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Abstrak

Carta kawalan Hotelling T? adalah alat yang berkesan bagi kawalan proses
berstatistik untuk persekitaran multivariat. Walau bagaimanapun, prestasi carta
kawalan Hotelling T? tradisional yang menggunakan penganggar lokasi dan serakan
klasik biasanya dicemari oleh kesan pelitupan dan swamping. Bagi mengurangkan
masalah ini, penganggar teguh telah disyorkan. Penganggar teguh yang paling
popular dan digunakan secara meluas dalam carta kawalan Hotelling T* adalah
penentu kovarians minimum (MCD). Terkini, penganggar yang lebih baik dikenali
sebagai varians vektor minimum (MVV) telah diperkenalkan. Penganggar ini
mempunyai titik kerosakan yang tinggi, varians samaan affin dan pengiraan yang
lebih cekap. Oleh kerana cirinya yang baik, kajian ini mencadangkan untuk
mengganti penganggar klasik dengan penganggar lokasi dan serakan MVV dalam
pembinaan carta kawalan Hotelling T2 bagi cerapan individu pada analisis Fasa II.
Walau bagaimanapun, penganggar MVV didapati mempunyai beberapa kelemahan
seperti tidak tekal pada taburan normal, tidak saksama untuk sampel bersaiz kecil
dan kurang cekap pada titik kerosakan yang tinggi. Bagi meningkatkan ketekalan
dan kesaksamaan MVYV, penganggar tersebut telah didarabkan masing-masing
dengan faktor ketekalan dan faktor pembetulan. Bagi mengekalkan titik kerosakan di
samping mempunyai kecekapan statistik yang tinggi, penganggar MVV berpemberat
semula (RMVV) telah dicadangkan. Seterusnya, penganggar RMVV tersebut
digunakan dalam pembinaan carta kawalan Hotelling T2 Carta teguh Hotelling T?
yang baharu ini menghasilkan kesan positif dalam mengesan titik terpencil dan pada
masa yang sama mampu mengawal kadar penggera palsu. Di samping analisis
terhadap data simulasi, analisis ke atas data sebenar juga mendapati carta teguh
Hotelling T2 yang baharu ini dapat mengesan cerapan luar kawalan dengan lebih baik
berbanding carta lain yang diselidik dalam kajian ini. Berdasarkan prestasi yang baik
terhadap analisis data simulasi dan sebenar, carta teguh Hotelling T? yang baharu ini
adalah merupakan alternatif yang baik bagi carta Hotelling T? yang sedia ada.

Kata kunci: Penganggar Cekap, Kawalan Proses Berstatistik Multivariat, Varians Vektor Minimum
Berpemberat Semula, Carta Hotelling T? Teguh, Penganggar Multivariat Teguh



Abstract

Hotelling T2 control chart is an effective tool in statistical process control for
multivariate environment. However, the performance of traditional Hotelling T2
control chart using classical location and scatter estimators is usually marred by the
masking and swamping effects. In order to alleviate the problem, robust estimators
are recommended. The most popular and widely used robust estimator in the
Hotelling T2 control chart is the minimum covariance determinant (MCD). Recently,
a new robust estimator known as minimum vector variance (MVV) was introduced.
This estimator possesses high breakdown point, affine equivariance and is superior
in terms of computational efficiency. Due to these nice properties, this study
proposed to replace the classical estimators with the MVV location and scatter
estimators in the construction of Hotelling T? control chart for individual
observations in Phase Il analysis. Nevertheless, some drawbacks such as
inconsistency under normal distribution, biased for small sample size and low
efficiency under high breakdown point were discovered. To improve the MVV
estimators in terms of consistency and unbiasedness, the MVV scatter estimator was
multiplied by consistency and correction factors respectively. To maintain the high
breakdown point while having high statistical efficiency, a reweighted version of
MVV estimator (RMVV) was proposed. Subsequently, the RMVV estimators were
applied in the construction of Hotelling T2 control chart. The new robust Hotelling
T? chart produced positive impact in detecting outliers while simultaneously
controlling false alarm rates. Apart from analysis of simulated data, analysis of real
data also found that the new robust Hotelling T? chart was able to detect out of
control observations better than the other charts investigated in this study. Based on
the good performance on both simulated and real data analysis, the new robust
Hotelling T chart is a good alternative to the existing Hotelling T charts.

Keywords: Efficient Estimators, Multivariate Statistical Process Control, Reweighted Minimum
Vector Variance, Robust Hotelling T? Chart, Robust Multivariate Estimator
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

Success of a firm very much depends on the quality of its product. Be it goods or
services, the firm has little chance of success if its core product is of inferior quality
(Ferrel & Hartline, 2008). To ensure that the quality of a product is always up to a
certain level, the process behavior needs be monitored and the quality of the process
has to be improved. This will consequently lead to business success, growth and
enhanced competitiveness. To better meet customers’ expectations, many
manufacturing industries have reviewed their processes and improve specifications
with acceptable standards by reducing variability in the process and product, which
substantially will improve performance. Thus, identifying the cause of variation to

reduce variability in a process is vital in monitoring quality.

There are two distinct causes of variations in a process namely the common and
special cause variations. While common cause variation can be reduced by
management intervention, the special cause is hard to gauge as this variation affects
the process in unpredictable ways. However, special cause can be detected by some
statistical techniques. It can be eliminated from the process by the worker or process
control team in charge of the particular segment of the process, which is referred as
local action. When all the special-cause variation is eliminated, the process is said to

be in-statistical control. The second type of variation, known as common-cause

1



variation, is inherent in the process. This type of variation is predictable
probabilistically and randomly distributed. It is the natural variation in a process and
typically requires more skill in reducing, which is usually in charge by engineering
department. The variation that originates from special causes is generally much

greater than it is for common causes.

To examine the source of variations for special causes, manufacturers turn to
statistical process control. Statistical Process Control (SPC) is a broad field of
research and applications devoted to the improvement of products and processes.

The basic procedure of SPC consists of the following steps:

1. the development of a statistical model from historical data collected when the
process runs under normal operating conditions;

2. the determination of control limits for the statistical model; and

3. the detection of process faults when on-line data exceeds the control limits,

followed by the diagnoses of the cause of the faults.

One of the main challenges faced by SPC is to simultaneously monitor product with
multiple quality characteristics especially when the number of characteristics is
large. In monitoring the quality of a product or process, quite often more than one
quality characteristic are measured on each manufactured item, thus producing a
multivariate response. These quality measurements are usually correlated with each
other. Multivariate SPC (MSPC) methods are designed by taking into account the

correlations among the variables and the ability to simultaneously monitor the
2



variables through time. Like other statistical detection problems, MSPC is concerned
with Type | and Type Il error. The former which is also known as false alarm,
occurs when good data is classified as defective, while the latter occurs when the test
fails to detect defective data point. A good and reliable method should be able to

control these two errors.

One of the main techniques employed in SPC is process control charts, where the
purpose is to achieve and maintain statistical control and capability (Montgomery,
2005). Control charts are known to be effective tools for monitoring the quality of
processes in MSPC and are applied in many industries. Data occur sequentially in
time and are often reduced to a statistic(s) which represent the current state of the
process. The statistics are then plotted on a chart with a process limit identified as the
upper and lower control limits (UCL and LCL). The control limits are the common
features of the chart, and this chart is specifically known as control chart. A process
is deemed stable or in control if all the points (statistics) fall within the limits.
Otherwise, the process is signaled as out of control and corrective action on the

process may be needed.

The first original study of multivariate control chart was introduced by Hotelling
(1947). Since then, as to provide for a wider spectrum, the study on multivariate
quality control charts continues to expand. Currently, three of the most frequently

considered multivariate control charts are Hotelling’s T, the MEWMA (Multivariate
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Exponentially Weighted Moving Average) and the MCUSUM (Multivariate
Cumulative Sum). However, the Hotelling’s T is still the most frequently selected
tool for multivariate charting procedure due to the fact that T? chart possesses almost
all the desirable characteristics for a multivariate control chart such as ease of
application, flexibility, sensitivity to small process changes, and the availability of
software for application (Mason & Young, 2002). Moreover T2 chart is widely
accepted by quality engineers and operators because of its similarity in appearance to
the univariate (Shewhart) chart (Prins & Mader, 1997). However, it is not a panacea,

as it is not free of limitations.

In the construction of a control chart for monitoring the variability of a univariate or
multivariate process, Alt (1985) has defined two phases of the process as phase | and
phase Il. It is useful to distinguish between methods and applications of the two
phases. Although the two phases are both dedicated to identify out-of-control
situations, each phase has a unique objective. These phases are also called

retrospective and prospective analysis respectively (see Montgomery, 2005).

1.1.1 Phase | vs. Phase 11

The purpose of a control chart is to ensure that a process is in control by achieving
and maintaining statistical control at each phase of the process. In phase I, a
preliminary data set is analyzed to determine whether the process is in control, by

establishing the initial control limits and estimating the in-control parameters of the
4



process. The goals of Phase | as stated by Woodall, Spitzner, Montgomery and

Gupta (2004) are:

e To understand the variation in a process over time
e To evaluate the process stability

e To model the in-control process performance

This phase also involves the process of detecting outliers that cause the process to
become unstable. Thus, in this phase, one needs to identify and remove atypical
observations in preliminary data set before the in-control parameters are estimated
and the initial control limit is computed. A typical observation located at an extreme
distance from the main part of the sample data is considered as a variation due to
special-cause. While in phase 11, control charts are used with future observations for
detecting possible departures from parameters estimated in phase I. The reason we
seek to remove the presence of special causes of variation from preliminary data set
is due to the fact that their inclusion can result in biased sample estimates of the
population mean vector and covariance matrix. The existence of special cause
variation would consequently lead to the inflation of control limits and reduction of
power to detect process changes in phase Il. Therefore a successful phase Il analysis
very much depends on a successful phase | analysis in estimating in-control mean,

variance, and covariance parameters.



1.1.2 Hotelling T? Control Chart

Several statistical tests have been presented for identifying the presence of special
causes of variation, and one of the most frequently used is the Hotelling T? statistics
for the reasons mentioned earlier. With the T? statistic, the corresponding control
chart has only a UCL since all the generated values are positive. The computation of
UCL offers some differences between Phase | and Phase |1, due to the distinction of
the T2 statistic probability distribution. The main purpose of the Hotelling T?
statistics in Phase | control chart is to clean the preliminary data set from
multivariate outliers and other distributional deviations. The preliminary data set
collected in retrospective analysis involves either initial subgroups or individual
observations. In many situations, data are collected according to the rational
subgroups concept. Nevertheless, sometimes data come in the form of individual
observations especially when the production rate is too slow to conveniently collect
subgroup size greater than one. For individual multivariate observations, the
parameter estimates for the mean vector and covariance matrix in Phase | is based on
pooling all the observations (Jackson, 1985; Tracy, Young & Mason, 1992; Wierda,

1994; Lowry & Montgomery, 1995).

Phase | begins with the cleansing process by first selecting a value for a, i.e. the
probability of making a Type | error. The choice of a will directly determine the

size of the control region, 1 — a. A type | error is made if an observation is declared



as an outlier when in fact it is not. Suppose that the preliminary data set in Phase |
consist of x; = {xil,xiz, ...,xi,,} where i =1,2,...,n and x; represents p-dimensional
of time ordered vectors that are independent of each other. Hotelling T statistic for

individual observations which is similar to Mahalanobis distance, is given as

T? = (% — W' (x; — ) (1.1)

This statistic (T7?) is used to monitor the process via a T chart. A T? value which
exceeds the UCL limit signifies that the corresponding observation is an outlier and
should be deleted from the preliminary data set. If x; is assumed to come from
multivariate normal distribution with mean vector u and covariance matrix X, and
the parameters are known, the UCL for the cleansing process is determined using the

chi square (x%) distribution as follows,

UCL = x¢, py (1.2)

where )((Za,p) is the upper ath quantile of a chi-square distribution having p degrees
of freedom. However, when u and X are unknown, we estimate these parameters
from a historical data set using sample mean vector (x) and the sample covariance
matrix (S). Thus, if we consider a sample x; = {xil,x,-z,...,xip} of p-variate

observations, the T2 statistic for x; can be constructed in the following manner:

T? = (x; —X)'S71(x; — %) (1.3)
7



where § = S,,and u, v =1, ... , p. The sample mean and covariance matrix are

estimated as;

fu = n_l Z?:l Xiy and § = (TL - 1)_1 Z?:l ' (xiu - fu)(xiv - jv)t (14)

The control limit is determined by

(n-1)?

veL = "= B prp-r, (1.5)

(a’z’ 2

) is the upper ath quantile of a Beta distribution (Mason & Young,

where B(a;g'%ﬂ
2002). The observations with T7? values greater that UCL, will be deleted from the
preliminary data. This signals the possible presence of outlier observations in the
process which exist due to special-cause variation. With the remaining observations
(preliminary data minus outliers), we calculate new estimates for the mean vector
and covariance matrix. Then we calculate UCL using the remaining observations.
Again, we remove any outliers identified and repeat the process until a homogeneous
set of observations is obtained. The final set of data is the historical data set (HDS).
This repeated process is known as iterative re-estimation procedure (Mason &
Young, 2002). Once a homogeneous reference HDS is obtained and the common

estimates ¥ and S are computed using Equation 1.4, the next step is to construct a T

control chart for Phase Il. Assume the process is being monitored by observing a



new single observation vector,x, = {xgl,xgz, ...,xgp}, on p variables at each time

point. The T2 value associated with X g Is given by

Ty = (xg—%)'S7 ' (xg — %) (1.6)
At this phase, the control limit is determined by

pn+1)(n—-1)

UCL = [ e

] Fiaipn-p)(1.7)

where n is the size of the HDS and Fq;p,»—p) is the ath quantile of F distribution. In

this phase, F distribution is used because the calculation of T? statistic involves

different data from those used to estimate the parameters.

The traditional T2 chart works well when number of process variable is not too large
i.e. p < 10. As the number of variables grows, the efficiency of T2 chart in detecting
shift will depreciate (Mason, Champ, Tracy, Wierda & Young, 1997). In addition,
the estimators are easily affected by multivariate outliers. Three major types of
multivariate outliers are always discussed in the T2 control chart i.e. shifts in the
mean vector, a departure from the in-control covariance structure (counter-
relationship) or combinations of the two situations (Ye, Emran, Chen & Vilbert,
2002). A shift in the mean vector occurs when one or more of the p variables is out
of control then causing the mean vector, u,, to change to some new vector, u4. The

situation of counter-relationship on the other hand, occurs when a correlation
9



structure between two or more p variables changed from the variable relationship
established in the covariance matrix. Although the T2 control chart can detect both
mean shift and counter-relationship, nevertheless the T? control chart is more
responsive to counter-relationship than mean shifts because the T® control chart
relies largely on the correlated structure of variables (covariance matrix) for signal
detection. An example is illustrated in Ryan (1989) with two variables and a high
positive correlation between the two variables while they are in control. For this
example, the T2 control chart signals an observation with a counter-relationship, but
does not signal an observation with an out-of-control mean shift on one variable
because both variables shift in the same direction and thus still maintain their
relationship of a positive correlation. This implies that detecting outliers via mean
shifts is more difficult compared to counter-relationship. Any control chart that can
circumvent the shift in the mean often can perform well for other types of changes
(Jensen, Birch & Woodall, 2007). In addition, other research has shown that the use
of the classical sample covariance matrix, with all the individual observations
pooled, impairs the detection of a sustained step shift in the mean vector (Williams,

Woodall, Birch & Sullivan, 2006).

Sullivan and Woodall (1996,1998) revealed that the T/ chart constructed based on
Equation 1.3 using the covariance matrix calculated from Equation 1.4 is not
effective in detecting a shift or trend in the mean vector because the variance

estimates inflate when special-cause of variations are present (outliers) in Phase I.
10



This approach is only effective in detecting a small number of very extreme
observations, but failed to detect more moderate outliers (Vargas, 2003). Since the
purpose of multivariate control chart is to monitor the stability of a multivariate
process, the stability should be achieved when the estimates of means, variances, and
covariance of the process variables remain stable. For that reason, observations used
for the computation of Hotelling T? statistics require the assumption of a multivariate
normal distribution. Violation of this assumption can lead to incorrect control limits
and reduction of the probability of detection in Phase I, which consequently will
cause the probability of the Type I error or false alarm rate to be out of control and
the power to detect changes (probability of detection) will be reduced in Phase I

process (Chang & Bai, 2004; Ramaker, van Sprang, Westerhuis, & Smilde, 2004)

When working with high dimension multivariate data, there is a high probability that
outliers are present in the dataset. The existence of outliers is usually the main cause
of the violation of normality assumption. The T? is the squared distance from the i-
th data point, x;, to the centre described by the sample mean, x. Once multiple
individuals or clusters of data points are separated from a main group, the sample
mean vector, x, thought to represent the data centre, will likely be pulled away from
the middle of the larger group of points. Then, the classical sample mean and sample
covariance matrix from Equation 1.4 will be distorted. If that is the case, the UCL
given in Equation 1.5 and 1.7 will not be effective in detecting outliers anymore.

These effects of outliers or groups of outliers on the sample mean and covariance
11



matrix are typically referred to as masking or swamping effects. Masking effect
exists when the UCL fails to detect the outliers (false negative) while swamping
effect which is also known as false positive occurs when observations are incorrectly

declared as outliers.

Desirable results could be obtained when the estimator is robust even though the data
set contains outliers (Rousseeuw & van Driessen, 1999; Hubert, Rousseeuw &
Branden, 2005; Vargas, 2003; Jensen et al., 2007). In contrast, the iterative re
estimation procedure fails to deal with the problem of masking and swamping
because of its nature in identifying outlier’s one point at a time (Chenouri, Steiner
and Mulayath, 2009). To address this problem, it is necessary to have a procedure
that locates all the outliers simultaneously. Nowadays researchers are focusing on the
development of robust multivariate statistical process control methods to handle the
problem of outliers. These methods are not entirely distribution free but are less
sensitive to the assumption of normality than the usual parametric methods. Robust
techniques are specifically designed to be relatively insensitive to outliers (Huber,
1977). Another alternative avenue is to consider statistical methods that are

distribution free.

1.2 Problem Statement

Robust estimators are known to be more effective in detecting the deviation of data,

or outliers as compared to the classical estimators (Hampel, Ronchetti, Rousseeuw &
12



Stahel, 1986). There are two approaches to deal with outliers when using robust
methods. The first approach is to identify and remove outliers before using the
remaining good data points to calculate the classical estimators. The second
approach is to use the robust estimators in place of classical estimators (Beckman &
Cook, 1983). A wide range of robust estimators of multivariate location and scatter
are available; see Maronna and Zamar (2002); Maronna, Martin and Yohai, (2006)
for a review. Nonetheless, the minimum volume ellipsoid (MVE) and minimum
covariance determinant (MCD) estimators introduced by Rousseeuw (1985) have
received considerable attention by scientific community and widely used in practice.
The advantage of using MVE estimators is that, they have high breakdown point of
approximately 50% and they are also affine equivariant (Lopuhaa & Rousseeuw,
1991, p. 236). However the computation of MVE estimator is very expensive and it
may not even be computationally feasible (Hadi, 1992, p. 762). In addition, there is
no fast algorithm known to compute the estimator. This is due to the fact that MVE
has poor rate of convergence (Lopuhaa & Rousseeuw, 1991, p. 237) and fails to cope
with large sample of more than 30 (Rousseeuw & van Driessen, 1999, p. 213). To
alleviate the complexity of MVE, Rousseeuw (1985) also introduced the minimum
covariance determinant (MCD) method. MVE and MCD estimators have the same
characteristics with respect to affine equivariance, high breakdown value and
bounded influence function properties (Rousseeuw & Leroy, 1987). The difference

is only in the criteria they used where MVE uses minimizing the volume of the
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ellipsoid on h = (n+ p — 1)/2data, while MCD uses minimizing the determinant
of the covariance matrix based on the h data. The MCD estimator is more attractive
than MVE because it has a better convergence rate of n='/2 compared to n=*/* of
MVE (Butler, Davies & Jhun, 1993; Croux & Haesbroeck, 1999) and MCD gives the

exact solution (Hadi, 1992; Hubert et al., 2005).

Lopuhaa and Rousseeuw (1991) discovered that the efficiency of high breakdown
estimators were quite low, and proposed the reweighted version of MCD (RMCD) to
alleviate the problem. Croux and Haesbroeck (1999) employed RMCD and noticed
that this approach maintains the breakdown point of the initial MCD estimators,
while attaining better efficiency. To compute the initial MCD estimator and its
reweighted, various algorithms have been suggested. Most of the algorithms attempt
to increase the computational efficiency because to obtain approximate values of
these estimators is not only expensive, but could be impossible for large sample sizes
with large number of quality characteristics (dimensions). Nevertheless, the main
contribution in this domain is the Fast MCD algorithm proposed by Rousseeuw and
van Driessen (1999) and improved by Hubert et al. (2005) which is available in
many computer packages such as Matlab, R, SAS, and S-Plus. However, Fast MCD
is not without limitation. For example, the use of minimum covariance determinant
as the objective function in data concentration process can be computationally
laborious especially when the data set is of high dimension. On the other hand, as

Angiulli and Pizzuti (2005) have pointed out, the computational efficiency is as
14



important as effectiveness. Furthermore, as noted by Fauconnier and Haesbroeck
(2009), Fast MCD algorithm may return different results when used repeatedly in the
same or in different statistical packages and could be more critical when n/p is
small (np> 5). To overcome the weaknesses of Fast MCD algorithm, Herwindiati
(2006) proposed minimum vector variance (MVV) as an alternative measure of
multivariate data concentration. Herwindiati, Djauhari and Mashuri (2007) revealed
that MVV was successfully used as an objective function in Fast MCD algorithm to
substitute the MCD criterion. The findings showed that MVV is computationally
more efficient than Fast MCD and as effective as Fast MCD in labeling outliers. A

detail explanation about this method is discussed in Chapter 2 and 3.

The study on the significant role of MVE, MCD and RMCD estimators in scientific
application can be easily found in the literature specifically in the construction of
robust Hotelling T2 chart. Vargas (2003) and Jensen et al. (2007) introduced robust
control charts based on MVE and MCD estimators for multivariate individual
observations. They applied these estimators using the first approach i.e. to identify
and remove outliers in Phase | analysis and then calculate the classical estimators
using the remaining good data points for Phase Il analysis. Through this approach,
the computability and breakdown point of the estimators become more important,
but statistical efficiency is not as crucial because the highly robust estimators will
eventually be replaced by classical estimators in Phase Il analysis (Jensen et al.,

2007). Nonetheless, they noticed some drawbacks when MVE and MCD were used
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in Phase I. The T? issued from MVE failed to perform under large sample size.
Conversely, T? issued from MCD needed a larger sample size when large numbers of
outliers were present to ensure that MCD estimator did not breakdown and lost its

ability especially when monitoring with more variables (p).

To abate the problems, Chenouri et al. (2009) proposed robust Hotelling T® chart
based on RMCD estimator. Besides possessing the nice properties of MCD
estimator, this estimator is not unduly influenced by outliers and is more efficient
than MCD. Thus, they used RMCD estimator in place of classical estimators in
constructing Hotelling T? chart for Phase Il data. Using the same approach as
Chenouri et al. (2009), Alfaro and Ortega (2009) made a comparison study for the
performance of Hotelling T2 control chart based on robust estimators of MCD, MVE,
RMCD, and trimmed estimator. They concluded their work by recommending the
use of T?based on trimmed estimator and RMCD when there are few outliers in the
production process because of their ability in controlling false alarm rates. However,
in the manufacturing of products which emphasizes more on outliers detection than
the false alarms generated (Alfaro & Ortega, 2009), the T? based on MCD can be
considered as better alternatives. This is due to the fact that the Hotelling T control
charts based on MCD performed well in terms of probability of detecting outliers.
Theoretically, if the percentage of outliers’ detection increases, the chart should also
be able to control the overall false alarm rate, o (Jensen et al., 2007). However the

finding in Alfaro and Ortega (2009) showed a conflict between the probability of
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detecting outliers and the ability of robust control chart in controlling the overall

false alarm rate when robust charts were used under certain conditions.

To alleviate this conflict, we proposed robust Hotelling T? control charts based on
recently introduced robust estimator known as minimum vector variance (MVV).
MVV estimators possess the nice properties of MCD such as breakdown point and
affine equivariant properties. In addition, the estimators have better computational
efficiency compared to MCD (Herwindiati et al., 2007; Djauhari, 2007). Due to the
nice properties of MVV, we were inspired to investigate on the performance of the
estimators by integrating them in the Hotelling T2 control chart on Phase Il data.
Since these estimators were used directly in Phase Il analysis without any screening
process in Phase I, they must always be reliable. Thus, for a more rounded and
reliable estimators, we further investigated on other properties which were not
discussed before such as consistency, biasness and efficiency. Based on the result of
the investigation, the MVV estimators were further improved and used in the

Hotelling’s T* chart.

1.3  Objective

The ultimate goal of this research is to find an alternative Hotelling T? control chart
which can improve the performance of the existing charts in terms of false alarm rate
and probability of outliers detection specifically for individual observations. In

achieving this goal, the following objectives need to be accomplished.
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To investigate and compare the performance of Hotelling T2 control chart using
MVV estimators with the traditional Hotelling T? control charts and the robust
Hotelling T°control chart based on MCD estimators.

To improve the MVV estimators by adding the proportionality constants to
ensure that the estimators are consistent at normal model and unbiased at small
samples.

To investigate on the performance of Hotelling T control charts using the
improved estimators in (2).

To develop a new robust estimator known as Reweighted MVV (RMVV), based
on MVV algorithm.

To investigate and compare the performance of the new robust Hotelling
T?control charts using RMVV in (4) with the Hotelling T°charts using improved
MVV estimators in (2), MCD estimators and Reweighted MCD estimators.

To evaluate the performance of the improved and the new robust Hotelling T

control charts using real industrial data.

1.4 Significance of the Study

This study contributes towards knowledge development in robust estimation and

Statistical Process Control (SPC) especially in the construction of control charts.

With regards to robust estimation, some improvements were made on MVV

estimators in terms of consistency and biasness, followed by the development of a

new robust estimator known as RMVV and its algorithm. The new estimator offers

high statistical efficiency, consistent and unbiased. The new estimators when used in

the Hotelling T® chart can improve the performance of the control chart in

monitoring the quality of a product even when dealing with a product of high
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dimensional quality characteristics. This will consequently reduce the operational
cost of the company. Additionally, the researchers in industries will not be
constrained with the normality assumption as required by the traditional Hotelling

T2
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CHAPTER TWO
LITERATURE REVIEW

2.1 Introduction

Monitoring production process quality using control charts is an area which is
actively investigated. Concerted efforts by groups of researchers from the areas of
statistical quality control and detection of outliers contribute to the continuous works
in improving the existing multivariate control charts so that the product performance
is always at its best. Hotelling T? statistic was the first statistic known to be used in
multivariate control chart. The control chart was then referred to as Hotelling T?
control chart. The purpose of using this statistic is to monitor the stability of a
multivariate process in Phase | and Il. Analysis in Phase | seek to identify a stable
historical data set (HDS). From this dataset, the in-control mean vector and variance-
covariance matrix are estimated, which later will be used in the Phase Il analysis. A
successful process monitoring in Phase Il totally depends on the estimates of the
parameters obtained from a stable HDS. However, the classical estimators are easily
affected by outliers. The shift in the mean vector is the most difficult types of
multivariate normal outliers to be detected when using distance-based method like
Hotelling T? (Rocke & Woodruff, 1996). The existence of outliers can violate the
normality assumption. This violation may lead to the inflation of control limits and
reduction of the probability of detection in Phase I, which consequently will cause

the probability of the Type I error or false alarm to be out of control and the power to
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detect changes will be reduced in Phase Il process. False alarm rate is the probability
of out-of-control signal when a process is in control. The value becomes large if the
process is unstable due to increase in variability. Inflated false alarm rate can lead to
unnecessary process adjustments and loss of confidence in the control chart as a
monitoring tool (Chang & Bai, 2004). However, a control chart with small false
alarm also has its downside such that the chart tends to be less sensitive to process
fault, and it may result in large detection delay (Chen, 2010). Hence, a method which

can control the false alarm rate to the desired level is necessary.

2.2 Multivariate Outliers

The study of outliers is as important for multivariate data as it is for univariate
samples (Barnett & Lewis, 1994). Nevertheless, it is more difficult to detect outliers
in multivariate than univariate data. There are various definitions given for outliers.
An exact definition of an outlier often depends on the hidden assumptions regarding
the data structure and the applied detection method. Yet, some definitions are
regarded general enough to cope with various types of data and methods. Hawkins
(1980) defines an outlier as an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a different mechanism.
Barnet and Lewis (1994) indicate that an outlying observation, or outlier, is one that
appears to deviate markedly from other members of the sample in which it occurs,

similarly, Johnson (1992) defines an outlier as an observation in a data set which
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appears to be inconsistent with the remainder of that set of data. Meanwhile,
Beckman and Cook (1983) interpret an outlier as a collective to refer to either a
discordant or contaminate observation. Discordant observation is any observation
that appears surprising or discrepant to investigator. Contaminant is any observation
that is not a realization from the target distribution. Rousseeuw and van Zomeren
(1990) also define an outlier to be contaminating data. No matter how it is defined,
in general, outliers refer to a point/s that is surprisingly different from the rest of the
data. An immediate consequence of the presence of outliers is that they may cause

apparent non-normality.

As the dimensions of the data increase, the presence of outliers in the datasets will
also increase. Beckman and Cook (1983) had discussed in detail on the need to
study on outliers and their effect on linear models. They stated that the existing
outliers in the data will affect the estimation of a population parameter, hence,
causing the inability of the model to provide an adequate fit or statistical explanation.
The presence of outliers can hardly be detected using naked eyes when the
dimension is more than 2. This is the risk the researchers have to be cautious about
when working with large datasets of high dimensions. Thus, a reliable method is
needed to identify outliers especially for this sort of datasets. In their attempt to
transform random vectors to be random variables so that outliers could be seen more

clearly, Beckman and Cook (1983) suggested the most popular transformation that is
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via Mahanalobis distance. The works on Mahalanobis distance could be found in

almost any literature on multivariate analysis, including outliers’ studies.

Mahanalobis square distance (MSD) is a prominent method for outlier detection
using the classical mean vector, x, and covariance matrix, S, by assuming this
estimation is close to the true values of location vector p and shape matrix X, and is

formulated as follows,

di (%, %) = (x; —X)'S7 (x; — X)

For multivariate normally distributed data, MSDs are approximately chi-square
distributed with p degrees of freedom (x,). An outlier would then be defined as an
observation having larger distance value than the critical value i.e. y,, (Mardia,
Kent & Bibby, 2000; Serfling, 1980). Since this study is based on individual
observations, the formula for Hotelling T2 chart which is similar to Mahalanobis

distance is given as

T (%, %) = (x; —X)'S™(x; — X) (2.1)

The T? statistic uses the statistical distance that incorporates the multivariate
variance-covariance matrix to measure the distance of an observation from the
multivariate mean vector of a population. However, the T? statistic is sensitive to

outliers. This statistic works well with single outliers but is not suitable for
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applications where multiple outliers are possible due to the effect of outliers on the

classical estimates (Alfaro & Ortega, 2009).

As mentioned in the previous chapter, the three types of multivariate outliers which
always appear in T2 control chart are shifts in the mean vector, departure from the in-
control covariance structure (counter-relationship) or the combinations of the two
situations. However, the T2 control chart is less effective in detecting mean shift as
compared to detecting counter relationship. The performance of T?statistic is also
influenced by masking and swamping effect due to the non-robustness
(sensitiveness) of the classical estimators to outliers. These estimators are sensitive
to outliers and will be greatly influenced by their presence. The effect of masking
and swamping defined by Barnett and Lewis (1994) and Davies and Gather (1993)

are as follows,

Masking effect. It is said that one outlier masks a second outlier, if the
second outlier can be considered as an outlier only by itself, but not in
the presence of the first outlier. Thus, after the deletion of the first
outlier the second instance is emerged as an outlier. Masking occurs
when a cluster of outlying observations skews the mean and the
covariance estimates toward it, and the resulting distance of the outlying
point from the mean is small. Therefore we fail to detect the outliers

(false negative).
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Swamping effect. It is said that one outlier swamps a second observation,
if the latter can be considered as an outlier only under the presence of the
first one. In other words, after the deletion of the first outlier the second
observation becomes a non-outlying observation. Swamping occurs
when a group of outlying instances skews the mean and the covariance
estimates toward it and away from other non-outlying instances, and the
resulting distance from these instances to the mean is large, making them
look like outliers. Therefore the observations are incorrectly declared as

outliers (false positive).

Problems of masking and swamping can be resolved by using robust estimates of
scatter and location, where they are less affected by outliers. Beckman and Cook
(1983) considered robust estimation to be one of the best ways to accommodate
outliers in the estimation problems and encouraged the routine use of the estimators.
Rousseeuw and Leroy (1987) also mentioned that the use of robust estimates of the
multidimensional distribution parameters can often improve the performance of the
detection procedures in the presence of outliers. Thus, the development of robust
estimation is indeed needed to prevent these errors from influencing the statistical

model.
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2.3 Robust Estimators

Since the assumption of normality required in the classical estimation methods is
frequently not satisfied, Huber (1964) suggested the robust estimators. One of the
goals using robust estimator, as stated by Hampel (1985), is to identify the deviation
of data, or outliers. Compared to the classical methods, robust statistics will give a
clearer variability description between an outlier and ‘good data’, whereas the
classical statistics will vaguely show the difference. Robust estimation methods can
be used in two different approaches. The first approach is to identify and remove
outliers, then use classical estimators on the remaining good data points. In the
second approach, the robust estimators are used in place of classical estimators
(Beckman & Cook, 1983). In searching for highly robust estimators of location and

scatter, there are several qualities that the estimators should possess.

2.3.1 Properties of Robust Estimators

There are four major measures or properties that can be used to determine the
usefulness of a robust multivariate estimator (Jensen et al., 2007). The first is the
breakdown point (BP), where it was introduced by Hampel (1971, 1974) as a
measure for the robustness of an estimator against outliers. The breakdown point is
defined as the smallest percentage of outliers that can cause an estimator to take
arbitrary large values. Finite sample breakdown point (Donoho & Huber, 1983) is a

very popular global measure of robustness. It is the smallest amount of
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contamination necessary to upset an estimator entirely. Let X(® = {x,, ...,x,} be a
random sample of n observations and t,,(X(®) the corresponding estimator if we
replace m arbitrary points in X(® by arbitrary values if the new data is now X ™.

Then the finite sample breakdown point for estimator ¢t,, for sample X© is
, ©) = min{™. (m) ©)
en(tn, X©) = min {z, SUp yom [t (X™) — £,(X )|}

If & (t,, X©) is independent of the initial sample X(®, we say the estimator ¢, has
the universal finite sample breakdown point &, (t,,). Therefore &, = lim,,_,, &,(t;,)-

A higher breakdown point implies more robust estimator. In the univariate case, the

usual mean has very low BP which is equals to 1/n, while median possess the
maximum possible value with BP = 50%. The higher the BP, the more resistant the
estimator is to bad data. In other words, the less susceptible it is to the masking
effect. Some literatures say that for realistic applications, a BP greater than or equal

20% is usually satisfactory (Zuo, 2006).

The second property to consider is affine equivariance, which is an important and
often desirable property of statistical estimates. When an estimator is affine
equivariant, changing the measurement scale or affine transformations should not
affect the properties of the estimator. Suppose a random sample x4, x5, ..., x,, from a

p-variate normal MV N, (u, Z), we want to estimate x4 and X then it is desirable that
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the estimator are independent of the choice of coordinate system. Formally if the
estimator for u and X are t,, and c, respectively then t, and c,, are called affine

equivariant if for any nonsingular p X p matrix A and vector b € R?

tn(Ax; + b, Ax, + b, ..., Ax, + b) = At (x4, X5, ..., Xp) + b (2.2)

cn(Axy + b,Ax, + b, ..., Ax, + b) = Ac, (xq, x5, ..., xz)A’ (2.3)

When an estimator possesses the affine equivariant property, it will not get
influenced by an affine transformation. This is an important property that needs to
be considered when searching for robust statistics. The estimators of location and

dispersion that are considered in this study are all affine equivariant.

The third property is statistical efficiency of the estimator. This property concerns
on how well the estimator makes use of all the good data available. Efficiency is
always a very important performance measure for any statistical procedure (Zuo,
2006, p.7). In his seminal paper, Huber (1964) took into account both the robustness
and the efficiency issues in the famous “minimax” (minimizing worst-case
asymptotic variance) approach. Robust estimators are commonly not very efficient.
The univariate median serves as a perfect example. It is the most robust affine
equivariant location estimator with the best breakdown point and the lowest

maximum bias at symmetric distributions (see Huber 1964). Yet for its excellent
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robustness, it has to pay the price of low efficiency with relative to the mean at

normal and other light-tailed models.

Finally, a further important and desirable feature of an estimator is the computational
efficiency for easy and fast computation. It is common to measure data in terabytes
or megabytes, and some real time applications require the outliers to be detected
within seconds or at most a few minutes. Estimating robust estimators of location
and scatter with large dimension is one of the primary problems encountered in
multivariate settings such as in the area of quality control. Many industries for
example healthcare, machinery, agriculture, information, and financial will directly
be affected as these industries deal with products of multi-dimensional
specifications. The computational time and cost of analyzing the product (data) will
escalate as the dimension gets larger, and the probability that outliers will be present
in the data sets will increase. With the existence of outliers in the dataset, the
application of classical statistical methods such as in quality control will no longer
be precise and reliable. Pena and Prieto (2001) stated that it is entirely appropriate to
develop special methods to handle special cases. For higher dimension and large
multivariate data sets, computational speed seems to be one of the most difficult
goals to achieve. Additionally, Angiulli and Pizzuti (2005) have pointed out, the

computational efficiency is as important as effectiveness in detecting outliers.
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2.3.2 Types of Robust Estimators

A wide range of robust estimators of multivariate location and scatter are available.
Some of them are based on the minimization of a robust scale of Mahalanobis
distances such as M-estimator (Campbell, 1980), minimum volume ellipsoid (MVE),
minimum covariance determinant (MCD) estimates (Rousseeuw 1984, 1985), S
estimates (Davies, 1987), and testimates (Lopuhad & Rousseeuw, 1991). Others are
based on projections, for example, the Stahel-Donoho estimate (SDE), P estimates
(Maronna, Stahel, & Yohai, 1992) and Kurtosisl (Pena & Prieto, 2001).
Nonetheless, the minimum volume ellipsoid (MVE) and minimum covariance
determinant (MCD) estimator introduced by Rousseeuw (1984;1985) has received a

considerable attention by scientific community and widely used in practice.

2.3.3 MinimumVolume Ellipsoid (MVE) Estimator

MVE method uses h=(n+p—1)/2 data to construct robust location and scatter
estimator (Rousseeuw & van Zomeren, 1990), which give the minimum volume of
ellipsoid among all possible subsets of h. This estimator is then used to generate the
robust Mahanalobis distance. The advantage of using MVE estimators is that they
have high breakdown point of approximately 50% and also affine equivariant
(Lopuhad & Rousseeuw, 1991). However the computation of MVE estimators is
very expensive and it may not even be computationally feasible (Hadi, 1992). In

addition, there is no fast algorithm known to compute the MVE estimators. This is
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due to the fact that MVE has poor rate of convergence (Lopuhad & Rousseeuw,
1991) and fail to cope with large sample of more than 30 (Rousseeuw & van

Driessen, 1999).

2.3.4 Minimum Covariance Determinant (MCD) Estimator

To alleviate the complexity of MVE, Rousseeuw (1984; 1985) also introduced the
minimum covariance determinant (MCD) method. MVE and MCD estimators have
the same characteristics with respect to breakdown point and affine equivariant
properties (Rousseeuw & Leroy, 1987). The only difference is in the criteria used
such that MVE minimizes the volume of the ellipsoid on h=(n+p—1)/2 data, while
MCD minimizes the determinant of the covariance matrix based on the h data. The

MCD estimator is more attractive than MVE because it has a better convergence rate

of n” /2 compared to n_ /3 of MVE (Butler et al., 1993).

However, computing the exact MCD estimators is very expensive or even impossible
for large sample sizes in high dimensions (Woodruff & Rocke, 1994). Various
algorithms have been suggested to obtain an approximate value for this estimator.
Most of them are to increase the computational efficiency. For example, feasible
solution algorithm (FSA) in Hawkins (1994) and Hawkins and Olive (1999),
MULTOUT in Woodruff and Rocke (1994), Fast MCD algorithm in Rousseeuw and
van Driessen (1999), block adaptive computationally-efficient outlier nominators

(BACON) in Billor, Hadi, and Vellemen (2000), improved Fast MCD algorithm in
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Hubert et al. (2005). The most recent work on improving the algorithm was proposed
by Herwindiati (2006) using variance vector instead of covariance determinant in
Fast MCD algorithm. However, the main contribution in this domain is the Fast
MCD algorithm which has been available in many computer packages such as
Matlab, R, SAS, and S-Plus. Furthermore, its applications can be found in a very
wide spectrum area, for example, multivariate statistical process control, multivariate
process capability analysis, information sciences, data depth, data mining and etc.
Thus, this proves that Fast MCD is very well accepted as an algorithm for MCD

robust estimators.

For a finite sample of observation {x;, x5, ...,x,} in RP the MCD is determined
using the Fast MCD algorithm by selecting the subset X ={x;,, x5, ..., X;} Of size h

yielding the maximum possible breakdown point, i.e.

n+p+1

5
where | . | denotes the greatest integer part. A larger value of h would result in more
efficient estimates, but at the expense of a reduced breakdown value (Croux &
Haesbroeck, 1999). The MCD estimators are estimated with 1 < h < n, which
minimizes the determinant of covariance matrix i.e. |S| among all possible subsets of
size h. The main method used in the estimation of MCD is Mahalanobis squared

distances (MSD). The squared distances for the sample are defined as
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d? = (x; — W= (x; — w)i=12,..n (2.4)

The Fast MCD algorithm had been developed by Rousseeuw and van Driessen
(1999) and consists of the following concentration steps. Let Hqq be an arbitrary
subset containing h data points.

n+p+1
2

1.  Take a subset from X as Hqq containing h = [ ] data points. Compute the

mean vector Xy ,, and covariance matrix Sy ,,0f all observations belonging to
Hold

2. Compute the MSDs dj;_ (i) fori =1,...,n.

3. Sort these MSDs in ascending order. This ordering defines a permutation 7 on
the index set.

d, (m() < dj (1(2)) < ... <dj, ()

4. Let Hpew be the new subset of h elements indexed by (1), 7(2), ..., m(h)

5.  Calculate xy,,,, Su,,,and d,z,new. If det(Sw,,,) = det(Sy,,,) the process is
stopped, else, when det(Sy, ) < det(Sy,,,) the process is continued and go to

step 2. If det(Sy,,,)=0, repeat step 1-5.

Let det(Sy,) be generated from the k-th iteration. Thus, det(Sy,) =
det(Sy,) = - = det(Sy,) = det(Sy,,,). From the k-th iteration, this

algorithm gives Xy, = Xmcp » Su, = Smcp-
The location estimator is then defined as
— 1
XmMcp = ;Z?=1 Xi (2.5)
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and the estimator of scatter by

Smcp = WZL(& — Xmcp) (X — Xmcp)® (2.6)
The proportionality constant, c(h), known as the coefficient of consistent factor
makes Sycp Fisher consistent when the distribution of x is elliptically symmetric
and unimodal with p and dispersion matrix X (Butler et al., 1993; Croux &
Haesbroeck, 1999). Fisher consistencyis a standard concept in robust statistics which
denotes that the functionals evaluated at the model distribution return the true
parameter value, £ (Croux & Rousseeuw, 1992). Fauconnier and Haesbroeck (2009,
p.6) had presented two approaches in defining the coefficients of consistency factor
for MCD scatter matrix which are theoretical and empirical approach. Theoretical
consistency factor was derived by Butler et al. (1993) and further discussed in Croux
and Haesbroeck (1999) based on the functional form of the MCD estimator. If
x~N(u, ), theoretical consistency factor (c,) is defined as

_ h/n
PR <x? )
p+2 p,l—h/n

¢ (2.7)

where x},, denotes the a cut-off point of the y; distribution which leaves a of the

values at its right. While empirical consistency factor (c,) given by Rousseeuw and

van Driessen (1999, p.218) depends on n, p and h (via the estimators xyp and
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Smcp) and more generally on the data at hand. The empirical consistency factor is

defined as

. 27 7
MedidGey cp sycp)

)
wherei = 1,2,...,n (2.8)

CZ - XIZJ;O.S
where Xy cp and Sy cp are the MCD estimators computed from the optimal subset of
data. Fauconnier and Haesbroeck (2009) stated that, the consistency factor c, is
frequently referred to in literature as a scaling factor. This factor allows one to
improve the distribution of robust distances computed on non-normal data and is

used when the exact form of the consistency factor is not known.

The second proportionality constant, Suycp(h,n,p), known as a finite sample
correction factor serves the purpose of reducing the small sample bias of Sycp. The
actual value of this factor depends also on n and p. It was obtain by Pison, van Alest
and Willems (2002) through a combination of Monte Carlo simulation and
parametric interpolation, under the assumption that Sycp(h,n,p) — 1 as n — oo for

fixed p.

2.3.5 Reweighted MCD Estimator
Besides high resistance to outliers, if robust multivariate estimators are to be of
practical use in statistical inference they should offer a reasonable efficiency under

the normal model and a manageable asymptotic distribution (Rousseeuw & van
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Zomeren, 1990). Croux and Haesbroeck (1999) verified that MCD estimators are not
very efficient at normal models. They showed a conflict between efficiency and
breakdown point, where the efficiency of MCD estimators decreases when the
breakdown point increases, especially when the number of dimension becomes
higher. Since the efficiency of high breakdown methods can be quite low,
Rousseeuw and van Zomeren (1990) proposed Reweighted MCD (RMCD) estimator
and Lopuhad and Rousseeuw (1991); Lopuhad (1999); Croux and Haesbroeck (1999)

employed the reweighted version.

The basic concept of one-step reweighted proposed by Rousseeuw and van Zomeren
(1990) is to skip those outlying observations and compute the sample mean and
covariance matrix of the rest of the data. The RMCD estimators Xgycp and Sgmcp
(shown below) are computed using Fast MCD algorithm in Section 2.3.4 by giving
weight w; = 0 to observations for dj;cp (X, Xmcp) > Xp.0.025 and w; = 1 otherwise,
and m = Y7L, w;. The a = 0.025 cut-off point of the x; distribution is suggested by
Rousseeuw and van Driessen 1999, Croux and Haesbroeck 1999 and Pison and van
Aelst 2004. The formula for RMCD estimators of location and scatter are as follows:

= Yim1 Wi
XRMCD = % (2.9)

n % i X t
S wy (xl_x,;,;qil;) (Xi—XRrmcp) (2_10)

Sgmcp = c(m)s(m,n,p)
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The factors c(m) and s(m,n,p) guarantee consistency of the reweighted scatter
estimator and improve its small sample behavior, like the corresponding factor in
Equation 2.6. The finding from the simulation study by Croux and Haesbroeck
(1999) noticed that RMCD maintains the breakdown point of the initial estimators,

while attaining better efficiency.

However, Croux and Haesbroeck (1999) also emphasized that, the positive
breakdown point is not a guarantee for robustness, since the corresponding bias may
become extremely large but still remain bounded. Moreover the gains in efficiency
come at the price of a larger bias, as Rousseeuw (1994) well pointed out. The reason
Is that all these methods are non-adaptive, and higher efficiency can only be obtained
by tuning the parameters, which in turn affects the bias under contamination.
Through simulation study on finite-sample robustness, Croux and Haesbroeck (1999)
have shown that the RMCD with breakdown point of 0.25 is more precise and
outperforms RMCD with breakdown point 0.5 under contamination. For that reason,
RMCD with breakdown point 0.25 is more acceptable and has been used in the

LIBRA package under MATLAB 7.8.0 (R2009a).

2.4 Minimum Vector Variance (MVV)
Although Fast MCD algorithm is well accepted, nevertheless, it is not without
limitation. For example, the use of minimum covariance determinant as the

objective function in data concentration process can be computationally laborious
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especially when the data set is of high dimension. On the other hand, as Angiulli and
Pizzuti (2005) have pointed out, the computational efficiency is as important as
effectiveness. Furthermore, as noted by Fauconnier and Haesbroeck (2009), Fast
MCD algorithm may return different results when used repeatedly in the same or in

different statistical packages and could be more critical when n/p small. To

overcome the weaknesses of Fast MCD algorithm, Herwindiati (2006) proposed
minimum vector variance (MVV) as an alternative measure of multivariate data

concentration.

Minimum vector variance algorithm was introduced by Herwindiati (2006) for the
purpose of increasing the computational efficiency of Fast MCD. Under higher
dimensions, the determinant is more complicated to compute. As an alternative
measure to the long and tedious computation of covariance determinant in data
concentration, minimum vector variance (MVV) was proposed as an alternative
measure for multivariate data concentration. The use of vector variance in place of
covariance determinant as the objective function of the stopping rule will be
discussed in the next section. Herwindianti (2006) and Djauhari, Mashuri, and
Herwindiati (2008) have shown that MVV has met three of the four major properties
of a good robust estimator namely high breakdown point, affine equivariance and
computational efficiency, as discussed in Section 2.3.1. Herwindiati et al. (2007)
revealed that the MVV and Fast MCD algorithms have the same structures and only

differ in their objective functions. If the objective function of Fast MCD is
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minimizing the covariance determinant, the MVV is minimizing the vector variance.
Their findings showed that MVV is computationally more efficient than Fast MCD
and as effective as Fast MCD in labeling outliers. A detailed explanation about this

method is discussed in Chapter 3 (Methodology).

2.4.1 Vector Variance

The two popular measures of dispersions in the study of multivariate analysis are the
total variance (TV) and the covariance determinant (CD). If x is a random vector ofp
dimension with X as its (p X p) covariance matrix, then TV = Tr(Z) = A, + 4, +
«++ A, and CD = [X| =144, ..4,. Pena and Rodriguez (2003) gave a very
comprehensive discussion for the role of TV and CD in measuring the spread of
multivariate data. CD has a much more general use than TV in every literature on
multivariate analysis. This is because of the unstable TV’s role where it only deals
with the variance without the involvement of the whole structure of covariance
matrices. Although CD has wider applications than TV, however, it has several
drawbacks. The main drawback lies in the property of having the covariance
determinant zero, |X|= 0. This occurs when there is a variable with variance 0 or
when there is a variable which is a linear combination of any other variables
(Herwindiati, 2006). The matrix of this condition is known as singular matrix and

has no inverse.Because of this drawback, Herwindiati (2006) and Djauhari (2007)
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proposed another measure of multivariate dispersion based on TV, which is known

as vector variance (VV).

Djauhari (2007) introduced and demonstrated how VV represents the degree of
variation of multivariate distribution. Consider x and y, two random vectors of p and

g dimensions where p and g are not necessarily equal, having a covariance matrix

Y = 2:11 2:12]

B z:21 z:22

where 2, and X,, are variance matrices of x and y, respectively, and £,, = X5, is
the covariance matrix between x and y. To measure the linear relationship between
the random vectors x and y, Cleroux and Ducharme (1989) defined the correlation

coefficient between them as

Tr(Z12221)
\/Tr(2%1)TT(Z%2)

p(x,y) =

and called this measure ‘vector correlation’. According to this measure Herwindiati
(2006) and Djauhari (2007) call Tr(Z,,Z,,) as the vector covariance between x and

y and Tr(Z2,) and Tr(X2,) as the vector variance (VV) of x and y, respectively.

By definition, VVV is the sum of square of all elements on the diagonal of covariance
matrix. If x is a random vector of p dimension with X as its covariance matrix, then

40



VV of x is Tr(Z?). Its value indicates the degree of how multivariate distribution is
scattered. The larger the value of VV the more scattered the distribution around its
mean vector in a subspace of dimension g < p. It is equal to zero if and only if the

distribution degenerates at the mean vector.

The used of VV instead of covariance determinant as multivariate data concentration
measures have several advantages. This matter was discussed by Djauhari (2007).
First, its computation is very efficient even for covariance matrix of large size
because VV is of quadratic form while CD is of multilinear form. Thus, the number
of operations of V'V is smaller than CD such that V'V is of order O(p?) and CD is of
order O(p®). Second, VV does not need the condition that the covariance matrix is
non-singular, unlike CD. The singularity problem usually arises when the number of

variable p is larger than the number of sample size n.

Another advantage of VV was illustrated by Djauhari (2007) via comparison of the
power (probability of detection) of vector variance-based test with covariance
determinant-based test. In general, both tests have similar performance when p is
small such as p = 2. However, the power of VV is greater than CD to a larger shift
of covariance structure when p and n are large. Djauhari (2007) and Djauhari et al.
(2008) showed the derivation of the asymptotic distributional properties and the
convergence performance of sample VV. They proved that the distribution of sample

VV is sufficient to be approximated by the multivariate normal distribution.
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When applied on multivariate process variability monitoring, Djauhari et al. (2008)
revealed that VV showed better power in detecting the difference between the two
covariance structures while CD failed to detect the difference. Another interesting
characteristic of VV is its geometric property which is similar to the univariate case
such that its value is small if all variables have small variances, and becomes large if
at least one variable has a large variance. In the special case where p =q =1, VV
equals the square of the classical variance. If we compare the properties of VV with
those of CD, we find that CD is a “strong” measurement in the sense that |Z| = 0 if
at least one variable has zero variance or if there is at least one variable that is a
linear combination of the others (Djauhari et al., 2008). On the other hand, VV is
“weak” in the sense that Tr(Z?) = 0 if and only if all variables have zero variance.
A small value of VV means that all diagonal elements of X (variances) are small,

however, a large value of VVV does not mean that all variables have large variances.

2.5 Multivariate Control Chart for Individual Observations.

A T# statistic in Equation 2.1 that is based on the classical estimators is equivalent to
the Mahalanobis squared distance (MSD). However, there is a problem when using
T? statistic (or MSD) to detect outliers. The classical estimators are known to be
sensitive to the presence of even one outlier. When these estimators are used in T?
statistic to detect outlier, the process might suffer from the masking and swamping
effect. This is because its breakdown point of 1/n goes to 0 as the sample size
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increases (Jensen et al., 2007). That is, a single arbitrarily large outlier can render

the T? statistic ineffective.

In many situations, multivariate data are collected according to the rational subgroup
concept. A rational subgroup represents a sample of data taken at some point in the
process. However, sometimes it may not be possible to collect rational subgroup of
size larger than one. Dealing with individual observations in the construction of
control chart can be more challenging. Jackson (1985), Tracy et al. (1992), Wierda
(1994), and Lowry and Montgomery (1995) suggest pooling all the data to estimate
the mean vector and covariance matrix. Then, the Hotelling T? in Equation 2.1 is
calculated for each observation. However Sullivan and Woodall (1996) have shown
that by taking the sample covariance matrix from the pooling of HDS lead to poor
properties in detecting mean shifts in the mean vector. Moreover Prins and Mader
(1997) and Mason, Champ, Tracy, Wierda and Young (1997) had mentioned two
weaknesses using this approach. First is the difficulty in obtaining the control limit
(UCL) due to the restriction of the multivariate normal distribution assumption. A
sufficiently large preliminary data set is needed to obtain a reasonably accurate
control limits if the violation occurs. However to increase sample size for example is
often impractical or too expensive. Second, the pooling of data may include out-of-
control samples in the historical data set which consequently may cause an adverse

effect on the phase Il control limits.
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Xu (2003) investigated on the effect of the violation of normality assumption on the
performance of T? chart. The study revealed that in case of false alarm rate of a =
0.05, 0.01 and 0.001, the UCL which was obtained from beta distribution (Equation
1.5) was overestimated when the real data come from uniform distribution (0,1). On
the other hand when the data came from exponential distribution with mean 2, the
UCL was under estimated. Because of the differences between the desired false
alarm rate and the observed rates, the author concluded that these UCLs may not be
appropriate to represent the upper control limit in Phase Il if the actual distribution is

not normal.

To circumvent these problems, one has to be able to identify and eliminate apparent
outliers from the data. Once a homogeneous HDS is obtained, one can then perform
pooling and use the mean vector and covariance matrix for future data sets consisting
of individual observations (Prins & Mader, 1997). One natural approach to overcome
these effects is to substitute into Equation 2.1 with estimators of the mean vector and

covariance matrix that are not affected by outliers or groups of outliers.

One suggested approach is to use a covariance matrix estimator based on successive
differences which is robust to a sustained shift in the mean vector. This was proven
by Sullivan and Woodall (1996) when their proposed SW1 technique showed that
the T2 chart using the sample covariance matrix failed in detecting shifts in the mean.

To rectify the problem, they suggested that the covariance matrix should be
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estimated using the vector difference between two successive observations v; =
X;41 — Xx;, Where i = 1, 2,..,n-1. Nonetheless, the approach was effective in detecting
small number of outliers but otherwise for large number of outliers. Instigated by the
weaknesses, Sullivan and Woodall (1998) proposed another approach based on
Atkinson and Mulira (1993) stalactite chart known as SW2. This idea is based on
Mahalanobis distance with multiple-step method. It started by randomly selecting
(p + 1) observations to calculate the mean and covariance matrix, and then used in
Mahalanobis distance. Next, the (p + 2) observations with the smallest distance
were selected to calculate new estimates. The process continued by adding one by
one observation until all the observations are included. Therefore at each step,
outliers were removed until the final subset included all the observations except the
outliers. Again, this technique remains vulnerable to data that contains large number
of outliers and also depends on the robustness of its initial random sample (Vargas,

2003). Another approach is to use robust estimators of the process parameters.

2.6 Robust T? Chart

Robust estimation has been a useful approach in the area of statistics due to the good
properties shown under some deviations of distributional assumptions. In MSPC,
this type of estimation is widely used and investigated by researchers. Thus,
searching for reliable estimators become the main research topic for those in the area

of MSPC. It is necessary to introduce robust estimators in T? chart, but this has to be
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done with caution. The robust estimator must have nice properties such as affine
equivariance, high breakdown point, asymptotic normality, high in statistical and
computational efficiency for the chart to be reliable. From literatures, various types
of robust estimators were suggested for control charts, but the most popular

estimators are MVVE and MCD.

Estimation of MVE and MCD was introduced in T2 chart in two different
approaches. The first approach is to use these robust estimators to identify and
remove outliers in Phase | analysis and then use the classical estimators on the
remaining good data points for Phase Il analysis. Using this approach, the
computability and breakdown point of the estimator become more important, but
statistical efficiency is not as crucial because the highly robust estimators will
eventually be replaced by classical estimators in Phase Il analysis (Jensen et al.,
2007). The second approach is using these robust estimators which are calculated at
Phase | and then used directly in Phase Il analysis. This approach does not have to
go through the process of outliers cleaning in Phase | by assuming that these robust
estimators are not influenced by outliers. However the robust estimators should
possess higher statistical efficiency (Chenouri et al., 2009). Researchers working on
the construction of robust Hotelling T2 chart, incessantly are trying to introduce
various types of robust estimators to improve the performance of the process by

using either one of these approaches.
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The MVE and MCD robust estimators were first introduced in the construction of T
control chart, based on the first approach. Vargas (2003) proposed three robust
estimators in constructing T2 control chart for identifying multiple outliers and a step
shift in the mean vector for multivariate individual observations in Phase I. They
suggested minimum volume ellipsoid (MVE), minimum covariance determinant
(MCD) and a trimmed type estimator (trimming of extreme values is determined by
using Mahalanobis distance). The three robust T2control charts were compared with
the traditional T2control chart and two more alternative Tcontrol charts i.e. the
successive difference estimator of covariance matrix (SW1) and the outlier detection
algorithm (SW2). The study also tested all the charts using real data from
Quesenberry (2001). The MVE and MCD estimators were obtained using sub-
sampling and Fast MCD algorithm respectively. Vargas (2003) consider ncp =
(11 — o) Z T (uy — po) as the non-centrality parameter that measures the severity

of a shift from the in-control mean vector (uy = 0 and X = I,) to the out-of-control

mean vector (i, = 5,15, 25) with dimension p = 3, 5, 10 and sample size of n = 30,
50, 100. The k outliers was generated with different values for each n, where for
n:30, k=2, 4, 6 ; n:50, k=2, 5, 10 ; n:100, k=5, 10, 20 observations. Control limit
were set based on 5000 simulation and all methods had an overall false alarm
probability of a =0.05. Performance evaluation was based on the detection of
outliers and false detection probability (false alarm rate) for different ncp values.

Based on the simulation result, the study recommended using T2 chart based on
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MVE estimators for detecting multiple outliers and T2 chart based on SW1 to detect
step shifts in the mean vector. Both estimators were compared for the case of p=2
and n=30, and the result demonstrated that MVE showed better performance in terms
of probability of outliers’ detection. However the robust procedure (MVE and MCD

estimators) under their study are not sensitive to step shift in the mean vector.

Jensen et al. (2007) detected some disadvantages in using sub-sampling algorithm by
Vargas (2003) in calculating the MVE estimator. This algorithm would generate the
different estimates value depending on the number of subsamples used. They
compared MVE estimators based on sub-sampling algorithm with MCD based on
Fast MCD algorithm, but with more combinations of p, n, and k. The performance
evaluation considered dimensions p = 2, 3, 5, 7, 10 with sample size of n =
20,...,100 and k& = 0, 2, 4,..., 48 random data points generated from the out-of-
control distribution and the other n — k observations were generated from the in-
control distribution with significance level of a = 0.05. The in-control distribution
was a multivariate normal where it could be assumed that u = Oand X = I, without
loss of generality. The out-of-control distribution was a multivariate normal with the
same variance-covariance matrix but the mean vector had been shifted by some
amount. Since the finite sample distribution of MCD and MVE estimators were
unknown, the UCLs were determined based on the generation of 200,000 data sets

from MVN,(0,I,) for each combination of n and p. The T? statistic for each
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observation in the data set was calculated and the maximum value attained for each
data set was recorded. The 95" percentile of this generated empirical distribution
was the simulated control limit. Performance evaluation of the robust control charts
was based on the probability of a signal for out-of-control data (probability of
detection) and the probability of a signal for in-control data (false alarm rate). When
the value of the non-centrality parameter is small (towards in-control process), the
probability of a signal is close to a = 0.05. As the value of the non-centrality
increase (towards out-of-control process) the probability of a signal will increase.
From the simulation result, they concluded that classical estimator should be used if
only one outlier is expected. When n< 50, the MVE will be the best estimator, unless
the percentage of outliers is greater than 25% or 30%. On the other hand, when
n>50, the MCD is preferred as long as the percentage of outliers is less than 40%.
They noticed that there are some drawbacks when MVE and MCD are used in Phase
I. First, the ability of MVE and MCD estimator in detecting outliers decreases in the
case of high dimensions. Second, although MVE performs well in detecting small or
large number of outliers, it is only computationally feasible when the sample size is
small. Meanwhile, the MCD has limited ability in detecting outliers which need
larger sample size if the data is suspected of having large number of outliers. Jensen
et al. (2007) also noted that when monitoring with more variables (p), larger sample
sizes are needed to ensure that the MCD estimator does not breakdown and lose its

ability to detect any outliers.
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To abate the problems, Chenouri et al. (2009) proposed alternative estimator known
as reweighted MCD (RMCD) introduced by Lopuhad and Rousseeuw (1991) and
Willems, Pison, Rousseeuw and van Alest (2002). Besides inheriting the nice
properties of MCD estimator, this estimator is not unduly influenced by outliers and
has high statistical efficiency than MCD. For that reason they introduced RMCD in
T2 chart using the second approach i.e. they proposed robust control charts for Phase
Il data based on the RMCD estimates of location and scatter parameters from Phase
I. In identifying control limit, Chenouri et al. (2009) applied the Slutsky theorem
when the finite sample distribution of the MCD and RMCD estimators was unknown
with large sample size (n > 200) where TZycp has an asymptotic x,7 distribution.
However, for small sample size (n < 200), they estimated appropriate quantiles
(99% and 99.5% ) of TZ,-p With sample size n, dimension p and breakdown point
1—a. The performance of robust T? control chart was judged based on the
probability of detecting changes in the process behavior of the Phase Il data, which
was different from the data structure of Phase I. The change in the process was
based on the shift in the process mean vector ncp = (u— o) Z 1 (u — Ho)
assuming that there was no change in covariance structure. They made a comparison
study for the performance of Hotelling T2 control chart based on classical and robust
estimators of MVE, MCD and RMCD. The simulation results showed that the

robust control chart based on RMCD performed better than others methods.
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Using the same approach as Chenouri et al. (2009), Alfaro and Ortega (2009)
conducted a comparison study on the performance of Hotelling T? control chart
based on robust estimators of MCD, MVE, RMCD, and trimmed estimator. They
analyzed and compared the performance of the classical T? with the robust control
charts based on different sample sizes n = 25, 50, 100 and 1000 with dimensions of p
=2, 3 and 5 and the overall false alarm probability of a = 0.05 and 0.01. Since the
distributions of the alternative statistics were unknown, the reference control limits
were determined by simulation technique similar to Vargas (2003) and Jensen et al.
(2007). They assessed the performance from two perspectives, namely false alarm
rates and probability of detection. Alfaro and Ortega (2009) concluded their work by
recommending the use of T? based on trimmed estimator and RMCD when there are
few outliers in the production process due to the charts’ good control of false alarm
rate. However, in product manufacturing which emphasizes more on outliers
detection as compared to the false alarms generated, then T2 based on MCD were
better alternatives since the charts performed well in terms probability of outliers
detection. In theory, if the percentage of outliers’ detection increases, the chart
should also have the ability to control the overall false alarm rate, a (Jensen et al.,
2007). With regards to the aforementioned problems, Vargas (2003), Jensen et al.,
(2007), Alfaro and Ortega (2009) and Chenouri et al., (2009) tried incessantly to
improve the performance of the control chart by using good robust estimators.

However, their works were restricted on small and medium dimensions only due to
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the complexity of the high dimension data. Maintaining good performance on high
dimensional data has its advantageous and also disadvantageous. While trying to
preserve the identity of the original variable without reducing the dimension,
researchers have to compromise with computational efficiency. The computational
time and cost of analyzing the product (data) will escalate as the dimension gets
larger, furthermore the probability of the presence of outliers will also increase.
Computational efficiency is one of the main problems that need to be addressed in
multivariate settings especially in the area of quality control (Mason and Young,
2002, p.9). MVV estimators was proven to be computational efficient. In addition,
this estimator has high breakdown point, affine equivariance and more importantly
the X does not need to be positive definite. Furthermore, the vector variance is not
limited to low dimension and can be used efficiently for high dimension data set as
well as on non-singular and singular covariance matrix. Due to the nice
characteristics of MVV, thus, this study uses MVV estimators in the construction of

Hotelling T2 control chart.
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CHAPTER THREE
METHODOLOGY

3.1 Introduction

The purpose of this study is to develop a better robust estimator to be used in
Hotelling T2 control chart in Phase II. The estimator should be suitable for either
lower or higher dimension, possess high computational efficiency, has good control
of the false alarm rate and effective in detecting changes. One of the latest offerings
in the study of robust estimators in the multivariate data is the minimum variance
vector (MVV) proposed by Herwindiati (2006). Apart from being on par with the
popular minimum covariance determinant (MCD) (Rousseeuw and van Driessen,
1999) for its robustness, this estimator has the edge over MCD in terms of
computational efficiency. Industries would prefer procedures with high
computational efficiency especially when dealing with high dimensional quality

characteristics.

At the beginning of this chapter, we will discuss briefly on the characteristic of
MVV which motivate us to propose these estimators to be used in Hotelling T? in
place of the usual mean vector and covariance matrix. Then we formally introduce
robust control chart based on the MVV estimators (TZy,,,) on Phase Il data. In order
to assess the performance of T, control charts, various conditions were created by

manipulating the number of observations (n), number of dimensions or quality
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characteristics (p), proportion of outliers (¢) and mean shifts (non-centrality) values
(11). The performance of T3, control chart was evaluated based on the assumption
that there are no changes in the covariance structure. Performance evaluation
measured the effectiveness in terms of the probability of outlier(s) detection and
false alarm rate (type | error) on Phase Il data. It is worthwhile to investigate on the
performance using both measures because they are closely related (Ramaker van
Sprang, Westerhuis & Smilde, 2004). When the data comes from an in-control
process the false alarm rate should be close to a nominal value, a. In this study, a
was set to be equal to 0.05 by referring to Vargas 2003, Jensen et al. (2007),
Chenouri et al. (2009), Alfaro and Ortega (2009). When data comes from an out-of-
control process then the probability of detection should be large enough to ensure
that the chart is able to monitor on-line data and quickly detect shifts in the process

of Phase II.

The MVV estimators are expected to perform well in Hotelling T2 control chart in
terms of controlling false alarm rate, improving the probability in detecting outliers
and simultaneously increasing the computational efficiency. Since these estimators
are used directly in Phase Il without the process of outliers cleaning, they must be
statistically efficient (refer to Chapter 2 Section 2.5). For better efficiency, we then
proposed the reweighted version of MVV after making MVV estimators consistent
and unbiased. The subject on consistency and unbiasedness is discussed in detail in

Chapter 5 while the issue on efficiency is discussed in Chapter 6. In Chapter 7,the
54



application of reweighted version of MVV on the Hotelling T2 chart is thoroughly

explained.

3.2 Minimum Vector Variance (MVV) Estimators

Herwindianti (2006) and Herwindiati et al. (2007) had proved that MVV estimators
possess three major properties of a good robust estimator i.e. high breakdown point
(BP=0.5), affine equivariance and computational efficiency. Interestingly, MVV
estimator has the same characteristics as MCD with respect to breakdown point and
affine equivariance property. Like MCD, the main method used in the estimation of
MVYV is the Mahalanobis squared distances (MSD) which is defined as in Equation
(2.4). Let X = {xq, x5, ..., x,} be a set of p-variate observations. Denote the MVV
estimators for the location parameter and scatter by my,y and Syyy respectively.

Now let H € X, the myyy and S,y are determined based on the set H consisting of

h = [%MJ data that produces Sy With minimum Tr(S%,,) among all possible

sets of h data. The MVV algorithm that had been discussed in Herwindiati et al.
(2007) is akin to the Fast MCD algorithm proposed by Rousseeuw and van Driesen
(1999), except for some changes in the concentration step (C-step) where the
computation of covariance determinant is replaced by the vector variance. The basic
theorem of Fast MCD algorithm as introduced by Rousseeuw and van Driessen

(1999, p. 214) is stated in Theorem 3.1 below,
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Theorem 3.1: Let x4 x5, ..., x,, be a sequence of i.i.d random vectors of p dimension

where the second moment exist. Let H; be a subset of 2 = {x4,x3,...,x,} of h
elements, and x; = %inem x; and §; = %ine,{i(xi —%1)(x; — %1)" be its mean

vector and covariance matrix. If [S{| # 0, let d? = (x; — x,)'S; " (x; — x,) for
ali=12,..,nand H, = {xa(l),xa(Z)' ...,x,,(h)} where o is a permutation on the
index set such that dj ) < dj ) < -+ < dj,). If X, and S, are respectively the

mean vector and covariance matrix associated to H,, then |S,| < |S;| with equality

ifand only if X, =x;and §, = S;.

Based on this theorem, H; is more concentrated than H; in the sense that the volume
of the smallest ellipsoid that covers H, is less than or equal to that of the smallest
ellipsoid that covers H;. Equivalently, the determinant of the covariance matrix S, of
all vectors belonging to H, is smaller than or equal to that of the covariance matrix
S, of all vectors in H;. This necessary condition for H, to be more concentrated than
H; is then used by Rousseeuw and van Driessen (1999) in developing Fast MCD.
They define “minimizing covariance determinant (CD)" as the objective function in
their C-step. We know that determinant operator is in multilinear form. Thus, when
the number of variables p gets larger, the computational efficiency of CD dwindles
rapidly. Specifically, the number of operations in the computation of CD is of order

0(p3). The works of Herwindiati (2006), Herwindiati et al. (2007), and Djauhari
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(2007) lead to another notion of data concentration which is demonstrated in

Theorem 3.2.(Djauhari, Adnan, Lee & Ali, unpublished manuscript)

Theorem 3.2: Let x4 x5, ..., x,, be a sequence of i.i.d random vectors of p dimension

where the second moment exist. Let H; be a subset of 2 = {xq,x3,...,x,} Of h
elements, and x; = %inEH; x; and S§7 = %inEH;(xi —x1)(x; — x3)" be its mean

vector and covariance matrix. If [S3] # 0, let &% = (x; — X})'S} " (x; — %)) for
ali=1,2,..,nand H; = {xa*(l),xa*(Z)r ...,x,,*(h)} where ¢* is a permutation on
the index set such that 62.;) < 825y < -+ < 82+, If X3 and S; are respectively

the mean vector and covariance matrix associated to Hj, then Tr|(S3)?| <

Tr|($71)?| with equality if and only if X; = x; and S = §7.

In Theorem 3.2, the role of CD as a multivariate dispersions measure is replaced by

the sum of squares of all elements of covariance matrix, which is the vector variance

(VV) or Tr(Syvv>).

3.2.1 MVV Algorithm

The search for a minimum Tr(Syyy?) for each H subset requires a finite number of
steps to achieve convergence. However, that is no guarantee that the final value
Tr(Syyy>) of the iteration process is the global minimum of the MVV objective
function. Therefore, an approximate MVV solution can be obtained by taking many
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initial choices of H; subsets, applying C-step for each subset and later choose a
specific number of subsets (e.g. 10) that produce the lowest vector variance. For ease
of understanding, the MVV algorithm is partitioned into two stages. The first stage
involves creating initial subsets, while the second stage is the concentration steps.

Let {x4, x5, ..., X, } be a p-variate random sample of size n.

Stage 1: Creating Initial Subsets.

This stage is repeated 500 times

1. Draw a random subset (Ho,) with number of observations, h =p + 1.
Compute the mean vector Xy, and covariance matrix Sy,.
Xy, = average(Hy) and Sy, = cov(H,)
2. Compute the MSDs d2(i) = (x; — Xo)tS, *(x; — Xy,) fori = 1,...,n.
3. Sort these MSDs in ascending order, d3(m(1)) <di(n(2))<..<

dz (n(n)). This ordering defines a permutation 7 on the index set.

n+p+1
2

4. Take a new subset H,; = {m(1), ..., m(h)} where h = l J then calculate

Xy, Suy, Tr(Sy,”)and compute MSD, where
d2(i) = (x; — X)) Su, (xi—xy,) fori=1,..,n
5. Repeat step 3 and 4 for H,
6. Sort the 500 values of Tr(Sy,”) in ascending order, then select 10 subsets of

H, which have the lowest Tr(Sy,?). These subsets are treated as the initial
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subsets and their mean vectors, xp, and covariance matrices, Sy, will be

used in Stage 2.
Stage 2: Concentration Steps (C-step)

This process will be repeated until convergence for each of the 10 subsets.
Convergence means Tr(Sz_,) = Tr(5%), where k is number of iterations.

1. Compute the MSDs by using Xy, and Sy, where
d3(i) = (x; — Xp,) Sy, (x; —%y,) fori=1,..,n.

2. Repeat step 3 and 4 in Stage 1 until Tr(Si_,) = Tr(8%). If Tr(S%_,) >
Tr(SZ) the process is continued. This process will be repeated until
convergence is achieved.

3. When convergence is achieved for all the 10 subsets, choose the subset (H*)
that generates the lowest Tr(Si,k). From H*, calculate Xy~ = myyy and

Sy = Syyy as the location and scatter estimators for MVV respectively.

From the k-th iteration, this algorithm gives Xy = myyy, Sy = Syyy as the
location and scatter estimators for MVV respectively. The location estimator is
defined as
1
Mmyyy = ;Z?=1 Xi (3.1)
and the scatter estimator by

Suvy = %Z?zl(xi — Myyy) (X; — Mypy)* (3.2)
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3.2.2 Computational Efficiency

Theoretically, it is clear that the objective function of minimizing VV is
computationally more efficient than the initial objective function of minimizing CD
because VV is in quadratic form while CD is of multilinear form. In terms of the
number of operations, VV is of 0(p?) while CD as mentioned before is of 0(p3)
(Herwindiati et al., 2007; Djauhari et al.,2008). To verify this statement, we carried
out an investigation to compare the number of operations in the computation of VV
and CD for several values of p. Results for the number of operations is shown in

Table 3.1. Our finding discovers that, the number of operations of CD tends to be
equal to %p times more than VV when p gets larger. For example, for p = 75, the

number of operations of CD is approximately 50 times more than VV.

To illustrate on the computational efficiency of this algorithm as compared to Fast
MCD algorithm, we presented a simulation study focusing on the number of
iterations necessary for robust MSD issued from MVV estimators as well as on Fast
MCD in the concentration steps (C-steps). The MVV algorithm was executed using
MATLAB 7.8.0 (R2009a), while Fast MCD algorithm using mcdcov.m in the
LIBRA package under MATLAB 7.8.0 (R2009a). Random data were generated from
p-variate standard normal distribution N, (0, I) for several values of p with a constant
n = 100 based on 100 replications. Table 3.2 displays the result of the average

number of iterations. We find that the speed of convergence of MVV is higher than
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Fast MCD. This certainly reduces the time consumption. Moreover, unlike Fast
MCD, MVYV algorithm is still working even though h is equal p as shown in the last
row of Table 3.2 where h = 100 and p = 100. This clearly illustrates that MVV
algorithm is more flexible to be employed on singular or non-singular covariance

matrices as X does not need to be positive definite.

Table 3.1: The number of operations

p Number of operations
\AY/ CD
10 128 826
25 698 11376
50 2648 87126
75 5848 289751
100 10298 681751
150 22948 2283876
200 40598 5393501
250 63248 10510626
300 90898 18135251

Table 3.2: Average number of iterations to compute robust MSD

p MVV Fast MCD
2 5.14 5.22
3 5.02 5.21
4 5.23 5.43
5 491 5.20
10 4.31 4.64
15 3.74 4.14
20 3.35 3.87
25 3.46 3.83
30 3.04 3.45
40 2.18 2.70
50 1.59 2.00
75 1.46 2.00
100 2.95 -
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3.3 Robust Hotelling T2 Control Charts Based On MVV Estimators (T%)

As stated before in Chapter 1, the construction of control chart is divided into two
phases. In Phase 1, a historical data set is analyzed to determine whether the process
Is in-control by establishing the initial control limits and estimating the in-control
parameters of the process. While in Phase I, the control chart is used with future
observations for detecting possible departures from parameters estimated in Phase 1.
This study introduced MVV estimators in T? chart using the second approach (refer
to Section 2.6) i.e. construct robust control chart for Phase Il data based on the MVV
estimates of location and scatter parameters from Phase I. For such approach,

different observations will be used in the two phases.

Suppose that x; = {xq, x5, ..., x,} is the p-variate random sample of n observations
of preliminary data set in Phase I. Assume that x; are independent and follow a
multivariate normal distribution with mean vector u and covariance matrix . If u
and X are unknown then we need to estimate them using an in-control data set. The
process of identifying the in-control data set from x; is referred to as Phase |
operation. From the preliminary data set, compute x and S. Using this estimates,
compute T2(i) for i = 1,..., n, using Equation (1.3).To get in-control data set, first

we need to identify outliers by using UCL based on Beta distribution as follows,

(n—

1)2
UCL1~ [ n ) ]B(gln—zzf)—l (33)

)
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Observations with T2(i) > UCL, are considered as outliers and should be removed.
The sample with the outliers removed (n;) is then used to compute the new estimates,
Xy and Sy. Using these estimates, compute T2 (g) statistic for Phase Il observation,

where x, & x;, such that

T%(g) = (xg — Xn)Sy " (xg — Xy)" (3.4)

By using the suggested a, p and n. values, compute the upper control limit using F
distribution such that

UCL~ [p(nc+1)(nc_1)

ne(me—p) ] F(p,nc—p) (35)

However, this standard approach is only effective in eliminating extreme outliers in
small sample sizes, but it fails to detect moderate outliers especially when the
number of variables increases (Vargas, 2003; Williamset al., 2006; Jensen et al.,
2007; Chenouri et al., 2009). To alleviate the problem, we proposed using MVV
estimator in Phase | data, x;. Since the estimator is known to be free from outliers
due to its estimation process, they could be readily used as in-control estimators in
Phase Il. Let xg = {Xp41, X4z, ... } Where x4 € x; and myyy and Syyy represent
the MVV mean vector and covariance matrix estimators, respectively. We define a

robust Hotelling’s T2 for Phase |1 data, X g, based on these MVV estimates as
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Ty (9) = (g — Mayyy)Suvy ™ (Xg — Mpyy)* (3.6)

3.3.1 Estimation of Control Limits

The application of robust estimators in place of the mean and covariance structure in
T?chart in Equation 3.4 will cause the distributional properties of the traditional T?
(Equation 3.5) to change (William et al., 2006). To demonstrate the performance of
TZyv(g) in Equation 3.6, we need a better understanding about its distribution in
order to obtain appropriate control limits i.e. UCL. Since the distribution of TZ, is
unknown, we apply Monte Carlo simulation method to estimate the quantiles of the
T2, (), for several combinations of sample sizes (n) and dimensions (p) discussed
in Section 3.4.1. The 95% quantile of T3y, (g) for the chosen sample size n and
dimension p in Phase | is estimated by generating K = 5000 samples of size n from a
standard multivariate normal distribution MVN,, (0, I,). For each data set of size n,
we compute the MVV mean vector (myyy(k)) and covariance matrix (Syyy(k))
such that k = 1, ..., K. In addition, for each data set, we randomly generate a new

observation x,  treated as a Phase Il observation from MVN,(0,I,) and calculate

the corresponding TZy (g, k) values as given by Equation 3.6. The empirical

distribution function of T2, (g) is based on the simulated values

TI\%VV(Q' 1)'T1\%IVV(g' 2), ---'TI\%IVV(Q'K) (3.7)
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We sort T,y (g, k) values in ascending order, and the UCL for the control chart is

the 95% quantile of the 5000 statistics.

3.3.2 Implementation Procedures

A step by step approach for the construction of a TZy, control chart is given as

follows;

Phase |

1.

Decide on the sample size n, number of dimensions p and the overall false
alarm probability of a.

Simulate or collect the Phase | data x; = {x1, x5, ..., X, }.

Use x; to compute the MVV estimates, myyy and Spypy.

Based on the chosen a, n and p values, compute the control limit using

quantile based on the simulated values as Equation 3.7.

Phase 11

5.

Compute Tfy, for each of the Phase Il data (new observation) as per
Equation 3.6 and plot it on a control chart with the estimated limit in Phase |
(step 4).

Interpret and evaluate the performance of this chart by identifying the out-of-

control points or patterns.

65



3.4 Performance Evaluation

In order to analyze the performance of the T3,y control chart when instability
process is present, we conduct a simulation study that has been designed to
encompass several different scenarios, which are assumed to influence the strength
and weaknesses of the T2, control chart. These scenarios or conditions will be
discussed in Section 3.4.2 later. The performance of the proposed chart was later
compared with the popular existing robust method, the robust T? chart based on
MCD, and also the traditional Hotelling T2 control charts. For the traditional chart
we employed two approaches; first approach denoted as T¢ is without cleaning the
outliers as being adopted by Alfaro and Ortega (2009) and the second approach,
which is known as the standard approach, cleans the outliers once (TZ) (refer
Equations 3.4 and 3.5). The performance of all Hotelling T? charts were evaluated
based on the probability of detection and the false alarm rate in the process behavior
based on the phase Il data using estimated mean vector and covariance matrix from

different estimators in Phase I.

The programs and simulations were run using MATLAB 7.8.0 (R2009a).The
algorithm of MVV was executed using the MATLAB 7.8.0 (R2009a), while Fast
MCD algorithm using mcdcov.m in the LIBRA package under MATLAB 7.8.0

(R2009a).
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3.4.1 Choice of Sample Size and Number of Quality Characteristics

Sample size determination for multivariate problems has always been somewnhat
subjective depending on the statistical tool being used. In general, it is expected that
a large n produces better estimation results, since larger sample sizes increase the
precision of the estimators (Chou, Mason & Young, 2001). Rousseeuw and van

Zomeren (1990, p.649) stated that “any outlier method can get into trouble” if n/p IS

relatively small and, as a rule of thumb, they recommended applying robust

multivariate methods only when "/p > 5. However, to determine how large the

sample size should be taken depending on the number of quality characteristics
involved in the monitoring process (Mason & Young, 2002). Correspondingly, if
there are more quality characteristics that need to be monitored in a multivariate
process, then there are more parameters to be estimated, hence, more number of

samples needs to be taken.

This study focused on small (2 and 5), medium (10) and slightly high (15 and 20)
number of quality characteristics (dimensions) with reasonable values of sample
sizes. Based on most recent works such as Vargas (2003), Jensen et al. (2007),
Chenouri et al. (2009) and Alfaro and Ortega (2009), the choices of values for p and
n are in the range of values listed in Table 3.3. All these values were covered in this

study.
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Table 3.3: The values of nand p

n
10, 25, 50,100, 200, 500
5 30, 50, 100, 200, 500
10 50, 100, 200, 500
15 80, 100, 200, 500
20 100, 200, 300, 500

3.4.2 Types of Contamination and Process of Evaluation

A successful process monitoring in Phase 1l totally depends on the estimates of the
parameters obtained from a stable HDS. However, the estimators are easily affected
by outliers. Thus, the data in Phase I and Il were contaminated with certain values of
shift in the mean vector (u4) and also certain proportions of outliers (¢).We simulate
1000 datasets of various conditions created by manipulating the number of
observations, dimensions and levels of contamination. To examine the effect of
contamination on the charts’ performance, we have considered a contaminated

model by using a mixture of normal

(1 = &N, (o, Zo) + eNp (11, Z,) (3.8)

where ¢ is the proportion of outliers, uy and X, are the in-control parameters while
uq and X, are the out-of-control parameters. In this study we assume contamination

with shift in the mean but no changes in covariance structure, therefore, the
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covariance matrix X, and X; in Equation (3.8) represent the identity matrix of p
dimensions (). To check on these conditions, we consider ¢ to be 0, 0.1 or 0.2.
While for the probability of detecting a change which depends on the shift in the
mean vector, we set 4 to be a vector of size p with value of 0 (when there is no
change), 3 or 5. Manipulation on the mean shifts and percentage of outliers generate
5 different types of contaminated distributions categorized as ideal, mildly

contaminated, moderately contaminated and extremely contaminated as follows,

1)  N,(0,I,) -Ideal (no contamination)

2)  (0.9)N,(0,1,) + (0.1)N,(3,1,,) - Mild contamination

3) (0.8)N,(0,1,) + (0.2)N,(3,1,) -Moderate contamination
4)  (0.9)N,(0,1,) + (0.1)N,(5,1,) - Moderate contamination

5)  (0.8)N,(0,1,) + (0.2)N,(5,1,,) - Extreme contamination

Each of these model was paired with different combinations of sample sizes, n, and
number of dimensions, p (refer to Table 3.3) to create various conditions which are
capable of highlighting the strengths and weaknesses of the charts (Alfaro & Ortega,

2009).

Next, in Phase IlI, we simulate data from multivariate normal distribution
MVN,(pq,I), where uq is the shift in the mean vector with values similarly

assigned to Phase | (i.e. 0, 3, and 5). Each of these charts was tested on 5 types of
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contaminations with 23 combinations of n and p which totaled up to 115 conditions.
For each condition, the false alarm rates and probability of detection were
determined. Thus, for Phase Il observations, we simulate 1000 new datasets of
different sample sizes (n) and dimensions (p) in Table 3.3. To determine the false
alarm rate and probability of detection, we randomly generate a Phase Il observation
with in-control and out-of-control parameters respectively, and calculate the
proposed robust Hotelling T2 statistics. The false alarm rate or probability of
detection was estimated as the proportion of statistic values above the control limits
of 1000 replications. The flowchart for the process of calculating the T2, is

presented in Appendix A.

3.5 Consistency and Unbiasedness

The properties of MVV estimators will be discussed in detail in Chapter 5. This
chapter also demonstrates the attempt to improve the MVV estimators in achieving
consistency at normal model. Nonetheless, in practice we always deal with finite
samples, therefore the issue of bias in a finite sample will exist and should also be
considered. The advantage of having an unbiased estimator for a finite sample is that
this estimator remains unbiased even though the sample size becomes larger (Pison
et al., 2002). Due to the aforementioned issues, the following analysis seeks to
improve the performance of MVV by making it unbiased for finite samples which in

consequence will improve the performance of Hotelling T3, chart in general.
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3.6 Reweighted Minimum Vector Variance (RMVV)

In Section 3.3, we introduced MVV estimator in the Hotelling T2 chart for Phase I
analysis, where these estimators were calculated at Phase | and then used directly in
Phase I1. Since this approach does not have to go through the process of outliers
cleaning in Phase I, thus, higher statistical efficiency is vital because the highly
robust estimators should not be unduly influenced by outliers in the Phase | data.
Nevertheless, there is a conflict between the statistical efficiency and breakdown
point where the efficiency of a robust estimator decreases when the breakdown point
increases, especially when the number of dimension becomes higher (Rousseeuw &

van Zomeren, 1990; Croux & Haesbroeck, 1999).

To check whether the conflict exists in MVV estimators, this study continued with

the investigation on statistical efficiency of MVV estimators for different breakdown
. . . n+p+1
point. Two commonly chosen breakdown points are BP = 0.5 with h = lTJ and

BP = 0.25 with h = (0.75)n. To illustrate on how the efficiencies of MVV estimators
vary with different breakdown points (BP) and dimensions (p) under normal model,
we computed the asymptotic relative efficiency (ARE). When the conflict between
efficiency and high breakdown value exist, we then proposed the reweighted version
of MVV. Reweighted approach can maintain the breakdown point of the initial
MVV estimators, while attaining a better efficiency. The detail about this analysis is

discussed in Chapter 6.
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3.7 Robust Hotelling T? Control Charts Based On RMVV Estimators (T4yv)

Based on the results in Chapter 6, we proposed another robust control chart for Phase
Il data based on the RMVV location and scatter parameters estimated from Phase .
A detailed analysis is discussed in Chapter 7. The distribution of the Hotelling T?
statistic based on RMVV (TZ,,y) differs from the TZ,,. We constructed an
approximate distribution using ideas that were similar to the construction of the T,
distribution in Section 3.3.1. Then, the investigation on the performance of T2,y

was conducted similar to the approach used in iy .
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CHAPTER FOUR
ROBUST HOTELLING 7° CHART WITH MINIMUM VECTOR
VARIANCE

4.1 Introduction

The organization of this chapter is determined by the types of data being analyzed.
Two types of data namely the simulated and the real data are used for the
investigation. The chapter starts with the presentation of the result for the simulated

data analysis followed by the real data analysis.

This study integrates the MVV estimators in the Hotelling T? control chart for Phase
Il data using the same approach as Chenouri et al. (2009) and Alfaro and Ortega
(2009) for monitoring the multivariate observations. Even though RMCD was
observed to be better than MCD in controlling the false alarm rate (the discussion in
Chapter 2, Section 2.6), in this chapter, comparisons are made based on the initial
MCD since the algorithm for the proposed method follows the algorithm of the
initial MCD. We want to compare the algorithm in its original state and diagnosing
problems that might arise using the proposed method (MVV) in constructing
Hotelling T2 control chart. If there is a need to improve the method, this will be

continued in the next chapter.
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4.2 Simulated Data Analysis

The presentation of this subchapter is sectioned by the two measurements of the
performance namely probability of outliers’ detection and false alarm rates. The
performance of the proposed chart is then compared with robust Hotelling T? chart
using MCD (T2.p) and the traditional Hotelling T? control charts. For the traditional
chart we employed two approaches; first approach denoted as T¢ is without cleaning
the outliers as being adopted by Alfaro and Ortega (2009) and the second approach,
which is known as the standard approach, cleans the outliers once (T¢). Each of TZ,
TZ, TZcp and TZ,y, charts was tested on 5 types of contaminations on 23
combinations of n and p which totaled up to 115 conditions. For each condition, the
probability of detection and false alarm rates were determined. Each of these control
charts is exposed to various scenarios which are known to highlight the strengths and
weaknesses of the chart, such as number of dimensions (p), sample sizes (n),
percentage of outliers (¢), and the mean shift (u;). This study only focused on
independent case. The results for the false alarm rates and probability of outliers’
detection are presented in tables and figures respectively. The programs and
simulations were run using MATLAB 7.8.0 (R2009a). The algorithm of MVV was
executed using the MATLAB 7.8.0 (R2009a), while Fast MCD algorithm using

mcdcov.m in the LIBRA package under MATLAB 7.8.0 (R2009a).
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4.2.1 Estimation of Control Limits

In this section, we present the control limit of the T2, (g) control chart (Equation
3.8) by using simulated data with different combinations of sample sizes, n, and
number of dimensions, p. The control limit of the T2, (g) is then compared with
robust Hotelling T2 chart using MCD (TZ;) and the traditional Hotelling T2 control
charts. We use quantile in estimating the distribution of T2, (g9) and TZ:p(9)
obtained via Monte Carlo method. This study focuses on multiple dimensions with
reasonable values of sample size n. In order to estimate the 95% quantile of T2y, (g)
and TZ.p(g) for a given Phase | of sample size n and dimension p, we generate K =
5000 samples of size n from a standard multivariate normal distribution,
MVN,(0,I,). For each data set of size n, we compute the MVV and MCD mean
vector and the modified covariance matrix estimates. In addition, for each data set,
we randomly generate a new observation x ; treated as a Phase Il observation from
MVN,(0,1I,) and calculate the corresponding T,y (g, k) and Ty (g, k) values. We
sort T2, (g, k) and T, (g, k) values in ascending order, and the UCL is the 95%
quantile of the 5000 statistics. The control limits for T2, and T3, calculated using
the Monte Carlo method and the control limits for T2 and T¢ based on Beta and F
distributions respectively are presented in Table 4.1. From this table, we see that the
UCL values for T2, are large as compared to traditional methods (T3 and T¢) and

also TZcp.
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Table 4.1: Control limits

p n T T? Tirco Ty
2 10 11.0360 13.1050 30.6250 76.0122
25 7.4275 7.7676 12.1798 32.4008
50 6.6447 6.7431 8.2762 28.1107
100 6.3039 6.3444 7.4463 24.6037
200 6.1443 6.1598 6.4127 21.7088
500 6.0518 6.0566 6.1558 20.4264
5 30 15.6006 16.9160 27.6404 41.9567
50 13.4506 13.9253 18.3456 33.5214
100 12.1579 12.3055 14.7736 28.4822
200 11.5915 11.6454 12.5765 25.6204
500 11.2738 11.2904 11.4941 22.5296
10 50 25.9552 27.7721 39.8024 62.9323
100 21.5264 21.9969 26.0646 43.1889
200 19.7975 19.9570 20.9145 34.8509
500 18.8777 18.9275 19.5618 31.1418
15 80 33.6517 35.1547 42.7942 69.0937
100 31.5083 32.5354 37.4367 61.0544
200 27.9034 28.2452 29.4809 45,9981
500 26.0882 26.1820 26.6016 39.7181
20 100 42.5747 44.6890 52.7273 83.5238
200 36.2033 36.8213 38.8163 57.2303
300 34.4609 34.7659 36.0595 52.3438
500 33.1766 33.3434 33.6574 47.7808
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4.2.2 Probability of Detection of Outliers

The graphs illustrating the performance of the four charts in terms of probability of
detection are exhibited in Figure 4.1 to 4.5. Each figure represents different
dimension (p). For each condition, the performance of the control chart is regarded
as better in detecting changes when the value of the probability is closer to 1. Under
bivariate case (p = 2) as presented in Figure 4.1, initially T? showed better detection
than other charts at mild and moderate contamination. However, the good
performance of TZ only sustain at n = 10, 25. Once the value of n and p increased,
which can be clearly observed in Figure 4.2 — 4.5, the line representing T2,y is
consistently at the highest location in the graphs with the probability value of
approximately 1, and overlapping with TZ., line under most of the conditions.
There are instances when the T2, line started with lower values creating gaps
between the two lines but merged later on when the n values increased. This

situation occurs when the sample size is small with 20% outliers and mean shift 3.

Overall, the T2, and TZp control charts consistently achieved high probability in
detecting outliers. One can observe that, the lines representing T2 and T¢ charts are
always at the lowest and second lowest respectively, creating a very wide gap
between the other two lines (T3, and TZ.p). This pattern repeats even within the
same dimension for p > 5. Result on the TZ chart reveals that the chart perform so

well when the number of outliers is small (small p and low percentage of
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contamination), but underperform when the number of outliers gets larger (large p
and high percentage of contamination). This weakness can be mitigated by the use of

robust Hotelling T? chart.

4.2.3 False Alarm Rates

The performance of a chart is not only judged by its ability in detecting outliers, but
also in controlling the level of false alarm rate. False alarm rate is the probability of
out-of-control signal when a process is in control or also known as probability of
Type | error. The value becomes large if the process is unstable due to increase in
variability. Inflated false alarm rate can lead to unnecessary process adjustments and
loss of confidence in the control chart as a monitoring tool (Chang & Bai, 2004).
Hence, a method which can control the false alarm rate to the desired level is

necessary.

The control chart is considered to be in control of its false alarm if the empirical
value is close to the nominal value, a. For the purpose of comparison and checking
on the level of robustness, we consider using the Bradley’s liberal criterion of
robustness as a reference. Bradley (1978) specified three criteria for robustness
namely stringent, moderate and liberal which are respectively defined as a + 0.1«,
a + 0.2a, and a + 0.5a. A statistic is considered robust if its empirical Type | error
(false alarm) rates lie in one of the ranges. Nevertheless, the closer the value to a, the

more robust is the statistic or in other words the procedure considered robust and has
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better ability in controlling false alarm. However, Guo and Luh (2000) considered a
test to be robust if its empirical Type | error rate does not exceed 0.075 for the 5%
level significance used. This implies that in the context of robustness, it is acceptable
for a test to be conservative (< 0.025) than liberal (> 0.075). Taking into
consideration Bradley’s liberal criterion for robustness (1978) and Guo and Luh’s
(2000) justification, and also keeping in mind that inflated false alarm rate could
mislead the ability of a chart as a monitoring tool, we proposed an interval between
0.025 and 0.055 to determine a chart’s ability in controlling its false alarm rate. Thus
in the tables, the values that are closest to the nominal value and within the 0.025 and

0.055 are highlighted.

Table 4.2 to 4.6 which recorded the false alarm rates for each condition are arranged
based on the ascending number of dimensions (variables) namely p = 2,5,10,15
and 20 with a = 0.05. The first column in each table displays the number of sample
sizes, followed by the percentage of outliers and non centrality values respectively in
the second and third column. The last four columns record the false alarm rates of

the control charts investigated in this study; namely T3, TZ, Tacp and Tiyy.
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Figure 4.1: Probability of signal when p=2.
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Figure 4.2: Probability of signal when p=5.

81




Outlier 10% with process shifted 3 Outlier 20% with process shifted 3
1.2000 1.2000
1.0000 (—= L = . 1.0000 —@——F—@—H®\—
5 c
i 0.8000 2 o0s000
7] 151
= o
S 0.6000 / %
: T o
w / : 0.6000
S 0.4000 a
= O 0.4000
a =
o
0.2000
0.2000
A—a———A—
0.0000 120 o
50 100 200 500 0.0000
50 100 200 500
n —a— TS n A— TS
—e— T2MCD —&— T°MCD
— TPMW —8— T2MW
Outlier 10% with process shifted 3 Outlier 20% with process shifted 5
1.2000
1.2000
1.0000
10000 —@—B—— 8
5 c
5 0.8000 .2 08000
g / 8
@ 2
© 0. 7}
3 0.6000 — 3 oom
9 -
2 04000 2 oo
2
o
0.2000
0.2000
A——— 4
0.0000 T?0
50 100 200 500 0.0000 ™0
50 100 200 500
n —a— TS — AT
n
—e— T*MCD —&— T°MCD
—— T2MVV —&— T2MVV

Figure 4.3: Probability of signal when p=10.
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Figure 4.4: Probability of signal when p=15.
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Figure 4.5: Probability of signal when p=20.
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For the bivariate (p = 2) case presented in Table 4.2, the overall results on false
alarm rates show that T¢ outperforms the other control charts, followed by T3, .
Even though the results for T¢ under most conditions are well controlled, however
under ideal condition (no contamination) the chart failed to control the false alarm,
causing the rate to inflate to 0.1000. The TZ.p and T4 control charts are badly
affected when the sample size is very small, which are verified by the rates of false
alarm which are far below the nominal value except for ideal condition. When the
percentage of outliers increased to 20%, we observed that the rates for T2y, Técp
and TZ charts dwindle as the sample size increased, but the T¢ chart is still in control
of its false alarm rate. The performance of the robust T2, chart is much better than
the TZ.p. The T2,y chart performs well in controlling false alarm rates except when

the percentage of outliers is large.

When the dimension increased to p = 5, TZ still show the best performance in
controlling false alarm rate compared to other charts (refer to Table 4.3).
Nevertheless, the rates for TZ chart under ideal condition are still high (very far
above the nominal value, a = 0.05). We also notice improvements in the robust
T2,y charts especially when the percentage of outliers is large, but the chart’s
performance is still below TZ and TZ. In contrast, the false alarm rates for T2, chart

worsen with values as small as 0.0020.
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Table 4.4 displays the false alarm rates for the case of p = 10. T¢ maintains to be the
best performer in controlling false alarm rates but the chart seems to be deviating
from the nominal value (a¢ = 0.05) when n = 50. There are also noticeable
improvements in most of the conditions for TZ, T2, and T, charts. Even though
TZyy chart is not robust under the influence of extreme contamination, the false
alarm rates for the chart are just slightly below the 0.025 level (no less than 0.022).
However, the rates for TZ., chart are still far below the nominal level despite

showing some improvement in the performance.

Under the case of p = 15, as can be clearly observed in Table 4.5, all the charts show
better results than the previous case. Great improvement could be detected in T2
chart under ideal condition and T3, under extreme contamination, but T, chart is
still unable to control its false alarm rates under the latter condition. As we
scrutinized the false alarm rates for p = 20 in Table 4.6, we discover sporadic
improvements under different conditions. There is no obvious improvement in the
pattern could be observed. However, we can clearly observe that TZ.,, chart perform

badly in controlling false alarm rate in all conditions.
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Table 4.2: False alarm rates for dimension, p=2

Sample Size % Mean shift Control Charts

(n) outliers(e) (1) T, T2 T2y T3 co
10 0 0 0.0530 0.1000 0.0520 0.0520
10% 3 0.0170 0.0650 0.0450 0.0290

5 0.0160 0.0630 0.0450 0.0250

20% 3 0.0180 0.0540 0.0330 0.0210

5 0.0180 0.0480 0.0330 0.0110

25 0 0 0.0590 0.0980 0.0530 0.0480
10% 3 0.0290 0.0600 0.0390 0.0280

5 0.0230 0.0670 0.0390 0.0290

20% 3 0.0280 0.0470 0.0190 0.0090

5 0.0240 0.0390 0.0190 0.0050

50 0 0 0.0560 0.0920 0.0540 0.0580
10% 3 0.0200 0.0480 0.0350 0.0230

5 0.0160 0.0490 0.0340 0.0230

20% 3 0.0210 0.0370 0.0180 0.0080

5 0.0160 0.0340 0.0170 0.0060

100 0 0 0.0550 0.0930 0.0490 0.0460
10% 3 0.0210 0.0470 0.0300 0.0200

5 0.0160 0.0490 0.0290 0.0200

20% 3 0.0210 0.0350 0.0150 0.0050

5 0.0160 0.0350 0.0150 0.0040

200 0 0 0.0580 0.0950 0.0690 0.0600
10% 3 0.0210 0.0510 0.0490 0.0310

5 0.0180 0.0470 0.0500 0.0310

20% 3 0.0200 0.0410 0.0280 0.0050

5 0.0180 0.0360 0.0280 0.0020

500 0 0 0.0500 0.0880 0.0630 0.0520
10% 3 0.0190 0.0480 0.0490 0.0270

5 0.0160 0.0390 0.0480 0.0260

20% 3 0.0170 0.0370 0.0230 0.0040

5 0.0160 0.0350 0.0230 0.0040

Total highlighted 1 16 11 2
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Table 4.3: False alarm rates for dimension, p =5

Sample Size % outliers  Mean shift Control Charts

(n) () (Hy) % T? Ty Thon
30 0 0 0.0460 0.0790 0.0500 0.0430
10% 3 0.0280 0.0510 0.0300 0.0100

5 0.0260 0.0530 0.0330 0.0100

20% 3 0.0300 0.0620 0.0210 0.0050

5 0.0320 0.0620 0.0200 0.0000

50 0 0 0.0530 0.0790 0.0490 0.0650
10% 3 0.0270 0.0480 0.0350 0.0130

5 0.0260 0.0460 0.0370 0.0130

20% 3 0.0260 0.0560 0.0220 0.0040

5 0.0250 0.0520 0.0230 0.0020

100 0 0 0.0540 0.0740 0.0380 0.0320
10% 3 0.0290 0.0510 0.0300 0.0140

5 0.0280 0.0420 0.0320 0.0140

20% 3 0.0300 0.0520 0.0170 0.0020

5 0.0290 0.0490 0.0190 0.0020

200 0 0 0.0430 0.0740 0.0390 0.0410
10% 3 0.0250 0.0450 0.0350 0.0200

5 0.0240 0.0420 0.0350 0.0200

20% 3 0.0270 0.0460 0.0220 0.0010

5 0.0270 0.0440 0.0220 0.0010

500 0 0 0.0390 0.0620 0.0430 0.0420
10% 3 0.0200 0.0410 0.0360 0.0160

5 0.0190 0.0350 0.0370 0.0170

20% 3 0.0210 0.0430 0.0190 0.0030

5 0.0200 0.0420 0.0190 0.0030

Total highlighted 5 16 4 0
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Table 4.4: False alarm rates for dimension, p = 10

Sar_nple 7 Mean shift Control Charts

Size outliers (1)

() (® TS TS Ty Thco

50 0 0 0.0570 0.0920 0.0520 0.0530

10% 0.0410 0.0690 0.0370 0.0210

5 0.0380 0.0670 0.0380 0.0210

20% 3 0.0420 0.0720 0.0250 0.0080

5 0.0410 0.0720 0.0220 0.0020

100 0 0 0.0550 0.0780 0.0450 0.0420

10% 3 0.0330 0.0570 0.0390 0.0190

5 0.0340 0.0550 0.0350 0.0200

20% 3 0.0350 0.0560 0.0240 0.0030

5 0.0340 0.0520 0.0230 0.0030

200 0 0 0.0430 0.0730 0.0520 0.0540

10% 3 0.0330 0.0530 0.0390 0.0200

5 0.0320 0.0520 0.0420 0.0200

20% 3 0.0340 0.0500 0.0250 0.0020

5 0.0340 0.0490 0.0240 0.0020

500 0 0 0.0510 0.0750 0.0540 0.0490

10% 3 0.0330 0.0540 0.0390 0.0220

5 0.0330 0.0520 0.0390 0.0230

20% 3 0.0340 0.0580 0.0260 0.0040

5 0.0340 0.0550 0.0230 0.0040

Total highlighted 6 9 5 1
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Table 4.5: False alarm rates for dimension, p = 15

Sar_nple 7 Mean shift Control Charts

Size outliers (1)

() (® TS TS Ty Thco

80 0 0 0.0450 0.0650 0.0560 0.0580

10% 0.0330 0.0550 0.0470 0.0260

5 0.0330 0.0560 0.0430 0.0230

20% 3 0.0350 0.0560 0.0270 0.0060

5 0.0360 0.0540 0.0320 0.0030

100 0 0 0.0430 0.0680 0.0520 0.0490

10% 3 0.0330 0.0590 0.0450 0.0240

5 0.0330 0.0610 0.0430 0.0240

20% 3 0.0330 0.0540 0.0250 0.0030

5 0.0330 0.0560 0.0220 0.0020

200 0 0 0.0440 0.0620 0.0470 0.0540

10% 3 0.0290 0.0520 0.0420 0.0330

5 0.0280 0.0520 0.0410 0.0310

20% 3 0.0310 0.0560 0.0200 0.0040

5 0.0300 0.0550 0.0240 0.0040

500 0 0 0.0530 0.0690 0.0470 0.0460

10% 3 0.0370 0.0540 0.0390 0.0270

5 0.0370 0.0530 0.0390 0.0260

20% 3 0.0390 0.0530 0.0260 0.0060

5 0.0380 0.0520 0.0290 0.0060

Total highlighted 6 8 6 1
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Table 4.6: False alarm rates for dimension, p = 20

Sample % Mean shift Control Charts

Size outliers

(n) (e (W) TS T3 Tirvy Tiicp

100 0 0 0.0410 0.0720 0.0530 0.0500

10% 0.0340 0.0550 0.0400 0.0210

5 0.0330 0.0560 0.0420 0.0240

20% 3 0.0310 0.0570 0.0300 0.0060

5 0.0300 0.0570 0.0240 0.0000

200 0 0 0.0450 0.0660 0.0510 0.0490

10% 3 0.0320 0.0510 0.0370 0.0220

5 0.0340 0.0520 0.0380 0.0220

20% 3 0.0360 0.0550 0.0310 0.0050

5 0.0380 0.0550 0.0250 0.0020

300 0 0 0.0430 0.0680 0.0440 0.0390

10% 3 0.0400 0.0480 0.0350 0.0210

5 0.0390 0.0490 0.0340 0.0210

20% 3 0.0410 0.0470 0.0240 0.0060

5 0.0420 0.0470 0.0220 0.0050

500 0 0 0.0520 0.0690 0.0530 0.0560

10% 3 0.0390 0.0560 0.0400 0.0280

5 0.0380 0.0570 0.0400 0.0280

20% 3 0.0390 0.0550 0.0350 0.0030

5 0.0390 0.0570 0.0320 0.0040

Total highlighted 4 10 5 2

91



4.3 Real Data Analysis

The investigation of Hotelling TZ issued from MVV is continued with the application
on real data. Real data were furnished to us by Asian Composites Manufacturing
Sdn. Bhd. (ACM). ACM is a Joint Venture Company based in Bukit Kayu Hitam,
Kedah, Malaysia, owned by Boeing & Hexcel. This company is involved in the
production of advanced composite panels for the aircraft industry. ACM produces
flat and contoured primary (Aileron Skins, Spoilers and Spars) and secondary (Flat
Panels, Leading Edges and MISC: Components) structure composite bond
assemblies and sub-assemblies for aerospace industries. It was awarded with the AS
9100 rev C Certification (the highest level of qualification for aerospace
manufacturers) after the British Standards Institution (BSI), a member of the
International Aerospace Quality Group(IAOG). This certifies that ACM has met its

standards and requirements for quality management systems.

Spoilers are vital devices in an airplane. Their function is to increase lifts when the
airplane is flying. They are plates fitted to the top surface of the wings which can be
extended upward into the airflow and spoil it. By doing so, the spoiler creates a
carefully controlled stallover the portion of the wing behind it, greatly reducing the

lift of that wing section (http://en.wikipedia.org/wiki/Spoiler_aeronautics). The

products are used in civilian, defense, and space applications, which cannot

compromise any mistakes, albeit a minor one. Thus, careful monitoring is required
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to ensure that no variation occur in the process. Any slight mistake could jeopardize

a human life.

For the purpose of this research, ACM has provided us the real data on spoilers
which consists of several features such as trim edge (X3), trim edge spar (X3), and
drill hole (X3). A sample of 47 products (n = 47) was furnished to us by ACM. Out
of the total, 21 products were collected from 2009, while the rest were from 2010.
Hence, we decided to use the 2009 products as phase | historical data, and
considered the products from 2010 as future data in this study. The details of the
historical and future data are displayed in Tables 4.7 and 4.9 respectively. The
products consist of 3 quality variables (dimensions) namely trim edge, trim edge
spar, and drill hole. These variables were used to compare the three methods used to
construct control charts. Estimates for the location vector (x) and scatter matrix (S)
are presented in Table 4.8. The calculation of upper control limit (UCL) based on
this estimates are presented in the last column of the table. The values of the T?
statistics based on the above estimators appear in the last four columns of Table 4.9.
The graphical presentation of the corresponding control charts are put on view in

Figure 4.6.

When comparing the values of the T? statistics in Table 4.9 with the corresponding
control limits in Table 4.8, we observe that the three statistics T2y, Tacp and TE

signal observations 20, 22 and 25 as out-of-control but T2 only signals 20 and 25 as
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out-of-control observations and fails to signal observation 22. The result for T3 is as
expected since the analysis on the probability of detection using simulated data
showed that T3 was not as effective as the other charts in detecting outliers. Chart
(a), (b), (c) and (d) in Figures 4.6 represent the control chart for T3, TZ, Ticp and
TZyv respectively. Even though the performance of T¢ chart in this example is on
par with the proposed T}, chart and also T, chart, but the outcome could be due
to the small number of quality characteristics (dimension) of the product. As
revealed in the simulation study, TZ performed well in detecting outliers under low
dimension (not more than 5) only, but underperformed when the dimension

increased to above 5.
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Table 4.7: Historical data set (Phase | data)

Product
No. Trim edge (x1) Trim edge spar (x2) Drill hole (x3)
1 -0. 0011 0.0003 0.0128
2 0.0011 0.0021 0.0246
3 0.0252 0.0308 0.0378
4 -0. 0017 0.0109 0.0177
5 -0. 0005 -0. 0010 0.0106
6 0.0016 -0.0059 0.0128
7 0.0004 0.0001 0.0062
8 0.0078 0.0003 0.0159
9 0.0076 0.0089 0.0097
10 0.0020 0.0005 0.0071
11 0.0108 0.0011 0.0092
12 0.0039 0.0034 0.0425
13 0.0060 -0.0033 0.0160
14 0.0066 0.0100 0.0056
15 0.0045 -0.0067 0.0147
16 0.0110 -0.0207 0.0337
17 0.0047 0.0059 0.0065
18 0.0077 0.0003 0.0191
19 0.0015 0.0123 0.0124
20 0.0011 0.0038 0.0104
21 0.0056 0.0065 0.0063
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Table 4.8: Estimates of location vector, covariance matrix and UCL.

Types of Location Scatter Matrix Upper Control
Control Vector (S) Bl?m t (UCL)
Chart ()
0.00004 0.00002 0.00003 11.035
T% [0.00504 0.00284 0.01579] 0.00002 0.00009 0.00001
0.00003 0.00001 0.00011
[0.00001 0.00000 0.00000 7
T?; [0.00365 0.00256 0.01209] 0.00000 0.00003 —0.00001 11.798
[0.00000 —0.00001 0.00003 |
(0.00002 0.00000 0.00000 1
T co [0.00414 0.00207 0.01096] 0.00002 0.00009 —0.00002 21.946
[0.00000  —0.00002 0.00003 |
0.00001 0.00001 0.00000
0.00001 0.00003 0.00000
T,Z,,,VV 0.00336 0.00354 0.00913 0.00000 0.00000 0.00001 41.298
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Table 4.9: The Hotelling T® values for the future data (Phase 1)

Product
No. x1 X2 X3 T2 T2 Thcp T2,y
1 0.0041  0.0087 00129  0.5582 14242 1.7659 4.3908
2 0.0047  0.0109 00124  0.9003 25492 24694 5.1695
3 0.0031  0.0057  0.0096  0.4992 04936  0.3437 0.2992
4 0.0035  -0.0020 00101  0.5463 10157  0.5456 1.5064
5 0.0040  -0.0028  0.0125  0.4592 0.9588  0.4580 3.7869
6 00031  0.0008  0.0061  0.9013 17480  1.2527 2.2421
7 -0.0019 00101 00112  3.0933 41372 4.4404 6.5361
8 0.0009  0.0039  0.0082  0.8061 12884  0.6837 1.0556
9 -0.0052  0.0090  0.0203  7.3602 9.6843  14.9766  26.0499
10 -0.0008 00110 00184  3.6198 58035  9.7417  19.1760
11 -0.0021 00139 00170  5.3839 8.0897 118717  19.6313
12 -0.0017  0.0092  0.0061  2.7387 47949 29788 8.1388
13 -0.0010  0.0133 00138  3.8058 56890  7.4040  11.3895
14 -0.0030  0.0002  0.0053  2.0548 6.3468  3.3086 9.1498
15 0.0016  0.0134 00151  2.5073 50227  6.8054  12.3881
16 0.0027  0.0086  0.0070  1.1976 1.8980  1.0679 2.0563
17 0.0004  0.0086  0.0087  1.5798 22630  1.7597 2.8765
18 -0.0036 00136  0.0129  5.7910 79657  9.2817  13.9293
19 -0.0028  0.0003  0.0078  1.8304 47003 24178 4.8791
20 00120 00123 00768  38.1397 190.2969 214.9233  894.5184
21 -0.0015  0.0004 00115  1.2651 23301 15486 2.0641
22 0.0009  0.0232 00202 84181  19.7720  24.6552  45.2462
23 -0.0035  0.0088 00107  3.7588 51645  4.8793 7.5328
24 00016  0.0061  0.0066  1.0602 17564 09320  2.23575
25 -0.0228  -0.0466  0.0231  42.8447  134.6222 68.6307  116.02933
26 00037  -0.0038  0.0147  0.4832 13946 07796  7.32655
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Figure 4.6: Hotelling T2 control charts
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4.4 Discussion

Hotelling T2 chart is well accepted as a reliable method to monitor production;
however, under conditions of non-normality, this chart is known to be
underperformed. Alternative on the Hotelling T statistic particularly on the location
and scatter measures are recommended in order to produce a reliable chart regardless
of the conditions. This study proposed an alternative to the the Hotelling T2 chart by
using a robust estimator known as minimum variance vector (MVV) for its location
and scatter measures. MVV not only has all the properties of the well-known
minimum covariance determinant (MCD) such as high breakdown point and affine
equivariant, but also has better computational efficiency. The performance of our
proposed robust Hotelling T® chart using MVV in terms of false alarm rate and
probability of detection were compared with the robust Hotelling T? chart using

MCD and the traditional Hotelling T2 chart.

Investigation on the TZ and T2, by Alfaro and Ortega (2009) showed a conflicting
result between the percentage of outliers detection and the overall false alarm rate
such that when the probability of detection increased, the false alarm rates inflate
away from the nominal value. However, our proposed chart, T, performed so well
in terms of detecting outliers and also in controlling false alarm rates. Even though
the traditional Hotelling T¢ chart performed so well in terms of controlling false

alarm rates, but this chart fail to achieve good probability of detection especially
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when the number of quality characteristics is large. On contrary, the Hotelling Tfcp
chart performs wonderfully in detecting outliers, however the chart fails terribly in
controlling false alarm rates. With its good performance in terms of detecting
outliers and controlling false alarm rates, plus the good properties of its statistics,

Hotelling T3, chart is indeed a good alternative to the multivariate control chart.

When the investigation continued with the real industrial data, the results concurred
with the earlier results obtained from simulation study which support both robust
MVV and MCD estimators in detecting outliers. However, given the poor
performance of MCD estimators in controlling false alarm rates, MVV estimators
should be the one to choose for when searching for a good robust estimator.
Nevertheless the values of Hotelling T statistics and UCL estimates using MVV are
large as shown in the real data analysis result (refer to Table 4.8 and 4.9). The result
concurs with the simulated UCL values produced by TZ,, shown in Table 4.1.
From the Table 4.1, we could observe the obvious differences between the simulated
control limits for T3Z,,, with the usual control limits (T2 and T¢) and the simulated

control limits for TZp.

MVV estimators have the same characteristics as the MCD estimators with respect to
breakdown point and affine equivariance property, and their algorithms also display
the same structures, but only differ in their objective function (MCD uses |X| while

MVV uses Tr(2?). Thus, by following the steps and procedures applied on MCD to
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MVV, this study will attempt to improve the MVV estimators to achieve consistency
at normal model. Nonetheless, in practice we always deal with finite samples,
therefore the issue of bias in a finite sample will exist and should be considered. The
advantage of having an unbiased estimator for a finite sample is that this estimator
remains unbiased impartial even though the sample size becomes larger (Pison et al.,
2002). Due to the aforementioned issues, the next analysis seeks to improve the
performance of MVV by making it unbiased for finite samples and consistent at
normal model, which in consequence will improve the UCL and the performance of
Hotelling T2 chart in general. Analysis for these improvements will be discussed in

Chapter 5.
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CHAPTER FIVE
THE EFFECT OF CONSISTENT MINIMUM VECTOR
VARIANCE ESTIMATORS ON HOTELLING 7> CONTROL
LIMITS

5.1 Introduction

The simulated and the real data investigation on the robustness of the T3, had been
done in Chapter 4. The result show that T3, performs well in terms of detecting
outliers and also in controlling false alarm rates. However, in this chapter we
developed a theory that leads to an improvement in the properties of MVV
estimators when they are used in Hotelling T? chart. A main aspect of our viewpoint
on this improvement is inspired by the MVV characteristic that is affine equivariant,
where that measurement scale changes or other linear transformations do not alter
the behaviour of analysis in Hotelling T? chart. Looking at the performance of T2,
chart in Chapter 4 by comparing with the T3, T¢ and T2, charts, there have room
of improvement for MVV estimators. This deficiency can be seen from the value of
the T? statistics and estimated UCL for T2, is a very large to be consistent at
normal model. Hence we are inspired to study the asymptotic properties of MVV
estimators. The asymptotic properties of estimators are their properties as the number
of observations in a sample becomes very large and tends to infinity. So we will pay
attention to the concepts of consistency, unbiasedness and efficiency. Nevertheless,

in this chapter we are focusing on the adjustments to the consistency and
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unbiasedness of the MVV estimators. We conducted simulation experiments to show
the need for improvement. The efficiency of the MVV estimators will be

investigated in Chapter 6.

The organization of the remaining part of this chapter is as follows. Section 5.2 and
5.3 discusses the adjustment done on the MVV scatter estimator to ensure that it is
consistent and unbiased. Investigation through simulation experiment to illustrate the
consistency and unbiased of MVV estimators at multivariate normal data is
discussed in Section 5.4. In the following Section 5.5, we estimate the control limits
of the improved Hotelling T2, charts by simulation. In section 5.6, we investigate
on the improved MVV estimator through simulation study. A real data analysis from
aircraft industry is presented to illustrate the applicability of the proposed charts in

section 5.7. Finally, result and discussion are given in the last section.

5.2 Consistency Factor

The aim of Hotelling T2 chart in Phase | is to estimate the in-control parameters of
location, u and scatter, X. The usual estimators for these parameters are the normal
maximum likelihood estimators (MLE). The estimation of these parameters is based

on the data set x={x{, x5, ..., x,} from multivariate normal distributionwith density

e M )

1 MR A R
fuz(x) = Wé’( 2 ) (5.1)
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with u € R? and T € Z*. However the distribution of (5.1) is only an approximation
because a portion of the data may be contaminated by outliers (Croux & Rousseeuw,
1992). With the existence of outliers, MLE which are known to be sensitive to
outliers will not be able to precisely estimate the parameters. To address this
problem, we propose MVV estimators i.e. robust estimators with highest breakdown
point (50%) proposed by Herwindianti (2006) to replace the MLE. We compute the
MVV estimators in the Phase | data sets, with location and scatter estimators as
defined in Equation 3.1 and 3.2 respectively. The MVV estimator that was described

in Herwindiati et al. (2007) has a fixed integer h such that;

r+p+1

> JSh<n

The preferred choice of h for outlier detection is its lower bound, which yields the
breakdown value, BP = %. Let myyy and Syyy be the mean and the scatter

matrix calculated from the h observations out of x;, whose classical scatter matrix
has the lowest vector variance resulting from h smallest MSD. The Sy i a scatter
p X p matrix which is positive definite, symmetric (PDS) and affine equivariant
(Herwindianti, 2006). Robust scatter estimator is typically calibrated to be consistent
at normal model (a.k.a Fisher consistency). In order to achieve consistency under the
normal model, Syyy (Equation 3.2) is multiplied by a consistency factor, c(h), as

follows,
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n
c(h)Suvy = %Z?:l(xi — Myyy) (X; — Mypy)* (5.2)

The approximation of consistency factor can be obtained from elliptical truncation in
the multivariate normal distribution based on squared distance. If x; ~ N(u, X), c(h)
Is defined as

h/n
2 2
P(Xp+2 <Xp'h/n)

c(h) = (5.3)

where )(; n, is the h/n-quantile of x; distribution. This formula is derived by Butler

et al. (1993) and further discussed in Croux and Haesbroeck (1999) based on the
functional form of the MCD estimator. Since MVV have the same functional form
with the MCD estimator, we used Equation 5.3 as the consistency factor for Syyy.
Albeit guaranteed consistency under normality distribution Pison et al. (2002)
showed that MCD estimators were biased for small sample sizes. Thus, the
consistency factor in Equation 5.3 might not be sufficient to make MVV estimator
unbiased for small sample sizes. For that reason, we include the computation of

correction factor at any sample size n and dimension p.

5.3 Correction Factor

A simulation study on the effect of correction factor on the MVV estimator is carried

out for several sample sizes n and dimension p=2,5,10,15,20. We generated data sets
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X@e R™P from standard multivariate normal distribution. It suffices to consider the
standard multivariate normal distribution since the MVV s affine equivariant. For
each data set XU, j = 1,...,m we then determine the c(h)SY),,, in Equation 5.2. If
the estimator is unbiased, E[c(h)Syyy] = I,, therefore the p-th root of the

determinant of c(h)S yyy equals 1(Pison et al., 2002). The mean of the p-th root of

the determinant is given as

m

1 .
mean(|c(h)Spyyy|) = Ech(h)Sl(lld)VVbl/p

i=1

To determine the correction factor, we performed m = 1000 simulations for

different sample sizes n and dimensions p, with « = 0.05 such that

1
mean(|c(h)Syyvl)

Upn = (5.4)

The computed values are displayed in Table 5.1. Then, using 9, in Equation 5.4 as

the correction factor for c(h)S yyy, We obtain

Ipnc(h)
0g,nc(h)SMVV =7 h ?:1(xi — mpyyy) (x; — Mypyy)* (5.5)

For 95 ,c(h)Syyy can be considered consistent and unbiased, the determinant of

95 nc(h)Syyy should approach 1.
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Table 5.1: Values of 95, for c(h)Suyyy

p=2 p=5 p=10 p=15 p=20
n Ipn n 950 n 950 n 95 n n Ipn

10 5.8276 30 2.9304 50 2.3127 80 1.9801 100 1.8503
25 5.4200 50 2.9598 100 2.2098 100 1.9528 | 200 1.7762
50 5.7715 100  2.9309 200 2.1524 200 1.8937 300 1.7490
100 5.7206 200 2.8912 500 2.1045 500 1.8476 | 500 1.7180
200 5.6679 500 2.8579

500 5.5842

5.4 Investigation through Simulation Experiment

Garther and Becker (1997) have emphasized that robust estimators to be used in the

method of outliers detection should have sufficient rate of convergence to some true

underlying model parameter for consistency and unbiasedness. A sequence of

asymptotically unbiased estimators for parameter 6 is called consistent if

lim,,_, o P(|§n — H| > ¢) = 0. To illustrate the analysis on the consistency of MVV

estimator at multivariate normal, data are randomly generated from N(0,I,). The

experiment is carried out for several values of sample sizes n until convergent for a

fixed moderate dimension such that, p=10. Figure 5.1 shows the determinants of

95 nc(h)Syyy corresponding to the sample size, n. As the value of n increases, we

can observe that the determinant approaches 1 which implies that the 95 ,c(h)Suyv

is consistent.
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Figure 5.1: Determinant of 95 ,,c(h)S yyy When n — o and p = 10

Next, the investigation using simulation experiment continues to show that myyy
and 95 ,c(h)S yyy Which replaced the MLE estimators, p and Z, in Hotelling T? are
consistent and unbiased. The squared distances of any affine-equivariant robust
location and scatter estimators which are consistent and unbiased under normal
model is asymptotically y? distributed (Grubel & Rocke, 1990; Rocke & Woodruff,
1996, Garther & Becker, 1997).Therefore if myyy and 95 ,,c(h)Syyy are consistent
and unbiased estimators for p and Z, then with observations x; i.i.d in RP~N, (@, X),

it follows that

d? = (x; — My 9% nc (W) Spyy ™" (X — Mgy’
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is asymptotically y; distributed. Since d? is similar to Hotelling T?, the asymptotic
distribution of the improved Hotelling T, when n — oo should also follow x;
distribution if the estimators are consistent. If we consider a sample of p quality
characteristics such that x; = {x;3, x;5, ..., x;, } Where i=1,2, ...n as a phase | data
set, then the improved Tj,, statistic for x; can be constructed in the following

manner:

Ty (@) = (X = M) ¢ n (W) Syyy ™ ' (X; — Mpyy)* (5.6)

To check on the distributions of the improved T7,,,, we employed the QQ plots as
done by Garrett (1989)and the results are shown in Figure 5.2 and 5.3. Each figure

represents the QQ plot of y; distribution versus the original Tayy (T,\";W(o)) and
improved TZyy (T,@W(,)) respectively. Random data were generated from
multivariate standard normal distribution MVN (0, I,). This study is carried out for
the sample size of n = 10,000 with dimensions of p = 2, 5, 10, 15, 20. Based on the
plots, it is seemingly reasonable to claim that the distribution of T,\";W(o) and T,\";WU)
is asymptotically equal to )(12, distribution. To further clarify the situation, the

goodness of fit on those plots is evaluated based on the slope and the R-square of the

straight line in accordance to the data plot, as shown in Table 5.2.
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Figure 5.3: QQ plot between y; distribution versus simulated T,E,VV(,) for n=10,000

111




Table 5.2: The slope and R-square for Ty, 5y and Ty

n =10 000 TIZWVV(O) TIZWVV(I)
p=2 R? 0.999 0.999
slope 3.264 1.001

p=5 R? 0.999 0.999
slope 1.952 1.020

p=10 R? 0.999 0.999
slope 1.538 1.003

p=15 R? 0.999 0.999
slope 1.404 1.001

p=20 R? 0.999 0.999
slope 1.341 1.005

The hypothetical distribution represents the y, without error if all points are in a
straight line with slope equals 1 and R-square also equals 1 (Ali, Djauhari & Syed-
Yahaya, 2008). From this table we observe that the R-square values for all p’s are
0.999. With regards to the slopes, we can see a considerable difference in the values

between the original T,\E,VV(O) and T,\E,VV(,) especially when p = 2. The slopes for
T,E,VV(,) are consistent and approximately equals to 1 regardless of the dimensions
(p). In contrast, the slopes for T,@VV(O) are quite a distance away from 1 even though

the pattern shows a declining in values towards 1 as p increases. We observe that the

values for the two measurements (R? and slopes) are very close to the ideal value,

112



which signify that the y; distribution fits well with the simulated T,E,W(,) values.
The result implies that the constant 97 ,c(h) fulfills the condition of the

multiplicative factors to makes the S,y estimators consistent and unbiased for X'

5.5 Estimation of Control Limit
Let x; = {xu,xiz,...,x,-p} be the p-variate random sample of n observations of

preliminary data set in Phase I. Calculate the myyy and 95 ,c(h)Syyy estimators.

Since the estimators are known to be free from outliers due to their estimation
process, they could be readily used as in-control estimators in Phase Il. By using

these estimates, T,\ZWV(,)(g) statistic is computed for Phase Il observation, x, =

{Xn+1, Xn42, ... } Where x4 & x;, such that

TI\%IVV(I) 9) = (xg — mMVV)ﬁg,nC(h)SMVV_l(xg — myyy)’ (5.7)

We present the control limit of the improved T,E,W(,)(g) control chart by using
simulated data with different combinations of sample sizes, n, and number of
dimensions, p. The control limit of T,E,VV(,)(g) chart is then compared with the
control limit of Tg,y,(g) chart, robust Hotelling T chart using MCD (Tp) and
the traditional Hotelling T2 charts (T¢ and TZ). We apply Monte Carlo method to
estimate the quantiles of the T,E,W(,)(g), for several combinations of sample sizes

and dimensions. In order to estimate the 95% quantile of T,ﬁw(,)(g) for a given
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Phase | of sample size n and dimension p, we generate K = 5000 samples of size n
from a standard multivariate normal distribution, MV N, (0, I,). For each data set of
size n, we compute the MVV mean vector and the modified covariance matrix
estimates, mpyyy(k) and 95 ,c(h)Suyy(k) respectively from k=1,..,K. In
addition, for each data set, we randomly generate a new observation x  treated as a
Phase Il observation from MVN,(0,I,) and calculate the corresponding
T@W(,)(g, k) values. The empirical distribution function of T,@VV(,)(g) is based on

the simulated values

TI\%IVV(I) (gl 1)1 TI\%[VV(g' 2); ---lTlaVV(glK) (58)

We sort TIE,VV(,) (g, k) values in ascending order, and the UCL is the 95% quantile of
the 5000 statistics. The results of the investigation are presented in Table 5.3. We
observe that the estimated UCLs for T,E,W(O)(g) are large as compared to the
traditional control charts (T3 and TZ) and MCD chart (TZ.p). However, after
making the MVV scatter estimator consistent and unbiased as shown in Equation
5.7, the results improved immensely. As we can see here, the UCLs are closer to the

traditional UCLs (Table 5.3).
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Table 5.3: Control limits

P n TS TS Ticp Tavvo) Tawvvan
2 10 11.0360 13.1050 30.6250 76.0122 19.7067
25 7.4275 7.7676 12.1798 32.4008 9.4443
50 6.6447 6.7431 8.2762 28.1107 8.0556
100 6.3039 6.3444 7.4463 24.6037 7.1969
200 6.1443 6.1598 6.4127 21.7088 6.4469
500 6.0518 6.0566 6.1558 20.4264 6.1788
5 30 15.6006 16.9160 27.6404 41,9567 19.5315
50 13.4506 13.9253 18.3456 33.5214 15.9398
100 12.1579 12.3055 14.7736 28.4822 14.0082
200 11.5915 11.6454 12.5765 25.6204 12.9297
500 11.2738 11.2904 11.4941 22.5296 11.5868
10 50 25.9552 27.7721 39.8024 62.9323 34.5417
100 21.5264 21.9969 26.0646 43.1889 25.5450
200 19.7975 19.9570 20.9145 34.8509 21.4812
500 18.8777 18.9275 19.5618 31.1418 19.8112
15 80 33.6517 35.1547 42.7942 69.0937 42.6982
100 31.5083 32.5354 37.4367 61.0544 38.6310
200 27.9034 28.2452 29.4809 45,9981 30.6107
500 26.0882 26.1820 26.6016 39.7181 26.1456
20 100 42.5747 44.6890 52.7273 83.5238 53.9627
200 36.2033 36.8213 38.8163 57.2303 39.3577
300 34.4609 34.7659 36.0595 52.3438 36.8230
500 33.1766 33.3434 33.6574 47.7808 34.4221
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5.6 Performance of T%,,, Control Chart

Next, our investigation continues with the performance of the T3, control charts
before and after making the MVV scatter estimator consistent and unbiased. The
performance is measured by the probability of detection and false alarm rates. To
determine the false alarm rate and probability of detection, we randomly generate a
Phase Il observation with in-control and out of control parameters respectively from

Phase 1 and calculate T,E,VV(O) and T,ﬁw(,) statistics. The false alarm rate or

probability of detection is estimated as the proportion of statistic values that are
above the control limits of 1000 replications. Data for Phase | are simulated based
on the various conditions created for this study. To examine the effect of
contamination on the charts’ performance, we have considered a contaminated
model discussed in Section 3.4.2. The results of the investigation are presented in
Table 5.4 — 5.8. Each table represents each dimension arranged in ascending order
i.e.p=2,5, 10, 15 and 20 with a = 0.05. The first column in each table displays the
number of sample sizes, followed by the percentage of outliers and non-centrality
values respectively in the second and third column. As shown in Tables 5.4 — 5.8, the

performance of the control chart for T,E,VV(O) and T,E,VV(,) in terms of probability

detection and false alarm rate for each condition remain the same despite the changes
in UCL. This indicates that the consistent and unbiased MVV scatter estimator is
able to improve the UCL value while simultaneously maintains the good

performance of the Hotelling T? control chart.
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Table 5.4: Probability of detection and false alarm rates of the corresponding
control charts with dimension, p =2

S{:lmple % M_ean TIZWVV(O) TIZWVV(I)
Size(n) outliers(  shift(M “propability False alarm  Probability  False alarm
£) 1 Detection Detection
0 0 0.0520 0.0520
10% 3 0.5320 0.0450 0.5320 0.0450
5 0.9080 0.0450 0.9080 0.0450
20% 3 0.4270 0.0330 0.4270 0.0330
5 0.8530 0.0330 0.8530 0.0330
25 0 0 0.0530 0.0530
10% 3 0.8320 0.0390 0.8320 0.0390
5 0.9980 0.0390 0.9980 0.0390
20% 3 0.7210 0.0190 0.7210 0.0190
5 0.9960 0.0190 0.9960 0.0190
50 0 0 0.0540 0.0540
10% 3 0.8930 0.0350 0.8930 0.0350
5 1 0.0340 1 0.0340
20% 3 0.8280 0.0180 0.8280 0.0180
5 1 0.0170 1 0.0170
100 0 0 0.0490 0.0490
10% 3 0.9190 0.0300 0.9190 0.0300
5 1 0.0290 1 0.0290
20% 3 0.8890 0.0150 0.8890 0.0150
5 1 0.0150 1 0.0150
200 0 0 0.0690 0.0690
10% 3 0.9460 0.0490 0.9460 0.0490
5 1 0.0500 1 0.0500
20% 3 0.9140 0.0280 0.9140 0.0280
5 1 0.0280 1 0.0280
500 0 0 0.0630 0.0630
10% 3 0.9520 0.0490 0.9520 0.0490
5 1 0.0480 1 0.0480
20% 3 0.9310 0.0230 0.9310 0.0230
5 1 0.0230 1 0.0230
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Table 5.5: Probability of detection and false alarm rates for independent case with
dimension, p =5

Sample % Mean Control Charts
Size outliers  shift 72 72
(n) (e) (He) ___MVV (o) ___MVV(l)
Probability False alarm Probability  False alarm
Detection Detection
30 0 0 0.0500 0.0500
10% 3 0.9770 0.0300 0.9770 0.0300
5 1 0.0330 1 0.0330
20% 3 0.9650 0.0210 0.9650 0.0210
5 1 0.0200 1 0.0200
50 0 0 0.0490 0.0490
10% 3 0.9910 0.0350 0.9910 0.0350
5 1 0.0370 1 0.0370
20% 3 0.9890 0.0220 0.9890 0.0220
5 1 0.0230 1 0.0230
100 0 0 0.0380 0.0380
10% 3 1 0.0300 1 0.0300
5 1 0.0320 1 0.0320
20% 3 0.9970 0.0170 0.9970 0.0170
5 1 0.0190 1 0.0190
200 0 0 0.0390 0.0390
10% 3 1 0.0350 1 0.0350
5 1 0.0350 1 0.0350
20% 3 0.9990 0.0220 0.9990 0.0220
5 1 0.0220 1 0.0220
500 0 0 0.0430 0.0430
10% 3 1 0.0360 1 0.0360
5 1 0.0370 1 0.0370
20% 3 1 0.0190 1 0.0190
5 1 0.0190 1 0.0190
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Table 5.6:Probability of detection and false alarm rates for dimension, p = 10

Sample % Mean Control Charts
Size outliers  shift 72 72
(n) (e) (Ha) ___MVV(0) ___MVV({D)
Probability False alarm Probability  False alarm
Detection Detection
50 0 0 0.0520 0.0520
10% 3 1 0.0370 1 0.0370
5 1 0.0380 1 0.0380
20% 3 0.9990 0.0250 0.9990 0.0250
5 1 0.0220 1 0.0220
100 0 0 0.0450 0.0450
10% 3 1 0.0390 1 0.0390
5 1 0.0350 1 0.0350
20% 3 1 0.0240 1 0.0240
5 1 0.0230 1 0.0230
200 0 0 0.0520 0.0520
10% 3 1 0.0390 1 0.0390
5 1 0.0420 1 0.0420
20% 3 1 0.0250 1 0.0250
5 1 0.0240 1 0.0240
500 0 0 0.0540 0.0540
10% 3 1 0.0390 1 0.0390
5 1 0.0390 1 0.0390
20% 3 1 0.0260 1 0.0260
5 1 0.0230 1 0.0230
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Table 5.7:Probability of detection and false alarm rate for dimension, p = 15

Sample % Mean Control Charts
Size outliers  shift 72 72
(n) (e) (Ha) ___MVV(0) ___MVV({D)
Probability False alarm Probability  False alarm
Detection Detection
80 0 0 0.0560 0.0560
10% 3 1 0.0470 1 0.0470
5 1 0.0430 1 0.0430
20% 3 1 0.0270 1 0.0270
5 1 0.0320 1 0.0320
100 0 0 0.0520 0.0520
10% 3 1 0.0450 1 0.0450
5 1 0.0430 1 0.0430
20% 3 1 0.0250 1 0.0250
5 1 0.0220 1 0.0220
200 0 0 0.0470 0.0470
10% 3 1 0.0420 1 0.0420
5 1 0.0410 1 0.0410
20% 3 1 0.0200 1 0.0200
5 1 0.0240 1 0.0240
500 0 0 0.0470 0.0470
10% 3 1 0.0390 1 0.0390
5 1 0.0390 1 0.0390
20% 3 1 0.0260 1 0.0260
5 1 0.0290 1 0.0290
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Table 5.8:Probability of detection and false alarm rate for dimension, p = 20

Sample % Mean Control Charts
Size outliers  shift 72 72
(n) (e) (Ha) ___MVV(0) ___MVV({D)
Probability False alarm Probability  False alarm
Detection Detection
100 0 0 0.0530 0.0530
10% 3 1 0.0400 1 0.0400
5 1 0.0420 1 0.0420
20% 3 0.9970 0.0300 0.9970 0.0300
5 0.9980 0.0240 0.9980 0.0240
200 0 0 0.0510 0.0510
10% 3 1 0.0370 1 0.0370
5 1 0.0380 1 0.0380
20% 3 1 0.0310 1 0.0310
5 1 0.0250 1 0.0250
300 0 0 0.0440 0.0440
10% 3 1 0.0350 1 0.0350
5 1 0.0340 1 0.0340
20% 3 1 0.0240 1 0.0240
5 1 0.0220 1 0.0220
500 0 0 0.0530 0.0530
10% 3 1 0.0400 1 0.0400
5 1 0.0400 1 0.0400
20% 3 1 0.0350 1 0.0350
5 1 0.0320 1 0.0320
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5.7 Real Data Analysis
The application of the improved method T,@W(,) on real data is illustrated by using

data in Chapter 4 in Section 4.3 which involves the production of advanced
composite panels for the aircraft industry. The product consists of 3 quality variables
(dimensions) namely trim edge (x1), trim edge spar (x2), and drill hole (x3). The
details of the 21 spoilers were collected as Phase | data and 23 spoilers as Phase 11

data displayed in Table 4.7 and 4.9 respectively.

Estimates for the location vector (x) and scatter matrix (S) calculated using Phase |
data are presented in Table 5.9. The upper control limits (UCLs) based on the
estimates are displayed in the last column of the table. The values of the various
types of T2 statistics for Phase 11 data used in this study are shown in Table 5.10. As

could be observed in Table 5.9, the UCL for T,E,W(,) is smaller than the rest of the
values except T3. There is only a small different between the T,E,VV(,) (11.5513) and
the original TZ (11.035). When compared with the original T2, (T,@VV(O)), we
observe a large disparity between the two UCL values (T,\%W(o): 41.298 and
Tavv(y= 11.5513). Nevertheless, the ability of Tj3,y o) and Ty in detecting the

out of control data (highlighted) still remain the same as we can see in Table 5.10.

Four statistics, namely Ty oy, Trvvry » Tricp and T¢ signal observations 20, 22 and

25 as out-of-control but T3 only signals 20 and 25 as out-of-control observations and
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fails to signal observation 22. Even though with low UCL value, TZ is unable to

detect the out of control data unlike T,@W(,).

Table 5.9: Estimates of location vector, covariance matrix and UCL.

Types of Location Scatter Matrix Upper
Control Vector (S Control
Chart (x) Limit
(UCL)
Tg [0.00504 0.00284 0.01579] 0.00004 0.00002 0.00003 11.035
0.00002 0.00009 0.00001
0.00003 0.00001 0.00011
T2 [0.00365 0.00256 0.01209] [0.00001 0.00000 0.00000 11.798
0.00000 0.00003 —0.00001
0.00000 -0.00001 0.00003
TJ\%CD [0.00414 0.00207 0.01096] 0.00002 0.00000 0.00000 21.946
0.00002 0.00009 —0.00002
0.00000 —0.00002 0.00003
T2y [0.00336 000354 000913]  [0:00001 000001 0.00000] 41298
0.00001 0.00003 0.00000
0.00000 0.00000 0.00001
T2,y [0.00336 0.00354 0.00913] [ 000003 0.00002  —0.00001] 11.5513
0.00002  0.00007 —0.00001
—0.00001 —-0.00001 0.00002
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Table 5.10:Hotelling T2 values for future data (Phase I1)

No. T? T? T3 cp Ty (o) Thvva
1 0.5582 1.4242 1.7659 4.3908 1.5661
2 0.9003 2.5492 2.4694 5.1695 1.8438
3 0.4992 0.4936 0.3437 0.2992 0.1067
4 0.5463 1.0157 0.5456 1.5064 0.5373
5 0.4592 0.9588 0.4580 3.7869 1.3507
6 0.9013 1.7480 1.2527 2.2421 0.7997
7 3.0933 4.1372 4.4404 6.5361 2.3313
8 0.8061 1.2884 0.6837 1.0556 0.3765
9 7.3602 9.6843 14.9766 26.0499 9.2913
10 3.6198 5.8035 9.7417 19.1760 6.8396
11 5.3839 8.0897 11.8717 19.6313 7.0019
12 2.7387 4.7949 2.9788 8.1388 2.9029
13 3.8058 5.6890 7.4040 11.3895 4,0623
14  2.0548 6.3468 3.3086 9.1498 3.2635
15  2.5073 5.0227 6.8054 12.3881 4.4185
16  1.1976 1.8980 1.0679 2.0563 0.7334
17 1.5798 2.2630 1.7597 2.8765 1.0260
18 5.7910 7.9657 9.2817 13.9293 4,9682
19 1.8304 4.7003 2.4178 4.8791 1.7402
20 38.1397 190.2969 214.9233 894.5184 319.0497
21  1.2651 2.3301 1.5486 2.0641 0.7362
22 8.4181 19.7720 24.6552 45.2462 16.1381
23  3.7588 5.1645 4.8793 7.5328 2.6867
24  1.0602 1.7564 0.9320 2.23575 0.7974
25  42.8447 134.6222 68.6307 116.02933 41.3844
26  0.4832 1.3946 0.7796 7.32655 2.6132

5.8 Discussion

The UCL value for the Hotelling T2 control chart using consistent and unbiased
MVV estimators seemed to improve significantly from the Hotelling T? control chart

using the original MVV estimators. The improved control chart (T,E,VV(,)) was put to
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test on simulated and real industrial data. The finding showed that the improved
TZyv performed well in detecting out of control data with a more stringent UCL
value as compared to the original T2, (unimproved, T,\ZWV(O)). With good properties

and performance, this improved MVV estimators should be considered as alternative
estimators to replace the usual mean and variance vector in the construction of the

robust Hotelling T? control chart as well as other multivariate statistical procedures.

Even though Herwindianti (2006) and Herwindiati et al., (2007) had proved that
MVYV estimators possess three major properties of a good robust estimators i.e. high
breakdown point (BP=0.5), affine equivariance and computational efficiency, the
statistical efficiency of MVV estimators has never been shown before. The statistical
efficiency is always a very important performance measure for any statistical
procedure (Zuo, 2006, p.7). If robust multivariate estimators are to be of practical
use in statistical inference they should offer a reasonable efficiency under the normal
model and a manageable asymptotic distribution. Nonetheless, robust estimators are
commonly not very efficient. Minimum covariance determinant (MCD) estimators
introduced by Rousseeuw (1985) served as a perfect example. It has good theoretical
properties i.e. affine equivariance, high breakdown value, bounded influence
function and also has better convergence rate (Butler et al.,, 1993; Croux &
Haesbroeck, 1999). However the estimators are not efficient at normal models and

this is especially true at high breakdown point; see Croux and Haesbroeck (1999). To
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overcome the low efficiency drawback of the MCD estimators, thus Rousseeuw and
van Zomeren (1990) suggested reweighted version to attain high statistical
efficiency. Croux and Haesbroeck (1999) employed the reweighted version and
noticed that this approach maintains the breakdown point of the initial MCD

estimators, while attaining a better efficiency.

Taking into consideration the above problem, in next the chapter we propose an
improvement over the algorithm as suggested by Herwindiati (2006) in the context
of statistical efficiency. It consists of a one-step reweighted for MVV estimators. The
reweighting scheme will be able to maintain the outlier resistance of the initial
estimator and at the same time attains 100% efficiency at the normal distribution

(Croux & Haesbroeck, 1999).
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CHAPTER SIX
A ROBUST AND EFFICIENT REWEIGHTED ESTIMATOR OF
MULTIVARIATE LOCATION AND SCATTER

6.1 Introduction

In contrast with the traditional method, when the estimators in Hotelling T? control
chart are calculated in Phase | and directly used in Phase Il analysis, the estimators
should possess high statistical efficiency (Jensen et al., 2007; Chenouri et al., 2009).
However, as we are already aware, there is a conflict between breakdown point and
statistical efficiency as demonstrated in MCD estimators (Croux & Haesbroeck,
1999). Is the issue faced by the MCD estimators similar to MVV estimators? In
addressing the issue, we proceed with further analysis to examine the properties of

the estimators of MVV from the perspective of statistical efficiency.

The organization of this chapter is as follows. Section 6.2 is the investigation on
statistical efficiency of MVV estimators for different breakdown points. Section 6.3
proposes reweighted version of MVV estimators and describes the algorithm to
approximately calculate the estimates. Section 6.4 studies the asymptotic efficiency
of the proposed estimates while section 6.5 shows results of the investigation on the
finite-sample behavior of the estimator using simulation technique. Finally,

conclusion result and discussion are given in the last section.
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6.2 The Statistical Efficiency of MVV Estimators for Different Breakdown
Points

MVV estimators were shown to be computationally efficient in Chapter 3. However,
in the selection of robust estimators for any statistical estimation problems, besides
high breakdown point, they should also offer a reasonable efficiency under the
normal model and a manageable asymptotic distribution (Rousseeuw & van
Zomeren, 1990). Nevertheless, there is a conflict between statistical efficiency and
breakdown point where the efficiency of high breakdown estimators decreases when
the breakdown point increases, especially when the number of dimension becomes

higher (Rousseeuw & van Zomeren, 1990; Croux & Haesbroeck, 1999).

To check whether the conflict exists in MVV estimators, this study continues with

the investigation on statistical efficiency of MVV estimators for different breakdown

points. Two commonly chosen breakdown points are BP = 0.5 with h = ln+§+1j and

BP = 0.25 with h = (0.75)n. The former yields highest breakdown while the latter
gives a better compromise between efficiency and breakdown point. To illustrate
how the efficiencies of MVV estimators vary with different breakdown points (BP)
and quality characteristics (p) under normal model, we compute the asymptotic
relative efficiency (ARE). The computation of asymptotic relative efficiency (ARE)
is based on the definition given by Serfling (1980). For any parameter 8 € RP, and

two estimators 8Y) which are p-variate normal with mean @ and non-singular
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covariance matrices X;(F)/n where for j=1,2 and F is the corresponding

distribution, the ARE of 8@ to 8™ s

oy~ 1/p
ARE(8®, 8™ F) = (:z—gg:) (6.1)
2

Table 6.1, shows the ARE for the MVV scatter matrix with relative to the classical
covariance estimator at normal model for several values of p with BP = 0.25 and 0.5.
For each p, we observe a decrease in the efficiency value when BP changes from
0.25to 0.5. As p increases in size, the efficiency value decreases regardless of the
BPs. We could observe that, choosing the highest possible breakdown point (BP =
0.5) results in the loss of efficiency. Due to the conflict between efficiency and high
breakdown value, Croux and Haesbroeck (1999) suggested taking BP = 0.25 as a
compromise between efficiency and robustness, where the corresponding estimator
can still cope with realistic amount of contamination in the data, but is much more
precise when no outliers are present than the usual choice of BP = 0.5. However, we
want to gain efficiency while retaining the highest breakdown point. This can be
achieved by computing the reweighted version of the robust estimator (Rousseeuw &
Leroy 1987; Rousseeuw & van Zomeren,1990; Rousseeuw & van Driessen 1999;

Lopuhad, 1999, Pison & van Aelst 2004).
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Table 6.1: Asymptotic relative efficiency of MVV scatter matrix estimator w.r.t

classical covariance estimator for normal model.

p=2 p=5 p=10 p=15 p=20
BP =0.25 1.4176 1.3225 1.2411 1.2000 1.1740
BP=0.5 1.0073 1.0000 0.9978 0.9980 0.9983

6.3 Reweighted Minimum Vector Variance (RMVV) Estimator
To increase the efficiency of robust estimators, reweighted version of the estimators

is often used in practice. Rousseeuw and van Zomeren (1990) proposed a one-step
reweighted version of MCD estimators by giving weight 0 to observations for which
the robust Mahalanobis squared distance (MSD) statistics, d,ﬁa)(i) exceeds a
threshold value. The determination of the threshold value very much depends on the
exact distribution of robust distances. Nevertheless, an unsolved problem is that the
exact distribution of robust distances is unknown for finite sample sizes. The
common approach is to compare the squared distances with the percentage points of
their asymptotic y; distribution (Cerioli, Riani & Atkinson, 2008). The usual
suggestion for the threshold (e.g. Rousseeuw & Leroy 1987, p. 260; Rousseeuw &
van Driessen, 1999, p. 218; Pison & van Aelst, 2004, p. 312) is to take the 0.025%

cut-off point of the x; distribution.

Based on the aforementioned references, the MVV estimators are reweighted in
order to improve their efficiency. Thus, in this study, the observations with

dfMVV)l- > )(5,0_025, which can reasonably be suspected as outliers are given 0 weight.
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The outliers will be removed and the sample mean and covariance matrix are then
computed using the rest of the data. These estimators are known as the reweighted
mean and covariance matrix. To ensure that the d(ZMW)i statistic is asymptotically
xp distribution, we investigate on the asymptotic distribution of the robust MSD

through simulation.

6.3.1 The Distribution of Robust MSD Based On MVV Estimators

To investigate on the asymptotic distribution of robust MSD based on MVV
estimators and compare it with robust MSD based on MCD, we apply simulation
experiments to show that the distributions fit the y; distribution as done by Garrett
(1989). Random data of n = 10000 were generated from multivariate standard
normal distribution MVN (0, L,) for several dimensions, p = 2, 5, 10, 15 and 20.
Shown in Figure 6.1 and 6.2 are the QQ plots for the quantile of )(zz, distribution on
the horizontal axis versus the quantile of simulated MSDy,-p, and MSD,,,, on the
vertical axis respectively. Based on both figures, it is seemingly reasonable to claim
that the distribution of MSDycp and MSDyy, are asymptotically equal to xj
distribution. To further clarify the situation, the goodness of fit of those plots is
evaluated using the slope and the R-square of the straight line in accordance to the
data plot. The hypothetical distribution represents the y7 without error if all points

are in a straight line with slope equals 1 and R-square also equals 1 (Ali et al., 2008).
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Table 6.2 presents the values of the slope and R-square for the MSDy, and
MSDy,yy. From this table we observe that both of them have the R-square values
equal to 0.999 for all p’s. With regards to the slopes, we can see a small difference in
the values between MSDycp and MSDyy. The slopes for MSD, IS consistent
and approximately equals to 1 regardless of the dimensions (p). From this result we
can see that the values for the two measurements (R? and slopes) are very close to the
ideal value, which signify that the simulated MSD,,,, and MSD,,-p, Vvalues fit well

with the 7 distribution.

Table 6.2: Slope and R-square for MSDycp and MSDyyy

n =10 000 MSDMCD MSDMVV
p=2 R? 0.999 0.999
slope 0.995 1.001

p=5 R? 0.999 0.999
slope 1.010 1.020

p=10 R? 0.999 0.999
slope 1.005 1.003

p=15 R? 0.999 0.999
slope 1.002 1.001

p=20 R? 0.999 0.999
slope 0.999 1.005
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6.3.2 The Estimator

As discussed in the Section 6.3.1, the distribution of robust MSD based on MVV and
MCD estimators are asymptotically equal to xj distribution. Thus we come to a
decision to use the usual suggestion for the choice of cut-off value for reweighted
MCD i.e. x50.025 (Rousseeuw & Leroy, 1987; Rousseeuw & van Driessen, 1999;

Lopuhad, 1999; Croux & Haesbroeck, 1999). The raw RMVV estimators of location

and scatter are determined as follows:

n
raw  __ Y1 WiXi
Mpmyy = = (6.2)
raw  __ Z?:l wi(xi—mﬁ'ﬁ,‘,‘{,v)(xi—mﬁ%v)t (6 3)
RMVV — '

m

where w; = 0 if d;>

inyy (o Magyy) > Xpoo2s and w; = 1 otherwise. Therefore m

represent number of observations with d(ZMW)i < Xpo.025- Scatter estimators are
typically calibrated to be consistent for the normal distribution, thus the consistency
and correction factors are needed to guarantee Fisher consistency for the reweighted
estimator and improve its biasness for small sample behavior. We take consistency

factor, c*(m) as in Equation (5.3) such that

m/n

c'(m) = —————
(m) P(Xzzn+2<)(zz,_m/n)

(6.4)
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Albeit this process guarantees consistency under normal distribution, this
consistency factor is not sufficient to make the RMVV estimator unbiased for small
sample sizes. To overcome the insufficiency issue, we compute the correction factor,
Umm,p, Via simulation approach for several sample sizes n and dimension p. We
generated data sets XU e R™P from standard normal distribution, N,(0,1). For
each data set XU0, j = 1, ..., we then determine the RMVV estimators of location
and scatter as in Equation (6.2) and (6.3) followed by c*(m)S;‘,’l}”v({',). If the estimator
is unbiased, we should have E[c*(m)Skyyy] = I,. Thus, we expect the p-th root of

the determinant of c¢*(m)Skyyy equals 1 and the mean of the p-th root of the

determinant is given by

* 1 * j
r(le" (m)Sgaiy ) = 21 (| ) Sy D7,

where |¢*(m)Svyv| denotes the determinant of a square matrix ¢*(m)Sgyvy. We
perform r = 1000 simulations for different sample sizes n and dimensions p, with

value of @ = 0.05. The correction factor for ¢*(m)Sgiyy is given as;

1

9 = 6.5
mnp = e mosi]) (65
Next, we determine the RMVV location and scatter as follows,
?: Wlxl
Mpyyy = == (6.6)
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. wi(xi—mmv:::v)(xi—mRMVV)t (6.7)

* * Z
Srmvy = 19mofn,pc (m)
Finally, the squared robust Mahalanobis distances become

2 _
iy (Ko Memyy, Srmvy) = (X — Mpyyy) Sgiyy (Xi — Mpyyy :
d (x;, m S )=(x;—m )'S (x;—m ) (6.8)

6.3.3 Algorithm

We now develop an algorithm to calculate an approximate RMVV solution, where
the basis of our algorithm follows the generalization of MVV algorithm in Chapter 3
in Section 3.2. Let x4 x5, ..., x,, be a p-variate random sample of size n. We consider
two typical choices of breakdown point (BP), namely BP=0.5 with h =
[(n+p+1)/2] and BP=0.25 with h = (0.75)n. For that reason, we use two
different algorithms with different formula in determining the h subset. The
difference between the two algorithms occurs in step-4 of Stage 1. Below is the

complete algorithm to calculate an approximate RMVV solution.

Stage 1: Creating Initial Subsets.

This stage is repeated 500 times

1. Draw a random subset H, with number of observations, h = p + 1. Compute

the mean vector Xy, and covariance matrix Sy, .

Xn, = average(H,) and Sy, = cov(H,)

2. Compute the MSDs dZ (i) = (x; — EHO)tSHO‘l(xi —%xy,) fori=1,..,n
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3. Sort these MSDs in ascending order, dZ(m(1)) <d3(n(2))<..<
d%(m(n)). This ordering defines a permutation 7 on the index set.

4. Take a new subset H; = {m(1), ..., m(h)} where

i. h= [n+p+1j for BP=0.5 or

2

ii.  h=(0.75)n for BP=0.25
then calculate Xy, Sy,, Tr(Sy,*) and compute MSD,
d2(i) = (x; — X,) 'Sy, (xi—%y,) fori=1,..,n

5. Repeat step 3 and 4 for H,

6. Sort the 500 values of Tr(SHZZ) in ascending order, then select 10 subsets of
H, which have the lowest Tr(SHZZ). These subsets are treated as the initial
subsets and their mean vectors, }_(HZ and covariance matrices, Sy, will be
used in Stage 2.

Stage 2: Concentration Steps (C-step)

This process will be repeated until convergence is achieved for each of the 10
subsets. Convergence means Tr(Si_,) = Tr(S:), where k is the number of
iterations.

1. Compute the MSDs by using Xy, and Sy, , where

d3(i) = (x; — Xp,) Sy, (x;—%y,) fori=1,..,n.
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2.

Repeat step 3 and 4 in Stage 1 until Tr(Si_,) = Tr(S%). If Tr(Si_,) >
Tr(S%) the process is continued. This process will be repeated until
convergence is achieved.

When convergence is achieved for all the 10 subsets, choose the subset (H*)

that generates the lowest Tr(S%,k). From H*, calculate Xy~ = myyy and

Sy = Syyy as the location and scatter estimators for MVV respectively.
1
Mmyyy = ;Z?ﬂ Xi (6.9)

Suvy = %Z?=1(xi — myyy) (x; — myyy)t (6.10)

Reweighted Steps: Equations (6.9) and (6.10) respectively define the MVV

estimates of location and scatter. By using these estimates,

4.

7.

Compute the Mahalanobis squared distances for all observations x4 x5, ..., x,
such  that diIZ\/IVV(in myyy) = (x; — Mygyy) ' Syyw (X; — myyy)  where
i=1,2,...,n.

The raw RMVV estimators in Equation (6.2) and (6.3) are computed by
giving weight w; = 0 to observations with dl-IZVIW(x,-,mMW) > )(12,,0.025, and
w; = 1 otherwise.

Compute the consistency factor using Equation (6.4) for the raw RMVV
covariance matrix.

Compute the correction factor for ¢*(m)Sgpyyy by using Equation (6.5).
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8. Compute the reweighted MVV estimators of location and scatter using

Equation (6.6) and (6.7) respectively.

6.4 Efficiency

To gain more insight in the RMVV estimators and observe how reweighting affects
their performance, we compute the asymptotic relative efficiency where it may give
some indication of how good the estimators are. We compute the asymptotic relative

efficiency (ARE) based on Equation (6.1).

Table 6.3 shows the asymptotic relative efficiency (ARE) of the RMVV scatter
estimators with different breakdown point of 0.25 and 0.5 denoted respectively as
RMV V25 and RMV Vs, with relative to the MVV estimator with breakdown point

of 0.5 (MVV, ) at normal model computed using the following equation,

1/p

ARE(Spmvv, 195,110 (h)SMVV(BP=0.5)) = (192‘,nc (h)SMVV(BP=0.5)/ SRMVV) (6.11)

Note that the ARE for RMVV 25 is less efficient than MV Vg5 for all p’s. However,
the ARE values improve as p increases. When the BP of RMVV estimator is
increased to 0.5, we observe that the efficiency of the estimator increases
considerably. For p =2 and 10, the ARE’s are above 1 while for other dimensions,
the values ranging from 0.9975 to 0.9987 are almost equal to 1. From Table 6.3 we
can deduce that by reweighting MVV, we can achieve high efficiency while

simultaneously maintain highest breakdown point. To show the effect of BP on
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efficiency, let us refer to Table 6.4. The first row records the efficiency of MVV
estimator while the second row records the efficiency of the reweighted version of
the estimator i.e. RMVV. Apparently, the MVV estimator is more efficient when BP
= 0.25, however after reweighting the estimator (RMVV), the efficiency at BP = 0.5
improves and outdo when BP = 0.25.

Table 6.3: Asymptotic relative efficiency of the scatter matrix for RMVV estimator

with different breakdown point (BP=0.25 and 0.5) w.r.t MVV estimator with
(BP=0.5) for normal model.

p=2 p=5 p=10 p=15 p=20
RMVVy 5 w.r.t 0.6984 0.7490 0.8012 0.8293 0.8489
MWVos
RMVVs w.r.t 1.0217 0.9984 1.0015 0.9975 0.9987
MWVos

Table 6.4:Asymptotic relative efficiency of the scatter matrix for MVV and RMVV
estimator with BP=0.25 with relative to MVV and RMVV estimator with BP=0.5
respectively.

p=2 p=5 p=10 p=15 p=20
MVVgsW.r.t
MVV;s 1.4073 1.3225 1.2439 1.2024 1.1760
RMVV s w.r.t
RMVV;s 0.9620 0.9922 0.9951 0.9997 0.9996

Thus, the RMVVy 5 estimators possess both high efficiency and high breakdown
point, hence, making these estimators more appealing. Nevertheless we should be

aware that the gains in efficiency come at the price of a larger bias under
141




contamination. The reason is that higher efficiency can only be obtained by
increasing tuning parameters, which in turn affects the bias under contamination

(Rousseeuw, 1994).

Our study then continued with the investigation on finite-sample robustness of
RMVV estimators to support the above ARE results. For that purpose, a simulation
study was conducted and discussed in the following section. Since this study focus
on Hotelling T? for which the shift in the mean vector is of main concern, it would be

more apt to focus on the RMVV location estimator.

6.5 Finite-Sample Robustness

To study on the finite-sample robustness of the RMVV location estimator, we
performed simulations on contaminated data sets. In each simulation we generated
L=1000 data sets of N(0,1,) with p =2, 5, 10 and 20 representing small, medium
and slightly high number of quality characteristics (dimensions) with reasonable
values of sample sizes n = 50, 100, 200 and 500. Refer to section 3.4.2 of Chapter 3

for the generation of contaminated data sets.

To measure the robustness, we used the bias and the mean squared error (MSE) as
suggested by Rousseeuw, van Driesen, van Aelst and Agullo (2004). For each

simulation we compute the mean squared error and bias of the mean (location)

vectors, fikyyy, as in Roelant, van Aelst and William (2009),
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A AR (I
MSE (figmvy) =n[ “{pﬁ"”’”“} (6.12)
1/2
L @)
bias(Brmyy) = [% ’}’zl{w (6.13)

wherel=1, ....L; j=1,...,p

Tables 6.5, 6.6, 6.7 and 6.8 show the MSE and bias from mild, moderate and
extreme contamination for RMVV, 5, RMVVq 25 and MVVVgswhen p =2, 5, 10 and
20 respectively. In general, across the type of contaminations, there is a diminution
in the value of MSE when p increases except for moderate (Table 6.7) and extreme
contamination (Table 6.8) when p = 20, n = 50. For most conditions, the RMVV 25
location estimator yields the lowest value of MSE, followed by RMVV,5 and then
MVV,s. For larger sample sizes, the bias values for all estimators reduce closer to

ZEro.

Although the RMVV 25 estimator produces the smallest MSE value, however if we
scrutinize each table, we could observe inconsistency in the generation of the
smallest bias values. As shown in Table 6.5, under mild contamination, RMVV 25
produce the smallest bias value when p = 2 and n = 50, but when n increases,
RMVV, 5 estimator outperforms RMVV, 25 in the number of smallest bias values.

Nonetheless, when p increases to 5 and 10, RMVV, 5 reverts back to be the better
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performer. Meanwhile as p increases to 20, RMVV, 5 produces the smallest bias

except for n = 500.

For moderate contamination with mean shift 5 as shown in Table 6.6, RMVVg s
generates the smallest bias value for almost all combinations of p and n, except for
small sample, n = 50. For the other moderate contamination (20% with mean shift 3)
Table 6.7 shows that RMV V5 is more dominant in generating the smallest value of
bias especially when p = 20. Under the condition of extreme contamination as
presented in Table 6.8, RMVV 25 outperforms RMVVy s when p = 2 and 5, but when

p increases to 10 and 20, RMV Vs is better in generating small bias values.

Nevertheless, overall, RMV Vs is the better performer as compared to RMVVy5
and MVV s because the estimator is not easily influenced by outliers (resulting in
small MSE). Although the RMVV, 25 has lower efficiency compared to RMVV 5 for
normal data, but with regards to contamination, RMVV 55 on the whole is able to

produce lower values of MSE and bias.
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Table 6.5: Location estimator: 10% outliers with mean shift 3 (mild contamination)

n 50 100 200 500

p=2 MSE bias MSE bias MSE bias MSE bias
RMVV, s 3.0032 0.0114 3.1907 0.0032 3.4245 0.0034 3.6031 0.0017
RMV V25 1.7446 0.0066 1.6572 0.0067 1.6788 0.0052 1.6964 0.0029
MV Vs 3.4706 0.0080 4.0558 0.0047 4.5698 0.0043 5.0813 0.0018
p=5

RMVVgs 2.0571 0.0056 2.0776 0.0038 2.0825 0.0098 2.0380 0.0044
RMVV s 1.4971 0.0066 1.4342 0.0037 1.4038 0.0078 1.3780 0.0031
MVVys5 21349 0.0127 2.4213 0.0092 2.7794 0.0114 3.1466 0.0048
p=10

RMVVs 1.8022 0.0126 1.8966 0.0151 1.8359 0.0136 1.7480 0.0089
RMVV, 25 14394 0.0092 13617 0.0120 1.3560 0.0117 1.3441 0.0079
MVVys 1.8042 0.0107 19474 0.0148 2.0003 0.0154 2.4890 0.0105
p=20

RMVVy 5 14990 0.0219 1.7181 0.0188 1.8215 0.0170 1.7075 0.0093
RMVV, 25 14176 0.0226 1.3657 0.0192 1.3404 0.0173 1.3157 0.0087
MVVys 14984 0.0222 1.7278 0.0196 2.0224 0.0175 2.1374 0.0118
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Table 6.6: Location estimator: 10% outliers with mean shift 5 (moderate

contamination)

n 50 100 200 500
p=2 MSE bias MSE bias MSE bias MSE bias
RMVV, 5 29739 0.0102 3.1905 0.0031 3.4192 0.0037 3.5983 0.0018
RMVV 55 1.7294 0.0024 1.6315 0.0033 1.6520 0.0017 1.6837 0.0009
MVVy s 3.4553 0.0072 4.0614 0.0044 45754 0.0043 5.0873 0.0019
p=>5
RMVV 5 2.0643 0.0057 2.0525 0.0043 2.0807 0.0100 2.0394 0.0045
RMVV, 25 1.4904 0.0065 1.4372 0.0042 14036 0.0077 1.3773 0.0031
MVVys 21370 0.0133 2.4064 0.0073 2.7612 0.0114 2.9932 0.0047
p=10
RMVV 5 1.7936 0.0117 1.8934 0.0157 18708 0.0121 1.7473 0.0090
RMVV, 25 14463 0.0120 1.3674 0.0130 1.3545 0.0112 1.3464 0.0080
MVVy s 1.7902 0.0107 1.9474 0.0148 2.1854 0.0129 2.4737 0.0117
p=20
RMVV,5 15196 0.0193 1.7361 0.0190 1.8213 0.0153 1.7012 0.0098
RMVV 55 14310 0.0219 1.3555 0.0186 1.3334 0.0175 1.3161 0.0090
MVVy s 15189 0.0195 1.7487 0.0189 2.0339 0.0158 2.1368 0.0118
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Table 6.7: Location estimator: 20% outliers with mean shift 3 (moderate

contamination)

n 50 100 200 500
p=2 MSE bias MSE bias MSE bias MSE bias
RMVV, 5 2.7968 0.0109 2.9460 0.0034 3.1887 0.0043 3.1918 0.0037
RMVV, 25 1.6785 0.0168 1.6481 0.0188 1.7205 0.0177 1.7133 0.0145
MVVys 3.1571 0.0142 3.6666 0.0011 4.2234 0.0043 4.4614 0.0044
p=>5
RMVV 5 2.0241 0.0111 2.0430 0.0033 2.0979 0.0110 2.0288 0.0053
RMVV, 25 14396 0.0058 1.3793 0.0030 1.3890 0.0071 1.4244 0.0036
MVVys 2.0840 0.0109 2.3109 0.0060 2.6152 0.0143 2.8112 0.0147
p=10
RMVV 5 1.7607 0.0128 1.9035 0.0154 19249 0.0103 1.8271 0.0093
RMVV, 25 1.4070 0.0114 1.3522 0.0132 1.3428 0.0111 1.4040 0.0095
MVVy s 1.7682 0.0140 1.9238 0.0166 2.1292 0.0120 2.4336 0.0129
p=20
RMVV 5 1.9817 0.3067 1.7059 0.0183 1.8512 0.0154 1.7339 0.0102
RMVV 55 2.1080 0.3707 1.5289 0.0224 1.6660 0.0257 2.1956 0.0154
MVVys5 19839 0.3072 1.7151 0.0184 2.0105 0.0158 2.1117 0.0103
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Table 6.8: Location estimator: 20% outliers with mean shift 5 (extreme
contamination)

n 50 100 200 500

p=2 MSE bias MSE bias MSE bias MSE bias
RMVV; 5 2.7651 0.0056 2.9251 0.0017 3.1455 0.0046 3.1678 0.0037
RMVVq 55 15730 0.0021 1.5113 0.0023 15761 0.0017 1.5600 0.0022
MVVy5 3.1161 0.0110 3.6765 0.0019 3.8672 0.0049 4.4345 0.0038
p=>5

RMVV 5 2.0273 0.0129 2.0449 0.0026 2.0951 0.0108 2.1688 0.0037
RMVV, 25 1.4407 0.0060 1.3797 0.0032 1.3915 0.0071 1.4221 0.0037
MVVys 2.0922 0.0117 2.3082 0.0048 2.5998 0.0143 3.2375 0.0039
p=10

RMVV 5 1.7522 0.0104 1.9073 0.0151 19257 0.0108 1.8272 0.0093
RMVV, 25 14154 0.0108 1.3397 0.0153 1.3439 0.0111 1.2739 0.0093
MVVy s 1.7605 0.0116 1.9352 0.0149 2.2967 0.0137 2.4251 0.0132
p=20

RMVV 5 2.6433 0.4052 1.7082 0.0189 1.8547 0.0155 1.7954 0.0103
RMVV 55 2.9294 04261 1.8758 0.0633 1.8166 0.0199 1.6256 0.0084
MVVys5 2.6465 0.4055 1.7144 0.0191 2.2006 0.0158 2.1027 0.0116

6.6 Discussion

The result of the investigation on the statistical efficiency of MVV estimators for
different breakdown point showed that the conflict between efficiency and
breakdown point occurred in MVV estimators. Hence, to maintain the highest
breakdown value and simultaneously achieving high efficiency, this study developed
a one-step reweighted version of minimum vector variance estimator (RMVV). The

development and availability of fast algorithm for computing the RMVV has brought
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renewed interest to this estimator. The finding proved that reweighting leads to an
important gain in efficiency at the same time maintaining the highest breakdown
value. Thus, the RMVVys estimator possesses both high efficiency and high
breakdown point, making these estimators more appealing. However, if the data is
suspected to be contaminated by outliers, we recommend using RMVV, 55 estimators

because it has a smaller MSE and bias.
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CHAPTER SEVEN
ROBUST HOTELLING 7° CHART BASED ON REWEIGHTED
VERSION OF MVV ESTIMATOR

7.1 Introduction

In the previous chapter, we have introduced the reweighted version of MVV known
as RMVV. Through simulation study, we have shown that these estimators are
consistent, unbiased and attained high efficiency. In this chapter, we will investigate
on the performance of these estimators in constructing the Hotelling T? chart. Since
efficiency and breakdown point are inversely related (Croux & Haesbroeck, 1999),
and the efficiency value changes with respect to breakdown point, thus this chapter
will demonstrate on the construction of the robust Hotelling T® chart using the
RMVV estimators taking into consideration the two breakdown points used in the
previous chapter namely 0.5 and 0.25. The respective robust Hotelling T2 charts are
denoted as Tgyyy, . and TZyyy,,.- The investigation will then continue with the
comparison of T2yyy, ., TAuvy, ,s» Hotelling T2 control charts with MVV (T2, the

improved T2, (T,@VV(,)) which was proposed in Chapter 5, MCD estimators (Tép)

and Reweighted MCD estimators with breakdown point 0.25 (TZycp)-

The outline of this chapter is as follows. In Section 7.2, we formally introduce two
robust control charts with different breakdown point based on RMVV estimators.

The approximations of the control limit for T,%MVVO_S and T,%MVVO_ZS are discussed in
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Section 7.3 followed by the simulation study on the performance of T2y, . and
Téuvv, , With contaminated data in Section 7.4. The following Section 7.5 gives an

example on real sample data, and finally, Section 7.6 concludes the chapter.

7.2 RMVV Hotelling T? Control Chart

Suppose that x; = {xq, x5, ..., x,} is the p-variate random sample of n observations
of preliminary data set in Phase | such that x; are independent with unknown u and
2. To estimate the in-control parameters, we need to use in-control data set. The
process of identifying the in-control data set from x; is referred to as Phase | process.
Since the RMVV estimators are known to be free from outliers due to its estimation
process, they could be readily used as in-control estimators in Phase 1l process where

the phase 11 observations are x, = {Xp11, Xp42, .- }, Xg € X;.

From the preliminary data set, x;, the RMVV mean vector and covariance matrix
estimators (mpgyyy and Sgyyy) are determined by using Equations (6.6) and (6.7)
presented in Chapter 6. Since we are investigating RMVV Hotelling T? chart with
two typical choices of breakdown point, namely BP=0.5 with h = |[(n +p + 1)/2]
and BP=0.25 with h = (0.75)n, thus, we need to calculate RMVV estimators using
two different algorithms with different formula in determining the h subset. The

algorithm was discussed in Section 6.3.3. Subsequently, by using these two types of
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RMVV estimators, we define the two robust Hotelling’s T2 for Phase 11 data, Xg, aS

follows,

T1§MVV0_5 9) = (x4 — mRMVV0,5)SI_21}/IVV0_5 (xg — mRMVVO.S)t (7.1)

TRmvvy 5 (9) = (Xg — Mpyyy, ) SrRMVYy s (Xg — MrMyY,y,5)" (7.2)

7.3 Estimation of Control Limits for RMVV Hotelling T? Control Chart

To demonstrate the performance of TZuyy, . in Equation 7.1 and Tgyyy,,. in
Equation 7.2, we need a better understanding about its distribution to obtain
appropriate control limits (UCL). Since the exact distributions of the finite sample
for RMVV estimators are unknown, we approximate control limit by adopting the
same Monte Carlo simulation method used for the construction of the Tj,, control
limit as discussed in Section 3.3. The quantiles of the TZyyy, . and TZyyy, ,. are
estimated for several combinations of sample sizes and dimensions. In order to
estimate the 95% quantile of TZyyy, . and Tgyyy, . for a given sample size n and
dimension p in Phase 1, we first generate K = 5000 samples of size n from a standard
multivariate normal distribution MVN,, (0, I,,). Then, for each data set of size n, we
compute RMVV mean vector and covariance matrix estimates which respectively
are denoted as mpgyyy (k) and mgyyy (k) where k = 1, ..., K. In addition, for each

data set, we randomly generate a new observation x,, treated as a Phase I
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observation from MVN,,(0,1,) and calculate the corresponding TZyyv, . (g, k) and
Téuvv, ,s (9, k) values as given by Equation 7.1 and 7.2. The empirical distribution

functions of Tgyyy, . (9, k) and Tgyyy, ,. (g, k) are based on the simulated values

TI%MVV (g, 1), TI%MVV @g,2), ..., TI%MVV (9,K) (7.3)

Next, we sort Tayyy, (g, k) and Tgyyy, ,. (g, k) values in ascending order and the

UCL is the 95% quantile of the 5000 statistics.

7.4 Performance Evaluation.

The performance of the TZyyy, . and TZyyy, ,. control charts were put to test under
various conditions. For such purpose, a simulation study had been designed to
encompass several different scenarios (conditions), which were assumed to influence
the strength and weaknesses of the proposed control charts. These various conditions
were created by manipulating the number of observations (n), the number of
dimensions (p), and the level of contamination by using different proportion of
outliers (¢) and several mean shifts values (u,) as discussed in Section 3.4 of

Chapter 3.

The performance of TZyyy, (g, k) and Tgyyy, ,. (g, k) charts was judged based on

the false alarm rate and probability of detection of the process of the Phase Il data.

Finally, the new charts were compared with the existing robust Hotelling T? charts
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using MVV (T{yy), the improved Tiyy (Tiyyay), MCD (Tjcp) and RMCD
(TZcp)- Each of these charts was tested on 5 types of contaminations on 23
combinations of n and p which totaled up to 115 conditions. For each condition, the
false alarm rates and probability of detection were determined. The programs and
simulations were run using MATLAB 7.8.0 (R2009a). The algorithm of MVV and
RMVV were executed using the MATLAB 7.8.0 (R2009a), while Fast MCD
algorithm to compute MCD and RMCD estimators used mcdcov.m in the LIBRA
package under MATLAB 7.8.0 (R2009a). The computation of the RMCD estimator
using mcdcov.m algorithm was based on breakdown point 0.25 as discussed in

Section 2.3.5 of Chapter 2.

7.5 Simulation Results

Since the performance of false alarm rate and probability of detection for T3Z,, and
T,E,VV(,) are the same, and only differ in the control limits (UCL’s) as discussed in the
result of Chapter 5, hereafter, T3, will represent both robust Hotelling T? chart

using MVV(Ty,) and improved Tgyy (Tiyy(ry)- Basically, this section compares

the performance of Tyicp, Tivy, Tamcns Tamvy, s and Tiyyy, ,, control chart in terms
of probability of detection and false alarm rate. The presentation of the results for the
probability of detection and false alarm rate in this chapter differs from the
presentation in Chapter 4 because of the increase in the number of robust methods.

The results of the investigation are presented in tables for the probability of
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detection. For ease of comparison, we will refer to the tables and graphical

presentation for the false alarm rates.

7.5.1 Probability of Detecting Outliers

Tables 7.1-7.5 which recorded the probability of detection for each condition are
arranged based on the ascending number of dimensions (variables) namely p = 2, 5,
10, 15 and 20 with o = 0.05. The first column in each table displays the number of
sample sizes, followed by the percentage of outliers and non-centrality values (mean
shifts) respectively in the second and third column. The last four columns record the

probability of detection of the control charts investigated in this study namely

2 2 2 2 2
Tycor Tivvs TRmeps Temvv, s @nd Temyy, -

For each condition, the performance of the control chart is regarded as better in
detecting changes when the value of the probability is closer to 1. Table 7.1 presents
the probability of detection for the bivariate case (p = 2). Under most conditions,

TﬁMWO_ZS shows better detection than other charts, especially when the percentage of

outliers is large (20%).
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Table 7.1: Probability of detection for the corresponding control charts with
dimension, p =2

Sample %  Mean Control Charts

Size outliers  shift

(n) ©) (W) Thep Thwy Timeo  Thmvves  Thmvveys
10 10% 3 0.5160 0.5320 0.5120 0.5080 0.5940
25 0.7840 0.8320 0.8420 0.7730 0.8270
50 0.8840 0.8930 0.9210 0.8590 0.9180
100 0.9010 0.9190 0.9290 0.9040 0.9370
200 0.9350 0.9460 0.9530 0.9460 0.9580
500 0.9370 0.9520 0.9510 0.9620 0.9580
10 10% 5 0.9310 0.9080 0.9240 0.8800 0.9380
25 0.7840 0.9980 1.0000 0.9930 0.9990
50 0.8840 1.0000 1.0000 1.0000 1.0000
100 0.9010 1.0000 1.0000 1.0000 1.0000
200 0.9350 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000
10 20% 3 0.3240 0.4270 0.3550 0.4070 0.4870
25 0.5420 0.7210 0.6290 0.6900 0.7400
50 0.6950 0.8280 0.7620 0.8010 0.8850
100 0.7260 0.8890 0.7710 0.8900 0.9150
200 0.8030 0.9140 0.8200 0.9390 0.9430
500 0.8190 0.9310 0.8320 0.9490 0.9510
10 20% 5 0.7960 0.8530 0.8590 0.8340 0.9120
25 0.9790 0.9960 1.0000 0.9900 0.9980
50 1.0000 1.0000 1.0000 1.0000 1.0000
100 1.0000 1.0000 1.0000 0.9990 1.0000
200 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 7.2: Probability of detection for the corresponding control charts with
dimension, p =5

Sample %  Mean Control Charts
Size outliers  shift 2 2 2 72 72
(n) (€) (o) McD mvv RMCD RMVVq 5 RMVVq 25
30 10% 3 0.9610 0.9770 0.9690 0.9710 0.9900
50 0.9860 0.9910 0.9970 0.9860 0.9990
100 0.9980 1.0000 1.0000 0.9970 1.0000
200 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000
30 10% 5 1.0000 1.0000 1.0000 1.0000 1.0000
50 1.0000 1.0000 1.0000 1.0000 1.0000
100 1.0000 1.0000 1.0000 1.0000 1.0000
200 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000
30 20% 3 0.7530 0.9650  0.8350 0.9600 0.9840
50 0.9530 0.9890  0.9800 0.9850 0.9980
100 0.9870 0.9970  0.9990 0.9970 1.0000
200 0.9960 0.9990  1.0000 1.0000 1.0000
500 0.9980 1.0000 1.0000 1.0000 1.0000
30 20% 5 1.0000 1.0000 1.0000 1.0000 1.0000
50 1.0000 1.0000  1.0000 1.0000 1.0000
100 1.0000 1.0000  1.0000 1.0000 1.0000
200 1.0000 1.0000  1.0000 1.0000 1.0000
500 1.0000 1.0000  1.0000 1.0000 1.0000
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Table 7.3: Probability of detection for the corresponding control charts with
dimension, p =10

Sample % Mean Control Charts
Size outliers  shift 2 2 2 72 72
(n) (€) () McD mvv RMCD RMVV s RMVYV 25
50 10% 3 1.0000 1.0000  1.0000 1.0000 1.0000
100 1.0000 1.0000 1.0000 1.0000 1.0000
200 1.0000 1.0000  1.0000 1.0000 1.0000
500 1.0000 1.0000  1.0000 1.0000 1.0000
50 10% 5 1.0000 1.0000  1.0000 1.0000 1.0000
100 1.0000 1.0000 1.0000 1.0000 1.0000
200 1.0000 1.0000  1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000
50 20% 3 0.8840 0.9990 0.8870 1.0000 1.0000
100 1.0000 1.0000 1.0000 1.0000 1.0000
200 1.0000 1.0000  1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000
50 20% 5 1.0000 1.0000 1.0000 1.0000 1.0000
100 1.0000 1.0000  1.0000 1.0000 1.0000
200 1.0000 1.0000  1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 7.4: Probability of detection for the corresponding control charts with
dimension, p =15

%

Control Charts

Sample . Mean
Size outlier shift
Tocp Thvy Tiuep  Tamwves  Thmvvg,s
(n) (Ha)
(e)

80 10% 3 1.0000 1.0000 1.0000 1.0000 1.0000
100 1.0000 1.0000 1.0000 1.0000 1.0000
200 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000

80 10% 5 1.0000 1.0000 1.0000 1.0000 1.0000
100 1.0000 1.0000 1.0000 1.0000 1.0000
200 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000

80 20% 3 0.9310 1.0000 0.9930 1.0000 1.0000
100 0.9840 1.0000 0.9840 1.0000 1.0000
200 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000

80 20% 5 1.0000 1.0000 1.0000 1.0000 1.0000
100 1.0000 1.0000 1.0000 1.0000 1.0000
200 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 7.5: Probability of detection for the corresponding control charts with
dimension, p =20

Sample % Mean Control Charts

Size outliers  shift 2 2 2 72 72

(n) (€) (o) McD mvv RMCD RMVV s RMVV 25
100 10% 3 1.0000 1.0000 1.0000 1.0000 1.0000
200 1.0000 1.0000 1.0000 1.0000 1.0000
300 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000
100 10% 5 1.0000 1.0000 1.0000 1.0000 1.0000
200 1.0000 1.0000 1.0000 1.0000 1.0000
300 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000
100 20% 3 0.8760 0.9970 0.8760 0.9990 0.9470
200 0.9510 1.0000 0.9000 1.0000 0.9840
300 0.9990 1.0000 0.9970 1.0000 0.9890
500 1.0000 1.0000 1.0000 1.0000 0.9920
100 20% 5 0.9970 0.9980 0.9970 0.9980 0.9670
200 0.9950 1.0000 0.9500 1.0000 0.9940
300 1.0000 1.0000 1.0000 1.0000 0.9990
500 1.0000 1.0000 1.0000 1.0000 0.9990

As we go across Tables 7.2, 7.3 and 7.4 which represent p = 5, 10 and 15

respectively, we could observe that T,%MWO_ZS always record the highest percentage of

detection with most of the values achieving the perfect 100% detection. However, as

p reaches 20, the chart’s performance slightly drops. However, this situation only

160



occurs when the percentage of outliers is large as exhibited in Table 7.5. At this

point, better ability of detection could be observed from T,y and Ty, . -

7.5.2 False Alarm Rates

Tables 7.6 — 7.10 record the false alarm rates for all charts. We will alternately refer
to the visual presentation in Figure 7.1 to 7.5 and the numerical values in Table 7.6 —
7.10. Each figure represents different type of contaminated distributions as discussed
in Chapter 3 in Section 3.4.2, categorized as ideal, mildly contaminated, moderately
contaminated and extremely contaminated. For each condition, the performance of
the control chart is regarded as better in controlling false alarm rates when the
empirical rate is closer to the nominal value, o = 0.05. In the tables, the values that
are closest to the nominal value but not less than 0.025 and exceeding 0.055 are
highlighted. This value was chosen based on Bradley’s interval of robustness

(discussed in Section 4.2.3 in Chapter 4).

Under bivariate case (p = 2) as presented in Table 7.6 and Figure 7.1, overall, TZ,y
shows better performance in controlling false alarm rate since it has the highest
number of highlighted values followed by T,%MVVO_S. TZ,v shows better control of
false alarm rate for ideal, mildly contaminated, and moderately (10% with mean shift
5) contaminated distributions. However, under moderate (20% with mean shift 3)

and extreme contamination, the false alarm rates fall below the 0.025 level. The
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result implies that under bivariate case, T, perform poorly when the percentage of

contamination is high.

Table 7.7 and Figure 7.2 exhibits the false alarm rates when p = 5. For this case in
general, T;%MWO_ZS chart has better ability in controlling false alarm rates. Trailing
behind is TZyyy, .- Under small and moderate sample sizes, TZyyy, ,. Surpasses the
performance of the other charts. However, for the largest sample size i.e. 500,

Téuyv, . 1S able to control false alarm rates better than T2y, , ..

The performance of the charts in terms of false alarm rates for the case of p = 10 is
displayed in Table 7.8 and Figure 7.3. The overall results on false alarm rates show
that TﬁMWO_S clearly outperforms the other control charts, except for ideal condition
where the rate seem to be deviating from the nominal value for n = 100 and 500.
Meanwhile, when the sample size is very small under 10% contamination with 3 and

5 shifts in the mean vector, the Tgyyy, . performs better.

Under the case of p = 15, as can be clearly observed in Table 7.9 and Figure 7.4, the
performance of the robust T,%MWO_S chart is also much better than the other charts
especially for moderate contamination. Nonetheless under ideal condition, the rate
of TZuyy, , slightly diverges from the nominal value, while Ty, and TZyyy, ,. Seem

to have better control of false alarm rate. For 10% contamination, T2, and TﬁMVVO_ZS
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display relatively good performance, but their performance declines when the

contamination increases to 20%.

The evaluation on false alarm rate for p = 20 in Table 7.10 clearly shows that in

general, TZyyy,. has more ability in controlling the rate. Under ideal condition,
T cp appears to have better control of false alarm, but for other conditions, T,%MVVO_S
seems to outperform all the charts. Even T2, could not compete well with any of
the charts using MVV, be it Tyyy, Téuyy, OF Tauvy,,,- Both charts using MCD

namely Tycp and Tacp produce false alarm rates far below the nominal level for all

Cases.
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Table 7.6: False alarm rate for the corresponding control charts with dimension,

p=2
Sample % Mean Control Charts

Size outliers  shift

(n) (g) (Hy) Thcp Toww  Timco  Trmvves Tamvv, s
10 0% 0 0.0520 0.0520 0.0510 0.0510 0.0600
25 0.0480 0.0530 0.0470 0.0490 0.0480
50 0.0580 0.0540 0.0570 0.0530 0.0490
100 0.0460 0.0490 0.0430 0.0460 0.0450
200 0.0600 0.0690 0.0450 0.0700 0.0600
500 0.0520 0.0630 0.0470 0.0590 0.0520
10 10% 3 0.0290 0.0450 0.0310 0.0450 0.0370
25 0.0280 0.0390 0.0280 0.0390 0.0340
50 0.0230 0.0350 0.0350 0.0450 0.0360
100 0.0200 0.0300 0.0340 0.0330 0.0320
200 0.0310 0.0490 0.036 0.0580 0.0540
500 0.0270 0.0490 0.0360 0.0470 0.0460
10 10% 5 0.0250 0.0450 0.0260 0.0450 0.0370
25 0.0290 0.0390 0.0280 0.0390 0.0340
50 0.0230 0.0340 0.0360 0.0430 0.0360
100 0.0200 0.0290 0.0350 0.0330 0.0320
200 0.0310 0.0500 0.0350 0.0590 0.0540
500 0.0260 0.0480 0.0360 0.0470 0.0460
10 20% 3 0.0210 0.0330 0.0230 0.0330 0.0250
25 0.0090 0.0190 0.0200 0.0200 0.0150
50 0.0080 0.0180 0.0230 0.0240 0.0200
100 0.0050 0.0150 0.0190 0.0220 0.0240
200 0.0050 0.0280 0.0190 0.0370 0.0400
500 0.0040 0.0230 0.0180 0.0310 0.0360
10 20% 5 0.0110 0.0330 0.0110 0.0320 0.0250
25 0.0050 0.0190 0.0170 0.0200 0.0150
50 0.0060 0.0170 0.0300 0.0240 0.0200
100 0.0040 0.0150 0.0270 0.0230 0.0230
200 0.0020 0.0280 0.0300 0.0360 0.0410
500 0.0040 0.0230 0.0340 0.0310 0.0380

Total highlighted 0 12 7 9 4
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Figure 7.1: False alarm when p=2.
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Table 7.7: False alarm rate for the corresponding control charts with dimension,

p=5
Sample %  Mean Control Charts

Size outliers  shift

(n) (&) ()  Thep T2 Timco  Tamwves  Thmvvess
30 0% 0 0.0430  0.0500 0.0430 0.0500 0.0440
50 0.0650 0.0490 0.0620 0.0540 0.0640
100 0.0320 0.0380  0.0400 0.0400 0.0400
200 0.0410 0.0390  0.0450 0.0420 0.0460
500 0.0420  0.0430  0.0430 0.0480 0.0440
30 10% 3 0.0100  0.0300 0.0120 0.0290 0.0330
50 0.0130  0.0350  0.0270 0.0400 0.0410
100 0.0140 0.0300 0.0320 0.0350 0.0370
200 0.0200  0.0350  0.0380 0.0390 0.0460
500 0.0160 0.0360  0.0350 0.0460 0.0350
30 10% 5 0.0100 0.0330 0.0110 0.0340 0.0300
50 0.0130  0.0370  0.0270 0.0420 0.0420
100 0.0140 0.0320  0.0320 0.0340 0.0370
200 0.0200  0.0350  0.0380 0.0390 0.0460
500 0.0170  0.0370  0.0350 0.0460 0.0340
30 20% 3 0.0050 0.0210  0.0070 0.0200 0.0200
50 0.0040 0.0220 0.0160 0.0270 0.0260
100 0.0020 0.0170  0.0280 0.0270 0.0320
200 0.0010  0.0220  0.0340 0.0330 0.0420
500 0.0030  0.0190 0.0330 0.0370 0.0320
30 20% 5 0.0000  0.0200  0.0020 0.0190 0.0200
50 0.0020 0.0230 0.0130 0.0270 0.0240
100 0.0020 0.0190 0.0280 0.0290 0.0320
200 0.0010  0.0220  0.0340 0.0330 0.0420
500 0.0030  0.0190 0.0320 0.0370 0.0320

Total highlighted 0 2 1 11 13
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Figure 7.2: False alarm when p=5
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Table 7.8: False alarm rate for the corresponding control charts with dimension,

p=10
Sample %  Mean Control Charts

Size outliers  shift

(n) (e) (W)  Thep Tow  Tiuep  Thmwves  Tamvvgss
50 0% 0 0.0530 0.0520  0.0570 0.0490 0.0570
100 0.0420  0.0450  0.0490 0.0440 0.0490
200 0.0540 0.0520  0.0440 0.0490 0.0590
500 0.0490 0.0540  0.0480 0.0550 0.0510
50 10% 3 0.0210  0.0370  0.0230 0.0360 0.0470
100 0.0190 0.0390  0.0400 0.0450 0.0340
200 0.0200  0.0390  0.0440 0.0480 0.0510
500 0.0220 0.0390  0.0450 0.0490 0.0530
50 10% 5 0.0210  0.0380  0.0230 0.0370 0.0390
100 0.0200  0.0350  0.0390 0.0440 0.0340
200 0.0200  0.0420  0.0440 0.0480 0.0510
500 0.0230  0.0390  0.0450 0.0510 0.0540
50 20% 3 0.0080 0.0250  0.0100 0.0280 0.0230
100 0.0030 0.0240  0.0260 0.0280 0.0260
200 0.0020 0.0250  0.0280 0.0430 0.0340
500 0.0040 0.0260  0.0420 0.0450 0.0560
50 20% 5 0.0020 0.0220  0.0040 0.0230 0.0230
100 0.0030 0.0230  0.0260 0.0260 0.0260
200 0.0020 0.0240  0.0280 0.0450 0.0340
500 0.0040 0.0230  0.0420 0.0450 0.0560

Total highlighted 1 0 2 13 6
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Figure 7.3: False alarm when p=10
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Table 7.9: False alarm rate for the corresponding control charts with dimension,

p=15
Sample %  Mean Control Charts

Size outliers  shift

(n) (e) (W)  Thep Tovww  Timco  Timvves  Tamvvoss
80 0% 0 0.0580  0.0560  0.0580 0.0570 0.0600
100 0.0490 0.0520  0.0520 0.0490 0.0490
200 0.0540  0.0470  0.0540 0.0450 0.0610
500 0.0460  0.0470  0.0510 0.0480 0.0510
80 10% 3 0.0260  0.0470  0.0330 0.0440 0.0430
100 0.0240  0.0450  0.0400 0.0350 0.0390
200 0.0330  0.0420  0.0460 0.0530 0.0470
500 0.0270  0.0390  0.0450 0.0500 0.0530
80 10% 5 0.0230  0.0430  0.0300 0.0450 0.0390
100 0.0240  0.0430  0.0380 0.0380 0.0430
200 0.0310 0.0410 0.0460 0.0520 0.0460
500 0.0260  0.0390  0.0450 0.0460 0.0520
80 20% 3 0.0060  0.0270  0.0120 0.0290 0.0270
100 0.0030  0.0250  0.0150 0.0330 0.0240
200 0.0040  0.0200  0.0350 0.0430 0.0330
500 0.0060  0.0260  0.0430 0.0500 0.0570
80 20% 5 0.0030  0.0320 0.0100 0.0290 0.0290
100 0.0020 0.0220  0.0190 0.0270 0.0220
200 0.0040  0.0240  0.0340 0.0460 0.0340
500 0.0060  0.0290  0.0430 0.0490 0.0560

Total highlighted 1 4 1 12 4
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Figure 7.4: False alarm when p=15
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Table 7.10: False alarm rate for the corresponding control charts with dimension,

p=20
Sample %  Mean Control Charts

Size outliers  shift

(n) () (W) Tiicp Ty TRmcp TIZRMVVo_s Tim VVo.25
100 0% 0 0.0500  0.0530 0.0510 0.0530 0.0490
200 0.0490  0.0510 0.0490 0.0470 0.0520
300 0.0390  0.0440 0.0440 0.0440 0.0460
500 0.0560  0.0530 0.0530 0.0490 0.0510
100 10% 3 0.0290  0.0450 0.0310 0.0450 0.0370
200 0.0280  0.0390 0.0280 0.0390 0.0340
300 0.0230  0.0350 0.0350 0.0450 0.0360
500 0.0200  0.0300 0.0340 0.0330 0.0320
100 10% S 0.0240  0.0420 0.0340 0.0420 0.0390
200 0.0220  0.0380 0.0350 0.0420 0.0410
300 0.0210  0.0340 0.0360 0.0390 0.0400
500 0.0280  0.0400 0.0460 0.0490 0.0560
100 20% 3 0.0060  0.0300 0.0100 0.0330 0.0270
200 0.0050  0.0310 0.0310 0.0370 0.0260
300 0.0060  0.0240 0.0360 0.0390 0.0320
500 0.0030  0.0350 0.0440 0.0560 0.0520
100 20% S 0.0000  0.0240 0.0050 0.0270 0.0230
200 0.0020  0.0250 0.0280 0.0300 0.0210
300 0.0050  0.0220 0.0360 0.0360 0.0310
500 0.0040  0.0320 0.0040 0.0470 0.054

Total highlighted 2 3 3 14 3

172



Outliers 0% with process shifted 0 Outliers 10% with process shifted 3
0.06 0.06
. o
0.055 0.05
/
< £ 0.04
E 005 13
I} s
< ) g < 0.03
2 00 \ / - - % --- TPMCD & X
T 0045 Y = %
002 +HZT=X - oo
‘\ / —a—— MW * T2MCD
\
/
0.04 % R TRMCD 0.01 —a&—— MW
2 ——&—— T?RMCD
0.035 ——&—— T?RMW(bp=0.5) 0
100 200 300 500 100 200 300 500 ——=—— TRMW(bp=0.5)
———+—— T?RMWV(bp=0.25 N
" ) ———— TRMWV(bp=0.25
)
Outliers 10% with process shifted 5 Outliers 20% with process shifted 3
0.06 0.06
0.05 /+ 0.05 _//‘J'
0.04 0.04 -/./]/
£ £
k] s ,-//{/A
< 003 X <003
2 . 2
2 % P £ W
X - x PR
0.02 * T*MCD 0.02 - --- T2MCD
—a&—— T*MWV /
0.01 0.01 TMW
——@—— TRMCD K-y XK
o o x ——e—— TRMCD
———— T?RMVV(b0=0.
100 200 300 500 (bo=0.5 100 200 300 500
) —&— T’RMWV(bp=0.5)
n ——+—— T?RMWV/(bp=0.2 n
5)
Outliers 20% with process shifted 5
0.06
0.05 ff
0.04
E
5
<0.03 A
k] - =% --- T2MCD
&
0.02 / \ —8—— T?RMCD
0.01 J ——&—— T’RMWV(bp=0.5)
JY
0 LyenX ———+—— T?RMWV(bp=0.25
100 200 300 500
——A— TIMWV
n

Figure 7.5: False alarm when p=20
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7.6 Real Data Analysis

The investigation of Tgyyy, . and TZyyy, ,. continues with the application on real
data. Real data were furnished to us by Asian Composite Manufacturing Sdn. Bhd.
(ACM) as discussed in Chapter 4 in Section 4.3. The historical data set (Phase 1) and
the future data set (Phase Il) are shown in Table 4.7 and 4.9 respectively. The
product consisted of 3 quality variables (dimensions) namely trim edge, trim edge
spar, and drill hole. The performance of the proposed charts (Tyyy oy, Trivw s
Témvv,s» Thmvy,,s) are then compared with robust Hotelling T? chart using MCD
(T2¢p) and RMCD (Tycp), and also the traditional Hotelling T® control charts

where T¢ is without cleaning the outliers and T¢ is the standard approach which

cleans the outliers once.

Estimates for the location vector (x) and scatter matrix (S) are presented in Table
7.11. The calculation of the upper control limits (UCLs) based on the estimates are
presented in the last column of the table. The values of the T? statistics based on the
above estimators appear in the Table 7.12. The graphical presentation of the
corresponding control charts are put on view in Figure 7.6 and 7.7. Charts (a), (b),
(c), (d) in Figure 7.6 and (e), (), (9), (h) in Figure 7.7 represent the control chart for

traditional T® chart (T¢), standard T? chart (T2), Tacp, Tiévv. Tavvay Témco,

Témvv, . and Téyyy, . respectively.
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Table 7.11. Estimates of location vector, covariance matrix and UCL.

Types of Location Vector(x) Scatter Matrix(S) UCL
Control
Chart
T [0.00504 0.00284 0.01579] 0.00004 0.00002 0.00003 11.035
0.00002 0.00009 0.00001
0.00003 0.00001 0.00011
T? [0.00365 0.00256 0.01209]| [0.00001 0.00000  0.00000 ] 11.798
0.00000 0.00003 —0.00001
[0.00000 —0.00001 0.00003 .
T cp [0.00414 0.00207 0.01096]| [0.00002 0.00000 0.00000 1 21.946
0.00002 0.00009 —0.00002
[0.00000 —0.00002 0.00003 .
TZMW(O) [0.00336 0.00354 0.00913] 0.00001 0.00001 0.00000 41.298
0.00001 0.00003 0.00000
0.00000 0.00000 0.00001
T,ZWV(,) [0.00336 0.00354 0.00913] 0.00003  0.00002 —0.00001 11.551
0.00002  0.00007 —0.00001
—0.00001 -0.00001 0.00002
T2ycp | [0.00414 0.00207 0.01096] 0.00001 0.00000  0.00000 24.427
0.00000 0.00003 —0.00001
0.00000 -0.00001 0.00002
TIZ?MVVos [0.00336 0.00354 0.00913] 0.00003  0.00002 —0.00001 16.503
' 0.00002  0.00006 —0.00001
—0.00001 -0.00001 0.00002
TIZ?MVVozs [0.00414 0.00207 0.01096] 0.00002 0.00000  0.00000 13.680
' 0.00000 0.00005 —0.00002
0.00000 -0.00002 0.00003
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Table 7.12. Hotelling T2 values for future data (Phase 11)

n T5 5 Tyico Tawe) | Twway | Thyep | Thmvves | Thmvveys
1 | 05582 | 1.4242 | 17659 | 4.3908 15661 | 3.1188 | 2.7991 1.7757
> | 09003 | 25492 | 24694 | 5.1695 1.8438 | 43613 | 3.1113 2.4832
3 | 0.4992 | 04936 | 0.3437 02992 | 0.1067 | 06070 | 0.4903 | 0.3456
4 | 05463 | 1.0157 | 0.5456 15064 | 05373 | 09636 | 16756 | 0.5487
5 | 04592 | 09588 | 04580 | 3.7869 13507 | 0.8088 | 3.1742 0.4605
6 | 09013 | 1.7480 | 1.2527 22421 | 07997 | 22125 | 1.1559 1.2597
7 | 3.0933 | 41372 | 44404 | 65361 | 23313 | 7.8423 | 1.5581 4.4651
8 | 0.8061 | 1.2884 | 0.6837 1.0556 | 03765 | 12075 | 0.0625 | 0.6875
o | 7.3602 | 9.6843 | 14.9766 | 26.0499 | 9.2913 | 26.4505 | 10.1632 | 15.0599
10| 36198 | 58035 | 97417 | 19.1760 | 6.8396 | 17.2050 | 8.2001 | 9.7958

11| 53839 | 80897 | 11.8717 | 19.6313 | 7.0019 | 20.9668 | 7.6269 | 11.9376
12| 27387 | 47949 | 2.9788 8.1388 | 29029 | 52610 | 1.6758 2.9954
13| 3.8058 | 5.6890 | 7.4040 | 11.3895 | 4.0623 | 13.0763 | 4.0550 7.4451
14| 20548 | 6.3468 | 3.3086 9.1498 | 32635 | 5.8434 | 2.1624 3.3270
15| 25073 | 50227 | 6.8054 | 12.3881 | 4.4185 | 12.0191 | 5.4472 6.8432
16| 11976 | 1.8980 | 1.0679 20563 | 07334 | 1.8860 | 0.5881 1.0738
17 | 15798 | 22630 | 1.7597 2.8765 1.0260 | 31078 | 0.4603 1.7694
18| 57910 | 7.9657 | 9.2817 | 13.9293 | 4.9682 | 16.3925 | 4.2017 9.3333
19| 1.8304 | 47003 | 24178 | 48791 17402 | 42700 | 0.7299 2.4312
20 | 38.1397 | 190.2969 | 214.9233 | 894.5184 | 319.0497 | 379.5799 | 393.5026 | 216.1176
21| 1.2651 | 2.3301 | 1.5486 20641 | 07362 | 27351 | 0.4172 15572
22 | 84181 | 19.7720 | 246552 | 452462 | 16.1381 | 435439 | 19.3300 | 24.7922
23| 37588 | 5.1645 | 4.8793 75328 | 26867 | 86175 | 15065 | 4.9065
24| 1.0602 | 1.7564 | 09320 | 223575 | 0.7974 | 1.6460 | 04294 | 0.9372
25 | 42.8447 | 134.6222 | 68.6307 | 116.02933 | 41.3844 | 121.2098 | 47.0107 | 69.0120
26| 04832 | 1.3946 | 0.7796 | 7.32655 | 2.6132 13768 | 4.9503 | 0.7839
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Figure 7.6: Hotelling T? control charts
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Figure 7.7: Hotelling T2 control charts

As we can observe, the UCLs in Table 7.11 for T,\ZWV(,) become smaller and are

closer to the UCLs of TZ and TZ which used exact distribution as discussed in

Section 5.7 of Chapter 5. When comparing the values of the T? statistics with their
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corresponding UCLs, we observe that Tyyy oy, Tavvay: Tamvves: Tamvvy s Thico:
TZycp and TE signal observations 20, 22 and 25 as out-of-control, but T3 only
signals 20 and 25 as out-of-control observations and fails to signal observation 22.
Interestingly T,%MWO_ZS and T2ycp also signal observation 9 as out-of-control, which
indicates that reweighted versions of MCD and MVV estimator with breakdown
point 0.25 are more efficient in detecting out-of-control signal than the other charts.

The performance is also graphically presented in Figure 7.7.

7.7 Conclusion

In this chapter, we proposed another alternative to the Hotelling T2 chart by using
robust estimator known as reweighted minimum variance vector (RMVV) for its
location and scatter measures with two different breakdown points. Even though
MVYV estimators possess the good properties such as affine equivariant, high
breakdown point and has better computational efficiency, this estimator is low in
statistical efficiency. Thus, MVV was later improved in terms of its statistical
efficiency in detecting outliers via reweighted scheme. The performance of the
proposed robust Hotelling T2 chart using RMVV with breakdown point 0.5 and 0.25
performed so well in terms of detecting outliers and also in controlling false alarm

rates, but their ability differed on certain conditions.
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The TﬁMVVo.ZS control chart consistently achieved high probability in detecting
outliers for low and moderate number of dimensions (p) with small sample size such
that the range of p is from 2 to 10 and n < 100. However, the performance of
TﬁMWO_ZS in detecting outliers dwindled when p increased to 20 and T,%MWO_S showed
better ability in handling this situation. In the context of false alarm rates, on the
whole, the T,%MVVO_S control chart is the best performer especially for large sample
size with high dimensions. Under low dimensions, TZyyy, . control chart was

outdone by Tyyy and Tgyyy, ,. control chart when p = 2 and 5 respectively.

Generally, T#yyy, . demonstrates the best performance compared to the other charts
especially for high dimension. The chart is more outstanding with relative to T2,
and TZyyy, ,. in terms of controlling false alarm rate, but the performance of the
other two charts cannot be undermined. In the case of low dimension, TZyyy, ,. is
more recommended because it appeared to be more efficient in detecting outliers as

proven in the simulated and real data analysis. In real data analysis, Tgyyy, . chart

and T2y cp chart were able to signal observation 9 as out-of-control but other charts
failed to do so. Despite the good performance in the real data analysis, TZyp chart
showed conflicting performance between false alarm rates and probability of
detection such that increasing the probability of detection will increase the false
alarm rates away from the nominal value and vice versa. This phenomenon also

oceurs in Técp.
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CHAPTER EIGHT
CONCLUSION AND AREA OF FURTHER RESEARCH

8.1 Conclusion

The ultimate goal of this research is to search for alternative Hotelling T* control
chart which can improve the performance of the existing charts (traditional Hotelling
T?and robust Hotelling T? issued from MCD and RMCD) in terms of false alarm rate
and probability of detection specifically for individual observations. In achieving this
goal, firstly we proposed a robust Hotelling T? control chart based on minimum
vector variance (MVV) estimators by using the second approach where these robust
estimators calculated at Phase | are then used directly in Phase Il analysis. This
second approach does not have to go through the process of outliers cleaning in
Phase | because these robust estimators are resistant and not influenced by outliers.
MVV is a new robust estimator which possesses the good properties as MCD i.e.
affine equivariance and high breakdown point; moreover it has a better

computational efficiency as compared to MCD.

In statistical quality control, control limit is an essential element that depends on the
distribution of the statistic used. Since the statistical distributions for the robust
statistics in this study are unknown, the reference control limits were determined by
Monte Carlo simulation method. The evaluations on the performance of the proposed

charts were based on the probability of detection and false alarm rates. These charts
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were then compared with the performance of the traditional charts and the chart
issued from MCD estimators. In general, the result showed that T, charts were
able to detect out of control signals and simultaneously control false alarm rates even
with large number of quality characteristics (dimensions). In contrast, the MCD
charts performed well in detecting out of control signals but failed in controlling
false alarm rates. The traditional chart (TZ), however was able to control false alarm

rates but not effective in detecting out of control signals.

Investigation on the proposed charts continued with the real industrial data from
Asian Composite Manufacturing Sdn. Bhd. (ACM). This company is involved in the
production of advanced composite panels for the aircraft industry. ACM has
provided us the real data on spoilers which consisted of several features such as trim
edge (X1), trim edge spar (Xz), and drill hole (X3). The results on real data concurred
with the results obtained from the simulation study which support both robust MVV
and MCD estimators in detecting outliers. Nonetheless, in this case, performance of
TZ chart was on par with the T2, chart and also T, chart. The outcome could be
due to the small number of quality characteristics (dimension) of the product. As
revealed in the simulation study, TZ performed well in detecting outliers under low
dimension (not more than 5) only, but underperformed when the dimension

increased to above 5.
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Despite the good performance of T2, the estimated UCLs for Hotelling T? chart
issued from MVV estimators were large as compared to the traditional and MCD
charts. We then took the task to improve the MVV scatter (S,,,/) estimator in terms
of consistency and biasedness. Investigation through simulation experiment were
done to illustrate the consistency and unbiasedness of the MVV estimator at
multivariate normal data. The inclusion of consistency and unbiased factor made the
Suvy estimator consistent and unbiased at normal model. When put to test on the

simulated and real data, the improved control chart, T,\%W(,), showed great

improvement in the control limit values while maintaining its good performance in

terms of false alarm and probability of detection.

Since the MVV estimators were directly used in Phase Il analysis, they should
possess higher statistical efficiency in order to reduce the influence of outlying
observations. However, the highly robust affine equivariant estimators with the best
breakdown point commonly have to compensate with low statistical efficiency. To
mitigate the problem, first we investigated on the asymptotic relative efficiency

(ARE) of MVV estimators. The AREs were computed for two different breakdown

n+p+1
2

points such that BP = 0.5 with h = [ J and BP = 0.25 with h = (0.75)n. For each

p, we found a decrease in the efficiency value when BP changes from 0.25 to 0.5.

Hence, to increase the efficiency while retaining the highest breakdown point, we
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proceeded to improve the minimum vector variance (MVV) estimators in the context

of statistical efficiency via reweighted version (RMVV).

We developed an algorithm to calculate an approximate RMVV solution, where the
basis of our algorithm followed a generalization of the MVV algorithm.
Interestingly, the reweighted scheme was able to maintain the breakdown point of
0.5 and attain higher efficiency at the normal distribution. But the gain in efficiency
increased the bias under contamination. Thus, for a balance between breakdown
point and statistical efficiency when the data is suspected to be contaminated by

outliers, RMVV with BP = 0.25 is recommended.

Since the ability of RMVV differed with respect to different breakdown points, the
investigation on RMVV in Hotelling T2 in terms of probability of detection and false
alarm rates were later conducted on both breakdown points. Both the RMVV charts
(Témvv, s and Tiyyy,,.) were found to be more effective in detecting multiple
outliers and controlling false alarm rate compared to the other charts. However, each
of them had its advantage over the other charts depending on the combinations of
sample size and the proportion of outliers present. The T}%MWO_ZS chart performed
better for small sample sizes with low dimensions. In contrast, the T,%MWO_S chart
was better for large sample sizes of high dimensions. The analysis of ACM spoilers
data clarified the situation whereby under small dimension (p = 3) and small sample

size (n = 26) the T;%MVVO_ZS chart was more capable of detecting out of control data.
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8.2 Implications

As we know the performance of traditional Hotelling T? control chart using classical
estimators in Phase | suffer from masking and swamping effect. Although previous
researches have introduced several robust control charts which are capable of
addressing the problem of masking and swamping, but there are some disadvantages,
particularly in their ability in controlling the false alarm rates. Therefore our goal
was to propose alternative Hotelling T2 control charts which can perform well in

detecting outliers while simultaneously controlling false alarm rates.

In this final chapter, we would like to share some of the advances that emerged from
this study. In its original state, the MVV estimators when applied in Hotelling T?
chart had already shown positive impact in detecting outliers and controlling false
alarm.  While, its counterpart, the MCD estimators showed conflicting ability
between the two measurements. After reweighting the MVV estimators, the
efficiency of the estimators increased and the reweighted MVV (RMVV) further
improved the performance of Hotelling T2 chart and outperformed the Hotelling T2

chart issued from reweighted MCD estimators (RMCD)

As a conclusion, the presence of outliers might alter the supposed normal
distribution to be non-normal, which consequently will inflate false alarm, suffer loss
of power, and will cause spurious detection of out of control process. The RMVV

charts may serve as alternative to some other control charts which are unable to
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handle the problem of non-normality. The proposed robust Hotelling T control
charts hold some advantages such that they can handle low, medium and high
dimensional quality characteristics and are also able to reduce the computational
time. For that reason, our proposed charts are deemed more suitable to be applied in

various real life situations especially those related to production process control.

8.3 Limitation

As with any study, the restricted selection of the robust estimators like MCD and
RMCD in the context of comparison may limit the generalization of the findings.
However, this limitation is necessary because our proposed methods were based on
the Mahanalobis distance, moreover these estimators are the most popular and well
accepted currently. The choices of number of dimensions, sample sizes and mixed
normal models for the generation of the data set, surely does not completely reflect

the intricacies of real data sets.

8.4 Areas for Further Research

In the short term, the results of this dissertation are expected to provide additional
explanations and approaches in process monitoring and control. However, there are
always rooms for improvement. The complexity in estimating MVV could be made

simpler so that the proposed charts are more adaptive to industries.
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We made improvement on the properties of MVV estimators in terms of consistency
and unbiasedness and we also introduced reweighted version of MVV estimator to
attain better efficiency. However, the analyses were demonstrated via simulation
alone with no mathematical proof. Thus, to support the finding, mathematical proof

could be suggested for future research.

There are still some unanswered questions related to high breakdown estimation
methods for multivariate control charts. In this study the asymptotic distribution of
the Tyicp, Témep: Thvy and Téyyy statistics is considered as x5. It would be better
to study on the exact distribution of MVV and RMVV estimators. Through the exact
distribution, the use of approximate control limits is much simpler to obtain than via

simulation.

In this study, we only considered high breakdown estimators that are resistant to
shifts in the mean vector. However, less study were conducted on the effect of
changes in the variance-covariance matrix as done by Levinson, Holmes, and
Mergen (2002) and Khoo and Quah (2003, 2004). Thus it could be suggested for

future research.
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Appendix A
FLOW CHART FOR PROCESS OF CALCULATING T4,y

Calculate R =1 to 5000
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Appendix B
PROGRAM FOR MVV ESTIMATOR

function [T,S]= real_MVV(x)
epsilon=10"-5; delta=10e-15;
[n,p]=size(x);
h=floor((n+p+1)/2);% break down point 50%
%h=0.75*n;
rep=500;
SC2=zeros(p,p,500);
TC2=zeros(500,p);
TraceSo=zeros(500,1);
%This condition for h<n, p>=2 and n<=600
%Process of choosing the initial observation (starting subset,(p+1)subset)
%of Ho. This process repeate 500 times.
for k=1:rep
ladd=1,;
DetSo=0;
ho=p+ladd;
while DetSo<delta
Ho=x(rn(1:ho),:);
To = mean(Ho);
So=cov(Ho)*(ho-1)/ho;
DetSo=det(So); ladd=ladd+1;
end
clear DetSo ladd h1;
d=zeros(n,1);
for m=1:2
for i=1:n;
d(i)=(x(i,:)-To)/So*(x(i,:)-To)";
end
H1 = x(pi(1:h),:);
T1=mean(H1);
al=(h-1)/h;
Sl=cov(H1)*al,
To=T1; So=S1;
end
TraceSo(k,1)=trace(S1"2);
SC2(:,:,k)=S1,;
TC2(k,:)=T1;
end
[TraceSoSort,pi500]=sort(TraceSo);
SCon=zeros(10,1);
TCon=zeros(10,1);
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Appendix C
PROGRAM FOR HOTELLING T?

% This program calculates the type | error for the Hotelling T square control charts
clear all;
R=5000; R1=1000; N=200; P=2;

pi=0.2; %percent of outliers
%m=[3 3];
m=[5 5];

Scovl=zeros(P,P,R1);
xbarl=zeros(R1,P);
S=zeros(P,P,R);
T=zeros(R,P);
%meanminusmean=zeros(R1,P);
ROUND=floor(pi*N);
T21=zeros(R,1);
Looping to get the UCL value
forr=1:R
seed = 3985+r;
rand(‘seed',seed)
randn('seed',seed);
Z=randn(N+1,P); %generate random data set
[T,S]=real_MVV(Z(1:N,:)); %Recall the subroutine result
meanminusmean(r,:)= Z(N+1,))-T;
T21(r,1)=meanminusmean(r,:)/S * (meanminusmean(r,:))’; %T2
end
forrl=1:R1
seed = 95395+r1;
rand('seed’,seed);
randn('seed',seed);
Z=randn(N,P);

%contaminate
Datall=[Z(1:ROUND,:)+repmat(m,ROUND,1);Z(ROUND+1:N,:)];%Case A
[xbarl(rl,:),Scovl(:,:,r1)]=real_MVV(Datall);

end
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%Phase Il
T221=zeros(R1,1);
T222=zeros(R1,1);
for ri=1:R1
seed = 15391+r1;
rand(‘seed’,seed);
randn('seed',seed);
Zl=randn(1,P); Z2=Z1+m;
DatalMinusMean=Z1-xbarl(r1,);
Data2MinusMean=Z2-xbar1(r1,:);
T221(r1)= DatalMinusMean/Scov1(:,;,r1)*(DatalMinusMean)’;
T222(r1)= Data2MinusMean/Scov1(;,:,r1)*(Data2MinusMean)’;
end

Count1=0;
Count2=0;
fori=1:R1
if( T221(i)>UCL)
Count1=Count1+1;
end
if( T222(i)>UCL)
Count2=Count2+1;
end
end
typeerror=Count1/R1;
ProbDetect=Count2/R1;
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