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Abstrak 

Carta kawalan Hotelling T
2
 adalah alat yang berkesan bagi kawalan proses 

berstatistik untuk persekitaran multivariat. Walau bagaimanapun, prestasi carta 

kawalan Hotelling T
2
 tradisional yang menggunakan penganggar lokasi dan serakan 

klasik biasanya dicemari oleh kesan pelitupan  dan swamping. Bagi mengurangkan 

masalah ini, penganggar teguh telah disyorkan. Penganggar teguh yang paling 

popular dan digunakan secara meluas dalam carta kawalan Hotelling T
2
 adalah 

penentu kovarians minimum (MCD).  Terkini, penganggar yang lebih baik dikenali 

sebagai varians vektor minimum (MVV) telah diperkenalkan. Penganggar ini 

mempunyai titik kerosakan yang tinggi, varians samaan affin dan pengiraan yang 

lebih cekap. Oleh kerana cirinya yang baik, kajian ini mencadangkan untuk 

mengganti penganggar klasik dengan penganggar lokasi dan serakan MVV dalam 

pembinaan carta kawalan Hotelling T
2
 bagi cerapan individu pada analisis Fasa II. 

Walau bagaimanapun, penganggar MVV didapati mempunyai beberapa kelemahan 

seperti tidak tekal pada taburan normal, tidak saksama untuk sampel bersaiz kecil 

dan kurang cekap pada titik kerosakan yang tinggi. Bagi meningkatkan ketekalan 

dan kesaksamaan MVV, penganggar tersebut telah didarabkan masing-masing 

dengan faktor ketekalan dan faktor pembetulan. Bagi mengekalkan titik kerosakan di 

samping mempunyai kecekapan statistik yang tinggi, penganggar MVV berpemberat 

semula (RMVV) telah dicadangkan. Seterusnya, penganggar RMVV tersebut 

digunakan dalam pembinaan carta kawalan Hotelling T
2
.
 
Carta teguh Hotelling T

2
 

yang baharu ini menghasilkan kesan positif dalam mengesan titik terpencil dan pada 

masa yang sama mampu mengawal kadar penggera palsu. Di samping analisis 

terhadap data simulasi, analisis ke atas data sebenar juga mendapati carta teguh 

Hotelling T
2
 yang baharu ini dapat mengesan cerapan luar kawalan dengan lebih baik 

berbanding carta lain yang diselidik dalam kajian ini. Berdasarkan prestasi yang baik 

terhadap analisis data simulasi dan sebenar, carta teguh Hotelling T
2
 yang baharu ini 

adalah merupakan alternatif yang baik bagi carta Hotelling T
2
 yang sedia ada. 

 

Kata kunci: Penganggar Cekap, Kawalan Proses Berstatistik Multivariat, Varians Vektor Minimum 

Berpemberat Semula, Carta Hotelling T
2
 Teguh, Penganggar Multivariat Teguh 
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Abstract 

Hotelling T
2
 control chart is an effective tool in statistical process control for 

multivariate environment. However, the performance of traditional Hotelling T
2
 

control chart using classical location and scatter estimators is usually marred by the 

masking and swamping effects. In order to alleviate the problem, robust estimators 

are recommended. The most popular and widely used robust estimator in the 

Hotelling T
2
 control chart is the minimum covariance determinant (MCD).  Recently, 

a new robust estimator known as minimum vector variance (MVV) was introduced. 

This estimator possesses high breakdown point, affine equivariance and is superior 

in terms of computational efficiency. Due to these nice properties, this study 

proposed to replace the classical estimators with the MVV location and scatter 

estimators in the construction of Hotelling T
2
 control chart for individual 

observations in Phase II analysis. Nevertheless, some drawbacks such as 

inconsistency under normal distribution, biased for small sample size and low 

efficiency under high breakdown point were discovered.  To improve the MVV 

estimators  in terms of consistency and unbiasedness, the MVV scatter estimator was 

multiplied by consistency and correction factors respectively. To maintain the high 

breakdown point while having high statistical efficiency, a reweighted version of 

MVV estimator (RMVV) was proposed.  Subsequently, the RMVV estimators were 

applied in the construction of Hotelling T
2
 control chart.  The new robust Hotelling 

T
2
 chart produced positive impact in detecting outliers while simultaneously 

controlling false alarm rates. Apart from analysis of simulated data, analysis of real 

data also found that the new robust Hotelling T
2
 chart was able to detect out of 

control observations better than the other charts investigated in this study. Based on 

the good performance on both simulated and real data analysis, the new robust 

Hotelling T
2 

chart is a good alternative to the existing Hotelling T
2
 charts. 

 

Keywords: Efficient Estimators, Multivariate Statistical Process Control, Reweighted Minimum 

Vector Variance, Robust Hotelling T
2
 Chart, Robust Multivariate Estimator 
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CHAPTER ONE 

INTRODUCTION 

1.1 Introduction 

Success of a firm very much depends on the quality of its product.  Be it goods or 

services, the firm has little chance of success if its core product is of inferior quality 

(Ferrel & Hartline, 2008).  To ensure that the quality of a product is always up to a 

certain level, the process behavior needs be monitored and the quality of the process 

has to be improved.  This will consequently lead to business success, growth and 

enhanced competitiveness. To better meet customers’ expectations, many 

manufacturing industries have reviewed their processes and improve specifications 

with acceptable standards by reducing variability in the process and product, which 

substantially will improve performance.  Thus, identifying the cause of variation to 

reduce variability in a process is vital in monitoring quality.  

There are two distinct causes of variations in a process namely the common and 

special cause variations. While common cause variation can be reduced by 

management intervention, the special cause is hard to gauge as this variation affects 

the process in unpredictable ways. However, special cause can be detected by some 

statistical techniques. It can be eliminated from the process by the worker or process 

control team in charge of the particular segment of the process, which is referred as 

local action.  When all the special-cause variation is eliminated, the process is said to 

be in-statistical control.  The second type of variation, known as common-cause 
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variation, is inherent in the process. This type of variation is predictable 

probabilistically and randomly distributed.  It is the natural variation in a process and 

typically requires more skill in reducing, which is usually in charge by engineering 

department.  The variation that originates from special causes is generally much 

greater than it is for common causes.   

To examine the source of variations for special causes, manufacturers turn to 

statistical process control. Statistical Process Control (SPC) is a broad field of 

research and applications devoted to the improvement of products and processes. 

The basic procedure of SPC consists of the following steps:  

1. the development of a statistical model from historical data collected when the 

process runs under normal operating conditions;  

2. the determination of control limits for the statistical model; and  

3. the detection of process faults when on-line data exceeds the control limits, 

followed by the diagnoses of the cause of the faults. 

One of the main challenges faced by SPC is to simultaneously monitor product with 

multiple quality characteristics especially when the number of characteristics is 

large.  In monitoring the quality of a product or process, quite often more than one 

quality characteristic are measured on each manufactured item, thus producing a 

multivariate response.  These quality measurements are usually correlated with each 

other. Multivariate SPC (MSPC) methods are designed by taking into account the 

correlations among the variables and the ability to simultaneously monitor the 
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variables through time. Like other statistical detection problems, MSPC is concerned 

with Type I and Type II error.  The former which is also known as false alarm, 

occurs when good data is classified as defective, while the latter occurs when the test 

fails to detect defective data point.  A good and reliable method should be able to 

control these two errors.   

One of the main techniques employed in SPC is process control charts, where the 

purpose is to achieve and maintain statistical control and capability (Montgomery, 

2005). Control charts are known to be effective tools for monitoring the quality of 

processes in MSPC and are applied in many industries. Data occur sequentially in 

time and are often reduced to a statistic(s) which represent the current state of the 

process. The statistics are then plotted on a chart with a process limit identified as the 

upper and lower control limits (UCL and LCL).  The control limits are the common 

features of the chart, and this chart is specifically known as control chart. A process 

is deemed stable or in control if all the points (statistics) fall within the limits.  

Otherwise, the process is signaled as out of control and corrective action on the 

process may be needed.   

The first original study of multivariate control chart was introduced by Hotelling 

(1947). Since then, as to provide for a wider spectrum, the study on multivariate 

quality control charts continues to expand.  Currently, three of the most frequently 

considered multivariate control charts are Hotelling’s T
2
, the MEWMA (Multivariate 
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Exponentially Weighted Moving Average) and the MCUSUM (Multivariate 

Cumulative Sum).  However, the Hotelling’s T
2
 is still the most frequently selected 

tool for multivariate charting procedure due to the fact that T
2
 chart possesses almost 

all the desirable characteristics for a multivariate control chart such as ease of 

application, flexibility, sensitivity to small process changes, and the availability of 

software for application (Mason & Young, 2002).  Moreover T
2
 chart is widely 

accepted by quality engineers and operators because of its similarity in appearance to 

the univariate (Shewhart) chart (Prins & Mader, 1997).  However, it is not a panacea, 

as it is not free of limitations.   

In the construction of a control chart for monitoring the variability of a univariate or 

multivariate process, Alt (1985) has defined two phases of the process as phase I and 

phase II. It is useful to distinguish between methods and applications of the two 

phases. Although the two phases are both dedicated to identify out-of-control 

situations, each phase has a unique objective. These phases are also called 

retrospective and prospective analysis respectively (see Montgomery, 2005).  

1.1.1 Phase I vs. Phase II 

The purpose of a control chart is to ensure that a process is in control by achieving 

and maintaining statistical control at each phase of the process. In phase I, a 

preliminary data set is analyzed to determine whether the process is in control, by 

establishing the initial control limits and estimating the in-control parameters of the 
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process.  The goals of Phase I as stated by Woodall, Spitzner, Montgomery and 

Gupta (2004) are: 

 To understand the variation in a process over time 

 To evaluate the process stability 

 To model the in-control process performance 

This phase also involves the process of detecting outliers that cause the process to 

become unstable. Thus, in this phase, one needs to identify and remove atypical 

observations in preliminary data set before the in-control parameters are estimated 

and the initial control limit is computed.  A typical observation located at an extreme 

distance from the main part of the sample data is considered as a variation due to 

special-cause.  While in phase II, control charts are used with future observations for 

detecting possible departures from parameters estimated in phase I.  The reason we 

seek to remove the presence of special causes of variation from preliminary data set 

is due to the fact that their inclusion can result in biased sample estimates of the 

population mean vector and covariance matrix. The existence of special cause 

variation would consequently lead to the inflation of control limits and reduction of 

power to detect process changes in phase II.  Therefore a successful phase II analysis 

very much depends on a successful phase I analysis in estimating in-control mean, 

variance, and covariance parameters. 
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1.1.2 Hotelling T
2
 Control Chart 

Several statistical tests have been presented for identifying the presence of special 

causes of variation, and one of the most frequently used is the Hotelling T
2
 statistics 

for the reasons mentioned earlier.  With the T
2
 statistic, the corresponding control 

chart has only a UCL since all the generated values are positive.  The computation of 

UCL offers some differences between Phase I and Phase II, due to the distinction of 

the T
2
 statistic probability distribution. The main purpose of the Hotelling T

2
 

statistics in Phase I control chart is to clean the preliminary data set from 

multivariate outliers and other distributional deviations.  The preliminary data set 

collected in retrospective analysis involves either initial subgroups or individual 

observations. In many situations, data are collected according to the rational 

subgroups concept.  Nevertheless, sometimes data come in the form of individual 

observations especially when the production rate is too slow to conveniently collect 

subgroup size greater than one.  For individual multivariate observations, the 

parameter estimates for the mean vector and covariance matrix in Phase I is based on 

pooling all the observations (Jackson, 1985; Tracy, Young & Mason, 1992; Wierda, 

1994; Lowry & Montgomery, 1995). 

Phase I begins with the cleansing process by first selecting a value for  , i.e. the 

probability of making a Type I error.  The choice of   will directly determine the 

size of the control region,    . A type I error is made if an observation is declared 
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as an outlier when in fact it is not.  Suppose that the preliminary data set in Phase I 

consist of    {             } where i =1,2,…,n and    represents p-dimensional 

of time ordered vectors that are independent of each other.  Hotelling T
2
 statistic for 

individual observations which is similar to Mahalanobis distance, is given as  

  
                                                                     (1.1) 

This statistic    
   is used to monitor the process via a T

2
 chart. A T

2
 value which 

exceeds the UCL limit signifies that the corresponding observation is an outlier and 

should be deleted from the preliminary data set.  If    is assumed to come from 

multivariate normal distribution with mean vector   and covariance matrix  , and 

the parameters are known, the UCL for the cleansing process is determined using the 

chi square (χ
2
) distribution as follows, 

          
                                                    (1.2) 

where       
  is the upper  th quantile of a chi-square distribution having p degrees 

of freedom.  However, when   and   are unknown, we estimate these parameters 

from a historical data set using sample mean vector ( ̅) and the sample covariance 

matrix (S).  Thus, if we consider a sample    {             } of p-variate 

observations, the T
2 

statistic for    can be constructed in the following manner: 

  
       ̅          ̅                                                (1.3) 
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where      and u, v = 1, ... , p. The sample mean and covariance matrix are 

estimated as; 

 ̅     ∑    
 
       and            ∑   

         ̅        ̅  
    (1.4) 

The control limit is determined by  

    [
      

 
]  

   
 

 
 
     

 
 
                                                   (1.5) 

where  
   

 

 
 
     

 
 
 is the upper  th quantile of a Beta distribution (Mason & Young, 

2002). The observations with   
  values greater that UCL, will be deleted from the 

preliminary data. This signals the possible presence of outlier observations in the 

process which exist due to special-cause variation.  With the remaining observations 

(preliminary data minus outliers), we calculate new estimates for the mean vector 

and covariance matrix.  Then we calculate UCL using the remaining observations. 

Again, we remove any outliers identified and repeat the process until a homogeneous 

set of observations is obtained.  The final set of data is the historical data set (HDS).  

This repeated process is known as iterative re-estimation procedure (Mason & 

Young, 2002). Once a homogeneous reference HDS is obtained and the common 

estimates  ̅ and S are computed using Equation 1.4, the next step is to construct a T
2
 

control chart for Phase II.  Assume the process is being monitored by observing a 
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new single observation vector,   {             }, on p variables at each time 

point.  The T
2
 value associated with    is given by 

  
       ̅          ̅                                               (1.6) 

At this phase, the control limit is determined by  

                                  [
           

      
]           (1.7) 

where n is the size of the HDS and            is the  th quantile of F distribution.   In 

this phase, F distribution is used because the calculation of T
2
 statistic involves 

different data from those used to estimate the parameters.  

The traditional T
2 

chart works well when number of process variable is not too large 

i.e. p < 10. As the number of variables grows, the efficiency of T
2 

chart in detecting 

shift will depreciate (Mason, Champ, Tracy, Wierda & Young, 1997). In addition, 

the estimators are easily affected by multivariate outliers. Three major types of 

multivariate outliers are always discussed in the T
2
 control chart i.e. shifts in the 

mean vector, a departure from the in-control covariance structure (counter-

relationship) or combinations of the two situations (Ye, Emran, Chen & Vilbert, 

2002). A shift in the mean vector occurs when one or more of the p variables is out 

of control then causing the mean vector,    , to change to some new vector,   .  The 

situation of counter-relationship on the other hand, occurs when a correlation 
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structure between two or more p variables changed from the variable relationship 

established in the covariance matrix.  Although the T
2
 control chart can detect both 

mean shift and counter-relationship, nevertheless the T
2
 control chart is more 

responsive to counter-relationship than mean shifts because the T
2
 control chart 

relies largely on the correlated structure of variables (covariance matrix) for signal 

detection. An example is illustrated in Ryan (1989) with two variables and a high 

positive correlation between the two variables while they are in control. For this 

example, the T
2
 control chart signals an observation with a counter-relationship, but 

does not signal an observation with an out-of-control mean shift on one variable 

because both variables shift in the same direction and thus still maintain their 

relationship of a positive correlation. This implies that detecting outliers via mean 

shifts is more  difficult compared to counter-relationship.  Any control chart that can 

circumvent the shift in the mean often can perform well for other types of changes 

(Jensen, Birch & Woodall, 2007). In addition, other research has shown that the use 

of the classical sample covariance matrix, with all the individual observations 

pooled, impairs the detection of a sustained step shift in the mean vector (Williams, 

Woodall, Birch & Sullivan, 2006). 

Sullivan and Woodall (1996,1998) revealed that the   
  chart constructed based on 

Equation 1.3 using the covariance matrix calculated from Equation 1.4 is not 

effective in detecting a shift or trend in the mean vector because the variance 

estimates inflate when special-cause of variations are present (outliers) in Phase I. 
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This approach is only effective in detecting a small number of very extreme 

observations, but failed to detect more moderate outliers (Vargas, 2003).  Since the 

purpose of multivariate control chart is to monitor the stability of a multivariate 

process, the stability should be achieved when the estimates of means, variances, and 

covariance of the process variables remain stable.  For that reason, observations used 

for the computation of Hotelling T
2
 statistics require the assumption of a multivariate 

normal distribution.  Violation of this assumption can lead to incorrect control limits 

and reduction of the probability of detection in Phase I, which consequently will 

cause the probability of the Type I error or false alarm rate to be out of control and 

the power to detect changes (probability of detection) will be reduced in Phase II 

process (Chang & Bai, 2004; Ramaker, van Sprang, Westerhuis, & Smilde, 2004) 

When working with high dimension multivariate data, there is a high probability that 

outliers are present in the dataset.  The existence of outliers is usually the main cause 

of the violation of normality assumption.  The   
  is the squared distance from the i-

th data point,   , to the centre described by the sample mean,  ̅. Once multiple 

individuals or clusters of data points are separated from a main group, the sample 

mean vector,  ̅, thought to represent the data centre, will likely be pulled away from 

the middle of the larger group of points. Then, the classical sample mean and sample 

covariance matrix from Equation 1.4 will be distorted.  If that is the case, the UCL 

given in Equation 1.5 and 1.7 will not be effective in detecting outliers anymore. 

These effects of outliers or groups of outliers on the sample mean and covariance 
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matrix are typically referred to as masking or swamping effects.  Masking effect 

exists when the UCL fails to detect the outliers (false negative) while swamping 

effect which is also known as false positive occurs when observations are incorrectly 

declared as outliers.   

Desirable results could be obtained when the estimator is robust even though the data 

set contains outliers (Rousseeuw & van Driessen, 1999; Hubert, Rousseeuw & 

Branden, 2005; Vargas, 2003; Jensen et al., 2007).  In contrast, the iterative re 

estimation procedure fails to deal with the problem of masking and swamping 

because of its nature in identifying outlier’s one point at a time (Chenouri, Steiner 

and Mulayath, 2009). To address this problem, it is necessary to have a procedure 

that locates all the outliers simultaneously. Nowadays researchers are focusing on the 

development of robust multivariate statistical process control methods to handle the 

problem of outliers.  These methods are not entirely distribution free but are less 

sensitive to the assumption of normality than the usual parametric methods.  Robust 

techniques are specifically designed to be relatively insensitive to outliers (Huber, 

1977). Another alternative avenue is to consider statistical methods that are 

distribution free. 

1.2 Problem Statement 

Robust estimators are known to be more effective in detecting the deviation of data, 

or outliers as compared to the classical estimators (Hampel, Ronchetti, Rousseeuw & 
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Stahel, 1986).  There are two approaches to deal with outliers when using robust 

methods.  The first approach is to identify and remove outliers before using the 

remaining good data points to calculate the classical estimators. The second 

approach is to use the robust estimators in place of classical estimators (Beckman & 

Cook, 1983).  A wide range of robust estimators of multivariate location and scatter 

are available; see Maronna and Zamar (2002); Maronna, Martin and Yohai, (2006) 

for a review. Nonetheless, the minimum volume ellipsoid (MVE) and minimum 

covariance determinant (MCD) estimators introduced by Rousseeuw (1985) have 

received considerable attention by scientific community and widely used in practice. 

The advantage of using MVE estimators is that, they have high breakdown point of 

approximately 50% and they are also affine equivariant (Lopuhaa & Rousseeuw, 

1991, p. 236).  However the computation of MVE estimator is very expensive and it 

may not even be computationally feasible (Hadi, 1992, p. 762). In addition, there is 

no fast algorithm known to compute the estimator. This is due to the fact that MVE 

has poor rate of convergence (Lopuhaa & Rousseeuw, 1991, p. 237) and fails to cope 

with large sample of more than 30 (Rousseeuw & van Driessen, 1999, p. 213). To 

alleviate the complexity of MVE, Rousseeuw (1985) also introduced the minimum 

covariance determinant (MCD) method. MVE and MCD estimators have the same 

characteristics with respect to affine equivariance, high breakdown value and 

bounded influence function properties (Rousseeuw & Leroy, 1987).  The difference 

is only in the criteria they used where MVE uses minimizing the volume of the 
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ellipsoid on           ⁄ data, while MCD uses minimizing the determinant 

of the covariance matrix based on the h data. The MCD estimator is more attractive 

than MVE because it has a better convergence rate of     ⁄   compared to     ⁄  of 

MVE (Butler, Davies & Jhun, 1993; Croux & Haesbroeck, 1999) and MCD gives the 

exact solution (Hadi, 1992; Hubert et al., 2005).  

Lopuhaa and Rousseeuw (1991) discovered that the efficiency of high breakdown 

estimators were quite low, and proposed the reweighted version of MCD (RMCD) to 

alleviate the problem. Croux and Haesbroeck (1999) employed RMCD and noticed 

that this approach maintains the breakdown point of the initial MCD estimators, 

while attaining better efficiency. To compute the initial MCD estimator and its 

reweighted, various algorithms have been suggested. Most of the algorithms attempt 

to increase the computational efficiency because to obtain approximate values of 

these estimators is not only expensive, but could be impossible for large sample sizes 

with large number of quality characteristics (dimensions).  Nevertheless, the main 

contribution in this domain is the Fast MCD algorithm proposed by Rousseeuw and 

van Driessen (1999) and improved by Hubert et al. (2005) which is available in 

many computer packages such as Matlab, R, SAS, and S-Plus. However, Fast MCD 

is not without limitation. For example, the use of minimum covariance determinant 

as the objective function in data concentration process can be computationally 

laborious especially when the data set is of high dimension. On the other hand, as 

Angiulli and Pizzuti (2005) have pointed out, the computational efficiency is as 
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important as effectiveness. Furthermore, as noted by Fauconnier and Haesbroeck 

(2009), Fast MCD algorithm may return different results when used repeatedly in the 

same or in different statistical packages and could be more critical when   ⁄  is 

small (np> 5). To overcome the weaknesses of Fast MCD algorithm, Herwindiati 

(2006) proposed minimum vector variance (MVV) as an alternative measure of 

multivariate data concentration. Herwindiati, Djauhari and Mashuri (2007) revealed 

that MVV was successfully used as an objective function in Fast MCD algorithm to 

substitute the MCD criterion. The findings showed that MVV is computationally 

more efficient than Fast MCD and as effective as Fast MCD in labeling outliers. A 

detail explanation about this method is discussed in Chapter 2 and 3. 

The study on the significant role of MVE, MCD and RMCD estimators in scientific 

application can be easily found in the literature specifically in the construction of 

robust Hotelling T
2
 chart. Vargas (2003) and Jensen et al. (2007) introduced robust 

control charts based on MVE and MCD estimators for multivariate individual 

observations. They applied these estimators using the first approach i.e. to identify 

and remove outliers in Phase I analysis and then calculate the classical estimators 

using the remaining good data points for Phase II analysis. Through this approach, 

the computability and breakdown point of the estimators become more important, 

but statistical efficiency is not as crucial because the highly robust estimators will 

eventually be replaced by classical estimators in Phase II analysis (Jensen et al., 

2007). Nonetheless, they noticed some drawbacks when MVE and MCD were used 
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in Phase I. The T
2
 issued from MVE failed to perform under large sample size. 

Conversely, T
2
 issued from MCD needed a larger sample size when large numbers of 

outliers were present to ensure that MCD estimator did not breakdown and lost its 

ability especially when monitoring with more variables (p). 

To abate the problems, Chenouri et al. (2009) proposed robust Hotelling T
2
 chart 

based on RMCD estimator. Besides possessing the nice properties of MCD 

estimator, this estimator is not unduly influenced by outliers and is more efficient 

than MCD. Thus, they used RMCD estimator in place of classical estimators in 

constructing Hotelling T
2
 chart for Phase II data. Using the same approach as 

Chenouri et al. (2009), Alfaro and Ortega (2009) made a comparison study for the 

performance of Hotelling T
2
 control chart based on robust estimators of MCD, MVE, 

RMCD, and trimmed estimator. They concluded their work by recommending the 

use of T
2
based on trimmed estimator and RMCD when there are few outliers in the 

production process because of their ability in controlling false alarm rates. However, 

in the manufacturing of products which emphasizes more on outliers detection than 

the false alarms generated (Alfaro & Ortega, 2009), the T
2
 based on MCD can be 

considered as better alternatives. This is due to the fact that the Hotelling T
2
 control 

charts based on MCD performed well in terms of probability of detecting outliers. 

Theoretically, if the percentage of outliers’ detection increases, the chart should also 

be able to control the overall false alarm rate, α (Jensen et al., 2007). However the 

finding in Alfaro and Ortega (2009) showed a conflict between the probability of 
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detecting outliers and the ability of robust control chart in controlling the overall 

false alarm rate when robust charts were used under certain conditions.  

To alleviate this conflict, we proposed robust Hotelling T
2
 control charts based on 

recently introduced robust estimator known as minimum vector variance (MVV). 

MVV estimators possess the nice properties of MCD such as breakdown point and 

affine equivariant properties.  In addition, the estimators have better computational 

efficiency compared to MCD (Herwindiati et al., 2007; Djauhari, 2007).  Due to the 

nice properties of MVV, we were inspired to investigate on the performance of the 

estimators by integrating them in the Hotelling T
2
 control chart on Phase II data.  

Since these estimators were used directly in Phase II analysis without any screening 

process in Phase I, they must always be reliable. Thus, for a more rounded and 

reliable estimators, we further investigated on other properties which were not 

discussed before such as consistency, biasness and efficiency. Based on the result of 

the investigation, the MVV estimators were further improved and used in the 

Hotelling’s T
2 

chart.    

1.3  Objective 

The ultimate goal of this research is to find an alternative Hotelling T
2
 control chart 

which can improve the performance of the existing charts in terms of false alarm rate 

and probability of outliers detection specifically for individual observations.  In 

achieving this goal, the following objectives need to be accomplished. 
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1. To investigate and compare the performance of Hotelling T
2 control chart using 

MVV estimators with the traditional Hotelling T
2 control charts and the robust 

Hotelling T2control chart based on MCD estimators.  

2. To improve the MVV estimators by adding the proportionality constants to 

ensure that the estimators are consistent at normal model and unbiased at small 

samples.  

3. To investigate on the performance of Hotelling T
2 control charts using the 

improved estimators in (2).  

4. To develop a new robust estimator known as Reweighted MVV (RMVV), based 

on MVV algorithm.  

5. To investigate and compare the performance of the new robust Hotelling 

T
2control charts using RMVV in (4) with the Hotelling T2charts using improved 

MVV estimators in (2), MCD estimators and Reweighted MCD estimators.  

6. To evaluate the performance of the improved and the new robust Hotelling T
2 

control charts using real industrial data.  

1.4 Significance of the Study 

This study contributes towards knowledge development in robust estimation and 

Statistical Process Control (SPC) especially in the construction of control charts.  

With regards to robust estimation, some improvements were made on MVV 

estimators in terms of consistency and biasness, followed by the development of a 

new robust estimator known as RMVV and its algorithm.  The new estimator offers 

high statistical efficiency, consistent and unbiased. The new estimators when used in 

the Hotelling T
2
 chart can improve the performance of the control chart in 

monitoring the quality of a product even when dealing with a product of high 
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dimensional quality characteristics. This will consequently reduce the operational 

cost of the company. Additionally, the researchers in industries will not be 

constrained with the normality assumption as required by the traditional Hotelling 

T
2
.   
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Monitoring production process quality using control charts is an area which is 

actively investigated. Concerted efforts by groups of researchers from the areas of 

statistical quality control and detection of outliers contribute to the continuous works 

in improving the existing multivariate control charts so that the product performance 

is always at its best.  Hotelling T
2 

statistic was the first statistic known to be used in 

multivariate control chart.  The control chart was then referred to as Hotelling T
2
 

control chart. The purpose of using this statistic is to monitor the stability of a 

multivariate process in Phase I and II.  Analysis in Phase I seek to identify a stable 

historical data set (HDS). From this dataset, the in-control mean vector and variance-

covariance matrix are estimated, which later will be used in the Phase II analysis. A 

successful process monitoring in Phase II totally depends on the estimates of the 

parameters obtained from a stable HDS.  However, the classical estimators are easily 

affected by outliers. The shift in the mean vector is the most difficult types of 

multivariate normal outliers to be detected when using distance-based method like 

Hotelling T
2
 (Rocke & Woodruff, 1996). The existence of outliers can violate the 

normality assumption.  This violation may lead to the inflation of control limits and 

reduction of the probability of detection in Phase I, which consequently will cause 

the probability of the Type I error or false alarm to be out of control and the power to 
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detect changes will be reduced in Phase II process. False alarm rate is the probability 

of out-of-control signal when a process is in control.  The value becomes large if the 

process is unstable due to increase in variability.  Inflated false alarm rate can lead to 

unnecessary process adjustments and loss of confidence in the control chart as a 

monitoring tool (Chang & Bai, 2004).  However, a control chart with small false 

alarm also has its downside such that the chart tends to be less sensitive to process 

fault, and it may result in large detection delay (Chen, 2010). Hence, a method which 

can control the false alarm rate to the desired level is necessary. 

2.2 Multivariate Outliers 

The study of outliers is as important for multivariate data as it is for univariate 

samples (Barnett & Lewis, 1994).  Nevertheless, it is more difficult to detect outliers 

in multivariate than univariate data. There are various definitions given for outliers.  

An exact definition of an outlier often depends on the hidden assumptions regarding 

the data structure and the applied detection method. Yet, some definitions are 

regarded general enough to cope with various types of data and methods.  Hawkins 

(1980) defines an outlier as an observation that deviates so much from other 

observations as to arouse suspicion that it was generated by a different mechanism.  

Barnet and Lewis (1994) indicate that an outlying observation, or outlier, is one that 

appears to deviate markedly from other members of the sample in which it occurs, 

similarly, Johnson (1992) defines an outlier as an observation in a data set which 
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appears to be inconsistent with the remainder of that set of data.  Meanwhile, 

Beckman and Cook (1983) interpret an outlier as a collective to refer to either a 

discordant or contaminate observation.  Discordant observation is any observation 

that appears surprising or discrepant to investigator.  Contaminant is any observation 

that is not a realization from the target distribution.  Rousseeuw and van Zomeren 

(1990) also define an outlier to be contaminating data.  No matter how it is defined, 

in general, outliers refer to a point/s that is surprisingly different from the rest of the 

data. An immediate consequence of the presence of outliers is that they may cause 

apparent non-normality.  

As the dimensions of the data increase, the presence of outliers in the datasets will 

also increase.  Beckman and Cook (1983) had discussed in detail on the need to 

study on outliers and their effect on linear models. They stated that the existing 

outliers in the data will affect the estimation of a population parameter, hence, 

causing the inability of the model to provide an adequate fit or statistical explanation.  

The presence of outliers can hardly be detected using naked eyes when the 

dimension is more than 2.  This is the risk the researchers have to be cautious about 

when working with large datasets of high dimensions.  Thus, a reliable method is 

needed to identify outliers especially for this sort of datasets. In their attempt to 

transform random vectors to be random variables so that outliers could be seen more 

clearly, Beckman and Cook (1983) suggested the most popular transformation that is 
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via Mahanalobis distance.  The works on Mahalanobis distance could be found in 

almost any literature on multivariate analysis, including outliers’ studies.   

Mahanalobis square distance (MSD) is a prominent method for outlier detection 

using the classical mean vector,  ̅, and covariance matrix, S, by assuming this 

estimation is close to the true values of location vector   and shape matrix  , and is 

formulated as follows,     

  
      ̅       ̅          ̅  

For multivariate normally distributed data, MSDs are approximately chi-square 

distributed with p degrees of freedom (  ).  An outlier would then be defined as an 

observation having larger distance value than the critical value i.e.      (Mardia, 

Kent & Bibby, 2000; Serfling, 1980). Since this study is based on individual 

observations, the formula for Hotelling T
2
 chart which is similar to Mahalanobis 

distance is given as  

  
      ̅       ̅          ̅                                   (2.1) 

The T
2
 statistic uses the statistical distance that incorporates the multivariate 

variance-covariance matrix to measure the distance of an observation from the 

multivariate mean vector of a population. However, the T
2
 statistic is sensitive to 

outliers. This statistic works well with single outliers but is not suitable for 
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applications where multiple outliers are possible due to the effect of outliers on the 

classical estimates (Alfaro & Ortega, 2009). 

As mentioned in the previous chapter, the three types of multivariate outliers which 

always appear in T
2
 control chart are shifts in the mean vector, departure from the in-

control covariance structure (counter-relationship) or the combinations of the two 

situations.  However,  the T
2
 control chart is less effective in detecting mean shift as 

compared to detecting counter relationship. The performance of T
2
statistic is also 

influenced by masking and swamping effect due to the non-robustness 

(sensitiveness) of the classical estimators to outliers.  These estimators are sensitive 

to outliers and will be greatly influenced by their presence. The effect of masking 

and swamping defined by Barnett and Lewis (1994) and Davies and Gather (1993) 

are as follows, 

Masking effect. It is said that one outlier masks a second outlier, if the 

second outlier can be considered as an outlier only by itself, but not in 

the presence of the first outlier.  Thus, after the deletion of the first 

outlier the second instance is emerged as an outlier.  Masking occurs 

when a cluster of outlying observations skews the mean and the 

covariance estimates toward it, and the resulting distance of the outlying 

point from the mean is small.  Therefore we fail to detect the outliers 

(false negative).  
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Swamping effect. It is said that one outlier swamps a second observation, 

if the latter can be considered as an outlier only under the presence of the 

first one.  In other words, after the deletion of the first outlier the second 

observation becomes a non-outlying observation.  Swamping occurs 

when a group of outlying instances skews the mean and the covariance 

estimates toward it and away from other non-outlying instances, and the 

resulting distance from these instances to the mean is large, making them 

look like outliers.  Therefore the observations are incorrectly declared as 

outliers (false positive). 

Problems of masking and swamping can be resolved by using robust estimates of 

scatter and location, where they are less affected by outliers.  Beckman and Cook 

(1983) considered robust estimation to be one of the best ways to accommodate 

outliers in the estimation problems and encouraged the routine use of the estimators.  

Rousseeuw and Leroy (1987) also mentioned that the use of robust estimates of the 

multidimensional distribution parameters can often improve the performance of the 

detection procedures in the presence of outliers.  Thus, the development of robust 

estimation is indeed needed to prevent these errors from influencing the statistical 

model.   
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2.3 Robust Estimators 

Since the assumption of normality required in the classical estimation methods is 

frequently not satisfied, Huber (1964) suggested the robust estimators.  One of the 

goals using robust estimator, as stated by Hampel (1985), is to identify the deviation 

of data, or outliers.  Compared to the classical methods, robust statistics will give a 

clearer variability description between an outlier and ‘good data’, whereas the 

classical statistics will vaguely show the difference.  Robust estimation methods can 

be used in two different approaches.  The first approach is to identify and remove 

outliers, then use classical estimators on the remaining good data points. In the 

second approach, the robust estimators are used in place of classical estimators 

(Beckman & Cook, 1983).  In searching for highly robust estimators of location and 

scatter, there are several qualities that the estimators should possess.  

2.3.1 Properties of Robust Estimators 

There are four major measures or properties that can be used to determine the 

usefulness of a robust multivariate estimator (Jensen et al., 2007). The first is the 

breakdown point (BP), where it was introduced by Hampel (1971, 1974) as a 

measure for the robustness of an estimator against outliers. The breakdown point is 

defined as the smallest percentage of outliers that can cause an estimator to take 

arbitrary large values.  Finite sample breakdown point (Donoho & Huber, 1983) is a 

very popular global measure of robustness.  It is the smallest amount of 
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contamination necessary to upset an estimator entirely. Let      {       } be a 

random sample of n observations and     
     the corresponding estimator if we 

replace m arbitrary points in      by arbitrary values if the new data is now     . 

Then the finite sample breakdown point for estimator    for sample      is 

  
 (    

   )     {
 

 
        |    

         
    |} 

If   
 (    

   ) is independent of the initial sample     , we say the estimator    has 

the universal finite sample breakdown point   
     . Therefore   

          
     . 

A higher breakdown point implies more robust estimator. In the univariate case, the 

usual mean has very low BP which is equals to   ⁄ , while median possess the 

maximum possible value with BP = 50%. The higher the BP, the more resistant the 

estimator is to bad data. In other words, the less susceptible it is to the masking 

effect.  Some literatures say that for realistic applications, a BP greater than or equal 

20% is usually satisfactory (Zuo, 2006).   

The second property to consider is affine equivariance, which is an important and 

often desirable property of statistical estimates. When an estimator is affine 

equivariant, changing the measurement scale or affine transformations should not 

affect the properties of the estimator.  Suppose a random sample            from a 

p-variate normal          , we want to estimate   and   then it is desirable that 
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the estimator are independent of the choice of coordinate system. Formally if the 

estimator for   and   are    and    respectively then    and    are called affine 

equivariant if for any nonsingular     matrix A and vector      

                                                         (2.2) 

                                        
                    (2.3) 

When an estimator possesses the affine equivariant property, it will not get 

influenced by an affine transformation.  This is an important property that needs to 

be considered when searching for robust statistics.  The estimators of location and 

dispersion that are considered in this study are all affine equivariant.   

The third property is statistical efficiency of the estimator.  This property concerns 

on how well the estimator makes use of all the good data available.  Efficiency is 

always a very important performance measure for any statistical procedure (Zuo, 

2006, p.7).  In his seminal paper, Huber (1964) took into account both the robustness 

and the efficiency issues in the famous “minimax” (minimizing worst-case 

asymptotic variance) approach.  Robust estimators are commonly not very efficient.  

The univariate median serves as a perfect example.  It is the most robust affine 

equivariant location estimator with the best breakdown point and the lowest 

maximum bias at symmetric distributions (see Huber 1964).  Yet for its excellent 
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robustness, it has to pay the price of low efficiency with relative to the mean at 

normal and other light-tailed models.   

Finally, a further important and desirable feature of an estimator is the computational 

efficiency for easy and fast computation. It is common to measure data in terabytes 

or megabytes, and some real time applications require the outliers to be detected 

within seconds or at most a few minutes. Estimating robust estimators of location 

and scatter with large dimension is one of the primary problems encountered in 

multivariate settings such as in the area of quality control. Many industries for 

example healthcare, machinery, agriculture, information, and financial will directly 

be affected as these industries deal with products of multi-dimensional 

specifications. The computational time and cost of analyzing the product (data) will 

escalate as the dimension gets larger, and the probability that outliers will be present 

in the data sets will increase. With the existence of outliers in the dataset, the 

application of classical statistical methods such as in quality control will no longer 

be precise and reliable. Pena and Prieto (2001) stated that it is entirely appropriate to 

develop special methods to handle special cases.  For higher dimension and large 

multivariate data sets, computational speed seems to be one of the most difficult 

goals to achieve.  Additionally, Angiulli and Pizzuti (2005) have pointed out, the 

computational efficiency is as important as effectiveness in detecting outliers. 
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2.3.2 Types of Robust Estimators 

A wide range of robust estimators of multivariate location and scatter are available.  

Some of them are based on the minimization of a robust scale of Mahalanobis 

distances such as M-estimator (Campbell, 1980), minimum volume ellipsoid (MVE), 

minimum covariance determinant (MCD) estimates (Rousseeuw 1984, 1985), S 

estimates (Davies, 1987), and  estimates (Lopuhaä & Rousseeuw, 1991).  Others are 

based on projections, for example, the Stahel–Donoho estimate (SDE), P estimates 

(Maronna, Stahel, & Yohai, 1992) and Kurtosis1 (Pena & Prieto, 2001).  

Nonetheless, the minimum volume ellipsoid (MVE) and minimum covariance 

determinant (MCD) estimator introduced by Rousseeuw (1984;1985) has received a 

considerable attention by scientific community and widely used in practice.   

2.3.3 MinimumVolume Ellipsoid (MVE) Estimator 

MVE method uses h=(n+p−1)/2 data to construct robust location and scatter 

estimator (Rousseeuw & van Zomeren, 1990), which give the minimum volume of 

ellipsoid among all possible subsets of h.  This estimator is then used to generate the 

robust Mahanalobis distance.  The advantage of using MVE estimators is that they 

have high breakdown point of approximately 50% and also affine equivariant 

(Lopuhaä & Rousseeuw, 1991). However the computation of MVE estimators is 

very expensive and it may not even be computationally feasible (Hadi, 1992).  In 

addition, there is no fast algorithm known to compute the MVE estimators.  This is 
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due to the fact that MVE has poor rate of convergence (Lopuhaä & Rousseeuw, 

1991) and fail to cope with large sample of more than 30 (Rousseeuw & van 

Driessen, 1999). 

2.3.4 Minimum Covariance Determinant (MCD) Estimator 

To alleviate the complexity of MVE, Rousseeuw (1984; 1985) also introduced the 

minimum covariance determinant (MCD) method.  MVE and MCD estimators have 

the same characteristics with respect to breakdown point and affine equivariant 

properties (Rousseeuw & Leroy, 1987).  The only difference is in the criteria used 

such that MVE minimizes the volume of the ellipsoid on  h=(n+p−1)/2 data, while 

MCD minimizes the determinant of the covariance matrix based on the h data. The 

MCD estimator is more attractive than MVE because it has a better convergence rate 

of  
  

 ⁄  compared to  
  

 ⁄  of MVE (Butler et al., 1993).  

However, computing the exact MCD estimators is very expensive or even impossible 

for large sample sizes in high dimensions (Woodruff & Rocke, 1994). Various 

algorithms have been suggested to obtain an approximate value for this estimator.  

Most of them are to increase the computational efficiency.  For example, feasible 

solution algorithm (FSA) in Hawkins (1994) and Hawkins and Olive (1999), 

MULTOUT in Woodruff and Rocke (1994), Fast MCD algorithm in Rousseeuw and 

van Driessen (1999), block adaptive computationally-efficient outlier nominators 

(BACON) in Billor, Hadi, and Vellemen (2000), improved Fast MCD algorithm in 
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Hubert et al. (2005). The most recent work on improving the algorithm was proposed 

by Herwindiati (2006) using variance vector instead of covariance determinant in 

Fast MCD algorithm.  However, the main contribution in this domain is the Fast 

MCD algorithm which has been available in many computer packages such as 

Matlab, R, SAS, and S-Plus. Furthermore, its applications can be found in a very 

wide spectrum area, for example, multivariate statistical process control, multivariate 

process capability analysis, information sciences, data depth, data mining and etc.  

Thus, this proves that Fast MCD is very well accepted as an algorithm for MCD 

robust estimators.  

For a finite sample of observation {          } in    the MCD is determined 

using the Fast MCD algorithm by selecting the subset X ={             } of size h 

yielding the maximum possible breakdown point, i.e. 

  ⌊
     

 
⌋ 

where ⌊  ⌋ denotes the greatest integer part. A larger value of h would result in more 

efficient estimates, but at the expense of a reduced breakdown value (Croux & 

Haesbroeck, 1999). The MCD estimators are estimated with      , which 

minimizes the determinant of covariance matrix i.e. | | among all possible subsets of 

size h. The main method used in the estimation of MCD is Mahalanobis squared 

distances (MSD).  The squared distances for the sample are defined as 
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                                                               (2.4) 

The Fast MCD algorithm had been developed by Rousseeuw and van Driessen 

(1999) and consists of the following concentration steps. Let Hold be an arbitrary 

subset containing h data points. 

1. Take a subset from X as Hold containing   [
     

 
] data points. Compute the 

mean vector  ̅    
 and covariance matrix      

of all observations belonging to 

Hold 

2. Compute the MSDs      

     for        . 

3. Sort these MSDs in ascending order. This ordering defines a permutation   on 

the index set.  

     

             

               

        

4. Let Hnew be the new subset of h elements indexed by                  

5. Calculate  ̅    
,      

and      

 .  If det(     
) = det(     

) the process is 

stopped, else, when det(     
) < det(     

) the process is continued and go to 

step 2. If det(     
)=0, repeat step 1-5.  

Let det(   
) be generated from the k-th iteration. Thus,         

  

        
            

            
 . From the k-th iteration, this 

algorithm gives  ̅  
  ̅    ,    

     .  

The location estimator is then defined as 

 ̅    
 

 
∑   

 
                                                                                (2.5) 
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and the estimator of scatter by 

     
            

   
∑      ̅   

 
         ̅    

                                     (2.6) 

The proportionality constant,     , known as the coefficient of consistent factor 

makes      Fisher consistent when the distribution of x is elliptically symmetric 

and unimodal with   and dispersion matrix   (Butler et al., 1993; Croux & 

Haesbroeck, 1999). Fisher consistencyis a standard concept in robust statistics which 

denotes that the functionals evaluated at the model distribution return the true 

parameter value,   (Croux & Rousseeuw, 1992). Fauconnier and Haesbroeck (2009, 

p.6) had presented two approaches in defining the coefficients of consistency factor 

for MCD scatter matrix which are theoretical and empirical approach. Theoretical 

consistency factor was derived by Butler et al. (1993) and further discussed in Croux 

and Haesbroeck (1999) based on the functional form of the MCD estimator. If 

        , theoretical consistency factor (    is defined as   

   
   

      
   

     
 ⁄

  
                                                                    (2.7) 

where     
  denotes the   cut-off point of the   

  distribution which leaves   of the 

values at its right. While empirical consistency factor (    given by Rousseeuw and 

van Driessen (1999, p.218) depends on n, p and h (via the estimators  ̅    and 
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    ) and more generally on the data at hand. The empirical consistency factor is 

defined as  

   
       ̅         

    

      
 wherei = 1,2,…,n                          (2.8) 

where  ̅    and      are the MCD estimators computed from the optimal subset of 

data. Fauconnier and Haesbroeck (2009) stated that, the consistency factor    is 

frequently referred to in literature as a scaling factor. This factor allows one to 

improve the distribution of robust distances computed on non-normal data and is 

used when the exact form of the consistency factor is not known.  

The second proportionality constant,            , known as a finite sample 

correction factor serves the purpose of reducing the small sample bias of     . The 

actual value of this factor depends also on n and p. It was obtain by Pison, van Alest 

and Willems (2002) through a combination of Monte Carlo simulation and 

parametric interpolation, under the assumption that               as     for 

fixed p.    

2.3.5 Reweighted MCD Estimator 

Besides high resistance to outliers, if robust multivariate estimators are to be of 

practical use in statistical inference they should offer a reasonable efficiency under 

the normal model and a manageable asymptotic distribution (Rousseeuw & van 
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Zomeren, 1990). Croux and Haesbroeck (1999) verified that MCD estimators are not 

very efficient at normal models. They showed a conflict between efficiency and 

breakdown point, where the efficiency of MCD estimators decreases when the 

breakdown point increases, especially when the number of dimension becomes 

higher. Since the efficiency of high breakdown methods can be quite low, 

Rousseeuw and van Zomeren (1990) proposed Reweighted MCD (RMCD) estimator 

and Lopuhaä and Rousseeuw (1991); Lopuhaä (1999); Croux and Haesbroeck (1999) 

employed the reweighted version. 

The basic concept of one-step reweighted proposed by Rousseeuw and van Zomeren 

(1990) is to skip those outlying observations and compute the sample mean and 

covariance matrix of the rest of the data. The RMCD estimators  ̅     and       

(shown below) are computed using Fast MCD algorithm in Section 2.3.4 by giving 

weight      to observations for     
      ̅             

 , and      otherwise, 

and   ∑   
 
   . The         cut-off point of the   

  distribution is suggested by 

Rousseeuw and van Driessen 1999, Croux and Haesbroeck 1999 and Pison and van 

Aelst 2004. The formula for RMCD estimators of location and scatter are as follows:  

 ̅     
∑     
 
   

 
                                                             (2.9) 

                  
∑        ̅          ̅       
   

   
                        (2.10) 
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The factors      and          guarantee consistency of the reweighted scatter 

estimator and improve its small sample behavior, like the corresponding factor in 

Equation 2.6. The finding from the simulation study by Croux and Haesbroeck 

(1999) noticed that RMCD maintains the breakdown point of the initial estimators, 

while attaining better efficiency.  

However, Croux and Haesbroeck (1999) also emphasized that, the positive 

breakdown point is not a guarantee for robustness, since the corresponding bias may 

become extremely large but still remain bounded. Moreover the gains in efficiency 

come at the price of a larger bias, as Rousseeuw (1994) well pointed out. The reason 

is that all these methods are non-adaptive, and higher efficiency can only be obtained 

by tuning the parameters, which in turn affects the bias under contamination. 

Through simulation study on finite-sample robustness, Croux and Haesbroeck (1999) 

have shown that the RMCD with breakdown point of 0.25 is more precise and 

outperforms RMCD with breakdown point 0.5 under contamination. For that reason, 

RMCD with breakdown point 0.25 is more acceptable and has been used in the 

LIBRA package under MATLAB 7.8.0 (R2009a). 

2.4 Minimum Vector Variance (MVV) 

Although Fast MCD algorithm is well accepted, nevertheless, it is not without 

limitation.  For example, the use of minimum covariance determinant as the 

objective function in data concentration process can be computationally laborious 
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especially when the data set is of high dimension.  On the other hand, as Angiulli and 

Pizzuti (2005) have pointed out, the computational efficiency is as important as 

effectiveness.  Furthermore, as noted by Fauconnier and Haesbroeck (2009), Fast 

MCD algorithm may return different results when used repeatedly in the same or in 

different statistical packages and could be more critical when  
 ⁄  small. To 

overcome the weaknesses of Fast MCD algorithm, Herwindiati (2006) proposed 

minimum vector variance (MVV) as an alternative measure of multivariate data 

concentration. 

Minimum vector variance algorithm was introduced by Herwindiati (2006) for the 

purpose of increasing the computational efficiency of Fast MCD.  Under higher 

dimensions, the determinant is more complicated to compute.  As an alternative 

measure to the long and tedious computation of covariance determinant in data 

concentration, minimum vector variance (MVV) was proposed as an alternative 

measure for multivariate data concentration. The use of vector variance in place of 

covariance determinant as the objective function of the stopping rule will be 

discussed in the next section. Herwindianti (2006) and Djauhari, Mashuri, and 

Herwindiati (2008) have shown that MVV has met three of the four major properties 

of a good robust estimator namely high breakdown point, affine equivariance and 

computational efficiency, as discussed in Section 2.3.1. Herwindiati et al. (2007) 

revealed that the MVV and Fast MCD algorithms have the same structures and only 

differ in their objective functions. If the objective function of Fast MCD is 
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minimizing the covariance determinant, the MVV is minimizing the vector variance. 

Their findings showed that MVV is computationally more efficient than Fast MCD 

and as effective as Fast MCD in labeling outliers. A detailed explanation about this 

method is discussed in Chapter 3 (Methodology).  

2.4.1 Vector Variance 

The two popular measures of dispersions in the study of multivariate analysis are the 

total variance (TV) and the covariance determinant (CD). If x is a random vector ofp 

dimension with   as its       covariance matrix, then TV =              

     and CD = | |         . Pena and Rodriguez (2003) gave a very 

comprehensive discussion for the role of TV and CD in measuring the spread of 

multivariate data. CD has a much more general use than TV in every literature on 

multivariate analysis. This is because of the unstable TV’s role where it only deals 

with the variance without the involvement of the whole structure of covariance 

matrices. Although CD has wider applications than TV, however, it has several 

drawbacks. The main drawback lies in the property of having the covariance 

determinant zero, | |= 0.  This occurs when there is a variable with variance 0 or 

when there is a variable which is a linear combination of any other variables 

(Herwindiati, 2006). The matrix of this condition is known as singular matrix and 

has no inverse.Because of this drawback, Herwindiati (2006) and Djauhari (2007) 
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proposed another measure of multivariate dispersion based on TV, which is known 

as vector variance (VV). 

Djauhari (2007) introduced and demonstrated how VV represents the degree of 

variation of multivariate distribution. Consider x and y, two random vectors of p and 

q dimensions where p and q are not necessarily equal, having a covariance matrix     

  [
      

      
] 

where     and     are variance matrices of x and y, respectively, and        
  is 

the covariance matrix between x and y. To measure the linear relationship between 

the random vectors x and y, Cleroux and Ducharme (1989) defined the correlation 

coefficient between them as 

       
          

√      
        

  
 

and called this measure ‘vector correlation’. According to this measure Herwindiati 

(2006) and Djauhari (2007) call            as the vector covariance between x and 

y and       
   and       

   as the vector variance (VV) of x and y, respectively.  

By definition, VV is the sum of square of all elements on the diagonal of covariance 

matrix.  If x is a random vector of p dimension with   as its covariance matrix, then 
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VV of x is       .  Its value indicates the degree of how multivariate distribution is 

scattered.  The larger the value of VV the more scattered the distribution around its 

mean vector in a subspace of dimension    .  It is equal to zero if and only if the 

distribution degenerates at the mean vector.   

The used of VV instead of covariance determinant as multivariate data concentration 

measures have several advantages.  This matter was discussed by Djauhari (2007). 

First, its computation is very efficient even for covariance matrix of large size 

because VV is of quadratic form while CD is of multilinear form.  Thus, the number 

of operations of VV is smaller than CD such that VV is of order O(p
2
) and CD is of 

order O(p
3
). Second, VV does not need the condition that the covariance matrix is 

non-singular, unlike CD. The singularity problem usually arises when the number of 

variable p is larger than the number of sample size n.   

Another advantage of VV was illustrated by Djauhari (2007) via comparison of the 

power (probability of detection) of vector variance-based test with covariance 

determinant-based test. In general, both tests have similar performance when p is 

small such as    . However, the power of VV is greater than CD to a larger shift 

of covariance structure when p and n are large. Djauhari (2007) and Djauhari et al. 

(2008) showed the derivation of the asymptotic distributional properties and the 

convergence performance of sample VV. They proved that the distribution of sample 

VV is sufficient to be approximated by the multivariate normal distribution. 
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When applied on multivariate process variability monitoring, Djauhari et al. (2008) 

revealed that VV showed better power in detecting the difference between the two 

covariance structures while CD failed to detect the difference. Another interesting 

characteristic of VV is its geometric property which is similar to the univariate case 

such that its value is small if all variables have small variances, and becomes large if 

at least one variable has a large variance. In the special case where p = q = 1, VV 

equals the square of the classical variance. If we compare the properties of VV with 

those of CD, we find that CD is a “strong” measurement in the sense that | |    if 

at least one variable has zero variance or if there is at least one variable that is a 

linear combination of the others (Djauhari et al., 2008). On the other hand, VV is 

“weak” in the sense that          if and only if all variables have zero variance. 

A small value of VV means that all diagonal elements of   (variances) are small, 

however, a large value of VV does not mean that all variables have large variances.  

2.5 Multivariate Control Chart for Individual Observations. 

A   
  statistic in Equation 2.1 that is based on the classical estimators is equivalent to 

the Mahalanobis squared distance (MSD).  However, there is a problem when using 

T
2
 statistic (or MSD) to detect outliers.  The classical estimators are known to be 

sensitive to the presence of even one outlier.  When these estimators are used in T
2
 

statistic to detect outlier, the process might suffer from the masking and swamping 

effect. This is because its breakdown point of   ⁄  goes to 0 as the sample size 
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increases (Jensen et al., 2007).  That is, a single arbitrarily large outlier can render 

the T
2 

statistic ineffective. 

In many situations, multivariate data are collected according to the rational subgroup 

concept. A rational subgroup represents a sample of data taken at some point in the 

process. However, sometimes it may not be possible to collect rational subgroup of 

size larger than one. Dealing with individual observations in the construction of 

control chart can be more challenging.  Jackson (1985), Tracy et al. (1992), Wierda 

(1994), and Lowry and Montgomery (1995) suggest pooling all the data to estimate 

the mean vector and covariance matrix. Then, the Hotelling T
2
 in Equation 2.1 is 

calculated for each observation.  However Sullivan and Woodall (1996) have shown 

that by taking the sample covariance matrix from the pooling of HDS lead to poor 

properties in detecting mean shifts in the mean vector.  Moreover Prins and Mader 

(1997) and Mason, Champ, Tracy, Wierda and Young (1997) had mentioned two 

weaknesses using this approach.  First is the difficulty in obtaining the control limit 

(UCL) due to the restriction of the multivariate normal distribution assumption.  A 

sufficiently large preliminary data set is needed to obtain a reasonably accurate 

control limits if the violation occurs. However to increase sample size for example is 

often impractical or too expensive. Second, the pooling of data may include out-of-

control samples in the historical data set which consequently may cause an adverse 

effect on the phase II control limits. 
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Xu (2003) investigated on the effect of the violation of normality assumption on the 

performance of T
2 

chart.  The study revealed that in case of false alarm rate of    

0.05, 0.01 and 0.001, the UCL which was obtained from beta distribution (Equation 

1.5) was overestimated when the real data come from uniform distribution (0,1).  On 

the other hand when the data came from exponential distribution with mean 2, the 

UCL was under estimated. Because of the differences between the desired false 

alarm rate and the observed rates, the author concluded that these UCLs may not be 

appropriate to represent the upper control limit in Phase II if the actual distribution is 

not normal.    

To circumvent these problems, one has to be able to identify and eliminate apparent 

outliers from the data.  Once a homogeneous HDS is obtained, one can then perform 

pooling and use the mean vector and covariance matrix for future data sets consisting 

of individual observations (Prins & Mader, 1997). One natural approach to overcome 

these effects is to substitute into Equation 2.1 with estimators of the mean vector and 

covariance matrix that are not affected by outliers or groups of outliers.   

One suggested approach is to use a covariance matrix estimator based on successive 

differences which is robust to a sustained shift in the mean vector.  This was proven 

by Sullivan and Woodall (1996) when their proposed SW1 technique showed that 

the T
2 

chart using the sample covariance matrix failed in detecting shifts in the mean.  

To rectify the problem, they suggested that the covariance matrix should be 
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estimated using the vector difference between two successive observations    

         where i = 1, 2,..,n-1. Nonetheless, the approach was effective in detecting 

small number of outliers but otherwise for large number of outliers. Instigated by the 

weaknesses, Sullivan and Woodall (1998) proposed another approach based on 

Atkinson and Mulira (1993) stalactite chart known as SW2. This idea is based on 

Mahalanobis distance with multiple-step method. It started by randomly selecting 

      observations to calculate the mean and covariance matrix, and then used in 

Mahalanobis distance. Next, the       observations with the smallest distance 

were selected to calculate new estimates.  The process continued by adding one by 

one observation until all the observations are included. Therefore at each step, 

outliers were removed until the final subset included all the observations except the 

outliers.  Again, this technique remains vulnerable to data that contains large number 

of outliers and also depends on the robustness of its initial random sample (Vargas, 

2003).  Another approach is to use robust estimators of the process parameters. 

2.6 Robust T
2
 Chart 

Robust estimation has been a useful approach in the area of statistics due to the good 

properties shown under some deviations of distributional assumptions.  In MSPC, 

this type of estimation is widely used and investigated by researchers. Thus, 

searching for reliable estimators become the main research topic for those in the area 

of MSPC.  It is necessary to introduce robust estimators in T
2
 chart, but this has to be 



 

46 

 

done with caution. The robust estimator must have nice properties such as affine 

equivariance, high breakdown point, asymptotic normality, high in statistical and 

computational efficiency for the chart to be reliable.  From literatures, various types 

of robust estimators were suggested for control charts, but the most popular 

estimators are MVE and MCD. 

Estimation of MVE and MCD was introduced in T
2
 chart in two different 

approaches.  The first approach is to use these robust estimators to identify and 

remove outliers in Phase I analysis and then use the classical estimators on the 

remaining good data points for Phase II analysis.  Using this approach, the 

computability and breakdown point of the estimator become more important, but 

statistical efficiency is not as crucial because the highly robust estimators will 

eventually be replaced by classical estimators in Phase II analysis (Jensen et al., 

2007).  The second approach is using these robust estimators which are calculated at 

Phase I and then used directly in Phase II analysis.  This approach does not have to 

go through the process of outliers cleaning in Phase I by assuming that these robust 

estimators are not influenced by outliers.  However the robust estimators should 

possess higher statistical efficiency (Chenouri et al., 2009).  Researchers working on 

the construction of robust Hotelling T
2
 chart, incessantly are trying to introduce 

various types of robust estimators to improve the performance of the process by 

using either one of these approaches. 
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The MVE and MCD robust estimators were first introduced in the construction of T
2 

control chart, based on the first approach. Vargas (2003) proposed three robust 

estimators in constructing T
2
 control chart for identifying multiple outliers and a step 

shift in the mean vector for multivariate individual observations in Phase I. They 

suggested minimum volume ellipsoid (MVE), minimum covariance determinant 

(MCD) and a trimmed type estimator (trimming of extreme values is determined by 

using Mahalanobis distance).  The three robust T
2
control charts were compared with 

the traditional T
2
control chart and two more alternative T

2
control charts i.e. the 

successive difference estimator of covariance matrix (SW1) and the outlier detection 

algorithm (SW2). The study also tested all the charts using real data from 

Quesenberry (2001). The MVE and MCD estimators were obtained using sub-

sampling and Fast MCD algorithm respectively. Vargas (2003) consider     

       
            as the non-centrality parameter that measures the severity 

of a shift from the in-control mean vector       and       to the out-of-control 

mean vector              with dimension   = 3, 5, 10 and sample size of   = 30, 

50, 100.  The k outliers was generated with different values for each n, where for 

n:30, k=2, 4, 6 ; n:50, k=2, 5, 10 ; n:100, k=5, 10, 20 observations.  Control limit 

were set based on 5000 simulation and all methods had an overall false alarm 

probability of    0.05. Performance evaluation was based on the detection of 

outliers and false detection probability (false alarm rate) for different ncp values.  

Based on the simulation result, the study recommended using T
2
 chart based on 
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MVE estimators for detecting multiple outliers and T
2
 chart based on SW1 to detect 

step shifts in the mean vector.  Both estimators were compared for the case of p=2 

and n=30, and the result demonstrated that MVE showed better performance in terms 

of probability of outliers’ detection. However the robust procedure (MVE and MCD 

estimators) under their study are not sensitive to step shift in the mean vector.  

Jensen et al. (2007) detected some disadvantages in using sub-sampling algorithm by 

Vargas (2003) in calculating the MVE estimator. This algorithm would generate the 

different estimates value depending on the number of subsamples used. They 

compared MVE estimators based on sub-sampling algorithm with MCD based on 

Fast MCD algorithm, but with more combinations of p, n, and k.  The performance 

evaluation considered dimensions p = 2, 3, 5, 7, 10 with sample size of n = 

20,…,100 and k = 0, 2, 4,…, 48 random data points generated from the out-of-

control distribution and the other     observations were generated from the in-

control distribution with significance level of        .  The in-control distribution 

was a multivariate normal where it could be assumed that    and      without 

loss of generality.  The out-of-control distribution was a multivariate normal with the 

same variance-covariance matrix but the mean vector had been shifted by some 

amount. Since the finite sample distribution of MCD and MVE estimators were 

unknown, the UCLs were determined based on the generation of 200,000 data sets 

from            for each combination of n and p. The T
2
 statistic for each 
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observation in the data set was calculated and the maximum value attained for each 

data set was recorded.  The 95
th 

percentile of this generated empirical distribution 

was the simulated control limit. Performance evaluation of the robust control charts 

was based on the probability of a signal for out-of-control data (probability of 

detection) and the probability of a signal for in-control data (false alarm rate).  When 

the value of the non-centrality parameter is small (towards in-control process), the 

probability of a signal is close to       . As the value of the non-centrality 

increase (towards out-of-control process) the probability of a signal will increase. 

From the simulation result, they concluded that classical estimator should be used if 

only one outlier is expected. When n  50, the MVE will be the best estimator, unless 

the percentage of outliers is greater than 25% or 30%.  On the other hand, when 

n>50, the MCD is preferred as long as the percentage of outliers is less than 40%. 

They noticed that there are some drawbacks when MVE and MCD are used in Phase 

I.  First, the ability of MVE and MCD estimator in detecting outliers decreases in the 

case of high dimensions. Second, although MVE performs well in detecting small or 

large number of outliers, it is only computationally feasible when the sample size is 

small. Meanwhile, the MCD has limited ability in detecting outliers which need 

larger sample size if the data is suspected of having large number of outliers. Jensen 

et al. (2007) also noted that when monitoring with more variables (p), larger sample 

sizes are needed to ensure that the MCD estimator does not breakdown and lose its 

ability to detect any outliers. 
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To abate the problems, Chenouri et al. (2009) proposed alternative estimator known 

as reweighted MCD (RMCD) introduced by Lopuhaä and Rousseeuw (1991) and 

Willems, Pison, Rousseeuw and van Alest (2002). Besides inheriting the nice 

properties of MCD estimator, this estimator is not unduly influenced by outliers and 

has high statistical efficiency than MCD. For that reason they introduced RMCD in 

T
2
 chart using the second approach i.e. they proposed robust control charts for Phase 

II data based on the RMCD estimates of location and scatter parameters from Phase 

I. In identifying control limit, Chenouri et al. (2009) applied the Slutsky theorem 

when the finite sample distribution of the MCD and RMCD estimators was unknown 

with large sample size (n > 200) where      
  has an asymptotic   

   distribution. 

However, for small sample size (      , they estimated appropriate quantiles 

(99% and 99.5% ) of      
  with sample size n, dimension p and breakdown point 

   .  The performance of robust T
2
 control chart was judged based on the 

probability of detecting changes in the process behavior of the Phase II data, which 

was different from the data structure of Phase I.  The change in the process was 

based on the shift in the process mean vector           
           

assuming that there was no change in covariance structure.  They made a comparison 

study for the performance of Hotelling T
2
 control chart based on classical and robust 

estimators of MVE, MCD and RMCD.  The simulation results showed that the 

robust control chart based on RMCD performed better than others methods.  
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Using the same approach as Chenouri et al. (2009), Alfaro and Ortega (2009) 

conducted a comparison study on the performance of Hotelling T
2
 control chart 

based on robust estimators of MCD, MVE, RMCD, and trimmed estimator. They 

analyzed and compared the performance of the classical T
2
 with the robust control 

charts based on different sample sizes n = 25, 50, 100 and 1000 with dimensions of p 

= 2, 3 and 5 and the overall false alarm probability of α = 0.05 and 0.01.  Since the 

distributions of the alternative statistics were unknown, the reference control limits 

were determined by simulation technique similar to Vargas (2003) and Jensen et al. 

(2007). They assessed the performance from two perspectives, namely false alarm 

rates and probability of detection. Alfaro and Ortega (2009) concluded their work by 

recommending the use of T
2
 based on trimmed estimator and RMCD when there are 

few outliers in the production process due to the charts’ good control of false alarm 

rate. However, in product manufacturing which emphasizes more on outliers 

detection as compared to the false alarms generated, then T
2 

based on MCD were 

better alternatives since the charts performed well in terms probability of outliers 

detection. In theory, if the percentage of outliers’ detection increases, the chart 

should also have the ability to control the overall false alarm rate, α (Jensen et al., 

2007).   With regards to the aforementioned problems, Vargas (2003), Jensen et al., 

(2007), Alfaro and Ortega (2009) and Chenouri et al., (2009) tried incessantly to 

improve the performance of the control chart by using good robust estimators. 

However, their works were restricted on small and medium dimensions only due to 
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the complexity of the high dimension data. Maintaining good performance on high 

dimensional data has its advantageous and also disadvantageous.  While trying to 

preserve the identity of the original variable without reducing the dimension, 

researchers have to compromise with computational efficiency.  The computational 

time and cost of analyzing the product (data) will escalate as the dimension gets 

larger, furthermore the probability of the presence of outliers will also increase. 

Computational efficiency is one of the main problems that need to be addressed in 

multivariate settings especially in the area of quality control (Mason and Young, 

2002, p.9).  MVV estimators was proven to be computational efficient.  In addition, 

this estimator has high breakdown point, affine equivariance and more importantly 

the   does not need to be positive definite.  Furthermore, the vector variance is not 

limited to low dimension and can be used efficiently for high dimension data set as 

well as on non-singular and singular covariance matrix.  Due to the nice 

characteristics of MVV, thus, this study uses MVV estimators in the construction of 

Hotelling T
2 

control chart.  
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

The purpose of this study is to develop a better robust estimator to be used in 

Hotelling T
2
 control chart in Phase II.  The estimator should be suitable for either 

lower or higher dimension, possess high computational efficiency, has good control 

of the false alarm rate and effective in detecting changes.  One of the latest offerings 

in the study of robust estimators in the multivariate data is the minimum variance 

vector (MVV) proposed by Herwindiati (2006).  Apart from being on par with the 

popular minimum covariance determinant (MCD) (Rousseeuw and van Driessen, 

1999) for its robustness, this estimator has the edge over MCD in terms of 

computational efficiency. Industries would prefer procedures with high 

computational efficiency especially when dealing with high dimensional quality 

characteristics.  

At the beginning of this chapter, we will discuss briefly on the characteristic of 

MVV which motivate us to propose these estimators to be used in Hotelling T
2
 in 

place of the usual mean vector and covariance matrix. Then we formally introduce 

robust control chart based on the MVV estimators (    
   on Phase II data. In order 

to assess the performance of     
  control charts, various conditions were created by 

manipulating the number of observations (n), number of dimensions or quality 



 

54 

 

characteristics (p), proportion of outliers (ε) and mean shifts (non-centrality) values 

(  ). The performance of     
  control chart was evaluated based on the assumption 

that there are no changes in the covariance structure. Performance evaluation 

measured the effectiveness in terms of the probability of outlier(s) detection and 

false alarm rate (type I error) on Phase II data. It is worthwhile to investigate on the 

performance using both measures because they are closely related (Ramaker van 

Sprang, Westerhuis & Smilde, 2004). When the data comes from an in-control 

process the false alarm rate should be close to a nominal value, α.  In this study, α 

was set to be equal to 0.05 by referring to Vargas 2003, Jensen et al. (2007), 

Chenouri et al. (2009), Alfaro and Ortega (2009). When data comes from an out-of-

control process then the probability of detection should be large enough to ensure 

that the chart is able to monitor on-line data and quickly detect shifts in the process 

of Phase II. 

The MVV estimators are expected to perform well in Hotelling T
2
 control chart in 

terms of controlling false alarm rate, improving the probability in detecting outliers 

and simultaneously increasing the computational efficiency. Since these estimators 

are used directly in Phase II without the process of outliers cleaning, they must be 

statistically efficient (refer to Chapter 2 Section 2.5).  For better efficiency, we then 

proposed the reweighted version of MVV after making MVV estimators consistent 

and unbiased.   The subject on consistency and unbiasedness is discussed in detail in 

Chapter 5 while the issue on efficiency is discussed in Chapter 6.  In Chapter 7,the 
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application of reweighted version of MVV on the Hotelling T
2 

chart is thoroughly 

explained. 

3.2 Minimum Vector Variance (MVV) Estimators 

Herwindianti (2006) and Herwindiati et al. (2007) had proved that MVV estimators 

possess three major properties of a good robust estimator i.e. high breakdown point 

(BP=0.5), affine equivariance and computational efficiency. Interestingly, MVV 

estimator has the same characteristics as MCD with respect to breakdown point and 

affine equivariance property.  Like MCD, the main method used in the estimation of 

MVV is the Mahalanobis squared distances (MSD) which is defined as in Equation 

(2.4). Let   {          } be a set of p-variate observations. Denote the MVV 

estimators for the location parameter and scatter by      and      respectively. 

Now let    , the      and      are determined based on the set H consisting of 

  ⌊
     

 
⌋ data that produces      with minimum        

   among all possible 

sets of h data. The MVV algorithm that had been discussed in Herwindiati et al. 

(2007) is akin to the Fast MCD algorithm proposed by Rousseeuw and van Driesen 

(1999), except for some changes in the concentration step (C-step) where the 

computation of covariance determinant is replaced by the vector variance.  The basic 

theorem of Fast MCD algorithm as introduced by Rousseeuw and van Driessen 

(1999, p. 214) is stated in Theorem 3.1 below, 
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Theorem 3.1: Let            be a sequence of i.i.d random vectors of p dimension 

where the second moment exist. Let    be a subset of   {          } of h 

elements, and  ̅  
 

 
∑        

 and    
 

 
∑         

  ̅       ̅  
  be its mean 

vector and covariance matrix. If |  |   , let     
       ̅  

   
       ̅   for 

all           and    {                   } where   is a permutation on the 

index set such that      
       

         
 . If  ̅  and    are respectively the 

mean vector and covariance matrix associated to   , then |  |  |  | with equality 

if and only if   ̅   ̅  and      . 

Based on this theorem, H2 is more concentrated than H1 in the sense that the volume 

of the smallest ellipsoid that covers H2 is less than or equal to that of the smallest 

ellipsoid that covers H1. Equivalently, the determinant of the covariance matrix    of 

all vectors belonging to H2 is smaller than or equal to that of the covariance matrix 

   of all vectors in H1. This necessary condition for H2 to be more concentrated than 

H1 is then used by Rousseeuw and van Driessen (1999) in developing Fast MCD. 

They define “minimizing covariance determinant (CD)" as the objective function in 

their C-step. We know that determinant operator is in multilinear form. Thus, when 

the number of variables p gets larger, the computational efficiency of CD dwindles 

rapidly. Specifically, the number of operations in the computation of CD is of order 

     .  The works of Herwindiati (2006), Herwindiati et al. (2007), and Djauhari 
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(2007) lead to another notion of data concentration which is demonstrated in 

Theorem 3.2.(Djauhari, Adnan, Lee & Ali, unpublished manuscript) 

Theorem 3.2: Let            be a sequence of i.i.d random vectors of p dimension 

where the second moment exist. Let   
  be a subset of   {          } of h 

elements, and  ̅ 
  

 

 
∑        

  and   
  

 

 
∑         

   ̅ 
       ̅ 

    be its mean 

vector and covariance matrix. If |  
 |   , let     

       ̅ 
     

   
     ̅ 

   for 

all           and   
  {                      } where    is a permutation on 

the index set such that       
        

          
 . If  ̅ 

  and   
  are respectively 

the mean vector and covariance matrix associated to   
 , then   |   

   |  

  |   
   | with equality if and only if   ̅ 

   ̅ 
  and   

    
 . 

In Theorem 3.2, the role of CD as a multivariate dispersions measure is replaced by 

the sum of squares of all elements of covariance matrix, which is the vector variance 

(VV) or        
  .   

3.2.1 MVV Algorithm 

The search for a minimum         
   for each H subset requires a finite number of 

steps to achieve convergence. However, that is no guarantee that the final value 

       
   of the iteration process is the global minimum of the MVV objective 

function. Therefore, an approximate MVV solution can be obtained by taking many 
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initial choices of    subsets, applying C-step for each subset and later choose a 

specific number of subsets (e.g. 10) that produce the lowest vector variance. For ease 

of understanding, the MVV algorithm is partitioned into two stages.  The first stage 

involves creating initial subsets, while the second stage is the concentration steps.  

Let {          } be a p-variate random sample of size n. 

Stage 1: Creating Initial Subsets.  

This stage is repeated 500 times 

1. Draw a random subset (Ho) with number of observations,      . 

Compute the mean vect    ̅   and covariance matrix    .   

 ̅                 and               

2. Compute the MSDs    
          ̅   

   
       ̅    for        . 

3. Sort these MSDs in ascending order,   
 (    )    

 (    )    

  
 (    ). This ordering defines a permutation   on the index set. 

4. Take a new subset    {           } where   ⌊
     

 
⌋, then calculate 

 ̅  
,    

,   (   

 )and compute MSD, where 

   
          ̅  

     

  (    ̅  
)  for        . 

5.  Repeat step 3 and 4 for H2 

6. Sort the 500 values of   (   

 ) in ascending order, then select 10 subsets of 

   which have the lowest   (   

 ). These subsets are treated as the initial 
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subsets and their mean vectors,  ̅  
 and covariance matrices,    

 will be 

used in Stage 2. 

Stage 2: Concentration Steps (C-step)  

This process will be repeated until convergence for each of the 10 subsets. 

Convergence means        
        

  , where k is number of iterations. 

1. Compute the MSDs by using  ̅  
 and    

, where  

   
          ̅  

     

  (    ̅  
)  for        . 

2.  Repeat step 3 and 4 in Stage 1 until        
        

  . If        
   

     
   the process is continued. This process will be repeated until 

convergence is achieved. 

3. When convergence is achieved for all the 10 subsets, choose the subset (H*) 

that generates the lowest       

  . From H*, calculate  ̅        and 

         as the location and scatter estimators for MVV respectively. 

 

From the k-th iteration, this algorithm gives  ̅       ,          as the 

location and scatter estimators for MVV respectively. The location estimator is 

defined as 

     
 

 
∑     

 
                                                                          (3.1) 

and the scatter estimator by  

     
 

 
∑         

 
             

                                     (3.2) 
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3.2.2 Computational Efficiency 

Theoretically, it is clear that the objective function of minimizing VV is 

computationally more efficient than the initial objective function of minimizing CD 

because VV is in quadratic form while CD is of multilinear form.  In terms of the 

number of operations, VV is of       while CD as mentioned before is of       

(Herwindiati et al., 2007; Djauhari et al.,2008). To verify this statement, we carried 

out an investigation to compare the number of operations in the computation of VV 

and CD for several values of p. Results for the number of operations is shown in 

Table 3.1.  Our finding discovers that, the number of operations of CD tends to be 

equal to  
 

 
  times more than VV when p gets larger. For example, for p = 75, the 

number of operations of CD is approximately 50 times more than VV. 

To illustrate on the computational efficiency of this algorithm as compared to Fast 

MCD algorithm, we presented a simulation study focusing on the number of 

iterations necessary for robust MSD issued from MVV estimators as well as on Fast 

MCD in the concentration steps (C-steps). The MVV algorithm was executed using 

MATLAB 7.8.0 (R2009a), while Fast MCD algorithm using mcdcov.m in the 

LIBRA package under MATLAB 7.8.0 (R2009a). Random data were generated from 

p-variate standard normal distribution         for several values of p with a constant 

n = 100 based on 100 replications. Table 3.2 displays the result of the average 

number of iterations. We find that the speed of convergence of MVV is higher than 
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Fast MCD. This certainly reduces the time consumption. Moreover, unlike Fast 

MCD, MVV algorithm is still working even though h is equal p as shown in the last 

row of Table 3.2 where       and      . This clearly illustrates that MVV 

algorithm is more flexible to be employed on singular or non-singular covariance 

matrices as   does not need to be positive definite. 

Table 3.1: The number of operations 

p Number of operations 

VV CD 

10 128 826 

25 698 11376 

50 2648 87126 

75 5848 289751 

100 10298 681751 

150 22948 2283876 

200 40598 5393501 

250 63248 10510626 

300 90898 18135251 

Table 3.2: Average number of iterations to compute robust MSD 

p MVV Fast MCD 

2 5.14 5.22 

3 5.02 5.21 

4 5.23 5.43 

5 4.91 5.20 

10 4.31 4.64 

15 3.74 4.14 

20 3.35 3.87 

25 3.46 3.83 

30 3.04 3.45 

40 2.18 2.70 

50 1.59 2.00 

75 1.46 2.00 

100 2.95 - 
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3.3 Robust Hotelling T
2 
Control Charts Based On MVV Estimators (    

 ) 

As stated before in Chapter 1, the construction of control chart is divided into two 

phases. In Phase 1, a historical data set is analyzed to determine whether the process 

is in-control by establishing the initial control limits and estimating the in-control 

parameters of the process. While in Phase II, the control chart is used with future 

observations for detecting possible departures from parameters estimated in Phase 1. 

This study introduced MVV estimators in T
2
 chart using the second approach (refer 

to Section 2.6) i.e. construct robust control chart for Phase II data based on the MVV 

estimates of location and scatter parameters from Phase I. For such approach, 

different observations will be used in the two phases.   

Suppose that    {          } is the p-variate random sample of n observations 

of preliminary data set in Phase I.  Assume that    are independent and follow a 

multivariate normal distribution with mean vector   and covariance matrix  . If   

and   are unknown then we need to estimate them using an in-control data set. The 

process of identifying the in-control data set from    is referred to as Phase I 

operation.  From the preliminary data set, compute  ̅ and  .  Using this estimates, 

compute       for i = 1,…, n, using Equation (1.3).To get in-control data set, first 

we need to identify outliers by using UCL based on Beta distribution as follows, 

     [
      

 
]  

 
 

 
 
     

 
 
                                              (3.3) 
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Observations with             are considered as outliers and should be removed. 

The sample with the outliers removed (nc) is then used to compute the new estimates, 

 ̅  and   . Using these estimates, compute       statistic for Phase II observation, 

where      , such that 

           ̅    
       ̅  

       (3.4) 

By using the suggested  , p and nc values,  compute the upper control limit using F 

distribution such that     

    [
             

        
]                                                 (3.5) 

However, this standard approach is only effective in eliminating extreme outliers in 

small sample sizes, but it fails to detect moderate outliers especially when the 

number of variables increases (Vargas, 2003; Williamset al., 2006; Jensen et al., 

2007; Chenouri et al., 2009). To alleviate the problem, we proposed using MVV 

estimator in Phase I data,   . Since the estimator is known to be free from outliers 

due to its estimation process, they could be readily used as in-control estimators in 

Phase II.  Let    {           } where       and      and      represent 

the MVV mean vector and covariance matrix estimators, respectively. We define a 

robust Hotelling’s T
2
 for Phase II data,   , based on these MVV estimates as 
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                        (3.6) 

3.3.1 Estimation of Control Limits 

The application of robust estimators in place of the mean and covariance structure in 

T
2
chart in Equation 3.4 will cause the distributional properties of the traditional T

2
 

(Equation 3.5) to change (William et al., 2006). To demonstrate the performance of 

    
     in Equation 3.6, we need a better understanding about its distribution in 

order to obtain appropriate control limits i.e. UCL. Since the distribution of     
  is 

unknown, we apply Monte Carlo simulation method to estimate the quantiles of the 

    
    , for several combinations of sample sizes (n) and dimensions (p) discussed 

in Section 3.4.1.  The 95% quantile of     
     for the chosen sample size n and 

dimension p in Phase I is estimated by generating K = 5000 samples of size n from a 

standard multivariate normal distribution           . For each data set of size n, 

we compute the MVV mean vector         ) and covariance matrix (       ) 

such that        . In addition, for each data set, we randomly generate a new 

observation      treated as a Phase II observation from            and calculate 

the corresponding     
       values as given by Equation 3.6. The empirical 

distribution function of     
     is based on the simulated values 

    
           

             
                                   (3.7) 



 

65 

 

We sort     
       values in ascending order, and the UCL for the control chart is 

the 95% quantile of the 5000 statistics.  

3.3.2 Implementation Procedures 

A step by step approach for the construction of a     
  control chart is given as 

follows; 

Phase I 

1. Decide on the sample size n, number of dimensions p and the overall false 

alarm probability of  . 

2. Simulate or collect the Phase I data    {          }. 

3. Use    to compute the MVV estimates,      and     . 

4. Based on the chosen  , n and p values, compute the control limit using 

quantile based on the simulated values as Equation 3.7.   

Phase II  

5. Compute     
  for each of the Phase II data (new observation) as per 

Equation 3.6 and plot it on a control chart with the estimated limit in Phase I 

(step 4). 

6. Interpret and evaluate the performance of this chart by identifying the out-of-

control points or patterns.  
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3.4 Performance Evaluation 

In order to analyze the performance of the     
  control chart when instability 

process is present, we conduct a simulation study that has been designed to 

encompass several different scenarios, which are assumed to influence the strength 

and weaknesses of the     
  control chart. These scenarios or conditions will be 

discussed in Section 3.4.2 later. The performance of the proposed chart was later 

compared with the popular existing robust method, the robust T
2
 chart based on 

MCD, and also the traditional Hotelling T
2
 control charts. For the traditional chart 

we employed two approaches; first approach denoted as    
  is without cleaning the 

outliers as being adopted by Alfaro and Ortega (2009) and the second approach, 

which is known as the standard approach, cleans the outliers once (   
 ) (refer 

Equations 3.4 and 3.5). The performance of all Hotelling T
2
 charts were evaluated 

based on the probability of detection and the false alarm rate in the process behavior 

based on the phase II data using estimated mean vector and covariance matrix from 

different estimators in Phase I.   

The programs and simulations were run using MATLAB 7.8.0 (R2009a).The 

algorithm of MVV was executed using the MATLAB 7.8.0 (R2009a), while Fast 

MCD algorithm using mcdcov.m in the LIBRA package under MATLAB 7.8.0 

(R2009a). 



 

67 

 

3.4.1 Choice of Sample Size and Number of Quality Characteristics 

Sample size determination for multivariate problems has always been somewhat 

subjective depending on the statistical tool being used. In general, it is expected that 

a large n produces better estimation results, since larger sample sizes increase the 

precision of the estimators (Chou, Mason & Young, 2001). Rousseeuw and van 

Zomeren (1990, p.649) stated that “any outlier method can get into trouble” if    ⁄  is 

relatively small and, as a rule of thumb, they recommended applying robust 

multivariate methods only when   ⁄   . However, to determine how large the 

sample size should be taken depending on the number of quality characteristics 

involved in the monitoring process (Mason & Young, 2002). Correspondingly, if 

there are more quality characteristics that need to be monitored in a multivariate 

process, then there are more parameters to be estimated, hence, more number of 

samples needs to be taken. 

This study focused on small (2 and 5), medium (10) and slightly high (15 and 20) 

number of quality characteristics (dimensions) with reasonable values of sample 

sizes.  Based on most recent works such as Vargas (2003), Jensen et al. (2007), 

Chenouri et al. (2009) and Alfaro and Ortega (2009), the choices of values for p and 

n are in the range of values listed in Table 3.3.  All these values were covered in this 

study. 
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Table 3.3: The values of n and p 

p n 

2 10, 25, 50,100, 200, 500 

5 30, 50, 100, 200, 500 

10 50, 100, 200, 500 

15 80, 100, 200, 500 

20 100, 200, 300, 500 

 

3.4.2 Types of Contamination and Process of Evaluation 

A successful process monitoring in Phase II totally depends on the estimates of the 

parameters obtained from a stable HDS.  However, the estimators are easily affected 

by outliers. Thus, the data in Phase I and II were contaminated with certain values of 

shift in the mean vector (  ) and also certain proportions of outliers (ε).We simulate 

1000 datasets of various conditions created by manipulating the number of 

observations, dimensions and levels of contamination. To examine the effect of 

contamination on the charts’ performance, we have considered a contaminated 

model by using a mixture of normal  

                                                                  (3.8) 

where ε is the proportion of outliers,    and    are the in-control parameters while 

   and    are the out-of-control parameters. In this study we assume contamination 

with shift in the mean but no changes in covariance structure, therefore, the 
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covariance matrix    and    in Equation (3.8) represent the identity matrix of p 

dimensions (Ip). To check on these conditions, we consider ε to be 0, 0.1 or 0.2. 

While for the probability of detecting a change which depends on the shift in the 

mean vector, we set    to be a vector of size   with value of 0 (when there is no 

change), 3 or 5. Manipulation on the mean shifts and percentage of outliers generate 

5 different types of contaminated distributions categorized as ideal, mildly 

contaminated, moderately contaminated and extremely contaminated as follows, 

1)   (    )  -Ideal (no contamination) 

2)        (    )         (    )  - Mild contamination 

3)        (    )         (    )  -Moderate contamination 

4)        (    )         (    )  - Moderate contamination 

5)        (    )         (    )  - Extreme contamination 

Each of these model was paired with different combinations of sample sizes, n, and 

number of dimensions, p (refer to Table 3.3) to create various conditions which are 

capable of highlighting the strengths and weaknesses of the charts (Alfaro & Ortega, 

2009).  

Next, in Phase II, we simulate data from multivariate normal distribution 

           , where    is the shift in the mean vector with values similarly 

assigned to  Phase I (i.e. 0, 3, and 5). Each of these charts was tested on 5 types of 
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contaminations with 23 combinations of n and p which totaled up to 115 conditions.  

For each condition, the false alarm rates and probability of detection were 

determined. Thus, for Phase II observations, we simulate 1000 new datasets of 

different sample sizes (n) and dimensions (p) in Table 3.3.  To determine the false 

alarm rate and probability of detection, we randomly generate a Phase II observation 

with in-control and out-of-control parameters respectively, and calculate the 

proposed robust Hotelling T
2
 statistics. The false alarm rate or probability of 

detection was estimated as the proportion of statistic values above the control limits 

of 1000 replications. The flowchart for the process of calculating the     
  is 

presented in Appendix A.  

3.5 Consistency and Unbiasedness 

The properties of MVV estimators will be discussed in detail in Chapter 5. This 

chapter also demonstrates the attempt to improve the MVV estimators in achieving 

consistency at normal model. Nonetheless, in practice we always deal with finite 

samples, therefore the issue of bias in a finite sample will exist and should also be 

considered. The advantage of having an unbiased estimator for a finite sample is that 

this estimator remains unbiased even though the sample size becomes larger (Pison 

et al., 2002). Due to the aforementioned issues, the following analysis seeks to 

improve the performance of MVV by making it unbiased for finite samples which in 

consequence will improve the performance of Hotelling      
  chart in general.   
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3.6 Reweighted Minimum Vector Variance (RMVV) 

In Section 3.3, we introduced MVV estimator in the Hotelling T
2
 chart for Phase II 

analysis, where these estimators were calculated at Phase I and then used directly in 

Phase II. Since this approach does not have to go through the process of outliers 

cleaning in Phase I, thus, higher statistical efficiency is vital because the highly 

robust estimators should not be unduly influenced by outliers in the Phase I data. 

Nevertheless, there is a conflict between the statistical efficiency and breakdown 

point where the efficiency of a robust estimator decreases when the breakdown point 

increases, especially when the number of dimension becomes higher (Rousseeuw & 

van Zomeren, 1990; Croux & Haesbroeck, 1999).    

To check whether the conflict exists in MVV estimators, this study continued with 

the investigation on statistical efficiency of MVV estimators for different breakdown 

point. Two commonly chosen breakdown points are BP = 0.5 with   ⌊
     

 
⌋ and 

BP = 0.25 with h = (0.75)n. To illustrate on how the efficiencies of MVV estimators 

vary with different breakdown points (BP) and dimensions (p) under normal model, 

we computed the asymptotic relative efficiency (ARE). When the conflict between 

efficiency and high breakdown value exist, we then proposed the reweighted version 

of MVV. Reweighted approach can maintain the breakdown point of the initial 

MVV estimators, while attaining a better efficiency. The detail about this analysis is 

discussed in Chapter 6.   
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3.7 Robust Hotelling T
2
 Control Charts Based On RMVV Estimators (     

 ) 

Based on the results in Chapter 6, we proposed another robust control chart for Phase 

II data based on the RMVV location and scatter parameters estimated from Phase I. 

A detailed analysis is discussed in Chapter 7. The distribution of the Hotelling T
2
 

statistic based on RMVV (     
 ) differs from the     

 . We constructed an 

approximate distribution using ideas that were similar to the construction of the     
  

distribution in Section 3.3.1.  Then, the investigation on the performance of       
  

was conducted similar to the approach used in     
 . 
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CHAPTER FOUR 

ROBUST HOTELLING T
2 
CHART WITH MINIMUM VECTOR 

VARIANCE 

4.1 Introduction 

The organization of this chapter is determined by the types of data being analyzed.  

Two types of data namely the simulated and the real data are used for the 

investigation.  The chapter starts with the presentation of the result for the simulated 

data analysis followed by the real data analysis.  

This study integrates the MVV estimators in the Hotelling T
2
 control chart for Phase 

II data using the same approach as Chenouri et al. (2009) and Alfaro and Ortega 

(2009) for monitoring the multivariate observations. Even though RMCD was 

observed to be better than MCD in controlling the false alarm rate (the discussion in 

Chapter 2, Section 2.6), in this chapter, comparisons are made based on the initial 

MCD since the algorithm for the proposed method follows the algorithm of the 

initial MCD.  We want to compare the algorithm in its original state and diagnosing 

problems that might arise using the proposed method (MVV) in constructing 

Hotelling T
2
 control chart.  If there is a need to improve the method, this will be 

continued in the next chapter. 
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4.2 Simulated Data Analysis 

The presentation of this subchapter is sectioned by the two measurements of the 

performance namely probability of outliers’ detection and false alarm rates.  The 

performance of the proposed chart is then compared with robust Hotelling T
2
 chart 

using MCD (    
   and the traditional Hotelling T

2
 control charts. For the traditional 

chart we employed two approaches; first approach denoted as    
  is without cleaning 

the outliers as being adopted by Alfaro and Ortega (2009) and the second approach, 

which is known as the standard approach, cleans the outliers once (  
 ). Each of   

 , 

  
  ,     

  and     
  charts was tested on 5 types of contaminations on 23 

combinations of n and p which totaled up to 115 conditions.  For each condition, the 

probability of detection and false alarm rates were determined. Each of these control 

charts is exposed to various scenarios which are known to highlight the strengths and 

weaknesses of the chart, such as number of dimensions (p), sample sizes (n), 

percentage of outliers (ε), and the mean shift (µ1).  This study only focused on 

independent case.  The results for the false alarm rates and probability of outliers’ 

detection are presented in tables and figures respectively. The programs and 

simulations were run using MATLAB 7.8.0 (R2009a). The algorithm of MVV was 

executed using the MATLAB 7.8.0 (R2009a), while Fast MCD algorithm using 

mcdcov.m in the LIBRA package under MATLAB 7.8.0 (R2009a). 
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4.2.1 Estimation of Control Limits 

In this section, we present the control limit of the     
     control chart (Equation 

3.8) by using simulated data with different combinations of sample sizes, n, and 

number of dimensions, p. The control limit of the     
     is then compared with 

robust Hotelling T
2
 chart using MCD (    

   and the traditional Hotelling T
2
 control 

charts. We use quantile in estimating the distribution of     
     and     

     

obtained via Monte Carlo method. This study focuses on multiple dimensions with 

reasonable values of sample size n. In order to estimate the 95% quantile of     
     

and     
     for a given Phase I of sample size n and dimension p, we generate K = 

5000 samples of size n from a standard multivariate normal distribution, 

          . For each data set of size n, we compute the MVV and MCD mean 

vector and the modified covariance matrix estimates. In addition, for each data set, 

we randomly generate a new observation      treated as a Phase II observation from 

           and calculate the corresponding     
       and     

       values. We 

sort     
       and     

       values in ascending order, and the UCL is the 95% 

quantile of the 5000 statistics. The control limits for     
  and     

  calculated using 

the Monte Carlo method and the control limits for   
  and   

  based on Beta and F 

distributions respectively are presented in Table 4.1. From this table, we see that the 

UCL values for     
  are large as compared to traditional methods (  

  and   
 ) and 

also     
 . 
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Table 4.1: Control limits 

p n   
    

      
      

  

2 10 11.0360 13.1050 30.6250 76.0122 

 25 7.4275 7.7676 12.1798 32.4008 

 50 6.6447 6.7431 8.2762 28.1107 

 100 6.3039 6.3444 7.4463 24.6037 

 200 6.1443 6.1598 6.4127 21.7088 

 500 6.0518 6.0566 6.1558 20.4264 

5 30 15.6006 16.9160 27.6404 41.9567 

 50 13.4506 13.9253 18.3456 33.5214 

 100 12.1579 12.3055 14.7736 28.4822 

 200 11.5915 11.6454 12.5765 25.6204 

 500 11.2738 11.2904 11.4941 22.5296 

10 50 25.9552 27.7721 39.8024 62.9323 

 100 21.5264 21.9969 26.0646 43.1889 

 200 19.7975 19.9570 20.9145 34.8509 

 500 18.8777 18.9275 19.5618 31.1418 

15 80 33.6517 35.1547 42.7942 69.0937 

 100 31.5083 32.5354 37.4367 61.0544 

 200 27.9034 28.2452 29.4809 45.9981 

 500 26.0882 26.1820 26.6016 39.7181 

20 100 42.5747 44.6890 52.7273 83.5238 

 200 36.2033 36.8213 38.8163 57.2303 

 300 34.4609 34.7659 36.0595 52.3438 

 500 33.1766 33.3434 33.6574 47.7808 
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4.2.2 Probability of Detection of Outliers 

The graphs illustrating the performance of the four charts in terms of probability of 

detection are exhibited in Figure 4.1 to 4.5. Each figure represents different 

dimension (p).  For each condition, the performance of the control chart is regarded 

as better in detecting changes when the value of the probability is closer to 1. Under 

bivariate case (p = 2) as presented in Figure 4.1, initially   
   showed better detection 

than other charts at mild and moderate contamination. However, the good 

performance of   
  only sustain at n = 10, 25.  Once the value of n and p increased, 

which can be clearly observed in Figure 4.2 – 4.5, the line representing     
  is 

consistently at the highest location in the graphs with the probability value of 

approximately 1, and overlapping with     
  line under most of the conditions.  

There are instances when the     
  line started with lower values creating gaps 

between the two lines but merged later on when the n values increased. This 

situation occurs when the sample size is small with 20% outliers and mean shift 3. 

Overall, the     
  and     

  control charts consistently achieved high probability in 

detecting outliers.  One can observe that, the lines representing   
  and   

  charts are 

always at the lowest and second lowest respectively, creating a very wide gap 

between the other two lines (    
  and     

 ).  This pattern repeats even within the 

same dimension for p > 5. Result on the   
  chart reveals that the chart perform so 

well when the number of outliers is small (small p and low percentage of 
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contamination), but underperform when the number of outliers gets larger (large p 

and high percentage of contamination). This weakness can be mitigated by the use of 

robust Hotelling T
2
 chart. 

4.2.3 False Alarm Rates 

The performance of a chart is not only judged by its ability in detecting outliers, but 

also in controlling the level of false alarm rate. False alarm rate is the probability of 

out-of-control signal when a process is in control or also known as probability of 

Type I error.  The value becomes large if the process is unstable due to increase in 

variability.  Inflated false alarm rate can lead to unnecessary process adjustments and 

loss of confidence in the control chart as a monitoring tool (Chang & Bai, 2004).  

Hence, a method which can control the false alarm rate to the desired level is 

necessary. 

The control chart is considered to be in control of its false alarm if the empirical 

value is close to the nominal value, α. For the purpose of comparison and checking 

on the level of robustness, we consider using the Bradley’s liberal criterion of 

robustness as a reference. Bradley (1978) specified three criteria for robustness 

namely stringent, moderate and liberal which are respectively defined as       , 

      , and       . A statistic is considered robust if its empirical Type I error 

(false alarm) rates lie in one of the ranges. Nevertheless, the closer the value to α, the 

more robust is the statistic or in other words the procedure considered robust and has 
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better ability in controlling false alarm.  However, Guo and Luh (2000) considered a 

test to be robust if its empirical Type I error rate does not exceed 0.075 for the 5% 

level significance used. This implies that in the context of robustness, it is acceptable 

for a test to be conservative (< 0.025) than liberal (> 0.075).  Taking into 

consideration Bradley’s liberal criterion for robustness (1978) and Guo and Luh’s 

(2000) justification, and also keeping in mind that inflated false alarm rate could 

mislead the ability of a chart as a monitoring tool, we proposed an interval between 

0.025 and 0.055 to determine a chart’s ability in controlling its false alarm rate. Thus 

in the tables, the values that are closest to the nominal value and within the 0.025 and 

0.055 are highlighted. 

Table 4.2 to 4.6 which recorded the false alarm rates for each condition are arranged 

based on the ascending number of dimensions (variables) namely           ,15 

and 20 with α = 0.05. The first column in each table displays the number of sample 

sizes, followed by the percentage of outliers and non centrality values respectively in 

the second and third column.  The last four columns record the false alarm rates of 

the control charts investigated in this study; namely   
    

 ,      
  and      

 . 
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Figure 4.1: Probability of signal when p=2. 

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

10 25 50 100 200 500

P
ro

b
  o

f 
d

e
te

ct
io

n
 

 10%  outlier with process shifted 3 

T²O

T²S

T²MCD

T²MVV

n 

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

10 25 50 100 200 500

P
ro

b
  o

f 
 d

e
te

ct
io

n
 

Outliers 20% with process shifted 3 

T²O

T²S

T²MCD

T²MVV

n 

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

10 25 50 100 200 500

P
ro

b
  o

f 
 d

e
te

ct
io

n
 

10%  outlier with process shifted 5 

T²O

T²S

T²MCD

T²MVV

n 

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

10 25 50 100 200 500

P
ro

b
  o

f 
 d

e
ct

io
n

 

Outliers 20% with process shifted 5 

T²O

T²S

T²MCD

T²MVV

n 



 

81 

 

 

       

        

Figure 4.2: Probability of signal when p=5. 
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Figure 4.3: Probability of signal when p=10. 
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Figure 4.4: Probability of signal when p=15. 
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Figure 4.5: Probability of signal when p=20. 
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For the bivariate (p = 2) case presented in Table 4.2, the overall results on false 

alarm rates show that   
  outperforms the other control charts, followed by     

 . 

Even though the results for   
  under most conditions are well controlled, however 

under ideal condition (no contamination) the chart failed to control the false alarm, 

causing the rate to inflate to 0.1000.  The     
  and   

  control charts are badly 

affected when the sample size is very small, which are verified by the rates of false 

alarm which are far below the nominal value except for ideal condition.  When the 

percentage of outliers increased to 20%, we observed that the rates for     
      

  

and   
  charts dwindle as the sample size increased, but the   

  chart is still in control 

of its false alarm rate. The performance of the robust     
  chart is much better than 

the     
 . The     

  chart performs well in controlling false alarm rates except when 

the percentage of outliers is large.  

When the dimension increased to p = 5,   
  still show the best performance in 

controlling false alarm rate compared to other charts (refer to Table 4.3). 

Nevertheless, the rates for   
  chart under ideal condition are still high (very far 

above the nominal value,       ). We also notice improvements in the robust 

    
  charts especially when the percentage of outliers is large, but the chart’s 

performance is still below   
  and   

 . In contrast, the false alarm rates for     
  chart 

worsen with values as small as 0.0020.  
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Table 4.4 displays the false alarm rates for the case of p = 10.   
  maintains to be the 

best performer in controlling false alarm rates but the chart seems to be deviating 

from the nominal value (        when n = 50.  There are also noticeable 

improvements in most of the conditions for   
 ,     

  and     
  charts. Even though 

    
  chart is not robust under the influence of extreme contamination, the false 

alarm rates for the chart are just slightly below the 0.025 level (no less than 0.022).  

However, the rates for     
  chart are still far below the nominal level despite 

showing some improvement in the performance.  

Under the case of p = 15, as can be clearly observed in Table 4.5, all the charts show 

better results than the previous case. Great improvement could be detected in   
  

chart under ideal condition and     
  under extreme contamination, but     

  chart is 

still unable to control its false alarm rates under the latter condition. As we 

scrutinized the false alarm rates for p = 20 in Table 4.6, we discover sporadic 

improvements under different conditions. There is no obvious improvement in the 

pattern could be observed. However, we can clearly observe that     
  chart perform 

badly in controlling false alarm rate in all conditions. 
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Table 4.2: False alarm rates for dimension, p=2 

Sample Size 

(n) 

% 

outliers(ε) 

Mean shift 

(µ1) 

Control Charts 

  
    

      
      

  

10 0 0 0.0530 0.1000 0.0520 0.0520 

 10% 3 0.0170 0.0650 0.0450 0.0290 

  5 0.0160 0.0630 0.0450 0.0250 

 20% 3 0.0180 0.0540 0.0330 0.0210 

  5 0.0180 0.0480 0.0330 0.0110 

25 0 0 0.0590 0.0980 0.0530 0.0480 

 10% 3 0.0290 0.0600 0.0390 0.0280 

  5 0.0230 0.0670 0.0390 0.0290 

 20% 3 0.0280 0.0470 0.0190 0.0090 

  5 0.0240 0.0390 0.0190 0.0050 

50 0 0 0.0560 0.0920 0.0540 0.0580 

 10% 3 0.0200 0.0480 0.0350 0.0230 

  5 0.0160 0.0490 0.0340 0.0230 

 20% 3 0.0210 0.0370 0.0180 0.0080 

  5 0.0160 0.0340 0.0170 0.0060 

100 0 0 0.0550 0.0930 0.0490 0.0460 

 10% 3 0.0210 0.0470 0.0300 0.0200 

  5 0.0160 0.0490 0.0290 0.0200 

 20% 3 0.0210 0.0350 0.0150 0.0050 

  5 0.0160 0.0350 0.0150 0.0040 

200 0 0 0.0580 0.0950 0.0690 0.0600 

 10% 3 0.0210 0.0510 0.0490 0.0310 

  5 0.0180 0.0470 0.0500 0.0310 

 20% 3 0.0200 0.0410 0.0280 0.0050 

  5 0.0180 0.0360 0.0280 0.0020 

500 0 0 0.0500 0.0880 0.0630 0.0520 

 10% 3 0.0190 0.0480 0.0490 0.0270 

  5 0.0160 0.0390 0.0480 0.0260 

 20% 3 0.0170 0.0370 0.0230 0.0040 

  5 0.0160 0.0350 0.0230 0.0040 

Total highlighted  1 16 11 2 
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Table 4.3: False alarm rates for dimension, p = 5 

 

Sample Size 

(n) 

% outliers 

(ε) 

Mean shift 

(µ1) 

Control Charts 

  
    

      
      

  

30 0 0 0.0460 0.0790 0.0500 0.0430 

 10% 3 0.0280 0.0510 0.0300 0.0100 

  5 0.0260 0.0530 0.0330 0.0100 

 20% 3 0.0300 0.0620 0.0210 0.0050 

  5 0.0320 0.0620 0.0200 0.0000 

50 0 0 0.0530 0.0790 0.0490 0.0650 

 10% 3 0.0270 0.0480 0.0350 0.0130 

  5 0.0260 0.0460 0.0370 0.0130 

 20% 3 0.0260 0.0560 0.0220 0.0040 

  5 0.0250 0.0520 0.0230 0.0020 

100 0 0 0.0540 0.0740 0.0380 0.0320 

 10% 3 0.0290 0.0510 0.0300 0.0140 

  5 0.0280 0.0420 0.0320 0.0140 

 20% 3 0.0300 0.0520 0.0170 0.0020 

  5 0.0290 0.0490 0.0190 0.0020 

200 0 0 0.0430 0.0740 0.0390 0.0410 

 10% 3 0.0250 0.0450 0.0350 0.0200 

  5 0.0240 0.0420 0.0350 0.0200 

 20% 3 0.0270 0.0460 0.0220 0.0010 

  5 0.0270 0.0440 0.0220 0.0010 

500 0 0 0.0390 0.0620 0.0430 0.0420 

 10% 3 0.0200 0.0410 0.0360 0.0160 

  5 0.0190 0.0350 0.0370 0.0170 

 20% 3 0.0210 0.0430 0.0190 0.0030 

  5 0.0200 0.0420 0.0190 0.0030 

Total highlighted  5 16 4 0 
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Table 4.4: False alarm rates for dimension, p = 10 

Sample 

Size 

(n) 

% 

outliers 

(ε) 

Mean shift 

(µ1) 

Control Charts 

  
    

      
      

  

50 0 0 0.0570 0.0920 0.0520 0.0530 

 10% 3 0.0410 0.0690 0.0370 0.0210 

  5 0.0380 0.0670 0.0380 0.0210 

 20% 3 0.0420 0.0720 0.0250 0.0080 

  5 0.0410 0.0720 0.0220 0.0020 

100 0 0 0.0550 0.0780 0.0450 0.0420 

 10% 3 0.0330 0.0570 0.0390 0.0190 

  5 0.0340 0.0550 0.0350 0.0200 

 20% 3 0.0350 0.0560 0.0240 0.0030 

  5 0.0340 0.0520 0.0230 0.0030 

200 0 0 0.0430 0.0730 0.0520 0.0540 

 10% 3 0.0330 0.0530 0.0390 0.0200 

  5 0.0320 0.0520 0.0420 0.0200 

 20% 3 0.0340 0.0500 0.0250 0.0020 

  5 0.0340 0.0490 0.0240 0.0020 

500 0 0 0.0510 0.0750 0.0540 0.0490 

 10% 3 0.0330 0.0540 0.0390 0.0220 

  5 0.0330 0.0520 0.0390 0.0230 

 20% 3 0.0340 0.0580 0.0260 0.0040 

  5 0.0340 0.0550 0.0230 0.0040 

Total highlighted  6 9 5 1 
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Table 4.5: False alarm rates for dimension, p = 15 

Sample 

Size 

(n) 

% 

outliers 

(ε) 

Mean shift 

(µ1) 

Control Charts 

  
    

      
      

  

80 0 0 0.0450 0.0650 0.0560 0.0580 

 10% 3 0.0330 0.0550 0.0470 0.0260 

  5 0.0330 0.0560 0.0430 0.0230 

 20% 3 0.0350 0.0560 0.0270 0.0060 

  5 0.0360 0.0540 0.0320 0.0030 

100 0 0 0.0430 0.0680 0.0520 0.0490 

 10% 3 0.0330 0.0590 0.0450 0.0240 

  5 0.0330 0.0610 0.0430 0.0240 

 20% 3 0.0330 0.0540 0.0250 0.0030 

  5 0.0330 0.0560 0.0220 0.0020 

200 0 0 0.0440 0.0620 0.0470 0.0540 

 10% 3 0.0290 0.0520 0.0420 0.0330 

  5 0.0280 0.0520 0.0410 0.0310 

 20% 3 0.0310 0.0560 0.0200 0.0040 

  5 0.0300 0.0550 0.0240 0.0040 

500 0 0 0.0530 0.0690 0.0470 0.0460 

 10% 3 0.0370 0.0540 0.0390 0.0270 

  5 0.0370 0.0530 0.0390 0.0260 

 20% 3 0.0390 0.0530 0.0260 0.0060 

  5 0.0380 0.0520 0.0290 0.0060 

Total highlighted  6 8 6 1 
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Table 4.6: False alarm rates for dimension, p = 20 

Sample 

Size 

(n) 

% 

outliers 

(ε) 

Mean shift 

(µ1) 

Control Charts 

  
    

      
      

  

100 0 0 0.0410 0.0720 0.0530 0.0500 

 10% 3 0.0340 0.0550 0.0400 0.0210 

  5 0.0330 0.0560 0.0420 0.0240 

 20% 3 0.0310 0.0570 0.0300 0.0060 

  5 0.0300 0.0570 0.0240 0.0000 

200 0 0 0.0450 0.0660 0.0510 0.0490 

 10% 3 0.0320 0.0510 0.0370 0.0220 

  5 0.0340 0.0520 0.0380 0.0220 

 20% 3 0.0360 0.0550 0.0310 0.0050 

  5 0.0380 0.0550 0.0250 0.0020 

300 0 0 0.0430 0.0680 0.0440 0.0390 

 10% 3 0.0400 0.0480 0.0350 0.0210 

  5 0.0390 0.0490 0.0340 0.0210 

 20% 3 0.0410 0.0470 0.0240 0.0060 

  5 0.0420 0.0470 0.0220 0.0050 

500 0 0 0.0520 0.0690 0.0530 0.0560 

 10% 3 0.0390 0.0560 0.0400 0.0280 

  5 0.0380 0.0570 0.0400 0.0280 

 20% 3 0.0390 0.0550 0.0350 0.0030 

  5 0.0390 0.0570 0.0320 0.0040 

Total highlighted  4 10 5 2 
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4.3 Real Data Analysis 

The investigation of Hotelling T
2
 issued from MVV is continued with the application 

on real data.  Real data were furnished to us by Asian Composites Manufacturing 

Sdn. Bhd. (ACM). ACM is a Joint Venture Company based in Bukit Kayu Hitam, 

Kedah, Malaysia, owned by Boeing & Hexcel.  This company is involved in the 

production of advanced composite panels for the aircraft industry. ACM produces 

flat and contoured primary (Aileron Skins, Spoilers and Spars) and secondary (Flat 

Panels, Leading Edges and MISC: Components) structure composite bond 

assemblies and sub-assemblies for aerospace industries.  It was awarded with the AS 

9100 rev C Certification (the highest level of qualification for aerospace 

manufacturers) after the British Standards Institution (BSI),  a member of the 

International Aerospace Quality Group(IAOG).  This certifies that ACM   has met its 

standards and requirements for quality management systems. 

 Spoilers are vital devices in an airplane. Their function is to increase lifts when the 

airplane is flying.  They are plates fitted to the top surface of the wings which can be 

extended upward into the airflow and spoil it.  By doing so, the spoiler creates a 

carefully controlled stallover the portion of the wing behind it, greatly reducing the 

lift of that wing section (http://en.wikipedia.org/wiki/Spoiler_aeronautics). The 

products are used in civilian, defense, and space applications, which cannot 

compromise any mistakes, albeit a minor one.  Thus, careful monitoring is required 

http://en.wikipedia.org/w/index.php?title=Airflow&action=edit&redlink=1
http://en.wikipedia.org/wiki/Stall_%28flight%29
http://en.wikipedia.org/wiki/Spoiler_aeronautics)
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to ensure that no variation occur in the process.  Any slight mistake could jeopardize 

a human life.   

For the purpose of this research, ACM has provided us the real data on spoilers 

which consists of several features such as trim edge (X1), trim edge spar (X2), and 

drill hole (X3).  A sample of 47 products (n = 47) was furnished to us by ACM.  Out 

of the total, 21 products were collected from 2009, while the rest were from 2010.  

Hence, we decided to use the 2009 products as phase I historical data, and 

considered the products from 2010 as future data in this study.  The details of the 

historical and future data are displayed in Tables 4.7 and 4.9 respectively.  The 

products consist of 3 quality variables (dimensions) namely trim edge, trim edge 

spar, and drill hole.  These variables were used to compare the three methods used to 

construct control charts. Estimates for the location vector ( ̅  and scatter matrix (S) 

are presented in Table 4.8.  The calculation of upper control limit (UCL) based on 

this estimates are presented in the last column of the table. The values of the T
2 

statistics based on the above estimators appear in the last four columns of Table 4.9. 

The graphical presentation of the corresponding control charts are put on view in 

Figure 4.6.  

When comparing the values of the T
2 

statistics in Table 4.9 with the corresponding 

control limits in Table 4.8, we observe that the three statistics      
 ,     

  and   
  

signal observations 20, 22 and 25 as out-of-control but   
  only signals 20 and 25 as 
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out-of-control observations and fails to signal observation 22.  The result for   
  is as 

expected since the analysis on the probability of detection using simulated data 

showed that   
  was not as effective as the other charts  in detecting outliers.  Chart 

(a), (b), (c) and (d) in Figures 4.6 represent the control chart for   
    

      
  and 

    
  respectively.  Even though the performance of   

  chart in this example is on 

par with the proposed     
  chart and also     

  chart, but the outcome could be due 

to the small number of quality characteristics (dimension) of the product. As 

revealed in the simulation study,   
  performed well in detecting outliers under low 

dimension (not more than 5) only, but underperformed when the dimension 

increased to above 5.   
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Table 4.7:  Historical data set (Phase I data) 

Product 

No. Trim edge (x1) Trim edge spar (x2) Drill hole (x3) 

1 -0. 0011 0.0003 0.0128 

2 0.0011 0.0021 0.0246 

3 0.0252 0.0308 0.0378 

4 -0. 0017 0.0109 0.0177 

5 -0. 0005 -0. 0010 0.0106 

6 0.0016 -0.0059 0.0128 

7 0.0004 0.0001 0.0062 

8 0.0078 0.0003 0.0159 

9 0.0076 0.0089 0.0097 

10 0.0020 0.0005 0.0071 

11 0.0108 0.0011 0.0092 

12 0.0039 0.0034 0.0425 

13 0.0060 -0.0033 0.0160 

14 0.0066 0.0100 0.0056 

15 0.0045 -0.0067 0.0147 

16 0.0110 -0.0207 0.0337 

17 0.0047 0.0059 0.0065 

18 0.0077 0.0003 0.0191 

19 0.0015 0.0123 0.0124 

20 0.0011 0.0038 0.0104 

21 0.0056 0.0065 0.0063 
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Table 4.8:  Estimates of location vector, covariance matrix and UCL. 

Types of 

Control 

Chart 

Location  

Vector 

( ̅  

Scatter Matrix 

(S) 
 

Upper Control 

Limit (UCL) 

  
  [                     ] [

                     
                     
                     

] 

11.035 

 

  
  [                     ] [

                     
                      
                      

] 11.798 

    
  [                     ] [

                     
                      
                      

] 21.946 

    
                        

[
                     
                     
                     

] 

 

41.298 
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Table 4.9:  The Hotelling T
2
 values for the future data (Phase II)  

Product 

No. x1 x2 x3   
    

      
      

  

1 0.0041 0.0087 0.0129 0.5582 1.4242 1.7659 4.3908 

2 0.0047 0.0109 0.0124 0.9003 2.5492 2.4694 5.1695 

3 0.0031 0.0057 0.0096 0.4992 0.4936 0.3437 0.2992 

4 0.0035 -0.0020 0.0101 0.5463 1.0157 0.5456 1.5064 

5 0.0040 -0.0028 0.0125 0.4592 0.9588 0.4580 3.7869 

6 0.0031 0.0008 0.0061 0.9013 1.7480 1.2527 2.2421 

7 -0.0019 0.0101 0.0112 3.0933 4.1372 4.4404 6.5361 

8 0.0009 0.0039 0.0082 0.8061 1.2884 0.6837 1.0556 

9 -0.0052 0.0090 0.0203 7.3602 9.6843 14.9766 26.0499 

10 -0.0008 0.0110 0.0184 3.6198 5.8035 9.7417 19.1760 

11 -0.0021 0.0139 0.0170 5.3839 8.0897 11.8717 19.6313 

12 -0.0017 0.0092 0.0061 2.7387 4.7949 2.9788 8.1388 

13 -0.0010 0.0133 0.0138 3.8058 5.6890 7.4040 11.3895 

14 -0.0030 0.0002 0.0053 2.0548 6.3468 3.3086 9.1498 

15 0.0016 0.0134 0.0151 2.5073 5.0227 6.8054 12.3881 

16 0.0027 0.0086 0.0070 1.1976 1.8980 1.0679 2.0563 

17 0.0004 0.0086 0.0087 1.5798 2.2630 1.7597 2.8765 

18 -0.0036 0.0136 0.0129 5.7910 7.9657 9.2817 13.9293 

19 -0.0028 0.0003 0.0078 1.8304 4.7003 2.4178 4.8791 

20 0.0120 0.0123 0.0768 38.1397 190.2969 214.9233 894.5184 

21 -0.0015 0.0004 0.0115 1.2651 2.3301 1.5486 2.0641 

22 0.0009 0.0232 0.0202 8.4181 19.7720 24.6552 45.2462 

23 -0.0035 0.0088 0.0107 3.7588 5.1645 4.8793 7.5328 

24 0.0016 0.0061 0.0066 1.0602 1.7564 0.9320 2.23575 

25 -0.0228 -0.0466 0.0231 42.8447 134.6222 68.6307 116.02933 

26 0.0037 -0.0038 0.0147 0.4832 1.3946 0.7796 7.32655 
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                         Chart (a)                                                 Chart (b) 

   

                          Chart (c)                                                  Chart (d) 

 

Figure 4.6:  Hotelling T
2
 control charts 
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4.4 Discussion 

Hotelling T
2
 chart is well accepted as a reliable method to monitor production; 

however, under conditions of non-normality, this chart is known to be 

underperformed.  Alternative on the Hotelling T
2
 statistic particularly on the location 

and scatter measures are recommended in order to produce a reliable chart regardless 

of the conditions. This study proposed an alternative to the the Hotelling T
2
 chart by 

using a robust estimator known as minimum variance vector (MVV) for its location 

and scatter measures. MVV not only has all the properties of the well-known 

minimum covariance determinant (MCD) such as high breakdown point and affine 

equivariant, but also has better computational efficiency. The performance of our 

proposed robust Hotelling T
2
 chart using MVV in terms of false alarm rate and 

probability of detection were compared with the robust Hotelling T
2
 chart using 

MCD and the traditional Hotelling T
2
 chart.  

Investigation on the   
  and     

  by Alfaro and Ortega (2009) showed a conflicting 

result between the percentage of outliers detection and the overall false alarm rate 

such that when the probability of detection increased, the false alarm rates inflate 

away from the nominal value. However, our proposed chart,     
  performed so well 

in terms of detecting outliers and also in controlling false alarm rates.  Even though 

the traditional Hotelling   
  chart performed so well in terms of controlling false 

alarm rates, but this chart fail to achieve good probability of detection especially 
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when the number of quality characteristics is large.  On contrary, the Hotelling     
  

chart performs wonderfully in detecting outliers, however the chart fails terribly in 

controlling false alarm rates. With its good performance in terms of detecting 

outliers and controlling false alarm rates, plus the good properties of its statistics, 

Hotelling     
  chart is indeed a good alternative to the multivariate control chart. 

When the investigation continued with the real industrial data, the results concurred 

with the earlier results obtained from simulation study which support both robust 

MVV and MCD estimators in detecting outliers. However, given the poor 

performance of MCD estimators in controlling false alarm rates, MVV estimators 

should be the one to choose for when searching for a good robust estimator. 

Nevertheless the values of Hotelling T
2
 statistics and UCL estimates using MVV are 

large as shown in the real data analysis result (refer to Table 4.8 and 4.9).  The result 

concurs with the simulated UCL values produced by     
  shown in Table 4.1.  

From the Table 4.1, we could observe the obvious differences between the simulated 

control limits for     
  with the usual control limits (  

  and   
 ) and the simulated 

control limits for     
 . 

MVV estimators have the same characteristics as the MCD estimators with respect to 

breakdown point and affine equivariance property, and their algorithms also display 

the same structures, but only differ in their objective function (MCD uses | | while 

MVV uses      ). Thus, by following the steps and procedures applied on MCD to 
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MVV, this study will attempt to improve the MVV estimators to achieve consistency 

at normal model. Nonetheless, in practice we always deal with finite samples, 

therefore the issue of bias in a finite sample will exist and should be considered. The 

advantage of having an unbiased estimator for a finite sample is that this estimator 

remains unbiased impartial even though the sample size becomes larger (Pison et al., 

2002). Due to the aforementioned issues, the next analysis seeks to improve the 

performance of MVV by making it unbiased for finite samples and consistent at 

normal model, which in consequence will improve the UCL and the performance of 

Hotelling T
2
 chart in general. Analysis for these improvements will be discussed in 

Chapter 5.   
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CHAPTER FIVE 

THE EFFECT OF CONSISTENT MINIMUM VECTOR 

VARIANCE ESTIMATORS ON HOTELLING T
2 
CONTROL 

LIMITS 

5.1 Introduction 

The simulated and the real data investigation on the robustness of the     
  had been 

done in Chapter 4. The result show that     
  performs well in terms of detecting 

outliers and also in controlling false alarm rates. However, in this chapter we 

developed a theory that leads to an improvement in the properties of MVV 

estimators when they are used in Hotelling T
2
 chart. A main aspect of our viewpoint 

on this improvement is inspired by the MVV characteristic that is affine equivariant, 

where that measurement scale changes or other linear transformations do not alter 

the behaviour of analysis in Hotelling T
2
 chart.  Looking at the performance of     

  

chart in Chapter 4 by comparing with the   
 ,   

  and     
  charts, there have room 

of improvement for MVV estimators. This deficiency can be seen from the value of 

the T
2 

statistics and estimated UCL for     
  is a very large to be consistent at 

normal model. Hence we are inspired to study the asymptotic properties of MVV 

estimators. The asymptotic properties of estimators are their properties as the number 

of observations in a sample becomes very large and tends to infinity. So we will pay 

attention to the concepts of consistency, unbiasedness and efficiency. Nevertheless, 

in this chapter we are focusing on the adjustments to the consistency and 
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unbiasedness of the MVV estimators. We conducted simulation experiments to show 

the need for improvement. The efficiency of the MVV estimators will be 

investigated in Chapter 6.  

The organization of the remaining part of this chapter is as follows. Section 5.2 and 

5.3 discusses the adjustment done on the MVV scatter estimator to ensure that it is 

consistent and unbiased. Investigation through simulation experiment to illustrate the 

consistency and unbiased of MVV estimators at multivariate normal data is 

discussed in Section 5.4. In the following Section 5.5, we estimate the control limits 

of the improved Hotelling     
  charts by simulation. In section 5.6,  we  investigate 

on the improved MVV estimator through simulation study. A real data analysis from 

aircraft industry is presented to illustrate the applicability of the proposed charts in 

section 5.7. Finally, result and discussion are given in the last section.  

5.2 Consistency Factor 

The aim of Hotelling T
2
 chart in Phase I is to estimate the in-control parameters of 

location,   and scatter,  . The usual estimators for these parameters are the normal 

maximum likelihood estimators (MLE). The estimation of these parameters is based 

on the data set x={          } from multivariate normal distributionwith density  

        
 

       | |   
   

              

 
 
                                  (5.1) 
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with      and     . However the distribution of (5.1) is only an approximation 

because a portion of the data may be contaminated by outliers (Croux & Rousseeuw, 

1992). With the existence of outliers, MLE which are known to be sensitive to 

outliers will not be able to precisely estimate the parameters. To address this 

problem, we propose MVV estimators i.e. robust estimators with highest breakdown 

point (50%) proposed by Herwindianti (2006) to replace the MLE. We compute the 

MVV estimators in the Phase I data sets, with location and scatter estimators as 

defined in Equation 3.1 and 3.2 respectively. The MVV estimator that was described 

in Herwindiati et al. (2007) has a fixed integer h such that; 

⌊
     

 
⌋      

The preferred choice of h for outlier detection is its lower bound, which yields the 

breakdown value,    
        

  
. Let      and      be the mean and the scatter 

matrix calculated from the h observations out of xi, whose classical scatter matrix 

has the lowest vector variance resulting from h smallest MSD. The      is a scatter 

    matrix which is positive definite, symmetric (PDS) and affine equivariant 

(Herwindianti, 2006). Robust scatter estimator is typically calibrated to be consistent 

at normal model (a.k.a Fisher consistency). In order to achieve consistency under the 

normal model,      (Equation 3.2) is multiplied by a consistency factor,     , as 

follows, 
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∑         

 
             

                                     (5.2) 

The approximation of consistency factor can be obtained from elliptical truncation in 

the multivariate normal distribution based on squared distance. If          ,      

is defined as  

     
   

      
   

    ⁄
  

                                                       (5.3) 

where  
    ⁄
  is the    -quantile of   

  distribution. This formula is derived by Butler 

et al. (1993) and further discussed in Croux and Haesbroeck (1999) based on the 

functional form of the MCD estimator. Since MVV have the same functional form 

with the MCD estimator, we used Equation 5.3 as the consistency factor for     .  

Albeit guaranteed consistency under normality distribution Pison et al. (2002) 

showed that MCD estimators were biased for small sample sizes.  Thus, the 

consistency factor in Equation 5.3 might not be sufficient to make MVV estimator 

unbiased for small sample sizes. For that reason, we include the computation of 

correction factor at any sample size n and dimension p.  

5.3 Correction Factor 

A simulation study on the effect of correction factor on the MVV estimator is carried 

out for several sample sizes n and dimension p=2,5,10,15,20. We generated data sets 
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           from standard multivariate normal distribution. It suffices to consider the 

standard multivariate normal distribution since the MVV is affine equivariant. For 

each data set     ,         we then determine the         
   

 in Equation 5.2. If 

the estimator is unbiased,  [        ]    , therefore the p-th root of the 

determinant of          equals 1(Pison et al., 2002). The mean of the p-th root of 

the determinant is given as 

     |        |  
 

 
∑ |        

   
|    

 

   

 

To determine the correction factor, we performed        simulations for 

different sample sizes n and dimensions p, with        such that  

    
  

 

     |        | 
                                                             (5.4) 

The computed values are displayed in Table 5.1.  Then, using     
  in Equation 5.4 as 

the correction factor for         , we obtain   

    
          

    
     

 
∑         

 
             

                     (5.5) 

For     
          can be considered consistent and unbiased, the determinant of  

    
           should approach 1. 
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Table 5.1: Values of     
  for          

p=2 p=5 p=10 p=15 p=20 

n     
  n     

  n     
  n     

  n     
  

10 5.8276 30 2.9304 50 2.3127 80 1.9801 100 1.8503 

25 5.4200 50 2.9598 100 2.2098 100 1.9528 200 1.7762 

50 5.7715 100 2.9309 200 2.1524 200 1.8937 300 1.7490 

100 5.7206 200 2.8912 500 2.1045 500 1.8476 500 1.7180 

200 5.6679 500 2.8579       

500 5.5842         

 

5.4 Investigation through Simulation Experiment 

Garther and Becker (1997) have emphasized that robust estimators to be used in the 

method of outliers detection should have sufficient rate of convergence to some true 

underlying model parameter for consistency and unbiasedness. A sequence of 

asymptotically unbiased estimators for parameter θ is called consistent if 

        | ̂   |      . To illustrate the analysis on the consistency of MVV 

estimator at multivariate normal, data are randomly generated from        . The 

experiment is carried out for several values of sample sizes n until convergent for a 

fixed moderate dimension such that, p=10. Figure 5.1 shows the determinants of 

    
          corresponding to the sample size, n.  As the value of n increases, we 

can observe that the determinant approaches 1 which implies that the     
          

is consistent.   
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Figure 5.1: Determinant of     
          when     and p = 10 

Next, the investigation using simulation experiment continues to show that      

and     
          which replaced the MLE estimators,   and  , in Hotelling T

2
 are 

consistent and unbiased. The squared distances of any affine-equivariant robust 

location and scatter estimators which are consistent and unbiased under normal 

model is asymptotically    distributed (Grubel & Rocke, 1990; Rocke & Woodruff, 

1996; Garther & Becker, 1997).Therefore if      and     
          are consistent 

and unbiased estimators for   and  , then with observations    i.i.d in   ~      ), 

it follows that  
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is asymptotically   
  distributed. Since   

  is similar to Hotelling T
2
, the asymptotic 

distribution of the improved Hotelling     
  when     should also follow   

  

distribution if the estimators are consistent. If we consider a sample of p quality 

characteristics such that    {             } where i=1,2, …,n as a phase I data 

set, then the improved     
  statistic for    can be constructed in the following 

manner:  

       
                  

         
           

                        (5.6) 

To check on the distributions of the improved     
 , we employed the QQ plots as 

done by Garrett (1989)and the results are shown in Figure 5.2 and 5.3. Each figure 

represents the QQ plot of   
  distribution versus the original     

  (       
 ) and 

improved     
  (       

   respectively. Random data were generated from 

multivariate standard normal distribution          . This study is carried out for 

the sample size of n = 10,000 with dimensions of p = 2, 5, 10, 15, 20. Based on the 

plots, it is seemingly reasonable to claim that the distribution of        
  and        

  

is asymptotically equal to   
  distribution. To further clarify the situation, the 

goodness of fit on those plots is evaluated based on the slope and the R-square of the 

straight line in accordance to the data plot, as shown in Table 5.2.  
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p = 2                                                                   p = 5 

            

p = 10                                                                p = 15 

      

 p = 20 

Figure 5.2: QQ plot between   
  distribution versus simulated        

  for n=10,000 
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p = 2                                                                   p = 5 

             

p = 10                                                                p = 15 

     

 p = 20 

Figure 5.3: QQ plot between   
  distribution versus simulated        

  for n=10,000 

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

0

10

20

30

40

50

60

0 5 10 15 20 25 30

0

10

20

30

40

50

60

70

0 10 20 30 40

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60



 

112 

 

Table 5.2: The slope and R-square for        
  and        

  

n = 10 000 

 

       
  

 

       
  

p=2 

 

   0.999 0.999 

slope 3.264 1.001 

p=5 

 

   0.999 0.999 

slope 1.952 1.020 

p=10 

 

   0.999 0.999 

slope 1.538 1.003 

p=15 

 

   0.999 0.999 

slope 1.404 1.001 

p=20 

 

   0.999 0.999 

slope 1.341 1.005 

 

The hypothetical distribution represents the   
  without error if all points are in a 

straight line with slope equals 1 and R-square also equals 1 (Ali, Djauhari & Syed-

Yahaya, 2008). From this table we observe that the R-square values for all p’s are 

0.999. With regards to the slopes, we can see a considerable difference in the values 

between the original        
  and        

  especially when p = 2.  The slopes for 

       
  are consistent and approximately equals to 1 regardless of the dimensions 

(p). In contrast, the slopes for        
  are quite a distance away from 1 even though 

the pattern shows a declining in values towards 1 as p increases. We observe that the 

values for the two measurements (R
2
 and slopes) are very close to the ideal value, 
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which signify that the   
  distribution fits well with the simulated        

  values.  

The result implies that the constant     
      fulfills the condition of the 

multiplicative factors to makes the      estimators consistent and unbiased for  . 

5.5 Estimation of Control Limit 

Let    {             } be the p-variate random sample of n observations of 

preliminary data set in Phase I. Calculate the      and     
          estimators. 

Since the estimators are known to be free from outliers due to their estimation 

process, they could be readily used as in-control estimators in Phase II.  By using 

these estimates,        
     statistic is computed for Phase II observation,    

{           } where      , such that 

       
                  

         
           

                      (5.7) 

We present the control limit of the improved        
     control chart by using 

simulated data with different combinations of sample sizes, n, and number of 

dimensions, p. The control limit of        
     chart is then compared with the 

control limit of         
     chart, robust Hotelling T

2
 chart using MCD (    

   and 

the traditional Hotelling T
2
 charts (   

  and   
 ). We apply Monte Carlo method to 

estimate the quantiles of the        
    , for several combinations of sample sizes 

and dimensions. In order to estimate the 95% quantile of        
     for a given 
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Phase I of sample size n and dimension p, we generate K = 5000 samples of size n 

from a standard multivariate normal distribution,           . For each data set of 

size n, we compute the MVV mean vector and the modified covariance matrix 

estimates,         and     
             respectively from        . In 

addition, for each data set, we randomly generate a new observation      treated as a 

Phase II observation from            and calculate the corresponding 

       
       values. The empirical distribution function of        

     is based on 

the simulated values 

       
           

             
                                          (5.8) 

We sort        
       values in ascending order, and the UCL is the 95% quantile of 

the 5000 statistics. The results of the investigation are presented in Table 5.3. We 

observe that the estimated UCLs for        
     are large as compared to the 

traditional control charts (  
  and   

  ) and MCD chart (    
 ). However, after 

making the MVV scatter estimator consistent and unbiased as shown in Equation 

5.7, the results improved immensely. As we can see here, the UCLs are closer to the 

traditional UCLs (Table 5.3). 
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Table 5.3: Control limits 

P n   
    

      
         

         
  

2 10 11.0360 13.1050 30.6250 76.0122 19.7067 

 25 7.4275 7.7676 12.1798 32.4008 9.4443 

 50 6.6447 6.7431 8.2762 28.1107 8.0556 

 100 6.3039 6.3444 7.4463 24.6037 7.1969 

 200 6.1443 6.1598 6.4127 21.7088 6.4469 

 500 6.0518 6.0566 6.1558 20.4264 6.1788 

5 30 15.6006 16.9160 27.6404 41.9567 19.5315 

 50 13.4506 13.9253 18.3456 33.5214 15.9398 

 100 12.1579 12.3055 14.7736 28.4822 14.0082 

 200 11.5915 11.6454 12.5765 25.6204 12.9297 

 500 11.2738 11.2904 11.4941 22.5296 11.5868 

10 50 25.9552 27.7721 39.8024 62.9323 34.5417 

 100 21.5264 21.9969 26.0646 43.1889 25.5450 

 200 19.7975 19.9570 20.9145 34.8509 21.4812 

 500 18.8777 18.9275 19.5618 31.1418 19.8112 

15 80 33.6517 35.1547 42.7942 69.0937 42.6982 

 100 31.5083 32.5354 37.4367 61.0544 38.6310 

 200 27.9034 28.2452 29.4809 45.9981 30.6107 

 500 26.0882 26.1820 26.6016 39.7181 26.1456 

20 100 42.5747 44.6890 52.7273 83.5238 53.9627 

 200 36.2033 36.8213 38.8163 57.2303 39.3577 

 300 34.4609 34.7659 36.0595 52.3438 36.8230 

 500 33.1766 33.3434 33.6574 47.7808 34.4221 
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5.6 Performance of     
  Control Chart 

Next, our investigation continues with the performance of the     
  control charts 

before and after making the MVV scatter estimator consistent and unbiased.  The 

performance is measured by the probability of detection and false alarm rates. To 

determine the false alarm rate and probability of detection, we randomly generate a 

Phase II observation with in-control and out of control parameters respectively from 

Phase 1 and calculate        
  and        

  statistics. The false alarm rate or 

probability of detection is estimated as the proportion of statistic values that are 

above the control limits of 1000 replications.  Data for Phase I are simulated based 

on the various conditions created for this study. To examine the effect of 

contamination on the charts’ performance, we have considered a contaminated 

model discussed in Section 3.4.2. The results of the investigation are presented in 

Table 5.4 – 5.8. Each table represents each dimension arranged in ascending order 

i.e. p = 2, 5, 10, 15 and 20 with α = 0.05. The first column in each table displays the 

number of sample sizes, followed by the percentage of outliers and non-centrality 

values respectively in the second and third column. As shown in Tables 5.4 – 5.8, the 

performance of the control chart for        
  and        

  in terms of probability 

detection and false alarm rate for each condition remain the same despite the changes 

in UCL.  This indicates that the consistent and unbiased MVV scatter estimator is 

able to improve the UCL value while simultaneously maintains the good 

performance of the Hotelling T
2
 control chart.  
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Table 5.4: Probability of detection and false alarm rates of the corresponding 

control charts with dimension, p = 2 

Sample 

Size(n) 

% 

outliers(

ε) 

Mean 

shift(µ

1) 

       
         

  

Probability 

Detection 

False alarm Probability 

Detection 

False alarm 

 0 0 0.0520 0.0520 

 10% 3 0.5320 0.0450 0.5320 0.0450 

  5 0.9080 0.0450 0.9080 0.0450 

 20% 3 0.4270 0.0330 0.4270 0.0330 

  5 0.8530 0.0330 0.8530 0.0330 

25 0 0 0.0530 0.0530 

 10% 3 0.8320 0.0390 0.8320 0.0390 

  5 0.9980 0.0390 0.9980 0.0390 

 20% 3 0.7210 0.0190 0.7210 0.0190 

  5 0.9960 0.0190 0.9960 0.0190 

50 0 0 0.0540 0.0540 

 10% 3 0.8930 0.0350 0.8930 0.0350 

  5 1 0.0340 1 0.0340 

 20% 3 0.8280 0.0180 0.8280 0.0180 

  5 1 0.0170 1 0.0170 

100 0 0 0.0490 0.0490 

 10% 3 0.9190 0.0300 0.9190 0.0300 

  5 1 0.0290 1 0.0290 

 20% 3 0.8890 0.0150 0.8890 0.0150 

  5 1 0.0150 1 0.0150 

200 0 0 0.0690 0.0690 

 10% 3 0.9460 0.0490 0.9460 0.0490 

  5 1 0.0500 1 0.0500 

 20% 3 0.9140 0.0280 0.9140 0.0280 

  5 1 0.0280 1 0.0280 

500 0 0 0.0630 0.0630 

 10% 3 0.9520 0.0490 0.9520 0.0490 

  5 1 0.0480 1 0.0480 

 20% 3 0.9310 0.0230 0.9310 0.0230 

  5 1 0.0230 1 0.0230 
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Table 5.5: Probability of detection and false alarm rates for independent case with 

dimension, p = 5 

Sample 

Size 

(n) 

% 

outliers 

(ε) 

Mean 

shift 

(µ1) 

Control Charts 

       
         

  

Probability 

Detection 

False alarm Probability 

Detection 

False alarm 

30 0 0 0.0500 0.0500 

 10% 3 0.9770 0.0300 0.9770 0.0300 

  5 1 0.0330 1 0.0330 

 20% 3 0.9650 0.0210 0.9650 0.0210 

  5 1 0.0200 1 0.0200 

50 0 0 0.0490 0.0490 

 10% 3 0.9910 0.0350 0.9910 0.0350 

  5 1 0.0370 1 0.0370 

 20% 3 0.9890 0.0220 0.9890 0.0220 

  5 1 0.0230 1 0.0230 

100 0 0 0.0380 0.0380 

 10% 3 1 0.0300 1 0.0300 

  5 1 0.0320 1 0.0320 

 20% 3 0.9970 0.0170 0.9970 0.0170 

  5 1 0.0190 1 0.0190 

200 0 0 0.0390 0.0390 

 10% 3 1 0.0350 1 0.0350 

  5 1 0.0350 1 0.0350 

 20% 3 0.9990 0.0220 0.9990 0.0220 

  5 1 0.0220 1 0.0220 

500 0 0 0.0430 0.0430 

 10% 3 1 0.0360 1 0.0360 

  5 1 0.0370 1 0.0370 

 20% 3 1 0.0190 1 0.0190 

  5 1 0.0190 1 0.0190 
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Table 5.6:Probability of detection and false alarm rates for dimension, p = 10 

Sample 

Size 

(n) 

% 

outliers 

(ε) 

Mean 

shift 

(µ1) 

Control Charts 

       
         

  

Probability 

Detection 

False alarm Probability 

Detection 

False alarm 

50 0 0 0.0520 0.0520 

 10% 3 1 0.0370 1 0.0370 

  5 1 0.0380 1 0.0380 

 20% 3 0.9990 0.0250 0.9990 0.0250 

  5 1 0.0220 1 0.0220 

100 0 0 0.0450 0.0450 

 10% 3 1 0.0390 1 0.0390 

  5 1 0.0350 1 0.0350 

 20% 3 1 0.0240 1 0.0240 

  5 1 0.0230 1 0.0230 

200 0 0 0.0520 0.0520 

 10% 3 1 0.0390 1 0.0390 

  5 1 0.0420 1 0.0420 

 20% 3 1 0.0250 1 0.0250 

  5 1 0.0240 1 0.0240 

500 0 0 0.0540 0.0540 

 10% 3 1 0.0390 1 0.0390 

  5 1 0.0390 1 0.0390 

 20% 3 1 0.0260 1 0.0260 

  5 1 0.0230 1 0.0230 

 

  



 

120 

 

Table 5.7:Probability of detection and false alarm rate for dimension, p = 15 

Sample 

Size 

(n) 

% 

outliers 

(ε) 

Mean 

shift 

(µ1) 

Control Charts 

       
         

  

Probability 

Detection 

False alarm Probability 

Detection 

False alarm 

80 0 0 0.0560 0.0560 

 10% 3 1 0.0470 1 0.0470 

  5 1 0.0430 1 0.0430 

 20% 3 1 0.0270 1 0.0270 

  5 1 0.0320 1 0.0320 

100 0 0 0.0520 0.0520 

 10% 3 1 0.0450 1 0.0450 

  5 1 0.0430 1 0.0430 

 20% 3 1 0.0250 1 0.0250 

  5 1 0.0220 1 0.0220 

200 0 0 0.0470 0.0470 

 10% 3 1 0.0420 1 0.0420 

  5 1 0.0410 1 0.0410 

 20% 3 1 0.0200 1 0.0200 

  5 1 0.0240 1 0.0240 

500 0 0 0.0470 0.0470 

 10% 3 1 0.0390 1 0.0390 

  5 1 0.0390 1 0.0390 

 20% 3 1 0.0260 1 0.0260 

  5 1 0.0290 1 0.0290 
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Table 5.8:Probability of detection and false alarm rate for dimension, p = 20 

Sample 

Size 

(n) 

% 

outliers 

(ε) 

Mean 

shift 

(µ1) 

Control Charts 

       
         

  

Probability 

Detection 

False alarm Probability 

Detection 

False alarm 

100 0 0 0.0530 0.0530 

 10% 3 1 0.0400 1 0.0400 

  5 1 0.0420 1 0.0420 

 20% 3 0.9970 0.0300 0.9970 0.0300 

  5 0.9980 0.0240 0.9980 0.0240 

200 0 0 0.0510 0.0510 

 10% 3 1 0.0370 1 0.0370 

  5 1 0.0380 1 0.0380 

 20% 3 1 0.0310 1 0.0310 

  5 1 0.0250 1 0.0250 

300 0 0 0.0440 0.0440 

 10% 3 1     0.0350 1     0.0350 

  5 1 0.0340 1 0.0340 

 20% 3 1 0.0240 1 0.0240 

  5 1 0.0220 1 0.0220 

500 0 0 0.0530 0.0530 

 10% 3 1 0.0400 1 0.0400 

  5 1 0.0400 1 0.0400 

 20% 3 1 0.0350 1 0.0350 

  5 1 0.0320 1 0.0320 
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5.7 Real Data Analysis 

The application of the improved method        
  on real data is illustrated by using 

data in Chapter 4 in Section 4.3 which involves the production of advanced 

composite panels for the aircraft industry. The product consists of 3 quality variables 

(dimensions) namely trim edge (x1), trim edge spar (x2), and drill hole (x3). The 

details of the 21 spoilers were collected as Phase I data and 23 spoilers as Phase II 

data displayed in Table 4.7 and 4.9 respectively.  

Estimates for the location vector ( ̅  and scatter matrix (S) calculated using Phase I 

data are presented in Table 5.9. The upper control limits (UCLs) based on the 

estimates are displayed in the last column of the table.  The values of the various 

types of T
2 

statistics for Phase II data used in this study are shown in Table 5.10. As 

could be observed in Table 5.9, the UCL for        
  is smaller than the rest of the 

values except   
 . There is only a small different between the        

  (11.5513) and 

the original   
  (11.035   When compared with the original     

  (       
  , we 

observe a large disparity between the two UCL values (       
 = 41.298 and 

       
 = 11.5513).  Nevertheless, the ability of        

  and        
   in detecting the 

out of control data (highlighted) still remain the same as we can see in Table 5.10. 

Four statistics, namely        
 ,         

 ,     
  and   

  signal observations 20, 22 and 

25 as out-of-control but   
  only signals 20 and 25 as out-of-control observations and 
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fails to signal observation 22.  Even though with low UCL value,   
  is unable to 

detect the out of control data unlike        
 .   

Table 5.9:  Estimates of location vector, covariance matrix and UCL. 

Types of 

Control 

Chart 

Location  

Vector 

( ̅  

Scatter Matrix 

(S) 

 

Upper 

Control 

Limit 

(UCL) 

  
  [                     ] 

[
                     
                     
                     

] 
11.035 

 

 

  
  [                     ] 

[
                     
                      
                      

] 
11.798 

 

 

    
  [                     ] 

[
                     
                      
                      

] 
21.946 

 

 

       
  

 

[                     ] 
[
                     
                     
                     

] 

 

41.298 

 

 

       
  

 

[                     ] 
[
                      
                      
                       

] 

 

11.5513 
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Table 5.10:Hotelling T
2
 values for future data (Phase II)  

No.   
    

      
         

         
  

1 0.5582 1.4242 1.7659 4.3908 1.5661 

2 0.9003 2.5492 2.4694 5.1695 1.8438 

3 0.4992 0.4936 0.3437 0.2992 0.1067 

4 0.5463 1.0157 0.5456 1.5064 0.5373 

5 0.4592 0.9588 0.4580 3.7869 1.3507 

6 0.9013 1.7480 1.2527 2.2421 0.7997 

7 3.0933 4.1372 4.4404 6.5361 2.3313 

8 0.8061 1.2884 0.6837 1.0556 0.3765 

9 7.3602 9.6843 14.9766 26.0499 9.2913 

10 3.6198 5.8035 9.7417 19.1760 6.8396 

11 5.3839 8.0897 11.8717 19.6313 7.0019 

12 2.7387 4.7949 2.9788 8.1388 2.9029 

13 3.8058 5.6890 7.4040 11.3895 4.0623 

14 2.0548 6.3468 3.3086 9.1498 3.2635 

15 2.5073 5.0227 6.8054 12.3881 4.4185 

16 1.1976 1.8980 1.0679 2.0563 0.7334 

17 1.5798 2.2630 1.7597 2.8765 1.0260 

18 5.7910 7.9657 9.2817 13.9293 4.9682 

19 1.8304 4.7003 2.4178 4.8791 1.7402 

20 38.1397 190.2969 214.9233 894.5184 319.0497 

21 1.2651 2.3301 1.5486 2.0641 0.7362 

22 8.4181 19.7720 24.6552 45.2462 16.1381 

23 3.7588 5.1645 4.8793 7.5328 2.6867 

24 1.0602 1.7564 0.9320 2.23575 0.7974 

25 42.8447 134.6222 68.6307 116.02933 41.3844 

26 0.4832 1.3946 0.7796 7.32655 2.6132 

 

5.8 Discussion 

The UCL value for the Hotelling T
2
 control chart using consistent and unbiased 

MVV estimators seemed to improve significantly from the Hotelling T
2
 control chart 

using the original MVV estimators. The improved control chart (       
 ) was put to 
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test on simulated and real industrial data. The finding showed that the improved 

    
  performed well in detecting out of control data with a more stringent UCL 

value as compared to the original     
  (unimproved,        

 ). With good properties 

and performance, this improved MVV estimators should be considered as alternative 

estimators to replace the usual mean and variance vector in the construction of the 

robust Hotelling T
2
 control chart as well as other multivariate statistical procedures. 

Even though Herwindianti (2006) and Herwindiati et al., (2007) had proved that 

MVV estimators possess three major properties of a good robust estimators i.e. high 

breakdown point (BP=0.5), affine equivariance and computational efficiency, the 

statistical efficiency of MVV estimators has never been shown before. The statistical 

efficiency is always a very important performance measure for any statistical 

procedure (Zuo, 2006, p.7). If robust multivariate estimators are to be of practical 

use in statistical inference they should offer a reasonable efficiency under the normal 

model and a manageable asymptotic distribution. Nonetheless, robust estimators are 

commonly not very efficient. Minimum covariance determinant (MCD) estimators 

introduced by Rousseeuw (1985) served as a perfect example. It has good theoretical 

properties i.e. affine equivariance, high breakdown value, bounded influence 

function and also has better convergence rate (Butler et al., 1993; Croux & 

Haesbroeck, 1999). However the estimators are not efficient at normal models and 

this is especially true at high breakdown point; see Croux and Haesbroeck (1999). To 
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overcome the low efficiency drawback of the MCD estimators, thus Rousseeuw and 

van Zomeren (1990) suggested reweighted version to attain high statistical 

efficiency. Croux and Haesbroeck (1999) employed the reweighted version and 

noticed that this approach maintains the breakdown point of the initial MCD 

estimators, while attaining a better efficiency.  

Taking into consideration the above problem, in next the chapter we propose an 

improvement over the algorithm as suggested by Herwindiati (2006) in the context 

of statistical efficiency. It consists of a one-step reweighted for MVV estimators. The 

reweighting scheme will be able to maintain the outlier resistance of the initial 

estimator and at the same time attains 100% efficiency at the normal distribution 

(Croux & Haesbroeck, 1999). 
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CHAPTER SIX 

A ROBUST AND EFFICIENT REWEIGHTED ESTIMATOR OF 

MULTIVARIATE LOCATION AND SCATTER 

6.1 Introduction 

In contrast with the traditional method, when the estimators in Hotelling T
2
 control 

chart are calculated in Phase I and directly used in Phase II analysis, the estimators 

should possess high statistical efficiency (Jensen et al., 2007; Chenouri et al., 2009).  

However, as we are already aware, there is a conflict between breakdown point and 

statistical efficiency as demonstrated in MCD estimators (Croux & Haesbroeck, 

1999). Is the issue faced by the MCD estimators similar to MVV estimators? In 

addressing the issue, we proceed with further analysis to examine the properties of 

the estimators of MVV from the perspective of statistical efficiency. 

The organization of this chapter is as follows. Section 6.2 is the investigation on 

statistical efficiency of MVV estimators for different breakdown points. Section 6.3 

proposes reweighted version of MVV estimators and describes the algorithm to 

approximately calculate the estimates. Section 6.4 studies the asymptotic efficiency 

of the proposed estimates while section 6.5 shows results of the investigation on the 

finite-sample behavior of the estimator using simulation technique. Finally, 

conclusion result and discussion are given in the last section. 
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6.2 The Statistical Efficiency of MVV Estimators for Different Breakdown 

Points 

MVV estimators were shown to be computationally efficient in Chapter 3. However, 

in the selection of robust estimators for any statistical estimation problems, besides 

high breakdown point, they should also offer a reasonable efficiency under the 

normal model and a manageable asymptotic distribution (Rousseeuw & van 

Zomeren, 1990).  Nevertheless, there is a conflict between statistical efficiency and 

breakdown point where the efficiency of high breakdown estimators decreases when 

the breakdown point increases, especially when the number of dimension becomes 

higher (Rousseeuw & van Zomeren, 1990; Croux & Haesbroeck, 1999). 

To check whether the conflict exists in MVV estimators, this study continues with 

the investigation on statistical efficiency of MVV estimators for different breakdown 

points. Two commonly chosen breakdown points are BP = 0.5 with   ⌊
     

 
⌋ and 

BP = 0.25 with h = (0.75)n. The former yields highest breakdown while the latter 

gives a better compromise between efficiency and breakdown point. To illustrate 

how the efficiencies of MVV estimators vary with different breakdown points (BP) 

and quality characteristics (p) under normal model, we compute the asymptotic 

relative efficiency (ARE). The computation of asymptotic relative efficiency (ARE) 

is based on the definition given by Serfling (1980).  For any parameter     , and 

two estimators  ̂    which are p-variate normal with mean   and non-singular 
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covariance matrices       ⁄  where for j=1,2 and F is the corresponding 

distribution, the ARE of  ̂    to  ̂    is   

ARE  ̂     ̂       = (
|     |

|     |
)
   

                                         (6.1) 

Table 6.1, shows the ARE for the MVV scatter matrix with relative to the classical 

covariance estimator at normal model for several values of p with BP = 0.25 and 0.5.  

For each p, we observe a decrease in the efficiency value when BP changes from 

0.25 to 0.5.  As p increases in size, the efficiency value decreases regardless of the 

BPs.  We could observe that, choosing the highest possible breakdown point (BP = 

0.5) results in the loss of efficiency.  Due to the conflict between efficiency and high 

breakdown value, Croux and Haesbroeck (1999) suggested taking BP = 0.25 as a 

compromise between efficiency and robustness, where the corresponding estimator 

can still cope with realistic amount of contamination in the data, but is much more 

precise when no outliers are present than the usual choice of BP = 0.5. However, we 

want to gain efficiency while retaining the highest breakdown point. This can be 

achieved by computing the reweighted version of the robust estimator (Rousseeuw & 

Leroy 1987; Rousseeuw & van Zomeren,1990; Rousseeuw & van Driessen 1999; 

Lopuhaä, 1999, Pison & van Aelst 2004). 
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Table 6.1: Asymptotic relative efficiency of MVV scatter matrix estimator w.r.t 

classical covariance estimator for normal model. 

 p = 2 p = 5 p = 10 p = 15 p = 20 

BP = 0.25 1.4176 1.3225 1.2411 1.2000 1.1740 

BP = 0.5 1.0073 1.0000 0.9978 0.9980 0.9983 

6.3 Reweighted Minimum Vector Variance (RMVV) Estimator 

To increase the efficiency of robust estimators, reweighted version of the estimators 

is often used in practice. Rousseeuw and van Zomeren (1990) proposed a one-step 

reweighted version of MCD estimators by giving weight 0 to observations for which 

the robust Mahalanobis squared distance (MSD) statistics,        
  exceeds a 

threshold value. The determination of the threshold value very much depends on the 

exact distribution of robust distances. Nevertheless, an unsolved problem is that the 

exact distribution of robust distances is unknown for finite sample sizes. The 

common approach is to compare the squared distances with the percentage points of 

their asymptotic   
  distribution (Cerioli, Riani & Atkinson, 2008).  The usual 

suggestion for the threshold (e.g. Rousseeuw & Leroy 1987, p. 260; Rousseeuw & 

van Driessen, 1999, p. 218; Pison & van Aelst, 2004, p. 312) is to take the 0.025% 

cut-off point of the   
  distribution.  

Based on the aforementioned references, the MVV estimators are reweighted in 

order to improve their efficiency. Thus, in this study, the observations with 

       
          

 , which can reasonably be suspected as outliers are given 0 weight.  
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The outliers will be removed and the sample mean and covariance matrix are then 

computed using the rest of the data.  These estimators are known as the reweighted 

mean and covariance matrix.  To ensure that the        
  statistic is asymptotically 

  
  distribution, we investigate on the asymptotic distribution of the robust MSD 

through simulation.  

6.3.1 The Distribution of Robust MSD Based On MVV Estimators 

To investigate on the asymptotic distribution of robust MSD based on MVV 

estimators and compare it with robust MSD based on MCD, we apply simulation 

experiments to show that the distributions fit the   
  distribution as done by Garrett 

(1989). Random data of n = 10000 were generated from multivariate standard 

normal distribution           for several dimensions, p = 2, 5, 10, 15 and 20. 

Shown in Figure 6.1 and 6.2 are the QQ plots for the quantile of   
  distribution on 

the horizontal axis versus the quantile of simulated        and        on the 

vertical axis respectively. Based on both figures, it is seemingly reasonable to claim 

that the distribution of        and        are asymptotically equal to   
  

distribution. To further clarify the situation, the goodness of fit of those plots is 

evaluated using the slope and the R-square of the straight line in accordance to the 

data plot. The hypothetical distribution represents the   
  without error if all points 

are in a straight line with slope equals 1 and R-square also equals 1 (Ali et al., 2008).  
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Table 6.2 presents the values of the slope and R-square for the        and 

      . From this table we observe that both of them have the R-square values 

equal to 0.999 for all p’s. With regards to the slopes, we can see a small difference in 

the values between        and       .  The slopes for        is consistent 

and approximately equals to 1 regardless of the dimensions (p).  From this result we 

can see that the values for the two measurements (R
2
 and slopes) are very close to the 

ideal value, which signify that the simulated        and        values fit well 

with the   
  distribution.  

Table 6.2: Slope and R-square for MSDMCD and MSDMVV 

n = 10 000 

 

       

 

       

p=2 

 

   0.999 0.999 

slope 0.995 1.001 

p=5 

 

   0.999 0.999 

slope 1.010 1.020 

p=10 

 

   0.999 0.999 

slope 1.005 1.003 

p=15 

 

   0.999 0.999 

slope 1.002 1.001 

p=20 

 

   0.999 0.999 

slope 0.999 1.005 
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p = 2                                                                   p = 5 

          

p = 10                                                                p = 15 

      

                            p = 20 

Figure 6.1: QQ plot between   
  distribution versus simulated        for 

n=10,000 
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p = 2                                                                   p = 5 

           

p = 10                                                                p = 15 

      

               p = 20 

Figure 6.2: QQ plot between   
  distribution versus simulated        for 

n=10,000 
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6.3.2 The Estimator 

As discussed in the Section 6.3.1, the distribution of robust MSD based on MVV and 

MCD estimators are asymptotically equal to   
  distribution. Thus we come to a 

decision to use the usual suggestion for the choice of cut-off value for reweighted 

MCD i.e.         
  (Rousseeuw & Leroy, 1987; Rousseeuw & van Driessen, 1999; 

Lopuhaä, 1999; Croux & Haesbroeck, 1999). The raw RMVV estimators of location 

and scatter are determined as follows:  

     
    

∑     
 
   

 
                                                            (6.2) 

     
    

∑            
             

      
   

 
                               (6.3) 

where      if      
                   

  and      otherwise. Therefore m 

represent number of observations with        
          

 . Scatter estimators are 

typically calibrated to be consistent for the normal distribution, thus the consistency 

and correction factors are needed to guarantee Fisher consistency for the reweighted 

estimator and improve its biasness for small sample behavior. We take consistency 

factor,       as in Equation (5.3) such that 

      
   

      
   

    ⁄
  

                                                 (6.4) 
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Albeit this process guarantees consistency under normal distribution, this 

consistency factor is not sufficient to make the RMVV estimator unbiased for small 

sample sizes. To overcome the insufficiency issue, we compute the correction factor, 

      
  , via simulation approach for several sample sizes n and dimension p. We 

generated data sets             from standard normal distribution,        . For 

each data set     ,         we then determine the RMVV estimators of location 

and scatter as in Equation (6.2) and (6.3) followed by           
      

. If the estimator 

is unbiased, we should have  [          
   ]    .  Thus, we expect the p-th root of 

the determinant of           
    equals 1 and the mean of the p-th root of the 

determinant is given by 

  |          
   |  

 

 
∑  |          

      
|     

   , 

where |          
   | denotes the determinant of a square matrix           

   . We 

perform        simulations for different sample sizes n and dimensions p, with 

value of       . The correction factor for           
    is given as;  

      
   

 

 (|          
   |)

                                                     (6.5) 

Next, we determine the RMVV location and scatter as follows, 

      
∑     

 
   

 
                                                            (6.6)      
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∑                       
  

   

 
                               (6.7) 

Finally, the squared robust Mahalanobis distances become 

      
                            

      
                    (6.8) 

6.3.3 Algorithm 

We now develop an algorithm to calculate an approximate RMVV solution, where 

the basis of our algorithm follows the generalization of MVV algorithm in Chapter 3 

in Section 3.2. Let            be a p-variate random sample of size n. We consider 

two typical choices of breakdown point (BP), namely BP=0.5 with   

⌊         ⌋ and BP=0.25 with h = (0.75)n. For that reason, we use two 

different algorithms with different formula in determining the h subset. The 

difference between the two algorithms occurs in step-4 of Stage 1. Below is the 

complete algorithm to calculate an approximate RMVV solution. 

Stage 1: Creating Initial Subsets.  

This stage is repeated 500 times 

1. Draw a random subset    with number of observations,      . Compute 

the mean vect    ̅  
 and covariance matr      

.   

 ̅  
               and      

         

2. Compute the MSDs    
     (    ̅  

)
 
   

  (    ̅  
) for        . 
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3. Sort these MSDs in ascending order,   
 (    )    

 (    )    

  
 (    ). This ordering defines a permutation   on the index set. 

4. Take a new subset    {           } where 

i.   ⌊
     

 
⌋ for BP=0.5 or 

ii. h = (0.75)n for BP=0.25 

then calculate  ̅  
,    

,   (   

 ) and compute MSD,  

  
          ̅  

     

  (    ̅  
)  for        . 

5. Repeat step 3 and 4 for H2 

6. Sort the 500 values of   (   

 ) in ascending order, then select 10 subsets of 

   which have the lowest   (   

 ). These subsets are treated as the initial 

subsets and their mean vectors,  ̅  
 and covariance matrices,    

 will be 

used in Stage 2. 

Stage 2: Concentration Steps (C-step)  

This process will be repeated until convergence is achieved for each of the 10 

subsets. Convergence means        
        

  , where k is the number of 

iterations. 

1. Compute the MSDs by using  ̅  
 and    

, where  

  
          ̅  

     

  (    ̅  
)  for        . 
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2.  Repeat step 3 and 4 in Stage 1 until        
        

  . If        
   

     
   the process is continued. This process will be repeated until 

convergence is achieved. 

3. When convergence is achieved for all the 10 subsets, choose the subset (H*) 

that generates the lowest       

  . From H*, calculate  ̅        and 

         as the location and scatter estimators for MVV respectively. 

     
 

 
∑   

 
                                                          (6.9) 

     
 

 
∑         

 
             

                         (6.10) 

Reweighted Steps: Equations (6.9) and (6.10) respectively define the MVV 

estimates of location and scatter. By using these estimates, 

4. Compute the Mahalanobis squared distances for all observations            

such that      
                    

     
            where 

i=1,2,...,n.  

5. The raw RMVV estimators in Equation (6.2) and (6.3) are computed by 

giving weight      to observations with      
                   

 , and 

     otherwise.  

6. Compute the consistency factor using Equation (6.4) for the raw RMVV 

covariance matrix. 

7. Compute the correction factor for            by using Equation (6.5). 
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8. Compute the reweighted MVV estimators of location and scatter using 

Equation (6.6) and (6.7) respectively. 

6.4 Efficiency 

To gain more insight in the RMVV estimators and observe how reweighting affects 

their performance, we compute the asymptotic relative efficiency where it may give 

some indication of how good the estimators are. We compute the asymptotic relative 

efficiency (ARE) based on Equation (6.1).  

Table 6.3 shows the asymptotic relative efficiency (ARE) of the RMVV scatter 

estimators with different breakdown point of 0.25 and 0.5 denoted respectively as 

RMVV0.25 and RMVV0.5, with relative to the MVV estimator with breakdown point 

of 0.5 (MVV0.5) at normal model computed using the following equation,   

ARE           
                   = (    

                       )
   

   (6.11) 

Note that the ARE for RMVV0.25 is less efficient than MVV0.5 for all p’s.  However, 

the ARE values improve as p increases.  When the BP of RMVV estimator is 

increased to 0.5, we observe that the efficiency of the estimator increases 

considerably.  For p = 2 and 10, the ARE’s are above 1 while for other dimensions, 

the values ranging from 0.9975 to 0.9987 are almost equal to 1.  From Table 6.3 we 

can deduce that by reweighting MVV, we can achieve high efficiency while 

simultaneously maintain highest breakdown point. To show the effect of BP on 
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efficiency, let us refer to Table 6.4. The first row records the efficiency of MVV 

estimator while the second row records the efficiency of the reweighted version of 

the estimator i.e. RMVV.  Apparently, the MVV estimator is more efficient when BP 

= 0.25, however after reweighting the estimator (RMVV), the efficiency at BP = 0.5 

improves and outdo when BP = 0.25.  

Table 6.3: Asymptotic relative efficiency of the scatter matrix for RMVV estimator 

with different breakdown point (BP=0.25 and 0.5) w.r.t MVV estimator with 

(BP=0.5) for normal model. 

 p = 2 p = 5 p = 10 p = 15 p = 20 

RMVV0.25  w.r.t 

MVV0.5 

0.6984 0.7490 0.8012 0.8293 0.8489 

RMVV0.5  w.r.t 

MVV0.5 

1.0217 0.9984 1.0015 0.9975 0.9987 

 

Table 6.4:Asymptotic relative efficiency of the scatter matrix for MVV and RMVV 

estimator with BP=0.25 with relative to MVV and RMVV estimator with BP=0.5 

respectively. 

 p = 2 p = 5 p = 10 p = 15 p = 20 

MVV0.25 w.r.t  

MVV0.5 

 

1.4073 

 

1.3225 

 

1.2439 

 

1.2024 

 

1.1760 

RMVV0.25 w.r.t  

RMVV0.5 

 

0.9620 

 

0.9922 

 

0.9951 

 

0.9997 

 

0.9996 

 

Thus, the RMVV0.5 estimators possess both high efficiency and high breakdown 

point, hence, making these estimators more appealing. Nevertheless we should be 

aware that the gains in efficiency come at the price of a larger bias under 
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contamination. The reason is that higher efficiency can only be obtained by 

increasing tuning parameters, which in turn affects the bias under contamination 

(Rousseeuw, 1994).  

Our study then continued with the investigation on finite-sample robustness of 

RMVV estimators to support the above ARE results.  For that purpose, a simulation 

study was conducted and discussed in the following section.  Since this study focus 

on Hotelling T
2
 for which the shift in the mean vector is of main concern, it would be 

more apt to focus on the RMVV location estimator.  

6.5 Finite-Sample Robustness 

To study on the finite-sample robustness of the RMVV location estimator, we 

performed simulations on contaminated data sets. In each simulation we generated 

 =1000 data sets of         with p = 2, 5, 10 and 20 representing small, medium 

and slightly high number of quality characteristics (dimensions) with reasonable 

values of sample sizes n = 50, 100, 200 and 500. Refer to section 3.4.2 of Chapter 3 

for the generation of contaminated data sets.   

To measure the robustness, we used the bias and the mean squared error (MSE) as 

suggested by Rousseeuw, van Driesen, van Aelst and Agullo (2004). For each 

simulation we compute the mean squared error and bias of the mean (location) 

vectors,  ̂    
 , as in Roelant, van Aelst and William (2009), 
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     ̂       [
∑ ∑ {  ̂      

   
} 

   
 
   

 

  
]                                 (6.12) 

      ̂      [
 

 
∑ {

∑   ̂      
    

   

 
}

 
 
   ]

   

                                   (6.13) 

wherel = 1, …,L;  j = 1, …, p 

Tables 6.5, 6.6, 6.7 and 6.8 show the MSE and bias from mild, moderate and 

extreme contamination for RMVV0.5, RMVV0.25 and MVV0.5 when  p = 2, 5, 10 and 

20 respectively. In general, across the type of contaminations, there is a diminution 

in the value of MSE when p increases except for moderate (Table 6.7) and extreme 

contamination (Table 6.8) when p = 20, n = 50. For most conditions, the RMVV0.25 

location estimator yields the lowest value of MSE, followed by RMVV0.5 and then 

MVV0.5. For larger sample sizes, the bias values for all estimators reduce closer to 

zero.  

Although the RMVV0.25 estimator produces the smallest MSE value, however if we 

scrutinize each table, we could observe inconsistency in the generation of the 

smallest bias values. As shown in Table 6.5, under mild contamination, RMVV0.25 

produce the smallest bias value when p = 2 and n = 50, but when n increases, 

RMVV0.5 estimator outperforms RMVV0.25 in the number of smallest bias values. 

Nonetheless, when p increases to 5 and 10, RMVV0.25 reverts back to be the better 
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performer. Meanwhile as p increases to 20, RMVV0.5 produces the smallest bias 

except for n = 500.  

For moderate contamination with mean shift 5 as shown in Table 6.6, RMVV0.25 

generates the smallest bias value for almost all combinations of p and n, except for 

small sample, n = 50.  For the other moderate contamination (20% with mean shift 3) 

Table 6.7 shows that RMVV0.5 is more dominant in generating the smallest value of 

bias especially when p = 20. Under the condition of extreme contamination as 

presented in Table 6.8, RMVV0.25 outperforms RMVV0.5 when p = 2 and 5, but when 

p increases to 10 and 20, RMVV0.5 is better in generating small bias values. 

Nevertheless, overall, RMVV0.25 is the better performer as compared to RMVV0.5 

and MVV0.5 because the estimator is not easily influenced by outliers (resulting in 

small MSE). Although the RMVV0.25 has lower efficiency compared to RMVV0.5 for 

normal data, but with regards to contamination, RMVV0.25 on the whole is able to 

produce lower values of MSE and bias. 
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Table 6.5: Location estimator: 10% outliers with mean shift 3 (mild contamination) 

n 50 100 200 500 

p= 2 MSE bias MSE bias MSE bias MSE bias 

RMVV0.5 3.0032 0.0114 3.1907 0.0032 3.4245 0.0034 3.6031 0.0017 

RMVV0.25 1.7446 0.0066 1.6572 0.0067 1.6788 0.0052 1.6964 0.0029 

MVV0.5 3.4706 0.0080 4.0558 0.0047 4.5698 0.0043 5.0813 0.0018 

p= 5         

RMVV0.5 2.0571 0.0056 2.0776 0.0038 2.0825 0.0098 2.0380 0.0044 

RMVV0.25 1.4971 0.0066 1.4342 0.0037 1.4038 0.0078 1.3780 0.0031 

MVV0.5 2.1349 0.0127 2.4213 0.0092 2.7794 0.0114 3.1466 0.0048 

p= 10         

RMVV0.5 1.8022 0.0126 1.8966 0.0151 1.8359 0.0136 1.7480 0.0089 

RMVV0.25 1.4394 0.0092 1.3617 0.0120 1.3560 0.0117 1.3441 0.0079 

MVV0.5 1.8042 0.0107 1.9474 0.0148 2.0003 0.0154 2.4890 0.0105 

p= 20         

RMVV0.5 1.4990 0.0219 1.7181 0.0188 1.8215 0.0170 1.7075 0.0093 

RMVV0.25 1.4176 0.0226 1.3657 0.0192 1.3404 0.0173 1.3157 0.0087 

MVV0.5 1.4984 0.0222 1.7278 0.0196 2.0224 0.0175 2.1374 0.0118 
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Table 6.6: Location estimator: 10% outliers with mean shift 5 (moderate 

contamination) 

n 50 100 200 500 

p= 2 MSE bias MSE bias MSE bias MSE bias 

RMVV0.5 2.9739 0.0102 3.1905 0.0031 3.4192 0.0037 3.5983 0.0018 

RMVV0.25 1.7294 0.0024 1.6315 0.0033 1.6520 0.0017 1.6837 0.0009 

MVV0.5 3.4553 0.0072 4.0614 0.0044 4.5754 0.0043 5.0873 0.0019 

p= 5         

RMVV0.5 2.0643 0.0057 2.0525 0.0043 2.0807 0.0100 2.0394 0.0045 

RMVV0.25 1.4904 0.0065 1.4372 0.0042 1.4036 0.0077 1.3773 0.0031 

MVV0.5 2.1370 0.0133 2.4064 0.0073 2.7612 0.0114 2.9932 0.0047 

p= 10         

RMVV0.5 1.7936 0.0117 1.8934 0.0157 1.8708 0.0121 1.7473 0.0090 

RMVV0.25 1.4463 0.0120 1.3674 0.0130 1.3545 0.0112 1.3464 0.0080 

MVV0.5 1.7902 0.0107 1.9474 0.0148 2.1854 0.0129 2.4737 0.0117 

p= 20         

RMVV0.5 1.5196 0.0193 1.7361 0.0190 1.8213 0.0153 1.7012 0.0098 

RMVV0.25 1.4310 0.0219 1.3555 0.0186 1.3334 0.0175 1.3161 0.0090 

MVV0.5 1.5189 0.0195 1.7487 0.0189 2.0339 0.0158 2.1368 0.0118 
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Table 6.7: Location estimator: 20% outliers with mean shift 3 (moderate 

contamination) 

n 50 100 200 500 

p= 2 MSE bias MSE bias MSE bias MSE bias 

RMVV0.5 2.7968 0.0109 2.9460 0.0034 3.1887 0.0043 3.1918 0.0037 

RMVV0.25 1.6785 0.0168 1.6481 0.0188 1.7205 0.0177 1.7133 0.0145 

MVV0.5 3.1571 0.0142 3.6666 0.0011 4.2234 0.0043 4.4614 0.0044 

p= 5         

RMVV0.5 2.0241 0.0111 2.0430 0.0033 2.0979 0.0110 2.0288 0.0053 

RMVV0.25 1.4396 0.0058 1.3793 0.0030 1.3890 0.0071 1.4244 0.0036 

MVV0.5 2.0840 0.0109 2.3109 0.0060 2.6152 0.0143 2.8112 0.0147 

p= 10         

RMVV0.5 1.7607 0.0128 1.9035 0.0154 1.9249 0.0103 1.8271 0.0093 

RMVV0.25 1.4070 0.0114 1.3522 0.0132 1.3428 0.0111 1.4040 0.0095 

MVV0.5 1.7682 0.0140 1.9238 0.0166 2.1292 0.0120 2.4336 0.0129 

p= 20         

RMVV0.5 1.9817 0.3067 1.7059 0.0183 1.8512 0.0154 1.7339 0.0102 

RMVV0.25 2.1080 0.3707 1.5289 0.0224 1.6660 0.0257 2.1956 0.0154 

MVV0.5 1.9839 0.3072 1.7151 0.0184 2.0105 0.0158 2.1117 0.0103 
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Table 6.8: Location estimator: 20% outliers with mean shift 5 (extreme 

contamination) 

n 50 100 200 500 

p= 2 MSE bias MSE bias MSE bias MSE bias 

RMVV0.5 2.7651 0.0056 2.9251 0.0017 3.1455 0.0046 3.1678 0.0037 

RMVV0.25 1.5730 0.0021 1.5113 0.0023 1.5761 0.0017 1.5600 0.0022 

MVV0.5 3.1161 0.0110 3.6765 0.0019 3.8672 0.0049 4.4345 0.0038 

p= 5         

RMVV0.5 2.0273 0.0129 2.0449 0.0026 2.0951 0.0108 2.1688 0.0037 

RMVV0.25 1.4407 0.0060 1.3797 0.0032 1.3915 0.0071 1.4221 0.0037 

MVV0.5 2.0922 0.0117 2.3082 0.0048 2.5998 0.0143 3.2375 0.0039 

p= 10         

RMVV0.5 1.7522 0.0104 1.9073 0.0151 1.9257 0.0108 1.8272 0.0093 

RMVV0.25 1.4154 0.0108 1.3397 0.0153 1.3439 0.0111 1.2739 0.0093 

MVV0.5 1.7605 0.0116 1.9352 0.0149 2.2967 0.0137 2.4251 0.0132 

p= 20         

RMVV0.5 2.6433 0.4052 1.7082 0.0189 1.8547 0.0155 1.7954 0.0103 

RMVV0.25 2.9294 0.4261 1.8758 0.0633 1.8166 0.0199 1.6256 0.0084 

MVV0.5 2.6465 0.4055 1.7144 0.0191 2.2006 0.0158 2.1027 0.0116 

6.6 Discussion 

The result of the investigation on the statistical efficiency of MVV estimators for 

different breakdown point showed that the conflict between efficiency and 

breakdown point occurred in MVV estimators. Hence, to maintain the highest 

breakdown value and simultaneously achieving high efficiency, this study developed 

a one-step reweighted version of minimum vector variance estimator (RMVV). The 

development and availability of fast algorithm for computing the RMVV has brought 
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renewed interest to this estimator. The finding proved that reweighting leads to an 

important gain in efficiency at the same time maintaining the highest breakdown 

value. Thus, the RMVV0.5 estimator possesses both high efficiency and high 

breakdown point, making these estimators more appealing. However, if the data is 

suspected to be contaminated by outliers, we recommend using RMVV0.25  estimators 

because it has a smaller MSE and bias. 
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CHAPTER SEVEN 

ROBUST HOTELLING T
2
 CHART BASED ON REWEIGHTED 

VERSION OF MVV ESTIMATOR 

7.1 Introduction 

In the previous chapter, we have introduced the reweighted version of MVV known 

as RMVV. Through simulation study, we have shown that these estimators are 

consistent, unbiased and attained high efficiency. In this chapter, we will investigate 

on the performance of these estimators in constructing the Hotelling T
2
 chart. Since 

efficiency and breakdown point are inversely related (Croux & Haesbroeck, 1999), 

and the efficiency value changes with respect to breakdown point, thus this chapter 

will demonstrate on the construction of the robust Hotelling T
2
 chart using the 

RMVV estimators taking into consideration the two breakdown points used in the 

previous chapter namely 0.5 and 0.25. The respective robust Hotelling T
2
 charts are 

denoted as         
  and          

 . The investigation will then continue with the 

comparison of         
 ,          

 , Hotelling T
2
 control charts with MVV      

  , the 

improved     
  (       

   which was proposed in Chapter 5, MCD estimators      
   

and Reweighted MCD estimators with breakdown point 0.25       
  .  

The outline of this chapter is as follows. In Section 7.2, we formally introduce two 

robust control charts with different breakdown point based on RMVV estimators. 

The approximations of the control limit for         
  and          

  are discussed in 
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Section 7.3 followed by the simulation study on the performance of         
  and 

         
  with contaminated data in Section 7.4. The following Section 7.5 gives an 

example on real sample data, and finally, Section 7.6 concludes the chapter. 

7.2 RMVV Hotelling T
2
 Control Chart 

Suppose that    {          } is the p-variate random sample of n observations 

of preliminary data set in Phase I such that    are independent with unknown   and 

 .  To estimate the in-control parameters, we need to use in-control data set. The 

process of identifying the in-control data set from    is referred to as Phase I process.  

Since the RMVV estimators are known to be free from outliers due to its estimation 

process, they could be readily used as in-control estimators in Phase II process where 

the phase II observations are    {           },      .  

From the preliminary data set,   , the RMVV mean vector and covariance matrix 

estimators (      and      ) are determined by using Equations (6.6) and (6.7) 

presented in Chapter 6. Since we are investigating RMVV Hotelling T
2
 chart with 

two typical choices of breakdown point, namely BP=0.5 with   ⌊         ⌋ 

and BP=0.25 with h = (0.75)n, thus, we need to calculate RMVV estimators using 

two different algorithms with different formula in determining the h subset. The 

algorithm was discussed in Section 6.3.3. Subsequently, by using these two types of 
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RMVV estimators, we define the two robust Hotelling’s T
2
 for Phase II data,   , as 

follows, 

        
                 

         

              
                  (7.1) 

         
                  

          

               
              (7.2) 

7.3 Estimation of Control Limits for RMVV Hotelling T
2
 Control Chart 

To demonstrate the performance of         
  in Equation 7.1 and          

  in 

Equation 7.2, we need a better understanding about its distribution to obtain 

appropriate control limits (UCL). Since the exact distributions of the finite sample 

for RMVV estimators are unknown, we approximate control limit by adopting the 

same Monte Carlo simulation method used for the construction of the     
  control 

limit as discussed in Section 3.3. The quantiles of the         
  and          

  are 

estimated for several combinations of sample sizes and dimensions. In order to 

estimate the 95% quantile of         
  and          

  for a given sample size n and 

dimension p in Phase I, we first generate K = 5000 samples of size n from a standard 

multivariate normal distribution           . Then, for each data set of size n, we 

compute RMVV mean vector and covariance matrix estimates which respectively 

are denoted as          and          where        . In addition, for each 

data set, we randomly generate a new observation      treated as a Phase II 
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observation from            and calculate the corresponding         
       and 

         
       values as given by Equation 7.1 and 7.2. The empirical distribution 

functions of         
       and          

       are based on the simulated values 

     
            

              
                                   (7.3) 

Next, we sort         
       and          

       values in ascending order and the 

UCL is the 95% quantile of the 5000 statistics.  

7.4 Performance Evaluation. 

The performance of the         
  and          

  control charts were put to test under 

various conditions. For such purpose, a simulation study had been designed to 

encompass several different scenarios (conditions), which were assumed to influence 

the strength and weaknesses of the proposed control charts. These various conditions 

were created by manipulating the number of observations (n), the number of 

dimensions (p), and the level of contamination by using different proportion of 

outliers (ε) and several mean shifts values (  ) as discussed in Section 3.4 of 

Chapter 3. 

The performance of         
       and          

       charts was judged based on 

the false alarm rate and probability of detection of the process of the Phase II data. 

Finally, the new charts were compared with the existing robust Hotelling T
2
 charts 
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using MVV (    
  , the improved     

  (       
  , MCD (    

   and RMCD 

(     
  . Each of these charts was tested on 5 types of contaminations on 23 

combinations of n and p which totaled up to 115 conditions.  For each condition, the 

false alarm rates and probability of detection were determined. The programs and 

simulations were run using MATLAB 7.8.0 (R2009a). The algorithm of MVV and 

RMVV were executed using the MATLAB 7.8.0 (R2009a), while Fast MCD 

algorithm to compute MCD and RMCD estimators used mcdcov.m in the LIBRA 

package under MATLAB 7.8.0 (R2009a). The computation of the RMCD estimator 

using mcdcov.m algorithm was based on breakdown point 0.25 as discussed in 

Section 2.3.5 of Chapter 2. 

7.5 Simulation Results 

Since the performance of false alarm rate and probability of detection for     
  and 

       
  are the same, and only differ in the control limits (UCL’s) as discussed in the 

result of Chapter 5, hereafter,     
  will represent both robust Hotelling T

2
 chart 

using MVV(    
   and improved     

  (       
  . Basically, this section compares 

the performance of     
 ,     

 ,      
 ,         

  and          
  control chart in terms 

of probability of detection and false alarm rate. The presentation of the results for the 

probability of detection and false alarm rate in this chapter differs from the 

presentation in Chapter 4 because of the increase in the number of robust methods. 

The results of the investigation are presented in tables for the probability of 
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detection. For ease of comparison, we will refer to the tables and graphical 

presentation for the false alarm rates. 

7.5.1 Probability of Detecting Outliers 

Tables 7.1-7.5 which recorded the probability of detection for each condition are 

arranged based on the ascending number of dimensions (variables) namely p = 2, 5, 

10, 15 and 20 with α = 0.05. The first column in each table displays the number of 

sample sizes, followed by the percentage of outliers and non-centrality values (mean 

shifts) respectively in the second and third column. The last four columns record the 

probability of detection of the control charts investigated in this study namely 

    
      

 ,       
 ,         

  and          
 .   

For each condition, the performance of the control chart is regarded as better in 

detecting changes when the value of the probability is closer to 1.  Table 7.1 presents 

the probability of detection for the bivariate case (p = 2). Under most conditions, 

         
  shows better detection than other charts, especially when the percentage of 

outliers is large (20%).  
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Table 7.1: Probability of detection for the corresponding control charts with 

dimension, p = 2 

Sample 

Size 

(n) 

% 

outliers 

(ε) 

Mean 

shift 

(µ1) 

Control Charts 

    
      

       
          

           

  

10 10% 3 0.5160  0.5320 0.5120 0.5080 0.5940 

25   0.7840  0.8320 0.8420 0.7730 0.8270 

50   0.8840  0.8930 0.9210 0.8590 0.9180 

100   0.9010 0.9190 0.9290 0.9040 0.9370 

200   0.9350  0.9460 0.9530 0.9460 0.9580 

500   0.9370  0.9520 0.9510 0.9620 0.9580 

10 10% 5 0.9310  0.9080 0.9240 0.8800 0.9380 

25   0.7840  0.9980 1.0000 0.9930 0.9990 

50   0.8840  1.0000 1.0000 1.0000 1.0000 

100   0.9010  1.0000 1.0000 1.0000 1.0000 

200   0.9350  1.0000 1.0000 1.0000 1.0000 

500   1.0000 1.0000 1.0000 1.0000 1.0000 

10 20% 3 0.3240  0.4270 0.3550 0.4070 0.4870 

25   0.5420 0.7210 0.6290 0.6900 0.7400 

50   0.6950  0.8280 0.7620 0.8010 0.8850 

100   0.7260 0.8890 0.7710 0.8900 0.9150 

200   0.8030  0.9140 0.8200 0.9390 0.9430 

500   0.8190  0.9310 0.8320 0.9490 0.9510 

10 20% 5 0.7960  0.8530 0.8590 0.8340 0.9120 

25   0.9790 0.9960 1.0000 0.9900 0.9980 

50   1.0000  1.0000 1.0000 1.0000 1.0000 

100   1.0000 1.0000  1.0000 0.9990 1.0000 

200   1.0000  1.0000 1.0000 1.0000 1.0000 

500   1.0000 1.0000 1.0000 1.0000 1.0000 
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Table 7.2: Probability of detection for the corresponding control charts with 

dimension, p = 5 

Sample 

Size 

(n) 

% 

outliers 

(ε) 

Mean 

shift 

(µ1) 

Control Charts 

    
      

       
          

           

  

30 10% 3 0.9610 0.9770 0.9690 0.9710 0.9900 

50   0.9860  0.9910 0.9970 0.9860 0.9990 

100   0.9980 1.0000 1.0000 0.9970 1.0000 

200   1.0000  1.0000 1.0000 1.0000 1.0000 

500   1.0000  1.0000 1.0000  1.0000 1.0000 

30 10% 5 1.0000 1.0000 1.0000 1.0000 1.0000 

50   1.0000 1.0000 1.0000 1.0000 1.0000 

100   1.0000 1.0000 1.0000 1.0000 1.0000 

200   1.0000 1.0000 1.0000 1.0000 1.0000 

500   1.0000  1.0000 1.0000 1.0000 1.0000 

30 20% 3 0.7530 0.9650 0.8350 0.9600 0.9840 

50   0.9530 0.9890 0.9800 0.9850 0.9980 

100   0.9870 0.9970 0.9990 0.9970 1.0000 

200   0.9960 0.9990 1.0000 1.0000 1.0000 

500   0.9980 1.0000 1.0000 1.0000 1.0000 

30 20% 5 1.0000 1.0000 1.0000 1.0000 1.0000 

50   1.0000 1.0000 1.0000 1.0000 1.0000 

100   1.0000 1.0000 1.0000 1.0000 1.0000 

200   1.0000 1.0000 1.0000 1.0000 1.0000 

500   1.0000 1.0000 1.0000 1.0000 1.0000 

 

  



 

158 

 

Table 7.3: Probability of detection for the corresponding control charts with 

dimension, p = 10 

Sample 

Size 

(n) 

% 

outliers 

(ε) 

Mean 

shift 

(µ1) 

Control Charts 

    
      

       
          

           

  

50 10% 3 1.0000 1.0000 1.0000 1.0000 1.0000 

100   1.0000 1.0000 1.0000 1.0000 1.0000 

200   1.0000 1.0000 1.0000 1.0000 1.0000 

500   1.0000 1.0000 1.0000 1.0000 1.0000 

50 10% 5 1.0000 1.0000 1.0000 1.0000 1.0000 

100   1.0000 1.0000 1.0000 1.0000 1.0000 

200   1.0000 1.0000 1.0000 1.0000 1.0000 

500   1.0000 1.0000 1.0000 1.0000 1.0000 

50 20% 3 0.8840 0.9990 0.8870 1.0000 1.0000 

100   1.0000 1.0000 1.0000 1.0000 1.0000 

200   1.0000 1.0000 1.0000 1.0000 1.0000 

500   1.0000 1.0000 1.0000 1.0000 1.0000 

50 20% 5 1.0000 1.0000 1.0000 1.0000 1.0000 

100   1.0000 1.0000 1.0000 1.0000 1.0000 

200   1.0000 1.0000 1.0000 1.0000 1.0000 

500   1.0000 1.0000 1.0000 1.0000 1.0000 
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Table 7.4: Probability of detection for the corresponding control charts with 

dimension, p = 15 

Sample 

Size 

(n) 

% 

outlier

s 

(ε) 

Mean 

shift 

(µ1) 

Control Charts 

    
      

       
          

           

  

80 10% 3 1.0000 1.0000 1.0000 1.0000 1.0000 

100   1.0000 1.0000 1.0000 1.0000 1.0000 

200   1.0000 1.0000 1.0000 1.0000 1.0000 

500   1.0000 1.0000 1.0000 1.0000 1.0000 

80 10% 5 1.0000 1.0000 1.0000 1.0000 1.0000 

100   1.0000 1.0000 1.0000 1.0000 1.0000 

200   1.0000 1.0000 1.0000 1.0000 1.0000 

500   1.0000 1.0000 1.0000 1.0000 1.0000 

80 20% 3 0.9310  1.0000 0.9930 1.0000 1.0000 

100   0.9840 1.0000 0.9840 1.0000 1.0000 

200   1.0000 1.0000 1.0000 1.0000 1.0000 

500   1.0000 1.0000 1.0000 1.0000 1.0000 

80 20% 5 1.0000 1.0000 1.0000 1.0000 1.0000 

100   1.0000 1.0000 1.0000 1.0000 1.0000 

200   1.0000 1.0000 1.0000 1.0000 1.0000 

500   1.0000 1.0000 1.0000 1.0000 1.0000 
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Table 7.5: Probability of detection for the corresponding control charts with 

dimension, p = 20 

Sample 

Size 

(n) 

% 

outliers 

(ε) 

Mean 

shift 

(µ1) 

Control Charts 

    
      

       
          

           

  

100 10% 3 1.0000 1.0000 1.0000 1.0000 1.0000 

200   1.0000 1.0000 1.0000 1.0000 1.0000 

300   1.0000 1.0000 1.0000 1.0000 1.0000 

500   1.0000 1.0000 1.0000 1.0000 1.0000 

100 10% 5 1.0000 1.0000 1.0000 1.0000 1.0000 

200   1.0000 1.0000 1.0000 1.0000 1.0000 

300   1.0000 1.0000 1.0000 1.0000 1.0000 

500   1.0000 1.0000 1.0000 1.0000 1.0000 

100 20% 3 0.8760 0.9970 0.8760 0.9990 0.9470 

200   0.9510 1.0000 0.9000 1.0000 0.9840 

300   0.9990 1.0000 0.9970 1.0000 0.9890 

500   1.0000 1.0000 1.0000 1.0000 0.9920 

100 20% 5 0.9970 0.9980 0.9970 0.9980 0.9670 

200   0.9950 1.0000 0.9500 1.0000 0.9940 

300   1.0000 1.0000 1.0000 1.0000 0.9990 

500   1.0000 1.0000 1.0000 1.0000 0.9990 

 

 

As we go across Tables 7.2, 7.3 and 7.4 which represent p = 5, 10 and 15 

respectively, we could observe that          
  always record the highest percentage of 

detection with most of the values achieving the perfect 100% detection.  However, as 

p reaches 20, the chart’s performance slightly drops.  However, this situation only 
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occurs when the percentage of outliers is large as exhibited in Table 7.5.  At this 

point, better ability of detection could be observed from     
   and         

  .  

7.5.2 False Alarm Rates 

Tables 7.6 – 7.10 record the false alarm rates for all charts. We will alternately refer 

to the visual presentation in Figure 7.1 to 7.5 and the numerical values in Table 7.6 – 

7.10. Each figure represents different type of contaminated distributions as discussed 

in Chapter 3 in Section 3.4.2, categorized as ideal, mildly contaminated, moderately 

contaminated and extremely contaminated. For each condition, the performance of 

the control chart is regarded as better in controlling false alarm rates when the 

empirical rate is closer to the nominal value, α = 0.05. In the tables, the values that 

are closest to the nominal value but not less than 0.025 and exceeding 0.055 are 

highlighted. This value was chosen based on Bradley’s interval of robustness 

(discussed in Section 4.2.3 in Chapter 4). 

Under bivariate case (p = 2) as presented in Table 7.6 and Figure 7.1, overall,     
   

shows better performance in controlling false alarm rate since it has the highest 

number of highlighted values followed by         
 .     

  shows better control of 

false alarm rate for ideal, mildly contaminated, and moderately (10% with mean shift 

5) contaminated distributions.  However, under moderate (20% with mean shift 3) 

and extreme contamination, the false alarm rates fall below the 0.025 level.  The 
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result implies that under bivariate case,     
  perform poorly when the percentage of 

contamination is high.   

Table 7.7 and Figure 7.2 exhibits the false alarm rates when p = 5. For this case in 

general,          
  chart has better ability in controlling false alarm rates. Trailing 

behind is         
 . Under small and moderate sample sizes,          

  surpasses the 

performance of the other charts. However, for the largest sample size i.e. 500, 

        
  is able to control false alarm rates better than          

 . 

The performance of the charts in terms of false alarm rates for the case of p = 10 is 

displayed in Table 7.8 and Figure 7.3. The overall results on false alarm rates show 

that         
  clearly outperforms the other control charts, except for ideal condition 

where the rate seem to be deviating from the nominal value for n = 100 and 500. 

Meanwhile, when the sample size is very small under 10% contamination with 3 and 

5 shifts in the mean vector, the          
  performs better. 

Under the case of p = 15, as can be clearly observed in Table 7.9 and Figure 7.4, the 

performance of the robust         
  chart is also much better than the other charts 

especially for moderate contamination.  Nonetheless under ideal condition, the rate 

of         
  slightly diverges from the nominal value, while     

  and          
  seem 

to have better control of false alarm rate. For 10% contamination,     
  and          
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display relatively good performance, but their performance declines when the 

contamination increases to 20%. 

The evaluation on false alarm rate for p = 20 in Table 7.10 clearly shows that in 

general,         
  has more ability in controlling the rate. Under ideal condition,  

    
  appears to have better control of false alarm, but for other conditions,         

  

seems to outperform all the charts. Even      
  could not compete well with any of 

the charts using MVV, be it     
 ,         

  or          
 .  Both charts using MCD 

namely      
  and     

  produce false alarm rates far below the nominal level for all 

cases. 
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Table 7.6: False alarm rate for the corresponding control charts with dimension,     

p = 2 

Sample 

Size 

(n) 

% 

outliers 

(ε) 

Mean 

shift 

(µ1) 

Control Charts 

    
      

       
          

           

  

10 0% 0 0.0520 0.0520 0.0510 0.0510 0.0600 

25   0.0480 0.0530 0.0470 0.0490 0.0480 

50   0.0580 0.0540 0.0570 0.0530 0.0490 

100   0.0460 0.0490 0.0430 0.0460 0.0450 

200   0.0600 0.0690 0.0450 0.0700 0.0600 

500   0.0520 0.0630 0.0470 0.0590 0.0520 

10 10% 3 0.0290 0.0450 0.0310 0.0450 0.0370 

25   0.0280 0.0390 0.0280 0.0390 0.0340 

50   0.0230 0.0350 0.0350 0.0450 0.0360 

100   0.0200 0.0300 0.0340 0.0330 0.0320 

200   0.0310 0.0490 0.036 0.0580 0.0540 

500   0.0270 0.0490 0.0360 0.0470 0.0460 

10 10% 5 0.0250 0.0450 0.0260 0.0450 0.0370 

25   0.0290 0.0390 0.0280 0.0390 0.0340 

50   0.0230 0.0340 0.0360 0.0430 0.0360 

100   0.0200 0.0290 0.0350 0.0330 0.0320 

200   0.0310 0.0500 0.0350 0.0590 0.0540 

500   0.0260 0.0480 0.0360 0.0470 0.0460 

10 20% 3 0.0210 0.0330 0.0230 0.0330 0.0250 

25   0.0090 0.0190 0.0200 0.0200 0.0150 

50   0.0080 0.0180 0.0230 0.0240 0.0200 

100   0.0050 0.0150 0.0190 0.0220 0.0240 

200   0.0050 0.0280 0.0190 0.0370 0.0400 

500   0.0040 0.0230 0.0180 0.0310 0.0360 

10 20% 5 0.0110 0.0330 0.0110 0.0320 0.0250 

25   0.0050 0.0190 0.0170 0.0200 0.0150 

50   0.0060 0.0170 0.0300 0.0240 0.0200 

100   0.0040 0.0150 0.0270 0.0230 0.0230 

200   0.0020 0.0280 0.0300 0.0360 0.0410 

500   0.0040 0.0230 0.0340 0.0310 0.0380 

Total highlighted  0 12 7 9 4 
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Figure 7.1: False alarm when p=2. 
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Table 7.7: False alarm rate for the corresponding control charts with dimension,     

p = 5 

Sample 

Size 

(n) 

% 

outliers 

(ε) 

Mean 

shift 

(µ1) 

Control Charts 

    
      

       
          

           

  

30 0% 0 0.0430 0.0500 0.0430 0.0500 0.0440 

50   0.0650 0.0490 0.0620 0.0540 0.0640 

100   0.0320 0.0380 0.0400 0.0400 0.0400 

200   0.0410 0.0390 0.0450 0.0420 0.0460 

500   0.0420 0.0430 0.0430 0.0480 0.0440 

30 10% 3 0.0100 0.0300 0.0120 0.0290 0.0330 

50   0.0130 0.0350 0.0270 0.0400 0.0410 

100   0.0140 0.0300 0.0320 0.0350 0.0370 

200   0.0200 0.0350 0.0380 0.0390 0.0460 

500   0.0160 0.0360 0.0350 0.0460 0.0350 

30 10% 5 0.0100 0.0330 0.0110 0.0340 0.0300 

50   0.0130 0.0370 0.0270 0.0420 0.0420 

100   0.0140 0.0320 0.0320 0.0340 0.0370 

200   0.0200 0.0350 0.0380 0.0390 0.0460 

500   0.0170 0.0370 0.0350 0.0460 0.0340 

30 20% 3 0.0050 0.0210 0.0070 0.0200 0.0200 

50   0.0040 0.0220 0.0160 0.0270 0.0260 

100   0.0020 0.0170 0.0280 0.0270 0.0320 

200   0.0010 0.0220 0.0340 0.0330 0.0420 

500   0.0030 0.0190 0.0330 0.0370 0.0320 

30 20% 5 0.0000 0.0200 0.0020 0.0190 0.0200 

50   0.0020 0.0230 0.0130 0.0270 0.0240 

100   0.0020 0.0190 0.0280 0.0290 0.0320 

200   0.0010 0.0220 0.0340 0.0330 0.0420 

500   0.0030 0.0190 0.0320 0.0370 0.0320 

Total highlighted  0 2 1 11 13 
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Figure 7.2: False alarm when p=5 
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Table 7.8: False alarm rate for the corresponding control charts with dimension,     

p = 10 

Sample 

Size 

(n) 

% 

outliers 

(ε) 

Mean 

shift 

(µ1) 

Control Charts 

    
      

       
          

           

  

50 0% 0 0.0530 0.0520 0.0570 0.0490 0.0570 

100   0.0420 0.0450 0.0490 0.0440 0.0490 

200   0.0540 0.0520 0.0440 0.0490 0.0590 

500   0.0490 0.0540 0.0480 0.0550 0.0510 

50 10% 3 0.0210 0.0370 0.0230 0.0360 0.0470 

100   0.0190 0.0390 0.0400 0.0450 0.0340 

200   0.0200 0.0390 0.0440 0.0480 0.0510 

500   0.0220 0.0390 0.0450 0.0490 0.0530 

50 10% 5 0.0210 0.0380 0.0230 0.0370 0.0390 

100   0.0200 0.0350 0.0390 0.0440 0.0340 

200   0.0200 0.0420 0.0440 0.0480 0.0510 

500   0.0230 0.0390 0.0450 0.0510 0.0540 

50 20% 3 0.0080 0.0250 0.0100 0.0280 0.0230 

100   0.0030 0.0240 0.0260 0.0280 0.0260 

200   0.0020 0.0250 0.0280 0.0430 0.0340 

500   0.0040 0.0260 0.0420 0.0450 0.0560 

50 20% 5 0.0020 0.0220 0.0040 0.0230 0.0230 

100   0.0030 0.0230 0.0260 0.0260 0.0260 

200   0.0020 0.0240 0.0280 0.0450 0.0340 

500   0.0040 0.0230 0.0420 0.0450 0.0560 

Total highlighted  1 0 2 13 6 

 

 

  



 

169 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: False alarm when p=10 
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Table 7.9: False alarm rate for the corresponding control charts with dimension,     

p = 15 

Sample 

Size 

(n) 

% 

outliers 

(ε) 

Mean 

shift 

(µ1) 

Control Charts 

    
      

       
          

           

  

80 0% 0 0.0580 0.0560 0.0580 0.0570 0.0600 

100   0.0490 0.0520 0.0520 0.0490 0.0490 

200   0.0540 0.0470 0.0540 0.0450 0.0610 

500   0.0460 0.0470 0.0510 0.0480 0.0510 

80 10% 3 0.0260 0.0470 0.0330 0.0440 0.0430 

100   0.0240 0.0450 0.0400 0.0350 0.0390 

200   0.0330 0.0420 0.0460 0.0530 0.0470 

500   0.0270 0.0390 0.0450 0.0500 0.0530 

80 10% 5 0.0230 0.0430 0.0300 0.0450 0.0390 

100   0.0240 0.0430 0.0380 0.0380 0.0430 

200   0.0310 0.0410 0.0460 0.0520 0.0460 

500   0.0260 0.0390 0.0450 0.0460 0.0520 

80 20% 3 0.0060 0.0270 0.0120 0.0290 0.0270 

100   0.0030 0.0250 0.0150 0.0330 0.0240 

200   0.0040 0.0200 0.0350 0.0430 0.0330 

500   0.0060 0.0260 0.0430 0.0500 0.0570 

80 20% 5 0.0030 0.0320 0.0100 0.0290 0.0290 

100   0.0020 0.0220 0.0190 0.0270 0.0220 

200   0.0040 0.0240 0.0340 0.0460 0.0340 

500   0.0060 0.0290 0.0430 0.0490 0.0560 

Total highlighted  1 4 1 12 4 
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Figure 7.4: False alarm when p=15 
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Table 7.10: False alarm rate for the corresponding control charts with dimension,    

p = 20 

Sample 

Size 

(n) 

% 

outliers 

(ε) 

Mean 

shift 

(µ1) 

Control Charts 

    
      

       
          

           

  

100 0% 0 0.0500 0.0530 0.0510 0.0530 0.0490 

200   0.0490 0.0510 0.0490 0.0470 0.0520 

300   0.0390 0.0440 0.0440 0.0440 0.0460 

500   0.0560 0.0530 0.0530 0.0490 0.0510 

100 10% 3 0.0290 0.0450 0.0310 0.0450 0.0370 

200   0.0280 0.0390 0.0280 0.0390 0.0340 

300   0.0230 0.0350 0.0350 0.0450 0.0360 

500   0.0200 0.0300 0.0340 0.0330 0.0320 

100 10% 5 0.0240 0.0420 0.0340 0.0420 0.0390 

200   0.0220 0.0380 0.0350 0.0420 0.0410 

300   0.0210 0.0340 0.0360 0.0390 0.0400 

500   0.0280 0.0400 0.0460 0.0490 0.0560 

100 20% 3 0.0060 0.0300 0.0100 0.0330 0.0270 

200   0.0050 0.0310 0.0310 0.0370 0.0260 

300   0.0060 0.0240 0.0360 0.0390 0.0320 

500   0.0030 0.0350 0.0440 0.0560 0.0520 

100 20% 5 0.0000 0.0240 0.0050 0.0270 0.0230 

200   0.0020 0.0250 0.0280 0.0300 0.0210 

300   0.0050 0.0220 0.0360 0.0360 0.0310 

500   0.0040 0.0320 0.0040 0.0470 0.054 

Total highlighted  2 3 3 14 3 
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Figure 7.5: False alarm when p=20 
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7.6 Real Data Analysis 

The investigation of         
  and          

  continues with the application on real 

data.  Real data were furnished to us by Asian Composite Manufacturing Sdn. Bhd. 

(ACM) as discussed in Chapter 4 in Section 4.3. The historical data set (Phase I) and 

the future data set (Phase II) are shown in Table 4.7 and 4.9 respectively. The 

product consisted of 3 quality variables (dimensions) namely trim edge, trim edge 

spar, and drill hole. The performance of the proposed charts (       
 ,        

 , 

        
 ,          

 ) are then compared with robust Hotelling T
2
 chart using MCD 

(    
   and RMCD (     

 ), and also the traditional Hotelling T
2
 control charts 

where     
  is without cleaning the outliers and   

  is the standard approach which 

cleans the outliers once.  

Estimates for the location vector ( ̅  and scatter matrix (S) are presented in Table 

7.11.  The calculation of the upper control limits (UCLs) based on the estimates are 

presented in the last column of the table.  The values of the T
2 

statistics based on the 

above estimators appear in the Table 7.12. The graphical presentation of the 

corresponding control charts are put on view in Figure 7.6 and 7.7. Charts (a), (b), 

(c), (d) in Figure 7.6 and (e), (f), (g), (h) in Figure 7.7 represent the control chart for 

traditional T
2
 chart (  

 ), standard T
2
 chart (  

 ),     
 ,     

 ,        
 ,      

 , 

        
  and          

  respectively.   
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Table 7.11.  Estimates of location vector, covariance matrix and UCL. 

Types of 

Control 

Chart 

Location Vector( ̅  Scatter Matrix(S) 

 

UCL 

  
  [                     ] 

[
                     
                     
                     

] 
11.035 

 

 

  
  [                     ] 

[
                     
                      
                      

] 
11.798 

 

 

    
  [                     ] 

[
                     
                      
                      

] 
21.946 

 

       
  [                     ] 

[
                     
                     
                     

] 
41.298 

 

       
  [                     ] 

[
                      
                      
                       

] 
11.551 

     
  [                     ] 

[
                     
                      
                      

] 
24.427 

 

        

  [                     ] 
[
                      
                      
                       

] 
16.503 

         

  [                     ] 
[
                     
                      
                      

] 
13.680 
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Table 7.12.  Hotelling T
2
 values for future data (Phase II)  

n   
    

      
         

         
       

          

           

  

1 0.5582 1.4242 1.7659 4.3908 1.5661 3.1188 2.7991 1.7757 

2 0.9003 2.5492 2.4694 5.1695 1.8438 4.3613 3.1113 2.4832 

3 0.4992 0.4936 0.3437 0.2992 0.1067 0.6070 0.4903 0.3456 

4 0.5463 1.0157 0.5456 1.5064 0.5373 0.9636 1.6756 0.5487 

5 0.4592 0.9588 0.4580 3.7869 1.3507 0.8088 3.1742 0.4605 

6 0.9013 1.7480 1.2527 2.2421 0.7997 2.2125 1.1559 1.2597 

7 3.0933 4.1372 4.4404 6.5361 2.3313 7.8423 1.5581 4.4651 

8 0.8061 1.2884 0.6837 1.0556 0.3765 1.2075 0.0625 0.6875 

9 7.3602 9.6843 14.9766 26.0499 9.2913 26.4505 10.1632 15.0599 

10 3.6198 5.8035 9.7417 19.1760 6.8396 17.2050 8.2001 9.7958 

11 5.3839 8.0897 11.8717 19.6313 7.0019 20.9668 7.6269 11.9376 

12 2.7387 4.7949 2.9788 8.1388 2.9029 5.2610 1.6758 2.9954 

13 3.8058 5.6890 7.4040 11.3895 4.0623 13.0763 4.0550 7.4451 

14 2.0548 6.3468 3.3086 9.1498 3.2635 5.8434 2.1624 3.3270 

15 2.5073 5.0227 6.8054 12.3881 4.4185 12.0191 5.4472 6.8432 

16 1.1976 1.8980 1.0679 2.0563 0.7334 1.8860 0.5881 1.0738 

17 1.5798 2.2630 1.7597 2.8765 1.0260 3.1078 0.4603 1.7694 

18 5.7910 7.9657 9.2817 13.9293 4.9682 16.3925 4.2017 9.3333 

19 1.8304 4.7003 2.4178 4.8791 1.7402 4.2700 0.7299 2.4312 

20 38.1397 190.2969 214.9233 894.5184 319.0497 379.5799 393.5026 216.1176 

21 1.2651 2.3301 1.5486 2.0641 0.7362 2.7351 0.4172 1.5572 

22 8.4181 19.7720 24.6552 45.2462 16.1381 43.5439 19.3300 24.7922 

23 3.7588 5.1645 4.8793 7.5328 2.6867 8.6175 1.5065 4.9065 

24 1.0602 1.7564 0.9320 2.23575 0.7974 1.6460 0.4294 0.9372 

25 42.8447 134.6222 68.6307 116.02933 41.3844 121.2098 47.0107 69.0120 

26 0.4832 1.3946 0.7796 7.32655 2.6132 1.3768 4.9503 0.7839 
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                               Chart (a)                                                            Chart (b) 

 

   

                               Chart (c)                                                           Chart (d) 

 

Figure 7.6:  Hotelling T
2
 control charts
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                               Chart (e)                                                 Chart (f) 

 

     

                               Chart (g)                                                  Chart (h) 

 

Figure 7.7:  Hotelling T
2
 control charts
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corresponding UCLs, we observe that        
 ,        

 ,         
 ,          

 ,     
 , 

     
  and   

  signal observations 20, 22 and 25 as out-of-control, but   
  only 

signals 20 and 25 as out-of-control observations and fails to signal observation 22. 

Interestingly          
  and      

  also signal observation 9 as out-of-control, which 

indicates that reweighted versions of MCD and MVV estimator with breakdown 

point 0.25 are more efficient in detecting out-of-control signal than the other charts. 

The performance is also graphically presented in Figure 7.7. 

7.7 Conclusion 

In this chapter, we proposed another alternative to the Hotelling T
2
 chart by using 

robust estimator known as reweighted minimum variance vector (RMVV) for its 

location and scatter measures with two different breakdown points. Even though 

MVV estimators possess the good properties such as affine equivariant, high 

breakdown point and has better computational efficiency, this estimator is low in 

statistical efficiency.  Thus, MVV was later improved in terms of its statistical 

efficiency in detecting outliers via reweighted scheme. The performance of the 

proposed robust Hotelling T
2
 chart using RMVV with breakdown point 0.5 and 0.25 

performed so well in terms of detecting outliers and also in controlling false alarm 

rates, but their ability differed on certain conditions. 
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The          
  control chart consistently achieved high probability in detecting 

outliers for low and moderate number of dimensions (p) with small sample size such 

that the range of p is from 2 to 10 and n ≤ 100.  However, the performance of 

         
  in detecting outliers dwindled when p increased to 20 and         

  showed 

better ability in handling this situation.  In the context of false alarm rates, on the 

whole, the         
  control chart is the best performer especially for large sample 

size with high dimensions. Under low dimensions,         
  control chart was 

outdone by     
  and          

  control chart when p = 2 and 5 respectively. 

Generally,         
  demonstrates the best performance compared to the other charts 

especially for high dimension.  The chart is more outstanding with relative to     
  

and          
  in terms of controlling false alarm rate, but the performance of the 

other two charts cannot be undermined. In the case of low dimension,          
  is 

more recommended because it appeared to be more efficient in detecting outliers as 

proven in the simulated and real data analysis.  In real data analysis,          
  chart 

and      
  chart were able to signal observation 9 as out-of-control but other charts 

failed to do so. Despite the good performance in the real data analysis,       
  chart 

showed conflicting performance between false alarm rates and probability of 

detection such that increasing the probability of detection will increase the false 

alarm rates away from the nominal value and vice versa. This phenomenon also 

occurs in     
 . 
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CHAPTER EIGHT 

CONCLUSION AND AREA OF FURTHER RESEARCH 

8.1 Conclusion 

The ultimate goal of this research is to search for alternative Hotelling T
2
 control 

chart which can improve the performance of the existing charts (traditional Hotelling 

T
2 

and robust Hotelling T
2
 issued from MCD and RMCD) in terms of false alarm rate 

and probability of detection specifically for individual observations. In achieving this 

goal, firstly we proposed a robust Hotelling T
2
 control chart based on minimum 

vector variance (MVV) estimators by using the second approach where these robust 

estimators calculated at Phase I are then used directly in Phase II analysis. This 

second approach does not have to go through the process of outliers cleaning in 

Phase I because these robust estimators are resistant and not influenced by outliers. 

MVV is a new robust estimator which possesses the good properties as MCD i.e. 

affine equivariance and high breakdown point; moreover it has a better 

computational efficiency as compared to MCD.  

In statistical quality control, control limit is an essential element that depends on the 

distribution of the statistic used.  Since the statistical distributions for the robust 

statistics in this study are unknown, the reference control limits were determined by 

Monte Carlo simulation method. The evaluations on the performance of the proposed 

charts were based on the probability of detection and false alarm rates. These charts 
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were then compared with the performance of the traditional charts and the chart 

issued from MCD estimators.  In general, the result showed that     
  charts were 

able to detect out of control signals and simultaneously control false alarm rates even 

with large number of quality characteristics (dimensions). In contrast, the MCD 

charts performed well in detecting out of control signals but failed in controlling 

false alarm rates. The traditional chart (  
 ), however was able to control false alarm 

rates but not effective in detecting out of control signals.  

Investigation on the proposed charts continued with the real industrial data from 

Asian Composite Manufacturing Sdn. Bhd. (ACM).  This company is involved in the 

production of advanced composite panels for the aircraft industry. ACM has 

provided us the real data on spoilers which consisted of several features such as trim 

edge (X1), trim edge spar (X2), and drill hole (X3). The results on real data concurred 

with the results obtained from the simulation study which support both robust MVV 

and MCD estimators in detecting outliers.  Nonetheless, in this case, performance of 

  
  chart was on par with the     

  chart and also     
  chart.  The outcome could be 

due to the small number of quality characteristics (dimension) of the product. As 

revealed in the simulation study,   
  performed well in detecting outliers under low 

dimension (not more than 5) only, but underperformed when the dimension 

increased to above 5.   
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Despite the good performance of     
 , the estimated UCLs for Hotelling T

2 
chart 

issued from MVV estimators were large as compared to the traditional and MCD 

charts. We then took the task to improve the MVV scatter (    ) estimator in terms 

of consistency and biasedness. Investigation through simulation experiment were 

done to illustrate the consistency and unbiasedness of the MVV estimator at 

multivariate normal data.  The inclusion of consistency and unbiased factor made the 

     estimator consistent and unbiased at normal model. When put to test on the 

simulated and real data, the improved control chart,        
 , showed great 

improvement in the control limit values while maintaining its good performance in 

terms of false alarm and probability of detection. 

Since the MVV estimators were directly used in Phase II analysis, they should 

possess higher statistical efficiency in order to reduce the influence of outlying 

observations. However, the highly robust affine equivariant estimators with the best 

breakdown point commonly have to compensate with low statistical efficiency. To 

mitigate the problem, first we investigated on the asymptotic relative efficiency 

(ARE) of MVV estimators.  The AREs were computed for two different breakdown 

points such that BP = 0.5 with   ⌊
     

 
⌋ and BP = 0.25 with h = (0.75)n. For each 

p, we found a decrease in the efficiency value when BP changes from 0.25 to 0.5. 

Hence, to increase the efficiency while retaining the highest breakdown point, we 
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proceeded to improve the minimum vector variance (MVV) estimators in the context 

of statistical efficiency via reweighted version (RMVV).   

We developed an algorithm to calculate an approximate RMVV solution, where the 

basis of our algorithm followed a generalization of the MVV algorithm.  

Interestingly, the reweighted scheme was able to maintain the breakdown point of 

0.5 and attain higher efficiency at the normal distribution. But the gain in efficiency 

increased the bias under contamination. Thus, for a balance between breakdown 

point and statistical efficiency when the data is suspected to be contaminated by 

outliers, RMVV with BP = 0.25 is recommended. 

Since the ability of RMVV differed with respect to different breakdown points, the 

investigation on RMVV in Hotelling T
2
 in terms of probability of detection and false 

alarm rates were later conducted on both breakdown points. Both the RMVV charts 

(        
  and          

 ) were found to be more effective in detecting multiple 

outliers and controlling false alarm rate compared to the other charts. However, each 

of them had its advantage over the other charts depending on the combinations of 

sample size and the proportion of outliers present. The          
  chart performed 

better for small sample sizes with low dimensions.  In contrast, the         
  chart 

was better for large sample sizes of high dimensions.  The analysis of ACM spoilers 

data clarified the situation whereby under small dimension (p = 3) and small sample 

size (n = 26) the          
  chart was more capable of detecting out of control data.  
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8.2 Implications 

As we know the performance of traditional Hotelling T
2
 control chart using classical 

estimators in Phase I suffer from masking and swamping effect. Although previous 

researches have introduced several robust control charts which are capable of 

addressing the problem of masking and swamping, but there are some disadvantages, 

particularly in their ability in controlling the false alarm rates. Therefore our goal 

was to propose alternative Hotelling T
2
 control charts which can perform well in 

detecting outliers while simultaneously controlling false alarm rates.  

In this final chapter, we would like to share some of the advances that emerged from 

this study.  In its original state, the MVV estimators when applied in Hotelling T
2
 

chart had already shown positive impact in detecting outliers and controlling false 

alarm.  While, its counterpart, the MCD estimators showed conflicting ability 

between the two measurements. After reweighting the MVV estimators, the 

efficiency of the estimators increased and the reweighted MVV (RMVV) further 

improved the performance of Hotelling T
2
 chart and outperformed the Hotelling T

2
 

chart issued from reweighted MCD estimators (RMCD) 

As a conclusion, the presence of outliers might alter the supposed normal 

distribution to be non-normal, which consequently will inflate false alarm, suffer loss 

of power, and will cause spurious detection of out of control process. The RMVV 

charts may serve as alternative to some other control charts which are unable to 
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handle the problem of non-normality.  The proposed robust Hotelling T
2
 control 

charts hold some advantages such that they can handle low, medium and high 

dimensional quality characteristics and are also able to reduce the computational 

time. For that reason, our proposed charts are deemed more suitable to be applied in 

various real life situations especially those related to production process control.   

8.3 Limitation 

As with any study, the restricted selection of the robust estimators like MCD and 

RMCD in the context of comparison may limit the generalization of the findings.  

However, this limitation is necessary because our proposed methods were based on 

the Mahanalobis distance, moreover these estimators are the most popular and well 

accepted currently. The choices of number of dimensions, sample sizes and mixed 

normal models for the generation of the data set, surely does not completely reflect 

the intricacies of real data sets. 

8.4 Areas for Further Research 

In the short term, the results of this dissertation are expected to provide additional 

explanations and approaches in process monitoring and control.  However, there are 

always rooms for improvement. The complexity in estimating MVV could be made 

simpler so that the proposed charts are more adaptive to industries.    
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We made improvement on the properties of MVV estimators in terms of consistency 

and unbiasedness and we also introduced reweighted version of MVV estimator to 

attain better efficiency.  However, the analyses were demonstrated via simulation 

alone with no mathematical proof. Thus, to support the finding, mathematical proof 

could be suggested for future research.    

There are still some unanswered questions related to high breakdown estimation 

methods for multivariate control charts. In this study the asymptotic distribution of 

the     
  ,      

  ,     
   and      

   statistics is considered as   
 .  It would be better 

to study on the exact distribution of MVV and RMVV estimators. Through the exact 

distribution, the use of approximate control limits is much simpler to obtain than via 

simulation. 

In this study, we only considered high breakdown estimators that are resistant to 

shifts in the mean vector.  However, less study were conducted on the effect of 

changes in the variance-covariance matrix as done by Levinson, Holmes, and 

Mergen (2002) and Khoo and Quah (2003, 2004). Thus it could be suggested for 

future research.    
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Appendix A 

FLOW CHART FOR PROCESS OF CALCULATING     
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Appendix B 

PROGRAM FOR MVV ESTIMATOR 

function [T,S]= real_MVV(x) 

epsilon=10^-5; delta=10e-15; 

[n,p]=size(x); 

h=floor((n+p+1)/2);% break down point 50% 

%h=0.75*n; 

rep=500; 

SC2=zeros(p,p,500); 

TC2=zeros(500,p); 

TraceSo=zeros(500,1); 

%This condition for h<n, p>=2 and n<=600 

%Process of choosing the initial observation (starting subset,(p+1)subset) 

%of Ho. This process repeate 500 times. 

for k=1:rep 

    Iadd=1; 

    DetSo=0; 

    ho=p+Iadd; 

        while DetSo<delta 

         Ho=x(rn(1:ho),:); 

         To = mean(Ho); 

        So=cov(Ho)*(ho-1)/ho;  

        DetSo=det(So); Iadd=Iadd+1; 

    end 

    clear DetSo Iadd h1;     

    d=zeros(n,1); 

    for m=1:2  

        for i=1:n;      

            d(i)=(x(i,:)-To)/So*(x(i,:)-To)'; 

        end 

    H1 = x(pi(1:h),:); 

    T1=mean(H1); 

    a1=(h-1)/h; 

    S1=cov(H1)*a1;  

    To=T1; So=S1;      

    end 

TraceSo(k,1)=trace(S1^2); 

SC2(:,:,k)=S1; 

TC2(k,:)=T1; 

end 

[TraceSoSort,pi500]=sort(TraceSo); 

SCon=zeros(10,1); 

TCon=zeros(10,1); 
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Appendix C 

PROGRAM FOR HOTELLING T
2
 

 

% This program calculates the type I error for the Hotelling T square control charts 

clear all;  

R=5000; R1=1000;   N=200; P=2;         

 

pi=0.2; %percent of outliers 

%m=[3 3]; 

m=[5 5]; 

 

Scov1=zeros(P,P,R1); 

xbar1=zeros(R1,P); 

S=zeros(P,P,R); 

T=zeros(R,P); 

%meanminusmean=zeros(R1,P); 

ROUND=floor(pi*N); 

T21=zeros(R,1); 

Looping to get the UCL value 

for r=1:R 

     seed = 3985+r;   

     rand('seed',seed) 

     randn('seed',seed); 

     Z=randn(N+1,P);  %generate random data set 

    [T,S]=real_MVV(Z(1:N,:));  %Recall the subroutine result  

     meanminusmean(r,:)= Z(N+1,:)-T; 

    T21(r,1)=meanminusmean(r,:)/S * (meanminusmean(r,:))'; %T2  

 end 

for r1=1:R1        

    seed = 95395+r1;   

    rand('seed',seed); 

    randn('seed',seed); 

    Z=randn(N,P); 

 

    %contaminate 

    Data11=[Z(1:ROUND,:)+repmat(m,ROUND,1);Z(ROUND+1:N,:)];%Case A                                                              

   [xbar1(r1,:),Scov1(:,:,r1)]=real_MVV(Data11);  

 

end 
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%Phase II 

T221=zeros(R1,1); 

T222=zeros(R1,1); 

for r1=1:R1   

    seed = 15391+r1;   

    rand('seed',seed);  

    randn('seed',seed); 

    Z1=randn(1,P);    Z2=Z1+m;  

    Data1MinusMean=Z1-xbar1(r1,:); 

    Data2MinusMean=Z2-xbar1(r1,:); 

    T221(r1)= Data1MinusMean/Scov1(:,:,r1)*(Data1MinusMean)';     

T222(r1)= Data2MinusMean/Scov1(:,:,r1)*(Data2MinusMean)';        

end 

 

Count1=0; 

Count2=0; 

for i=1:R1   

   if( T221(i)>UCL) 

      Count1=Count1+1; 

   end 

    if( T222(i)>UCL) 

       Count2=Count2+1; 

    end 

end      

 typeerror=Count1/R1; 

 ProbDetect=Count2/R1; 

 

 




