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Abstrak

Penentu berperanan penting dalam kebanyakan aplikasi aljabar linear. Pencarian penentu
menggunakan kaedah pembahagian bukan bebas akan menghadapi masalah sekiranya pe-
masukan matriks diwakili dalam ungkapan nisbah atau polinomial dan juga apabila kesi-
lapan titik apungan wujud. Bagi mengatasi masalah ini, kaedah pembahagian bebas digu-
nakan. Dua kaedah pembahagian bebas yang biasa digunakan dalam pencarian penentu
adalah pendaraban silang dan pengembangan kofaktor. Walau bagaimanapun, pendaraban
silang yang menggunakan Petua Sarrus hanya berhasil untuk matriks berperingkat kurang
atau sama dengan tiga, sedangkan apabila berhadapan dengan matriks yang bersaiz be-
sar, pengembangan kofaktor memerlukan pengiraan yang terlalu panjang dan rumit. Oleh
itu, kajian ini berusaha membangunkan kaedah berjujukan dan kaedah selari yang ba-
haru untuk mencari penentu bagi matriks. Kajian ini juga berhasrat untuk mengitlakkan
Petua Sarrus bagi sebarang peringkat matriks segi empat sama berpandukan pilih atur
yang diperolehi menggunakan set penjana. Dua strategi diperkenalkan bagi menjana set
penjana yang berlainan iaitu operasi kitaran dan operasi saling tukar dua unsur. Beberapa
hasil teori dan sifat matematik dalam penjanaan pilih atur dan penentuan penentu turut
dibina bagi menyokong kajian ini. Keputusan berangka menunjukkan masa pengiraan
kaedah baharu yang dicadangkan adalah lebih baik jika dibandingkan dengan kaedah se-
dia ada. Masa pengiraan kaedah berjujukan baharu yang dibangunkan tertakluk kepada
penjanaan set penjana. Oleh demikian, dua strategi selari dibangunkan untuk menye-
laraskan algoritma ini bagi mengurangkan masa pengiraan. Keputusan berangka turut
menunjukkan bahawa kaedah selari berupaya mengira penentu lebih cepat berbanding
kaedah berjujukan, khususnya apabila tugas diagihkan dengan sama rata. Kesimpulan-
nya, kaedah baharu yang telah dibangunkan boleh diguna sebagai alternatif yang berdaya
saing dalam pencarian penentu bagi matriks. .

Kata kunci: Penentu, Pilih atur, Set penjana, Kaedah tanpa pembahagi, Kaedah jujukan
dan selari
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Abstract

A determinant plays an important role in many applications of linear algebra. Finding
determinants using non division free methods will encounter problems if entries of ma-
trices are represented in rational or polynomial expressions, and also when floating point
errors arise. To overcome this problem, division free methods are used instead. The
two commonly used division free methods for finding determinant are cross multiplica-
tion and cofactor expansion. However, cross multiplication which uses the Sarrus Rule
only works for matrices of order less or equal to three, whereas cofactor expansion re-
quires lengthy and tedious computation when dealing with large matrices. This research,
therefore, attempts to develop new sequential and parallel methods for finding determi-
nants of matrices. The research also aims to generalise the Sarrus Rule for any order of
square matrices based on permutations which are derived using starter sets. Two strategies
were introduced to generate distinct starter sets namely the circular and the exchanging
of two elements operations. Some theoretical works and mathematical properties for gen-
erating permutation and determining determinants were also constructed to support the
research. Numerical results indicated that the new proposed methods performed better
than the existing methods in term of computation times. The computation times in the
newly developed sequential methods were dominated by generating starter sets. There-
fore, two parallel strategies were developed to parallelise this algorithm so as to reduce
the computation times. Numerical results showed that the parallel methods were able to
compute determinants faster than the sequential counterparts, particularly when the tasks
were equally allocated. In conclusion, the newly developed methods can be used as viable
alternatives for finding determinants of matrices.

Keywords: Determinant, Permutation, Starter sets, Division free method, Sequential and
parallel methods
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CHAPTER ONE

INTRODUCTION TO DETERMINANT METHODS

1.1 Background of the Study

Matrices and determinants are the backbone of linear algebra (Bernstein, 2008). A de-

terminant provides useful geometrical and algebraical information of a square matrix.

Algebraically, a matrix has an inverse if and only if the determinant is not zero. This

happens when the vectors are linearly independent. Meanwhile geometrically, the row

entries of n × n matrix define the edges of a parallelepiped in n-dimensional space, of

which the area and volume are the absolute value of the determinant of a square matrix

for spaces R2 and R3 respectively.

The determinant has been the subject of study for over 200 years. The name determinant

was introduced by Carl Friedrich Gauss (1777-1855) while discussing quadratic forms.

The term determinant was used because it determined the properties of the quadratic form

(O’Connor & Robertson, 1996). The theory of determinant was expanded gradually dur-

ing the 18th century through the theory of equations in the work of Leibniz, Maclaurin,

Cramer and Laplace (Rice & Torrence, 2006). Then it became an increasingly significant

subject in the mathematical area by the 19th century.

The applications of determinant can be found in various areas for example in mathe-

matical physics in which any solvable equation having a solution can be expressed as

a determinant (Vein & Dale, 1999). The determinant is required in inverse kinematics

singularity analysis of parallel manipulator which this manipulator is described as 6 × 6

transformation matrix (Luyang et al., 2006). Meanwhile from the statistical perspective,

the determinant is used in normalizing the constant of the probability density function of

the multivariate normal distribution, and is also involved in experimental design (Harville,

1997). In addition, the determinant is a beneficial tool in eigenvalue problems in which
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that problem can be reduced to the problem of finding roots of a determinant polynomial

(Abdi, 2007)

The definition of the determinant comes from the following theorem.

Theorem 1.1.1. A function on the n× n matrices is called a determinant function if and

only if it satisfies the following properties

(i) The determinant is linear in each row if the other rows of the matrix are held fixed.

(ii) Let A be n× n matrix with two rows identical. Then det(A) = 0.

(iii) If I is the n× n identity matrix, then det(I) = 1.

One can then define the determinant as a unique function with the above properties

(Schneider & Barker, 1989). In proving the above theorem, Leibniz formula can be ob-

tained as follows:

det(A) =
∑

(σ(1),σ(2),...,σ(n))∈Sn

sign(σ) · a1σ(1) · a2σ(2)... · anσ(n). (1.1)

The summation is the set of all permutations σ of n elements. The sign of a permutation

is defined in terms of the number of inversions as given below:

sign(σ) = (−1)number of inversion σ. (1.2)

The number of terms a1σ(1) · a2σ(2)... · anσ(n) in the sum equals n!. As n increases, the

number of terms grows rapidly. Furthermore the arrangement of the terms are related to

the generation permutation method. This formula (1.1) has been cited as a definition of

determinant by a numerous researchers i.e. Kaltofen (1992), Iqbal (1995), Mahajan and

Vinay (1997), Sengupta (1997), Rote (2001), Shin (2002), and Thongchiew (2007).

From this definition, a great deal of work has been done in seeking to find the efficient
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ways of calculating determinants. These methods can be classified into two categories:

direct methods and non-direct methods (Rezaee & Rezaifar, 2007).

In the direct method, a specific mathematical formula is used to obtain the determinant of

matrix without converting the original matrix into other matrix forms(Rezaee & Rezaifar,

2007). Examples of the direct method are cross multiplication, cofactor expansion, con-

densation method and permutation. On the other hand, the non-direct methods involved

matrix decomposition where the matrix is factorized into some different form (Simon &

Blume, 1994). An example of the non-direct methods is the Gauss elimination (Rezaee

& Rezaifar, 2007).

The most commonly used techniques for finding determinant are cross multiplication,

cofactor expansion, and Gauss elimination. All these techniques were discussed in great

details in many textbooks such as Anton (2000), Anton and Busby (2002), Brestscher

(2009), Hasiung and Mao (1998), Johnson et al. (2002), Perry (1988), Wilde (1988), and

Scneider et al. (1982). In this study, a survey was done on some existing determinant

methods. The drawbacks of these methods are also highlighted.

1.1.1 A survey of Determinant Methods

Let A = [aij] represents an arbitrary n × n matrix. The determinant of A is denoted

by |A| or det(A). The arbitrary determinant is det(A)= |aij|n = |C1 C2 C3 ... Cn| when

represented in column indices.

(i) Cross multiplication

Pierre Frédéric Sarrus (1853) introduced the cross multiplication method which was
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called the Sarrus Rule with a single third order diagram as follows:

∣∣∣∣∣∣∣∣∣∣
a11 a12 a13 | a11 a12

a21 a22 a23 | a21 a22

a31 a32 a33 | a31 a32

∣∣∣∣∣∣∣∣∣∣
In order to construct this diagram, one needs to append the first two columns to the

right of the matrix. Then multiply the elements on the main diagonal and its par-

allel line diagonal, and add them. The same procedure is applied to the secondary

diagonal and its parallel diagonal, and adds up them. The determinant of this ma-

trix is equal to summation of (main + parallel) diagonal products subtract to the

summation of (secondary + parallel) diagonal products, i.e.

[a11a22a33 + a12a23a31 + a13a21a32]− [a13a22a31 + a11a23a32 + a12a21a33]

The cross multiplication technique is easy to use especially when the size of the

square matrix is small (n ≤ 3 )(Khattar, 2010). Osborn (1960) proved that this

method cannot be extended to the fourth-order determinant by following a single

diagram of third-order determinant principle. This is due to the fact that n! different

diagonal products are needed in order to find the determinant. He also did a survey

over thirty textbooks chosen at random, in which each included a discussion of the

determinant using the Sarrus Rule. Only one book stated that the Sarrus Rule is

invalid for n > 3 and while most of the books mentioned that the scheme cannot be

generalised to any n. However this does not imply that generalization is impossible.

In spite of Osborn work, Bankier (1961) and Pavlovic (1961) tried to extend Sarrus

Rule and they derived the construction of the nth order diagram scheme based on

(n−1)!
2

permutation column until n = 5. The permutation column is represented by

the array of matrix column indices. Unfortunately, repetition of diagonal products

existed for the fifth order diagram which was constructed from the [1, 2, 5, 4, 3] and

the [1, 3, 4, 5, 2] permutation column as follows:
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[1, 2, 5, 4, 3]

|A1,2,5,4,3| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a15 a14 a13|a11 a12 a15 a14

a21 a22 a25 a24 a23|a21 a22 a25 a24

a31 a32 a35 a34 a33|a31 a32 a35 a34

a41 a42 a45 a44 a43|a41 a42 a45 a44

a51 a52 a55 a54 a53|a51 a52 a55 a54

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[1, 3, 4, 5, 2]

|A1,3,4,5,2| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a13 a14 a15 a12|a11 a13 a14 a15

a21 a23 a24 a25 a22|a21 a23 a24 a25

a31 a33 a34 a35 a32|a31 a33 a34 a35

a41 a43 a44 a45 a42|a41 a43 a44 a45

a51 a53 a54 a55 a52|a51 a53 a54 a55

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
This clearly shows that the generation of specific

(n− 1)!

2
permutation columns for

the formulation of nth order diagram is yet to be discovered.

Recently, Hajrijaz (2009) introduced three methods to determine the determinant

of the third order matrix. For each method, six diagonals would be formed.

Consider matrix A

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


One of his methods said that elements a13 and a33 would be placed before the first

row and third row respectively. Then elements a11 and a31 would be placed after the

first row and third row respectively. It can be seen through the following example.
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Example 1.1.2.

a13 a11 a12 a13 a11

a21 a22 a23

a33 a31 a32 a33 a31

The process of elements product and its signs for six diagonals are similar to the

Sarrus Rule for 3×3 matrix. The determinant of this matrix is equal to determinant

using the Sarrus Rule. Unfortunately this new method only works for 3× 3 matrix.

The other two methods also showed the similar result.

(ii) Cofactor expansion

There is another way to compute the determinant of an n × n matrix A using the

determinant of some of its submatrices as follows

det(A) =
n∑

(−1)i+jaij|Mij| (1.3)

where |Mij| is the determinant of the (n− 1)× (n− 1) matrix obtained from A by

omitting the ith row and jth column of A. |Mij| is called the minor of entry aij

and (−1)i+j|Mij| is called the cofactor of aij . The cofactor expansion method is

performed by rewriting the determinant of an n by n matrix as the sum of products.

The products are entries on a specific row (or column) and their cofactors, using the

above equation. Each rewriting is called an expansion. This expansion is also called

by minor expansion and Laplace expansion in which this method was introduced by

Laplace in year 1772 (Muir, 1933). However many researchers had used term minor

expansion in spite of cofactor expansion i.e. Horowitz and Sahni (1975), Gentleman

and Johnson (1976), Griss (1976), Smit (1979), Sasaki and Kanada (1981), and

Umeda and Sasaki (2006). The shortcoming of this method is that we need to reduce

the size of a matrix to 2×2 or 3×3 in order to obtain the determinant. Furthermore

this method required the n! products and the process of finding the determinant are

inductive where the cofactors themselves are determinants (Krattenthaler, 1999;
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Solyts, 2002; Shin, 2002; Jones, 2005; Goldfinger, 2008). In addition Gentleman

and Johnson (1974) said that any direct implementation of this recursive method is

inefficient and lead to repeated calculation of minors.

(iii) Condensation method

Dodgson (1866) proposed a new method for determining the determinant called the

condensation method, as follows:

Let an n× n matrix A = {aij} with pivot a11 6= 0 by forming an (n− 1)× (n− 1)

matrix B = {bij} such that

bij = a1,1ai+1,j+1 − a1,j+1ai+1,1.

Then

det(A) =
det(B)

(a11)n−1
.

The weak point of this method is that we need to reduce the size of a matrix to

2 × 2 or 3 × 3 in order to obtain the determinant. This method has a fatal defect

where the determinant of any interior matrix cannot be zero. Employ some remedies

like row/column exchanges can be effective in discarding the defect, but they may

not always work (Abeles, 2008). That was the disadvantage of non division free

method. Vieira (2010) proposed a reduction method for finding the determinant

which was quite similar to Dodgson’s work.
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(iv) Teimoori, Bayat, Amiri and Sarijloo (2005) method

The general formula of this method for finding the determinant is as follows:

|A| = 1

a21a31 · · · a(n−1)1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣∣ · · ·

∣∣∣∣∣∣∣
a11 a1n

a21 a2n

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
a21 a22

a31 a32

∣∣∣∣∣∣∣ · · ·

∣∣∣∣∣∣∣
a21 a2n

a31 a3n

∣∣∣∣∣∣∣
... . . . ...∣∣∣∣∣∣∣

a(n−1)1 a(n−1)2

an1 an2

∣∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣∣
a(n−1)1 a(n−1)n

an1 ann

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1.4)

where the elements of (n − 1) × (n − 1) matrix in (1.4) is a determinant of 2 × 2

matrices. Then in order to find the determinant of that (n− 1)× (n− 1) matrix, the

formula will be used again until the matrix is reduced to 2×2 or 3×3 matrix. Thus

the process of calculating the determinant is highly dependence on the successfully

determinant of the reduced matrix. Furthermore this method is not a division free

and it does not work when the denominator is zero.

(v) Rezaee and Rezaifar (2007) method

The general formula of this method for finding the determinant is given by:

|A| = 1

|A11,nn|

∣∣∣∣∣∣∣
|A11| |A1n|

|An1| |Ann|

∣∣∣∣∣∣∣ (1.5)

where Aij is obtained by deleting the ith row and jth column. There are four (n−

1)× (n− 1) matrices and one (n− 2)× (n− 2) matrix where the entries itself is a

determinant. In order to determine the determinant of these four (n− 1)× (n− 1)

matrices i.e. |A11|, |A1n|, |An1| and |Ann|, the general formula (1.5) will be used

again. For example take A11 as (n− 1)× (n− 1) matrix B. Then the determinant
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of A11 is as follows:

|A11| =
1

|B11,(n−1)(n−1)|

∣∣∣∣∣∣∣
|B11| |B1n−1|

|B(n−1)1| |B(n−1)(n−1)|

∣∣∣∣∣∣∣ (1.6)

Thus the process has high dependence on the determinant for (k×k) matrices where

2 < k < n and problems will arise when the denominator is zero.

(vi) Gauss elimination method

Gauss elimination method is a standard procedure to calculate the determinant. The

given matrix is converted into an upper triangular matrix using elementary row op-

erations. The value of the determinant is the product of its main diagonal elements

of the upper triangular matrix. Gauss elimination is numerically unstable when a

pivot element (akk)
k−1 is zero or close to zero. In cases like these, pivoting is re-

quired. Pivoting works by interchanging the rows of A(k) to obtain better pivot

elements (Rezaee & Rezaifar, 2007). This division problem was also emphasized

by Mahajan and Vinay (1997), Soltys (2002), and Shin (2002). Furthermore this

method has problems in handling symbolic elements of square matrices (Sasaki &

Murao, 1982; Shin, 2002).

In most cases, it is not easy to calculate the determinant of matrices of order n ≥ 5 by

hand-computing. Computing the determinant is also a time consuming process for larger

matrices (Rice & Torrence, 2006). Regarding that, the development of sequential algo-

rithms for finding determinant and comparing them over execution time has been carried

out extensively.

A number of studies had modified Gauss elimination algorithm to determine the deter-

minant of matrices with multivariate polynomial and fractional entries by introducing

fraction free Gauss elimination method (Sasaki & Murao, 1982; Umeda & Sasaki, 2006).

However in fraction free Gauss elimination method, fraction term still exist as follows

9



(Li, 2009a; Lee & Saunder, 1995):

a
(k)
i,j =



a01,1 · · · a01,k a01,j
...

...
...

a0k,1 · · · a0k,k a0k,j

a0i1 · · · a0i,k a0i,j


, i > k, j > k

a
(−1)
0,0 = 1, a

(0)
i,j = ai,j

a
(k)
i,j =

a
(k−1)
k,k a

(k−1)
i,j − a(k−1)i,k a

(k−1)
k,j

a
(k−2)
k−1,k−1

Although the fraction free Gauss elimination method is more efficient compared to the

Gauss elimination method, Umeda and Sasaki (2006) found that the former method can-

not conveniently be applied for finding the determinant of matrix with rational function

elements where minor expansion performed better in terms of computation time com-

pared to the fraction free Gauss elimination method. In other words, the multiplication

and division of polynomial cannot be done in constant time where Gaussian elimination

or its variants are not superior to cofactor expansion.

Rezaee and Rezaifar (2007) also compared their method with the cofactor expansion

method over time computation and discovered their method was faster. They pointed

out that their algorithm has weakness caused by 2 × 2 matrices repetition. For example,

case n = 4, 2×2 matrices were repeated five times which had affected computation time.

Besides these, little effort has been made in finding the determinant using the permutation

method. Thongchiew (2007) developed the permutation algorithm based on a partial re-

version method and applied it to determine the determinant. However, he did not attempt

to compare his method to other existing permutation generation methods.

Shin (2002) made comparison Gauss elimination method with Cofactor expansion method
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and permutation approach for determining the symbolic determinant. He concluded that

the permutation approach was a better method compared to the Gauss elimination method

since the latter method encountered fraction problem. In addition he also discussed his

new permutation generation method but unfortunately the permutation pattern was sim-

ilar to the ones developed by Thongchiew (2007) and Zaks (1984). Shin (2002) also

highlighted determinant method which did not have division had advantage over division

method. In addition, the use of division method in finding determinant seems like a lia-

bility for hand computing (Bressoud & Propp, 1999). Thus we categorize the direct and

non direct methods for finding the determinant to the division free method (DFM) and

non division free method (nDFM). DFM are cross multiplication and cofactor expansion,

whereas nDFM are Gauss elimination, Cholesky decomposition method, and Condensa-

tion Method.

1.1.2 Problem Statement

The division free methods have advantages over the non division free methods due to the

following reasons:

(i) floating point errors can be avoided in division free methods (Mahajan & Vinay,

1997).

(ii) division free methods cater the problems when the entries of matrices are poly-

nomial, rational or other complicated expressions such as multivariate polynomial

(Rote, 2001).

The advantages in (i) is related to the exactness problem. The exactness problem arises in

geometric algorithm where the determinant is used. Geometric prediction determines the

control flow and hence has to be evaluated exactly. This means that determinant compu-

tation routine has to produce exact results (Goldberg, 1991). In addition rounding errors

are inevitable in numerical computation (Li, 2009b).

11



However in division free category, cofactor expansion was not efficient in time compu-

tation where the order of complexity is O(n((n − 1)!)3)(Shin, 2002; Goldfinger, 2008).

Thus the cross multiplication is an alternative method. However it works only for the

order of matrix n ≤ 3 and yet to be generalized. Bankier (1961) and Pavlovic (1961)

attempted to extend cross multiplication method via permutation approach but they failed

to generate a specific rule for determining
(n− 1)!

2
of the nth order diagram which tally

to the third order diagram with a single permutation column [1, 2, 3] as follows:

∣∣∣∣∣∣∣∣∣∣
a11 a12 a13 | a11 a12

a21 a22 a23 | a21 a22

a31 a32 a33 | a31 a32

∣∣∣∣∣∣∣∣∣∣
Thus, there is a need to construct new algorithms to generalize the cross multiplication

method to any size of matrix using permutation approach. Since permutation generation

is time consuming (Sedgewick, 2002) which fall under Non-Polynomial (NP) time, the

implementation of sequential algorithms to parallel computation is the option for reduc-

ing the computation time (Akl & Bruda, 2001).

To our present knowledge, no research has been conducted in developing sequential and

parallel division free methods for finding the determinant of matrices of any order using

the generalised cross multiplication method (Sarrus Rule).

1.2 Research Question

This study aims to develop new sequential and parallel division free methods for finding

the determinant of matrices using generalised cross multiplication method. Therefore, the

following are the research questions to be solved:

(i) what is an appropriate sequential method for generating permutation which corre-

spond to cross multiplication method.
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(ii) how to develop new permutation method which can be used for finding determinant

to generalise the cross multiplication method.

(iii) what is a suitable method for parallelise all the new sequential algorithm for gener-

ating permutation and finding the determinant.

(iv) how to measure the performance of all new parallel algorithms.

1.3 Objective of the Study

The main objective of this research is to develop new sequential and parallel division free

methods for finding the determinant of matrices using the generalised cross multiplication

method. This can be accomplished by

(i) constructing new sequential algorithms for generating permutation.

(ii) developing new division free sequential methods for finding the determinant using

generalised cross multiplication.

(iii) parallelizing the sequential methods for permutation and finding the determinant.

(iv) analyzing the performance of parallel algorithms in terms of speedup and efficiency.

1.4 Methodology

This study was carried out in six phases as follows:

Phase One: Information Gathering

In this phase, our review will focus on the methods for finding the determinant The

strengths and weaknesses of each method will be studied and highlighted.

Phase Two: Method and Algorithm Development

(i) Method development

We used different approach of permutation to find the determinant for matri-

ces of order n ≤ 6 to see the patterns of construction. Meanwhile we did
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investigation and backtracking on cross multiplication method, and extracted

its permutation pattern from its main diagonal and secondary diagonal. From

these patterns, we produced some important theorems as a basis for finding

determinant of any size n× n matrices.

(ii) Sequential, and Parallel algorithm

After the cross multiplication method is extended and modified based on per-

mutation construction, a new sequential algorithm was developed. For par-

allel algorithm, according to Kokosiński (1990) who has listed two different

approaches for designing parallel generation of permutation as follows:

(i) apply the sequential algorithm to the model of parallel computation.

(ii) design the parallel algorithms for a model of parallel computation with

any number processors.

Thus, we developed both approaches to design the parallel algorithm. Re-

garding to development of parallel algorithm in two approaches, two different

method were constructed. Fundamentally, every parallel algorithms involves

a collection of tasks that can be execute concurrently.

Phase Three: Implementation Mechanism

Both sequential, and parallel algorithms will be implemented into C codes. For

parallel programming environment, we considered message passing model.

Phase Four: Analysis of Sequential algorithm

For this phase, we compared the computation time and time complexity of the de-

veloped method with the existing method in sequential. We divided the analysis

into two stages as follows:

Stage 1: Comparing among the permutation method and its application for the deter-

mining the determinant.

Thongchiew (2007) method was selected for the comparison since only Thongchiew
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(2007) developed partial reversion permutation generation method and ap-

plied it for determining the determinant. We also developed Langdon (1967)

method program and apply his algorithm to find the determinant.

Stage 2: Comparing to the others direct determinant method

In this stage, Cofactor Expansion method was selected to compare with our

method because it is a division free method based on classical definition of

determinant.

Phase Five: Analysis of Parallel algorithm

For this phase, to measure the performance of the parallel algorithms, the speedup

and efficiency were used.

Phase Six: Documentation

The writing was carried out along the study duration.

1.5 Significance of the Study

The development of the new sequential division free methods for finding the determinant

contributes to the body of knowledge in linear algebra. Moreover division free computa-

tion for determinant plays significant role in estimating the parallel complexity of basic

linear algebra problems, such as matrix inversion (Kaltofen, 1992). Besides the time con-

suming computation which occur in this sequential algorithms, developing new parallel

methods can be seen as an alternative solution for faster computation. In addition, even

finding the determinant is one of the oldest topic in linear algebra, there is still a need

for developing new methods that are well-suited to modern high performance computers.

Thus it would become a valuable contribution to the computational mathematics area.

The construction of new permutation generations also contribute to the combinatorial

design problems such as linear assignment problems (Rolfe, 2008), Latin square enumer-

ations (Fike, 1975) and Travelling Salesman Problems (Aziz et al., 2009). We hope that
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our parallel methods for permutation generation especially in starter sets generation can

be further used to solve some of these problems.

1.6 Scope of the Study

This study focused on generating permutation method and it’s application for finding the

determinant of real square matrices, not on symbolic matrices. This study include theo-

retical development for generalization, and implementation the algorithm in C Language.

1.7 Assumption and Limitation of the Study

The numerical tests in this research were performed on the Sunfire V1280 parallel com-

puter which installed at the Institute for Mathematical Research (INSPEM), Universiti Pu-

tra Malaysia (UPM) as this facilities is not available at Universiti Utara Malaysia (UUM).

The new algorithms are tested on real value matrix only and run on the matrix of order up

to 14.

1.8 Thesis Outline

Chapter One of this thesis describes the background, problem statement, objective and

significance of the study.

Next, Chapter Two provides some fundamental concepts for permutation, determinant

and matrices, and parallel computing. This chapter also reviews of relevant literature re-

lated to the present study are done which include permutation generation method, sequen-

tial and parallel algorithm of permutation generation method, and finding determinant via

permutation approach.

Chapter Three focuses on generation of starter sets and permutation by employing cer-

tain rule and also presents some theoretical works. Then the numerical results of the
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algorithm are given in terms of computation times and order of complexity.

The construction of a division free method for finding the determinant using permuta-

tions will be presented in Chapter Four which is aim for the Sarrus Rule generalisation.

In this chapter, the sequential algorithms development for finding determinant by appli-

cation of permutation generation are discussed.

Chapter Five is the extension from work in Chapter Four and Chapter Five where the

parallel method are extended from sequential method as Across The Time (ATT) method.

Meanwhile for Across The Method (ATM) method, new parallel methods of permutation

generation and its application for finding the determinant are also developed. Their per-

formances are measured in terms of speedup and efficiency.

Chapter Six summarizes the study and some suggestions on future work are also rec-

ommended.
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CHAPTER TWO

PERMUTATION, DETERMINANT, PARALLEL COMPUTING

AND ITS RELATED STUDIES

2.1 Introduction

In this chapter, we outline the basic concepts of permutation, determinant, and parallel

computing that will be needed in Section 2.2, 2.3 and 2.4 respectively. This chapter also

discussed some related studies on permutation and determinant techniques in Section 2.5.

2.2 Permutation

Definition 2.2.1. A linear ordering of the elements of the set [n] = [1, 2, 3, · · · , n− 1, n]

is called a permutation.

Definition 2.2.2. Let a = a1, a2, · · · , an−1, an be a permutation. (ai, aj) is an inversion

of a if i < j but ai > aj .

Example 2.2.3. Permutation [3, 1, 2, 5, 4] has three inversions, namely (3, 1), (3, 2), and

(5, 4)

Definition 2.2.4. A permutation is called odd (even) if it has an odd (even) number of

inversion.

Definition 2.2.5. The identity permutation [1, 2, 3, · · · , n− 1, n], denoted by ε is the per-

mutation that leaves all integers fixed.

Definition 2.2.6. A transposition is a permutation that interchanges two integers k and l,

k 6= l, but leaves all other integers fixed.

Definition 2.2.7. The number of circular arranging of n distinct object is (n− 1)!.

Theorem 2.2.8. Of the n! permutations of the elements a1, a2, · · · , an−1, an there are as

many that have an even number of inversions as there are that have an odd number; that

is there are
n!

2
in each of the two classes (Muir, 1933).
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Lemma 2.2.9. The maximum number of inversions is
n(n− 1)

2
(Hsiung & Mao, 1998).

2.3 Determinant of Matrix

Let row i (the ith row) and column j (the jth column) of the determinant A = |aij|n be

denoted by the symbols Ri and Cj respectively:

Ri = [ai1ai2...ain]

Cj = [a1ja2j...anj]
T

where T denoted the transpose. Now we may write A = |C1C2C3...Cn|.

The column vector notation is more economical in space and will be used exclusively in

later chapters.

Definition 2.3.1. A pattern in an n × n matrix of A is a way to choose n entries of the

matrix so that there is one chosen entry in each row and in each column of A. (Bretscher,

2009).

Definition 2.3.2. Main diagonal of square matrix which generated based on any column

array is a diagonal from the left-hand top corner to the right-hand bottom corner of

square matrix (Muir, 1933)

Definition 2.3.3. Secondary diagonal of square matrix which generated based on any col-

umn array is the diagonal from the right-hand top corner to the left-hand bottom corner

of square matrix (Muir, 1933).

Definition 2.3.4. Any parallel lines to these (main or secondary diagonal) is a minor

diagonal (Hanus, 1886).

Definition 2.3.5. The products of all elements in main diagonal, and in secondary diag-

onals are called terms (Muir, 1933).

A common way to introduce the determinant in a first course of linear algebra as the

following (Reffgen, 2003):
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Definition 2.3.6. The determinant det : Mn(R) → R is the unique mapping which

satisfies the following three conditions:

(i) The determinant of the unit matrix equals one.

(ii) The determinant depends linearly on each column.

(iii) The determinant changes sign if two columns in the matrix change place.

In other words, det(A) is a multilinear, alternating function in the columns of A ∈

Mn(R).

If the matrix A ∈Mn(R) is given by



a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...

an1 an2 · · · ann


then the three conditions in Definition 2.3.6 and straightforward calculations give

det(A) =
∑

(σ(1),σ(2),...,σ(n))∈Sn

sign(σ) · a1σ(1) · a2σ(2)... · anσ(n) (2.1)

where the sum is taken over all permutations of the numbers 1, 2, ..., n, showing the

uniqueness of the determinant, and the existence follows if one, for example, shows that

formula (2.1) satisfies the three conditions of the definition of the determinant.

An alternative for equation (2.1) is

det(A) =
∑

(φ(1),φ(2),...,φ(n))∈Sn

sign(φ) · aφ(1)1 · aφ(2)2... · aφ(n)n (2.2)

The summation is taken over the set of all permutations φ of n elements. The sign of a

permutation is defined in terms of the number of inversions.

sign(φ) = (−1)number of inversion φ (2.3)
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Theorem 2.3.7. The number of the terms in the determinant of order n is n! (Scott, 2009).

Let us recall the following well-known elementary properties of the determinant:

(i) The determinant of a matrix vanishes if and only if the matrix is singular.

(ii) The determinant of a matrix A remains unchanged if we add a multiple of one

column to another column.

(iii) The determinant of a matrix A equals the determinant of its transpose matrix.

(iv) The determinant is multiplicative, i.e. det(AB) = det(A)det(B).

2.4 Parallel Computing

The world’s computing requirements are constantly growing, resulting in major chal-

lenges in the form of problems requiring heavy computation. Thus a significant reduction

in the time is required to solve the problem (Akl & Bruda, 2001). Therefore a method to

increase computational speed for a given application has to allocate the tasks among mul-

tiple processors. A parallel computer is a specially designed computer system containing

multiple processors or several independent computers that are interconnected in specific

ways. Some definitions of the term which are related to this study are given as follows.

Definition 2.4.1. An algorithm is a finite set of instruction for solving a problem (Gupta

et al., 2008).

Definition 2.4.2. A sequential algorithm is an algorithm designed for a single-processor

machine (Horowitz et al., 2008).

Definition 2.4.3. A parallel algorithm is an algorithm designed for a multi-processor

machine (Horowitz et al., 2008).

Definition 2.4.4. A program is the expression of an algorithm in a programming lan-

guage (Horowitz et al., 2008).
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Definition 2.4.5. The time complexity of an algorithm is the amount of computer time its

needs to run to completion (Horowitz et al., 2008).

Definition 2.4.6. A recursive program is just a program that call themselves in order to

obtain a solution to a problem (Standish, 1997).

Definition 2.4.7. A task is a program or a part of a program in execution (Leopald,

2001).

Definition 2.4.8. Process is used synonymously with tasks (Leopald, 2001).

Definition 2.4.9. Parallelism is a process of performing tasks concurrently (Lewis &

El-Rewini, 1992).

Definition 2.4.10. Parallel computing is a form of computation in which many calcula-

tions are carried out simultaneously, operating on the principle that large problems can

often be divided into smaller ones, which are then solved concurrently (Almasi & Got-

tlieb, 1989).

Definition 2.4.11. Distributed computing is any computing that involves multiple comput-

ers remote from each other that each has a role in a computation problem or information

processing. In distributed computing, each processor has its own private memory (dis-

tributed memory). Information is exchanged by passing messages between the processors.

The difference between parallel computing and distributed computing is the former

splits an application up into tasks that are executed at the same time, whereas the latter

splits an application up into tasks that are executed at different locations, using different

resources (Leopald, 2001)

Definition 2.4.12. Parallel programming is the technique of creating a single computer

program in such a way that it can be executed by more than one processor simultaneously

(Brawer, 1989).

Definition 2.4.13. Parallel processing is the solution of a single problem by dividing it

into a number of subs-problem, each of which may be solved by a separate processor

(Chalmers & Tidmus, 1996).
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Definition 2.4.14. Parallel system is the combination of an algorithm and parallel archi-

tecture on which it is implemented (Grama et al., 2003).

Definition 2.4.15. Distributed system is a collection of autonomous computers that are

interconnected with each other and cooperate, thereby sharing resources (Leopald, 2001).

Definition 2.4.16. Embarrassingly parallel computation is one that can be immediately

divided into completely independent parts that can be executed simultaneously (Wilkinson

& Allen, 2005).

2.4.1 Parallel Computing Platform

Parallel computer requires a suitable computing platform namely Shared Memory Multi-

processor System, Distributed Shared Memory and Message-Passing Multicomputer.

(i) Shared Memory Multiprocessor System

This architecture accomplishes interprocessor coordination through a global mem-

ory shared by all processors. Two key elements of a conventional computer system

are the processor and the memory.

(ii) Distributed Shared Memory

This system where each processor has access to the whole memory using a single

memory addresses space. A processor can access data from location, which is not

in its local memory by using message passing from the processor to the location or

from the location to the processor.

(iii) Message-Passing Multicomputer

A multiprocessor system can be created by connecting complete computers, which

each computer consists of a processor and local memory, through an interconnec-

tion network. Interactions between processors must be accomplished using mes-

sages, the Message Passing Interface (MPI) is used where MPI is a message passing

library standard developed by the Message Passing Interface Forum. Message Pass-

ing Interface is a process uses the library calls to exchange messages with another
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process. This message passing allows processes running on multiple processors to

cooperate in problems solving (Hussain & Ahmed, 2005). MPI and Parallel Vir-

tual Machine (PVM) are considered as the most popular programming techniques

for parallel computers including massively parallel computers, and PC/workstation

clusters (Fadlallah et al., 2000).

According to Gropp et al. (1997), the fundamental of MPI are as follows:

(i) MPI is a library, not language. It specifies the names, calling sequences, and

results of subroutines to be called from Fortran program the functions to be

called from C programs, and the classes and the method that make up the MPI

C++ library.

(ii) MPI is a specification, not a particular implementation.

(iii) MPI addresses the message passing model.

MPI contains approximately 125 functions. However MPI is reasonably easy to

learn as a complete message-passing program can be written with only six basic

functions. The following outline can be used to structure most MPI programs (Hus-

sain & Ahmed, 2005; Lin & Snyder, 2009):

(i) All MPI programs must include a header file (in C, mpi.h; in FORTRAN,

mpif.h).

(ii) All MPI programs must call MPI Init() as the first MPI call, to initialize data

structures by each process before any other MPI routines are invoked.

(iii) Most MPI programs call MPI COMM Size() to determine the size of the cur-

rent virtual machine, that is, how many processes are running.

(iv) Most MPI programs call MPI COMM Rank() to determine their rank, which

is a number between 0 and p− 1, p is the number of processes in the commu-

nicator.
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(v) Conditional process and general message passing can take place, for example

the calls MPI Send() and MPI Recv(). MPI Send() routine sends data to other

process, and MPI Recv() routine accepts the data. The messages are required

to be specified in this communication.

(vi) All MPI programs must call MPI Finalize as the last call to an MPI library

routine to clean up MPI data structures.

The structure of general MPI program as follows (refer Figure 2.1):

Figure 2.1: General MPI Program Structure

The paradigm of the parallel programming used with MPI is the master-slave par-

allel paradigm where the master is responsible for dividing task among other pro-

cessors called the slaves. All the slaves execute the task given concurrently. Both

the master code and the slave code are in the main program function. Thus the

following MPI code segment illustrates how this could be achieved where master()

and slave() are procedures to be executed by the master process and slave process

respectively.
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main(int argc, char *argv[])

{

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* find the process rank */

if(myrank == 0)

master();

else

slave();

MPI_Finalize();

}

2.4.2 Parallel Computer Sunfire 1280 Architecture

The parallel computer that has been used is the Sunfire V1280 High Performance Com-

puter. The Sunfire V1280 is a distributed shared memory multiprocessor system which

can accommodate up to twelve UltraSPARC III Cu processors populated on three CPU/mem-

ory boards. Each board includes four processors, all cache, and main memory. The detail

of hardware configuration on Sunfire V1280 is shown in Table 2.1:
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Table 2.1: Hardware Configuration of Sunfire 1280

Number of processors 4, 8, or 12 1.2GHz Ultra SPARC III Cu Processors
Processor

Architecture Superscalar SPARC V9, UltraSPARC III Cu architecture
Number of processors 4, 8, or 12 1.2GHz Ultra SPARC III Cu Processors

Processor
Architecture Superscalar SPARC V9, UltraSPARC III Cu architecture

Cache per processor Level 1: Parity-protected
32 KB instruction and 64 KB data on chip

(single-bit errors are corrected)
Level 2: 8 MB external cache

Capacity
Up to 96 GB memory High throughput and

low response times may be achieved
by keeping data in memory.

Up to 6 PCI slots
2x36 GB Ultra3-SCSI internal disks

1 integrated Ultra3-SCSI port
System

Main Memory 8 GB to 96 GB
I/O 6 short PCI slots (64 bit; one at 66 MHz, 5 at 33 MHz)

System Controller Integrated Ultra3 SCSI supports up to 15 SCSI devices
Hard Disk Two 73 GB disks Ultra3 SCSI internal disks

Network connectivity Two integrated Gigabit Ethernet ports (66 MHz)
Removable media DVD-ROM internal drive
Operating System Solaris 8, Solaris 9 and Solaris 10

Languages C, C++, Pascal, Fortran, Java
Networking ONC/NFS, TCP/IP, SunLink OSI, X.25, DCE, NetWare

2.4.3 Performance of Parallel Algorithms

The performance of a sequential algorithm can be measured in terms of its computation

time and memory space (Horowitz et al., 2008; Grama et al., 2003). Time complexity for

sequential algorithm can be extended to parallel algorithms. However, parallel implemen-

tation may require expense communication between the parallel parts, which contributed

more to time computation (Wilkinson & Allen, 2005).
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2.4.3.1 Speedup

Speedup, S(p) is defined as the ratio of the time taken to solve a problem in single pro-

cessor to the time required to solve the same problem on multiprocessors. On the other

hand, speedup factor is a measure of relative performance (Wilkinson & Allen, 2005).

Speedup =
Ts
Tp

(2.4)

where Ts is the sequential time and Tp is the parallel time running on p processors.

Two possibilities exist for determining the time taken of a single processor (Ts) (Chalmers

& Tidmus, 1996):

(i) the time obtained when executing an optimized sequential algorithm on a single

processor, or

(ii) the time obtained when executing the parallel algorithm on one processor.

2.4.3.2 Efficiency

Efficiency is defined as the ratio of speedup to the number of processors (Grama et al.,

2003) where efficiency means the utilization of processors being used on the computation.

Efficiency =
Speedup

P
(2.5)

In an ideal parallel system, speedup is equal to p and efficiency is equal to one. Since there

are various sources of performance loss, typically efficiency is less than 1 and diminishes

as the number of processors is increased (Lin & Snyder, 2009).

2.4.3.3 Scalability

An important aspect of performance analysis is the study of how algorithm performance

varies with parameters such as problem size, processor count, and message startup cost.
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Evaluating the scalability of a parallel algorithm, mean how effective it can use when the

number of processors increased. On the other hand, scalability is used to indicate that a

parallel algorithm can accommodate increased data items with low and bounded increase

in computational steps. It also can be used to indicate hardware design that allows the

system to be increased in size and to obtain increased performance (Wilkinson & Allen,

2005). The parallel time complexity can generally be represented as

T (n, p) = O(
T (n)

p
+ Tcomm(n, p)) (2.6)

where n is the problem size, p number of processors available, T (n) is the time complexity

of the best sequential algorithm, and Tcomm(n, p) is the overall communication overhead

of a parallel time complexity (Li, 2010).

2.4.3.4 Cost

The cost of a parallel algorithm is the product of the number of processors used and

its running time (Stojmenovic, 2006). In other words, cost equals the number of steps

executed collectively by all processors in solving a problem in the worst case. A parallel

algorithm is said to be cost optimal if its cost matches a lower bound on the number of

operations required to solve the problem sequentially.

2.4.3.5 Big O notation

Big O notation is used in computer science, and mathematics to describe performance or

complexity of an algorithm. Specifically big O notation is a convenient way to express

the worst-case scenario for a given algorithm (Levitin, 2007). It is defined such as follows

Definition 2.4.17. A function g(N) is said to be O(f(N)) if there exist constants c0 and

N0 such that g(N) is less than c0f(N) for all N > N0.
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2.4.4 Performance Influence Factors

Execution time is influenced by many factors. Among these factors are

(i) hardware technology: factors on hardware like circuit interconnections and cooling,

degree of integration play a role in determining speed.

(ii) architecture: selecting a system or optimizing a design can influence the perfor-

mance of a parallel processing. The arithmetic unit, control unit, and memory im-

pact the performance of each processor in the system. data movement and synchro-

nization among processors contribute to the performance of the system.

(iii) operating system: the operating system shares resources among multiple users of

the system and sharing resources among multiple processes belonging to one user’s

parallel program. So interprocess data movement, process control, synchronization

and input/output is managed by the operating system.

(iv) language: the efficiency of the programming implementation can influence the sys-

tem performance. The language that influences the system is determined by the

compiler and the run-time system.

(v) algorithm: the criteria of the algorithm that directly influence the performance in-

cludes the depth of the dependence graph, its size or number of operations, the

maximum, minimum and average parallelism.

2.5 Related Studies on Permutation and Determinant

This section discusses some permutation generation techniques dan division free method

for determinant. Then sequential and parallel algorithms for permutation generation and

determinant are reviewed respectively.
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2.5.1 Permutation Generation Techniques

Permutation is a set of element arranged in a definite order. The generation of all n! of

n elements is a fundamental problem in combinatorics and has a long history. Numerous

works on permutation had been done since early 1650s and permutation still being studied

due to its importance. Permutation generation method is an essential method for solving

combinatorial optimization problems such as Travelling Salesman Problems (TSP), Flow-

shop Scheduling Problems (FSP), and Quadratic Assignment Problem (QAP) (Peng et al.,

1999). In addition, permutation can be used as a tool for local memory sequence genera-

tion for data parallel programs (Huang et al., 2001).

Various methods for generating permutation had been developed such as lexicographic or-

der (Ord-Smith, 1970), transposition (Wells, 1961; Heap, 1963; Lispki & Warsaw, 1979),

cycling (Iyer, 1995), shift cursor and level (Gao & Wang, 2003), partial reversion (Za-

cks, 1984; Shin, 2002; Thongchiew, 2007), Viktorov (2007), Barisenko et al.(2008) and

Ibrahim et al. (2010).

According to Sedgewick (1977), generating permutation under cycling restriction was

initiated by Langdon (1967). This technique is simpler when compared to other tech-

nique under non exchanged based. Furthermore, Sedgewick (1977) claimed that cycling

operation is powerful due to its simplicity. The idea of Langdon (1967) technique is cy-

cling interchange n elements until two elements inductively. Every performing of any i

successive cycling interchange will produce i cycling permutation where 1 < i ≤ n. The

next cycle of interchange will give the original state of permutation. The following figure

illustrates the list of permutation based on Langdon technique for four elements.
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2 1 4 3
1 4 3 2
4 3 2 1
3 2 1 4
3 1 4 2
1 4 2 3
4 2 3 1
2 3 1 4
3 2 4 1
2 4 1 3
4 1 3 2
1 3 2 4

1 2 4 3
2 4 3 1
4 3 1 2
3 1 2 4
1 3 4 2
3 4 2 1
4 2 1 3
2 1 3 4
2 3 4 1
3 4 1 2
4 1 2 3
1 2 3 4

Figure 2.2: List of 4! Permutations Based on Langdon Technique

Meanwhile, Iyer (1995) introduced a technique which employed the cycling processes

and copying column of matrices. However Iyer’s technique was only valid for n ≤ 4

because the repetition of permutations occurs for the case n ≥ 5. The example for n = 5

is shown in Figure 2.3.

Example 2.5.1. Case n = 5

1 2 3 4 5
1 2 4 5 3
1 2 5 3 4

1 3 4 5 2
1 3 5 2 4
1 3 2 4 5

1 4 5 2 3
1 4 2 3 5
1 4 3 5 2

1 5 2 3 4
1 5 3 4 2
1 5 4 2 3

Figure 2.3: All Pivots for n = 5

Through employing cycling rotations and copying column matrices, both bold per-

mutation pivot, i.e. [1, 3, 2, 4, 5] and [1, 5, 4, 2, 3] will produce similar permutation, as

displays in Figure 2.4:
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1 3 2 4 5
4 2 3 1 5
3 2 4 5 1
2 3 1 5 4
2 4 5 1 3
3 1 5 4 2
4 5 1 3 2
1 5 4 2 3
5 1 3 2 4
5 4 2 3 1

1 5 4 2 3
2 4 5 1 3
5 4 2 3 1
4 5 1 3 2
4 2 3 1 5
5 1 3 2 4
2 3 1 5 4
1 3 2 4 5
3 1 5 4 2
3 2 4 5 1

Figure 2.4: Repetition Permutations over Pivot [1, 3, 2, 4, 5] and [1, 5, 4, 2, 3]

This problem occurred because Iyer (1995) employed the cycling n − 1 elements

until 3 elements inductively, and copying column matrices. Other than Langdon (1967)

and Iyer (1995), Ibrahim et al.(2010) introduced a new permutation technique based on

distinct starter sets by employing cycling and reversing operations. Their crucial tasks

were generating starter sets and eliminating the equivalence starter sets. Let consider

n = 4 and S = [1, 2, 3, 4]. Without loss of generality, the element 1 is fixed in order to

find the starter sets. Thus there are (n − 1)! = 3! starter sets including their equivalence

starter sets. For simplicity, we listed down the starter sets (Column A) and it equivalence

starter sets (Column B):

1 2 3 4
1 2 4 3
1 3 4 2
Column A

1 4 3 2
1 3 4 2
1 2 4 3
Column B

Figure 2.5: Starter Sets and its Equivalence

Thus by employing the cycling operation and reversing the order of permutation, 2n

distinct permutations are produced. However the equivalence starter sets will generate the

same permutations and need to be discarded. The advantages of this technique are simple

and easy to use. However, eliminating the equivalence starter sets becomes tedious when

n > 4.
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In this study, we will attempt to derive and enhance new recursive strategies to gener-

ate
(n− 1)!

2
starter sets without generating the equivalence starter sets. This derivation

can be done by investigating on Iyer (1995) technique and then employing Ibrahim et al.

(2010) method to list all n! distinct permutations. This is an initial step of developing a

new permutation method to generalise Sarrus Rule via combinatorial approach.

2.5.2 Sequential Algorithm For Generating Permutation

Algorithms can be designed as a recursive procedure (top-down), or iterative procedure

(bottom-up) (Sedgewick, 1977; Stojmenovic, 2006). Recursive procedure is one that

invokes itself repeatedly which the definition of procedure being defined is applied within

its own definition (Hanly & Koffman, 2004; Reek, 1998). The example of recursive

procedure for factorial number F (n) is as follows:

Example 2.5.2. Procedure F(n)

if n = 0 return 1

else return F(n-1)n

Meanwhile, iterative procedure uses repetitive construction such as loops and some-

times additional data structures like stacks to solve the given problems (Reek, 1998). The

example of iterative procedure for factorial number, F (n) is as follows:

Example 2.5.3. Procedure F(n)

prod = 1

for (k = 1; k ≤ n; + + k)

prod = prod ∗ k

return prod

Fike (1975) developed and compared his recursive and iterative programs without

printing statements to generate all permutations based on the exchange of two consecutive
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elements in terms of computation time. As a result, his recursive program is faster than

the iterative program. Meanwhile in terms of time complexity, Sedgewick (1977) carried

out the complexity analysis on Heap, Ives and Langdon algorithm (see Table 2.2).

Table 2.2: Time Complexity of Heap, Ives, and Langdon Algorithm

Algorithm Time Complexity
Heap (19 + (1

e
) + 10(e− 2))n! + 6n+O(1)

Ives 9n! + 2(n− 1)! + 18(n− 2)! +O(n− 4)!
Langdon n!(2n+ 10 + 9

n
) + (O(n− 2)!)

These three methods were selected as the best recursive, iterative, and cycling algo-

rithm respectively. Overall, the order of complexity of these algorithms are O(n!) for

Heap and Ives algorithms, and O(nn!) for Langdon algorithm. In spite of Sedgewick’s

survey in 1977, Knuth (2002) highlighted some demerits of the existing algorithms for

permutation generations. Basically two demerits existed such as the re-visiting of the

same permutations, and manipulation of the additional second array/table to generate all

permutations. For example, the Lexicographic order and Langdon algorithm fall under

the former demerit, whereas Ehrlich swaps and plain change algorithm fall under the lat-

ter demerit. These kinds of demerits added to additional spaces and time execution.

After 1977, some algorithms were developed in recursive ways such as Lipski and War-

saw (1979), Zaks (1984) and Iyer (1995), and iterative: Thongchiew (2007) and Viktorov

(2007). The iterative algorithm seems to have advantage of giving easy control over gen-

erating the next permutation from the current one (Stojmenovic, 2006). However in many

instances, the use of recursion enables us to specify a simple solution to a problem that

would be very difficult to solve (Hanly & Koffman, 2004). Reek (1998) addressed that

recursion is a powerful technique where a lot of problems were explained recursively only

because they are clearer than non recursive explanations. Furthermore recursion is an ex-

ample of divide-and-conquer problem solving strategy where the strategy proposed the

splitting of the input into subproblems (Horowitz et al., 2008).
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We will develop our algorithm in the recursive, and iterative procedures. Then these

algorithms will be compared to Langdon algorithm (iterative), lexicographic order algo-

rithm (recursive), and Thongchiew algorithm (iterative) over time computation. We will

analyze order of complexity of the new developed algorithm.

2.5.3 Parallel Algorithm For Generating Permutation

Permutation generation is a time consuming operation for sequential algorithm. This dis-

advantage can be overcome by using parallel computers with several processors running

simultaneously. Many literatures had given much attention in parallel algorithm for per-

mutation generations in lexicographic order i.e. Tsay and Lee (1994), Akl et al. (1994)

and Djamegni and Tchuente (1997). In spite of lexicographic order, there were also nu-

merous works had been done for parallel algorithm development in minimal change or-

der by Akl and Stojmenovic (1992), ranking and unranking by Kokosiński (1990) and

Lin (1991), shuffling by Anderson (1990) and lower exceeding sequences by Alonso and

Schott (1996).

Parallel algorithms for generating permutations of certain types were reviewed by Stoj-

menovic (2006) and Akl et al. (1994). They surveyed some developed parallel algorithms

based on six properties (P) for shared memory computing, as follows:

P1 : The permutation are listed in lexicographic order, i.e. if A = (a1, a2, ..., an)

and B = (b1, b2, ..., bn) are permutations of {p1, p2, ..., pn}, then A precedes B

lexicographically if and only if, for some j ≥ 1, ai = bi when i < j, and aj < bj .

P2 : The algorithm is cost optimal.

P3 : Time required by the algorithm between two consecutive objects is a constant.

P4 : The parallel computation should be as simple as possible.

P5 : Each processor needs as little memory as possible.
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P6 : The algorithm should produce all permutations of n elements for a given n.

Akl et al. (1994) and Djamegni and Tchuente (1997) had successfully developed a cost

optimal systolic algorithm, and pipeline algorithm respectively in which their parallel

algorithm complexity are the same as sequential algorithm for permutation generation

complexityO(n(n!)) where n is a length of permutation. Meanwhile Tsay and Lee (1994)

algorithm for lexicographic order is not optimal due to its two-dimensional triangular

array in each processor where their complexity is O(n2(n!)). In spite of cost optimal, Akl

et al. (1994) algorithm is also adaptive as it can be run by any p number of processors by

considering the following three cases:

(i) p < n: each processor do the job of
n

p
processors in the original algorithm ( with

n

p
rounded appropriately if not an integer, then the last processors does slightly less

work).

(ii) p > n, and r =
n

p
is an integer: array is divided into r group of n processors, such

that each group produced an interval of consecutive permutations of n elements.

(iii) p > n, and r =
n

p
is not an integer : this case is handled by combining (i) and (ii).

In contrast, designing other pattern of permutation generation method in parallel, prop-

erty 1 is not needed to be satisfied. For example Kokosiński (1990), Lin (1991) and

Alonso and Schott (1996) algorithm are not based on lexicographic order. Furthermore,

Stojmenovic (2006) and Akl et al. (1994) claimed that in designing parallel algorithm

for listing cases of the restricted or generalized permutation such as permutation with

repetitions, cyclic permutations, rosary permutations, alternate permutations, and linear

extension still remain as open problems since 1994.

Meanwhile property 2 excluded the communication time among the processors which in-

volved data passing/transferring especially for the parallel computers with message pass-

ing interface. Property 3 is limited to permutation generations based on exchange of two
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elements, not for other restriction such as cyclic restriction involves more than two ele-

ments in a cyclic task.

Kokosiński (1990) listed two different approaches for designing parallel generation of

permutation as follows:

(i) application of the sequential algorithm to models of parallel computation.

(ii) designing the parallel algorithms for models of parallel computations with any num-

ber of processors.

Kokosiński (1990) algorithm falls into the first approach where the sequential algorithm

for permutation generation based on interactive cost decomposition of the symmetric

group, is parallelized. Regarding to this, the ranking and unranking function techniques

are used for the proper distribution generation tasks in the multiprocessor system. Two

algorithms were developed namely the algorithm for ranking which requires linear time

and the algorithm for unranking which has O(n2) time complexity. In his program, the

N processors were assumed in the Single Instruction Multiple Data (SIMD) system and

then the subset of permutation generations were allocated among processors: the first

N − 1 processors will generate n!
N

permutations and the N th processor will generate only

(n!− (N − 1)n!

N
) permutations while the last processor generated the remainder. No ex-

planation was given about the value of N relates to n when N is not evenly divided n!.

For example, n = 12 and N = 13. In this case, even N < n! but it was not evenly

divisible. Using the unranking function, the algorithm is not cost optimal i.e. O(n2(n!))

but all n! distinct permutations are listed.

Another cost optimal parallel permutation generation algorithm for linear arrays but not

in lexicographic order pattern was given by Lin (1991). For parallel implementation, the

number of processors is assumed to be equal to the number of elements in permutations.

Anderson (1990) had developed practical algorithms for generating random permutations
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and it’s framework of parallel algorithm was for small shared memory machines in order

to get efficient implementation theoretically. The probability of permutation generated

is
1

n!
on parallel algorithm which means that there are no redundancies. This theory has

been used by Alonso and Schott (1996) while Cong and Bader (2000) also worked on par-

allel algorithm for random permutation generation. Furthermore the process of swapping

elements among processor was also under probability process. Alonso and Schott (1996)

algorithm implementation procedure i.e. the jth processor selected randomly number in

the interval [1, i] and then all permutations were obtained with probability
1

n!
which is

equal to the probability of generating lower-exceeding sequences. In addition, their algo-

rithm implemented a merging sort for all processors network. Meanwhile Cong and Bader

(2006) highlighted that random permutation generations are useful in designing random-

ized algorithms which were low cost algorithms providing good cache performance for

shared memory processors.

Overall, all previous works were implemented in different diagrams such as linear ar-

ray processor and vector computer where every processor was responsible for producing

one element of every permutation generated and the data were shared. Furthermore none

of them had been applying their algorithms for finding the determinant. In contrast our

algorithm will be implemented in distributed shared memory computer with Message

Passing Interface (MPI). A distributed shared memory system containing p processors

p0, p1, p2, . . . , pp−1 connected by an interconnection network. Each processors has its own

local memory and there is no global shared memory (Li, 2009). Every processor is re-

sponsible for generating n elements of permutation. The production of one element from

each processor and passing to other processors will be time consuming because with MPI

environment, data is not shared but copied. Message Passing is a powerful and a very gen-

eral method of expressing parallelism (Pacheco, 1997). Quinn (2004) highlighted debug-

ging message-passing programs were simpler than debugging shared-variable programs.

Furthermore we will use Message Passing Interface for distributed shared computing to
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develop parallel algorithm for permutation and applied that algorithm for finding the de-

terminant of a square matrix.

2.5.4 Finding the Determinant Using n! Permutations

Application of permutations can be found in the combinatorial design problem such as lin-

ear assignment problem (Rolfe, 2008), Latin square enumeration (Fike, 1976) and Travel-

ing Salesman Problem (Aziz et al., 2009). Besides the combinatorial design problem, the

permutation also had been used to determine the determinant of a square matrix (Bankier,

1961; Pavlovic, 1961; Thongchiew, 2007).

Pavlovic (1961) listed three general procedures of Sarrus Rule for finding the determi-

nant D of square matrix with order n ≥ 3 where:

D = |aij| (i, j = 1, 2, 3, ..., n)

The algorithm was as follows:

(i) Find the
(n− 1)!

2
permutations to be obtained by permutating the columns from

second to the nth (with condition: do not take two permutations whose indices

proceed in the reverse order), the first column remaining in the same place of the

diagram.

(ii) Rewrite the first n − 1 columns to the right to all of
(n− 1)!

2
determinants ob-

tained with the shown permutations of columns and carry out the multiplication of

elements along the traced arrows.

(iii) Find the even or odd of every multiplication of elements in (ii).

From these three procedures, we found that in procedure (i), the specific method for find-

ing
(n− 1)!

2
permutation is undefined. It can be seen from an example given in their

paper for n = 5, there exist two permutations where the indices proceed in reverse order.
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It violated the principle stated in procedure (i). Meanwhile, Bankier (1961) discussed the

same procedure for n ≤ 5.

Beside Pavlovic and Bankier’s work, Thongchiew (2007) developed the sequential al-

gorithm for finding determinant using permutation method based on Leibniz (1658) def-

inition. He derived partial cyclic method for generating permutation and applied it in de-

termining the determinant. Unfortunately, his algorithm was not analyzed and compared

to other existing method. Inspiring by Pavlovic (1960), Bankier (1961), and Thongchiew

(2007) work, we extend the Sarrus Rule method for any size of square matrices via per-

mutation approach.

2.5.5 Division Free Parallel Algorithm for Finding Determinant

Among the dvision free method for finding the determinant, only cofactor expansion

method was parallelized and done by Sasaki and Kanada (1981), and Goldfinger (2008).

Sasaki and Kanada (1981) designed parallel algorithm for minor expansion. However,

their parallel algorithms never have been tested and compared.

Meanwhile Goldfinger (2008) designed a parallel algorithm for cofactor expansion method

in cell processor by distributing each aijMij to different Synergistic Processing Unit

(SPU). Cell processor is a creative architecture that allow for parallel computing and

Single Instruction Multiple Data (SIMD) operations. The order complexity of entire al-

gorithm is O((n!)2) which was improved than order complexity of sequential cofactor

expansion algorithm O(n((n− 1)!)3).

Overall, a parallel algorithm for finding the determinant based on permutation has yet

to be constructed.
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2.6 Summary

From the literature, we found that no research had been conducted in developing sequen-

tial and parallel algorithm for generating permutation and its application in determining

the determinant of square matrix based on cross multiplication method known as the Sar-

rus Rule.
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CHAPTER THREE

DEVELOPING NEW SEQUENTIAL ALGORITHMS FOR

LISTING ALL PERMUTATIONS USING STARTER SETS

3.1 Introduction

In this chapter, we present two distinct techniques for generating starter sets and listing

n! distinct permutations. These approaches are motivated by Ibrahim et al.(2010) work

where they introduced a new permutation technique based on distinct starter sets by em-

ploying circular and reversing operation. The crucial tasks of Ibrahim et al.(2010) method

were distinct starter sets generation and the equivalence starter sets elimination. Although

this technique was simple and easy to use, eliminating the equivalence starter sets unfortu-

nately was a complicated process as the number of elements increased. We will overcome

this drawback by proposing two new operation strategies for generating distinct starter

sets and therefore the equivalence starter sets elimination process is avoidable. At the

end, all n! distinct permutations will be listed down.

This chapter begins with the introduction. Then some preliminary definitions are de-

fined in Section 3.2. Meanwhile in Section 3.3, the algorithm developments are presented

where two operation strategies for generating starter sets are derived. Finally the theoret-

ical and numerical results of the algorithms are discussed in Section 3.4 and 3.5 respec-

tively.

3.2 Preliminary Definitions

The following definitions will be used throughout this study.

Definition 3.2.1. A starter set, S is a basis to enumerate other permutations.

Definition 3.2.2. An equivalence starter set is a set that can produce the same permuta-

tion from other starter set.
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Each starter set has an equivalence starter set where it can be produced by reversing

the (n− 1) elements of the starter set itself.

Definition 3.2.3. The circular operation (CO) over k elements is the process where the k

elements of permutation are rotated.

The algorithm of CO is as follows:

for i = 1 to k do
old = num[i]
num[i] = num[i+ 1]
num[i+ 1] = old

end for

Definition 3.2.4. The exchange operation is a interchanges process over two integers k

and l, k 6= l, but leaves all other integers fixed.

Definition 3.2.5. The reverse set is a set that is produced by reversing the order of per-

mutation set.

Definition 3.2.6. A Latin square of order n is an n× n array in which n distinct symbols

are arranged where each element occurs once in each row and column.

Definition 3.2.7. The circular permutation of order n (CP) is a Latin square of order n

which is obtained by employing the circular permutation operation over all elements.

Example 3.2.8.

Let n = 4 and without loss of generality, take A = [1, 3, 2, 4] as a starter with fixed

element 1 . By rotating all elements to the left recursively, yield the next three arrays.

1 3 2 4

3 2 4 1

2 4 1 3

4 1 3 2
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If we cycle the last row, we will get the original starter set and the cycle is completed.

Hence, it takes four steps for the original starter set to get back to itself. Therefore we say

the above 4× 4 array of permutation as circular permutation of order 4.

Definition 3.2.9. The reverse of circular permutation (RoCP) is also a Latin square of

order n which is obtained by reversing arrangement element in each row of circular per-

mutation.

Example 3.2.10.

From Example 3.2.8, the following 4×4 array of permutation is the reverse of circular

permutation.

4 2 3 1

1 4 2 3

3 1 4 2

2 3 1 4

The next example is given to demonstrate the equivalence starter sets generate the

same permutations as generated by the starter sets.

Example 3.2.11.

Consider n = 3, and we fix element 1. There are two starters : [1, 2, 3] and [1, 3, 2].

The circular process is applied on the both starters. The CP of each starter is listed as

follows:

1 2 3 1 3 2

2 3 1 3 2 1

3 1 2 2 1 3

Then we apply reversing process to either CP of the starter set i.e. [1, 2, 3] and its RoCP

as follows:
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3 2 1

1 3 2

2 1 3

The RoCP of the starter [1, 2, 3] generate the same permutation as [1, 3, 2]. Therefore we

called [1, 3, 2] as equivalence starter. Thus we need to discard the equivalence starter to

avoid repetition.

3.3 Algorithm Development for Permutation

The development of a new algorithm is divided into two stages. The first stage is starter

sets generation while the second stage is permutation generation by exploiting the results

in the first stage. The methods to generate
(n− 1)!

2
starter sets are based on circular (non

exchange) and exchange operations. For listing all n! distinct permutations, the CP and

RoCP operations will be employed. Thus it would be worthwhile to see the advantages

of these two operations in term of generating starter sets and order of complexity of the

algorithms.

3.3.1 Circular Operation Strategy

Let S be the set of n elements such that S = [1, 2, 3, ..., n]. The circular operation will

be used on both starter sets and permutation generations. Generally the operation starts

from the last three elements until n elements are selected for cycling inductively. The

process of generating starter sets is discussed in detail for case n = 4 and 5 in Section

3.3.1.1 and then exploited them for listing n! permutations in Section 3.3.1.2. Then, the

generalisation of the circular operation is derived in Section 3.3.1.3.

3.3.1.1 Starter Sets Generation Under Circular Operation

A step by step procedure for generating starter sets is given for case n = 4 and 5.

Let n = 4.
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Step 1: Let S = [1, 2, 3, 4] be an initial permutation and without loss of generality, the

first element is fixed.

Step 2: Identify the last three elements of initial permutation from Step 1. Employing

CO to the last three elements on initial permutation from Step 1 will produce

other three distinct starter sets is as follows:

1 2 3 4
1 3 4 2
1 4 2 3

Figure 3.1: List of Starter Sets for n = 4

Next, the circular strategy to obtain starter sets for n = 5 is demonstrated.

Step 1: Let S = [1, 2, 3, 4, 5] be an initial permutation and without loss of generality, the

first element is fixed.

Step 2: Identify the last three elements of initial permutation from Step 1. Employing

CO to the last three elements on initial permutation from Step 1 will produce

other three distinct starter sets is as follows:

1 2 3 4 5
1 2 4 5 3
1 2 5 3 4

Figure 3.2: Starter Sets by Performing CO over Last Three Elements

Step 3: Identify the last four elements of starter sets from Step 2. Employing CO to the

last four elements on each starter set from Step 2 will produce 12 distinct

starter sets is as follows:
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1 2 3 4 5
1 3 4 5 2
1 4 5 2 3
1 5 2 3 4
1 2 4 5 3
1 4 5 3 2
1 5 3 2 4
1 3 2 4 5
1 2 5 3 4
1 5 3 4 2
1 3 4 2 5
1 4 2 5 3

Figure 3.3: List of Starter Sets for n = 5

Next section discusses the generation of n! permutation using starter sets.

3.3.1.2 Permutation Generation under Circular and Reversing Operation

The n! distinct permutations are listed down where column A represents the CP and col-

umn B represents the RoCP. Each starter set is exploited by employing circular permuta-

tion and reversing operations over n elements. Figure 3.4 and 3.5 represent the n! permu-

tations on starter sets which was generated by the circular operation.

Case n = 4

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3
1 3 4 2
3 4 2 1
4 2 1 3
2 1 3 4
1 4 2 3
4 2 3 1
2 3 1 4
3 1 4 2
Column A

4 3 2 1
1 4 3 2
2 1 4 3
3 2 1 4
2 4 3 1
1 2 4 3
3 1 2 4
4 3 1 2
3 2 4 1
1 3 2 4
4 1 3 2
2 4 1 3
Column B

Figure 3.4: List of 4! Permutations
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Case n = 5.

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4
1 3 4 5 2
3 4 5 2 1
4 5 2 1 3
5 2 1 3 4
2 1 3 4 5
1 4 5 2 3
4 5 2 3 1
5 2 3 1 4
2 3 1 4 5
3 1 4 5 2
1 5 2 3 4
5 2 3 4 1
2 3 4 1 5
3 4 1 5 2
4 1 5 2 3
1 2 4 5 3
2 4 5 3 1
4 5 3 1 2
5 3 1 2 4
3 1 2 4 5
1 4 5 3 2
4 5 3 2 1
5 3 2 1 4
3 2 1 4 5
2 1 4 5 3
Column A

5 4 3 2 1
1 5 4 3 2
2 1 5 4 3
3 2 1 5 4
4 3 2 1 5
2 5 4 3 1
1 2 5 4 3
3 1 2 5 4
4 3 1 2 5
5 4 3 1 2
3 2 5 4 1
1 3 2 5 4
4 1 3 2 5
5 4 1 3 2
2 5 4 1 3
4 3 2 5 1
1 4 3 2 5
5 1 4 3 2
2 5 1 4 3
3 2 5 1 3
3 5 4 2 1
1 3 5 4 2
2 1 3 5 4
4 2 1 3 5
5 4 2 1 3
2 3 5 4 1
1 2 3 5 4
4 1 2 3 5
5 4 1 2 3
3 5 4 1 2
Column B

Figure 3.5: List of 5! Permutations
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1 5 3 2 4
5 3 2 4 1
3 2 4 1 5
2 4 1 5 3
4 1 5 3 2
1 3 2 4 5
3 2 4 5 1
2 4 5 1 3
4 5 1 3 2
5 1 3 2 4
1 2 5 3 4
2 5 3 4 1
5 3 4 1 2
3 4 1 2 5
4 1 2 5 3
1 5 3 4 2
5 3 4 2 1
3 4 2 1 5
4 2 1 5 3
2 1 5 3 4
1 3 4 2 5
3 4 2 5 1
4 2 5 1 3
2 5 1 3 4
5 1 3 4 2
1 4 2 5 3
4 2 5 3 1
2 5 3 1 4
5 3 1 4 2
3 1 4 2 5
Column A

4 2 3 5 1
1 4 2 3 5
5 1 4 2 3
3 5 1 4 2
2 3 5 1 4
5 4 2 3 1
1 5 4 2 3
3 1 5 4 2
2 3 1 5 4
4 2 3 1 5
4 3 5 2 1
1 4 3 5 2
2 1 4 3 5
5 2 1 4 3
3 5 2 1 4
2 4 3 5 1
1 2 4 3 5
5 1 2 4 3
3 5 1 2 4
4 3 5 1 2
5 2 4 3 1
1 5 2 4 3
3 1 5 2 4
4 3 1 5 2
2 4 3 1 5
3 5 2 4 1
1 3 5 2 4
4 1 3 5 2
2 4 1 3 5
5 2 4 1 3
Column B

(Continue Figure 3.5)

As can be observed from Figures 3.4 and 3.5, there was no redundancy permutation

occurs when the starter sets are exploited for generating all permutations by employing

CP and RoCP operations.

Remark 3.3.1. The bold permutation in Column A represents the starter sets.
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3.3.1.3 Circular Algorithm

Consider the algorithm of circular operation as PERMUT1 which is a recursion algorithm

with only one recursive call. Let integer n be an initial inputs, and temp = n − 1 is an

initial rank of the procedure PERMUT1. At each stage of recursion, a rank for algorithm

PERMUT1 decreases from n− 1 to 2 where each recursion call updates the entries in the

storage. The general algorithm for permutation generation by employing CP and RoCP

operation on starter sets which is generated from the circular operation is as follows:

Let S be the set of n elements i.e. S = [1, 2, 3, 4, . . . , k, k + 1, . . . , n− 1, n].

Algorithm 3.1 PERMUT1
PERMUT1(temp)
if temp = 2 then

for i = 1 to n do
performing CP and RoCP operation over all element

end for
return

end if
temp = temp− 1
for i = n to temp do

performing circular operation (CO) to the last temp element
call PERMUT1(temp)

end for

Step by step process of PERMUT1 algorithm.

Step 1: Let [1, 2, 3, 4, . . . , k, k + 1, . . . , n − 2, n − 1, n] be an initial permutation and

without

loss of generality, the first element is fixed.

Step 2: Identify the last three elements of each starter set in Step 1. By employing

circular operation (CO) to last three elements on each starter sets in Step 1,

the three distinct starter sets are obtained.

Step 3: Identify the last four elements of each starter set in Step 2. By employing circular

operation (CO) to last four elements on each starter set in Step 2, the 12
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distinct starter sets are obtained.

...

Step n− 2: Identify the last (n− 1) elements of each starter set in Step (n− 3). By

employing circular operation (CO) to the last (n−1) elements on each starter

set in Step (n− 2), the
(n− 1)!

2
distinct starter sets are obtained.

Step n− 1: Perform CP and RoCP operations simultaneously to all n elements of

(n− 1)!

2
distinct starter sets and n! distinct permutations are obtained.

Step n: Display all n! permutations.

The second strategy for generating starter sets and listing all permutation is discussed in

the following section.

3.3.2 Exchange Operation Strategy

Let S be the set of n elements such that S = [1, 2, 3, ..., n]. This strategy is different

from the circular strategy. in term of starter sets generation. For initial start, an element

on (n− 2)th is selected to exchange until second element is selected for exchange to the

right inductively. The process of generating starter sets is discussed in detail for case

n = 4 and 5 in Section 3.3.2.1 and the generation of n! permutation using starter sets

is discussed in Section 3.3.2.2. Finally, the generalization of the exchange operation is

given in Section 3.3.2.3.

3.3.2.1 Starter Sets Generation Under Exchange Operation

The step by step of starter sets derivation is demonstrated for n = 4 and 5 as follows.

Step 1: Let [1, 2, 3, 4] be an initial permutation and without loss of generality, the first

element is fixed.
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Step 2: Identify the element in the (n− 2)th position i.e. element ‘2’. Exchange this

element until it reaches the nth (last) position. We produce three distinct starter

sets as follows

1 2 3 4
1 3 2 4
1 3 4 2

Figure 3.6: List of Starter Sets for n = 4

Next, we shall illustrate the second strategy for n = 5.

Step 1: Set [1, 2, 3, 4, 5] be an initial permutation and without loss of generality, the first

element is fixed.

Step 2 :Identify the element in the (n− 2)th position i.e. element ‘3’. Exchange this

element until it reaches the nth (last)position. We produce three distinct starter

sets as follows:

1 2 3 4 5
1 2 4 3 5
1 2 4 5 3

Figure 3.7: Starter Sets from the Exchange of the (n− 2)th Element

Step 3 : Identify the element in the (n− 3)th position i.e. ‘2’ in each starter sets from

Step 2. Exchange this element until it reaches the nth (last)position. We

produce other 12 distinct starter sets as shown in Figure 3.8 below.
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1 2 3 4 5
1 3 2 4 5
1 3 4 2 5
1 3 4 5 2
1 2 4 3 5
1 4 2 3 5
1 4 3 2 5
1 4 3 5 2
1 2 4 5 3
1 4 2 5 3
1 4 5 2 3
1 4 5 3 2

Figure 3.8: All Starter Set for n = 5

Next section describes the generation of n! permutation using starter sets.

3.3.2.2 Permutation Generation Under Circular and Reversing Operations

The starter sets are then exploited for listing all permutations using circular and reversing

operations. Example for n = 4 and 5 are demonstrated.

Case n = 4.

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3
1 3 2 4
3 2 4 1
2 4 1 3
4 1 3 2
1 3 4 2
3 4 2 1
4 2 1 3
2 1 3 4
Column A

4 3 2 1
1 4 3 2
2 1 4 3
3 2 1 4
4 2 3 1
1 4 2 3
3 1 4 2
2 3 1 4
2 4 3 1
1 2 4 3
3 1 2 4
4 3 1 2
Column B

Figure 3.9: List of 4! Permutations
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Case n = 5

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4
1 3 2 4 5
3 2 4 5 1
2 4 5 1 3
4 5 1 3 2
5 1 3 2 4
1 3 4 2 5
3 4 2 5 1
4 2 5 1 3
2 5 1 3 4
5 1 3 4 2
1 3 4 5 2
3 4 5 2 1
4 5 2 1 3
5 2 1 3 4
2 1 3 4 5
1 2 4 3 5
2 4 3 5 1
4 3 5 1 2
3 5 1 2 4
5 1 2 4 3
1 4 2 3 5
4 2 3 5 1
2 3 5 1 4
3 5 1 4 2
5 1 4 2 3

Column A

5 4 3 2 1
1 5 4 3 2
2 1 5 4 3
3 2 1 5 4
4 3 2 1 5
5 4 2 3 1
1 5 4 2 3
3 1 5 4 2
2 3 1 5 4
4 2 3 1 5
5 2 4 3 1
1 5 2 4 3
3 1 5 2 4
4 3 1 5 2
2 4 3 1 5
2 5 4 3 1
1 2 5 4 3
3 1 2 5 4
4 3 1 2 5
5 4 3 1 2
5 3 4 2 1
1 5 3 4 2
2 1 5 3 4
4 2 1 5 3
3 4 2 1 5
5 3 2 4 1
1 5 3 2 4
4 1 5 3 2
2 4 1 5 3
3 2 4 1 5

Column B

Figure 3.10: List of 5! Permutations

55



1 4 3 2 5
4 3 2 5 1
3 2 5 1 4
2 5 1 4 3
5 1 4 3 2
1 4 3 5 2
4 3 5 2 1
3 5 2 1 4
5 2 1 4 3
2 1 4 3 5
1 2 4 5 3
2 4 5 3 1
4 5 3 1 2
5 3 1 2 4
3 1 2 4 5
1 4 2 5 3
4 2 5 3 1
2 5 3 1 4
5 3 1 4 2
3 1 4 2 5
1 4 5 2 3
4 5 2 3 1
5 2 3 1 4
2 3 1 4 5
3 1 4 5 2
1 4 5 3 2
4 5 3 2 1
5 3 2 1 4
3 2 1 4 5
2 1 4 5 3

Column A

5 2 3 4 1
1 5 2 3 4
4 1 5 2 3
3 4 1 5 2
2 3 4 1 5
2 5 3 4 1
1 2 5 3 4
4 1 2 5 3
3 4 1 2 5
5 3 4 1 2
3 5 4 2 1
1 3 5 4 2
2 1 3 5 4
4 2 1 3 5
5 4 2 1 3
3 5 2 4 1
1 3 5 2 4
4 1 3 5 2
2 4 1 3 5
5 2 4 1 3
3 2 5 4 1
1 3 2 5 4
4 1 3 2 5
5 4 1 3 2
2 5 4 1 3
2 3 5 4 1
1 2 3 5 4
4 1 2 3 5
5 4 1 2 3
3 5 4 1 2

Column B

(Continue Figure 3.10)

As can be observed from Figures 3.9 and 3.10, there was no redundancy permutation

occurs when the starter sets are exploited for generating all permutations by employing

CP and RoCP operations.

Remark 3.3.2. The bold permutation in Column A represents the starter sets.
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3.3.2.3 Exchange Algorithm

Let define the algorithm for exchange operation strategy as a PERMUT2 which was also

a recursion procedure. Let integer n be an initial input, and temp = n−1 is an initial rank

of the procedure PERMUT2. At each stage of recursion, a rank for procedure PERMUT2

is reduced from n − 1 to 2 where each recursion call updates the entries in the storage.

The general algorithm for permutation generation by employing CP and RoCP operation

on starter sets which is generated from the exchange operation is presented as follows:

Algorithm 3.2 PERMUT2
PERMUT2(temp)
if temp = 2 then

for i = 1 to n do
performing CP and RoCP operations for all element

end for
return

end if
temp = temp− 1
for i = temp to n do

performing exchanges operation to the element at temp-th position
call PERMUT2(temp)

end for

The general algorithm for permutation generation by employing CP and RoCP operations

on starter sets which is generated from the exchange operation as follows:

Step 1: Set [1, 2, 3, 4, . . . , k, k + 1, . . . , n − 2, n − 1, n] be an initial permutation and

without

loss of generality, the first element is fixed.

Step 2: Identify the element in the (n− 2)th position of the initial permutation in Step 1.

Exchange this element until it reaches the nth (last) position. Hereby three

distinct starter sets are obtained.

Step 3: Identify the element in the (n− 3)th position of each starter set in Step 2.

Exchange this element until it reaches the nth (last) position. Hereby 12 distinct
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starter sets are obtained.

...

Step n−2: Identify the element in the second position of each starter set in Step (n−3).

Exchange this element until it reaches the nth (last) position. At this step,

the
(n− 1)!

2
distinct starter sets are obtained.

Step n − 1: Perform CP and RoCP operations simultaneously to all n elements of
(n− 1)!

2

distinct starter sets and n! distinct permutations are obtained.

Step n: Display all n! permutations.

The theoretical results for permutation generation are presented in the following section.

3.4 Theoretical Results

The following lemmas and theorem are produced from the recursive circular and exchange

operation for starter set generation and employing CP and RoCP for listing all permuta-

tions.

Lemma 3.4.1. The number of distinct permutations produced by each distinct starters set

by performing the circular permutation and reversing of circular permutation operation

over all elements is 2n.

Proof. Suppose a starter setA = [1, 2, ..., n−1, n] with n distinct elements. By Definition
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3.2.3, n elements are employed using CO, the following permutations are obtained.

1 2 3 ... n− 1 n

2 3 4 ... n 1

3 4 5 ... 1 2

4 5 6 . . . 2 3

...
...

...
...

...
...

n 1 . . . . . . n− 2 n− 1

Thus n distinct circular permutations (CP) are produced. Then from Definition 3.2.8,

the reversing of circular permutation operation of this CP, the next n distinct circular

permutations are obtained as follows

n n− 1 ... 3 2 1

1 n ... 4 3 2

2 1 ... 5 4 3

3 2 . . . 6 5 4

...
...

...
...

...
...

n− 1 n− 2 . . . 2 1 n

Since each CP and RoCP has order n, then the total of 2n distinct permutations is pro-

duced.

Lemma 3.4.2. The number of generated distinct starter sets under circular operation for

n ≥ 3 is (n−1)!
2

.

Proof. Suppose [1, 2, 3, ..., n− 3, n− 2, n− 1, n] be an initial starter for any n ≥ 3. From

Definition 3.2.3, by employing CO to the last three elements, three distinct starter sets are
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produced as follows:

1 2 3 ... n− 3 n− 2 n− 1 n (starter 1)

1 2 3 ... n− 3 n− 1 n n− 2 (starter 2)

1 2 3 ... n− 3 n n− 2 n− 1 (starter 3)

Then for each previous starter set, the last four elements will be selected and by employing

CO on these elements of previous starter sets. By definition 3.2.3 four distinct starters are

produced as follows:

From starter 1: 1 2 3 ... n− 3 n− 2 n− 1 n

1 2 3 ... n− 2 n− 1 n n− 3

1 2 3 ... n− 1 n n− 3 n− 2

1 2 3 ... n n− 3 n− 2 n− 1

From starter 2: 1 2 3 ... n− 3 n− 1 n n− 2

1 2 3 ... n− 1 n n− 2 n− 3

1 2 3 ... n n− 2 n− 3 n− 1

1 2 3 ... n− 2 n− 3 n− 1 n

From starter 3: 1 2 3 ... n− 3 n n− 2 n− 1

1 2 3 ... n n− 2 n− 1 n− 3

1 2 3 ... n− 2 n− 1 n− 3 n

1 2 3 ... n− 1 n− 3 n n− 2

Thus, at this stage the total starter sets is 3 × 4 = 12. The processes will be repeated

recursively until the last (n− 1) elements are circulated.
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3 last elements ⇒ 3 starter sets

4 last elements ⇒ 4 starter sets

5 last elements ⇒ 5 starter sets

6 last elements ⇒ 6 starter sets
...

...
...

...

(n− 2) last elements ⇒ (n− 2) starter sets

(n− 1) last elements ⇒ (n− 1) starter sets

By product rule, we produce

(3× 4× ...× n− 1)

=
1× 2

2
× (3× 4× ...× n− 1))

=
(n− 1)!

2
distinct starter sets

Lemma 3.4.3. The number of generated distinct starter sets under exchange operation

for n ≥ 3 is
(n− 1)!

2
.

Proof. Suppose [1, 2, 3, ..., n− 3, n− 2, n− 1, n] be an initial starter for any n ≥ 3. The

first element will be selected from (n− 2)th position i.e. element n− 2. Then by moving

that element to the right until it reaches nth position, three distinct starter sets are obtained

as follows:

1 2 3 ... n− 3 n− 2 n− 1 n (starter 1)

1 2 3 ... n− 3 n− 1 n− 2 n (starter 2)

1 2 3 ... n− 3 n− 1 n n− 2 (starter 3)

Then for each previous starter set, element in (n − 3)th will be selected i.e. element

n−3. Then by moving that element to the right until it reaches the nth position from each
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previous starter set, four distinct starters are produced as follows:

From starter 1: 1 2 3 ... n− 3 n− 2 n− 1 n

1 2 3 ... n− 2 n− 3 n− 1 n

1 2 3 ... n− 2 n− 1 n− 3 n

1 2 3 ... n− 2 n− 1 n n− 3

From starter 2: 1 2 3 ... n− 3 n− 1 n− 2 n

1 2 3 ... n− 1 n− 3 n− 2 n

1 2 3 ... n− 1 n− 2 n− 3 n

1 2 3 ... n− 1 n− 2 n n− 3

From starter 3: 1 2 3 ... n− 3 n− 1 n n− 2

1 2 3 ... n− 1 n− 3 n n− 2

1 2 3 ... n− 1 n n− 3 n− 2

1 2 3 ... n− 1 n n− 2 n− 3

After the element (n− 3)th is selected, the total starter sets is 3× 4 = 12. The processes

will be repeated recursively until the element in second position is chosen.

(n− 2)th position ⇒ 3 starter sets

(n− 3)th position ⇒ 4 starter sets

(n− 4)th position ⇒ 5 starter sets

(n− 5)th position ⇒ 6 starter sets
...

...

(n− i+ 1)th position ⇒ i starter sets

(n− i)th position ⇒ i+ 1 starter sets

(n− i− 1)th position ⇒ i+ 2 starter sets
...

...

3rd position ⇒ n− 2 starter sets

2nd position ⇒ n− 1 starter sets
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Using product rule, we have

(3× 4× ...× n− 1)

=
1× 2

2
× (3× 4× ...× n− 1))

=
(n− 1)!

2
distinct starter sets

Remark 3.4.4. The formula of
(n− 1)!

2
was only defined for n ≥ 3. For case n = 2 is

impossible because it has only one distinct starter set while
(2− 1)!

2
=

1

2
.

Theorem 3.4.5. Employing Circular Permutation and Reverse of Circular Permutation

on
(n− 1)!

2
distinct circular starter sets produces n! distinct permutations.

Proof. From Lemma 3.4.2 there are
(n− 1)!

2
distinct starter sets produced under circular

operation. Then from Lemma 3.4.1, 2n distinct permutations are obtained by employing

circular and reversing operation on the starter sets. Thus
(n− 1)!

2
×2n = n! permutations

are generated.

Theorem 3.4.6. Employing Circular Permutation and Reverse of Circular Permutation

on
(n− 1)!

2
distinct exchange starter sets produces n! distinct permutations.

Proof. From Lemma 3.4.3, there are
(n− 1)!

2
distinct starter sets produced under ex-

change operation. Then from Lemma 3.4.1, 2n distinct permutations are obtained by

employing circular and reversing operation on the starter sets. Thus
(n− 1)!

2
× 2n = n!

permutations are generated.

Numerical results will be presented in the following section.

3.5 Numerical Results

For permutation generation algorithm performance, our new algorithms were compared to

other non exchanges based permutation generation program namely Lexicographic order
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(Ord-Smith,1970), Langdon (1967), and Thongchiew (2007) in term of time computation.

All sequential algorithms are implemented in C language and tested on the HP Computer

with Intel Xeon E5504 2.0 GHz processor and 4.00 GB Random Access Memory (RAM).

The result is an execution time without printing statements.

For the time computation among the recursive algorithm, our two recursive algorithms

were compared to Lexicographic order algorithm. The results are displayed in Table 3.1.

Table 3.1: The Computation Time of Recursive Algorithm (in seconds)

n PERMUT1 PERMUT2 Lexicographic
8 0.000746 0.000753 0.003411
9 0.007398 0.007478 0.031300
10 0.110915 0.079344 0.311021
11 1.038668 0.935565 3.402234
12 12.560315 11.967977 40.772082
13 172.104967 167.362079 530.842444
14 2561.104967 2480.992924 7454.880165
15 41885.652796 38993.829780 117521.839515

As shown in Table 3.1, new recursive algorithm (PERMUT1 and PERMUT2) took

less time when compared to Lexicographic order. The results among iterative algorithms

are displayed in Table 3.2. In spite of recursive algorithm, we also implemented PER-

MUT1 algorithm in iterative manner since Langdon (1967) and Thongciew (2007) algo-

rithm were developed in iterative procedure. We name our iterative algorithm as PER-

MUTIT3.

Table 3.2: The Computation Time of Iterative Algorithm (in seconds)

n PERMUTIT3 Langdon Thongchiew
8 0.000788 0.001575 0.007705
9 0.007757 0.015513 0.069762
10 0.104555 0.170119 0.696822
11 1.033967 2.011029 7.675245
12 13.282527 26.356982 92.155745
13 183.498911 365.671963 1198.827993
14 2711.660657 5427.021299 22448.205515
15 42586.687827 85173.826685 246139.962499
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From Table 3.2, we observed that PERMUTIT3 is faster than Langdon (1967) and

Thongchiew (2007). Langdon (1967) is two times slower than PERMUTIT3 for n > 9.

Meanwhile Thongchiew (2007) is the slowest among these three algorithms.

The following table shows the results of run times among new algorithms for permutation

generation.

Table 3.3: The Computation Time Among New Algorithms (in seconds)

n PERMUT1 PERMUT2 PERMUTIT3
(1st strategy rec.) (2nd strategy rec.) (1st strategy iter.)

8 0.000746 0.000753 0.000092
9 0.007398 0.007478 0.007757
10 0.110915 0.079344 0.104555
11 1.038668 0.935565 1.033967
12 12.560315 11.96799 13.282527
13 172.104967 167.362079 183.498911
14 2561.104967 2480.992924 2711.660657
15 41885796.652 38993.829780 42586.687827

Table 3.3 indicates that PERMUT1 and PERMUT2 algorithms performed better than

PERMUTIT3 algorithm except at n = 8. In other words, the recursive algorithms are the

best in terms of time computation. The time of execution was incremented consistently

when n became larger. For n = 8 until 15, our programs (PERMUT1, PERMUT2 and

PERMUTIT3) ran better in time compared to Lexicographic order, Langdon (1967) and

Thongchiew (2007). The factor that contributed to lesser execution time of our algorithm

was due to fact that CP and RoCP operations were performed simultaneously for listing

all permutations. On the other hand, Langdon (1967) and Thongchiew (2007) algorithms

generated all permutations and required more steps. This factor might have affected the

computational time.

Remark 3.5.1. All the results from the programs are given in Appendix E. The example

output is given for n = 5.

Next section, the order of complexity of our algorithms is discussed.
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3.5.1 Computational Complexity of Permutation Algorithm

The time T (n) calculation of a program is the sum of the compile time and the run (exe-

cution) time. Finding the exact formula of run time is an impossible task, since the time

needed for an addition, subtraction, multiplication, etc., often depended on the numbers

being added, subtracted, multiplied, etc (Horowitz et al., 2008). So we identified the most

dominant operation of the algorithm which contributed to the total running time.

Since the new algorithm used recursion to complete tasks which depended on the pre-

vious rank of the task, the order of complexity of this algorithm will be calculated on the

recursion function such as PERMUT1, and PERMUT2. Meanwhile for PERMUTIT3,

we assumed that the order of complexity similar to PERMUT1.

3.5.1.1 Pseudocode of Circular Operation Strategy under Recursion (PERMUT1)

This pseudocode PERMUT1 is a recursive algorithm for generating permutation under

circular operation. The input data is n which represents a number of elements and the

output is a list of n! distinct permutations.

Pseudocode PERMUT1(temp)

1: if temp = 2 then

2: for i = 1 to n do

3: old = a[1]

4: for k = 1 to n− 1 do

5: a[k] = a[k + 1]

6: end for

7: a[n] = old

8: end for

9: return

10: end if
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11: temp = temp− 1

12: for i = n to temp do

13: old = a[temp]

14: for k = temp to n− 1 do

15: a[k] = a[k + 1]

16: end for

17: a[n] = old

18: PERMUT1(temp)

19: end for

The critical section in this algorithm is steps 12 - 19 where starter sets are generated.

There is a nested loop whose contains a recursive call on less rank (temp gets smaller).

The initial temp = n − 1. At step 11, the value of temp is decreasing. The process will

stop when temp = 2. On the other hand, the recursion call will stop when temp = 2 or

the recursion will not be called when n = 3.

The order of complexity for steps 12 -19 is calculate as follows:

For any value of temp for loop at steps 14-16, the operation needs is

(n− 1− temp)

For the outer loop at steps 12 -19, the total operation is

(2 + [n− 1− temp])

Since we set up the initial temp = n− 1, at steps 11, the new temp = n− 2.

(2 + [n− 1− (n− 2)])

=(2 + [1])
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temp = n− 3

(2 + [n− 1− (n− 3)])× (2 + [1])

=(2 + [2])× (2 + [1])

temp = n− 4

(2 + [n− 1− (n− 4)])× (2 + [2])× (2 + [1])

=(2 + [3])× (2 + [2])× (2 + [1])

Until when temp = 2, number of operation is

(2 + [n− 1− (2)])× · · · × (2 + [2])× (2 + [1])

=(n− 1)× · · · × (5)× ((4)× (3)

∼=((n− 1)!)

The order of complexity for steps 11-19 are O(((n− 1)!)). From steps 1-9, double loops

exist which has the complexity O(n2). Then in order to generate all permutations, all

starter sets need to be exploited by performing that double loops cycling process. So by

multiplying n2 to O(((n− 1)!), it is equal to O((n(n)!)). The order of complexity of the

algorithm is O((n(n)!)).

3.5.1.2 Pseudocode of Exchange Operation Strategy under Recursion(PERMUT2)

The pseudocode of PERMUT2 is a recursive algorithm for generating permutation under

circular operation. Meanwhile for generating starter sets, exchange operation is used. The

input data is nwhich represents a number of elements and the output is a list of all distinct

n! permutations.
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Pseudocode PERMUT2(k)

1: if k = 2 then

2: for i = 1 to n do

3: old = a[1]

4: for k = 1 to n− 1 do

5: a[k] = a[k + 1]

6: end for

7: a[n] = old

8: end for

9: return

10: end if

11: temp = k − 1

12: for i = temp to n do

13: if (i 6= n) then

14: old = a[i]

15: a[i] = a[i+ 1]

16: a[i+ 1] = old

17: else

18: old = a[n]

19: for i = n to temp− 1 do

20: a[i] = a[i− 1]

21: end for

22: a[temp] = old

23: end if

24: PERMUT2(temp)

25: end for

The critical section in this algorithm is steps 12 - 25 where it represents the steps for

starter sets generation. There is a nested loop and in that loop, there is recursive call on

69



less temp (temp gets smaller). The initial temp = k = n − 1. At step 12, the value of

temp decreases. The process of recursion starts at k = n − 1 and will stop when k = 2.

On the other hand, the starter sets generation process will stop at k = 2.

At the steps 13 − 23 which lies under loop at step 12, a number of computation of the

step from 13 until 16 is a constant time, O(1) complexity. Meanwhile for steps 18 -22 has

O(temp) complexity.

Thus the number of computation for steps 13 -17, is
∏

(temp − 1)) for temp = n − 1

until 2. Meanwhile for next steps 18 − 22, for each value of temp from 3 until n − 1, it

will be run once. Thus its complexity is O((n− 2)2).

Thus the order of complexity for starter sets generation isO((n−2)!)+O((n−1)2). After

the starter sets are produced and stops at temp = 2, the program continues for generating

all permutation which lies at steps 2 - 9.

Then by multiplying n2 to the order of complexity of the starter set generation , the order

of complexity of the algorithm is O(n2(n− 2)!) +O(n4 − n2) ∼= O(n(n)!)

3.5.1.3 Pseudocode of Circular Operation Strategy under Iteration (PERMUTIT3)

This pseudocode PERMUTIT3 is an iterative algorithm for generating permutation under

circular strategy. The input data is n which represents as a number of elements and the

output is a list of all n! distinct permutations.

Pseudocode PERMUTIT3(temp, n)

1: k = temp

2: while k > 2 do

3: print(n)

4: k = temp
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5: while k > 2 do

6: old = a[1]

7: for i = 1 to k − 1 do

8: a[i] = a[i+ 1]

9: end for

10: a[k] = old

11: if k = 2 or a[k]! = k then

12: break

13: k = k − 1

14: end if

15: end while

16: end while

This algorithm starts with temp = 3. The order of complexity of this algorithm is

O((n(n)!) since PERMUTIT3 is an iterative algorithm for PERMUT1.

Generally in calculating order of complexity, the constant value is discarded. The com-

parison in term of order of complexity between existing permutation algorithms and new

developed algorithms is given in Table 3.4.

Table 3.4: Comparison of Algorithm Order of Complexity

Algorithm Order Complexity
PERMUT1 O(nn!)
PERMUT2 O(nn!)

Langdon (Sedgewick,1977) O(nn!)

From Table 3.4, the result in term of order complexity verifies that new developed algo-

rithms are comparable to Langdon algorithm.
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3.6 Summary

The central idea of our work for listing permutation is a starter sets generation. The two

new different strategies to generate the starter sets are presented based on circular op-

eration, and exchange operation. Then both strategies are exploited to generate all n!

permutations using CP and RoCP operation. Furthermore, the proposed algorithms are

verified by some theoretical works. The major difference of our strategies from other con-

ventional permutation methods is that we employ the starter sets to list all permutations.

Thus, the first objective of this study i.e. constructing new sequential algorithms for

permutation generation was achieved. The contributions of this chapter are as follows:

(i) New strategies for generating starter sets without generating the equivalence starter

sets have been proposed and also supported by some new theoretical works.

(ii) New recursive algorithms and an iterative algorithm for permutation generation

have been developed.

These new algorithms are proven better in computation time compared to Langdon,

Thongchiew and Lexicographic algorithms for non-exchanges based category. Mean-

while in term of order complexity, new permutation algorithms are good as the Langdon

algorithm.
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CHAPTER FOUR

DEVELOPING NEW SEQUENTIAL DIVISION FREE METHOD

FOR DETERMINANT

4.1 Introduction

Division free methods have two advantages. They can cater the entries of matrices in

rational (Rote, 2001; Shin, 2002) and error of floating points can be avoided (Mahajan &

Vinay, 1997). The examples of division free methods are cofactor expansion and cross

multiplication method. The later method is also known as the Sarrus Rule only works

for matrices of order n ≤ 3. In this chapter, we derive a new division free method for

computing the determinant by using new permutation algorithms which have been con-

structed in Chapter Three.

This chapter begins with some preliminary definitions in Section 4.2. Then it is fol-

lowed by derivation of algorithm for computing the determinant of a square matrix in

Section 4.3. Next, in Section 4.4, the general algorithm is derived. Meanwhile Section

4.5 presents some new theoretical works related to derivation of a new method. Finally,

the performances of the new algorithm are analyzed in Section 4.6.

4.2 Preliminary Definitions

LetA = [aij] represents an arbitrary n×nmatrix. The determinant ofA is denoted by |A|

or det(A). The arbitrary determinant, det(A)= |aij|n = |C1 C2 C3 ... Cn| is represented in

column indices. The following definitions are given to define the main diagonal product

and secondary diagonal product of a square matrix.
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Definition 4.2.1. The Main Diagonal Product (MDP) is a product of all n entries in the

main diagonal of the square matrix.

Definition 4.2.2. The Secondary Diagonal Product (SDP) is a product of all n entries in

the secondary diagonal of the square matrix.

Example 4.2.3.

Let A be a matrix of 4× 4 as follows:

A =



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


Then MDP and SDP of A are a11a22a33a44 and a14a23a32a41 respectively.

Definition 4.2.4. The even (odd) starter sets is an even (respectively odd) permutation if

it has an even (respectively odd) number of inversion.

Definition 4.2.5. The starter sets matrix of order n, Ai is the matrices which is generated

from n column indices of starter sets where 1 ≤ i ≤ (n− 1)!

2
.

Definition 4.2.6. The nth order diagram is a diagram generated from starter sets matrix

of order n by appending the first (n− 1) columns to the right of origin starter set matrix.

Definition 4.2.7. The product diagonal ofAi,k or |Ai,k| is a sum of Main Diagonal product

(MDP) and Secondary Diagonal Product (SDP) where 1 ≤ i ≤ (n− 1)!

2
and 0 ≤ k ≤

n− 1.

Now we investigate the relationship between circular permutation and the Sarrus Rule

for case n = 3.
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Example 4.2.8. Given the Sarrus rule of third order diagram as follows:

∣∣∣∣∣∣∣∣∣∣
a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

∣∣∣∣∣∣∣∣∣∣
Let us refer to the column indices of elements in the main diagonal [a11, a22, a33]. We

extract the column indices and we have [1, 2, 3]. Parallel elements to the main diagonal is

[a12, a23, a31] which has the column indices [2, 3, 1]. Finally the diagonal column elements

[a13, a21, a32] corresponds to the column indices [3, 1, 2]. We repeat the same process

for secondary diagonal and its parallel diagonals. The resulted permutations which are

extracted for both diagonals and its parallel diagonals are as below:

[1, 2, 3] −→ [2, 3, 1] −→ [3, 1, 2] (main diagonal and its parallel diagonal)

[3, 2, 1] −→ [1, 3, 2] −→ [2, 1, 3] (secondary diagonal and its parallel diagonal)

The circular pattern appears in the main diagonal and its parallel diagonal column

indices. A similar pattern also appears in the secondary diagonal and its parallel diagonal

column indices. This result can be rearranged as shown in Table 4.1:

Table 4.1: A pair of Main Diagonal and Secondary Diagonal Column Indices

Main diagonal Secondary diagonal
and its parallel diagonal and its parallel diagonal

[1, 2, 3] [3, 2, 1]
[2, 3, 1] [1, 3, 2]
[3, 1, 2] [2, 1, 3]

From Table 4.1, it is shown that the secondary diagonal column indices is the reverse of

the main diagonal column indices. It is also applicable to other parallel main diagonal to

parallel secondary diagonal.

From the Sarrus Rule, the determinant is given by

[a11a22a33 + a12a23a31 + a13a21a32]− [a13a22a31 + a11a23a32 + a12a21a33]. (4.1)

The rearrangement of the result in Equation 4.1 with respect to the circular permutation
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of element column indices in pair of diagonals from Table 4.1 will give

[a11a22a33 − a13a22a31] + [a12a23a31 − a11a23a32] + [a13a21a32 − a12a21a33]. (4.2)

The third order diagram of the Sarrus Rule as shown below

∣∣∣∣∣∣∣∣∣∣
a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

∣∣∣∣∣∣∣∣∣∣
can be further decomposed as

∣∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
a12 a13 a11

a22 a23 a21

a32 a33 a31

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
a13 a11 a12

a23 a21 a22

a33 a31 a32

∣∣∣∣∣∣∣∣∣∣
.

The MDP and SDP in the above matrices is equivalence to Equation 4.2. Extending this

concept for any n× n matrix will give

MDP = sign(σ)
n∏
j=1

ajσ(j)

SDP = sign(σ)
n∏
j=1

ajσ(n−j+1).

Now, we generalise that notation for circular process. For each k cycle, k ∈ {0, 1, 2, 3, ..., n−

1}, and i = (1, 2, ...,
(n− 1)!

2
), then Product Diagonal (PD) is a summation of MDP and

its SDP for each k, i which equals to

PD(Ai,k) = (MDP+SDP )(Ai,k) = sign(σ)[
n∏
i=1

a(i)(σ(i)k)]+sign(σ)[
n∏
i=1

a(i)(σ(n+1−i)k)]

(4.3)

When k = 0; PD(Aj,0) is the PD of starter matrix of Ai.
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Then using Equation 4.3, we can derive a division free method for finding determinant

in the next section.

4.3 A Division Free Method Development for Finding Determinant

In this section, we construct a new approach for finding determinant by applying the

permutations in Chapter Three for finding determinant. Our approach is best introduced

by an example. Let 1 ≤ i ≤ (4− 1)!

2
= 3 and consider matrix A of size 4× 4 as follows:

A =



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


Step 1: Find the starter sets using circular operation.

[1, 2, 3, 4], [1, 3, 4, 2], [1, 4, 2, 3] as constructed in Chapter Three.

Step 2: Construct matrices based on each starter set from Step 1:

Starter set :[1,2,3,4]

A1 =



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


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Starter set :[1,3,4,2]

A2 =



a11 a13 a14 a12

a21 a23 a24 a22

a31 a33 a34 a32

a41 a43 a44 a42


Starter set :[1,4,2,3]

A3 =



a11 a14 a12 a13

a21 a24 a22 a23

a31 a34 a32 a33

a41 a44 a42 a43



Step 3: Calculate the sum of sign diagonal product of each Ai.

Let i = 1 and k = 0

A1 =



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


if n ≡ 0 or 1 mod 4, then the sign of its secondary diagonal is equal to its

main diagonal sign.

PD(A1,0)= (−1)0a11a22a33a44 + a14a23a32a41

Total PD = PD(A1,0)

Step 4: Employ circular operation on A1 where all the columns of A1 cycled. Then the

matrix become A1,1 and do Step 3.
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[2, 3, 4, 1]

A1,1 =



a12 a13 a14 a11

a22 a23 a24 a21

a32 a33 a34 a31

a42 a43 a44 a41


PD(A1,1)= (−1)3a12a23a34a41 − a11a24a33a42

Total PD = PD(A1,0) + PD(A1,1)

Step 5: Repeat Step 4 and stop after k= 3.

[3, 4, 1, 2]

A1,2 =



a13 a14 a11 a12

a23 a24 a21 a22

a33 a34 a31 a32

a43 a44 a41 a42


PD(A1,2)= (−1)4a13a24a31a42 + a12a21a34a43

Total PD = PD(A1,0) + PD(A1,1) + PD(A1,2)

[4, 1, 2, 3]

A1,3 =



a14 a11 a12 a13

a24 a21 a22 a23

a34 a31 a32 a33

a44 a41 a42 a43


PD(A1,3)= (−1)3a14a21a32a43 − a13a22a31a44

Total PD = PD(A1,0) + PD(A1,1) + PD(A1,2) + PD(A1,3)
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Step 6: Go to Step 2 for next i = 2 and repeat Step 3, 4 and 5. Do until i = 3

A2 =



a11 a13 a14 a12

a21 a23 a24 a22

a31 a33 a34 a32

a41 a43 a44 a42


PD(A2,0)= (−1)2a11a23a34a42 + a12a24a33a41

Total PD = [
∑3

k=0 PD(A1,k)] + PD(A2,0)

[3, 4, 2, 1]

A2,1 =



a13 a14 a12 a11

a23 a24 a22 a21

a33 a34 a32 a31

a43 a44 a42 a41


PD(A21)= (−1)5a13a24a32a41 − a11a22a34a43

Total PD = [
∑3

k=0 PD(A1,k)] + PD(A2,0) + PD(A2,1)

[4, 2, 1, 3]

A2,2 =



a14 a12 a11 a13

a24 a22 a21 a23

a34 a32 a31 a33

a44 a42 a41 a43


PD(A2,2)= (−1)4a14a22a31a43 + a13a21a32a44

Total PD = [
∑3

k=0 PD(A1,k)] + PD(A2,0) + PD(A2,1) + PD(A2,2)
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[2, 1, 3, 4]

A2,3 =



a12 a11 a13 a14

a22 a21 a23 a24

a32 a31 a33 a34

a42 a41 a43 a44


PD(A2,3)= (−1)1a12a21a33a44 − a14a23a31a42

Total PD = [
∑3

k=0 PD(A1,k)]+PD(A2,0)+PD(A2,1)+PD(A2,2)+PD(A2,3)

A3 =



a11 a14 a12 a13

a21 a24 a22 a23

a31 a34 a32 a33

a41 a44 a42 a43


PD(A3,0)= (−1)2a11a24a32a43 + a13a22a34a41

Total PD = [
∑3

k=0(PD(A1,k) + PD(A2,k))] + PD(A3,0)

[4, 2, 3, 1]

A3,1 =



a14 a12 a13 a11

a24 a22 a23 a21

a34 a32 a33 a31

a44 a42 a43 a41


PD(A3,1)= (−1)5a14a22a33a41 − a11a23a32a44

Total PD = [
∑3

k=0(PD(A1,k) + PD(A2,k))] + PD(A3,0) + PD(A3,1)
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[2, 3, 1, 4]

A3,2 =



a12 a13 a11 a14

a22 a23 a21 a24

a32 a33 a31 a34

a42 a43 a41 a44


PD(A3,2)= (−1)2a12a23a31a44 + a14a21a33a42

Total PD = [
∑3

k=0(PD(A1,k)+PD(A2,k))]+PD(A3,0)+PD(A3,1)+PD(A3,2)

[3, 1, 4, 2]

A3,3 =



a13 a11 a14 a12

a23 a21 a24 a22

a33 a31 a34 a32

a43 a41 a44 a42


PD(A3,3)= (−1)3a13a21a34a42 − a12a24a31a43

Total PD = [
∑3

k=0(PD(A1,k)+PD(A2,k))]+PD(A3,0)+PD(A3,1)+PD(A3,2)+

PD(A3,3)

Step 7: Calculate the det(A)

det(A) =
3∑

k=0

(PD(A1,k) + PD(A2,k) + PD(A3,k)).

It can be simplified as follows:

det(A) =
3∑
i=1

3∑
k=0

(PD(Ai,k)).
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In terms of any n cases where n is the order of a square matrix:

det(A) =

(n−1)!
2∑
i=1

n−1∑
k=0

(PD(Ai,k)). (4.4)

Representing (PD(Ai,k)) is as defined in Equation 4.3, we can rewrite Equation 4.4

det(A) =

(n−1)!
2∑
i=1

(
n−1∑
k=0

sign(σ)[
n∏
j=1

a(j)(σ(j)k)] + sign(σ)[
n∏
j=1

a(i)(σ(n+1−j)k)]). (4.5)

Equation 4.5 represents as a division free formula for the generalised Sarrus Rule (cross

multiplication method). The total of diagonal products from cycle k = 0 until n − 1 for

each starter matrix is 2n. As the result the total of all diagonal products is
(n− 1)!

2
×2n =

n!.

The sequential steps of the proposed method can be explained in mathematical expres-

sion where Ai,k, 1 ≤ i ≤ (n− 1)!

2
and 0 ≤ k ≤ n−1 were constructed can be condensed

to
(n− 1)!

2
of nth order diagrams.

Let consider n = 4. By using the result in the Step 1 (page 77), [1, 2, 3, 4], [1, 3, 4, 2],[1, 4, 3, 2]

are defined as the starter sets, and also represented the column indices for n = 4. Based

on each starter set, the starter set matrix is generated. Then fourth order diagram is devel-

oped by appending the first three columns to the right of the starter matrix. The resulted

three types of fourth order diagram as below:

Starter set: [1, 2, 3, 4]

|A1| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14 |a11 a12 a13

a21 a22 a23 a24 |a21 a22 a23

a31 a32 a33 a34 |a31 a32 a33

a41 a42 a43 a44 |a41 a42 a43

∣∣∣∣∣∣∣∣∣∣∣∣∣
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which condensed from |A1,0|+ |A1,1| +|A1,2|+|A1,3|.

Starter set :[1, 3, 4, 2]

|A2| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a13 a14 a12 |a11 a13 a14

a21 a23 a24 a22 |a21 a23 a24

a31 a33 a34 a32 |a31 a33 a34

a41 a43 a44 a42 |a41 a43 a44

∣∣∣∣∣∣∣∣∣∣∣∣∣
which condensed from |A2,0|+ |A2,1| +|A2,2|+|A2,3|.

Starter set : [1, 4, 2, 3]

|A3| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a14 a12 a13 |a11 a14 a12

a21 a24 a22 a23 |a21 a24 a22

a31 a34 a32 a33 |a31 a34 a32

a41 a44 a42 a43 |a41 a44 a42

∣∣∣∣∣∣∣∣∣∣∣∣∣
which condensed from |A3,0|+ |A3,1| +|A3,2|+|A3,3|.

Furthermore in spite of appending the first three columns to the right of the starter matrix,

we can also append the last three columns to the left of the starter matrix as follows:

Starter set: [1, 2, 3, 4]

|A1| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a12 a13 a14 |a11 a12 a13 a14

a22 a23 a24 |a21 a22 a23 a24

a32 a33 a34 |a31 a32 a33 a34

a42 a43 a44 |a41 a42 a43 a44

∣∣∣∣∣∣∣∣∣∣∣∣∣
which condensed from |A1,1|+ |A1,2| +|A1,3|+|A1,0|.
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Starter set :[1, 3, 4, 2]

|A2| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a13 a14 a12 |a11 a13 a14 a12

a23 a24 a22 |a21 a23 a24 a22

a33 a34 a32 |a31 a33 a34 a32

a43 a44 a42 |a41 a43 a44 a42

∣∣∣∣∣∣∣∣∣∣∣∣∣
which condensed from |A2,1|+ |A2,2| +|A2,3|+|A2,0|.

Starter set : [1, 4, 2, 3]

|A3| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a14 a12 a13 |a11 a14 a12 a13

a24 a22 a23 |a21 a24 a22 a23

a34 a32 a33 |a31 a34 a32 a33

a44 a42 a43 |a41 a44 a42 a43

∣∣∣∣∣∣∣∣∣∣∣∣∣
which condensed from |A3,1|+ |A3,2| +|A3,3|+|A3,0|.

The process of determining the sign of each main diagonal and its secondary diagonal

for each nth order diagram which corresponds to Sarrus Rule can be demonstrated by the

following example:

Example 4.3.1.

Given a starter set = [1, 3, 4, 2] and 4th order diagram is constructed from starter sets

[1, 3, 4, 2] is as follows:

|A2| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a13 a14 a12 |a11 a13 a14

a21 a23 a24 a22 |a21 a23 a24

a31 a33 a34 a32 |a31 a33 a34

a41 a43 a44 a42 |a41 a43 a44

∣∣∣∣∣∣∣∣∣∣∣∣∣
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The sign of the term of the main diagonal, a11a23a34a42 is (+1) with total inversion

=2. A set of its parallel term with its column indices:

a13a24a32a41 with column indices [3, 4, 2, 1]

a14a22a31a43 with column indices [4, 2, 1, 3]

a12a21a33a44 with column indices [2, 1, 3, 4]

In spite of using total inversion for finding the sign of the product, there is an alterna-

tive way to find the sign of the product. The following properties are derived based on

even/odd number of n.

(i) If n is even, then the sign of the set parallel diagonal product is alternate between

positive and negative which depends on the sign of the main diagonal product.

(ii) If n is odd, then the sign of the set parallel diagonal product is the same with the

sign of the main diagonal product.

Hence, by followed the property (i) where n = 4 is even, the sign of terms as below:

(+1)a11a23a34a42

(−1)a13a24a32a41

(+1)a14a22a31a43

(−1)a12a21a33a44

This condition is also valid for the secondary diagonal product and its parallel diagonal

product.

However in order to find the sign of the secondary diagonal, the property is derived as

follows:

sign of SDP =

 sign of MDP if n ≡ 0 or 1 (mod 4)

(−1) · (sign of MDP ) otherwise

For this case 4 ≡ 0 mod 4, then its SDP sign is the same to its MDP sign as follows:
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(+1)a12a24a33a41

(−1)a11a22a34a43

(+1)a13a21a32a44

(−1)a14a23a31a42

|A2| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+1 −1 +1 −1(+1) (−1) (+1) (−1)

a11 a13 a14 a12 |a11 a13 a14

a21 a23 a24 a22 |a21 a23 a24

a31 a33 a34 a32 |a31 a33 a34

a41 a43 a44 a42 |a41 a43 a44

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Remark 4.3.2. The symbol () is used for secondary diagonal and its parallel diagonal.

The following example for n is odd where n = 5 is given .

Example 4.3.3.

Given a starter set:[1, 3, 4, 2, 5]. The 5th order diagram is constructed from starter sets

[1, 3, 4, 2, 5] is as follows:

|A2| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a13 a14 a12 a15 |a11 a13 a14 a12

a21 a23 a24 a22 a25 |a21 a23 a24 a22

a31 a33 a34 a32 a35 |a31 a33 a34 a32

a41 a43 a44 a42 a45 |a41 a43 a44 a42

a51 a53 a54 a52 a55 |a51 a53 a54 a52

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The sign of the term of the main diagonal, a11a23a34a42a55 is (+1) with total inversion

=2. Now we shall see a set of its parallel term with its sign:

(+1)a11a23a34a42a55

(+1)a13a24a32a45a51

(+1)a14a22a35a41a53

(+1)a12a25a31a43a54

(+1)a15a21a33a44a52
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This condition is also valid for the secondary diagonal product and its parallel diagonal

product.

If n ≡ 0 or 1 mod 4, its secondary diagonal sign is the same with its main diagonal sign.

So the sign of the secondary diagonal is (+1).

(+1)a15a22a34a43a51

(+1)a11a25a32a44a53

(+1)a13a21a35a42a54

(+1)a14a23a31a45a52

(+1)a12a24a33a41a55

|A2| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+1 +1 +1 +1 +1(+1) (+1) (+1) (+1) (+1)

a11 a13 a14 a12 a15 |a11 a13 a14 a12

a21 a23 a24 a22 a25 |a21 a23 a24 a22

a31 a33 a34 a32 a35 |a31 a33 a34 a32

a41 a43 a44 a42 a45 |a41 a43 a44 a42

a51 a53 a54 a52 a55 |a51 a53 a54 a52

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The next example demonstrate for determining the determinant which follow the Sar-

rus Rule for order of matrix n = 4.

Example 4.3.4.

Let matrix A with size 4× 4 defined as follows:

A =



1 4 6 8

7 10 −5 5

8 1 5 11

4 3 7 9


The three fourth order diagrams are developed from the three generated starter matri-

ces with its starter sets: S1, S2, S3. All starter sets are even permutations where all main

diagonals of all the fourth order diagrams have positive sign.
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S1 = [1, 2, 3, 4]

|A1| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+1 −1 +1 −1(+1) (−1) (+1) (−1)

1 4 6 8 1 4 6

7 10 −5 5 7 10 −5

8 1 5 11 8 1 5

4 3 7 9 4 3 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|A1| = ([1× 10× 5× 9]− [4× (−5)× 11× 4] + [6× 5× 8× 3]− [8× 7× 1× 7])

+ ([8× (−5)× 1× 4]− [1× 5× 5× 3] + [4× 7× 11× 7]− [6× 10× 8× 9])

= (450 + 880 + 720− 392) + (−160− 75 + 2156− 4320)

= −741

S2 = [1, 3, 4, 2]

|A2| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+1 −1 +1 −1(+1) (−1) (+1) (−1)

1 6 8 4 1 6 8

7 −5 5 10 7 −5 5

8 5 11 1 8 5 11

4 7 9 3 4 7 9

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|A2| = ([1× (−5)× 11× 3]− [6× 5× 1× 4] + [8× 10× 8× 7]− [4× 7× 5× 9])

+ ([4× 5× 5× 4]− [1× 10× 11× 7] + [6× 7× 1× 9]− [8× (−5)× 8× 3])

= (−165− 120 + 4480− 1260) + (400− 770 + 378 + 960)

= 3903

S3 = [1, 4, 2, 3]

89



|A3| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+1 −1 +1 −1(+1) (−1) (+1) (−1)

1 8 4 6 1 8 4

7 5 10 −5 7 5 10

8 11 1 5 8 11 1

4 9 3 7 4 9 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|A3| = ([1× 5× 1× 7]− [8× 10× 5× 4] + [4× (−5)× 8× 9]− [6× 7× 11× 3])

+ ([6× 10× 11× 4]− [1× (−5)× 1× 9] + [8× 7× 5× 3]− [4× 5× 8× 7])

= (35− 1600− 1440− 1386) + (2640 + 45 + 840− 1120)

= −1986

Thus, the determinant of matrix A:

det(A) = |A1|+ |A2|+ |A3|

= 1176

The general algorithm for finding the determinant using permutation will be discussed in

the next section.

4.4 General Algorithm for Finding Determinant Using Permutation

The division free algorithm for determining the determinant of n× n matrix by using our

permutation algorithm is described as follows:

Step 1: Generate the starter sets and denote them by i = 1, 2, ..,
(n− 1)!

2
.

Step 2: Generate matrix based on each starter sets where starting with starter set i = 1

and k = 0.

Step 3: Find product of element in the main diagonal and secondary diagonal. Sum up
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both of them. Simultaneously calculate the sign of each diagonal where if n ≡ 0

or 1 mod 4, then secondary diagonal sign is the same with its main diagonal sign

and if n ≡ 2 or 3 mod 4 its secondary diagonal sign is (−1) is multiply with its

main diagonal sign .

Step 4: Employ circular operation on matrix in Step 2 and do Step 3.

Step 5: Repeat Step 4 until k = n− 1.

Step 6: Go to Step 2 for next i = 2 and repeat Step 3, 4 and 5. Stop after i =
(n− 1)!

2
.

Step 7: Total up of PD = det(A).

The following pseudocode of the algorithm is also given.
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Algorithm 4.1 PERMUTDET1
PERMUTDET1(temp)
if temp = 2 then

for i = 1 to n do
old = num[i]
for k = i to n− 1 do

num[k] = num[k+1]
end for
num[n] = old
calculate PDi = SDPi +MDPi
find the sign of PD[i]∑n

i=1 PDi

end for
det(A) =

∑ (n−1)!
2

j=1 [
∑n

i=1 PDi]j
return

end if
temp = temp− 1
for i = n to temp do

old = num[i]
for k = i to n− 1 do

num[k] = num[k+1]
end for
num[n] = old
call PERMUTDET1(temp)

end for

For the exchange operation, the process is similar to PERMUTDET1 algorithm. Refer

to the following algorithm.
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Algorithm 4.2 PERMUTDET2
PERMUTDET2(temp)
if temp = 2 then

for i = 1 to n do
old = num[i]
for k = 1 to n− 1 do

num[k] = num[k+1]
end for
num[n] = old
calculate PDi = SDPi +MDPi
find the sign of PDi∑n

i=1 PDi

end for
det(A) =

∑ (n−1)!
2

j=1 [
∑n

i=1 PDi]j
return

end if
temp = temp− 1
for i = temp to n do

if i! = n then
old = num[i]
num[i]=num[i+1]
num[i+1] = old

else
old = num[i]
for k = 1 to n− 1 do

num[k] = num[k+1]
end for
num[n] = old

end if
call PERMUTDET2(temp)

end for
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The procedure of the generalised Sarrus Rule is summarised as follows:

(i) Find
(n− 1)!

2
of n × n matrices which are to be generated from

(n− 1)!

2
starter

sets.

(ii) Rewrite the first n − 1 columns to the right to all of
(n− 1)!

2
matrices obtained

which are called as
(n− 1)!

2
of nth order diagram, |Ai| (Equation 4.6) where where

1 ≤ i ≤ (n− 1)!

2
and carry out the multiplication of elements along the traced

arrows and total up for each nth order diagrams (Equation 4.6).

Given any starter set: [1, 3, 2, ..., n− 1, n].

|Ai| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a13 · · · a1(n−1) a1n |a11 a13 · · · a1(n−1)

a21 a23 · · · a2(n−1) a2)n |a21 a23 · · · a2(n−1)

a31 a33 · · · a3(n−1) a3n |a31 a33 · · · a3(n−1)

a41 a43 · · · a4(n−1) a4n |a41 a43 · · · a4(n−1)
...

... . . . ...
... |... ... . . . ...

an−1)1 an−1)3 · · · a(n−1)(n−1) a(n−1)n |an−1)1 an−1)3 · · · a(n−1)(n−1)

an1 an3 · · · an(n−1) ann |an1 an3 · · · an(n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.6)

(iii) Find the sign of the main diagonal of each
(n− 1)!

2
of n × n matrices and the

sign of other products, two properties were set up, firstly (a) for sign of the parallel

diagonal product , and secondly (b) for the secondary diagonal :

(a(i)) If n is even, then the sign of the set parallel diagonal product is alternate

between positive and negative which depended on the sign of the main

diagonal product.

(a(ii))If n is odd, the sign of the set parallel diagonal product is the same to the

sign of the main diagonal product.
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(b)

sign of SDP =

 sign of MDP if n ≡ 0 or 1 (mod 4)

(−1) · (sign of MDP ) otherwise

The new theoretical work will be discussed in next section.

4.5 Theoretical Results

An even and odd permutation is important with respect to its diagonal product while

determining the determinant of a square matrix.

Lemma 4.5.1. The total number of inversion for the permutation is k − 1 if the last k

number of elements of identity permutation are performs by circular operation where

0 < k < n.

Proof. Let S = [1, 2, 3, ..., n − 2, n − 1, n] be the identity permutation of n distinct ele-

ments.

Perform circular operation over the last two elements on identity permutation gives

[1, 2, 3, ..., n − 2, n, n − 1] and the total inversion is one i.e. 2 − 1 where one element:

n > n− 1.

Next, perform the circular operation over the last three elements on succeeding permuta-

tion, gives

[1, 2, 3, ..., n−1, n, n−2] and the total inversions = 2 where two elements: n−1 > n−2

and n > n− 2.

Suppose the total inversion of permutation is k if the circular process is performed over

the last k + 1 elements on identity permutation

Permutation [1, 2, 3, ...k, k+ 2, k+ 3, ..., n− 3, n− 2, n− 1, n, k+ 1] with total inversion

k need to be proven.

Then the total inversion is (k + 1)− 1 = k.

The proof is shown and it is also true when we select the first k elements.

95



Lemma 4.5.2. The total number of nth order diagram is
(n− 1)!

2
.

Proof. By Lemma 3.4.2 and 3.2.3, the total number of starter sets is
(n− 1)!

2
. Then by

definition 4.2.5, nth order diagram is a diagram generated from starter sets matrix of order

n by appending the first (n−1) columns to the right of origin generated starter set matrix.

Therefore the total number of nth order diagram is
(n− 1)!

2
.

Theorem 4.5.3. There are n number of n order of matrix are decomposed from nth order

diagram.

Proof. By Definition 4.2.6, the size of nth order diagram is n× (2n− 1) where the total

column is (2n−1). The process in determining of first n order matrix is begin by selecting

the first n columns of nth order diagram. Then, the next second n order matrix is derived

by selecting second column until (n+ 1)th column. Next, third n order matrix is derived

by selecting third column until (n+2)th column. This process continues until nth n order

matrix is derived by selecting the last nth column until (2n − 1)th column. Thus, there

are n number of n order of matrices derived from nth order diagram.

Theorem 4.5.4. The value of nth order diagrams, Ai as follows

det(Ai) =
n−1∑
k=0

sign(σ)[
n∏
j=1

a(j)(σ(j)k)] + sign(σ)[
n∏
j=1

a(j)(σ(n+1−j)k)].

Proof. From Theorem 4.5.3, there are n number of n order of matricesAi,k, 0 ≤ k ≤ n−1

derived from nth order diagram. By Definition 4.2.1 and 4.2.2, the total diagonal product

for each Ai,k is given by

PD(Ai,k) = (MDP+SDP )(Ai,k) = sign(σ)[
n∏
j=1

a(j)(σ(j)k)]+sign(σ)[
n∏
j=1

a(j)(σ(n+1−j)k)].

Then

det(Ai) =
n−1∑
k=0

PD(Ai,k)) = (
n−1∑
k=0

sign(σ)[
n∏
j=1

a(j)(σ(j)k)] + sign(σ)[
n∏
j=1

a(j)(σ(n+1−j)k)].
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Theorem 4.5.5. The number of even and odd starter sets under recursive circular opera-

tion for n ≥ 5 is
(n− 1)!

4
.

Proof. From Theorem 2.2.8, we have
n!

2
permutation of two classes(even and odd per-

mutation). From Lemma 3.4.2, the total number of starter set under circular operation is
(n− 1)!

2
for n ≥ 3. Then the number of even and odd starter sets is

(n− 1)!

4
. It is only

valid for n ≥ 5. For case n = 3 and 4, it is not valid because
(3− 1)!

4
and

(4− 1)!

4
are

not evenly divided.

Theorem 4.5.6. The number of the even and odd starter set under recursive exchange

operation for n ≥ 5 is
(n− 1)!

4
.

Proof. From Theorem 2.2.8, we have
n!

2
permutations of the two classes (even and odd

permutation). From Lemma 3.4.3, the total number of starter set under exchange opera-

tion is
(n− 1)!

2
for n ≥ 3. Then the number of even and odd starter sets is

(n− 1)!

4
. It

only true for n ≥ 5. For case n = 3 and 4, it is not valid because
(3− 1)!

4
and

(4− 1)!

4

are not evenly divided.

Theorem 4.5.7.

sign of SDP =

 sign of MDP if n ≡ 0 or 1 (mod 4)

(−1) · (sign of MDP ) otherwise

Proof. For n = 2 is a trivial case because it only has two permutations i.e. [1, 2] is an

even permutation and [2, 1] is an odd permutation as reverse of [1, 2] .

Without loss of generality, it is enough to prove that the theorem based on identity per-

mutation as main diagonal and its reverse as the secondary diagonal which is based

on Lemma 2.2.9 where the maximum number of inversion is
n(n− 1)

2
with respect to

the number of inversion for reverse permutation of identity permutation i.e.
∑n−1

i=0 i =
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n(n− 1)

2
. As we know, the identity permutation is an even permutation with a number of

inversion equals to zero.

Case : n ≡ 0 or 1 mod 4.

(i) n ≡ 0 mod 4 where n is a multiply of 4.

Let n = 4k where k ∈ Z+. Then the number of inversion for the secondary

diagonal becomes

n(n− 1)

2
=

4k(4k − 1)

2
= 2k(4k − 1)

which is an even number. Thus its secondary diagonal has the same sign with its

main diagonal.

(ii) n ≡ 1 mod 4.

Let n = 4k + 1 where k ∈ Z+. Then the number of inversion for the secondary

diagonal becomes

n(n− 1)

2
=

(4k + 1)(4k + 1− 1)

2
= 2k(4k + 1)

which is an even number and thus same sign with its main diagonal.

Case: n ≡ 2 or 3 mod 4.

(i) n ≡ 2 mod 4.

Let n = 4k + 2 where k ∈ Z+. Then the number of inversion for the secondary

diagonal becomes

n(n− 1)

2
=

(4k + 2)(4k + 2− 1)

2
= (2k + 1)(4k + 1)

which is an odd number. Thus its secondary diagonal has (-1) multiply to the sign

of its main diagonal.
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(ii) n ≡ 3 mod 4.

Let n = 4k + 3 where k ∈ Z+. Then the number of inversion for the secondary

diagonal becomes

n(n− 1)

2
=

(4k + 3)(4k + 3− 1)

2
= (4k + 3)(2k + 1)

which is also an odd number. Therefore its secondary diagonal has (-1) multiply to

sign of its main diagonal.

Theorem 4.5.8. The determinant of any square matrix A via Sarrus Rule is

det(A) =

(n−1)!
2∑
i=1

n−1∑
k=0

sign(σ)[
n∏
j=1

a(j)(σ(j)k)] + sign(σ)[
n∏
j=1

a(j)(σ(n+1−j)k)].

Proof. From Lemma 4.5.2, there are (n−1)!
2

number of distinct nth order diagram which

generated from (n−1)!
2

starter sets matrices, Ai where i ≤ i ≤ (n− 1)!

2
. For every Ai,

det(Ai) =
n−1∑
k=0

sign(σ)[
n∏
j=1

a(j)(σ(j)k)] + sign(σ)[
n∏
j=1

a(j)(σ(n+1−j)k)].

where follow to Definition 4.2.1 and 4.2.2. The sign of each terms follow Equation 2.3.

Then total all n order diagrams determinant, det(Ai) :

det(A) =

(n− 1)!

2∑
i=1

det(Ai) =

(n− 1)!

2∑
i=1

n−1∑
k=0

sign(σ)[
n∏
j=1

a(j)(σ(j)k)]+sign(σ)[
n∏
j=1

a(j)(σ(n+1−j)k)].

Numerical results is presented in following section.
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4.6 Numerical Results of Division Free Algorithms

Since our algorithm employs permutation methods (PERMUT1, PERMUT2, PERMU-

TIT3) for finding the determinant which corresponds to cross multiplication method rule,

it is sufficient to compare it with the existing division free algorithms to determine the

performance of the new algorithms. The existing division free algorithms are the cofactor

expansion, Langdon (1967), and Thongchiew (2007). The new algorithms are PERMUT-

DET1 (recursive circular operation), PERMUTDET2 (recursive exchange operation) and

PERMUTDETIT3 (iterative circular operation).

The results are given and represented in computation time (in seconds). All programs

were tested on the HP Computer with Intel Xeon E5504 2.0 GHz processor and 4.00 GB

Random Access Memory (RAM). We also tested the same matrices with other mathemat-

ical software i.e. Mathematical Laboratory (Matlab) to check the result.

Table 4.2: The Computation Time of New Sequential Determinant Algorithm (in seconds)

n PERMUTDET1 PERMUTDET2 PERMUTDETIT3
7 0.001469 0.001397 0.001509
8 0.012187 0.012070 0.012419
9 0.125879 0.124636 0.128921

10 1.458077 1.456752 1.482345
11 18.2335528 18.177466 18.562527
12 248.345662 247.785887 251.013982
13 3637.202.73 3634.131510 3750.651724
14 57583796.117 57447.850780 58015.462781

As shown in Table 4.2, the computation times of the three new algorithms indicate

that PERMUTDETIT3 is the slowest compared to recursive algorithms, PERMUTDET1

and PERMUTDET2. For both recursive programs, the computation times algorithm of

the exchange operation (PERMUTDET2) is faster than the circular operation (PERMUT-

DET1).
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Table 4.3 shows the results of comparison over time computation among permutation

methods which have been applied for determining the determinant. As can be seen, the

execution time grows dramatically when the size of the matrix increases, and our new al-

gorithms generate lesser time than permutation program Langdon (1967) and Thongchiew

(2007). The results indicate that the new algorithms are better in term of computation

times than these three division free algorithms for finding the determinant.

Two advantages of this new algorithm compared to Langdon (1967) and Thongchiew

(2007) algorithm have been identified. First, the latter algorithms generated all n! permu-

tation whereas our algorithm generated only
n!

2
permutations. The next

n!

2
permutations

are generated by reversing the order of permutation of the first
n!

2
permutations. Second,

we only calculate the sign of the main diagonal column indices and the sign of the sec-

ondary diagonal column indices depends on to the sign of main diagonal column indices,

whereas for Langdon (1967) and Thongchiew (2007) algorithms, the sign of each n! prod-

uct terms is computed. These two advantages contribute to lesser computation times for

the new algorithm.

The result shown in Table 4.4 is the comparison of the three new algorithms to cofac-

tor expansion.

Table 4.4: The Comparison of Computation Time of New Algorithms to Cofactor Expan-
sion (in seconds)

n PERMUTDET1 PERMUTDET2 PERMUTDETIT3 Cofactor expansion
7 0.001469 0.001397 0.001509 0.003914
8 0.012070 0.012070 0.012419 0.033226
9 0.125564 0.124636 0.128921 0.381172

10 1.455614 1.456752 1.482345 3.872222
11 18.308862 18.177466 18.562527 48.079466
12 248.345662 247.785887 251.013982 653.706605
13 3637.202.73 3634.131510 3750.651724 9816.224
14 57583.117796 57447.850780 58015.462781 172279.667287
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As shown in Table 4.4 , the cofactor expansion algorithm performed slower than the

new algorithms and also permutation algorithms i.e. Langdon (1967) and Thongchiew

(2007).

In order to verify the correctness of the new algorithms, the determinant results are given

for n = 7, 8, 9, 10 in Table 4.5. The detail of the result for new programs are given in

Appendix E. The example output is given for n = 5.
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Table 4.5: The Determinant Result from New Algorithms

n Matrix of A Det(A)
of PERMUTDET1, PERMUTDET2

and PERMUTDETIT3

7



6 1 6 5 3 2 5
0 5 6 0 5 6 6
0 1 6 0 4 4 2
2 3 6 5 6 5 5
6 1 1 5 1 2 0
4 5 0 4 3 3 4
4 2 5 2 0 4 1


5088.000000

8



1 3 6 4 1 4 6 6
2 0 1 1 1 3 1 3
3 6 3 4 7 4 6 1
4 6 5 4 6 7 7 6
3 2 5 0 3 3 3 6
7 3 2 5 1 0 5 7
5 4 3 4 6 5 5 3
3 5 1 2 4 3 6 2


9166.000000

9



5 8 7 4 8 1 3 0 7
2 8 2 7 6 7 5 7 8
3 0 0 6 5 0 4 7 6
5 8 5 2 0 2 0 6 4
8 1 7 3 2 6 2 3 6
2 3 7 2 1 5 5 1 6
3 7 2 3 7 4 4 2 5
6 0 1 4 5 4 4 5 0
5 6 7 5 3 6 3 2 0


-2699924.000000

10



1 7 4 0 9 4 8 8 2 4
5 5 1 7 1 1 5 2 7 6
1 4 2 3 2 2 1 6 8 5
7 6 1 8 9 2 7 9 5 4
3 1 2 3 3 4 1 1 3 8
7 4 2 7 7 9 3 1 9 8
6 5 0 2 8 6 0 2 4 8
6 5 0 9 0 0 6 1 3 8
9 3 4 4 6 0 6 6 1 8
4 9 6 3 7 8 8 2 9 1


-24623624.000000
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For calculation the order of complexity of the new algorithms (PERMUTDET1, PER-

MUTDET2 and PERMUTDETIT3), we multiply n to the order of complexity permuta-

tion algorithm in Chapter Three due to multiplication among n elements in permutation

array. On the other hand, the formula for division free method given in Equation 4.5 as

follows:

det(A) =

(n−1)!
2∑
i=1

n−1∑
k=0

sign(σ)[
n∏
j=1

a(j)(σ(j)k)] + sign(σ)[
n∏
j=1

a(j)(σ(n+1−j)k)].

Based on that, the number of steps in calculation of finding determinant for matrix of

order n is
(n− 1)!

2
× 2n = n! where 2n is number of step for Product Diagonal (PD)

operation for each
(n− 1)!

2
generated starter sets matrix.

The pseudocode of PERMUTDET1 is given as follows:

1: PERMUTDET1(temp)

2: if temp = 2 then

3: for i = 1 to n do

4: old = num[i]

5: for k = i to n− 1 do

6: num[k] = num[k+1]

7: end for

8: num[n] = old

9: calculate PDi = SDPi +MDPi

10: find the sign of PD[i]

11:
∑n

i=1 PDi

12: end for

13: det(A) =
∑ (n−1)!

2
j=1 [

∑n
i=1 PDi]j

14: return

15: end if
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16: temp = temp− 1

17: for i = n to temp do

18: old = num[i]

19: for k = i to n− 1 do

20: num[k] = num[k+1]

21: end for

22: num[n] = old

23: call PERMUTDET1(temp)

24: end for

From algorithm of PERMUT1, we extend it for finding determinant known as PER-

MUTDET1 algorithm, by adding multiplication operation as given in steps 9-13. At step

9, the number of step for multiplication is n. This operation is employed on every per-

mutation array. Recall that the order of complexity for PERMUT1 is O(nn!). Then by

multiplying n to this order of complexity of PERMUT1, the order of complexity of PER-

MUTDET1 is given by

O(n2n!). (4.7)

We conclude the order of complexity for PERMUDET2 and PERMUTDETIT3 are sim-

ilar to PERMUTDET1 since their order of complexity of PERMUT2 and PERMUTIT3

are similar to PERMUT1.

Meanwhile the order of complexity of cofactor expansion is O(n((n− 1)!)3)(Shin, 2002;

Goldfinger, 2008). Table 4.6 displays the order of complexity of all algorithms.

Table 4.6: The Comparison Order of Complexity of the New Algorithms to Cofactor Ex-
pansion and Permutation

Algorithm Order of Complexity
Recursive circular strategy algorithm (PERMUTDET1) O(n2(n!))

Recursive exchange strategy algorithm (PERMUTDET2) O(n2(n!))
Iterative circular strategy algorithm (PERMUTDETIT3) O(n2(n!))

Cofactor expansion O(n((n− 1)!)3)
Langdon O(n2(n!))
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From Table 4.6, our new algorithms are comparable to Langdon algorithm. Mean-

while, the order of complexity of the cofactor expansion for the parallel algorithm is

O((n!)2) (Goldfinger, 2008) which is higher if to our new sequential algorithms.

From the mathematical aspect, Langdon (1967) and Thongchiew (2007) methods are de-

signed without any corresponding to matrix structure namely set of diagonals. In other

word, firstly all n! permutations are needed to be listed which represented as column in-

dices and later the product of each element is calculated with respect to the permutation

column indices. Langdon (1967) and Thongchiew (2007) used the following mathemati-

cal formulation given by Leibniz (1678).

det(A) =
∑
σ∈Sn

sign(σ)
n∏
i

ai σ(i) (4.8)

The sign of a permutation is defined in terms of the total number of inversions as follows:

sign(σ) = (−1)total number of inversions in σ (4.9)

On the other hand, the new methods are derived based on a square matrix structure cor-

responds to its main diagonal and secondary diagonal. Specifically the column indices of

the main diagonal is the reverse of column indices of the secondary diagonal or vice versa

which has been discussed in Section 4.2. Furthermore, the new division free method is

a generalisation of cross multiplication (Sarrus Rule). Without listing the permutations,

we are still able to find the product indirectly by finding the
(n− 1)!

2
of the nth order

diagrams where the nth order diagrams constructed by appending the first n− 1 columns

to the right of matrix.

For hand computation, our new methods are easy used to calculate until n ≤ 5 but for

other permutation methods, it became tedious because we need list all the permutation.

However for our methods, special strategies have been derived to generate starter sets for
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(n− 1)!

2
of the nth order diagrams. For example when n = 5, only 12 starter sets are

needed to be found to list all 120 permutations in the new method. Meanwhile, for other

permutation methods, 120 permutations are needed to be listed before performing the cal-

culation of all elements in each permutation array.

Two operation strategies are developed for listing
(n− 1)!

2
of the nth order diagrams

based on circular and exchange. Between these two operations, the exchange strategy is

slightly simpler compared to the circular strategy because only two elements are involved

in the former strategy. In circular strategy, more than two elements are involved.

Let demonstrate the hand computation for n = 4 to show the difference clearly.

Example 4.6.1.

For exchanging operation, only two columns are exchanged for generating next n

order matrix.



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


=⇒



a11 a13 a12 a14

a21 a23 a22 a24

a31 a33 a32 a34

a41 a43 a42 a44


=⇒



a11 a13 a14 a12

a21 a23 a24 a22

a31 a33 a34 a32

a41 a43 a44 a42


Meanwhile for circular operation, three columns are cycled.



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


=⇒



a11 a13 a14 a12

a21 a23 a24 a22

a31 a33 a34 a32

a41 a43 a44 a42


=⇒



a11 a14 a12 a13

a21 a24 a22 a23

a31 a34 a32 a33

a41 a44 a42 a43


In addition, exchange operation also showed simplicity in finding the sign of parallel

diagonal of each starter set matrix compared to circular operation. When two columns are

exchanged, the sign of a parallel diagonal for the next starter sets matrix will be alternated.
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On the other hand, in circular operation, we have to calculate the inversion and then the

sign of parallel diagonal for next starter sets matrix is determined.

4.7 Summary

The circular permutation pattern on diagonal column indices is discovered in cross mul-

tiplication method for case n = 3. This pattern is then extended for general cases by

producing
(n− 1)!

2
starter set matrices. Then, the first (n − 1) columns are appended to

the right of all starter set matrices for generating
(n− 1)!

2
of nth order diagrams. Next, by

employing the product rule over sign 2n diagonal entries which are the main rule in cross

multiplication method (Sarrus Rule), the determinant of the square matrix is calculated.

As a result, the sequential division free method for finding determinant are derived and

thus the second objective of this study is achieved. The contribution of this chapter is a

new division free method and its algorithms are developed for square matrices. Moreover

some new theoretical works are also developed. The numerical results show that the new

algorithms are faster than other existing division free algorithms in term of computation

time. The order of complexity of our new sequential algorithms is O(n2n!) which better

than cofactor expansion.
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CHAPTER FIVE

DEVELOPING NEW PARALLEL METHODS FOR

DETERMINANT

5.1 Introduction

In this chapter, two techniques of parallelization are considered to develop the parallel

algorithm. The two techniques are:

(i) across the time.

(ii) across the method.

In order to develop parallel algorithms for finding the determinant via permutation ap-

proach for across the time approach, the sequential algorithm is applied to model of paral-

lel computation (Kokosiński, 1990). Meanwhile for across the method approach, we have

to redesign our sequential algorithms so that the algorithms are parallel in nature. After

permutation generation algorithms are successfully constructed for both approaches, it

will be applied for finding the determinant. In writing programs for parallel computer, the

challenging task is to identify any parallelisable parts and avoided any data dependencies

(Mohd Saman & Evans, 1995).

Parallelisation the permutation generation algorithm is the most crucial task for devel-

oping the parallel algorithm for finding the determinant. In our case, our permutation

generation algorithms are dependent on the starter sets generation. Thus, the starter sets

generation task will be parallelised. In spite of our work, no study has been conducted

in partitioning permutation based on number of permutations. From previous study, re-

searchers had partitioned only the elements of permutation for shared memory processing

(Tsay & Lee, 1994; Akl et al., 1994; Djamegni & Tchuente, 1997; Cong & Bader, 2006).

The remaining of this chapter is organized as follows: some preliminary definitions are
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given in Section 5.2. Then in Section 5.3, we extend sequential algorithms of generating

permutation and finding determinant for parallel computation. Section 5.4 gives the expla-

nation of designing the parallel algorithm for permutation generation where two methods

are developed based on exchanging two elements. Then the applications of the parallel

algorithms for finding the determinant are also discussed in that section. In Section 5.5,

some theoretical works are presented for across the method algorithm for permutation

generation. Section 5.6 discusses the performance of Across The Time (ATT) and Across

The Method (ATM) algorithms for permutation generation. Finally in last section, the

performance of ATT and ATM algorithms for finding the determinant are analyzed based

on speedup and efficiency in Section 5.7.

5.2 Preliminary Definitions

The following definitions will be used throughout this study.

Definition 5.2.1. The kth rank starter sets is the starter sets produced by performing

circular operation(exchange operation) over k elements (element in kth position) respec-

tively.

Definition 5.2.2. The subDeterminant ofA (subDet(A)) is summation of n diagonal prod-

ucts (PD) of starter sets matrix, A.

Definition 5.2.3. Initial starter sets for across the time parallelization is kth rank starter

sets.

Definition 5.2.4. Initial starter sets for across the method parallelization is a starter set

generated from the identity permutation.

5.3 Parallelization Across the Time (ATT)

In this method, the existing sequential algorithms do not need to be modified and re-

designed. We have to identify the independency of the data or process and reassign them
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to parallel compiler where the tasks among processors are identical. The task division is

statically determined and it is appropriate to adopt static allocation. Therefore, task parti-

tioning in starter sets generation is determined. In addition, for data allocation among the

processors, a cyclic allocation strategy is used as follows:

Suppose j is the number of starter sets and p − 1 is the number of processors (slave).

Compute j ≡ i mod p − 1. If i = 0, then j is a multiple of p − 1 and every p − 1

processor (slave) should has
j

p− 1
starter sets. If i > 0, then the first i processors should

get
j − i
p− 1

+ 1 and the remaining p− 1− i processors should get
j − i
p− 1

starter sets.

5.3.1 Parallel Algorithm for Permutation

The sequential algorithms for generating permutation are divided into two parts as fol-

lows:

Part One: Starter sets generation

Part Two: n! permutations generation by exploiting the results in Part One.

All n! permutation generations are dependent on the starter sets generation. As de-

scribed in Chapter Three, the total number of starter sets needed to list all permutations is
(n− 1)!

2
. Two algorithms that have been developed for generating permutations used the

following strategies:

(i) Starter sets and permutation generation based on circular operation (PERMUT1).

(ii) Starter sets generation based on exchanging two elements operation while permu-

tation generation based on circular operation (PERMUT2).

Since the task for starter sets generation is partitioned where master p0 is assigned to

generate starter sets with certain k value of procedure PERMUT1 and PERMUT2, a new

formula is derived. Let consider k ∈ Z+ where 2 ≤ k < n, and p − 1 is the number of

processors excluding the master. Each k value for PERMUT1 and PERMUT2 algorithms

represented the t number of starter sets.
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Let t represents the number of starter sets. Begin with k = n − 1. In order to deter-

mine the value t with respect to k value, the following formula is employed:

t =
(n+ 1− k)!

2
(5.1)

where 2 ≤ k ≤ n− 1.

Then from Equation 5.1, we list the number of starter sets as follows:

Table 5.1: The Number of Starter Sets Corresponding to k

k n− 1 n− 2 n− 3 n− 4 . . . 2

t 1 3 12 60 . . . (n−1)!
2

As a solution, for any
t

p− 1
> 0, master will be assigned to run PERMUT1 and

PERMUT2 algorithms from k = n− 1 until 2.

Example 5.3.1.

Let n = 7, and consider the number of processors p = 6. Therefore the number of

slave is 5. Referring to Table 5.1, the master will run algorithms PERMUT1 and PER-

MUT2 from k = 6 until k = 4 or k = 3 or k = 2 alternatively. It is a statically

determined. In other words, we can easily change the k value of algorithms with respect

to the number of processors in master part (p0).

Now the details tasks for master (p0), and slaves (pj) where 1 ≤ j ≤ p− 1 is described in

the following procedure:

Step 1: Task for master.

(i) reads the value of n, number of elements

(ii) initializes the initial permutation in ordered list

(iii) runs PERMUT1 from k = n− 1 until k = n− 3 or k = n− 4

(iv) stores the result in (iii) as kth rank starter sets in two dimension array
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(v) distributes the kth rank starter sets to all slaves

This procedure can be translated into the following algorithm:

Algorithm 5.1 PERMUT1 for Master
PERMUT1(k) is perform by P0

if k = n− 3 then
processor p0 stores the data in two dimension matrix array and broadcast to other
processors
return

end if
k = k − 1
for i = n to k do

performing CO to the last k element
call PERMUT1(k)

end for

Step 2: Tasks for each slaves pj where j = 1 to p− 1

(i) receives the kth rank starter sets and store it in its own memory

(ii) runs PERMUT1 from k − 1 until 2.

(iii) performs circular permutation and reversing of circular permutation

operation for all elements for each (n− 1)th rank starter sets.

(iv) stores all permutations in two dimension array

(v) sends all results to master

Below is the algorithm for each slave:
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Algorithm 5.2 PERMUT1 for Each Slave
do in parallel
for j = 1 to p− 1 do

PERMUT1(k) is perform by pj
if temp= 2 then

for i = 1 to n do
performing CP and RoCP for all element

end for
return

end if
k = k − 1
for i = n to k do

performing CO to the last k element
call PERMUT1(k)

end for
end for

Step 3 : Tasks for master

(i) receives the data from all slaves

(ii) prints the data

The tasks for master and slaves for PERMUT2 algorithm are allocated in same man-

ner.

Algorithm 5.3 PERMUT2 for Master
PERMUT2(k) is perform by p0
if k = n− 3 then

processor p0 stored the data in 2D matrix array and broadcast to other processors
return

end if
k = k − 1
for i = k to n do

performing exchanging process to the element at k-th position
call PERMUT2(k)

end for
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Algorithm 5.4 PERMUT2 algorithm for Each Slave
do in parallel
for j = 1 to p− 1 do

PERMUT2(k) is perform by pj
if temp= 2 then

for i = 1 to n do
performing CP and RoCP for all element

end for
return

end if
k = k − 1
for i = k to n do

performing exchanging process to the element at k-th position
call PERMUT2(k)

end for
end for

Each slave generates starter sets from k − 1 until 2 and performed CP and RoCP si-

multaneously to list all n! permutations . In the next section, the parallel algorithm for

permutation generation is applied for finding the determinant.

5.3.2 Parallel Algorithm for Finding Determinant

Since the permutation generation algorithms have been successfully parallelized, it would

be easy to employ it for finding the determinant. The tasks of finding the determinant are

assigned to the slaves. Each slave is responsible to find the product of elements in the

main diagonal and its secondary diagonal based on the permutations.

In ATT algorithm, the master only generates starter sets at a particular rank and broadcast

them to all slaves. Then each slave generates
(n− 1)!

2(p− 1)
permutations and calculates the

diagonal product. After that, each slave sends the result to master.

The tasks for master (p0) and each slave (pj) where 1 ≤ j ≤ p − 1 in ATT algorithm

are described in details as follows:
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Step 1 : Tasks for master

(i) reads the value of n, number of elements, and all elements of matrix A

(ii) initializes the initial permutation in ordered list

(iii) runs PERMUT1 from k = n− 1 until k = n− 3 or k = n− 4

(iv) stores the result in (iii) as kth rank starter sets in two dimension array

(v) distributes the k rank starter sets, value of n and matrix A to all

other slaves

The algorithm for master tasks is similar to Algorithm 5.1.

Step 2 : Tasks for each slave pj where j = 1 to p− 1

(i) receives the kth rank starter sets, value of n and matrix A and store it in its

own memory

(ii) runs PERMUTDET1 from k − 1 until 2.

(iii) performs CO on each (n− 1)th starter sets

(iv) simultaneously calculates the product of elements in the main diagonal

(PMD) and its secondary diagonal(PSD)

(v) sums up all values as subDet(A) and sends to master
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This procedure for each slave can be presented in the following algorithm:

Algorithm 5.5 PERMUTDET1 for Each Slave
do in parallel
for j = 1 to p− 1 do

PERMUTDET1(k) is perform by pj
if k = 2 then

for l = 1 to n do
performing CO on all starter sets
calculate PDl = SDPl +MDPl
total up

∑n
k=1 PDl

end for
subDet(A)j+ =

∑ (n−1)!
2(p−1)

i=1 [
∑n

l=1 PDl]i
return

end if
k = k − 1
for i = n to k do

performing CO to the last k element
call PERMUTDET1(k)

end for
end for

Step 3 : Tasks for master

(i) receives the value subDet(A)j from all slaves.

(ii) totals up det(A) =
∑p−1

j=1 subDet(A)j .

The parallel process in determining the determinant is demonstrated by given an ex-

ample for n = 4.

Example 5.3.2. Let consider number of processors p = 3 and n = 4.

Step 1 : Tasks for master

There are three starter sets generated by master i.e. [1, 2, 3, 4], [1, 3, 4, 2] and [1, 4, 2, 3].

Then master broadcasts these three starter sets to all slaves p1 and p2.
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Step 2 : Tasks for each slave

Do in parallel

P1 generates the fourth order diagram based on starter sets [1, 2, 3, 4] and [1, 4, 2, 3]

and calculates the product of eight diagonals for that diagram simultaneously.

Starter set: [1, 2, 3, 4]

|A1| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14 |a11 a12 a13

a21 a22 a23 a24 |a21 a22 a23

a31 a32 a33 a34 |a31 a32 a33

a41 a42 a43 a44 |a41 a42 a43

∣∣∣∣∣∣∣∣∣∣∣∣∣
subDet(A1) =

4∑
k=1

PD(A1,k)

Starter set : [1, 4, 2, 3]

|A2| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a14 a12 a13 |a11 a14 a12

a21 a24 a22 a23 |a21 a24 a22

a31 a34 a32 a33 |a31 a34 a32

a41 a44 a42 a43 |a41 a44 a42

∣∣∣∣∣∣∣∣∣∣∣∣∣
subDet(A2) =

4∑
k=1

PD(A2,k)

Then total subDet(A) = subDet(A1) + subDet(A2). Slave p1 sends that value to

master.

For p2 generates fourth order diagram based on starter sets [1, 3, 4, 2] and calcu-

lates the product of eight diagonals for that diagram simultaneously.
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Starter set :[1, 3, 4, 2]

|A3| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a13 a14 a12 |a11 a13 a14

a21 a23 a24 a22 |a21 a23 a24

a31 a33 a34 a32 |a31 a33 a34

a41 a43 a44 a42 |a41 a43 a44

∣∣∣∣∣∣∣∣∣∣∣∣∣
subDet(A3) =

n∑
k=1

PD(A3,k).

Then total subDet(A) = subDet(A3). Slave p2 sends that value to master.

Step 3 : Tasks for master

Master receives the result from all slaves and sums all the value as follows:

det(A) =
3∑
i=1

(subDet(Ai)).

For any n, we consider two cases for p− 1 number of slave is as follows:

(i)
(n− 1)!

2
≡ 0 mod(p− 1), then every slave calculate

subDet(A)j =

(n− 1)!

2(p− 1)∑
i=1

n∑
k=1

PD(Ai,k) (5.2)

where 1 ≤ j ≤ p− 1.

(ii)
(n− 1)!

2
≡ r mod(p− 1) where 1 ≤ r < p− 1− r, the first r processors calculate

subDet(A)j =

(n− 1)!− r
2(p− 1)

+1∑
i=1

n∑
k=1

PD(Ai,k) (5.3)

where 1 ≤ j ≤ r,
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The remaining p− 1− r slaves calculate

subDet(A)j =

(n−1)!−r
2(p−1)∑
i=1

n∑
k=1

PD(Ai,k) (5.4)

where p− 1− r ≤ j ≤ p− 1

PD(Ai,k) =
n∑
k=1

(MDP + SDP )Ai,k (5.5)

The detail of (MDP + SDP )Ai,k can be referred in Equation 4.3 in Chapter Four.

The next section discusses the parallelisation across the method for generating permuta-

tion and finding the determinant.

5.4 Parallelization Across The Method (ATM)

According to Burrage (1995), across the method is a more naturalistic approach com-

pared to across the time method. The alteration and restyling of sequential algorithms is

required in this approach. Thus new algorithms are parallel in nature and fit to parallel

computers well. However this approach is quite challenging because not only new algo-

rithms have to be developed, the parallel executions also need to be considered.

In order to develop a new parallel algorithm for finding the determinant, once again we

have to design the parallel algorithm of generating permutation.

5.4.1 Derivation of Parallel Algorithm for Permutation Generation

The alteration of circular operation (PERMUT1) from the initial permutation without

starter sets allocation fails because the patterns of the generated permutation are not con-

sistent with the original circular permutation for all n > 3. Thus as alternative, an ex-

change of two consecutive elements technique will be used.
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The new parallel algorithm for generating permutation are divided to three parts as fol-

lows:

(i) Initial starter sets generation from identity permutation.

(ii) Starter sets generation from initial starter sets.

(iii) Listing all n! permutation using result in (ii).

For cases n = 2, and 3 are trivial. We assume that there are p− 1 processors (slaves) for

any n where 0 < p − 1 ≤ n − 1. Each n > 3, n − 1 initial starter sets are generated

without depending on each other. These n − 1 initial starter sets are generated from

identity permutation i.e. [1, 2, 3, ..., k − 1, k, k + 1, ..., n− 1, n]. Two parallel algorithms

are developed as across the method namely PERATM1 and PERATM2.

5.4.1.1 Initial Starter Sets Generation

The process of identifying the initial starter sets for each processor is complicates because

the dependency of data/process among processors is needed to be avoided. We illustrate

the example for case n = 4, 5, and 6 in PERATM1.

(i) First strategy for initial starter sets (ISSG1)

Assume there are n − 1 slaves. Without loss of generality, the first element is fix.

Identify element in the second position i.e. element ‘2’ exchange with element in

jth position from identity permutation where 1 < j < n. For case j = n, the

element ‘2’ exchange two times where firstly exchange with element in (n − 1)th

position then exchange with element in nth position. The process of generating

initial starter sets depends on identity permutation. So every slave must generate

the identity permutation and this task is done independently. The examples given

below are for case n = 4, 5, and 6 in PERATM1.
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Case n = 4

1 3 4 2

1 2 3 4

1 3 2 4

Case n = 5

1 4 3 5 2

1 2 3 4 5

1 3 2 4 5

1 4 3 2 5

Case n = 6

1 5 3 4 6 2

1 2 3 4 5 6

1 3 2 4 5 6

1 4 3 2 5 6

1 5 3 4 2 6

See the following pseudocode ISSG1(i, 2). The term ID in pseudocode mean any

slave identity value.

Algorithm 5.6 ISSG1 (i, 2)

ISSG1(i, 2) is perform by pi
do in parallel
for i = ID to n− 1; i+ = p− 1 do

if i = 1 then
old = a[2]
a[2] = a[n− 1]
a[n− 1] = a[n]
a[n] = old

else
old = a[i]
a[i] = a[2]
a[2] = old

end if
end for
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(ii) Second strategy for initial starter sets (ISSG2)

Assume there are n − 1 slaves. Without loss of generality, the last element is fix.

Identify element in (n − 1)th position i.e. element ‘n − 1’ exchange with element

in jth position from identity permutation where 1 < j ≤ n − 1. For case j = 1,

element ‘n− 1’ exchange two times where firstly exchange with element in second

position then exchange with element in first position. The process of generating

initial starter sets depends on identity permutation. So every slave must generate

the identity permutation and this task is done independently. The examples given

below are for case n = 4, 5, and 6 in PERATM2.

Case n = 4

3 1 2 4

1 3 2 4

1 2 3 4

Case n = 5

4 1 3 2 5

1 4 3 2 5

1 2 4 3 5

1 2 3 4 5

Case n = 6

5 1 3 4 2 6

1 5 3 4 2 6

1 2 5 4 3 6

1 2 3 5 4 6

1 2 3 4 5 6
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See the following pseudocode ISSG2(i, n− 1). The term ID in pseudocode mean

any slave identity value.

Algorithm 5.7 ISSG2 (i, n− 1)

ISSG2(i, n− 1) is perform by pi
do in parallel
for i = ID to n− 1; i+ = p− 1 do

if i = 1 then
old = a[2]
a[2] = a[n− 1]
a[n− 1] = old
t = old
old = a[i]
a[i] = a[2]
a[2] = old

else
old = a[i]
a[i] = a[n− 1]
a[n− 1] = old

end if
end for

For the case where the number of slaves p < n− 1 and n− 1 ≡ r mod (p− 1) where

0 < r < p− 1, the cyclic allocation is employs in order to generate (n− 1) initial starter

sets where the first r slaves will generate
n− 1− r
p− 1

+1 initial starter sets. Meanwhile the

remaining slaves p− 1− r slaves will generate
n− 1− r
p− 1

initial starter sets. The starter

sets generation from initial starter sets in each slave will be discussed in next section.

5.4.1.2 Starter Sets Generation from Initial Starter Sets

Since distinct initial starter sets are generated by slaves, it is easy to assign the slave to

generate all distinct starter sets. Each slave will generate starter sets recursively where

each initial starter set is exploited to produce
(n− 2)!

2
starter sets. The examples for

n = 4 and 5 are demonstrated for PERATM1 algorithm and PERATM2 algorithm. The

general algorithm for starter sets generation will then be derived. Assume that there is

n− 1 number of slaves.
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(i) Starter sets generation where initial starter sets are produced from ISSG1(i, 2).

Case n = 4 and k = 4.

Processor 1 generated [1, 3, 4, 2]

Processor 2 generated [1, 2, 3, 4]

Processor 3 generated [1, 3, 2, 4]

Case n = 5

Processor 1

Step 1 : Initial starter set [1, 4, 3, 5, 2] is produced and k = 4.

Step 2 : New k = 4− 1 = 3. Identify the element in the third position i.e.

element ‘3’. Exchange this element until it reaches the 5th (last)

position.

1 4 3 5 2

1 4 5 3 2

1 4 5 2 3

Processor 2

Step 1 : Initial starter set [1, 2, 3, 4, 5] is produced and k = 4

Step 2 : New k = 4− 1. Identify the element in the third position i.e.

element ‘3’. Exchange this element until it reaches the 5th (last)

position.

1 2 3 4 5

1 2 4 3 5

1 2 4 5 3
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Processor 3

Step 1 : Initial starter set [1, 3, 2, 4, 5] is produced and k = 4.

Step 2 : New k = 4− 1. Identify the element in the third position i.e.

element ‘2’. Exchange this element until it reaches the 5th (last)

position.

1 3 2 4 5

1 3 4 2 5

1 3 4 5 2

Processor 4

Step 1 : Initial starter set [1, 4, 3, 2, 5] is produced and k = 4.

Step 2 : New k = 4− 1. Identify the element in the third position i.e.

element ‘3’. Exchange this element until it reaches the 5th (last)

position.

1 4 3 2 5

1 4 2 3 5

1 4 2 5 3

The general algorithm of starter sets generation from initial starter sets for each processor,

pi where 1 ≤ i ≤ p− 1 as follows:

Step 1: Initial starter sets is produced after performing procedure ISSG1(i, 2) and set

k = n− 1.

Step 2: New k = k − 1. Identify the element in the kth position. Exchange this element

until it reaches the nth (last) position.

Step 3: Test whether k = 3. If true, the process is stopped otherwise go to Step 2

for identifying the element in new kth position for each tth rank starter

where t = n+ 1− k.
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(ii) Starter sets generation where initial starter sets are produced from ISSG2(i, n− 1).

Case n = 4 and k = 2

Processor 1 generated [3, 1, 2, 4]

Processor 2 generated [1, 2, 3, 4]

Processor 3 generated [1, 3, 2, 4]

Case n = 5,

Processor 1

Step 1 : Initial starter set [1, 2, 3, 4, 5] is produced and k = 2.

Step 2 : New k = 2 + 1. Identify the element in the third position i.e.

element ‘3’. Exchange this element until it reaches the first position.

1 2 3 4 5

1 3 2 4 5

3 1 2 4 5

Processor 2

Step 1 : Initial starter set [2, 1, 3, 4, 5] is produced and k = 2.

Step 2 : New k = 2 + 1. Identify the element in the third position i.e.

element ‘3’. Exchange this element until it reaches the first position.

2 1 3 4 5

2 3 1 4 5

3 2 1 4 5

Processor 3

Step 1 : Initial starter set [1, 2, 4, 3, 5] is produced and k = 2

Step 2 : New k = 2 + 1. Identify the element in the third position i.e.

128



element ‘4’. Exchange this element until it reaches the first position.

1 2 4 3 5

1 4 2 3 5

4 1 2 3 5

Processor 4

Step 1 : Initial starter set [1, 4, 3, 2, 5] is produced and k = 2

Step 2 : New k = 2 + 1. Identify the element in the third position i.e.

element ‘3’. Exchange this element until it reaches the first position.

1 4 3 2 5

1 3 4 2 5

3 1 4 2 5

The general algorithm of starter sets generation from initial starter sets for each processor,

pi where 1 ≤ i ≤ p− 1 as follows:

Step 1: Initial starter sets is produced after performing procedure ISSG2(i, n− 1) and

set k = 2.

Step 2: New k = k + 1. Identify the element in the kth position. Exchange this element

until it reaches the first position.

Step 3: Test whether k = n− 2. If true, the process is stopped otherwise go to Step 2

for identifying the element in new kth position for each kth rank starter sets.

5.4.1.3 Permutation Generation

Circular permutation and reversing of circular permutation operation are employed on the

starter sets for listing all n! permutations. Illustration is given only for the starter sets
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which were developed in ISSG1(i, 2).

Case n = 4

Processor 1: [1, 3, 4, 2]

1 3 4 2
3 4 2 1
4 2 1 3
2 1 3 4

2 4 3 1
1 2 4 3
3 1 2 4
4 3 1 2

Processor 2: [1, 2, 3, 4]

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

4 3 2 1
1 4 3 2
2 1 4 3
3 2 1 4

Processor 3: [1, 3, 2, 4]

1 3 2 4
3 2 4 1
2 4 1 3
4 1 3 2

4 2 3 1
1 4 2 3
3 1 4 2
2 3 1 4
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Case n = 5

Processor 1: [1, 4, 3, 5, 2]

1 4 3 5 2
4 3 5 2 1
3 5 2 1 4
5 2 1 4 3
2 1 4 3 5
1 4 5 3 2
4 5 3 2 1
5 3 2 1 4
3 2 1 4 5
2 1 4 5 3
1 4 5 2 3
4 5 2 3 1
5 2 3 1 4
2 3 1 4 5
3 1 4 5 2

2 5 3 4 1
1 2 5 3 4
4 1 2 5 3
3 4 1 2 5
5 3 4 1 2
2 3 5 4 1
1 2 3 5 4
4 1 2 3 5
5 4 1 2 3
3 5 4 1 2
3 2 5 4 1
1 3 2 5 4
4 1 3 2 5
5 4 1 3 2
2 5 4 1 3

Processor 2: [1, 2, 3, 4, 5]

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4
1 2 4 3 5
2 4 3 5 1
4 3 5 1 2
3 5 1 2 4
5 1 2 4 3
1 2 4 5 3
2 4 5 3 1
4 5 3 1 2
5 3 1 2 4
3 1 2 4 5

5 4 3 2 1
1 5 4 3 2
2 1 5 4 3
3 2 1 5 4
4 3 2 1 5
5 3 4 2 1
1 5 3 4 2
2 1 5 3 4
4 2 1 5 3
3 4 2 1 5
3 5 4 2 1
1 3 5 4 2
2 1 3 5 4
4 2 1 3 5
5 4 2 1 3
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Processor 3: [1, 3, 2, 4, 5]

1 3 2 4 5
3 2 4 5 1
2 4 5 1 3
4 5 1 3 2
5 1 3 2 4
1 3 4 2 5
3 4 2 5 1
4 2 5 1 3
2 5 1 3 4
5 1 3 4 2
1 3 4 5 2
3 4 5 2 1
4 5 2 1 3
5 2 1 3 4
2 1 3 4 5

5 4 2 3 1
1 5 4 2 3
3 1 5 4 2
2 3 1 5 4
4 2 3 1 5
5 2 4 3 1
1 5 2 4 3
3 1 5 2 4
4 3 1 5 2
2 4 3 1 5
2 5 4 3 1
1 2 5 4 3
3 1 2 5 4
4 3 1 2 5
5 4 3 1 2

Processor 4: [1, 4, 3, 2, 5]

1 4 3 2 5
4 3 2 5 1
3 2 5 1 4
2 5 1 4 3
5 1 4 3 2
1 4 2 3 5
4 2 3 5 1
2 3 5 1 4
3 5 1 4 2
5 1 4 2 3
1 4 2 5 3
4 2 5 3 1
2 5 3 1 4
5 3 1 4 2
3 1 4 2 5

5 2 3 4 1
1 5 2 3 4
4 1 5 2 3
3 4 1 5 2
2 3 4 1 5
5 3 2 4 1
1 5 3 2 4
4 1 5 3 2
2 4 1 5 3
3 2 4 1 5
3 5 2 4 1
1 3 5 2 4
4 1 3 5 2
2 4 1 3 5
5 2 4 1 3
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The difference between PERATM1 and PERATM2 algorithms can be observed through

starter sets generation. In Table 5.2, a[i] is represented as an element in ith position. The

detail is as follows :

Table 5.2: The Difference of PERATM1 and PERATM2 in Starter Set Generation

PERATM1 PERATM2
Fixed Element a[1] a[n]

Initial element exchange a[n− 2] a[3]
Last element exchange a[3] a[n− 2]
Direction of exchange Exchange to the right Exchange to the left

Both of them use similar CP and RoCP operations to generate all n! permutations.

5.4.2 Parallel Algorithm for Permutation Generation

The model of our parallel computational graph with master-slave approach is as follows

where there is no communication between slaves:

Figure 5.1: Parallel Computational Graph with Master-Slave Approach

The general task for master (p0) and slaves (pi) where 1 ≤ i ≤ p − 1 for PERATM1

algorithm is as follows:

Step 1 : Task for master

(i) reads and stores the value of n, number of elements.
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(ii) broadcasts the value of n to all slaves.

Step 2 : Task for each slave pi where 1 ≤ i ≤ n− 1

(i) receives the value of n and store it in its own memory.

(ii) performs initialization based on ISSG1(i, 2) algorithm (refer page 123)

and stores initial starter sets as second rank starter sets.

(iii) determines all (n− 2)th rank starter sets.

(iv) performs circular and reversing of circular operations for all elements for

each (n− 2)th rank starter set.

(v) sends all results to master.

Step 3 : Task for master

(i) receive results from all slaves.

(ii) prints the results.

The general task for master (p0) and slaves (pi) where 1 ≤ i ≤ p − 1 for PERATM2

algorithm is as follows:

Step 1 : Master

(i) reads and stores the value of n, number of elements.

(ii) broadcasts the value of n to all slaves

Step 2 : Task for each slave pi where 1 ≤ i ≤ n− 1

(i) receives the value of n and store it in own memory.

(ii) performs initialization based on ISSG2(i, n− 1) algorithm (refer page 125)

and stores initial starter sets as second rank starter sets.

(iii) determines all (n− 2)th rank starter sets.

(iv) performs circular and reversing of circular operations for all elements for
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each (n− 2)th rank starter sets.

(v) sends all results to master.

Step 3 : Task for master

(i) receives results from all slaves.

(ii) prints the results.

5.4.3 Parallel Algorithm for Finding the Determinant

Master only broadcasts the value of n and n × n matrix to all slaves and receives results

from slaves. Then all slaves generate
(n− 1)!

2(p− 1)
permutations and calculate the diagonal

products. After that, slaves send the results to master.

The general task for master (p0) and slaves (pi) where 1 ≤ i ≤ p − 1 for PDATM1 is as

follows:

Step 1 : Task for master

(i) reads and stores the value of n, number of elements and all elements

of matrix A.

(ii) broadcasts the value of n and matrix A to all slaves.

Step 2 : Task for every slave pi where 1 ≤ i ≤ n− 1

(i) receives the value of n and store it in its own memory.

(ii) performs initialization based on ISSG1(i, 2) algorithm (refer page 123) and

stores initial starter sets as second rank starter sets.

(iii) determine all (n− 2) rank starter sets.

(iv) performs CO to each (n− 2) rank starter set which was allocated using

cyclic allocation.

(v) calculates the product of elements in the main diagonal(MDP)
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and its secondary diagonal(PSD).

(vi) sums up all values as subDet(A) and sends to master.

This procedure for each slave can be presented in the following algorithm:

Algorithm 5.8 PDATM1 for Each Slave
PDATM1(k)
if k = 3 then

for i = 1 to n do
performing CO to all starter sets
calculate PDi = MDPi + SDPi∑n

i=1 PDi

end for
subDet(A)i =

∑ (n−2)!
2(p−1)

j=1 [
∑n

i=1 PDi]j
return

end if
k = k − 1
for i = k to n do

performing exchanging process to the element at kth position
call PDATM1(k)

end for

Step 3 : Master

(i) receives the values subDet(A)i from all slaves.

(ii) total up det(A) =
∑p−1

i=1 subDet(A)i.

Then for the PDATM2, the different tasks arise for each slave is as follows:
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Algorithm 5.9 PDATM2 for Each Slave
PDATM2(k)
if k = n− 2 then

for i = 1 to n do
performing CO to all starter sets
calculate PDi = MDPi + SDPi∑n

i=1 PDi

end for
subDet(A)i =

∑ (n−2)!
2(p−1)

j=1 [
∑n

i=1 PDi]j
return

end if
k = k + 1
for i = k to 1 do

performing exchanging process to the element at kth position to the first position
call PDATM2(k)

end for

The parallel process in finding the determinant using across the method algorithm for

n = 4 is given as follows:

Example 5.4.1. Different from ATT algorithm, master only broadcasts data n = 4 and

square matrix to all slaves. Let consider the number of slaves equal to three. Slave

p1 generates initial starter set [1, 3, 4, 2],p2 generates initial starter set [1, 2, 3, 4] and p3

generates initial starter set [1, 3, 2, 4]. Each slave performs its own task independently

and simultaneously sends the results to master as follows:

Slave p1

Starter set :[1, 3, 4, 2]

|A1| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a13 a14 a12 |a11 a13 a14

a21 a23 a24 a22 |a21 a23 a24

a31 a33 a34 a32 |a31 a33 a34

a41 a43 a44 a42 |a41 a43 a44

∣∣∣∣∣∣∣∣∣∣∣∣∣
subDet(A1) =

4∑
k=1

PD(A1,k)
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Slave p2

Starter set: [1, 2, 3, 4]

|A2| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14 |a11 a12 a13

a21 a22 a23 a24 |a21 a22 a23

a31 a32 a33 a34 |a31 a32 a33

a41 a42 a43 a44 |a41 a42 a43

∣∣∣∣∣∣∣∣∣∣∣∣∣
subDet(A2) =

4∑
k=1

PD(A2,k)

Slave p3

Starter set :[1, 3, 2, 4]

|A3| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a13 a12 a14 |a11 a13 a12

a21 a23 a22 a24 |a21 a23 a22

a31 a33 a32 a34 |a31 a33 a32

a41 a43 a42 a44 |a41 a43 a42

∣∣∣∣∣∣∣∣∣∣∣∣∣
subDet(A3) =

4∑
k=1

PD(A3,k)

Master receives the result from all slaves and sums all the value as follows:

det(A) =
3∑
i=1

(subDet(Ai))

For any n, we consider two cases for p− 1 number of slaves:

(i) If n− 1 ≡ 0 (mod p− 1), then every slave calculates

subDet(A)i =

(n−2)!
2(p−1)∑
j=1

n∑
k=1

PD(Aj,k) (5.6)

where 1 ≤ i ≤ p− 1.
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(ii) If n− 1 ≡ r (modp− 1) where 1 ≤ r < p− 1, the first r slaves calculate

subDet(A)i =

(n−2)!−r
2(p−1)

+1∑
j=1

n∑
k=1

PD(Aj,k) (5.7)

where 1 ≤ i ≤ r. The remaining p− 1− r slaves calculate

subDet(A)i =

(n−2)!−r
2(p−1)∑
j=1

n∑
k=1

PD(Aj,k) (5.8)

where p− 1− r ≤ i ≤ p− 1.

The theoretical results for permutation generation are presented in the following section.

5.5 Theoretical Results for Across The Method Algorithm

The following lemmas and theorem are produced from ATM algorithm for permutation

generation.

Lemma 5.5.1. The number of initial starter sets produced under procedure ISSG1(i, 2)

for n ≥ 4 and 1 ≤ i < n is n− 1 .

Proof. In procedure ISSG1(i, 2), i represents the processor pi and number 2 is denoted

the element in the second position is selected to be exchanged. For i 6= 1, the exchange

process is between elements a[i] and a[2] from identity permutation [1, 2, 3, . . . , k, k +

1, . . . , n − 3, n − 2, n − 1, n]. Thus from i = 2 until i = n − 1, there are (n − 2) initial

starters sets produce:

i = 2 → [1, 2, 3, . . . , k, k + 1, . . . , n− 3, n− 2, n− 1, n]

i = 3 → [1, 3, 2, . . . , k, k + 1, . . . , n− 3, n− 2, n− 1, n]

... → ...

i = n− 2 → [1, n− 2, 3, . . . , k, k + 1, . . . , n− 3, 2, n− 1, n]

i = n− 1 → [1, n− 1, 3, . . . , k, k + 1, . . . , n− 3, n− 2, 2, n]
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For i = 1, the exchange process is done twice with firstly exchanging between a[2] with

a[n − 1]. Then new a[n − 1] exchanges with a[n]. Thus another initial starter sets is

produced as follows:

→ [1, n− 1, 3, . . . , k, k + 1, . . . , n− 3, n− 2, n, 2]

Thus, the total number of initial starter sets is (n− 1).

Lemma 5.5.2. The number of initial starter sets produced under procedure ISSG2(i, n−

1) for n ≥ 4 and 1 ≤ i < n is n− 1 .

Proof. In procedure ISSG2(i, n − 1), i represents the processor pi and number (n −

1) represents element in (n − 1)th position is selected to be exchanged. For i 6= 1,

the exchange process is between elements a[i] and a[n − 1] from identity permutation

[1, 2, 3, . . . , k, k + 1, . . . , n − 3, n− 2, n− 1, n]. Thus from i = 2 until i = n − 1, there

are (n− 2) initial starters sets produced as follows:

i = 2 → [1, n− 1, 3, . . . , k, k + 1, . . . , n− 3, n− 2, 2, n]

i = 3 → [1, 2, n− 1, . . . , k, k + 1, . . . , n− 3, n− 2, 3, n]

... → ...

i = n− 2 → [1, 2, 3, . . . , k, k + 1, . . . , n− 3, n− 1, n− 2, n]

i = n− 1 → [1, 2, 3, . . . , k, k + 1, . . . , n− 3, n− 2, n− 1, n]

For i = 1, the exchange process of exchanging is done twice where with firstly between

a[2] with a[n − 1]. Then new a[2] with a[1]. Thus another initial starter sets is produced

as follows:

→ [n− 1, 1, 3, . . . , k, k + 1, . . . , n− 3, n− 2, 2, n]

Thus, the total number of initial starter sets is (n− 1).

Theorem 5.5.3. The number of starter sets from each initial starter sets by exchanging

one element to the right for n ≥ 4 is
(n− 2)!

2
.
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Proof. From Lemma 5.5.1, there are (n − 1) starter sets for n ≤ 4 by exchanging one

element to the right. In order to show that each initial starter set produce
(n− 2)!

2
starter

sets, it is enough to prove by selecting one initial starter set. Let consider identity permu-

tation, [1, 2, 3, . . . , k, k + 1, . . . , n − 3, n − 2, n − 1, n] as one of the initial starter sets.

The first element will be selected from (n − 2)th position i.e. element n − 2. Then by

moving that element to the right until it reaches nth position, three distinct starter sets are

produced :

1 2 3 ... n− 3 n− 2 n− 1 n (starter 1)

1 2 3 ... n− 3 n− 1 n− 2 n (starter 2)

1 2 3 ... n− 3 n− 1 n n− 2 (starter 3)

Then for each previous starter set, the element in (n − 3)th will be selected i.e. element

n − 3. Then by moving that element to the right until it reaches nth position from each

previous starter set, four distinct starter sets are produced:

From starter 1: 1 2 3 ... n− 3 n− 2 n− 1 n

1 2 3 ... n− 2 n− 3 n− 1 n

1 2 3 ... n− 2 n− 1 n− 3 n

1 2 3 ... n− 2 n− 1 n n− 3

From starter 2: 1 2 3 ... n− 3 n− 1 n− 2 n

1 2 3 ... n− 1 n− 3 n− 2 n

1 2 3 ... n− 1 n− 2 n− 3 n

1 2 3 ... n− 1 n− 2 n n− 3

From starter 3: 1 2 3 ... n− 3 n− 1 n n− 2

1 2 3 ... n− 1 n− 3 n n− 2

1 2 3 ... n− 1 n n− 3 n− 2

1 2 3 ... n− 1 n n− 2 n− 3

Thus the total starter sets are 3 × 4 = 12. The processes will continue recursively until

141



element in third position is selected.

(n− 2)th position ⇒ 3 starter sets

(n− 3)th position ⇒ 4 starter sets

(n− 4)th position ⇒ 5 starter sets

(n− 5)th position ⇒ 6 starter sets
...

...

(n− i+ 1)th position ⇒ i starter sets

(n− i)th position ⇒ i+ 1 starter sets

(n− i− 1)th position ⇒ i+ 2 starter sets
...

...

third position ⇒ n− 2 starter sets

By product rule,

3× 4× ...× n− 2

=
1× 2

2
× (3× 4× ...× n− 2))

=
(n− 2)!

2
distinct starter sets

This theorem is also define for exchanging one element to the left which is from

Lemma 5.5.2, the initial starter sets are produced under procedure ISSG2(i, n− 1). This

theorem is not valid for n = 3 is since it has only three distinct starter sets while
(3− 2)!

2
=

1

2
where is not evenly divisible.

Theorem 5.5.4. The total number of starter sets from all n − 1 initial starter sets by

exchanging one element to the right for n ≥ 4 is
(n− 1)!

2
.

Proof. From Theorem 5.5.4, the total starter sets for one initial starter sets is
(n− 2)!

2
.
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Thus the total starter sets for (n− 1) initial starter sets are:

=
(n− 2)!

2
× (n− 1)

=
(n− 1)!

2

Numerical results will be presented in the following section.

5.6 Performance of Parallel Algorithm for Permutation Generation

The performance of both across the time and across the method strategies for permutation

generation and its application for finding the determinant are analysed in this section.

5.6.1 Numerical Results of Across The Time Permutation Algorithm

PERMUT1 and PERMUT2 are tested for two cases. In the first case, the master broad-

casts an initial starter sets matrix of size 12 × n to all slaves while in the second case,

master broadcasts the initial starter sets matrix of size 60 × n to slaves. The selection

number of 12 and 60 initial starter sets (ISS) is based on the starter sets number
(n− 1)!

2
.

In all tables, p and n represent the number of processors and the number of element re-

spectively. The total number of processor available is 10. The computation time given in

seconds.
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Table 5.3: The Computation Time of PERMUT1 with 12 Initial Starter Sets (in seconds)

n
p 10 11 12 13
1 0.288820 2.983579 37.634830 455.784241
2 0.288928 3.311018 37.460641 511.226828
3 0.144903 1.655674 20.775988 282.508526
4 0.096881 1.105749 13.876782 188.605803
5 0.074026 0.829904 10.390958 141.345779
6 0.072624 0.828566 10.387230 141.301121
7 0.050432 0.554404 6.928929 94.442333
8 0.048530 0.553717 6.933739 94.348762
9 0.052930 0.560323 7.163270 94.902682

10 0.066153 0.557403 7.120658 95.101400

From Table 5.3, the computation times decrease. However, the computation times de-

teriorate for 8 ≤ p ≤ 10. This situation occurs because process of generating permutation

is optimal at p = 7. The total number row that will be evenly allocated to the slaves since
p− 1

6
= 2. However when the number of slaves increases, for example p = 9, the two

rows of initial starter sets matrix is allocated to first four slaves, while the remaining four

slaves get one row. This causes unload balancing. In order to reduce unload balancing,

the number of initial starter sets is change to 60 which gives the following results.

Table 5.4: The Computation Time of PERMUT1 with 60 Initial Starter Sets (in seconds)

n
p 10 11 12 13
1 0.288820 2.983579 37.634830 455.783526
2 0.289141 2.999253 41.616693 510.207046
3 0.144663 1.659321 20.775683 282.541250
4 0.096680 1.104178 13.848872 188.374949
5 0.074534 0.830221 10.392067 141.277263
6 0.060285 0.665733 8.310123 113.187266
7 0.048844 0.552607 6.941704 94.357537
8 0.047319 0.499046 6.235494 84.880762
9 0.041098 0.448966 5.654323 77.233163

10 0.043334 0.389413 5.047950 67.763967

From Table 5.4, the computation times reduce when the number of the initial starter

sets matrix row increases from 12 to 60. The computation timed continue to decrease as

the number of processors increases.
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The speedup and efficiency of PERMUT1 from 10 ≤ n ≤ 13 for 12 and 60 initial starter

sets are presented in Tables 5.5 and 5.6 respectively.

Table 5.5: The Speedup of PERMUT1 with 12 and 60 Initial Starter Sets

n
10 11 12 13

p 12 60 12 60 12 60 12 60
1 1 1 1 1 1 1 1 1
2 0.9996 0.9989 0.9011 0.9948 1.0046 0.9043 0.8915 0.8933
3 1.9932 1.9965 1.8020 1.7981 1.8115 1.8115 1.6133 1.6132
4 2.9812 2.9874 2.6982 2.7021 2.7121 2.7175 2.4166 2.4196
5 3.9016 3.8750 3.5951 3.5937 3.6219 3.6215 3.2246 3.2262
6 3.9769 4.7909 3.6009 4.4816 3.6232 4.5288 3.2256 4.0268
7 5.7269 5.9131 5.3816 5.3991 5.4315 5.4216 4.8261 4.8304
8 5.9514 6.1037 5.3883 5.9780 5.4278 6.0356 4.8308 5.3697
9 5.4566 7.0276 5.3247 6.6454 5.2539 6.6559 4.8026 5.9014

10 4.3659 6.6649 4.3993 7.6617 5.0037 7.4555 4.5815 6.7260

Table 5.6: The Efficiency of PERMUT1 with 12 and 60 Initial Starter Sets

n
10 11 12 13

p 12 60 12 60 12 60 12 60
1 1 1 1 1 1 1 1 1
2 0.4998 0.4994 0.4974 0.4506 0.5023 0.4522 0.4458 0.4467
3 0.6644 0.6655 0.6007 0.5994 0.6038 0.6038 0.5378 0.5377
4 0.7453 0.7469 0.6746 0.6755 0.6780 0.6793 0.6042 0.6049
5 0.7803 0.775 0.7190 0.7187 0.7244 0.7243 0.6449 0.6452
6 0.6628 0.7985 0.6015 0.7469 0.6039 0.7548 0.5376 0.6711
7 0.8181 0.8447 0.7688 0.7713 0.7759 0.7745 0.6894 0.6900
8 0.7439 0.7630 0.6735 0.7472 0.6785 0.7545 0.6038 0.6712
9 0.6063 0.7808 0.5916 0.7339 0.5838 0.7395 0.5336 0.6557

10 0.4366 0.6665 0.4399 0.7662 0.5004 0.7456 0.4581 0.6726

Tables 5.5 and 5.6 show that the speedup of the algorithm for 60 initial starter sets

is better than 12 initial starter sets especially for p = 8, 9, and 10. This is due to the

allocation number of the rows for 60 × n initial starter sets matrix among processors

is more evenly distributed if compared to the allocation rows for 12 × n initial starter

sets matrix. Furthermore, the efficiency of the parallel algorithm also increases when the
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number of the initial starter sets matrix rows is 60. Refer Figures 5.2 and 5.3 for speedup,

and Figures 5.4 and 5.5 for efficiency.

Figure 5.2: Speedup versus Number of Processors for PERMUT1 with 12 Initial Starter
Sets

Figure 5.3: Speedup versus Number of Processors for PERMUT1 with 60 Initial Starter
Sets
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Figure 5.4: Efficiency versus Number of Processors for PERMUT1 with 12 Initial Starter
Sets

Figure 5.5: Efficiency versus Number of Processors for PERMUT1 with 60 Initial Starter
Sets

As can be observed from Figures 5.2 and 5.3, the speedup of PERMUT1 with initial

60 starter sets is better than PERMUT1 with 12 initial starter sets. Meanwhile from Fig-

ures 5.4, and 5.5, the PERMUT1 with 60 initial starter sets are more efficient along the

number of processors compared to its own algorithm with 12 initial starter sets. The cost

overhead due to broadcasting n and a starter set matrix from master to slaves can be seen

when the size of matrix increases as n increases. The cost overhead also contributed by

the process of sending data from slaves to master.
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The next results display the computation time for generating permutation using paral-

lel algorithm PERMUT2. The algorithm is also tested for using 12 and 60 initial starter

sets.

Table 5.7: The Computation Time of PERMUT2 with 12 Initial Starter Sets (in seconds)

n
p 10 11 12 13
1 0.215220 2.241888 31.688313 440.066193
2 0.222532 2.605106 32.858107 451.884762
3 0.112166 1.296642 16.451070 226.298348
4 0.074612 0.861711 13.217642 163.709182
5 0.056348 0.651444 8.231780 113.114765
6 0.056547 0.647946 8.218523 112.976828
7 0.037718 0.437311 5.489789 82.685768
8 0.039397 0.433838 5.483988 82.783656
9 0.059407 0.437702 5.623919 82.995641

10 0.047827 0.448921 5.502316 77.190598

Table 5.8: The Computation Time of PERMUT2 with 60 Initial Starter Sets (in seconds)

n
p 10 11 12 13
1 0.215220 2.241888 31.688313 440.066193
2 0.223814 2.342861 32.876404 451.884762
3 0.111480 1.293892 16.470241 227.191016
4 0.075979 0.864197 10.980008 151.086499
5 0.056474 0.647320 8.233840 113.228971
6 0.045577 0.523354 6.586692 90.491564
7 0.038220 0.434187 5.490308 75.482394
8 0.035936 0.391076 4.942402 67.973839
9 0.030943 0.348380 4.401244 60.435723

10 0.027486 0.310298 4.077362 53.545169

PERMUT2 algorithm shows similar performance as PERMUT1. The performance of

PERMUT2 for 60 initial starter sets is better than 12 initial starter sets in terms of speedup

and efficiency. However PERMUT2 algorithm runs faster than PERMUT1 algorithm over

p processors by comparing Tables 5.7 dan 5.8 with Tables 5.3 and 5.4 respectively. The

speedup and efficiency of PERMUT2 for 10 ≤ n ≤ 13 using 12 and 60 initial starter sets

can be found in Tables 5.9 and 5.10.
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Table 5.9: The Speedup of PERMUT2 with 12 and 60 Initial Starter Sets

n
10 11 12 13

p 12 60 12 60 12 60 12 60
1 1 1 1 1 1 1 1 1
2 0.9552 0.9616 0.8606 0.9569 0.9644 0.9639 0.9738 0.9738
3 1.9188 1.9306 1.7289 1.7327 1.9262 1.9239 1.9446 1.9369
4 2.8845 2.8326 2.6017 2.5942 2.3974 2.8860 2.6881 2.9127
5 3.8194 3.8381 3.4414 3.4633 3.8495 3.8485 3.8904 3.8865
6 3.8060 4.7221 3.4600 4.2837 3.8557 4.8110 3.8952 4.8631
7 5.7060 5.6311 5.1265 5.1634 5.7722 5.7717 5.3222 5.8301
8 5.4628 5.9890 5.1676 5.7326 5.7783 6.4115 5.3159 6.4741
9 3.6228 6.9554 5.1219 6.4352 5.6346 7.1998 5.3148 7.2816

10 4.5000 7.8302 4.9939 7.2250 5.7591 7.7718 5.7010 8.2186

Table 5.10: The Efficiency of PERMUT2 with 12 and 60 Initial Starter Sets

n
10 11 12 13

p 12 60 12 60 12 60 12 60
1 1 1 1 1 1 1 1 1
2 0.4776 0.4808 0.4303 0.4784 0.4822 0.4820 0.4869 0.4869
3 0.6396 0.6435 0.5763 0.5776 0.6421 0.6413 0.6482 0.6456
4 0.7211 0.7081 0.6504 0.6486 0.5993 0.7215 0.6720 0.7282
5 0.7639 0.7676 0.6883 0.7697 0.7699 0.7697 0.7781 0.7773
6 0.6343 0.7870 0.5767 0.7139 0.6426 0.8018 0.6492 0.6793
7 0.8151 0.8044 0.7323 0.7376 0.8246 0.8245 0.7603 0.8329
8 0.6829 0.7486 0.6460 0.7165 0.7223 0.8014 0.6645 0.8093
9 0.4025 0.7728 0.5691 0.7150 0.6261 0.8000 0.5905 0.8091

10 0.4500 0.7830 0.4994 0.6916 0.5759 0.7772 0.5701 0.8286
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Figure 5.6: Speedup versus Number of Processors for PERMUT2 with 12 Initial Starter
Sets

Figure 5.7: Speedup versus Number of Processors for PERMUT2 with 60 Initial Starter
Sets
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Figure 5.8: Efficiency versus Number of Processors for PERMUT2 with 12 Initial Starter
Sets

Figure 5.9: Efficiency versus Number of Processors for PERMUT2 with 60 Initial Starter
Sets
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Both algorithms (PERMUT1 and PERMUT2) for permutation generation show al-

most 80 percent efficiency when the size of the matrix of initial starter sets is change from

12× n to 60× n. However the time execution for p = 2 is slower compared to p = 1 due

to parallel overhead.

The results are given only for case 10 ≤ n ≤ 13 which is our algorithms limitation due

to permutation generation is a heavy computation. However results show the algorithm

is working and applicable to run with any number of processors before it is applied for

finding the determinant. The order of complexity for sequential permutation generation

algorithm is O(nn!) which a heavy computation or time consuming. From the numerical

results, the time execution is reduced by parallelising the sequential algorithms (PER-

MUT1 and PERMUT2).

The parallel time complexity can generally be represented as

T (n, p) = O(
T (n)

p
+ Tcomm(n, p)) ≈ O(

T (n)

p
) (5.9)

where n is the problem size, p number of processors available, T (n) is the time com-

plexity of the best sequential algorithm, and Tcomm(n, p) is the overall communication

overhead of a parallel time complexity (Li, 2009). Given the pseudocode PERMUT1(k)

for slaves as follows:

Pseudocode PERMUT1(k)

1: do in parallel

2: for j = 1 to p− 1 do

3: PERMUT1(k) is performed by pj

4: if k = 2 then

5: old = a[1]

6: for i = 1 to n− 1 do
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7: a[i] = a[i+ 1]

8: end for

9: a[n] = old

10: return

11: end if

12: k = k − 1

13: for i = n to k do

14: old = a[k]

15: for j = k to n− 1 do

16: a[i] = a[i+ 1]

17: end for

18: a[n] = old

19: call PERMUT1(k)

20: end for

21: end for

For every slave pj , the critical section is lines 13 - 20 where starter sets are generated.

There is nested loop and in that loop, there is recursive call on less (k gets smaller). The

initial k = n−3 for 12 ISS and k = n−4 for 60 ISS (refer Table 5.1). At line 12, the value

of k is decreasing. The process will stop when k = 2. On the other hand, the recursion

call will stop when k = 2 or the recursion will not be called when n = 3.

The order of complexity for lines 13 -20 is calculate as follows:

For any value of k for loop at lines 14-16,

(n− 1− k)

For the outer loop at lines 13 -20,

(2 + [n− 1− k])
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Let set up the initial k = n− 3 for 12 ISS, at line 12, the new value k is n− 4.

(2 + [n− 1− (n− 4)])

=(2 + [3])

k = n− 5

(2 + [n− 1− (n− 5)])× (2 + [1])

=(2 + [4])× (2 + [1])

temp = n− 6

(2 + [n− 1− (n− 6)])× (2 + [4])× (2 + [3])

=(2 + [5])× (2 + [4])× (2 + [3])

Until when k = 2,

(2 + [n− 1− (2)])× · · · × (2 + [2])× (2 + [1])

=(n− 1)× · · · × (7)× ((6)× (5)

∼=(
(n− 1)!

12
)

Thus the order of complexity at lines 13-20 are O(
(n− 1)!

12
).

From lines 4-11, double loops which has the complexity O(n2) exists. In order to gener-

ate all permutations, all starter sets need to be exploited by performing that double loops

cycling process. So by multiplying n2 to O(
(n− 1)!

12
), it is equal to O(

nn!

12
) .

Meanwhile for PERMUT1 with 60 ISS, the order of complexity for every slave isO(
nn!

60
).

Then for any initial k where n−1 ≤ k ≤ 2, the order of complexity of our PERMUT1(k)
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for every slave is

O(
nn!

(n− 1− k)!
). (5.10)

Technically calculation of the time complexity of overall communication overhead of a

parallel algorithm is difficult. Thus, we only calculate the order of complexity of main

task in our parallel algorithm for PERMUT1. For PERMUT2, its order of complexity is

similar to PERMUT1 because similarities of order complexity and the task allocation to

master and slaves.

The next section discusses about numerical results of parallel permutation algorithm for

across the method approach.

5.6.2 Numerical Results of Across The Method Permutation Algorithm

In this section, the performance of the two parallel algorithms for generating permutation

namely PERATM1 and PERATM2 is presented. The total initial starter sets are n− 1 for

these algorithms.

The time computation for PERATM1 and PERATM2 is given in Tables 5.11 and 5.12

respectively. From Tables 5.11 and 5.12, the computation time reduces until p = 7 for

10 ≤ n ≤ 13. In general, the results also indicate that the time computation for p > 7 are

about the same except for the case n = 10. At n = 10 and p = 10, the workload among

the slaves are equally allocated. Therefore time computation is decreased.
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Table 5.11: The Computation Time of PERATM1 (in seconds)

n
p 10 11 12 13
1 0.213560 2.495277 31.790697 395.085497
2 0.264305 3.369504 38.062418 573.582670
3 0.163369 1.683488 20.760161 287.268842
4 0.098515 1.240107 15.374426 191.218912
5 0.088280 1.010999 11.533463 143.593139
6 0.067034 0.677695 11.545756 143.412291
7 0.065794 0.675261 7.700118 95.817563
8 0.102532 0.674890 7.704120 95.726524
9 0.069749 0.882673 7.850826 95.983782

10 0.050604 0.814327 7.853307 95.692595

Table 5.12: The Computation Time of PERATM2 (in seconds)

n
p 10 11 12 13
1 0.193152 2.498813 31.789985 439.895013
2 0.244638 2.545330 35.878914 492.610659
3 0.136010 1.420710 19.548346 246.379205
4 0.083146 1.135502 13.033181 164.612632
5 0.074166 0.851266 9.778800 123.195581
6 0.056164 0.570117 8.835864 123.168945
7 0.055377 0.569366 6.531600 82.489105
8 0.069764 0.570049 6.546532 82.172228
9 0.054901 0.580490 6.542568 82.163520

10 0.032537 0.571731 6.529212 82.140822
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The graphs of speedup for PERATM1 and PERATM2 are shown in Figures 5.10

and 5.11 respectively.

Figure 5.10: Speedup versus Number of Processors for PERATM1

Figure 5.11: Speedup versus Number of Processors for PERATM2
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The graphs of efficiency for PERATM1 and PERATM2 are display in Figures 5.12

and 5.13 respectively.

Figure 5.12: Efficiency versus Number of Processors for PERATM1

Figure 5.13: Efficiency versus Number of Processors for PERATM2

Since PERATM2 is also similar to PERATM1 where their initial starter sets is n− 1,

their performance is quite similar where the speedup of the algorithm is almost consistent

from p = 7 until 10. From Figure 5.12 and 5.13, the processors are optimal utilized when

n − 1 is a multiple of number of slaves (p − 1). For example n = 13 with p = 7 where

number of slave is six. The efficiency is 0.6137 and 0.7618 for PERATM1 and PERATM2

respectively by referring to Table 5.13 and 5.14 which are the highest value compare to

others. These values are far from ideal efficiency which is equal to one due to imbalance
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workload among slaves. In terms of adaptive, these algorithms can used only for p ≤ n

where the number of slaves is p− 1. In other words, these algorithms are not appropriate

for p > n due to the maximum value of initial starter sets is (n − 1). This value evenly

divisible by p− 1.

Next we analyse the order of complexity for PERATM1. Given the pseudocode of PER-

ATM1 for every slave as follows:

Pseudocode PERATM1(k)

1: if k = 3 then

2: for i = 1 to n do

3: old = a[1]

4: for j = 1 to n− 1 do

5: a[j] = a[j + 1]

6: end for

7: a[n] = old

8: end for

9: return

10: end if

11: temp = k − 1

12: for i = temp to n do

13: if (k 6= n) then

14: old = a[k]

15: a[k] = a[k + 1]

16: a[k + 1] = old

17: else

18: old = a[n]

19: for k = n to temp− 1 do

161



20: old = a[k]

21: a[k] = a[k − 1]

22: end for

23: a[temp] = old

24: end if

25: PERATM1(temp)

26: end for

The critical section is lines 12 - 25 where it represents the steps for starter sets generation.

There is a nested loop and in that loop, there is recursive call on less (temp gets smaller).

The initial temp = k = n − 2. At line 12, the value of temp decreases. The process

of recursion starts at k = n− 1 and will stop when k = 3. On the other hand, the starter

sets generation process will stop at k = 2.

The complexity of the process from 13 until 16 is a constant time,O(1) complexity mean-

while the process from 18 -22 has O(temp) complexity.

Let value temp = n− 2, the order of complexity is

n− 2

temp = n− 3,the order of complexity is

(n− 3)× (n− 2)

until temp = 3

3× . . .× (n− 3)× (n− 2)

=
(n− 2)!

2
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The complexity of process from 13 -16, is O((n− 2)!) from temp = n− 2 until 3. Mean-

while for second process 18− 22, for each value of temp from 3 until n− 2, it will be run

once. Thus its complexity is O((n− 2)2)

Thus the order of complexity for starter sets generation is O((n − 2)!) + O((n − 2)2).

After the starter sets are produced and stopped at temp = 3, the program continues for

generating all permutation which lies on lines 2 - 9.

Then by multiplying n2 to the order of complexity of the starter set generation times

complexity, the results is

O(n2(n− 2)!) +O(n4 − 4n2) ∼= O(
nn!

(n− 1)
). (5.11)

The Equation 5.12 is an order complexity for every slave with a single initial starter sets.

Since there are (n− 1) initial starter sets, total order of complexity is

O(
nn!

(n− 1)
(n− 1)) = O(nn!). (5.12)

For order of complexity for PERATM2, its order complexity similar to PERATM1.

5.7 Performance of Parallel Algorithm for Determinant Method

In this section, the performance of parallel algorithm for determinant method using gen-

eralised Sarrus Rule will be analyzed based on speedup and efficiency.
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5.7.1 Numerical Results of Parallel Across The Time Determinant Algorithm

PERMUTDET1 and PERMUTDET2 programs were tested for 12 and 60 initial starter

sets. The master generated and broadcasted 12 and 60 initial starter sets matrix to all

slaves. The tables below display the computation times, speedup and efficiency for 12

and 60 initial starter sets where p and n represent the number of processors and the order

of square matrix respectively.

(i) Numerical results of PERMUTDET1

164



Ta
bl

e
5.

15
:

Th
e

C
om

pu
ta

tio
n

Ti
m

e
of

P
E

R
M

U
TD

E
T1

w
ith

12
In

iti
al

St
ar

te
r

Se
ts

(i
n

se
co

nd
s)

n
p

8
9

10
11

12
13

14
1

0.
02

61
33

0.
27

75
07

3.
20

87
10

39
.7

56
84

7
54

3.
40

26
35

70
70

.7
29

98
6

10
91

69
.7

46
38

3
2

0.
02

85
24

0.
29

09
90

3.
30

44
07

41
.0

63
47

4
55

1.
68

17
89

79
31

.1
08

91
6

10
96

80
.6

83
21

2
3

0.
01

43
86

0.
14

51
81

1.
64

43
50

20
.3

91
22

1
27

3.
14

28
38

40
38

.8
78

65
2

61
27

8.
97

59
39

4
0.

00
98

15
0.

09
66

12
1.

09
64

64
13

.6
40

05
0

18
2.

24
21

77
26

92
.4

38
57

3
40

89
9.

63
30

04
5

0.
00

90
88

0.
07

43
17

0.
82

25
19

10
.2

17
56

0
13

6.
84

65
71

19
83

.7
23

95
7

30
69

2.
24

81
35

6
0.

00
81

12
0.

07
27

02
0.

82
23

92
10

.1
99

06
1

13
6.

58
05

48
20

19
.6

23
60

8
30

69
6.

16
53

09
7

0.
00

77
37

0.
06

96
24

0.
55

07
38

6.
81

99
72

91
.3

65
41

7
13

22
.5

18
14

7
20

43
7.

82
83

78
8

0.
00

76
06

0.
07

04
80

0.
55

04
10

6.
81

32
34

91
.3

17
41

3
13

43
.8

06
24

1
20

45
2.

45
32

50
9

0.
00

93
77

0.
05

56
67

0.
54

88
02

6.
82

31
04

91
.2

73
81

5
13

26
.7

25
19

5
20

47
2.

87
86

85
10

0.
00

94
89

0.
07

35
66

0.
61

28
42

7.
00

19
80

94
.4

16
00

1
13

23
.4

63
79

4
20

75
7.

79
40

87

165



Ta
bl

e
5.

16
:

Th
e

C
om

pu
ta

tio
n

Ti
m

e
of

P
E

R
M

U
TD

E
T1

w
ith

60
In

iti
al

St
ar

te
r

Se
ts

(i
n

se
co

nd
s)

n
p

8
9

10
11

12
13

14
1

0.
02

80
04

0.
25

76
83

3.
27

93
23

40
.6

48
76

6
54

3.
40

26
35

70
70

.4
41

56
8

10
91

69
.7

46
38

3
2

0.
02

87
04

0.
26

09
41

3.
30

55
67

41
.0

54
78

8
55

1.
70

43
18

71
78

.0
42

38
3

11
13

18
.1

87
30

5
3

0.
01

45
95

0.
14

54
35

1.
64

54
90

20
.4

33
10

6
27

4.
02

97
70

39
74

.4
03

73
8

61
36

2.
40

54
26

4
0.

01
19

12
0.

09
86

55
1.

09
72

24
13

.6
36

19
4

18
2.

15
76

79
26

45
.2

78
62

6
40

91
6.

68
15

67
5

0.
00

99
14

0.
07

49
15

0.
82

32
50

10
.2

31
40

0
13

6.
59

64
10

19
83

.5
84

29
0

30
68

5.
90

78
36

6
0.

00
86

02
0.

06
07

37
0.

66
09

42
8.

19
81

99
10

9.
40

34
99

15
69

.4
46

26
8

24
55

0.
54

12
18

7
0.

00
79

47
0.

05
14

93
0.

55
19

44
6.

82
17

16
91

.1
35

98
5

13
25

.1
99

67
6

20
46

7.
81

30
66

8
0.

00
50

37
0.

04
62

18
0.

49
71

47
6.

15
72

50
82

.1
53

44
6

11
85

.6
73

39
1

18
40

5.
94

93
98

9
0.

00
51

57
0.

04
18

77
0.

45
98

11
5.

67
99

31
73

.4
62

46
5

99
5.

58
11

49
16

44
0.

11
95

95
10

0.
00

85
34

0.
03

73
26

0.
38

66
27

4.
80

75
37

64
.1

35
51

9
92

1.
46

47
09

15
48

8.
65

54
60

166



From Table 5.15, for all n, the execution time for p ≥ 8 were not reduced further

due to uneven load balancing. Thus is because 12 starter sets are not divisible by the

number of processor. Instead of that, execution time at p = 5 and 6 also shows sim-

ilarity. To overcome unbalanced load task, the number of starter sets was changed

to 60 (5× 12) which followed permutation numbers.

As displayed in Table 5.16, there is a significant reduction in computational time

when the total number of initial starter sets was changed from 12 to 60. The exe-

cution time is decreasing when number of processors increases. This is due to the

allocation number of the rows for 60×n initial starter sets matrix among processors

is evenly distributed if compares to the allocation rows for 12×n initial starter sets

matrix.

The speedup and efficiency result for PERMUTDET1 can be observed from Ta-

bles 5.17 and 5.18 respectively.
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The graphs of the speedup for PERMUTDET1 with 12 and 60 initial starter sets

can be found in Figures 5.14 and 5.15 respectively.

Figure 5.14: Speedup versus Number of Processors for PERMUTDET1 with 12 Initial
Starter Sets

Figure 5.15: Speedup versus Number of Processors for PERMUTDET1 with 60 Initial
Starter Sets

170



From Figure 5.14, the speedup increases until processor 7. Then the speedup de-

graded slowly with the increasing number of processors. This degradation might

be due to the imbalance load among the slaves and also communication overhead.

This imbalance load among the slaves has been improved in PERMUTDET1 with

60 initial starter sets as shown in Figure 5.15.

Meanwhile graphs of the efficiency for PERMUTDET1 with 12 and 60 initial

starter sets are display in Figures 5.16, and 5.17.

Figure 5.16: Efficiency versus Number of Processors for PERMUTDET1 with 12 Initial
Starter Sets
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Figure 5.17: Efficiency versus Number of Processors for PERMUTDET1 with 60 Initial
Starter Sets

In terms of efficiency, the results in Figures 5.16 and 5.17 indicate that seven pro-

cessors is fully utilised for all sizes of matrices where an algorithm efficiency close

to 0.8.

The numerical results for PERMUTDET2 algorithm are presented in the follow-

ing section.

(ii) Numerical results for PERMUTDET2

The result in terms of speedup and efficiency for PERMUDET2 is almost similar

to PERMUTDET1. The tables below display the computation times, speedup and

efficiency for 12 and 60 initial starter sets.
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As shown in Tables 5.19 and 5.20, there is an improvement of performance in term

of computation time of the program. The time computation is decreasing for 60

initial starter sets compare to the algorithm for 12 initial starter sets especially on

the processors where the number of starter sets is not evenly divisible by (p− 1).

The speedup and efficiency result for PERMUTDET2 can be observed from Ta-

bles 5.21 and 5.22 respectively.
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From Tables 5.21 and 5.22, it can be observed that PERMUTDET2 with 60 initial

starter sets shows some improvements in term of speedup and efficiency compare to PER-

MUTDET2 with 12 initial starter sets.

The graphs of the speedup for PERMUTDET2 with 12 and 60 initial starter sets can

be found in Figures 5.18, and 5.19 respectively. Meanwhile the graphs of efficiency for

PERMUTDET2 with 12 and 60 initial starter sets are displayed in Figures 5.20 and 5.21.

Figure 5.18: Speedup versus Number of Processors for PERMUTDET2 with 12 Initial
Starter Sets
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Figure 5.19: Speedup versus Number of Processors for PERMUTDET2 with 60 Initial
Starter Sets

Figure 5.20: Efficiency versus Number of Processors for PERMUTDET2 with 12 Initial
Starter Sets

179



Figure 5.21: Efficiency versus Number of Processors for PERMUTDET2 with 60 Initial
Starter Sets

Overall, the results shows that the performances of the programs in term of speedup

and efficiency are improved when the 60 initial starter sets were employed instead of 12.

The total number of processors which is fully utilized is seven due to load balancing.

For the case of 12 initial starter sets program, the degradation performance is due to the

imbalance workload among the slaves. Fortunately, this drawback can be overcome by

changing the number of initial starter sets. Thus, that is an advantage of applying our new

parallel permutation algorithm for finding the determinant where the number of starter

sets easily can be changed statically.

In spite of that, the performances in term of speedup and efficiency is drops for PERMUT-

DET2 with 60 initial starter sets compare to 12 initial starter sets for the case n = 8. Cost

overhead is one of the influence factor since for sequential algorithm, the time computa-

tion is small for n = 8 (refer Table 4.2 in page 100). From our points of view, overheads

appearing in this parallel computation tests that may affect the speedup and efficiency are

the communication time for sending and receiving message, imbalance workload, idle

and selection of day or night time for test parallel algorithm. The temperature at night is

lower than during the day which also give affect machine cooling. Meanwhile imbalance

workload may cause extra computation for slaves.
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The order of complexity for parallel determinant algorithm by referring to the Equation

5.11 for any k, where n− 1 ≤ k ≤ 2 is

O(
n2n!

(n− 1− k)!
). (5.13)

We only enhance the parallel permutation algorithm for determining determinant by per-

forming multiplication among element in every permutation array. The time complexity

of under multiplication operation is O(n). Thus the order of complexity of parallel per-

mutation algorithm for slave is multiplies with n as given in Equation 5.14.

5.7.2 Numerical Analysis of Across The Method Determinant Algorithm

The two algorithms namely PDATM1 and PDATM2 are designed so that the algorithms

are parallel in nature and suit parallel computers well. These PDATM1 and PDATM2

programs adapt only for p− 1 ≤ n− 1 where p− 1 is a number of slaves, whereas n− 1

is a number of initial starter sets . Therefore the algorithms are not appropriate for p > n

because the maximum value of initial starter sets is n − 1. The time computation for

PDATM1 and PDATM2 is given in Tables 5.23 and 5.24 respectively. Then Tables 5.25

and 5.26 show the speedup and efficiency for PDATM1 and PDATM2.

From Tables 5.23 and 5.24, the computation time reduces until p = 7 for 7 ≤ n ≤ 13.

The results also indicate that the time computation for p > 7 are about the same except

for the case n = 10. At n = 10 and p = 10, the workload among the slaves are equally al-

located. Therefore time computation is decreased. Meanwhile for n < 7, the degradation

shown in time computation.

181



Ta
bl

e
5.

23
:

Th
e

C
om

pu
ta

tio
n

Ti
m

e
of

P
D

AT
M

1
(i

n
se

co
nd

s)

n
p

5
6

7
8

9
10

11
12

13
1

0.
00

02
40

0.
00

05
80

0.
00

32
82

0.
02

60
53

0.
26

44
44

2.
99

95
46

39
.2

54
67

8
49

8.
11

39
51

71
98

.5
68

20
7

2
0.

00
03

67
0.

00
06

98
0.

00
34

33
0.

02
78

67
0.

28
38

30
3.

23
51

28
40

.1
46

99
1

53
8.

79
61

67
78

05
.3

59
46

9
3

0.
00

04
02

0.
00

05
54

0.
00

33
35

0.
01

66
55

0.
14

44
72

1.
80

48
17

20
.1

46
89

8
29

3.
97

19
07

38
81

.6
64

94
8

4
0.

00
19

92
0.

00
22

65
0.

00
31

86
0.

01
29

21
0.

10
87

75
1.

07
67

75
16

.0
62

24
7

19
6.

05
37

85
25

88
.5

36
67

5
5

0.
00

23
27

0.
00

23
44

0.
00

31
74

0.
01

00
72

0.
07

33
25

1.
07

88
95

12
.0

50
56

5
14

7.
25

70
13

19
42

.1
45

98
7

6
-

0.
00

25
64

0.
00

31
56

0.
00

97
10

0.
07

30
14

0.
72

14
88

8.
05

10
58

14
7.

03
65

12
19

41
.6

36
46

9
7

-
-

0.
00

31
69

0.
00

85
63

0.
07

14
13

0.
71

76
73

8.
03

68
77

98
.2

48
54

1
12

95
.6

37
15

5
8

-
-

-
0.

00
49

44
0.

07
33

34
0.

71
62

27
8.

04
67

28
97

.6
46

18
2

13
02

.7
95

63
3

9
-

-
-

-
0.

04
05

46
0.

64
87

65
8.

00
16

82
97

.5
63

89
6

12
98

.9
73

67
4

10
-

-
-

-
-

0.
37

00
78

7.
99

43
26

99
.0

65
40

5
12

99
.1

47
33

3

182



Ta
bl

e
5.

24
:

Th
e

C
om

pu
ta

tio
n

Ti
m

e
of

P
D

AT
M

2
(i

n
se

co
nd

s)

n
p

5
6

7
8

9
10

11
12

13
1

0.
00

02
40

0.
00

05
80

0.
00

32
82

0.
02

60
46

0.
26

44
23

2.
99

92
85

39
.2

54
67

8
49

8.
11

39
51

71
98

.5
68

20
7

2
0.

00
03

64
0.

00
06

74
0.

00
33

47
0.

02
80

25
0.

27
93

64
3.

19
51

93
39

.6
93

14
9

53
2.

16
62

87
77

14
.4

06
43

9
3

0.
00

03
22

0.
00

05
73

0.
00

34
44

0.
01

56
99

0.
14

11
98

1.
77

47
98

19
.8

48
66

4
29

0.
19

53
76

34
93

.1
74

55
2

4
0.

00
21

01
0.

00
04

88
0.

00
31

68
0.

01
19

57
0.

10
48

11
1.

06
78

70
15

.8
67

71
1

19
3.

56
27

36
25

72
.6

97
77

0
5

0.
00

23
80

0.
00

23
27

0.
00

29
48

0.
00

98
71

0.
07

19
35

1.
06

54
92

11
.9

12
88

5
14

5.
39

23
56

19
30

.5
22

39
4

6
-

0.
00

27
02

0.
00

30
06

0.
00

97
06

0.
07

18
29

0.
71

27
93

7.
95

64
91

14
5.

20
09

88
19

30
.7

12
63

0
7

-
-

0.
00

32
43

0.
00

80
20

0.
07

16
10

0.
71

31
28

7.
95

14
71

96
.9

48
13

7
12

90
.8

31
37

1
8

-
-

-
0.

00
87

52
0.

07
16

11
0.

72
05

44
7.

94
90

94
97

.2
09

25
1

12
87

.8
81

61
0

9
-

-
-

-
0.

22
05

09
0.

81
32

52
8.

07
23

72
96

.9
14

02
2

13
06

.7
57

69
1

10
-

-
-

-
-

0.
36

77
20

7.
16

64
06

10
0.

36
16

21
12

96
.4

23
24

6

183



Ta
bl

e
5.

25
:

Th
e

Sp
ee

du
p

an
d

E
ffi

ci
en

cy
of

P
D

AT
M

1

n
8

9
10

11
12

13
p

Sp
ee

du
p

E
ffi

ci
en

cy
Sp

ee
du

p
E

ffi
ci

en
cy

Sp
ee

du
p

E
ffi

ci
en

cy
Sp

ee
du

p
E

ffi
ci

en
cy

Sp
ee

du
p

E
ffi

ci
en

cy
Sp

ee
du

p
E

ffi
ci

en
cy

1
1

1
1

1
1

1
1

1
1

1
1

1
2

1.
03

98
0.

51
99

1.
03

60
0.

51
80

1.
03

16
0.

51
58

0.
97

78
0.

48
89

0.
92

45
0.

46
22

0.
92

22
0.

46
11

3
1.

73
97

0.
57

99
2.

03
53

0.
67

84
1.

84
92

0.
61

64
1.

94
84

0.
64

95
1.

69
44

0.
56

48
1.

85
45

0.
61

82
4

2.
24

25
0.

56
06

2.
70

32
0.

67
58

3.
09

94
0.

77
48

2.
44

39
0.

61
10

2.
54

07
0.

63
52

2.
78

09
0.

69
52

5
2.

87
68

0.
57

54
4.

01
0

0.
80

20
3.

09
34

0.
61

87
3.

25
75

0.
65

15
3.

38
28

0.
67

66
3.

70
65

0.
74

13
6

2.
98

40
0.

49
73

4.
02

72
0.

67
12

4.
62

57
0.

77
09

4.
87

57
0.

81
26

3.
38

77
0.

56
46

3.
70

75
0.

61
79

7
3.

38
37

0.
47

69
4.

11
75

0.
58

82
4.

65
03

0.
66

43
4.

88
43

0.
69

78
5.

06
99

0.
72

43
5.

55
60

0.
79

37
8

5.
86

06
0.

73
25

4.
00

96
0.

50
12

4.
65

97
0.

58
25

4.
87

83
0.

60
98

5.
10

12
0.

63
77

5.
52

55
0.

69
07

9
-

-
7.

25
21

0.
80

58
5.

14
43

0.
57

16
4.

90
58

0.
54

51
5.

10
55

0.
56

73
5.

54
17

0.
61

57
10

-
-

-
-

9.
01

81
0.

90
18

4.
91

03
0.

49
10

5.
02

81
0.

50
28

5.
54

10
0.

55
41

184



Ta
bl

e
5.

26
:

Th
e

Sp
ee

du
p

an
d

E
ffi

ci
en

cy
of

P
D

AT
M

2

n
8

9
10

11
12

13
p

Sp
ee

du
p

E
ffi

ci
en

cy
Sp

ee
du

p
E

ffi
ci

en
cy

Sp
ee

du
p

E
ffi

ci
en

cy
Sp

ee
du

p
E

ffi
ci

en
cy

Sp
ee

du
p

E
ffi

ci
en

cy
Sp

ee
du

p
E

ffi
ci

en
cy

1
1

1
1

1
1

1
1

1
1

1
1

1
2

1.
03

39
0.

51
70

1.
05

25
0.

52
62

1.
04

45
0.

52
22

0.
98

89
0.

49
44

0.
93

60
0.

46
80

0.
93

31
0.

46
65

3
1.

84
57

0.
61

52
2.

08
25

0.
69

42
1.

88
04

0.
62

68
1.

97
77

0.
65

92
1.

71
65

0.
57

17
2.

06
07

0.
68

69
4

2.
42

33
0.

60
58

2.
80

54
0.

70
13

3.
12

53
0.

78
13

2.
47

39
0.

61
84

2.
57

34
0.

64
33

2.
79

81
0.

69
95

5
2.

93
54

0.
58

71
4.

08
76

0.
81

75
3.

13
23

0.
62

64
3.

29
51

0.
65

90
3.

42
60

0.
68

52
3.

72
88

0.
74

58
6

2.
98

53
0.

49
75

4.
09

36
0.

68
23

4.
68

21
0.

78
04

4.
93

37
0.

82
23

3.
53

05
0.

58
84

3.
72

84
0.

62
14

7
3.

61
28

0.
51

61
4.

10
61

0.
51

32
4.

67
99

0.
66

85
4.

93
68

0.
70

53
5.

13
79

0.
73

36
5.

57
67

0.
79

66
8

3.
31

07
0.

41
84

4.
10

61
0.

45
62

4.
63

18
0.

57
89

4.
93

82
0.

61
73

5.
12

41
0.

64
05

5.
58

95
0.

69
87

9
-

-
1.

33
34

0.
14

82
4.

10
38

0.
45

59
4.

86
28

0.
54

03
5.

13
97

0.
57

11
5.

50
87

0.
61

21
10

-
-

-
-

9.
07

59
0.

90
57

5.
47

76
0.

54
77

4.
96

32
0.

49
63

5.
55

26
0.

55
27

185



Figures 5.22 and 5.23 show the graphs of speedup versus the number of processors

used for PDATM1 and PDATM2.

Figure 5.22: Speedup versus Number of Processors for PDATM1

Figure 5.23: Speedup versus Number of Processors for PDATM2

186



Figures 5.24 and 5.25 show the graphs of efficiency versus the number of processors

used for PDATM1 and PDATM2.

Figure 5.24: Efficiency versus Number of Processors for PDATM1

Figure 5.25: Efficiency versus Number of Processors for PDATM2
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Overall, the speedup and efficiency of both programs PDATM1 and PDATM2 for find-

ing the determinant shows the fluctuation trend when the number of processors increases

due to imbalance workload except for n = 10. When n = 10, both graphs shows a

remarkable performance where the efficiency is almost 90 percent due to the number of

processors equal to 10. At this moment, the task among the slave are equally balance.

The order of complexity for parallel determinant algorithm by referring to Equation 5.12

for each slave is

O(
n2n!

(n− 1)
). (5.14)

We only enhance the parallel permutation algorithm for determining determinant by per-

forming multiplication among element in every permutation array. The time complexity

under multiplication operation is O(n). Thus the order of complexity of parallel per-

mutation algorithm for slave is multiply with n. Equation 5.15 represents the order of

complexity for every slave with a single initial starter sets. Since there are (n− 1) initial

starter sets, total order of complexity is

O(
n2n!

(n− 1)
(n− 1)) = O(n2n!). (5.15)

Remark 5.7.1. The algorithms are designed only for p ≤ n. Thus the empty box from

all tables mean that the algorithm is not suitable for p > n. That is the limitation of the

algorithm.

5.7.3 Comparison Between Execution Time of Sequential, Across the Time and

Across the Method Program for Finding the Determinant

The sequential algorithms for finding the determinant are also tested in parallel computer

using one processor. The computation times of the parallel algorithm given are performed

for p = 2. The execution times for parallel algorithms are longer than the sequential

algorithm due to parallel overhead. Please refer to Tables 5.27, 5.28 and 5.29.
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Table 5.27: The Computation Time for PERMUTDET1 under Circular Strategy (in sec-
onds)

n PERMUTDET1 PERMUTDET1 PERMUTDET1
12 ISS 60 ISS

7 0.003033 0.003294 0.003468
8 0.026133 0.028524 0.028704
9 0.277507 0.290990 0.260941
10 3.208710 3.304407 3.305567
11 39.756847 41.063474 41.054788
12 543.402635 551.681789 551.704318
13 7070.729986 7931.108916 7178.042383
14 109169.746383 109680.683212 111318.187305

Table 5.28: The Computation Time for PERMUTDET2 under Exchange Strategy (in sec-
onds)

n PERMUTDET2 PERMUTDET2 PERMUTDET2
12 ISS 60 ISS

7 0.002961 0.003311 0.004443
8 0.026554 0.028530 0.028466
9 0.245947 0.285689 0.288698
10 3.119146 3.293924 3.254940
11 38.842880 40.088831 40.250653
12 526.485917 535.855841 543.015538
13 7001.386234 7089.665860 7824.546646
14 107810.910401 110146.005701 111409.435212

Table 5.29: The Computation Time for the Sequential Algorithms and Across The Method
Algorithms (in seconds)

n PERMUTDET1 PERMUTDET2 PDATM1 PDATM2
7 0.003033 0.002961 0.003433 0.003347
8 0.026133 0.026554 0.027867 0.028025
9 0.277507 0.245947 0.283830 0.279364

10 3.208710 3.119146 3.235128 3.195193
11 39.756847 38.842880 40.146991 39.693149
12 543.402635 526.485917 538.796167 532.166287
13 7070.729986 7001.386234 7805.359469 7714.406439
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As shown in Table 5.29, the sequential program based on exchanging two elements

(PERMUTDET2) performed better than the sequential program based on circular (PER-

MUTDET1). It exactly followed the same results in Section 4.6 in Chapter Five. From

this result, we can conclude that new sequential algorithms (PERMUTDET1 and PER-

MUTDET2) perform better than Langdon, Thongchiew and cofactor expansion algo-

rithms.

5.8 Summary

We have presented several parallel computation technique for generating permutation and

determining determinant using generalised Sarrus Rule. In order to parallelize the de-

terminant algorithm, the permutation generation algorithm is needed to be parallelized

because our determinant algorithm is dominated by permutation generation. Permuta-

tion algorithms is paralellsied for across the time and across the method strategies. Each

strategy is then analysed in term of computation time, speedup, efficiency and order of

complexity. The main contributions of this chapter are as follows:

(i) Development of across the time parallel algorithms for permutation algorithm (PER-

MUT1 and PERMUT2 ).

(ii) Derivation of the two strategies namely PERATM1 and PERATM2 for across the

method parallel algorithm to generate the permutations and some new theoretical

works also developed.

(iii) Development of parallel methods for determining determinant by using parallel per-

mutation generation algorithms in (i) and (ii).
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CHAPTER SIX

CONCLUSION AND RECOMMENDATIONS

This thesis has contributed in extending the Sarrus Rule in determining the determinant

using permutation. The list of contributions is as follows:

(i) New permutation generation methods based on starter sets without producing the

equivalence starter sets.

Two strategies for generating starter sets are developed based on circular and ex-

changed two elements operations. From this strategies, three sequential algorithms

for generating permutation are developed namely PERMUT1 (recursive circular al-

gorithm), PERMUT2 (recursive exchange algorithm) and PERMUTIT3 (iterative

circular algorithm).

(ii) New sequential division free method for finding determinant has been developed.

The generalization of the Sarrus Rule for finding determinant of square matri-

ces has been made. Extending the strategies in (i), three division free sequential

algorithms for finding determinant of matrices of any order namely PERMUT-

DET1,PERMUTDET2 and PERMUTDETIT3 have been proposed.

(iii) New parallel methods for finding determinant of square matrices using permutation

The sequential algorithms for permutation generation and finding determinant have

been parallelised using across the time and across the method techniques.

(iv) In developing the above methods and algorithms, seven lemmas and ten theorems

have derived.
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6.1 Summary

Chapter One discusses the determinant methods which can be categorised as division free

and non division free methods. The advantages and disadvantages of the methods have

been studied. One of advantages of the division free methods is that they can tackle prob-

lems when the entries of matrices are represented in rational or polynomial expressions.

Moreover, the division free methods can also avoid floating point error. Among division

free methods, cross multiplication method or the Sarrus Rule is frequently used. However

this method was designed to find the determinant of square matrices with order n ≤ 3.

Thus, this study attempts to generalise the Sarrus Rule for any order of square matrices.

In Chapter Two, some fundamental concepts for permutation, determinant and matri-

ces, and parallel computing have been mentioned. Chapter Two also reviews the existing

permutation generation methods, sequential and parallel algorithms of permutation gen-

eration methods, and division free methods for finding determinant using permutation.

From the literature, we found that no research had been done to find the determinant of

square matrices of any order based on cross multiplication method using permutation.

Chapter Three proposes two strategies to generate starter sets namely circular and ex-

change operations. These strategies will guarantee that the generated starter sets are dis-

tinct and their equivalence starter sets will not be produced. To list all n! permutations,

the circular and reversing operation are employed on those starter sets. The numerical

results have shown that the performance of the new developed algorithms for listing all

permutations is better than the existing algorithms in term of time computation and order

of complexity.

The construction of a new division free method for finding the determinant was proposed

in Chapter Four. The distinct n! permutations obtained in Chapter Three are presented in

column indices form. The permutations generated from circular permutation operation on
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n elements produce main diagonal products whereas permutations generated from reverse

of circular permutation operation produce secondary diagonal products. The determinant

is obtained by summing up all the signed main diagonal products and signed secondary

diagonal products. The numerical results have shown that the new algorithms performed

better than other division free algorithms in term of time computation and order of com-

plexity.

In Chapter Five, two parallel strategies have been introduced to parallelise the sequen-

tial method developed in Chapter Four in order to reduce the computation times. In the

first strategy, the master generates initial starter sets and the broadcasts them to the slaves.

Each slave then continues to generate starter sets based on the assigned initial starter sets

and eventually produces the corresponding permutations. The collection of permutations

produce by all slaves is the complete permutations. Each slave calculates sub-determinant

and send the result to the master to compute the determinant. On the other hand, in the

second strategy, the master only broadcasts the value of n to each slave. All starter sets

and permutations generation are performed by each slave. Similar to the first strategy,

each slave calculates sub-determinant and send it to the master to sum up the total value.

The numerical results showed that the parallel methods generate permutation and com-

pute the determinants faster than the sequential counterparts particularly when the tasks

were equally allocated.

6.2 Future Work

The new sequential algorithms for generating starter sets are constructed by fixing an ele-

ment in the first position in either exchange or circular operations. It would be interesting

to derive new strategy by fixing an element in any position.

In this research, the allocation of initial starter sets to slaves is predetermined by using

a static scheduling in parallel algorithm. To improve the computation time, it would
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worthwhile to distribute the initial starter sets to each slave using dynamic scheduling.

The number of initial starter sets used in the developed parallel algorithm across the

method is n− 1. Further research should consider using different number of initial starter

sets to increase the efficiency of slaves.
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Appendix A

Sequential Permutation Program

A. PERMUT1 program

#include <stdio.h>

#include <sys/timeb.h>

#include <time.h>

int num[20];

int n;

void PERMUT1(int *num,int k,int n);

void rightRotate(int *num,int k);

void print(int *num);

void main ()

{ int i;

struct timeb time_before,time_after;

long total_time_taken;

printf(" enter the size of the element =");

scanf("%d", &n);

ftime(&time_before);

for ( i=1; i<=n; i++){

num[i]= i ;}

PERMUT1(num,n-1,n);

ftime(&time_after);

/*Calculate the time difference in milliseconds */

total_time_taken = (time_after.time - time_before.time) *

1000 +(time_after.millitm- time_before.millitm);

printf ("\n Total time of program execution (

in miliseconds)= %4d \n", total_time_taken);

}

void rightRotate(int *num,int i)

{

int old,k;

for(k = i; k < n; ++k){

old = num[k];

num[k] = num[k+1];

num[k+1] = old;}

}

void PERMUT1 (int *num, int k, int n)

{

int temp, i, old;

if (k == 1)

{ for(i = 1; i<=n; ++i){

rightRotate(num,1);

print(num);

}

return ;

}

temp = k-1;

for (i = n; i >= temp; i--)

{ rightRotate (num,temp);

PERMUT1(num,temp,n);
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}

}

void print(int *num)

{ int j;

for(j= 1; j<=n; ++j)

printf("%d", num[j]);

printf("\n");

for(j= 1; j<=n; ++j)

printf("%d", num[n-j+1]);

printf("\n");

}

B. PERMUT2 program

#include <stdio.h>

#include <time.h>

#define MAX 50

int num[MAX];

int n;

#define maxCols 50

int a[maxCols];

int n;

void print(int n);

void move( int k, int j,int n);

void rightRotate(int n);

void PERMUT2(int temp, int n);

int main (int argc, char* argv[])

{

int n,i;

struct timeb time_before,time_after;

long total_time_taken;

printf(" enter the size of the element =");

scanf("%d", &n);

ftime(&time_before);

for( i=1;i<= n;i++){

a[i] =i;}

PERMUT2(n-1,n);

ftime(&time_after);

/*Calculate the time difference in milliseconds */

total_time_taken = (time_after.time - time_before.time) *

1000 +(time_after.millitm- time_before.millitm);

printf ("\n Total time of program execution (

in miliseconds)= %4d \n", total_time_taken);

}

void print(int n)

{ int j;

for(j= 1; j<=n; ++j)

printf("%d", a[j]);

printf("\n");

for(j= 1; j<=n; ++j)

printf("%d", a[n-j+1]);

printf("\n");

}

void move(int k, int j, int n)

{

int t,old;

if (k!= n){

t = a[k];
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a[k] = a[k+1];

a[k+1] = t;}

else {

old = a[n];

for(k = n; k> j; k--){

a[k] = a[k-1];}

a[j] = old;

}

}

void rightRotate(int n)

{

int old,k;

old = a[1];

for(k = 1; k<n; ++k){

a[k] = a[k+1];}

a[n] = old;

}

void PERMUT2(int k, int n)

{ int i,temp;

if( k == 2){

for(i = 1; i<=n; ++i){

rightRotate(n);

print(n);}

return;

}

temp = k-1;

for(i = temp; i<= n ; i++){

move(i,temp,n);

PERMUT2(temp,n);

}

}

C. PERMUTIT3 program

#include <stdio.h>

#include <sys/timeb.h>

#include <time.h>

#define MAX 20

int num[MAX];

int n;

void starter(int temp, int n);

void print(int n);

int main (int argc , char* argv[])

{ int i;

struct timeb time_before,time_after;

double total_time_taken;

printf(" enter the size of the element=");

scanf("%d",&n);

ftime(&time_before);

for ( i=1; i<=n; i++){

num[i]= i ;}

starter(3,n);

ftime(&time_after);

/*Calculate the time difference in milliseconds */

total_time_taken = (time_after.time - time_before.time) *

1000 +(time_after.millitm- time_before.millitm);

printf ("\n Total time of program execution

(in miliseconds)= %f \n", total_time_taken);
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}

void PERMUTIT3(int h, int n)

{ int k,i, temp;

k=h;

while(k>2){

print(n);

k=h;

while(k>2){

temp = num[1];

for(i=1; i<k; i++)

{num[i]=num[i+1];}

num[k] = temp;

if(k==2|| num[k] != k) break;

k--;

}

}

}

void print(int n)

{ int j;

for(j= 1; j<=n; ++j)

printf("%d", num[j]);

printf("\n");

for(j= 1; j<=n; ++j)

printf("%d", num[n-j+1]);

printf("\n");

}
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Appendix B

Sequential Determinant Program

A. PERMUTDET1 program

#include<stdio.h>

#include <stdlib.h>

#include <sys/timeb.h>

#include <time.h>

#define MAX 20

int a[MAX][MAX];

double sumBothDiag[MAX];

int num[20];

int n;

void initiate(int *num);

void PERMUTDET1(int *num,int k, int n);

void rightRotate(int *num,int n);

double deter(int *num,double *sumBothDiag);

void productDiagonal(int *num, double *sumBothDiag);

int sign(int *num);

void print ();

int main (int argc, char* argv[])

{ int i,j;

struct timeb time_before,time_after;

double total_time_taken;

printf(" enter the size of the element=");

scanf("%d" ,&n);

for(i=1; i<= n; ++i)

for(j=1; j<= n; ++j)

a[i][j] = rand() % 10;

for(i=1; i<= n; ++i)

{

for(j=1; j<= n; ++j)

printf("%3d", a[i][j]);

printf("\n");

}

if ( n <= 2 )

{

if (n ==2)

printf("( DETERMINANT OF THE MATRIX = %f",

a[1][1] * a[2][2] - a[1][2] * a[2][1]);

else printf( "DETERMINANT OF THE MATRIX = %f", a[1][1]);

}

else {

ftime(&time_before);

initiate(num);

PERMUTDET1(num,n-1,n);

ftime(&time_after);

/*Calculate the time difference in milliseconds */

total_time_taken = (time_after.time - time_before.time) *

1000 +(time_after.millitm- time_before.millitm);

printf ("\n Total time of program execution

(in miliseconds)= %f \n", total_time_taken);}
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}

void initiate(int *num)

{ int i;

for (i=1; i<=n; i++)

{ num[i]= i ;}

}

void rightRotate(int *num,int i)

{

int old,k;

old = num[i];

for(k = i; k<n; ++k){

num[k] = num[k+1];

}

num[n] = old;

}

double deter(int *num,double *sumBothDiag)

{

int i;

for(i = 1; i<=n; ++i){

rightRotate(num,1);

productDiagonal(num,sumBothDiag);

}

return 0;

}

void PERMUTDET1(int *num,int k, int n)

{

int i,temp;

if (k == 2)

{ deter(num,sumBothDiag);

return ;

}

temp = k-1;

for (i = n; i >= temp; i--)

{

rightRotate (num,temp);

PERMUTDET1(num,temp, n);

}

}

int sign(int *num)

{

int g,h,l;

for(g=1,l=1;g<n; g++)

for (h=g+1;h<=n; h++)

{

if(num[h]<num[g])

l*=-1;}

return (l);

}

void productDiagonal(int *num, double *sumBothDiag)

{

int j;

int p =1;

double s, prodMainDiag[MAX],prodSecDiag[MAX];

int k =1;

sumBothDiag[0] = 0;

if(n % 4 == 0 || n%4 == 1){

p *=sign(num) ;
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for(j= 1,s=1; j<=n; j++){

s *= a[j][num[j]];}

prodMainDiag[k] =s*p;

for(j= 1,s=1; j<=n; j++){

s *= a[j][num[n-j+1]];}

prodSecDiag[k] =s*p;

sumBothDiag[k] += (prodSecDiag[k] + prodMainDiag[k]);}

else {

p *=sign(num) ;

for(j= 1,s=1; j<=n; j++){

s *= a[j][num[j]];}

prodMainDiag[k] =s*p;

for(j= 1,s=1; j<=n; j++){;

s *= a[j][num[n-j+1]];}

prodSecDiag[k] =(-1)*s*p;

sumBothDiag[k] += (prodSecDiag[k] + prodMainDiag[k]);}

}

void print ()

{

printf("determinant of A= %f", sumBothDiag[1]);

printf("\n");

}

B. PERMUTDET2 program

#include<stdio.h>

#include <stdlib.h>

#include <sys/timeb.h>

#include <time.h>

int a[50][50];

double sumBothDiag[50];

int num[50];

int n;

void initiate(int *num);

void PERMUTDET2(int *num,int k, int n);

void move(int *num, int k, int j, int n);

void move2(int *num, int k, int n);

double deter(int *num, double *sumBothDiag);

void productDiagonal(int *num, double *sumBothDiag);

int sign(int *num);

void print ();

int main (int argc, char* argv[])

{ int i,j;

struct timeb time_before,time_after;

double total_time_taken;

printf(" enter the size of the element=");

scanf("%d" ,&n);

for(i=1; i<= n; ++i)

for(j=1; j<= n; ++j)

a[i][j] = rand() % 10;

for(i=1; i<= n; ++i)

{

for(j=1; j<= n; ++j)

printf("%3d", a[i][j]);

printf("\n");

}

if ( n <= 2 )
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{

if (n ==2)

printf("( DETERMINANT OF THE MATRIX = %f",

a[1][1] * a[2][2] - a[1][2] * a[2][1]);

else printf( "DETERMINANT OF THE MATRIX = %f", a[1][1]);

}

else {

ftime(&time_before);

initiate(num);

PERMUTDET2(num,n-1,n);

ftime(&time_after);

/*Calculate the time difference in milliseconds */

total_time_taken = (time_after.time - time_before.time) *

1000 +(time_after.millitm- time_before.millitm);

printf ("\n Total time of program execution

(in miliseconds)= %f \n", total_time_taken);}

}

void initiate(int *num)

{ int i;

for (i=1; i<=n; i++)

{ num[i]= i ;}

}

void move(int *num, int k, int j, int n)

{

int t,old;

// printf("k = %d\n",k);

// printf("j= %d\n",j);

if (k!= n){

t = num[k];

num[k] = num[k+1];

num[k+1] = t;}

else {

old = num[n];

for(k = n; k>j; k--){

num[k] = num[k-1];}

num[j] =old;

}

}

void rightRotate(int n)

{

int old,k;

old = num[1];

for(k = 1; k<n; ++k){

num[k] = num[k+1];}

num[n] = old;}

void PERMUTDET2(int *num,int k, int n)

{

int i, temp;

if (k == 2)

{ for(i = 1; i<=n; ++i){

rightRotate(n);

productDiagonal(num,sumBothDiag);

}

return ;

}

temp = k-1;

for(i = temp; i<= n; i++){

move(num,i,temp,n);
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PERMUTDET2(num,temp,n);

}

}

int sign(int *num)

{

int g,h,l;

for(g=1,l=1;g<n; g++)

for (h=g+1;h<=n; h++)

{

if(num[h]<num[g])

l*=-1;}

return (l);

}

void productDiagonal(int *num, double *sumBothDiag)

{ int j;

int p =1;

double s;

double prodMainDiag[50],prodSecDiag[50];

int k =1;

sumBothDiag[0] = 0;

if(n % 4 == 0 || n%4 == 1){

p *=sign(num) ;

for(j= 1,s=1; j<=n; j++){

s *= a[j][num[j]];}

prodMainDiag[k] =s*p;

for(j= 1,s=1; j<=n; j++){

s *= a[j][num[n-j+1]];}

prodSecDiag[k] =s*p;

sumBothDiag[k] += (prodSecDiag[k] + prodMainDiag[k]);}

else {

p *=sign(num) ;

for(j= 1,s=1; j<=n; j++){

s *= a[j][num[j]];}

prodMainDiag[k] =s*p;

for(j= 1,s=1; j<=n; j++){;

s *= a[j][num[n-j+1]];}

prodSecDiag[k] =(-1)*s*p;

sumBothDiag[k] += (prodSecDiag[k] + prodMainDiag[k]);}

}

void print ()

{printf("determinant of A= %f", sumBothDiag[1]);

printf("\n");}

C. PERMUTITDET3 program

#include<stdio.h>

#include <stdlib.h>

#include <sys/timeb.h>

#include <time.h>

#define MAX 50

int num[MAX];

int n;

int a[50][50];

double sumBothDiag[50];

void PERMUTITDET3(int n);

void print();

double deter(int *num,double *sumBothDiag);

void productDiagonal(int *num, double *sumBothDiag);
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int sign(int *num);

int main (int argc , char* argv[])

{ int i,j;

struct timeb time_before,time_after;

double total_time_taken;

printf(" enter the size of the element=");

scanf("%d",&n);

for(i=1; i<= n; ++i)

for(j=1; j<= n; ++j)

a[i][j] = rand() % 10;

for(i=1; i<= n; ++i)

{

for(j=1; j<= n; ++j)

printf("%3d", a[i][j]);

printf("\n");

}

ftime(&time_before);

for ( i=1; i<=n; i++){

num[i]= i ;}

PERMUTITDET3(n);

print ();

ftime(&time_after);

/*Calculate the time difference in milliseconds */

total_time_taken = (time_after.time - time_before.time) *

1000 +(time_after.millitm- time_before.millitm);

printf ("\n Total time of program execution

(in miliseconds)= %f \n", total_time_taken);}

void rightRotate(int n)

{int old,k;

for(k = 1; k<n; ++k){

old = num[k];

num[k] = num[k+1];

num[k+1] = old;}

}

void PERMUTITDET3(int n)

{ int k,i, temp;

k=n;

while(k>2){

productDiagonal(num,sumBothDiag);

k=n;

while(k>2){

temp = num[1];

for(i=1; i<k; i++)

{num[i]=num[i+1];}

num[k] = temp;

if(k==2|| num[k] != k) break;

k--;

}

}

}

int sign(int *num)

{

int g,h,l;

for(g=1,l=1;g<n; g++)

for (h=g+1;h<=n; h++)

{ if(num[h]<num[g])

l*=-1;}

return (l);}
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void productDiagonal(int *num, double *sumBothDiag)

{ int j;

int p =1;

double s;

double prodMainDiag[50],prodSecDiag[50];

int k =1;

sumBothDiag[0] = 0;

if(n % 4 == 0 || n%4 == 1){

p *=sign(num) ;

for(j= 1,s=1; j<=n; j++){

s *= a[j][num[j]];}

prodMainDiag[k] =s*p;

for(j= 1,s=1; j<=n; j++){

s *= a[j][num[n-j+1]];}

prodSecDiag[k] =s*p;

sumBothDiag[k] += (prodSecDiag[k] + prodMainDiag[k]);}

else {

p *=sign(num) ;

for(j= 1,s=1; j<=n; j++){

s *= a[j][num[j]];}

prodMainDiag[k] =s*p;

for(j= 1,s=1; j<=n; j++){;

s *= a[j][num[n-j+1]];}

prodSecDiag[k] =(-1)*s*p;

sumBothDiag[k] += (prodSecDiag[k] + prodMainDiag[k]);}

}

void print ()

{

printf("determinant of A= %f", sumBothDiag[1]);

printf("\n");

}
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Appendix C

Parallel Permutation Program

A. PERMUT1 program

#include<stdio.h>

#include <mpi.h>

#include <stdlib.h>

#define maxRows 30

#define maxCols 10

int num[maxCols],AA[maxRows][maxCols];

int AAnew[maxRows][maxCols];

int cols;

int p;

int tag = 0,R=0, T=0; NB;

int pid;

void matrixPermute(int *num,int k,int cols);

void matrixPermute2 (int *num, int k, int cols, int d);

void rightRotate(int *num,int i);

void print(int *num);

void print2(int *num);

int factorial(int cols );

int main (int argc, char* argv[])

{ int i,j;

int myID;

int d , N, rg, rg1, ed, rg2;

double starttime, endtime, elapsed;

MPI_Status status;

/* MPI initialization */

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Comm_rank(MPI_COMM_WORLD, &myID);

if (myID == 0) // master process

{

printf(" enter the size of the element/cols =");

scanf ("%d", &cols);

starttime = MPI_Wtime();

for (i=1; i<= cols; i++){

num[i]= i ;}

matrixPermute(num,cols-1,cols);

printf("numbers of rows = %d\n", R);

NB = (int)(R) /(p-1) ; /* number of block */

printf("numbers of block = %d\n", NB);

/* send AA to other processes*/

//printf("**master sending AA to all**\n");

MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&R, 1, MPI_INT, 0, MPI_COMM_WORLD);
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MPI_Bcast(&AA, (R+1)*maxCols, MPI_INT, 0, MPI_COMM_WORLD);

N = factorial(cols)/(2*R);

//////Get result from slaves//////

for (d=1; d<= p-1; d++) {

MPI_Recv(&T, 1, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

// MPI_Recv(&AAnew, (maxRows)*maxCols, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

pid=status.MPI_SOURCE;

printf("T = %d*\n", T);

rg = (int )R /(p-1);

rg1 = R %(p-1);

rg2 = N* rg;

ed = 2*rg2;

/* for (i=1; i<=rg2; i++){

for (j=1; j<= cols; j++)

printf("%d", AAnew[i][j]);

for (j=1; j<= cols; j++)

printf("%d", AAnew[i][cols-j +1]);

printf("\n");

}

if(rg1 != 0){

while (pid <= rg1){

for (i = rg2+1; i<= ed ;i++){

for (j=1; j<= cols; j++)

printf("%d", AAnew[i][j]);

for (j=1; j<= cols; j++)

printf("%d", AAnew[i][cols-j +1]);

printf("\n");

}

}

}*/

}

free(num);

free(AAnew);

free(AA);

} // end master process

///////////////////////SLAVE PROCESS //////////////////////////////////////////////////////////////////////////////
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else {

/*receive A using broadcast*/

MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&R, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&AA, (R+1)*maxCols, MPI_INT, 0, MPI_COMM_WORLD);

// calculate range of rows to be processed

for(d = myID; d<= R; d+= p-1){

for (j = 1; j <= cols; j++){

num[j] = AA[d][j];}

matrixPermute2(num,cols-3,cols,d);

} // end d

MPI_Send(&T, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD);

// MPI_Send(&AAnew, (maxRows)*maxCols, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD);

free(num);

free(AAnew);

free(AA);

} // end slaves process

if (myID == 0)

{

endtime = MPI_Wtime();

elapsed = endtime-starttime;

printf("\n\nParallel Time %f seconds\n",elapsed);

}

MPI_Finalize();

return 0;

}

void rightRotate(int *num,int i)

{

int old,k;

old = num[i];

for(k = i; k<cols; ++k){

num[k] = num[k+1];}

num[cols] = old;

}

void matrixPermute (int *num, int k, int cols)

{

int i,temp;

if (k == cols-3)

{ print(num);

return ;

}

temp = k-1;

for (i = cols; i >= temp; i--)

{

rightRotate (num,temp);

matrixPermute (num,temp,cols);
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}

}

void print(int *num)

{ int j;

R= R+1;

for(j= 1; j<= cols; ++j){

//printf("%d",num[j]);

AA[R][j]=num[j];

}

}

void matrixPermute2 (int *num, int k, int cols, int d)

{

int i,temp;

if (k == 2) {

for(i = cols; i>= 1; i--){

rightRotate (num,1);

print2(num);

}

return ;

}

temp = k-1;

for (i = cols; i >= temp; i--)

{

rightRotate (num,temp);

matrixPermute2 (num,temp,cols,d);

}

}

void print2(int *num)

{ int j;

T= T+1;

for(j= 1; j<= cols; ++j){

// AAnew[T][j]=num[j];

}

}

int factorial(int cols )

{ int i=1,current=1;

while (current<= cols)

{ i *= current;

current++;

} return (i);

}

B. PERATM2 program

#include<stdio.h>

#include <mpi.h>

#include <stdlib.h>

#define maxRows 3000

#define maxCols 50

int num[maxCols],AA[maxRows][maxCols];

int AAnew[maxRows][maxCols];

int cols;

int p;

int tag = 0,R=0,T=0, NB;

int pid;

void print(int *num, int cols);

218



void print2(int *num, int cols);

void move(int *num, int k, int j, int cols);

void rightRotate(int *num,int cols);

void per(int *num,int k, int cols);

void per2(int *num,int k, int cols, int d);

int main (int argc, char* argv[])

{

int i,j;

int myID;

int d;

double starttime, endtime, elapsed;

MPI_Status status;

/* MPI initialization */

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Comm_rank(MPI_COMM_WORLD, &myID);

if (myID == 0) // master process

{

printf(" enter the size of the element/cols =");

scanf("%d", &cols);

starttime = MPI_Wtime();

for( i=1;i<= cols;i++){

num[i] =i;}

per(num,cols-1,cols);

printf("numbers of rows = %d\n", R);

NB = (int)(R) /(p-1) ; /* number of block */

printf("numbers of block = %d\n", NB);

/* send AA to other processes*/

//printf("**master sending AA to all**\n");

MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&R, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&AA, (R+1)*maxCols, MPI_INT, 0, MPI_COMM_WORLD);

//////Get result from slaves//////

for (d=1; d<= p-1; d++) {

// printf("master receiving AA from %d *\n", d);

MPI_Recv(&T, 1, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

// MPI_Recv(&AAnew, maxRows*maxCols, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

pid=status.MPI_SOURCE;

printf("T = %d *\n",T);

/* for (i=1; i<= T; i++){

for (j=1; j<= cols; j++)

printf("%d", AAnew[i][j]);

for (j=1; j<= cols; j++)

printf("%d", AAnew[i][cols-j +1]);

printf("\n");

}*/

}

free(num);

free(AAnew);
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free(AA);

} // end master

///////////////////////SLAVE PROCESS //////////////////////////////////////////////////////////////////////////////

else {

/*receive A using broadcast*/

MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&R, 1, MPI_INT, 0, MPI_COMM_WORLD);

// NB = (int)(R) /(p-1) ; /* number of block */

MPI_Bcast(&AA, (R+1)*maxCols, MPI_INT, 0, MPI_COMM_WORLD);

// calculate range of rows to be processed

for(d = myID; d<= R; d+= p-1){

for (j = 1; j <= cols; j++){

num[j] = AA[d][j];}

per2(num,cols-3, cols, d);

} // end d

MPI_Send(&T, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD);

// MPI_Send(&AAnew, maxRows*maxCols, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD);

free(num);

free(AAnew);

free(AA);

} // end slaves process

if (myID == 0)

{

endtime = MPI_Wtime();

elapsed = endtime-starttime;

printf("\n\nParallel Time %f seconds\n",elapsed);

}

MPI_Finalize();

return 0;

}

void move(int *num, int k, int j, int cols)

{

int t,old;

if(k != cols){

t = num[k];

num[k] = num[k+1];

num[k+1] = t;}

else

{ old = num[cols];

for(k = cols; k>j; k--){

num[k] = num[k-1];}

num[j] = old;

}

}

void rightRotate(int *num,int cols)

{
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int old,k;

old = num[1];

for(k = 1; k<cols; ++k){

num[k] = num[k+1];}

num[cols] = old;

}

void per(int *num,int k, int cols)

{ int i,temp;

if( k == cols-3){

print(num,cols);

return;

}

temp = k-1;

for(i = temp; i<= cols; i++){

move(num,i,temp, cols);

per(num,temp,cols);

}

}

void print(int *num, int cols)

{ int j;

R= R+1;

for(j= 1; j<= cols; ++j){

// printf("%d",num[j]);

AA[R][j]=num[j];

}

}

void print2(int *num, int cols)

{ int j;

T= T+1;

// for(j= 1; j<= cols; ++j){

// AAnew[T][j]=num[j];

// printf("\n newAA[%d][%d]= %d", T,j,AAnew[T][j]);

// }

}

void per2(int *num,int k, int cols, int d)

{ int i, temp,old;

if( k == 2){

for(i = 1; i<=cols; i++){

old = num[1];

for(k = 1; k<cols; ++k){

num[k] = num[k+1];}

num[cols] = old;

print2(num,cols);

}

return;

}

temp = k-1;

for(i = temp; i<= cols; i++){

move(num,i,temp, cols);

per2(num,temp,cols,d);

}

}
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C. PERATM1 program

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <mpi.h>

#define maxRows 16

#define maxCols 16

int num[maxCols];

int AA[maxRows][maxCols];

int cols;

int myID,p, R= 0;

int tag = 0;

void initiate(int *num);

void print(int *num,int k, int d);

void move(int *num, int k, int j,int cols);

void move2(int *num, int k, int i, int cols);

void per(int *num,int temp, int cols, int d);

void rightRotate(int *num,int cols);

int main(int argc,char* argv[])

{ int myID,pmyID;

int N,i,d,j;

double starttime, endtime, elapsed;

MPI_Status status;

/* MPI initialization */

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Comm_rank(MPI_COMM_WORLD, &myID);

N = (cols-1)/ p-1;

if (myID == 0) // master process

{

printf(" enter the size of the element =");

scanf("%d", &cols);

starttime = MPI_Wtime();

MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD);

for (d= 1; d<= p-1; d++) {

// printf("master receiving AA from %d *\n", d);

MPI_Recv(&R, 1, MPI_INT, d, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

// MPI_Recv(&AA, (R+1)*maxCols, MPI_INT, d, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

//MPI_ANY_SOURCE ditukar oleh d

printf(" R = %d *\n ", R);

// pmyID=status.MPI_SOURCE;

/* for (i=1; i<= R; i++){

for (j=1; j<= cols; j++)

printf("%d", AA[i][j]);

for (j=1; j<= cols; j++)

printf("%d", AA[i][cols-j +1]);

printf("\n");

}*/

}

free(AA);

}

else{
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MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD);

for(d= myID; d< cols; d += p-1){

for (i=1; i<=cols; i++)

{ num[i]= i ;}

move2(num,d,2, cols);

per(num,cols-1,cols,d);

}

MPI_Send(&R, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD);

// MPI_Send(&AA, (R+1)*maxCols, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD);

free(AA);

}

if (myID == 0)

{

endtime = MPI_Wtime();

elapsed = endtime-starttime;

printf("\n\nParallel Time %f seconds\n",elapsed);

}

MPI_Finalize();

return 0;

}

void move(int *num, int k, int j, int cols)

{

int t,old;

if(k != cols){

t = num[k];

num[k] = num[k+1];

num[k+1] = t;}

else

{ old = num[cols];

for(k = cols; k>j; --k){

old = num[k];

num[k] = num[k-1];}

num[j] = old;

}

}

void move2(int *num, int k, int i, int cols)

{

int t,old;

if (k == 1){

t= num[i];

num[i] = num[cols-1];

num[cols-1] = t;

old = t;

old =num[cols-1];

num[cols-1] = num[cols];

num[cols] = old;

}

else {

t = num[k];

num[k] = num[i];

num[i] = t;}

}

void per(int *num, int t, int cols, int d)

{ int i,k,j,old,temp;

if( t == 3){

for(k = 0; k< cols; k++){

old = num[1];
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for(j = 1; j<cols; ++j){

num[j] = num[j+1];}

num[cols] = old;

print(num,k,d);

}

return;

}

temp = t-1;

for(i = temp; i<= cols; i++){

move(num,i,temp, cols);

per(num,temp,cols, d);

}

}

void print(int *num, int k, int d)

{ int j;

R=R+1;

// for(j= 1; j<= cols; ++j){

// AA[R][j]=num[j];

// printf("\n AA[%d][%d] = %d",d+R,j,AA[d+R][j]);

// }

}

D. PERATM2 program

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <sys/timeb.h>

#include <mpi.h>

#define maxCols 11

#define maxRows 1000

int num[maxCols];

int AA[maxRows][maxCols];

int cols;

int myID,p, R= 0, source;

int tag = 0;

void initiate(int *num);

void print(int *num, int k, int d);

void move(int *num, int k, int j, int cols);

void move2(int *num, int k, int cols);

void per(int *num,int temp, int cols, int d);

void rightRotate(int *num,int cols);

int factorial(int cols );

int main(int argc,char* argv[])

{

int myID,pid;

int N,i,d,j, rg, rg1, ed, rg2,rg3;

struct timeb time_before, time_after;

double starttime, endtime, elapsed;

MPI_Status status;

/* MPI initialization */

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Comm_rank(MPI_COMM_WORLD, &myID);

// N = (cols-1)/ p-1;

if (myID == 0) // master process

{

printf(" enter the size of the element =");
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scanf("%d", &cols);

ftime(&time_before); // = MPI_Wtime();

MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD);

for (d= 1; d<= p-1; d++) {

// source = d;

printf("master receiving AA from %d *\n", d);

// MPI_Recv(&R, 1, MPI_INT, source, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

MPI_Recv(&AA, maxRows*maxCols, MPI_INT, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

// printf(" R = %d *\n ", R);

pid=status.MPI_SOURCE;

rg = N/(cols-1);

rg1 = (int)(cols-1)/(p-1);

rg2 = rg*rg1;

rg3 = (cols-1) % (p-1);

ed = rg2*(rg3+1);

for (i=1; i<=rg2; i++){

for (j=1; j<= cols; j++)

// printf("\n AAnew[%d][%d] = %d",i,j,AAnew[i][j]);

printf("%d", AA[i][j]);

// printf("\n");

for (j=1; j<= cols; j++)

printf("%d", AA[i][cols-j +1]);

printf("\n");

}

}

free(AA);

}

else{

MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD);

for(d= myID; d< cols; d += p-1){

// initiate(num);

for (i=1; i<=cols; i++)

{ num[i]= i ;}

move2(num,d,cols-1);

per(num,2,cols,d);

}

// MPI_Send(&R, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD);

MPI_Send(&AA, maxRows*maxCols, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD);

}

if (myID == 0)

{

ftime(&time_after); // = MPI_Wtime();

elapsed = endtime-starttime;

printf("\n\nParallel Time %f seconds\n",elapsed);

}

MPI_Finalize();

return 0;

}

void move(int *num, int k, int j, int cols)

{

int t,old;

if (k!= cols){

t = num[k];

num[k] = num[k+1];

num[k+1] = t;}
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else {

old = num[cols];

for(k = cols; k>2; k--){

num[k] = num[k-1];}

num[2] = old;

}

}

void move2(int *num, int k, int j)

{

int t,old;

if (k == 1){

t= num[k+1];

num[k+1] = num[cols-1];

num[cols-1] = t;

old = t;

old =num[cols-1];

num[cols-1] = num[cols];

num[cols] = old;

}

else {

t = num[k];

num[k] = num[j];

num[j] = t;}

}

void per(int *num,int temp, int cols, int d)

{ int i,k, old,j;

if( temp == cols-2){

for(k = 1; k<= cols; k++){

old = num[1];

for(j = 1; j<cols; ++j){

num[j] = num[j+1];}

num[cols] = old;

print(num,k,d);

}

return;

}

for(i = temp+1; i<= cols ; i++){

move(num,i,temp+1,cols);

per(num,temp+1,cols,d);

}

}

void print(int *num, int k, int d)

{ int j;

R=R+1;

for(j= 1; j<= cols; ++j){

AA[R][j]=num[j];

// printf("\n AA[%d][%d] = %d",d+R,j,AA[d+R][j]);

}

}
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Appendix D

Parallel Determinant Program

A. PERMUTDET1 program

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <mpi.h>

#define maxRows 40

#define maxCols 15

int num[maxCols], AA[maxRows][maxCols];

double det[maxRows];

double newDet[maxRows];

int cols;

int p;

int tag = 0, R=0, NB;

int pid;

int a[maxCols][maxCols];

double sumBothDiag[maxRows];

void print(int *num);

void rightRotate(int *num,int i);

void PERMUTDET(int *num, int k, int cols);

void PERMUTDET1(int *num, int k, int cols, int d);

void productDiagonal(int *num,int k,

double *sumBothDiag,int d);

int sign();

int main (int argc, char* argv[])

{ int i,j;

int myID;

int d;

double sum;

double starttime, endtime, elapsed;

MPI_Status status;

/* MPI initialization */

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Comm_rank(MPI_COMM_WORLD, &myID);

if (myID == 0) // master process

{

printf(" enter the size of the element/cols =");

scanf ("%d", &cols);

/* for(i= 1; i<=cols; i++)

for(j=1; j<= cols; j++){

printf("a[%d][%d]=",i,j);

scanf("%f",&a[i][j]);

}*/

for(i=1; i<= cols; ++i)

for(j=1; j<= cols; ++j)

a[i][j] = rand() % 10;

for(i=1; i<= cols; ++i)

{
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for(j=1; j<= cols; ++j)

printf("%3d", a[i][j]);

printf("\n");

}

starttime = MPI_Wtime();

if ( cols <= 2 )

{

if (cols ==2)

printf("( DETERMINANT OF THE MATRIX =

%f",a[1][1] * a[2][2] - a[1][2] * a[2][1]);

else

printf( "DETERMINANT OF THE MATRIX = %f", a[1][1]);

}

else {

for (i=1; i<= cols; i++){

num[i]= i ;}

PERMUTDET(num,cols-1,cols);

printf("numbers of rows = %d\n", R);

NB = (int)(R) /(p-1) ; /* number of block */

printf("numbers of block = %d\n", NB);

/* send AA to other processes*/

//printf("**master sending AA to all**\n");

MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&a, maxCols*maxCols, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&R, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&AA, (R+1)*maxCols, MPI_INT, 0, MPI_COMM_WORLD);

//////Get result from slaves//////

sum=0;

for (d=1; d<= p-1; d++) {

MPI_Recv(&det, maxRows, MPI_DOUBLE, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

pid=status.MPI_SOURCE;

for (i=1; i<=R; i++){

sum += det[i];}

}

printf ("\ndeterminant value of the matrix = %f",sum);

}

free(num);

free(det);

free(AA);

free(a);

} // end master process

///////////////////////SLAVE PROCESS //////////////////

else {

/*receive A using broadcast*/

MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&a, maxCols*maxCols, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&R, 1, MPI_INT, 0, MPI_COMM_WORLD);

// NB = (int)(R) /(p-1) ; /* number of block */

MPI_Bcast(&AA, (R+1)*maxCols, MPI_INT, 0, MPI_COMM_WORLD);

// calculate range of rows to be processed

for(d = myID; d<= R; d+= p-1){ // start d

for (j = 1; j <= cols; j++){
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num[j] = AA[d][j]; }

PERMUTDET1(num,cols-3,cols,d);

} // end d

MPI_Send(&det, maxRows, MPI_DOUBLE, 0, MPI_ANY_TAG,

MPI_COMM_WORLD);

free(num);

free(AA);

free(a);

free(det);

free(newDet);

free(sumBothDiag);

} // end slaves process

if (myID == 0)

{

endtime = MPI_Wtime();

elapsed = endtime-starttime;

printf("\n\nParallel Time %f seconds\n",elapsed);

}

MPI_Finalize();

return 0;

}

void rightRotate(int *num,int i)

{

int old,k;

old = num[i];

for( k = i; k< cols; ++k){

num[k] = num[k+1];}

num[cols] = old;

}

void PERMUTDET(int *num, int k, int cols)

{

int i,temp;

if (k == cols-3)

{ print(num);

return ;

}

temp = k-1;

for (i = cols; i >= temp; i--)

{

rightRotate (num,temp);

matrixPermute (num,temp,cols);

}

}

void PERMUTDET1 (int *num, int k, int cols, int d)

{ int i, temp;

if( k == 2){

for(i = cols; i>=1; i--){

rightRotate(num,1);

productDiagonal(num, i,sumBothDiag, d);

}

for(i = cols; i>=1; i--){

det[d] += sumBothDiag[i];

}

return;

}

temp = k-1;

for (i = cols; i >= temp; i--)

{
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rightRotate (num,temp);

PERMUTDET1 (num,temp,cols,d);

}

}

int sign()

{

int g,h,l;

for(g=1,l=1;g<cols; g++)

for (h=g+1;h<=cols; h++)

{

if(num[h]<num[g])

l*=-1;}

return (l);

}

void productDiagonal(int *num, int k,

double *sumBothDiag, int d)

{

int j;

int t =1;

double s;

double prodMainDiag[maxRows],prodSecDiag[maxRows];

sumBothDiag[k] = 0;

if(cols % 4 == 0 || cols %4 == 1){

t *=sign(num) ;

//printf("\nt= %d",t);

for(j= 1,s=1; j<=cols; j++){

s *= a[j][num[j]];}

prodMainDiag[k] =s*t;

//printf("\nprodMainDiag[%d] = %f",d, prodMainDiag[d]);

for(j= 1,s=1; j<=cols; j++){

s *= a[j][num[cols-j+1]];}

prodSecDiag[k] =s*t;

sumBothDiag[k] += (prodSecDiag[k] + prodMainDiag[k]);

}

else {

t *=sign(num) ;

for(j= 1,s=1; j<=cols; j++){

s *= a[j][num[j]];}

prodMainDiag[k] =s*t;

for(j= 1,s=1; j<=cols; j++){;

s *= a[j][num[cols-j+1]];}

prodSecDiag[k] =(-1)*s*t;

sumBothDiag[k] += (prodSecDiag[k] + prodMainDiag[k]);

}

}

void print(int *num)

{ int j;

R= R+1;

for(j= 1; j<= cols; ++j){

// printf("%d",num[j]);

AA[R][j]=num[j];

}

}

B. PERMUTDET2 Program

#include <stdio.h>

#include <stdlib.h>
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#include <time.h>

#include <mpi.h>

#define maxRows 20

#define maxCols 15

int num[maxCols],AA[maxRows][maxCols];

double det[maxRows];

double newDet[maxRows];

int cols;

int p;

int tag = 0,R=0, NB;

int pid;

int a[maxCols][maxCols];

double sumBothDiag[maxRows];

void print(int *num,int cols);

void move(int *num, int k, int j, int cols);

void rightRotate(int *num,int cols);

void per(int *num,int k, int cols);

void per2(int *num,int k, int cols, int d);

void productDiagonal(int *num,int k,

double *sumBothDiag, int d);

int sign();

int main (int argc, char* argv[])

{ int i,j;

int myID;

int d;

double sum;

double starttime, endtime, elapsed;

MPI_Status status;

/* MPI initialization */

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Comm_rank(MPI_COMM_WORLD, &myID);

if (myID == 0) // master process

{

printf(" enter the size of the element/cols =");

scanf ("%d", &cols);

/* for(i= 1; i<=cols; i++)

for(j=1; j<= cols; j++){

printf("a[%d][%d]=",i,j);

scanf("%f",&a[i][j]);

}*/

for(i=1; i<= cols; ++i)

for(j=1; j<= cols; ++j)

a[i][j] = rand() % 10;

for(i=1; i<= cols; ++i)

{

for(j=1; j<= cols; ++j)

printf("%3d", a[i][j]);

printf("\n");

}

starttime = MPI_Wtime();

if ( cols <= 2 )

{

if (cols ==2)

printf("( DETERMINANT OF THE MATRIX = %f",

a[1][1] * a[2][2] - a[1][2] * a[2][1]);
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else

printf( "DETERMINANT OF THE MATRIX = %f", a[1][1]);

}

else {

for (i=1; i<= cols; i++){

num[i]= i ;}

per(num,cols-1,cols);

// printf("numbers of rows = %d\n", R);

NB = (int)(R) /(p-1) ; /* number of block */

// printf("numbers of block = %d\n", NB);

/* send AA to other processes*/

//printf("**master sending AA to all**\n");

MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&a, maxCols*maxCols, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&R, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&AA, (R+1)*maxCols, MPI_INT, 0, MPI_COMM_WORLD);

//////Get result from slaves//////

sum=0;

for (d=1; d<= p-1; d++) {

MPI_Recv(&det, maxRows, MPI_DOUBLE, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

pid=status.MPI_SOURCE;

for(i = 1; i<= R; i++)

sum += det[i];

}

printf ("\ndeterminant value of the matrix =

%f",sum);

}

free(num);

free(det);

free(AA);

free(a);

} // end master process

///////////////////////SLAVE PROCESS ////////

else {

/*receive A using broadcast*/

MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&a, maxCols*maxCols, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&R, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&AA, (R+1)*maxCols, MPI_INT, 0, MPI_COMM_WORLD);

// calculate range of rows to be processed

for(d = myID; d<= R; d+= p-1){ // start d

for (j = 1; j <= cols; j++){

num[j] = AA[d][j]; }

per2(num,cols-3,cols,d);

} // end d

MPI_Send(&det, maxRows, MPI_DOUBLE, 0, MPI_ANY_TAG, MPI_COMM_WORLD);

free(num);

free(AA);

free(a);

free(det);

free(newDet);

free(sumBothDiag);
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} // end slaves process

if (myID == 0)

{

endtime = MPI_Wtime();

elapsed = endtime-starttime;

printf("\n\nParallel Time %f seconds\n",elapsed);

}

MPI_Finalize();

return 0;

}

void move(int *num, int k, int j, int cols)

{

int t,old;

if(k != cols){

t = num[k];

num[k] = num[k+1];

num[k+1] = t;}

else

{ old = num[cols];

for(k = cols; k>j; k--){

num[k] = num[k-1];}

num[j] = old;

}}

void rightRotate(int *num,int cols)

{

int old,k;

old = num[1];

for(k = 1; k<cols; ++k){

num[k] = num[k+1];}

num[cols] = old;

}

void per(int *num,int k, int cols)

{ int i,temp;

if( k == cols-3){

print(num,cols);

return;

}

temp = k-1;

for(i = temp; i<= cols; i++){

move(num,i,temp, cols);

per(num,temp,cols);

}

}

void per2(int *num,int k, int cols, int d)

{ int i,temp;

if( k == 2){

for(i = 1; i<=cols; i++){

// move2(num,i,cols);

rightRotate(num, cols);

productDiagonal(num, i,sumBothDiag, d);

}

for(i = 1; i<=cols; i++){

det[d] += sumBothDiag[i];

}

return;

}

temp = k-1;

for(i = temp; i<= cols; i++){
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move(num,i,temp, cols);

per2(num,temp,cols,d);

}

}

int sign()

{

int g,h,l;

for(g=1,l=1;g<cols; g++)

for (h=g+1;h<=cols; h++)

{

if(num[h]<num[g])

l*=-1;}

return (l);

}

void productDiagonal(int *num, int k,

double *sumBothDiag, int d)

{

int j;

int t =1;

double s;

double prodMainDiag[maxRows],prodSecDiag[maxRows];

sumBothDiag[k] = 0;

if(cols % 4 == 0 || cols %4 == 1){

t *=sign() ;

//printf("\nt= %d",t);

for(j= 1,s=1; j<=cols; j++){

s *= a[j][num[j]];}

prodMainDiag[k] =s*t;

for(j= 1,s=1; j<=cols; j++){

s *= a[j][num[cols-j+1]];}

prodSecDiag[k] =s*t;

sumBothDiag[k] += (prodSecDiag[k] + prodMainDiag[k]);

}

else {

t *=sign() ;

for(j= 1,s=1; j<=cols; j++){

s *= a[j][num[j]];}

prodMainDiag[k] =s*t;

for(j= 1,s=1; j<=cols; j++){;

s *= a[j][num[cols-j+1]];}

prodSecDiag[k] =(-1)*s*t;

sumBothDiag[k] += (prodSecDiag[k] + prodMainDiag[k]);

}

}

void print(int *num,int cols)

{ int j;

R= R+1;

for(j= 1; j<= cols; ++j){

// printf("%d",num[j]);

AA[R][j]=num[j];

}

}

C. PDATM1 program

#include<stdio.h>

#include <stdlib.h>

#include <time.h>
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#include <mpi.h>

#define maxRows 50

#define maxCols 50

int num[maxCols];

int cols;

int p;

int tag = 0,R=0, NB;

int pid;

int a[maxCols][maxCols];

double sumBothDiag[maxCols];

double det[maxCols];

void print(int d);

void per(int temp, int cols, int d);

void rightRotate(int cols);

double productDiagonal( int k,

double *sumBothDiag, int d);

void move(int k, int j,int cols);

void move2(int k, int i, int cols);

int sign();

void initiate();

int main (int argc, char* argv[])

{ int i,j;

int myID,d;

double sum1, sum2, sum;

double starttime, endtime, elapsed;

MPI_Status status;

/* MPI initialization */

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Comm_rank(MPI_COMM_WORLD, &myID);

if (myID == 0) // master process

{

printf(" enter the size of the element/cols =");

scanf ("%d", &cols);

/* for(i= 1; i<=cols; i++)

for(j=1; j<= cols; j++){

printf("a[%d][%d]=",i,j);

scanf("%f",&a[i][j]);

}*/

for(i=1; i<= cols; ++i)

for(j=1; j<= cols; ++j)

a[i][j] = rand() % 10;

for(i=1; i<= cols; ++i)

{

for(j=1; j<= cols; ++j)

printf("%3d", a[i][j]);

printf("\n");

}

starttime = MPI_Wtime();

if ( cols <= 2 )

{

if (cols ==2)

printf("( DETERMINANT OF THE MATRIX = %f",

a[1][1] * a[2][2] - a[1][2] * a[2][1]);

else

printf( "DETERMINANT OF THE MATRIX = %f", a[1][1]);
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}

else {

//printf("**master sending a to all**\n");

MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&a, maxCols*maxCols, MPI_INT, 0, MPI_COMM_WORLD);

//////Get result from slaves//////

sum = 0;

for (d=1; d<= p-1; d++) {

MPI_Recv(&det, maxCols, MPI_DOUBLE, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

pid= status.MPI_SOURCE;

for(i = 1; i<= cols-1; i++){

sum1 += det[i];

}

}

printf("\ndeterminant value of the matrix = %f", sum);

}

free(a);

free(det);

} // end master process

///////////////////////SLAVE PROCESS /////

else {

/*receive A using broadcast*/

MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&a, maxCols*maxCols, MPI_INT, 0, MPI_COMM_WORLD);

for(d= myID; d< cols; d += p-1){

initiate();

move2(d,2, cols);

per(cols-1,cols,d);

// printf("\n newDet[%d] = %f",d, newDet[d]);

}

MPI_Send(&det, maxCols, MPI_DOUBLE, 0, MPI_ANY_TAG, MPI_COMM_WORLD);

free(a);

free(det);

free(sumBothDiag);

} // end slaves process

if (myID == 0)

{

endtime = MPI_Wtime();

elapsed = endtime-starttime;

printf("\n\nParallel Time %f seconds\n",elapsed);

}

MPI_Finalize();

return 0;

}

void initiate()

{ int i;

for (i=1; i<=cols; i++)

{ num[i]= i ;}

}

void rightRotate(int cols)

{

int old,k;

old = num[1];

for(k = 1; k<cols; ++k){

num[k] = num[k+1];}
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num[cols] = old;

}

void move2(int k, int i, int cols)

{

int t,old;

if (k == 1){

t= num[i];

num[i] = num[cols-1];

num[cols-1] = t;

old = t;

old =num[cols-1];

num[cols-1] = num[cols];

num[cols] = old;

}

else {

t = num[k];

num[k] = num[i];

num[i] = t;}

}

void move(int k, int j, int cols)

{

int t,old;

if(k != cols){

t = num[k];

num[k] = num[k+1];

num[k+1] = t;}

else

{ old = num[cols];

for(k = cols; k>j; --k){

num[k] = num[k-1];}

num[j] = old;

}

}

void per( int t, int cols, int d)

{ int i,k,temp;

if( t == 3){

for( k = 0; k< cols; k++){

rightRotate(cols);

productDiagonal( k, sumBothDiag, d);

}

for(k=0; k< cols;k++){

det[d] += sumBothDiag[k];

}

return;

}

temp = t-1;

for(i = temp; i<= cols; i++){

move(i,temp, cols);

per(temp,cols, d);

}

}

int sign()

{

int g,h,l;

for(g=1,l=1;g<cols; g++)

for (h=g+1;h<=cols; h++)

{

if(num[h]<num[g])
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l*=-1;}

return (l);

}

double productDiagonal( int k, double *sumBothDiag, int d)

{

int j;

int t=1;

double s;

double prodMainDiag[maxCols],prodSecDiag[maxCols];

sumBothDiag[k] = 0;

if(cols %4 == 0 || cols %4 == 1){

t *=sign();

//printf("\n t= %d",t);

for(j= 1,s=1; j<=cols; j++){

s *= a[j][num[j]];}

prodMainDiag[k] =s*t;

for(j= 1,s=1; j<=cols; j++){

s *= a[j][num[cols-j+1]];}

prodSecDiag[k] =s*t;

sumBothDiag[k] += (prodSecDiag[k] + prodMainDiag[k]);

}

else {

t *=sign();

for(j= 1,s=1; j<=cols; j++){

s *= a[j][num[j]];}

prodMainDiag[k] =s*t;

for(j= 1,s=1; j<=cols; j++){;

s *= a[j][num[cols-j+1]];}

prodSecDiag[k] =(-1)*s*t;

sumBothDiag[k] += (prodSecDiag[k] + prodMainDiag[k]);

}

return 0;

}

D. PDATM2 program

#include<stdio.h>

#include <stdlib.h>

#include <time.h>

#include <mpi.h>

#define maxRows 300

#define maxCols 50

int num[maxCols];

int cols;

int p;

int tag = 0,R=0;

int pid;

int a[maxCols][maxCols];

double sumBothDiag[maxCols];

double det[maxCols];

double newDet[maxCols];

void print(int d);

void per(int temp, int cols, int d);

void rightRotate(int cols);

double productDiagonal( int k, double *sumBothDiag, int d);

void move2( int k, int cols);

void move( int k, int cols);

int sign();
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void initiate( );

int main (int argc, char* argv[])

{ int i,j;

int myID;

int d;

double sum,sum1,sum2;

double starttime, endtime, elapsed;

MPI_Status status;

/* MPI initialization */

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Comm_rank(MPI_COMM_WORLD, &myID);

if (myID == 0) // master process

{

printf(" enter the size of the element/cols =");

scanf ("%d", &cols);

/* for(i= 1; i<=cols; i++)

for(j=1; j<= cols; j++){

printf("a[%d][%d]=",i,j);

scanf("%f",&a[i][j]);

}*/

for(i=1; i<= cols; ++i)

for(j=1; j<= cols; ++j)

a[i][j] = rand() % 10;

for(i=1; i<= cols; ++i)

{

for(j=1; j<= cols; ++j)

printf("%3d", a[i][j]);

printf("\n");

}

starttime = MPI_Wtime();

if ( cols <= 3 )

{

if (cols ==3){

initiate();

per(2,cols,0);}

else if (cols==2)

printf("( DETERMINANT OF THE MATRIX = %f",

a[1][1] * a[2][2] - a[1][2] * a[2][1]);

else

printf( "DETERMINANT OF THE MATRIX = %f", a[1][1]);

}

else {

//printf("**master sending a to all**\n");

MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&a, maxCols*maxCols, MPI_INT, 0, MPI_COMM_WORLD);

//////Get result from slaves//////

sum = 0;

for (d=1; d<= p-1; d++) {

MPI_Recv(&det, maxCols, MPI_DOUBLE, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

pid= status.MPI_SOURCE;

for(i = 1; i<= cols-1; i++){

sum1 += det[i];

}
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}

printf("\ndeterminant value of the matrix = %f", sum);

}

free(newDet);

free(a);

} // end master process

///////////////////////SLAVE PROCESS ///////////////

else {

/*receive A using broadcast*/

MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&a, maxCols*maxCols, MPI_INT, 0, MPI_COMM_WORLD);

for(d= myID; d< cols; d += p-1){

initiate();

move2(d,cols-1);

per(2,cols,d);

}

MPI_Send(&det, maxCols, MPI_DOUBLE, 0,

MPI_ANY_TAG, MPI_COMM_WORLD);

free(a);

free(det);

free(newDet);

free(sumBothDiag);

} // end slaves process

if (myID == 0)

{

endtime = MPI_Wtime();

elapsed = endtime-starttime;

printf("\n\nParallel Time %f seconds\n",elapsed);

}

MPI_Finalize();

return 0;

}

void initiate()

{ int i;

for (i=1; i<=cols; i++)

{ num[i]= i ;}

}

void rightRotate(int cols)

{

int old,k;

old = num[1];

for(k = 1; k<cols; ++k){

num[k] = num[k+1];}

num[cols] = old;

}

void move2( int k, int cols)

{

int t,old;

if (k == 1){

t= num[k+1];

num[k+1] = num[cols];

num[cols] = t;

old = t;

old =num[k];

num[k] = num[2];

num[2] = old;
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}

else {

t = num[k];

num[k] = num[cols];

num[cols] = t;}

}

void move( int k, int cols)

{

int t,old;

if(k !=1){

t = num[k];

num[k] = num[k-1];

num[k-1] = t;}

else

{

old = num[1];

for(k = 1; k<cols; ++k){

num[k] = num[k+1];}

num[cols] = old;

}

}

void per( int temp, int cols, int d)

{ int i,k;

if( temp == cols-2){

for( k = 0; k< cols; k++){

rightRotate(cols);

productDiagonal( k, sumBothDiag, d);

}

for(k=0; k< cols;k++){

det[d] += sumBothDiag[k];

}

return;

}

for(i = temp+1; i>= 1; i--){

move(i,temp+1);

per(temp+1,cols, d);

}

}

int sign()

{

int g,h,l;

for(g=1,l=1;g<cols; g++)

for (h=g+1;h<=cols; h++)

{

if(num[h]<num[g])

l*=-1;}

return (l);

}

double productDiagonal( int k, double *sumBothDiag, int d)

{

int j;

int t=1;

double s;

double prodMainDiag[maxCols],prodSecDiag[maxCols];

sumBothDiag[k] = 0;

if(cols %4 == 0 || cols %4 == 1){

t *=sign();

for(j= 1,s=1; j<=cols; j++){
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s *= a[j][num[j]];}

prodMainDiag[k] =s*t;

for(j= 1,s=1; j<=cols; j++){

s *= a[j][num[cols-j+1]];}

prodSecDiag[k] =s*t;

sumBothDiag[k] += (prodSecDiag[k] + prodMainDiag[k]);

}

else {

t *=sign();

for(j= 1,s=1; j<=cols; j++){

s *= a[j][num[j]];}

prodMainDiag[k] =s*t;

for(j= 1,s=1; j<=cols; j++){;

s *= a[j][num[cols-j+1]];}

prodSecDiag[k] =(-1)*s*t;

sumBothDiag[k] += (prodSecDiag[k] + prodMainDiag[k]);

}

return 0;

}
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Appendix E

Permutation and Determinant Program Output

A. PERMUT1 program output

enter the size of the element =5

45321 12354

53214 41235

32145 54123

21453 35412

14532 23541

53241 14235

32415 51423

24153 35142

41532 23514

15324 42351

32451 15423

24513 31542

45132 23154

51324 42315

13245 54231

24531 13542

45312 21354

53124 42135

31245 54213

12453 35421

53421 12435

34215 51243

42153 35124

21534 43512

15342 24351

34251 15243

42513 31524

25134 43152

51342 24315

13425 52431

42531 13524

25314 41352

53142 24135

31425 52413

14253 35241

25341 14352

53412 21435

34125 52143

41253 35214

12534 43521

34521 12543

45213 31254

52134 43125

21345 54312

13452 25431

45231 13254

52314 41325
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23145 54132

31452 25413

14523 32541

52341 14325

23415 51432

34152 25143

41523 32514

15234 43251

23451 15432

34512 21543

45123 32154

51234 43215

12345 54321

B. PERMUT2 program output

enter the size of the element =5

42351 15324

23514 41532

35142 24153

51423 32415

14235 53241

43251 15234

32514 41523

25143 34152

51432 23415

14325 52341

43521 12534

35214 41253

52143 34125

21435 53412

14352 25341

24351 15342

43512 21534

35124 42153

51243 34215

12435 53421

42531 13524

25314 41352

53142 24135

31425 52413

14253 35241

45231 13254

52314 41325

23145 54132

31452 25413

14523 32541

45321 12354

53214 41235

32145 54123

21453 35412

14532 23541

24531 13542

45312 21354

53124 42135

31245 54213

12453 35421

32451 15423
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24513 31542

45132 23154

51324 42315

13245 54231

34251 15243

42513 31524

25134 43152

51342 24315

13425 52431

34521 12543

45213 31254

52134 43125

21345 54312

13452 25431

23451 15432

34512 21543

45123 32154

51234 43215

12345 54321

Press any key to continue

C. PERMUTIT3 program output

enter the size of the element=5

12345 54321

23451 15432

34512 21543

45123 32154

51234 43215

23415 51432

34152 25143

41523 32514

15234 43251

52341 14325

34125 52143

41253 35214

12534 43521

25341 14352

53412 21435

41235 53214

12354 45321

23541 14532

35412 21453

54123 32145

23145 54132

31452 25413

14523 32541

45231 13254

52314 41325

31425 52413

14253 35241

42531 13524

25314 41352

53142 24135

14235 53241

42351 15324

23514 41532

35142 24153
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51423 32415

42315 51324

23154 45132

31542 24513

15423 32451

54231 13245

31245 54213

12453 35421

24531 13542

45312 21354

53124 42135

12435 53421

24351 15342

43512 21534

35124 42153

51243 34215

24315 51342

43152 25134

31524 42513

15243 34251

52431 13425

43125 52134

31254 45213

12543 34521

25431 13452

54312 21345

Press any key to continue

D. PERMUTDET1 program Output

enter the size of the element=5

1 7 4 0 9

4 8 8 2 4

5 5 1 7 1

1 5 2 7 6

1 4 2 3 2

prodMainDiag = -120.000000

prodSecDiag = -560.000000

prodMainDiag = 0.000000

prodSecDiag = -120.000000

prodMainDiag = -84.000000

prodSecDiag = 0.000000

prodMainDiag = -10080.000000

prodSecDiag = -280.000000

prodMainDiag = -1120.000000

prodSecDiag = -1008.000000

prodMainDiag = 0.000000

prodSecDiag = 60.000000

prodMainDiag = 168.000000

prodSecDiag = 0.000000

prodMainDiag = 2240.000000

prodSecDiag = 840.000000

prodMainDiag = 2520.000000

prodSecDiag = 448.000000

prodMainDiag = 40.000000

prodSecDiag = 2520.000000
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prodMainDiag = -5040.000000

prodSecDiag = 0.000000

prodMainDiag = -448.000000

prodSecDiag = -28.000000

prodMainDiag = -280.000000

prodSecDiag = -1344.000000

prodMainDiag = -180.000000

prodSecDiag = -560.000000

prodMainDiag = 0.000000

prodSecDiag = -540.000000

prodMainDiag = 2688.000000

prodSecDiag = 392.000000

prodMainDiag = 20.000000

prodSecDiag = 224.000000

prodMainDiag = 0.000000

prodSecDiag = 720.000000

prodMainDiag = 216.000000

prodSecDiag = 0.000000

prodMainDiag = 3920.000000

prodSecDiag = 720.000000

prodMainDiag = -84.000000

prodSecDiag = -112.000000

prodMainDiag = 0.000000

prodSecDiag = -168.000000

prodMainDiag = -1200.000000

prodSecDiag = 0.000000

prodMainDiag = -2520.000000

prodSecDiag = -80.000000

prodMainDiag = -224.000000

prodSecDiag = -2520.000000

prodMainDiag = 0.000000

prodSecDiag = 840.000000

prodMainDiag = 240.000000

prodSecDiag = 0.000000

prodMainDiag = 280.000000

prodSecDiag = 240.000000

prodMainDiag = 1008.000000

prodSecDiag = 560.000000

prodMainDiag = 28.000000

prodSecDiag = 1008.000000

prodMainDiag = -1440.000000

prodSecDiag = 0.000000

prodMainDiag = -112.000000

prodSecDiag = -40.000000

prodMainDiag = -392.000000

prodSecDiag = -1344.000000

prodMainDiag = -72.000000

prodSecDiag = -392.000000

prodMainDiag = 0.000000

prodSecDiag = -2160.000000

prodMainDiag = 672.000000

prodSecDiag = 560.000000

prodMainDiag = 28.000000

prodSecDiag = 224.000000

prodMainDiag = 0.000000

prodSecDiag = 504.000000

prodMainDiag = 5400.000000

prodSecDiag = 0.000000
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prodMainDiag = 1120.000000

prodSecDiag = 180.000000

prodMainDiag = -960.000000

prodSecDiag = -1960.000000

prodMainDiag = 0.000000

prodSecDiag = -96.000000

prodMainDiag = -120.000000

prodSecDiag = 0.000000

prodMainDiag = -504.000000

prodSecDiag = -20.000000

prodMainDiag = -784.000000

prodSecDiag = -2016.000000

prodMainDiag = 0.000000

prodSecDiag = 240.000000

prodMainDiag = 48.000000

prodSecDiag = 0.000000

prodMainDiag = 196.000000

prodSecDiag = 48.000000

prodMainDiag = 2016.000000

prodSecDiag = 784.000000

prodMainDiag = 400.000000

prodSecDiag = 5040.000000

prodMainDiag = -144.000000

prodSecDiag = 0.000000

prodMainDiag = -392.000000

prodSecDiag = -16.000000

prodMainDiag = -448.000000

prodSecDiag = -2352.000000

prodMainDiag = -900.000000

prodSecDiag = -2240.000000

prodMainDiag = 0.000000

prodSecDiag = -1080.000000

prodMainDiag = 2352.000000

prodSecDiag = 224.000000

prodMainDiag = 32.000000

prodSecDiag = 392.000000

prodMainDiag = 0.000000

prodSecDiag = 2880.000000

prodMainDiag = 1080.000000

prodSecDiag = 0.000000

prodMainDiag = 112.000000

prodSecDiag = 90.000000

determinant of A= -2122.000000

Press any key to continue

D. PERMUTDET2 program Output

enter the size of the element=5

1 7 4 0 9

4 8 8 2 4

5 5 1 7 1

1 5 2 7 6

1 4 2 3 2

prodMainDiag= 240.000000

prodSecDiag= 280.000000

prodMainDiag= 0.000000

prodSecDiag= 240.000000
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prodMainDiag= 840.000000

prodSecDiag= 0.000000

prodMainDiag= 1008.000000

prodSecDiag= 28.000000

prodMainDiag= 560.000000

prodSecDiag= 1008.000000

prodMainDiag= 0.000000

prodSecDiag= -120.000000

prodMainDiag= -96.000000

prodSecDiag= 0.000000

prodMainDiag= -1960.000000

prodSecDiag= -960.000000

prodMainDiag= -2016.000000

prodSecDiag= -784.000000

prodMainDiag= -20.000000

prodSecDiag= -504.000000

prodMainDiag= 720.000000

prodSecDiag= 0.000000

prodMainDiag= 224.000000

prodSecDiag= 20.000000

prodMainDiag= 392.000000

prodSecDiag= 2688.000000

prodMainDiag= 720.000000

prodSecDiag= 3920.000000

prodMainDiag= 0.000000

prodSecDiag= 216.000000

prodMainDiag= -1344.000000

prodSecDiag= -280.000000

prodMainDiag= -28.000000

prodSecDiag= -448.000000

prodMainDiag= 0.000000

prodSecDiag= -5040.000000

prodMainDiag= -540.000000

prodSecDiag= 0.000000

prodMainDiag= -560.000000

prodSecDiag= -180.000000

prodMainDiag= -120.000000

prodSecDiag= -560.000000

prodMainDiag= 0.000000

prodSecDiag= -120.000000

prodMainDiag= -84.000000

prodSecDiag= 0.000000

prodMainDiag= -10080.000000

prodSecDiag= -280.000000

prodMainDiag= -1120.000000

prodSecDiag= -1008.000000

prodMainDiag= 0.000000

prodSecDiag= 240.000000

prodMainDiag= 48.000000

prodSecDiag= 0.000000

prodMainDiag= 196.000000

prodSecDiag= 48.000000

prodMainDiag= 2016.000000

prodSecDiag= 784.000000

prodMainDiag= 400.000000

prodSecDiag= 5040.000000

prodMainDiag= -1440.000000

prodSecDiag= 0.000000
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prodMainDiag= -112.000000

prodSecDiag= -40.000000

prodMainDiag= -392.000000

prodSecDiag= -1344.000000

prodMainDiag= -72.000000

prodSecDiag= -392.000000

prodMainDiag= 0.000000

prodSecDiag= -2160.000000

prodMainDiag= 672.000000

prodSecDiag= 560.000000

prodMainDiag= 28.000000

prodSecDiag= 224.000000

prodMainDiag= 0.000000

prodSecDiag= 504.000000

prodMainDiag= 5400.000000

prodSecDiag= 0.000000

prodMainDiag= 1120.000000

prodSecDiag= 180.000000

prodMainDiag= -84.000000

prodSecDiag= -112.000000

prodMainDiag= 0.000000

prodSecDiag= -168.000000

prodMainDiag= -1200.000000

prodSecDiag= 0.000000

prodMainDiag= -2520.000000

prodSecDiag= -80.000000

prodMainDiag= -224.000000

prodSecDiag= -2520.000000

prodMainDiag= 0.000000

prodSecDiag= 60.000000

prodMainDiag= 168.000000

prodSecDiag= 0.000000

prodMainDiag= 2240.000000

prodSecDiag= 840.000000

prodMainDiag= 2520.000000

prodSecDiag= 448.000000

prodMainDiag= 40.000000

prodSecDiag= 2520.000000

prodMainDiag= -144.000000

prodSecDiag= 0.000000

prodMainDiag= -392.000000

prodSecDiag= -16.000000

prodMainDiag= -448.000000

prodSecDiag= -2352.000000

prodMainDiag= -900.000000

prodSecDiag= -2240.000000

prodMainDiag= 0.000000

prodSecDiag= -1080.000000

prodMainDiag= 2352.000000

prodSecDiag= 224.000000

prodMainDiag= 32.000000

prodSecDiag= 392.000000

prodMainDiag= 0.000000

prodSecDiag= 2880.000000

prodMainDiag= 1080.000000

prodSecDiag= 0.000000

prodMainDiag= 112.000000

prodSecDiag= 90.000000
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determinant of A= -2122.000000

Press any key to continue

F. PERMUTDETIT3 program Output

enter the size of the element=5

1 7 4 0 9

4 8 8 2 4

5 5 1 7 1

1 5 2 7 6

1 4 2 3 2

prodMainDiag= 112.000000

prodSecDiag= 90.000000

prodMainDiag= 2352.000000

prodSecDiag= 224.000000

prodMainDiag= 32.000000

prodSecDiag= 392.000000

prodMainDiag= 0.000000

prodSecDiag= 2880.000000

prodMainDiag= 1080.000000

prodSecDiag= 0.000000

prodMainDiag= -784.000000

prodSecDiag= -2016.000000

prodMainDiag= -960.000000

prodSecDiag= -1960.000000

prodMainDiag= 0.000000

prodSecDiag= -96.000000

prodMainDiag= -120.000000

prodSecDiag= 0.000000

prodMainDiag= -504.000000

prodSecDiag= -20.000000

prodMainDiag= 400.000000

prodSecDiag= 5040.000000

prodMainDiag= 0.000000

prodSecDiag= 240.000000

prodMainDiag= 48.000000

prodSecDiag= 0.000000

prodMainDiag= 196.000000

prodSecDiag= 48.000000

prodMainDiag= 2016.000000

prodSecDiag= 784.000000

prodMainDiag= 0.000000

prodSecDiag= -1080.000000

prodMainDiag= -144.000000

prodSecDiag= 0.000000

prodMainDiag= -392.000000

prodSecDiag= -16.000000

prodMainDiag= -448.000000

prodSecDiag= -2352.000000

prodMainDiag= -900.000000

prodSecDiag= -2240.000000

prodMainDiag= 3920.000000

prodSecDiag= 720.000000

prodMainDiag= 2688.000000

prodSecDiag= 392.000000

prodMainDiag= 20.000000

251



prodSecDiag= 224.000000

prodMainDiag= 0.000000

prodSecDiag= 720.000000

prodMainDiag= 216.000000

prodSecDiag= 0.000000

prodMainDiag= -1120.000000

prodSecDiag= -1008.000000

prodMainDiag= -120.000000

prodSecDiag= -560.000000

prodMainDiag= 0.000000

prodSecDiag= -120.000000

prodMainDiag= -84.000000

prodSecDiag= 0.000000

prodMainDiag= -10080.000000

prodSecDiag= -280.000000

prodMainDiag= 40.000000

prodSecDiag= 2520.000000

prodMainDiag= 0.000000

prodSecDiag= 60.000000

prodMainDiag= 168.000000

prodSecDiag= 0.000000

prodMainDiag= 2240.000000

prodSecDiag= 840.000000

prodMainDiag= 2520.000000

prodSecDiag= 448.000000

prodMainDiag= 0.000000

prodSecDiag= -540.000000

prodMainDiag= -5040.000000

prodSecDiag= 0.000000

prodMainDiag= -448.000000

prodSecDiag= -28.000000

prodMainDiag= -280.000000

prodSecDiag= -1344.000000

prodMainDiag= -180.000000

prodSecDiag= -560.000000

prodMainDiag= 1120.000000

prodSecDiag= 180.000000

prodMainDiag= 672.000000

prodSecDiag= 560.000000

prodMainDiag= 28.000000

prodSecDiag= 224.000000

prodMainDiag= 0.000000

prodSecDiag= 504.000000

prodMainDiag= 5400.000000

prodSecDiag= 0.000000

prodMainDiag= -224.000000

prodSecDiag= -2520.000000

prodMainDiag= -84.000000

prodSecDiag= -112.000000

prodMainDiag= 0.000000

prodSecDiag= -168.000000

prodMainDiag= -1200.000000

prodSecDiag= 0.000000

prodMainDiag= -2520.000000

prodSecDiag= -80.000000

prodMainDiag= 28.000000

prodSecDiag= 1008.000000

prodMainDiag= 0.000000
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prodSecDiag= 840.000000

prodMainDiag= 240.000000

prodSecDiag= 0.000000

prodMainDiag= 280.000000

prodSecDiag= 240.000000

prodMainDiag= 1008.000000

prodSecDiag= 560.000000

prodMainDiag= 0.000000

prodSecDiag= -2160.000000

prodMainDiag= -1440.000000

prodSecDiag= 0.000000

prodMainDiag= -112.000000

prodSecDiag= -40.000000

prodMainDiag= -392.000000

prodSecDiag= -1344.000000

prodMainDiag= -72.000000

prodSecDiag= -392.000000

determinant of A= -2122.000000

Press any key to continue
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