolute deviation (    ) is regarded as a robust alternative to the 

variance and was promoted first by Hampel (1974) according to the following formula: 

 

                                          .                    (2.8) 

 

1.4826 is chosen in case of the usual parameter σ for a normal distribution and is made 

consistent with the parameter σ, therefore,      is unbiased to  σ. The main properties 

of estimator, investigated by Rousseeuw and Croux (1993) are: 
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      1.  The breakdown point of it is 50% (Hampel, 2000). 

      2.  In case of standard normal distribution, the influence function is bounded. 

      3.  The gross-error sensitivity of the estimator is equal to 1.167, which is the smallest 

value in case of normal distribution for scale estimator. 

4. It applies symmetric dispersion concerning the sample median. This means that 

the symmetric interval around the median contains 50% of the data. 

5. It is easy to compute. 

6. The efficiency at normal distribution is equal to 37%. 

7. It needs the location estimator of the data, which is called the median. 

8. By simulation, we proved that this estimator (scale matrix) is positive definite in 

multivariate form, refer to section 3.6 for further discussion. 

However, MADn takes a symmetric view on dispersion, because one first estimates a 

central value (the median) and then attaches equal importance to positive and negative 

deviations from it and this does not seem to be a natural approach at asymmetric 

distributions. 

1.12.2    

Another scale estimator that proposed by Rousseeuw & Croux (1992) is the robust scale 

estimator the   . Its formula and the main properties are as follows: 

 

                       
 

 
                               
   .                        (2.9) 
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where   
 

 
   . This estimator has the highest breakdown point- approximately 50%, 

has continuous bounded influence function, and its efficiency is approximately, 52%. It 

is a positive definite, simple and explicit formula. This is a useful estimator in case of 

asymmetric distributions. 

2.5.3    

Let         be a sample of data set, and then the robust scale estimator    is defined as 

the following: 

                                                             .                      (2.10) 

 

where            is a correction factor which make Sn unbiased for finite samples 

(Rouesseuw & Croux, 1993). 

 

The estimator    is very similar to     . It is used as an alternative to     . The only 

difference is that the      operation is moved outside the absolute value. The estimator 

   is a simple mixture of medians having absolute values. It measures the distance 

between the values. The median absolute deviation (    ), on the other hand, measures 

the distance between the observations and the median. 

The main properties of the    estimator, investigated by Rousseeuw and Croux (1993) 

are: 

1.  The estimator has a maximal breakdown of 50%. 

       2.  In case of the standard normal distribution, the influence function of the Sn   

estimator is bounded. 

       3.   The efficiency at the normal distribution is 58%, which is very high. 
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       4.  Sn estimator is measured by how far the observations at a typical distance 

between each two observations. Thus, this estimator is valid to be used at 

symmetric as well as asymmetric distributions since it is a location free estimator 

unlike     .   

5. It is positive definite.  

 

Due to these promising properties, it may be suitable estimator for the symmetric and 

asymmetric distributions. It is able to measure the distance between values, whereas the 

standard deviation measures the values from the central location. 

2.5.4 α-Trimmed Covariance Matrix 

From previous sections, the covariance matrix is known to be sensitive to the extreme 

data. Therefore, it is necessary to find alternative estimator for data when outliers are 

present. Consequently, the trimmed covariance matrix can be used instead of the usual 

covariance matrix.  

The calculation of this estimator depends on the winsorized covariance matrix and its 

formula is as follows: 

                                 
   

    
                                                                              (2.11) 

where m is the number of all data and    is the number of the data after the trimming. 

The estimator,    is the winsorized covariance matrix.   is calculated similarly as the 

calculation of the usual covariance matrix to the winsorized sample. Accordingly, the 

trimmed mean with the trimmed covariance matrix were used to construct the modified 

Hotelling’s    statistic. 
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 The trimming of the outliers is done through Mahalonobis distance by replacing sample 

mean vector with median vector, and the covariance matrix with one of the three robust 

scale covariance matrices of       and   . The trimming and the replacement of the 

data are dependent on the percentage, which is equal to 40%. Since α-trimmed 

covariance matrix depends on the winsorized covariance matrix, then, the properties of 

α-trimmed variance covariance matrix also depend on the properties of the winsorized 

covariance matrix. Consequently, according to Mingxin (2006) the properties of 

winsorized covariance matrix are as follows: 

1. It provides highest breakdown points and is bounded for different distributions. 

2. It is efficient at mild tailed symmetric models. 

3. It results in high efficiency on the use of the heavy tailed or skewed distribution. 

4. When the contaminated points are concentrated around the center, then, it 

provides the best performance among other high breakdown estimators. 

1.13 The Quality Control Charts 

The quality is defined as excellent achievement manifested in the products and services, 

means to exceed expectations. According to ISO 9000 (2000), quality is defined as the 

degree of a set of original characteristics that meet the needs. This can be considered as 

poor, good, excellent or original. Naturally, the characteristics may be qualitative or 

quantitative (Besterfield, 2004). 

 

 The shifted mean and the deviation from the control distribution affect the control 

charts, which are used to monitor the performance and the capability of the process. The 



 

39 

 

control charts consist of two kinds- univariate and multivariate. Since this study is 

interested in the multivariate control charts, the most important tasks of the multivariate 

control charts (Sepulveda & Nicholas, 1997) are as follows: 

1. Type I error must be fixed without any effect regarding the changes of the 

number of random variables. 

2. It is available for the judgment criterion to explain the signals in the control 

charts. 

3. The computational effort should be modest enough to analyze each sample when 

dealing with non-automated processes. 

In general, control charts are one of the techniques and the activities that are necessary 

to improve the quality of the products. According to Besterfield (2004), these techniques 

and activities consist of the following relations: 

       1.   Specifying certain specifications of what is required. 

2.   Propose the product or the service that suit the specifications. 

3.   Production has to suit the goal specified in the specifications. 

4.   Check the compatibility of the products and specifications. 

5. Review the usage of the product to give information about the required 

specifications. 

Thus, through these activities, customers can possess the best products or services at the 

cheapest prices or costs. 
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CHAPTER THREE 

RESEARCH METHODLOGY 

3.1 Introduction 

This study proposed three alternative approaches to Hotelling’s T
2
 control chart 

subscripted by the location estimators used in the calculation namely the trimmed mean 

(  
 ), winsorized modified one-step M-estimator (MOM)    

  , and Hodges Lehman 

(  
  . Each of these approaches demonstrates a different integration of robust scale 

estimator in the computation of the Hotelling’s T
2
 chart, be it directly or indirectly. The 

scale estimators are the median absolute deviation (        and   . In general, these 

approaches can be categorized under trimming and non-trimming data technique. 

Trimmed mean and winsorized MOM approaches belong to the trimming data technique 

while Hodges Lehman approach belongs to the non-trimming technique.  Under 

trimming technique, each approach trims data differently. When using the trimmed mean 

technique, the data are trimmed symmetrically, while for winsorized MOM technique, 

data are trimmed asymmetrically. The integration of the three scale estimators into the 

three approaches produced 9 alternative procedures for Hotelling’s T
2
 control charts as 

shown in Figure 3.1. 
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Figure 3.1: The whole procedures to construct the nine modified Hotelling’s   charts 

The list of the new procedures and their representations is as follows: 

i. Hotelling T
2
 with trimmed mean and      -      

  

. 

ii. Hotelling T
2
 with trimmed mean and   -     

 . 
 

iii. Hotelling T
2
 with trimmed mean and     -     

 . 

 

iv. Hotelling T
2
 with winsorized mean and     -       

 . 

 

v. Hotelling T
2
 with winsorized mean and   -     

 . 

 

vi. Hotelling T
2
 with winsorized mean and   -     

 . 
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vii. Hotelling T
2
 with Hodges Lehman and     -       

 . 

 

viii. Hotelling T
2
 with trimmed mean and   -     

 . 

 

ix. Hotelling T
2
 with trimmed mean and   -     

 . 

 

 

All these procedures are compared with the traditional Hotelling’s T
2
 chart in terms of 

the false alarms rates and probability of detecting outliers.  In the case of traditional 

Hotelling’s T
2
, this study presents two different procedures, with and without data 

cleaning in Phase I as listed below, 

x. Traditional Hotelling T
2
 without data cleaning-   

  

xi. Traditional Hotelling T
2
with data cleaning -   

  

 

In the above list, procedures i to iii belong to the Hotelling    using trimmed mean as 

the location estimator.  Procedures iv to vi used winsorized mean as the location 

estimators and procedure vii to ix are the Hotelling’s    with Hodges-Lehman as the 

location estimators. The role of each of the three scale estimators in every approach will 

be discussed in depth in the next sections. 

 

In the following sections, we present the traditional Hotelling’s T
2
statistics followed by 

the statistics used in the construction of the robust Hotelling’s T
2
 statistics.  
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1.14 Traditional Hotelling’s   statistic 

 

Let              ,        be a sample from multivariate normal distribution 

with mean zero and identity covariance matrix   , where   is the number of quality 

characteristics.The Hotelling’s T
2
 statistic is as follows: 

 

                              
                      .                                               (3.1) 

 

However, since the values of µ and Σ are unknown, the parameters have to be estimated 

by using  vector and   covariance matrix, respectively as follows: 

                         
                        .                                              (3.2) 

such that          

 
 
 
 
 
 
   
   
 
 
 
    
 
 
 
 
 

 

where the arithmetic mean for j-th vector calculated using the following formula: 

                           jx =
jn

1



jm

i

ij

1

x for        .                                                     (3.3) 

and the covariance matrix as follows: 

                           S = 

  
     
   
      

 
  

 

where the variance and covariance of variable    are as follows respectively : 
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.                                                                   (3.4) 

                                             
 

   
   
                    .                            (3.5)                                                                                                       

 

where        ;        ;     .  

 

This study focuses on two types of traditional statistics.  The first type, denoted as   
 , is 

using the original data without any outliers data cleaning,while the other type, denoted 

as   
 , is used on cleaned outliers data. 

The process of the cleaning outliers data (for the   
  type) is performed as follows: 

Step 1: Generate data set from           . 

Step 2: Put the outliers in the data set according to the two proportions 0.1 and 0.2. 

Step 3: Calculate the location and scale estimators for the data set. 

Step 4: Calculate the Hotelling’s T
2
 statistic for each observation in the data set. 

Step 5: Compare each value of the Hotelling’s T
2
 statistic with UCL. If any value of the 

Hotelling’s T
2
 statistic is greater than the UCL then this observation is considered outlier 

and then eliminated. 

Step 6: The remaining observations after eliminating the outliers is considered the new 

data set. 

Step 7: Repeate steps 1-6 until all outliers in the data set are eleminated (all values of 

Hotelling’s T
2
 statistic are less than the UCL). 

 

There is no difference between these two types in formulation. The difference is only 

their types of samples.  
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As mentioned in the previous chapters, Hotelling’s T
2
 statistic is one of the most 

frequently used statistics under the multivariate aspect. However, this statistic is not free 

from weaknesses. To overcome these weaknesses, researchers in this area are focusing 

into some robust procedures, in particular trying to improve the existing procedures to 

be more robust. Due to the limitations of the non robust usual mean as the location 

measure, in this study, the usual mean vector in Hotelling T
2
 is replaced with the robust 

location measures vector i. e. trimmed means, winsorized means, and Hodges Lehman.  

 

Even though each location measure offers different approach in Hotelling’s T
2
 statistic 

computation, all procedures proposed in this study have the same goal that is to improve 

the Hotelling’s T
2
 statistic performance in terms of controlling the false alarm rates as 

well as the percentage of detecting outliers. The following section will discuss on the 

proposed modified Hotelling’s T
2
 statistic with different location measures and the 

different roles of each scale estimators in each approach. 

1.15 Robust Hotelling’s    statistic using trimmed mean 

The first approach replaces the usual mean vector with the trimmed means as the 

location measures. The process involves two stages.  The first stage aims to determine 

the observations to be trimmed before the calculation of the trimmed mean could be 

performed. Trimming is conducted via Mahalonobis distance method (MD) and 20% 

trimming is employed on each end of the data. The choice of 20% trimming was based 

on Rocket al. (1982), Rosenberger and Gasko (1983), Wilcox (1995) and Pei-Chen 

(2007). The formula of Mahalonobis distance method (      ) is as follows: 
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                          =                  .                                                            (3.6) 

 

To eliminate the usual problems due to masking and swamping effect, we replace the 

traditional location and scale estimators with the median and the robust scale estimators 

     respectively. This modified Mahalonobis distance is used to select the 

observations to be trimmed. Once trimming is done in this stage, the second stage that is 

to calculate the mean and covariance matrix using the trimmed sample can be 

conducted. The process is described as follows: 

 

Let            , where         be a matrix of rank     where   is the group size and 

  is the number of quality characteristics. We construct the modified Mahalonobis 

distance values,        for each observation           in the data set as follows: 

 

                                
 
     
                                                          (3.7) 

 

The steps in constructing Hotelling’s T
2
 with trimmed mean and      which is denoted 

by       
  is as follows,   

 

1)  Calculate Mahalonobis distance for each observation in the data set using median and 

     as the location and scale estimators, respectively: 

i) Median vector for the observations of each variable: 

                          
   
 
   

                                                                              (3.8) 
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ii) p x p covariance matrix for      i.e.       : 

First, compute the diagonal elements of the pp  covariance matrix which are 

the sample variances of each variable which are represented by   

 

                           
 
=      (  )     (  )      where        .              (3.9) 

 

Based on Abu-Shaweish and Abdullah (2001), the remaining elements of pp  

covariance matrix are calculated as follows:  

(a) Compute the      for the vectors    and    which are denoted by 

     (  ) and      (  ) where         and        ,    . 

(b) Compute the spearman correlation for ranks between the variables   and 

  , which is denoted by corr (  ,   ). 

(c) The sample covariance between the variables Xj and Xg is   

                                            (  ,    )=      (  )     (  ) corr (  ,   ) .       (3.10) 

 

(d) Thus, the p x p covariance matrix is 

 

       

           
   

           

                                                     (3.11) 
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iii) Next, for each observation, calculate the modified Mahalonobis distances 

using formula (3.7). 

iv) Arrange all values of modified Mahalonobis distances in ascending form.   

 

2) For all variables, delete simultaneously 40% of the observations which have the 

largest values of mahalonobis distances. 

3) Calculate the trimmed mean for the remaining data by dividing the total of the 

remaining data by        , where m denotes to the whole sample size.  

4) Construct the winsorized samples by replacing these observation that are 

trimmed by the next observation that represents the next largest 40% of the 

values of mahalonobis distance.  

5) Calculate the winsorized covariance matrix in the same way as untrimmed 

covariance matrix using the previous winsorized sample. The winsorized 

covariance matrix are denoted by          

6) Determine  the trimmed covariance matrix       by multiplying the winsorized 

covariance matrix         by  
   

    
  (Alloway & Raghavachari, 1990). 

7) Calculate the inverse of the trimmed covariance matrix         which  is denoted 

by       
  . 

8) The alternative robust Hotelling    statistic is constructed by replacing the 

sample mean vector by the robust location estimator         and also by 

replacing the inverse of the usual covariance matrix with the inverse of 

covariance matrix of the robust scale estimator       , denoted by       
  . 

Then, the resulting Hotelling’s    statistic is constructed as follows: 
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              .                    (3.12) 

 

The steps for constructing another two modified Hotelling’s    statistics using trimmed 

mean using the robust scale estimators    and     which are denoted by       and 

     and their inverses     
   and     

  are similar to the previous steps of the robust scale 

estimator     , except now we replace      by    and   . Thus, the two new 

modified Hotelling’s   statistics are as follows: 

 

                       
                 

     
           ).                                       (3.13) 

 

                      
                

     
             .                                        (3.14) 

1.16 Robust Hotelling’s     statistics using winsorized modified one step M-

estimator (MOM) 

The second approach uses the winsorized MOM as the location measures to replace the 

usual mean vector in the traditional Hotelling’s    statistics. The process involves two 

stages. The first stage determines the observations to be trimmed before the calculation 

of the mean could be performed. Trimming is done via the trimming criterion used for 

    estimator. The MOM estimator (Wilcox & Keselman, 2003) is defined as follows:  

 

                         
     

        

     
      

.                                                                     (3.15)                                                                                 

where       =      order statistic in     characteristic variable. 
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  : Numberof    that satisfies the criterion                    .         (3.16)  

 

  : Number of     th at satisfies the criterion                    .         (3.17)       

 

  : Denote to the group size for     variable. 

 

    =                         

 

                             .                                                              (3.18)    

 

 

Constant K = 2.24 was adjusted so that efficiency is good under normality especially for 

small sample sizes (Wilcox & keselman, 2003; Othman et al., 2004; Syed Yahaya et al., 

2006). Wilcox and Keselman (2003) found that the efficiency is equal to 0.9 for m = 20 

when K =  2.24. Our investigation on MOM estimator using    and    reveals that its 

efficiency is high, that is 0.92 and 0.91, respectively.   

 

Since the efficiency of the    is also high when the robust scale estimators    and    are 

used, it can also be used in the criterion of the modified one step M-estimator. This is 

done by replacing      by the two robust scale estimators    and   , and leave the 

median as the robust location estimator. 

 

The construction of the winsorized sample using     follows the winsorization 

process suggested by Wilcox (1997) 
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  .                                 (3.19) 

 

where 

  : Number of smallest outliers in the data. 

  : Number of largest outliers in the data. 

 

The winsorized sample is constructed from original observations following these steps: 

1. Delete  ,  

2. Replace   by         , then 

3. Delete  , then 

4. Replace   by           

For each random variable                          , the estimated winsorized 

MOM and the corresponding winsorized covariance matrix are calculated as: 

 

                      
    

  
   

  
 .                                                                                     (3.20)                                               

 

                        
 

   
      
 
                 .                               (3.21) 

 

To construct new robust Hotelling’s   statistic, the winsorized MOM,  and winsorized 

covariance matrix,   replace the usual mean vector and the covariance matrix in the 

traditional Hotelling’s   statistic, respectively, and we get 
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          .                                                       (3.22) 

 

Hotelling T
2
 statistics in equation 3.22 represent the statistic using winsorized MOM 

based on the default criterion with    as the scale estimator.  Since this study also 

extends to other scale estimators namely   and   therefore, for the ease of reference, the 

statistics corresponding to each scale estimator is subscripted with that particular scale 

estimator such that       ,      and       representing the winsorized MOM for the 

criterion using     ,    and   , respectively. Thus, the three new robust Hotelling’s 

  statistics are as follows: 

 

                      
                 

       
              .                        (3.23)            

 

                        
                

     
            .                                    (3.24) 

 

                       
                

     
            .                                    (3.25) 

1.17 Robust Hotelling’s    using Hodges-Lehmann estimator 

The third approach uses the Hodges-Lehmann estimator and one covariance of MADn, Sn 

or Tn to replace the usual mean and covariance matrix, S, respectively.  The three new 

robust Hotelling’s T
2
 control charts are denoted as       

      
  and    

  depending on 

the scale estimators used to calculate the covariance matrix.   The calculation of Hodges-

Lehmann estimator is demonstrated below:(Abu- Shawiesh & Abdullah, 2001; Wei, 

2007; Majid, Haron & Midi, 2010): 
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1. Calculate Walsh averages,   by using    = 
       

 
, where       , such as  

  
       

 
                         , m is the group size. 

2. Calculate Hodges-Lehmann estimator 

 

                          
                          
             

 
            

                                  (3.26)      

 

             where 

                          

   

 
        

 

 
         

  .                                                                  (3.27)  

 

Now, we can compute the Hotelling’s T
2
 statistic: 

i. Let           , a matrix of     where       , with   the number of 

observations and   is the number of quality characteristics. 

ii. Calculate the mean vector using Hodges-Lehmann estimator for matrix of     

as follows: 

                       

   
 

   
  .                                                                         (3.28) 

iii. For p-variables        , the robust covariance matrix using scale estimator 

     is constructed as below: 

 

                                    

           
   

           

  .                                          (3.29) 
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iv. The formula for the new Hotelling’s   control chart using Hodges Lehman as the 

location estimator and the covariance of MADn as the scale estimator is  

 

                           
                   

         .                                     (3.30) 

 

Similar steps are needed to construct the other two new Hotelling’s    statistics using 

Hodges-Lehmann estimatorwith robust scale estimators    and  . The formulas for the 

respective Hotelling’s    statistics are given as 

 

                       
                 

          .                                               (3.31) 

 

                       
                  

          .                                              (3.32) 

1.18 Positive definite 

The covariance matrix is a positive definite matrix if it satisfies the Cholesky 

decomposition. The Cholesky decomposition is defined as the product of a lower- 

triangular matrix and its transpose. A simulation method is employed in order to prove 

that the covariance matrix of robust scale estimators        and    are positive definite 

and satisfies the Cholesky decomposition. The algorithm is: 

i. Generate  data set from the standard normal distribution MVNp (0, Ip) of size 

m = 25. 

ii. Put outliers in the data according to the two cases, case A and case B which 

will be discussed later. 
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iii. Calculate the robust covariance matrices. 

iv. Apply Cholesky decomposition these covariance matrices.   

As a result, the covariance matrices now are positive definite. 

v. Repeat steps (i-iv) 10,000 times and recheck whether covariance matrices are 

positive definite in each repetition. The results proved that the covariance 

matrices satisfied Cholesky decomposition in all 10,000 repetitions.  

1.19 Variables Manipulated 

Six variables are manipulated to investigate the strengths and the weaknesses of the 

traditional and new robust Hotelling’s T
2
 charts. The variables are, number of quality 

characteristics ( ), proportion of contamination (ε), mean shifts (µ), group size ( ), 

significance level (α) and nature of quality characteristics (dependent or independent).  

The selections of the variables were based from previous studies. Alloway and 

Raghavachari (1990), Wilcox (1995), Abu-Shawiesh and Abdullah (2001), Johnson 

(1987; 2007), Vargas (2003), Jensen, Birch and Woodall, (2006), Alfaro and Ortega 

(2008; 2009), Chenouri, Variyath and Steiner (2009), Midi, Shabbak, Al-Talib and 

Hassan (2009) and Mohammadi, Midi, Arasan and Al- Talib (2011) extensively used 

these variables in their works. 

 

This study deals with the multivariate Hotelling’s T
2 

statistics, which are sensitive to the 

contamination of data. Therefore, the data are generated from the standard normal 

distribution, contaminate it with different proportions of outliers, and mean shifts. To 

judge the performance and capability of these new robust Hotelling’s T
2 

charts, false 
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alarms rates and the percentage of detection of outliers are calculated. A good control 

chart should be able to control its false alarm rate close to the nominal level, α, and 

simultaneously have strong ability in detecting outliers.  Bradley`s (1978) inequality of  

0.5α<    < 1.5α is used as a criterion to evaluate whether the chart is regarded as in 

control of its false alarm rate. If the empirical false alarm rate,   , is within the Bradley’s 

inequality, then the Hotelling’s    chart is regarded as robust.  The closer the false alarm 

rate to the nominal value  , the better is the chart in terms of controlling false alarm rate.  

As for the percentage of detecting outliers, the higher the percentage, the better is the 

chart in detecting outliers. The following subsections will discuss in detail about the six 

quality characteristics that are considered in this study. 

1.19.1 Quality Characteristics (p) and Group Sizes (m) 

According to Vargas (2003),  Alfaro and Ortega (2008; 2009), Rousseeuw and Zomeren 

(1990) and Jensen et al., (2006), they reported that for the traditional charts, if the group 

sizes   is fixed and the number of the quality characteristic,  , increased, then the effect 

will cause the probability of detection to  decrease.  Correspondingly, if one fixed the 

number of p and increased the group sizes, m, then the Hotelling’s T
2
 charts will have 

different effect on their performance. Vargas (2003) showed that when the value of 
 

 
 is 

relatively small, the values of the false alarm rate and the percentages of detecting of 

outliers are approximately the same. In addition, Ruosseeuw and Zomeren (1990) 

suggested that   is selected by using the formula 
 

 
    since small 

 

 
 value may 

increase complication in detecting outliers. Other works considered different number of 

quality characteristics depending on the group sizes (m) such that Jensen et al. (2006) 
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used              with m = 30, 50, 75,100 and 125, while Alfaro and Ortega ( 2009) 

chose          with m = 25, 50, 100, 1000 and Chenouri et al. (2009) used   

       with m values of 50, 100, 150.  To check whether our proposed methods work 

regardless of the above quandary, we set the values of p at 2, 5, and 10 with m = 25, 50, 

100, and 150.  However, under dependence case, the Hotelling’s T
2
 charts, using 

trimmed mean and Hodges Lehman, failed to perform when m = 25 and p = 10. This is 

due to the existence of singular matrix in the calculation of the robust scatter matrix. 

Thus, for the two robust Hotelling’s T
2
 charts, we considered m = 50, 100 and 150 while 

for Hotelling’s T
2
 chart using winsorized MOM, the initial values of m= 25, 50 and 100 

are adopted. 

1.19.2 Proportion of Outliers (ε) and mean shifts (µ).  

Outliers as defined by Hellerstein (2008) are the inconsistent observations, which are 

located far away from the bulk of the data. Penna and Parieto (2001) reported that the 

enhancement of technology helped in collecting huge numbers of data for multivariate 

studies, which consequently will increase the number of outliers in the collected data. 

According to Rocke and Woodruff (1998) most method fail to detect outliers if the 

proportion of the outliers greater than the fraction  1 / (p + 1), where p denote to the 

number of quality characteristics. This means that if p is large then there is small 

proportion of outliers present in the data which cause difficulty for the traditional charts 

to detect outliers. To alleviate the problem due to outliers, many statisticians like 

Williams et al. (2006); Alfaro and Ortega (2008;2009); Vargas (2003); Chenouri et al. 

(2009); Midi et al. (2009) and Mohammadi et al. (2011) used robust control charts to 
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improve the probability of detection. The robust charts encouraged the practitioners to 

collect huge quantity of data without worrying about the presence of outliers.  To check 

whether our proposed robust charts will be able to handle the problem of outliers, thus, 

in this study, we shifted the mean (centrality) to a certain value (µ) for a certain 

proportion ( ). The shifts in mean indicate the extent of the outliers. The larger the shift, 

the more extreme is the values of the outliers.   In this study, we used 3 levels of mean 

shifts (µ) i.e. 0 representing no outliers, 3 and 5 for moderate and extreme values 

respectively.  The proportion of outliers ( ) to be included in our study, we adopt the 

values that most researchers used i.e. 0.1 and 0.2 (Alfaro & Ortega, 2009; Chenouri et 

al., 2009; Midi et al., 2009; Mohammadi et al., 2011) which these values regarded 

suitable to measure the performance of proposed charts. 

1.19.3 Level of Significance 

Type I error in the hypothesis testing is defined as the rejection of null hypothesis    

while    is true. The probability of making type I error is denoted by   i. e level of the 

significance for the hypothesis test. In the domain of the statistical control charts, the 

level of significance, α is called false alarm rate (Steiner, 1994).  Bersimis et al. 

(2006)defined the false alarm rate as the probability of obtaining at least one out of 

control signal while the statistical process is in control under assumed probability 

distribution.  A study by Chenouri et al. (2009) which considered a few values of α 

revealed that the performance of their robust charts in terms of detecting outliers 

dwindled when α is small.  To check on the performance of our proposed robust charts, 

we chose α value that is commonly used i.e. 5% and 1%. 
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1.19.4 Nature of Quality Characteristics 

This study investigated on the two natures of quality characteristics i.e. dependent and 

independent. Case (A) represents the independent nature while Case (B) represents the 

dependent nature. 

Case (A) was needed to compare behaviours of modified Hotelling’s     charts when 

there exist different-sized changes for the mean of all independent variables, i. e. without 

correlations. Case (B) was needed when there is  high correlation among variables 

considered. As mentioned in chapter one, the traditional control chart works well when 

the data is normal and the quality characterestics are independent but not in the case of 

dependent.   

 

Therefore in this study we also  considered the case of dependent quality characteristics 

with high correlation to measure the robustness and the capability of  new robust charts 

in detecting outliers if the condition of independent is violated.  However, for dependent 

case, only two values of the shifted mean were considered such that when no outliers  

exists (µ = 0) and when there exist good leverage points (µ = 5). When there are 

leverage points, there is a good chance to create masking effect points. So as to measure 

the performance of the new proposed charts in detecting these masking points.  Masking 

effect occurs when one outlier mask the second outlier  such as if the second outlier is 

considered as an outlier with itself  only without the first outliers. Then if we delete the 

first outlier from the data then the second outliers will merge with outliers. Therefore, 

the masking effect exist when the outlying data skew the mean and covariance matrix to 

it (Ben-Gal, 2005). 
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The generation of data for Case A and Case B follow different models as explained in 

the next subsections.    

1.19.4.1 Case A: Independent Characteristics 

 

The following model represents the data generation for Case A: 

                                                      .                                     (3.33) 

Without loss of generality, the in control mean vector is zero, while out of control mean 

vector of size   is  
 
and the covariance matrix with no correlation is the identity matrix 

  . Johnson (2007) reported that the covariance matrix is homogenous when there is no 

correlation among the variables, which indicates identity matrix   .  

1.19.4.2 Case B:  Dependent Characteristics 

 

In this case the data were generated from the following distribution: 

 

              (1-ε)                              .                                                 (3.34) 

 

Without loss of generality the in control mean vector of size  ,   is equal to zero while 

out of control mean vector of size   is   .    represents simulteanously the in control 

and out of control     covariance matrices. For simplicity, we consider covariance 

matrix    with high correlation among variables. For   , the elements of the main 

diagonal equal to 1’s and the remaining elements equal to 0.9 (Jensen et al., 2006; 

Johnson, 2007). The out of control parameter   onlytakes the values of 0 ( no change) 
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and 5 (good leverage points) but not 3 (moderate change) because in this case the 

outliers are too small to be detected in case of dependent variables. Case (B) was 

considered in this study in order to judge the performance of proposed robust Hotelling’s 

   charts when there is high correlation among the characteristics. According to Holmes 

and Mergen (1996) Hotelling’s    charts becomes out of control when the correlation 

among the variables (characteristics) has changed.  The effect could be observed when 

we changed from Case A (no correlation) to Case B (high correlation).  If the chart 

works for the highest, then it will hopefully works for the moderate and low correlation. 

1.20 Construction of control charts 

The construction of control charts involves many steps as shown in the following 

subsections.  This study used simulated data for the construction of the various control 

charts.   

1.20.1 Data Generation 

 
The generation of data was done using models of mixture normal for independent and 

dependent variables.  To investigate on the performance of the charts in terms of false 

alarms rates and the rates of detection of outliers, four levels of contaminations were 

considered for the independent case namely no contamination (ideal condition), mild 

contamination, moderate contamination and extreme contamination.  These levels of 

contaminations were created through manipulation of the variables discussed earlier. 

The manipulation generated five different types of distributions representing the levels 

of contamination which are categorized as below, 
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       1)              - Ideal (no contamination) 

       2)                                   - Mild contamination 

       3)                                  - Moderate contamination 

       4)                                  - Moderate contamination 

       5)                                     - Extreme contamination 

 

All of these distributions were tested for each combination of group size m,  and number 

of dimensions, p.  

 

Nevertheless, for the dependent case, there is a slight changes in the number of shifted 

means and the covariance.  Instead of using 3 values of shifted means i.e. 0, 3, and 5 as 

in the case of independent, we only used 2 values i.e. 0 and 5 for the dependent case .  

Another changes is in the covariance matrix.  In the independent case, the covariance 

matrix is Ip since there is no correlation among the quality characteristics.  However, in 

the dependent case, some amount of correlation should be considered in the covariance 

matrix. Thus, in this study, we consider a correlation as high as 0.9 as suggested by 

Alfaro and Ortega (2009).  The contamination levels and the distributions representing 

the levels are as follows,      

           1)             - Ideal (no contamination) 

            2)                                  Moderate contamination 

            3)                                  Extreme contamination 
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1.20.2 Estimation of control limit 

 
In the construction of a control chart, the most important step is to calculate the control 

limits.  In a multivariate control chart only the upper control limit is required since the 

lower control limit is always set at 0.  This section will discuss on the two methods used 

in estimating control limits (CL). First is the exact method used on the traditional 

Hotelling’s    control chart. Next is the simulation method employed on robust 

Hotelling’s    charts. The simulation method is employed in this study since the 

underlying distribution is unknown for the robust statistics.  According to Alfaro and 

Ortega (2009)and Chenouri et al. (2009), the simulation method is used to calculate 

upper control limit (UCL) when the sample size is small and the distributions of the 

Hotelling’s    statistics are unknown. In addition,  Abu- Shaweish  and Abdullah (2001) 

stated that the results of UCL from the simulation on the traditional Hotelling’s    

control chart indicated close agreement with the axact method used on the traditional 

Hotelling’s    control chart. Therefor, the simulation method is used in determining of 

UCL for the robust charts. 

 

For the traditional Hotelling’s    chart, we adopted the UCL given by Tracy, et al.  

(1992).   The calculation of UCL depends on the how the estimators in the Hotelling’s T
2
 

statistic i.e.     and S  are determined.  If the they are not determined from the sample of 

observations being monitored, then the computed T
2 

will be compared to  

    pmpF
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Otherwise, T
2 

will be compared to 
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UCL  .             (3.36) 

For the robust Hotelling T
2
 charts, the simulation method used to calculate the UCL 

followed Alfaro and Ortega (2009) as below, 

Phase I: 

1. Generate a data set of group size m such that                        

from standard normal distribution             

2. For each data set   , the robust estimators (location and scale estimators) are 

calculated. 

 

Phase II: 

3. Generate a new additional observation vector                  from the 

multivariate standard normal distribution            for each data set. 

4. Calculate the corresponding robust Hotelling’s    statistics for each new 

additional observation vector using robust estimators in phase I. 

5. Repeat phase I and II to 5000 replications.  According to Alfaro and Ortega 

(2009) and Mohamadi (2011),  it is enough to estimate UCL if we repeat phase I 

and II  for 5000 replications.                  . 

6. Calculate the 95
th

 and 99
th

 percentile of the 5,000 values of the robust Hotelling’s 

  statistics. These two percentiles are commonly used in most previous studies. 

Therefore, it helps us to make comparison with these previous studies. 
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7. The UCL represents the 95
th

 and 99
th

 percentile since the values of   were set at 

5% and 1%, respectively.  

The study used the same values of UCL for cases A and B, in order to make the 

comparison of the performance for all robust and traditional charts. 

1.20.3 The Construction and Evaluation of Control Charts 

The construction of the control charts follows two phases as explained below,  

Phase  I: 

 

    i. Generate data set of group size m                       from the 

multivariate standard normal distribution             

                 ii. Put outliers in data set in step i according to two cases (A) and (B). 

   iii. Calculate the traditional and the robust estimators for each data set. 

   iv. Repeat step i to step ii for 1000 replications.  According to Alfaro and Ortega 

(2009), it is enoough to repeat step i to step ii for1000 replications to determine the 

estimators for evaluation of the control chart. 

 

Phase II: 

This phase calculates the Hotelling’s T
2
 statistics and evaluates the performance of the 

corresponding charts in terms of false alarm and probability of detection. The generation 

of the observations differs based on the types of performance i.e. the false alarm or the 

probability of detection of outliers. 
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 . False alarms: 

1.  Generate a new additional observation vector for each data set from the “in 

control” distribution based on the nature of characteristics.  For Case A, the 

distribution is            while for Case B, it is             

2. Calculate the traditionals and the robust Hotelling’s    statistics for each new 

observation vector by using the estimators calculate in phase I. 

3. Compare each value of the Hotelling’s  
 
statistics with their corresponding 

UCL. 

4. Repeat steps 1 to 3 for 1,000 replications. 

5. The false alarm is equal to the proportion of the number Hotelling’s     statistics 

that are greater than UCL divided by the number of replications (i.e. 1000) 

 

  . Probability of detection of outliers:  

1. Generate a new observation vector for each data set from “out of control” 

distribution for the two cases.  For Case A, the distribution is                  

while for Case B, it is                 

2. Calculate the traditionals and the robust Hotelling’s    statistics for each new 

additional observation vector by using the robust estimators in phase I. 

3.  Compare each value of the Hotelling’s    statistics with their corresponding 

UCL. 

         4.  Repeat steps 1 to 3 for 1000 replications.    

                5. The probability of detection of outliers is equal to the proportion of the number 
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                     Hotelling’s     statistics that are greater than UCL divided by the number of 

replications (i.e. 1000). 

1.20.4 Performances of the Robust Hotelling’s T
2 Control Charts 

The performance of the robust Hotelling’s    chartsare judged based on the values of 

false alarms rates and the percentage of detection of outliers. To evaluate the 

performance of the competing methods in phase I, the probability of signal must be 

calculated.  If the data comes from in control process, the false alarms rates must be 

close to the nominal rate, α. In addition, if the data comes from an out of control process, 

then the probability of detection of outliers should be large enough to ensure that the 

chart is able to monitor on-line data and quickly detect shifts in the process of Phase II. 

Consequantly, Bradley’s inequality (Bradley,1978) were used to measure the robustness 

of the Hotelling’s    charts as follows: 

i) For α = 5%, the Hotelling’s    charts are considered robust and in control of their 

false alarms rates if the empirical false alarm rates are within the 2.5% and 

7.5%interval. 

ii) For α = 1%, the Hotelling’s    charts are considered robust and in control of their 

false alarm rates, if the empirical false alarm rates are within the 0.5% and 

1.5%interval. 

 

 In case of probability of detection of outliers, the closer the values to the 100% level, 

the better is the performance of the charts (Chenouri et al., 2009). The probability of 

detection of outliers gives indication to the ability of the charts to detect the outliers in 
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the data. For example, if the level of the detection outliers reaches 100%, this would be 

an indication  that the charts detected all the outliers in the data. This means that, if we 

put 20% outliers in the data, the charts will be able to detect all these outliers. In our 

study, the benchmark for a good detection was set at 80% based on the rule of thumb for 

evaluating power (Linden, Adams & Robert, 2004)   

 

Finally, computer programs in MATLAB version 7.8 (2009a) were developed to 

calculate and evaluate the robustness and probability of detection of the proposed robust 

Hotelling’s    charts.  

1.21 Flowchart 

Diagram 3.2 represents the flowchart for calculating the false alarm rates and the 

percentages of detection of outliers for the traditional and robust Hotelling’s T
2
 charts.  
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Figure 3.2: Represents the steps of calculating false alarm rates and  probability 

detection   of outliers 
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CHAPTER FOUR 

ROBUST HOTELLING’S     CONTROL CHARTS USING 

TRIMMED MEAN WITH TRIMMED VARIANCE COVARIANCE 

MATRIX 

2.1 Introduction 

The results of the analysis will be presented and thoroughly discussed in Chapters 4, 5 

and 6. Each chapter presents a unique proposed control chart. Three different robust 

multivariate Hotelling’s   charts were proposed as explained in Chapter 3. Each of the 

charts was assessed under different conditions to check on their strengths and 

weaknesses. These conditions were created by manipulating the group sizes, number of 

quality characteristics, proportion of contamination and the shifted mean. Each of these 

conditions was tested for independent (Case A) and dependent (Case B) cases of 

individual observations.   

 

This chapter aims to present the performance of robust multivariate Hotelling’s    

charts using trimmed mean as the location vector and trimmed covariance matrix as the 

scale matrix. However, the trimming approach via Mahalonobis distance formula was 

modified using three different scale estimators suggested by Rousseeuw and Croux 

(1993), namely         and   . Hence, in this chapter the Hotelling’s T
2
 charts with 

the aforementioned different scale estimators are respectively denoted as       
 ,    

 , 

and     
 . The process for computing robust Hotelling’s T

2
 statistic is as follows: 

Step 1:  Obtain original data (with outliers) 

Step 2:  Compute modified Mahalonobis distance such that  
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         .                                           (4.1) 

 

Where A represents the robust scale estimator,     ,    and   . 

Step 3:  Trim the original data 

Step 4:  Compute trimmed mean 

Step 5:  Compute trimmed covariance 

Step 6:  Compute Hotelling’s T
2
 statistic

 

 

The performance of each chart is measured in terms of false alarm rates and percentage 

of detecting outliers.  The tables, which record the false alarm rates, are arranged based 

on ascending number of quality characteristics (variables), namely p = 2, 5 and 10, with 

group sizes ofm = 50, 100 and 150. The first column in each table displays the group 

sizes, followed by the proportion of outliers ( ) and shifted means (µ), respectively in 

the second and third column. The proportion of outliers takes the values of 0 (no 

outliers), 0.1 and 0.2 while the shifted mean takes the values of 0 (no shift), 3 and 5 for 

case (A), and the values of 0 and 5 for case (B). The rest of the columns display the 

values of false alarm rates for the two traditional charts (i.e.  
 and   

 ) and the three 

modified Hotelling’s   charts. The control chart is considered to be in control of its 

false alarm if the empirical value is close to the nominal value α. Based on Bradley’s 

(1978) liberal criterion of robustness, the chart is considered robust (in control)  if its 

empirical false alarm rate,̂ , lies within               interval. The nearer the rate 

to the nominal value, the better (in terms of robustness) would be the chart at that 

particular condition. For comparison purposes, the empirical false alarm rates within 
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Bradley’s interval are shaded. This chapter is organized in two cases of variables, 

namely the independent, denoted as Case A, and dependent, denoted as Case B. 

 

In terms of percentage of detection, the performance of the control chart is regarded as 

more effective in detecting outliers when the value of the percentage is closer to 100%.  

Based on the rule of thumb, a method is considered good in detecting outliers if the 

percentage of detection achieves the 80% level. For ease of comparison, the 

performance of the three control charts in terms of percentage of detection under each 

condition is graphically presented.   

2.2 Independent Variables (Case A) 

The performance of the control charts for independent variable is based on two 

measurements namely false alarm rates and percentage of detecting outliers.  

2.2.1 False alarm rates and Percentage detecting outliers at α = 5%  

The results of the analysis for the false alarm rates and percentage of detecting outliers 

when α = 5%are summarized in Table 4.1 – Table 4.2.    
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Table 4.1: False alarms rates (percent) under independent case for α = 5% 

. 

 

The false alarm rates in Table 4.1are presented in percentages for α = 5%.  To measure 

the performance of the investigated charts, Bradley’s robust interval is used such that the 

false alarm rates should be in between 2.5% and 7.5% for a chart to be considered robust 

at a certain condition.  The last row of the table shows the percentage of the cells, which 

are considered as robust for each chart. 

 

Table 4.1 shows three robust charts that perform as good as the traditional charts in 

controlling false alarm under ideal condition (  = 0,   = 0), regardless of the group 

sizesm, ε and p. However, under non-ideal condition, under the influence of small 

proportion of outliers (ɛ = 0.1), the robust charts are still in control of the false alarm 

rates when the group sizes   are small. However, the control becomes conservative 
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(smaller in values than the lower bound of robust interval) as the proportion of outliers 

increases (ε = 0.2) regardless of the shifted means µ. When p increases, the false alarm 

rates for the robust charts also increases but most of the rates are still within Bradley’s 

interval. The robust charts perform better when p = 10 as compared to p = 2 and 5.   

 

When the sample size increases to m = 100, the false alarm rates for the robust charts 

slightly drop, but the rates are still within the robust interval. As the sample size 

increases  to m = 150, the false alarm rates improve. In regards to mean shift, we can say 

that the false alarm rates are not affected by the shifts since the changes in the false 

alarm rates are diminutive.  However, with the increase of the proportion of outliers, ε, 

the false alarm rates for the robust and the traditional charts affected negatively causing 

the performance to drop. 

 

In general,       
  chart performs better than the other two robust charts at ε = 0.1, 

because it has the largest percentages of robust cells for all values of quality 

characteristics, p. When compared with the traditional charts,   
  chart surpasses the 

performance of all charts. 
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Table 4.2: Percentages of detecting outliers for independent case at α = 5%. 

 

 

 

Next, we move to another measure of performance of the control charts i.e. the 

percentage of detecting outliers. Table 4.2 demonstrates that the robust charts improve 

concerning the rates of detection of outliers as the number of group sizes (m) increases. 

However, this is not the case for the traditional charts, where little or no improvement is 

detected for both charts. For a clearer and better comparison, we will refer to the graphs 

in the figures below. 
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a 

 

                                b 

 

 

c 

 

                            d 

 

Figure 4.1: Percentages of detection of outliers when p = 2 

Figure 4.1.a illustrates the case of mild contamination when the proportion of outliers ɛ 

= 0.1 and the shifted meanµ = 3. The three robust charts perform better than the 

traditional charts.  There is an upward trend as the value of m increases for the robust 
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charts and   
  chart, but not the one portrayed by   

  chart.  However, for this 

condition,  
  chart perform better than   

  chart.  

 

Figure 4.1b shows when moderate contamination, the performance of all charts 

deteriorates as the proportion of outliers increases to ɛ = 0.2 while µ stays constant.  The 

upward trend for the robust charts maintains.  We can observe a very wide gap between 

the lines representing robust charts and the traditional charts which indicates that under 

this condition, the performance of robust charts are far ahead of the traditional charts. 

Figure 4.1c shows the case of, the performance of the charts in detecting outliers when 

moderate contamination (µ = 5 and ε = 0.1). The performance of these three robust 

charts reaches the perfect level of 100% (refer to Table 4.2 for the values).  In this case, 

  
  chart also performs beautifully, may the reason in this case the data has not masking 

effects because this chart rebounded showed worsen performance in the next figure 

(4.1d ), which proved that in this case the extreme contamination, the data has masking 

effect. The last figure (Figure 4.1d) illustrates the performance of the charts under 

extreme contamination (ε = 0.2 and µ = 5). It showed the same pattern as in Figure 4.1b, 

but with improvement in the performance of the robust charts and otherwise for the 

traditional charts especially   
  chart.  

 

Overall, we observe that the performance of the robust charts in detecting outliers is 

always good regardless of conditions and their performance is on par with each other. 

The traditional charts, which are always below par when compared to the robust charts, 

worsen when ε = 0.2.  
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d 

Figure 4.2: Percentages of detection of outliers when p = 5 

Figure 4.2 graphically illustrates the performance of the charts in terms of detection of 

outliers for p = 5. Figure 4.2a shows when mild contamination, the proportion of 

outliers, ɛ = 0.1 and shifted mean, µ = 3, the robust charts perform stronger than the 
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traditional charts. The performance of the robust charts almost reached the highest level 

(100%), while the lines that represent traditional charts, hardly reach the 50% level. As 

group size increases, the performance of the robust and traditional charts is positively 

affected.  When the mean shifts to µ = 5 while the proportion of outliers maintains at ɛ = 

0.1 (as shown in Figure 4.2b), the percentage values for the three robust charts improve 

to almost 100%, leaving the traditional charts far below the graph especially for   
  

chart.  Even though there is some improvement in   
  chart, the results are still far below 

the robust values.  Increased in the values of m affect the robust and   
  charts positively 

but the opposite occurs on   
  chart. Figure 4.2c illustrates slight deterioration in the 

performance of the three robust charts when moderate contamination, ɛ = 0.2 and µ = 3. 

The already under performed traditional charts, worsen to a level lesser than 20%.  

While under the extreme contamination, ɛ = 0.2 and  µ = 5 as shown in Figure 4.2d, the 

gap between the robust and the traditional charts gets wider with the three robust charts 

are at the peaked of their performance, while the traditional charts perform almost as bad 

as when ɛ = 0.2 and  µ = 3. 
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                                a 
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                               c 

 

                                  d 

 

Figure 4.3: Percentages of detection of outliers when p = 10 

The performance patterns of the investigated charts in terms of percentage of detection 

at p = 10 are shown in Figure 4.3.   Figure 4.3a and Figure 4.3b represent the conditions 

when the percentage of outliers is 10% with mean shifts equal to 3 and 5 respectively.  

We could observe that both graphs display almost the same patterns. The robust charts 
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achieve almost perfect detection leaving the traditional charts at the lower level of the 

percentage of detection ranging from 15% to 34%. Furthermore,   
  chart worsens when 

p increases to 10. 

 

However, in Figure 4.3c, as the proportion of outliers increases with shifted mean µ = 3 

some deterioration in the performance of robust charts occurs. The traditional charts 

deteriorated as well, resulting in the performance to be at their worst. Lastly, in Figure 

4.3d in case of extreme contamination, the performance for the robust charts returns 

bounces back to 100%, while the performance of the traditional charts is still at the 

worst. Throughout the figures, we detect that as m increases, the changes in the 

performance of all charts show some positive effect except for   
  chart.   

2.2.2 False alarm rates and Percentage detecting outliers at α = 1%. 

As mentioned earlier, this study adopted Bradley’s robust interval to judge whether the 

false alarm is in control or not.  Based on the interval, at α = 1% the false alarm rates 

must lie between 0.005 and 0.015 (0.5% to 1.5%). In the following subsections, we 

present tables 4.3 and 4.4, which display the results on the performance of the 

investigated charts according to the number of variables   in terms of false alarm and 

detection of outliers respectively.  For the convenience of comparison, for each p in 

Table 4.4, there will be a corresponding figure graphically explains the results.     
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Table 4.3: False alarms rates (percent) under independent case for α = 1%. 

 

 

Table 4.3 displays the performance of the charts in terms of controlling false alarm rates 

at   = 1%.  At p = 2, under ideal condition (ε = 0, µ = 0), the false alarm rates are in 

control for   
 (1% to 1.4%) and the robust charts (0.6% to 1.3%) but not for   

  chart 

(0.1% to 1.6%). When group size (m) equals to 100,   
  chart produces a liberal value of 

false alarm where the value is above the upper interval limit. No specific pattern of 

performance could be observed across the values of m for other charts.  However, for 

non-ideal condition, the results for the investigated charts somewhat drop to (0.2% - 

0.5%) for the robust charts, (0.3% - 0.5%) for the   
  chart and (0.4% – 0.8%) for the   

  

chart. There are smaller numbers of shaded cells for each robust chart as compared to 
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the traditional charts, especially   
  chart. The change in the proportion of outliers (ε) 

from 0.1 to 0.2 negatively affects the performance of the robust charts but not the 

traditional charts.  Nonetheless, the change in the mean shift ( ) seems to have no effect 

on the false alarm rates. Among the robust charts, the least to perform under p = 2 is 

      
  while     

  chart is identified as the best in controlling false alarm rates. In 

general, for p = 2,   
  chart performs the best. 

 

For p = 5, under ideal condition, the false alarm rates for all robust charts and   
  are 

within Bradley’s robust criterion except for     
  chart, which produces false alarm rate 

slightly below the interval limit (i.e. 0.4%) at        . The   
  chart also fails to 

control its false alarm rate at m = 50 and 100 producing false alarm rates equal to 0.4% 

for both conditions, and inflates to 1.4% as   changes to 150. For non-ideal condition 

(with proportion of outliers and shifted mean), the performance of robust charts are in 

control of the false alarm rates when the proportion of outliers ε = 0.1. However, it 

deteriorates when the proportion increases to ε = 0.2. No obvious effect could be 

detected when the mean shifts from 3 to 5. Under p = 5,      
  chart still performs the 

best among the three robust charts producing the most numbers of robust conditions 

despite the conservative false alarm values  at ε = 0.2. Although   
  chart performs very 

well when ε = 0.1, the chart fails to perform when ε increases to 0.2, so does the   
  

chart.   

When the number of quality characteristics, p, increases to 10, we could observe more 

shaded cells (robust conditions) as compared to smaller values of p.  However, most of 

the non-shaded cells which concentrated at m = 100 with ε = 0.2 belong to the robust 
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charts. Among the robust charts,     
  still produces the most number of robust 

conditions while        
  chart produces the least.  In general,   

  performs the best with 

100% robust conditions while the performance of   
  is on par with    

 . 

In general, no obvious pattern of changes could be detected on the performance of the 

charts in controlling false alarm rates as m increases but we could observe a slight glitch 

in the performance of the robust charts when m = 100 with    = 0.2.  When   increases, a 

small increase in false alarm rates could be detected in the robust charts, but when   

increases, the rates slightly drop.  However, the traditional charts are quite consistent in 

their performance across the conditions.   

 

Table 4.4: Percentages of detecting outliers for independent case at α = 1%. 

 

 

Table 4.4 displays the results of the charts ability in detecting outliers.  For the ease of 

comparison, the results in Table 4.4 are translated to graphical form in Figure4.4 to 4.6 
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and our discussion will based on the graphs in the figures while referring back to Table 

4.4 when necessary.   

 

 

a 

 

 

b 
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Figure 4.4: Percentages of detection of outliers when p=2 
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Figure 4.4 represents the performance for p = 2.  As we glance through Figure 4.4a to 

4.4d, we can observe that the disparity in performance between the robust and traditional 

charts is very obvious. Like in case of α = 5%, the robust charts perform excellently in 

detecting outliers as compared to the traditional charts.  In Figure 4.4a, i.e. when the 

case of mild contamination (  = 0.1 and   = 3), the performance of the robust charts is 

on par with each other with percentage of detection ranging from 59.2% to 69% leaving 

the traditional charts at 7.5% to 20.2%.  We can see non straight lines across the m 

values which indicate that the changes in m do have some effect on the charts. When we 

increase   to 5, there is a sudden jump in the performance of the robust charts, achieving 

the 100% detection. The traditional charts still underperform as compared to the robust 

charts but there is also some improvement detected in    
  chart but not in   

  chart.  The 

performance of the charts worsens when the moderate contamination (  = 0.2 and   = 

3). The highest recorded value is only at 47.6%, which belongs to     
 chart.  As we shift 

the mean to 5, the performance for the robust charts bounces back to the almost perfect 

100% level, while the performance of the traditional charts continue to worsen with the 

highest value of 2.9% only.  At p = 2, the effect in the performance due to the changes in 

m could be detected in the robust charts when   = 3, however, no specific pattern 

(positive or negative) could be identified.  We could not detect any obvious effect on the 

traditional charts except for the   
  chart where there is a weak positive effect when ε = 

0.1 and   = 5. 
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Figure 4.5: Percentages of detection of outliers when p = 5 

Figure 4.5 illustrates the performance of the charts when p = 5.  Throughout the graphs 

in Figure 4.5, we notice that the gaps between the robust and traditional charts are wider 

as compared to p = 2.  These situations occur due to the better performance of the robust 
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charts while the performance of the traditional charts drop. Figures 4.5b and 4.5d which 

represent the conditions when µ = 5 with ε = 0.1 and 0.2 respectively, display perfect 

detection of outliers (100%) for all the robust charts regardless of the groups sizes (m).  

The already bad performance of the traditional charts worsens as ε increases. The 

percentage of detection drops to the value of less than 10%. When µ = 3, the 

performance of the robust charts increases towards 100% level as the group sizes 

increases and consistent at the 100% level when µ = 5.  However, the change in mean 

only minutely affects the traditional charts. The change in the proportion of outliers from 

0.1 to 0.2 does not show much effect on the robust charts, but worsens the performance 

of the traditional charts. 
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Figure 4.6: Percentages of detection of outliers when p =10 
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The graphical illustration on the percentage of detection for p = 10 is shown in Figure 

4.6. Throughout the figure, we could observe three out of four graphs record almost 

perfect 100% detection for the robust charts except for the graph representing ε = 0.1 

and µ = 3. However, the performance of the robust charts ( 67%) is still far above the 

traditional charts. For p = 10, the performance of the traditional charts worsen to 

approximately 2.3% as compare to smaller p.  

2.3 Dependent Variables (Case B) 

 

For dependent case, this study only focuses on the shifted mean µ = 5 since its main 

purpose is to analyze on the effect of correlation (versus no correlation) on the 

investigated charts.  Alfaro and Ortega (2009) stated that it is sufficient to consider µ = 0 

which represents no change in mean and outliers free, and µ = 5 which represents good 

leverage points.  Similar to the independent case (Case A), the performance of the charts 

is measured based on the false alarm rates and percentage of detecting outliers. To 

reiterate, a control chart is considered robust under a particular condition when its false 

alarm rate satisfies Bradley’s robust criterion.  At a nominal level of α = 5% or α = 1%, 

the rate should lie within 2.5% to 7.5% or 0.5% to 1.5% respectively. A chart is 

considered to have good ability in detecting outliers when the percentage of detection is 

at least 80%.  
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2.3.1 False alarm rates and Percentage of detecting outliers at α = 5% 

Tables 4.5 – 4.6 illustrate the performance of the control charts investigated for the case 

of dependent variables under high level of correlation (i.e. 0.9) with nominal false alarm 

rates of 5%. 

 

Table 4.5: False alarms rates (percent) under dependent case for α = 5%. 

 

 

 

Table 4.5 displays the performance of the charts in terms of their ability in controlling 

false alarm rates.  First, let us look at p = 2.  Under ideal condition (ε = 0, µ = 0), all 

charts are robust regardless of the number of group sizes, m. Under non-ideal condition 

(with outliers), the performance of the three robust charts is in control when the 

proportion of outliers is low (ε = 0.1). Their performance dwindles to be out of control 

when the proportion of outliers increases to ε      , regardless of group sizes  . For  
  

chart, its performance is in control regardless of the conditions investigated. 

However,  
  chart fails to control the false alarm rates for all the investigated conditions 

except for when m is large (150) and ε is low (0.1). The false alarm rates for the three 

robust methods lie in between 1.3% and 3.6%, while   
 and  

  charts produce values 

between 2.2% to 2.5% and 3.1% to 5.8%, respectively.  From the results, we notice 

that  
  chart out performs its counterpart in controlling false alarm rates. 
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Next, for p = 5, under ideal condition, the false alarm rates for all robust and traditional 

charts are within Bradley’s robust criterion. The rates for   
 ,   

   and     
 become closer 

to the nominal value when compared to p = 2, but the opposite for       
  and     

 .  

Under non-ideal conditions, we notice some improvement in the performance of the 

charts especially for   
  and      

 . The charts are robust regardless of m and ε. 

However, for     
  charts we detect three non robust values while for      

  chart, there is 

only one non robust value detected. All the non robust values are below the lower limit 

of robust interval and occur when      .  Generally, we can see that as group size (m) 

increases, the rate of false alarm declines. This situation also occurs when the proportion 

of outliers increases. Among the three robust charts,       
   performs the best where 

100% of its false alarm rates are within Bradley’s criterion, followed by     
  and     

 . 

The overall performance on false alarm rates shows that   
  chart still outperforms all 

the other charts in terms of controlling false alarms rates. 

 

As the number of quality characteristics, p increases to 10, we can observe great 

improvement in the performance of the charts in controlling false alarm rates.  All the 

cells are shaded which indicates that the charts are robust. Overall, the robust charts 

perform the best when         under the influence of outliers. The change in the 

proportion of outliers (ε) from 0.1 to 0.2 has some inconsistent effect on the robust 

charts as well as the traditional charts depending on the group sizes. Even for the group 

sizes, the changes do not show any clear pattern in the performance of the charts.   
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Table 4.6: Percentages of detecting outliers for dependent case at α = 5%. 

 

 

 

Table 4.6 depicts the results of the analysis on the ability of the investigated charts in 

detecting outliers.  For ease of comparison, Figure 4.7 to Figure 4.9 graphically illustrate 

the performance of the charts in terms of the percentage of detecting outliers 

 

 

a 

 

b 

Figure 4.7:  Percentages of detection of outliers when p = 2 

For p = 2 as shown in Figure 4.7,  we observe higher percentages among the three robust 

charts (66.4% to 86.3%) as compared to the traditional charts (12.7% to 62.5%). The 

differences in the percentages between the robust and traditional charts are large. When 
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  = 0.1 the percentage for the three robust charts exceed 80%, but they decline to 

approximately 68% when ε = 0.2.  In contrast the highest rates for   
  and   

  are 47.1% 

and 62.5% respectively at   = 0.1 and furthermore respectively decline to 17% and 13% 

when   = 0.2.  No pattern could be detected among the charts when the group sizes (m) 

change.   

 

a 

 

b 

Figure 4.8: Percentages of detection of outliers when p = 5 

Next, Figure 4.8 shows the rates of detection of outliers when p = 5. Across Figure 4.8, 

one can observe severe deterioration in the performance of the robust charts when 

compared to p = 2.  Despite the deterioration, the robust charts still outperform the 

traditional charts.  As the group sizes (m) increase from 50 to 100, there is a sudden 

increase in the percentage of detection of outliers for the performance of        
 , 

followed by a sudden drop back to roughly the initial percentage as m increases to 150.  

This pattern occurs for both graphs in Figure 4.8a and 4.8b. This pattern indicates that 

the chart has stronger performance in case of moderate group size than in case of small 
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and large group sizes. The other two robust charts show an almost consistent 

performance across m when ε = 0.1, but exhibit declining patterns when ε = 0.2. The 

change in ε from 0.1 to 0.2 also show drops in the performance of the investigated charts 

in general. Despite the inconsistency in the percentages of       
  chart, the chart turns 

out to be the best among all the charts.   

 

 

 

a 

 

 

b 

Figure 4.9: Percentages of detection of outliers when p =10 

As shown in Figure 4.9, when p increases to 10, the ability of the investigated charts to 

detect outliers continue to drop. The best chart i.e.       
  produce percentage of 

detection just slightly above 20% when ε = 0.1 and further deteriorate to below 14% as ε 

increases to 0.2. However, the robust charts still surpass the performance of the 

traditional charts.  As m increases, the robust chart exhibit the same pattern for both 

graphs (Figure 4.9a and Figure 4.9b) such that the performance increases as m increases 
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from 50 to 100 and declines when m equals to 150. No specific pattern could be 

identified in   
 chart, but for   

  there is a positive effect in performance as m increases. 

However, this chart shows the worst performance among other investigated charts with 

percentage of less than 8%. 

2.3.2 False alarm rates and percentage of detecting outliers at α = 1% 

Tables 4.7 –  4.8 display the performance of the investigated charts for Case B at α = 

1%, followed by graphical presentations of the charts ability in detecting outliers in 

Figures 4.10 - 4.12. 

 

Table 4.7: False alarms rates (percent) under dependent case for α = 1%. 

 

 

The performance of the control charts in terms of false alarm rates across various values 

of quality characteristics (p) is shown in Table 4.7.  To reiterate, a chart is considered 

robust if its empirical false alarm rate is within Bradley’s interval of (0.5% to 1.5%). For 

p = 2, when the condition is ideal (ε = 0, µ = 0), there is inconsistency in the false alarm 

rates among the three robust charts and the two traditional charts.  When the group size 

is small (m = 50), the rate for the robust charts are slightly liberal. Except for       
 , the 

false alarms rates produce by the other two robust charts are beyond the upper Bradley’s 
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interval limit. For p = 5 and 10,  one can observe that the false alarm rates for all the 

robust charts and   
  chart are within Bradley’s robust criterion. Under the influence of 

outliers and shifted mean (non-ideal), the robust charts are still in control of their false 

alarm rates when       but generally fail to perform when       under p = 2, while  

when p = 5 and 10 the performance of the robust charts are in control of false alarm rates 

for most of the conditions.  

 

As in the ideal condition, no pattern of changes in the false alarm rates can be identified 

among the groups sizes m.  Nonetheless, the change in the proportion of outliers (from 

0.1 to 0.2) does have some negative effect on the performance. According to the 

percentages of the number of robust conditions,       
  chart performs the best at p = 2 

while for p = 5 and 10,     
  chart has the best performance.  

 

Table 4.8: Percentages of detecting outliers for dependent case at α = 1%. 

 

 

 

The performance of the charts in terms of outliers detection for α = 1% is exhibited in 

Table 4.8 and graphically presented in Figure 4.10 to Figure 4.12. 
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                                 a 

 

 

 

                                  b       

 

Figure 4.10: Percentages of detection of outliers when     

The performance of the charts for p = 2 is illustrated in Figure 4.10.  Figure 4.10a which 

represents the charts when  the condition of moderate contamination   = 0.1 shows 

moderate performance of the robust charts with values between 55.1% and 66.7%.  

Despite the moderate performance, these charts still surpass the performance of the 

traditional, which produce percentage of detection lower than 20%. At ε = 0.1, the 

performance of the robust charts are on par with each other except for       
  which 

plunges when m is large. However, among the traditional charts, there is an obvious gap 

between   
  and   

 .   
  Chart performs badly with values of no more than 10%.  When 

extreme contamination and ε increases, as shown in Figure 4.10b, we observe a negative 

effect in the performance of all charts especially for the traditional charts with their 

performance drop to less than 5%. While for the robust charts, even though their 
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performance deteriorated, they still have strong performance if compared to the 

traditional charts. 

 

                              a 

 

                                   b 

 

Figure 4.11: Percentages of detection of outliers when p =5 

Figure 4.11 presents the performance for p = 5.  The figure shows deterioration in the 

performance for all charts. A crisscross pattern between the lines representing the robust 

charts could be observed across the group sizes (m), which indicates inconsistencies 

(effects) in the performance of the charts when there are changes in the group sizes.  As 

for the traditional charts, despite the very low values produce by   
 , the chart 

outperform   
 at this stage. As ε increases (Figure 4.11b), the performance of all the 

charts deteriorates further. The highest value for the robust charts is slightly above 10% 

which belongs to        
 while for the traditional charts, the highest value is almost 3%. 
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             a 

 

 

 

b 

 

Figure 4.12: Percentages of detection of outliers when p =10 

The charts’ ability in detecting outliers dwindles further as the number of quality 

characteristics increases (p = 10) as depicted in Figure 4.12.  As we move from Figure 

4.12a to Figure 4.12b, where ε increases, a negative effect could be detected on the 

performance for all charts. Looking across the group sizes, we can see that both figures 

present inconsistent performances among the charts, thus indicating that the changes in 

group sizes offer no obvious pattern (effect) on the performance of the charts at this 

condition.   
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4.4 Analysis on Real Data 

To evaluate on the performance of the investigated control charts on real situation, this 

study continues with the analysis on real data.  Real data were provided to us by Asian 

Composites Manufacturing Sdn Bhd (ACM), an international joint venture Company 

between Boeing and Hexcel, USA, manufacturing composites for secondary structures 

of commercial aircraft. The plant is located at Bukit Kayu Hitam Industrial Estate, 

Kedah Darul Aman.   ACM had provided us the real data on spoilers which consists of 

several features such as trim edge (X1), trim edge spar (X2), and drill hole (X3).   

Spoilers are vital devices in an airplane.  Their function is to increase lifts when the 

airplane is flying.  The products are used in civilian, defense, and space applications, 

which cannot compromise any mistakes, albeit a minor one.  Thus, careful monitoring is 

required to ensure that no variation occur in the process.  Any slight mistake could risk a 

human life.  A total of 47 products (spoilers) collected throughout  year 2009 and 2010 

was furnished to us.  Out of the total, 21 products were collected in 2009 while the rest 

were collected in 2010.  The collected data in 2009 has been used as historical data in 

Phase I. The data collected in 2010 has been considered as future observations used in 

phase II. The details of the historical data set is shown in Table 4.9 below.    The 

calculated values of the upper control limits (UCL) are displayed  in Table 4.10 below.  

The calculation of the  UCLs for the three robust statistics obtained  from the simulation 

method explained in section 3.8.2, while the UCLs for the traditional statistics were 

calculated using formula 3.35 . The values of future observations appeared in the first 

three columns, while the value of the T
2
 statistic corresponding to each control chart is  

shown in the last four columns of Table 4.11. 
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The study on real data focused on significance level of 5% ( α = 5%) only since the 

performance of the investigated T
2
 statistics based on the simulated data are generally 

better under this level. By  comparing the values of T
2 

statistic in Table 4.11 with the 

corresponding control limit (UCL) values in Table 4.10,  two similar observations (20 

and 25) across the control charts are highlighted to point out that these observations are 

considered as out-of-control points. The detection of two similar points regardless of 

control charts shows that the performance of the investigated charts, be it traditional 

(  
 ) or robust charts (       

 ,     
  and     

 ) are on par for this real data problem.   

 

As we could observe, the Hotelling’s T
2
 values for the three robust charts are the same.  

The similarities could be due to the large trimming process (40%) and the choices of 

measure of dispersion. Even though          and    are different measures of 

dispersion, which are supposed to produce different scatter matrices, but their almost the 

same approach might produce the same dispersion value, and this situation is aggravated 

when the already small observations (<30) was further trimmed by 40%.   

 

The study on simulated data revealed that the traditional chart generally underperformed 

in detecting outliers, nevertheless, when applied to this real data problem, the chart 

performed as good as the robust charts.  The result concurs with the finding in simulated 

study such that under small number of quality characteristics (not more than 5), the 

performance of the traditional chart and the robust charts are almost the same.  The 

robust charts work better under higher number of quality characteristics.   
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 Table 4.9:  Historical data set (Phase I data) 

Product      

No.        Trim edge (  )     Trim edge spar (  )         Drill hole (  ) 

1 -0. 0011 0.0003 0.0128 

2 0.0011 0.0021 0.0246 

3 0.0252 0.0308 0.0378 

4 -0.0017 0.0109 0.0177 

5 -0.0005 -0.0010 0.0106 

6 0.0016 -0.0059 0.0128 

7 0.0004 0.0001 0.0062 

8 0.0078 0.0003 0.0159 

9 0.0076 0.0089 0.0097 

10 0.0020 0.0005 0.0071 

11 0.0108 0.0011 0.0092 

12 0.0039 0.0034 0.0425 

13 0.0060 -0.0033 0.0160 

14 0.0066 0.0100 0.0056 

15 0.0045 -0.0067 0.0147 

16 0.0110 -0.0207 0.0337 

17 0.0047 0.0059 0.0065 

18 0.0077 0.0003 0.0191 

19 0.0015 0.0123 0.0124 

20 0.0011 0.0038 0.0104 

21 0.0056 0.0065 0.0063 
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Table 4.10:  The values of the upper control limits for the three robust and one 

traditional charts. 

Types of 

Control 

Chart 

Upper Control Limit 

α = 5% 

  
                   11.035 

      
                   20.6053 

    
                   20.0658 

    
                   6.724 

 

Table 4.11:  The Hotelling’s T
2
 values for the future (Phase II) data  

Product 

No.            
        

       
  

 

    
  

1 0.0041 0.0087 0.0129 0.5582 0.4796 0.4796 0.4796 

2 0.0047 0.0109 0.0124 0.9003 0.71297 0.71297 0.71297 

3 0.0031 0.0057 0.0096 0.4992 0.21675 0.21675 0.21675 

4 0.0035 -0.0020 0.0101 0.5463 0.0699 0.0699 0.0699 

5 0.0040 -0.0028 0.0125 0.4592 0.1086 0.1086 0.1086 

6 0.0031 0.0008 0.0061 0.9013 0.1658 0.1658 0.1658 

7 -0.0019 0.0101 0.0112 3.0933 1.9958 1.9958 1.9958 

8 0.0009 0.0039 0.0082 0.8061 0.3030 0.3030 0.3030 

9 -0.0052 0.0090 0.0203 7.3602 4.9852 4.9852 4.9852 

10 -0.0008 0.0110 0.0184 3.6198 2.6713 2.6713 2.6713 

11 -0.0021 0.0139 0.0170 5.3839 3.7456 3.7456 3.7456 

12 -0.0017 0.0092 0.0061 2.7387 1.5149 1.5149 1.5149 

13 -0.0010 0.0133 0.0138 3.8058 2.6230 2.6230 2.6230 

14 -0.0030 0.0002 0.0053 2.0548 0.8457 0.8457 0.8457 

15 0.0016 0.0134 0.0151 2.5073 1.8910 1.8910 1.8910 
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16 0.0027 0.0086 0.0070 1.1976 0.5881 0.5881 0.5881 

17 0.0004 0.0086 0.0087 1.5798 0.9143 0.9143 0.9143 

18 -0.0036 0.0136 0.0129 5.7910 3.7964 3.7964 3.7964 

19 -0.0028 0.0003 0.0078 1.8304 0.8318 0.8318 0.8318 

20 0.0120 0.0123 0.0768 38.1397 26.121 26.121 26.121 

21 -0.0015 0.0004 0.0115 1.2651 0.6632 0.6632 0.6632 

22 0.0009 0.0232 0.0202 8.4181 5.9358 5.9358 5.9358 

23 -0.0035 0.0088 0.0107 3.7588 2.3489 2.3489 2.3489 

24 0.0016 0.0061 0.0066 1.0602 0.4303 0.4303 0.4303 

25 -0.0228 -0.0466 0.0231 42.8447 25.112 25.112 25.112 

26 0.0037 -0.0038 0.0147 0.4832 0.2047 0.2047 0.2047 

4.5 Comparison among the robust Hotelling’s    charts 

The results of the analysis on the robust Hotelling’s T
2
 charts in Sections 4.2 and 4.3 

proved that the proposed robust Hotelling’s T
2
 charts outperform the traditional 

Hotelling’s T
2
 charts in most conditions of independent and dependent cases.   

 

In this section we will specifically compare the performance among the robust charts.   

For the purpose of comparison, Table 4.12 summarized the conditions that are 

considered robust and those, which have at least 80% probability of detecting outliers 

for each robust chart across the two significance levels in case of independent 

characteristics, while at least 50% probability of detection for the robust charts in case of 

dependent characteristics.  Under the dependency characteristics, the table is further 

divided into the two performance measurement i.e. false alarm (FA) and probability of 

detection (POD).  The comparison covers both the levels of significance α. 
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Table 4.12:  Overall performance for independent and dependent cases 

 

 
Types 

of 

Charts 

Independent (trimmed)           (trimmed) 

  = 5%   = 1%   = 5%   = 1% 

FA POD FA POD FA POD FA POD 

      
  67% 89% 44% 69% 78% 17% 78% 0 

    
  62% 89% 58% 67% 70% 17% 81% 0 

    
  62% 89% 53% 72% 70% 17% 74% 0 

 

With respect to independent case, we can identify that       
  produce the highest 

percentage of robust conditions when α = 5%.  In contrast, when α = 1%,     
  chart 

outperforms the other two robust charts leaving     
  with quite a difference in 

percentage.  However, for both significance levels,     
  scores neither the best nor the 

worst.  Thus, it is hard to determine which chart is the best in controlling false alarm 

rates since all the charts perform reasonably well for both levels of significance. In terms 

of their capability in detecting outliers, all robust charts show equally strong 

performance at α = 5% but     
  chart slightly outperform the other charts when at α = 

1%.   

 

Under dependent case, the percentage of the robust conditions for each chart increases as 

compared to the independent case, and further increases when α = 1%.  The smaller the 

significance level, the better is the performance of the charts, and this is in contrast with 

the independent case.  The ranking of the charts is the same as in the independent case 

where       
  performs the best for α = 5% and     

  is the best for α = 1%, while     
  is 

neither the best nor the worst.  In detecting outliers, the percentages of the three robust 

charts drop to 17%   and further worsen under smaller significance level.  In general, the 
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charts seem to be almost on par with each other in terms of false alarm rates and 

probability of detection for dependent case.   

4.6 Summary 

This chapter developed and evaluated three proposed robust multivariate Hotelling’s    

charts for location based on trimmed mean estimator, and for scale based on the trimmed 

covariance matrix. The evaluations, which were presented under independent and 

dependent cases in Section 4.2 and Section 4.3 respectively, revealed that in general the 

robust Hotelling’s T
2
 charts perform as good as   

  and better than   
 in terms of 

controlling false alarm rates. However, in terms of detecting outliers, they perform 

remarkably well, whereas the traditional charts fail to perform under most conditions.   

 

Under dependent case, when the traditional charts fail to control the false alarm rates, 

the robust charts seem to be unperturbed with the situation.  Even though the capability 

of the robust charts in detecting outliers dwindles under this case, the charts still 

outperform both the traditional charts. Without the effect of correlation, the robust charts 

are superior in detecting outliers and perform reasonably well in controlling false alarm 

rates.   

 

The increase in p values show improvement in the robust charts as well as the traditional 

charts with respect to controlling false alarm rates, but show no effect in terms of 

detecting outliers. When   changed from 0.1 to 0.2, the robust charts were not obviously 

affected in terms of false alarm; however, the change negatively affected the probability 
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of detection. As the mean shifted to a larger value, the robust charts seemed to be able to 

control their false alarm rates and simultaneously increased the probability of detecting 

outliers. If we compare the performance of the robust charts for α = 5% and α = 1%, we 

observed more robust conditions (able to control false alarm rates) at α = 1%, however, 

for the probability of detection, α = 5% produced better results.  
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CHAPTER FIVE 

MODIFIEDHOTELLING’ST
2
CONTROL CHARTS USING 

WINSORIZED MOM WITH WINSORIZED COVARIANCE 

MATRICES 

3.1 Introduction 

This chapter comprises of three robust Hotelling’s    control charts whereby each 

control chart uses different winsorized modified one-step M-estimators(MOM) as the 

location estimators and its respective winsorized covariance matrix as the scatter matrix. 

The difference between each winsorized MOM is due to the robust scale estimators used 

in the trimming criterion. These scale estimators are           and   and are 

thoroughly explained in Chapter 3.  The steps to the construction of the three robust 

control charts are explained as follows: 

Step 1:  Obtain the original data (with outliers) 

Step 2:  Trim the original data using one of the three MOM criterions.  By default, the 

MOM criterion uses the robust scale estimator     .      will be replaced by 

    and   to generate different criteria. 

Step 3:  Winsorized the trimmed data to obtain winsorized sample. 

Step 4:  Compute winsorized mean vector 

Step 5:  Compute winsorized covariance matrix 

Step 6:  Compute Hotelling’s T
2
 statistics

 

For a more detail explanation on the process, please refer to Section 3.4.The proposed 

robust Hotelling’s    charts are denoted as       
 ,     

 and     
 . 
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Like in chapter 4, the performance of these robust Hotelling’s     charts is compared to 

the two traditional charts,    
 and   

 , in terms of their robustness (false alarm) and the 

percentage of detecting outliers.  The organization of this chapter is similar to Chapter 4. 

Each of the three proposed charts was tested on different scenarios (conditions) which 

were created by combining the number of quality characteristics (p), number of group 

sizes (m), proportion of outliers (ε), and the changes (shift) in the mean vectors (µ). The 

results, which are in the form of false alarm rates and percentage of detection of outliers 

is presented in tables and figures as in the previous chapter.   

 

Correspondingly, the charts are considered robust if their empirical false alarms rates are 

within Bradley’s interval (1978).   The closer the values of the empirical false alarm rate 

to the nominal level (α), the better the performance of the chart in terms of controlling 

false alarm rates. The analysis of the results is divided into two major sections based on 

the nature of the quality characteristics i.e. independent and dependent, which are 

represented by Case A and Case B, respectively.   

3.2 Independent Variables Case (A)  

 

The following subsections present the performances for the charts according to the 

nominal false alarms rates  . Tables 5.1- 5.2 record the performance (in percentage) of 

the charts according to the two measurements i.e. false alarms rates and percentage of 

detecting outliers. Figure 5.1-5.6 later helps us to visualize the performance regarding 

the charts ability in detecting outliers. 
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3.2.1 False alarm rates and Percentage of detecting outliers at α = 5% 

Table 5.1 represents the performance of the robust and traditional Hotelling’s T
2
 control 

charts in terms of false alarm rates with respect to the number of quality characteristics, 

p. The false alarm rates that satisfy the Bradley’s robust criterion (which is in between 

2.5% to 7.5%) are represented by the shaded cells. 

 

Table 5.1: False alarms rates (percent) under independent case for α = 5%. 

 

 

 

In general, under ideal condition         , the false alarm rates for all the control 

charts regardless of p are within the Bradley’s interval. For most of the charts, the results 

improve (approaching nominal level of 5%) when p increases, but not in the case of     
  

chart where the values are slightly liberal (above 5%).  In contrast, under non-ideal 

condition (with outliers and shifted mean), the performance of the robust charts is in 

control except when p is large and under extreme contamination (m = 100, µ = 5 and ε = 

0.2). Even we can observe out of control false alarm rates for     
  and     

  charts 

when p = 2 under such conditions. The false alarm rates for the traditional    
 chart are 
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in control regardless of the conditions while for the other traditional chart i.e.   
 , there 

are some fall outs occur when p = 2.   

Specifically, when p = 2, the three robust charts and    
 chart are in control of their false 

alarm rates but not in the case of    
  chart. As the group size (m) increases, we can 

observe a declining effect on the false alarm rates for all the charts, except in the case of 

   
  chart.  When the mean shifts from 3 to 5 the false alarm rates for the robust control 

charts inflate. Simultaneously, the increasing of proportion of outliers from 0.1 to 0.2 

also has some effect on the false alarm rates of the three robust charts where a 

decreasing trend for all conditions can be observed.   

 

As we move to p = 5, we observe that under non-ideal condition, the performance of the 

three robust charts and the traditional charts remains robust across all the conditions. 

However, the ability to control false alarm rates is more prominent in robust charts. 

Most of the false alarms rates are closer to the nominal value of 5% when compared to 

the traditional charts, especially when ε = 0.2 and µ = 5.  The nearer the values to the 

nominal level α, the better the chart’s ability to control the false alarm.  When the 

proportion of outliers (ε) increases, there is a positive effect on the robust charts but the 

other way round for the traditional charts. It can be noticed that all the robust charts 

perform well where 100% of their cells are shaded. 

 

As p increases to 10, even though we can observe some improvement in the performance 

of the three robust charts under non ideal condition, there are a few non robust values 

detected when m = 100, µ = 5 and ε = 0.2. The values inflated to almost 11%, which 
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signify that the charts fail to control the false alarm at this state. In contrast, the 

performance of    
  and   

  charts are consistent and in control of the false alarm. 

 

Overall, the performance of the robust charts are detected to be stronger than the   

traditional charts, except at ε = 0.2 and µ = 5. We can also detect that as group sizes (m) 

increase; there is a slight increase in false alarm rates for the robust charts, but no effect 

on the traditional charts. Correspondingly, the effect is negative when there is an 

increase in the proportion of outliers ε for all the charts. According to the comparison 

among the robust charts and the percentage of the number of the in control values of 

false alarms rates across all p, the      
 chart has the strongest performance. 

 

Table 5.2: Percentages of detecting outliers for independent case at α =5% 
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Table 5.2 records the percentage of detecting outliers for all charts. However, for the 

ease of comparison, we will refer to the visual presentation in Figure 5.1 to Figure 5.3 

and alternately refer to the numerical values in Table 5.2.   

 

                            c                                                                          d 

Figure 5.1: Percentages of detection of outliers when p = 2 

Figure 5.1 presents the performance of the investigated charts in terms of their ability in 

detecting outliers when quality characteristics (p) equals to 2. As shown in Figure 5.1a, 

when the mild contamination (         ), the   
  chart appears to have the best 
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performance, followed by the robust charts while   
  chart performs theworst.  However, 

in Figure 5.1b, when the mean shifts to 5 while the proportion of outliers stays constant 

at 0.1,  all the charts show improvement in their ability in detecting outliers with values 

almost reaching the perfect 100% detection  except for    
  with values less than 80%. 

When   increases to 0.2 (Figure 5.1c), the performance of all the charts suddenly drops.  

The highest value which is less than 30% belongs to       
  followed by the other two 

robust charts,     
  and    

 . However, the performance for the robust charts bounces 

back to above 90%when the extreme contamination (         ) as demonstrated in 

Figure 5.1d. The ranking for the three robust charts maintains as before but not for the 

traditional charts where   
  chart records the worst with percentage of detection as low 

as 11%. The changes in group sizes (m) do not show much effect on the performance of 

the control charts in detecting outliers. 
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                             c                                                                           d 

Figure 5.2: Percentages of detecting outliers when p = 5 

Next, Figure 5.2 represents the performance of the investigated charts for various 

conditions at p = 5.  Throughout the figures, it could be easily observed that   
  has the 

worst performance with percentage of detection only reaches 20% while the robust chart 

      
  always at the highest with values reaching the 100% detection.  At   = 0.1 and 

    as displayed in Figure 5.2a, the percentage of detection among the robust charts 
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show some differences with       
  record thehighest detection (74.2% -78.2%) 

followed by     
  (69.3% -76.6%) and     

  (55.2% - 65.8%). As the mean shifts to 5 

(Figure 5.2b), the performance of all the three robust charts suddenly increases to almost 

the perfect 100% detection. However, the performance of the traditional charts stays the 

same. Similar to the situation at p = 2, when the value of   increases to 0.2, there is an 

abrupt drop in the performances of all the charts as shown in Figure 5.2c, but the 

percentage bounces back to as high as 96.9% when the mean shifts from 3 to 5 (Figure 

5.2d).  The changes in group sizes do not show much effect on the charts, however under 

severe condition (  = 0.2 and   = 5) we can observe a declining effect for     
  as the 

group sizes increase.  Among the robust charts,     
  chart’s performance is always at 

the bottom.   
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                              c                                                                             d 

Figure: 5.3:Percentages of detection of outliers when p = 10 

Figure 5.3 represents the performance of the control charts when p = 10.  The patterns 

are observed to be almost similar to p = 2 and 5 with        
   produced the best control 

charts followed by     
  and     

  while the traditional charts especially the   
  charts 

still records the worst.  When the proportion of contamination (   and mean shift ( ) is 
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small i.e. 0.1 and 3 respectively (Figure 5.3a), the highest percentage of detection for the 

best chart       
  is 63.6%. This occurs when m = 100. The lowest for the robust charts 

which belongs to     
  is 46.1% at m = 25. In contrast, the best percentage of detection 

for the traditional chart which is produced by   
  is only 29.4% i.e. at m = 100. As we 

move to Figure 5.3b, i.e. when   changes to 5 while   maintains at 0.1, we notice that 

the performance of the robust charts leaps to the highest of 100%. However, the 

performance drops tremendously in Figure 5.3c when   increases in value to 0.2 even 

though with lower value of   (i.e. 3). We could also observe declining in performance 

for the robust charts as group sizes increase. In Figure 5.3d, when   shifts to 5, the 

performance of the robust charts,       
  and     

  leaps again to almost 97% but the 

    
 chart only able to get up to 88.3%.  The   

  chart still fares worst amongst other 

charts. 

3.2.2 False alarm rates and Percentage detecting outliers atα = 1% 

The following subsections discuss the performance of the investigated control charts 

according to the false alarms rates and percentage of detecting outliers when α = 1%.   

The false alarm rates produced by the charts are depicted in Table 5.3. To reiterate, a 

chart is considered robust or in control of false alarm if the empirical rate falls between 

0.5% and 1.5%. Under ideal condition (ε = 0 and µ = 0), all the robust charts are in 

control of false alarm rates regardless of the number of quality characteristics (p) and 

number of group sizes (m) except for       
 , where the false alarm rate is slightly 

above the upper interval limit (i.e. 1.6%) when p = 2 and m = 100. As for the traditional 
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charts,   
  chart is considered robust under ideal condition, but not in the case of   

  

chart as we can detect a few non-robust rates in the table.  

 

Table 5.3: False alarms rates (percent) under independent case for α = 1%. 

 

 

 

Under non-ideal condition, when p = 2, we observe that     
  is the only chart that is 

able to control false alarm rates regardless of the conditions.  The other two robust charts 

lost control of the false alarm rates at m = 100, especially when µ = 3. At this group size 

(m = 100), the traditional chart  
  is also non-robust regardless of ε and µ.  We can also 

detect two non-robust rates for   
  at m = 50.   

 

As we move to p = 5, we can see a series of unshaded cells under   
  column, which 

indicates that this chart produce a series of non-robust conditions.  A few unshaded cells 

could also be observed under   
 columns but the number is less than those produce by 

  
 . However, under       

  column, all the cells are shaded, implying that this chart is 
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robust regardless of the conditions.  The other two robust charts,     
  and     

  seem to 

be able to control their false alarm rates except for the condition when m = 50, ε = 0.2 

and µ = 5. 

 

Next, at p = 10, the traditional charts   
  and   

 show non-robust performance at 

different group sizes (m).    
 chart is non-robust for small m (25) whiles the opposite for 

  
  chart where the chart lost control of false alarm rate when m is large (100).  In the 

case of robust charts, they become non-robust when the condition turns extreme when ε 

= 2 and µ = 5.  The false alarm rates inflated to above the interval limit. Under p = 10, 

the control chart that produce the highest percentage of robust conditions is     
 . 

 

From the analysis, we can summarize that no clear pattern of changes in the false alarm 

rates could be detected when m, ε or µ increase.  The performance of the robust charts is 

found to be better than the traditional charts for every value of p such that     
   chart is 

the best when p = 2 and 10, while       
  is the best when p = 5. 
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Table 5.4:Percentages of detecting outliers for independent case at α = 1% 

 

 

 

 

The performance of the investigated control charts in terms of detecting outliers 

displayed numerically and visually illustrated in Table 5.4 and Figure 5.4 to Figure 5.6 

respectively.  First, let us focus on the performance when p = 2 which is exhibited in 

Figure 5.4a to Figure 5.4d.   
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Figure 5.4:Percentages of detection of outliers when p = 2 

The lines representing different control charts clearly show that the robust charts always 

outperform the traditional charts.  In Figure 5.4a, with mild condition ε = 0.1 and µ = 3, 

the highest percentage of detection belongs to       
  with the value of 52.5% followed 

by     
  and     

  while the highest percentage for the traditional chart (  
 ) is only at 

29%. A large disparity between the robust and traditional charts can be observed when 
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µincreases to 5 as shown in Figure 5.4b. At this condition, the performance of the robust 

charts is consistent with each other across group sizes, achieving almost perfect (100%) 

detection. When ε increases to 0.2 while µ = 3 (Figure 5.4c), the performance of all 

charts drops abruptly. The highest for the robust charts is only 12.3% which still belongs 

to       
 . When µ increases to 5 while   maintains at 0.2 (Figure 5.4d), all the robust 

charts show great improvement but not for the traditional charts. The changes in group 

sizes do have some effect on the robust charts under extreme condition (  = 0.2 and µ = 

5) but not so much under other conditions and vice versa for the traditional chart  
 .  The 

changes in   also show some effect. 

 

Overall,       
  control chart is the best performer at p = 2. Despite the 

underperformance of     
  among the robust charts, the chart still can surpass the 

performance of the traditional chart. The traditional chart,   
  perform the worst among 

all charts with some values almost as low as the ideal condition. This implies that   
   

fails in detecting outliers.  
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Figure 5.5: Percentages of detection of outliers when p = 5 

Figure 5.5 visually shows the performance of the investigated charts when the number of 

quality characteristics (p) is 5. If we begin with Figure 5.5a which represents the 

condition when ε = 0.1 and µ = 3, we notice that       
  chart outperforms all the other 
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charts. Both the traditional charts are on par with each other, but their performance is 

still below the three robust charts.  The highest percentage recorded by       
  is 60.2% 

while the lowest produced by   
  with value as low as 7.7% (refer to Table 5.4). When 

the value of the mean shift is increased to 5 as shown in Figure 5.5b, there is a sudden 

jump to almost perfect detection (100%) for the three robust charts, but the traditional 

charts stay at the same level of performance.  As we move to Figure 5.5c which 

represents the moderate condition when ε = 0.2 with µ = 3, the performance of all the 

charts dwindle. The almost perfect scores produced by the three robust charts drop to 

less than 10%. The performance improves again for the robust charts but not for the 

traditional charts when the mean shifts to 5 as depicted in Figure 5.5d. At this point, both 

the traditional charts fail to detect the existence of outliers as explained by the low 

percentages, which are almost equal to the ideal condition.  

 

Under mild condition (ε = 0.1 with µ = 3),       
  is positively affected by the changes 

in group sizes (m), but no obvious effect could be detected for other control charts.  

When the condition becomes extreme (ε = 0.2 with µ = 5) we observe a contrast pattern 

between the robust charts as m increases to 100. There is a positive effect on 

      
 chartwhile a negative effect on    

  and     
  charrts.The reason of the 

difference behavior among the three robust charts is due to the shape of the data, where 

     estimator works well when the distribution of the data is symmetric. While the 

other two robust estimators    and    work well when the distribution of the data is 

asymmetric.  
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Figure 5.6:Percentages of detection of outliers for p = 10 

Figure 5.6 exhibits the performance of the investigated control charts when p = 10.  As 

in p = 5, the robust charts outperform the traditional charts for all conditions 

investigated.  The first figure which represents the performance of the charts under mild 

condition ε = 0.1 and µ = 3 shows a sudden leap in the performance of        
  from 
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17.2% to 50.5% as m increases from 25 to 100, while other charts do not exhibit obvious 

effect under this condition.  

 

When µ shifts to 5, there is a huge increase in the performance for all the robust charts to 

above 90% and continues to increase to almost 100% as m increases.  However, when   

changes to 0.2 while   = 3 (Figure 5.6c), the performance of all charts drops with the 

best performance does not exceed the 10% level. The performance improves again when  

  = 5 (5.6d), but the improvement is not as good as when   = 0.1 with the same mean 

shift.   

 

We can observe some obvious effect on the performance of the robust charts when m 

changes under mild (  = 0.1 and  = 3) and extreme (  = 0.2 and    = 5) conditions.  

However, for the traditional charts, no obvious effect could be detected regardless of 

conditions. 

 

For p = 10, we cannot identify a specific robust chart that can represent the best chart for 

the whole conditions since different conditions produce different best charts. 

3.3 Dependent variables 

 
The following subsections analyze on the performance of the investigated charts in the case of 

dependent variables. The performance is measured in terms of false alarm rates and percentage 

of detecting outliers as in the previous case. The text is arranged according to the number of 

characteristics variables, p. 
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3.3.1 False alarm rates and Percentage of detecting outliers at α = 5% 

Table 5.5 records the false alarm rates for the investigated charts. Under ideal condition, 

all the charts are in control of their false alarm rates.  Nevertheless, in general, the rates 

for the robust charts are better (closer to but not exceeding the nominal value of 5%) 

than the traditional charts. When the condition is non-ideal, we observe a few cells with 

values below the lower limit of Bradley’s interval. Only two charts i.e.   
  and      

  

produce robust values regardless of the conditions. At p = 2, the worst chart is    
  which 

produce the most number (i.e. 4) of non-robust rates followed by     
  (i.e. 2) and  

       
  (1). The number of robust cells (shaded) increases for all the charts when p 

changes to 5 except for       
 . When the number p further increases, we notice that all 

the charts are in control of their false alarm rates despite of the decreasing in values for 

most of the charts. Investigation on the change in the proportion of outliers (ε) also 

shows a dwindling in values of the false alarm rates when ε is increased.  Overall, for 

this case,   
  and      

  can be considered as the best control charts since they are robust 

across all conditions investigated.   

Table 5.5: False alarms rates (percent) under dependent case for α = 5%. 
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The following table and figures present the performance of the investigated charts in 

terms of their ability in detecting outliers.   

 

Table 5.6: Percentages of detecting outliers for dependent case at α =5%. 

 

 

 

 

Based on the percentages in Table 5.6, at p = 2, the performance of all charts is moderate 

when      and weakens when the proportion of outliers is increased to      .  

However, the performance of the three robust charts is still stronger than the 

performance of the two traditional charts as visually shown in Figure 5.7.   
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Figure 5.7:Percentages of detection of outliers when p = 2 

 

Figure 5.7a shows the moderate detection for all charts with highest value less than 75% 

when ε = 0.1. The performance of the robust charts is quite close to each other with 

percentages ranging from 63.1% to 74%. Even the performance of the traditional 

chart,  
 , is close to the robust charts leaving    

   chart at  the lowest with values below 

46%. The performance worsens as ε increases as shown in Figure 5.7b. The highest 

percentage scores by the best chart, i.e.        
  falls below 50% (from 74%). Unlike 

when ε is smaller, there is inconsistency in the performance of the robust charts across 

the group sizes (m) but the traditional charts stay consistent especially  
 . However, 

under this condition,   
  performs the worst with value as low as 12.5%.   
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                                  a                                                                                   b 

 

Figure 5.8:Percentages of detection of outliers when p = 5 

The performance of the charts further deteriorates as the number of p increases as 

depicted in Figure 5.8. At ε = 0.1, the highest percentage is only at 24.9% produced by 

       
  (refer to Table 5.6). We can also observe negative effect on the robust charts as 

m increases. By increasing the proportion of outliers (ε = 0.2), the performance of the 

charts from bad turns to worse as shown in Figure 5.8b. All charts show very weak 

performance with highest percentage of less than 14%.        
  chart maintains to be the 

best among all, despite sharp declines in values as m increases, while   
  stays at the 

lowest.  
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   a                                                                             b 

Figure 5.9:Percentages of detection of outliers when p = 10 

As could be observed in Figure 5.9a and Figure 5.9b which illustrate the performance 

when p = 10, the lines representing the charts are stacking on each other which signify 

that their performance are on par with one another. Even their performance for both 

conditions is quite consistent across m.  However, the charts ability in detecting outliers 

drops considerably when p increases and further deteriorates when the proportion of 

outliers gets larger. The effect is more prominent in the robust charts. The highest 

percentage does not exceed 11% while the lowest percentage is less than 6%. 

3.3.2 False alarm rates and Percentage detecting outliers at α = 1% 

 

This section narrates the performance of the investigated charts for dependence case 

under α = 1%. The performance measured in terms of false alarm rates and percentage of 

detecting outliers is presented in Table 5.7 and Table 5.8 respectively.  In addition, 
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Figures 5.10 - 5.12 graphically report the results in 5.8 with respect to the number of 

quality characteristics, p. 

 

Table 5.7: False alarms rates (percent) under dependent case for α = 1%. 

 

 

 

To reiterate, based on Bradley’s robust criterion, a chart is considered robust at α = 1% if 

the empirical false alarm rates fall between 0.5% and 1.5%. We start with the ideal 

condition, where we observe that all the robust charts and   
 are in control of their false 

alarm rates, while   
  chart fails to control the rate when m is large (100). When p 

increases to 5, the false alarm rates for the robust charts and   
 are still under control, 

but the rate for the  
  chart at m = 100 drops from above (1.6%) the upper limit of the 

robust interval to below (0.4%) the lower limit. As we move to p = 10, the pattern 

changes. The   
 chart is found to be robust when m is large (100) and becomes non-

robust when m is small.       
 chart is also found to be non-robust except when m is 

small.    
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Next, under non-ideal condition, at p = 2, the performance is good for all the charts 

when m is small and moderate.  However, when m is large, the performance of   
  and 

       
  charts drops below the robust interval limits.  The change in ε seems to have no 

effect on the performance of the charts. As the number of quality characteristics (p) 

increases to 5, all the cells of the three robust charts are shaded except for        
  at m 

= 50.  Regarding the traditional charts   
 appears to be non-robust when m is large with 

ε = 0.1 while   
 is robust regardless of m and ε. We could also observe that the 

performance of the charts in general dwindles as m increases even though majority is in 

control of the false alarm rates.  The three charts that are robust regardless of m and ε 

are   
 ,     

  and     
 . These three charts maintain to be robust regardless of m and ε 

when p changes to 10. The performance of the other two charts,   
 and        

  worsens 

with more number of non-robust cells under their columns.  Even though there is no 

obvious pattern on the performance due to the changes in m, we could observe that the 

false alarm rates are larger when m is small as compared to moderate and large.  About 

ε, the change does not have any effect on the performance. In Table 5.7, the only column 

that all its cells are shaded is      
  , thus we can say that this chart is the best in 

controlling false alarm rates under dependent case given α = 1%. 

 

Analysis on the performance of the investigated charts continues with regards to the 

charts’ ability in detecting outliers. The results are presented numerically in Table 5.8 

and graphically in Figures, 5.10 to 5.12. A glance across the table shows that the 

percentages produced by the charts are quite low. However, there are a few cells with 
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values around 50%, which belong to       
 . None of the traditional charts scores above 

17%.   

 

Table 5.8: Percentages of detecting outliers for dependent case at α = 1%. 

 

 

Figures 5.10 to 5.12 graphically present the results in Table 5.8 according to the values 

of p.

 

       a                                                                            b 

 

Figure 5.10:Percentages of detection of outliers when p = 2 
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From Figure 5.10a, which represent the performance of the charts when p = 2, we 

observe that there is quite a large difference in performance between the robust and 

traditional charts. The robust charts outperform the traditional with       
  chart shows 

the strongest detection (  50%) followed by     
 (    ) and     

  (     .  For the 

traditional charts, the percentage of detection is less than 17% for    
  chart and 

approximately 11% for   
  chart.      

 chart maintains to have the strongest 

performance across the group sizes, and it is clearly shown in the graph that it is affected 

positively when there is an increase in the group sizes, and this is in contrast with     
   

and     
  charts.    

 

When the proportion of outliers increases, the probability of detection of outliers for  

      
  and     

  charts inflates to above 60% with     
  chart almost reaching the 70% 

level.  However, as m increases, there is a declining effect in the performance of     
  

but the       
  chart continues to increase.  Even though     

  perform quite badly 

under this condition; the chart still outperforms both the traditional charts, which can 

only perform up to less than 3% level.   
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Figure 5.11:Percentages  of detection of outliers when p = 5 

Figure 5.11a shows more deterioration in the performance of all charts. The rates for the 

robust charts suddenly drop to lower than 12%.The        
  chart still has the best 

performance but it is negatively affected when m increases. As usual, the traditional 

charts show the worst performance among all charts. All the charts deteriorate further 

when   increases to 0.2. 
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                                 a                                                                           b 

Figure 5.12:Percentages of detection of outliers when p =10 

As p increases to 10, the probability of detection for all the robust charts drops terribly, 

except for       
  chart as shown in Figure 5.12.  The performance continues to worsen 

when   increase.  Nevertheless, the performance of       
  dwindles as m gets larger 

while other charts do not show obvious effect in the changes of m. 

5.4 Analysis on Real Data 

As mentioned in chapter four, to further evaluate on the performance of the three robust 

charts       
 ,    

  and     
  and their comparison with the traditional chart,   

 , the 

investigation continued on real data.  The same set of real data from 47 airplane spoilers  

(m = 47) were provided by Asian Composites Manufacturing ( ACM) Sdn. Bhd.  This 

real data has several features, namely; trim edge (X1), trim edge spar (X2) and drill hole 

(X3) quality characteristics. The measurements of 21 products were collected in 2009 
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while the rest were collected in 2010.  Hence, we decided to use the 2009 data as 

historical data, and considering those from 2010 as future observations.  The details of 

the historical data sets are displayed in Table 5.9 below. The location vector (    and 

scatter matrix (S) presented in Table 5.10 below are both estimators for the historical 

observation in phase I.  The upper control limits (UCL) shown in the last column in table 

5.10 were obtained  via simulation method which has been explained in section 3.8.2. 

The  future observations appear in the first three columns of Table 5.11, while the values 

of the  T
2
 statistics calculated based on the estimators in phase I are mentioned in the last 

four columns  of the table. 

 

As mentioned in Chapter 4, the analysis on real data only focused on 5% significance 

level (α = 5%). The comparison of the T
2
 statistics in Table 5.11 with the corresponding 

upper control limits in Table 5.10 observed that the three robust statistics        
 , 

    
 and     

  charts signaled observations 20, 22 and 25 as out-of-control points, while 

the traditional   
  chart signaled observations 20 and 25 as  out-of-control points. The 

results for   
   was expected as the analysis on the probability of the detection of outliers 

using simulated data showed that   
 chart was not as effective as the other robust charts  

in detecting the outliers.  The analysis on simulated data also showed that the ability of 

the proposed robust charts in detecting outliers as well as controlling false alarm rates 

were good and perform almost on par with each other (Refer to section 5.2 and 5.3) 
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Table 5.9:  Historical data set (Phase I data) 

Product 

No.        Trim edge (  )     Trim edge spar (  )         Drill hole (  ) 

1 -0. 0011 0.0003 0.0128 

2 0.0011 0.0021 0.0246 

3 0.0252 0.0308 0.0378 

4 -0. 0017 0.0109 0.0177 

5 -0. 0005 -0. 0010 0.0106 

6 0.0016 -0.0059 0.0128 

7 0.0004 0.0001 0.0062 

8 0.0078 0.0003 0.0159 

9 0.0076 0.0089 0.0097 

10 0.0020 0.0005 0.0071 

11 0.0108 0.0011 0.0092 

12 0.0039 0.0034 0.0425 

13 0.0060 -0.0033 0.0160 

14 0.0066 0.0100 0.0056 

15 0.0045 -0.0067 0.0147 

16 0.0110 -0.0207 0.0337 

17 0.0047 0.0059 0.0065 

18 0.0077 0.0003 0.0191 

19 0.0015 0.0123 0.0124 

20 0.0011 0.0038 0.0104 

21 0.0056 0.0065 0.0063 
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Table 5.10:  The values of the upper control limits for the three robust and one 

traditional charts. 

Types of 

Control 

Chart 

          Upper Control 

          Limit (UCL) 

              α = 5% 

  
  

      
  

                11.035                                                               

                14.22 

    
                  11.83 

    
                  12.77 

 

Table 5.11:  The values of future observations and hotelling T
2
 statistics. 

 

Product 

No.            
        

      
  

 

    
  

1 0.0041 0.0087 0.0129 0.5582 1.0559 1.0815 1.0559 

2 0.0047 0.0109 0.0124 0.9003 1.9673 2.0187 1.9673 

3 0.0031 0.0057 0.0096 0.4992 0.6538 0.6161 0.6538 

4 0.0035 -0.0020 0.0101 0.5463 1.0679 0.9930 1.0679 

5 0.0040 -0.0028 0.0125 0.4592 0.9427 0.9726 0.9427 

6 0.0031 0.0008 0.0061 0.9013 1.6086 1.1409 1.6086 

7 -0.0019 0.0101 0.0112 3.0933 4.0206 4.0406 4.0206 

8 0.0009 0.0039 0.0082 0.8061 1.2320 1.0386 1.2320 

9 -0.0052 0.0090 0.0203 7.3602 9.7286 9.0709 9.7286 

10 -0.0008 0.0110 0.0184 3.6198 5.0513 4.5005 5.0513 

11 -0.0021 0.0139 0.0170 5.3839 7.4084 7.0272 7.4084 

12 -0.0017 0.0092 0.0061 2.7387 4.0369 3.7012 4.0369 

13 -0.0010 0.0133 0.0138 3.8058 5.2840 5.2049 5.2840 

14 -0.0030 0.0002 0.0053 2.0548 4.4919 3.8560 4.4919 

15 0.0016 0.0134 0.0151 2.5073 4.1043 3.9081 4.1043 
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16 0.0027 0.0086 0.0070 1.1976 1.9270 1.7154 1.9270 

17 0.0004 0.0086 0.0087 1.5798 2.1935 2.0945 2.1935 

18 -0.0036 0.0136 0.0129 5.7910 7.6287 7.6541 7.6287 

19 -0.0028 0.0003 0.0078 1.8304 3.6994 3.4332 3.6994 

20 0.0120 0.0123 0.0768 38.1397 99.765 50.508 99.765 

21 -0.0015 0.0004 0.0115 1.2651 2.2934 2.2895 2.2934 

22 0.0009 0.0232 0.0202 8.4181 15.424 14.117 15.424 

23 -0.0035 0.0088 0.0107 3.7588 4.9187 4.9660 4.9187 

24 0.0016 0.0061 0.0066 1.0602 1.6460 1.3250 1.6460 

25 -0.0228 -0.0466 0.0231 42.8447 119.80 122.38 119.80 

26 0.0037 -0.0038 0.0147 0.4832 1.2069 1.2130 1.2069 

 

5.5 Comparison among the robust Hotelling’s    charts 

As in chapter 4, the percentages of robust conditions of each investigated control charts 

were calculated. Also, the percentages of conditions in which the robust charts have at 

least 80% ability to detect outliers, and at least 50% probability of detection for the 

robust charts in case of dependent characteristics were computed. Under the dependency 

characteristics, the table is further divided into the two performance measurement i.e. 

false alarm (FA) and probability of detection (POD).  The comparison covers both the 

levels of significance α. Both percentages are presented in Table 5.12. 
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Table 5.12: Overall performance for independent and dependent cases. 

 

Types 

of 

Charts 

Independent           (winsorized) 

  = 5%   = 1%   = 5%   = 1% 

FA POD FA POD FA POD FA POD 

      
  93% 50% 87% 61% 85% 0 74% 0 

    
  91% 31% 84% 50% 89% 0 85% 0 

    
  91% 50% 93% 67% 100% 0 100% 0 

 

In terms of independent case, the table shows that the robust charts are robust in most 

conditions of independent or dependent cases. With respect to independent case, it can 

be identified that       
  chart produced more robust conditions than the other two 

robust charts at α = 5%.  In contrast, at α = 1%,      
  chart produced more robust 

conditions. In detecting outliers, all the charts show high percentages of robust 

conditions, and the percentages become even higher when α = 1%.   

 

As we moved to the dependent case, we observe highest percentages in the number of 

robust conditions for     
  producing 100% robust conditions for both significance 

levels. The other charts also able produce high percentages of robust conditions but the 

percentages slightly drop at α = 1%. However, all the charts, including the best 

performer,     
 , unable to achieve the 80% level of detection under dependent case.   
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5.6 Summary 

Basically, this chapter delineated the performance of another three robust multivariate 

Hotelling’s   charts which used winsorized modified one-step M-estimator (MOM) as 

the location measure and winsorized covariance matrix as the scale measure. The 

evaluations for the independent and dependent cases indicated that the robust charts 

performed better than the traditional charts especially in detecting outliers.  Among the 

robust charts, it has been found that the       
  chart has shown better performance than 

the     
  chart and the     

  chart under independent case at α = 5%. However,     
  

chart is the best in controlling false alarm when α = 1%.  In the case of dependent,     
  

chart maintains as the best performer regardless of the levels of significance. In terms of 

detection of outliers, the results have shown strong performance for all robust charts in 

the case of independent. For dependent case, even though the robust charts’ performance 

in detecting outliers cannot achieve the 80% level, their ability to detect outliers is 

always higher than the traditional charts. 

 

The results also revealed that the robust charts in general improve in controlling false 

alarm when the value of p increases under both dependent and independent cases, but in 

terms of detecting outliers, the changes in p especially when p reaches to 10 be 

positively affected while it is negatively affected under dependent case.  While for 

traditional charts the increase of p affected positively in term of false alarm while its 

effect negatively in detecting outliers, regardless of the values of level of significance 

and for independent and dependent cases.   
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The results show that the robust charts maintain on their behaviors as the proportion of 

outliers increases while the affect is negative on the performance of robust charts in term 

of detection of outliers in independent and dependent cases. While for the traditional 

charts, especially   
  charts showed negatively affected in terms of false alarms and 

detection of outliers, regardless of the values of α and the dependency of the 

characteristics. However, the robust charts, positively affect can be seen towards the 

status of the process whether it is in control or out of control. In contrast, it affects 

positively in term of detection of outliers. Respecting to the traditional charts the 

increase of the shifted mean affected negatively in most cases in terms of false alarms 

and detection of outliers regardless of the dependency of the characteristics. 

 

With respect to the robustness, the results as given and discussed in this chapter have 

proven that the robust charts have more ability to control on false alarms when the 

evaluation was performed at α = 5% than α = 1%.  Likewise in terms of detection of 

outliers, the performance of the robust charts when α = 5% are stronger than the 

performance when α = 1% in independent variable case.  

 

Investigation on real data also demonstrate that the three robust charts are on par with 

each other, and the charts were able to detect out-of-control observations better than the 

traditional chart. 
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CHAPTER SIX 

MODIFIED HOTELLING T
2
 CHARTS USING HODGES – 

LEHMANN ESTIMATOR WITH ROBUST SCALE ESTIMATORS 

4.1 Introduction 

This chapter discusses the results of the modified Hotelling’s    charts based on the 

Hodges-Lehmann as a robust location estimator with three robust scale estimators 

namely           and   . The modified control charts are constructed by replacing the 

Hodges–Lehmann estimator to the maximum likelihood mean vector of the traditional 

Hotelling’s    chart. Whilst, we replace the maximum likelihood covariance matrix with 

each of the robust scale estimators,          and   . In general, the construction 

involves the following steps: 

Step 1:  Get original data (with outliers) 

Step 2:  Compute the Hodges - Lehmann estimator 

Step 3:  Compute robust scale estimator, any of            and   . 

Step 4:  Compute Hotelling’s T
2
 statistics 

 

The robustness of these modified control charts measured and compared to the 

traditional Hotelling’s    chart based on two measurements, which are the false alarm 

rates and the percentage of detecting of outliers. Similar to the investigations conducted 

in Chapter 4 and Chapter 5, each of these new proposed control charts is tested on two 

different settings of dependency among the variables: (i) Case A refers to independent of 

variables and (ii) Case B refers to dependent variables. In addition, the investigations 
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maintained on evaluating the charts based on the individual observation, group sizes (m), 

proportion of outliers (ε), the shifted means (μ) and the number of variables (p). 

Subsequently, these settings will allow us to highlight the strengths and weaknesses of 

the proposed control charts.  

 

The discussion of this chapter is arranged into two main subsections according to the 

settings of variables (Case A and Case B) where each subsection will further investigates 

the control charts based on the false alarm rates (α = 5% and α = 1%) and percentage of 

detecting outliers. The discussion cover the performance of the proposed Hotelling’s    

charts based on the Hodges-Lehmann robust location estimator with three robust scale 

estimators, namely           and   . Comparison to the traditional control charts are 

made for all settings to identify whether the proposed charts are better than or at least at 

par to the traditional ones.   

4.2 Independent Variables (Case A) 

The investigation of the control charts for the independent variables is based on two 

measurements namely false alarm rates and percentage of detecting outliers. 

4.2.1 False alarm rates and percentage detecting of outliers at α = 5% 

 

The results of the analysis of the control charts based on the false alarm rates and 

percentage detecting of outliers at α = 5% are summarized in Tables 6.1 and 6.2. 
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Table 6.1: False alarms rates (percent) under independent case for α = 5%. 

 

 

Table 6.1 displays the results for each condition of group sizes (m = 50, 100 and 

150), proportion of outliers (ε = 0, 0.1 and 0.2), the shifted means (μ = 0, 3and 5) 

and the number of variables (p = 2, 5 and 10). We shaded the in-control false alarm 

on Table 6.1 to make an ease view. In general, the Hotelling’s T
2
 without outliers 

control chart ( 2

1T ) scores better false alarm rates, which are much closer to α = 5%, 

compare to the other control charts in most conditions. Such result is expected as the 

chart eliminates outliers prior to the construction of control chart, while the robust 

charts reduce the effect of outliers via the estimation process. Besides, all control 

charts are having similar performance in controlling false alarm under ideal 

condition (μ = 0 and ε = 0) but the performance is varies under non-ideal conditions.  

 

Some patterns can be detected under the non-ideal conditions. In the case of p = 2, 

all robust charts are recorded as in control regardless of group sizes (m) and mean 

shifts (μ). Nevertheless, the charts are out of control when the proportion of outliers 

(ε) increases to 0.2. Such results change when the number of variables increases to 5 

and 10 where the robust control charts are recorded as in control in term of false 
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alarm rates regardless of m, ε and μ except for the 2

HSnT . Nevertheless, the 

performance of the robust control charts is much better than the traditional chart 

under the non-ideal conditions. Both 2

HMADnT  and 2

HTnT  are competitive in most 

conditions. 

 

Next, we will look into the other measurement of performance based on the 

percentage detecting of outliers. The percentage for each condition and control chart 

for α = 5% is tabulated in Table 6.2. These values are plotted in line charts as in 

Figure 6.1 for easy view.  

 

Table 6.2: Percentages detecting outliers for independent case at α = 5%. 
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             a 

 

b 

 

 

           c 

 

d 

 

Figure 6.1: Percentages of detection of outliers when p = 2 

Each chart in Figure 6.1 shows the performance of the control charts based on the 

percentage detecting of outliers as the group sizes increases when p = 2. We put 

altogether the charts for various conditions on mean shifts (μ) and proportions of 

outliers (ε) to identify some explainable behavior of the charts. Overall, the 

percentage detecting of outliers for the traditional chart is among the worst as it 
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scores the furthest from 100 percent detection. This includes the 2

1T  chart where it 

scores the lowest percentage detecting of outliers when the proportion of outliers is 

20%. Meanwhile, robust charts always score close to 100 percent detecting of 

outliers except for the moderate condition when μ = 3 and ε = 0.20. 

 

In the case when there are about 10 percent outliers in the data (ε = 0.10), the robust 

charts are able to identify more than 75 percent of them and it increases to more than 

80 percent when the group sizes increases regardless of the mean shifts. However, 

the performance of the robust charts is bad for the case of moderate contamination ε 

= 0.20 and mean shift to 3 before they improve to good performance when the mean 

shift to 5.     

 

Similar performance of the robust charts is detected when the number of variables 

increases to 5 and 10 (see Figure 6.2 and Figure 6.3). In general, the traditional 

control charts ( 2

0T  and 2

1T ) are the worst in all conditions as the recorded percentages 

detecting of outliers are always less than 50 percent. Such results indicate that the 

traditional charts are unable to determine the existing of outliers in the data. 

Meanwhile, the robust charts are capable to identify more than 80 percent of the 

outliers in many conditions except when there are 20 percent outliers in the data and 

the mean of the process shift to 3. In this case, the performance is improved when the 

mean of the process is shifted to 5. 
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                               a 

 

                                  b 

 

 

                             c 

 

d 

 

Figure 6.2:Percentageof detection of outliers when p =5 
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                                a 

 

  

                                b 

 

 

 

c 

 

 

                                d 

 

Figure 6.3:Percentage of detection of outliers when p = 10. 

 

By carefully investigating the results in Table 6.2 and Figures 6.1 to 6.3, we can 

identify slight increment on the percentage of detecting the outliers in the data by the 

robust charts as the number of variables increases and the mean shift further from 0. 

Such behavior has contributed to bigger differences of performance between the 
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robust charts and the traditional charts. Next, we will investigate the performance of 

the control charts when α = 1%. 

4.2.2 False alarm rates and percentage detecting of outliers at α = 1% 

 

We carry out similar investigation as discussed in subsection 6.1.1 on the control 

charts but when α = 1%. Table 6.3 and Table 6.4 display the observed false alarm 

rates and percentage detecting of outliers for all control charts for each combination 

of conditions on group sizes (m = 50, 100and 150), proportion of outliers (ε = 0, 

0.1and 0.2), the shifted means (μ= 0, 3and 5) and the number of variables (p = 2, 

5and10). In addition, we shaded the in-control false alarm on Table 6.3 for easy 

view. 

 

Table 6.3: False alarms rates (percent) under independent case for α = 5%. 

 

  

The recorded false alarm rates for each control chart under the ideal condition (μ = 0 

and ε = 0) is closer to 1% except for two results for   
  where the false alarm rate is 
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0.4 when the m = 50 and m =100. This result gives a signal that the traditional 

Hotelling’s T
2
 may be deteriorated in small group sizes and stringent false alarm rate. 

In contrast, the robust charts still in control although α has been tightened.   

 

 Several interesting findings are discovered for the investigated control charts under 

the non-ideal conditions (μ ≠ 0 and ε ≠ 0). In the case when p = 2, the recorded false 

alarm rate for the robust charts is deteriorating further from α = 1% as the group 

sizes increases from 50 to 150. Table 6.3 shows that 9 out of 12 results of the robust 

charts for p = 2 and m = 50 are in control, but this result decreases to 3 out of 12 

robust charts in control when m = 100 and none of the robust charts are in control 

when m = 150. In this same condition of p = 2, we also spotted that the number of in 

control robust charts is decreasing when the proportion of outliers, ε, is increasing 

from 0.10 to 0.20. However, there is no clear pattern can be identified when the 

mean process shifts from 3 to 5. 

 

Similar findings are discovered when the number of variables increases to 5 and 10. 

More charts that are robust are in control when the group sizes m small and few 

outliers in the data. Meanwhile, the mean shift does not explain much about the 

performance of the robust charts. Careful investigation on Table 6.3 across the 

columns shows that more charts that are robust are in control when the number of p 

increases from 2 to 10. In contrast, the traditional chart ( 2

0T ) is always out of control 

in non-ideal conditions although there are adequate number of variables and group 

sizes.  
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All these evidences signify that the performance of the robust charts is promising 

when either the data are contaminated with outliers or the traditional chart ( 2

0T ) fails 

to perform. The next discussion will analyze the control charts on their ability to 

identify outliers in the data.     

 

Table 6.4: Percentages of detecting outliers for independent case at α = 1%. 

 

 

Table 6.4 displays the recorded percentage detecting of outliers for control charts 

and Figures 6.4 to 6.6 summarize these percentages in much better view. The 

behavior of the charts to identify outliers in the data when p = 2 is displayed in 

Figure 6.4. Each line chart in Figure 6.4 displays the relationship between the 

percentages detecting of outliers for each control chart and the group sizes (m). 

Overall, the percentage detecting of outliers increases as the group size increases. In 

addition, it is clearly plotted that both 2

0T  and 2

1T  are always the worst with the 

lowest percentage detecting of outliers in the figure. These two findings indicate that 

all control charts may identify more outliers as there are more objects in the data but 
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the traditional charts have lower capability to identify outliers compared to the robust 

charts. 

 

 

a 

 

b 

 

c 

 

d 

Figure 6.4:Percentages of detection of outliers when p = 2 

The robust charts are able to identify about 70 percent of the outliers when mean 

shift is 5 (see Figures 6.4(b) and 6.4(d)) but they are poor when the mean shift is 3 

(see Figures 6.4(a) and 6.4(c)). Such results show that small shifted from the mean of 

0 

10 

20 

30 

40 

50 

60 

50 100 150 

p
e

rc
e

n
ta

ge
 o

f 
d

e
te

ct
in

g 
o

u
tl

ie
rs

 

m 

0.1 outliers shifted mean 3 

T0-square 

T1-square 

Tmad-square 

Tsn-square 

Ttn-square 
0 

20 

40 

60 

80 

100 

120 

50 100 150 

p
e

rc
e

n
ta

ge
 o

f 
d

e
te

ct
in

g 
o

u
tl

ie
rs

  

m 

0.1 outliers with shifted mean 5 

T0-square 

T1-square 

Tmad-square 

Tsn-square 

Ttn-square 

0 

2 

4 

6 

8 

10 

12 

14 

16 

50 100 150 p
e

rc
e

n
ta

ge
 o

f 
d

e
te

ct
in

g 
o

u
tl

ie
rs

  

m 

0.2 outliers with shifted mean 3 

T0-square 

T1-square 

Tmad-square 

Tsn-square 

Ttn-square 

0 

20 

40 

60 

80 

100 

50 100 150 

p
e

rc
e

n
ta

ge
 o

f 
d

e
te

ct
in

g 
o

u
tl

ie
rs

 

m 

0.2 outliers with shifted mean 5 

T0-square 

T1-square 

Tmad-square 

Tsn-square 

Ttn-square 



 

159 

 

zero may give some hurdles for identifying the outliers. Among the robust charts, 

2

HTnT  has identified more outliers than the other two robust charts. Meanwhile, the 

increment of proportion of outliers (ε) in the data does not explain much about the 

behavior of the robust charts. 

 

 

a 

 

b 

 

c 

 

d 

 

Figure 6.5: Percentages of detection of outliers when p=5 
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Figure 6.6:Percentages of detection of outliers when p=10 

Behavior of control charts in detecting outliers when p = 5 and p = 10 is given in 

Figure 6.5 and Figure 6.6 respectively. Overall, similar behaviors as when p = 2 are 

identified where the ability to identify outliers in the data increases when the group 

size increases, robust charts always outperform the traditional charts and robust 
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charts are good when mean shift is greater than 3. The investigation on percentage 

detecting of outliers towards the number of variables reveals that the robust charts 

show slightly increment in the percentage of outliers detected as the p increases from 

2 to 5 but accelerates in the case p = 10.  

 

Previous discussion has limited the investigation on control charts when the 

observed variables are independent. The next section will discuss the results when 

the variables are dependent. 

4.3 The Dependent Variables (Case B) 

The investigation on the control charts for dependent variables conditions are 

conducted based on two measurements namely the false alarm rates and percentage 

detecting of outliers which are tested at α = 5% and α = 1%. The conditions of the 

data are similar to the ones given in Section 6.2. 

4.3.1 False alarm rates and percentage detecting of outliers at α = 5% 

The results of the analysis of the control charts based on the false alarm rates and 

percentage detecting of outliers at α = 5% are summarized in Table 6.5 and Table 6.6 

respectively. 
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Table 6.5: False alarms rates (percent) under dependent case for at=5%. 

 

 

 

Table 6.5 displays the results for each condition of group sizes (m = 50, 100 and 

150), proportion of outliers (ε = 0, 0.1 and 0.2) and the number of variables (p = 2, 5 

and 10) with the shifted means (μ = 0and 5) for the investigation on dependent 

variables. Table 6.5 shows that all control charts are in control for the ideal 

conditions (μ = 0 and ε = 0) except for the 2

HTnT  when p = 5 and in two conditions 

when p = 10.  

 

Results on the non-ideal conditions (μ ≠ 0 and ε ≠ 0) show that 2

HMADnT  has good 

performance in all conditions compare to the traditional chart 2

0T  and the other 

robust charts, 2

HSnT  and 2

HTnT . It followed by the traditional chart 2

0T  where it 

performs better as the number of variables increases from 2 to 10. Both 2

HSnT  and 

2

HTnT  are not performing well when the variables are dependent. In the case when p = 

2, there are slightly decrement on the false alarm rates as the group size increases. In 

addition, the false alarm rates decrease when there are more outliers in the data. 



 

163 

 

Similar fashions are detected when p = 5 and p = 10. However, the results on Table 

6.5 are hardly to explain the behavior of robust charts when the number of variables 

increases.   

 

Next, we are going to evaluate the capability of the charts to determine the outliers in 

the data with dependent variables at α = 5%. The observed percentage detecting of 

outliers are tabulated in Table 6.6 and plotted in line charts given in Figures 6.7 to 

6.9. 

Table 6.6Percentages of detecting outliers for dependent case at α = 5%. 
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a 

 

b 

Figure 6.7:Percentages of detection of outliers when p=2 
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Figure 6.8: Percentages of detection of outliers when p=5 
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a 

 

b 

Figure 6.9:Percentages of detection of outliers when p=10 

 

Figure 6.7 illustrates the relationship between the percentage detecting of outliers 

and the group size for different conditions on proportion of outliers in the data for p 

= 2. Both Figure 6.7(a) and Figure 6.7(b) show the increment of percentage detecting 

of outliers among the control charts when the group size increases. In addition, the 

figures give evidence that the robust charts are highly capable to detect the outliers in 

the data compared to the traditional charts. However, the performance of the robust 

charts is bad when ε = 0.20 compared to their performance when ε = 0.10. This could 

be influenced by the structure of dependency of the variables, which may hide the 

outliers in the data. 
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Different scenarios illustrated by Figure 6.8 and Figure 6.9 when the investigation 

was carried out on p = 5 and p = 10 respectively. Both figures show that none of the 

charts is the best with percentage of detection at least 50 percent. As the matter of 

fact, 2

HTnT  deteriorates badly when p is large. Results in Table 6.6 show that 2

HTnT  

gets as lowest as 1 percent in detecting the outliers. 

4.3.2 False alarm rates and percentage detecting of outliers at α = 1% 

The performance of the control charts at more stringent α = 1% is discussed based on 

false alarm rates (Table 6.7) and percentage detecting of outliers (Table 6.8). The 

conditions of the data are as given in previous subsection 6.2.1 when the observed 

variables are dependent on each others. 

 

Table 6.7: False alarms rates (percent) under dependent case for α = 1%. 

 

 

 

The results of the false alarm rates in Table 6.7 indicate that most control charts are 

in control at α = 1% when the investigation was performed under ideal conditions 
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(μ= 0 and ε = 0). However, the 2

HTnT  chart does not perform well when p = 10 and the 

group size greater than 50.  

 

Some patterns are identified when the investigation is carried out under the non-ideal 

conditions (μ ≠ 0 and ε ≠ 0). Table 6.7 shows that more robust charts are in control 

when the group size is 50 than 150 at p = 2. It means that the robust charts are in 

control when dealing with small group size. There are also some evidences that false 

alarm rates for the robust charts decrease when there are more outliers (ε) in the data. 

Similar behavior of false alarm rates are detected when p = 5 and p = 10 where the 

robust charts are in control for small group size and less outliers in the data.  

 

The false alarm rates can be seen better when the number of variables increases from 

p = 2 to p = 10. However, only the 2

HMADnT  chart has shown some promising results in 

most conditions compared to the other two robust charts. In contrast, the 2

HTnT  chart 

has shown poor performance where it is out of control in 79 percent of the tested 

conditions, poorer than the performance of the traditional chart, 2

0T . Such results 

imply that the 2

HTnT  chart may not suitable for dependent variables with tight false 

alarm rate.   

 

We will look for more information about the performance of the control charts when 

the variables are dependent based on the percentage detecting of outliers at α = 1%. 

These percentages are tabulated in Table 6.8 and plotted in Figures 6.10 to 6.12. 



 

168 

 

Table 6.8: Percentages of detecting outliers for dependent case a tα = 1%. 

 

Visually, the percentages of detection outliers explained through the figures 6.10 to 

6.12, according to increase the number of characteristics, p. 

 

  

 

Figure 6.10:Percentages of detection of outliers when p=2 
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b 

 

Figure 6.11:Percentages of detection of outliers when p=5 
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Figure 6.12:Percentages of detection of outliers when p=10 
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Figure 6.10 gives the relationship between the percentage detecting of outliers and 

group size for all investigated control charts when p = 2. The Figure 6.10(a) which 

represent the mild condition and moderate condition as it is shown in Figure 6.10(b) 

clearly show that the robust charts are outperforming the traditional charts in 

detecting the outliers in the data. However, the capability of detecting outliers among 

the robust charts decreases when the proportion of outliers (ε) increases from 0.10 to 

0.20. In fact, the percentages of detecting outliers for the 2

HMADnT  chart decrease when 

the group size reaches to 150. 

 

Figure 6.11 (p = 5) and Figure 6.12 (p = 10) display similar behaviors as depicted by 

the Figure 6.10. Both figures give clear plot that the robust charts outperform the 

traditional ones in detecting the outliers for all conditions. All control charts are 

more capable to detect outliers when the group size is much bigger. However, 

despite of such good results of the robust charts, they do not well perform in 

detecting the outliers as their capability to identify them is less than 50 percent.  

 

Our discussion has focused to evaluate the performance of the robust charts compare 

to the traditional charts in various interested conditions as explained in early section 

of this chapter. It is important to determine performance of each robust chart and to 

highlight similarities, strengths and weaknesses of them to allow better use for the 

charts. The next section will discuss in details about each of the robust charts 

pertaining to the investigations that were performed in this study.  
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6.4  Analysis on Real Data 

In this chapter, the performance of the three robust charts       
  ,     

   and     
   on 

real data and their comparison with the traditional chart   
  will be presented.  The 

same data from the  previous chapters (4 and 5)  were used again in these charts. The 

calculations of the upper control limits (UCL) based on the estimated values are 

presented in Table 6.10. The values of future observations are shown in the first 

three columns, while the values of the T
2 

statistics based on the estimated values in 

Table 6.10 are presented in the last four columns of Table 6.11. 

Based on the comparison of the T
2
            in Table 6.11 with the corresponding 

control limits in Table 6.10, we observed that for α = 5%, two robust charts,     
 and 

    
  signaled three similar observations (20, 22 and 25) as out-of-control points. 

While the traditional   
  chart manage to signal only two  observations(22 and 25) as 

out of control points. In addition;      
  chart has worse ability for detecting the 

outliers as well as the traditional   
   chart. While for α = 1%, it has been observed 

that the robust charts      
 ,     

 and    
 and the traditional   

  charts have the 

same signal observation values (20 and 25) which is considered out-of-control 

points. As it is expected, the result for   
   chart is similar to the results of the robust 

charts, since the analysis on the probability of detection of outliers calculated based 

on the simulated data. The simulated data showed that   
  was not as effective as the 

other robust charts  in term of detecting outliers. According to the previous obtained 

results in the simulation (sections 6.2 and 6.3),it is clear that the three robust charts 

approximately have the same performance in terms of false alarms and probability of 
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detection of the outliers, in case that small quality characteristics p is equal to 2. 

Also, as revealed in the simulation study, the  
 chart has performed well in detecting 

outliers under low dimension (not more than 5) only.   

Table 6.9:  Historical data set (Phase I data) 

Product 

No.        Trim edge (  )     Trim edge spar (  )        Drill hole (  ) 

1 -0. 0011 0.0003 0.0128 

2 0.0011 0.0021 0.0246 

3 0.0252 0.0308 0.0378 

4 -0. 0017 0.0109 0.0177 

5 -0. 0005 -0. 0010 0.0106 

6 0.0016 -0.0059 0.0128 

7 0.0004 0.0001 0.0062 

8 0.0078 0.0003 0.0159 

9 0.0076 0.0089 0.0097 

10 0.0020 0.0005 0.0071 

11 0.0108 0.0011 0.0092 

12 0.0039 0.0034 0.0425 

13 0.0060 -0.0033 0.0160 

14 0.0066 0.0100 0.0056 

15 0.0045 -0.0067 0.0147 

16 0.0110 -0.0207 0.0337 

17 0.0047 0.0059 0.0065 

18 0.0077 0.0003 0.0191 

19 0.0015 0.0123 0.0124 

20 0.0011 0.0038 0.0104 

21 0.0056 0.0065 0.0063 
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Table 6.10:  The values of the upper control limits for the three robust and one 

traditional charts. 

Types of 

Control 

Chart 

           Upper Control 

            Limit (UCL) 

                   α = 5% 

  
  

      
  

                 11.035 

                 14.22 

    
                   11.83 

    
                   12.77 

 

Table 6.11:  The values of future observations and Hotelling’s T
2
 statistics. 

Product 

No.            
        

      
  

 

    
  

1 0.0041 0.0087 0.0129 0.5582 0.9915 0.9457 1.2066 

2 0.0047 0.0109 0.0124 0.9003 1.7626 1.6819 2.0880 

3 0.0031 0.0057 0.0096 0.4992 0.5299 0.4830 0.5205 

4 0.0035 -0.0020 0.0101 0.5463 0.7516 0.6989 0.6068 

5 0.0040 -0.0028 0.0125 0.4592 0.663 0.6301 0.5710 

6 0.0031 0.0008 0.0061 0.9013 1.178 1.0532 1.0225 

7 -0.0019 0.0101 0.0112 3.0933 3.271 2.8450 3.1874 

8 0.0009 0.0039 0.0082 0.8061 0.9465 0.8023 0.7581 

9 -0.0052 0.0090 0.0203 7.3602 7.3284 6.1959 7.2843 

10 -0.0008 0.0110 0.0184 3.6198 4.2262 3.7671 4.5167 

11 -0.0021 0.0139 0.0170 5.3839 6.1630 5.5186 6.4692 

12 -0.0017 0.0092 0.0061 2.7387 3.2730 2.8435 3.0890 

13 -0.0010 0.0133 0.0138 3.8058 4.4870 4.0606 4.7056 

14 -0.0030 0.0002 0.0053 2.0548 3.3883 2.8313 2.8620 

15 0.0016 0.0134 0.0151 2.5073 3.6659 3.4240 4.0858 

16 0.0027 0.0086 0.0070 1.1976 1.5746 1.4488 1.6229 
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17 0.0004 0.0086 0.0087 1.5798 1.8288 1.6261 1.7780 

18 -0.0036 0.0136 0.0129 5.7910 6.2007 5.4517 6.2216 

19 -0.0028 0.0003 0.0078 1.8304 2.7078 2.2260 2.2046 

20 0.0120 0.0123 0.0768 38.1397 84.493 75.621 93.728 

21 -0.0015 0.0004 0.0115 1.2651 1.6002 1.2943 1.2395 

22 0.0009 0.0232 0.0202 8.4181 13.462 12.630 14.838 

23 -0.0035 0.0088 0.0107 3.7588 3.8324 3.2249 3.5605 

24 0.0016 0.0061 0.0066 1.0602 1.3103 1.1611 1.2127 

25 -0.0228 -0.0466 0.0231 42.8447 87.870 78.700 87.664 

26 0.0037 -0.0038 0.0147 0.4832 0.8755 0.8323 0.8184 

 

6.5 Comparison among the robust Hotelling’s    charts 

Evidences and discussions carried out in Sections 6.2 and 6.3shows that the proposed 

robust charts outperform the traditional Hotelling’s T
2
 chart in most conditions of 

independent or dependent variables. Therefore, the issue now is to understand how 

they are leading each other. To allow for further discussion, we compute the 

percentages of in control results for all investigated conditions of each robust control 

chart. The in control results refers to the observed false alarm rate that falls in 

between: (i) 0.025 (2.5%) and 0.075 (7.5%) when α = 0.05 (5%) and (ii) 0.005 

(0.5%) and 0.015 (1.5%) when α = 0.01(1%). We also compute the percentage of 

conditions in which the robust charts are able to identify at least 80 percent outliers 

in the data for independent case. While at least 50% probability of detection for the 

robust charts in case of dependent characteristics. Under the dependency 

characteristics, the table is further divided into the two performance measurement i.e. 

false alarm (FA) and probability of detection (POD).  The comparison covers both 
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the levels of significance α. These values indicate how good a robust chart to handle 

outliers is. Both these percentages are presented in Table 6.12. 

 

Table 6.12: Overall performance for independent and dependent cases. 

Types 

of 

Charts 

Independent           (winsorized) 

  = 5%   = 1%   = 5%   = 1% 

FA POD FA POD FA POD FA POD 

      
  78% 69% 78% 36% 100% 33% 78% 11% 

    
  44% 64% 42% 25% 44% 17% 67% 0% 

    
  82% 69% 78% 36% 22% 17% 41% 11% 

 

When the variables are independent, it can be identified from Table 6.9 that the     
  

chart show greater in control based on false alarm rates at α = 5%. It indicates that 

this chart has greater power to be in control in multi observed variables. In addition, 

Table 6.9 shows that both       
  and     

  charts are performing well although α 

has been tightened to 1%. Such behaviors do not displayed by the 
2

HSnT  chart, but it 

shows good performance at the largest investigated number of variables, p = 10. In 

term of the capability to identify outliers in the data, all robust charts have shown 

their strength to identify the outliers especially at α = 5%, but they face some 

difficulties to identify more outliers when α = 1%. 

 

The great dependency among variables gives some limitations for the robust charts 

to perform as good as when the variables are independent. Table 6.9 gives clear 

evidence that the 
2

HMADnT  chart is the greatest in control when α = 5% and it does not 

badly affected although α has been tightened to 1%. The other robust charts are 
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unable to show promising results when α = 5% but show improvement as α  has been 

tightened to 1%which means that these charts control on false alarms more when the 

study be more conservative. In addition, the       
 chart identifies more outliers in 

the data with the dependent variables than    
 and     

 charts. 

 

The evaluation based on false alarm rates has identified the       
 chart as the best 

multivariate control chart when the variables are independent compared to the     
  

chart and the     
  chart. The performance of the       

  chart does not affect much 

when the variables are dependent. Meanwhile, the     
  chart shows moderate 

performance in both independent and dependent variables. Lastly, the     
  chart 

shows competitive performance to the       
  chart when the variables are 

independent but it performs badly when there are some dependencies among the 

variables.   

 

Similarly, the evaluations based on the percentage detecting of outliers reveal that all 

the robust charts are able to identify outliers in the data when independent variables 

but the       
  chart is good enough to identify outliers when the variables are 

dependent. Following these results, one may opt to use either the       
  chart or the 

2

HTnT  chart when the variables are known to be independent and to opt for the       
  

chart when the variables are known to be dependent. However, the       
  chart is 

preferable when one does not certain about the dependency of the variables.  
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6.6 Summary 

 

This chapter has introduced and evaluated three proposed robust multivariate 

Hotelling’s    charts based on the robust location estimator of Hodges-Lehmann 

with the covariance matrices of robust scale estimators, the choice of    , Sn and 

Tn. The evaluations which were presented in the case of independent and dependent 

variables in Section 6.2 and Section 6.3 indicated to that the robust charts perform 

better than the traditional Hotelling’s T
2
 in term of false alarm rate and identifying 

outliers in the data. Among the robust charts, it has been found that the       
  chart 

has shown greater performance than the     
  chart and the     

  chart in both cases, 

either independent or dependent variables. 

 

The results presented in Table 6.1 to Table 6.8 show some explainable relationships 

between the interested factors namely the number of variables (p), group sizes (m), 

proportion of outliers (ε), mean shift (μ) and the nominal false alarm rate (α), and the 

status of the process of the robust charts, either in control or out of control. The 

dependency among variables play important scenario to influence the performance of 

the robust charts and this has been proven in Section 6.3. In general, charts that are 

more robust are in control false alarms as p increases when the variables are 

independent. Nevertheless, such scenario is not occurring when the variables are 

dependent where the performance of robust charts affected negatively at α = 5% 

while affected positively at α = 1%. Besides, the size of contaminated data may 

affect the status of the process. The tables presented in Section 6.2 and Section 6.3 
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show that more robust charts are affected negatively if there are more proportion of 

outliers as given by ε in the data. However, the positively affect can be seen on the 

effect of mean shift towards the status of the process.  

 

Another factor, which is important to highlight, is the set of false alarm, α, for the 

evaluation. Results as given and discussed in this chapter have proven that more 

robust charts are in control when the evaluation was performed at nominal false 

alarm rates, α = 5%. While, there are many out of control results occur when the 

evaluation was performed at rigid nominal false alarm rates, α = 1%. However in 

practice, the choice of α may varies depends on the application and problems in 

hand.   
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CHAPTER SEVEN 

CONCLUSION AND SUGGESTIONS FOR FURTHER 

RESEARCHES 

  

5.1 Introduction 

This thesis proposed three new approaches of robust Hotelling’s T
2
 charts. The new 

robust charts are Hotelling’s T
2
 with trimmed means (  

 ), Hotelling’s T
2
 with 

winsorized means (  
 ) and Hotelling’s T

2
 with Hodges Lehman (  

 ). For each 

approach, we introduced three different scale estimators comprising of    ,    

and  . These scale estimators functioned differently for each type of chart. When 

applied in  
 , the scale estimators functioned as the scatter matrix in Mahalonobis 

distance used to determine the data to be trimmed.  In  
 , the estimators acted as the 

trimming criterion before the winsorization of the data could be done, while in  
 , 

they took the role as the scatter matrix in the robust Hotelling T
2
 charts.  Altogether, 

a total of nine new robust charts were being investigated. These new charts were 

shown to have better performance as compared to the traditional Hotelling T
2
 charts 

in the presence of outliers.  In this chapter, we summarize the comparison of the 

performance among the proposed robust charts and the traditional charts based on 

independent and dependent cases in sections 7.1 and 7.2, respectively. The effect of 

the charts with regards to variables manipulated is summarized in section 7.2.  The 

discussion on the contributions of this study continues in section 7.3 and finally the 

future studies related to this thesis are summarized and discussed in section 7.4. 
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5.2 COMPARISON AMONG THE CONTROL CHARTS 

The performance of the robust charts is compared in terms of their false alarms rates 

and the percentage of detecting outliers. The comparisons between the approaches 

are discussed separately based on the nature of the quality characteristics i.e. 

independent and dependent cases.   

5.2.1 Independent case. 

 
The results for the comparison under independent case are summarized in Table 7.1.  

The table is sectioned according to the three types of robust approaches (   
 ,   

  

and   
 ).  Each approach is then divided into two levels of significance (α = 5% and 

1%). Under each level of significance, the table is further divided into the two 

performance measurement i.e. false alarm (FA) and probability of detection (POD).  

The corresponding robust charts using different scale estimators (     ,    and   ) 

for each approach are arranged in rows followed by the traditional charts in the last 

two rows of the table. The percentages under FA column represent the frequency of 

the robust conditions over the number of conditions studied for a particular chart 

(denoted as FA hereafter)  while the percentages under POD column represent the 

frequency the chart achieved above 80% level of detection (denoted as POD 

hereafter) across the conditions.   
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Table 7.1  Overall performance for independent case 

 

Scale 

Estimators 

  
    

    
  

  = 5%   = 1%   = 5%   = 1%   = 5%   = 1% 

FA POD FA POD FA POD FA POD FA POD FA POD 

     67% 89% 44% 69% 93% 50% 87% 61% 78% 69% 78% 36% 

Sn 62% 89% 58% 67% 91% 31% 84% 50% 44% 64% 42% 25% 

Tn 62% 89% 53% 72% 91% 50% 93% 67% 82% 69% 78% 36% 

Traditional 

  
  100% 8% 80% 0 100% 8% 76% 0 100% 8% 80% 0 

  
  64% 6% 56% 0 78% 33% 64% 0 64% 6% 56% 0 

 

 

As we can observe from Table 7.1,at α = 5%, the robust charts that perform the best 

in controlling false alarms come from the winsorized approach (  
 ) where most of 

the percentages are above 90%. The next best approach is   
  where the approach 

used no trimming or winsorizing on the data.  However, the FA percentages among 

the robust charts under this approach are not consistent as in the earlier approach.  

The best among this approach is     
 . The approach that produces the least robust 

conditions is the one using trimmed mean i.e.   
 . The FA percentages among the 

charts under   
  approach are quite consistent with values ranging from 62% to 67%.  

Even though this approach produces the least robust conditions, but it has the highest 

percentage (89%) of POD. The second best goes to   
  with POD percentages around 

66% while the least belongs to   
 . If we refer to robustness per se, we would 

recommend the robust charts using winsorized mean.  However, if the performance 

takes into consideration both the robustness and the ability in detecting outliers, the 

best suggestion would be the   
  chart, specifically       

  and     
 .  
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At α = 1%,   
  still stays on top of the list with regards to FA, even though the 

percentages slightly drop from α = 5%. Nonetheless, in terms of POD, the 

percentages for the charts increase, thus making these charts as the better choices 

than the others.   

 

Next, the comparison continues with the traditional charts.  From the table, 

obviously we can see that   
 scores perfect 100% which indicates that all the 

conditions tested are robust. However, the chart fails to score any points in term of 

POD.  For the case of   
 , the chart in general cannot outdo the robust charts in terms 

of FA, and as expected, perform as bad as   
  with respect to POD. 

5.2.2 Dependent Case 

The summary for dependent case is presented in Table 7.2.  The arrangement of the 

table is similar to the independent case, but the percentages under POD for this case 

represent the frequency the chart achieved above 50% level of detection across the 

conditions. In terms of FA at 5% significance level, the charts belong to   
  approach 

produce high percentage (at least 85%).  One of the percentages, which belong to 

    
   reaches the 100% score.  Trailing behind is   

  followed by   
 .  Even though 

the overall FA percentage for    
  not so promising, but one of the charts, i.e.       

  

scores perfect 100% and produce quite good percentage (33%) for POD. Among the 

approaches,   
  charts score the highest (33% - 39%) while those from   

  score the 

lowest (17%).    
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As we moved to α = 1%, we observe some improvements in the percentages of FA 

for a few charts belong to   
  and   

 . On contrary, we also observe a drop in 

percentages for some charts in   
 .  Despite the drop in percentages of FA,   

  charts 

are still above the charts from the other approaches, with      
  scores perfect 100% 

when α = 5%.  However, in terms of POD, the chart fails to score any point.  Other 

charts which are show a balance between FA and POD are from   
 .  

 

Table 7.2 Overall performance for dependent case 

 

Scale 

Estimators 

  
    

    
  

  = 5%   = 1%   = 5%   = 1%   = 5%   = 1% 

FA POD FA POD FA POD FA POD FA POD FA POD 

     78% 39% 78% 17% 85% 17% 74% 11% 100% 33% 78% 11% 

   70% 33% 81% 17% 89% 17% 85% 0% 44% 17% 67% 0% 

   70% 33% 74% 17% 100% 17% 100% 0% 22% 17% 41% 11% 

Traditional 

  
  100% 17% 89% 0% 100% 17% 70% 0% 100% 17% 89% 0% 

  
  81% 0% 81% 0% 85% 0% 93% 0% 81% 0% 81% 0% 

 

5.3 The effects of the manipulated variables on the charts 

The following subsections will summarize on the general performance of the robust 

and traditional charts with respect to the manipulated variables.     

5.3.1 Independent variables case (A) 

The nine robust Hotelling’s    charts proposed in this study performed well in terms 

of controlling false alarm and had high probability of detecting outliers for certain 

studied conditions.  When we compared with the traditional charts, we observed that, 
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even though   
  chart was known to have very good control of false alarm, but the 

chart failed in detecting outliers unlike the proposed robust charts. These robust 

charts also outperformed the   
  under most conditions in terms of false alarm and all 

the time above the   
 chart with regards to probability of detecting outliers. We have 

summarized the performance of all the charts in the previous sections.  This section 

will summarize on the effect of the robust charts in general based on the manipulated 

variables.   

i) Number of quality characteristics (p) 

Generally, when the number of quality characteristics (p) became larger, we 

observed some positive effect on the false alarm but the changes in p showed 

insignificant effect on the probability of detection.  These situations applied to all 

charts. 

ii) Group sizes (m) 

The increased of group sizes did have some influence on the robust charts. 

However, different charts portrayed different behaviors, thus making it 

impossible to determine the common behavior of the false alarm and probability 

of detection for the robust and traditional charts. 

iii) Proportion of outliers (ε) 

In terms of proportion of outliers, the increased of this variable negatively 

affected the false alarm and probability of detection of  the robust charts.  While, 

in the case of  the traditional charts, the similar changes negatively affected the 

performance in terms of false alarms but no obvious effect could be identified in 

terms of detecting outliers.  
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iv) Shifted mean (µ) 

When the mean shifted from 3 to 5, no significant effect could be observed in 

terms of false alarm for the robust charts, but negative effect could be identified 

for the traditional charts.  In terms of probability detection, the shifts in mean 

showed positive effect on the performance of the robust charts but no obvious 

effect on the traditional charts.  

5.3.2 Dependent variables case (B) 

 
The effects on false alarms rates, due to the changes in the manipulated variables for 

dependent case were quite similar to the independent case.  Nevertheless, with 

regards to probability of detection, there was a decline in the values as compared to 

the independent case.    

i) Number of quality characteristics (p) 

Generally, when the number of quality characteristics (p) increased, we observed 

some positive effect on the false alarm and negative effect on the probability of 

detection for all charts. 

ii) Group sizes (m) 

Like in the independent case, different patterns were observed for different charts 

when the group sizes increased.  Thus, no common performance pattern could be 

identified for the charts in terms of false alarm and probability of detection. 

iii) Proportion of outliers (ε) 

The performance of the robust charts dwindles when the proportion of outliers 

changes from 0.1 to 0.2 in terms of false alarm and probability of detection and 
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the probability of detection further decreases under dependent case compared to 

independent. While the traditional charts affected negatively in term of false 

alarms, however there are no obvious effect in detecting outliers. 

 

7.4  APPLICATION ON REAL DATA 

When the investigated charts were applied on real data (the production of airplane 

spoilers),  the robust charts especially those using winsorized MOM performed the 

effectively in detecting out-of-control observations. All the three charts (      
 , 

    
  and     

 ) were able to detect three out-of-control observations as compared to 

only two detected by the traditional chart.  Meanwhile, two of the robust charts using 

Hodges Lehamann i.e.     
  and     

 were also able to detect the same number of 

observations.  However, their counterparts,       
  as well as those charts using 

trimmed mean,       
 ,     

  and     
  can perform as good as the traditional chart, 

and not less.  The simulated study showed that the traditional chart performed well 

under small number of quality characteristic (p < 5), which is why the chart is on par 

with some other charts for this particular problem (p = 3)  

 

Generally, the findings on simulated and real data showed that robust Hotelling’s T
2
 

charts using winsorized MOM  could be a favorable alternative for multivariate 

control charts.   
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3.5 THE CONTRIBUTIONS OF THE THESIS 

Our goal is to search for alternative control charts for the traditional Hotelling’s 2T  

charts when the performance of the latter is arguable due to violations of 

assumptions.  In this final chapter, we would like to share some of the advances that 

emerged from this study.  

 

Modifications made on the Hotelling’s T
2
 chart successfully improved the 

performance of the charts especially in terms of probability of detection.  Even 

though the robust charts generally perform moderately in terms of robustness (false 

alarm), they perform really well when p is large, which is known to be one of the 

weaknesses of Hotelling’s T
2
 statistic.  Furthermore, these robust charts are 

unperturbed even when the means shifted,   which indicate that they are robust 

towards outliers.  

 

To reiterate, this study covered various aspect in dealing with outliers.  It introduced 

an approach, which needs no trimming of data i.e.   
 .  Even in the presence of 

outliers, this approach was proven to be able to control false alarm and 

simultaneously able to detect outliers at desired level. This study also offers the 

symmetric trimming approach denoted as   
  and the asymmetric winsorizing 

approach  
 . Trimming or no trimming, the approaches produced comparable control 

charts to traditional Hotelling T
2
 under ideal conditions and perform better than the 

traditional charts under violation of assumptions.  With these alternative charts, we 
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hope that the problems which were previously unable to be solved under certain 

conditions can now be overcome using either one of the alternatives.   

5.4 LIMITATION and FUTURE STUDIES 

We believe that this study is not a comprehensive study that covers the real situations 

occur in industries. The study limits the finding based on the simulated data whereby 

all the conditions are controlled.  However, we believe that the outcomes from this 

study will not be much affected from the real application.   

 

While conducting this study, we encountered a few problems, which lead us to give 

some ideas on future research. As we all aware, the distributions for the robust 

statistics are unknown, thus in this study we used simulation method to calculate the 

control limits. The process takes its toll on the computation time. We need more 

extensive theoretical research to be done in order to identify the suitable distributions 

for the statistics.   Prior to this study, we are not aware that the proposed method 

would encounter any problem when the condition of m/p > 5 is not fulfilled.  

However, along the way, we realized that only one of the approaches i.e.   
   able to 

perform even when the condition is violated.  In future, we would like to further 

understand why the other two approaches failed to perform.  Last but not least, 

another suggestion that we would like to bring forward for future work is to extend 

the investigation on distributional shapes.  
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Appendix A 

 

Programs Calculate The Modified Hotelling’s T-Square Charts 

 

1) Program calculates the false alarms and the probability of detection for the 

traditional Hotelling's T-square control charts without clean data 

 

clear all;    % to clear the previous calculations   

R=5000;       % number of iterations 

R1=1000; 

N=150;        %Total number of rows 

P=2;          % Number of characteristics variables 

pi=0.2; 

MeanData1=zeros(R1,P); 

meanminusmean=zeros(R,P); 

%The values of shifted means 

m=[5 5]; 

sigma0=zeros(P,P); 

for i=1:P 

for j=1:P 

if i==j 

             sigma0(i,j)=1; 

else 

             sigma0(i,j)=0.0; 

end 

end 

end 

COVARIC=zeros(P,P,R1); 

COVARIC1=zeros(P,P,R); 

ROUND=floor(N*pi); 

T4=zeros(R,1); %location for T-square 
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% PhaseI 

for r1=1:R1        % loop for the iterations R 

    seed = 95395+r1; % Seed number to fix the data 

    rand('seed',seed) 

    randn('seed',seed) 

    Z=randn(N,P);   % Generate the data from standard normal distribution 

% Put the outlier in the data 

    

Data11=[Z(1:ROUND,:)*sigma0+repmat(m,ROUND,1);Z(ROUND+1:N,:)*sigma0]

;   

    MeanData1(r1,:)=mean(Data11);  % Calculate the mean         

    COVARIC(:,:,r1)=cov(Data11);   % Calculate the covariance matrix 

end 

%Phase II 

T91=zeros(R1,1); 

T92=zeros(R1,1); 

for r1=1:R1   

    seed = 15391+r1;   

    rand('seed',seed); 

    randn('seed',seed); 

    Z1=randn(1,P)*sigma0;   % Generate the observation from standard normal 

distribution 

    Z2=Z1+m;                % Generate the observation from out of control distribution  

% Calculate the T-square in ordere to calculate the false alarms and 

% probabilit of detection outliers, respectively 

    MEANminusmean1=Z1-MeanData1(r1,:); 

    MEANminusmean2=Z2-MeanData1(r1,:); 

    T91(r1)= MEANminusmean1/COVARIC(:,:,r1)*(MEANminusmean1)';  

    T92(r1)= MEANminusmean2/COVARIC(:,:,r1)*(MEANminusmean2)'; 

end 
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UCL2=(P*(N+1)*(N-1))/(N^2-N*P)*finv(0.99,P,N-P); 

 

Count1=0; 

Count2=0; 

for i=1:R1   

if( T91(i)>UCL2) 

      Count1=Count1+1; 

end 

if( T92(i)>UCL2) 

      Count2=Count2+1; 

end 

end 

 typeerror1=Count1/R1;   % Calculate the false alarm 

 typeerror2=Count2/R1;   % Calculate the probability of detection outliers 

 

2) Program calculates the false alarms and the probability of  detection outliers using 

the historical data sets 

 

function [typeerrocount3,typeerror2]=test 

[Data11,MeanD,Cov2,UCL2] = mytest; 

%ZR = [5 5] ; 

ZR = [5 5 5 5 5] ; % shift mean to create outliers 

%ZR = [0 0 0 0 0]; 

Co = 5 ;Ob = 1000;Ch = Co; 

T91=zeros(Ob,1); 

T92=zeros(Ob,1); 

for count3=1:Ob   

    seed = 15391+count3;   

    rand('seed',seed); 

    randn('seed',seed); 

    Z1=randn(1,Ch); 
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    Z2=Z1+ZR; 

    MEANminusmean1=Z1-MeanD(count3,:); 

    MEANminusmean2=Z2-MeanD(count3,:); 

    T91(count3)= MEANminusmean1/Cov2(:,:,count3)*(MEANminusmean1)';  

    T92(count3)= MEANminusmean2/Cov2(:,:,count3)*(MEANminusmean2)'; 

 

end 

Count1=0; 

Count2=0; 

for i=1:Ob   

if( T91(i)>UCL2(i)) 

      Count1=Count1+1; 

end 

if( T92(i)>UCL2(i)) 

      Count2=Count2+1; 

end 

end 

 typeerrocount3=Count1/Ob; 

 typeerror2=Count2/Ob; 

% This subroutine calculates the historical data sets  

 

function  [Data11,Mean,Cov,UCL2] = mytest 

Ob = 1000; 

Ro = 50; % Ro # of rows  

Co = 5 ; % Co #  of coloumn 

Pr = 0.1 ; % persntage of outliers data to be add 

%ZR = [ 5 5 ] ; % shft mean to creat outliers 

ZR=[5 5 5 5 5]; 

%ZR=[0 0 0 0 0]; 

Round = floor(Ro * Pr); % # of outliers 

Mean=zeros(Ob,Co);Cov=zeros(Co,Co,Ob);UCL2=zeros(Ob,1); 
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for Count = 1 : Ob % end of for loop will be changed && Start * loop 

seed = 95395 + Count; % fix of our data  

rand('seed',seed);randn('seed',seed); % randomization to fix the data  

Z = randn(Ro,Co); % Z is a standard normal distrubution  

Data11 = [ Z(1:Round,:) + repmat(ZR, Round ,1); Z(Round+1 : Ro,:)];% Main 

% matrix affter data put outliers 

MeanD1 = mean(Data11); % to callculate the mean 

Coveriance = cov(Data11); % to callculate the coveriance 

UCL = (((Ro-1)^2)/Ro)* betainv(0.95,Co/2,((Ro - Co - 1 ) /2) ); 

out = T4c(MeanD1,Coveriance,Data11,UCL); 

[k ,w]= size(Data11);Ch = Co; 

UCL2(Count) = ((Ch*(k+1)*(k-1))/(k*(k-Ch)))*finv(0.95,Ch,k-Ch); 

Data11 = out; 

Mean(Count,:) = MeanD1; 

Cov(:,:,Count) = Coveriance; 

end 

end 

function out = T4c(Mean,Cov,Data,UCL) 

[ro,co] = size(Data); 

k = 0 ; 

for i = 1 : ro  

   x  = Data(i,:) - Mean; 

   y{i} = ( x/Cov(:,:)) * x'; 

if y{i} < UCL  

       k = k + 1; 

       DData(k,:) = Data(i,:); 

end 

end 

out = DData; 

end 
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3) Program calculates the false alarms and the probability of detection for the 

modified Hotelling T-square for winsorized MOM with MADn 

 

clear all; % to clear the previous calculations  

R=5000;       % number of iterations 

R1=1000; 

N=50;       % number of samples of size 1 

P=10;        % Number of characteristics variables 

pi=0.1;  

m=[3 3 3 3 3 3 3 3 3 3]; 

sigma0=zeros(P,P); 

for i=1:P 

for j=1:P 

if i==j 

           sigma0(i,j)=1; 

else 

           sigma0(i,j)=0.0; 

end 

end 

end 

MeanMADMatCov1=zeros(P,P,R1); 

MeanMADMatCov=zeros(P,P,R); 

MomwinsDatamad=zeros(R,P); 

meanminusmean=zeros(R1,P); 

MomwinsDatamad1=zeros(R1,P); 

MOMPARA=0; 

ROUND=floor(pi*N);% number of the outliers 

T4=zeros(R,1); 

for r=1:R 

    seed = 3985+r;  % to fix all random data sets 
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    rand('seed',seed);% generate from uniform distribution 

    randn('seed',seed);%generate from standdard normal distribution 

    Z=randn(N+1,P);% generate data set from the standard normal distribution 

% calculate the winsorized mean 

for j=1:P  

   MomwinsDatamad(r,j)=mean(WMADn_sample(Z(1:N,j)));  

end 

% calculate the MAD  covariance matrix 

   MeanMADMatCov(:,:,r)=MadCov1(Z(1:N,:)); 

% calculate the hotelling t-square 

   meanminusmean(r,:)= Z(N+1,:)-MomwinsDatamad(r,:); 

   T4(r,1)=meanminusmean(r,:)/MeanMADMatCov(:,:,r) * (meanminusmean(r,:))'; 

end 

UCL=prctile(T4,95); % upper control limit 

%Phase I 

for r1=1:R1    

    seed = 95395+r1;   

    rand('seed',seed); 

    randn('seed',seed); 

    Z=randn(N,P);  % generate matrix of row N and column P from standard normal 

distribution 

%  put number ROUND of the outliers in data 

    

Data11=[Z(1:ROUND,:)*sigma0+repmat(m,ROUND,1);Z(ROUND+1:N,:)*sigma0]

;  

% calculate the mean for the winsorized sample 

for j=1:P  

   MomwinsDatamad1(r1,j)=mean(WMADn_sample(Data11(1:N,j)));  % calculate 

the winsorized mean 

end 

% calculate the covariance for the winsorized sample 
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   MeanMADMatCov1(:,:,r1)=MadCov1(Data11(1:N,:));  % calculate covariance 

matrix using the subroutine function MadCov1 

end 

%Phase II 

T41=zeros(R1,1); % location for the values of the Hotelling t square 

T412=zeros(R1,1);% location for the values of the Hotelling t square 

for r1=1:R1   

    seed = 15391+r1; % seed number to fix the data  

    rand('seed',seed); %#ok<RAND> 

    randn('seed',seed); %#ok<RAND> 

    Z=randn(1,P)*sigma0;    % generate a new observation vector from standard 

normal distribution 

     Z1=Z+m;         %generate a new observation vector from  normal distribution 

with shifted mean m 

     momDataMinusMean=Z-MomwinsDatamad1(r1,:); 

% calculate the Hotelling T square to calculate the type I error 

    T41(r1)= 

momDataMinusMean/MeanMADMatCov1(:,:,r1)*(momDataMinusMean)';   

    momDataMinusMean1=Z1-MomwinsDatamad1(r1,:); 

% calculate the Hotelling T square to calculate probability of 

% detection outliers 

    T412(r1)= 

momDataMinusMean1/MeanMADMatCov1(:,:,r1)*(momDataMinusMean1)'; 

end 

% check whether the values of T square in T41, T412 are greater than UCL 

Count1=0; 

Count2=0; 

for i=1:R1 

if( T41(i)>UCL) 

       Count1=Count1+1; 

end 
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if( T412(i)>UCL) 

       Count2=Count2+1; 

end 

end 

 typeerror1=Count1/R1;    % false alarms rates   

 probdetection=Count2/R1; % percentage of probability of detection 

 

 

4) Program calculates the false alarms and the probability of detection for the 

modified Hotelling T- square for winsorized MOM with Sn. 

 

clear all; % to clear the previous calculations before the new run  

R=5000;  % number of iterations 

R1=1000;  

N=100;      % number of samples of size 1 

P=2;        % Number of characteristics variables 

pi=0.2; 

ROUND=floor(pi*N);% number of the outliers 

m=[3 3]; 

sigma0=zeros(P,P); 

for i=1:P 

for j=1:P 

if i==j 

           sigma0(i,j)=1; 

else 

           sigma0(i,j)=0.0; 

end 

end 

end 

MeanSNMatCov1=zeros(P,P,R1); 

MeanSNMatCov=zeros(P,P,R); 
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MomwinsDatasn=zeros(R,P); 

meanminusmean=zeros(R1,P); 

MomwinsDatasn1=zeros(R1,P); 

T7=zeros(R,1); 

for r=1:R        % loop for the iterations R 

   seed = 3985+r;% to fix all random data sets 

   rand('seed',seed)% generate from uniform distribution 

   randn('seed',seed)%generate from standdard normal distribution 

   Z=randn(N+1,P);% generate data set from the standard normal distribution 

% calculate the winsorized mean 

for j=1:P    % p denotes to the number of the random variables 

       MomwinsDatasn(r,j)=mean(WSn_sample(Z(1:N,j))); 

end 

% calculate the Sn variance covariance matrix 

   MeanSNMatCov(:,:,r)=SnCov1(Z(1:N,:));  

% calculate the hotelling t square 

   meanminusmean(r,:)= Z(N+1,:)-MomwinsDatasn(r,:); 

   T7(r,1)=meanminusmean(r,:)/MeanSNMatCov(:,:,r) * (meanminusmean(r,:))'; 

end 

 UCL=prctile(T7,95);  

%Phase I 

for r1=1:R1        % loop for the number of iterations  

   seed = 95395+r1; 

   rand('seed',seed) 

   randn('seed',seed) 

   Z=randn(N,P);% generate matrix of row N and column P from standard normal % 

distribution 

Data11=[Z(1:ROUND,:)*sigma0+repmat(m,ROUND,1);Z(ROUND+1:N,:)*sigma0]

; 

%  put number ROUND of the outliers in data 

for j=1:P    % p denotes to the number of the random variables 
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     MomwinsDatasn1(r1,j)=mean(WSn_sample(Data11(1:N,j 

end 

% calculate covariance matrix using the subroutine function SnCov1 

     MeanSNMatCov1(:,:,r1)=SnCov1(Data11(1:N,:));        

end 

T712=zeros(R1,1); % location for the values of the Hotelling t square T712 

%Phase II 

 T71=zeros(R1,1);% location for the values of the Hotelling t square T71 

for r1=1:R1   

    seed = 15391+r1;   

    rand('seed',seed); 

    randn('seed',seed); 

    Z=randn(1,P)*sigma0; % generate a new observation vector from 

% standard normal distribution 

    Z1=Z+m;       %generate a new observation vector from  

% normal distribution with mean m 

% calculate the Hotelling T square to calculate the type I error 

    momDataMinusMean=Z-MomwinsDatasn1(r1,:); 

    T71(r1)= 

momDataMinusMean/MeanSNMatCov1(:,:,r1)*(momDataMinusMean)'; 

% calculate the Hotelling T square to calculate probability of 

% detection outliers 

    momDataMinusMean1=Z1-MomwinsDatasn1(r1,:); 

    T712(r1)= 

momDataMinusMean1/MeanSNMatCov1(:,:,r1)*(momDataMinusMean1)'; 

end 

Count1=0; 

Count2=0; 

%check whether the values of T square in T71, T712 are greater than UCL 

for i=1:R1 

if( T71(i)>UCL) 
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          Count1=Count1+1; 

end 

if( T712(i)>UCL) 

          Count2=Count2+1; 

end 

end 

  typeerror1=Count1/R1;        % false alarms rates   

 probdetetion=Count2/R1;       % percentage of probability of detection 

 

 

5) Program calculates the false alarms and the probability of detection 

   outliers for the modified Hotelling T square for winsorized MOM with the  

   scale estimator Tn 

 

clear all; % to clear the previous calculations  

R=5000;       % number of iterations 

R1=1000;     % number of iteration to calculate the Hotelling t-square  

N=25;      % number of group samples  

P=5;        % Number of characteristics variables 

% The following vectors represent the values of mean vectors 

m=[3 3 3 3 3]; 

pi=0.1; 

ROUND=floor(pi*N);% number of the outliers 

MeanTnMatCov1=zeros(P,P,R1); 

MeanTnMatCov=zeros(P,P,R); 

MomwinsDatatn=zeros(R,P); 

MomwinsDatatn1=zeros(R1,P); 

meanminusmean=zeros(R,P); 

meanDatamean1=zeros(R1,P); 

sigma0=zeros(P,P); 

for i=1:P 
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for j=1:P 

if i==j 

           sigma0(i,j)=1; 

else 

           sigma0(i,j)=0.0; 

end 

end 

end 

T4=zeros(R,1); 

for r=1:R        

   seed = 3985+r;% to fix all random data sets 

   rand('seed',seed)% generate from uniform distribution 

   randn('seed',seed)%generate from standdard normal distribution 

   Z=randn(N+1,P);% generate data set from the standard normal distribution 

% calculate the winsorized MOM 

for j=1:P  

   MomwinsDatatn(r,j)=mean(WTn_sample(Z(1:N,j))); % calculate the winsorized % 

mean 

end 

   MeanTnMatCov(:,:,r)=TnCov1(Z(1:N,:),N);% calculate the Tn  covariance matrix 

% Calculate the Hotelling T-square 

   meanminusmean(r,:)= Z(N+1,:)-MomwinsDatatn(r,:); 

   T4(r)=meanminusmean(r,:)/MeanTnMatCov(:,:,r) * (meanminusmean(r,:))'; 

end 

UCL=prctile(T4,95); 

%Phase I 

for r1=1:R1        

   seed = 95395+r1; 

   rand('seed',seed) 

   randn('seed',seed) 
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   Z=randn(N,P);% generate matrix of row N and column P from standard normal % 

distribution 

% put number ROUND of the outliers in data 

   

Data11=[Z(1:ROUND,:)*sigma0+repmat(m,ROUND,1);Z(ROUND+1:N,:)*sigma0]

; 

% Calculate the winsorized MOM 

for j=1:P  

   MomwinsDatatn1(r1,j)=mean(WTn_sample(Data11(1:N,j)));% calculate the 

%winsorized mean 

end 

   MeanTnMatCov1(:,:,r1)=TnCov1(Data11(1:N,:),N);% calculate covariance 

%matrix using the subroutine function TnCov1 

end 

%Phase II 

T412=zeros(R1,1);% location for the values of the Hotelling t square T412 

T41=zeros(R1,1);% location for the values of the Hotelling t square T41 

for r1=1:R1   

    seed = 15391+r1;  

    rand('seed',seed); 

    randn('seed',seed); 

    Z=randn(1,P)*sigma0; % generate a new observation vector from standard 

%normal distribution 

     Z1=Z+m;      %generate a new observation vector from  normal %distribution 

with mean m 

% calculate the Hotelling T square to calculate the type I error 

     momDataMinusMean=Z-MomwinsDatatn1(r1,:); 

    T41(r1)= momDataMinusMean/MeanTnMatCov1(:,:,r1)*(momDataMinusMean)'; 

% calculate the Hotelling T square to calculate probability of 

% detection outliers 

    momDataMinusMean1=Z1-MomwinsDatatn1(r1,:); 
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    T412(r1)= 

momDataMinusMean1/MeanTnMatCov1(:,:,r1)*(momDataMinusMean1)'; 

end 

Count1=0; 

Count2=0; 

%check whether the values of T square in T41, T412 are greater than UCL 

for i=1:R1 

if( T41(i)>UCL)  

      Count1=Count1+1; 

end 

if( T412(i)>UCL)  

      Count2=Count2+1; 

end 

end 

  typeerror1=Count1/R1;        % false alarms rates     

 probdetection=Count2/R1;      % percentage of probability of detection 

 

 

6) Program calculates the false alarms and the probability of detection outliers for 

the modified Hotelling T square for Hodges-Lehmann with MADn 

 

clear all;% to clear the previous calculations before the run  

R=5000;       % number of iterations 

R1=1000; 

N=150;       % number of samples of size 1 

P=10;        % Number of characteristics variables 

m=[0 0 0 0 0 0 0 0 0 0 ]; 

sigma0=zeros(P,P); 

for i=1:P 

for j=1:P 

if i==j 
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           sigma0(i,j)=1; 

else 

           sigma0(i,j)=0.0; 

end 

end 

end 

pi=0.0; 

 

Data1=zeros(N,P);    

Datatn=zeros(N,P); 

Mattn=zeros(N,P); 

HOGSLMANmadMatCov=zeros(P,P,R); 

HOGSLMANmadMatCov1=zeros(P,P,R1); 

HOGDESLEMANamad=zeros(R,P); 

HOGLEMANminusmean=zeros(R,P); 

HOGDESLEMANamad1=zeros(R1,P); 

ROUND=floor(pi*N);% number of the outliers 

T4=zeros(R,1); 

for r=1:R 

    seed = 3985+r; % to fix all random data sets 

    rand('seed',seed);% generate from uniform distribution 

    randn('seed',seed);%generate from standdard normal distribution 

    Z=randn(N+1,P);   %generate data set from the standard 

% normal distribution 

for j=1:P 

   HOGDESLEMANamad(r,j)=HL(Z(1:N,j));% calculate the Hodges-Lehmann 

end 

   HOGSLMANmadMatCov(:,:,r)=MadCov11(Z(1:N,:)); % calculate the MAD  

% variance covariance matrix 

% calculate the Hotelling t square 

   HOGLEMANminusmean(r,:)= Z(N+1,:)-HOGDESLEMANamad(r,:); 
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T4(r)=HOGLEMANminusmean(r,:)/HOGSLMANmadMatCov(:,:,r)*(HOGLEMAN

minusmean(r,:))'; 

end 

UCL=prctile(T4,95); 

%Phase I 

for r1=1:R        

   seed = 95395+r1; 

   rand('seed',seed) 

   randn('seed',seed) 

   Z=randn(N,P); % generate matrix of row N and column P from standard  

% normal distribution 

%  put number ROUND of the outliers in data 

   

Data11=[Z(1:ROUND,:)*sigma0+repmat(m,ROUND,1);Z(ROUND+1:N,:)*sigma0]

;   for j=1:P 

   HOGDESLEMANamad(r1,j)=HL(Data11(1:N,j));% calculate the Hodges-

Lehmann 

end 

   HOGSLMANmadMatCov(:,:,r1)=MadCov11(Data11(1:N,:));% calculate the 

MAD variance covariance matrix 

end 

%Phase II 

T412=zeros(R1,1); % location for the values of the Hotelling t square T412 

T41=zeros(R1,1);  % location for the values of the Hotelling t square T41 

for r1=1:R1   

    seed = 15391+r1;    

    rand('seed',seed); 

    randn('seed',seed); 

    Z=randn(1,P)*sigma0;% generate a new observation vector from  

% standard normal distribution 

    Z1=Z+m;   %generate a new observation vector from  normal  
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% distribution with mean m 

    HOGLEMANminusmean1=Z-HOGDESLEMANamad(r1,:); 

% calculate the Hotelling T square to calculate the type I error 

    T41(r1)= HOGLEMANminusmean1 

/HOGSLMANmadMatCov(:,:,r1)*(HOGLEMANminusmean1)'; 

    HOGLEMANminusmean2=Z1-HOGDESLEMANamad(r1,:); 

% calculate the Hotelling T square to calculate probability of detection 

    T412(r1)= HOGLEMANminusmean2 

/HOGSLMANmadMatCov(:,:,r1)*(HOGLEMANminusmean2)'; 

end 

Count1=0; 

Count2=0; 

% check whether the values of T square in T41, T412 are greater than UCL 

for i=1:R1 

if( T41(i)>UCL) 

          Count1=Count1+1; 

end 

if( T412(i)>UCL) 

          Count2=Count2+1; 

end 

end 

  typeerror1=Count1/R1;        % false alarms rates    

 probdetection=Count2/R1;      % percentage of probability of detection 

 

 

7) Program calculates the false alarms and probability of detection outliers for the 

Hotelling T- square of Hodges-Lehman with scale estimator Sn. 

 

clear all; % to clear the previous calculations  

R=5000;  % number of iterations 

R1=1000; % number of iterations 
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N=150;  % number of samples of size 1     

P=10;        % Number of characteristics variables 

pi=0.0; 

m=[0 0 0 0 0 0 0 0 0 0]; 

sigma0=zeros(P,P); 

for i=1:P 

for j=1:P 

if i==j 

           sigma0(i,j)=1; 

else 

           sigma0(i,j)=0.0; 

end 

end 

end 

HOGLEMANSNMatCov1=zeros(P,P,R1); 

HOGLEMANSNMatCov=zeros(P,P,R); 

HOGDESLEMANsn=zeros(R,P); 

HOGDESLEMANsn1=zeros(R1,P); 

HOGLEMANminusmean=zeros(R,P); 

ROUND=floor(pi*N); % number of the outliers 

T8=zeros(R,1); 

for r=1:R        % loop for the iterations R 

      seed = 3985+r; % to fix all random data sets 

      rand('seed',seed)% generate from uniform distribution 

      randn('seed',seed)%generate from standdard normal distribution 

      Z=randn(N+1,P); % generate data set from the  

 % standard normal distribution 

for j=1:P 

        HOGDESLEMANsn(r,j)=HL(Z(1:N,j));% calculate the Hodges-Lehmann 

end 
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    HOGLEMANSNMatCov(:,:,r)=SnCov11(Z(1:N,:));% calculate the Sn  

% covariance matrix 

% calculate the Hotelling t square 

    HOGLEMANminusmean(r,:)= Z(N+1,:)-HOGDESLEMANsn(r,:); 

    

T8(r,1)=HOGLEMANminusmean(r,:)/HOGLEMANSNMatCov(:,:,r)*(HOGLEMA

Nminusmean(r,:))';  

end 

UCL=prctile(T8,99);  

%Phase I 

for r1=1:R1        % loop for the iterations R 

      seed = 95395+r1;  

      rand('seed',seed) 

      randn('seed',seed) 

      Z=randn(N,P); % generate matrix of row N and column P from  

% standard normal distribution 

 

%  put number ROUND of the outliers in data 

    

Data11=[Z(1:ROUND,:)*sigma0+repmat(m,ROUND,1);Z(ROUND+1:N,:)*sigma0]

;  

% calculate the Hodges and lehmann 

for j=1:P 

        HOGDESLEMANsn1(r1,j)=HL(Data11(1:N,j));% calculate the  

% Hodges-Lehmann for Data11 

end 

% calculate the covariance matrix for Sn 

    HOGLEMANSNMatCov1(:,:,r1)=SnCov11(Data11(1:N,:));% calculate  

% the Sn variance covariance matrix for Data11 

end 

T812=zeros(R1,1);% location for the values of the Hotelling t square T812 
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%Phase II 

T81=zeros(R1,1);% location for the values of the Hotelling t square T81 

for r1=1:R1   

    seed = 15391+r1;  % fix the data 

    rand('seed',seed); 

    randn('seed',seed); 

    Z=randn(1,P)*sigma0; % generate a new observation vector from  

% standard normal distribution 

    Z1=Z+m;   %generate a new observation vector from   

% normal distribution with mean m 

% calculate the Hotelling T square to calculate the type I error 

    HOGLEMANminusmean1=Z-HOGDESLEMANsn1(r1,:); 

    T81(r1)= 

HOGLEMANminusmean1/HOGLEMANSNMatCov1(:,:,r1)*(HOGLEMANminus

mean1)';  

% calculate the Hotelling T square to calculate probability of detection     

   HOGLEMANminusmean2=Z1-HOGDESLEMANsn1(r1,:); 

   T812(r1)= 

HOGLEMANminusmean2/HOGLEMANSNMatCov1(:,:,r1)*(HOGLEMANminus

mean2)';      

end 

Count1=0; 

Count2=0; 

% check whether the values of T square in T81, T812 are greater than UCL 

for i=1:R1 

if( T81(i)>UCL) 

          Count1=Count1+1; 

end 

if( T812(i)>UCL) 

          Count2=Count2+1; 

end 
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end 

 typeerror1=Count1/R1; % percentage of false alarms    

 probdetection=Count2/R1;% percentage of probability of detection 

 

 

8) Program calculates the false alarms and probability of detection outliers for the 

Hotelling T square of Hodges-Lehman and scale estimator Tn. 

 

clear all; % to clear the previous calculations before the run  

R=5000;       % number of iterations to calculate UCL 

R1=1000;      % number of iteration of Hotelling T-square to calculate  

%Type I error and probability of detection 

N=150;    % number of samples of size 1    

P=2;        % Number of characteristics variables 

%m=[3 3]; 

%m=[5 5]; 

m=[0 0]; 

pi=0.0; 

sigma0=zeros(P,P); 

for i=1:P 

for j=1:P 

if i==j 

           sigma0(i,j)=1; 

else 

           sigma0(i,j)=0.9; 

end 

end 

end 

Mattn=zeros(N,P); 

HOGLEMANTnMatCov1=zeros(P,P,R1); 

HOGLEMANTnMatCov=zeros(P,P,R); 
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HOGDESLEMANTN=zeros(R,P); 

HOGDESLEMANTN1=zeros(R,P); 

HOGLEMANminusmean=zeros(R,P); 

MEDIANDatatn1=zeros(R1,P); 

ROUND=floor(pi*N);% number of the outliers data 

T5=zeros(R,1); 

for r=1:R        

   seed = 3985+r; % to fix all random data sets 

   rand('seed',seed)% generate from uniform distribution 

   randn('seed',seed)%generate from standdard normal distribution 

   Z=randn(N+1,P); % generate data set from the standard normal distribution 

for j=1:P 

    HOGDESLEMANTN(r,j)=HL(Z(1:N,j));% calculate the Hodges-Lehmann 

end 

    HOGLEMANTnMatCov(:,:,r)=TnCov11(Z(1:N,:),N);% calculate the Tn  

% covariance matrix 

% calculate the Hotelling t square 

    HOGLEMANminusmean(r,:)= Z(N+1,:)-HOGDESLEMANTN(r,:); 

 

    T5(r,1)=HOGLEMANminusmean(r,:)/HOGLEMANTnMatCov(:,:,r) * 

(HOGLEMANminusmean(r,:))'; 

end 

UCL=prctile(T5,99);  

%Phase I 

for r1=1:R        

   seed = 95395+r1;  

   rand('seed',seed) 

   randn('seed',seed) 

   Z=randn(N,P); % generate matrix of row N and column P from  

% standard normal distribution 

% put number ROUND of the outliers in data 
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Data11=[Z(1:ROUND,:)*sigma0+repmat(m,ROUND,1);Z(ROUND+1:N,:)*sigma0]

;        for j=1:P 

        HOGDESLEMANTN1(r1,j)=HL(Data11(1:N,j));% calculate the  

% Hodges-Lehmann for Data11 

end 

   HOGLEMANTnMatCov1(:,:,r1)=TnCov11(Data11(1:N,:),N);% calculate  

% the Tn covariance matrix for Data11 

end 

T51=zeros(R1,1);% location for the values of the Hotelling t square T51 

T512=zeros(R1,1);% location for the values of the Hotelling t square T512 

for r1=1:R1   

    seed = 15391+r1;    

    rand('seed',seed); 

    randn('seed',seed); 

    Z=randn(1,P)*sigma0; % generate a new observation vector from  

% standard normal distribution 

    Z1=Z+m;%generate a new observation vector from  normal distribution  

% with mean m 

% calculate the Hotelling T square to calculate the false alarms 

% calculate the Hotelling T square to calculate probability of detection    

    HOGLEMANminusmean1=Z-HOGDESLEMANTN1(r1,:); 

    T51(r1)= 

HOGLEMANminusmean1/HOGLEMANTnMatCov1(:,:,r1)*(HOGLEMANminusm

ean1)';  

    HOGLEMANminusmean2=Z1-HOGDESLEMANTN1(r1,:); 

    T512(r1)= 

HOGLEMANminusmean2/HOGLEMANTnMatCov1(:,:,r1)*(HOGLEMANminusm

ean2)';  

end 

% end 
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Count1=0; 

Count2=0; 

% check whether the values of T square in T51, T512 are greater than UCL 

for i=1:R1 

if( T51(i)>UCL) 

          Count1=Count1+1; 

end 

if( T512(i)>UCL) 

          Count2=Count2+1; 

end 

end 

 typeerror1=Count1/R1;      % false alarms rates    

 probdetection=Count2/R1;   % percentage of probability of detection 

 

 

9) This program calculates the false alarms and the probability of detectionoutliers 

for the Hotelling T square of trimmed mean with the trimmed covariance matrix. 

 

clear all;      % to clear the previous calculations before the run  

R=5000;         % number of iterations 

R1=1000; 

N=150;          %Total number of rows 

P=2;            % Number of characteristics variables 

pi=0.0;         % percentage of outliers  

per=0.40;       % percentage of the trimming the outliers 

K=floor(N*per); % the number of outliers points 

 

TRIMmeanminusmean=zeros(1,P); 

MEDIANDatamad=zeros(1,P); 

TRIMVARIANC=zeros(P,P,R); 

sigma0=zeros(P,P); 
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MEDIANmadMatCov1=zeros(P,P); 

MEDIANmadMatCov=zeros(P,P); 

MEDIANminusmean1=zeros(1,P); 

MEDIANDatamad1=zeros(R1,P); 

Delta=zeros(N,1); 

TRIMVARIANC1=zeros(P,P,R1); 

TRIMSTANDARD1=zeros(P,P,R1); 

TRIMmeanminusmean1=zeros(1,P); 

TRIMmeanminusmean2=zeros(1,P); 

MEANTRIM=zeros(R,P); 

MEANTRIM1=zeros(R1,P); 

ROUND=floor(pi*N); 

m=[0 0]; 

for i=1:P 

for j=1:P 

if i==j 

             sigma0(i,j)=1; 

else 

             sigma0(i,j)=0.9; 

end 

end 

end 

T4=zeros(R,1); % location for the values of Hotelling T-square 

for r=1:R        

   seed = 3985+r;    % seed number to fix the data 

   rand('seed',seed) 

   randn('seed',seed) 

   Z2=randn(N+1,P);   % generate the data from standard normal   

   MEDIANDatamad=median(Z2(1:N,:));   % Calculate the median for the data set 

   Delta=zeros(N,1); 

   MEDIANmadMatCov=MadCov1(Z2(1:N,:));  % calculate the covariance matrix 
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% for the MADn 

   MEDIANminusmean=zeros(N,P); 

% Calculate the Mahalanobis distance for each row of the data matrix 

for j=1:N 

    MEDIANminusmean= Z2(j,:)-MEDIANDatamad; 

    Delta(j)=MEDIANminusmean/MEDIANmadMatCov*(MEDIANminusmean)'; 

end 

RANKDELTA=sort(Delta);    % sort the values of Mahalonobis distance 

MAX=zeros(K,1); 

MIN=zeros(K,1); 

for i=1:K  

for j=1:N 

if (Delta(j)==RANKDELTA(N-i+1)) 

           MAX(i)=j; 

end 

if (Delta(j)==RANKDELTA(N-K-i+1)) 

           MIN(i)=j; 

end 

end 

   Z2(MAX(i),:)=Z2(MIN(i),:);  

end 

% Calculate the Hotelling T-square  

MEANTRIM(r,:)=(sum(Z2(1:N,:))-sum(Z2(MAX(1:K),:)))/(N-K); 

TRIMVARIANC(:,:,r)=(N-1)/(N-K-1)*cov((Z2(1:N,:))); 

TRIMmeanminusmean(r,:)= Z2(N+1,:)-MEANTRIM(r,:); 

T4(r,1)=TRIMmeanminusmean(r,:)/TRIMVARIANC(:,:,r)*(TRIMmeanminusmean(

r,:))'; 

end 

%  Calculate the upper control limit 

UCL=prctile(T4,99); 

% Phase I 
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T41=zeros(R1,1); 

T42=zeros(R1,1); 

for r1=1:R1   

    seed = 95395+r1;   % seed number to fix the data 

    rand('seed',seed); 

    randn('seed',seed); 

    Z=randn(N,P);     % Generate the data from the standard normal 

% Put the outlier in the data 

    

Data1=[Z(1:ROUND,:)*sigma0+repmat(m,ROUND,1);Z(ROUND+1:N,:)*sigma0]; 

    MEDIANDatamad1=median(Data1(1:N,:));  % Calcualte the median 

    Delta1=zeros(N,1); 

    MEDIANmadMatCov1=MadCov1(Data1(1:N,:));  % Calculate the  

% covariance matrix of MADn 

for j=1:N 

    MEDIANminusmean1(j,:)= Data1(j,:)-MEDIANDatamad1; 

    

Delta1(j)=MEDIANminusmean1(j,:)/MEDIANmadMatCov1*(MEDIANminusmean

1(j,:))'; 

end 

%  Calculate the Mahalanobis distance 

  RANKDELTA1=sort(Delta1); 

  MAX1=zeros(K,1); 

  MIN1=zeros(K,1); 

for i=1:K  

for j=1:N 

if (Delta1(j)==RANKDELTA1(N-i+1)) 

           MAX1(i)=j; 

end 

if (Delta1(j)==RANKDELTA1(N-K-i+1)) 

           MIN1(i)=j; 
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end 

end 

Data1(MAX1(i),:)=Data1(MIN1(i),:); 

end 

 

% Calculate the trimmed mean 

MEANTRIM1(r1,:)=(sum(Data1(1:N,:))-sum(Data1(MAX1(1:K),:)))/(N-K);   

TRIMVARIANC1(:,:,r1)=(N-1)/(N-K-1)*cov((Data1(1:N,:)));  % Calculate the 

% trimmed covariance matrix 

end 

% Phase II 

%  Calculate the T-square for the vector of the observation 

for r1=1:R1 

    seed = 15391+r1;  

    rand('seed',seed); 

    randn('seed',seed);  

    Z=randn(1,P)*sigma0; 

    Z1=Z+m; 

    TRIMmeanminusmean1(r1,:)= Z-MEANTRIM1(r1,:); 

    T41(r1,1)=TRIMmeanminusmean1(r1,:)/TRIMVARIANC1(:,:,r1)* 

(TRIMmeanminusmean1(r1,:))'; 

    TRIMmeanminusmean2(r1,:)= Z1-MEANTRIM1(r1,:);  

T42(r1,1)=TRIMmeanminusmean2(r1,:)/TRIMVARIANC1(:,:,r1)* 

(TRIMmeanminusmean2(r1,:))';     

end 

Count1=0; 

Count2=0; 

for i=1:R1 

if( T41(i)>UCL) 

      Count1=Count1+1; 

end 
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if( T42(i)>UCL) 

      Count2=Count2+1; 

end 

end 

 typeerror1=Count1/R1;  % Calculate false alarms rates 

 probdetec=Count2/R1;   % Calculate the probability of detection 

 

10) This program calculates the false alarms and the probability of detection     

outliers for the Hotelling T square of trimmed mean with the trimmed 

covariance matrix using the scale estimator Sn. 

clear all; % to clear the previous calculations before the run  

R=5000;       % number of iterations 

R1=1000; 

N=150;      %Total number of rows 

P=2;        % Number of characteristics variables 

pi=0.0;         % percentage of outliers  

per=0.40;       % percentage of the trimming the outliers 

K=floor(N*per); % the number of outliers points 

TRIMmeanminusmean=zeros(1,P); 

MEDIANDatasn=zeros(1,P); 

TRIMVARIANC=zeros(P,P); 

MEDIANsnMatCov1=zeros(P,P); 

MEDIANsnMatCov=zeros(P,P);  

MEDIANminusmean1=zeros(1,P); 

MEDIANDatasn1=zeros(1,P); 

Delta=zeros(N,1); 

TRIMVARIANC1=zeros(P,P,R1); 

TRIMSTANDARD1=zeros(P,P,R1); 

TRIMmeanminusmean1=zeros(1,P); 

TRIMmeanminusmean2=zeros(1,P);  

MEANTRIM=zeros(R,P); 
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MEANTRIM1=zeros(R1,P); 

ROUND=floor(pi*N); 

m=[0 0]; 

sigma0=zeros(P,P); 

for i=1:P 

for j=1:P 

if i==j 

             sigma0(i,j)=1; 

else 

             sigma0(i,j)=0.9; 

end 

end 

end 

T4=zeros(R,1);% location for the values of Hotelling T-square 

for r=1:R        

   seed = 3985+r;  % seed number to fix the data 

   rand('seed',seed) 

   randn('seed',seed) 

   Z2=randn(N+1,P);  % generate the data from standard normal  

   MEDIANDatasn=median(Z2(1:N,:));% Calculate the median for the data set 

   Delta=zeros(N,1); 

   MEDIANsnMatCov=SnCov11(Z2(1:N,:));% calculate the covariance  

% matrix for the Sn 

   MEDIANminusmean=zeros(N,P); 

% Calculate the Mahalanobis distance for each row of the data matrix 

for j=1:N 

    MEDIANminusmean= Z2(j,:)-MEDIANDatasn; 

    Delta(j)=MEDIANminusmean/MEDIANsnMatCov*(MEDIANminusmean)'; 

end 

RANKDELTA=sort(Delta);  % sort the values of Mahalonobis distance 
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MAX=zeros(K,1); 

MIN=zeros(K,1); 

for i=1:K  

for j=1:N 

if (Delta(j)==RANKDELTA(N-i+1)) 

           MAX(i)=j; 

end 

if (Delta(j)==RANKDELTA(N-K-i+1)) 

           MIN(i)=j; 

end 

end 

    Z2(MAX(i),:)=Z2(MIN(i),:); 

end 

MEANTRIM(r,:)=(sum(Z2(1:N,:))-sum(Z2(MAX(1:K),:)))/(N-K); 

TRIMVARIANC(:,:,r)=(N-1)/(N-K-1)*cov((Z2(1:N,:))); 

TRIMmeanminusmean(r,:)= Z2(N+1,:)-MEANTRIM(r,:); 

T4(r,1)=TRIMmeanminusmean(r,:)/TRIMVARIANC(:,:,r)*(TRIMmeanminusmean(

r,:))'; 

end 

UCL=prctile(T4,95);    %  Calculate the upper control limit 

% Phase I 

T42=zeros(R1,1); 

T41=zeros(R1,1); 

for r1=1:R1   

    seed = 95395+r1; % seed number to fix the data  

    rand('seed',seed); 

    randn('seed',seed); 

    Z=randn(N,P); % Generate the data from the standard normal 

% Put the outlier in the data 

    

Data1=[Z(1:ROUND,:)*sigma0+repmat(m,ROUND,1);Z(ROUND+1:N,:)*sigma0]; 
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%Data1=[Z(1:ROUND,:)+repmat(m,ROUND,1);Z(ROUND+1:N,:)]; 

    MEDIANDatasn1=median(Data1); 

    Delta1=zeros(N,1); 

    MEDIANsnMatCov1=SnCov11(Data1); 

%  Calculate the Mahalanobis distance 

for j=1:N 

    MEDIANminusmean1(j,:)= Data1(j,:)-MEDIANDatasn1; 

    

Delta1(j)=MEDIANminusmean1(j,:)/MEDIANsnMatCov1*(MEDIANminusmean1(

j,:))'; 

end 

  RANKDELTA1=sort(Delta1); 

  MAX1=zeros(K,1); 

  MIN1=zeros(K,1); 

for i=1:K  

for j=1:N 

if (Delta1(j)==RANKDELTA1(N-i+1)) 

           MAX1(i)=j; 

end 

if (Delta1(j)==RANKDELTA1(N-K-i+1)) 

           MIN1(i)=j; 

end 

end 

    Data1(MAX1(i),:)=Data1(MIN1(i),:); 

end 

% Calculate the trimmed mean 

MEANTRIM1(r1,:)=(sum(Data1(1:N,:))-sum(Data1(MAX1(1:K),:)))/(N-K);  

TRIMVARIANC1(:,:,r1)=(N-1)/(N-K-1)*cov((Data1(1:N,:)));% Calculate the 

% trimmed covariance matrix 

end 

% Phase II 
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% Calculate the T-square for the vector of the observation 

for r1=1:R1 

    seed = 15391+r1;  

    rand('seed',seed); 

    randn('seed',seed); %#ok<*RAND> 

    Z=randn(1,P)*sigma0; 

    Z1=Z+m; 

    TRIMmeanminusmean1(r1,:)= Z-MEANTRIM1(r1,:);   

T41(r1,1)=TRIMmeanminusmean1(r1,:)/TRIMVARIANC1(:,:,r1)*(TRIMmeanmin

usmean1(r1,:))'; 

    TRIMmeanminusmean2(r1,:)= Z1-MEANTRIM1(r1,:);    

T42(r1,1)=TRIMmeanminusmean2(r1,:)/TRIMVARIANC1(:,:,r1)*(TRIMmeanmin

usmean2(r1,:))'; 

end 

Count1=0; 

Count2=0; 

for i=1:R1 

if( T41(i)>UCL) 

      Count1=Count1+1; 

end 

if( T42(i)>UCL) 

      Count2=Count2+1; 

end 

end 

typeerror1=Count1/R1;         % Calculate the false alarms rates 

 probabdetection=Count2/R1;   % Calculate the probability of detection 

 

 

11) Program calculates the false alarms and the probability of detection outliers for 

the Hotelling T square with trimmed mean and the trimmed covariance matrix using 

the scale estimator Tn. 
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clear all;      % to clear the previous calculations before the run  

R=5000;         % number of iterations 

R1=1000; 

N=150;          %Total number of rows 

P=2;            % Number of characteristics variables 

pi=0.0;         % percentage of outliers  

per=0.40;       % percentage of the trimming the outliers 

K=floor(N*per); % the number of outliers points 

TRIMmeanminusmean=zeros(1,P); 

MEDIANDatatn=zeros(1,P); 

TRIMVARIANC=zeros(P,P); 

MEDIANtnMatCov1=zeros(P,P); 

MEDIANtnMatCov=zeros(P,P); 

MEDIANminusmean1=zeros(1,P); 

MEDIANDatatn1=zeros(1,P); 

Delta=zeros(N,1); 

TRIMVARIANC1=zeros(P,P,R1); 

TRIMSTANDARD1=zeros(P,P,R1); 

TRIMmeanminusmean1=zeros(1,P); 

TRIMmeanminusmean2=zeros(1,P); 

MEANTRIM=zeros(R,P); 

MEANTRIM1=zeros(R1,P); 

ROUND=floor(pi*N); 

sigma0=zeros(P,P); 

m=[0 0]; 

for i=1:P 

for j=1:P 

if i==j 

             sigma0(i,j)=1; 

else 
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             sigma0(i,j)=0.9; 

end 

end 

end 

T4=zeros(R,1);    % location for the values of Hotelling T-square 

for r=1:R        

   seed = 3985+r;   % seed number to fix the data 

   rand('seed',seed) 

   randn('seed',seed) 

   Z2=randn(N+1,P); % generate the data from standard normal  

 

   MEDIANDatatn=median(Z2(1:N,:));% Calculate the median for the data set 

   Delta=zeros(N,1); 

   MEDIANtnMatCov=TnCov11(Z2(1:N,:));  % calculate the covariance matrix for 

the Tn 

   MEDIANminusmean=zeros(1,P); 

% Calculate the Mahalanobis distance for each row of the data matrix 

for j=1:N 

    MEDIANminusmean= Z2(j,:)-MEDIANDatatn; 

    Delta(j)=MEDIANminusmean/MEDIANtnMatCov*(MEDIANminusmean)'; 

end 

RANKDELTA=sort(Delta);   % sort the values of Mahalanobis distance 

 

MAX=zeros(K,1); 

MIN=zeros(K,1); 

for i=1:K  

for j=1:N 

if (Delta(j)==RANKDELTA(N-i+1)) 

           MAX(i)=j; 

end 

if (Delta(j)==RANKDELTA(N-K-i+1)) 
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           MIN(i)=j; 

end 

end 

%if (Delta(MAX(i))==Delta(MIN(i))); 

      Z2(MAX(i),:)=Z2(MIN(i),:); 

%end    

end 

 

MEANTRIM(r,:)=(sum(Z2(1:N,:))-sum(Z2(MAX(1:K),:)))/(N-K); 

TRIMVARIANC(:,:,r)=(N-1)/(N-K-1)*cov((Z2(1:N,:))); 

TRIMmeanminusmean(r,:)= Z2(N+1,:)-MEANTRIM(r,:); 

T4(r,1)=TRIMmeanminusmean(r,:)/TRIMVARIANC(:,:,r)*(TRIMmeanminusmean(

r,:))'; 

end 

UCL=prctile(T4,99);    %  Calculate the upper control limit  

% Phase I 

T41=zeros(R1,1); 

T42=zeros(R1,1); 

for r1=1:R1   

    seed = 95395+r1;   % seed number to fix the data  

    rand('seed',seed); 

    randn('seed',seed); 

    Z=randn(N,P); % Generate the data from the standard normal 

% Put the outlier in the data 

    

Data1=[Z(1:ROUND,:)*sigma0+repmat(m,ROUND,1);Z(ROUND+1:N,:)*sigma0]; 

%Data1=[Z(1:ROUND,:)+repmat(m,ROUND,1);Z(ROUND+1:N,:)]; 

    MEDIANDatatn1=median(Data1(1:N,:)); 

    Delta1=zeros(N,1); 

    MEDIANtnMatCov1=Tncov11(Data1(1:N,:)); 

%  Calculate the Mahalanobis distance 
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for j=1:N 

    MEDIANminusmean1(j,:)= Data1(j,:)-MEDIANDatatn1; 

    

Delta1(j)=MEDIANminusmean1(j,:)/MEDIANtnMatCov1*(MEDIANminusmean1(j

,:))'; 

end 

  RANKDELTA1=sort(Delta1); 

  MAX1=zeros(K,1); 

  MIN1=zeros(K,1); 

for i=1:K  

for j=1:N 

if (Delta1(j)==RANKDELTA1(N-i+1)) 

           MAX1(i)=j; 

end 

if (Delta1(j)==RANKDELTA1(N-K-i+1)) 

           MIN1(i)=j; 

end 

end 

        Data1(MAX1(i),:)=Data1(MIN1(i),:); 

end 

 

MEANTRIM1(r1,:)=(sum(Data1(1:N,:))-sum(Data1(MAX1(1:K),:)))/(N-K);% the 

trimmed mean  

TRIMVARIANC1(:,:,r1)=(N-1)/(N-K-1)*cov((Data1(1:N,:)));% Calculate the 

% trimmed covariance matrix 

end 

% Phase II 

%  Calculate the T-square for the vector of the new observation 

for r1=1:R1 

    seed = 15391+r1;  

    rand('seed',seed); 
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    randn('seed',seed);  

    Z=randn(1,P)*sigma0; 

    Z1=Z+m; 

    TRIMmeanminusmean1(r1,:)= Z-MEANTRIM1(r1,:); 

T41(r1,1)=TRIMmeanminusmean1(r1,:)/TRIMVARIANC1(:,:,r1)*(TRIMmeanmin

usmean1(r1,:))'; 

TRIMmeanminusmean2(r1,:)= Z1-MEANTRIM1(r1,:); 

T42(r1,1)=TRIMmeanminusmean2(r1,:)/TRIMVARIANC1(:,:,r1)*(TRIMmeanmin

usmean2(r1,:))'; 

end 

Count1=0; 

Count2=0; 

for i=1:R1 

if( T41(i)>UCL) 

      Count1=Count1+1; 

end 

if( T42(i)>UCL) 

      Count2=Count2+1; 

end 

end 

typeerror1=Count1/R1;    % Calculate the false alarms 

probdetection=Count2/R1;  % Calculate the probability of detection 
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Appendix B 

Programs for The Winsorized Sample 

 

1) Winsorized sample by using the criteria of one step M-estimator(MOM) 

 

function Result=WMADn_sample(Y) 

% This funcion compute MoM for data in matrix Y  

% Y is suppose to be a data vector comes from main programm 

[S1 S2]=size(Y);         % size of Y 

if S2>1  

    disp('error Only vectors not coulumns or Matrices'); 

return; 

end 

% the following part to trim the extreme values from two sides in the vectors  

 

Med=median(Y);          % Median of the vector Y 

Mad= MADn(Y);           % the law of MADnj=MADj/0.6745 for each subgroup                        

Low=-2.24*Mad;          % the criteria to trimm the lower extreme values in each 

subgroup 

High=2.24*Mad;          % the criteria to trimm the upper extreme values in each 

subgroup 

k=0; 

for i=1:S1, 

if ((Y(i) - Med) >= Low) && ((Y(i) - Med) <= High) 

        k= k+1; 

end 

end 

X = zeros(k,S2); 

k=1; 

for i=1:S1, 
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if ((Y(i) - Med) >= Low) && ((Y(i) - Med) <= High) 

        X(k) = Y(i); 

        k= k+1; 

end 

end  

Max = max(X); 

Min = min(X); 

for i=1:S1, 

if ((Y(i) - Med) < Low) 

    Y(i) = Min; 

end 

if ((Y(i) - Med) > High) 

    Y(i) = Max; 

end 

end 

Result=Y; % the winsorized sample            

 

 

2)  Program  constructs the Winsorized samples using the criteria of 

      the MOM estimator with the scale estimator Sn 

 

function Result=WSn_sample(Y) 

% This funcion compute MoM for data in matrix Y  

% Y is suppose to be a data vector comes from start programm 

[S1 S2]=size(Y);         % size of Y 

if S2>1  

    disp('error Only vectors not coulumns or Matrices'); 

return; 

end 

% The following part of the program is the criteria that is used to trim the 

% extreme values from two sides of data 
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Med=median(Y);          % Median of the vector Y 

SN= Sn1(Y)/(1.1926*0.6745);    % calculate the value of Sn using Sn subroutine 

Low=-2.24*SN;      % the criteria to trim the lower extreme values  

High=2.24*SN;      % the criteria to trim the upper extreme values  

k=0; 

for i=1:S1, 

if ((Y(i) - Med) >= Low) && ((Y(i) - Med) <= High) 

        k= k+1; 

end 

end 

X = zeros(k,S2); 

k=1; 

for i=1:S1, 

if ((Y(i) - Med) >= Low) && ((Y(i) - Med) <= High) 

        X(k) = Y(i); 

        k= k+1; 

end 

end 

Max = max(X); 

Min = min(X); 

for i=1:S1, 

if ((Y(i) - Med) < Low) 

    Y(i) = Min; 

end 

if ((Y(i) - Med) > High) 

    Y(i) = Max; 

end 

end 

Result=Y; % Winsorized sample            
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3) This program creates the Winsorized samples using the scale 

   estimator Tn 

 

function Result=WTn_sample(Y) 

% This function compute MoM for data in matrix Y  

% Y is suppose to be a data vector comes from start program 

[S1 S2]=size(Y);         % size of Y 

if S2>1  

    disp('error Only vectors not columns or Matrices'); 

return; 

end 

% the following part is the programming of the criteria to trim the 

% extreme values from two sides in the vectors in each data 

Med=median(Y);          % Median of the vector Y 

TN= Tn(Y)/(1.38*0.6745);      % calculate the value of Tn  

Low=-2.24*TN; 

High=2.24*TN;   % the criteria to trim the upper extreme values in each data 

k=0; 

for i=1:S1, 

if ((Y(i) - Med) >= Low) && ((Y(i) - Med) <= High) 

        k= k+1; 

end 

end 

X = zeros(k,S2); 

k=1; 

for i=1:S1, 

if ((Y(i) - Med) >= Low) && ((Y(i) - Med) <= High) 

        X(k) = Y(i); 

        k= k+1; 

end 
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end 

Max = max(X); 

Min = min(X); 

for i=1:S1, 

if ((Y(i) - Med) < Low) 

    Y(i) = Min; 

end 

if ((Y(i) - Med) > High) 

    Y(i) = Max; 

end 

end 

Result=Y; % winsorized sample            
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Appendix C 

 

Programs for The Location And Scale Estimators 

 

1) Program calculates the value of MADn 

 

function Result=MADn(X)  

[s1 s2]=size(X);          % SIZE OF X 

   Median=median(X);      % median of X 

   Result= 1.4826*median(abs(X-repmat(Median,s1,s2))); 

 

 

2) The following part of the program calculates the value of the robust 

  scale estimator Sn 

 

function Result=Sn1(X)  % X is a vector comes from the main program 

   [s1 s2]=size(X);       % size of X s1 rows and s2 columns 

   Mediandist=zeros(s1,s2); 

for k=1:s1% loop for each number in the vector X 

       dist=zeros(s1,s2);  

       Count=0;  % counter for the number of distances 

for i=1:s1   % loop for the following number which comes after the k       

if k~=i  

           Count=Count+1; % take another distances 

           dist(Count,s2)= abs(X(k,s2)-X(i,s2));    % Calculate the distances 

end 

end 

       Mediandist(k,s2)= median(dist(1:Count,s2));    % Calculate the median  

end 

    Result = median(Mediandist(1:s1,s2))*1.1926;   %the value of Sn for this vector 

 



 

241 

 

 

3) The following part of the program calculates the value of scale estimator Tn 

 

function Result=Tn(X)  % x is a vector which comes from the main program  

[s1 s2]=size(X);    % size of the vector x 

MedianDist=zeros(s1,s2);  % size of the matrix which contains  

% median of the distances the observation from the other. 

for k=1:s1        % loop for the rows 

dist=zeros(s1-1,s2); % size of the distances between  

% any two number  

%with the other  

Count=0; 

for i=1:s1       

if k~=i              

 Count=Count+1;    

 dist(Count,s2)= abs(X(k,s2)-X(i,s2)); 

end 

end 

% the median of the distances each number with the other 

  MedianDist(k,s2)= median(dist(1:s1-1,s2)); 

end 

% sort the values of median distances 

Sortmedian=sort(MedianDist); 

% calculate the value of h = [n/2]+1 

h= floor(s1/2)+1; 

Result = mean(Sortmedian(1:h,s2))*1.38; % the value of Tn 

 

4)  Program calculates Hodges-Lehmann estimator 

function Result=HL(X) 

   [s1 s2]=size(X);              % size x 

   Hlm=zeros((s1+1)*s1/2,s2);    % Location  



 

242 

 

   Count=0;    

for k=1:s1 

for i=k:s1 

   Count=Count+1; 

  Hlm(Count,s2)= (X(k,s2)+X(i,s2))/2;                         

end 

end 

% arrange these distances in ascending way 

  Result=median(Hlm(1:Count,s2)); % Hodges-Lehmann estimator 
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Appendix D 

Programs to Calculate the Covariance Matrices for the Scale Estimators 

 

1) This program calculate the MADn covariance matrix 

 

function xy = MadCov1(Data1)  

 [N P]=size(Data1);% the size of Datamad with N rows and p columns 

E=zeros(P,P); 

for j=1:P          % loop to get the p characteristics variables 

for k=1:P % loop to get other p characteristics variables 

     Colx=Data1(1:N,j);        % the vector of i-variable 

   Coly=Data1(1:N,k);        % the vector of k-variable 

 MADnwis1=WMADn_sample(Colx); 

 MADnwis2=WMADn_sample(Coly); 

 E(j,k)=(sum(MADnwis1.*MADnwis2)- 

N*mean(MADnwis1)*mean(MADnwis2))/(N-1); 

end 

end 

xy=E; 

 

 

2)Program calculate covariance matrix of Sn 

 

function xy = SnCov1(Data1) 

     [N P]=size(Data1);   % the size of Datasn with N rows and p columns 

E=zeros(P,P); 

for j=1:P         % loop to get the p characteristics variables 

for k=1:P     % loop to get other  p characteristics variables 

 

            Colx=Data1(1:N,j);        % the vector of i-variable 

            Coly=Data1(1:N,k);        % the vector of k-variable 
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            snwis1=WSn_sample(Colx); 

            snwis2=WSn_sample(Coly); 

            E(j,k)=(sum(snwis1.*snwis2)-N*mean(snwis1)*mean(snwis2))/(N-1);  

end 

end 

xy=E; % covariance matrix of Sn                              

 

 

 

3)Thisprogram calculate covariance matrix for the scale estimator Tn. 

 

function xy = TnCov1(Datatn,N) 

%E(j,k,Count)=zeros(j,k,Count) 

[N P]=size(Datatn);     % the size of Datatn N rows and p columns 

E=zeros(P,P); 

%Count6=1;               % Counter for the subgroup 

%for i=1:G:N           % loop to get G subgroups from N rows 

for j=1:P         % loop to get the p characteristics variables 

for k=1:P     % loop to get other  p characteristics variables 

            Colx=Datatn(1:N,j);        % the vector of j-variable 

            Coly=Datatn(1:N,k);        % the vector of k-variable 

            tnwis1=WTn_sample(Colx); 

            tnwis2=WTn_sample(Coly); 

            E(j,k)=(sum(tnwis1.*tnwis2)-N*mean(tnwis1)*mean(tnwis2))/(N-1); 

end 

end 

xy=E; % covariance matrix  
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4) This program calculate covariance matrix for MADn 

 

function xy = MadCov11(Data1)  

 [N P]=size(Data1);% the size of Datamad with N rows and p columns 

 E=zeros(P,P); 

for j=1:P          % loop to get the p characteristics variables 

for k=1:P % loop to get other  p characteristics variables 

  Colx=Data1(1:N,j);        % the vector of i-variable 

 Coly=Data1(1:N,k);        % the vector of k-variable 

 rankx=tiedrank((Colx)); 

ranky=tiedrank((Coly)); 

difranks=sum((rankx-ranky).^2); 

corrsp=1-(6*difranks)/(N*(N^2-1)); 

 E(j,k)=MADn(Colx)*MADn(Coly)*corrsp; 

end 

end 

xy=E;   % covariance matrix for MADn 

 

 

 

6) Program calculates the covariance matrix of scale estimator Sn 

function xy = SnCov11(Datasn) 

%E(j,k,Count5)=zeros(j,k,Count5); 

[N P]=size(Datasn);   % the size of Datasn with N rows and p columns 

E=zeros(P,P); 

 

for j=1:P         % loop to get the p characteristics variables 

for k=1:P     % loop to get other  p characteristics variables 

            Colx=Datasn(1:N,j);        % the vector of i-variable 

            Coly=Datasn(1:N,k);        % the vector of k-variable 

            rankx=tiedrank((Colx)); 
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            ranky=tiedrank((Coly)); 

            difranks=sum((rankx-ranky).^2); 

            corrsp=1-(6*difranks)/(N*(N^2-1));        

            E(j,k)=Sn1(Colx)*Sn1(Coly)*corrsp; 

end 

end 

xy=E;    % Covariance matrix of Sn                               

 

7) Program calculates covariance matrix for MADn 

 

function xy = MadCov1(Data1)  

 [N P]=size(Data1);% the size of Datamad with N rows and p columns  

  E=zeros(P,P);  

for j=1:P          % loop to get the p characteristics variables 

for k=1:P % loop to get other  p characteristics variables 

  Colx=Data1(1:N,j);        % the vector of i-variable 

  Coly=Data1(1:N,k);        % the vector of k-variable 

  rankx=tiedrank((Colx)); 

  ranky=tiedrank((Coly)); 

difranks=sum((rankx-ranky).^2); 

corrsp=1-(6*difranks)/(N*(N^2-1)); 

 E(j,k)=MADn(Colx)*MADn(Coly)*corrsp; 

end 

end 

  xy=E;   % Calculate the covariance matrixfor MADn 
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8) This program calculates covariance matrix of Sn estimator 

 

function xy = SnCov11(Datasn) 

[N P]=size(Datasn);   % the size of Datasn with N rows and p columns 

E=zeros(P,P); 

for j=1:P         % loop to get the p characteristics variables 

for k=1:P     % loop to get other  p characteristics variables 

 Colx=Datasn(1:N,j);        % the vector of i-variable 

Coly=Datasn(1:N,k);        % the vector of k-variable 

 rankx=tiedrank((Colx)); 

 ranky=tiedrank((Coly)); 

difranks=sum((rankx-ranky).^2); 

corrsp=1-(6*difranks)/(N*(N^2-1));        

 E(j,k)=Sn1(Colx)*Sn1(Coly)*corrsp; 

end 

end 

  xy=E;  % the covariance matrix of Sn                             

 

 

 

9) This program calculates covariance matrix of Tn 

 

 function xy = TnCov11(Datatn,N) 

 [N P]=size(Datatn);     % the size of Datatn N rows and p columns 

  E=zeros(P,P); 

 for j=1:P         % loop to get the p characteristics variables 

for k=1:P     % loop to get other  p characteristics variables 

Colx=Datatn(1:N,j);        % the vector of j-variable 

 Coly=Datatn(1:N,k);        % the vector of k-variable 

  rankx=tiedrank(Colx); 

 ranky=tiedrank(Coly); 

  difranks=sum((rankx-ranky).^2); 
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 corrsp=1-(6*difranks)/(N*(N^2-1)); 

   E(j,k)=(Tn(Colx))*(Tn(Coly))*corrsp;% Tn variance 

%covariance matrix  

end 

end 

 xy=E; 
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Appendix E 

Program for proving that the covariance matrices are positive definite 

 

R=10000; 

N=25;      % number of rows 

P=10;      %number of columns 

pi=0.1;    % percentage of outliers 

j=3; 

% shifted mean  

%m=[3 3 3]; 

%m=[5 5];   % 

%m=[3 3 3 3 3]; 

m=[3 3 3 3 3 3 3 3 3 3]; 

%m=[5 5 5 5 5 5 5 5 5 5]; 

ROUND=floor(pi*N);   % number of data that are generating from out of control 

distribution 

Totmatrix=zeros(P,3,R); 

Pivotatrix=zeros(P,j); 

Detmatrix=zeros(P,j); 

Matrix1=zeros(P,P,R); 

Matrix2=zeros(P,P,R); 

Matrix3=zeros(P,P,R); 

xy1=zeros(P,P,R);     

xy2=zeros(P,P,R);     

xy3=zeros(P,P,R); 

rowindex=1; 

C1=0; 

C2=0; 

C3=0; 

count1=0; 

count2=0; 
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count3=0; 

newmatrix=zeros(P*R,j); 

newmatrix1=zeros(P*R,j); 

for r=1:R 

seed = 3985+r;      % to fix all random data sets  

rand('seed',seed);  % generate from uniform distribution 

randn('seed',seed); %generate from standdard normal distribution 

 

Z=randn(N,P);       % generate from standard normal distribution 

Datatn=[Z(1:ROUND,:)+repmat(m,ROUND,1);Z(ROUND+1:N,:)]; % out outliers 

by percent pi. 

[N P]=size(Datatn); % the size of Datatn N rows and p columns 

E1=zeros(P,P);      % location for the covariance matrix E1 

E2=zeros(P,P);      % location for the covariance matrix E2 

E3=zeros(P,P);      % location for the covariance matrix E3 

% calculate the covariance by spearman correlation 

for j=1:P         % loop to get the p characteristics variables 

for k=1:P     % loop to get other  p characteristics variables 

       Colx=Datatn(1:N,j);        % the vector of j-variable 

       Coly=Datatn(1:N,k);        % the vector of k-variable 

       rankx=tiedrank((Colx)); 

       ranky=tiedrank((Coly)); 

       difranks=sum((rankx-ranky).^2); 

       corrsp=1-(6*difranks)/(N*(N^2-1));        

       E1(j,k)=Tn(Colx)*Tn(Coly)*corrsp; 

       E2(j,k)=MADn(Colx)*MADn(Coly)*corrsp; 

       E3(j,k)=Sn1(Colx)*Sn1(Coly)*corrsp; 

end 

end 

% matrices that are generated from the Tn,MADn,Sn    

xy1(:,:,r)=E1; 
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xy2(:,:,r)=E2; 

xy3(:,:,r)=E3; 

% calculate the eigen values for three covariance matrices 

[V1,D1]=eig(E1); 

[V2,D2]=eig(E2); 

[V3,D3]=eig(E3); 

for i=1:P 

if D1(i,i)<0 

       C1=C1+1; 

end 

if D2(i,i)<0 

       C2=C2+1; 

end 

if D3(i,i)<0 

       C3=C3+1; 

end 

end   

% by cholesky calculate the lower triangular 

  [L1,p1] = chol(E1,'lower'); 

  [L2,p2] = chol(E2,'lower'); 

  [L3,p3] = chol(E3,'lower'); 

%cholesky decomposition 

 Matrix1(:,:,r)= L1*L1'; 

 Matrix2(:,:,r)= L2*L2'; 

 Matrix3(:,:,r)= L3*L3';  

% calculate the pivots 

 A=zeros(P,1);B=zeros(P,1);C=zeros(P,1); 

 d1=zeros(P,1);d2=zeros(P,1);d3=zeros(P,1); 

for k=1:P 

     A(k,1)=det(E1(1:k,1:k)); 

     B(k,1)=det(E2(1:k,1:k)); 
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     C(k,1)=det(E3(1:k,1:k)); 

if k==1 

        d1 (k,1)=A(k,1)/1; 

        d2 (k,1)=B(k,1)/1; 

        d3 (k,1)=C(k,1)/1; 

else 

        d1 (k,1)=A(k,1)/A(k-1,1); 

        d2 (k,1)=B(k,1)/B(k-1,1); 

        d3 (k,1)=C(k,1)/C(k-1,1); 

end 

end 

for i=1:P 

if A(i,1)<0 

         count1=count1+1; 

end 

if B(i,1)<0 

        count2=count2+1; 

end 

if C(i,1)<0 

        count3=count3+1; 

end 

end 

 

end 

 

 

 

 

 

 




