

HARMONIZING CMMI-DEV1.2 AND XP METHOD TO IMPROVE

THE SOFTWARE DEVELOPMENT PROCESSES IN SMALL

SOFTWARE DEVELOPMENT FIRMS

 MEJHEM YOUSEF AL-TARAWNEH

DOCTOR OF PHILOSOPHY

UNIVERSITI UTARA MALAYSIA

2013

 ii

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the Universiti Library may make it

freely available for inspection. I further agree that permission for the copying of this

thesis in any manner, in whole or in part, for scholarly purpose may be granted by

my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate

School of Arts and Sciences. It is understood that any copying or publication or use

of this thesis or parts thereof for financial gain shall not be allowed without my

written permission. It is also understood that due recognition shall be given to me

and to Universiti Utara Malaysia for any scholarly use which may be made of any

material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

 iii

Abstrak

Kebanyakan organisasi yang membangunkan perisian komputer adalah firma kecil,

dan mereka telah menyedari akan keperluan untuk mengurus dan meningkatkan

aktiviti pembangunan dan pengurusan perisian komputer. Model dan piawaian

Penambahbaikan Proses Perisian (SPI) yang tradisional didapati tidak realistik bagi

firma kecil kerana kos yang tinggi, sumber yang terhad dan tempoh serahan projek

yang ketat. Oleh itu, firma kecil memerlukan kaedah pembangunan perisian yang

mudah serta model SPI yang sesuai bagi mengurus dan meningkatkan proses

pembangunan dan pengurusan perisian. Kajian ini bertujuan untuk membangunkan

suatu rangka kerja proses penambahbaikan pembangunan perisian yang sesuai untuk

Firma Pembangunan Perisian Kecil (SSDFs) berasaskan kaedah Pengaturcaraan

Ekstrem (XP) dan model Model Integrasi Kematangan Keupayaan untuk

Pembangunan versi 1.2 (CMMI-Dev1.2). Terdapat empat tahap dalam pembangunan

rangka kerja ini iaitu: (1) menjajarkan setiap amalan XP dengan matlamat khusus

Bidang Proses Utama (KPAs) CMMI-Dev1.2; (2) membangunkan rangka kerja

proses penambahbaikan pembangunan perisian yang dicadangkan dengan mengguna

pakai kaedah XP melalui pengadaptasian Pendekatan Berasaskan Penambahan

(EBA), CMMI-Dev1.2 dan elemen generik daripada rangka kerja SPI; (3)

mengesahkan kesesuaian rangka kerja yang dicadangkan dengan KPAs CMMI-

Dev1.2 melalui kaedah kumpulan berfokus yang dipadankan dengan teknik Delphi;

dan (4) mengesahkan rangka kerja yang telah diubah suai dengan menggunakan soal

selidik CMMI-Dev1.2 sebagai item utama untuk mengesahkan kesesuaian rangka

kerja tersebut untuk SSDFs, serta menjalankan dua kajian kes bagi mengesahkan

kebolehlaksanaan dan keberkesanan rangka kerja ini bagi firma tersebut. Hasil

menjajarkan amalan XP kepada KPAs CMMI-Dev1.2 menunjukkan bahawa dua

belas KPAs disokong oleh amalan XP, lapan KPAs sebahagiannya disokong oleh

amalan XP, dan dua KPAs tidak disokong oleh amalan-amalan XP. Sumbangan

utama kajian ini adalah: penambahbaikan rangka kerja proses pembangunan perisian

untuk SSDFs, mendapatkan lebih pemahaman tentang cara untuk membina rangka

kerja, dan peningkatan kualiti bagi proses pembangunan perisian. Masih terdapat

ruang untuk membuat kajian lanjutan iaitu dengan memenuhi beberapa lompong

tertentu dalam amalan KPAs, meneliti amalan kaedah agile yang lain dan

menggunakan CMMI-Dev1.3 untuk memperbaiki rangka kerja ini, serta

menjalankan lebih banyak kajian kes.

Kata kunci: Penambahbaikan proses perisian, Pengaturcaraan ekstrem, Model

integrasi kematangan keupayaan untuk Pembangunan versi 1.2, Firma pembangunan

perisian kecil

 iv

Abstract

Most software development organizations are small firms, and they have realized the

need to manage and improve their software development and management activities.

Traditional Software Process Improvement (SPI) models and standards are not

realistic for these firms because of high cost, limited resources and strict project

deadlines. Therefore, these firms need a lightweight software development method

and an appropriate SPI model to manage and improve their software development

and management processes. This study aims to construct a suitable software

development process improvement framework for Small Software Development

Firms (SSDFs) based on eXtreme Programming (XP) method and Capability

Maturity Model Integration for Development Version 1.2 (CMMI-Dev1.2) model.

Four stages are involved in developing the framework: (1) aligning XP practices to

the specific goals of CMMI-Dev1.2 Key Process Areas (KPAs); (2) developing the

proposed software development process improvement framework based on

extending XP method by adapting the Extension-Based Approach (EBA), CMMI-

Dev1.2, and generic elements of the SPI framework; (3) verifying the compatibility

of the proposed framework to the KPAs of CMMI-Dev1.2 by using focus group

method coupled with Delphi technique; and (4) validating the modified framework

by using CMMI-Dev1.2 questionnaire as a main item to validate the suitability of the

modified framework for SSDFs, and conducting two case studies to validate the

applicability and effectiveness of this framework for these firms. The result of

aligning XP practices to the KPAs of CMMI-Dev1.2 shows that twelve KPAs are

largely supported by XP practices, eight KPAs are partially supported by XP

practices, and two KPAs are not-supported by XP practices. The main contributions

of this study are: software development process improvement framework for SSDFs,

elicit better understanding of how to construct the framework, and quality

improvement of the software development processes. There are possible avenues for

extending this research to fulfil the missing specific practices of several KPAs,

examining other agile practices and using CMMI-Dev1.3 to improve the framework,

and conducting more case studies.

Keywords: Software process improvement, eXtreme programming, Capability

maturity Model integration for development Version 1.2, Small software

development firms.

 v

Acknowledgement

By the name of ALLAH, The Most Gracious, and The Most Merciful.

In this occasion I would like to express my gratitude to a number of people whose

admission, permission, and assistance contribute to finish my long story with PhD.

My deepest and warmest gratitude to my supervisor Assoc. Prof. Dr. Mohd Syazwan

Abdullah for his assistance and patience in ensuring that the study reached

completion. I am grateful for his understanding, advice, encouragement, and for

making me confident in my work with timely feedback., I also would like to thank

my informal supervisor Assoc. Prof. Abdul Bashah Mat Ali for his continuous

guidance, fruitful feedback, moral support, and sharing of all his research

experiences throughout these challenging years.

My appreciation to Prof. Dr. Abdul Razak Yaakub as chairman of viva committee,

and I would like to present my deep thank to Assoc. Prof. Dr. Wan Mohd Nasir Wan

Kadir from University Teknologi Malaysia (UTM) as external examiner, and Assoc.

Prof. Dr. Fauziah Baharom as internal examiner for the useful comments and

suggestions to improve my thesis.

On a more personal level, I would also like to express my gratitude to my parents

and my beloved family members for patience and support throughout my three years

plus of difficult endeavor. I guess they are the most who suffered throughout this

period. My gratitude also goes to all my colleagues in the PhD journey; among them

are Feras, Moath, and Omar Tarawneh, Ali and Wa’el Naimat, and Feras Zain, and

many others, specifically for the discussions and sometimes the heated arguments on

the better ways to perform my research. They were not only contributing

constructive ideas on my research work, but some of them have also read parts of my

thesis.

Thank You All Very Much

 vi

Table of Contents

Permission to Use .. ii

Abstrak .. iii

Abstract ... iv

Acknowledgement ... v

Table of Contents .. vi

List of Tables ... xii

List of Figures .. xv

List of Appendices ... xvii

List of Abbreviations .. xviii

CHAPTER ONE INTRODUCTION ... 1

1.1 Background .. 1

1.2 Problem Statement ... 6

1.3 Research Question ... 11

1.4 Research Objectives ... 11

1.5 Research Scope .. 12

1.6 Research Strategy ... 14

1.7 Contributions .. 15

1.8 Thesis Organization ... 17

CHAPTER TWO SOFTWARE PROCESS IMPROVEMENT AND

DEVELOPMENT FOR SMALL SOFTWARE DEVELOPMENT FIRMS 20

2.1 Introduction .. 20

2.2 Software Process Improvement (SPI) .. 21

2.3 Small Software Development Firms (SSDFs) ... 24

2.3.1 SSDFs Characteristics and Problems ... 25

2.3.2 Software Development Best Practices for SSDFs 27

2.3.3 Difficulties of Implementing SPI Traditional Models and Standards by

SSDFs ... 31

2.3.4 Regional SPI Initiatives for SSDFs ... 34

2.3.5 Software Process Assessment for SSDFs .. 37

2.4 History of CMM/ CMMI (CMMs) Models ... 42

 vii

2.4.1 CMMI-Dev1.2 ... 43

2.5 Software Development Process Models .. 46

2.5.1 Agile Methods .. 47

2.5.2 Extreme Programming (XP) Method ... 51

2.5.2.1 XP Phases .. 54

2.5.2.2 XP Practices “ .. 56

2.5.2.3 XP Roles .. 61

2.5.2.4 Strengths and Weaknesses of XP Method 63

2.5.2.5 Coverage of XP Practices to Basic Best Software Development

Practices of SSDFs .. 64

2.6 The Relationship between CMMI-Dev1.2 and XP Method 65

2.7 Conclusion ... 69

CHAPTER THREE RESEARCH METHODOLOGY .. 72

3.1 Introduction .. 72

3.2 Stage One: Aligning XP Practices to the Specific Goals of CMMI-Dev1.2 KPAs

 .. 73

3.3 Stage Two: Developing the Proposed Software Development Process

Improvement Framework ... 75

3.4 Stage Three: Verifying the Proposed Software Development Process

Improvement Framework ... 79

3.5 Stage Four: Validating the Modified Software Development Process

Improvement Framework for SSDFs ... 82

3.6 Situational Method Engineering (SME) Theory .. 88

3.7 Focus Group Coupled with Delphi Technique .. 93

3.7.1 Focus Group Method ... 93

3.7.2 Delphi Technique ... 96

3.8 Conclusion ... 97

CHAPTER FOUR DEVELOPMENT THE PROPOSED SOFTWARE

DEVELOPMENT PROCESS IMPROVEMENT FRAMEWORK 99

4.1 Introduction .. 99

4.2 Aligning XP Practices to the KPAs of CMMI-Dev1.2 100

 viii

4.2.1 Aligning XP Practices to the Level 2 KPAs of CMMI-Dev1.2 101

4.2.2 Aligning XP Practices to the Level 3 KPAs of CMMI-Dev1.2 111

4.2.3 Aligning XP Practices to the Level 4 KPAs of CMMI-Dev1.2 125

4.2.4 Aligning XP Practices to the Level 5 KPAs of CMMI-Dev1.2 128

4.2.5 Summary of Alignment XP practices to the Specific Goals of CMMI-

Dev1.2 ... 131

4.3 Adapting the Extension-Based Approach (EBA) to Extend XP Method 133

4.3.1 The Required Additions to Fulfill the Partially and Not-Supported CMMI-

Dev1.2 KPAs .. 133

4.3.1.1 Covering the Partially Supported KPAs 134

4.3.1.2 Covering the Not-Supported KPAs ... 141

4.3.2 Extending XP method .. 144

4.3.2.1 Phase One: Requirement Management 149

4.3.2.2 Phase Two: Development .. 152

4.3.2.3 Phase Three: Product Delivery and Product & Process Efficiency

 ... 152

4.3.2.4 Phase Four: System and Process Evolution 154

4.4 Establishing the Proposed Software Development Process Improvement

Framework ... 155

4.4.1 Framework Foundation .. 155

4.4.2 The Proposed Software Development Process Improvement Framework

 .. 156

4.4.3 Roles of the Proposed Software Development Process Improvement

Framework .. 161

4.5 Conclusion ... 164

CHAPTER FIVE VERIFYING THE PROPOSED SOFTWARE

DEVELOPMENT PROCESS IMPROVEMENT FRAMEWORK 165

5.1 Introduction .. 165

5.2 Focus Group Participants ... 166

5.3 Verification Questions ... 168

5.4 Verification Schedule ... 172

 ix

5.5 Results of Verification Rounds .. 173

5.5.1 Results of Round One .. 173

5.5.1.1 Answers and Suggestions of Part One Questions........................ 174

5.5.1.2 Answers and Suggestions of Part Two Questions 179

5.5.1.3 Answers and Suggestions of Part Three Questions 180

5.5.1.4 Answers and Suggestions of Part Four Questions 182

5.5.2 Results of Round Two ... 184

5.5.3 Results of Round Three ... 185

5.6 The Modified Software Development Process Improvement Framework 186

5.7 The Modified Extended-XP Method ... 193

5.8 Conclusion ... 197

CHAPTER SIX VALIDATING THE MODIFIED SOFTWARE

DEVELOPMENT PROCESS IMPROVEMENT FRAMEWORK 199

6.1 Introduction .. 199

6.2 Validating the Suitability of the Modified Framework 200

6.2.1 Part One: Respondents’ Profile .. 201

6.2.2 Part Two: Suitability of the Modified Framework for SSDFs 203

6.3 Validating the Applicability of Implementing the Modified Framework for

SSDFs .. 207

6.3.1 Case Study One: Developing the Computer Skills Online Examination

System by “X” Firm ... 207

6.3.1.1 Stage One: Assessing the Current Software Development

Processes ... 209

6.3.1.2 Stage Two: Adopting the Modified Extended-XP Method 212

6.3.1.3 Stage Three: Identifying the Best Practices of the Current Project

 ... 224

6.3.1.4 Summary of Developing the Computer Skills Online Examination

System by the Modified Software Development Process Improvement

Framework ... 226

6.3.2 Case Study Two: Developing the Online Brokerage System by “Y” Firm

 .. 227

 x

6.3.2.1 Stage One: Assessing the Current Software Development

Processes ... 228

6.3.2.2 Stage Two: Adopting the Modified Extended-XP Method 231

6.3.2.3 Stage Three: Identifying the Best Practices of the Current Project

 ... 249

6.3.2.4 Summary of Developing the Online Brokerage System by the

Modified Software Development Process Improvement Framework 251

6.4 Evaluating the Effectiveness of the Modified Software Development Process

Improvement Framework ... 252

6.5 Conclusion ... 257

CHAPTER SEVEN CONCLUSION AND FUTURE WORK 259

7.1 Introduction .. 259

7.2 Achievement of the Research Objectives .. 259

7.2.1 Stage One: Aligning XP Practices to the Specific Goals of CMMI-Dev1.2

KPAs ... 259

7.2.2 Stage Two: Developing the Proposed Software Development Process

Improvement Framework for SSDFs ... 260

7.2.3 Stage Three: Verifying the Proposed Software Development Process

Improvement Framework ... 261

7.2.4 Stage Four: Validating the Modified Software Development Process

Improvement Framework for SSDFs ... 262

7.3 Research Contributions .. 264

7.3.1 Software Development Process Improvement Framework for SSDFs.... 264

7.3.2 Elicit Better Understanding of How to Construct the Framework 265

7.3.3 Quality Improvement of the Software Development Processes 266

7.4 Limitations of the Research ... 267

7.4.1 Lack of the Related Researches ... 267

7.4.2 The Framework is based on XP method and CMMI-Dev1.2 267

7.4.3 Limited Scope in the Verification and Validation Processes 268

7.5 Future Work ... 269

7.5.1 Fulfilling the Missing KPAs and Specific Practices of Several KPAs 269

 xi

7.5.2 Using other Agile Practices and CMMI-Dev1.3 270

7.5.3 Conducting More Case Studies .. 271

7.6 Final Remarks .. 271

REFERENCES ... 273

 xii

List of Tables

Table 2.1: Popular Regional SPI Initiatives of SSDFs .. 34

Table 2.2: Some of the Popular Lightweight SPA Methods 40

Table 2.3: Comparison of Agile Development Methods, expanded from

(Abrahamsson et al., 2002) .. 49

Table 2.4: Strengths and weaknesses of XP method ... 63

Table 2.5: Coverage of Software Development Baisc Best Practices in SSDFs by XP

Practices and Roles .. 65

Table 2.6: Scales of Coverage XP Practices to CMMI-Dev1.2 KPAs 66

Table 2.7: Scale of Coverage XP Practices to CMMI KPAs 67

Table 2.8: Coverage Results of XP Practices to CMMI-Dev1.2 KPAs 68

Table 4.1: Coverage of the XP Practices to Requirement Management KPA 102

Table 4.2: Coverage of the XP Practices to Project Planning KPA 103

Table 4.3: Coverage of the XP Practices to Project Monitoring and Control KPA . 105

Table 4.4: Coverage of the XP Practices to Measurements and analysis KPA 107

Table 4.5: Coverage of the XP Practices to Process and Product Quality Assurance

KPA .. 109

Table 4.6: Coverage of the XP Practices to Configuration Management KPA 110

Table 4.7: Coverage of the XP Practices to Requirement Development KPA 111

Table 4.8: Coverage of the XP Practices to Technical Solution KPA 113

Table 4.9: Coverage of the XP Practices to Product Integration KPA 114

Table 4.10: Coverage of the XP Practices to Verification KPA 116

Table 4.11: Coverage of the XP Practices to Validation KPA 117

Table 4.12: Coverage of the XP Practices to Organizational Process Definition +

IPPD KPA .. 119

Table 4.13: Coverage of the XP Practices to Organizational Training KPA 120

Table 4.14: Coverage of the XP Practices to Integrated Project Management + IPPD

KPA .. 121

Table 4.15: Coverage of the XP Practices to Risk Management KPA 123

Table 4.16: Coverage of the XP Practices to Decision Analysis and Resolution KPA

 .. 125

 xiii

Table 4.17: Coverage of the XP Practices to Organizational Process Performance

KPA .. 126

Table 4.18: Coverage of the XP Practices to Quantitative Project Management KPA

 .. 127

Table 4.19: Coverage of the XP Practices to Organizational Innovation and

Deployment KPA ... 129

Table 4.20: Coverage of the XP Practices to Causal Analysis and Resolution KPA

 .. 130

Table 4.21: Coverage ratios or XP practices to CMMI-Dev1.2 131

Table 4.22: Required Additions to Fulfil the Partially and Not-Supported KPAs of

CMMI-Dev1.2 .. 143

Table 4.23: Extracting the Phases of the Proposed Extended-XP Method 146

Table 5.1: Structured Focus Group Plan of Verification Process (Delphi Rounds) 172

Table 5.2: Summary of Focus Group Answers for the First Part Questions............ 175

Table 5.3: Interval Scale Definition of the Compatibility.. 176

Table 5.4: The Compatibility Degree for Part One Questions 177

Table 5.5: Summary of the Required Modifications on the Proposed Framework and

Proposed Extended-XP Method by Focus Group Members 184

Table 6.1: Demographic Information of the Respondents 202

Table 6.2: The Suitability of the Modified Framework for SSDFs 203

Table 6.3: Interval Scale Definition of the Suitability ... 205

Table 6.4: The Suitability Degree for Part Two Questions 205

Table 6.5: Supported Levels of CMMI-Dev1.2 KPAs of the Current Software

Development Processes for the First Case Study ... 210

Table 6.6: The New Software Development Processes Roles of the Project Team

Members Compared to Their Current Roles for the First Case Study 212

Table 6.7: User Stories Modules for of the First Case Study 213

Table 6.8: Planned Tasks of the First Release for the First Case Study 217

Table 6.9: Iterations of the First Release for the First Case Study 219

Table 6.10: Technical Tools of the First Case Study ... 219

Table 6.11: Tasks of the Second Release for the First Case Study 221

 xiv

Table 6.12: The Differences between the Estimated and Actual Implementation

Times for All the Tasks of the Releases for the first Case Study 223

Table 6.13: Metrics of Processes Quality Assurance of the First Case Study 223

Table 6.14: Actual Time for Implementing the Framework in the First Case Study

 .. 226

Table 6.15: Supported Levels of CMMI-Dev1.2 KPAs of the Current Software

Development Processes for the Second Case Study .. 229

Table 6.16: The New Software Development Processes Roles of the Project Team

Members Compared to Their Current Roles for Second Case Study 231

Table 6.17: User Stories Modules of the Second Case Study 232

Table 6.18: Suppliers Offers of Charting Control Product 234

Table 6.19: Suppliers Offers of Stocks Market Data Feed Product 236

Table 6.20: Planned Tasks of all Features for the Second Case Study 242

Table 6.21: Iterations of the Two Releases for the Second Case Study 244

Table 6.22: Technical Tools of the Second Case Study... 245

Table 6.23: The Differences between the Estimated and Actual Implementation

Times for All the Tasks for the Two Releases of the Second Case Study 247

Table 6.24: Metrics of Processes Quality Assurance of the Second Case Study 248

Table 6.25: Actual Time for Implementing the Modified Framework in the 251

Second Case Study ... 251

Table 6.26: Research Variables for Evaluating the Modified Framework 253

 xv

List of Figures

Figure 1.1: Research Strategy .. 15

Figure 2.1: Generic Elements of SPI Framework, adopted from (Rout, 2002; cited by

Pressman, 2009) ... 23

Figure 2.2: CMMs History, adopted from (CMMI Product Team, 2010) 42

Figure 2.3: The Evolution of Software Process Models, adopted from (Salo, 2006) 47

Figure 2.4: Comparison of the Methodologies, adopted from Baird (2002) 50

Figure 2.5: XP Life Cycle, adopted from Abrahamsson et al. (2002) 54

Figure 3.1: Aligning XP Practices to CMMI-Dev1.2 KPAs 74

Figure 3.2: Developing the Proposed Software Development Process Improvement

Framework ... 77

Figure 3.3: Steps of Verifying the Proposed Framework .. 80

Figure 3.4 Steps of the Validation Process .. 84

Figure 3.5: EBA for SME (Ralyté et al., 2003) ... 90

Figure 3.6: Adapting EBA in to Extend XP Method (adapted from Ralyté et al.,

2003) .. 92

Figure 4.1: The Proposed Extended-XP Method Phases ... 148

Figure 4.2: Foundation of the Proposed Software Development Process Improvement

Framework ... 156

Figure 4.3: The Proposed Software Development Process Improvement Framework

for SSDFs ... 157

Figure 5.1: Generic Elements of the Modified Software Development Process

Improvement Framework ... 186

Figure 5.2: The Modified Software Development Process Improvement Framework

 .. 188

Figure 5.3: Required Modifications on the Proposed Extended-XP Method 195

Figure 5.4: The Modified Extended-XP Method ... 196

Figure 6.1: Conceptual System Prototype of Computer Skills Online Examination

System .. 214

Figure 6.2: System Design Overview of the Online Brokerage System 237

Figure 6.3: Server Model of the Online Brokerage System 239

 xvi

Figure 6.4: Customer Client Logical Model of the Online Brokerage System 241

 xvii

List of Appendices

Appendix A CMMI-Dev1.2 KPAs .. 296

Appendix B Detailed Comparisons of XP Practices to CMMI-Dev1.2 KPAs. 305

Appendix C Verification Questionnaire... 310

Appendix D Validation Questionnaire ... 314

Appendix E Evaluation Criteria Questionnaire.. 318

Appendix F Assessing the Current Software Development Processes 319

Appendix G Focus Group Researchers’ Profiles ... 324

Appendix H Best Practices Questionnaire ... 326

 xviii

List of Abbreviations

SPI Software Process Improvement

SEI Software Engineering Institute

CMM Capability Maturity Model

CMMs Capability Maturity Model & Capability Maturity Model

Integration Versions

CMMI

Capability Maturity Model Integration

CMMI-

Dev1.2

Capability Maturity Model Integration For Development

Version 1.2

KPAs Key Process Areas

SPA

Software Process Assessment

SPICE

Software Process Improvement and Capability Determination

ISO

International Organization for Standardization

IEC International Electro-technical Commission

EIA Electronic Industries Alliance

IEEE Institute of Electrical and Electronics Engineers

SMEs Small and Medium Enterprises

SME Situational Method Engineering

SDP

Software Development Process

SDPI

Software Development Process Improvement

 xix

SSDFs

Small Software Development Firms

DSDM Dynamic Systems Development Method

ASD Adaptive Software Development

FDD Feature-Driven Development

AM Agile Modeling

SPM

Software Process Matrix

ASPE-MSC

An Approach for Software Process Establishment in Micro and

Small Companies

PRISMS

An Approach to Software Process Improvement for Small to

Medium Enterprises

iFLAP

Improvement Framework Utilizing Light Weight Assessment

and Improvement Planning

MARES

A Methodology for Software Process Assessment in Small

Software Companies

FAME

Fraunhofer IESE Assessment Method

TOPS

Toward Organized Process in SMEs

RAPID

Rapid Assessment for Process Improvement for Software

Development

EPA

Express Process Appraisal

SPINI

Software Process Improvement Initiation Framework

S3mAssess

S3m Mini-Assessment Method

EBA Extension-Based Approach

IPPD Integrated Product And Process Development

 xx

M.V Mean Value

S.D Standard Deviation

C.V Curriculum Vitae

SEPG Software Engineering Process Group

Freq Frequency

WCF Widows Communication Foundation

UI User Interface

BLL Business Logic layer

DAL Data Access Layer

LAN Local Area Network

TCP Transmission Control Protocol

VB

Visual Basic

TFS Team Foundation Server

T Task

 1

CHAPTER ONE

INTRODUCTION

This chapter provides an overview of the research in this study. It presents the

background of the research area and the problem statement of this study. The research

question, research objectives, and the scope of this study are also highlighted in the

chapter. The chapter also presents the research strategy of the study, followed by the

expected contributions of the research. This chapter ends with an overview of the thesis

structure.

1.1 Background

Software industry is considered as one of the most important and rapidly growing

sectors all over the world. In this regard, software development firms need to be highly

focused to be able to develop high quality software products, taking into account the

time, cost, scope, and resources. Accordingly, these firms need to have a suitable

software development process model to manage their processes in a systematic way.

Somerville (2011) defines the software development process model as ”a simplified

representation of a software process. Each process model represents a process from a

particular perspective, and thus provides only partial information about that process”.

The quality of software development process directly affects the quality of the software

product. In this respect, it is important for software development firms to improve their

software processes to meet the challenges of continuously changing user requirements to

satisfy the customer’s needs within the time constraints and maintaining high quality

 2

products. As such, software industry has realized that Software Process Improvement

(SPI) is very significant and imperative in order to achieve high quality software

products (Pourkomeylian, 2002; BAe, 2007; Nawazish Khokhar et al., 2010).

SPI is the processes of improving the organizations capability to achieve the desired

software quality based on well defined processes to improve the organizational

capabilities to deliver quality software (Sharma & Sharma, 2012). There are two main

traditional SPI models which are: Capability Maturity Model (CMM) (Paulk et al.,

1993) and Capability Maturity Model Integration (CMMI) (CMMI Product Team,

2006), and also there are a number of traditional SPI standards such as International

Organisation for Standardization 9000 (ISO 9000 series) (Haase, 1996), International

Organization for Standardization/ International Electro-technical Commission (ISO/IEC

12207) (Singh, 1996), BOOSTRAP (Kuvaja et al., 1995), and ISO/IEC-15504 Software

Process Improvement and Capability Determination (SPICE) (El Emam et al., 1999).

These traditional SPI models and standards were developed to improve the software

development processes in large and very large firms (Allen et al., 2003; BAe, 2007;

Zhang & Shao, 2011). However, these SPI models and standards are difficult to be

directly implemented within the context of most Small Software Development Firms

(SSDFs) (Mishra & Mishra, 2009; Gruner & Zyl, 2011). This implementation difficulty

is due to: inexperienced staff, lack of defined SPI implementation methodology, lack of

SPI awareness, lack of support, lack of resources, organizational politics, and time

constraint (Cater-Steel, 2004a; Zarour, 2009; Ibrahim & Ali, 2011).

 3

SSDFs are the software development firms which consist of ten to fifty employees

(Laporte et al., 2005; Allison, 2010). These firms represent a high proportion of

software firms in most countries all over the world (Richardson & Wangenheim, 2007;

Gruner & Zyl, 2011). Most of these firms do not use specific software development

process methods in developing the software products due to the lack of awareness on

well-defined development processes (Johannesen, 2004; Altarawneh & Amro, 2008; Ali

& Ibrahim, 2010). The reason to this is that most of them are using ad-hoc manner for

software development (McFarlane & Biktasheva, 2008; Koznov, 2011). Furthermore,

most of these firms have insufficient understanding of currently used software

development best practices (El Sheikh & Tarawneh, 2007; Valdes et al., 2011).

Nevertheless, SPI in SSDFs is still possible, where some regional initiatives of SPI were

developed for these firms such as gradual approach for SPI in Small and Medium

Enterprises (SMEs) in Belgium, known as OWPL; Approach for Software Process

Establishment in Micro and Small Companies (ASPE-MSC) in Brazil; SPI for SMEs in

Britain, known as PRISMS; Improvement Framework Utilizing Lightweight

Assessment and Improvement Planning (iFLAP) in Sweden; approach for SPI in SMEs

in Spain, known as MESOPYME; Modelo de Procesos para la industria de Software

(MoProSoft) in Mexico; and Brazilian software process model in Brazil, known as MPS

(Mishra & Mishra, 2009; Isawi, 2011).

However, these regional initiatives are not suitable for SSDFs all over the world, as they

were developed based on the characteristics, environments, and infrastructures of firms

in these specific countries where the models originated (Isawi, 2011; Mishra & Mishra,

 4

2009). Furthermore, the developments of these initiatives were based on simplifying the

SPI traditional models without identifying the suitable software development practices

that would achieve global quality level, where these initiatives focused on “what to do

for improvement” and ignored “how to do the improvement” (Mishra & Mishra, 2009).

Pikkarainen (2008), Mongkolnam et al. (2009), and Lina and Dan (2012) have indicated

the need for a suitable software development process improvement framework for

SSDFs. The framework will allow these firms in knowing “what to do for

improvement” by the SPI model and “how to do the improvement” by software

development best practices (Sison, 2006; Pikkarainen, 2008; Garcia et al., 2010b).

Shackel (1991) defines the framework as “a collection of methods, mechanisms, and

processes combined to solve problems, these components work together collaboratively

to achieve the specified goal”.

Nowadays, CMMI has become increasingly important to all aspects of software industry

(Pikkarainen, 2008; Alshammari & Ahmad, 2010). CMMI for Development Version 1.2

(CMMI-Dev1.2) was written especially for the software industry to guide the software

improvement processes (Galinac, 2008; Hashmi & Baik, 2008), and it is the most

comprehensive SPI model which is more compliant with relevant SPI models and

standards (CMMI Product Team, 2006; Mongkolnam et al., 2009). In addition,

Pikkarainen (2008) and Garcia et al. (2010a) argued that CMMI-Dev1.2 is a beneficial

approach for identifying the key weaknesses of a software development process in

SSDFs which need immediate attention and improvement especially with agile

development methods.

 5

Agile methods are a lightweight, efficient, low–risk, flexible, predictable, scientific, and

fun way to develop the software product (Beck, 2000). These methods are most suitable

for SSDFs compared to the traditional software development methods. EXtreme

Programming (XP) method (Beck, 2000) is the most popular and effective method for

SSDFs compared to other agile methods such as SCRUM (Alegra & Bastarrica, 2006;

Zoysa, 2011). In this respect, Dyba and Dingsoyr (2008) reported that 79% of the

empirical reports focused on the use of the XP or SCRUM methods in general, where

76% of the reports related to use of the XP and only 3% to SCRUM practices. In

addition, Pikkarainen (2008) and Erharuyi (2007) argued that XP method can help

SSDFs in the implementation of SPI, where XP method conforms to level two in

CMMI, while SCRUM only conforms to level one in CMMI.

As known, the XP method only applies to a small projects (Beck, 2000), while CMMI

applies to the organizations (CMMI Product Team, 2006). Therefore, the most

limitations of XP method from software organizational perspective of CMMI is related

to the management responsibilities such as quality objectives, organizational training,

documentation, and sub-contractor management (Fritzsche & Keil, 2007; Deep, 2012).

Nevertheless, Zoysa (2011), and Lina and Dan (2012) argued that CMMI-Dev1.2 model

and XP practices could be used as a combined approach to integrate the best abilities of

both. Furthermore, Anderson (2005) and Fritzsche and Keil (2007) Mehrfard et al.

(2010) indicated that CMMI-Dev1.2 is a suitable way to improve the software process

of XP method, where high levels of CMMI would be possible to be achieved by

extending XP method.

 6

1.2 Problem Statement

The integration between XP method and CMMI is very important for SSDFs to help

them in developing high quality software products (Baker, 2005). However, there are

insufficient studies of how CMMI-Dev1.2 model and XP method practices can be used

together to improve the software development processes (Sidky, 2007; Pikkarainen,

2008). Therefore, there is a lack of approaches that really integrates these aspects

together, as there is no real integration work carried out, but it rather focuses on

mapping XP method to CMMI KPAs (Lina & Dan, 2012).

The overlap and conflict between XP method and the KPAs of CMMI-Dev1.2 had been

discussed by several researchers; however there are discrepancies in their results. These

discrepancies are resulted from the different ways used in these alignments, where

Omran (2008) used the main objective of each KPA as a main item to do the alignment,

while Elshafey and Galal-Edeen (2008), and Fritzsche and Keil (2007) used the specific

goals of each KPA as main items to do the alignment. Therefore, there is a lack of the

comprehensive and systematic alignment of XP practices to CMMI-Dev1.2

(Pikkarainen & Mantyniemi, 2010).

In addition, many researchers such as Vriens (2003), Cohen et al. (2004), and Anderson

(2005) argued that most of XP projects that truly follow XP practices could be assessed

at level two or three of CMMI. However, these studies did not clearly show how XP

method can be extended and integrated with CMMI-Dev1.2 to achieve the suitable

KPAs of each level (Fritzsche & Keil, 2007; Zoysa, 2011). In this respect, Elshafey and

 7

Galal-Edeen (2008) and Lina and Dan (2012) indicted the need for extending XP

method to fulfill the suitable KPAs of CMMI-Dev1.2.

As highlighted in Section 1.1, XP method only applies to small projects, while SPI

traditional models and standards apply to the organizations. Therefore, several

organizational limitations in XP method are considered as the main obstacles in

achieving high level of these software quality models such as CMMI-Dev1.2. These

limitations are related to the management issues, which are:

 Quality Objectives Problems

Quality Assurance (QA) is a planned and systematic pattern of all actions

necessary to provide adequate confidence that the item or product conforms to

established technical requirements (IEEE Std, 1998). XP method focuses on

building high quality into the product rather than relying on a quality process that

verifies a product after development (Beck, 2000). In this regard, Hashmi and Baik

(2007) argued that the QA in XP method is partially achieved by different

practices like testing, re-factoring, system metaphor, and pair programming.

Therefore, there is lack of process quality measures and analytical data in XP

method, as the only aim is to complete each project quickly and then to start all

over again with the next (Balkanski, 2003; Khalaf & Al-Jedaiah, 2008).

Furthermore, XP method does not have rigorous procedures for the resolution of

non-compliance issues and there are no recording for QA activities (Fritzsche &

Keil, 2007).

 8

In the term of process performance, XP method has only few quantitative

measurements such as test-driven development (Paulk, 2001), but there is no

explanation about what happens with testing, such as how many tests pass and fail

(Vitoria, 2004). In addition, the testing activities in XP are mainly based on test

cases and do not provide documented evidence how these testing activities can be

planned, scheduled, and carried out throughout the software life cycle (Qasaimeh

& Abran, 2010). Therefore, there is a lack for metrics that control the process

performance quantitatively to ensure the high quality of the software development

processes (Martinsson, 2002).

 Organizational Training Problems

Organizational training process aims to develop the skills and knowledge of

people so they can perform their roles effectively and efficiently (CMM Product

Team, 2002). In addition, Highsmith and Cockburn (2004) argued that “if the

people on the project are good trained, they can use almost any process and

accomplish their assignments”.

Altarawneh and El Shiekh (2008), and Deep (2012) argued that the successful

implementation of XP practices are depended on trained and experienced

developers. However, in XP method; just pair programming is especially attractive

as a means of transferring expertise from experienced to less experienced

developers (Beck, 2000), and this is not enough to have trained team (Poole &

Huisman, 2002). Furthermore, there are deficiencies regarding the establishment

of records and the assessment of training effectiveness in XP method which is

 9

makes it difficult to know the capabilities and experiences of development teams

for incoming projects (Fritzsche & Keil, 2007).

 Documentation Problems

Requirements documentation plays an important role in the development and

maintenance in the software process (Sengodan, 2003), where the requirements

document should serve to: (1) communicate requirements among customers, users,

analysts, and designers; (2) support system-testing activities, and (3) control the

evolution of the system (Davis, 1993). In XP method, the requirement

documentation is just simply supplied by the user stories (Beck, 2000). These

stories do not take into account the system requirements or any of the technical

details needed during development (Vitoria, 2004), and this is limiting the

opportunities and advantages of reusability (Qureshi, 2011).

In addition, Qasaimeh and Abran (2010) argued that it is not clear how XP method

can check traceability problems of the requirements back to the final product;

because the traceability from customer requirements to code is not defined in the

XP method (Vitoria, 2004). Therefore, there is a lack of documentation though the

development lifecycle in XP method, which makes it difficult to maintain the

developed system using eXtreme methodology, and the same requirements

specifications cannot be used for incoming projects that contains similar

requirements (Abrahamsson et al., 2002; Erharuyi, 2007; Nisa, 2012).

 10

 Sub-Contractor Management Problems

Outsourcing of software development tasks to sub-contractors is often based on

contracts that precisely stipulate what is required of the subcontractor. This

process may be an iterative, incremental approach, but the sub-contractor may

have to make the process predictive by specifying the number of iterations and the

deliverables of each iteration in order to complete (Turk et al., 2002). XP practices

do not support the software sub-contracting (Martinsson, 2002), as these practices

focus only on the development processes (Beck, 2000).

In this respect, Turk et al. (2002) and Mnkandla (2008) argued that it is important

to improve the management practices of XP method to be suitable for outsourcing

process, as an XP project needs great support from its stakeholders for its success.

In addition, Fritzsche and Keil (2007) believed that XP method can be extended to

fulfill the required practices of this process, but there is a need to take into account

the agility value of XP method, because the involvement of suppliers could be

problematic for agility if it hinders iterative development.

Therefore, based on the problems highlighted in this section, there is a need to construct

an appropriate software development process improvement framework for SSDFs which

enables the integration between XP method and CMMI-Dev1.2 by extending XP

method to fulfill the suitable KPAs of CMMI-Dev1.2; taking into account the generic

element of SPI framework and the lightness of developed framework’s components to

ensure it’s suitability for SSDFs.

 11

1.3 Research Question

The problem of this research as highlighted in Section 1.2 can be summarized as: SPI

traditional models and standards are not suitable to be implemented directly by SSDFs.

Thus, there is a need to construct a software development process improvement

framework for SSDFs to manage and improve their software development activities by

integrating XP method as a lightweight software development method and CMMI-

Dev1.2 as a SPI model.

Therefore, the main question of this study is “How to construct a software development

process improvement framework by integrating XP method and CMMI-Dev1.2 model to

improve the software development activities of SSDFs?”.

The research question of this study can be divided into sub-questions as follows:

1. What is the extent of KPAs achievements of CMMI-Dev1.2 by XP method?

2. How CMMI-Dev1.2 can be integrated with XP method for SSDFs?

3. How to make developed framework compatible to CMMI-Dev1.2 KPAs?

4. How the framework can be made applicable for SSDFs?

1.4 Research Objectives

The main aim of this research is to construct a software development process

improvement framework for SSDFs based on integrating XP method and CMMI-

Dev1.2 model. This aim is supported by the following objectives:

 12

1. to identify the coverage of XP practices to the specific goals of CMMI-Dev1.2

KPAs.

2. to develop the software development process improvement framework for

SSDFs based on extending XP method that adheres to the suitable KPAs of

CMMI-Dev1.2 model and the generic elements of SPI framework.

3. to verify the compatibility of the proposed framework to CMMI-Dev1.2 KPAs

by using focus group method coupled with Delphi technique.

4. to validate the applicability of the framework by using CMMI-Dev1.2

questionnaire and case studies.

1.5 Research Scope

The primary concern of the study is to construct a software development process

improvement framework for SSDFs. In constructing this framework, two generic

elements have been used, which are: a suitable SPI model to know “what-to-do for

improvement”, and appropriate lightweight software development method to know

“how-to-do the improvement”.

In this research, XP method has been used as a lightweight software development

method in the development framework, as this method is the most popular, useful, and

effective lightweight development method of software development in SSDFs. In

addition, XP is more compatible to SPI models such as CMMI compared to other

popular lightweight methods such as SCRUM method, as the XP practices can conform

to level two or three of CMMI, while SCRUM only conforms to level one in CMMI.

 13

As for the SPI model, the CMMI-Dev1.2 model has been chosen as a generic element in

the development framework, as this model was written especially for the software

industry to guide the software development improvement. It is the most comprehensive

SPI and more fully complies with relevant traditional SPI models and standards such as

CMM, SPICE, ISO/IEC 12207, and ISO-9000 series (Chrissis et al., 2003; CMMI

Product Team, 2006; Mongkolnam et al., 2009). In addition, CMMI-Dev1.2 provides a

comprehensive integrated solution for development and maintenance activities applied

to products and services. Furthermore, CMMI-Dev1.2 and XP method support each

other, as CMMI-Dev1.2 is a suitable way to improve the software process of XP method

(Fritzsche & Keil, 2007).

In the validation process of the modified framework, Jordan has been chosen in this

study to ensure the suitability and applicability of this framework for SSDFs. This is

because most of Jordanian software development firms are small and they have the same

generic problems with software development and improvement processes (El Sheikh &

Tarawneh, 2007). In addition, it was easy to access these firms, where the same

language (native language of the researcher) helped in working with these firms during

the validation process.

Even though the validation process of this framework was conducted by Jordanian

SSDFs, the framework also could be applicable to other countries. This is due to the fact

establishment of the framework was based on a standards XP method and CMMI-

Dev1.2 model. In addition, XP method was extended based on generic phases of the

 14

popular software development methodologies such as Waterfall, Spiral, Incremental,

and Prototyping and verified based on the principles of XP method.

1.6 Research Strategy

The research process in this study consists of four main stages aimed to achieve the

research objectives. These stages are illustrated in Figure 1.1. In Stage One, CMMI-

Dev1.2 and XP method were used as main inputs to identify the coverage and missing

specific goals of CMMI-Dev1.2 KPAs by XP practices. In Stage Two, the XP method

was extended to cover the missing specific goals of partially and not-supported KPAs.

Extension-Based Approach (EBA) has been adapted to extend the XP method based on

the related literatures of CMM/ CMMI (CMMs) models and XP method, and the

popular software development methodologies. Then, the proposed Extended-XP

method, the generic elements of SPI framework, and CMMI-Dev1.2 were used to

establish the proposed software development process improvement framework. In Stage

Three, the focus group method coupled with Delphi technique was used to verify the

compatibility of the proposed framework to CMMI-Dev1.2 KPAs. In Stage Four, two

approaches were used in validating the modified framework. The first approach is a

quantitative research method that involved survey method to validate the suitability of

this framework for SSDFs by using CMMI questionnaires; while the second approach is

a qualitative research method that involved two case studies to validate the applicability

and effectiveness of implementing the framework by SSDFs.

 15

Stage One:
Aligning XP

Practices to the

Specific Goals of

CMMI-Dev1.2

KPAs

Stage Three:
Verifying the Proposed

Software Development

Process Improvement

Framework

Stage Four:
Validating the

Suitability and

Applicability of the

Modified Software

Development Process

Improvement

Framework for SSDFs

Stage Two:
Developing the

Proposed Software

Development

Process

Improvement

Framework

Align XP practices to the specific goals of each CMMI-Dev1.2 KPA

XP method CMMI-Dev1.2
Related literatures of

CMMs and XP method

 Extend XP method

Software development, management,

and improvement additions of the

missing KPAs

Phases of the popular software

development methods

CMMI-Dev1.2

KPAs (Assessment

method)

Establish the proposed software development process improvement framework

Proposed Extended-

XP method

Generic elements of

SPI framework

Verify the proposed framework by Focus Group method coupled with

Delphi technique Verification

questions

Validate the suitability of the modified framework for SSDFs

by professional developers and managers of these firms

Levels of suitability
Applicability of the modified

framework for SSDFs

Inputs /

Outputs
Process Data Flow

Stage Name
Legend:

The proposed software development process

improvement framework

The modified software development process

improvement framework

Missing KPAs (partially or not-supported by XP

practices)

Focus group

participants

Characteristics

of SSDFs

Analyze the suitability and applicability of the modified

framework for SSDFs

The software development process

improvement framework

Validate the applicability of implementing the modified

framework for SSDFs by 2 case studies

Figure 1.1: Research Strategy

1.7 Contributions

The high level goal of this research is to construct a software development process

improvement framework for SSDFs. Therefore, this research contributes toward the

 16

field of software engineering, particularity in that area of SPI. The specific contributions

of this research are:

 Demonstrated a new software development process improvement framework for

SSDFs based on XP method and CMMI-Dev1.2 model in order to help these

firms in managing and improving their software development processes in

systematic way.

 Provided new evidence of integrating the CMMI-Dev1.2 and XP method by

using the practices of the XP method as the main items in achieving the specific

goals of CMMI-Dev1.2 KPAs. This research clearly shows how the integration

between CMMI-Dev1.2 model and XP practices can help SSDFs in improving

the software development processes.

 Increased the ability of SSDFs to achieve high level of CMMI-Dev1.2

certification by implementing the framework as the framework is compatible to

all the KPAs of CMMI-Dev1.2, except the “organization innovation and

deployment” KPA of level 5.

 Elicited a better understanding of how to construct the framework, especially the

processes of adapting the Extension-Based Approach (EBA) to extend XP

method and the processes of integration the Extended-XP method with CMMI-

Dev1.2 based on modifying the generic element of SPI framework.

 17

 Demonstrated a comprehensive alignment of XP method to CMMI-Dev1.2. This

further supports the need for increased attention to be given to the improvement

of software development processes by CMMI-Dev1.2 model and XP method. In

addition, the results of this alignment have a straightforward and simple

guideline to identify suitable development improvement processes for firms of

all sizes.

 Increased the right understanding of the project team during the software

development lifecycle by identifying their roles specifically, and training them

on the best way to achieve the goals of these roles. These processes enable the

project members to be very familiar to the current roles, which is increased the

productivity of the team members during the software development lifecycle.

1.8 Thesis Organization

 Chapter One

This chapter begins with the background of the problem. Then, the problem

statement of this research is discussed. This chapter also presents the research

question, research objectives, and the scope of this study. The research strategy

used in this research and the expected contributions are presented. Finally, this

chapter presents the organizations of the thesis chapters.

 Chapter Two

This chapter gives an overview about software process and SPI. It also discusses

the characteristics and problems of these firms, the software development best

 18

practices of these firms, and the difficulty of implementing the SPI traditional

models in SSDFs. The chapter also discusses the popular regional SPI initiatives

for SSDFs and highlights the popular lightweight assessment methods that have

been developed for these firms. This chapter also focuses on CMMI-Dev1.2

model that is used as a baseline improvement model in this study. This chapter

also gives an overview of the software development process methods,

specifically XP, which was used as a baseline software development method in

this research. At the end of this chapter, the relationship between XP and CMMI-

Dev1.2 are presented.

 Chapter Three

This chapter presents the research methodology used to achieve the research

objectives. It gives an explanation of the four stages used to construct the

software development process improvement framework for SSDFs.

 Chapter Four

This chapter presents the stages of developing the proposed software

development process improvement framework, which are: aligning XP method

to the specific goals of CMMI-Dev1.2 KPAs to know the coverage and missing

KPAs, developing the proposed software development process improvement

framework based on CMMI-Dev1.2, proposed Extended-XP method, and the

generic elements of SPI framework.

 19

 Chapter Five

This chapter presents the verification process of the proposed framework. It

presents the three rounds which were conducted to verify the proposed

framework through focus group method coupled with Delphi technique. In

addition, the chapter also explains the modified software development process

improvement framework and the modified Extended-XP method.

 Chapter Six

This chapter presents the validation process of the modified framework by using

CMMI-Dev1.2 questionnaires with professional developers and managers to

validate the suitability of implementing this framework for SSDFs. The chapter

also presents the implementation of the modified framework through two case

studies. Finally, the evaluation process that was used to evaluate the

effectiveness of the modified framework for SSDFs is discussed.

 Chapter Seven

The final chapter concludes this research based on the research stages used in

constructing the software development process improvement framework for

SSDFs. This chapter also presents the contributions and the limitations of the

study. The chapter ends with the suggested directions for future work in the area

of software development and improvement processes.

 20

CHAPTER TWO

SOFTWARE PROCESS IMPROVEMENT AND DEVELOPMENT

FOR SMALL SOFTWARE DEVELOPMENT FIRMS

This chapter gives an overview about software process and SPI. This chapter also

discusses the general characteristics of SSDFs, problems faced by SSDFs, software

development best practices for SSDFs, regional SPI initiatives for SSDFs, and the

popular lightweight assessment methods that can be used by SSDFs. The chapter also

focuses on CMMI-Dev1.2 model and XP method that were used as baselines in

developing the desired framework in this study. Finally, the related works of aligning

XP method to CMMI-Dev1.2 are discussed.

2.1 Introduction

Currently, the software industry represents an important economical activity for every

country; it offers multiple possibilities for business and it promises to be a great

opportunity all over the world. As such, software firms need to have suitable software

development methods to manage their software development activities. These methods

are the systematic and predefined way the firm’s works in general to produce software

(Kähkönen, 2005).

Software processes play an important role in helping project teams in software

development organizations by providing the suitable organizational stability and good

control (Glass, 1995; Wong & Hasan, 2007; Xie et al., 2010). There are many

definitions of the software process; nevertheless all of these definitions have the same

 21

aim of helping software engineers to develop software of high quality. In this respect,

Saiedian and Carr (1997) define the software process as “a set of tools, practices, and

methods to produce software products according to specific plan”, while Pressman

(2005) defines the software process as “a framework of tasks to build high quality

software”. In addition, Humphrey and Kellner (1989) summarize the software process as

“the technical and management framework established for applying tools, methods, and

people to the software task”.

The ever demanding use of software in all aspects of our life is evident, and due to this;

the development costs of the software have increased. This has resulted in software

systems that are complex and require complex processes to manage (Allen et al., 2003;

Habib, 2009). Therefore, software development firms need to improve their software

processes to meet the challenges of continuously changing user requirements to satisfy

the customer’s needs within the time constraints, while maintaining high quality

products (El Emam & Briand, 1997; BAe, 2007). For these reasons, SPI traditional

models and standards were developed to manage the organizational capabilities by

improving the existing development processes to deliver high quality software within

limited time and cost (BAe, 2007; Dagnino, 2009; Baruah, 2012a).

2.2 Software Process Improvement (SPI)

SPI can be defined in many ways, but all of these definitions have similar meaning.

Wang and King (2000) define the SPI as “a systemic procedure for improving the

performance of an existing process system by changing or updating the process”, while

Sommerville (2011) argues that the SPI is used to understand the current processes and

 22

make changes on the process to improve the product quality, reduce cost or accelerate

schedules. Mathiassen et al. (2005) believes that the SPI is “the primary approach to

improving software quality and reliability, employees and customer satisfaction, and

return on investment”. Recently, Unterkalmsteiner et al. (2011) define the SPI as “a

systematic approach to increase the efficiency and effectiveness of a software

development organization and to enhance software products”. Based on these

definitions, it can be concluded that the SPI is an approach for improving the

organizational capability of the software development processes in software firms to

achieve high quality software.

Pourkomeylian (2002) and Savcenko and Tanveer (2009) summarize that the main

objective of SPI is to improve the organizations capability to achieve the software

quality depending on the defined processes or systematic procedures adopted to improve

the organizational capabilities to deliver quality software. As shown in Figure 2.1, there

are four generic elements for the SPI framework (Rout, 2002; cited by Pressman, 2009),

which are:

 Software Process: a set of tools, practices, and methods to produce software

products according to specific plan.

 Software Process Assessment: this element is used to assess the current state of

the software process and is done by implementing the suitable assessment

methods

 23

 Capability Determination: this element is used to know the capability level of

the software process and motivates an organization to do process improvement

by identifying the capability and risks of a process

 Improvement Strategy: based on the capability determination results, the

improvement strategy will identify the changes which should be made to the

process.

In this study, it is important to take into account these elements as main components in

developing the proposed software development process improvement framework for

SSDFs.

SPI General Elements

Software Process

Assessment

Improvement

Strategy

Capability

Determination

Leads to Leads to

Is Examined

 by
Identify

 Maturity of

Suggests

 Improvement

Motivation

Figure 2.1: Generic Elements of SPI Framework, adopted from (Rout, 2002; cited by

Pressman, 2009)

The popular SPI traditional models and standards such as: CMM, CMMI, ISO 9000

series, BOOTSTRAP, ISO/IEC 12207, and SPICE were developed to improve the

software development processes in large and very large firms (Allen et al., 2003; BAe,

 24

2007; Zhang & Shao, 2011). However, direct implementation of SPI traditional models

and standards by SSDFs which represent the majority of software development firms all

over the world are generally not possible (Richardson & Wangenheim, 2007; Gruner &

Zyl, 2011). This is because they are not capable of investing the high cost of

implementing these programs (Alexandre et al., 2006; Mishra & Mishra, 2009; Gruner

& Zyl, 2011). Furthermore, limited resources and strict deadlines to complete the

projects compound the difficulty to implement SPI programs, which can also affect

quality issues in software project (Zarour, 2009; Ibrahim & Ali, 2011). Section 2.3

discusses the important issues of SSDFs.

2.3 Small Software Development Firms (SSDFs)

SSDFs represent a high proportion of software firms in most countries all over the world

(Thorn, 2009; Baruah, 2012a). These firms play an important role in the economy of

these countries compared to the larger software firms (Basri & O'Conno, 2011), as they

develop a large portion of the needed software applications, offer many job

opportunities, exploit new technologies and innovative (Vahaniitty & Rautiainen, 2005;

Savolainen et al., 2007; Makitalo-Keinonen et al., 2011). In addition, these firms are

believed to provide an impetus to the economic progress of developing countries and its

importance is gaining widespread recognition (Palani & Mohideen, 2012).

As for the size of SSDFs, there is no fixed number of the employees to decide the size of

SSDFs (Balandis & Laurinskait, 2005; Gruner & Zyl, 2011), and this number differs

between countries. Some studies believe the number of employees in SSDFs to be fewer

than 50 (Fayad et al., 2000; Carter-Steel, 2001; Da Rocha et al., 2007), and fewer than

 25

60 employees (Laporte et al., 2005). Hofer (2002) and Allison (2010) indicate that the

size of SSDFs is between 10 to 50 employees. Based on that, it can be concluded that

the average of this number is usually between 10 to 50 employees, and this average is

used in this study when referring to SSDFs.

SSDFs can not apply the same software development methodologies or techniques of

large software development firms without any modification and optimization due to the

major differences between these firms such as the limitation of resources and business

issues (Fruhling & Vreede, 2006; Mishra & Mishra, 2009). In addition, best practices

proven in large firms might be too expensive or time consuming to be performed in

smaller software firms, where agile methods are more applicable for SSDFs, compared

to the traditional development models (plan-driven approach) that are more suitable for

large software firms (Sommerville, 2007).

2.3.1 SSDFs Characteristics and Problems

There are differences between the characteristics of SSDFs compared to other sized

software firms in terms of formalization, centralization, complexity and personnel ratios

(Carter-Steel, 2004a). Based on the related literatures of the characteristics of SSDFs,

the following can be concluded:

 SSDFs are typically characterized by a flat organizational structure, where most

of these firms do not have standards definition of software processes (Makitalo-

Keinonen et al., 2011; Nawazish Khokhar et al., 2010; Ibrahim & Ali, 2011).

 26

 SSDfs have less formalized decision-making structures and procedures (Carter-

Steel, 2004a; BAe, 2007; Rivas et al., 2008).

 SSDFs have the features that enable the employees to be responsive and flexible,

where they provide more freedom for employees to depart from the rules

(Carter-Steel, 2004b; Habra el al., 2008; Thorn, 2009).

 SSDFs neglect of the training compared with large software firms (Johannesen,

2004, Carter-Steel, 2004b; Habra et al., 2008).

 The personal involvement of employees in SSDFs encourages motivation and

commitment because the employees identify with the company’s mission (Daft

1998; Carter-Steel, 2004a).

 SSDFs have faster employment growth rates and generate more new jobs than

giant ones (Anacleto et al., 2004; Carter-Steel, 2004a; Savolainen et al., 2007).

As for the problems faced by SSDFs, there are several obstacles facing these firms

throughout the development period of the software products. These problems are related

to the management of resources, methods and techniques used and human aspects

(Hofer, 2002; BAe, 2007; Habra et al., 2008). By reviewing the related literatures of

SSDFs, the following can be deduced as the common problems faced by SSDFs:

 Lack of awareness of the well-defined development processes by these firms

(Ali & Ibrahim, 2010; Gruner & Zyl, 2011). Therefore, most of them are using

ad-hoc manner in developing their software products (Altarawneh & El Shiekh

2008; Koznov, 2011).

 27

 Most of SSDFs have insufficient understanding of currently used software

development best practices (El Sheikh & Tarawneh, 2007; Jantunen, 2010;

Valdes et al., 2011). Therefore, the cost of developing the software products in

these firms are always high, low customer’s satisfaction, and the actual time in

developing the software products usually exceeds the estimated time (Hofer,

2002; Alexandre at el., 2006; Altarawneh & Amro, 2008).

 Lack of project management and planning practices. Therefore, learning and

knowledge management practices are rarely observed (Alexandre et al., 2006;

Savolainen et al., 2007; Gruner & Zyl, 2011).

 Most of SSDFs have limited resources for business development (Savolainen et

al., 2007; Nawazish Khokhar et al., 2010; Gruner & Zyl, 2011).

2.3.2 Software Development Best Practices for SSDFs

Best practice is the effective technical or management practice which is used to improve

the productivity and predictability of cost and schedule (Withers, 2000). Laudon and

Laudon (2004) defined the best practices as “the most successful solutions or problem-

solving methods that have been developed by a specific organization or industry and are

widely recognized as excellent, and recommended by most practitioners and experts in

the field”. In addition, Laugen et al. (2005) summarized the best practice as “the basic

principle of the best practice thinking is that operations philosophies, concepts and

techniques should be driven by competitive benchmarks and business excellence models

to improve an organization’s competitiveness through the development of people,

processes and technology”. Based on these definitions, it can be concluded the best

 28

practice is a management or technical practice that is widely recognized as effective and

excellent practice which is recommended by most practitioners and experts in the field.

Fogle (2001) indicated the criteria for identification of the best practices such as:

 Existence: at least, the practice must have been observed in one organization.

 Importance: the practice is important to an effective process.

 Effectiveness: in the practitioner’s opinion, the practice should work well where

it is used.

 Tangible benefit: there is a real benefit to the organization that conducts this

practice.

Jones (1996) and Yourdon (1997) argued that many software development projects fail

in different ways and it appears that most of them fail because of a combination of

several roots such as: inaccurate understanding of end-user needs; inability to deal with

changing requirements; modules that don not fit together software that is hard to

maintain or extend; late discovery of serious project flaws; poor software quality;

unacceptable software performance; ad hoc requirements management; ambiguous and

imprecise communication; undetected inconsistencies in requirements, designs, and

implementations; insufficient testing; and failure to attack risk. In this regard, Baharom

et al. (2006) in their study about the current practices of the software development

processes in Malaysia pointed out that the lack of awareness in using good software

development practices lead to occurrence of quality problems. Therefore, it is important

to treat these root causes by identifying the software development best practices to

 29

develop and maintain quality software in a repeatable and predictable way (Jones,

1996).

Booch (1998) argued that the best practices of software development are: develop

software iteratively, manage requirements, use component-based architectures, visually

model software, verify software quality, and control changes to software. In addition,

the Airline software council which is sponsored by the Department of Defense (DOD)

listed to the sixteen software engineering best practices (Brown, 1999), and these

practices had been categorized by Software Program Managers Network (SPMN)

(Evans, 2001) into three groups, which are:

 Project Integrity: Adopt continuous risk management, estimate cost and

schedule empirically, use metrics to manage, rack earned value, track defects

against quality targets, and treat people as the most important resource.

 Construction Integrity: Adopt life cycle configuration management, manage

and trace requirements, use system-based software design, ensure data and

database interoperability, define and control interfaces, design twice (code once),

and assess reuse risks and costs.

 Product Stability, Integrity: Inspect requirements and design, manage testing

as a continuous process, and compile and smoke test frequently.

Based on the review of literatures on software development best practices of SSDFs, the

following practices are the basis software development best practices for SSDFs:

 30

 Short-Development-Lifecycle: the time to deliver the project should be short

(Al Hussaini, 2006; McDonald & Welland, 2004). The successful development

lifecycle should be less than three months, where the short period of

development lifecycle can handle the unexpected time pressures.

 Multidisciplinary Development Team: it is important for all involved

developers to understand their roles during the development lifecycle (El-Sheikh

& Tarawneh, 2007; McDonald & Welland, 2004). The development process

must include all the required developers to build a successful solution; this will

help to know how to resolve conflict in the best interests of the project in

question.

 Maintenance: the maintenance phase helps in improving software product (Al

Hussaini, 2006; McDonald & Welland, 2004). It is certainly necessary for

ensuring the proper maintenance and update of the deliverables.

 Project Management: project management is very important in the

development lifecycle in SSDFs, where it is responsible to ensure that

experiments are performed according to defined procedures, while making

progress in the context of a schedule and a budget (Baxter et al., 2006; El-Sheikh

& Tarawneh, 2007).

 Delivery of Bespoke Solutions: it is important to handle the development of

software components, the development of data, and the inter-dependencies

between them (McDonald & Welland, 2004).

 Small Software Team: during the development lifecycle; the development team

should be small to avoid arising conflict that will lead to poor development (Al

 31

Hussaini, 2006; McDonald & Welland, 2004). Different small teams of

developers need to communicate amongst their peers, where this will help to

ensure the consistency and prevent the duplications of effort amongst the team.

 Requirements and Rigorous Testing Against Requirements: McDonald &

Welland (2004) indicated to the importance of knowing the required issues that

are needed to address the process solution, and there is need to test the success of

the deliverables in tackling these issues. Furthermore, iterative process is

important to help in backtracking to handle the changing of the requirements

(Haung et al., 2008).

2.3.3 Difficulties of Implementing SPI Traditional Models and Standards by SSDFs

Both large and SSDFs are faced by problems in managing and improving their software

development processes, dealing with rapid technology advances, maintaining their

products and operating in a global software environment (Makitalo-Keinonen et al.,

2011). SPI traditional models and standards were developed especially for large firms

and they need high investment and many other requirements; however most SSDFs

could not afford the direct implementation of these models (Alexandre et al., 2006;

Garcia et al., 2010a; Baruah, 2012a). Furthermore, these firms suffer from lack of

understanding in the success factors of SPI and do not have enough people to perform

all the SPI activities (Guerrero & Eterovic, 2004). Therefore, they find themselves to be

very far from implementing formal SPI traditional models and standards, and also

perceive these models as expensive and time consuming (Cater-Steel, 2004b; Oktaba &

Piattini, 2008).

 32

In this respect, Kalpana and Jeyakumar (2011) pointed out the problems faced by

SSDFs in implementing the SPI traditional models (i.e. CMMI) such as: excessive

documentation; extensive number of specific practices; requirement of extensive

resources; high training costs; practices independent of project type; lack of guidance in

satisfying project and development team needs; and expensive compliance effort, both

in time and money.

In addition, Nawazish Khokhar et al. (2010) indicated that the Critical Barriers (CBs)

faced by SSDFs in implementing the traditional SPI models, such as: (1) organizational

structure: SSDFs operate with very limited resources in terms people and cost; therefore

they lack expertise in the field of SPI; (2) SPI understanding: there are lack of awareness

of the basic purpose of process improvement, where they focus on their own priorities

for process improvements; and (3) project management: the practices of project

management are as per the customer and organization needs, where these firms follow

ad-hoc project management in their environment. Furthermore, Ibrahim and Ali (2011)

argued that these CBs are: lack of communication; lack of resources; complicated

framework; SPI activities gets in the work; and lack of SPI knowledge.

Therefore, it can be concluded that the problem faced by SSDFs in implementing the

traditional SPI models and standards can be classified into economic problems and

organizational problems as follows:

 Economic Problems: SSDFs suffer from the lack of financial support (Xie,

2011), where these firms try to satisfy the customers without the funding to pay

 33

enough attention to the software quality and documentation processes. As such,

most of these firms can not improve their software processes, because they do

not have the financial support (Zarour, 2009). Furthermore, these firms could not

spend some time period to get the benefits of the process improvement by the

traditional SPI models, where they are always looking for fast Return Of

Investment (ROI) to stay in business (Cater-Steel, 2004a; Ali & Ibrahim, 2010).

 Organizational Problems: SSDFs usually operate in flat structure, where they

do not have official definition for roles, responsibilities and process (Xie, 2011).

Therefore, they can not control the software development process cycle, and this

mainly refers to a lack of the needed resources (Zarour, 2009). In addition, they

do not have sufficient understanding of currently used software development

practices (Jantunen, 2010), where they are using Ad-Hoc manner to develop

their software products (Ali & Ibrahim, 2010). Furthermore, these firms mostly

depend on the individual skills of their employees instead of a standardized

development process, and this is very risky for the survival of these firms

(Zarour, 2009). In addition, SSDFs suffer a lack of good experience in SPI and

they are not aware of their process capability (Nawazish Khokhar et al., 2010).

Due to the inability of the direct implementation of the SPI traditional models and

standards by SSDFs, some regional SPI initiatives have been developed to help these

firms in improving their software development processes. Section 2.3.4 presents some

of these popular initiatives.

 34

2.3.4 Regional SPI Initiatives for SSDFs

Given the importance of SSDFs and the difficulty of directly incorporating SPI

traditional models and standards by these firms; some regional initiatives have been

developed to improve the software processes in these firms (Mishra & Mishra, 2009;

Garcia et al., 2010b; Baruah, 2012b). Table 2.1 shows the popular SPI initiatives of

SSDFs.

Table 2.1: Popular Regional SPI Initiatives of SSDFs

Models/

Methods

Description Limitations

OWPL

(Belgium)

(Habra et al.,

2008;

Stambollian,

2006)

In this model, which is based

on the SPICE method, an

adviser interviews a

stakeholder from the firm in

order to identify current issues.

This process addresses three

core questions: (1) What is the

current process?; (2) What

improvements need to be

made?; and (3) How these

changes can be implemented?

- Sometimes, it is difficult to properly

collect answers using Micro-

evaluation in this model, as the tool’s

reference grids appear to be very

unclear.

- This model ignores the development

practices, and focuses on some

practices of SPICE model.

- The reliability of conclusions was

based on one interview of 45 minutes;

based on the interviewee's vision.

Therefore, the user should remain

cautious before extensive investment.

- This model was evaluated by single

team or single project. Therefore, the

implementation of the other teams or

projects was not evaluated.

ASPE -MSC

(Brazil)

(Von

Wangenheim et

al., 2006;

Hauck et al.,

2008)

This model is based on

multiple methods, and engages

participation from an outside

consulting process engineer

(PE), an advisor, and a

representative from the firm.

This multi-step method first

seeks to identify problems

based on current needs and

processes. The PE is trained,

and after these problems are

identified, an improvement

plan is created and

implemented.

- There is insufficient information on

the applicability, and tailoring of

solution alternatives in certain contexts

is available.

- This model does not cover the

processes of software development.

- There is a need for external consultant

and assistant for process

establishment. Therefore, it is costly

for normal small software firms.

- There is a need for high experience to

assess current capabilities, SPI

planning and implementation.

- Evaluating this model by two case

 35

 studies requires a lot of additional

training and explanations for the

representatives of the organization.

This occurs because changes are made

in the sequence of activities and new

templates are created to assist in

implementing the model.

PRISMS

 (Britain)

(Allen et al.,

2003)

This method seeks to identify

the problem as well as provide

solutions. The method

incorporates the GQM

paradigm into the CMM

model. A workshop is

conducted to develop a plan for

implementing improvements

and involves participation from

an outside consultant as well as

a representative from the firm.

A web-based self assessment

can also be used.

- There is need for significant

experience to assess current process,

and identify KPAs for improvement.

In addition, development and

implementation of process

improvement plan require experienced

persons.

- Considerable experience is needed to

identify current process model and

process improvement plan.

- This model helps the developer to

identify the weak processes that need

to be improved, but without

identifying the suitable practices to

improve.

- This model is based on the

improvement KPAs of CMM, where

this model is old compared to CMMI.

iFLAP

(Sweden)

 (Pettersson et

al., 2008)

This method uses an inductive

approach, and can be targeted

to improve isolated problems,

or a larger process-wide

problem. Both a consultant and

representative from the firm

participate in the process

which involves carrying out a

series of workshops, where the

assessor works with selected

representatives from the firm

to better understand how the

processes are used. Other

process documentations are

also used to identify problems

and solutions.

- This model ignores the management in

the improvement steps.

- There is need for external expert party

in the assessment and planning phases,

where this is costly for normal small

software firms.

- During the evaluation of this model by

two case studies, it can be concluded

that the project teams have difficulty

in separating the required

improvement issues that should be

addressed.

- This model focuses on the process

assessment and requires improvement

issues, as well as development

practices for the required improvement

issues.

 36

MESOPYME

(Spain)

(Calvo-

Manzano et al.,

2002)

This method uses a CMM

model, but emphasizes the

creation of action packages

which can be implemented to

solve problems addressed

during the assessment phase of

the model. The CMM model is

used to identify the areas

where improvements are

needed, and the solutions are

developed by quality experts

based on their investigations of

the firms’ processes.

- In this model, there is need for expert

assessor to assess the current software

process.

- The software development team is

involved in just implementing the

improvement issues, and there is no

evidence about who decides which

process needs to be improved.

- There is a need for expert assistance to

develop action packages based on the

organizations’ business goals and

current capabilities.

- In the assessment phase, CMM is used

to choose one to three processes that

need to be improved. This means that

the improvement process will be

conducted just for the important one to

three processes that need to be

improved.

MPS

(Brazil)

(Santos et al.,

2007; Boas et

al., 2010)

This model was developed

based on ISO/IEC 12207 and

ISO/IEC 15504, and

constitutes three components:

PS Reference Model; MPS

Assessment Method, and MPS

Business Model. The focus of

the MPS Model is on small

settings, since it provides

mechanisms to facilitate SPI

implementation of the most

critical software processes.

- In the software firms that never follow

a process, it was difficult to implement

this model without external help.

- In evaluating this model, it was

difficult for the project teams to adapt

their practices as needed by this

model.

- Most team members were not satisfied

and were bored with the way of

improving this model. Therefore, some

stakeholders, mainly customers, may

not be interested in the establishment

of formal commitment.

- Most of the cases that had

implemented this model had reached

just the first level of improvement. As

such, it is not useful for small firms

that have limited resources to follow

this model.

MoProSoft

(Mexico)

(Oktaba et al.,

2007; Calvo-

Manzano

Villalan et al.,

2002)

This model was developed for

small firms as a first step in

achieving CMM level. It helps

small firms in the possibility of

implementing the SPI practices

that were developed for large

firms. This model consists of

four stages which are:

commitment to improvement;

software process assessment

(CMM); infrastructure and

Action Plan; and SPI

implementation.

- In implementation of this model, there

is a need for expert support and

metrics application to manage process

evolution, and this is costly for small

firms.

- In the initial phases of an improvement

project, time is wasted due to the

uncertainties associated with the new

way of working.

- This model was developed based on

CMM, and there is no evidence of the

best practices of software development

for small firms being used.

 37

As shown in Table 2.1, there are several initiatives developed to help SSDFs in

improving there software process. Based on the characteristics and limitations of these

initiatives, the following can be concluded:

 All these initiatives were developed based on the characteristics, environments,

and infrastructures of these firms in the specific countries (Mishra & Mishra,

2009; Cruz Mendoza, 2009). Therefore, these initiatives are not suitable for all

SSDFs around the world (Isawi, 2011).

 All these initiatives present the KPAs of SPI which are suitable for SSDFs.

Nevertheless, they do not support a suitable software development practices to

help these firms in adopting these initiatives. Therefore, these initiatives are

considered as a simplified of the traditional SPI model to know “what to do” for

improvement, but they did not explain “how to do” the improvement.

Accordingly, both of SPI model and software development method which contains

software development best practices should be used in constructing the SPI model for

SSDFs. This will help these firms to know “what to do” by the SPI model and “how to

do” by software development best practices.

2.3.5 Software Process Assessment for SSDFs

Humphrey (1993) defines the software process assessment as “a diagnostic tool to aid

organizational improvement to provide a clear and factual understanding of the

organization’s state of software practice, to identify key areas for improvement, and to

initiate actions to make these improvements”. In addition, Zarour (2009) argued that the

 38

software process assessment can be used to determine the capability levels or to views

the current status of the software process in the software firms. Zahran (1998) indicated

that the software process assessment is responsible for understanding and determining

the organization’s current software engineering practices, and to learn how the

organization works; identifying strengths, weaknesses and key areas for SPI; and

facilitating the initiation of process improvement activities.

CMMI Product Team (2010) argued that the required assessment is based on the

circumstance; sometimes self assessments, initial appraisals, quick-look or mini

appraisals, or external appraisals are appropriate; at other times a formal benchmarking

appraisal is appropriate. In this respect, Simila et al. (1994) pointed out to the three types

of assessments based on who plays the main role in an assessment process, which are:

 First-party assessment or self- assessment: this type refers primarily to a

situation where the assessment is performed internally inside the software firm to

identify the software process capability and initiate an action plan for SPI.

 Second-party assessment: in this assessment, there are external assessors are

used to assess the software process in the firm to fulfill the specific contract

requirements.

 Third-party assessment or capability determination: this type is performed

by an independent third-party company to evaluate the software process in the

software firm in order to enter contracts or produce software products. In

addition, it is used occasionally to provide fulfillment of certification according

to a selected standard.

 39

Several methods are available to assess the maturity and capability of a software

development process based on well-known software process assessment and

improvement frameworks such as CMMI and ISO/IEC-15504 (Zarour, 2009).

Unfortunately, many researchers consider that the traditional software process

assessment models such as CMM, CMMI, and ISO/IEC 15504 are too large to be

implemented in SSDFs (Alexandre et al., 2006; BAe, 2007; Mishra & Mishra, 2009). In

addition, Cater-Steel (2002) argued that the cost of the formal assessment is beyond the

means of most SSDFs, as the lack of resources limit the implementation of these

models. Furthermore, Santos et al. (2007) pointed out that it is more important to keep

the assessment cost as low as possible for SSDFs with the maximum coverage of

relevant processes.

Humphrey (1993) believes that the self-assessments are another form of SEI assessment,

where the self-assessment teams are composed of software professionals from the

organization being assessed. Therefore, given the limited resources of SSDFs; self-

assessment is suitable to be implemented by these firms, where the low-cost mini-

assessments are effective for SPI in these firms (Cater-Steel, 2004b). In addition, Von

Wangenheim et al. (2004) argued that completing questionnaire through an interview is

a suitable technique to assess the current software processes in SSDFs, as most of these

firms have a lack of software engineering knowledge. Furthermore, Kalpana and

Jeyakumar (2011) pointed out that the self-assessment is suitable to be conducted by

SSDFs by using CMMI questionnaires to help these firms in scaling their capability

levels in each process area.

 40

In this respect, many researchers have studied process assessment and improvement in

SSDFs and tried to develop some assessment methods to be able to assess the software

process of these firms, and usually these methods are called “lightweight software

process assessment methods” (Zarour, 2009). Some of the popular lightweight

assessment methods are: A Methodology for Software Process Assessment in Small

Software Companies (MARES) (Anacleto et al., 2004; Von Wangenheim et al., 2004);

Toward Organized Process in SMEs (TOPS) (Cignoni, 1999); Fraunhofer IESE

Assessment Method (FAME) (Beitz et al., 1999); Rapid Assessment for Process

Improvement for Software Development (RAPID) (Rout et al., 2000; Bucci, 2001);

Software Process Matrix (SPM) (Richardson, 2001); Express Appraisal Process (EAP) (

Wilkie et al., 2007); and Micro-Evaluation (Habra et al., 1999). Table 2.2 highlights

some of the popular SPA methods.

 Table 2.2: Some of the Popular Lightweight SPA Methods

Methods

Criteria

MARES TOPS FAME RAPID SPM EAP Micro-

Evaluation

 Geographic origin/

Spread

Brazil Italy Germany Australia Ireland Ireland Belgium

 Scientific origin ISO

15504

ISO

15504

ISO 15504/

Bootstrap

ISO

15504

Quality

Function

Deployment

CMMI

Compliant

with the

ARC 1.1

OWPL

Application region Regional Regional Regional Regional Regional Regional Belgium/

Quebec/

France

Analysis techniques Interview Interview Questionnaire Interview Questionnaire Interview Short

Interview

Assessment

duration

1 day Half a

day

NA 1 day NA 1 day Half hour

 Tool support NA Paper

forms

Data

collection,

analyses and

rating tools

Paper

Forms

NA Paper

forms +

data

collection

Paper

forms

+ Excel

sheet

 41

By analyzing the highlighted SPA methods in Table 2.2, the following can be

concluded:

 All of these lightweight assessment methods were developed to assess the

software process in SSDFs of certain countries, where the development of these

methods was based on the environment of these countries. Therefore, these

methods can not be used in other regions.

 Interviews and questionnaires were used as lightweight techniques by these

methods to assess the current software process in SSDFs. In addition, cheap

support tools had been used in these methods to collect the assessment data.

 The time of assessment process in these methods is always less than one day.

As such, it is important to take into account the use of lightweight technique within

short-time period and cheap support tools during the assessment stage in constructing

the framework of this study, as SSDFs could not afford high cost of assessment.

As mentioned earlier in Section 1.1, CMMI-Dev1.2 was chosen as a SPI model in

constructing the software development process improvement framework for SSDFs in

this study. Therefore, Self-Assessment by Pre-Assessment CMMI-questionnaire will be

suitable as an assessment technique in the proposed framework of this study to assess

the current software development processes in SSDFs, where these firms suffer financial

problems that prevent them in conducting the assessment by external party (Cater-Steel,

2004). Section 2.4 presents the history of CMM/ CMMI (CMMs) models.

 42

2.4 History of CMM/ CMMI (CMMs) Models

CMMs models were developed by Software Engineering Institute (SEI) at Carnegie

Mellon University to improve the processes in an organization, where these models

contain the essential elements of effective processes for one or more disciplines and

describe an evolutionary improvement path from ad hoc, immature processes to

disciplined, mature processes with improved quality and effectiveness (CMMI Product

Team, 2010).

As shown in Figure 2.2, CMM for software V1.1 (1993) is the first release of CMMs,

while CMMI-Dev1.3 is the newest release of CMMs which was developed to ensure

consistency among all three models and improve high maturity material in all CMMs

models. In addition, Figure 2.2 shows that the CMMI is a collection of previous CMM

models to sort out the problem of these models. This had been done by combining

CMM models into a single improvement framework was intended for use by

organizations in their pursuit of enterprise-wide process improvement.

Figure 2.2: CMMs History, adopted from (CMMI Product Team, 2010)

 43

CMMI for Development (CMMI-Dev) has become increasingly important to all aspects

of software industry (Pikkarainen, 2008; Alshammari & Ahmad, 2010). In this regard,

Bush and Dunaway (2005) indicated that CMMI-Dev has been broadly used for

assessing and improving the organizational maturity and process capability throughout

the world, where they have confidence in CMMI-Dev because of its extensive

descriptions of how the various good practices fit together, as this model improves upon

the best practices of other improvement models in many important ways (Goldenson &

Gibson, 2003).

Even though CMMI-Dev1.3 (CMMI Product Team, 2010) is the newest version of the

CMMI generations, CMMI-Dev1.2 has been chosen in this study as a main element in

constructing the software development process improvement framework for SSDFs, as

CMMI-Dev1.2 has been broadly used for assessing and improving the organizational

maturity and process capability of most software development firms in the world

(Mishra & Mishra, 2009; Pikkarainen, 2008). On the other hand, the CMMI-Dev1.3 is a

new release and the usage of this model is still scarce (Isawi, 2011). In addition, this

study focuses on the KPAs of CMMI-Dev1.2, where these areas are similar to the KPAs

of CMMI-Dev1.3 (CMMI Product Team, 2010). Therefore, it can be argued that the

developed framework is related also to the KPAs of CMMI-Dev1.3. Section 2.4.1

discusses the CMMI-Dev1.2 model and the reasons of choosing this model in this study.

2.4.1 CMMI-Dev1.2

CMMI-Dev1.2 is a continuation and update of CMMI-Dev1.1 and has been facilitated

by the concept of CMMI constellations, where a set of core components can be

 44

augmented by additional material to provide application-specific models with highly

common content (CMMI Product Team, 2006). This model consists of four categories

of KPAs (CMMI Product Team, 2006), which are:

 Process Management: process management areas contain the cross-project

activities related to defining, planning, deploying, implementing, monitoring,

controlling, appraising, measuring, and improving processes. These process

areas are organizational process focus, organizational process definition +

integration product and process development (IPPD), organizational training,

organizational process performance, organizational innovation and deployment.”

 Project Management: “project management process areas cover the project

management activities related to planning, monitoring, and controlling the

project. These process areas are project planning, project monitoring and control,

supplier agreement management, integrated project management + (IPPD), risk

management, and quantitative project management.

 Engineering: engineering process areas cover the development and maintenance

activities that are shared across engineering disciplines. These process areas are

requirements development, requirements management, technical solution,

product integration, verification, and validation.”

 Support:”support process areas cover the activities that support product

development and maintenance. These process areas are configuration

management, process and product quality assurance, measurement and analysis,

decision analysis and resolution, causal analysis and resolution.”

 45

Generally, CMMI-Dev1.2 is not ready to be used directly by SSDFs (Mishra& Mishra,

2009; Valdes et al., 2011). Nevertheless, several researches (Mongkolnam, 2009; Tosun

et al., 2009; Garcia et al., 2010a) indicated that the CMMI-Dev1.2 can be useful and

more applicable for SSDFs compared to other SPI traditional models and standards, as

these firms could spend their limited resources on the most striking problems to achieve

the suitable KPAs of CMMI-Dev1.2.

In addition, there are several reasons for choosing the CMMI-Dev1.2 as a baseline

improvement model in this research and these are: (1) CMMI-Dev1.2 has been used to

guide the software development improvement (Diez et al., 2007; Galinac, 2008; Garcia

et al., 2010a); (2) CMMI-Dev1.2 is the most comprehensive software improvement

model and is highly compliance with relevant traditional SPI models and standards

(CMMI Product Team, 2006; Mongkolnam et al., 2009); (3) CMMI-Dev1.2 provides a

comprehensive integrated solution for development and maintenance activities applied

to products and services, and it is considered to be one of the best known models that

focuses on SPI for achieving quality software in SSDFs (Garcia et al., 2010a); and (4)

CMMI-Dev1.2 is useful for identifying the key weaknesses of a software development

processes (Pikkarainen, 2008).

Given the comprehensiveness, popularity, and advantages of the CMMI-Dev1.2

compared to other SPI traditional models and standards, this model was chosen in this

study as a baseline model from the aspect of improvement models to develop the

software development process improvement framework for SSDFs. On the other hand,

 46

there is a need for suitable software development method to be combined with CMMI-

Dev1.2 to help in developing the desired framework. Section 2.5 explains the popular

software development methods and the reasons for choosing XP method as a suitable

development method to be used in constructing the desired framework.

2.5 Software Development Process Models

Software development process model is “an abstract representation of a process that

presents the description of a process from some particular perspective” (Sommerville,

2007). In addition, Bell (2001) explains that the software process model as “a plan of

action for software development with its requirements, tools and steps to create the

software product”. Boehm (1988) argues that the main objective of the software

development process models is to identify the order of stages for software development

and evolution by establishing the transition between the steps of development. Based on

these definitions and the objective of the software development model, this software

process model can be defined as a systemic plan which contains all the required

components to describe the way of developing the software product.

There are many classifications of software development process models based on

different authors’ perspectives (Kuhlmann, 2003). In general, the software development

process models can be classified into two main groups; traditional and agility models

(Preuninger, 2006; Sommerville, 2007; Pressman, 2009). Traditional software

development process models (plan-driven approach) such as waterfall (Royce, 1987)

and spiral (Boehm, 1988) are more suitable for large software development firms, where

agile methods (Beck, 2000) are more applicable for SSDFs. Therefore, it is useful to use

 47

a lightweight software development method in developing the desired framework of this

research such as agile method (Fruhling & Vreede, 2006). Section 2.5.1 discusses the

popular agile methods and the reasons of choosing XP method in this study.

2.5.1 Agile Methods

Agile software development methods represent new approaches for planning and

managing software projects. Agile development differs from the traditional plan-driven

approaches as it puts less emphasis on up-front plans and strict plan-based control and

more emphasis on mechanisms for change management during the project (Cockburn &

Highsmith, 2001). The emergence of agile methods began in the mid 1990s, and these

methods are considered the newest for software development methods (Salo, 2006).

Figure 2.3 shows the evolution of software development models.

Figure 2.3: The Evolution of Software Process Models, adopted from (Salo, 2006)

 48

Agile development methods are designed to address the problem of delivering high-

quality software on time under constantly and rapidly changing requirements in business

and IT environments (Stojanovic et al., 2003). Furthermore, these methods help to solve

several critical problems faced by software projects, such as: (1) schedule slips: the

software is not ready when the deadline comes; (2) project cancelled: projects are

cancelled after a long period without ever going into production; (3) systems go sour:

the defect rate increases after the system has been put into production; (4) defect rate:

the defect rate of the software product is so high that it is never used; (5) business

misunderstood: the software never solves the business problem for which it was

originally posed; and (6) false feature rich: the software has many features which are fun

to program but which do not have any added value from a customer perspective. These

problems can be solved by following the manifesto of agile software development. It

provides advice on how to focus on the development on people, working software,

customer collaboration and increase an organizations ability to respond to changes

(Beck, 2000).

Agile methods offer many approaches to improve the software development process

(Karlstrom & Runeson, 2006). According to Pressman (2009), Abrahamsson et al.

(2002), and Xu et al. (2003), the popular agile methods are Extreme Programming (XP),

SCRUM, Crystal, Dynamic Systems Development Method (DSDM), Adaptive Software

Development (ASD), and Feature-Driven Development (FDD). Table 2.3 highlights the

general information and the scope of using agile development methods. Even thought

both XP and SCRUM methods are the two popular and effective agile development

 49

methods (Beck, 2000; Abrahamsson et al., 2002; Boehm, 2006), however just XP

method has been chosen in this study as a software development method in constructing

the software development process improvement framework for SSDFs because XP

method is considered as a more compatible software development method for CMMI

model compared to other agile methods such as SCRUM (Erharuyi, 2007; Fritzsche &

Keil, 2007).

 Table 2.3: Comparison of Agile Development Methods, expanded from

(Abrahamsson et al., 2002)

Methods General Information Scope of Use

XP XP is the most lightweight popular method in agile

software development methods and has some

characteristics such as customer-driven, frequent

release, pair programming.

Good for small and medium

size team, 3—20 people.

SCRUM SCRUM from the popular agile software

development methods that focus on agile project

management. This method derived from the

strategy of rugby game.

Suitable for small team. < 10

people.

CRYSTAL A set of methods. Suggest development cycle

within 4 months. Emphasis on communications,

and allow adoption of other agile methods.

Not good for life-critical

system. Up to 40 person’s local

development.

ASD Emphasis on incremental, iterative development. Focus on developing large

system. No built-in limitation.

DSDM Application of controls to RAD. Emphasis on time

and resource.

Team size between 2 and 6,

multiple teams exist. Can be

used in large system, if the

system can be splitted into

components.

FDD Focus on design and building phase. Emphasis

iterative development. Needs other supporting

approaches.

It is suitable for the

development of large software

project.

XP is popular in agile software development methods as the life cycle in XP can be

executed quickly compared with other traditional methods like waterfall (Alite &

 50

Spasibenko, 2008). Figure 2.4 shows the flexibility (how they accept change) and

quality (defects and accuracy of the product) of XP method compared to other software

development methods.

Code/Fix

Prototyping

Staged

Delivery

RUP

Waterfall

XP

Flexibility

Quality

Low

Low

High

High

Figure 2.4: Comparison of the Methodologies, adopted from Baird (2002)

XP method involves the customers from the beginning of process to help understand the

desired requirements, and uses pair programming to reduce the number of mistakes and

share the knowledge between the team members (Loftus & Ratcliffe, 2005; Preuninger,

2006). Furthermore, XP does not require a lot of tools through the development stages

(Stojanovic et al., 2003), and it also implements the quality assurance practices through

the iteration (Nawaz & Malik, 2008). Therefore, the XP can be more useful and

effective in SSDFs (Alite & Spasibenko, 2008; Beck, 2000; Abrahamsson et al., 2002).

 51

In addition, there are other reasons for the choosing of XP as a software development

method in this study such as: XP is better applicable for small, medium-scale and less

complex projects and it is the most widely used agile methods and also one of the most

prominent approaches that adheres to agile principles; XP practices work tightly

together by carefully applying different practices over time that will eventually lead to

improvement; and XP is an easy model for learning; XP can be easily adapted with

changing requirements (Lindvall et al., 2004; Alegr & Bastarrica, 2006; Altarawneh &

Shiekh, 2008). In addition, Fritzsche and Keil (2007), Pikkarainen (2008), and Erharuyi

(2007) argued that XP is the lightweight process model that can help SSDFs in the

implementation of SPI, and they believed that XP achieves SPI better than other agile

methods as it conforms to level two in CMMI, while SCRUM only conforms just to

level one in CMMI. Furthermore, Anderson (2005), and Fritzsche and Keil (2007)

argued that the CMMI-Dev1.2 level 5 would be possible to be achieved by extending

XP method.

2.5.2 Extreme Programming (XP) Method

XP is an agile method originally presented by Beck (2000) and it is the most popular

method in agile software development methods (Jeffries et al., 2001). Regarding the

flexibility and agility of XP; this method is called extreme, whereas it can take good

things to develop the software and applies these things extremely (Beck, 2000). In

addition, this method is used for business where time is important, when risk of a long

project can not be taken, when requirement are not known earlier (Devesh et al., 2011).

XP is a lightweight method with four key values (Beck, 2000) as follows:

 52

 Communication: XP facilitates correct communication, which is needed to

employ the defined XP practices.

 Simplicity: the team’s goal of implementing software remains as simple as

possible. This value is also connected to communication. If the code is simple, it

is also easier to communicate to other people.

 Feedback: this value mainly relates to customer collaborations. It means that the

team should receive concrete feedback on their work on a daily, weekly or

monthly basis. This value also has a strong relation to communication. For

example, Beck (2000) argues: “the more feedback you have, the easier it is to

communicate”.

 Courage: this value helps to solve new technical challenges and to make new

innovations. Moreover, communication value facilitates courage in teams

because it opens the opportunity for new technical experiments.

Based on these values, Beck (2000) created the five core principles of XP method,

which are:

 Rapid Feedback: Rapid feedback facilitates rapid responds thereby improving

the design, coding and system delivery target date. Regular feedback and

responses create room for system improvement by constant steering and

reviewing changes. Thus, rapid feedback brings simplicity and lows the cost

change (Hightower, 2004).

 Assume Simplicity: Assume simplicity requires designs or coding be concerned

with current needs instead of bothering your self in design to take of future

 53

needs; it requires design to be tailored to current iteration alone as customer

requirements changes; and it is advisable to design to accommodate changes per

iteration. Hightower (2004) defines assuming simplicity as “treating every

problem as a simple problem until proven otherwise”.

 Making Incremental Changes: Changes should effect gradually and performed

do it step by step. Incremental change creates feedback that allows learning and

improvement before taking another step, thereby minimizing risk. Hightower

(2004) argued that incremental change fits well with simplicity and do not over-

design a system.

 Embrace Change: XP developers should always expect change and be ready to

embrace it. It becomes very easy to embrace this change because XP delivers

business values to customer incrementally. This creates room for customer to

request for change and furnishes with feedback.

 Do Quality Work: This principle encourages delivery of quality code or system

that meets customer’s needs. Once customer’s needs are satisfy, it brings

happiness to all stockholders, not just happiness but more business.

In detail, Sections 2.5.2.1 to 2.5.2.5 discuss XP phases, XP practices, XP roles, the

strengths and weaknesses of XP method, and the coverage of software development

basic best practices of SSDFs by XP method.

 54

2.5.2.1 XP Phases

XP method consists of six separate phases. Figure 2.5 shows the life cycle of XP

method. According to Beck (2000), Larman (2003), and Coram and Bohner (2005),

these phases are:

Figure 2.5: XP Life Cycle, adopted from Abrahamsson et al. (2002)

 Exploration Phase: in this phase; the customer writes “story cards” to describe

the required features that are needed to be added into the program, where each

story card contains one feature. Then, the developers familiarize themselves with

the tools, practices and technologies that are going to be used in the project.

After that, the team of developers tests the technology and also they develop a

prototype to explore the architecture possibilities. This phase takes from few

weeks to few months, depending on how well the programmers know the

technology.

 55

 Planning Phase (known as planning game) in this phase; developers estimate

for each card how long it would take to implement this card and based on these

estimations, customers and developers decide together about the prioritization of

each card and agree together about the contents of the first release, and also the

schedule for each of the features. Therefore, a release plan/schedule is finally set

up which says which feature will be implemented in each release. This phase

takes a couple of days and the first release usually takes no more than two

months.

 Iterations to Release Phase: this phase includes several iterations before the

first release (the schedule set in the planning phase is broken down to a number

of iterations, these iterations create one or more functions of the system in each

one of them), where each iteration takes one to four weeks to implement.

Furthermore, the design as well as the coding is done, but before any line of code

is written, first a unit test to test these lines has to be developed by the

programmers. In the first iteration, a system with the architecture of the whole

system is created. In addition, customer’s functional tests are run at the end of

each iteration. Finally, as soon as the developed features are tested by the

developers (probably by automated unit tests), they are given to the customer

and thereby, the next phase is entered. After the last iteration the system is ready

for production.

 Productionizing Phase: this phase consists of extra testing and performance

checks, where the customer performs functional tests and validates if the product

works as intended. Then, if new requirements are elicited, they are either

 56

included directly or a new story card is created which will be considered in the

following release planning. Furthermore, new changes may be found and they

might still be included in the current release. Finally, the postponed ideas and

suggestions are documented for the later implementation e.g. in the maintenance

phase.

 Maintenance Phase: after the first release is productionized and taken into use,

the XP project has to keep the system running whilst implementing new features.

This requires the effort of the customer support tasks also, which may decelerate

the implementation pace of the new features. Moreover, the customer is

supported by (probably new) team members whose task is to ensure that certain

customer requests for, i.e. improvement suggestions are considered. The

maintenance phase may require incorporating new people into the project team

and changing the team structure. “

 Death Phase: in the final phase, the system will undergo the final release; or the

system will be broken down for some reasons such as when the customers do not

have new stories to implement or when the system can not satisfy the customers

needs, as well as when the system is too expensive for modification.

2.5.2.2 XP Practices “

XP method is extreme in the sense that it takes many well-known software development

best practices drawn from already existing development methodologies (Agarwal &

Umphress, 2008). According to Beck (2000) and Jeffries et al. (2001), it can be

concluded that the XP consists of twelve practices as follows:

 57

 Planning Game: this practice means a set of rules and moves that may be used

to simplify the release planning process, and it is closed interactions between

customers and programmers. Planning game can be divided in two parts which

are: (1) Release Planning: in this part the customer defines what kind of features

are wanted in the product and prioritize them, then programmers make an

estimation of each feature. The initial estimations could not be so accurate, but

then with continuous iterations and reviews, they become more accurate, i.e.

priorities and estimations. When the priorities and estimations are added to each

feature, a release plan for the project can be done; and (2) Iteration Planning: this

is when the customer and programmers meet together to deliver working

software every two weeks. The level of detail is bigger than the release plan, the

customer shows which of the features of the release plan he or she wants for the

next two weeks. Furthermore, programmers divide the features in tasks and

estimate their tasks, whereas the first tasks from the customer’s side is to

determine the scope of the project, priority of the features, composition of

releases, dates of releases, and the second tasks from the programmer’s side is to

determine the estimations of the features, technical consequences, process, and

detailed scheduling.

 Small Releases: this practice means all releases should be a small as possible,

but with the maximum quantity of business features developed, whereas short

cycles are used to reduce the risk when a project fails to produce business value

to the customer, and also helps in reducing planning problems and the problem

with changing requirements during the development process. Moreover,

 58

frequency is important as well depending on which kind of software is delivered.

At the end of every iteration; software is visible, and given to the customer.

 System Metaphor: both the customer and the programmers share a story based

on a metaphor that guides all development by describing the functionality of the

system. Additionally, the team shares some common understanding from their

past experiences. A metaphor should helps everyone on the project to understand

the basic elements and their relationships, where metaphor is similar to what

other people call `an architecture', but with the addition that requires the XP

team to follow some way of cohesion.

 Simple Design: the design should be kept simple through the developments,

using the developer’s test-driven development and re-factoring, whereas XP fits

the design for the present system features ready for future changes in an

incremental or iterative way. Therefore, XP design should begin without

thinking of infrastructure, where the right design in XP can run all the tests, has

no redundancies, and has the fewest possible classes and methods Moreover, XP

focus on solving today’s problems and every piece in the design must be able to

justify its existence.

 Design Improvement (Formerly Re-factoring): re-factoring is a process of

changing a software system in such a way that it does not alter the system

behavior of the code yet improves it internal structure. Doing design

improvement in an XP project is a practice where the programmers delete

duplicate codes. In addition, programmers should increase cohesion and decrease

coupling. Therefore, re-factoring should be made when there is something wrong

 59

in the code, such as: classes that are too long, methods are too long and duplicate

codes. Moreover, design improvement should be done every hour or half hour,

followed by testing of what was done and this is done to keep the design as

simple as possible at all times. Accordingly, the changes of the structure are

verified with automated tests which help the programmers to get feedback on the

changes.

 Test-Driven Development (Programmers Tests + Customer Tests): Testing

is an essential part of XP; especially the automated tests, a feature without an

automated test does not exist. The programmers write the unit tests and the

customer writes the functional tests. Test-driven development can be divided in

two parts, which are: (1) Programmer Tests: programmers should create the tests

first and then code. The first test should fail, because no codes have been

created, and then the programmers should create the code to pass the test, and

then turn the cycle to add one more test followed by the code. One of the

benefits of extreme programming is that 100% of the code is tested; and (2)

Customer Tests: each user story that represents a feature in the XP development

has an associated acceptance test that is determined by the XP customer and

implemented by the team. Moreover, the correctness of the systems is shown to

the customer when all tests are passed. Consequently the application is

continually growing and evolving.

 Pair Programming: the production of codes is written with two people using

one computer. One of them has control of the keyboard/mouse and creates the

code, and the other is continuously assuring quality by watching, trying to

 60

understand, asking questions, looking for alternative approaches, and helping to

avoid defects. If pairs are switched through the team knowledge is shared to

everyone working in the XP team. Therefore, individual’s skills are improved

because the pair should switch at least once per day.

 Collective Code Ownership: everybody in a XP project takes responsibility for

the code in the whole system. Any improvements or new ideas can be added

anywhere in the code, where this can be made partly due to the automated tests

in XP. Moreover, unknown repercussions will be detected by the automated tests

and the programmers can modify the code more freely. Therefore, this practice

increases quality of the code and reduces faults.

 Continuous Integration: changes to the code are integrated at least once a day.

The pair programmers are responsible for integrating their own code and

automated tests are run to ensure that the system is working at 100 %. If the tests

fail, the pair can undo their changes and start over. Therefore, this practice keeps

the system never far from a production state. Moreover, the pair should check

that their changes do not affect another part of the system developed by another

pair of programmers. In addition, one machine can be used only for integration

issues for one pair of programmers.

 On-site Customer: a customer needs to be available to determine and prioritize

the requirements. This is one of the few requirements in XP and it helps to

improve the software business value. However, the programmers can get input

from the customer immediately instead of speculating. Quick changes to the

focus of the development can also be made when necessary

 61

 Coding Standards: coding rules exist and are followed by the programmers.

Therefore, this practice keeps the code consistent and easy for the entire team to

read. Re-factoring and all the codes in the system look coherent and harmonious.

Furthermore, this practice helps the XP team to understand all the codes that

have been written as basis for the practice of collective ownership.

 Sustainable Pace (Formerly 40-Hour Weekly): this practice means that the

team members work hard at a pace that they can go along with for the time

being. However, overtime is a symptom of a serious problem in an XP project.

2.5.2.3 XP Roles

There are several different roles with different tasks and purposes in XP method. These

roles are used during the software process. Beck (2000) classified seven roles in an XP

method as follows. “

 Programmers: XP programmer should practice design improvements, simple

design, learn pair programming, test-driven development, make the estimations

from the use stories, and determine what are the tasks that should be undertaken

in order to develop each use story. Furthermore, programmers write test and

keep the program code as simple and definite as possible. However, the first

issue of making XP successful is to communicate and coordinate with other

programmers and team members.

 Customer: customer is responsible for writing use stories, defining the customer

tests, writing the functional tests and determining the priorities for each use

stories that should be explained to the team. During XP lifecycle; the customer is

 62

important to answer any questions about the user stories and to verify the

system, and also he/she decides when each requirement is satisfied.

 Tester: tester helps the customer to choose functional tests. He is also

responsible for implementing and running the functional tests. Furthermore,

he/she executes the integration tests and makes some graphs, in a manner to

show the XP team the results.

 Tracker: he/she estimates the project velocity and uses the feedback from the

programmers by asking and listening to what they are doing in the current

moment. He/she should be careful to not interrupt the project too many times. A

tracker should be able to tell if anything needs to be changed to follow the

current plans or a new plan is needed. He/she also traces the progress of each

iteration and evaluate whether the goal is reachable within the given resource

and time constraints or if any changes are needed in the process.

 Coach: coach is responsible for the project as a whole. Accordingly, he/she

ensure that the project goes along the right path by keeping people working on

the current features for the actual iteration. However, coach is responsible to

identify what practice might help when problems occur, what the ideas behind

XP are, and how to relate these to the project. Thus, a coach should help the

team to reveal mistakes without too much interference and steering. Therefore, a

coach should have a good comprehension of XP method and the project than the

rest of the team.

 63

 Consultant: this role is represented by an external member possessing specific

technical knowledge in a specific area, where the consultant is responsible for

helping the team to solve their problems if there is need for external knowledge.

 Big Boss: big boss is responsible for checking of the team performance, and

explains to the team if there is need to change something and explains why that

change is needed. Furthermore, big boss makes the decision. Therefore, a big

boss communicates with the XP team to determine the current situation, and to

distinguish any difficulties or deficiencies in the process. If an XP team does not

produce what they should, a big boss can step in and help them. “

2.5.2.4 Strengths and Weaknesses of XP Method

Many researchers indicate the strengths and weaknesses of XP method. Based on these

literatures, Table 2.4 summarizes the common strengths and weaknesses of XP.

Table 2.4: Strengths and weaknesses of XP method

Strengths of

XP Method

XP method helps the software industry for

shorter release of functional software, where the

customers are always contacted to ask for the

highest priority features in the software.

Beck, 2000; Fruhling

& Vreede, 2006; Xu,

2009.

XP method saves the project against the cancellation

with the help of periodic releases.

Beck, 2000; Guha et

al., 2011.

XP method always focuses on the highest priority

tasks; therefore false features are not prioritized

during the development of the software, as it gives

the freedom to the developers and testers to give their

feedbacks upon the release time and cost of the

software which will helpful for interaction with the

clients via the business people.

Beck, 2000; Munassar

& Govardhan, 2010;

Xu, 2009.

XP method is more flexible and includes more

explicitly the needs and intentions of all project

participants.

Beck, 2000; Fruhling &

Vreede, 2006; Xu,

2009.

 64

By test driven development practices, XP method

resulting in less errors and acceptance of changing

requirements.

Beck, 2000; Fruhling &

Vreede, 2006;

Munassar &

Govardhan, 2010.

Weaknesses

of XP

Method

XP method is suited for single project, developed and

maintained by a single team. It cannot be

implemented in the system where developers don’t

work well with each other and like to work on their

own.

Beck, 2000; Guha et

al., 2011; Hneif &

Hock Ow, 2009.

XP method is not suitable for medium and large scale

projects.

Munassar &

Govardhan, 2010;

 Mushtaq, 2012; Hneif

& Hock Ow, 2009.

XP method is not suitable to be implemented in an

environment where a customer or manager insists on

a complete specification or design before they begin

programming.

Beck, 2000, Turk et al.,

2002; Xu, 2009.

Lack of project management practices.

Beck, 2000; Turk et al.,

2002; Mushtaq, 2012.

Lack of documentation though the development

lifecycle.

Qureshi, 2011;

Munassar &

Govardhan, 2010; Guha

et al., 2011; Paulk,

2001.

Developers must be experienced.

 Paulk, 2001; Munassar

& Govardhan, 2010.

2.5.2.5 Coverage of XP Practices to Basic Best Software Development Practices of

SSDFs

Based on the basic software development best practices of SSDFs that are discussed in

Section 2.3.2 and based on the descriptions of XP method practices and roles that are

discussed earlier in Sections 2.5.2.2 and 2.5.2.3, it can be concluded that the XP method

is consistent with the software development basic best practices of SSDFs as shows in

Table 2.5.

 65

Table 2.5: Coverage of Software Development Baisc Best Practices in SSDFs by XP

Practices and Roles

Basic Best Practices XP Practices and Roles

Short-Development-Lifecycle Small releases practice (short iterations and short

releases).

Multidisciplinary Development

Team

Collective code ownership and system metaphor

practices. Tracker and coach roles.

Maintenance

Small releases, on-site customer, and test driven

development practices. Coach and tracker roles.

Project Management

Planning game practice (release planning and iteration

planning). Tracker and coach roles.

Small Software Team

The XP team is between 3-20 persons.

Delivery of Bespoke Solutions

On-site customer, planning game (iteration planning),

continuous integration, and small releases practices.

Requirements and Rigorous Testing

Against Requirements

Test driven development (programmer’s tests and

customer tests), small releases, and on-site customer

practices.

2.6 The Relationship between CMMI-Dev1.2 and XP Method

Several studies discussed to what extent the CMMI-Dev1.2 KPAs can be covered by XP

method (refer to Appendix A, CMMI-Dev1.2 KPAs) such as: Fritzsche and Keil (2007),

Omran (2008), and Elshafey and Galal-Edeen (2008). In conducting the coverage of XP

practices to the CMMI-Dev1.2 KPAs by these studies, five scales were used by

Fritzsche and Keil (2007), while three scales were used by Omran (2008), and Elshafey

and Galal-Edeen (2008). Table 2.6 shows the scales used by these studies.

 66

Table 2.6: Scales of Coverage XP Practices to CMMI-Dev1.2 KPAs

References Scale of Comparison

Fritzsche &

Keil (2007)
 Conflicting (–):XP practices can not cover the process area’s

components

 Not addressed (0): XP practices do not cover the process area’s

components.

 Partially supported (+): XP practices satisfy some of the process

area’s components.

 Supported (++): XP practices satisfy most of the process area’s

components.

 Largely supported (+++): XP practices satisfy the major part of the

process area’s components.

Omran (2008) (++): process area is largely addressed by XP practices.

 (+): process area is partially addressed by XP practices.

 (--): process area is not addressed by XP practices.

Elshafey &

Galal-Edeen

(2008)

 Supported (S): when most parts of the process area is supported by

XP practices that will help enhance or accelerate its implementation.

 Partially Supported (P.S): when only a small part of the process area

is covered by an XP practice, it can't help implementing this process

area on its own other non XP practices will be needed.

 Not Supported (N.S): when process area is not addressed by XP

method.

As shown in Table 2.6, it can be concluded that the descriptions of these scales focus on

common three levels, which are:

 Largely Support (L.S): XP practices largely support the specific goals of the

KPA.

 Partially Support (P.S): XP practices partially support the specific goals of the

KPA.

 Not-Support (N.S): XP practices do not support or not applicable for the specific

goals of the KPA.

 67

Based on the common three levels, Table 2.7 unites the different scales which used by

these studies into common three levels. Accordingly, Table 2.8 presents the

comparisons results of the three studies based on the common three levels (refer to

Appendix B, detailed coverage results of XP practices to CMMI-Dev1.2 KPAs).

Table 2.7: Scale of Coverage XP Practices to CMMI KPAs

Three Scales

References

Fritzsche & Keil

(2007)

Omran (2008)

Elshafey & Galal-

Edeen (2008)

Largely Supported

(L.S): XP practices

largely support the

specific goals of the

KPA.

(+++) (++) Supported

Partially Supported

(P.S): XP practices

partially support the

specific goals of the

KPA.

(++) OR (+) (+) Partially Supported

Not Supported (N.S):

XP practices do not

support or not

applicable for the

specific goals of the

KPA.

(-) OR (0) (--) Not Supported

 68

Table 2.8: Coverage Results of XP Practices to CMMI-Dev1.2 KPAs

CMMI-Dev1.2 KPAs Fritzsche

& Keil

(2007)

Omran

(2008)

Elshafey &

Galal-Edeen

(2008)

Requirement Management L.S L.S L.S

Project Planning L.S L.S L.S

Project Monitoring and Control L.S L.S L.S

Supplier Agreement Management

N.S N.S N.S

Measurement and Analysis P.S L.S P.S

Process and Product Quality assurance P.S P.S N.S

Configuration Management L.S P.S P.S

Requirements Development P.S L.S P.S

Technical Solution L.S L.S L.S

Product Integration L.S L.S P.S

Verification L.S L.S L.S

Validation L.S L.S L.S

Organizational Process Focus

N.S P.S N.S

Organizational Process Definition +IPPD

N.S P.S N.S

Organizational Training P.S L.S P.S

Integrated Project Management +IPPD P.S P.S P.S

Risk Management L.S P.S L.S

Decision Analysis and Resolution

N.S P.S N.S

Organizational Process Performance

N.S P.S N.S

Quantitative Project Management

N.S N.S N.S

Organizational Innovation and Deployment

N.S P.S N.S

Causal Analysis and Resolution

N.S P.S N.S

Legend:

 Largely Supported (L.S): XP practices largely support the specific goals of the KPA.

 Partially Supported (P.S): XP practices partially support the specific goals of the KPA.

 Not-Supported (N.S): XP practices do not support or are not applicable for the specific

goals of the KPA.

 69

As shown in Table 2.8, it can be concluded that there are nine KPAs of CMMI-Dev1.2

that have the same coverage by XP practice in the three studies, which are: requirement

management (L.S), project planning (L.S), project monitoring and control (L.S),

supplier agreement management (N.S), technical solution (L.S), verification (L.S),

validation (L.S), integrated project management +IPPD (P.S), and quantitative project

management (N.S). Nevertheless, the remaining thirteen KPAs have different coverage

by XP practices in the three studies, which are: measurement and analysis, process and

product quality assurance, configuration management, requirements development,

product integration, organizational process focus, organizational process definition

+IPPD, organizational training, decision analysis and resolution, risk management,

organizational process performance, organizational innovation and deployment, and

causal analysis and resolution.

2.7 Conclusion

Software process is a set of tools, practices, and methods to produce software products.

SPI is a systemic procedure for improving the performance of an existing process

system by changing or updating the process. There are several popular SPI traditional

models and standards which were developed for large and very large firms such as:

CMMs, ISO 9000 series, BOOTSTRAP, ISO/IEC 12207 and SPICE. These SPI models

and standards are difficult to be directly implemented within the context of most SSDFs.

This is important as SSDFs represent a high proportion of software firms in most

countries all over the world.

 70

SSDFs firms have different characteristics compared with other larger software firms

especially in terms of the number of employees, capital, methods, techniques, and

software development activities. SSDFs suffer from the lack or recourses, lack of

control, lack of project management, lack of awareness of the well-defined development

processes, and lack of risk management. Due to these obstacles, SSDFs could not

implement the SPI traditional model and standards directly. Therefore, some regional

SPI models for SSDFs were developed to help these firms in improving the software

development processes. However, all of these models were developed to be suitable for

specific regions and they can not be global for all the SSDFs around the world, and also

do not support the SSDFs with the software development practices.

In the term of SPA, there are several popular lightweight assessment methods which

were developed for SSDFs. Based on the descriptions of these method, it can be

concluded that the self-assessment by pre-assessment is a suitable technique to be used

for SPA in SSDFs, as these firms focus on low-cost mini-assessments as they cannot

afford the cost of the external party to assess their software processes.

CMMI is the comprehensive and newest software improvement model of the SEI where

this model complies with relevant traditional models and standards. CMMI-Dev1.2

provides a guideline for improvement for the software process in the organizations, and

it is written specially for the software industry to describe the software processes in

details. Therefore, CMMI-Dev1.2 model is used as a baseline model in this study.

 71

Software development process model is an abstract representation of a process that

presents the description of a process from some particular perspective and there are

many representations of these models that aim to develop the software products. Some

researchers classify these models according to their own perspectives. This chapter

categorized these models into two main groups; software development process

traditional models and agility methods models. XP was used as a baseline software

development method in this study because it is suitable for SSDFs and more compatible

to CMMI-Dev1.2 compared to other software development models.

This chapter also discusses several studies that indicate the coverage ratios of XP

method to the KPAs of CMMI-Dev1.2. Based on these studies, it can be concluded that

there are differences in the used scales between these studies, some of the results of

these studies are dissimilar, and the XP practices support some of the KPAs of CMMI-

Dev1.2. In addition, these studies can be used to identify to which extent the KPAs of

CMMI-Dev1.2 can be achieved by XP practices.

Therefore, there is a need to have a software development process improvement

framework for SSDFs to know “what to improve”, and “how to improve” the software

development processes of these firms. CMMI-Dev1.2 and XP method are chosen to be

integrated to achieve the main goal of this study. Chapter 3 shows how to construct the

desired framework for SSDFs.

 72

CHAPTER THREE

RESEARCH METHODOLOGY

This chapter describes the methodology used in this research to achieve the research

objectives. It explains the stages used in constructing of the software development

process improvement framework which include: aligning XP practices to CMMI-

Dev1.2 KPAs; tasks of developing the proposed framework; tasks of verifying the

proposed framework; and the two approaches used in validating this framework. In

addition, this chapter presents the adaptation of the Extension-Based Approach (EBA)

which was used to extend the XP method. Finally, it presents the focus group method

and Delphi technique that were used in the verification process.

3.1 Introduction

Research methodology comprises the methods and techniques used by researchers in

carrying out the research; for example: data collection techniques, and data processing

techniques and instruments (Kothari, 1985). Ramsin (2006) used the stages strategy to

develop software modeling analysis methodology. In his research strategy, each stage

has goals and tasks to achieve the overall goals. In this research, stages strategy is useful

and suitable because the objectives of this research are to be achieved sequentially in

stages. Therefore, the methodology of this research is used in four stages, which aim to

construct a suitable software development process improvement framework for SSDFs.

This chapter discusses the four stages, starting with aligning XP practices to the specific

goals of CMMI-Dev1.2 KPAs as Stage One. It explains the steps of developing the

proposed framework based on extending XP method and the generic elements of SPI in

 73

Stage Two. Pursuant to Stage Two, this chapter also explains the verification process of

the proposed framework in Stage Three. Finally, this chapter describes the process used

to validate the suitability and applicability of the modified framework for SSDFs in

Stage Four. Sections 3.2 to 3.5 elaborate the four stages in detail.

3.2 Stage One: Aligning XP Practices to the Specific Goals of CMMI-Dev1.2 KPAs

This stage aimed to identify the coverage ratio of XP method to CMMI-Dev1.2, based

on aligning the XP practices to the specific goals of CMMI-Dev1.2 KPAs. This

alignment was based on the specific goals of CMMI-Dev1.2, because all the generic

goals are repetitive throughout the specific goals (Vasiljevic & Skoog, 2003; CMMI

Product Team, 2006). Pikkarainen (2008), in his work on the same field, used the same

way to map four KPAs of CMMI-Dev1.2 to agile practices to develop his framework.

Accordingly, the specific practices of each specific goal of CMMI-Dev1.2 KPAs were

used as main items in aligning XP method to CMMI-Dev1.2. As a result of this

alignment, the coverage and missing specific goals of each KPA was known and used as

inputs in Stage Two. Figure 3.1 shows the steps of Stage One.

 74

Align XP practices to the specific goals of CMMI-

Dev1.2 KPAs

Literature Reviews

- CMMI-Dev1.2 KPAs

- XP method

Coverage and missing

specific goals of each

KPA

Stage One:
Aligning XP Practices to CMMI-Dev1.2 KPAs

Task 1

 Figure 3.1: Aligning XP Practices to CMMI-Dev1.2 KPAs

Goal:

 To identify the coverage and missing specific goals of CMMI-Dev1.2 KPAs by

XP practices.

Tasks:

 Task 1: this task is based on the related literature of CMMs and XP method, such

as: Paulk (2001), Martinsson (2002), Koch (2003), Fritzsche and Keil (2007),

Elshafey and Galal-Edeen (2008), Omran (2008), CMMI Product Team (2006),

Jeffries et al. (2002), and Beck (2000). Although CMMI-Dev1.2 is different

from CMM, the comparison of the XP method to CMM helps by providing good

insight about the relationship between CMMI-Dev1.2 and the XP method, as the

KPAs of CMM are already included in the KPAs of CMMI-Dev1.2 (Fritzsche &

Keil, 2007).

 75

Task 1 aligns XP practices to the specific goals of CMMI-Dev1.2 KPAs; taking

into account the achievement of the specific practices of each specific goal by

the same or different way of CMMI-Dev1.2, so as to know the coverage and

missing specific goals of each KPA by XP practices.

As mentioned in Section 2.6, different scales have been used by other

researchers to conduct the coverage ratio of XP practices to CMMI-Dev1.2

KPAs. Therefore, based on the descriptions of these scales, it was concluded that

all of these scales focus on three common scales, which are: (1) largely

supported: XP practices largely support the specific goals of the KPA; (2)

partially supported: XP practices partially support the specific goals of the KPA;

and (3) not-supported: XP practices do not support or are not applicable for the

specific goals of the KPA. As a result of Task 1, the missing specific goals of

partially and not-supported KPAs were known and used as inputs in Stage Two.

Section 4.2 discusses the results of aligning XP practices to the KPAs of CMMI-

Dev1.2.

3.3 Stage Two: Developing the Proposed Software Development Process

Improvement Framework

In this stage, the Situational Method Engineering (SME) theory was used to extend XP

method. The EBA of the SME theory was suitable for this study to extend XP method

based on the KPAs of CMMI-Dev1.2, as this approach was developed for extending the

existing methods to achieve specific issues. Details of SME and EBA are discussed in

Section 3.6. Section 4.3 explains the adaptation of this approach in this study. In this

 76

regard, the missing specific goals of partially and not-supported CMMI-Dev1.2 KPAs

and related literature were used as inputs to determine the required development,

management, and improvement additions, which are needed to cover these missing

specific goals by extending XP method.

Given the importance of generalizing the new phases of the Extended-XP method, the

phases of the popular software development methods such as Waterfall, Spiral,

Incremental, and Prototyping (Preuninger, 2006; Sommerville, 2007), were compared

with the phases of XP method to identify the related development activities. Based on

the required additions that had to be added to XP method and the relations between the

phases of the generic software development methods with the phases of XP method, the

phases of the XP method were extended to be used as comprehensive phases of the

popular software development methods.

Then, the required software development, management and improvement additions were

entered to the new phases of the Extended-XP method to cover the related missing

KPAs of CMMI-Dev1.2. As such, the Extended XP-method was known and used as a

main element in developing the proposed software development process improvement

framework. Accordingly, CMMI-Dev1.2 KPAs, the proposed Extended-XP method,

and the generic elements of SPI framework (software process, assessment, capability

determination, and improvement strategy) were used as inputs to establish the proposed

framework. Then, the generic elements of the SPI framework were modified to suit the

software development and improvement issues. Figure 3.2 shows the tasks of

developing the proposed framework.

 77

 Partially and Not-

Supported CMMI-

Dev1.2 KPAs

Determine the required software development, management, and improvement

additions from the literatures to cover the missing specific goals of partially and not-

supported KPAs taking into account the characteristic of small software development

firms

Literature Review:

- Software development ,

management, and improvement

issues

Software development,

management, and

improvement additions of

the missing KPAs

Stage Two:
Establishing the Proposed Software Development Process Framework

Extend XP method to cover the missing specific goals of partially and not-supported

KPAs based on the Extension-Based Approach(EBA)

Literature Review:

- Phases of the popular

software development

methods

Task

2

Task

4

Task

3

CMMI-Dev1.2

KPAs

Establish the proposed software development process improvement framework

Proposed

Extended-

XP method

Generic

Elements of

SPI

Framework

Proposed software development

process improvement framework

Task

5

 Figure 3.2: Developing the Proposed Software Development Process Improvement

Framework

Goals:

 To extend XP method by adapting the EBA.

 To establish the proposed software development process improvement

framework for SSDFs.

 78

Tasks:

 Task 2: as a result of Task 1, the missing specific goals of CMMI-Dev1.2 KPAs

were known. Based on that, Task 2 aimed to determine the required

development, management, and improvement additions that were needed to

cover the missing specific goals. This was done by studying the related previous

works of Stephens (2001), Martinsson (2002), CMMI Project Team (2006),

Vitoria (2004), Fritzsche and Keil (2007), Hearty (2008), Altarawneh and Shiekh

(2008), and Omran (2008) to extract the required additions, taking into account

the general characteristics of SSDFs, as discussed in Section 4.3.1. Accordingly,

these additions were used as inputs in Tasks 3 and 4.

 Task 3: in this task, the phases of the popular software development methods

(Waterfall, Spiral, Incremental, and Prototyping) were compared based on the

phases of XP method. Accordingly, these relations and the required software

development, management, and improvement additions that were found in Task

2, were used to extract comprehensive phases and these phases were used as

generic phases of the proposed Extended-XP method, as discussed in Section

4.3.2. Then, these generic phases were used as inputs in Task 4.

 Task 4: based on the results of Tasks 2 and 3, the required development,

management, and improvement additions and the generic phases of Extended-

XP method were known. Accordingly, the required additions were entered and

distributed into the phase of the proposed Extended-XP method, taking into

account the suitable positions of these additions during the software

 79

development lifecycle, as discussed in Section 4.3.2. Thus, the proposed

Extended-XP method was known and used as input in Task 5.

 Task 5: this task started to modify the generic elements of the SPI framework to

suit the software development and improvement issues, as discussed in Section

4.4.1 As such, the proposed Extended-XP was used as a software development

method instead of the improvement strategy, while the CMMI-Dev1.2 model

was used as an assessment model in establishing the proposed framework. Then,

the proposed framework was used as inputs in Stage Three.

3.4 Stage Three: Verifying the Proposed Software Development Process

Improvement Framework

As a result of Stage Two, the proposed software development process improvement

framework for SSDFs was developed. Stage Three aimed to verify the compatibility of

the proposed framework to the specific goals of CMMI-Dev1.2 KPAs, to verify the

commitment of the proposed Extended-XP method to XP values, to verify the suitability

of the proposed framework and the proposed Extended-XP structures for the software

development process improvement issues in SSDFs, and to verify the proposed

Extended-XP roles for their practices. In this respect, focus group method coupled with

Delphi technique was used in three rounds as the verification process. Details of the

focus group verification are discussed in Section 3.7. Based on the results of the

verification process, the proposed framework was modified and used as input in Stage

Four. Figure 3.3 shows the verification process steps. Chapter 5 discusses the

verification process.

 80

Verify the proposed framework by Focus Group method coupled

with Delphi Technique

Modify the proposed framework as the suggestions of focus group

members

Proposed

framework

Focus Group

suggestions

The modified software

development process

improvement framework

Stage Three:
Verifying the Proposed Software Development Process

Improvement Framework

Verification

questions

Task 6

Task 7

Figure 3.3: Steps of Verifying the Proposed Framework

Goals:

 To verify the compatibility of the proposed framework to the specific goals of

CMMI-Dev1.2 KPAs.

 To verify the commitment of the proposed Extended-XP method to XP values.

 To verify the suitability of the proposed framework and the proposed Extended-

XP method roles for their practices.

 To verify the suitability of the proposed framework and the proposed Extended-

XP structures for the software development process improvement issues in

SSDFs.

 81

Tasks:

 Task 6: As a result of Task 5, the proposed software development process

improvement framework was developed. This task aimed to verify the

framework by focus group method coupled with Delphi Technique.

Prior to starting the verification process, the verification questionnaire was pre-

tested to ensure that the verification questions are clear, can be understood by the

respondents, are comprehensive, sufficient, and suitable to achieve the aim of

this research. This was done by using face-to-face interviews with related expert

researchers and professional developers from the SSDFs. As a result, there were

just minor corrections to these questions (refer to Appendix C, verification

questionnaire).

Accordingly, the questions and the required data were used as inputs to the

proposed framework in the first round of verification process. As a result of the

first round of the verification process, the answers and suggestions of focus

group members were known and used as inputs in Task 7. Section 5.5.1

discusses the results of the first verification round.

 Task 7: this task aims to gather the answers and suggestions as a result of Task

6, in order to know the required modifications that had to be done to the

proposed framework. Subsequently, the proposed framework was modified to

suit the focus group members’ suggestions. Sections 5.5.2 and 5.5.3 discuss the

results of the second and third verification rounds. Then, the modified

 82

framework was used as input in Stage Four to validate the suitability of the

framework for SSDFs, and to validate the applicability and effectiveness of

implementing this framework for these firms.

3.5 Stage Four: Validating the Modified Software Development Process

Improvement Framework for SSDFs

As a result of Task 7, the proposed framework was modified based on the answers and

suggestions of focus group members. This stage aims to validate the suitability of the

modified software development process improvement framework for SSDFs, and also to

validate the applicability and effectiveness of this framework by these firms. Chapter 6

discusses the validation process. In this respect, two approaches were used to validate

the modified framework:

 Quantitative research method that involves survey was used to validate the

suitability of this framework for SSDFs. Al-Allaf (2008), in her work about SPI

model for large software firms, used CMMI questionnaires as a testing method

to validate the suitability of her proposed model for these firms, where this

questionnaire was validated by SEI. In this research, the questionnaire validation

consists of two parts, as follows:

 Part one: this part aimed to identify the demographic information of

the respondents, such as: current position, current work, size of firm,

and software experience. The demographic questions of this part were

already validated, as these are adopted from El Sheikh and Tarawneh

 83

(2007) and Cater-Steel (2004a), who are working in the same field of

software improvement.

 Part two: this part aimed to validate the suitability of this framework

for SSDFs. In this part, CMMI-Dev1.2 questionnaire was used to ask

the professional developers and managers of SSDFs to rate the levels

of the suitability of the framework for their firms, based on XP

practices and the software development, improvement, and

management additions, that were used in the framework to cover the

specific goals of the suitable CMMI-Dev1.2 KPAs.

The scale used in this questionnaire consisted of scaled-response items

rating from 1 to 5, where 1= Strongly Unsuitable and 5= Strongly

Suitable. This scale was used to obtain more accurate results. This

scale was adopted from Vasiljevic and Skoog (2003), who have

already validated and used this scale as they work in the same field of

this study (refer to Appendix D, validation questionnaire).

 Qualitative research method that involved two case studies was used to validate

the applicability and effectiveness of implementing the modified framework by

SSDFs.

 84

Stage Four:
Validating the Suitability and Applicability of the Modified Software Development Process Improvement Framework

for SSDFs

The modified software development process

improvement framework

Validate the suitability of the modified

framework for small software

development firms by professional

developers and managers of these

firms

Validate the applicability of

implementing the modified framework

for SSDFs by 2 case studies

Levels of suitability
Results of implementing

the modified framework

Evaluate the effectiveness of the

modified framework

Effectiveness of the

modified framework

Task 8
Task 9

Task

10

Figure 3.4 Steps of the Validation Process

Goals:

 To validate the suitability of the modified framework for SSDFs.

 To validate the applicability and effectiveness of implementing the modified

framework for SSDFs.

Tasks:

 Task 8: as a result of Task 7, the proposed framework was modified according to

the suggestions of focus group members. Accordingly, Task 8 aimed to validate

the suitability of the modified framework for SSDFs. Using the information

obtained from the Jordanian Ministry of Industry and Trade, it was convenient to

access the addresses of some SSDFs in Jordan.

 85

Accordingly, CMMI-Dev1.2 questionnaires were distributed and collected from

the professional developers and managers who were working in Jordanian

SSDFs. Based on the data from these questionnaires; Statistical Package for the

Social Sciences (SPSS) program was used to calculate the main values of the

suitability of this framework for their firms. As a result, the suitability of the

modified framework for SSDFs was known and is discussed in Section 6.2.

 Task 9: referring to modified framework which resulted from Task 7, this task

aimed to validate the applicability of implementing this framework by Jordanian

SSDFs. In this regard, case study method was used in this study to validate the

modified framework, for several reasons, such as: (1) the examination of the data

is most often conducted within the context of its use (Yin, 1984; Zainal, 2007);

(2) the variations in terms of intrinsic, instrumental and collective approaches to

case studies allow for both quantitative and qualitative analyses of the data

(Block, 1986; Yin, 1984); and (3) case study helps to explore or describe the

data in real-life environment, and also helps to explain the complexities of real-

life situations which may not be captured through experimental or survey

research (Zainal, 2007).

In this respect, the registration record of the software development firms in

Jordanian Ministry of Industry and Trade was the convenient way to access the

addresses of SSDFs in Jordan. Accordingly, several meetings were held with the

managers of some firms to get their agreement for implementing the modified

framework in their firms. Based on these meetings, two firms agreed to

 86

implement the modified framework in developing their projects. Thus, the

modified framework was implemented by the two Jordanian SSDFs, as

discussed in Section 6.3.

 Task 10: As a result of Task 9, the modified framework was implemented by two

Jordanian SSDFs. Task 10 aims to evaluate the effectiveness of the framework

for SSDFs. In this task, interview method was used as a data collection method

to evaluate the modified framework. The primary purpose of the interview

approach is to understand the meanings that interviewees attach to issues and

situations, in contexts that are not structured in advance by the researcher’s

assumptions (Easterby-Smith et al., 1991). Kunda (2001) adopted the interview

approach to evaluate his framework which was developed for the software

engineering field. In this regard, it was suitable in this study to conduct

interviews with the project team members of the two SSDFs, to evaluate the

effectiveness of the modified framework for SSDFs.

Several studies discuss the criteria that are needed to evaluate the effectiveness

of implementing software methods, models, and frameworks, such as

Kitchenham (1998), and Garrity and Sanders (1998). Kitchenham (1998), in

evaluating his method, used three major measures of success: basic evaluation,

use evaluation and gain evaluation. Basic evaluation is concerned with quality of

the component documentation, for example, completeness, readability and

understandability of the component description. Use validation is concerned with

the quality of the component, for example, whether the component is easy to

 87

implement and “helpful”. Gain validation is concerned with the benefits

delivered by the component, for example, whether the component is cost-

effective and supports decision making.

In addition, Garrity and Sanders (1998) argued that when measuring the success

of an information system, it is important to include the organizational and social-

technical viewpoints, by using three major measures of success: task support,

quality of life support satisfaction, interface satisfaction and decision support

satisfaction.

As mentioned in the previous works of Kitchenham (1998), and Garrity and

Sanders (1998), about the evaluation criteria, it can be concluded that there are

three common evaluation criteria which are: gain validation, interface

satisfaction, and task support satisfaction. These common criteria had been used

by Kunda (2001) in evaluating his research which was carried out in the field of

software engineering. Therefore, these common criteria are suitable and useful to

be used in evaluating the modified framework in this study (refer to Appendix E,

evaluation criteria questionnaire).

Accordingly, these common evaluation criteria were used as main variables in

evaluating the effectiveness of the modified software development process

improvement framework, by interviewing the project teams who participated in

implementing the developed framework by these firms, as discussed in Section

6.4.

 88

3.6 Situational Method Engineering (SME) Theory

Method engineering theory is a set of approaches to create software development

methods that are specifically attuned to organizations or projects (Brinkkemper, 1996).

Ralyté et al. (2003), Bajec et al. (2007), and (Weerd, 2009) argued that the Situational

Method Engineering (SME) theory is the popular method engineering theory which is

focused mostly on constructing or adapting a method for a certain issue. According to

Ralyté et al. (2003), SME can be distinguished to four different approaches based on

their starting point, which are:

 The Extension-Based Approach (EBA) focuses on an existing method and

provides novel additions to it. The objective of this approach is to enhance a

method with new features that are helpful to meet the requirements of the

project.

 The Paradigm-Based Approach takes a meta-model that belongs to a certain

theoretical framework as starting point. This meta-model is specialized,

abstracted or adapted according to the objective of the project.

 The Ad-Hoc Approach is concerned with the construction of a novel method

‘from scratch’. This strategy is required when necessary method fragments or

Meta models are not available. This can be the case when the project deals with

a new application domain that is not yet covered by a specific method or when

the project characteristics differ significantly from former situations.

 The Assembly-Based Approach reuses method fragments to construct a new

method. This approach assumes that these fragments have been detached from

existing methods, provided with a description and stored in a method base.

 89

Based on the specific characteristics of a project these fragments can be selected

from this repository and assembled by following predefined rule.

As discussed in Section 3.3, the first two goals in Stage Two aimed to extend XP

method to fulfill the missing KPAs of CMMI-Dev1.2. In this regard, the EBA has been

selected to be used as a main approach in extending XP method, where this approach

was developed for extending the existing methods to achieve specific issues compared

to the others approaches.

EBA guides method engineer by providing extension patterns that help identifying

typical extension situations and provide guidelines to perform the required extension.

This approach consists of two main processes: (1) specify extension requirement: the

requirement elicitation helps the method engineer to construct a map representing the

method extension requirements; and (2) select & apply a pattern: by using process

extension strategy as a guidelines which help to match the requirements map intentions

and strategies with the pattern situation (Ralyté et al., 2003; Ralyté et al., 2004). Figure

3.5 shows the flow of the EBA for SME.

 90

Start

Specify Extension

 Requirement

Select & Apply

a Pattern

Stop

Requirements

elicitation

Process

extension

Completeness

Requirements

elicitation

Figure 3.5: EBA for SME (Ralyté et al., 2003)

The EBA had been used by several researchers in several domains such as:

 Gerami and Ramsin (2011) used EBA to develop the aspect-oriented extension

framework by extending the old version of the ASD methodology. The proposed

framework covers the entire software development lifecycle by determining

which basic features an aspect-oriented agile development process should

possess, and can therefore also act as a benchmark for the evaluation and

comparison of different methodologies. In addition, they argued that the EBA

can be used for extending agile methodologies. Furthermore, they indicated the

importance of using the agile values to ensure that the extension does not

adversely affect agility.

 Lee et al. (2007) used EBA to develop the data warehouse portal module by

extending the data warehouse queries into portals. In this work, the extension to

the original data warehouse query tool was developed in order to support the

required functionality to integrate data warehouse queries into portals as a

separate module that can communicate with both the portal and the data

 91

warehouse query tool. The usage of this approach can include complex

capabilities to satisfy the portal characteristics. However, this approach requires

the development of an additional module (i.e., extension) and needs to be able to

interface seamlessly with the portal as well as the data warehouse query tool.

 Thapa et al. (2011) adapted a UML EBA that allows developing systems with

domain-specific security and time-related requirements to develop an approach

to verifying security and timing properties in UML models. In addition, the

UML extension has been popularly utilized to tailor the UML to specific

domains, where the extension was given in the form of UML profiles.

 Kuan et al. (2008) adapted the EBA to develop an algorithm to locate groups. In

their research, the transitive extension method has been used to derive

substructures, or communities, within social networks. Results showed that this

method was fairly effective in finding community of friends. However, this

method does not provide insight into how these communities are formed.

In this study, the EBA has been adapted to be used in extending the XP method. Figure

3.6 shows the processes of the adapted EBA.

 92

Start

Specify Extension

 Requirement

Select & Apply

the Required

 Additions

Verify the

 Extended XP

Method

Stop

P1

P2

P3

P1: Process One

P2: Process Two

P3: Process Three

 Figure 3.6: Adapting EBA in to Extend XP Method (adapted from Ralyté et

al., 2003)

As shown in Figure 3.6, three main processes (P1, P2, and P3) are used in extending XP

method, which are:

 P1 (Specify extension requirements): this process aims to extract the required

software development, management, and improvement addition that are needed

to cover the partially and not-supported KPAs of CMMI-Dev1.2. Section 4.3.1

discusses these required additions.

 P2 (Select & apply the required additions): this process aims to extract the new

phases of the proposed Extended-XP method and harmonize these phases to be a

comprehensive for all the popular software development methodologies. In

addition, to distribute the required software development, management, and

improvement additions into the new phases of the proposed Extended-XP

method based on the need for these additions during the software development

lifecycle. Section 4.3.2 discusses this process.

 93

 P3 (Verify the Extended-XP method): this process aims to verify

the commitment of the proposed Extended-XP method to the principles of XP

method. This process is very important to keep the extremely way of the

software development lifecycle (Gerami & Ramsin, 2011). In this respect, XP

values that reflect the XP principles (Beck, 2000) were used as a main question

during the verification process which is discussed in Section 5.5.1.2.

3.7 Focus Group Coupled with Delphi Technique

Some researchers, such as Badoo and Hall (2002), Bechams et al. (2003), and Basri and

O'Connor (2011) working in the software improvement field have used the focus group

method as a testing method to verify their works. In this study, the focus group method

coupled with Delphi technique was used to verify the proposed framework. Sections

3.7.1 to 3.7.2 illustrate focus group method and Delphi technique.

3.7.1 Focus Group Method

Focus group is one of the qualitative methods which enable the researcher to verify the

topics of his research with experts. There are many definition of a focus group in the

literature, where Powell et al. (1996) defines a focus group as “a group of individuals

selected and assembled by researchers to discuss and comment on, from personal

experience, the topic that is the subject of the research”. Furthermore, Morgan (1997)

defines the focus group as “interaction within the group based on topics that are

supplied by the researcher”.

 94

Focus group is where a number of experts meet in the same place and same time to

discuss amongst them and with the researcher about the research topics that enable the

researcher to verify his work. In this study, focus group is a suitable method to verify

the proposed framework for several reasons as Krueger and Casey (2000), Kontio et al.

(2004), and Mazza and Berre (2007) have pointed out:

 Discovery of new insights: focus group method enables the researcher to

discover new issues during the dissections between the participants.

 Cost-efficiency: the researcher can to meet a group of people at the same

time and same place, where some researchers consider this method as the

cheapest method for data collection.

 Depth of interview: focus group enables the participants to discuss deeply

about the research issues, and this enables the researcher to obtain correct

answers as much as possible.

 Business benefits to participants: the participants may get some benefits

during the focus group sessions, where they will get new ideas and perhaps

they will discuss with others to get new business for their companies.

Furthermore, Krueger and Casey (2000), Kontio et al. (2004), and Mazza and Berre

(2007) also mentioned that there are several general steps in preparing the focus group

as follows: “

 Define the research problem: in this step there is the need to define and

determine the research problem that will be discussed in the first focus group

session to enable the participants to understand the importance of this

research. In this study, the research problem is “there is a need for software

 95

development process improvement framework to help SSDFs in developing,

managing, and improving their software development processes in a

systemic way”.

 Prepare the needed questions: before the first session, there is the need to

determine the needed questions that will help to verify the proposed

framework. In this study, the verification questionnaire was prepared and is

discussed in Section 5.3.

 Plan the focus group events: the number of issues to be covered needs to be

limited so that sufficient time can be allocated for the participants to

comprehend the issue and have a meaningful discussion and interaction

about them. In this study, the verification schedule was prepared and is

discussed in Section 5.4.

 Select the participants: the selection of participants is very important to get

the right answers as far as possible. Therefore, it is important to select the

highly experienced people to discuss the activities of the proposed

framework. In this study, three expert researchers were selected as members

of the focus group sessions for this study because they have good knowledge

of CMMI-Dev1.2 and XP method, and also have publications in the fields of

software development and improvement.

Based on the Jordanian Ministry of Industry and Trade, it was suitable to

obtain the addresses of some SSDFs in Jordan. Through phone conversation,

three professional developers, two professional managers, and two members

of the software engineering process group who are working in different

 96

SSDFs in Jordan agreed to participate in verifying the proposed framework

through focus group sessions. Section 5.2 discusses the selection of the focus

group members in detail.

 Conduct the focus group session: The focus group session needs to be

carefully managed for time, while still making sure that all main

contributions can be made during the allocated time, and each of the research

topics are presented one after another. Furthermore, there are several types of

data captured during the session, such as: taking notes during the session,

audio, video, white papers or keyboard recording. In this study, white papers

were used during all sessions to document the suggestions of the focus group

members. “

3.7.2 Delphi Technique

The Delphi technique, mainly developed by Dalkey and Helmer (1963) at the Rand

Corporation in the 1950s, is a widely used and accepted method for achieving

convergence of opinion concerning real-world knowledge solicited from experts within

certain topic areas. This technique has and will continue to be an important data

collection methodology with a wide variety of applications and uses for people who

want to gather information from those who are immersed and imbedded in the topic of

interest and can provide real-time and real-world knowledge. Furthermore, Delphi

technique provides more opportunities to researchers than survey research, where the

components of the Delphi technique include the communication process, a group of

experts, and feedback (Stitt-Gohdes & Crews, 2004). Theoretically, the Delphi process

can be continuously iterated to achieve the main goal of verification. Three iterations are

 97

often sufficient to collect the needed information and to reach a consensus in most cases

(Ludwig, 1997). Nevertheless, Walker and Selfe (1996) argue that most studies use two

to three rounds.

In this research, Delphi technique was used as the main technique to arrange the focus

group method through three rounds to verify the proposed framework, where the first

round had three sessions aimed to answer the verification questions and to record the

suggestions of the focus group members about the required modifications for the

proposed framework. The second round aimed to modify the proposed framework based

on the answers and suggestions from the focus group members that were made in the

first round. Finally, the third round aimed to present the modified framework to the

focus group members to make sure that all the suitable suggestions had been taken into

account in the framework and also to check if there is need for further modifications.

Section 5.5 discusses the results of the verification rounds.

3.8 Conclusion

There are four stages used to construct the software development process improvement

framework for SSDFs. Stage One aimed to identify the coverage and missing specific

goals of CMMI-Dev1.2 KPAs by XP method. In Stage Two, the EBA has been adapted

to extend XP method, where the related previous works were studied to determine the

required software development, management, and improvement additions to cover the

related KPAs of CMMI-Dev1.2. Then, based on the required additions and also based

on the phases of the general software development methods, the XP method was

 98

extended. Subsequently, the proposed Extended-XP method and CMMI-Dev1.2 with the

generic elements of SPI were used to develop the proposed framework.

In Stage Three, the focus group method coupled with Delphi Technique was used to

verify the compatibility of the proposed framework to the specific goals of CMMI-

Dev1.2 KPAs, to verify the commitment of the proposed Extended-XP method to XP

values, to verify the suitability of the proposed framework and the proposed Extended-

XP structures for the software development process improvement issues in SSDFs, and

to verify the proposed Extended-XP roles for their practices.

In Stage Four, two approaches were used to validate the modified framework. The first

approach involved the quantitative research method using a survey that was used to

validate the suitability of this framework for SSDFs by using CMMI-Dev1.2

questionnaire. The second approach used a qualitative research method that involved

two case studies to validate the applicability of implementing the modified framework

by SSDFs. At the end of Stage Four, the common evaluation criteria were used to

evaluate the effectiveness of the framework for the two firms that implemented this

framework.

 99

CHAPTER FOUR

DEVELOPMENT THE PROPOSED SOFTWARE DEVELOPMENT

PROCESS IMPROVEMENT FRAMEWORK

This chapter presents the steps used in this study to develop the proposed software

development process improvement framework for SSDFs. These steps start with

aligning the XP practices to the specific goals of CMMI-Dev1.2 KPAs to know the

coverage and missing KPAs. The chapter also presents the processes of adapting the

EBA used to extend XP method. At the end of this chapter, the foundation and the

processes of establishing the proposed software development process improvement

framework is presented.

4.1 Introduction

This study aims to construct a suitable software development process improvement

framework for SSDFs based on CMMI-Dev1.2 as a SPI model and the XP as a software

development method, taking into account the generic elements of SPI framework. At the

beginning of this chapter, the alignment results of XP method to the specific goals of

CMMI-Dev1.2 KPAs are presented. Based on these results, the EBA has been adapted

to extend XP method. In this respect, the required software development, management,

and improvement additions that are needed to be added to the XP method to fulfil the

missing KPAs of CMMI-Dev1.2 are highlighted. Subsequently, these required additions

with the generic phases of the popular software development methodologies were used

to extend the XP method to fulfil the missing KPAs of CMMI-Dev1.2 to be used as

general phases compared to the popular methodologies. Accordingly, the proposed

 100

Extended-XP method, CMMI-Dev1.2, and the generic elements of SPI framework were

used as main items to establish the proposed software development process

improvement framework for SSDFs.

4.2 Aligning XP Practices to the KPAs of CMMI-Dev1.2

The first objective in achieving the main aim of this study is to identify the coverage of

XP practices to the specific goals of CMMI-Dev1.2 KPAs. Therefore, specific goals of

each CMMI-Dev1.2 KPAs were used as the main items to know the coverage ratio of

these goals by the XP practices. In doing this alignment, the description of CMMI-

Dev1.2 (CMMI Product Team, 2006) and the description of the XP method (Beck,

2000; Jeffries et al., 2002) were used as the main references.

Prior to starting this alignment, it is important to determine the suitable scales of

supporting the XP practices to the KPAs CMMI-Dev1.2. In this respect, three scales

were selected to perform the alignment XP practices to the KPAs of CMMI-Dev1.2,

because of the common use of these scales in related studies as discussed in Section 2.6.

This scale consists of:

 Largely Supported (L.S): XP practices largely support the specific goals of

the KPA.

 Partially Supported (P.S): XP practices partially or implicitly support the

specific goals of the KPA.

 Not-Supported (N.S): XP practices do not support or not applicable for the

specific goals of the KPA.

 101

Sections 4.2.1 to 4.2.4 discuss the alignment of XP practices to the KPAs of CMMI-

Dev1.2 based on the specific goals of each KPA.

4.2.1 Aligning XP Practices to the Level 2 KPAs of CMMI-Dev1.2

Level 2 (Managed process) is a process that has the basic infrastructure in place to

support the process. It is planned and executed in accordance with policy; employs

skilled people who have adequate resources to produce controlled outputs; involves

relevant stakeholders; is monitored, controlled, and reviewed; and is evaluated for

adherence to its process description. The process discipline reflected by level 2 helps to

ensure that existing practices are retained during times of stress. This level consists of

seven KPAs as follows:

 Requirements Management - P.S

The purpose of this process area is “to manage the requirements of the project's

products and product components and to identify inconsistencies between those

requirements and the project's plans and work products” (CMMI Product Team,

2006).

As shown in Table 4.1, it can be concluded that the specific goal the requirement

management KPA is partially supported by some of XP practices, which are: on-site

customer, planning game, continuous integration, metaphor, and small releases.

 102

However, XP method does not have data repository to keep the required data of user

stories.

Table 4.1: Coverage of the XP Practices to Requirement Management KPA

Specific Goal

&Practices

Coverage by XP

 SG 1. Manage

Requirements:

Requirements are

managed and

inconsistencies with

project plans and

work products are

identified.

Specific Practices:

 Obtain an

understanding of

requirements.

 Obtain commitment

to requirements.

 Manage

requirements

changes.

 Maintain

bidirectional

traceability of

requirements.

 Identify

inconsistencies

between project

work and

requirements.

User story cards are used for collecting customer requirements that

describe the features to be added into the program, where each story card

contains one feature. Accordingly, the programmers divide the features

into tasks, as well as estimate their tasks which consist of two tasks: (1)

customer task: include determining the scope of the project, priority of

the features, composition of releases, dates of releases; and (2)

programmer tasks: include the estimations of the features, technical

consequences, process, and detailed scheduling. Moreover, the

understanding of these requirements is obtained through the integration

of the customer into the team.

The intensive communication between the customer and the development

team help in identifying the contents of each release. Therefore, iteration

to release enables the project team to know the current state of the project

and help the customer to identify and communicate further requirements,

because small releases help in integrating the feedback on customer

expectations and needs. In addition, the requirements of the project can

be quickly exchanged and discussed during the small releases, where the

metaphor and user stories enable the collaboration between the customer

and developers to check the status of the requirements.

Small releases help to conduct the consistency between the requirements

and other work products. In addition, user stories, functional test, and unit

test help in detecting the inconsistencies between the project work and

the requirements. However, traceability of the requirements is not largely

supported by XP method, because there is no data repository in XP to

keep the records of previous story cards and old versions of the

documentation.

XP method does not have data repository to keep the required data of user

stories. Therefore, the “bidirectional traceability of requirements” practice

is not largely supported by XP method.

 103

 Project Planning - L.S

The purpose of this process area is “to establish and maintain plans that define

project activities” (CMMI Product Team, 2006).

As shown in Table 4.2, it can be concluded that all the specific goals of the project

planning KPA are largely supported by some of XP practices, which are: planning

game, small releases, on-site customer, and metaphor.

Table 4.2: Coverage of the XP Practices to Project Planning KPA

Specific Goal &Practices Coverage by XP

SG 1. Establish Estimates:

Estimates of project

planning parameters are

established and

maintained.

Specific Practices:

 Estimate the scope of the

project

 Establish estimates of

work product and task

attributes

 Define project lifecycle

 Determine estimates of

effort and cost

By planning game practice, the customer illustrates which of the

features he/ she wants for the next release; then the programmers

will divide the features into tasks as well as estimate their tasks,

where the customer tasks consist of: defining the project scope,

determining the priority of the features, in addition to composition

of releases and the dates of releases. In contrast, the programmer’s

tasks concentrate more on: estimations of the features, technical

consequences, process, and detailed scheduling.

In addition, in XP lifecycle, the software team involved in early

planning and integrated into the commitment process by estimating

the effort involved to implement the customer stories. Therefore,

the estimate of stories and tasks are established and can be corrected

during the project. Furthermore, the iteration to release practice

helps in increasing the estimation precision.

SG 2. Develop a Project

Plan:

A project plan is

established and maintained

as the basis for managing

the project.

Specific Practices:

 Establish the budget and

schedule

 Identify project risks

 Plan for data

management

 Plan for project resources

 Plan for needed

knowledge and skills

In the exploration phase and based on the user stories, the

developers familiarize themselves with the required tools, practices

and technologies that are going to be used in the project. After that,

the teams of developers test the technology and also develop a

prototype to explore the architecture possibilities in developing a

prototype. In addition, collective ownership practice supports the

involvement of all relevant stakeholders in the planning phase, and

this help in increasing the commitment to the iteration plans.

The project plan is established through several releases and

iterations that evolve throughout the project. Therefore, the risks are

identified, training needs are planned, and the involvements of all

the teams are assured if XP is applied correctly. In addition,

incremental and evolutionary XP lifecycle help the developers to

identify and manage risks efficiently. Furthermore, planning game

practice is responsible for establishing the project schedule, budget,

 104

 Plan stakeholder

involvement

 Establish the project plan

and plan for each iteration.

SG 3. Obtain Commitment

to the Plan:

Commitments to the

project plan are established

and maintained.

Specific Practices:

 Review plans that affect

the project

 Reconcile work and

resource levels

 Obtain plan commitment

Commitment to the release and iteration plans is obtained through

the high involvement and responsibility of all team members.

In addition, the tracker is responsible for tracing the progress of

each iteration and evaluating whether the goal is reachable with the

given resource and within the time constraints, or if any changes are

needed in the process. Furthermore, Coach is responsible to ensure

that the project goes along the right path by keeping people working

on the current features for the actual iteration.

 Project Monitoring and Control - L.S

The purpose of this process area is “to provide an understanding of the project’s

progress so that appropriate corrective actions can be taken when the project’s

performance deviates significantly from the plan” (CMMI Product Team, 2006).

As shown in Table 4.3, it can be concluded that the all the specific goals of the

project monitoring and control KPA are largely supported by some of XP practices,

which are: on-site customer, test-driven development, collective ownership, and

small releases.

 105

Table 4.3: Coverage of the XP Practices to Project Monitoring and Control KPA

Specific Goal

&Practices
Coverage by XP

SG 1. Monitor Project

Against Plan:

Actual performance and

progress of the project

are monitored against

the project plan.

Specific Practices:

 Monitor project

planning Parameters

 Monitor

commitments

 Monitor project risks

 Monitor data

management

 Monitor stakeholder

involvement

 Conduct progress

reviews

 Conduct milestone

reviews

The tracker gives feedback on the development by monitoring the

schedule and estimates. He traces the estimates made by the team (e.g.

effort estimates) and gives feedback on how accurate they are in order to

improve future estimations and also traces the progress of each iteration

and evaluates whether the goal is reachable within the given resource and

time constraints or if any changes are needed in the process. In addition

tracker is responsible to collect metrics for the project performance

during the iteration, and it is a common for XP projects to use a

spreadsheet application or simpler tools like pen and paper for tracking

project-planning metrics such as estimates and actual achievements as

well as the overall project plan.

A big visual chart and conducting the project velocity support the

commitments of the stories during the small releases. Therefore, this

commitments process enable the clear expectations between the

customer and other project team at the tactical level, and also increase

the flexibility at the project’s strategic level. Therefore, the information

on the project’s progress is gathered by the use of measures and the

milestones are checked against the schedule via functional tests.

XP method enables the coordination and collaboration with relevant

stakeholders by integrating developers, customer, testers, and

management, and also by establishing a self-organizing cross-functional

team in which all relevant stakeholders. In addition, collective

ownership practice helps in integrating all the team members in the

project work.

The intensive communications between the customer and developers

handle the changes that are needed during the iteration to the software

commitments, or user stories are handled, and this can be done with

assistance from the coach.

SG 2. Manage

Corrective Action to

Closure:

Corrective actions are

managed to closure

when the project's

performance or results

deviate significantly

from the plan.

Specific Practices:

 Analyze issues

 Manage corrective

Short iteration and regular commitments helps in monitoring and

managing the project against the baseline, and also offer opportunities to

make the required adjustments. Therefore, corrective actions can include

adjustments to the method, and also of the functionality that will be

realized based on the on-site customer practice, where there is intensive

communication among the team members and the customer helps to

convey the information.

Coach is responsible to ensures that the programmers are working

efficiently and effectively, and also to find a solution for the problems

faced by the programmers as soon as possible. In addition, tracker traces

the progress of each iteration and evaluates whether the goal is

reachable or not, and gives feedback on how accurate they are in order

to improve future estimations or if any changes are needed in the

 106

action

 Take corrective

action

process. As such, tracker is responsible for informing the results of daily

meetings to check the status of each iteration against the plan.

Furthermore, the big visual chart which used during XP lifecycle

supports this specific goal, where the velocity of the project is stated

clearly as well as commitments (stories) for small releases. This visual

chart is usually developed by both the customers and XP teams.

 Supplier Agreement Management - N.S

The purpose of this process area is “to manage the acquisition of products from

suppliers for which there exists a formal agreement” (CMMI Product Team, 2006).

Paulk (2001), Martinsson (2002), Koch (2003), Fritzsche and Keil (2007), Elshafey

and Galal-Edeen (2008), and Omran (2008) have indicated that this KPA is not

supported by XP method. In this respect, Fritzsche and Keil (2007) argued that this

KPA is not addressed by XP, because the involving suppliers could be problematic;

but they believe that the method can be extended to fulfill the goals of this process

area with keeping the agility of XP method. In addition, Omran (2008) believed that

this KPA seems to consume lot of the resources from small teams. Furthermore,

Martinsson (2002) pointed out that the XP method does not mentioned to this KPA

and nothing in particular that prevents it. Therefore, it can be concluded that this

KPA is not supported by XP method and there is need to extend XP method to cover

this process area with the keeping of the agility of XP values.

 107

 Measurement and Analysis - P.S

The purpose of this process area is “to develop and sustain a measurement

capability that is used to support management information needs” (CMMI Product

Team, 2006).

As shown in Table 4.4, it can be concluded that the specific goals of the

measurement and analysis KPA are partially supported by on-site customer and test

driven development practices. However, XP method does not have data repository to

keep the measurement data.

Table 4.4: Coverage of the XP Practices to Measurements and analysis KPA

Specific Goal

&Practices
Coverage by XP

SG 1. Align

Measurement and

Analysis Activities:

Measurement objectives

and activities are aligned

with identified

information needs and

objectives.

Specific Practices:
 Establish measurement

objectives

 Specify Measures

 Specify data collection

and storage procedures

 Specify analysis

procedures

Metric is the basic management tool in XP method, where the big

visual chat is used to publish the results of the metric to the project

team. One recommended XP metric is project velocity (the number of

stories of a given size that developers can implement in an iteration).

Furthermore, measurements and analysis procedures are defined by the

tracker based on: (1) tracing the estimate made by the team (e.g. effort

estimates) and gives feedback on how accurate they are in order to

improve future estimations, and also the tracker should be careful to

not interrupt the project too many times; and (2) tracing the progress of

each iteration and evaluates whether the goal can be reached within the

given resources and at a certain time, or if any changes are required in

the process.

 108

SG 2. Provide

Measurement Results:

Measurement results,

which address identified

information needs and

objectives, are provided.

Specific Practices:

 Collect measurement

data

 Analyze measurement

data

 Store data and results

 Communicate results

Tracker is responsible for gathering the information of the project’s

progress by estimating the project velocity and uses the feedback from

the programmers by asking and listening to what they are doing in the

current moment. Accordingly, the intensive communications help to

convey the important data of measurements results within the team

members. In addition, functional test is used to check the milestones

are against the schedule. Furthermore, wall charts are used in XP

method by tracker to convey the results of analyzing the measurements

data.

However, XP method does not have repository to store the

measurement data.

 Process and Product Quality Assurance - P.S

The purpose of this process area is “to provide staff and management with objective

insight into processes and associated work products” (CMMI Product Team, 2006).

As shown in Table 4.5, it can be concluded that the specific goals of the process and

product quality assurance KPA are partially supported by some of XP practices,

which are: continuous integration, test driven development, and pair programming

practices. However, XP method does not demand an explicit evaluation of

processes, work products and services against the applicable process descriptions. In

addition, there are no strict guidelines for the resolutions of noncompliance issues

and for establishing records of quality assurance activities.

 109

Table 4.5: Coverage of the XP Practices to Process and Product Quality Assurance

KPA

Specific Goal &Practices Coverage by XP

SG 1. Objectively Evaluate

Processes and Work Products:

Adherence of the performed

process and associated work

products and services to

applicable process

descriptions, standards, and

procedures is objectively

evaluated.

Specific Practices:

 Objectively evaluate

processes

 Objectively evaluate work

products and services

The planning of the quality assurance’s activities is clearly

satisfied by pair programming, continuous integration, and test

driven development practices. In addition, the quality is central in

the regular programming sessions.

Coach is responsible for guiding the team in applying XP method

in the right. Accordingly, the quality issues can be easily

communicated in an XP team. In addition, XP assures the quality

on a social level through peer pressure, which is often very

successful in assuring the conformance of the standards.

However, XP method does not demand an explicit evaluation of

processes, work products and services against the applicable

process descriptions (Fritzsche & Keil, 2007; Martinsson, 2002).

SG 2. Provide Objective

Insight:

Noncompliance issues are

objectively tracked and

communicated, and resolution

is ensured.

Specific Practices:

 Communicate and ensure

resolution of noncompliance

issues

 Establish records

The correctness of the systems is to be shown to the customer

when all tests have passed. Consequently, the application is

continually growing and evolving, where the intensive

communication between team members helps to resolute the

results of used quality assurance activities.

In addition, posting a graph is always used by the project team to

present the results of quality assurance such as the results of test-

failures of each release.

However, there are no strict guidelines for the resolutions of

noncompliance issues and for establishing records of quality

assurance activities.

 Configuration Management - L.S

The purpose of this process area is “to establish and maintain the integrity of work

products using configuration identification, configuration control, configuration

status accounting, and configuration audits” (CMMI Product Team, 2006).

 110

As shown in Table 4.6, it can be concluded that the all the specific goals of the

configuration management KPA are largely supported by some of XP practices,

which are: planning game, continuous integration, re-factoring, on-site customer,

test-driven development, coding standard, collective ownership, and small releases.

Table 4.6: Coverage of the XP Practices to Configuration Management KPA

Specific Goal &Practices Coverage by XP

SG 1. Establish Baselines: Baselines of

identified work products are established.

Specific practices to establish baselines are

covered by this specific goal.

Specific Practices:

 Identify configuration items

 Establish a configuration management

system

 Create or release baselines

Code, design, tests and requirements are considered

the items of configuration in XP method. In addition,

the iteration to releases supports strong baselines

mechanisms and careful version control of the code

and other release components.

Furthermore, the using of a configuration

management system is recommended by continuous

integration, collective ownership, and small releases.

Furthermore, the release baselines are always

established through the functional tests and at the

end of iteration.

SG 2. Track and Control Changes:

Changes to the work products under

configuration management are tracked and

controlled.

Specific Practices:

 Track change requests

 Control configuration items

Pair programming, tests, and on-site customer

support are used for tracking and controlling the

changes.

Moreover, re-factoring practice pushes the source

code in the direction of a larger baseline, with more

classes and codes in common.

SG 3. Establish Integrity:

Integrity of baselines is established and

maintained.

Specific Practices:

 Establish configuration management

records

 Perform configuration audits

Continuous integration practice keeps the system

never far from a production state, where the pair

should check that their changes do not affect another

part of the system developed by another pair of

programmers.

 In addition, coding standard practice keeps the code

consistent and easy for the entire team to read, and

also helps the XP team to understand all the codes

that have been written as basis for the practice of

collective ownership. Therefore, the code is easy to

read as a coding standard and therefore has its own

descriptions.

Pair programming, on-site customer and test driven

development are informally performing the audits.

 111

4.2.2 Aligning XP Practices to the Level 3 KPAs of CMMI-Dev1.2

Level 3 (Defined process) is a process that is tailored from the organization’s set of

standard processes according to the organization’s tailoring guidelines, and contributes

work products, measures, and other process improvement information to the

organizational process assets. This level consists of eleven process areas as follows:

 Requirements Development - P.S

The purpose of this process area is “to produce and analyze customer, product, and

product-component requirements” (CMMI Product Team, 2006).

As shown in Table 4.7, it can be concluded that the specific goals the requirement

development KPA are partially supported by some practices of XP method, which

are: planning game, on-site customer, small releases, and test-driven development.

However, there is a problem of non-keeping of the requirements specifications by

XP method; therefore the requirements specifications remain vague.

Table 4.7: Coverage of the XP Practices to Requirement Development KPA

Specific Goal &Practices Coverage by XP

SG 1. Develop Customer

Requirements:

Stakeholder needs,

expectations, constraints, and

interfaces are collected and

translated into customer

requirements.

Specific Practices:

 Elicit needs

 Develop the customer

requirements

Story cards and functional test are used to specify the user

requirements that are elicited by customer, where the developers

are always supporting the customer in doing these tasks.

In addition, the customer decides which of the features are to be

included in each iteration, and also conduct the functional tests

at the end of iteration. Thereafter, the developers are responsible

for determining the estimations of the features, technical

consequences, process, and detailed scheduling. Furthermore,

on-site customer, user stories, and iterative development are

directly supporting the eliciting and developing of the user

requirements.

 112

SG 2. Develop Product

Requirements:

Customer requirements are

refined and elaborated to

develop product and product

component requirements.

Specific Practices:

 Establish product and product

component requirements

 Allocate product component

requirements

 Identify interface

requirements

Developers are responsible to refine the customer requirements

into product requirement by using the specified task cards.

Therefore, analysis, design, planning and testing of the

application are used to refine the user requirements to product

components requirements during each iteration.

Furthermore, the developers are responsible for developing a

prototype to explore the architecture possibilities. Based on that,

customer and programmers work together in order to design the

interface of the product components, where the running test is

used to ensure the Interface compatibility at each integration

step.

SG 3. Analyze and Validate

Requirements:

The requirements are analyzed

and validated, and a definition

of required functionality is

developed.

Specific Practices:

 Establish operational

concepts and scenarios

 Establish a definition of

required functionality

 Analyze requirements

 Analyze requirements to

achieve balance

 Validate requirements

Pair programming is responsible for analyzing the requirement

during the planning phase with assistance from the on-site

customer during requirements elicitation. In addition, small

releases and on-site customer practices enable the constant

analysis and validation of the requirements.

Furthermore, test driven development supports the

understanding and validating of the requirements. In addition,

the functional tests support the establishment of the operational

concepts and scenarios.

At the end of each iteration, or during the iteration planning

meeting, the team’s demonstration of the current state of the

project, also assists the customer into further specifying and

communicating future requirements.

However, there is problem of non-keeping of the requirements

specifications by XP method.

 Technical Solution - L.S

The purpose of this process area is “to design, develop, and implement solutions to

requirements” (CMMI Product Team, 2006).

As shown in Table 4.8, it can be concluded that the all the specific goals of the

technical solution KPA are largely supported by some of XP practices, which are:

 113

simple design, coding standards, on-site customer, pair programming, metaphor, and

re-factoring.

Table 4.8: Coverage of the XP Practices to Technical Solution KPA

Specific Goal &Practices Coverage by XP

SG 1. Select Product

Component Solutions:

Product or product

component solutions are

selected from alternative

solutions.

Specific Practices:

 Develop alternative

solutions and selection

criteria

 Select product component

solutions

Prototype explores the alternative solutions at the beginning of the

project, while re-factoring and iterative development enable the

exploration of these solutions through the project. In addition,

during the pair programming practice; it is continuously looking for

alternative approaches to assure the quality of software product.

Re-factoring practice should be used to restructure the system by

removing duplications, improving communications, simplifying

and adding flexibility if there are any inaccuracies in the code.

 Furthermore, metaphor, iterative solutions, and test-driven

development practices lead to a high quality of technical solutions.

SG 2. Develop the Design:

Product or product

component designs are

developed.

Specific Practices:

 Design the product or

product component

 Establish a technical data

package

 Design interfaces using

criteria

 Perform make, buy, or

reuse analyses

Code is used as a design document in XP method, where this design

is carried out iteratively. In addition, simple design practices help in

making the code design as simple as possible.

By coding standard practice, the code should be clear to everybody

in the project, in order that all the team members can make changes

to it. In addition, Coding standards help the XP team to understand

all the codes that have been written as basis for the practice of

collective ownership. Moreover, the standard should not be

imposed on the team and the code should be written only once as a

rule.

By simple design, the XP fits the design for the present system

features, and is ready for future changes in an incremental or

iterative way, where XP focuses on solving today’s problems and

every piece in the design must be able to justify its existence.

By re-factoring practice, the changes of the structure are verified

with automated tests which help the programmers to get feedback

on the changes.

SG 3. Implement the Product

Design:

Product components, and

associated support

Re-factoring, coding standards, and pair programming are used in

implementing the required features that are written by the

customers.

 114

documentation, are

implemented from their

designs.

Specific Practices:

 Implement the design

 Develop product support

documentation

Pair programming practice enables the reviewing, designing, and

testing of the whole code, where the developers start almost

immediately to code in a very simple way, trying to maintain the

code to be as simple as possible and the coding rules exist and are

followed by the programmers. Furthermore, product support

documentation is developed if it is requested by the customer.

Furthermore, re-factoring, coding standards, pair programming, test

driven development and continuous improvement help to enhance

the implementation phase and ensure better quality.

 Product Integration - L.S

The purpose of this process area is “to assemble the product from the product

components, ensure that the product is integrated, functions properly, and deliver

the product” (CMMI Product Team, 2006).

As shown in Table 4.9, it can be concluded that the specific goals of the product

integration KPA are largely supported by some of XP practices, which are:

continuous integration, simple design, coding standards, on-site customer, pair

programming, and re-factoring.

Table 4.9: Coverage of the XP Practices to Product Integration KPA

Specific Goal &Practices Coverage by XP

 SG 1. Prepare for Product

Integration:

Preparation for product integration

is conducted.

Specific Practices:

 Determine integration sequence

 Establish the product integration

environment

 Establish product integration

procedures and criteria

Continuous integration enables the integration of the changes

to the code very often. In addition, the pair should check that

their changes do not affect another part of the system

developed by another pair of programmers.

Coding standards practice helps the XP team to understand

all the codes that have been written as basis for the practice

of collective ownership to detect the unknown repercussions

by automated tests; therefore, this practice increases quality

of the code and reduces faults.

 115

SG 2. Ensure Interface

Compatibility:

The product component interfaces,

both internal and external, are

compatible.

Specific Practices:

 Review interface descriptions for

completeness

 Manage interfaces

The functional tests are created by the customer and run at

the end of each iteration to ensure interface compatibility.

Therefore on-site customer, small iterations, and test-driven

development enable the reviewing and managing of the

interfaces.

SG 3. Assemble Product

Components and Deliver the

Product:

Verified product components are

assembled and the integrated,

verified, and a validated product is

delivered.

Specific Practices:

 Confirm readiness of product

components for integration

 Assemble product components

 Evaluate assembled product

components

 Package and deliver the product

or product component

By continuous integration, pair programming is responsible

for integrating their own code and automated tests are run to

ensure that the system is working at 100 %, as a new piece of

code is integrated into the code-base as soon as it is ready. In

addition, this practice keeps the system never far from a

production state. In this respect, one machine should be used

only for integration issues for each pair of programmers.

Therefore, continuous integration and on-site customer

practices help in assembling the product components and

deliver the product.

During the iterations, the team integrates their work

regularly and eliminates the bugs. Therefore, at the end of

each iteration, a fully programmed, tested and production

worthy version of the system is delivered.

 Verification - L.S

The purpose of this process area is “to ensure that selected work products meet their

specified requirements” (CMMI Product Team, 2006).

As shown in Table 4.10, it can be concluded that the specific goals of the

verification KPA are largely supported by some of XP practices, which are: small

releases, on-site customer, pair programming, re-factoring, test-driven development,

collective ownership, and coding standards.

 116

Table 4.10: Coverage of the XP Practices to Verification KPA

Specific Goal &Practices Coverage by XP

SG 1. Prepare for

Verification:

Preparation for verification is

conducted.

Specific Practices:

 Select work products for

verification

 Establish the verification

environment

 Establish verification

procedures and criteria

Intensive communications between the project team (including the

customer) support the preparing and executing of the verification

process, whereas each user story that represents a feature in the XP

development has associated an acceptance test, which is determined

by the XP customer and implemented by the team. Furthermore, a

test-first approach and all tests have to be written before the code.

Therefore, test driven development and unit test support the

enhancement of the verification process by increasing the probability

of meeting the verified work to the specified requirements.

SG 2. Perform Peer Reviews:

Peer reviews are performed

on selected work products.

Specific Practices:

 Prepare for peer reviews

 Conduct peer reviews

 Analyze peer review data

Pair programming practice dictates that the design, coding, and

testing are done by two people working together; therefore, this

practice is the most effective of peer reviews possible. In addition,

pair programming adopts defensive concepts found in code reading

and literate programming. Furthermore, collective ownership and

coding standards imply constant peer reviews.

SG 3. Verify Selected Work

Products:

Selected work products are

verified against their

specified requirements.

Specific Practices:

 Analyze verification results

 Perform verification

Pair programming and testing are considered the main methods for

verification process, both of which are performed constantly. In

addition, test-driven development helps in the incorporation of defects

identification.

Small releases enable the customer to test the product; therefore, the

correctness of the systems is shown to the customer when all tests are

passed. Consequently, the application is continually growing and

evolving.

 117

 Validation - L.S

 The purpose of this process area is “to demonstrate that a product or product

component fulfills its intended use when placed in its intended environment”

(CMMI Product Team, 2006).

As shown in Table 4.11, it can be concluded that the all the specific goals of the

validation KPA goals are largely supported by some of XP practices, which are:

small releases, on-site customer, pair programming, and test-driven development.

Table 4.11: Coverage of the XP Practices to Validation KPA

Specific Goal &Practices Coverage by XP

SG 1. Prepare for Validation:

Preparation for validation is

conducted.

Specific Practices:

 Select products for validation

 Establish the validation

environment

 Establish validation

procedures and criteria

The main objective of validations is performed in XP project

through customer participation and frequent releases. In addition,

the acceptance by customer is the important criterion for

validation.

Furthermore, iterations to release, test-driven development, and

on-site customer support the activities of the validation process.

SG 2. Validate Product or

Product Components:

Establish and maintain

procedures and criteria for

validation.

Specific Practices:

 Perform validation

 Analyze validation results

The software products are always validated by the on-site

customer, because the customer is integrated into the team;

therefore he can validate the software product at the end of each

iteration.

Test-driven development (especially, customer tests) enables the

developer to check the needed requirements and if there is a need

for additional requirements. Thereafter, the correctness of the

systems is shown to the customer when all tests are passed.

Therefore, the participation of customer improves the chances

that the product is suitable for use in its intended operating

environments.

 118

 Organizational Process Focus - N.S

The purpose of this process area is “to plan and implement organizational process

improvement based on a thorough understanding of the current strengths and

weaknesses of the organization’s processes and process assets” (CMMI Product

Team, 2006).

Several researchers (Koch, 2003; Fritzsche & Keil, 2007; and Elshafey & Galal-

Edeen, 2008) indicated that this KPA is not addressed by XP method. In addition,

Martinsson (2002), Koch (2003), and Omran (2008) argued that XP method does not

addresses organization process focus at the organizational level, where XP method

focuses on the software engineering process rather than organizational infrastructure

issues. Therefore, it can be concluded that this KPA is not supported by XP method,

as this process area is related to the organization while XP only applies to a project.

 Organizational Process Definition + IPPD - P.S

 The purpose of this process area is “to establish and maintain a usable set of

organizational process assets” (CMMI Product Team, 2006).

As shown in Table 4.12, it can be concluded that the specific goals of the

Organizational Process Definition + IPPD KPA goals are partially supported by

some of XP practices, which are: planning game, on-site customer, and metaphor.

However, XP method does not addresses the organizational assets of process

definition.

 119

Table 4.12: Coverage of the XP Practices to Organizational Process Definition +

IPPD KPA

Specific Goal &Practices Coverage by XP

SG 1. Establish

Organizational Process Assets:

A set of organizational process

assets is established and

maintained.

Specific Practices:

 Establish standard processes

 Establish lifecycle model

descriptions

 Establish tailoring criteria

and guidelines

 Establish the organization’s

measurement repository

 Establish the organization’s

process asset library

 Establish work environment

standards

By specifying the roles of each member in the team and by XP

literature and through various internet resources; it will be easy for

the team to know and understand their specified roles during the

XP development life cycle.

Moreover, the communication between all team members is one of

the XP values, whereas the XP contributes a lot to the project

members’ integration and their close collaboration. Thus, they can

benefit from the experience of each other during the development.

In addition, the metaphor is responsible for guiding all the

activities of the development lifecycle by describing the

functionality of the system to help everyone on the project to

understand the basic elements and their relationships.

Furthermore, the team shares their common understanding from

their past experiences.

However, organizational assets are outside the scope of the XP

method (Omran, 2008).

SG 2. Enable IPPD

Management:

Organizational rules and

guidelines, which govern the

operation of integrated teams,

are provided.

Specific Practices:

 Establish empowerment

mechanisms

 Establish rules and

guidelines for integrated

teams

 Balance team and home

organization responsibilities

Planning game practice provides the initial planning at the

beginning of each iteration.

The big boss communicates with the XP team to determine the

current situation and to distinguish any difficulties or deficiencies

in the process, whereas if an XP team does not produce what they

should, the big boss can step in and help them. In addition, the

metaphor should help everyone on the project to understand the

basic elements and their relationships.

Intensive communication, on-site customers and pair

programming support the integration between product and process

development. Furthermore, the coach is responsible for resolving

the issues that may occur within the team, while the tracker role

supports tracking inter-group issues.

 120

 Organizational Training - P.S

The purpose of this process area is “to develop the skills and knowledge of people so

they can perform their roles effectively and efficiently” (CMMI Product Team,

2006).

As shown in Table 4.13, it can be concluded that the specific goals of the

organizational training KPA are partially supported by some of the XP practices,

which are: planning game, collective ownership practices, on-site customer, and

metaphor). However, there are deficiencies regarding the assessment of training

effectiveness and establishment of training in XP method.

Table 4.13: Coverage of the XP Practices to Organizational Training KPA

Specific Goal &Practices Coverage by XP

SG 1. Establish an

Organizational Training

Capability:

A training capability, which

supports the organization's

management and technical roles,

is established and maintained.

Specific Practices:

 Establish the strategic training

needs

 Determine which training

needs are the responsibility of

the organization

 Establish an organizational

training tactical plan

 Establish training capability

This specific goal is implicitly supported by pair programming

practice, because this practice is responsible for: (1) teaching

the team members (especially the new) the skills and

intricacies required in the actual project; (2) performing the

software development and maintenance activities such as

design, code, and test; (3) giving the programmers a tool for

sharing and circulating knowledge within the team, and (4)

circulating knowledge about new technologies.

The training is carried out explicitly during the exploration

phase and implicitly during the whole project through coaching

and pair programming. Therefore, XP method enhances the

organization’s training capabilities.

 121

SG 2. Provide Necessary

Training:

Training necessary for

individuals to perform their roles

effectively is provided.

Specific Practices:

 Deliver training

 Establish training records

 Assess training effectiveness

No one can complete his tasks in XP method without

organizational training for individual development, where this

is the concept of collective ownership. In this respect, pair

programming practice and coach role are responsible for

delivering the training at the explorations phase and during the

whole project.

However, there are deficiencies regarding the assessment of

training effectiveness and establishment of training.

 Integrated Project Management + IPPD - L.S

The purpose of this process area is “to establish and manage the project and the

involvement of the relevant stakeholders according to an integrated and defined

process that is tailored from the organization's set of standard processes” (CMMI

Product Team, 2006).

As shown in Table 4.14, it can be concluded that the all the specific goals of the

integrated project management + IPPD KPA are largely supported by some of XP

practices, which are: metaphor, collective ownership, small releases, planning game,

on-site customer, and pair programming.

Table 4.14: Coverage of the XP Practices to Integrated Project Management +

IPPD KPA

Specific Goal &Practices Coverage by XP

SG 1. Use the Project’s Defined

Process:

The project is conducted using a

defined process that is tailored

from the organization's set of

standard processes.

Specific Practices:

 Establish the project’s defined

XP method defines practices and roles for the development

project. Therefore, XP method is based on careful compliance

with the XP practices and roles.

 In addition, planning game, visual charts, and iterative

developments support this specific goal, where the customer

sets the priority order for the stories, as well as reaches an

agreement with the programmers on the contents of the first

small release, of the features, technical consequences, process,

and the detailed scheduling.

 122

process

 Use organizational process

assets for planning project

activities

 Establish the project's work

environment

 Integrate plans

 Manage the project using the

integrated plans

 Contribute to the

organizational process assets

Moreover, the coach enables the project to keep on the right

path as well as work to keep people focused on the current

features for the actual iteration. In addition, the tracker traces

the progress of each iteration and evaluates whether the goal is

reachable within the given resource and time constraints, or if

any changes are needed in the process.

Furthermore, pair programming, collective ownership of the

code and the focus on cooperation and communication support

the governing of the team operation.

SG 2. Coordinate and

Collaborate with Relevant

Stakeholders:

Coordination and collaboration

of the project with relevant

stakeholders are conducted.

Specific Practices:

 Manage stakeholder

involvement

 Manage dependencies

 Resolve coordination issues

The developers, testers, customers, and all the relevant

stakeholders are integrated and coordinated in XP method,

where everybody in a XP project takes responsibility for the

code in the whole system. In addition, the metaphor helps

everyone on the project to understand the basic elements and

their relationships.

Furthermore, XP method enables the democracy in the

leadership mechanisms between the development team

members. Nevertheless, the big boss and the customer have

authority to decide on high level issues.

SG 3. Apply IPPD Principles:

The project is managed using

IPPD principles.

Specific Practices:

 Establish the project’s shared

vision

 Establish the integrated team

structure

 Allocate requirements to

integrated teams

Communication between all team members is one of the XP

values. XP contributes a lot to the project members’ integration

and their close collaboration.

Furthermore, the collaboration and intensive communication

within the team help to establish a shared vision. In addition,

XP method supports the establishment of a self-organizing

cross-functional team in which all integrated relevant

stakeholders are involved.

 Risk Management - L.S

The purpose of this process area is “to identify potential problems before they occur,

so that risk-handling activities may be planned and invoked as needed across the life

 123

of the product or project to mitigate adverse impacts on achieving objectives”

(CMMI Product Team, 2006).

As shown in Table 4.15, it can be concluded that the specific goals of the risk

management KPA are largely supported by some of XP practices, which are: small

releases, pair programming, on-site customer, simple design, re-factoring, coding

standards, continuous integration, simple design, and test driven development.

Table 4.15: Coverage of the XP Practices to Risk Management KPA

Specific Goal &Practices Coverage by XP

SG 1. Prepare for Risk Management:

Preparation for risk management is

conducted. Preparation is conducted

by establishing and maintaining a

strategy for identifying, analyzing,

and mitigating risks.

Specific Practices:

 Determine risk sources and

categories

 Define risk parameters

 Establish a risk management

strategy

The XP method does not explicitly state how the specific

practices of this goal are to be conducted. Nevertheless,

XP project makes some sort of preparation to avoid the

risks based on pair programming, re-factoring, coding

standards, continuous integration, simple design, and test

driven development practices.

In addition, the idea behind small releases is to get the

system in production on time in order to get constant

feedback from the customer, as well as to avoid risks, and

minimize effort necessary to change the effect. Thus, the

risks are discussed at the end-of-iteration.

SG 2. Identify and Analyze Risks:

Risks are identified and analyzed to

determine their relative importance.

Specific Practices:

 Identify risks

 Evaluate, categorize, and prioritize

risks

During the planning game practice, the XP method

enforces the identifications and analysis of risks, where

developers are making technical decisions (evaluating risk

factors and estimating the effort).

In addition, during design activity; the spike solution is

always created to reduce risks of technical problems.

Therefore, these solutions encourage the project teams to

address the difficult or unknown aspects of an effort first

in order to uncover potential problems as soon as possible.

A spike solution is “a preliminary or experimental effort

to prove that a specific technology or an approach will

actually work in a particular situation” (Baker & Thomas,

2007).

 124

SG 3. Mitigate Risks:

Risks are handled and mitigated,

where appropriate, to reduce adverse

impacts to achieve objectives.

Specific Practices:

 Develop risk mitigation plans

 Implement risk mitigation plans

Short iterations are a potent instrument to mitigate risks. In

addition, the intensive communications enable the project

team to identify and mitigate the risks.

Therefore, the incremental and evolutionary XP lifecycle

enable the developers to identify, mitigate, and manage the

risks efficiently.

 Decision Analysis and Resolution - L.S

The purpose of this process area is “to analyze possible decisions using a formal

evaluation process that evaluates identified alternatives against established

criteria” (CMMI Product Team, 2006).

As shown in Table 4.16, it can be concluded that the XP method largely supports the

specific goal of the decision analysis and resolution KPA in a different way of

CMMI-Dev1.2 suggests by XP practices and roles which are: pair programming,

simple design, and on-site customer practices, and big boss role.

 125

Table 4.16: Coverage of the XP Practices to Decision Analysis and Resolution KPA

Specific Goal &Practices Coverage by XP

SG 1. Evaluate

Alternatives:

Decisions are based on an

evaluation of alternatives

using established criteria.

Issues requiring a formal

evaluation process may be

identified at any time.

Specific Practices:

 Establish guidelines for

decision analysis

 Establish evaluation

criteria

 Identify alternative

solutions

 Select evaluation

methods

 Evaluate alternatives

 Select solutions

The ability to adapt quickly to new situation is preferred by agile

methods over a formal evaluation process; whereas, planning where

you need to plan; designing what is important; and coding what can

pass the unit tests; and user-story, are the main activities in XP that

depend on the tacit knowledge of the XP team. Therefore, XP

identifies and evaluates alternatives informally and not in the way

CMMI suggests, where coding can be used to figure out the most

suitable solution.

XP would advocate having several alternatives to a programming

problem. One should simply code all solutions and determine with

automated tests which solution is most suitable, where simple design

is in much a direct translation of the XP value as it is for simplicity

in a software practice. It calls for the programmers to make design

decisions for the current problem and the on-site customer helps to

make decisions and answer the programmers’ questions.

Furthermore, the big boss is responsible to make the decisions,

where a big boss communicates with the XP team to determine the

current situation, and to distinguish any difficulties or deficiencies in

the process. If an XP team does not produce what they should, a big

boss can step in and help them.

Therefore, it can be concluded that this specific goal is achieved by

XP method in a different way from CMMI.

4.2.3 Aligning XP Practices to the Level 4 KPAs of CMMI-Dev1.2

Level 4 (Quantitatively managed) is a process that is controlled using statistical and

other quantitative techniques. Quantitative objectives for quality and process

performance are established and used as criteria in managing the process. Quality and

process performance is understood in statistical terms and is managed throughout the

life of the process. This level consists of the following two process areas:

 126

 Organizational Process Performance - P.S

The purpose of this process area is “to establish and maintain a quantitative

understanding of the performance of the organization’s set of standard processes in

support of quality and process-performance objectives, and to provide the process

performance data, baselines, and models to quantitatively manage the

organization’s projects” (CMMI Product Team, 2006).

As shown in Table 4.17, it can be concluded that the specific goal of the of

organizational process performance KPA is partially supported by XP practices,

which are: planning game, small releases, and re-factoring. However, XP method

focuses on individual rather than issues that are as process oriented as this processes

area, where the important metrics of processes performance are not covered by XP

method.

Table 4.17: Coverage of the XP Practices to Organizational Process Performance

KPA

Specific Goal &Practices Coverage by XP

SG 1. Establish

Performance Baselines

and Models:

Baselines and models,

which characterize the

expected process

performance of the

organization's set of

standard processes, are

established and

maintained.

Specific Practices:

 Select processes

 Establish process

performance measures

This process area is strongly related with the process and product

quality assurance process area.

In planning game, the XP team implies schedules exactly as much

work (or as many “units”) as the team’s average velocity to extract the

project team’s velocity, where the velocity serves as the foundation in

updating the project plan to be realistic and adhere to the historical

performance of the team.

The tracker gives feedback in XP method by tracing the estimates

made by the team, tracing the progress of each iteration and evaluating

whether the goal is reachable within the given resource and time

constraints, or if there are needs for any changes in the process. In

addition, the tracker is responsible for collecting the metrics of the

project performance at the end of each iteration (or more often if

required), and conveying the results of these metrics to the project

team by using a spreadsheet application which always consists of the

 127

 Establish quality and

process-performance

objectives

 Establish process-

performance baselines

 Establish process-

performance models

estimates and actual achievements as well as the overall project plan.

Furthermore, the coach’s role is to make sure that the programmers are

working efficiently and effectively, and in instances where a

programmer is not on par with his abilities or estimates, it is important

for the coach to find a solution for this as soon as possible.

However, XP method focuses on individuals rather than issues that are

process oriented. The important metrics of processes performance are

not covered by XP method.

 Quantitative Project Management - L.S

The purpose of this process area is “to quantitatively manage the project’s defined

process to achieve the project’s established quality and process-performance

objectives” (CMMI Product Team, 2006).

As shown in Table 4.18, it can be concluded that the specific goal of the quantitative

project management KPA is largely supported by XP practices, but in a different

way of CMMI-Dev1.2 suggests. These practices are: on-site customer, planning

game, test driven development, re-factoring, continuous integration, collective code

ownership, and metaphor practices.

Table 4.18: Coverage of the XP Practices to Quantitative Project Management KPA

Specific Goal &Practices Coverage by XP

SG 1. Quantitatively Manage

the Project:

The project is quantitatively

managed using quality and

process-performance objectives.

Specific Practices:

 Establish the project’s

objectives

In general, statistical methods focus on defined processes that

rely on the law of big numbers and on averaging out effects in

large teams. Nevertheless, XP method is used by SSDFs that

have small software projects; therefore, the specific goals of

this KPA can be achieved by XP practices without achieving

all specific practices. In this respect, several metrics are

included by default for any XP team in the form of user story

and engineering task estimates (define the requirement,

architecture, design, coding, and testing) in conjunction with

how many units of work the team and each individual

 128

 Compose the defined process

 Select the sub-processes that

will be statistically managed

 Manage project performance

programmer have been able to deliver during each iteration.

Furthermore, the objectives of this process area can be

achieved by XP practices as follows: (1) planning game and

system metaphor estimate new iteration size and development

time; (2) system metaphor, pair programming, test driven

development, and continuous integration that analyzes cause

and effect relationships in terms of productivity or number of

defects; and (3) on-site customer, re-factoring, continuous

integration, and collective code ownership to calculate the

variance in productivity or quality across different system

iterations.

In addition, a tracker is responsible to trace the estimates

made by the team and give feedback on how accurate they are

in order to improve future estimations, and also to trace the

progress of each iteration and evaluate whether the goal is

reachable with the given resource and within time constraints.

Accordingly, the specific goals of this KPA are supported by

XP method in a different way from CMMI specific practices.

SG 2. Statistically Manage Sub-

process Performance:

The performance of selected

sub- processes within the

project's defined process is

statistically managed.

Specific Practices:

 Select measures and analytic

techniques

 Apply statistical methods to

understand variation

 Monitor performance of the

selected sub-processes

 Record statistical management

data

4.2.4 Aligning XP Practices to the Level 5 KPAs of CMMI-Dev1.2

Level 5 (Optimizing process) is a quantitatively managed process that is improved based

on an understanding of the common causes of variation inherent in the process. The

focus of an optimizing process is to continually improve the range of process

performance through both incremental and innovative improvements. This level consists

of two process areas as follows:

 Organizational Innovation and Deployment - P.S

The purpose of this process area is “to select and deploy incremental and innovative

improvements that measurably improve the organization's processes and

technologies. The improvements support the organization's quality and process-

 129

performance objectives as derived from the organization's business objectives”

(CMMI Product Team, 2006).

As shown in Table 4.19, it can be concluded that the specific goals of the

organizational innovation and deployment KPA are partially supports by re-

factoring practice, and feedback and simplicity values. However, the process

improvements and adaptations in XP method are made only within projects and are

not documented, because XP method does not have improvement strategy to

improve the software process.

Table 4.19: Coverage of the XP Practices to Organizational Innovation and

Deployment KPA

Specific Goal &Practices Coverage by XP

SG 1. Select Improvements:

Process and technology improvements, which

contribute to meeting quality and process-performance

objectives, are selected.

Specific Practices:

 Collect and analyze improvement proposals

 Identify and analyze innovations

 Pilot improvements

 Select improvements for deployment

Re-factoring practice supports the

incremental improvements to improve the

processes at the team level, where the

simplicity and feedback values enable

these improvements by the project team.

However, in XP method; the process

improvements and adaptations are made

only within projects and are not

documented, because XP method does not

have improvement strategy to improve

the software process.

SG 2. Deploy Improvements:

Measurable improvements to the organization's

processes and technologies are continually and

systematically deployed.

Specific Practices:

 Plan the deployment

 Manage the deployment

 Measure improvement effects

 130

 Causal Analysis and Resolution - L.S

The purpose of this process area is “to identify causes of defects and other problems

and to take action to prevent them from occurring in the future” (CMMI Product

Team, 2006).

As shown in Table 4.20, it can be concluded that the specific goals of the causal

analysis and resolution KPA are largely supports by XP practices, which are: on-site

customer, planning game, test driven development, and continuous integration.

Table 4.20: Coverage of the XP Practices to Causal Analysis and Resolution KPA

Specific Goal &Practices Coverage by XP

SG 1. Determine Causes of

Defects:

Root causes of defects and other

problems are systematically

determined.

Specific Practices:

 Select defect data for analysis

 Analyze causes

Defect prevention is addressed through some practices of XP

method such as: test driven development, continuous

integration, and pair programming. In addition, the feedback

during rapid cycle supports the defect prevention.

XP method focuses on stable source code and baselines, but if

there is any spotted defect through the programming or

integration, a test case will be written to reproduce the defect.

By trying to find common denominator in the code, similar

bugs might be identified.

In addition, by programmers’ tests of the test-driven

development practices, there is a need to create the tests first

and then code (test-first design), and then turn the cycle to add

one more test followed by the code. Therefore, the test-first

design and writing acceptance tests verify that the software is

fully functional and without defects.

Accordingly, it can be concluded that main goals of this

process area are supported by XP method.

SG 2. Address Causes of

Defects:

Root causes of defects and other

problems are systematically

addressed to prevent their future

occurrence.

Specific Practices:

 Implement the action

proposals

 Evaluate the effect of changes

 Record data

 131

4.2.5 Summary of Alignment XP practices to the Specific Goals of CMMI-Dev1.2

Based on the results of theses alignments, Table 4.21 summarizes the results of coverage

ratios of XP practices to CMMI-Dev1.2 KPAs.

 Table 4.21: Coverage ratios or XP practices to CMMI-Dev1.2

No. CMMI-Dev1.2 KPAs Coverage Ratio

1 Project Planning L.S

2 Project Monitoring And Control L.S

3 Configuration Management L.S

4 Technical Solution L.S

5 Product Integration L.S

6 Verification L.S

7 Validation L.S

8 Integrated Project Management +IPPD L.S

9 Risk Management L.S

10 Decision Analysis And Resolution L.S

11 Quantitative Project Management L.S

12 Causal Analysis And Resolution L.S

1 Requirement Management P.S

2 Measurement And Analysis P.S

3 Process And Product Quality Assurance P.S

4 Requirements Development P.S

5 Organizational Process Definition + IPPD P.S

6 Organizational Training P.S

7 Organizational Process Performance P.S

8 Organizational Innovation And Deployment P.S

1 Supplier Agreement Management N.S

2 Organizational Process Focus N.S

 132

As it shown in Table 4.21, it can be concluded that the KPAs of CMMI-Dev1.2 can be

largely supported, partially supported, or not-supported by the practices of the XP

method as follows:

 Largely Supported KPAs

There are twelve KPAs of CMMI-Dev1.2 that are largely supported by the XP

method. These are: project planning; project monitoring and control;

configuration management; technical solution; product integration; verification;

validation; integrated project management +IPPD; risk management; decision

analysis and resolution; quantitative project management; and causal analysis

and resolution.

 Partially Supported KPAs

There are eight KPAs of CMMI-Dev1.2 that are partially supported by the XP

method, and these are: requirement management; measurement and analysis;

process and product quality assurance; requirements development;

organizational process definition +IPPD; organizational training; organizational

process performance; and organizational innovation and deployment.

 Not-Supported KPAs

There are two KPAs of CMMI-Dev1.2 that are not supported by the XP method,

and these are: supplier agreement management and organizational process focus.

Based on the supported levels of this alignment, there is a need to cover the partially and

not-supported KPAs of CMMI-Dev1.2 by adding new related software development,

 133

management, and improvement additions to the XP method and taking into account the

suitability of these activities for SSDFs. Section 4.3 explains the adaptation of the EPA

processes of extending XP method.

4.3 Adapting the Extension-Based Approach (EBA) to Extend XP Method

In this study, the EBA has been adapted for extending XP method to fulfill the partially

and not-supported KPAs that are discussed in Section 4.2.

As discussed in Section 3.6, three main processes were used by the adapted EBA in

extending XP method, which are:

 P1: Specify the extension requirements. Section 4.3.1 discusses this process.

 P2: Select & apply the required additions. Section 4.3.2 discusses this process.

 P3: Verify the Extended-XP method. Section 5.5.1.2 discusses this process.

4.3.1 The Required Additions to Fulfill the Partially and Not-Supported CMMI-

Dev1.2 KPAs

Researchers such as Stephens (2001), Martinsson (2002), Vitoria (2004), Fritzsche and

Keil (2007), Hearty (2008), and Omran (2008) indicate to the required software

development, management, and improvement additions to fulfill the partially and not-

supported CMMI-Dev1.2 KPAs by extending XP method. Therefore, this research used

the useful suggestions for extending XP method to fulfill the missing KPAs of CMMI-

Dev1.2. In addition, the descriptions of XP method (Beck, 2000; Jeffries et al., 2002)

and CMMI-Dev1.2 (CMMI Product Team, 2006) were taken into account during the

 134

extension of XP method to ensure that the required additions were acceptable for XP

principles and to know the requirements of the specific goals of CMMI-Dev1.2 KPAs.

Sections 4.3.1.1 and 4.3.1.2 discuss the required additions that had to be included in

covering the partially and not-supported KPAs.

4.3.1.1 Covering the Partially Supported KPAs

This level consists of eight KPAs of CMM-Dev1.2 that have been partially supported by

XP practices. The following points illustrate the required additions that are needed to

fulfill the specific goals for each partially supported KPA:

 Requirement Management

As shown in Section 4.2.1 about the requirement management KPA, XP method

does not have repository to keep the required data of user stories. In this respect,

Stephens (2001) argued that the user requirements in XP method are written in a

high level of abstraction using use stories; therefore there are problems in tracing

the status of these requirements especially by test-driven development practices. In

addition, Vitoria (2004) believed that the traceability is not developed from the

requirements to the code in XP lifecycle. Therefore, there is a need to relate the XP

phases with the necessary requirement’s specifications (Stephens, 2001; Vitoria,

2004).

Furthermore, Fritzsche and Keil (2007) argued that there is a need to create simple

project repository as a tool before the exploration phase of XP method to be

responsible for keeping all the customer’s requirements, modifying the changes on

 135

these requirements and documenting the status of each requirement, that include the

related functions, interfaces, objects, people, processes, and work products of the

requirements. Thus, this repository enables the project team to trace the user

requirements at any needed time. In this respect, Qureshi (2011) argued that

Microsoft Office could be suitable to be used by XP team as a simple repository

during the development lifecycle.

 Measurement and Analyses

As shown in Section 4.2.1 about the measurement and analysis, XP method does

not have repository to store the measurement data. In this respect, Vitoria (2004),

and Fritzsche and Keil (2007) argued that measurements of the process can be

developed in XP method by using the velocity of every developer using XP lanner;

however the results of these measurements are not documented. Therefore, there is

a need to keep the measurements data (Vitoria, 2004; Wong & Hasan, 2007), and

this can be done by using a simple project repository at the end of each release to

store the measurements data. Furthermore, this KPA is related to the requirement

management KPA; because both require the presence of a data repository.

 Process And Product Quality Assurance

As shown in Section 4.2.1 about the process and product quality assurance KPA,

XP does not demand an explicit evaluation of processes, work products, and

services against the applicable process descriptions. Therefore, there is a need for

several metrics at the end of iteration to release of each project to achieve the

scrutiny of the software products and development process activities (Stephens,

 136

2001; Vitoria, 2004). In this respect, Hearty (2008) and Martinsson (2002)

indicated to the required metrics that could be appropriate for objectively verifying

the products and the processes, which are:

 Release plan adherence.

 Percentage of test cases that are running successfully (number of

successful test cases/ numbers of total test cases).

 Percentage of acceptance tests that are running successfully (number

of successful acceptance tests/ number of total acceptance tests).

 Length of pair programming sessions (average time of each pair

programming session).

 Project velocity (actual time of the implemented user stories of all

iteration / estimated time of all user stories of all iterations).

Additionally, there is a need to keep the results of these metrics in data storage to

be used as guidance for incoming projects. The responsibility for these activities

could very well lie on the coach, with the assistance of the tracker (Fritzsche &

Keil, 2007). In addition, it is important to keep these responsibilities separated from

the developers and testers. The coach or tracker that wants to take on the tasks of

process and product quality assurance measurements should therefore not be

assigned for programming tasks within the same project (Martinsson, 2002). “

Furthermore, in XP method there are no strict guidelines for the resolution of non-

compliance issues and establishing records of quality assurance activities (Fritzsche

& Keil, 2007). Therefore, there is need to convey the metrics through defined

channel to the affected parties and senior management. In this respect, Martinsson

(2002) suggests that the results of these metrics are most conveniently posted to the

 137

team using a white-board or an exposed wall in a central location during the

development process. When metrics out of the ordinary occur, it is important for

the coach to communicate these findings, either directly to the affected party or

during the daily stand-up meeting so that these issues can be resolved. If no

satisfactory solution is found, the issue is brought to the customer or project

manager, depending on the nature of the issue. If no solution can be found at this

level, senior management will be presented with the issue.

 Requirement Development

As shown in Section 4.2.2 about requirement development KPA, there is problem

of non-keeping of the requirement specification (Fritzsche & Keil, 2007; Omran,

2008). Therefore, this KPA is related to the requirement management KPA;

because both require the presence of a data repository. In this respect, the user

requirement specifications are need to be kept in a data repository at the exploration

phase of XP method to help customers and developers to develop the customer’s

requirements and keep the changed customer requirements in this repository to

know the current status of each requirement (Altarawneh & Shiekh, 2008).

 Organizational Process Definition +IPPD

As shown in Section 4.2.2 about the organization process definition +IPPD KPA,

the organizational assets of process definition are outside the scope of the XP

method itself (Fritzsche & Keil, 2007). Therefore, this process area is most easily to

be supported by buying copies of the XP books (i.e. Extreme Programming

Explained, Extreme Programming Installed, and Planning Extreme Programming)

 138

and making these books available within the firm during the development lifecycle

(Boehm & Turner, 2003; Martinsson, 2002). In addition, Paulk (2001) believed that

the various XP-related books, articles, courses, and Web sites will be suitable for

the organization process definition.

As for the additions which will be added to extend the XP method in this study,

there is a need also to support the team members with the descriptions of the

Extended-XP method. Thus, they can use this description during the Extended-XP

development lifecycle to enable them to apply their roles in the right way.

 Organizational Training

As shown in Section 4.2.2 about the organizational training, there are deficiencies

regarding the establishment of records and the assessment of training effectiveness

(Fritzsche & Keil, 2007). Therefore, there is the need to have simple training

process before the first phase XP method to train and educate the project team

about the right implementation of the XP development lifecycle (Altarawneh &

Shiekh, 2008, Vitoria, 2004).

Humphrey (1998) mentioned to the importance of Software Engineering Process

Group (SEPG) members for establishing the definition, control, training, and

improvement tasks needed to launch an improvement program. Therefore, the

responsibility for performing and coordinating these activities once again fall upon

the SEPG who are responsible for arranging the required organizational training,

conducting the needed training for the project team, assessing the training

 139

effectiveness, and recording the data in the data repository (CMMI Product Team,

2006; Martinsson, 2002).

 Organizational Process Performance

As shown in Section 4.2.3 about the organization process performance, XP method

focuses on individuals rather than issues that are process oriented in this process

area, where the important metrics of process performance are not covered by XP

method (Elshafey & Galal-Edeen, 2008; Fritzsche & Keil, 2007).

This process area is strongly related with the process and product quality assurance

process area. Therefore, to fulfill the specific goal of this KPA, there is a need to

have simple metrics at the end of each release, where the responsibility for these

metrics could very well lie on the coach, with the assistance of the tracker

(Martinsson, 2002). These metrics are: (1) calculating the differences between

estimated and actual time spent on user stories or tasks; (2) calculating the velocity

of the project; and (3) calculating the number of failed acceptance tests (Vitoria,

2004; Hearty, 2008). Furthermore, Martinsson (2002) indicated to the need for

keeping the results of these metrics in project repository for making future

estimates of similar user stories

 Organizational Innovation And Deployment

As shown in Section 4.2.4 about the organizational innovation and deployment, the

process improvements and adaptations in XP method are made only within

projects, not documented, and not propagated to the whole firm (Elshafey & Galal-

 140

Edeen, 2008; Omran, 2008). Therefore, XP method does not have improvement

strategy to improve the software process (Fritzsche & Keil, 2007).

In order to fulfill the specific goals of this KPA, there are needs for several

improvement practices (CMMI Product Team, 2006; Martinsson, 2002), which are:

(1) establishing simple training and incentive programs before the first phase of the

development method that making everyone within the organization is aware of their

responsibility to identify the process improvement opportunities; (2) teaching the

project team about writing proposals of their improvement suggestions for the

current software development process; and (3) examining and analyzing the

suggested process improvement opportunities as a whole and testing the important

suggestions in pilot projects to select which ones to implement. Thus, the useful

improvements will be made to the organization’s standard software process and the

defined software processes, as well as communicated through training courses

within the firm. Accordingly, the modified software process will be ready to be

used for the next projects.

In addition, there is a need for SEPG members consisting of software engineering

representatives to be responsible for carrying out the activities of improvement the

process (Martinsson, 2002).

 141

4.3.1.2 Covering the Not-Supported KPAs

This group consists of three KPAs of CMM-Dev1.2 that are not supported by XP

method. Accordingly, there are needs for new activities to fulfill all the KPAs of this

group. The following points explain the needed activities to fulfill these process areas.

 Supplier Agreement Management

This KPA addresses the acquisition of significant products and product components

not delivered to the project’s customer but are used to develop and maintain the

products or services such as: development tools and test environments. However,

XP method does not address this KPA (Elshafey & Galal-Edeen, 2008; Omran,

2008); because this KPA is does not deal with the development process, while the

XP method only addresses development processes.

In order to fulfill the specific goals of this KPA, there is need to have supplier

agreement management process after the exploration phase in XP method to help in

managing and selecting the required product, product components, and services that

are explored by programmers. CMMI Product Team (2006) argued that the

required supplying process is suitable to be implemented by the SEPG members of

the software firms. Therefore, there are needs for several activities to achieve the

specific goals of this KPA (CMMI Product Team, 2006), which are: (1)

Determining the type of acquisition that will be used for the products to be

acquired; (2) Selecting suppliers; (3) Establishing and maintaining agreements with

suppliers; (4) Executing the supplier agreement; (5) Monitoring selected supplier

 142

processes; (6) Evaluating selected supplier work products; (7) Accepting delivery

of acquired products; and (8) Transitioning acquired products to the project.

 Organization Process Focus

This KPA is not addressed by XP method, because this KPA is related to the

organization, while XP method just applies to a project (Elshafey & Galal-Edeen,

2008; Vitoria, 2004). In addition, Fritzsche and Keil (2007) indicated that the

improvements in XP method are often executed during the current project,

therefore the other projects can benefit if people are moved between projects. In

addition, this KPA is related to the large organizations which have too many

projects. In this case, not all the people can benefit from a particular project’s

experience, where the information is not permanent since people can retire or

change organization (Fritzsche & Keil, 2007).

As for SSDFs, to achieve the main goals of this KPA, there is a need to establish

organization repository for extracting the best practices of the current project to use

for incoming projects or by institutionalizing the exchange of lessons learnt

between projects (Fritsch & Keil, 2007). In addition, it will be suitable for SPEG

members in these firms are in carrying out the tasks of managing the process used

at an organizational level (CMM Product Team, 2002; Martinsson, 2002).

As results of the works discussed in sections 4.3.1.1 and 4.3.1.2 about the required

software development, management, and improvement additions need to be added to the

XP method to fulfill the partially and not-supported KPAs of CMMI-Dev1.2, Table 4.22

 143

summarizes these additions and presents the suggested position of these additions based

on XP method phases.

Table 4.22: Required Additions to Fulfil the Partially and Not-Supported KPAs of

CMMI-Dev1.2

Partially & Not-

Supported KPAs

Required Software Development, Management, and Improvement

Additions (Positions based on XP method phases in Italic)

Requirement

Management

Creating simple project repository before the exploration phase of XP

method.

Using project repository during all the phases of XP method.

Measurement And

Analysis

Storing the measurement data in project repository after the iteration to
release phase.

Process And

Product Quality

Assurance

Using several simple metrics for objectively verifying the products and the

process during the productionizing phase.

Conveying the metrics through defined channels to the affected parties and

senior management during the productionizing phase.

Requirements

Development

Storing the requirement specifications in project repository during the

exploration and planning phases.

Using project repository during all the phases of XP method.

Organizational

Process Definition

+IPPD

Supporting the project team with the required books of XP method and the

description of Extended-XP.

Using guidance for the development methodology during all the phases of

XP method.

Organizational

Training

Training the project team on the development methodology before the

exploration phase.

Organizational

Process

Performance

Using several simple metrics to conduct the process performance during the

productionizing phase (related to process and product quality assurance).

Organizational

Innovation And

Deployment

Writing proposals of improvement suggestions during all the phases of XP

method.

Executing the improvement process after the productionizing phase.

Supplier

Agreement

Management

Using process for supplying unavailable development tools and

technologies after the exploration phase

Organizational

Process Focus

Extracting the best practices of the current project after the productionizing

phase

 144

4.3.2 Extending XP method

Prior to starting to extend the XP method by adding the required software development,

management, and improvement additions that are needed to fulfill the missing KPAs of

CMMI-Dev1.2, there is a need to ensure that the new phases of the proposed Extended-

XP method are familiar with other phases of the generic development method. Thus, it

is important to take into account the main activities of the popular software development

process models such as Waterfall, Spiral, Incremental, and Prototyping as a guideline to

extract the new phases of the proposed Extended-XP method.

Sommerville (2011) mentions that the software process consists of four general

activities which are:

 Software specification: this activity is used to establish the required services

from the system, and determine the constraints of system operations and

development. Software specification has two levels; level for high-end users and

customer needs level for system developers;

 Software development: this activity is used to convert and translate the system

specifications to the executable system;

 Software validation: this activity is used to show if the system is achieving its

specifications and meeting customer needs through testing process; and

 Software evolution: this activity is used to maintain and develop the system so

that the system can meet circumstantial changes such as requirement changes

and customer needs.

 145

In addition, Pressman (2009) identifies the main activities of the generic software

process models (Waterfall, Spiral, incremental, and prototyping) which are: (1)

Communication: project initiation, requirement gathering; (2) Planning: estimating,

scheduling, tracking; (3) Modelling: analysis, design; (4) Construction: code, test; and

(5) Deployment: delivery, support, feedback.

Based on the generic phases of the popular software development methodologies, there

is a need to extract the new phases of the proposed Extended-XP method and harmonize

these phases to be a comprehensive phases for all these methodologies. Table 4.23

presents the relations between the phases of the popular software development

methodologies and the required additions that are needed to be covered by Extended-XP

phases and also presents the new phases of the proposed Extended-XP method extracted

from the popular methodologies. In this respect, the distributions of the new software

development, management, and improvement additions were done based on the need for

these additions during the software development lifecycle.

The typical XP method life cycle consists of six phases: exploration, planning, iterations

to release, productionizing, maintenance, and death. However, the proposed Extended-

XP method only consists of the four phases: requirement management phase,

development phase, product delivery and product & process efficiency phase, system

and process evolution phase. Figure 4.1 shows the phases of the proposed Extended-XP

method. Sections 4.3.2.1 to 4.3.2.4 explain these phases in detail.

 146

Table 4.23: Extracting the Phases of the Proposed Extended-XP Method

Source Software Process Activities

 Waterfall, Spiral, Incremental,

Prototyping (Pressman, 2009)
Communication Planning Modeling Construction Deployment

General Software Development

Process Activities

(Sommerville, 2011)

Specification Development Validation Evolution

XP Phases (Beck, 2000) Exploration Planning Iteration to Release Phase Productionizing Maintenance Death

Positions of the Required Additions to Fulfill the Partially and Not-Supported KPAs of CMMI-Dev1.2

KPAs Pre-Method

Requirement

Management

Creating

project

repository

 Using project repository (during all the development methodology)

Measurement And

Analysis

 Storing the

measurement data in

project repository

Process And Product

Quality Assurance

 Using some metrics

for objectively

verifying the products

and the process

 Conveying the metrics

through defined

channels to the

affected parties and

senior management.

Requirements

Development

 Storing the

requirement

specifications in

project repository

 Using project repository (during all the development methodology)

 147

Organizational

Process Definition

+IPPD

Supporting

the project

team with the

description of

Extended-XP

 Using the description of Extended-XP method during the software development lifecycle.

Organizational

Training

Training the

project team

on the

development

methodology

Organizational

Process Performance

 Using some metrics to

conduct the process

performance.

Organizational

Innovation And

Deployment

 Writing proposals of improvement suggestions

Executing the

improvement process

Supplier Agreement

Management

 Using process for supplying

unavailable development tools and

technologies.

Organizational

Process Focus

 Extracting the best

practices and lessons learnt

of the current project

Extracting of the Generic Phases of the Proposed Extended-XP method.

The Proposed Extended-

XP Phases

Pre-

Extended-

XP

Requirement Management Development

Product Delivery

and Product &

Process Efficiency

System and Process

Evolution

148

Development Phase

Product Delivery and

Product & Process

Efficiency Phase

System and Process

Evolution Phase

Stories

Plan the customer’s

requirements

O
N

Supply the required

development tools

Required

development

tools

Requirement

Management Phase

Project

Repository

Best practices

& lessons

learnt

Project Repository

Small release

Conduct processes

performance

Efficiency of the

process

Project Repository

If product is completed

OR there are No new

user requirements

No

Final release

Test product

Legend

Inputs /

Outputs

Processing

Condition

Data

Repository

Product

Release

Data Flow

Explore the customer’s

requirement

Planned

customer’s

requirements of

the next release

If the required

development tools

are available in

 the firm

Yes

Customer’s

requirement for

the next release

Explore the customer’s

requirement

User

requirement

status of the

release

Check the user

requirements of the

release

Project Repository

If the user

requirements of

the release are

satisfied

Yes

O
N

Planned

customer’s

requirements

of the next

release

Required

development

tools

Improve the

development

processes

Y
es

Users

requirements

status

Write improvement proposals (by Project Team)

Improvement

proposals

Project Repository

Project

Repository

Explore the customer’s

requirement

For Repeated

 Figure 4.1: The Proposed Extended-XP Method Phases

149

Prior to starting the phases of the proposed Extended-XP method, there is a need to

identify and create the required simple project repository which is needed to keep the

training records, user requirement data, and to arrange the changes that will happen on

the user requirements data during the project. Then, there is the need to train the project

team to implement the proposed Extended-XP method in the right way. Therefore,

training courses for the whole project team are important to ensure that they have good

knowledge about their roles. Moreover, there is the need to support the project team

with the required XP method books and the description of the proposed Extended-XP

method.

 In this aspect, SEPG members are responsible for: establishing planning for training the

developers; estimating the time required for training; determining if there is need for

outsourced professional team in the training process; training the developers on the

proposed Extended-XP method; training the project team on writing the improvement

suggestion during the project development; assessing the project teams efficiency; and

recording the training efficiencies in the project repository. As a result of the training

process, the teams will be ready to implement the proposed Extended-XP method in the

right way.

4.3.2.1 Phase One: Requirement Management

This phase has all the development and management activities of the exploration and

planning phases of XP method that are mentioned in Section 2.5.2.1, and also there are

new additions that have been added to fulfill the requirement of partially and not-

150

supported KPAs of CMMI-Dev1.2. In this phase, there are three main processes as

follows:

 Explore Customers Requirements Process

Customers write story cards which contain features to be implemented in the first

release (customer’s requirements), where each story card contains one feature. Then,

programmers analyze the user requirements and identify the required development

tools that will be needed to be used in the project. Based on these required

development tools, programmers need to select the available development tools that

are already available in the firm, and which of the unavailable development tools

need to be acquired from suppliers.

 Supply the Required Development Tools Process

This process is used to support the project with the unavailable required

development tools or services. In this aspect, programmers are responsible to

identify the unavailable required development tools and services. Then, the SEPG

members are responsible for implementing the supporting process. During this

process, there are several activities that need to be done if there is a need to supply

the project with new development tools or services. In implementing the supplying

process, there is a need for the following:

 Determining Acquisition Type: determining the type of acquisition that

will be used for the products to be acquired such as: (1) purchasing

commercial off-the-shelf (COTS) products; (2) obtaining products through

a contractual agreement; (3) obtaining products from an in-house vendor;

and (4) obtaining products from the customer.

151

 Selecting Suppliers: selecting suppliers based on an evaluation of their

ability to meet the specified requirements and established criteria.

 Establishing Supplier Agreements: establishing and maintaining formal

agreements with the supplier.

 Executing the Supplier Agreement: performing activities with the supplier

as specified in the supplier agreement.

 Monitoring Selected Supplier Processes: selecting, monitoring, and

analyzing processes used by the supplier.

 Executing the Supplier Agreement: selecting and evaluating work products

from the supplier of custom-made products.

 Accepting the Acquired Product: ensuring that the supplier agreement is

satisfactory before accepting the acquired product.

 Transition Products: transiting the acquired products from the supplier to

the project.

Based on the supplying process; the required development tools or services will be

known by the project team. Then, the project team needs to familiarize themselves

with the required development tools, services, practices, and technologies.

Furthermore, based on the customers’ requirements, the developers need to develop

a prototype to explore the architecture possibilities.

 Plan the Customer’s Requirements Process

This process is used to estimate each story card on how long it would take to

implement this card and based on these estimations, customers and programmers

decide together about the prioritization of each card and agree about the contents of

the first release. Then, the release plan/schedule is finally set up which highlights the

features that will be implemented in each release. Then, the user requirements data

152

and the required development tools will be kept in the project repository. At the end

of this stage; the customer’s requirements will be used as inputs in the development

phase.

4.3.2.2 Phase Two: Development

This phase has the same activities of iteration to release phase in the XP method, where

it includes several iterations before the first release. The schedule set in the first release

is divided into a number of iterations, where these iterations create one or more

functions of the system in each one of them. The design as well as the coding is done,

but before any line of code is written, firstly a unit test to test these lines has to be

developed by the programmers. In the first iteration, the system with the architecture of

the whole system is created. Functional tests are conducted at the end of each iteration

by customer. Finally, as soon as the developed features are tested by the developers

(probably by automated unit tests), these are given to the customer. After the last

iteration, the system is ready to deliver the first release. Then, it goes to the next phase.

4.3.2.3 Phase Three: Product Delivery and Product & Process Efficiency

This phase consists of the same activities of productionizing phase in XP method and

other additions that are needed to support the quality assurance of process and product

and to achieve the organizational process performance. However, this phase consists of

extra testing and performance checks, where the customer performs functional tests and

validates if the product works as intended. If new requirements are elicited, they are

either included directly or a new story card is created which will be considered in the

following release exploration. Furthermore, new changes may be found and they might

153

still be included in the current release, and the postponed ideas and suggestions are

documented for the later implementation.

In addition, there is the need to implement several metrics that could be appropriate for

objectively verifying the products and the process such as: (1) release plan adherence;

(2) percentage of test cases that are running successfully (number of successful test

cases/ numbers of total test cases); (3) percentage of acceptance tests that are running

successfully (number of successful acceptance tests/ number of total acceptance tests);

(4) length of pair programming sessions; and (5) project velocity (actual time of the

implemented user stories of all iteration / estimated time of all user stories of all

iterations).

Furthermore, it is important to convey the metrics through defined channels to the

affected parties and senior management. The metrics are most conveniently posted to

the team using a white-board or an exposed wall in a central location. When metrics out

of the ordinary occur it is important for the coach to communicate these findings, either

directly to the affected party or during the daily stand-up meeting, and these issues will

be resolved. If no satisfactory solution is found, the issue is brought to the customer or

project manager, depending on the nature of the issue. If no solution can be found at this

level, senior management will be presented with the issue. At the end of this phase,

there is a need to keep the metrics results in the project repository to help with the

measurement of the same user requirements for incoming projects.

154

4.3.2.4 Phase Four: System and Process Evolution

This phase consists of the same activities of maintenance and death phase of XP method

with several additions. Therefore, after the first release is delivered and taken into use,

the XP project has to keep the system running whilst implementing new features. Then,

these features will commence from the exploration process in the first phase of the

proposed Extended-XP method. This requires an effort for the customer support tasks

too, which may decelerate the implementation pace of the new features. The customer is

supported by (probably new) team members whose task is to ensure that certain

customer requests, i.e. improvement suggestions are considered. This phase may require

incorporating new people into the project team and changing the team structure. Based

on this, the system will undergo the final release, or the system will be divided for some

reasons such as when the costumers does not have new stories to implement, or when

the system can not satisfy the customers’ needs, as well as when the system is too

expensive for modification.

At end of this phase, there is the need to review the organizational process (improve the

development processes) to understand the current strengths and weaknesses of the

organization’s processes. Besides, this review can help to know the required

development activities that are important for improving the overall process capability

and can be used to satisfy the customer’s needs within the time constraints, while

maintaining high quality products. This can be done by having the project team writing

proposals during the project, and suggesting the required improvement activities. Based

on these proposals, SEPG members discuss and analyze these proposals to determine the

155

required modification on the software development processes. Furthermore, SEPG

members are responsible for meeting the project team to discuss the best practices for

implementing the proposed Extended-XP method by using the specific practices of

CMMI-Dev1.2 as mean items in this discussion. Accordingly, they can identify best

practices of implementing the proposed Extended-XP method and keeping these best

practices in the project repository to be taken into account for the incoming projects.

4.4 Establishing the Proposed Software Development Process Improvement

Framework

The main aim of this research is to construct a suitable software development process

improvement framework for SSDFs. Sections 4.4.1 to 4.4.3 will explain the foundation

of the proposed framework, the stages of the framework, and the roles of the framework

members.

4.4.1 Framework Foundation

The SPI framework consists of four generic elements, which are software process,

assessment, capability determination, and improvement strategy as discussed in Section

2.2. This study aims to construct a suitable software development process improvement

framework for SSDFs. Accordingly, the generic elements of the SPI framework must be

used as a baseline to develop the proposed framework. Thus, there is need to rearrange

these elements to be suitable for software development and improvement issues by

integrating the CMMI-Dev1.2 model and the proposed Extended-XP method as a

generic elements in the proposed framework.

156

Figure 4.2 shows the foundation elements of the proposed framework. The generic

elements of SPI framework were used as a baseline structure to develop the desired

framework. Nevertheless, several changes were done to the contents of the generic

elements of the SPI framework because the proposed software development process

improvement framework focuses on development and improvement issues. In this

foundation, the proposed Extended-XP was used as a software development method

instead of the improvement strategy, while the CMMI-Dev1.2 model was used as an

assessment model in the proposed framework.

Foundation of the Proposed Software Development Process Improvement Framework

Software Development

 Processes in Small Software

Development Firm

Capability Levels of Each KPA

Leads to Leads to

Is Examined by Identify

 Maturity of

New Capability

 Levels of Each

KPA

Motivation

Results of

Adopting

Process
Data Flow

Input/ Output Legend:

Assess the Current Software

Processes by CMMI-Dev1.2

Questionnaires

Adopt the Proposed

 Extended-XP Method on

the Current Project

Assess the Modified Software Process

by CMMI-Dev 1.2 Questionnaires

Figure 4.2: Foundation of the Proposed Software Development Process Improvement

Framework

4.4.2 The Proposed Software Development Process Improvement Framework

The proposed software development process improvement framework consists of three

stages which aim to improve the software development processes, which are: using the

CMMI-Dev1.2 KPAs questionnaires to assess the current software development

157

processes, adopting the proposed Extended-XP method to improve these possesses, and

assessing the modified software development process. Figure 4.3 shows the stages of the

proposed software development process improvement framework.

Assess the current software development processes based on

CMMI-Dev1.2 KPAs

Capability levels of the current software

development processes

Results of the adopting the proposed

 Extended-XP method

Assess the software development processes based the KPAs of

CMMI-Dev1.2

The Proposed Software Development Process Improvement Framework

for SSDFs

Inputs /

Outputs
Process

Legend

Data Flow

Stage One:

Assessing the

Current

Software

Development

Processes

Stage Two:

Adopting the

Proposed

Extended-XP

Method

Stage Three:

Assessing the

Modified

Software

Development

Processes

CMMI-Dev

1.2 KPAs

Software development

processes for the SSDF

Capability levels of the

modified software development

processes

Stage Name

Documentation of

the proposed

Extended-XP

method

Educate and train the project team on the proposed Extended-

XP method

Trained team

Adopt the proposed Extended-XP method as a software

development method

Project

Repository

Project

Repository

Data

Repository
Condition

Proposed

Extended-XP

method

Figure 4.3: The Proposed Software Development Process Improvement Framework for

SSDFs

The proposed software development process improvement framework (shown in Figure

4.3) consists of three stages as follows:

 Stage One: Assessing the Current Software Development Processes

158

Prior to starting the assessing of the current software development processes, it is

important to create a suitable simple project repository by SEPG members to keep

the important date during the implementation of this framework, and during

proposed Extended-XP phases.

As discussed in Section 2.3.5, Self-Assessment is suitable for SSDFs, because the

cost is lower and mini-assessments are effective for SPI in these firms. Therefore,

the SEPG members start to assess the current software development processes in

the SSDFs by using the CMMI-Dev1.2 KPAs as main items to identify the

capability levels of each area for these processes (refer to Appendix F,

questionnaire of assessment the current software development processes). In this

aspect, three scales can be used to identify the capability levels of the current

development processes, which are:

 Largely Supported: the current software development processes largely

support the specific goals of the KPA.

 Partially Supported: the current software development processes

partially supports the specific goals of the KPA.

 Not-Supported: the current software development processes do not

support the specific goals of the KPA.

At this stage, the firms will know the weaknesses of the current software

development processes. Thus, these weaknesses will give the firms motivation to

improve their processes based on the proposed Extended-XP method, while the next

stage illustrates the required processes of adopting this method by the firms.

159

 Stage Two: Adopting the Proposed Extended-XP Method

To adopt the proposed Extended-XP method by the firms, there are two processes

that must be followed, which are:

 Educate and Train the Project Team on the Proposed Extended- XP

Method

 In order to implement the proposed Extended-XP method in the right way;

all of the involved team members in software development processes must

have a good knowledge of their roles, and they must be trained. The best

way to learn the proposed Extended-XP method is by educating and

training courses. Furthermore, there is need to support the team with the

required XP books and with the documentation of the proposed Extended-

XP method during the training and the development lifecycle.

 In this case, SEPG members are responsible for carrying out the training

process before starting the implementation of the proposed Extended-XP

method by the firms, whereas these members are responsible for:

establishing plans for training for developers, estimating the time required

for the training, determining if there is need for outsourcing the

professional team in training process, training the developers on how they

can implement the activities of the proposed Extended-XP method, training

the project team on writing the improvement suggestion during the project

development, assessing the project teams’ efficiency to know if they are

ready to implement the proposed Extended-XP method or there is need for

160

more training, and recording the training efficiencies in the project

repository.

 As a result of the educating and training process and especially the results

of assessing the team’s efficiency; it will be known if there are needs for

more training or not. Accordingly, the teams will be ready to adopt the

proposed Extended-XP method in the right way.

 Adopt the Proposed Extended-XP Method

 Based on the descriptions of the proposed Extended-XP method mentioned

earlier in Section 4.3.2.1 to 4.3.2.4 and based on the trained team from the

previous step, the project team is ready to adopt this method in developing

the software project. At the end of this phase, the results of the

implementing of the proposed Extended-XP method will be known and it

will be used in Stage Three.

 Stage Three: Assessing the Modified Software Development Processes

Referring to the results of adopting the proposed Extended-XP method, SEPG

members are responsible for discussing these results by meeting the project team,

whereas CMMI-Dev1.2 KPAs will be used as the mean to identify the new

capability levels of the modified software development processes.

161

4.4.3 Roles of the Proposed Software Development Process Improvement

Framework

The proposed Extended-XP method is a generic element in the proposed framework,

whereas this method is used as a software development method to improve the current

software development processes in the firm in the Stage Two of the proposed

framework. Moreover, as mentioned earlier in Section 4.4.2; there are several activities

that need to be applied before and after the adopting of the Extended-XP method during

the stages of the proposed framework. Therefore, it can be concluded that there are two

groups of roles in the proposed framework as follows:

 Framework Roles (Before and after adopting the proposed Extended-XP

method):

Referring to the stages of the proposed framework; the SEPG members are

responsible for several roles before and after the adoption of the proposed

Extended-XP method, therefore they are responsible for:

 In Stage One of the proposed framework, SEPG members are

responsible for creating the suitable project repository to keep the

important data during the implementation of the proposed framework

(including the proposed Extended-XP method), and assessing the

current software development processes to determine the capability

level of these processes as a self-assessment.

 In Stage Two of the proposed framework, SEPG members are

responsible for arranging the required organizational training before

starting to adopt the proposed Extended-XP method, where they are

162

responsible for: establishing plans for training the developers;

estimating the time required for training; determining if there is need for

outsourcing the team in training process; training the developers on

how they can implement the activities of the proposed Extended-XP,

training the project on writing the improvement suggestion during the

project development; and recording the training results and assessing the

training efficiencies.

 In Stage Three of the proposed framework, SEPG members are

responsible for discussing the results of implementing the proposed

Extended-XP method to identify the new capability levels of the firm.

 Extended-XP Method Roles (During the proposed Extended-XP lifecycle):

The Extended-XP method has the same roles of XP method that are mentioned in

Section 2.5.1.3 such as programmer, customer, tester, coach, tracker, consultant,

and big boss. Nevertheless, there are several practices that have been added to the

coach, tracker and programmer roles. There are also new roles that have been

added to the roles of the proposed Extended-XP method, which are SEPG

members. Next points discuss the additional practices that are added to the roles of

coach, tracker, and programmer, and also the practices of the SEPG role during the

proposed Extended-XP method:

 SEPG Members

 SEPG members are responsible for the improvement strategy at the last

phase of proposed Extended-XP method by collecting and analyzing the

improvement proposals to determine the required modification. They are

163

also responsible for extracting the strong best practices and writing lessons

learnt from the development processes and keeping these practices and

lessons in the project repository to help other projects in the same firm.

 Coach and Tracker

 Coach and tracker together are responsible for implementing the required

metrics to achieve the objective of process and product quality assurance,

and the process performance at Phase Three of the proposed Extended-XP

method as follows:

 Calculating the difference between estimates and actual time spent

on user stories or tasks.

 Calculating the velocities of the projects and the length of pair

programming sessions and keeping it into the project repository.

 Calculating the number of failed acceptance tests, and number of

severity defects after release.

 Programmers and SEPG Members

Programmers and SEPG members together are responsible for

implementing the supplying process at the first phase of Extended-XP

method, where programmers are responsible for extracting the required

unavailable development tools or services; while SEPG members are

responsible for executing the supplying process with the external suppliers.

164

4.5 Conclusion

This chapter has described in detail the steps of developing the proposed software

development process improvement framework for SSDFs. The development of the

proposed framework was started by aligning XP practices to the KPAs of CMMI-

Dev1.2. Based on the results of this alignment, EBA was adapted to extend XP method.

The chapter illustrated in detail the integration of the Extended-XP method and CMMI-

Dev1.2 that has been performed based on the generic elements of SPI framework to

develop the proposed framework.

In this chapter, the phases of the Extended-XP method are discussed, which are: stages

of the proposed framework are explained. These stages are: requirement management

phase, development phase, product delivery and product & process efficiency phase,

system and process evolution phase. In addition, the stages of the proposed framework

are presented, which are: assessing the current software development processes,

adopting the proposed Extended-XP method, and assessing the modified software

development processes. Chapter 5 will discuss the verification process of the proposed

framework using focus group method.

165

CHAPTER FIVE

VERIFYING THE PROPOSED SOFTWARE DEVELOPMENT

PROCESS IMPROVEMENT FRAMEWORK

This chapter presents the verification process of the proposed framework. It presents the

three rounds which were conducted to verify the proposed framework through focus

group method coupled with Delphi technique. At the end of this chapter, the modified

software development process improvement framework and the modified Extended-XP

method are presented.

5.1 Introduction

As highlighted in Section 4.3.1, previous literatures were used to cover the missing

KPAs of CMMI-Dev1.2 by adding new development, management, and improvement

additions to extend XP method. Furthermore, Section 4.4.2 also illustrated the stages of

the proposed framework, which was developed based on CMMI-Dev1.2, the proposed

Extended-XP method, and the generic elements of SPI framework. Therefore, to ensure

that the proposed framework is compatible with CMMI-Dev1.2 KPAs and suitable for

SSDFs, there is need to: (1) verify the compatibility of the proposed framework to the

specific goals of CMMI-Dev1.2 KPAs; (2) verify the commitment of the proposed

Extended-XP method to XP values; (3) verify the suitability of the proposed framework

and proposed Extended-XP roles for their related practices and for SSDFs; and (4)

verify the suitability of the proposed framework and the proposed Extended-XP

structures for the software development and improvement issues in the SSDFs. In this

respect, focus group method coupled with Delphi technique was used to verify the

166

proposed framework. Sections 5.2 to 5.5 present focus group participants, verification

questions, verification schedule, and the results of verification rounds.

5.2 Focus Group Participants

Smaller focus groups are becoming increasingly popular because smaller groups are

easier to recruit and host, and they are more comfortable for participants. The ideal size

of a focus group for most studies is six to ten participants (Krueger & Casey, 2000).

This is especially true if the questions are meant to gain understanding of peoples’

experiences and if the researcher wants more in-depth insights. These aims are usually

best accomplished with a smaller group. According to Billinger (2005), the respondents

are supposed to have a connection to the subject and an understanding of the matter.

Thus, in this research, the expert researchers of software development and improvement

processes fields and expert developers and managers in SSDFs were chosen to verify

and amend the proposed framework to be compatible for the KPAs of CMMI-Dev1.2,

taking into account the generic characteristics of SSDFs.

Three expert researchers were selected as members of the focus group sessions for this

study because they have good knowledge of CMMI-Dev1.2 and XP method, and have

published in the area of software development and improvement. Furthermore, it was

convenient to meet them in Jordan. One of the participants is from Sudan and is working

in Jordan, and the second researcher is from Syria and also working in Jordan. Another

member of the focus group is a Jordanian researcher who is working as a lecturer and

researcher at a Jordanian university (refer to Appendix G, researchers’ profiles).

Additionally, based on the Jordanian Ministry of Industry and Trade, it was convenient

167

to access the addresses of some SSDFs in Jordan. Using telephone calls employees of

these firms were asked about their willingness to participate in the verification process

of the proposed framework. As a result, three professional developers, two professional

managers, and two members of the software engineering process group who are working

in different SSDFs in Jordan agreed to participate in verifying the proposed framework

through focus group sessions.

There are several reasons to choose Jordan as the country to verify the proposed

framework by focus group method, which are:

 The researcher is from Jordan and has good connection of the native language

which is Arabic.

 Most of Jordanian software development firms are small and they have the same

generic problems with software development and improvement processes (El

Sheikh & Tarawneh, 2007). Furthermore, it was easy to find suitable members to

verify and validate the desired framework.

 In order to carry out the focus group method, there is need to meet the

participants in person as a group. Therefore, it easier to contact the Jordanian

members who are related to the research topic for participation.

 The Arabic language (native language) of participants helped in discussing and

understanding each other during the sessions of the focus group.

 The three researchers who participated in the focus group sessions are working

in Jordan, so it was easy for them to attend the sessions of the focus group.

168

5.3 Verification Questions

The verification questions had been identified to ensure that the proposed framework is

compatible to the specific goals of CMMI-Dev1.2 KPAs and also to ensure that the

proposed Extended-XP method still keep the agility values of XP method, because

SSDFs need to have a lightweight method in developing their software products.

Furthermore, there is a need to ensure that the structures of the proposed framework and

the proposed Extended-XP method were suitable for these firms, and also to ensure that

the proposed framework and proposed Extended-XP roles were suitable compared to

their related practices. Therefore, the questions that were used in verifying the proposed

framework consist of the following four parts:

 Part One: Verifying the compatibility of the proposed framework to the

specific goals of CMMI-Dev1.2 KPAs

The specific goals of the CMMI-Dev1.2 KPAs were used as the main items in

developing the desired framework. It was necessary to make sure that the proposed

framework contents were compatible to these specific goals. In this respect, it was

important to use a suitable scale to identify the compatibility degree or ratio of the

proposed framework contents to the standard questionnaire of CMMI-Dev1.2

KPAs. Vasiljevic and Skoog (2003) in their thesis of the same field of software

process improvement used the five scales (1- Strongly Disagree and 5- Strongly

Agree). Therefore, this study used a five scales response in this part. Since this

part aims to verify the compatibility of the proposed framework to the KPAs of

CMMI-Dev1.2, the scale-response is labeled from 1-Strongly Incompatible to 5-

Strongly Compatible.

169

 Part Two: Verifying the commitment of the proposed Extended-XP to XP

Values

Based on the characteristics of SSDFs, lightweight software development methods

are more suitable for these firms, such as agile methods that are more applicable

for SSDFs because they have simple practices and lightweight values in the

manner of software development (Fruhling & Vreede, 2006; Altarawneh &

Shiekh, 2008; Fernandeas, 2009).

As mentioned in Section 2.5.2, XP is a lightweight method with four key values

(Beck, 2000) which are communication, simplicity, feedback, and courage. In this

study, XP method was used as a software development method in developing the

proposed framework. In implementing agile methods in the right way, there is

need to improve communication, to seek simplicity, to get feedback on how well

you are doing, and to always proceed with courage (Saarnak & Gustafsson, 2003).

In addition Koch (2003) stresses the importance of keeping agile values if there is

need for any extensions in these methods. Therefore, there is a need to keep these

values up in the proposed Extended-XP method in order to be used by SSDFs.

In this respect, this part consists of four Yes/No questions that were used to ensure

that the proposed Extended-XP method was still keeping the values of XP method.

Nevertheless, to get the feedback from the respondents about the required

modification, the choices of answering these questions are the following:

170

 Yes without modifications: the proposed Extended-XP method is fully

committed to the XP value, and there is no need for any modification.

 Yes with modifications: the Extended-XP method is partially committed

to the XP value, and there are needs for modifications.

 No: the proposed Extended-XP method is not committed to the XP value.

 Part Three: Verifying the suitability of the proposed framework and the

proposed Extended-XP roles for their practices

The XP method is a collection of different practices and roles to achieve these

practices that are inherited from some previous methodologies (Nawaz & Malik,

2008). In addition, it is important for each member in the XP team to know his/her

role and the specific practices of this role (Beck, 2000). As mentioned in Section

4.4.3, the roles of the Extended-XP method have several additions compared to the

roles of the standard XP method especially in the roles of coach, tracker, and

programmers. In addition, there is a new role that has been added to the Extended-

XP method compared to XP method which is SEPG role. Furthermore, SEPG role

were responsible for several activities before and after the adoption of the

Extended-XP method during the stages of the proposed framework. In this respect,

there is need to ensure that these roles are distributed in a right way and do not

conflict with their practices. Based on the expected answers for each question, the

suitable scale for these questions were: Yes without modifications; Yes with

modifications; or No.

171

 Part Four: Verifying the suitability of the proposed framework and the

proposed Extended-XP structures for the software development process

improvement issues in SSDFs

SPI models are used to inform the organizations of what to do in general terms, but

do not say how to do it. On the other hand, XP is a set of best practices that

contains fairly specific information about how to implement the model for a

particular type of environment (Paulk, 2001; Martinsson, 2002). Furthermore, it is

often assumed that CMMI compliant processes need to be heavyweight,

bureaucratic and slow-moving (Anderson, 2005). Nevertheless, agile practices

such as XP have been said to offer a less bureaucratic way of developing quality

software focusing on human centered processes (Bos & Vriens, 2004).

In addition, XP method and SPI model together form a comprehensive framework

for structuring the software development organization (Martinsson, 2002). The

proposed framework in this study consists of XP method, CMMI-Dev1.2, and the

generic elements of SPI framework. Therefore, it is important to ensure that the

proposed framework components are integrated in a suitable structure, and

achieves the needed development and improvement issues. To answer questions

related to this, there are three scales that were used to reflect the feedback from the

respondents, which are: Yes without modifications; Yes with modifications; or

No.

172

5.4 Verification Schedule

As mentioned in Section 5.2, the addresses of the focus group members were known.

Then, the proposed framework and the required data for verifying were posted as a hard

copy to those members to give them sufficient time (two weeks before the first session)

to read and understand the contents of the related data which were needed to verify the

proposed framework.

Krueger and Casey (2000) and Billinger (2005) argued that the use of focus group plan

helps the researcher to remember everything important during focus group sessions

Accordingly, Table 5.1 presents the structured focus group plan (Delphi Rounds) that

was followed in this research:

Table 5.1: Structured Focus Group Plan of Verification Process (Delphi Rounds)

Rounds Session Date& Time Activities

Round One Session One
10- Nov -2010

9 am -11 am

 Present myself.

 Thanking the focus group members for the

participation.

 Present the research problem.

 Present the purpose of the research.

Session Two
10- Nov -2010

12 pm- 1.5 pm

 Explaining the verification questions.

 Answering the verification question individually.

 Explaining if there is any inquiry about the

verification questions.

Session Three
10- Nov -2010

2 pm- 5 pm

 Discussing the answers and suggestions of each

focus group member by all the members.

Round Two 12- Nov- 2010 To

15- Jan- 2011
 Modifying the proposed framework as suitable

suggestions of focus group members.

Round

Three

Session One
22- Jan – 2011

1 pm- 4 pm

 Viewing the modified framework to the members.

 Asking if there is need for more new modifications.

173

5.5 Results of Verification Rounds

Three rounds were completed to verify the proposed framework. Sections 5.5.1 to 5.5.3

discuss the results of each round and the required modifications of the proposed

framework.

5.5.1 Results of Round One

In the first session of this round, the researcher started by presenting a brief Curriculum

Vitae (C.V) of himself and thanking the members for their acceptance and participation

in the verification process. Then, the verification process continued with the

presentation of the research problem and the main aim of this research. In the second

session, the researcher explained the verification questions that are needed to verify the

proposed framework. Focus group members started to answer the verification questions

individually. During this session, there were several inquiries about the verification

questions that were presented by the researcher. As a result of the answers provided at

this session, the third session started by discussing the answers and suggestions of the

focus group members. Then, the results of the third session were documented by the

researcher to identify the required modifications that were needed to be done to the

proposed framework. Sections 5.5.1.1 to 5.5.1.4 present the answers of the four parts of

the verification questions and the related suggestions for each part.

174

5.5.1.1 Answers and Suggestions of Part One Questions

This part consists of 22 questions aimed to verify the compatibility of the proposed

framework to the specific goals of CMMI-Dev1.2 KPAs. The following points present

the answers and suggestions for the questions from this part of the process.

 Focus Group Answers of Part One

The focus group members were asked to rate compatibility levels of the proposed

framework to the specific goals of CMMI-Dev1.2 KPAs. The questions of this

part consist of a scaled-response from 1 to 5 (1: strongly incompatible and 5:

strongly compatible). Table 6.2 presents the frequencies, percentages, standard

deviation (S.D), and the mean values (M.V) of each KPAs, where these values

were performed using SPSS (statistics descriptive).

175

Table 5.2: Summary of Focus Group Answers for the First Part Questions

CMMI-Dev 1.2

KPAs

1 2 3 4 5
M.V S. D

Freq % Freq % Freq % Freq % Freq %

Requirement

Management

0 0 0 0 0 0 3 30 7 70 4.70 .48

Project Planning 0 0 0 0 0 0 4 40 6 60 4.60 .51

Project Monitoring

and Control

0 0 0 0 0 0 5 50 5 50 4.50 .52

Supplier

Agreement

Management

0 0 0 0 3 30 4 40 3 30 4.00 .81

Measurement and

Analysis

0 0 0 0 3 30 2 20 5 50 4.20 .91

Process and

Product Quality

assurance

0 0 0 0 3 30 3 30 4 40 4.10 .87

Configuration

Management

0 0 0 0 0 0 5 50 5 50 4.50 .52

Requirements

Development

0 0 0 0 4 40 6 60 0 0 3.60 .51

Technical Solution 0 0 0 0 0 0 5 50 5 50 4.50 .52

Product Integration 0 0 0 0 3 30 4 40 3 30 4.00 .81

Verification 0 0 0 0 0 0 4 40 6 60 4.60 .51

Validation 0 0 0 0 0 0 3 30 7 70 4.70 .48

Organizational

Process Focus

0 0 0 0 3 30 4 40 3 30 4.00 .81

Organizational

Process Definition

+IPPD

0 0 0 0 4 40 4 40 2 20 3.80 .78

Organizational

Training

0 0 0 0 0 0 5 50 5 50 4.50 .52

Integrated Project

Management

+IPPD

0 0 0 0 4 40 4 40 2 20 3.80 .78

Risk Management 0 0 0 0 4 40 6 60 0 0 3.60 .51

Decision Analysis

and Resolution

0 0 0 0 3 30 5 50 2 20 3.90 .73

Organizational

Process

Performance

0 0 0 0 3 30 7 70 0 0 3.70 .48

Quantitative

Project

Management

0 0 0 0 4 40 4 40 2 20 3.80 .78

176

Organizational

Innovation and

Deployment

0 0 0 0 4 40 6 60 0 0 3.60 .51

Causal Analysis

and Resolution

0 0 0 0 3 30 7 70 0 0 3.70 .48

As was mentioned previously, the first part of the verification questions consisted

of a scaled-response from 1 to 5. In Five-Point Scales, the interval width is

calculated by (n-1)/n formula, where “n” is the number of scales (Birisci et al.,

2009; Bidad & Campiseno, 2010). Based on this, the interval width of this part =

(5-1) / (5) = 0.8. Table 5.3 shows the definitions of the interval scales and explains

the level of compatibility for each interval scale.

Table 5.3: Interval Scale Definition of the Compatibility

Mean Interval

presentation

Degree of Compatibility

From 1 To 1.80 Strongly Incompatible

From 1.81 To 2.60 Incompatible

From 2.61 To 3.40 Average

From 3.41 To 4.20 Compatible

From 4.21 To 5 Strongly Compatible

As shown in Table 5.3, mean values were used to identify the compatibility degree

of each KPA in part one questions, whereas the mean values between 1 to 1.80 are

strongly incompatible, between 1.81 to 2.60 are incompatible, between 2.61 to

3.40 are average, between 3.41 to 4.20 are compatible, and between 4.21 to 5 are

strongly compatible. Table 5.4 presents the compatibility degree for each process

area.

177

 Table 5.4: The Compatibility Degree for Part One Questions

CMMI-Dev1.2 Level 2 KPAs
Mean

Value
Levels of Compatibility

Requirement Management 4.70 Strongly Compatible

Project Planning 4.60 Strongly Compatible

Project Monitoring and Control 4.50 Strongly Compatible

Configuration Management 4.50 Strongly Compatible

Supplier agreement management 4.00 Compatible

Measurement and analysis 4.20 Compatible

Process and product quality assurance 4.10 Compatible

CMMI-Dev1.2 Level 3 KPAs

Technical Solution 4.50 Strongly Compatible

Verification 4.60 Strongly Compatible

Validation 4.70 Strongly Compatible

Organizational Training 4.50 Strongly Compatible

Requirements Development 3.60 Compatible

Product integration 4.00 Compatible

Organizational process focus 4.00 Compatible

Organizational Process Definition +IPPD 3.80 Compatible

Integrated Project Management +IPPD 3.80 Compatible

Risk management 3.60 Compatible

Decision Analysis and Resolution 3.90 Compatible

CMMI-Dev1.2 Level 4 KPAs

Organizational Process Performance 3.70 Compatible

Quantitative Project Management 3.80 Compatible

CMMI-Dev1.2 Level 5 KPAs

Organizational Innovation and

Deployment
3.60 Compatible

178

Causal Analysis and Resolution 3.70 Compatible

Looking at Table 5.4, it can be concluded that the compatibility degree of the

proposed framework to the specific goals of CMMI-Dev1.2 KPAs are as follows:

 CMMI-Dev1.2 Level 2: based on the results of this level, the proposed

framework is strongly compatible to the specific goals of four KPAs of this

level. These areas are: requirement management, project planning, project

monitoring and control, and configuration management, while the proposed

framework is compatible to the specific goals of the remaining three KPAs:

supplier agreement management, measurement and analysis, and process

and product quality assurance.

 CMMI-Dev1.2 Level 3: based on the results of this level, the proposed

framework is strongly compatible to the specific goals of four KPAs of this

level. These areas are: technical solution, verification, validation, and

organizational training, while the proposed framework is compatible to the

specific goals of the remaining seven KPAs: requirements development,

product integration, organizational process focus, organizational process

definition +IPPD, integrated project management +IPPD, risk

management, and decision analysis and resolution.

 CMMI-Dev1.2 Level 4: based on the results of this level, the proposed

framework is compatible to the specific goals of the two KPAs of this

level. These areas are: organizational process performance and quantitative

project management.

179

 CMMI-Dev1.2 Level 5: based on the results of this level, the proposed

framework is compatible to the specific goals of the two KPAs of this

level. These areas are: causal analysis and resolution and organizational

innovation and deployment.

 Focus Group Suggestions of Part One

With regards to the suggestions of the part one questions, the focus group

members discussed their answers and suggestions and agreed with each other on

the following suggestions:

“The proposed framework is compatible to the KPAs of CMMI-Dev1.2.

Nevertheless, the organizational innovation and deployment KPA is not suitable to

be implemented by SSDFs. Then, there is need to remove the related activities of

this KPA that were added to the proposed framework”.

5.5.1.2 Answers and Suggestions of Part Two Questions

This part consists of four questions that aimed to verify the commitment of the proposed

Extended-XP method to XP Values. The next points present the answers and

suggestions for questions of this part:

 Focus Group Answers of Part Two

The focus group members were asked to answer the questions in this part, where

three choices were used to answers these questions which were: “yes without

modification”, “yes with modifications”, and “no”. In the first question about the

commitment of the proposed Extended-XP to the simplicity value of XP method,

180

three members answered “yes without modifications”, while the remaining seven

members chose “yes with modifications”. As for the remaining three questions of

the commitment of the proposed Extended-XP to the courage, feedback, and

communication values, all the members answered “yes without modifications”.

 Focus Group Suggestions of Part Two

With regards to the suggestions provided in the part two questions, focus group

members discussed their answers and suggestions and agreed with each other on

the following suggestion:

“There is need to remove the related activities of the organizational innovation

and deployment KPA from the proposed Extended-XP method, because the related

activities of this process area conflict with the simplicity of XP method. In

addition, it will be useful to use a free tool as a project repository such as

Microsoft Office instead of developing a new repository, because Microsoft Office

offers several options that will be suitable for data storing issues and it is easy to

use by all the firm members”.

5.5.1.3 Answers and Suggestions of Part Three Questions

This part consists of two questions to verify the suitability of the proposed framework

and the proposed Extended-XP roles for their related practices. The following points

present the answers and suggestions of this part’s questions.

 Focus Group Answers of Part Three

181

The focus group members were asked to answer the following questions for this

part, with three answer choices for each question, which were: “yes without

modifications”, “yes with modifications”, and “no”. For the answers of the first

question about suitability of the distribution of the proposed framework and the

Extended-XP roles compared to their practices, two members answered “yes

without modifications”, while the remaining eight members answered “yes with

modifications” in their answers. In the results of the second question about the

suitability of the proposed framework and the Extended-XP roles for SSDFs, three

members answered “yes without modifications”, while the remaining seven

members answered “yes with modifications” in their answers.

 Focus Group Suggestions of Part Three

With regards to the suggestions of the third part questions, focus group members

discussed their answers and suggestions and agreed with each other on the

following suggestions:

“Firstly: there is no need to divide the roles of framework to framework roles and

Extended-XP roles, because all the roles are for the framework as a whole and the

Extended-XP method is included in the framework.”

“Secondly: SEPG members have roles inside and outside the Extended-XP

method. Therefore, there is a need to specify the roles of those members into two

groups which are:

182

- Framework-SEPG role: The members of this role are responsible for the

practices of SEPG role that are used before and after the adoption of

Extended-XP method.

- Extended-XP-SEPG role: The members of this role are responsible for

the practices of SEPG role that are used during the Extended-XP

method.”

5.5.1.4 Answers and Suggestions of Part Four Questions

This part consists of one question which aimed to verify the suitability of the proposed

framework and the proposed Extended-XP structures for software development process

improvement issues in SSDFs. The following points present the answers and

suggestions of this part.

 Focus Group Answers of Part Four

The focus group members were asked to answer the questions from this part of the

questionnaire, and were given the following three choices: “yes without

modifications”, “yes with modifications”, and “no”. As a result of their answers,

three members answered “yes without modifications”, while the remaining seven

members answered “yes with modifications” as their answers.

 Focus Group Suggestions of Part Four

With regards to the suggestions of the fourth part of the questionnaire, focus group

members discussed their answers and suggestions and agreed with each other on

the following suggestions:

183

“Firstly: in the first stage of the proposed framework, there is need to add new

process to be responsible for modifying and rearranging the current software

development processes. However, this process aims to modify the roles of the

current development processes to be suitable with the roles of the framework by

distributing the new roles of the framework to the project team to commensurate

with their experiences. In this case, framework-SEPG members are responsible for

applying this process.”

 “Secondly: there is need to remove the ‘improve development processes from the

fourth phase of the proposed Extended-XP (System and Process Evolution phase).

Thus, there is need to rename the fourth phase of Extended-XP method, because

there is no improvement process at this phase.”

“Thirdly: in the third stage of the proposed framework, there is no need to assess

the CMMI levels for the firm. Nevertheless, there is need for identifying the best

practices process in this stage by discussing the implementing of the framework

with the project team for the current project based on the specific practices of

CMMI-Dev1.2. This process is related to the framework-SEPG role; therefore

framework-SEPG members are suitable to apply this process. Moreover, there is

need to rename the third stage of the framework with an appropriate name for the

included activities.

184

Based on the results of this round, the required modifications for the proposed

framework and the proposed Extended-XP method were incorporated and used as inputs

in the second round.

5.5.2 Results of Round Two

This round aimed to modify the proposed framework and the proposed Extended-XP

method based on the required modifications that were made known from the first round.

Table 5.5 summarizes the required modifications that were needed to modify the

proposed framework and the proposed Extended-XP method. Thus, based on these

modifications, the proposed framework was modified as shown in Section 5.6, and the

modified Extended-XP method is presented in Section 5.7. Therefore, the modified

framework and the modified Extended-XP method were used as inputs in the third

round.

Table 5.5: Summary of the Required Modifications on the Proposed Framework and

Proposed Extended-XP Method by Focus Group Members

Parts Required Modifications

Part One

& Part

Two

 Removing the related activities of organizational innovation and deployment KPA

from the proposed framework. These activities are:

 Training the project on writing the improvement suggestion during the

project development (this activity belongs to the educating and training

process in stage two of the propose framework).

 Writing the improvement suggestions during the implementation of the

proposed Extended-XP method.

 Discussing the improvement suggestions that are written by the team during

the project development (this activity belongs to analyzing the results of

implementing the proposed Extended-XP method in stage three of the

proposed framework).

 Using Microsoft Office as a simple project repository.

185

Part Three

& Part

Four

 Using framework roles instead of the two groups of roles (framework roles and

Extended-XP roles).

 Using framework-SEPG role instead of roles of SEPG members that are used

before and after the adopting of Extended-XP method. Moreover, using Extended-

XP-SEPG role instead of the roles of SEPG members that are used during the

Extended-XP method.

 Adding new process in the first stage of the proposed framework to be responsible

for modifying the current roles to be suitable with the framework roles, where

framework-SEPG members are responsible for applying this process.

 Remove the ‘improve development processes’ process from fourth phase of the

proposed Extended-XP method.

 Remove the “assess the software development processes by CMMI-Dev1.2”

process from the third stage of the proposed framework.

 Add new process into the third stage of the proposed framework to identify the best

practices of implementing the Extended-XP method by discussing the

implementing of the framework with the project team based on the specific

practices of CMMI-Dev1.2, where framework-SEPG members are responsible for

applying this process.

 Rename the third stage of the proposed framework, and rename the fourth phase of

the proposed Extended-XP method as included activities.

5.5.3 Results of Round Three

In this round, the modified framework (including the modified Extended-XP method)

was shown to focus group members to make sure that all approved suggestions have

been taken into account in the framework, and also to check if there is need for further

modifications. As a result of this round, all members agreed on the framework and they

also confirmed that all their approved suggestions had been taken into account in the

framework. Therefore, there was no need for further modifications.

186

5.6 The Modified Software Development Process Improvement Framework

The proposed software development process improvement framework, which was

developed in Section 4.4.2 consist of three stages, which are: assessing the current

software processes, adopting the proposed Extended-XP method, and assessing the

modified software development processes. Further, in reference to the suggestions of the

focus group members, several modifications were made to the stages of the proposed

framework. Therefore, the modified software development process improvement

framework consisted of the following phases: assessing the current software

development processes, adopting the extended-XP method, and identifying the best

practices of the current project. Figure 5.1 show the generic elements of the modified

framework. In addition, Figure 5.2 views all the processes, inputs, and outputs of the

three phases in the modified software development process improvement framework.

Generic Elements of the Modified Software Development Process

Improvement Framework

Software Development

 Processes in Small Software

Development Firm

Capability Levels of Each KPA

Leads to Leads to

Is Examined by Identify

 Maturity of

Best Practices of the

Current Project

Motivation

Results of

Adopting

Process
Data Flow

Input/ Output Legend:

Assess the Current Software

Processes by CMMI-Dev 1.2

Questionnaires

Adopt the Modified

 Extended-XP Method on

the Current Project

Identify the Best Practices of the

Current Project

Figure 5.1: Generic Elements of the Modified Software Development Process

Improvement Framework

187

As shown in Figure 5.1, the modified software development process improvement

framework consists of five generic elements as follows:

 Software development processes in SSDFs: the current activities used to

produce the software products in the firm.

 Assess the current software processes by CMMI-Dev1.2: this element is used

to assess the current state of the software process and is done by using CMMI-

Dev1.2 questionnaires.

 Capability Determination: this element is used to know the capability level of

the software process and motivates an organization to adopt the modified

Extended-XP method to improve the current processes.

 Adopt the modified Extended-XP method: this element is used to improve the

current processes by adopting the modified Extended-XP method in

developing the project of the firm.

 Identify the best practices of the current project: this element is used to identify

the best practices of implementing the modified Extended-XP method in the

current project by using CMMI-Dev1.2 best practices questionnaire to help the

firm for incoming projects.

188

Assess the current software development processes based on

CMMI-Dev1.2 KPAs

Current CMMI-Dev1.2 KPAs

levels

Results of the adopting the modified

 Extended-XP method

Discuss the results of implementing the modified Extended-XP

method

The Modified Software Development Process Improvement Framework

for SSDFs

Inputs /

Outputs
Process

Legend

Data Flow

Stage One:

Assessing the

Current

 Software

Development

Processes

Stage Two:

Adopting the

Modified

Extended-XP

Method

Stage Three:

Identifying the

Best Practices

of the Current

Project

CMMI-Dev

1.2 KPAs

Software development processes for

the SSDFs

Software development

processes best practices

Stage Name

Documentation

of the modified

Extended-XP

method

Educate and train project team on the modified Extended-XP

method

Trained team

Adopt the modified Extended-XP method as a software

development method

Project

Repository

Project

Repository

Data

Repository
Condition

Modified

Extended-XP

method

Modify the current roles to be suitable with the

framework roles

New roles of the

project team

Figure 5.2: The Modified Software Development Process Improvement Framework

189

As shown in Figure 5.2, the modified software development process improvement

framework consists of three stages as follows:

 Stage One: Assessing the Current Software Development Processes

Before starting to implement the framework, it is important to determine the

suitable simple project repository by framework-SEPG members to keep on

schedule during the implementation of this framework, and during the modified

Extended-XP phase. Microsoft Office was suggested as a free tool for data storing

issues. As a result, the framework started with the current software development

processes in the SSDF. Based on these processes, the framework-SEPG members

are responsible for self-assessment process by assessing the current capability

levels of these processes by using CMMI-Dev1.2 KPAs. In this aspect, three

scales can be used to identify the capability levels of the current development

processes which are:

 Largely Supported: the current software development processes largely

support the specific goals of the KPA.

 Partially Supported: the current software development processes partially

support the specific goals of the KPA.

 Not-Supported: the current software development processes do not

support the specific goals of the KPA.

As results from the current levels indicate, the framework-SEPG members are

responsible for modifying and rearranging the current software development

processes to be suitable with the required roles of the framework. This can be

done by distributing the new roles of the framework to the project team members

190

to commensurate with their experiences. At the end of this stage, the new roles

are made known to each employee in the firm.

 Stage Two: Adopting the Modified Extended-XP Method

This stage has the same processes as stage two in the proposed software

development framework which was discussed in Section 4.4.2. There is need to

use the modified Extended-XP method instead of the proposed Extended-XP

method. In addition, the name of SEPG members in this method is Extended-XP-

SEPG members. Section 5.7 discusses the modified Extended-XP method.

 Stage Three: Identifying the Best Practices of the Current Project

In reference to the results of the second stage, the framework-SEPG members are

responsible for meeting with the project team to discuss the best practices of

implementing the framework by using the specific practices of CMMI-Dev1.2

KPAs as main items in this discussion (refer to Appendix H, best practices

questionnaire). In this questionnaire, three choices were used to answers these

questions, which are: “Yes” when the practice is well established and consistently

performed, “Don’t Know” when the respondents are uncertain about how to

answer the question, “Does Not Apply” when respondents have the required

knowledge about the project or firm and the question asked, but they feel the

question does not apply to the project, and “No” when the practice is not well

established or is inconsistently performed (this scale has been adopted from the

European Software Institute (ESI) software best practice questionnaire (ESI,1997)).

Based on the results of this meeting, the best practices for implementing the

191

framework for the current project could be extracted. Then, the framework-SEPG

members are responsible for keeping these best practices in the project repository

to be taken into account for incoming projects.

As mentioned in section 4.4.3, the proposed framework roles were divided into two

groups which were proposed framework roles and proposed Extended-XP roles.

Nevertheless, in the modified software development process improvement framework,

there is no need to divide the framework roles into two groups. Therefore, the

framework roles name is used for all roles that are used through the framework

including the roles of the modified Extended-XP method. The framework roles consist

of the following:

 Programmers, Customer, Tester, Coach, Tracker, Consultant, and Big Boss

 In this framework, these roles have the same practices as the XP method roles

which are mentioned in Section 2.5.2.3. These roles are used during the

implementation of the modified Extended-XP method.

 Coach and Tracker

 The coach and tracker together are responsible for implementing the required

metrics to achieve the objective of process and product quality assurance and the

process performance at the third phase of the modified Extended-XP method by

the following:

 Calculating the difference between estimates and actual time spent on

user stories or tasks.

192

 Calculating the velocities of the projects and the length of pair

programming sessions and keeping it in the project repository.

 Calculating the number of failed acceptance tests, and number of

severity defects after release.

 Programmers and Extended-XP-SEPG Members

Programmers and Extended-XP-SEPG members are responsible for

implementation of the supplying process at the first phase of Extended-XP

method, where programmers are responsible for extracting the required

unavailable development tools or services, and the Extended-XP-SEPG members

are responsible for executing the supplying process (in the first phase of the

modified Extended-XP method) with the external suppliers.

 Framework-SEPG Members

 Specifying suitable simple project repository in the first stage of the

framework in order to keep important data during the implementation of

this framework.

 Assessing the current software development processes in the first stage of

the framework as a self-assessment.

 Modifying the roles of the current software development processes to be

suitable with the framework roles in the first stage of the modified

framework.

 Arranging the required organizational training before starting to adopt the

modified Extended-XP method in the second stage of the modified

framework, where they are responsible for the following:

193

 Establish planning for training the programmers.

 Estimate the time required for training.

 Determine if there is need for out sourcing professional

team in training process.

 Train the project team on how they can implement the

activities of the modified Extended-XP.

 Record the training results and assessing the training

efficiencies in the project repository.

 Meeting the project team in the third stage of the framework to extract

the best practices of the current project and keeping these practices to

help incoming projects in the same firm.

5.7 The Modified Extended-XP Method

The proposed Extended-XP life cycle consists of four phases: requirement management

phase, development phase, product delivery and product & process efficiency phase,

and system and process evolution phase. However, the modified Extended-XP method

consists of the following phases: requirement management phase development phase,

product delivery and product & process efficiency phase, and maintenance & death

phase. The first three phases of the modified Extended-XP method have the same

processes of the proposed Extended-XP method that are mentioned in Section 4.3.2.1 to

4.3.2.3. Nevertheless, several modifications were made during phase four on the

modified Extended-XP method:

 Name of phase four is maintenance & death phase.

194

 The process of improving the development processes was removed with their

related activities which are: writing improvement proposals during the project,

discussing and analyzing these proposals to determine the required modification

on the software development processes, and identifying the best practices and

lessons learnt.

In this aspect, Figure 5.3 presents the proposed Extended-XP method which was

developed in Chapter 4 with the highlighted issues that need to be modified as a result

of the suggestions from the focus group members (highlighted and are in thick borders),

while Figure 5.4 presents the modified Extended-XP method.

195

Development Phase

Product Delivery and

Product & Process

Efficiency Phase

System and Process

Evolution Phase

Stories

Plan the customer’s

requirements

O
N

Supply the required

development tools

Required

development

tools

Requirement

Management Phase

Project

Repository

Best practices

& lessons

learnt

Project Repository

Small release

Conduct processes

performance

Efficiency of the

process

Project Repository

If product is completed

OR there are No new

user requirements

No

Final release

Test product

Legend

Inputs /

Outputs

Processing

Condition

Data

Repository

Product

Release

Data Flow

Explore the customer’s

requirement

Planned

customer’s

requirements of

the next release

If the required

development tools

are available in

 the firm

Yes

Customer’s

requirement for

the next release

Explore the customer’s

requirement

User

requirement

status of the

release

Check the user

requirements of the

release

Project Repository

If the user

requirements of

the release are

satisfied

Yes

O
N

Planned

customer’s

requirements

of the next

release

Required

development

tools

Improve the

development

processes

Y
es

Users

requirements

status

Write improvement proposals (by Project Team)

Improvement

proposals

Project Repository

Project

Repository

Explore the customer’s

requirement

For Repeated

Figure 5.3: Required Modifications on the Proposed Extended-XP Method

196

Development Phase

Product Delivery and

Product & Process

Efficiency Phase

Maintenance & Death

Phase

Stories

Plan the customer’s

requirements

O
N

Supply the required

development tools

Required

development

tools

Requirement

Management Phase

Project

Repository

Small release

Conduct processes

performance

Efficiency of the

process

Project Repository

If product is completed

OR there are No new

user requirements

No

Final release

Test product

Legend

Inputs /

Outputs

Processing

Condition

Data

Repository

Product

Release

Data Flow

Explore the customer’s

requirement

Planned

customer’s

requirements of

the next release

If the required

development tools

are available in

 the firm

Yes

Customer’s

requirement for

the next release

Explore the customer’s

requirement

User

requirement

status of the

release

Check the user

requirements of the

release

Project Repository

If the user

requirements of

the release are

satisfied

Yes

O
N

Planned

customer’s

requirements

of the next

release

Required

development

tools

Y
es

Users

requirements

status

Project Repository

Project

Repository

Explore the customer’s

requirement

For Repeated

Figure 5.4: The Modified Extended-XP Method

 197

As a result of the verification process, the proposed software development process

improvement framework was modified by the suggestions of focus group members.

Therefore, to make sure that the framework is suitable for SSDFs, there is need to

validate the suitability of this framework by more professional managers and

developers who are working in these firms (Al-Allaf, 2008). Chapter 6 discusses the

two methods were used to validate the modified framework.

5.8 Conclusion

The proposed framework was developed based on CMMI-Dev1.2 as a SPI model,

XP method as a software development method, and the generic elements of SPI

framework. In this chapter, focus group method was used as a verification method

coupled with Delphi technique to verify the proposed framework.

In this respect, three rounds were used. As a result of the first round, it can be

concluded that the proposed framework is strongly compatible to the specific goals

of eight KPAs, which are: requirement management, project planning, project

monitoring and control, configuration management, technical solution, verification,

validation, and organizational training, while the remaining twelve KPAs got the

compatible level, which are: supplier agreement management, measurement and

analysis, process and product quality assurance, requirements development, product

integration, organizational process focus, organizational process definition +IPPD,

integrated project management +IPPD, risk management, decision analysis and

resolution, organizational process performance, quantitative project management,

causal analysis and resolution, and organizational innovation and deployment. In

198

addition, the focus group members indicated that all the KPAs are suitable for

SSDFs; except the organizational innovation and deployment KPA. Accordingly,

several changes made to the proposed framework to make it compatible with the

suitable KPAs of CMMI-Dev1.2 as showed in Table 5.5.

In the second round, the proposed framework (including the proposed Extended-XP

method) was modified as the suggestions of focus group members to be suitable with

the SSDFs as discussed in Sections 5.6 and 5.7. Finally, the modified framework

was shown to the focus group members in the third round to make sure that the

modified framework is suitable for the SSDFs. As a result of the third round, the

focus group members confirmed the required modifications were done to the

modified framework as discussed in Section 5.5.3. Chapter 6 will discuss about

validating the modified software development process improvement framework.

199

CHAPTER SIX

VALIDATING THE MODIFIED SOFTWARE DEVELOPMENT

PROCESS IMPROVEMENT FRAMEWORK

This chapter presents the two approaches used in the validation process to validate

the suitability and applicability of the modified software development process

improvement framework for the SSDFs. In addition, this chapter presents the

evaluation process that was used to evaluate the effectiveness of the modified

framework for SSDFs.

6.1 Introduction

The proposed software development process improvement framework was verified

to be compatible with the suitable KPAs of CMMI-Dev1.2 by the verification

process as discussed in Chapter 5. Therefore, there is a need to validate the

suitability of the modified framework for SSDFs to ensure that this modified

framework is applicable for these firms. In this aspect, this study has two validation

approaches which are: quantitative research method that involved a survey to

validate the suitability of this modified framework for SSDFs as discussed in Section

6.2, and a qualitative research method that involved two case studies to validate the

applicability of implementing this modified framework in SSDFs as explained in

Sections 6.3.1 and 6.3.2. At the end of the second approach of validation, general

evaluation criteria were used to evaluate the effectiveness of implementing the

modified framework by the two firms as explained in Section 6.4.

200

6.2 Validating the Suitability of the Modified Framework

A formal validation for the suitability of the modified framework by SSDFs was

undertaken using CMMI-Dev1.2 questionnaire as the main items in this validation.

The questionnaire format consists of two parts: the first part asks for general

demographic information about the respondents, while the second part includes all

the specific goals of the suitable CMMI-Dev1.2 KPAs. In addition, the summary of

XP practices and the software development, improvement, and management

additions that are used in the framework to cover the specific goals of the suitable

CMMI-Dev1.2 KPAs areas was attached with these questionnaires to help the

respondents in answering the validation questions.

Based on the Jordanian Ministry of Industry and Trade, it was convenient to access

the addresses of some SSDFs in Jordan. Nevertheless, it was difficult to find the

professional developers and managers at these firms, where most of these firms do

not have professional employees. Therefore, these questionnaires were given just to

90 professional developers and managers who are working in these firms. From a

total of 90 questionnaires distributed, only 37 questionnaires were returned and

seven of them were returned with missing data of more than 30% for each

questionnaire. Therefore, only 30 cases were used for the validation process. The

problems and response rate are similar to what Al-Allaf (2008) reported.

In addition, the modified framework should be clearly read and understood by the

professional developers and managers in these firms to evaluate it according to the

characteristics of their firms and the requirements of the specific goals of each

201

CMMI-Dev1.2 KPAs. Therefore, a hard copy which included the detailed

description of the modified framework (included the modified Extended-XP method)

and the description of CMMI-Dev1.2 KPAs was attached with these questionnaires.

Sections 6.2.1 and 6.2.2 illustrate the results of both parts of the questionnaires.

6.2.1 Part One: Respondents’ Profile

This section presents the results of the part one questions which ask about the

demographic information of the respondents. This part consists of four questions:

current position, current work, size of firm, and software experience. As shown in

Table 7.1, the majority of the respondents were members of a SEPG constituting

(40%), while the rest were: managers (26.66%), technical members (20%), and

project or team leaders (13.33%). Additionally, with regards to the current work

activities, the highest ratio was for code and unit testing (26.66%), software design

(16.66%), software quality assurance (17%), configuration management and

software requirement each (13.33%), and lastly, SPI (6.66%). In term of CMMI

training, 90% of the respondents did not receive any CMMI training, while 10% had

received this training. With regards to the software experience term, 66.66% of

respondents had 6-10 years, where the other two periods (less than five years & 11

years and above) had the same ratio (16.66%). Concerning the firm’s size, 46.66% of

the respondents were working in firms that had 20-31 employees while, 20% of

respondents were working in firms that had 41-50 employees. The firms that had 10

– 20 employees and 31 - 40 employees had the same ratio (16.66%).

202

 Table 6.1: Demographic Information of the Respondents

Items Frequency Percentage (%)

Current position
Project or team leader 4 13.33

Manager 8 26.66

Technical member 6 20.00

Software engineering

process group
12 40.00

Activities
Software requirement 4 13.33

Software quality assurance 3 10.00

Software design 5 16.66

Configuration management 4 13.33

Code and unit test 8 26.66

Software process

improvement
2 6.66

Test and integration 4 13.33

Received any

CMMI-related

training
Yes 3 10.00

No 27 90.00

Overall software

experience 5 years &less 5 16.66

6-10 years 20 66.66

11years &above 5 16.66

How large is your

organization 10 - 20 employees 5 16.66

21 - 30 employees 14 46.66

31 - 40 employees 5 16.66

41 - 50 employees 6 20.00

203

6.2.2 Part Two: Suitability of the Modified Framework for SSDFs

In this part, the respondents were asked to rate the level of the suitability of the

modified framework for SSDFs based on XP practices and the software

development, improvement, and management additions that were used in the

modified framework to cover the specific goals of the suitable CMMI-Dev1.2 KPAs.

The questions in this part of the questionnaire consisted of scaled-response items

from 1 to 5 such that 1= Strongly Unsuitable and 5= Strongly Suitable. Based on the

results of the first part, Table 6.2 shows the frequencies, percentages, Standard

Deviation (S.D), and the Mean Value (M.V) of each KPA of the thirty respondents,

where these values were acquired using SPSS (statistics descriptive).

Table 6.2: The Suitability of the Modified Framework for SSDFs

CMMI-Dev 1.2

KPAs

1 2 3 4 5
M.V S.D

Freq % Freq % Freq % Freq % Freq %

Requirement

Management

0 0 0 0 0 0 10 33.3 20 66.7 4.66 .47

Project Planning 0 0 0 0 3 10.0 9 30.0 18 60.0 4.50 .68

Project

Monitoring and

Control

0 0 0 0 0 0 13 43.3 17 56.7 4.56 .50

Supplier

agreement

management

0 0 6 20.0 6 20.0 15 50.0 3 10.0 3.50 .93

Measurement

and analysis

0 0 4 13.3 5 16.7 19 63.3 2 6.7 3.63 .80

Process and

Product Quality

Assurance

0 0 5 16.7 6 20.0 15 50.0 4 13.3 3.60 .93

Configuration

Management

0 0 0 0 6 20.0 13 43.3 11 36.7 4.16 .74

Requirements

Development

0 0 3 10 5 16.7 16 53.3 6 20.0 3.83 .87

Technical

Solution

0 0 0 0 3 10.0 9 30.0 18 60.0 4.50 .68

204

Product

Integration

0 0 0 0 8 26.7 10 33.3 12 40.0 4.13 .81

Verification 0 0 0 0 0 0 14 46.7 16 53.3 4.53 .50

Validation 0 0 0 0 0 0 13 43.3 17 56.7 4.56 .50

Organizational

Process Focus

0 0 0 0 5 16.7 22 73.3 3 10.0 3.93 .52

Organizational

Process

Definition

+IPPD

0 0 5 16.7 6 20.0 16 53.3 3 10.0 3.56 .89

Organizational

Training

0 0 0 0 5 16.7 22 73.3 3 10.0 3.93 .52

Integrated

Project

Management

+IPPD

0 0 7 23.3 3 10.0 18 60.0 2 6.7 3.50 .93

Risk

Management

0 0 4 13.3 8 26.7 13 43.3 5 16.7 3.63 .92

Decision

Analysis and

Resolution

0 0 5 16.7 6 20.0 15 50.0 4 13.3 3.60 .93

Organizational

Process

Performance

0 0 6 20.0 4 13.3 18 60.0 2 6.7 3.53 .89

Quantitative

Project

Management

0 0 5 16.7 4 13.3 17 56.7 4 13.3 3.66 .92

Causal Analysis

and Resolution

0 0 4 13.3 5 16.7 19 63.3 2 6.7 3.63 .80

As discussed in Section 5.5.1.1, the interval width is calculated by (n-1)/n formula,

where “n” is the number of scales. Based on that, the interval width of this part = (5-

1) / (5) = 0.8. Table 6.3 shows the definitions of the interval scales and explains the

level of use for each interval scale. Table 6.4 presents the suitability degree for each

question.

205

Table 6.3: Interval Scale Definition of the Suitability

Mean interval presentation Degree of Suitability

From 1 To 1.80 Strongly Unsuitable

From 1.81 To 2.60 Unsuitable

From 2.61 To 3.40 Average

From 3.41 To 4.20 Suitable

From 4.21 To 5 Strongly Suitable

Table 6.4: The Suitability Degree for Part Two Questions

CMMI-Dev1.2 Level 2 KPAs Mean. Val Suitability Levels

Requirement Management 4.66 Strongly Suitable

Project Planning 4.50 Strongly Suitable

Project Monitoring and Control 4.56 Strongly Suitable

Supplier Agreement Management 3.50 Suitable

Measurement and Analysis 3.63 Suitable

Process and Product Quality Assurance 3.60 Suitable

Configuration Management 4.16 Suitable

CMMI-Dev1.2 Level 3 KPAs

Technical Solution 4.50 Strongly Suitable

Verification 4.53 Strongly Suitable

Validation 4.56 Strongly Suitable

Requirements Development 3.83 Suitable

Product Integration 4.13 Suitable

Organizational Process Focus 3.93 Suitable

Organizational Process Definition +IPPD 3.56 Suitable

Organizational Training 3.93 Suitable

Integrated Project Management +IPPD 3.50 Suitable

Risk Management 3.63 Suitable

Decision Analysis and Resolution 3.60 Suitable

CMMI-Dev1.2 Level 4 KPAs

Organizational Process Performance 3.53 Suitable

Quantitative Project Management 3.66 Suitable

CMMI-Dev1.2 Level 5 KPAs

Causal Analysis and Resolution 3.63 Suitable

206

With regards to the suitability of the framework for SSDFs shown in Table 6.4, the

following can be concluded:

 CMMI-Dev1.2 Level Two: at this level, three KPAs received the level

of strongly suitable as follows: requirement management (4.66), project

planning (4.50), and project monitoring and control (4.56), while the remaining

four KPAs received the level of suitability as follows: supplier agreement

management (3.50), measurement and analysis (3.63), process and product

quality assurance (3.60), and configuration management (4.16).

 CMMI-Dev1.2 Level Three: at this level, just three KPAs received the level

of strongly suitable as follows: technical solution (4.50), verification (4.53),

and validation (4.56), while the remaining eight KPAs received the level of

suitability as follows: requirements development (3.83), product integration

(4.13), organizational process focus (3.93), organizational process definition

+IPPD (3.56), organizational training (3.93) , integrated project management

+IPPD (3.50), risk management (3.63), and decision analysis and resolution

(3.60).

 CMMI-Dev1.2 Level Four: the two KPAs of this level received the level of

suitability as follows: organizational process performance (3.53), and

quantitative project management (3.66).

 CMMI-Dev1.2 Level Five: causal analysis and resolution is the only one at this

level where this area obtained 3.63 at the level of suitability.

Based on the results of the suitability of the framework for SSDFs shown in Table

6.4, it can be concluded that the modified software development process

207

improvement framework is suitable for SSDFs, as all of the related components in

the modified framework that aimed to achieve the requirements of the specific goals

for the suitable CMMI-Dev1.2 KPAs are strongly suitable or suitable for these firms.

6.3 Validating the Applicability of Implementing the Modified Framework for

SSDFs

In order to validate the applicability of implementing the modified framework in

SSDFs, two Jordanian SSDFs used this framework to improve their software

development processes. They applied the framework in developing their software

projects, where the first case study project aimed to develop a computer skills online

examination system, and the second case study project aimed to develop a brokerage

online system. Sections 6.3.1 and 6.3.2 discuss the results of implementing this

framework by the two case studies.

6.3.1 Case Study One: Developing the Computer Skills Online Examination

System by “X” Firm

“X” firm was established in 2001 as a Jordanian SSDF. This firm extols itself as the

best firm, integrating sophisticated technologies so as to deliver world-class

solutions. This firm is committed to providing professional services in an effective,

fast, user-friendly and time bound manner. The aim of this firm is to avail software

programs that provide services and assist financial institutions to utilize the best

technological tools for analyzing and monitoring the changes in any global

market on a real-time basis. This “X” firm has 22 employees, working in managing

and developing the software products.

208

This firm has one manager, three project or team leaders, eleven software

engineering process group members, and seven technical members. In this firm, the

computer skills online examination system has been developed and used as a case

study for this research, where this firm had used the framework to improve their

software development processes to develop this system.

This desktop application will facilitate conducting computer skills exams to students

in university. This application saves time and will allow a number of students to take

the exam at the same time and will display the results as soon as the test is complete.

There is no need to wait for the results as they are automatically generated by the

server. This application is controlled by an administrator who has the privilege to

create, modify and delete exams and their contents (questions, answers, and marks).

Students will be provided with a specific login id to have their exams and view the

results. The following points present the development of this system by “X” firm

based on the modified software development process improvement framework of

this research.

Before starting the implementation of the framework stages, the researcher met the

manager of “X” firm and it was agreed upon that the manager will implement this

framework in this firm. Then, two of the SEPG members were asked by the manager

to act as framework-SEPG members. One week was given to those members to read

and understand the description of the framework. Then, the framework-SEPG

members started to implement the modified framework by improving their software

development processes to develop the computer skills online examination system.

209

Sections 6.3.1.1 to 6.3.1.3 describe in detail the stages of improving the current

software development processes to develop the computer skills online examination

system.

6.3.1.1 Stage One: Assessing the Current Software Development Processes

In this stage, the two framework-SEPG members chose Microsoft Office as a simple

project repository to store the project data during the implementation of the

framework. Then, they started to assess the current software development processes

in the firm based on CMMI-Dev1.2 KPAs. This assessment was done by one

meeting between the manager, two team leaders, two technical members, and

framework-SEPG members who were working in the firm. Based on this, the

framework-SEPG members identified the capability levels of the current software

development processes of the firm. Table 6.5 shows the capability levels of the

current software development processes of the firm. Three scales have been used to

identify the capability levels of the current software development processes, which

are:

 Largely Supported: the current software development processes largely

support the specific goals of the KPA.

 Partially Supported: the current software development processes partially

support the specific goals of the KPA.

 Not-Supported: the current software development processes do not support

the specific goals of the KPA.

210

Table 6.5: Supported Levels of CMMI-Dev1.2 KPAs of the Current Software

Development Processes for the First Case Study

Based on Table 6.5, the following can be concluded:

 Two KPAs are largely supported by the current software development

processes which are: verification and validation.

 Fifteen KPAs are partially supported by the current software development

processes which are: causal analysis and resolution, project planning, project

monitoring and control, measurement and analysis, process and product

CMMI-Dev1.2 KPAs
Largely

Supported

Partially

Supported

Not

Supported

Level Two KPAs

Requirement Management X

Project Planning X

Project Monitoring and Control X

Measurement and analysis X

Process and product quality assurance X

Configuration Management X

Supplier agreement management X

Level Three KPAs

Verification X

Validation X

Requirements Development X

Technical Solution X

Product integration X

Organizational Training X

Integrated Project Management +IPPD X

Risk management X

Decision Analysis and Resolution X

Organizational process focus X

Organizational Process Definition +IPPD X

Level Four KPAs

Organizational Process Performance X

Quantitative Project Management X

Level Five KPAs

Causal Analysis and Resolution X

211

quality assurance, configuration management, requirements development,

technical solution, product integration, organizational training, integrated

project management +IPPD, risk management, decision analysis and

resolution, organizational process performance, and requirement

management.

 Four KPAs are not supported by the current software development processes

which are: supplier agreement management, organizational process definition

+IPPD, organizational training, and quantitative project management.

Accordingly, these results were the main motivation for this firm to improve their

software development processes by implementing the modified Extended-XP

method as a general method for the software development. Therefore, based on the

current software development process roles of the firm’s employees, the framework-

SEPG members modified these roles to be suitable with the roles of the framework

which are used inside the modified Extended-XP method. Then, they distributed the

new roles of the framework to the project team members commensurate with their

experiences. Table 6.6 shows the new software development process roles of the

project team compared to their current roles.

212

Table 6.6: The New Software Development Processes Roles of the Project Team

Members Compared to Their Current Roles for the First Case Study

Current Roles New Roles

Internal Members Firm Manager Project Manager

Project OR Team

Leaders

Coach, Tracker

Technical Members Programmers, Testers

SEPG Members Framework-SEPG Members,

Extended-XP-SEPG Members

External Members Customer Customer

Consultant (If need) Consultant (If need)

6.3.1.2 Stage Two: Adopting the Modified Extended-XP Method

As a result of stage one, the new roles of each employee in this firm was specified.

In this stage, there is need for educating and training the firm’s employees on the

modified Extended-XP method. This process of educating and training was prepared

and executed by the framework-SEPG members, where they presented the modified

Extended-XP method in five days of training courses. On the last day, the two

framework-SEPG members examined the project team about their specific roles to

make sure that they understood their new roles. As a result of the educating and

training examination, the framework-SEGP members were sure that all the teams

were ready to participate in implementing the Extended-XP method and there is no

need for further educating and training. Furthermore, the documentation of the

modified Extended-XP method was given to all the participants to be used as

guidance during the software development processes. At the end of this stage, the

213

training and educating documentations and results were kept in the project repository

by the framework-SEPG members. As a result of this phase, the project team was

ready to implement the modified Extended-XP method. The next points illustrate the

phases of the modified Extended-XP method that were used to develop the computer

skills online examination system.

 Phase One: Requirement Management

In this phase, the customer wrote the needed stories of the first release, where

each story had one feature. All features were divided by the programmers into

three modules as shown in Table 6.7.

 Table 6.7: User Stories Modules for of the First Case Study

User Requirements

Modules
Features

Administration Module The administrator has the full-fledged rights over the

program.

 Can create/delete an account.

 Can view the accounts.

 Can change the password.

 Can hide any kind of features from both of users

(examiner and student. Example: can specify the

coordinator for insert, delete, and edit the questions and

marks).

 Can access all the accounts of the faculty

members/students.

Examiner Module Insert/delete/edit the exams data (questions, and marks) by

the coordinator.

 Can view student answers and mark.

Student Module Can view their marks.

 Can view the various reading material.

 Can view his profile (university ID, student name).

 Can reset his password.

Based on these modules, the programmers checked to see if there were needs for

additional development tools or services to develop this system. As a result, there

was no need for any external supplies, as all the required development tools,

214

services and technologies were ready and familiar with the project team. Then,

the conceptual system prototype was developed by programmers to explore the

architecture possibilities. Figure 6.1 presents the conceptual prototype. This

prototype consists of two general components: Client Application Layers and

Widows Communication Foundation (WCF) Service layers:

University

Web

Server

Site

Service Host Tier

Service Files .svc Host Config

Service Contracts

Service Manager Tier

Service Implementation

Message, Data & Fault Contract

Business Layer

Biz Components

Biz Entities

Data Access Layer

DAL Components

Database

server

Local Network

Client Application

UI Layer

UI Component

UI ControlsUI Forms

Sit

e

Business Layer

Biz Components

Biz Entities

Data Access Layer

Service Agent

WCF Service

Client

Client

Figure 6.1: Conceptual System Prototype of Computer Skills Online

Examination System

215

 - Client Application Layers:

 The Presentation Layer (UI): responsible for presenting exams to the

client side and for providing examinations entry and validation for the

instructor.

 The Business Logic layer (BLL): Also known as middle layer is

composed of more than one layer.

 The Business Logic Layer: responsible for handling all the

examination entry logic, setting marks for questions, managing exam

questions and time for students, and number of exams allowed for each

student.

 The Business Entity Model: responsible for defining the entities used

(i.e. exams, questions, and students) and their data types. It acts as a

unified data catalog to the online examination System.

 The Data Access Layer (DAL): responsible for all of the data store and

data retrieve operations from the data sources. The Data Access layer

includes the Service Agents class library, which is responsible for

transforming the data that came from or sent to the examination

service.

- WCF Service Layers:

 Service Host Tier (UI): The service host tier will host the service

contracts inside the University web server and expose them to the local

network using service files (.svc). The Service Contacts are per

Interfaces object implemented in the online examination service

216

manager tier which communicates with the system business DLLs to

get the business objects. The host configuration file (Host Config) will

define WCF endpoints and bindings exposed to the Local Area

Network (LAN).

 Service Manager Tier: responsible for providing the implementation

for the online examination system service contracts. The

implementation provides an entry point to the business logic tier to

transfer examination data. It also declares messages, data contracts,

and fault contracts which will be used to communicate with the clients.

 The Business Logic layer (BLL): as with the client application, the

business logic tier will be responsible for managing the business rules

for the examination system and passing the data to the Data Access

Layer(DAL) using business entities

 The Data Access Layer (DAL): at the service level, this component

contains the logic which has the local database operations, CRUD

operations and data retrieval operations.

Based on the conceptual system prototype, the programmers extracted the

required tasks for the features that are mentioned in Table 6.7, and estimated how

long it would take each task to be implemented by two programmers (pair

programming). Accordingly, the customer and the programmers decided together

how to prioritize each task. Table 6.8 presents the schedule for the tasks for the

first release in detail.

217

Table 6.8 shows that the planning schedule consists of one release to develop the

computer skills online examination system. This release has nineteen tasks.

Furthermore, the table shows the estimated time for each task and also the level

of priority for the task. At the end of this phase, the conceptual prototype

description and the user stories tasks of the first release were kept in the project

repository by the programmers and the tasks of the first release were used as

inputs in the development phase.

 Table 6.8: Planned Tasks of the First Release for the First Case Study

Tasks Name (Release One)
Estimated

Time (Day)
Priority

T1: Detailing database design 2 High

T2: Building unit tests 3

↓

↓

↓

↓

↓

T3: Preparing entity model 1

T4: Preparing data layer and business layer 2

T5: Implementing interfaces 3

T6: Securing Service 1

T7: Login screen 0.5

T8: Adding/Edit account page 1

T9: Viewing accounts page 0.5

T10: User permissions page 1

T11: Adding/Modifying exams data 1.5

T12: Setting exam date/time and duration 0.5

T13: Viewing previous exams 1

T14: Viewing students answers and marks 1

T15: Student Login and setting logged in user

information

0.5

T16: Displaying exam questions and answers 2

T17: Managing skipped question 1

T18: Managing remaining time 0.5

T19: Resetting password option 0.5 Low

218

 Phase Two: Development

Based on Table 6.8, the required tasks are those entered from the requirement

management phase. The schedule set in the first release was broken down into

two iterations which are: first iteration, which consists of ten tasks and second

iteration which consists of nine tasks. Table 6.9 shows the iterations of the first

release.

As shown in Table 6.9, the estimated time for each task was identified for the

two iterations. Then, based on the tasks of this release, the programmers started

to write the required code for the two iterations sequentially, where the unit test

was used to test each line of coding before the writing. Moreover, functional tests

were developed by programmers and used by the customer at the end of each

iteration. Additionally, there were several technical tools that were used in

developing the computer skills online examination system during the

development phase. Table 6.10 shows these technical tools. Finally, at the end of

this phase, the system was ready and entered the next phase and the development

data were documented in the project repository.

219

 Table 6.9: Iterations of the First Release for the First Case Study

Release Iteration Tasks Estimated Time

(Day)

Priority

1

1 T1 2 High

T 2 3 ↓

↓

↓

↓

T 3 1

T 4 2

T 5 3

T 6 1

T 7 0.5

T 8 1

T 9 0.5

T 10 1 Low

2 T 11 1.5 High

T 12 0.5

↓

↓

↓

T 13 1

T 14 1

T 15 0.5

T 16 2

T 17 1

T 18 0.5

T 19 0.5 Low

 Table 6.10: Technical Tools of the First Case Study

Items Description

Language Visual Basic .Net

Database Microsoft SQL Server 2008

Development Environment Microsoft Visual Studio Team System 2008

SCM Microsoft Team Foundation Server (TFS)

Unit Testing Microsoft Visual Studio

Documents Microsoft Office 2007

Web Server Internet Information Services 7.0

220

 Phase Three: Product Delivery and Product & Process Efficiency

As a result of the development phase, the first version of the product was

developed by the first release. At the start of this phase, there was one meeting

held with the project team to ensure that the customer’s features had been

implemented during the development phase, where project repository was used

as a general guidance for these features. As a result of this meeting, the manager

argued that all the customer’s features had been developed in the system.

Accordingly, several performance checks were done by programmers and the

system was checked by customers to ensure that the system worked as intended.

Based on the results of the first version of system sent to the customer, they

agreed on developing the last features, and they also suggested new features to

improve this system. These features are:

- Setting users’ subjects in administration.

- Adding subject selection to examiner module.

- Adding subject selection to student module.

- Creating students’ marks reports.

With regards to the suggested features, the second release was started again from

the exploration process in the first phase of the modified Extended-XP method.

Here, these features were shown to programmers to modify the conceptual

system prototype. But, they argued that there was no need for any modification

on this prototype. Furthermore, the programmers checked for the need for more

development tools or services to develop this system. Nevertheless, all the

required development tools, services, and technologies were ready and familiar

to the project team. Based on this, the project team started to plan these user

221

stories, where programmers made an estimate for each feature and how long it

would take to implement. Based on these estimations, the customer and

programmers decided together to prioritize each feature.

Table 6.11 shows the tasks of the second release. Based on this, the schedule set

of this release was planned to be developed in one iteration. Accordingly, the

programmers started to write the code of these tasks, where unit test was used to

test each line of coding before it was written. Additionally, functional tests were

developed by the programmers and used by customer at the end of this iteration.

Finally, at the end of this release, the system was ready to enter the next phase,

and the developing data was documented in the project repository.

 Table 6.11: Tasks of the Second Release for the First Case Study

Release Iteration Tasks

Estimated

Time

(Day)

Priority

2 1 T 20: Setting users subjects in

administration.

1 High

T 21: Adding subject selection

to examiner module.

1 ↓

↓

↓

↓

T 22: Adding subject selection

to student module

1.5

T 23: Creating students marks

reports.

1.5 Low

Based on developing the features of the second release, the second version of the

system was developed. Consequently, the manager, programmers, coach, and

tracker met to check the implementation of all required features for the two

222

releases that depended on the system and the project repository. As a result of

this meeting, the manager confirmed that all features were already taken into

account in the software system and they also checked the performance of the

system. Accordingly, the system was shown to the customer and already several

functional tests had been done by customer to check if the system worked as

intended. As a result of these checks, the customer was satisfied with this system

and there were no new features. Then, the system entered the maintenance &

death phase.

Several metrics were calculated by the coach and tracker in this phase. These

metrics aimed to check the processes’ performance and to ensure the quality of

the development processes. Table 6.12 shows the differences between the

estimated and actual implementation times for all the tasks of the two releases.

Furthermore, Table 6.13 shows the results of several metrics to ensure the quality

of the development processes.

In this project, one pair programmers participated in developing the releases.

Accordingly, Table 6.12 shows the actual and estimated times for developing the

two releases as follows:

 Estimated time = 28.5 days.

 Actual time = 33.5 days.

 Daily time= 33.5 - 28.5= 5 days.

223

Table 6.12: The Differences between the Estimated and Actual

Implementation Times for All the Tasks of the Releases for the first Case

Study

Release Iteration Tasks Estimated Actual Difference

1

1 1 2 2.5 + 0.5

2 3 3.5 + 0.5

3 1 1 0

4 2 2.5 + 0.5

5 3 3 0

6 1 1 0

7 0.5 1 + 0.5

8 1 1 0

9 0.5 0.5 0

10 1 1 0

2 11 1.5 2 + 0.5

12 0.5 0.5 0

13 1 1 0

14 1 1.5 + 0.5

15 0.5 0.5 0

16 2 2.5 + 0.5

17 1 1 0

18 0.5 1 + 0.5

19 0.5 0.5 0

2

1

20 1 1 0

21 1 1.5 + 0.5

22 1.5 2 + 0.5

23 1.5 1.5 0

Total 28.5 33.5 + 5

 Table 6.13: Metrics of Processes Quality Assurance of

the First Case Study

Metrics Average

Percentage of test cases that are running

successfully

87/93=93%

Percentage of acceptance test that run successfully 32/36= 88%

Length of pair programming sessions 2-2:30 hours

Project velocity compared with estimates for

release 1 & 2.

28.5/33.5= 85%

224

At the end of this phase, the metrics of processes performance and quality

assurance were put into the project repository to help with the measurement of

the same user requirements for the next projects.

 Phase Four: Maintenance & Death

In this phase, the computer skills online examination system was installed and

tested in the university environment for two weeks and all the user requirements

were tested by the end users. After implementing the system in the real

environment, it showed that there was no need for further modification of the

system. Accordingly, the system was ready to be used for online examinations by

students.

6.3.1.3 Stage Three: Identifying the Best Practices of the Current Project

In this stage, the framework-SEPG members were responsible for discussing the

implementation of the modified framework by meeting with the project team to

identify the software development processes best practices. CMMI-Dev1.2 specific

practices were used as main items in extracting the best practices of the current

project. As a result of this meeting, the framework-SEPG members identified the

best practices of implementing the modified framework in developing the online

computer skills examination system, which are:

 Best Practices of CMMI-Dev1.2 Level Two: in this level, there are six KPAs

that were achieved in developing the online computer skills examination system,

and the specific practices of each KPA had been applied by using the framework.

These areas are: requirement management, project planning, project monitoring

225

and control, measurement and analysis, process and product quality assurance,

and configuration management. The supplier agreement management KPA was

not applied in developing the system because there was no need for supporting

development tools or services by external suppliers.

 Best Practices of CMMI-Dev1.2 Level Three: in this level, the specific goals

of the eight KPAs were achieved in developing the online computer skills

examination system, and the specific practices of each KPA were applied by

using the framework. These areas are: requirements development, technical

solution, product integration, verification, validation, organizational process

definition + IPPD, organizational training, and integrated project management

+IPPD. The specific goals of the other three KPAs were achieved in developing

the system, but in a different ways compared to the specific practices of the

following KPAs in CMMI-Dev1.2, which are: organizational process focus, risk

management, and decision analysis and resolution.

 Best Practices of CMMI-Dev1.2 Level Four: in this level, the specific goals of

two KPAs were achieved in developing the system in a different way compared

with the specific practices of these areas in CMMI-Dev1.2. These KPAs are:

organizational process performance and quantitative project management.

 Best Practices of CMMI-Dev1.2 Level Five: in this level, the specific goals of

the causal analysis and resolution KPA were achieved by developing the system

in a different ways compared to the specific practices of this area in CMMI-

Dev1.2.

226

At the end of this stage, the framework-SEPG members kept these best practices in

the project repository to be taken into account for incoming projects.

6.3.1.4 Summary of Developing the Computer Skills Online Examination

System by the Modified Software Development Process Improvement

Framework

Firm “X” had developed the computer skills online examination system by

implementing the modified framework. After the project was concluded, the

framework-SEPG members wrote a report that reflected the actual time that had

been spent on each stage of this framework. Table 6.14 presents the actual time of

each stage.

Table 6.14: Actual Time for Implementing the Framework in the First Case Study

Stages Activities Time (By Day)

Before stages Understanding the framework by framework-

SEPG members

5

Stage One Assessing the current processes 2

Modifying the current roles 2

Stage Two Educating and training the project team on the

Extended-XP method

5

Adopting the Extended-XP method (all phases) 64

Stage Three Analyze the result and extract the best practices 4

Total 82

As shown in Table 6.14, the implementation of the modified framework took 82

days, with the project team working five days a week. Accordingly, the actual time

for implementing this framework was 84 days/ five days (weekly) = 16.4 weeks,

where the actual time for the modified Extended-XP method was 64 days / five days

(weekly) = 12.8 weeks. These periods of time will be taken into account by the

227

project team during their answers on the evaluation criteria to evaluate the

effectiveness of the framework. Section 6.4 will discuss the evaluation criteria.

As for the framework roles that were used in this case study, ten members

participated in developing the computer skills online examination system by

implementing the modified framework, they are: one project manager, two

framework-SEPG members, two coaches, one tracker, two programmers (pair

programmers), one tester, and one on-site customer.

6.3.2 Case Study Two: Developing the Online Brokerage System by “Y” Firm

“Y” firm was founded in 2006 as a Jordanian SSDF. This firm specializes in

providing great software solutions for several business sectors which are premised

on the latest technological trends. “Y” firm’s expertise is on software consulting,

business applications & web development, outsourcing services, intelligent data

analysis services and applications. This firm has 38 workers, working in managing

and developing the software programs, comprising one manager, three project

managers, six project or team leaders, ten software engineering process group

members, and eighteen technical members. “Y” firm has developed the Online

Brokerage System used as a case study for this research.

Online Brokerage System was developed to be delivered to brokerage companies

that deal with the financial stock market. This system acts as the liaison between

their clients and the financial stock market. The system serves two types of users: the

broker and the client, each position has its own functions and privileges which are

228

determined by the system. The broker deals with the financial stock market and the

client makes deals and orders. The brokerage system has a set of services provided,

and these services are applied within the system itself such as opening accounts,

placing orders, monitoring client’s portfolios, tracking market prices, and generating

financial reports. The following points illustrate the development of this system by

“Y” firm based on the modified software development process improvement

framework presented in this study.

Before starting the implementation of the modified framework, the researcher met

the manager of “Y” firm to obtain permission in order to begin the implementation

of the framework in this firm. Then, two SEPG members were asked by the manager

to act as framework-SEPG members. These members were then given one week to

read and understand the description of the framework. Then, the framework-SEPG

members started to implement the framework by improving their software

development processes when developing the online brokerage system. Sections

6.3.2.1 to 6.3.2.3 describe in detail the stages of improving the current software

development processes to develop the online brokerage system.

6.3.2.1 Stage One: Assessing the Current Software Development Processes

In this stage, the two framework-SEPG members chose the Microsoft Office as a

simple project repository to store the project data during the implementation of the

framework. Then, they started to assess the current software development processes

in the firm based on CMMI-Dev1.2 KPAs. This assessment was done by one

meeting between the firm manager, project manager, three team leaders, four

229

technical members, and framework-SEPG members who were working in the firm.

From the results of this meeting, the framework-SEPG members identified the

capability levels of the current software development processes of the firm. In this

stage, the two SEPG members assessed the current software development process in

the firm based on CMMI-Dev1.2 questions. Table 6.15 shows the capability levels of

the current software development processes of the firm.

Table 6.15: Supported Levels of CMMI-Dev1.2 KPAs of the Current Software

Development Processes for the Second Case Study

CMMI-Dev1.2 KPAs
Largely

Supported

Partially

Supported
Not Supported

Level Three KPAs

Configuration Management X

Requirement Management X

Project Planning X

Project Monitoring and Control X

Process and Product Quality Assurance X

Supplier Agreement Management X

Measurement and Analysis X

Level Three KPAs

Verification X

Technical Solution X

Product Integration X

Validation X

Organizational Process Focus X

Risk Management X

Decision Analysis and Resolution X

Requirements Development X

Organizational Process Definition +IPPD X

Organizational Training X

Integrated Project Management +IPPD X

Level Four KPAs

Quantitative Project Management X

Organizational Process Performance X

Level Five KPAs

Causal Analysis and Resolution X

230

The following can be concluded from the results presented in Table 6.15:

 Two KPAs are largely supported by the current software development

processes, which are: configuration management and verification

 Twelve KPAs are partially supported by the current software development

processes, which are: requirement management, project planning, project

monitoring and control, process and product quality assurance, technical

solution, product integration, validation, organizational process focus, risk

management, decision analysis and resolution, quantitative project

management, and causal analysis and resolution.

 Seven KPAs are not supported by the current software development processes,

which are: supplier agreement management, measurement and analysis,

requirements development, organizational process definition +IPPD,

organizational training, integrated project management +IPPD, and

organizational process performance.

These results were the main motivation for this firm to improve their software

development processes by implementing the modified Extended-XP method as a

general method for the software development. Based on the current software

development processes’ roles of the firm’s employees, the framework-SEPG

members modified these roles to be suitable with the roles of the framework. Then,

they distributed the new roles of the framework to the project team members

commensurate with their experiences. Table 6.16 shows the new software

development processes’ roles of the project team compared to their current roles.

231

Table 6.16: The New Software Development Processes Roles of the Project Team

Members Compared to Their Current Roles for Second Case Study

Current Roles New Roles

Internal Members Project Manager Project Manager

Project OR Team

Leaders

Coach, Tracker

Technical Members Programmers, Testers

SEPG Members Framework-SEPG Members, Extended-

XP-SEPG Members

External Members Customer Customer

Consultant (If need) Consultant (If need)

6.3.2.2 Stage Two: Adopting the Modified Extended-XP Method

Based on the results of stage one, the new roles of each employee in this firm were

specified. In this stage there was need for educating and training the firm’s

employees on the modified Extended-XP method. This process of educating and

training was prepared and executed by the framework-SEPG members, where they

presented the modified Extended-XP method in five days of educating and training

courses. On the last day, the two framework-SEPG members questioned the project

team about their specific roles, to ensure that they fully understood their new roles.

As a result of an educating and training examination, the framework-SEGP members

were confident that all the teams were ready to participate in implementing the

modified Extended-XP method and that there was no need for further educating and

training. Furthermore, the documentation of the Extended-XP method was given to

all the participants to be used as guidance during the software development

processes. At the end of this stage, the training and educating documentations and

results were kept in the project repository by the framework-SEPG members. From

232

the results of this phase, the project team was ready to implement the Extended-XP

method. The following points illustrate the phases of the Extended-XP method that

was used to develop the online brokerage system.

 Phase One: Requirement Management

In this phase, the customer wrote the needed stories of the system as a two

module, where each module had several features as shown in Table 6.17.

Table 6.17: User Stories Modules of the Second Case Study

User Requirements

Modules
Features

Front Office

 Automate client registration

 Opening a demo account

 Secure login to the brokerage server

 Live market watch showing selected stocks

 Adding removing stocks from the market watch

 Displaying client account information

 Placing buy or sell market orders

 Placing limit orders

 Placing stop orders

 One cancels the other order

 Cancel or replace order

 Displaying current profit/loss for each stock and total

profit/loss.

 Probing server connection and reconnect automatically.

 Displaying stocks charts and history.

Back office Client accounts administration

 Ability to connect multiple front end clients simultaneously.

 Tracking accounts positions and connectivity.

 Connecting to the market data source provider and sending

prices to clients.

 Setting opening and closing hours of trading.

 Placing order for accounts.

 Adding new clients.

 Editing or deleting existing clients.

 Managing financial transaction for the accounts.

 Generating statement report for each account at the end of day.

233

Based on these modules, the programmers checked to see if there were additional

needs for more development tools or services to develop this system. They found

that two products needed to be supported by external suppliers. Thereafter, the

programmers identified the required characteristics of the required products as

follows:

- Charting Control Requirements: charting control will be used to display

financial stock charts on the system. The charting control should satisfy the

following requirements to be used on the system:

 Supporting Microsoft .Net environment.

 Supporting all popular stock charts used on the financial markets.

 Charting real-time stock data.

 Loading data from textiles.

 Embed objects used by the system like buy, sell, and orders.

 Display financial studies.

 Saving and printing charts.

 Ability to zoom-in, zoom-out, scrolling to a date.

Based on the features of the required product, Extended-XP-SEPG

members sent these features to three specialist suppliers and asked them to

present the details of the available products to Firm “Y” (product features,

price, and time to deliver). Table 6.18 shows the suppliers’ offers.

234

 Table 6.18: Suppliers Offers of Charting Control Product

Supplier Product Delivery Time Price

A Easy

Financial/Stock

Chart - Windows

Edition

On payment -

Site download

$1499 with

source code

B Financial Charting

Component

On payment

- Site download

$350

C StockChartX V.5

Professional

On payment

- Site download

$689 /

$1,389 with

source code

The Extended-XP-SEPG members discussed these offers and the

StockChartX V.5 Professional Product from “C” firm was chosen for the

following reasons:

 Support of VB.net, C# and Microsoft .Net environment.

 High performance on .Net environment.

 Supporting multiple charts formats

 Support of Gregorian/Julian dates.

 Ability to embed objects within charts.

 Availability of source code if needed.

- Stocks Market Data Feed Requirements: data feed will provide the

system with online and historical data prices for the trading stocks; it

should meet the following requirements:

 Supporting Transmission Control Protocol (TCP) to provide

online prices.

 Providing real-time prices for selected stocks.

235

 Providing on demand historical data for selected stocks.

 High availability and reliability of the data service.

 Data accuracy and data loss strategy.

Based on the features of the required product, the Extended-XP-SEPG

members sent these features to three specialist suppliers and asked them to

present the details of the available products (product features, price, and

time to deliver). Table 6.19 shows the suppliers’ offers. Then, Extended-

XP-SEPG members discussed these offers and choose TAL Data product

from “E” for several reasons as following:

 Providing real time market data, news and alerts.

 Supporting TCP/IP connectivity

 Affordable price based on selected markets.

 Customer support for free.

 High availability and reliability.

236

Table 6.19: Suppliers Offers of Stocks Market Data Feed Product

Company name Product & Features Price

D Digital Data Feed

 Broadcast, raw data,

quert/response, end-of-day.

 Futures, stocks, indices and forex.

 Fundamental and technical data.

 News, weather.

Real Time Commodities

+ Equities $2,500/month

E TAL Data

 Streaming real-time market data.

 Stocks, futures, options, fixed-

income securities, and forex.

 Technical scanning formulas.

 Historical data (tick, intraday,

monthly, and seasonal).

 Bond, forex data.

RealTickPRO

$650/month

F IQFEED

 Streaming real-time and delayed

data.

 Equity, futures, options, index,

forex.

 Depth-of-market, level2.

 News, fundamental data.

$220 - $800 depends on

selected markets

As a result of supplying the required products, all of the required development

tools, services, and technologies were ready and familiar to the project team.

Then, the general conceptual system prototype (system design overview) was

developed by programmers to explore the architecture possibilities as it shown in

Figure 6.2.

http://finviz.com/store/redirect.ashx?http://www.realtick.com/v2_getpage.asp?subnav=true&page=subs_prop_pric
http://finviz.com/store/redirect.ashx?http://www.realtick.com/v2_getpage.asp?subnav=true&page=subs_prop_pric

237

Figure 6.2: System Design Overview of the Online Brokerage System

As shown in Figure 6.2, the system design overview consists of the following

components:

 Stocks Exchange Servers: these servers will be responsible for all the

financial operations including placing orders, monitoring client’s positions,

managing clients, managing stock trading hours, and generating reports.

 Market Watch Data Server: will connect to the market data provider

using TCP sockets and retrieve a real time process for the stocks. It will be

responsible for providing the client applications with up to date prices

based on the subscribed stocks. As part of the server function, it will cache

historical data for the stocks to be provided upon clients’ requests.

238

 Database Servers: two clustered database servers will maintain the

customer’s data.

 Market Data Provider: this is a third party component which provides

real time stocks prices to the system; it will also provide historical data for

the stocks to plot the charts.

 Client Application: there will be two types of client applications according

to the functionality provided: customer client application and broker client

application. The customer client application will be used by the brokerage

house customers to monitor the market prices, issue buy/sell requests, view

stocks charts, view account positions, and place orders. The broker client

application will be used by brokerage house officers to open new

customer’s accounts, manage customer’s funds, monitor customer’s

positions, define trading hours for stocks, place orders for customers, and

generate financial reports.

The conceptual system prototype of online brokerage system consists of the

following two general components: server model and client application logical

model. The next points illustrate these models in detail.

- Server Model:

This model consists of three layers. Figure 7.3 illustrates the components of

the server model.

 Web Application Layer: this layer will be responsible for managing

client’s connections to the server using both WCF (Windows

Communication Services) and TCP sockets. This model enables

239

flexible deployment options, for example. Web servers do not need

to have direct access to the database as the calls are invoked through

the Middle Tier Business Layer.

 Middle Tier Business Service Layer: this layer is responsible for

implementing the logic of the business services and can be changed

without affecting other layers in the application, as well as it can be

spanned horizontally across servers to scalability and load balancing.

 Data Access Layer (DAL): database specific operations are hidden

from the web server or the business layer and are responsible for

storing the trading data on the database.

Figure 6.3: Server Model of the Online Brokerage System

240

- Client Application Logical Model

This model consists of two layers with six modules. Figure 6.4 shows the

components of the client application logical model.

 Presentation Layer: the presentation layer is responsible for

displaying the application layout to the user. It uses the Market Watch

module to display stocks prices, Charting Module to retrieve and

display stocks charts, Orders Module to display customers’ positions

and ability to place new transactions, and Account Management

Module to calculate and display customer’s financial status and

customer’s information.

 Communications Layer: will maintain connections with Stocks

Trading server and Market Watch data feed server. It will send/receive

new orders details using WCF to the Stocks Trading server and initiates

TCP connection with the Market Watch data feed server to receive

updated prices for the stocks.

 Market Watch Module: will manage retrieval of stocks prices that the

customer is subscribed to, and track changes in their prices using the

communication layer. It will provide customers the functionality to

add/remove new stocks to their profiles and will provide the broker the

functionality of adding/removing new stocks to the trading system.

 Charting Module: will create charts for selected stocks using historical

data retrieved from the Market Watch data feed server.

 Orders Module: handles retrieving customers, opened positions and

placed orders, and calculates their profit/loss of each position based on

241

the prices retrieved from the market data source. It will also provide

buy/sell functionality to the client application.

 Account Management Module: will handle user login to the server

and retrieval of information. It will provide the ability to open demo

accounts for the customers and it will provide the broker the

functionality of creating new customer accounts and updating their

information.

 Reporting Module: will provide the functionally of generating end of

day reports for the brokerage hours customers with details of their

positions profit/loss, trading volume reports, and other financial reports.

This functionality will be available to the broker house users only.

 Stocks Hours Module: will provide the officer the functionally of

setting active stocks and the trading hours of each stock. This

functionality will be available to the broker house users only.

 Figure 6.4: Customer Client Logical Model of the Online

Brokerage System

242

Based on the conceptual prototype of the online brokerage system, programmers

extracted the required tasks for the features that are mentioned in Table 6.20, and

estimated how long it would take each task to be implemented by one pair of

programmers. Accordingly, customers and programmers decided together the

level of priority for each task. Table 6.20 presents the schedule planning of the

required tasks in detail.

 Table 6.20: Planned Tasks of all Features for the Second Case Study

Task Name Estimated Time

(Day)

Priority

T1: Preparing Data Access Layer 1 High

T2: Preparing Business Managers 2 ↓

↓

↓

↓

↓

↓

↓

↓

T3: Preparing Business Entities 1

T4: Listing clients’ accounts 2

T5: Updating client account information 1

T6: Resetting account password 1

T7: Viewing account activities 2

T8: enabling/disabling accounts 1

T9: Building multithreaded TCP/IP core engine 2

T10: Securing client connection 2

T11: Checking account status on connection 0.5

T12: Adding connected client to connected clients pool 0.5

T13: Sending client portfolio details 2

T14: Sending client orders upon connect 2

T15: Connecting client to market data source 1

T16: Building data feed connectivity engine 2

T 17: Tracking connectivity of market data feed and

reconnecting when needed

1

T18: Reading stocks prices from data source 2

T19: Broadcasting prices upon updates to the registered

clients

1 ↓

T20:Viewing clients opened positions and portfolio

details

2

T21: Adding/Closing new order for an account 2

T 22: Adding/Removing one cancel another order to an

account

2 ↓

T23: Account liquidation 2

T24: Closing an account 1

243

T25: Preparing Business Managers 2 ↓

T26:Preparing Business Entities 2

T27:Creating Asynchronous TCP socket interface 1

T28: Securing connection to server 1 ↓

T29: Monitoring server connection and reconnect if

disconnected

1

T30: Open orders calculation engine 2

T31: Retrieving stocks list 1 ↓

T32: Updating stocks 0.5

T33: Adding/Removing stock 1

T34: Depositing money to client account 1.5 ↓

T35: Withdrawing money from client account 1.5

T36: Stocks Trading Hours 3

T37: Retrieving a list of all active stocks 2 ↓

T38: Set trading time for each stock 2

T39: Connecting trading hours to trading server engine 2

T40: Placing buy/sell orders 2 ↓

T41: Placing limit order 1.5 ↓

T42: Placing Stop orders 1.5

T43: Placing one cancel the other operation 2

T44: Cancel or replace stop order 1 ↓

T45: Displaying available account types 0.5

T46: Filling user information 1

T47: Sending new account information to server 1 ↓

T48: Displaying current total profit/loss 1.5

T49: Displaying opened stocks and their profit/loss 3

T50: Caching account information 1 ↓

T51: End of day statement report of all accounts and

their transactions

2

T52: Trading volume throughout the day 2

T53: Account statement details and opened positions 1.5 ↓

T54: Account financial transactions report 1.5

T55: Research about charting controls 2

T56: Integrating of charting control on the client 2 ↓

T57: Retrieving stock history prices 2.5

T58: Displaying history prices on the chart 2

T59: Caching stock prices on the client 2 Low

244

As shown in Table 6.20, programmers and customers estimated the time needed

for each task, and also arranged these tasks from high to low priority. Depending

on the high number of these tasks, the programmers and customers divided these

tasks into two releases, where the first release consisted of the first thirty three

tasks (T 1 to T 33), and the second release consisted of the last twenty six tasks

(T 34 to T 59). At the end of this phase, the conceptual prototype description and

the user stories tasks from the two releases were kept in the project repository.

Afterwards, the tasks of the two releases were used as inputs in the development

phase.

 Phase Two: Development

As a result of the previous phases, there are two releases that need to be

developed in this phase. At the beginning of this phase, the schedule set for the

two releases was broken down into two iterations for each release. Table 6.21

shows each release with their iterations and included tasks.

Table 6.21: Iterations of the Two Releases for the Second Case Study

Release Number Iteration Number Tasks Priority

1 1 T1 to T15 High

2 T16 to T 33 ↓

2 1 T34 to T50 ↓

2 T51 to T59 Low

As shown in Table 6.21, there are two releases and two iterations for each

release. Accordingly, two pair programmers started to write the required code for

the iterations of the first release sequentially according to the priority of these

245

iterations, where unit test was used to test each line of coding before writing.

Moreover, functional tests were developed by the programmers and used by the

customer at the end of each iteration. At the end of developing the first release,

the first version of the product (release one) was sent to the next stage to make

sure that all features of the first release had been done by this version. This phase

was started again in order to develop the features of the second release as the

steps of the first release. At the end of developing the second release, the second

version (two releases) of the product was sent to the next phase. Additionally,

there were several technical tools that were used in developing the online

brokerage system during this phase. Table 6.22 shows those technical tools.

Finally, the system was ready and entered the next phase. Additionally, the

developing data was documented in the project repository.

 Table 6.22: Technical Tools of the Second Case Study

Items Description

Language Visual Basic .Net

Database Microsoft SQL Server 2008

Development Environment Microsoft Visual Studio Team System 2008

SCM Microsoft Team Foundation Server (TFS)

Unit Testing NUNIT

Documents Microsoft Office 2007

Web Server Internet Information Services 7.0

 Phase Three: Product Delivery and Product & Process Efficiency

At the end of the development phase, two releases were developed; therefore two

versions of the product were entered into this phase. At the beginning of this

phase, there was one meeting held for each release with the project team to make

246

sure that the customer’s features have been implemented during the development

phase, where project repository had been used as a general guidance for these

features. As a result of these meetings, the manager agreed that all the customer’s

features had been developed in the system. Accordingly, the system was shown

to the customer and already several functional tests were done by customer to

check if the system worked as intended. As a result of these checks, the customer

agreed that he was satisfied with the system and there were no new features

needed. Thereby, the system entered the maintenance & death phase.

Several metrics were calculated by coach and tracker in this phase, where these

metrics aimed to check the processes’ performance to ensure the quality of the

development processes. Table 6.23 presents the differences between the

estimated and actual implementation times for all the tasks of the two releases.

Furthermore, Table 6.24 shows the results of several metrics that were calculated

to ensure the quality of the development processes.

As mentioned in the development phase, there are two pair programmers who

participated in developing the releases. Therefore, the estimated times for all

features were ninety three days and the actual times were ninety nine days. These

estimated and actual times were for one pair of programmers. Nevertheless, there

are two pairs of programmers who participated in developing the system.

Accordingly, the actual and estimated times for developing the two releases were

divided by two pairs as follows:

 Estimated time = 93 day/ 2 pairs = 46.5 days.

247

 Actual time = 99 days/ 2 pairs= 49.5 days.

 Daily time= 49.5 - 46.5= 3 days.

Table 6.23: The Differences between the Estimated and

Actual Implementation Times for All the Tasks for the Two

Releases of the Second Case Study

Release Iteration Tasks
Estimated

Time (Day)

Actual Time

(Day)
Difference

1 1 T1 1 1 0

T2 2 1.5 - 0.5

T3 1 1 0

T4 2 2 0

T5 1 1 0

T6 1 1.5 + 0.5

T7 2 3 + 1

T8 1 1 0

T9 2 2 0

T10 2 2 0

T11 0.5 0.5 0

T12 0.5 0.5 0

T13 2 2 0

T14 2 3 + 1

T15 1 1 0

2 T16 2 3 + 1

T 17 1 1 0

T18 2 1 -1

T19 1 1.5 + 0.5

T20 2 2 0

T21 2 2 0

T 22 2 2.5 + 0.5

T23 2 2 0

T24 1 1 0

T25 2 2.5 + 0.5

T26 2 2 0

T27 1 1.5 + 0.5

T28 1 1 0

T29 1 1.5 + 0.5

T30 2 2 0

T31 1 1.5 + 0.5

248

T32 0.5 0.5 0

T33 1 1 0

2 1

T34 1.5 2 + 0.5

T35 1.5 1.5 0

T36 3 2.5 -0.5

T37 2 2 0

T38 2 2 0

T39 2 2 0

T40 2 2 0

T41 1.5 1.5 0

T42 1.5 1.5 0

T43 2 2.5 + 0.5

T44 1 1 0

T45 0.5 0.5 0

T46 1 1 0

T47 1 1 0

T48 1.5 1.5 0

T49 3 2.5 -0.5

T50 1 1 0

2 T51 2 2.5 + 0.5

T52 2 2 0

T53 1.5 2 + 0.5

T54 1.5 1.5 0

T55 2 2.5 + 0.5

T56 2 2 0

T57 2.5 2 -0.5

T58 2 2 0

T59 2 2 0

Total 93 99 + 6

 Table 6.24: Metrics of Processes Quality Assurance of the Second Case

Study

Metrics Average

Percentage of test cases that are running successfully 212/248= 85%

Percentage of acceptance test that run successfully 162/197= 82%

Length of pair programming session 2 hours

Project velocity compared with estimated for the two releases 46.5/49.5= 93%

249

At the end of this phase, the metrics of processes’ performance and quality

assurance were put into the project repository to help with the measurement of

the same user requirements for the next projects.

 Phase Four: Maintenance & Death

In this phase, the online brokerage system was installed and tested in the

business environment for three weeks, and all the user requirements were tested

by the end users. After implementing the system in the real environment, it was

concluded that there was no need further modification required to the system. As

such, the system was ready to be used by online brokers.

6.3.2.3 Stage Three: Identifying the Best Practices of the Current Project

In this stage, the framework-SEPG members were responsible for discussing the

implementation of the framework by meeting with the project team to identify the

software development processes’ best practices. CMMI-Dev1.2 specific practices

were used as main items in extracting the best practices of current project. As a

result of this meeting, the framework-SEPG members identified the following best

practices for implementing the framework in developing the online brokerage

system:

 Best Practices of CMMI-Dev1.2 Level Two: in this level, the specific goals

of all the seven KPAs were achieved in developing the online brokerage

system and the specific practices of each KPA were applied by using the

framework. These areas are: requirement management, project planning,

supplier agreement management, project monitoring and control, measurement

250

and analysis, process and product quality assurance, and configuration

management.

 Best Practices of CMMI-Dev1.2 Level Three: in this level, the specific goals

of eight KPAs were achieved in developing the online brokerage system and

the specific practices of each KPA had been applied by using the framework.

These areas are: requirements development, technical solution, product

integration, verification, validation, organizational process definition + IPPD,

organizational training, and integrated project management +IPPD.

Nevertheless, the specific goals of the other three KPAs were achieved by

developing the system but in different way compared to the specific practices

of these areas in CMMI-Dev1.2. These KPAs are: organizational process

focus, risk management, and decision analysis and resolution.

 Best Practices of CMMI-Dev1.2 Level Four: in this level, the specific goals

of the two KPAs were achieved by developing the system in different way

compared to specific practices of these areas in CMMI-Dev1.2. These areas

are: organizational process performance and quantitative project management.

 Best Practices of CMMI-Dev1.2 Level Five: in this level, the specific goals

of the causal analysis and resolution KPA was achieved by developing the

system in different way compared to specific practices of this area in CMMI-

Dev1.2.

251

6.3.2.4 Summary of Developing the Online Brokerage System by the Modified

Software Development Process Improvement Framework

Firm “Y” developed the online brokerage system by implementing the modified

framework. Based on this, the framework-SEPG members wrote a report of the

actual time that was spent on each stage of this framework. Table 6.25 presents the

actual time of each stage.

 Table 6.25: Actual Time for Implementing the Modified Framework in the

 Second Case Study

Stages Activities Time (By Day)

Before stages Understanding the framework by framework-

SEPG members

5

Stage One Assessing the current processes 3

Modifying the current roles 4

Stage Two Educating and training the project team on the

Extended-XP method

5

Adopting the Extended-XP method (all phases) 85

Stage Three Analyze the result and extract the best practices 3

Total 105

As shown in Table 6.25, the implementation of the modified framework took 105

days, with the project team working five days a week. Accordingly, the actual time

for implementing the framework as a whole was 105 days/ five days (weekly) = 21

weeks, where the actual time for the modified Extended-XP method was 85 days /

five days (weekly) = 17 weeks. These periods of time will be taken into account by

252

the project team during their answers on the evaluation criteria to evaluate the

effectiveness of the framework. Section 6.4 will discuss the evaluation criteria.

With regards to the modified framework roles that were used in this case study;

seventeen members participated in developing the online brokerage system by

implementing the framework. The members included: one project manager, two

framework-SEPG members, one Extended-XP-SEPG member, two coaches, two

trackers, four programmers (two pairs), two testers, one on-site customer, and two

suppliers.

6.4 Evaluating the Effectiveness of the Modified Software Development Process

Improvement Framework

As discussed in Section 3.5, to ensure that the modified framework is effective for

SSDFs, there is need to identify the required evaluation criteria that are needed to

evaluate the effectiveness of the implementation of this framework by the two firms

discussed above. Table 6.26 presents the resource of required criteria that used to

evaluate the modified framework.

Prior to starting the evaluation process; the evaluation questionnaire was pre-tested

to make sure that these questions are sufficient and suitable to be used in evaluating

the effectiveness of the modified framework for SSDFs. In this regard, face-to-face

interviews with two related researchers were carried out; and just slight corrections

had been done on these questions to make it suitable and clear with the aim of the

evaluation process.

253

 Table 6.26: Research Variables for Evaluating the Modified Framework

Sources Evaluation Criteria

 Kitchenham (1998) Gain Satisfaction:

- Perceived usefulness

- Decision support satisfaction

- Comparison with other guidance – better

- Cost – effectiveness

- Clarity - clear and illuminate the process

- Appropriateness for task

 Garrity and Sanders (1998)

Interface Satisfaction:

- Perceived ease of use

- Appropriate for audience

- Organization - well organized

- Internally consistent

- Presentation - readable and useful format

 Kitchenham et al. (1997), and

Garrity and Sanders (1998)

Task Support Satisfaction:

- Ability to produce expected results

- Ability to produce usable results

- Completeness - adequate or sufficient

- Ease of implementation

- Understandability - simple to understand

The evaluation criteria that are mentioned in Table 6.26 were used as main variables

in evaluating the effectiveness of the modified software development process

improvement framework by interviewing the project teams who implemented the

two case studies. The following points provide the results of the evaluation process:

 - Gain Satisfaction Criteria

 Perceived Usefulness: the framework enabled the project teams in

implementing their roles correctly with high effectiveness, as the practices of

each role were clearly understood. Therefore, the productivity of each member

of the project team was good compared to the ad-hoc manner, which had been

used in the firm before implementing the Extended-XP method as a

development method. In addition, the distributions of the roles in the first stage

254

of the framework were very familiar to the current role of each member which

led them to execute their roles easily.

 Decision Support Satisfaction: the continuous communication during the

framework (including the Extended-XP method life cycle) has the potential to

reduce individual bias by involving all the members (including the customer)

working as a team in the decision making process. Based on this, project

managers were responsible for the confirmation of the decision making, where

this is the main roles of the managers.

 Comparison with other Guidance: the framework was suitable for improving

the software development processes compared to the traditional SPI models

such as CMM, CMMI, ISO, SPICE, and BOOTSTRAP. These traditional

models are used to improve the software development processes by “what to

do” function. Nevertheless, this framework simplified the achieving of the

specific goals of CMMI-Dev1.2 KPAs in a simple and smooth way by using

Extended-XP method to know “how to do” the improvement.

 Cost (Effectiveness): the framework was cost-effective for several reasons

such as: (1) supplying process helps in choosing the suitable products and

services from the external suppliers within a set of feasible conditions and this

minimizes the risk of purchasing from suppliers; (2) the coach enabled the

project team to follow the right path and kept them working on the current

features for the actual iteration; and (3) the tracker was careful not to interrupt

the project team too many times.

 Clarity (clear and illuminate the process): the framework stages were very

clear to the project teams, as each member had specific roles to do. Therefore,

255

there was no overlap between their roles. In addition, the framework was made

very clear to the project teams by the educating and training that had been

carried out in the first stage of this framework, and also the framework

guidance helped the team during the implementation of the Extended-XP life

cycle. Moreover, the roles of the coach and the tracker helped the project team

in executing their roles during the development life cycle.

 Appropriateness for Task: the framework was appropriate for the task for

which it had been developed, as it helped the firms in managing and improving

their software development processes in a systemic and effective way

compared to the ad-hoc manner which had been used before. In addition, the

framework helped to know the best practices of developing the current project

to help them in the organization and development issues for incoming projects.

- Interface Satisfaction Criteria

 Perceived Ease of Use: the educating and training process helped the project

team in understanding the framework. Therefore, it was easy to be understood

and used during the implementation.

 Internally Consistent: the stages of the framework and the roles of each

member in the team were very clear. These roles helped in keeping the

developing process consistent.

 Organization (well organized): the framework was organized and structured

well, and the sequence of framework stages and Extended-XP phases helped to

make the development activities easily understood.

256

 Appropriate for Audience: based on developing the systems by the Extended-

XP method, the audiences were satisfied on product releases. This helped them

add more features to the required products because the Extended-XP method is

incremental and iterative software development method.

 Presentation (readable and useful format): the framework has a readable

and useful format. The project teams argued that the phases of the Extended-

XP method were very apparent and smooth, where the education and training

process helped them to understand the method thoroughly.

- Task Support Satisfaction Criteria

 Ability to Produce Expected Results: the implementation of the framework

returned high capability levels compared with the levels seen before

implementing this framework, especially in terms of time and productivity.

 Ability to Produce Usable Results: the completed systems were usable by the

end users, as the customers participated in developing the systems (On-Site

Customer), so the products were very user-friendly for the systems owners.

 Completeness (adequate or sufficient): the framework was comprehensive

for improving the software development and management processes in SSDFs.

However, it would be more sufficient when all KPAs of CMMI-Dev1.2 level

five are included.

 Ease of Implementation: the framework was very easy to implement, and the

descriptions of each phase were very clear. Therefore, it was easy to know

what the roles of each member in the developing process. The project teams

also asserted that the Extended-XP method was easy to implement, where the

257

coach enabled the project team to follow the right path and kept them working

in the right way. Nevertheless, the physical prototype was not suitable to be

developed in the first phase of the Extended-XP method; therefore the

conceptual prototype was more appropriate in this phase.

 Understandability (simple to understand): the framework was

understandable. The project teams asserted that the activities of the Extended-

XP method were easy to understand, especially after the education and training

processes. In addition, the documentations of the Extended-XP method helped

them in implementing this method in the right way.

As a result of the responses from the team members of the two case studies on the

evolution criteria questions, it can be concluded that the framework is useful,

useable, satisfied user needs and valid for use by SSDFs.

6.5 Conclusion

During the validation process, there were two approaches were used to validate the

framework. The first approach used is the CMMI-Dev1.2 KPAs questionnaires as

the main item to validate the suitability of the modified framework for SSDFs by 30

Jordanian professional developers and managers who were working in these firms.

As a result of the first approach, the modified framework was suitable for these

firms, where six KPAs were strongly suitable which are: requirement management,

project planning, project monitoring and control, technical solution, verification, and

validation, while the results of the last fifteen areas were suitable for these firms

which are: supplier agreement management, measurement and analysis, process and

258

product quality assurance, configuration management, requirements development,

product integration, organizational process focus, organizational process definition

+IPPD, organizational training, integrated project management +IPPD, risk

management, decision analysis and resolution, organizational process performance,

quantitative project management, and causal analysis and resolution.

As resulted in the first approach, it can be concluded that all the components in the

modified framework that aimed to achieve the requirements of the specific goals for

the suitable CMMI-Dev1.2 KPAs are strongly suitable or suitable for these firms.

Accordingly, this framework is suitable for the characteristics of SSDFs.

In the second validation approach, two Jordanian SSDFs implemented the modified

framework as case studies as discussed in Sections 6.3.1 and 6.3.2. Then, the general

evaluation criteria were used to evaluate the applicability and effectiveness of the

modified framework by these firms, which are: satisfaction, task support satisfaction,

and interface satisfaction. As a result of the evaluation process, it was found that the

modified framework was effective when implemented in SSDFs as discussed in

Section 6.4. Therefore, it can be concluded that the framework was suitable for

SSDFs in improving the software development processes.

259

CHAPTER SEVEN

CONCLUSION AND FUTURE WORK

7.1 Introduction

This chapter concludes this thesis by presenting a brief summary of achievement of

the research objectives carried out to support the thesis proposition. It discusses the

contributions and the limitations of the research. The chapter ends by proposing

directions for future work in the area of software development and improvement

processes.

7.2 Achievement of the Research Objectives

The main aim of this research is to construct a software development process

improvement framework for SSDFs, based on integrating XP as a software

development method and CMMI-Dev1.2 as a SPI model. This is because the

traditional SPI models and standards cannot be implemented directly by SSDFs, as

these models and standards were developed for large and very large firms. The

research was carried out in four stages to achieve the four objectives of the research.

A summary of the research and key findings found at each stage are provided in the

following sections.

7.2.1 Stage One: Aligning XP Practices to the Specific Goals of CMMI-Dev1.2

KPAs

This aim of this stage was to identify the coverage ratio of XP method to CMMI-

Dev1.2. This aim was achieved by aligning XP practices to the specific goals of

260

CMMI-Dev1.2 KPAs, taking into account the achievement of the specific practices

of each specific goal by the same or different way of CMMI-Dev1.2.

As a result of this stage, most of the specific goals of CMMI-Dev1.2 KPAs were

supported by XP practices. Twelve of these KPAs were largely supported by XP

practices, i.e., project planning, project monitoring and control, configuration

management, technical solution, product integration, verification, validation,

integrated project management +IPPD, risk management, decision analysis and

resolution, quantitative project management, and causal analysis and resolution.

Eight KPAs were partially supported by XP practices, i.e., requirement management;

measurement and analysis, process and product quality assurance, requirements

development, organizational process definition +IPPD, organizational training,

organizational process performance, and organizational innovation and deployment.

The last two KPAs are not-supported by XP practices and these are supplier

agreement management and organizational process focus. The partially and not-

supported KPAs were entered as inputs in Stage Two to develop the proposed

software development process improvement framework for SSDFs.

7.2.2 Stage Two: Developing the Proposed Software Development Process

Improvement Framework for SSDFs

Based on the partially and not-supported CMMI-Dev1.2 KPAs of Stage One, the

EBA was adapted to extend the XP method. In this respect, the related previous

literatures, and the required software development, management, and improvement

261

additions, were analyzed to cover these KPAs, as explained in Sections 4.3.1.1 and

4.3.1.2.

Referring to the phases of the generic and popular software development

methodologies, such as Waterfall, Spiral, Incremental, Prototyping, and XP method,

the required development, management, and improvement additions were distributed

between the phases of these generic methods based on the suitable use of these

additions during the development lifecycle. Accordingly, the comprehensive phases

of the proposed Extended-XP method were extracted. Based on this, several

modifications were made to the XP method phases and roles as discussed in Section

4.3.2.

Subsequently, the proposed Extended-XP method, CMMI-Dev1.2, and the generic

elements of SPI framework, were merged to produce the proposed software

development process improvement framework, and this was done by integrating the

proposed Extended-XP method and CMMI-Dev1.2 to the generic elements of SPI

framework as explained in Section 4.4.1. Then, the proposed software development

process improvement framework was developed as discussed in Section 4.4.2. Then,

the proposed framework was used as input in Stage Three.

7.2.3 Stage Three: Verifying the Proposed Software Development Process

Improvement Framework

As a result of Stage Two, the proposed framework was developed. Accordingly,

Stage Three aimed to: verify the compatibility of the proposed framework to the

262

suitable CMMI-Dev1.2 KPAs, verify the commitment of the proposed Extended-XP

method to the agility values of XP method to ensure that the proposed method still

kept lightweight values that are suitable for SSDFs, verify the suitability of the

proposed framework and the proposed Extended-XP structures for the software

development process improvement issues in SSDFs, and verify the suitability of the

proposed framework and the proposed Extended-XP roles for their practices. In this

research, the focus group coupled with Delphi technique was used as a verification

method.

From the results of the verification process in this stage, this research found that the

proposed framework is compatible for all the KPAs of CMMI-Dev1.2, except the

organizational innovation and deployment KPA, because the related practices of this

area conflicted with the agility of XP values, which made the Extended-XP method

as a heavyweight, which is not suitable for SSDFs. In addition, based on the

suggestions of the focus group members, several modifications were made to the

proposed framework, including the proposed Extended-XP method, as presented in

Sections 5.6 and 5.7.

7.2.4 Stage Four: Validating the Modified Software Development Process

Improvement Framework for SSDFs

In this stage, two approaches were used to validate the suitability and applicability of

the modified software development process improvement framework for SSDFs.

These approaches are:

263

 Using CMMI-Dev1.2 questionnaires to validate the suitability of the

modified framework for SSDFs.

This validation approach aimed to validate the suitability of the modified

framework for SSDFs. This was done by using CMMI-Dev1.2 KPAs as

the main items of the validation questionnaires. Thirty Jordanian

professional developers and managers, who were working in SSDFs,

participated in achieving this process. Based on the results of this process,

it was found that the framework was suitable for these SSDFs, where six

KPAs were strongly suitable, i.e., requirement management, project

planning, project monitoring and control, technical solution, verification,

and validation. The next fifteen KPAs were suitable for these firms as

follows: supplier agreement management, measurement and analysis,

process and product quality assurance, configuration management,

requirements development, product integration, organizational process

focus, organizational process definition +IPPD, organizational training,

integrated project management +IPPD, risk management, decision

analysis and resolution, organizational process performance, quantitative

project management, and casual analysis and resolution.

 Two case studies were conducted in order to validate the applicability and

effectiveness of implementing the modified framework for SSDFs.

This validation approach aimed to validate the applicability the modified

framework for SSDFs. This was done by implementing the framework in

264

two Jordanian SSDFs. Then, this research used common evaluation

criteria to evaluate the effectiveness of the modified framework by these

firms. These criteria are gain satisfaction, interface satisfaction, and task

support satisfaction.

Referring to the results of the first approach of validating the modified framework in

this stage, all the software, development, and improvement practices that are used in

developing the modified framework to achieve the twenty one KPAs of CMMI-

Dev1.2 were suitable for SSDFs. Furthermore, the second validation approach with

the results of the evaluation criteria indicates good applicability and effectiveness

when using this framework in improving the software development processes by

these firms.

7.3 Research Contributions

This research has demonstrated that the traditional SPI models and standards, such as

CMMI-Dev1.2 can be implemented by SSDFs. This can be done by integrating this

model with a suitable software development method, such as the XP method. In

doing this, four major contributions are achieved. Sections 7.3.1 to 7.3.3 discuss

these contributions.

7.3.1 Software Development Process Improvement Framework for SSDFs

The software development process improvement framework constructed in this study

enables the SSDFs to improve their software development processes in a systematic

265

way. The framework was developed by integrating the XP method with CMMI-

Dev1.2.

In this regard, this study provides evidence in support of a possible integration

between CMMI-Dev1.2 and XP method through the usage of the XP practices as

main items in achieving the specific goals of CMMI-Dev1.2 KPAs. Thus, this

research promotes an understanding of how to use the SPI model (CMMI-Dev1.2)

and software development method (XP method) together in order to improve the

software development processes of SSDFs.

The framework is compatible and suitable for all KPAs of CMMI-Dev1.2, except the

“organization innovation and deployment” KPA. Therefore, the framework can be

used to support SSDFs in achieving high levels in CMMI-Dev1.2 certification.

Additionally, the agility values of the developed framework such as simplicity,

communication, feedback, and courage will increase the motivation of SSDFs to

improve their software development activities.

7.3.2 Elicit Better Understanding of How to Construct the Framework

A better understanding for constructing the software development process

improvement framework now exists and serves as a guideline for future development

in the specific areas addressed in this study, which are: (1) the process of alignment

XP method to CMMI-Dev1.2 KPAs, which is based on the XP practices and the

specific goals of the CMMI-Dev1.2 KPAs. This further supports the need for

increased attention to be given to the improvement of software development

266

processes by CMMI-Dev1.2 model and XP method. In addition, the results of this

alignment have a straightforward and simple guideline to identify suitable

development improvement processes for firms of all sizes; (2) the processes of

adapting EBA to extend XP method, and the processes of integrating the Extended-

XP method and XP method by modifying the generic elements of the SPI

framework; (3) the process of using the focus group method coupled with Delphi

technique to verify the proposed framework; and (3) the process of documenting the

results of the case studies, and the process of conducting the evaluation criteria to

evaluate the modified framework.

7.3.3 Quality Improvement of the Software Development Processes

The framework assists the process of educating and training the employees in the

firm. This process contributes to increase the right understanding of the employees

during the software development lifecycle by identifying employee roles

specifically, and training them on the best way to achieve the goals of these roles.

In addition, the distributions of the roles in the framework are based on the

experiences of each member; therefore this process enables the project teams to be

very familiar with the current roles, which lead them to execute their roles easily.

Furthermore, the framework documentations enable the project team to understand

and implement the software development and management practices correctly and

effectively during the development lifecycle without further inquiries and this will

help the SSDFs to deliver the software products within limited time.

267

7.4 Limitations of the Research

Despite the noteworthy results obtained, this study has some limitations, as with any

study. Sections 7.4.1 to 7.4.3 present these limitations.

7.4.1 Lack of the Related Researches

There is lack of researches that align the software development methods to CMMI-

Dev1.2. Therefore, it was a challenge to align XP practices to the specific goal of

CMMI-Dev1.2 KPAs, based on achievement of the specific practices of each KPA.

In this regard, many related publications on CMMs were utilized in this study in

order to carry out this alignment.

In addition, the related studies did not show how XP method can be extended and

integrated to fulfill the KPAs of CMMs. Therefore, it was difficult to search for

literature on extending the XP method to cover the missing KPAs of CMMI-Dev1.2

for suitable activities for SSDFs, as these firms need to have lightweight processes in

their development processes. Due to these obstacles, some of the KPAs specific

goals were supported by the framework without following the specific practices of

each specific goal. Therefore, future research can be continued to address the

missing specific practices of these KPAs.

7.4.2 The Framework is based on XP method and CMMI-Dev1.2

In this study, XP method has been used as a generic element in the software

development process improvement framework, as this method is the most popular

and effective lightweight development method of software development in SSDFs.

268

In addition, this method is more compatible to SPI models such as CMMI compared

to other popular lightweight methods. Accordingly, for future research, it is

advisable to examine more agile method practices to improve the software

development process improvement framework in order to thoroughly address the

missing specific goals of CMMI-Dev1.2.

In addition, CMMI-Dev1.2 model has been chosen as a generic element in the

framework, as this model is the most comprehensive SPI and more fully complies

with relevant traditional SPI models and standards. CMMI-Dev1.2 version was used

as main SPI model to develop the framework, as this version was the newest version

during the development of the framework and it was evaluated in other relevant

studies. In this regard, the framework can be improved in future research by using

the newest version of CMMI.

7.4.3 Limited Scope in the Verification and Validation Processes

During the verification process, the focus group comprising ten members was held.

Three of the members had worked in CMMI or XP method fields in Jordan

previously, and seven of the members were employed at a Jordanian SSDFs.

Accordingly, the verification process was carried out based on the characteristics of

a limited number of Jordanian SSDFs. In future research, it would be preferential to

include experts from other countries in order to assess the comprehensiveness of the

research results.

269

In addition, the modified framework was validated in two Jordanian SSDFs because

time and cost were obstacles to implement the modified framework in other

countries. Therefore, the implementation of this framework in other countries is

important in order to assess the suitability of the framework for more SSDFs around

the world. Furthermore, two case studies are too few to fully validate the

effectiveness of the modified framework and therefore, a larger number of case

studies are necessary to further evaluate the modified framework.

7.5 Future Work

The software development process improvement framework presented in this study

is a solid starting point for working towards collaboration between the SPI models

and software development methods. During the course of the research, several

potential directions for future investigation were identified. Some of these are to

overcome the current limitations of this study. Sections 7.5.1 to 7.5.3 highlight the

potential directions for future work.

7.5.1 Fulfilling the Missing KPAs and Specific Practices of Several KPAs

The software development process improvement framework supports the specific

goals of six KPAs of CMMI-Dev1.2 without following their specific practices.

These KPAs are organizational process focus, risk management, decision analysis

and resolution, organizational process performance, quantitative project

management, and causal analysis and resolution. Therefore, future research can

address the missing specific practices of these KPAs. In this respect, the software

development, management, and improvement additions made during the

270

development of the framework can be used as a guideline and starting point for

future research.

Furthermore, short term future research can continue to focus on finding a suitable

method to fulfill the organizational innovation and deployment KPA by searching

for suitable additions to achieve the goals of this area, as this KPA was not supported

by the framework of this study.

7.5.2 Using other Agile Practices and CMMI-Dev1.3

The development of the software development process improvement framework was

based on CMMI-Dev1.2 as a SPI model and XP method as a software development

method. In this regard, there is possible avenue for further research to examine the

agile method practices beyond the XP practices that were used in this study.

Methods such as SCRUM, DSDM, LSD, and AUP (RUP) are all effective methods

that could be used by SSDFs. In addition, Sidky (2011) pointed out the importance

of the inclusion of agile practices as much as possible in the field of development

processes, stating that this is especially important for SSDFs. Therefore, the

combination of some agile methods will offer further development and improvement

additions that can be used to fulfill the missing specific goals of several KPAs.

Now, CMMI-Dev1.3 is the newest version of CMMI. Even though that the KPAs of

CMMI-Dev1.2 are similar to the KPAs of CMMI-Dev1.3, future research can be

continued to improve the software development process improvement framework

based on the newest version of CMMI, which is CMMI-Dev1.3.

271

7.5.3 Conducting More Case Studies

Jordanian SSDFs were the focus area for the validation of the modified framework.

Therefore, future research could be continued to validate this framework by SSDFs

in other countries to ensure that the developed framework is suitable to be

implemented in most countries. Expanding the scope of validation will indicate

subsequent need for additional modifications of the developed framework, and this

will result in a more comprehensive framework that can be applied in SSDFs all over

the world.

7.6 Final Remarks

This research started from the need to have a suitable software development process

improvement framework for SSDFs. These firms suffer from problems during the

development of software products. This is because they develop their software

products in a chaotic and “ad hoc” manner since they are unaware of the basic

software best practices.

In addition, all traditional SPI models were developed for large and very large firms.

Therefore, SSDFs could not afford these models; these models need a lot of

activities and requirements, which are not commensurate with the characteristics

of SSDFs. Furthermore, most of these firms have a lack of understanding of the

success factors of SPI and do not have sufficient staff to perform all the SPI

activities. Therefore, SSDFs need integration between a suitable software

development method and an appropriate SPI model to manage and improve their

software development processes in a systemic way. This was the focus of this

272

research and the work reported in this thesis has successfully established the

software development process improvement framework for SSDFs by integrating XP

method with CMMI-Dev1.2.

273

REFERENCES

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2002). Agile software

development methods. Espoo: VTT Publications 478, Technical Research

Centre of Finland. Finland.

Agarwal, R., Umphress, D. (2008). Extreme Programming for a Single Person Team.

In Proceeding of the 46th Annual Southeast Regional Conference held on 28-

29 March 2008 at Aubrun, Al, USA (pp. 82-87). New York, USA: ACM.

Al Hussaini, A. M. (2006). Web Engineering. Unpublished Research Course.

College of Computer and Information Sciences, King Saud University,

kingdom of Saudi Arabia.

AL-Allaf, O. (2008). A proposed hybrid web engineering process model for large-

scale web-based application development in large web development

enterprises methodology. Unpublished Doctoral Thesis, Faculty of

Information System and Technology, the Arab Academy of Banking and

Financial Science, Amman, Jordan.

Alegra, J., & Bastarrica, M. (2006). Implementing CMMI using a Combination of

Agile Methods. Clei Electronic Journal, 9(1), 7-22.

Alexandre, S., A. Renault, et al. (2006). OWPL: A Gradual Approach for Software

Process Improvement In SMEs. In Proceedings of the 32nd EUROMICRO

Conference on Software Engineering and Advanced Applications

(EUROMICRO-SEAA'06) held on 29 Aug. - 1 Sept. 2006 at

Cavtat/Dubrovnik, Croatia (pp. 328-335). Croatia: IEEE 2006.

Ali, R.Z.R.M., & Ibrahim, S. (2010). An iSPA model evaluation based on critical

success factors and selected criteria to support Malaysia's SME environment.

In Proceeding of 2nd International Conference on Software Engineering and

Data Mining (SEDM) held on 23-25 June 2010 at Chengdu, China (pp.225-

230). IEEE.

Alite, B., Spasibenko, N. (2008). Project Suitability for Agile methodologies.

Unpublished Master Thesis, Umea University, Umeå School of Business,

Sweden.

Allen, P., Ramachandran, M., & Abushama, H. (2003).PRISMS: an approach to

software process improvement for small to medium enterprises. In

Proceedings of Third International Conference on Quality Software

(QSIC’03) held on 6-7 November 2003 at Dallas, TX, USA (pp. 211-214).

USA: IEEE Computer Society 2003.

http://www.acm.org/publications
http://eprints.utm.my/23807/
http://eprints.utm.my/23807/

274

Alshammari, F. H., Ahmad, R. (2010). The effect of geographical region on the

duration of CMMI-based software process improvement initiatives: An

empirical study. In Proceeding of the 2nd International Conference on

Software Technology and Engineering (ICSTE) held on 3-5 October 2010 at

San Juan, Puerto Rico, USA. Vol. 2, (pp. V2-97-V2-100). USA: IEEE 2010.

Altarawneh, H., Amro, S. (2008). Software Process Improvement In Small Jordanian

Software Development Firms. In Proceedings of the 7th International

Conference on Perspectives in Business Informatics Research (BIR’2008)

held on 25-26 Sept. 2008 at the University of Gdańsk, Gdansk, Poland (pp

175-189). Poland: University of Gdańsk.

Altarawneh, H., El Shiekh, A. (2008). A Theoretical Agile Process Framework for

Web Applications Development in Small Software Firms. In Proceeding of

the Sixth International Conference on Software Engineering Research,

Management and Applications held on 20-22 Aug. 2008 at the Charles

University, Prague, Czech Republic (pp125-132). Czech Republic: IEEE

Computer Society.

Anacleto, A., Von Wangenheim, C., Salviano, C., & Savi, R. (2004). A method for

process assessment in small software companies. In Proceeding of the 4th

international SPICE conference on process assessment and improvement

held on 27-29 April 2004 at the Estoril Congress Centre, Lespon, Portugal

(pp. 69-76). Portugal: Estoril Congress Centre.

Anderson, D. J. (2005). Stretching Agile to fit CMMI Level 3-the story of creating

MSF for CMMI Process Improvement at Microsoft Corporation. In

Proceeding of the Agile Development Conference (ADC'05) held on 24-29

July 2005 at Denver, CO, USA (pp. 193-201). USA: IEEE Computer Society.

Baddoo, N., & Hall, T. (2002). Motivators of Software Process Improvement: an

analysis of practitioners' views. Journal of Systems and Software, 62(2), 85-

96.

BAe, D. (2007). Panel: Software Process Improvement for Small Organizations.

Paper presented at 31st Annual International Computer Software and

Applications Conference, Beijing, China.

Baharom, F., Deraman, A., & Hamdan, A. (2006). A Survey on the current practices

of software development process in Malaysia. Journal of ICT, 4, 57-76.

Baird, S. (2002). Sams teach yourself extreme programming in 24 hours. USA: Sams

Publishing.

Bajec, M., Vavpotia, D., & Krisper, M. (2007). Practice-driven approach for creating

project-specific software development methods. Information and Software

Technology, 49(4), 345-365.

275

Baker, S. (2005). Formalizing agility: an agile organization's journey toward CMMI

accreditation. In Proceeding of the Agile Development Conference (ADC’05)

held on 24-29 July 2005 at Denver, CO, USA (pp. 185-192). USA: IEEE

Computer Society 2005.

Baker, S. W., & Thomas, J. C. (2007). Agile principles as a leadership value system:

How agile memes survive and thrive in a corporate it culture. In Proceeding

of Agile Conference (AGILE’07) held on 13-17 Aug. 2007 at Washington

D.C. (pp. 415-420). IEEE Computer society.

Balandis, O., & Laurinskaite, L. (2005). Software Process Improvement in

Lithuania-UAB Sintagma Case Study. Information Technology and Control,

34(2A), 195-201.

Balkanski, P. (2003). QUALITY ASSURANCE IN EXTREME PROGRAMMING.

International Journal of Information Theories & Applications. 1(1), 113-117.

Baruah, A. (2012a). Contribution of Software Process Improvement Approaches For

Small and Medium Scale Enterprises. International Journal of Computing

and Corporate Research, 2(2), 1-10.

Baruah, N. (2012b). Software Process Improvement (SPI) Expert In Small And

Medium Scale Enterprises (SMEs). Unpublished Master Thesis, Computer

Science and Engineering Department, Thapar University, Patiala, India.

Basri, S., & O'Connor, R. V. (2011). Knowledge Management in Software Process

Improvement: A case study of very small entities. In M. Ramachandran

(Eds.) Knowledge Engineering for Software Development Life Cycle:

Support Technologies and Applications. (pp. 273-288). PA, Hershey, USA:

IGI Global.

Baxter, S. M., Day, S. W., Fetrow, J. S., & Reisinger, S. J. (2006). Scientific

software development is not an oxymoron. PLoS Computational Biology,

2(9), e87, 975-978.

Beck, k. (2000). Extreme programming explained: Embrace change (3
rd

 ed.).

Reading, Mass. Boston: addition-Wesley.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,

M., et al. (2001). Manifesto for agile software development. Retrieved on 13

May 2009, from http://agilemanifesto.org/.

Beitz, A., El-Emam, Kh., Jarvinen, J. (1999). A Business Focus to Assessments. In

Proceeding of the European Conference on Software Process Improvement

(SPI'99) held on 30 Nov. -3 Dec. 1999 at Barcelona, Spain (pp. 1-6).

ACM New York, NY, USA.

http://eprints.utp.edu.my/6258/
http://eprints.utp.edu.my/6258/
http://eprints.utp.edu.my/6258/
http://agilemanifesto.org/
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=dsere&index=au&req=%22Beitz%2C+A.%22
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=dsere&index=au&req=%22Jarvinen%2C+J.%22
http://www.acm.org/publications

276

Bell, D. (2001). Software Engineering, A programming Approach (3
rd

 ed.). New

York: Addison Wesley.

Bidad, C. D., & Campiseno, E. R. (2010). Community Extension Services Of Sucs

In Region Ix: Basis For A Sustainable Community Enhancement Program.

International Scientific Research Journal, 2(3), 235-343.

Billinger, K. (2005). A focus group investigation of care provider perspectives in

Swedish institutions for the coercive care of substance abusers. International

Journal of Social Welfare, 14(1), 55-64.

Birisci. S, Mentin, M. and Karakas, M. (2009). Prospective Elementary Teacher’s

Attitudes Toward computer and internet use: A Sample from Turkey. World

Applied Sciences Journal, 6(10), 1433-1440.

Block, E., (1986). The comprehension strategies of second language readers. TESOL

Quarterly, 20 (3), 463-494.

Boas, G. V., da Rocha, A. R. C., & Pecegueiro do Amaral, M. (2010). An Approach

to Implement Software Process Improvement in Small and Mid Sized

Organizations. In Proceeding of the Seventh International Conference on the

Quality of Information and Communications Technology held on 29 Sep - 2

Oct. 2010 at Porto, Portugal (pp. 447-452). Portugal: IEEE Computer

Society 2010.

Boehm, B. (1988). A Spiral Model of Software Development and Enhancement.

IEEE Computer, 21(5), 61-72.

Boehm, B. (2006). A view of 20th and 21st century software engineering. In

Proceeding of the 28th international conference on Software Engineering

held on 20-28 May 2006 at Keynote Talks Shanghai, China (pp. 12-29).

USA: ACM.

Boehm, B., & Turner, R. (2003). Balancing agility and discipline: A guide for the

perplexed. Boston: AddisonYWesley.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The Unified Modeling Language

User Guide. UK: Addison-Welsley Longman Inc.

Bos, E., & Vriens, C. (2004). An agile CMM. Extreme Programming and Agile

Methods-XP/Agile Universe, 1(1), 129-138.

Brinkkemper, S. (1996). Method engineering: engineering of information systems

development methods and tools. Information and Software Technology,

38(4), 275-280.

277

Brown, N. (1999). High-Leverage Best Practices: What Hot Companies Are Doing

to Stay Ahead. Cutter IT Journal, 12(9), 4-9.

Bucci, G., Campanai, M. and Cignoni, G. A. (2001). Rapid Assessment to Solicit

Process Improvement in Small and Medium-Sized Organizations. Software

Quality Professional, 4 (1), 33-41.

Bush, M., & Dunaway, D. (2005). CMMI (R) Assessments: Motivating Positive

Change (Sei Series in Software Engineering). Murray, KY, U.S.A: Addison-

Wesley Professional.

Calvo-Manzano Villalan, J. A., Cuevas AgustÃn, G., San Feliu Gilabert, T., De

Amescua Seco, A., GarcÃa SÃ¡nchez, L., & PÃ©rez Cota, M. (2002).

Experiences in the application of software process improvement in SMES.

Software Quality Journal, 10(3), 261-273.

Carter-Steel, A. (2001). Process Improvement in Four Small Companies. In

Proceeding of the 13th Australian Software Engineering Conference

(ASWEC'01) held on 27-28 Aug. 2001 at Canberra, Australia (pp. 262-272).

Los Alamitos, California, Washington, Tokyo: IEEE Computer Society.

Cater-Steel, A. (2002). Process capability assessments in small development firms.

In Proceedings of IASTED 6
th

International Conference Software Engineering

and Applications held on 4-6 Nov. 2002 at Cambridge, Massachusetts, USA

(pp. 737-42). ACTA Press: Anaheim, CA, USA.

Cater-Steel, A. (2004a). An Evaluation Of Software Development Practice And

Assessment-Based Process Improvement In Small Software Development

Firms. Unpublished doctoral thesis, School of Computing and Information

Technology, Faculty of Engineering and Information Technology, Griffith

University, Australia.

Cater-Steel, A. (2004b). Low-rigour, rapid software process assessments for small

software development firms. In Proceeding of the 2004 Australian Software

Engineering Conference (ASWEC’04) held on 13-16 April 2004 at

Melbourne, Australia (pp. 368-377). Washington, DC, USA: IEEE Computer

Society.

Cepeda, S., Garcia, S., & Langhout, J. (2008). Is CMMI Useful and Usable in Small

Settings? One Example. The Journal of Defense Software Engineering,

21(2), 14-18.

Chrissis, M., Konrad, M., & Shrum, S. (2003). CMMI Guidelines for Process

Integration and Product Improvement. Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc.

278

Cignoni, G. A. (1999). Rapid Software Process Assessment to promote Innovation in

SMEs. In Proceeding of the European Software Day (EUROMICRO'99) held

on 8-10, Sept. 1999 at Milan, Italy (pp. 1-14). DC, USA: IEEE Computer

Society.

Clarke, P., & O’Connor, R. (2011). The influence of SPI on business success in

software SMEs: An empirical study. Journal of Systems and Software,

1(1).1-28.

CMMI Product Team (2002). Capability Maturity Model® Integration (CMMI),

Version 1.1: CMMI for Systems Engineering, Software Engineering,

Integrated Product and Process Development, and Supplier Sourcing,

CMMI-SE/SW/IPPD/SS, V1.1, Carnegie Mellon University Software

Engineering Institute, Pittsburgh PA,USA.

CMMI Product Team (2006). CMMI for Development, version 1.2. Preface

(CMU/SEI-2006-TR-008). Software Engineering Institute, Carnegie Mellon

University, USA.

CMMI Product Team. (2010). CMMI® for Development, Version 1.3 (CMMI-DEV,

V1.3), Improving processes for developing better products and services,

TECHNICAL REPORT, CMU/SEI-2010-TR-033, ESC-TR-2010-

033.Carnegie Mellon University Software Engineering Institute, Pittsburgh

PA, USA.

Cockburn, A., & Highsmith, J. (2001). Agile software development, the people

factor. Computer, 34(11), 131-133.

Cohen, D., Lindvall, M., & Costa, P. (2004). An introduction to agile methods.

Advances in Computers, 62, 1-66.

Coram, M. and Bohner, S. (2005). The Impact of Agile Methods on Software

Project Management. In Proceedings of the 12th IEEE International

Conference and Workshops on the Engineering of Computer Based Systems

(ECBS’05) held on 4-7 April 2005 at Greenbelt, MD, USA (pp. 363- 370).

IEEE Computer Society.

Cruz Mendoza, R., Morales Trujillo, M., Morgado, C., Oktaba, H., Ibarguengoitia,

G., Pino, F. J., et al. (2009). Supporting the software process improvement in

very small entities through e-learning: the HEPALE! Project. In Proceeding

of the Mexican International Conference on Computer Science (ENC 2009)

held on 21-25 Sept. 2009 at UNAM, Mexico City, Mexico (pp. 221-231). DC,

USA: IEEE Computer Society.

Da Rocha, A., Montoni, M., Weber, K., & de Araujo, E. (2007). A Nationwide

Program for Software Process Improvement in Brazil. In Proceeding of the

Sixth International Conference on the Quality of Information and

279

Communications Technology (QUATIC’2007) held on 12-14 Sept. 2007 at

Lisbon New University, Portugal (pp. 449-460). Los Alamitos, CA, USA:

IEEE Computer Society.

Dagnino, A., Cordes, A., & Smiley, K. (2009). Adapting rapidly to change using the

IDEAL improvement model. ABB Corporate Research Raleigh, NC, USA.

Retrieved on 4 May 2009, from

http://library.abb.com/global/scot/scot271.nsf/0cb8394a97bc4979c1256c6b0

04c4f2e/4735e42889ef82bfc12575e4004bbbb0/$FILE/58-%202M974ENG7

2dpi.pdf.

Dalkey, N. C., & Helmer, O. (1963). An experimental application of the Delphi

method to the use of experts. Management Science, 9 (3), 458-467.

Davis, A. M. (1993). Software Requirements: Objects, Functions, States. New

Jersey, USA: Prentice-Hall.

Deep, A. (2012). An Empirical Study of Agile Software Development. International

Journal of Latest Trends in Engineering and Technology (IJLTET), 1(1), 35-

40.

Devesh, K. S., Durg, S. C., & Raghuraj, S. (2011). Square Model-A Proposed

Software Process Model for BPO based Software Applications. International

Journal of Computer Applications, 13(7), 33-36.

Diez, D., Fernandez, C., Dodero, J., Diaz, P., & Aedo, I. (2007). Instructional

Software Analysis: Lessons from Software Development Process

Improvement. In Proceeding of the Seventh IEEE International Conference

on Advanced Learning Technologies (ICALT 2007) held on 18-20 July 2007

at Niigata, Japan (pp. 499-501). Los Alamitos, California, Washington,

Tokyo: IEEE Computer Society.

Dyba, T., & Dingsøyr. (2008). Empirical studies of agile software development:

A systematic review. Information and Software Technology, 50(9-10), 833-

859.

Easterby-Smith M. and Thorpe R. and Lowe A. (1991). Management Research: An

Introduction, London: Sage Publications Ltd.

El Emam, K. & Briand, L. (1997). Costs and Benefits of Software Process

Improvement. Technical Report ISERN 97-12, Fraunhofer Institute for

Experimental Software Engineering, Germany.

El Emam, K., Melo, W., & Drouin, J. (1999). SPICE: The theory and practice of

software process improvement and capability determination. Press Los

Alamitos, CA, USA: IEEE Computer Society.

280

El Sheikh, A., & Tarawneh, H. (2007). A survey of web engineering practice in

small Jordanian web development firms. In Proceeding of the seventh

European software engineering conference and the ACM

SIGSOFT (ESEC/FSE’07) and the ACM SIG-SOFT International Symposium

on Foundations of Software Engineering (ESEC/SIGSOFT FSE) held on 3-7

Sept. 2007 at Cavtat near Dubrovnik. Dubrovnik, Croatia (pp. 481-490).

New York, USA: ACM.

Elshafey, L. A., & Galal-Edeen, G. (2008). Combining CMMI and Agile Methods.

In Proceeding of the 6th International Conference on Informatics and

Systems (INFOS2008) held on 27 - 28 March 2008 at Faculty of Computers

and Informatics, Cairo University, Egypt (pp. SE-27- SE-39). Egypt: Cairo

University Press.

Erharuyi, E. (2007). Combining eXtreme Programming with ISO 9000: 2000 to

Improve Nigerian Software Development Processes. Unpublished master

thesis, School of Engineering, Blekinge Institute of Technology, Sweden.

Evans, M. (2001). SPMN director identifies 16 critical software practices.

CrossTalk, The Journal of Defense Software Engineering. March, 2001. 27-

31.

Fayad, M., Laitinen, M., & Ward, R. (2000). Thinking objectively: software

engineering in the small. Communications of the ACM, 43(3), 118.

Fernandeas, D. (2009). Study on the correlation between CMMI and agile

practices and their application in SMEs. Unpublished Master Thesis,

computer faculty, university Polytechnic of Madrid, Spain.

Fogle, S., Loulis, C., & Neuendorf, B. (2001). The benchmarking process: one

team's experience. Software, IEEE, 18(5), 40-47.

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Software Development,

9(8), 28-35.

Fritzsche, M., & Keil, P. (2007). Agile Methods and CMMI: Compatibility or

Conflict?. E-Informatica Software Engineering Journal, 1(1). 9-26.

Fruhling, A., & Vreede, G. (2006). Field experiences with eXtreme programming:

Developing an emergency response system. Journal of Management

Information Systems, 22(4), 39-68.

Galinac, T. (2008). Analysis of Quality Management In Modern European Software

Development. Electronic form only: NE Eng. Rev, 28(2), 65-76.

Garcia, I., Pacheco, C., & Andrade, G. (2010b). Applying the Psychometric Theory

to Questionnaire-Based Appraisals for Software Process Improvement. In

281

Proceeding of the Eighth ACIS International Conference on Software

Engineering Research, Management and Applications Montreal held on 24-

26 May 2010 at Concordia University & l'École de technologie supérieure

(ETS) Montreal, Canada (pp. 198-204). Los Alamitos, CA, USA: IEEE

Computer Society.

Garcia, I., Pacheco, C., & Calvo-Manzano, J. (2010a). Using a web-based tool to

define and implement software process improvement initiatives in a small

industrial setting. Software, IET, 4(4), 237-251.

Garrity, E.J., and Sanders, G.L. (1998). Information Systems Success Measurement.

Hershey, USA: Idea Group Publishing.

Gerami, M., & Ramsin, R. (2011). A framework for extending agile methodologies

with aspect-oriented features. In Proceeding of the Fifth International

Conference on the Research Challenges in Information Science (RCIS) held

on 19-21 May 2011 at Guadeloupe-French West Indies, France (pp. 1-6).

IEEE.

Glass, R. (1995). Software Creativity. Englewood Cliffs, NJ.USA: Prentice Hall.

Goldenson, DR & Gibson, D. (2003). Demonstrating the impact and benefits of

CMMI: an update and preliminary results (CMU/SEI-2003-SR-009).

Software Engineering Institute, Carnegie Mellon University, Pittsburgh,

USA.

Gruner, S., & Zyl, V. J. (2011). Software testing in small IT companies: a (not only)

South African problem. South African Computer Journal, 47, 7-32.

Guerrero, F., & Eterovic, Y. (2004). Adopting the SW-CMM in a Small IT

Organization. IEEE software, 21(4), 29-35.

Guha, P., Shah, K., Shukla, S. S. P., & Singh, S. (2011). Incorporating Agile with

MDA Case Study: Online Polling System. International Journal of Software

Engineering & Applications (IJSEA), 2(4). 83-96.

Haase, V. (1996). Software process assessment concepts. Journal of Systems

Architecture, 42(8), 621-631.

Habib, Z. (2009). The Critical Success Factors in implementation of Software

Process Improvement Efforts. Unpublished Master Thesis, University of

Gothenburg, Department of Applied Information Technology Gothenburg,

Sweden.

Habra, N., Alexandre, S., Desharnais, J. M., Laporte, C. Y., & Renault, A. (2008).

Initiating software process improvement in very small enterprises:

282

Experience with a light assessment tool. Information and Software

Technology, 50(7-8), 763-771.

Habra, N., Niyitugabira, E., Lamblin, A., Renault, A. (1999). Software Process

Improvement in Small Organizations Using Gradual Evaluation Schema. In

Proceeding of the International Conference on Product Focused Software

Process Improvement (PROFES'99) held on 22-24 June 1999 at the

Universit. Oulu, Oulu, Finland (pp. 381-396). Finland: valtion teknillinen

tutkimuskeskus (VTT).

Hashmi, S., & Baik, J. (2007). Software Quality Assurance in XP and Spiral - A

Comparative Study. In Proceeding on the Fifth International Conference on

Computational Science and Applications held on 26-29 Aug 2007 at

University of Malaya, Kuala Lumpur, Malaysia (PP.367-374). IEEE.

Hashmi, S., & Baik, J. (2008). Quantitative Process Improvement in XP Using Six

Sigma Tools. In Proceeding of the Seventh IEEE/ACIS International

Conference on Computer and Information Science held on 14-16 May 2008

at Melbourne, Australia (pp. 519-524). Washington, DC, USA: IEEE

Computer Society.

Hauck, J. C. R., Gresse von Wangenheim, C., Souza, R. H., & Thiry, M. (2008).

Process Reference Guides-Support for Improving Software Processes in

Alignment with Reference Models and Standards. In Proceeding of the 15th

European Conference (EuroSPI 2008) held on 3-5 Sept. 2008 at Dublin,

Ireland (pp. 70-81). Springer 2008.

Hearty, P. (2008). Modeling Agile Software Processes Using Bayesian Networks.

Unpublished Doctoral Thesis, Queen Mary, University of London, UK.

Highsmith, J., & Cockburn, A. (2004). Agile Software Development: The Business

of Innovation. IEEE Computer, 34(1), 120–122.

Hightower, R. (2004). Professional Java Tools for EXtreme Programming: Ant,

XDoclet, Junit, Cactus, and Maven. Hoboken, NJ, USA: John Wiley & Sons,

Incorporated.

Hofer, C. (2002). Software development in Austria: results of an empirical study

among small and very small enterprises. In Proceeding of the 28th

Euromicro Conference (EUROMICRO’02) held on 4-6 Sept. 2002 at

Dortmund, Germany (pp. 361-366). Los Alamitos, California: IEEE

Computer Society.

Hneif, M., & Hock Ow, S. (2009). Review of Agile Methodologies in Software

Development. International Journal of Research and Reviews in Applied

Sciences, 1(1). 1-8.

http://www.informatik.uni-trier.de/~ley/db/conf/eurospi/eurospi2008.html

283

Huang, W., Li, R., Maple, C., Yang, H., Foskett, D., & Cleaver, V. (2008). Web

Application Development Lifecycle for Small Medium-Sized Enterprises

(SMEs). In Proceeding of the Eighth International Conference on the Quality

Software (QSIC'08) held on 2-13 August 2008, Oxford, UK (pp. 247-252).

IEEE Computer Society.

Humphrey, W. S. (1993). Introduction to software process improvement. Technical

Report CMU/SEI-92-TR-7, Software Engineering Institute, Carnegie-Mellon

University, USA.

Humphrey, W. S. (1998). Three Dimensions of Process Improvement. The Journal

of Defense Software Engineering, 14, 39-72.

Humphrey, W. S. (2008). The software quality challenge. Crosstalk The Journal of

Defense Software Engineering, 21(6), 4-10.

Humphrey, W. S., & Kellner, M. I. (1989). Software process modeling: principles of

entity process models. In Proceedings of the 11th International Conference

on Software Engineering held on 15-18 May 1989 at Pittsburgh,

Pennsylvania (pp.331-342). IEEE Computer Press.

Ibrahim, S., Ali, R.Z.R.M. (2011). Study on acceptance of customised Software

Process Improvement (SPI) model for Malaysia's SME. In Proceeding of the

5th Malaysian Conference in Software Engineering (MySEC) held on13-14

Dec. 2011 at Johor Bahru, Malaysia (pp.25-30). IEEE.

IEEE Std 730-1998. (1998). IEEE Standard for Software Quality Assurance Plans.

IEEE.

Isawi, A. B. M. (2011). Software Development Process Improvement for Small

Palestinian Software Development. Unpublished Master Thesis, Faculty of

Graduate Studies, An-Najah National University, Nablus, Palestine.

Jakobsen, C. R., & Johnson, K. A. (2008). Mature Agile with a Twist of CMMI. In

Proceeding of Agile 2008 Conference (AGILE'08) held on 4-8 Aug. 2008 at

Toronto, Canada (pp. 212-217). IEEE Computer Society.

Jantunen, S. (2010). Exploring software engineering practices in small and medium-

sized organizations. In Proceeding of the Cooperative and Human Aspects of

Software Engineering (CHASE’10) held on 2 May 2010 at Cape Town, South

Africa (pp. 96-101). ACM.

Jeffries, R., Anderson, A., and Hendrickson, C. (2002). Extreme Programming

Installed. Boston: Addison Wesley.

284

Johannesen, R. (2004). Software Engineering in the Small: Is Chaos Likely to Fall?.

Section of the September/October 2000 issue of IEEE Software, Retrieved 20,

June, 2009, from http://toalango.com/msc/in-the-small.pdf.

Jones, C. (1996). Patterns of Software Systems Failure and Success. London:

International Thompson Computer Press.

Kähkönen, T. (2005). Framework for Agile Software Development in Embedded

Systems. Agile Deliverable D.2.1. Version 1.0.Information Technology for

European Advancement. ITEA.

Kähkönen, T., & Abrahamsson, P. (2004). Achieving CMMI level 2 with enhanced

extreme programming approach. In Proceeding of the 5th International

Conference of Product Focused Software Process Improvement held on 5-8

April 2004 at Kansai Science City, Japan (pp. 378-392). Berlin: Springer

Berlin Heidelberg.

Kalpana, A., & Jeyakumar, A. E. (2011).Software Process Improvisation Framework

Based On Fuzzy Logic Approach For Optimizing Indian Small Scale

Software Organizations. International Journal of Multimedia and Ubiquitous

Engineering, 6(1), 29-42.

Karlstrom, D., & Runeson, P. (2006). Integrating agile software development into

stage-gate managed product development. Empirical Software Engineering,

11(2), 203-225.

Kitchenham, B. (1998). “Evaluating software engineering methods and tool,” ACM

SIGSOFT software engineering Notes, 23(5), pp. 21-24.

Khalaf, S. & Al-Jedaiah, M. (2008). Software Quality and Assurance in Waterfall

Model and XP - A Comparative Study. Retrieved 7 April 2011

http://www.wseas.us/e-library/transactions/computers/2008/31-097.pdf.

Koch, A. S. (2003). CMM-compliant XP. Retrieved on 20 Aug. 2009, from

http://www.askprocess.com/Articles/CMM-XP.pdf.

Kontio, J., Lehtola, L., & Bragge, J. (2004). Using the focus group method in

software engineering: obtaining practitioner and user experiences. In

Proceeding of the International Symposium on Empirical Software

Engineering (ISESE’04) held on 19-20 August 2004, Redondo Beach,

California, USA (pp. 271-280). Los Alamitos, CA, USA. IEEE Computer

Society.

Kothari, C. (1985). Research Methodology: Methods and Techniques. New Delhi:

Wiley Eastern.

http://toalango.com/msc/in-the-small.pdf
http://www.wseas.us/e-library/transactions/computers/2008/31-097.pdf
http://www.askprocess.com/Articles/CMM-XP.pdf

285

Koznov, D. (2011). Process Model of DSM Solution Development and Evolution for

Small and Medium-Sized Software Companies. In Proceeding of the 15th

IEEE International of Enterprise Distributed Object Computing Conference

Workshops (EDOCW) held on 29 Aug.-2 Sept., Helsinki, Finland (pp.85-92).

IEEE Computer Society.

Kroeger, T. (2005). CMMI – Strengths, Weaknesses, and Guidelines for Use.

Presentation in EDS Australia South ADU Australian Organization for

Quality (SA) – Software SIG. Australia.

Krueger, R, A., & Casey, M, A. (2000). Focus Groups: A Practical Guide for

Applied Research (3
 rd

 ed.). Thousand Oaks, CA: Sage Publications.

Kuan, S. T., Wu, B. Y., & Lee, W. J. (2008). Finding friend groups in blogosphere.

In Proceeding of the 22nd International Conference on the Advanced

Information Networking and Applications-Workshops (AINAW 2008) held on

25-28 March 2008 at GinoWan, Okinawa, Japan (pp. 1046-1050). IEEE

Computer Society, TCDP.

Kuhlmann, U. (2003). Maintenance Activities in Software Process Models: Theory

and Case Study Practice. Unpublished master thesis. Faculty of Computer

Sciences, Koblenz Landau Campus Koblenz Uni, Germany.

Kunda, S. (2001), A social-technical approach to selecting software supporting

COTS-Based systems. Unpublished Doctoral Thesis, University of York, UK.

Kuvaja, P. (1995). BOOTSTRAP: A software process assessment and improvement

methodology. Objective Software Quality, 926, 31-48.

Laporte, C., Desharnais, J., Abouelfattah, M., Bamba, J., Renault, A., & Habra, N.

(2005). Initiating Software Process Improvement in Small Enterprises:

Experiments with Micro-Evaluation Framework. In Proceeding of the

SWDC-REK International Conference on Software Development held on 27

May- 1June 2005 at University of Iceland, Reykjavik, Iceland (pp. 153-163).

Iceland: University of Iceland.

Larman, C. (2003). Agile & Iterative Development: A Manager’s Guide. Boston:

Addison Wesley.

Laudon, KC., & Laudon, JP. (2004). Management Information Systems: Managing

the Digital Firm. Upper Saddle River, New Jersey: Prentice Hall.

Laugen, B.T., Acur, N., Boer, H., Frick, J. (2005). Best manufacturing practices.

What do best-performing companies do?. International Journal of

Operations and Production Management, 25 (2), 131-150.

http://www.city.ginowan.okinawa.jp/2735/2410.html
http://www.ocvb.or.jp/index.php?current=General_Page&action=Top_Page&mode=isel&lang=en
http://www.jnto.go.jp/eng/
http://www.computer.org/
http://www.computer.org/
http://www.computer.org/
http://tab.computer.org/tcdp/

286

Lee, M., Lee, Y., Yoon, H., Song, S., & Cheong, S. (2008). Issues and Architecture

for Supporting Data Warehouse Queries in Web Portals. International

Journal of Computer Science and Engineering, 1(2). 110-115.

Lina, Z., & Dan, S. (2012). Research on Combining Scrum with CMMI in Small and

Medium Organizations. In Proceeding of the International Conference on

Computer Science and Electronics Engineering (ICCSEE) held on 23-25

March 2012 at Hangzhou, China. IEEE.

Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., et al.

(2004). Agile software development in large organizations. Computer,

37(12), 26-34.

Loftus, C., &Ratcliffe, M. (2005). Extreme programming promotes extreme

learning?”. In Proceeding of the 10th Annual Joint Conference Integrating

Technology into Computer Science Education held on 27-29 June 2005 at

Lisbon, Portugal (pp. 311-315). New York, USA: ACM.

Ludwig, B. (1997). Predicting the future: Have you considered using the Delphi

methodology?. Journal of Extension, 35 (5), 1-4.

Makitalo-Keinonen, T., Virolainen, H., Laurell, J., Varkoi, T., & Makinen, T.

(2011). Critical incidents in a growth path of a small software company. In

Proceeding of the Technology Management in the Energy Smart World

(PICMET’ 11) held on 31 July - 4 Aug. 2011 at Hilton Portland and

Executive Tower Portland, Oregon, USA (pp. 1-10). IEEE.

Martinsson, J. (2002). Maturing Extreme Programming Through the CMM.

Unpublished Master Thesis, Department of Computer Science, Lund

University, Lund, Sweden.

Mathiassen, L., Ngwenyama, O., & Aaen, I. (2005). Managing change in software

process improvement. IEEE software, 22(6), 84-91.

Mazza, R., & Berre, A. (2007). Focus group methodology for evaluating information

visualization techniques and tools. In Proceeding of the 11th International

Conference Information Visualization (IV'07) held on 4-6 July 2007 at

Zurich, Switzerland (pp. 74-80). Los Alamitos, CA, USA: IEEE Computer

Society.

McDonald, A., & Welland, R. (2001). A survey of web engineering in practice.

Technical Report: R-2001-79, Department of Computing Science, University

of Glasgow, Scotland.

McFarlane, R., & Biktasheva, I. V. (2008). High Performance Computing for the

Simulation of Cardiac Electrophysiology. In Proceeding of the Third

International Conference on the Software Engineering Advances (ICSEA'08)

287

held on 26-31 October 2008 at Sliema, Malta (pp. 13-18). IEEE Computer

Society.

Mehrfard, H., Pirzadeh, H., & Hamou-Lhadj, A. (2010). Investigating the Capability

of Agile Processes to Support Life-Science Regulations: The Case of XP and

FDA Regulations with a Focus on Human Factor Requirements. Software

Engineering Research, Management and Applications, Volume 296, 2010,

241-255.

Mishra, D., & Mishra, A. (2009). Software process improvement in SMEs: A

comparative view. Computer Science and Information Systems, 6(1), 111-

140.

Mongkolnam, P., Silparcha, U., Waraporn, N., & Vanijja, V. (2009). A Push for

Software Process Improvement in Thailand. In Proceeding of the 16th Asia-

Pacific Software Engineering Conference held on 1-3 Dec. 2009 at Penang,

Malaysia. (pp. 475-481). Los Alamitos, CA, USA: IEEE Computer Society.

Morgan D.L. (1997), Focus groups as qualitative research (2
nd

ed.). London: Sage

publication.

Mnkandla, N. (2008). A Selection Framework For Agile Methodology Practices: A

Family of Methodologies Approach. Doctoral thesis, Faculty of Engineering

and the Built Environment, University of Witwatersrand, Johannesburg,

South Africa.

Mushtaq, Z., & Qureshi, M. R. J. (2012). Novel Hybrid Model: Integrating Scrum

and XP. International Journal of Information Technology and Computer

Science (IJITCS), 4(6), 39.

Munassar, N. M. A., & Govardhan, A. (2010). A Comparison Between Five Models

Of Software Engineering. IJCSI International Journal of Computer Science

Issues, 7(5), 94-101.

Nawaz, A., & Malik, K. (2008). Software Testing Process In Agile Development.

Unpublished Master Thesis, Comp Science Dept. School of Engineering,

Blekinge Institute of Technology, Sweden.

Nawazish Khokhar, M., Zeshan, K., & Aamir, J. (2010). Literature review on the

software process improvement factors in the small organizations. In

Proceeding of the 4th International Conference on New Trends in

Information Science and Service Science (NISS) held on 11-13 May 2010 at

Gyeongju, Korea (pp. 592 – 598). Los Alamitos, CA, USA: IEEE Computer

Society.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5480449
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5480449
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5480449
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5480449

288

Nisa, S. U., & Qureshi, M. R. J. (2012) .Empirical Estimation of Hybrid Model: A

Controlled Case Study. International Journal of Information Technology and

Computer Science (IJITCS), 4(8), 43.

Oktaba, H., GarcÃa, F., Piattini, M., Ruiz, F., Pino, F. J., & Alquicira, C. (2007).

Software process improvement: The Competisoft project. Computer, 40(10),

21-28.

Oktaba, H., Piattini.M. (2008). Software Process Improvement for Small and

Medium Enterprises: Techniques and Case Studies, Illustrated Edition, ISBN

978-1-59904-906-9. New York: Idea Group Inc (IGI).

Omran, A. (2008). AGILE CMMI from SMEs perspective. In Proceeding of the 3rd

International Conference on Information & Communication Technologies:

from Theory to Applications (ICTTA 2008) held on 7-11 April 2008 at

Damascus, Syria (pp. 1-8). Los Alamitos, CA, USA: IEEE Computer

Society.

Palani, A., & Mohideen. P. (2012). Trends In Working Capital Management And Its

Impact On SME With Reference To Manufacturing Firms. South Asian

Academic Research Journals, 2(2), 123-141.

Paulk, M. (2001). Extreme Programming from a CMM Perspective. IEEE Software,

18(6), 19-26.

Paulk, M. (2002). Agile Methodologies and Process Discipline. CrossTalk: The

Journal of Defense Software Engineering, 15(10), 15-18.

Paulk, M. C., Curtis, B., Chrissis, M. B., & Weber, C. V. (1993). Capability maturity

model, version 1.1. Software, IEEE, 10(4), 18-27.

Pettersson, F., Ivarsson, M., Gorschek, T., & Ohman, P. (2008). A practitioner’s

guide to light weight software process assessment and improvement

planning. Journal of Systems and Software, 81(6), 972-995.

Phillips, M. (2003). CMMI appraisal tutorial. Paper presented to Australian

Software Engineering Process Group (SEPG), Surfers Paradise, Carnegie

Mellon University, USA.

Pikkarainen, M. (2008). Towards a framework for improving software development

process mediated with CMMI goals and agile practices. Unpublished

Academic Dissertation, Faculty of Science, Department of Information

Processing Science. University of Oulu, Finland.

Poole, C., & Huisman, J. (2001). Using Extreme Programming in a Maintenance

Environment. IEEE Software 18(6), 42–50.

289

Pourkomeylian, P. (2002). Software Practice Improvement. Unpublished doctoral

dissertation, Department of Informatics Göteborg University Viktoriagatan,

Göteborg. Sweden.

Powell, R, A., and Single, H, M. (1996). Focus groups. International Journal of

Quality in Health Care, 8 (5), 499-504.

Pressman, R. (2005). Software Engineering: A Practitioner’s Approach, (6
th

 ed.).

New York, USA: McGraw-Hill Education.

Pressman, R. (2009). Software Engineering: A Practitioner's Approach. (7
th

ed.).

New York, USA: McGraw-Hill Education.

Preuninger, R, D. (2006). The advantages of implementing software engineering

process models. Unpublished master thesis, Faculty of the Graduate School,

Texas At Arlington Uni, USA.

Pusatli, O. T., & Misra, S. (2011). A Discussion On Assuring Software Quality In

Small And Medium Software Enterprises: An Empirical Investigation.

Technical Gazette, 18(3), 447-452.

Qasaimeh, M., & Abran, A. (2010). Extending Extreme Programming User Stories

to Meet ISO 9001 Formality Requirements. Journal of Software Engineering

and Applications, 4(11), 626-638.

Qureshi, M. (2011). Empirical Evaluation of the Proposed eXSCRUM Model:

Results of a Case Study. International Journal of Computer Science Issues

(IJCSI), 8(3). 150-157.

Rainer, A., & Hall, T. (2002). A quantitative and qualitative analysis of factors

affecting software processes. Journal of Systems and Software, 66(1), 7-21.

Ralyté, J., Deneckère, R., Rolland, C. (2003). Towards a Generic Method for

Situational Method Engineering. In Proceeding the 15th International

Conference Advanced on Information Systems Engineering (CAiSE2003)

held on 16-18 June 2003 at Klagenfurt, Austria (pp. 95-110). Springer-

Verlag, LNCS 2681.

Ralyté, J., Rolland, C., and Deneckère, R. (2004). Towards a Meta-tool for Change-

Centric Method Engineering: A Typology of Generic Operators. In

Proceeding of the 16th International Conference on Advanced Information

Systems Engineering (CAiSE2004) held on 7-4 June at Riga, Latvia (pp. 202-

218). Springer.

Ramsin, R. (2006). The engineering of an object-oriented software development

methodology. Unpublished Doctoral Thesis, Department of Computer

Science, university of York, UK.

290

Richardson, I. (2001). Software process matrix: a small company SPI model.

Software Process: Improvement and Practice, 6(3), 157-165.

Richardson, I., & Von Wangenheim, C. (2007). Guest Editors' Introduction: Why are

Small Software Organizations Different?. IEEE software, 24(1), 18-22.

Rout, T (project manager). (2002). SPICE: Software Process Assessment-Part 1:

Concepts and Introductory Guides. Retrieved on 10 May 2009, from

http://www.uio.no/studier/emner/matnat/ifi/INF5180/v10/undervisningsmater

iale/reading-materials/p10/spice/part1 100.pdf.

Rout, T., Tuffley, A., Cahill, B., and Hodgen, B.(2000). The Rapid Assessment of

Software Process Capability. In Proceedings of SPICE 2000 - the First

International Conference on Software Process Improvement and Capability

dEtermination, held on 1-3 June at Limerick, Ireland (pp. 47-56). USA:

Wiley-IEEE Computer Society Press.

Royce, W.W. (1987) .Managing the Development of Large Software Systems:

Concepts and Techniques. In Proceedings of the Ninth International

Conference on Software Engineering held on 30 March - 2April 1987 at

California, USA (pp. 328–338). California, USA: ACM Press.

Saarnak, S., & Gustafsson, B. (2003). A comparison of lifecycles. Unpublished

Master Thesis, Department of Software Engineering and Computer Science,

Blekinge Institute of Technology, Sweden.

Saiedian, H., & Carr, N. (1997). Characterizing a software process maturity model

for small organizations. ACM SIGICE Bulletin, 23(1), 2-11.

Salo, O. (2006). Enabling software process improvement in agile software

development teams and organisations. Unpublished academic dissertation,

Faculty of Science, University of Oulu, Linnanmaa, Finland.

Santos, G., Montoni, M., Vasconcellos, J., Figueiredo, S., Cabral, R., Cerdeiral, C.,

et al. (2007). Implementing software process improvement initiatives in small

and medium-size enterprises in Brazil. In Proceeding of the Sixth

International Conference on the Quality of Information and Communications

Technology held on 12-14 Sept. 2007 at Lisbon, Portugal (pp.187-196).

IEEE.

Savolainen, P., Sihvonen, H., & Ahonen, J. (2007). SPI with lightweight software

process modeling in a small software company. Lecture Notes in Computer

Science, 4764, 71-81.

Sengodan, B. (2003). Integrating Automated Testing Into Object-Oriented

Development Using Junit. Unpublished Master Thesis, School of School of

http://www.uio.no/studier/emner/matnat/ifi/INF5180/v10/undervisningsmateriale/reading-materials/p10/spice/part1%20100.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF5180/v10/undervisningsmateriale/reading-materials/p10/spice/part1%20100.pdf

291

Graduate Studies, College of Arts and Sciences, Florida Agricultural and

Mechanical Engineering University, USA.

Shackel, B. (1991). Usability-context, framework, definition, design and evaluation.

Human factors for informatics usability, 21-37.

Sharma, B., Sharma, N., Sharma, N. (2009). Software Process Improvement: A

Comparative Analysis of SPI models. In Proceeding of the Second

International Conference on Emerging Trends in Engineering and

Technology held on 16-18 Dec. 2009 at Nagpur (pp. 1019-1024). Los

Alamitos, CA, USA: IEEE Computer Society.

Sharma, L., & Sharma, N. (2012). Software Process Improvement in Small Scale

Organizations: An Empirical Study. In Proceeding of the International

Conference on Recent Advances and Future Trends in Information

Technology (iRAFIT2012) held on 21- 23 March 2012 at Patiala, Punjab,

India (pp. 18-21). India: International Journal of Computer Applications®

(IJCA).

Sidky, A. (2007). A Structured Approach to Adopting Agile Practices: The Agile

Adoption Framework. Doctoral thesis, Virginia Polytechnic Institute and

State University, USA.

Simila, S., Kuvaja, P.; Krzanik, L. (1997). BOOTSTRAP: a software process

assessment and improvement methodology. In Proceeding of the First Asia-

Pacific Software Engineering Conference, held on 7-9 Dec. 1997 at Tokyo,

Japan (pp.183-196). IEEE.

Singh, R. (1996). International Standard ISO/IEC 12207 software life cycle

processes. Software Process: Improvement and Practice, 2(1), 35-50.

Sison, R., Jarzabek, S., Hock, O., Rivepiboon, W., & Hai, N. (2006). Software

practices in five ASEAN countries: an exploratory study. In Proceedings of

the 28th international conference on Software engineering (ICSE’06) held on

20-28 May 2006 at Shanghai, China (pp. 628-631). New York, NY, USA:

ACM.

Sommerville, I. (2007).Software Engineering (8
th

 ed.). UK: Addison-Wesley.

Sommerville, I. (2011).Software Engineering (9
th

 ed.). UK: Addison-Wesley.

Stambollian, A., Habra, N., Laporte, C., Desharnais, J., & Renault, A. (2006).

OWPL: A Light Model & Methodology for Initiating Software Process

Improvement. In Proceedings of the 6th International SPICE conference on

Process Assessment & Improvement (ISO/IEC 15504) held on 4-5 May 2006

at Luxembourg (pp. 97-106). Luxembourg: Centre de Recherche Public

Henri Tudor.

292

Stephens, M. (2001). The case against extreme programming. On Software Reality.

Retrieved on 2 June 2009, from http://www. softwarereality.

com/lifecycle/xp/case_against_xp. jsp.

Stitt-Gohdes, W. L., & Crews, T. B. (2004). The Delphi technique: A research

strategy for career and technical education. Journal of Career and Technical

Education, 20(2), 55-67.

Stojanovic, Z., Dahanayake, A., & Sol, H. (2003). Modeling and Architectural

Design in Agile Development Methodologies. Paper presented at the third

International Workshop on Evaluation of Modeling Methods in System

Analysis and Design (EMMSAD’03), Velden, Austria.

Talbot, A., & Connor, A. (2011). Requirements Engineering Current Practice and

Capability in Small and Medium Software Development Enterprises in New

Zealand. In Proceeding of the Ninth International Conference on Software

Engineering Research, Management and Applications held on 10-12 Aug.

2011 at Maryland, U.S.A (pp. 17-25).IEEE.

Thapa, V., Song, E., & Kim, H. An Approach to Verifying Security and Timing

Properties in UML Models. In Proceeding of the 15th IEEE International

Conference on the Engineering of Complex Computer Systems (ICECCS)

held on 22-26 March 2010 St. at Anne's College, University of Oxford, UK

(pp.193-202). IEEE Computer Society.

Thorn, C. (2009).Current state and potential of variability management practices in

software-intensive SMEs: Results from a regional industrial survey.

Information and Software Technology, 52(4), 411-421.

Tosun, A., Bener, A., & Turhan, B. (2009). Implementation of a Software Quality

Improvement Project in an SME: A Before and After Comparison. In

Proceeding of the 35th Euromicro Conference on Software Engineering and

Advanced Applications held on 27-29 Aug. 2009 at Patras, Greece (pp. 203-

209). Los Alamitos, CA, USA: IEEE Computer Society.

Turk, D., France, R., Rumpe, B. (2002). Limitations of Agile Software Processes. In

Proceeding of the Third International Conference on eXtreme Programming

and Agile Processes in Software Engineering held on 26-30 May 2002 at

Alghero, Sardinia, Italy (pp. 43-46). New York: ACM.

Unterkalmsteiner, M., Gorschek, T., Islam, A. K. M. M., Cheng, C. K., Permadi, R.

B., & Feldt, R. (2011). Evaluation and Measurement of Software Process

Improvement-A Systematic Literature Review. IEEE Transactions on

Software Engineering. PP (99). 1-29.

Vahaniitty, J., & Rautiainen, K. (2005). Towards an approach for managing the

development portfolio in small product-oriented software companies. In

http://www.ourglocal.com/?c=28%2C1%2Cus%2CMaryland
http://www.ourglocal.com/?c=15%2Cus

293

Proceedings of the 38th Annual Hawaii International Conference on System

Sciences (HICSS'05) held on 3-6 Jan. 2005 at Helsinki University of

Technology, Finland (pp. 314c). Big Island, HI, USA: IEEE Computer

Society.

Valdes, G., Visconti, M., & Astudillo, H. (2011). The Tutelkan Reference Process: A

Reusable Process Model for Enabling SPI in Small Settings. In proceeding of

the Systems, Software and Service Process Improvement: 18th European

conference (EuroSPI 2011) held on 27-29 June 2011 at Roskilde, Denmark

(pp. 179-190). Heidelberg: Springer, 2011.

Vasiljevic, D. & Skoog, S. (2003).A Software Process Improvement Framework for

Small Organizations. Unpublished Master Thesis. Department of Software

Engineering and Computer Science Blekinge Institute of Technology,

Sweden.

Vitoria, D. (2004). Aligning XP with ISO 9001: 2000 TickIT Guide 5.0 “A case study

in two academic software projects. Unpublished master thesis, School of

Engineering, Blekinge Institute of Technology, Ronneby, Sweden.

Von Wangenheim, C. G., Anacleto, A., & Salviano, C. F. (2004). Mares-a

methodology for software process assessment in small software companies.

Technical Report LPQS001. 04E, Universidade do Vale do Itajai-UNIVALI,

Brazil.

Von Wangenheim, C. G., Weber, S., Hauck, J. C. R., & Trentin, G. (2006).

Experiences on establishing software processes in small companies.

Information and Software Technology, 48(9), pp. 890-900.

Vriens, C. 2003. Certifying for CMM Level 2 and ISO9001 with XP@Scrum. In

Proceeding of the Agile Development Conference (ADC’03) held on 25-28

June 2003 at Salt Lake City, Utah, USA (pp. 120-124). Los Alamitos, CA,

USA: IEEE Computer Society.

Walker, A., & Selfe, J. (1996). The Delphi technique: a useful tool for the allied

health researcher. British Journal of Therapy and Rehabilitation, 3(12), 677–

681.

Wang, Y. & King, G. (2000). Software Engineering Processes: Principles and

Applications. CRC series in software engineering (Vol. I). Boca Raton, FL:

CRC Press.

Weerd, G. (2009). Advancing in software product management: An incremental

method engineering approach. Unpublished Doctoral Thesis, Dutch Research

School for Information and Knowledge Systems. Utrecht University,

Netherlands.

294

Wilkie, F., Mc Caffery, F., McFall, D., Lester, N., & Wilkinson, E. (2007). A Low-

overhead Method for Software Process Appraisal. Software Process -

Improvement and Practice 12(4), 339-349.

Withers, D.H. (2000). Software engineering best practices applied to the modeling

process. In Proceedings of the 2000 Winter Simulation Conference (WSC

2000) held on 10-13 Dec. 2000 at Wyndham Palace Resort & Spa, Orlando,

FL, USA (pp. 432-439). ACM.

Wong, B., & Hasan, S. (2007). Software Process Improvement in Bangladesh.

Software Engineering Research and Practice, ed. Arabnia, HR and Reza, H.,

SERP, 1(1), 26-29.

Xie, Y. (2011).The design of software process management and evaluation system in

small and medium software enterprises. In Proceeding of the International

Conference on Computer Science and Service System (CSSS) held on 27-29

June 2011 at Nanjing, China (pp. 2699-2701). IEEE.

Xie, Z., Li, T., Dai, F., Yu, Q., Yu, Y., Zhao, N., et al. (2010). A formal meta-model

of software process. In proceeding of the 2nd International Conference on

information Science and Engineering (ICISE) held on 4-6 Dec. 2010 at

Hangzhou, China (pp.4245-4248). DC, USA: IEEE Computer Society.

Xu, B. (2009). Towards high quality software development with extreme

programming methodology: practices from real software projects. In

Proceeding of the International Conference on Management and Service

Science (MASS '09) held on 20-22 Sept. 2009 Wuhan, China (pp.1-4). IEEE.

Xu, Y., Lin, Z., & Foster, W. (2003). Agile Methodology in CMM Framework: an

Approach to Success for Software Companies in China. Paper presented at

the Global Information Technology Management (GITM) Conference,

Calgary, Canada.

Yin, R. K. (1984). Case Study Research: Design and Methods. Beverly Hills, Calif:

Sage Publications.

Yourdon, E. (1997). Death March: Managing “Mission Impossible” Projects. Upper

Saddle River, NJ: Prentice Hall.

Zahran, S. (1998). Software Process Improvement: Practical Guidelines for Business

Success. Harlow, England: Addison-Wesley.

Zainal, Z. (2007). Case study as a research method. Jurnal Kemanusiaan, Vol.9. 1-6.

Zarour, M. (2009). Methods to evaluate lightweight software process assessment

methods based on evaluation theory and engineering design principles.

295

Unpublished Doctoral Thesis. Computer Science Department, Du Quebec

Uni, Canada.

Zhang, L., & Shao, D. (2011). Software process improvement for small and medium

organizations based on CMMI. In Proceeding of the 2nd International

Conference on the Artificial Intelligence, Management Science and

Electronic Commerce (AIMSEC) held on 8-10 Aug. 2011 Deng Feng, China

(pp. 2402-2405). IEEE.

Zoysa, L. (2011). Software Quality Assurance in Agile and Waterfall Software

Development Methodologies: A Gap Analysis. Unpublished Master Thesis,

School of Computing, University of Colombo, Sri Lanka.

296

Appendix A

CMMI-Dev1.2 KPAs

KPA Specific Goal Specific Practices

Requirement Management

The purpose of Requirements

Management (REQM) is to

manage the requirements of the

project’s products and product

components and to identify

inconsistencies between those

requirements and the project’s

plans and work products.

SG 1 Manage Requirements:

Requirements are managed and

inconsistencies with project

plans and work products are

identified.

SP 1.1 Obtain an Understanding of Requirements:

Develop an understanding with the requirements

providers on the meaning of the requirements.

SP 1.2 Obtain Commitment to Requirements: Obtain

commitment to the requirements from the project

participants.

SP 1.3 Manage Requirements Changes: Manage changes

to the requirements as they evolve during the project.

SP 1.4 Maintain Bidirectional Traceability of

Requirements: Maintain bidirectional traceability among

the requirements and work products.

SP 1.5 Identify Inconsistencies Between Project Work

and Requirements: Identify inconsistencies between the

project plans and work products and the requirements.

 Project Planning

The purpose of Project Planning

(PP) is to establish and maintain

plans that define project

activities.

SG 1 Establish Estimates:

Estimates of project planning

parameters are established and

maintained.

SP 1.1 Estimate the Scope of the Project: Establish a

top-level work breakdown structure (WBS) to estimate

the scope of the project

SP 1.2 Establish Estimates of Work Product and Task

Attributes: Establish and maintain estimates of the

attributes of the work products and tasks.

SP 1.3 Define Project Lifecycle: Define the project

lifecycle phases on which to scope the planning effort.

SP 1.4 Determine Estimates of Effort and Cost:

Estimate the project effort and cost for the work products

and tasks based on estimation rationale.

 SG 2 Develop a Project Plan:

A project plan is established

and maintained as the basis for

managing the project.

SP 2.1 Establish the Budget and Schedule: Establish

and maintain the project’s budget and schedule.

SP 2.2 Identify Project Risks: Identify and analyze

project risks

SP 2.3 Plan for Data Management: Plan for the

management of project data

SP 2.4 Plan for Project Resources: Plan for necessary

resources to perform the project.

SP 2.5 Plan for Needed Knowledge and Skills: Plan

for knowledge and skills needed to perform the project.

SP 2.6 Plan Stakeholder Involvement: Plan the

involvement of identified stakeholders.

SP 2.7 Establish the Project Plan: Establish and

maintain the overall project plan content.

 SG 3 Obtain Commitment to

the Plan:

 Commitments to the project

plan are established and

maintained.

SP 3.1 Review Plans That Affect the Project: Review

all plans that affect the project to understand project

commitments.

SP 3.2 Reconcile Work and Resource Levels:

Reconcile the project plan to reflect available and

estimated resources.

SP 3.3 Obtain Plan Commitment: Obtain commitment

from relevant stakeholders responsible for performing

and supporting plan execution.

Project Monitoring and

Control

SG 1 Monitor Project Against

Plan:

SP 1.1 Monitor Project Planning Parameters: Monitor

the actual values of the project planning parameters

297

The purpose of Project

Monitoring and Control (PMC)

is to provide an understanding

of the project’s progress so that

appropriate corrective actions

can be taken when the project’s

performance deviates

significantly from the plan.

Actual performance and

progress of the project are

monitored against the project

plan.

against the project plan.

SP 1.2 Monitor Commitments: Monitor commitments

against those identified in the project plan.

SP 1.3 Monitor Project Risks: Monitor risks against

those identified in the project plan.

SP 1.4 Monitor Data Management: Monitor the

management of project data against the project plan.

SP 1.5 Monitor Stakeholder Involvement: Monitor

stakeholder involvement against the project plan.

SP 1.6 Conduct Progress Reviews: Periodically review

the project's progress, performance, and issues.

SP 1.7 Conduct Milestone Reviews: Review the

accomplishments and results of the project at selected

project milestones.

SG 2 Manage Corrective

Action to Closure:

Corrective actions are managed

to closure when the project's

performance or results deviate

significantly from the plan.

SP 2.1 Analyze Issues: Collect and analyze the issues

and determine the corrective actions necessary to address

the issues

SP 2.2 Take Corrective Action: Take corrective action

on identified issues.

SP 2.3 Manage Corrective Action: Manage corrective

actions to closure.

Supplier Agreement

Management

 The purpose of Supplier

Agreement Management (SAM)

is to manage the acquisition of

products from suppliers.

SG 1 Establish Supplier

Agreements:

Agreements with the suppliers

are established and maintained.

SP 1.1 Determine Acquisition Type: Determine the

type of acquisition for each product or product

component to be acquired.

SP 1.2 Select Suppliers: Select suppliers based on an

evaluation of their ability to meet the specified

requirements and established criteria.

SP 1.3 Establish Supplier Agreements: Establish and

maintain formal agreements with the supplier.

SG 2 Satisfy Supplier

Agreements:

Agreements with the suppliers

are satisfied by both the project

and the supplier.

SP 2.1 Execute the Supplier Agreement: Perform

activities with the supplier as specified in the supplier

agreement.

SP 2.2 Monitor Selected Supplier Processes: Select,

monitor, and analyze processes used by the supplier.

SP 2.3 Evaluate Selected Supplier Work Products:

Select and evaluate work products from the supplier of

custom-made products.

SP 2.4 Accept the Acquired Product: Ensure that the

supplier agreement is satisfied before accepting the

acquired product.

SP 2.5 Transition Products: Transition the acquired

products from the supplier to the project.

Measurement and Analysis

The purpose of Measurement

and Analysis (MA) is to develop

and sustain a measurement

capability that is used to support

management information needs.

SG 1 Align Measurement and

Analysis Activities:

Measurement objectives and

activities are aligned with

identified information needs

and objectives.

SP 1.1 Establish Measurement Objectives: Establish and

maintain measurement objectives that are derived from

identified information needs and objectives.

SP 1.2 Specify Measures: Specify measures to address

the measurement objectives.

SP 1.3 Specify Data Collection and Storage

Procedures: Specify how measurement data will be

obtained and stored.

SP 1.4 Specify Analysis Procedures: Specify how

measurement data will be analyzed and reported.

298

SG 2 Provide Measurement

Results:

Measurement results, which

address identified information

needs and objectives, are

provided.

SP 2.1 Collect Measurement Data: Obtain specified

measurement data.

SP 2.2 Analyze Measurement Data: Analyze and

interpret measurement data.

SP 2.3 Store Data and Results: Manage and store

measurement data, measurement specifications, and

analysis results.

SP 2.4 Communicate Results: Report results of

measurement and analysis activities to all relevant

stakeholders.

 Process and Product Quality

Assurance

The purpose of Process and

Product Quality Assurance

(PPQA) is to provide staff and

management with objective

insight into processes and

associated work products.

SG 1 Objectively Evaluate

Processes and Work Products:

Adherence of the performed

process and associated work

products and services to

applicable process

descriptions, standards, and

procedures is objectively

evaluated.

SP 1.1 Objectively Evaluate Processes: Objectively

evaluate the designated performed processes against the

applicable process descriptions, standards, and

procedures.

SP 1.2 Objectively Evaluate Work Products and

Services: Objectively evaluate the designated work

products and services against the applicable process

descriptions, standards, and procedures.

SG 2 Provide Objective

Insight:

Noncompliance issues are

objectively tracked and

communicated, and resolution

is ensured.

SP 2.1 Communicate and Ensure Resolution of

Noncompliance Issues: Communicate quality issues and

ensure resolution of noncompliance issues with the staff

and managers.

SP 2.2 Establish Records: Establish and maintain

records of the quality assurance activities.

 Configuration Management

The purpose of Configuration

Management (CM) is to

establish and maintain the

integrity of work products using

configuration identification,

configuration control,

configuration status accounting,

and configuration audits.

SG 1 Establish Baselines:

 Baselines of identified work

products are established.

Specific practices to establish

baselines are covered by this

specific goal.

SP 1.1 Identify Configuration Items: Identify the

configuration items, components, and related work

products that will be placed under configuration

management.

SP 1.2 Establish a Configuration Management System:

Establish and maintain a configuration management and

change management system for controlling work

products.

SP 1.3 Create or Release Baselines: Create or release

baselines for internal use and for delivery to the customer.

 SG 2 Track and Control

Changes:

Changes to the work products

under configuration

management are tracked and

controlled.

SP 2.1 Track Change Requests: Track change requests

for the configuration items.

SP 2.2 Control Configuration Items: changes to the

configuration items.

SG 3 Establish Integrity:

Integrity of baselines is

established and maintained.

SP 3.1 Establish Configuration Management Records:

Establish and maintain records describing configuration

items.

SP 3.2 Perform Configuration Audits: Perform

configuration audits to maintain integrity of the

configuration baselines.

 Requirements Development

The purpose of Requirements

Development (RD) is to

produce and analyze customer,

product, and product component

requirements.

SG 1 Develop Customer

Requirements: Stakeholder

needs, expectations,

constraints, and interfaces are

collected and translated into

customer requirements.

SP 1.1 Elicit Needs: Elicit stakeholder needs,

expectations, constraints, and interfaces for all phases of

the product lifecycle.

SP 1.2 Develop the Customer Requirements:

Transform stakeholder needs, expectations, constraints,

and interfaces into customer requirements.

 SG 2 Develop Product

Requirements:

Customer requirements are

refined and elaborated to

develop product and product

component requirements.

SP 2.1 Establish Product and Product Component

Requirements: Establish and maintain product and

product component requirements, which are based on the

customer requirements.

SP 2.2 Allocate Product Component Requirements:

Allocate the requirements for each product component.

299

 SP 2.3 Identify Interface Requirements: Identify

interface requirements.

 SG 3 Analyze and Validate

Requirements:

The requirements are analyzed

and validated, and a definition

of required functionality is

developed.

SP 3.1 Establish Operational Concepts and Scenarios:

Establish and maintain operational concepts and

associated scenarios.

SP 3.2 Establish a Definition of Required

Functionality: Establish and maintain a definition of

required functionality.

SP 3.3 Analyze Requirements: Analyze requirements

to ensure that they are necessary and sufficient.

SP 3.4 Analyze Requirements to Achieve Balance:

Analyze requirements to balance stakeholder needs and

constraints.

SP 3.5 Validate Requirements: Validate requirements

to ensure the resulting product will perform as intended in

the user's environment.

 Technical Solution

The purpose of Technical

Solution (TS) is to design,

develop, and implement

solutions to requirements.

Solutions, designs, and

implementations encompass

products, product components,

and product-related lifecycle

processes either singly or in

combination as appropriate.

SG 1 Select Product

Component Solutions:

Product or product component

solutions are selected from

alternative solutions.

SP 1.1 Develop Alternative Solutions and Selection

Criteria: Develop alternative solutions and selection

criteria.

SP 1.2 Select Product Component Solutions: Select the

product component solutions that best satisfy the criteria

established.

SG 2 Develop the Design:

Product or product component

designs are developed.

SP 2.1 Design the Product or Product Component:

Develop a design for the product or product component.

SP 2.2 Establish a Technical Data Package: Establish

and maintain a technical data package.

SP 2.3 Design Interfaces Using Criteria: Design

product component interfaces using established criteria.

SP 2.4 Perform Make, Buy, or Reuse Analyses:

Evaluate whether the product components should be

developed, purchased, or reused based on established

criteria.

SG 3 Implement the Product

Design:

Product components, and

associated support

documentation, are

implemented from their

designs.

SP 3.1 Implement the Design: Implement the designs

of the product components.

SP 3.2 Develop Product Support Documentation:

Develop and maintain the end-use documentation.

Product Integration

The purpose of Product

Integration (PI) is to assemble

the product from the product

components, ensure that the

product, as integrated, functions

properly, and deliver the

product.

SG 1 Prepare for Product

Integration:

Preparation for product

integration is conducted.

SP 1.1 Determine Integration Sequence: Determine the

product component integration sequence.

SP 1.2 Establish the Product Integration Environment:

Establish and maintain the environment needed to support

the integration of the product components.

SP 1.3 Establish Product Integration Procedures and

Criteria: Establish and maintain procedures and criteria

for integration of the product components.

SG 2 Ensure Interface

Compatibility:

The product component

interfaces, both internal and

external, are compatible.

SP 2.1 Review Interface Descriptions for

Completeness: Review interface descriptions for

coverage and completeness.

SP 2.2 Manage Interfaces: Manage internal and

external interface definitions, designs, and changes for

products and product components.

SG 3 Assemble Product

Components and Deliver the

Product:

Verified product components

are assembled and the

SP 3.1 Confirm Readiness of Product Components for

Integration: Confirm, prior to assembly, that each product

component required to assemble the product has been

properly identified, functions according to its description,

and that the product component interfaces comply with

300

integrated, verified, and

validated product is delivered.

the interface descriptions.

SP 3.2 Assemble Product Components: Assemble

product components according to the product integration

sequence and available procedures.

SP 3.3 Evaluate Assembled Product Components:

Evaluate assembled product components for interface

compatibility.

SP 3.4 Package and Deliver the Product or Product

Component: Package the assembled product or product

component and deliver it to the appropriate customer.

 Verification

The purpose of Verification

(VER) is to ensure that selected

work products meet their

specified requirements.

SG 1 Prepare for Verification:

Preparation for verification is

conducted.

SP 1.1 Select Work Products for Verification: Select

the work products to be verified and the verification

methods that will be used for each.

SP 1.2 Establish the Verification Environment:

Establish and maintain the environment needed to support

verification.

SP 1.3 Establish Verification Procedures and Criteria:

Establish and maintain verification procedures and

criteria for the selected work products.

 SG 2 Perform Peer Reviews:

Peer reviews are performed on

selected work products.

SP 2.1 Prepare for Peer Reviews: Prepare for peer

reviews of selected work products.

SP 2.2 Conduct Peer Reviews: Conduct peer reviews

on selected work products and identify issues resulting

from the peer review.

SP 2.3 Analyze Peer Review Data: Analyze data about

preparation, conduct, and results of the peer reviews.

SG 3 Verify Selected Work

Products:

Selected work products are

verified against their specified

requirements.

.SP 3.1 Perform Verification: Perform verification on

the selected work products.

SP 3.2 Analyze Verification Results: Analyze the

results of all verification activities

Validation

The purpose of Validation

(VAL) is to demonstrate that a

product or product component

fulfills its intended use when

placed in its intended

environment.

SG 1 Prepare for Validation:

Preparation for validation is

conducted.

SP 1.1 Select Products for Validation: Select products

and product components to be validated and the

validation methods that will be used for each.

SP 1.2 Establish the Validation Environment: Establish

and maintain the environment needed to support

validation.

SP 1.3 Establish Validation Procedures and Criteria:

Establish and maintain procedures and criteria for

validation.

SG 2 Validate Product or

Product Components:

Establish and maintain

procedures and criteria for

validation.

SP 2.1 Perform Validation: Perform validation on the

selected products and product components.

SP 2.2 Analyze Validation Results: Analyze the results

of the validation activities.

 Organizational Process Focus

The purpose of Organizational

Process Focus (OPF) is to plan,

implement, and deploy

organizational process

improvements based on a

thorough understanding of the

current strengths and

weaknesses of the

organization’s processes and

process assets.

SG 1 Determine Process

Improvement Opportunities:

Strengths, weaknesses, and

improvement opportunities for

the organization's processes are

identified periodically and as

needed.

SP 1.1 Establish Organizational Process Needs: Establish

and maintain the description of the process needs and

objectives for the organization.

SP 1.2 Appraise the Organization’s Processes: Appraise

the organization's processes periodically and as needed to

maintain an understanding of their strengths and

weaknesses.

SP 1.3 Identify the Organization's Process Improvements:

Identify improvements to the organization's processes

and process assets.

 SG 2 Plan and Implement

Process Improvements:

Process actions that address

improvements to the

SP 2.1 Establish Process Action Plans: Establish and

maintain process action plans to address improvements to

the organization's processes and process assets.

301

organization’s processes and

process assets are planned and

implemented.

SP 2.2 Implement Process Action Plans: Implement

process action plans.

SG 3 Deploy Organizational

Process Assets and Incorporate

Lessons Learned:

The organizational process

assets are deployed across the

organization and process-

related experiences are

incorporated into the

organizational process assets.

SP 3.1 Deploy Organizational Process Assets: Deploy

organizational process assets across the organization.

SP 3.2 Deploy Standard Processes: Deploy the

organization’s set of standard processes to projects at

their startup and deploy changes to them as appropriate

throughout the life of each project.

SP 3.3 Monitor Implementation: Monitor the

implementation of the organization’s set of standard

processes and use of process assets on all projects.

SP 3.4 Incorporate Process-Related Experiences into the

Organizational Process Assets: Incorporate process-

related work products, measures, and improvement

information derived from planning and performing the

process into the organizational process assets.

Organizational Process

Definition +IPPD

The purpose of Organizational

Process Definition (OPD) is to

establish and maintain a usable

set of organizational process

assets and work environment

standards.

SG 1 Establish Organizational

Process Assets:

A set of organizational process

assets is established and

maintained.

SP 1.1 Establish Standard Processes: Establish and

maintain the organization's set of standard processes.

SP 1.2 Establish Lifecycle Model Descriptions:

Establish and maintain descriptions of the lifecycle

models approved for use in the organization.

SP 1.3 Establish Tailoring Criteria and Guidelines:

Establish and maintain the tailoring criteria and

guidelines for the organization's set of standard processes.

SP 1.4 Establish the Organization’s Measurement

Repository: Establish and maintain the organization’s

measurement repository.

SP 1.5 Establish the Organization’s Process Asset

Library: Establish and maintain the organization's process

asset library.

SP 1.6 Establish Work Environment Standards:

Establish and maintain work environment standards.

 SG 2 Enable IPPD

Management:

Organizational rules and

guidelines, which govern the

operation of integrated teams,

are provided.

SP 2.1 Establish Empowerment Mechanisms:

Establish and maintain empowerment mechanisms to

enable timely decision making.

SP 2.2 Establish Rules and Guidelines for Integrated

Teams: Establish and maintain organizational rules and

guidelines for structuring and forming integrated teams.

SP 2.3 Balance Team and Home Organization

Responsibilities: Establish and maintain organizational

guidelines to help team members’ balance their team and

home organization responsibilities.

Organizational Training

The purpose of Organizational

Training (OT) is to develop the

skills and knowledge of people

so they can perform their roles

effectively and efficiently.

SG 1 Establish an

Organizational Training

Capability:

A training capability, which

supports the organization's

management and technical

roles, is established and

maintained.

SP 1.1 Establish the Strategic Training Needs:

Establish and maintain the strategic training needs of the

organization.

SP 1.2 Determine Which Training Needs Are the

Responsibility of the Organization: Determine which

training needs is the responsibility of the organization and

which will be left to the individual project or support

group.

SP 1.3 Establish an Organizational Training Tactical

Plan: Establish and maintain an organizational training

tactical plan.

SP 1.4 Establish Training Capability: Establish and

maintain training capability to address organizational

training needs.

302

SG 2 Provide Necessary

Training:

Training necessary for

individuals to perform their

roles effectively is provided.

SP 2.1 Deliver Training: Deliver the training following

the organizational training tactical plan.

SP 2.2 Establish Training Records: Establish and

maintain records of the organizational training.

SP 2.3 Assess Training Effectiveness: Assess the

effectiveness of the organization’s training program.

Integrated Project

Management +IPPD

The purpose of Integrated

Project Management (IPM) is to

establish and manage the project

and the involvement of the

relevant stakeholders according

to an integrated and defined

process that is tailored from the

organization’s set of standard

processes.

SG 1 Use the Project’s Defined

Process:

The project is conducted using

a defined process that is

tailored from the organization's

set of standard processes.

SP 1.1 Establish the Project’s Defined Process:

Establish and maintain the project's defined process from

project startup through the life of the project.

SP 1.2 Use Organizational Process Assets for Planning

Project Activities: Use the organizational process assets

and measurement repository for estimating and planning

the project’s activities.

SP 1.3 Establish the Project's Work Environment:

Establish and maintain the project's work environment

based on the organization's work environment standards.

SP 1.4 Integrate Plans: Integrate the project plan and

the other plans that affect the project to describe the

project’s defined process.

SP 1.5 Manage the Project Using the Integrated Plans:

Manage the project using the project plan, the other plans

that affect the project, and the project’s defined process.

SP 1.6 Contribute to the Organizational Process

Assets: Contribute work products, measures, and

documented experiences to the organizational process

assets.

SG 2 Coordinate and

Collaborate with Relevant

Stakeholders:

Coordination and collaboration

of the project with relevant

stakeholders is conducted.

SP 2.1 Manage Stakeholder Involvement: Manage the

involvement of the relevant stakeholders in the project.

SP 2.2 Manage Dependencies: Participate with

relevant stakeholders to identify, negotiate, and track

critical dependencies.

SP 2.3 Resolve Coordination Issues: Resolve issues

with relevant stakeholders.

SG 3 Apply IPPD Principles:

The project is managed using

IPPD principles.

SP 3.1 Establish the Project’s Shared Vision: Establish

and maintain a shared vision for the project.

SP 3.2 Establish the Integrated Team Structure:

Establish and maintain the integrated team structure for

the project.

SP 3.2 Allocate Requirements to Integrated Teams:

Allocate requirements, responsibilities, tasks, and

interfaces to teams in the integrated team structure.

Risk Management

The purpose of Risk

Management (RSKM) is to

identify potential problems

before they occur so that risk-

handling activities can be

planned and invoked as needed

across the life of the product or

project to mitigate adverse

impacts on achieving objectives.

SG 1 Prepare for Risk

Management: Preparation for

risk management is conducted.

Preparation is conducted by

establishing and maintaining a

strategy for identifying,

analyzing, and mitigating risks.

SP 1.1 Determine Risk Sources and Categories:

Determine risk sources and categories.

SP 1.2 Define Risk Parameters: Define the parameters

used to analyze and categorize risks and the parameters

used to control the risk management effort.

SP 1.3 Establish a Risk Management Strategy:

Establish and maintain the strategy to be used for risk

management.

 SG 2 Identify and Analyze

Risks:

Risks are identified and

analyzed to determine their

relative importance.

SP 2.1 Identify Risks: Identify and document the risks.

SP 2.2 Evaluate, Categorize, and Prioritize Risks:

Evaluate and categorize each identified risk using the

defined risk categories and parameters, and determine its

relative priority.

SG 3 Mitigate Risks:

Risks are handled and

mitigated, where appropriate,

SP 3.1 Develop Risk Mitigation Plans: Develop a risk

mitigation plan for the most important risks to the project

as defined by the risk management strategy.

303

to reduce adverse impacts on

achieving objectives.

SP 3.2 Implement Risk Mitigation Plans: Monitor the

status of each risk periodically and implement the risk

mitigation plan as appropriate.
 Decision Analysis and

Resolution

The purpose of Decision

Analysis and Resolution (DAR)

is to analyze possible decisions

using a formal evaluation

process that evaluates identified

alternatives against established

criteria.

SG 1Evaluate Alternatives:

Decisions are based on an

evaluation of alternatives using

established criteria. Issues

requiring a formal evaluation

process may be identified at

any time.

SP 1.1 Establish Guidelines for Decision Analysis:

Establish and maintain guidelines to determine which

issues are subject to a formal evaluation process.

SP 1.2 Establish Evaluation Criteria: Establish and

maintain the criteria for evaluating alternatives, and the

relative ranking of these criteria.

SP 1.3 Identify Alternative Solutions: Identify

alternative solutions to address issues.

SP 1.4 Select Evaluation Methods: Select the

evaluation methods.

SP 1.5 Evaluate Alternatives: Evaluate alternative

solutions using the established criteria and methods.

SP 1.6 Select Solutions: Select solutions from the

alternatives based on the evaluation criteria.

 Organizational Process

Performance

The purpose of Organizational

Process Performance (OPP) is

to establish and maintain a

quantitative understanding of

the performance of the

organization’s set of standard

processes in support of quality

and process-performance

objectives, and to provide the

process-performance data,

baselines, and models to

quantitatively manage the

organization’s projects.

SG 1 Establish Performance

Baselines and Models:

Baselines and models, which

characterize the expected

process performance of the

organization's set of standard

processes, are established and

maintained.

SP 1.1 Select Processes: Select the processes or sub

processes in the organization's set of standard processes

that are to be included in the organization's process-

performance analyses.

SP 1.2 Establish Process-Performance Measures:

Establish and maintain definitions of the measures that

are to be included in the organization’s process-

performance analyses.

SP 1.3 Establish Quality and Process-Performance

Objectives: Establish and maintain quantitative objectives

for quality and process performance for the organization.

SP 1.4 Establish Process-Performance Baselines:

Establish and maintain the organization's process-

performance baselines.

SP 1.5 Establish Process-Performance Models:

Establish and maintain the process-performance models

for the organization’s set of standard processes.

 Quantitative Project

Management

The purpose of Quantitative

Project Management (QPM) is

to quantitatively manage the

project’s defined process to

achieve the project’s established

quality and process-

performance objectives.

SG 1 Quantitatively Manage

the Project: The project is

quantitatively managed using

quality and process-

performance objectives.

SP 1.1 Establish the Project’s Objectives: Establish

and maintain the project’s quality and process-

performance objectives.

SP 1.2 Compose the Defined Process: Select the sub

processes that compose the project’s defined process

based on historical stability and capability data.

SP 1.3 Select the Sub processes that Will Be

Statistically Managed: Select the sub processes of the

project's defined process that will be statistically

managed. SP 1.4 Manage Project Performance: Monitor the

project to determine whether the project’s objectives for

quality and process performance will be satisfied, and

identify corrective action as appropriate.

SG 2 Statistically Manage Sub

process Performance

The performance of selected

sub processes within the

project's defined process is

statistically managed.

SP 2.1 Select Measures and Analytic Techniques:

Select the measures and analytic techniques to be used in

statistically managing the selected sub processes.

SP 2.2 Apply Statistical Methods to Understand

Variation: Establish and maintain an understanding of the

variation of the selected sub processes using the selected

measures and analytic techniques.

304

SP 2.3 Monitor Performance of the Selected Sub

processes: Monitor the performance of the selected sub

processes to determine their capability to satisfy their

quality and process-performance objectives, and identify

corrective action as necessary.

SP 2.4 Record Statistical Management Data: Record

statistical and quality management data in the

organization’s measurement repository.

 Organizational Innovation

and Deployment

The purpose of Organizational

Innovation and Deployment

(OID) is to select and deploy

incremental and innovative

improvements that measurably

improve the organization’s

processes and technologies. The

improvements support the

organization’s quality and

process-performance objectives

as derived from the

organization’s business

objectives.

SG 1 Select Improvements:

Process and technology

improvements, which

contribute to meeting quality

and process-performance

objectives, are selected.

SP 1.1 Collect and Analyze Improvement Proposals:

Collect and analyze process- and technology-

improvement proposals.

SP 1.2 Identify and Analyze Innovations: Identify and

analyze innovative improvements that could increase the

organization’s quality and process performance.

SP 1.3 Pilot Improvements: Pilot process and

technology improvements to select which ones to

implement.

SP 1.4 Select Improvements for Deployment: Select

process and technology improvements for deployment

across the organization.

 SG 2 Deploy Improvements:

Measurable improvements to

the organization's processes

and technologies are

continually and systematically

deployed.

SP 2.1 Plan the Deployment: Establish and maintain

the plans for deploying the selected process and

technology improvements.

SP 2.2 Manage the Deployment: Manage the

deployment of the selected process and technology

improvements.

SP 2.3 Measure Improvement Effects: Measure the

effects of the deployed process and technology

improvements.

Causal Analysis and

Resolution

The purpose of Causal Analysis

and Resolution (CAR) is to

identify causes of defects and

other problems and take action

to prevent them from occurring

in the future.

SG 1 Determine Causes of

Defects:

Root causes of defects and

other problems are

systematically determined.

SP 1.1 Select Defect Data for Analysis: Select the

defects and other problems for analysis.

SP 1.2 Analyze Causes: Perform causal analysis of

selected defects and other problems and propose actions

to address them.

 SG 2 Address Causes of

Defects:

Root causes of defects and

other problems are

systematically addressed to

prevent their future occurrence.

SP 2.1 Implement the Action Proposals: Implement the

selected action proposals that were developed in causal

analysis.

SP 2.2 Evaluate the Effect of Changes: Evaluate the

effect of changes on process performance.

SP 2.3 Record Data: Record causal analysis and

resolution data for use across the project and

organization.

305

Appendix B

Detailed Comparisons of XP Practices to CMMI-Dev1.2 KPAs.

Key Process

Area

Coverage the CMM Key Process Areas by XP Practices

Fritzsche & Keil (2007)

Omran (2008)

Elshafey & Galal-Edeen (2008)

Requirement

Management

The intensive communication of XP method helps in

understanding the requirements by integrating the

customer into the development team. Therefore, the

requirements of the project can be quickly exchanged

and discussed. However, XP practices do not directly

support the traceability of requirement, while the

stories, task, stories, functional test, and unit test help

in detecting the inconsistencies between the project

work and the requirements. (L.S)

This process area is largely supported by some of

XP practices, which are: user-stories, on-site

customer, and continuous integration. In addition,

short release and continues integration help in

integrating the feedback on customer expectations

and needs. Furthermore, on-site customer and

intensive communications support the establishment

and maintenance the common understanding of

building stories and selecting them for the next

release. (L.S)

Intensive communication and on-site customer

support the understanding of the requirements and

provide the commitment to these requirements. In

addition, iteration to release practices helps in

conducting the change or requirements. XP does not

care so much for keeping or tracking requirements for

future changes. Nevertheless, on-site customer and

test-driven development help in detecting the

inconsistencies between project work and

requirements. (L.S)

Project

Planning

Planning game practice is responsible for

establishing the project plan for the project such as:

estimation of stories and tasks. In addition, the

iteration to release practice helps in increasing the

estimation precision. Therefore, the risk can be

identified during the short iterations. Furthermore,

the high involvement and responsibility of the team

members increase the commitment to the release and

iteration plans. (L.S)

This process area is largely supported by two XP

practices, which are: planning game and small

releases practices, where planning game is

responsible for establish the project plan during the

small releases. (L.S)

Planning phase of XP is responsible for establishing

the project schedule, budget, and plan for each

iteration. In addition, iterative to release practice

increase the estimates precision, helps to identify the

risks, better resources allocation, and better

identification for needed skills for a certain phase.

Furthermore, collective ownership practice

encourages the involvement of all relevant

stakeholders in the planning phase, where this practice

increases the commitment to the iteration plans. (L.S)

Project

Monitoring and

Control

Tracker is responsible for mentoring the schedule and

estimates, where the information of the project’s

progress is gathered by the use of measures. In

addition, the required information can be

This process area is largely supported XP method.

Big visual chart for the project is always developed

by both XP team to state the velocity of the project

and commitments (stories) for small releases. (L.S)

Iteration to release and intensive communication

practices help to monitor the project against the plan.

These practices also help to measure the progress of

the project and support to have good opportunity to

306

communicated between the project team by the

intensive communication practice. Furthermore, short

iteration and regular commitments helps in

monitoring the project against the baseline, and also

offer opportunities to make adjustments. (L.S)

make corrective actions to issues in previous

iterations. In addition, tracker is responsible for

informing the results of daily meetings to check the

status of each iteration against the plan. (L.S)

Supplier

Agreement

Management

This process area is not supported by XP practices.

(N.S)

This process area is not supported by XP practices.

(N.S)

This process area is not supported by XP method.

(N.S)

Measurement

and Analysis

Tracker is responsible for the measurement and

analysis procedures, but there is no specific guideline

for the measurement process. In addition, intensive

communication helps in obtaining the measurement

data within the team, and also the tracker is

responsible for analyzing the measurement data and

pass on the results to the team using wall charts.

However, there is no specific storage to keep the

results of the measurement. (P.S)

This process area is largely supported by re-

factoring practice, where this practice helps in

altering internal structure of the system without

changing its external behavior. (L.S)

Intensive communication helps in obtaining the

measurement data that measured by the tracking to

keep track of the project progress. However, there is

no specific guideline for the measurement and

analysis. (P.S)

Process and

Product Quality

assurance

There is no direct practice to evaluate the processes

and services aligned with the applicable process

descriptions. Nevertheless, the coach is responsible

for controlling that the method is applied in the right

way to guide the project team in the use of XP. In

addition, coach role provides the objective insight.

However, there is problem in the noncompliance

issues and the establishing of records of quality

assurance activities. (P.S)

This process area is partially supported by pair

programming practice, where peer pressure helps in

assuring the conformance of the standards. (P.S)

This process area is not supported by XP method.

(N.S)

Configuration

Management

Code, design, test, and requirements are the items of

configuration; which used by functional tests to

establish the baselines at the end of each iteration. In

addition, pair programming and on-site customer

practices are responsible for control and track the

changes or requirements. Furthermore, coding

standard helps to read the code easily, while the

This process area is partially supported by some XP

practices, which are planning game, collective

ownership, small releases, and continuous

integration. These practices lead to details of this

process area. (P.S)

Pair programming, test-driven development, and re-

factoring are responsible for controlling and tracking

the requirement changes. However, there is no

directly establishment for the configuration

management baselines in XP. (P.S)

307

continuous iterations help to establish the baselines.

Moreover, on-site customer, pair programming, and

test-driven development practices perform the audits.

(L.S)

Requirements

Development

Story cards and functional tests are used to elicit and

specified the requirements by customers, where the

developers often support him in these tasks. In

addition, iterative to release practice enable the

project team to discuss the requirement details with

the customer during the development. This will

enable to refine the customer requirement into

product requirements, and allow the validation of the

requirement. However, there XP dose not support

deep analyses for the requirements. (P.S)

This process area is largely supported by some of

XP practices, which are: on-site customer, user

stories, and iterative development. These practices

help to manage the requirement development. (L.S)

Re-factoring, iteration to release, and test driven

development practices support the constancy analysis

and validation of the requirements. However, in XP

method; there is no documentation for all the actions

on the requirements, while just story cards and on-site

customer support some of these documentations. This

is because XP focuses on the issues which effect on

the deliver value of the product, therefore they dose

not care about the heavy documentations during the

development. (P.S)

Technical

Solution

At the beginning of the development, prototypes

provide the alternative solutions, while the re-

factoring and iterative development supports these

alternatives during the development. In addition,

coding standard, re-factoring, and pair programming

support the implementation of the product. (L.S)

This process area is largely supported by some of

XP practices, which are: metaphor, iterative

solutions, and test-driven development. These

practices lead to a high quality of technical

solutions. (L.S)

In the beginning of the project development, prototype

supports the alternative solutions; while iteration to

release and re-factoring help in find out the alternative

during the development. In addition, simple design

practice provides the flexibility of the system, helps to

accept the changes easily, and minimize the changes

cost during the short iterative. Furthermore, re-

factoring, coding standards, pair programming, test

driven development, and continuous improvement

practices helps to enhance the implementation of the

product design to ensure better quality. (L.S)

Product

Integration

Continuous integration is a main practice in XP,

where this practice and on-site customer help in

assembling the product components and deliver the

product. In addition, the tests used in each of the

integration steps help to ensure the interface

compatibility. (L.S)

This process area is largely supported by XP

practices which are: planning game, iteration to

release, and test-driven development. (L.S)

Just continuous integration practice supports the

product integration. This practice contains multiple

iterations, therefore the integration steps are

performed very often, a thorough preparation is

critical, and then integration takes place. (P.S)

Verification Test-driven development practice supports the

verification. In addition, pair programming,

collective code ownership, and re-factoring support

This process area is largely supported by some of

XP practices, which are: on-site customer, user

stories and iteration to release. (L.S)

Test driven development supports the enhancement of

the verification process by increasing the probability

of meeting the verified work to the specified

308

the peer reviews. Therefore, peer reviews and test

driven development are considered the main methods

for verification. (L.S)

 requirements. In addition, pair programming and

collective ownership are suitable practices to enhance

peer review process. (L.S)

Validation Iteration to release and on-site customer support the

validation by the customer acceptance, where the

customer is responsible for validating the product

with the product team consistently at the end of each

iteration. Therefore, it will be suitable for the team to

know the required changes of the requirement before

to start in the subsequence iteration. (L.S)

This process area is largely supported by some of

XP practices, which are: iterations to release, test-

driven development, and on-site customer. In

addition, pair programming addresses peer reviews.

(L.S)

Re-factoring, iteration to release and on-site

customer practices are responsible to ensure the

validation of the product. This can be done by

demonstrating that the product fulfills its intended

use as required by the customer. (L.S)

Organizational

Process Focus

This process area is not supported by XP practices.

(N.S)

This process area is partially supported by XP

method, because XP addresses organization process

focus at the team level rather than organizational

level. In addition, XP focuses on the software

engineering process rather than organizational

infrastructure issues. (P.S)

This process area is not supported by XP method.

(N.S)

Organizational

Process

Definition

+IPPD

This process area is not supported by XP practices.

(N.S)

This process area is partially supported by XP

method, because XP addresses the team process

definition without the organizational assets. (P.S)

This process area is not supported by XP method.

(N.S)

Organizational

Training

At the exploration phase, the training is already

supported. In addition, pair programming and coach

are also improving the organizational training during

the development. However, XP dose not support the

assessment of the training effectiveness and dose not

record the results of assessment. (P.S)

This process area is largely supported by collective

ownership practice, where no one can complete his

tasks without organizational training as individual

development. (L.S)

There is no specific process for training in XP

method; while pair programming practice supports

some of the required training to develop the skills

and knowledge of people. (P.S)

Integrated

Project

Management

+IPPD

Developers, customers, testers, and management are

already coordinated and collaborated by XP

practices. In addition, the shard vision can be

established by the intensive communication between

the team members. Furthermore, the intensive

communication and cooperation XP supports the

baselines for the IPPD, where the skills of each

This process area is partially supported by planning

game and iterations to release practices. In addition,

visual charts support this process area. However, it

is difficult to mange stakeholders outside the firm.

(P.S)

There is no specific process for the project as a whole

in XP method, where only define practices for the

development project. In addition, developers,

customers, and testers are coordinated and integrated

by collective ownership practice. Furthermore, the

intensive communication helps to establish a shared

vision. (P.S)

309

member can be promoted to the other team members

by the intensive. However, the project’s defined

process is not addressed. (P.S)

Risk

Management

There is no directly support for conducting the risk

management in XP method. Nevertheless, the

planning phase of XP method supports the

identification and analysis of the risk management. In

addition, the iterative to release practice helps to

mitigate the risks. (L.S)

This process area is partially supported by on-site

customer and test-driven development practices,

because these practices help the developers to work

on the project with covered scenarios. In addition,

this practices such analysis but when defining the

user stories and the acceptance-test. (P.S)

Iteration to release practice and intensive

communications practices helps identifying and

mitigating the risks. (L.S)

Decision

Analysis and

Resolution

This process area is not supported by XP practices.

(N.S)

This process area is partially supported by some of

XP practices, which are: planning game, simple

design, test-driven development, and user stories.

However, these practices in XP depend on the tacit

knowledge of the project team. Therefore, XP

method dose not fully address this process area.

(P.S)

This process area is not supported by XP method.

(N.S)

Organizational

Process

Performance

This process area is not supported by XP practices.

(N.S)

This process area is partially supported by planning

game and iteration to release practices. (P.S)

This process area is not supported by XP method.

(N.S)

Quantitative

Project

Management

This process area is not supported by XP practices.

(N.S)

This process area is not supported by XP practices.

(N.S)

This process area is not supported by XP method.

(N.S)

Organizational

Innovation and

Deployment

This process area is not supported by XP practices.

(N.S)

This process area is partially supported by XP

values such as simplicity and feedback. In addition,

these values and re-factoring practice supports this

process area by improve the processes at the team

level. (P.S)

This process area is not supported by XP method.

(N.S)

Causal Analysis

and Resolution

This process is not supported by XP practices. (N.S) This process area is partially supported by some of

XP practices, which are: planning game, pair

programming, on-site customer, and re-factoring

during the iterative development. (P.S)

This process area is not supported by XP method.

(N.S)

310

Appendix C

Verification Questionnaire

Questionnaires Related to the Software Process Improvement in Small Software

Development Firms

PHD Student: Mejhem Yousef AL-Tarawneh

College of Arts and Sciences, Universiti Utara Malaysia

Sintok, Kedah, MALAYSIA

Mejhem1981@yahoo.com

This questionnaire is part of Ph.D research and it is designed to ask the focus group

members to verify the proposed framework. This study aims to help small software

development firms to improve and manage their software development processes by using

capability maturity model integration model (CMMI-Dev1.2) as a software process

improvement model, and Extreme Programming (XP) as a software development method.

So we need your help to clearly read the proposed framework and the related attachment

files (CMMI-Dev1.2 key process areas description; XP method description; the comparison

between CMMI-Dev1.2 and XP method; and the proposed framework description) to fill out

the following questionnaires. This questionnaire has four parts:

 Part One: To verify the compatibility of the proposed framework to the specific goals of CMMI-

Dev1.2 key process areas.

 Part Two: To verify the commitment of the proposed Extended-XP method to XP values.

 Part Three: To verify the suitability of the proposed framework and Extended-XP roles for their

practices and for small software development firms.

 Part Four: To verify the suitability of the proposed framework and the proposed Extended-XP

structures for the software development process improvement issues in small software

development firms.

(This Questionnaire is for Studying Objectives Only)

mailto:Mejhem1981@yahoo.com

311

Part One

This part aims to verify the compatibility of the proposed framework to the specific goals of CMMI-Dev1.2 key

process areas.

For each process area; the question is “Is the proposed framework compatible to the specific goals of this

area”. To answer this questions; you can use (x) to choose your rating as follows:

 Strongly Incompatible: the proposed framework does not achieve all specific goals of the key process

area.

 Strongly Compatible: the proposed framework achieves all specific goals of the key process area.

Furthermore, if you have any suggestions; you can use the specified space.

CMMI-Dev1.2 Key Process Areas Strongly Strongly

Incompatible Compatible

Suggestions

1 2 3 4 5

Requirement Management

- SG 1 Manage Requirements

Project Planning

- SG 1 Establish Estimates

- SG 2 Develop a Project Plan

- SG 3 Obtain Commitment to the Plan

Project Monitoring and Control
- SG 1 Monitor Project Against Plan

- SG 2 Manage Corrective Action to Closure

Supplier Agreement Management
- SG 1 Establish Supplier Agreements

- SG 2 Satisfy Supplier Agreements

Measurement and Analysis

- SG 1 Align Measurement and Analysis Activities

- SG 2 Provide Measurement Results

Process and Product Quality Assurance
- SG 1 Objectively Evaluate Processes and Work Products

- SG 2 Provide Objective Insight

Configuration Management

- SG 1 Establish Baselines

- SG 2 Track and Control Changes

- SG 3 Establish Integrity

Requirements Development

- SG 1 Develop Customer Requirements

- SG 2 Develop Product Requirements

- SG 3 Analyze and Validate Requirements

Technical Solution

- SG 1 Select Product Component Solutions

- SG 2 Develop the Design

- SG 3 Implement the Product Design

Product Integration

- SG 1 Prepare for Product Integration

- SG 2 Ensure Interface Compatibility

- SG 3 Assemble Product Components

Verification
- SG 1 Prepare for Verification

- SG 2 Perform Peer Reviews

- SG 3 Verify Selected Work Products

Validation

- SG 1 Prepare for Validation

- SG 2 Validate Product or Product Components

312

Organizational Process Focus
- SG 1 Determine Process Improvement Opportunities

- SG 2 Plan and Implement Process Improvements

- SG 3 Deploy Organizational Process Assets and

Incorporate Lessons Learned

Organizational Process Definition +IPPD
- SG 1 Establish Organizational Process Assets

- SG 2 Enable IPPD Management

Organizational Training

- SG 1 Establish an Organizational Training Capability

- SG 2 Provide Necessary Training

Integrated Project Management +IPPD
- SG 1 Use the Project’s Defined Process

- SG 2 Coordinate and Collaborate with Relevant

Stakeholders

- SG 3 Apply IPPD Principles

Risk Management

- SG 1 Prepare for Risk Management

- SG 2 Identify and Analyze Risks

- SG 3 Mitigate Risks

Decision Analysis and Resolution
- SG 1Evaluate Alternatives

Organizational Process Performance
- SG 1 Establish Performance Baselines and Models

Quantitative Project Management

- SG 1 Quantitatively Manage the Project

- SG 2 Statistically Manage Sub process Performance

Organizational Innovation and Deployment
- SG 1 Select Improvements

- SG 2 Deploy Improvements

Causal Analysis and Resolution

- SG 1 Determine Causes of Defects

- SG 2 Address Causes of Defects

==

Part Two

This part aims to verify the commitment of the proposed Extended-XP method to XP values. To answer the

questions of this part; please write your answer in the specific space as follows:

 YES without modifications.

 YES with modifications.

 NO.

If your answer is “YES with modifications” or “NO”; please write your suggestions in the specific space.

Values Questions Answers

Simplicity Does the proposed Extended-XP achieve the simplicity value?

 Communication Does the proposed Extended-XP achieve the communication value?

 Feedback Does the proposed Extended-XP achieve the feedback value?

 Courage Does the proposed Extended-XP achieve the courage value?

Suggestions

313

==

Part Three

This part aims to verify suitability of the distribution of the proposed framework and Extended-XP roles

compared to their practices. To answer the questions of this part; please write your answer in the specific space as

follows:

 YES without modifications.

 YES with modifications.

 NO.

 If your answer is “YES with modifications” or “NO”; please write your suggestions in the specific space.

Questions Answers

Are the distribution of the proposed framework and Extended-XP roles suitable compared to

their practices?

Are the roles of the proposed framework and Extended-XP suitable for small software

development firms?

Suggestions

==

Part Four

This part aims to verify suitability of the proposed framework and the proposed Extended-XP structures for

software development process improvement issues in small software development firms. To answer this question;

please write your answer in the specific space as follows:

 YES without modifications.

 YES with modifications.

 NO.

 If your answer is “YES with modifications” or “NO”; please write your suggestions in the specific space.

Question Answers

Are the structures of the proposed framework and the proposed Extended-XP suitable for the

software development process improvement issues in small software development firms?

Suggestions

314

Appendix D

Validation Questionnaire

 Questionnaires Related to the Software Process Improvement in Small Software

Development Firms

PHD Student: Mejhem Yousef AL-Tarawneh

College of Arts and Sciences

Universiti Utara Malaysia

Sintok, Kedah, MALAYSIA

Mejhem1981@yahoo.com

 This questionnaire is part of Ph.D research. It is designed to ask the professional developers

and managers of small software development firms about their software development

background and to validate the suitability of the framework for small software development

firms based on the related XP practices and additions that are used in this framework to

achieve the specific goals of the suitable key process areas of CMMI-Dev1.2. So we need

your help to clearly read the framework and the specifications of specific goals of each key

process areas of CMMI-Dev1.2 which are attached with questionnaire to the following

questions:

 This questionnaire has two parts:

- Part One: To know the respondents’ background.

- Part Two: To validate the suitability of the framework for small software

development firms.

(This Questionnaire is for Studying Objectives Only)

mailto:Mejhem1981@yahoo.com

315

Part One

Respondent Background

1- Which Best Describes Your Current Position? (Please mark as many boxes as apply)

 □ Project OR Team Leader □ Manager

 □ Technical Member □ Software Engineering Process group (SEPG) Member

 □ Other (please specify): …………………………………………….

2- On What Activities Do You Currently Work?

 □ Software Requirements □ Software Quality Assurance

 □ Software Design □ Configuration Management

 □ Code And Unit Test □ Software Process Improvement

 □ Test And Integration □ Other (please specify) (……………)

3- Have You Received Any CMMI Training?

 □ Yes □ No

4- How long is your software experience?

 □ 5 years & less □ 6-10 years □ More than 11 years

5- How large is your firm?

 □ 10 - 20 employees □ 21- 30 employees

 □ 31 - 40 employees □ 41-50 employees

==

Part Two

This part aims to find the suitability of framework for small software development firms.

For each process area; the question is “are the related practices and additions that used to achieve the

specific goals of each key process area in the framework suitable for small software development firms?”.

To answer this questions; you can use (x) mark to choose your rating as following:

 Strongly Unsuitable: all the related practices and additions are strongly unsuitable for small software

development firms.

 Strongly Suitable: all the related practices and additions are strongly suitable for small software

development firms.

316

CMMI-DEV 1.2 Key Process

Areas

Summary of XP practices and the suggested

additions that are used in the framework to

cover the specific goals of CMMI-Dev1.2

key process areas.

Strongly Strongly

Unsuitable Suitable

1 2 3 4 5

Requirement Management

SG 1 Manage Requirements

On-Site Customer, Planning Game, Continuous

Integration, Small Release.

Creating project repository at the first stage of the

framework to keep the important data during the

implementing of these stages of this framework.

Project Planning

SG 1 Establish Estimates

SG 2 Develop a Project Plan

SG 3 Obtain Commitment to the

Plan

Planning Game, Small Releases, On-Site Customer

Project Monitoring and Control

SG 1 Monitor Project Against Plan

SG 2 Manage Corrective Action to

Closure

Small Releases, On-Site Customer, Test-driven

development, Design Improvement.

Supplier Agreement Management

SG 1 Establish Supplier Agreements

SG 2 Satisfy Supplier Agreements

Using process for supplying unavailable

development tools, services and technologies in the

first phase of the Extended-XP method.

Measurement and Analysis

SG 1 Align Measurement and

Analysis Activities

SG 2 Provide Measurement Results

On-Site Customer, Design Improvement.

Using the project repository for storing the

measurement data in the third phase of the

Extended-XP method.

Process and Product Quality

Assurance

SG 1 Objectively Evaluate Processes

and Work Products

SG 2 Provide Objective Insight

Pair programming, Continuous integration, Test-

driven development, Metaphor.

Using some metrics for objectively verifying the

products and the process in the third phase of the

Extended-XP method.

Conveying the metrics through defined channels to

the affected parties and senior management in the

third phase of the Extended-XP method.

Configuration Management

SG 1 Establish Baselines

SG 2 Track and Control Changes

SG 3 Establish Integrity

Planning Game, Continuous Integration, Collective

Ownership, Design Improvement, Small Releases.

Requirements Development

SG 1 Develop Customer

Requirements

SG 2 Develop Product Requirements

SG 3 Analyze and Validate

Requirements

Planning Game, On-Site Customer, Small Releases.

Storing the requirement specifications in the project

repository in the first phase of the Extended-XP

method.

Technical Solution

SG 1 Select Product Component

Solutions

SG 2 Develop the Design

SG 3 Implement the Product Design

Simple Design, Coding Standards, Design

Improvement, Metaphor, On-Site Customer.

Product integration

SG 1 Prepare for Product Integration

SG 2 Ensure Interface Compatibility

SG 3 Assemble Product Components

Continuous integration, Simple Design, Coding

Standards, Design Improvement, Metaphor, On-

Site Customer.

317

Verification

SG 1 Prepare for Verification

SG 2 Perform Peer Reviews

SG 3 Verify Selected Work Products

Small Releases, On-Site Customer, User Stories,

Design Improvement, Pair Programming.

Validation

SG 1 Prepare for Validation

SG 2 Validate Product or Product

Components

Small Releases, Pair Programming, On-Site

Customer.

Organizational Process Focus

SG 1 Determine Process

Improvement Opportunities

SG 2 Plan and Implement Process

Improvements

SG 3 Deploy Organizational Process

Assets and Incorporate Lessons

Learned

Extracting the best practices of the current project

at stage three of the framework.

Organizational Process Definition

+IPPD

SG 1 Establish Organizational

Process Assets.

SG 2 Enable IPPD Management

Metaphor.

Supporting the project team with the required XP

books and the description of the Extended-XP

method and using this description as guidance

during the software development lifecycle.

Organizational Training

SG 1 Establish an Organizational

Training Capability.

SG 2 Provide Necessary Training

Pair Programming, Collective Ownership.

Training the project team on the Extended-XP in

the beginning of the second stage of the framework.

Integrated Project Management

+IPPD

SG 1 Use the Project’s Defined

Process

SG 2 Coordinate and Collaborate

with Relevant Stakeholders

SG 3 Apply IPPD Principles

Pair Programming, Metaphor, On-Site Customer,

Collective ownership.

Risk Management

SG 1 Prepare for Risk Management

SG 2 Identify and Analyze Risks

SG 3 Mitigate Risks

Small Releases, Pair Programming, On-Site

Customer, Simple Design.

Decision Analysis and Resolution

SG 1Evaluate Alternatives

Simple Design, Pair Programming.

Organizational Process Performance

SG 1 Establish Performance

Baselines and Models

Planning Game, Small Releases, Design

Improvement.

Using some metrics to conduct the process

performance at the third phase of the Extended-XP

method.

Quantitative Project Management

SG 1 Quantitatively Manage the

Project

SG 2 Statistically Manage Sub

process Performance

On Site Customer, Planning Game, Continuous

Integration, Collective Code Ownership, Design

Improvement.

Causal Analysis and Resolution

SG 1 Determine Causes of Defects

SG 2 Address Causes of Defects

Test-driven development, Continuous Integration,

Pair Programming, On-Site Customer

318

Appendix E

Evaluation Criteria Questionnaire

Criteria Questions

Gain Satisfaction How did you find the framework with regard to its perceived usefulness?

How do you rate the framework support for decision-making or decision-making

satisfaction?

How would you rate the framework with regard to its appropriateness for task, comparison

with alternatives (other available guidance), cost-effectiveness, and clarity (clear and

illuminate the process)?

Interface

Satisfaction

How did you find framework regarding perceived ease of use?

How do you rate the framework with regard to its presentation (readable and useful format),

internal consistency, organization (well organized), and appropriateness for audience?

Task Support

Satisfaction

How did you find the framework with regard to ease of implementation?

How do you rate the framework with regard to its understandability (simple to understand)?

How would rate the framework with regard to the completeness of its features and procedures

were they adequate and sufficient? How about completeness of output information and was it

self-contained?

To what extent does the framework produce results that you expected?

How did you find the results of using the framework; is it enable to produce the desired

products (provide reports or outputs to you that seem to be just about what you need)?

319

Appendix F

Assessing the Current Software Development Processes

Instructions

To the right of each question, there are boxes for the three possible responses: Largely Supported, Partially

Supported, and Not Supported.

Check “Largely Supported” when:

 The current software development processes achieve the majority specific goals of the key process

area.

Check “Partially Supported” when:

 The current software development processes achieve some of the specific goals of the key process area.

Check “Not Supported” when:

 The current software development processes can-not achieve the specific goals of the key process area.

Key Process Areas Largely

Supported

Partially

Supported

Not

Supported

Requirement Management: The purpose of Requirements Management

(REQM) is to manage the requirements of the project’s products and

product components and to identify inconsistencies between those

requirements and the project’s plans and work products. This process

involves of:

SG 1 Manage Requirements: Requirements are managed and

inconsistencies with project plans and work products are identified.

Project Planning: The purpose of Project Planning (PP) is to establish and

maintain plans that define project activities. This process involves of:

- SG 1 Establish Estimates: Estimates of project planning parameters are

established and maintained.

- SG 2 Develop a Project Plan: A project plan is established and maintained

as the basis for managing the project.

- SG 3 Obtain Commitment to the Plan: Commitments to the project plan

are established and maintained.

Project Monitoring and Control: The purpose of Project Monitoring and

Control (PMC) is to provide an understanding of the project’s progress so

that appropriate corrective actions can be taken when the project’s

performance deviates significantly from the plan. This process involves of:

- SG 1 Monitor Project Against Plan: Actual performance and progress of

the project are monitored against the project plan.

- SG 2 Manage Corrective Action to Closure: Corrective actions are

managed to closure when the project's performance or results deviate

significantly from the plan.

320

Supplier Agreement Management: The purpose of Supplier Agreement

Management (SAM) is to manage the acquisition of products from

suppliers. This process involves of:

- SG 1 Establish Supplier Agreements: Agreements with the suppliers are

established and maintained.

- SG 2 Satisfy Supplier Agreements: Agreements with the suppliers are

satisfied by both the project and the supplier.

Measurement and Analysis: The purpose of Measurement and Analysis

(MA) is to develop and sustain a measurement capability that is used to

support management information needs. This process involves of:

- SG 1 Align Measurement and Analysis Activities: Measurement

objectives and activities are aligned with identified information needs and

objectives.

- SG 2 Provide Measurement Results: Measurement results, which address

identified information needs and objectives, are provided.

Process and Product Quality Assurance: The purpose of Process and

Product Quality Assurance (PPQA) is to provide staff and management

with objective insight into processes and associated work products. This

process involves of:

- SG 1 Objectively Evaluate Processes and Work Products: Adherence of

the performed process and associated work products and services to

applicable process descriptions, standards, and procedures is objectively

evaluated.

- SG 2 Provide Objective Insight: Noncompliance issues are objectively

tracked and communicated, and resolution is ensured.

Configuration Management: The purpose of Configuration Management

(CM) is to establish and maintain the integrity of work products using

configuration identification, configuration control, configuration status

accounting, and configuration audits. This process involves of:

- SG 1 Establish Baselines: Baselines of identified work products are

established. Specific practices to establish baselines are covered by this

specific goal.

- SG 2 Track and Control Changes: Changes to the work products under

configuration management are tracked and controlled.

- SG 3 Establish Integrity: Integrity of baselines is established and

maintained.

Requirements Development: The purpose of Requirements Development

(RD) is to produce and analyze customer, product, and product component

requirements. This process involves of:

- SG 1 Develop Customer Requirements: Stakeholder needs, expectations,

constraints, and interfaces are collected and translated into customer

requirements.

- SG 2 Develop Product Requirements: Customer requirements are refined

and elaborated to develop product and product component requirements.

- SG 3 Analyze and Validate Requirements: The requirements are analyzed

and validated, and a definition of required functionality is developed.

321

Technical Solution: The purpose of Technical Solution (TS) is to design,

develop, and implement solutions to requirements. Solutions, designs, and

implementations encompass products, product components, and product-

related lifecycle processes either singly or in combination as appropriate.

This process involves of:

- SG 1 Select Product Component Solutions: Product or product

component solutions are selected from alternative solutions.

- SG 2 Develop the Design: Product or product component designs are

developed.

- SG 3 Implement the Product Design: Product components, and associated

support documentation, are implemented from their designs.

Product Integration: The purpose of Product Integration (PI) is to

assemble the product from the product components, ensure that the

product, as integrated, functions properly, and deliver the product. This

process involves of:

- SG 1 Prepare for Product Integration: Preparation for product integration

is conducted.

- SG 2 Ensure Interface Compatibility: The product component interfaces,

both internal and external, are compatible.

- SG 3 Assemble Product Components and Deliver the Product: Verified

product components are assembled and the integrated, verified, and

validated product is delivered.

Verification: The purpose of Verification (VER) is to ensure that selected

work products meet their specified requirements. This process involves of:

- SG 1 Prepare for Verification: Preparation for verification is conducted.

- SG 2 Perform Peer Reviews: Peer reviews are performed on selected

work products.

- SG 3 Verify Selected Work Products: Selected work products are verified

against their specified requirements.

Validation: The purpose of Validation (VAL) is to demonstrate that a

product or product component fulfills its intended use when placed in its

intended environment. This process involves of:

- SG 1 Prepare for Validation: Preparation for validation is conducted.

- SG 2 Validate Product or Product Components: Establish and maintain

procedures and criteria for validation.

Organizational Process Focus: The purpose of Organizational Process

Focus (OPF) is to plan, implement, and deploy organizational process

improvements based on a thorough understanding of the current strengths

and weaknesses of the organization’s processes and process assets. This

process involves of:

- SG 1 Determine Process Improvement Opportunities: Strengths,

weaknesses, and improvement opportunities for the organization's

processes are identified periodically and as needed.

- SG 2 Plan and Implement Process Improvements: Process actions that

address improvements to the organization’s processes and process assets

are planned and implemented.

- SG 3 Deploy Organizational Process Assets and Incorporate Lessons

Learned: The organizational process assets are deployed across the

organization and process-related experiences are incorporated into the

organizational process assets.

322

Organizational Process Definition +IPPD: The purpose of

Organizational Process Definition (OPD) is to establish and maintain a

usable set of organizational process assets and work environment

standards. This process involves of:

- SG 1 Establish Organizational Process Assets: A set of organizational

process assets is established and maintained.

- SG 2 Enable IPPD Management: Organizational rules and guidelines,

which govern the operation of integrated teams, are provided.

Organizational Training: The purpose of Organizational Training (OT)

is to develop the skills and knowledge of people so they can perform their

roles effectively and efficiently. This process involves of:

- SG 1 Establish an Organizational Training Capability: A training

capability, which supports the organization's management and technical

roles, is established and maintained.

- SG 2 Provide Necessary Training: Training necessary for individuals to

perform their roles effectively is provided.

Integrated Project Management +IPPD: The purpose of Integrated

Project Management (IPM) is to establish and manage the project and the

involvement of the relevant stakeholders according to an integrated and

defined process that is tailored from the organization’s set of standard

processes. This process involves of:

- SG 1 Use the Project’s Defined Process: The project is conducted using a

defined process that is tailored from the organization's set of standard

processes.

- SG 2 Coordinate and Collaborate with Relevant Stakeholders:

Coordination and collaboration of the project with relevant stakeholders is

conducted.

- SG 3 Apply IPPD Principles: The project is managed using IPPD

principles.

Risk Management: The purpose of Risk Management (RSKM) is to

identify potential problems before they occur so that risk-handling

activities can be planned and invoked as needed across the life of the

product or project to mitigate adverse impacts on achieving objectives.

This process involves of:

- SG 1 Prepare for Risk Management: Preparation for risk management is

conducted. Preparation is conducted by establishing and maintaining a

strategy for identifying, analyzing, and mitigating risks.

- SG 2 Identify and Analyze Risks: Risks are identified and analyzed to

determine their relative importance.

- SG 3 Mitigate Risks: Risks are handled and mitigated, where

appropriate, to reduce adverse impacts on achieving objectives.

Decision Analysis and Resolution: The purpose of Decision Analysis and

Resolution (DAR) is to analyze possible decisions using a formal

evaluation process that evaluates identified alternatives against established

criteria. This process involves of:

- SG 1Evaluate Alternatives: Decisions are based on an evaluation of

alternatives using established criteria. Issues requiring a formal evaluation

process may be identified at any time.

323

Organizational Process Performance: The purpose of Organizational

Process Performance (OPP) is to establish and maintain a quantitative

understanding of the performance of the organization’s set of standard

processes in support of quality and process-performance objectives, and to

provide the process-performance data, baselines, and models to

quantitatively manage the organization’s projects. This process involves of:

- SG 1 Establish Performance Baselines and Models: Baselines and

models, which characterize the expected process performance of the

organization's set of standard processes, are established and maintained.

Quantitative Project Management: The purpose of Quantitative Project

Management (QPM) is to quantitatively manage the project’s defined

process to achieve the project’s established quality and process-

performance objectives. This process involves of:

- SG 1 Quantitatively Manage the Project: The project is quantitatively

managed using quality and process-performance objectives.

- SG 2 Statistically Manage Sub process Performance: The performance of

selected sub processes within the project's defined process is statistically

managed.

Organizational Innovation and Deployment: The purpose of

Organizational Innovation and Deployment (OID) is to select and deploy

incremental and innovative improvements that measurably improve the

organization’s processes and technologies. The improvements support the

organization’s quality and process-performance objectives as derived from

the organization’s business objectives. This process involves of:

- SG 1 Select Improvements: Process and technology improvements, which

contribute to meeting quality and process-performance objectives, are

selected.

- SG 2 Deploy Improvements: Measurable improvements to the

organization's processes and technologies are continually and

systematically deployed.

Causal Analysis and Resolution: The purpose of Causal Analysis and

Resolution (CAR) is to identify causes of defects and other problems and

take action to prevent them from occurring in the future. This process

involves of:

- SG 1 Determine Causes of Defects: Root causes of defects and other

problems are systematically determined.

- SG 2 Address Causes of Defects: Root causes of defects and other

problems are systematically addressed to prevent their future occurrence.

324

Appendix G

Focus Group Researchers’ Profiles

 Expert

Researchers of

Focus Group

Academic Background Related Experiences of this Research

Professor. Asim

Abdel Rahman

El Sheikh

BSc (Comp. Science,

University of Khartoum

, Sudan, 1979).

MSc (Operational

Research, University of

London, England, 1983).

Ph.D (Computer

Simulation, University

of London, England,

1987).

Supervision of doctoral students in the following areas (2005-2011):

-Extreme Programming

- CMMI

- SPI for large software firms.

Several publications in software process fields such as:

- Asim El-Sheikh, Evon Abu Taieh & Jeihan M. Abu-Tayeh,

“Information Technology Projects System Development Life Cycles:

Comparative Study”, in the book “Handbook of Research on

Technology Management’s Planning and Operations, edited by Dr.

Kidd, Idea Group Inc. 2009, USA.

 - Asim El Sheikh, Mouhib Alnoukari, and Faek Diko, “Introducing

Discipline to XP: Introducing PRINCE2 on XP Projetcs”, in the Proc.

Informatics 2009, IADIS Multi Conference on Computer Science and

Information Systems (MCCMIS 2009), Hans Weghorn, Jorg Roth, and

Pedro Isaias (eds), ISBN: 978-972-8924-86-7, pp. 51-58, Algarve,

Portugal, 18-20 June 2009.

- Omaima Al-Allaf, Asim El-Sheikh and Ghassan Al-Utaibi, An

Analytical Survey of Large Web Applications Development in Large

Jordanian Web Development Enterprises, 10th International Conference

on Information Integration & Web-based Applications & services

(iiWAS 2008), Linz, Austria, 24-26 November 2008.

- Asim El Sheikh, Haroon Tarawneh, “Web Engineering in Small

Jordanian Web Development Firms: An XP Based Process Model”, in

the book “Utilizing Information Technology Systems across Disciplines:

Advancements in the Application of Computer Science”, edited by Asim

El-Sheikh, Evon Abu Taieh & Jeihan M. Abu-Tayeh, Idea Group Inc.

(IGI), 2009, USA.

325

Dr. Mouhib

Alnoukari

BSc (Computer

Engineering, Damascus

University Syria, 1990).

MSc (Computer

Engineering, Montpellier

University, France,

1993).

Ph.D (Management

Information Systems

(MIS), Arabic Academy

for Banking and

Financial Sciences,

Damascus, Syria, 2009).

Thesis Title: A Business Intelligence Modeling and Integration

Framework Based on Agile Methodologies.

Project Director & CMMI Consultant in CMMI-Syria (2006- present):

The goal is to prepare 10 Syrian software companies to obtain CMMI

L2&L3. Project is cooperation between the Syrian Ministry of

Telecommunication and Technology, Egyptian Ministry of

Telecommunication and Technology, and Syrian Computer Society.

Several publications in software process fields such as:
- Asim El Sheikh, and Mouhib Alnoukari: “Business Intelligence and

Agile Methodologies for Knowledge-Based Organizations : Cross-

Disciplinary Applications”. IGI Global. This publication is anticipated to

be released in 2011.

- Mouhib Alnoukari, Asim El Sheikh, and Zaidoun Alzoabi, “Applying

ASD-DM Methodology on Business Intelligence Solutions: A Case

Study on Building Customer Care Data Mart”, in the Proc. Data Mining

2009, IADIS Multi Conference on Computer Science and Information

Systems (MCCMIS 2009), Ajith P. Abraham (ed.), ISBN: 978-972-8924-

88-1, pp. 153-157, Algarve, Portugal, 18-20 June 2009.

Dr.Haroon Salem

AL-Tarawneh

BSc (Comp. Science,

University of Mu’tah,

Jordan, 1997).

MSc (Computer

Information System

(CIS), Arabic Academy

for Banking and

Financial Sciences,

Amman, Jordan, 2003).

Ph.D (Computer

Information System

(CIS), Arabic Academy

for Banking and

Financial Sciences,

Amman, Jordan, 2007).

Thesis Title: A Theoretical Software Process Framework for Web

Applications Development in Small Software Firms.

Head of computer department in Al-balqa Applied University (Jordan)

and lecturer for several subjects such as:- Systems Analysis, Software

Engineering, Management Information Systems, - Information Systems

Management, - Decision Support Systems & Expert Systems, and

Database Systems.

Several publications in software process fields such as:
-Altarawneh, H., Amro, S. (2008), Software Process Improvement In

Small Jordanian Software Development Firms. Paper presented at the 7th

International Conference on Perspectives in Business Informatics

Research (BIR’2008), Gdansk, Poland. PP 175-189.

- Asim El Sheikh, Haroon Tarawneh, A Theoretical Agile Process

Framework for Web Applications Development in Small Software Firms,

The 6th ACIS International Conference on Software Engineering

Research, Management and Applications, SERA 2008, 20-22 August

2008, Prague, Czech Republic, SERA 2008: 125-132.

-Asim El Sheikh, Haroon Tarawneh, A Survey of Web Engineering

Practice in Small Jordanian Web Development

Firms, ESEC/FSE’07, Cavtat near Dubrovnik, Croatia , September 3-7,

2007.

http://www.informatik.uni-trier.de/~ley/db/conf/sera/sera2008.html#AltarawnehS08

326

Appendix H

Best Practices Questionnaire

Instructions

To conduct the best practices of the current project, please response by selecting one of these options: Yes, No,

Does Not Apply, and Don’t Know.

“Yes”: when the practice is well established and consistently performed. -

The practice should be performed nearly always in order to be considered well-established and

consistently performed as a standard operating procedure.

“No”: when the practice is not well established or is inconsistently performed.

- The practice may be performed sometimes, or even frequently, but it is omitted under difficult

circumstances.

“Does Not Apply”: when you have the required knowledge about the project or organization and the question

asked, but you feel the question does not apply to the project. For example, the entire section on

“Supplier agreement management” may not apply to the project if you do not need any external

development tools or services.

“Don’t Know”: when you are uncertain about how to answer the question.

CMMI-Dev1.2 Level 2

Process Area, Specific Goal and Practices Answers

Requirement Management

SG1

SP 1.1 Obtain an Understanding of Requirements

SP 1.2 Obtain Commitment to Requirements

SP 1.3 Manage Requirements Changes

SP 1.4 Maintain Bidirectional Traceability of Requirements

SP 1.5 Identify Inconsistencies Between Project Work and Requirements

Project Planning

SG 1

SP 1.1 Estimate the Scope of the Project

SP 1.2 Establish Estimates of Work Product and Task Attributes

SP 1.3 Define Project Lifecycle

SP 1.4 Determine Estimates of Effort and Cost

SG 2

SP 2.1 Establish the Budget and Schedule

SP 2.2 Identify Project Risks

SP 2.3 Plan for Data Management

SP 2.4 Plan for Project Resources

SP 2.5 Plan for Needed Knowledge and Skills

327

SP 2.6 Plan Stakeholder Involvement

SP 2.7 Establish the Project Plan

SG 3

SP 3.1 Review Plans That Affect the Project

SP 3.2 Reconcile Work and Resource Levels

SP 3.3 Obtain Plan Commitment

Project Monitoring and Control

SG 1

SP 1.1 Monitor Project Planning Parameters

SP 1.2 Monitor Commitments

SP 1.3 Monitor Project Risks

SP 1.4 Monitor Data Management

SP 1.5 Monitor Stakeholder Involvement

SP 1.6 Conduct Progress Reviews

SP 1.7 Conduct Milestone Reviews

SG 2

SP 2.1 Analyze Issues

SP 2.2 Take Corrective Action

SP 2.3 Manage Corrective Action

Supplier Agreement Management

SG 1

SP 1.1 Determine Acquisition Type

SP 1.2 Select Suppliers

SP 1.3 Establish Supplier Agreements

SG 2

SP 2.2 Monitor Selected Supplier Processes

SP 2.3 Evaluate Selected Supplier Work Products

SP 2.4 Accept the Acquired Product

SP 2.5 Transition Products

Measurement and Analysis

SG 1

SP 1.1 Establish Measurement Objectives

SP 1.2 Specify Measures

SP 1.3 Specify Data Collection and Storage Procedures

SP 1.4 Specify Analysis Procedures

SG 2

SP 2.1 Collect Measurement Data

SP 2.2 Analyze Measurement Data

SP 2.3 Store Data and Results

SP 2.4 Communicate Results

Process and Product Quality Assurance

SG 1

SP 1.1 Objectively Evaluate Processes

SP 1.2 Objectively Evaluate Work Products and Services

SG 2

SP 2.1 Communicate and Ensure Resolution of Noncompliance Issues

SP 2.2 Establish Records

Configuration Management

SG 1

SP 1.1 Identify Configuration Items

SP 1.2 Establish a Configuration Management System

SP 1.3 Create or Release Baselines

SG 2

SP 2.1 Track Change Requests

SP 2.2 Control Configuration Items

SG 3 SP 3.1 Establish Configuration Management Records

328

 SP 3.2 Perform Configuration Audits

CMMI-Dev1.2 Level 3

Process Area, Specific Goal and Practices Answers

Requirements Development

SG1
SP 1.1 Elicit Needs

SP 1.2 Develop the Customer Requirements

SG 2

SP 2.1 Establish Product and Product Component Requirements

SP 2.2 Allocate Product Component Requirements

SP 2.3 Identify Interface Requirements

SG 3

SP 3.1 Establish Operational Concepts and Scenarios

SP 3.2 Establish a Definition of Required Functionality

SP 3.3 Analyze Requirements

SP 3.4 Analyze Requirements to Achieve Balance

SP 3.5 Validate Requirements

Technical Solution

SG 1

SP 1.1 Develop Alternative Solutions and Selection Criteria

SP 1.2 Select Product Component Solutions

SG 2

SP 2.1 Design the Product or Product Component

SP 2.2 Establish a Technical Data Package

SP 2.3 Design Interfaces Using Criteria

SP 2.4 Perform Make, Buy, or Reuse Analyses

SG 3

SP 3.1 Implement the Design

SP 3.2 Develop Product Support Documentation

Product Integration

SG 1

SP 1.1 Determine Integration Sequence

SP 1.2 Establish the Product Integration Environment

SP 1.3 Establish Product Integration Procedures and Criteria

SG 2

SP 2.1 Review Interface Descriptions for Completeness

SP 2.2 Manage Interfaces

SG 3

SP 3.1 Confirm Readiness of Product Components for Integration

SP 3.2 Assemble Product Components

SP 3.3 Evaluate Assembled Product Components

SP 3.4 Package and Deliver the Product or Product Component

Verification

SG 1

SP 1.1 Select Work Products for Verification

SP 1.2 Establish the Verification Environment

SP 1.3 Establish Verification Procedures and Criteria

SG 2

SP 2.1 Prepare for Peer Reviews

SP 2.2 Conduct Peer Reviews

SP 2.3 Analyze Peer Review Data

SG 3

SP 3.1 Perform Verification

SP 3.2 Analyze Validation Results

Validation

SG 1

SP 1.1 Select Products for Validation

SP 1.2 Establish the Validation Environment

329

SP 1.3 Establish Validation Procedures and Criteria

SG 2

SP 2.1 Perform Validation

SP 2.2 Analyze Validation Results

Organizational Process Focus

SG 1

SP 1.1 Establish Organizational Process Needs

SP 1.2 Appraise the Organization’s Processes

SP 1.3 Identify the Organization's Process Improvements

SG 2

SP 2.1 Establish Process Action Plans

SP 2.2 Implement Process Action Plans

SG 3

SP 3.1 Deploy Organizational Process Assets

SP 3.2 Deploy Standard Processes

SP 3.3 Monitor Implementation

SP 3.4 Incorporate Process-Related Experiences into the Organizational Process

Assets

Organizational Process Definition +IPPD

SG 1

SP 1.1 Establish Standard Processes

SP 1.2 Establish Lifecycle Model Descriptions

SP 1.3 Establish Tailoring Criteria and Guidelines

SP 1.4 Establish the Organization’s Measurement Repository

SP 1.5 Establish the Organization’s Process Asset Library

SP 1.6 Establish Work Environment Standards

SG 2

SP 2.1 Establish Empowerment Mechanisms

SP 2.2 Establish Rules and Guidelines for Integrated Teams

SP 2.3 Balance Team and Home Organization Responsibilities

Organizational Training

SG 1

SP 1.1 Establish the Strategic Training Needs

SP 1.2 Determine Which Training Needs Are the Responsibility of the

Organization

SP 1.3 Establish an Organizational Training Tactical Plan

SP 1.4 Establish Training Capability

SG 2

SP 2.1 Deliver Training

SP 2.2 Establish Training Records

SP 2.3 Assess Training Effectiveness

Integrated Project Management +IPPD

SG 1

SP 1.1 Establish the Project’s Defined Process

SP 1.2 Use Organizational Process Assets for Planning Project Activities

SP 1.3 Establish the Project's Work Environment

SP 1.4 Integrate Plans

SP 1.5 Manage the Project Using the Integrated Plans

SP 1.6 Contribute to the Organizational Process Assets

SG 2

SP 2.1 Manage Stakeholder Involvement

SP 2.2 Manage Dependencies

SP 2.3 Resolve Coordination Issues

SG 3

SP 3.1 Establish the Project’s Shared Vision

SP 3.2 Establish the Integrated Team Structure

SP 3.3 Allocate Requirements to Integrated Teams

SP 3.4 Establish Integrated Teams

330

SP 3.5 Ensure Collaboration among Interfacing Teams

Risk Management

SG 1

SP 1.1 Determine Risk Sources and Categories

SP 1.2 Define Risk Parameters

SP 1.3 Establish a Risk Management Strategy

SG 2
SP 2.1 Identify Risks

SP 2.2 Evaluate, Categorize, and Prioritize Risks

SG 3
SP 3.1 Develop Risk Mitigation Plans

SP 3.2 Implement Risk Mitigation Plans

Decision Analysis and Resolution

SG 1

SP 1.1 Establish Guidelines for Decision Analysis

SP 1.2 Establish Evaluation Criteria

SP 1.3 Identify Alternative Solutions

SP 1.4 Select Evaluation Methods

SP 1.5 Evaluate Alternatives

SP 1.6 Select Solutions

CMMI-Dev1.2 Level 4

Process Area, Specific Goal and Practices Answers

Organizational Process Performance

SG 1

SP 1.1 Select Processes

SP 1.2 Establish Process-Performance Measures

SP 1.3 Establish Quality and Process-Performance Objectives

SP 1.4 Establish Process-Performance Baselines

SP 1.5 Establish Process-Performance Models

Quantitative Project Management

SG 1

SP 1.1 Establish the Project’s Objectives

SP 1.2 Compose the Defined Process

SP 1.3 Select the Sub processes that Will Be Statistically Managed

SP 1.4 Manage Project Performance

SG 2

SP 2.1 Select Measures and Analytic Techniques

SP 2.2 Apply Statistical Methods to Understand Variation

SP 2.3 Monitor Performance of the Selected Sub processes

SP 2.4 Record Statistical Management Data

CMMI-Dev 1.2 Level 5

Process Area, Specific Goal and Practices Answers

Causal Analysis and Resolution

SG 1
SP 1.1 Select Defect Data for Analysis

SP 1.2 Analyze Causes

SG 2

SP 2.1 Implement the Action Proposals

SP 2.2 Evaluate the Effect of Changes

SP 2.3 Record Data

