STATISTICAL PROCESS CONTROL USING MODIFIED ROBUST HOTELLING’S T^2 CONTROL CHARTS

FIRAS SALEEM FARES HADDAD

DOCTOR OF PHILOSOPHY
UNIVERSITI UTARA MALAYSIA
2013
Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely available for inspection. I further agree that permission for the copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences
UUM College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Abstrak

Katakunci: Hotelling’s T^2, Carta kawalan, Penganggar teguh
Abstract

Hotelling’s T^2 chart is a popular tool for monitoring statistical process control. However, this chart is sensitive to outliers. To alleviate the problem, three approaches to the robust Hotelling’s T^2 chart namely trimming, Winsorizing and median based were proposed. These approaches used robust location and scale estimators to substitute for the usual mean and covariance matrix, respectively. For each approach, three robust scale estimators: MAD_n, S_n and T_n were introduced, and these estimators functioned accordingly to the approach. The first approach, denoted as T^2_k, applied the concept of trimming via Mahalanobis distance. The robust scale estimator was used to replace the covariance matrix in Mahalanobis distance. The trimmed mean and trimmed covariance matrix were the location and scale estimators for the T^2_k chart. The second approach, T^2_{W}, employed each scale estimator as the Winsorized criterion. This approach applied Winsorized modified one step M-estimator and its corresponding Winsorized covariance as the location and the scale matrix for T^2_{W} chart, respectively. Meanwhile, in the third approach, T^2_{HL}, the robust scale estimator took the role of the scale matrix with Hodges-Lehman as the location estimator. This approach worked with the original data without any trimming or Winsorizing. Altogether, nine robust control charts were proposed. The performance of each robust control chart was assessed based on false alarm rates and probability of detection. To investigate on the strengths and weaknesses of the proposed charts, various conditions were created by manipulating four variables, namely number of quality characteristics, proportion of outliers, degree of mean shifts, and nature of quality characteristics (independent and dependent). In general, the proposed charts performed well in terms of false alarm rates. With respect to probability of detection, all the proposed charts outperformed the traditional Hotelling’s T^2 charts. The overall findings showed that, the proposed robust Hotelling’s T^2 control charts are viable alternatives to the disputed traditional charts.

Keywords: Hotelling T^2, Control chart, Robust estimator
Acknowledgement

I am grateful to the Almighty Allah for giving me the opportunity to complete my PhD thesis.

In completing this thesis, I owe a debt of gratitude and thanks to many persons and institutions that have supported me throughout this difficult yet challenging journey. While being thankful to all of them, I must register my gratitude to some in particular. Primarily, I would like to express my deepest appreciation to my supervisor Associate Professor Dr. Sharipah Soaad Syed Yahaya who has been very patient in guiding me and supporting from the first day arrival here in Malaysia and throughout this thesis. She assisted me immensely in focusing my thinking and ideas towards the right direction and gave me her valuable ideas, insights, comments and suggestions towards understanding the empirical predicaments I have encountered. I would like to also thank my co-supervisor Dr. Nor Idayu who supported me and help me in all stages of the writing of the thesis. To all academic and administrative staff in College of Art and Science, my sincere gratitude goes to you.

I would like to express my never ending appreciation and gratitude to Prof. Jose Luis Alfaro and the people in Jordan. First and foremost, I would like to thank my father who had been a great and wise teacher in my life, my lovely mother for her infinite patience especially during my absence, and her sincere flow of love has accompanied me all the way in my long struggle and has pushed me to pursue my dreams. My lovely wife Maiss for her love and supported me, infinite patience especially during my absence and for her pushed me to pursue my dream. Big thanks and appreciate for my two sons Yazeed and Saleem and my brothers and sisters for their patients until finish this journey of the studying.

I would like to thank all my friends, Dr. Mustafa Abu-Shaweish, Dr. Ossama Badawi, Dr. Moataseem Smadi, Dr. Raed Khasawnweh, Hussam Haddad, Dr. Malek Kasasbeh, Mr. Mohammed Kasasbeh, Dr. Hamzeh Smadi, Dr. Belal Al-Wadi, Dr. Abed Alftah Al-A zam, Dr. Haidar Al-Dreybe, Dr. Mahmoud Al-Eqab, Dr. Tareq
Abusaa, Mr. Ramzi Al-Tarazi, Dr. Aymen Abu Alhija, Dr. Salem Al-Shra’a, Dr. Abdallah Alshamari, Dr. Ali Naimat, Dr. Abed Al-hameed Al-Eneze, Dr. Obaideh Alhazimeh, Mr Amer Alhazimeh Dr. Alla’a Alsiad, Dr. Eid Hassan, Dr. Adnan Almulhem, Dr. Saleh Al-Rasheed, Mr. Basem Ayoub, Dr. Younis Megdad, Dr. Amer Abu- Rashed, Dr. Mahmoud Megdadi, Dr. Hatim Megdadi. To all of you, I have this to say: I love you, respect you, pray for you, and may Allah bless you.
Table of Contents

Permission to Use ... i
Abstrak .. ii
Abstract .. iii
Acknowledgement .. iv
Table of Contents .. vi
List of Tables .. x
List of Figures .. xii
List of Appendices ... xiv
List of Abbreviations .. xv

CHAPTER ONE MULTIVARIATE QUALITY CONTROL CHARTS1

1.1 Introduction ... 1
1.2 Terminology .. 3
1.3 The Hotelling’s T^2 control chart .. 5
1.4 Some issues about the Hotelling’s T^2 ... 7
1.5 Problem Statement ... 8
1.6 Research Objectives ... 11
1.7 Significance of the Study .. 12
1.8 The scope of this thesis .. 12

CHAPTER TWO LITERATURE REVIEW ..15

2.1 Introduction ... 15
2.2 Multivariate Control Charts ... 16
2.3 Robust Multivariate Control Charts ... 18
2.4 Robust Location Estimators ... 24
 2.4.1 α -Trimmed Mean ... 25
 2.4.2 Modified one step M-estimator (MOM) .. 28
 2.4.3 Winsorized Modified one step M-estimator (MOM) 30
 2.4.4 Median ... 32
 2.4.5 Hodges–Lehmann estimator ... 33
2.5 Robust Scale Estimators .. 33
4.2.1 False alarm rates and Percentage detecting outliers at $\alpha = 5\%$ 72
4.2.2 False alarm rates and Percentage detecting outliers at $\alpha = 1\%$ 81
4.3 Dependent Variables (Case B) .. 90
 4.3.1 False alarm rates and Percentage of detecting outliers at $\alpha = 5\%$ 91
 4.3.2 False alarm rates and percentage of detecting outliers at $\alpha = 1\%$ 96
4.4 Analysis on Real Data ... 101
4.5 Comparison among the robust Hotelling’s T^2 charts 105
4.6 Summary .. 107

CHAPTER FIVE MODIFIED HOTELLING’S T^2 CONTROL CHARTS
USING WINSORIZED MOM WITH WINSORIZED COVARIANCE
MATRICES .. 109
5.1 Introduction .. 109
5.2 Independent Variables Case (A) ... 110
 5.2.1 False alarm rates and Percentage of detecting outliers at $\alpha = 5\%$ 111
 5.2.2 False alarm rates and Percentage detecting outliers at $\alpha = 1\%$ 119
5.3 Dependent variables ... 128
 5.3.1 False alarm rates and Percentage of detecting outliers at $\alpha = 5\%$ 129
 5.3.2 False alarm rates and Percentage detecting outliers at $\alpha = 1\%$ 133
5.4 Analysis on Real Data .. 139
5.5 Comparison among the robust Hotelling’s T^2 charts 143
5.6 Summary .. 145

CHAPTER SIX MODIFIED HOTELLING T^2 CHARTS USING HODGES–
LEHMANN ESTIMATOR WITH ROBUST SCALE ESTIMATORS 147
6.1 Introduction ... 147
6.2 Independent Variables (Case A) .. 148
 6.2.1 False alarm rates and percentage detecting of outliers at $\alpha = 5\%$ 148
 6.2.2 False alarm rates and percentage detecting of outliers at $\alpha = 1\%$ 155
6.3 The Dependent Variables (Case B) .. 161
 6.3.1 False alarm rates and percentage detecting of outliers at $\alpha = 5\%$ 161
 6.3.2 False alarm rates and percentage detecting of outliers at $\alpha = 1\%$ 166
6.4 Analysis on Real Data .. 171
6.5 Comparison among the robust Hotelling’s T^2 charts ..174
6.6 Summary ..177

CHAPTER SEVEN CONCLUSION AND SUGGESTIONS FOR FURTHER RESEARCHES..179
7.1 Introduction ...179
7.2 Comparison among the control charts...180
 7.2.1 Independent case ..180
 7.2.2 Dependent Case ...182
7.3 The effects of the manipulated variables on the charts183
 7.3.1 Independent variables case (A) ..183
 7.3.2 Dependent variables case (B) ...185
7.4 Application On Real Data..186
7.5 The contributions of the thesis ...187
7.6 Limitation and future studies ...188

References ...189
List of Tables

Table 4.1: False alarms rates (percent) under independent case at $\alpha = 5\%$............................73
Table 4.2: Percentages of detecting outliers (percent) under independent case at $\alpha = 5\%$.....75
Table 4.3: False alarms rates (percent) under independent case at $\alpha = 1\%$.......................82
Table 4.4: Percentages of detecting outliers (percent) under independent case at $\alpha = 1\%$....84
Table 4.5: False alarms rates (percent) under dependent case at $\alpha = 5\%$91
Table 4.6: Percentages of detecting outliers (percent) under dependent case at $\alpha = 5\%.$.. 93
Table 4.7: False alarms rates (percent) under dependent case at $\alpha = 1\%$96
Table 4.8: Percentages of detecting outliers (percent) under dependent case at $\alpha = 1\%$.....97
Table 4.9: Historical data set (Phase I data)...102
Table 4.10: The values of the upper control limits for the three robust and one traditional chart ...103
Table 4.11: The Hotelling's T^2 values for the future (Phase II data).................................104
Table 4.12: Overall performance for independent and dependent cases106
Table 5.1: False alarms rates (percent) under independent case at $\alpha = 5\%$.....................111
Table 5.2: Percentages of detecting outliers under independent case at $\alpha = 5\%$..........113
Table 5.3: False alarms rates (percent) under independent case for $\alpha = 1\%$120
Table 5.4: Percentages of detecting outliers under independent case at $\alpha = 1\%$.........122
Table 5.5: False alarms rates (percent) under dependent case for $\alpha = 5\%$129
Table 5.6: Percentages of detecting outliers under dependent case at $\alpha = 5\%$130
Table 5.7: False alarms rates (percent) under dependent case for $\alpha = 1\%$134
Table 5.8: Percentages of detecting outliers under dependent case at $\alpha = 1\%$.........136
Table 5.9: Historical data set (Phase I data) ...141
Table 5.10: The values of the upper control limits for the three robust and one traditional charts. ...142
Table 5.11: The values of future observations and hotelling T^2 statistics......................142
Table 5.12: Overall performance for independent and dependent cases144
Table 6.1: False alarms rates (percent) under independent case for $\alpha = 5\%$.149
Table 6.2: Percentages of detecting outliers under independent case at $\alpha = 5\%$..........150
Table 6.3: False alarms rates (percent) under independent case for $\alpha = 1\%$..............155
Table 6.4: Percentages of detecting outliers under independent case at $\alpha = 1\%$.........157
Table 6.5: False alarms rates (percent) under dependent case for $\alpha = 5\%$162
Table 6.6: Percentages of detecting outliers under dependent case at $\alpha = 5\%$............163
Table 6.7: False alarms rates (percent) under dependent case for $\alpha = 1\%$.166
Table 6.8: Percentages of detecting outliers under dependent case at $\alpha = 1\%$.168
Table 6.9: Historical data set (Phase I data)...175
Table 6.10: The values of the upper control limits for the three robust and one traditional
chart ..173
Table 6.11: The Hotelling's T^2 values for the future (Phase II data).................................173
Table 6.12: Overall performance for independent and dependent cases 175
Table 7.1: overall performances for independent case ..181
Table 7.2: Overall performances for dependent case...183
List of Figures

Figure 3.1: The whole procedures to construct the nine modified Hotelling’s T^2 charts……. 41
Figure 3.2: Represents the steps of calculating false alarm rates and probability detection of outliers …………………………………………………………………………………. 69
Figure 4.1: Percentages of detection of outliers when $p = 2$…………………………………… 76
Figure 4.2: Percentages of detection of outliers when $p = 5$…………………………………… 78
Figure 4.3: Percentages of detection of outliers when $p = 10$………………………………. 80
Figure 4.4: Percentages of detection of outliers when $p = 2$………………………………… 85
Figure 4.5: Percentages of detection of outliers when $p = 5$………………………………… 87
Figure 4.6: Percentages of detection of outliers when $p = 10$……………………………… 89
Figure 4.7: Percentages of detection of outliers when $p = 2$………………………………… 93
Figure 4.8: Percentages of detection of outliers when $p = 5$………………………………… 94
Figure 4.9: Percentages of detection of outliers when $p = 10$……………………………… 95
Figure 4.10: Percentages of detection of outliers when $p = 2$…………………………….. 98
Figure 4.11: Percentages of detection of outliers when $p = 5$……………………………. 99
Figure 4.12: Percentages of detection of outliers when $p = 10$………………………….. 100
Figure 5.1: Percentages of detection of outliers when $p = 2$…………………………….. 114
Figure 5.2: Percentages of detecting outliers when $p = 5$…………………………………… 116
Figure 5.3: Percentages of detection of outliers when $p = 10$…………………………….. 118
Figure 5.4: Percentages of detection of outliers when $p = 2$…………………………….. 123
Figure 5.5: Percentages of detection of outliers when $p = 5$……………………………… 125
Figure 5.6: Percentages of detection of outliers for $p = 10$……………………………… 127
Figure 5.7: Percentages of detection of outliers for $p = 2$………………………………….. 131
Figure 5.8: Percentages of detection of outliers when $p = 5$……………………………… 132
Figure 5.9: Percentages of detection of outliers when $p = 10$…………………………….. 133
Figure 5.10: Percentages of detection of outliers when $p = 2$……………………………… 136
Figure 5.11: Percentages of detection of outliers when $p = 5$…………………………….. 138
Figure 5.12: Percentages of detection of outliers when $p = 10$…………………………….. 139
Figure 6.1: Percentages of detection of outliers when $p = 2$…………………………….. 151
Figure 6.2: Percentage of detection of outliers when $p = 5$……………………………… 153
Figure 6.3: Percentages of detection of outliers for $p = 10$……………………………… 154
Figure 6.4: Percentages of detection of outliers when $p = 2$……………………………… 158
Figure 6.5: Percentages of detection of outliers when $p = 5$…………………………….. 159
Figure 6.6: Percentages of detection of outliers when $p = 10$... 160
Figure 6.7: Percentages of detection of outliers when $p = 2$.. 164
Figure 6.8: Percentages of detection of outliers when $p = 5$.. 164
Figure 6.9: Percentages of detection of outliers when $p = 10$... 165
Figure 6.10: Percentages of detection of outliers when $p = 2$.. 168
Figure 6.11: Percentages of detection of outliers when $p = 5$.. 169
Figure 6.12: Percentages of detection of outliers when $p = 10$... 169
List of Appendices

Appendix A: Programs Calculate Modified Hotelling’s T^2 Charts………………196
Appendix B: Programs Calculate the Winsorized Sample ………………………235
Appendix C: Programs Calculate the Location And Scale Estimators ………..240
Appendix D: Programs Calculate Covariance Matrices for Scale estimators……243
Appendix E: Program Proving Covariance Matrices are Positive definite………249
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOM</td>
<td>Modified One-step M-estimator</td>
</tr>
<tr>
<td>HL</td>
<td>Hodges and Lehmann estimator</td>
</tr>
<tr>
<td>Med</td>
<td>Median</td>
</tr>
<tr>
<td>MAD$_n$</td>
<td>Median absolute deviation</td>
</tr>
<tr>
<td>S_n</td>
<td>A scale estimator</td>
</tr>
<tr>
<td>T_n</td>
<td>A scale estimator</td>
</tr>
<tr>
<td>FA</td>
<td>False Alarms</td>
</tr>
<tr>
<td>POD</td>
<td>Probability of Detection</td>
</tr>
<tr>
<td>ARE</td>
<td>Asymptotic Relative Efficiency</td>
</tr>
<tr>
<td>MD</td>
<td>Mahalonobis Distance</td>
</tr>
</tbody>
</table>
CHAPTER ONE
MULTIVARIATE QUALITY CONTROL CHARTS

1.1 Introduction

The invention of Statistical Process Control (SPC) chart was pioneered by Dr. Walter Shewhart while he was working for Bell Labs in 1920. He aimed to monitor the quality of a process mathematically. Since then, this tool has received tremendous attention and interest from many researchers and practitioners from various fields including statistics, engineering and education to name just a few. There are some definitions of SPC charts tool. We refer to Montgomery (2005), who defined the SPC charts as tool for optimizing the amount of information needed for decision-making purposes. In addition, Nedumaran and Pignatiello (2000) defined the charts as tools to monitor performance or state of the process.

In general, SPC charts are graphical presentations that display the stability of a process. Unlike other common charts, such as bar chart, line chart or pie charts, SPC charts have some main features such as the following:

(i) The upper limit and lower limit’s lines that create a range to where a process output is considered “in control”

(ii) A center line which located in the middle of the lower and upper limits that reflects the average state of the process.
The contents of the thesis is for internal user only
References

Hellerstein, J. M. (2008). Quantitative Data of Cleaning for Large Data basis. EECS Computer Science Division. UC Berkeley

Holmes, D. S. & Mergen, A. E. (1996). Identifying the sources for out of control signals when the T^2 control chart is used. *Quality Engineering, 8*(1), 137-143.

Math works Matlab Version 7.8 (R2009a).

