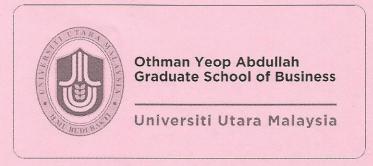
EXAMINING RELATIONSHIPS BETWEEN INDIVIDUAL, ORGANIZATIONAL FACTOR AND KNOWLEDGE SHARING BEHAVIOR

 \mathbf{BY}

AIN ZURAINI BINTI ZIN ARIS

Thesis Submitted to


Othman Yeop Abdullah Graduate School of Business,

University Utara Malaysia,

In Fulfillment of the Requirement for the Master of Human Resource

Management

April 2014

PERAKUAN KERJA KERTAS PROJEK

(Certification of Project Paper)

Saya, mengaku bertandatangan, memperakukan bahawa (I, the undersigned, certified that) AIN ZURAINI BINTI ZIN ARIS (811009)

Calon untuk Ijazah Sarjana (Candidate for the degree of) MASTER OF HUMAN RESOURCE MANAGEMENT

telah mengemukakan kertas projek yang bertajuk (has presented his/her project paper of the following title)

EXAMINING RELATIONSHIPS BETWEEN INDIVIDUAL, ORGANIZATIONAL FACTOR AND **KNOWLEDGE SHARING BEHAVIOR**

Seperti yang tercatat di muka surat tajuk dan kulit kertas projek (as it appears on the title page and front cover of the project paper)

Bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan dan meliputi bidang ilmu dengan memuaskan.

(that the project paper acceptable in the form and content and that a satisfactory knowledge of the field is covered by the project paper).

Nama Penyelia (Name of Supervisor) DR. SITI ZUBAIDAH OTHMAN

Tandatangan

(Signature)

Tarikh

08 APRIL 2014

(Date)

Permission to Use

In presenting this dissertation in partial fulfillment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the University Library make a freely available for inspection. I further agree that permission for copying of this dissertation in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence by the Dean of Othman Yeop Abdullah Graduate School of Business. It is understood that any copying or publication or use of this dissertation or parts thereof for financial gain shall not be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my dissertation.

Request for permission to copy or make other use of materials in this dissertation, in whole or in part should be addressed to:

Dean of Othman Yeop Abdullah Graduate School of Business

Universiti Utara Malaysia

06010 UUM Sintok

Kedah Darul Aman

Abstract

This study examines the direct relationship between sense of self-worth, attitudes, perceived organizational incentives and management support and knowledge sharing It also examines the moderating effect of interpersoanl trust on the relationship between sense of self worth, attitudes, perceived organizational incentives and management support and knowledge sharing behavior. A total of 148 questionnaires were distributed on site to participants who had agreed to participate in this study. Hypotheses for direct effect were tested using multiple regression analyses and hypotheses for interacting effect were tested using hierarchical multiple Results showed that only sense of self-worth and attitudes were significantly positively associated with knowledge sharing behavior. Furthermore, results from hierarchical multiple regressions showed that interpersonal trust did not moderate the relationship between sense of self-worth and knowledge sharing behavior, between attitude and knowledge sharing behavior, between perceived organizational incentives and knowledge sharing behavior and between management support and knowledge sharing behavior. Implications of the findings, potential limitations and directions for future research are discussed.

Keywords: Knowledge Sharing Behavior, Sense of Self-worth, Attitude, Organizational Incentives, Management Support.

Abstrak

Kajian ini mengkaji hubungan langsung antara rasa nilai kendiri, sikap, persepsi terhadap insentif organisasi dan sokongan pengurusan terhadap gelagat perkongsian pengetahuan. Ia juga mengkaji kesan kepercayaan antara perorangan sebagai penyederhana dalam hubungan antara rasa nilai kendiri, sikap, persepsi terhadap insentif perorangan dan sokongan pengurusan dan gelagat perkongsian pengetahuan. Sebanyak 148 soal selidik telah diedarkan secara sendiri kepada peserta kajian yang telah bersetuju untuk terlibat dalam kajian ini. Hipotesis ke atas kesan langsung dan kesan perantara diuji menggunakan analisis regresi berganda manakala hipotesis bagi kesan interaksi diuji menggunakan analisis regresi berganda bertingkat. Dapatan kajian menunjukkan bahawa hanya rasa nilai kendiri dan sikap sahaja yang mempunyai hubungan yang positif dan signifikan dengan gelagat perkongsian pengetahuan. Seterusnya, keputusan daripada analisis regresi bertingkat tidak bahawa kepercayaan antara perorangan menunjukkan berperanan penyederhana dalam hubungan antara rasa nilai kendiri dan gelagat perkongsian pengetahuan, dalam hubungan antara sikap dan gelagat perkongsian pengetahuan, antara persepsi terhadap insentif organisasi dan gelagat perkongsian pengetahuan, dan sokongan pengurusan dan gelagat perkongsian pengetahuan. dapatan kajian, limitasi, dan cadangan kajian pada masa hadapan turut dibincangkan.

Kata Kunci: Gelagat Perkongsian Pengetahuan, Rasa Nilai Kendiri, Sikap, Insentif Organisasi, Sokongan Pengurusan.

Acknowledgement

Without the dedication from these people, the completion of this dissertation would not have been possible. I would like to thank Ministry of Higher Education and Universiti Malaysia Perlis for sponsoring my study.

I am deeply grateful to Dr Siti Zubaidah Othman, my supervisor, for giving me invaluable support throughout my candidature. Without her dedication and professional support, I would not be where I am today.

To my loving and supporting husband, Muhamad Taufiq Muhamad Yasin, my beloved parents, Zubaidah Abdul Rahman and Zin Aris Rozali, my parents-in-law, and my siblings, thank you for all your prayers, patience, support and word of encouragement for me to keep going till the final end of this journey.

I also would like to thank my postgraduate friends Ummi Kalsom, Mimi, Aqilah, Elman, Faiz, Lai and Miera for providing me with many discussions, constructive comments and suggestions in completing this dissertation.

Finally, yet importantly, I would like to express my gratitude to all respondents from Bumiputra SMEs located in Sungai Petani, Alor Setar and Jitra for their involvement in this study. Without their sincere participations, this study will not be as successful as today.

Table of Contents

Pern	nissi	on to Use	i
Abst	ract		ii
Abst	rak.		iii
Ackı	now]	ledgement	iv
Tabl	e of	Contents	v
List	of T	ables	.viii
List	of F	igures	X
List	of A	bbreviations	xi
List	of A	ppendices	xii
CHA	APTI	ER 1	1
INTI	ROE	DUCTION	1
1.3	1	Background of the Study	1
1.2	2	Problem Statement	2
1.3	3	Research Questions	5
1.4	1	Research Objectives	6
1.5	5	Significance of the Study	6
1.6	5	Scope and Aim of Study	7
1.7	7	Organization of Chapters	7
CHA	APTI	ER 2 LITERATURE REVIEW	9
2.3	1	Introduction	9
2.2	2	Knowledge and Knowledge Management	9
2.3	3	Knowledge Sharing and Knowledge Sharing Behavior	11
2.4	1	Factors Influencing Knowledge Sharing Behavior	14
	2.4.	1 Individual Factors	14
	2.4.	2 Organizational Factors	16
	2.5.	3 Interpersonal Trust	18
2.6	5	Research Framework	18
2.7	7	Development of Hypotheses	19
	2.7.	Relationship between Sense of Self-worth and Knowledge Sharing	
	Beh	avior	19
	2.7.	2 Relationship between Individual Attitudes and Knowledge Sharing	
Behavio		avior	21

2.7.3 Knowle		.3 Relationship between Perceived Organizational Incentives and	
		owledge Sharing Behavior	21
	2.7.	.4 Relationship between Management Support and Knowledge Sharing	g
	Beł	navior	23
	2.7.	.5 Interpersonal Trust as Moderator	23
	2.8	Conclusions	25
C	HAPT	ER 3 METHOD	26
	3.1	Introduction	26
	3.2	Research Design	26
	3.3	Population and Sampling	27
	3.3.	.1 Population	27
	3.3.	.2 Sample Size	28
	3.3.	.3 Sampling Technique	28
	3.4	Operational Definitions and Measurements	29
	3.4.	.1 Knowledge Sharing Behavior	29
3.4.2 3.4.3 3.4.4		.2 Individual Factors	30
		.3 Organizational Factors	32
		.4 Interpersonal Trust	34
	3.5	Layout of Questionnaire	35
	3.6	Pilot Test	35
	3.7	Data Collection Procedures	36
	3.8	Technique of Data Analysis	37
	3.8.	.1 Factor Analysis	37
	3.8.	.2 Correlation Analysis	38
	3.8.	.3 Regression Analysis	38
	3.8.	.4 Test of Moderation	39
	3.9	Conclusions	40
C	HAPT	ER 4 RESULTS AND DISCUSSIONS	41
	4.1	Introduction	41
	4.2	Demographic Characteristics of Participants	41
	4.3	Data Screening	43
	4.3.	.1 Missing Data	43
4.3.2		.2 Normality	44
		3 Homoscedasticity	46

4.3	.4 Outliers Detection	46	
4.3	.5 Multicollinearity	48	
4.4	Factor Analysis	49	
4.4	4.4.1 Knowledge Sharing Behavior (KSB) Constructs		
4.4	.2 Individual Factors (IF) Constructs	52	
4.4	.3 Organizational Factor (OF) Constructs	55	
4.4	.4 Interpersonal Trust (IT) Constructs	57	
4.4	.5 Deleted Items	58	
4.5	Correlation Analysis	58	
4.6	Multiple Regression Analysis	62	
4.7	Hierarchical Regression Analysis	62	
4.7	.1 Test of Moderation	62	
4.8	Conclusions	67	
СНАРТ	TER 5 RESEARCH IMPLICTIONS, RECOMMENDATIONS AND		
CONCL	LUSIONS	68	
5.1	5.1 Introduction		
5.2	Summary of Research	68	
5.3	Implications for Practice	69	
5.4	5.4 Limitations of Study and Directions for Future Research		
5.5	Conclusions	71	
Refer	ences	72	
APPENDIX A83			
APPENDIX B 91			

List of Tables

Table 3.1 Number of Bumiputra SME by sectors	.28
Table 3.2 Knowledge Sharing Behavior Items	.29
Table 3.3 Individual Factor's Items	.31
Table 3.4 Organizational Factor's Items	.33
Table 3.5 Interpersonal Trust's Items	.34
Table 3.6 The Cronbach's Alpha from the Pilot Study $(n = 30)$.36
Table 4.1 Demographic Characteristics of Participants	.42
Table 4.2 Normality Test for Knowledge Sharing Behavior, Individual Factors,	
Organizational Factors and Interpersonal Trust	.45
Table 4.3 Homogeneity of Variances among the Variables	.46
Table 4.4 Percentiles for Knowledge Sharing Behavior	.47
Table 4.5 Outlier Detection Test	.47
Table 4.6 Coefficients for Collinearity Statistics	.49
Table 4.7 Factor Analysis For Knowledge Sharing Behavior Construct	.51
Table 4.8 Reliability Statistics for Deleted Items (Component 2)	.51
Table 4.9 Reliability Statistics for Accepted Items (Component 1)	.52
Table 4.10 Factor Analysis For Individual Factor Constructs	.52
Table 4.11 Reliability Statistics for Accepted Items for Attitudes (Component 1)	.54
Table 4.12 Reliability Statistics for Accepted Items for Sense Of Self-Worth	
(Component 2)	.54
Table 4.13 Reliability Statistics for Deleted Items (Component 3)	.54
Table 4.14 Items of Individual Factors According To Factors	.55
Table 4.15 Factor Analysis Individual Factor Constructs	.55
Table 4.16 Items of Organizational Factors According To Factors	.57
Table 4.17 Factor Analysis For Interpersonal Trust Constructs	.57
Table 4.18 Deleted Items for the Variables after the Factor Analysis	.58
Table 4.19 Descriptive Statistics, Scale Reliabilities and Correlations of Variables	.61
Table 4.20 Regression Results of Attitudes, Sense Of Self-Worth, Organizational	
Incentives and Management Support on Knowledge Sharing Behavior	.62
Table 4.21 Hierarchical Regression Analysis On Interpersonal Trust As Moderator	·In
Relationship Between Sense Of Self-Worth And Knowledge Sharing Behavior	.64

Table 4.22 Hierarchical Regression Analysis On Interpersonal Trust As Moderator In
Relationship Between Attitude And Knowledge Sharing Behavior65
Table 4.23 Hierarchical Regression Analysis On Interpersonal Trust As Moderator In
Relationship Between Perceived Organizational Incentives And Knowledge Sharing
Behavior66
Table 4.24 Hierarchical Regression Analysis On Interpersonal Trust As Moderator In
Relationship Between Management Support And Knowledge Sharing Behavior67

List of Figures

\mathbf{E}_{i}	aura 2 1	Dogorah	Framayyark		10
$\Gamma \iota$	gure 2.1	Research	riainework	 	 コラ

List of Abbreviations

SME Small Medium Enterprise

ACCIM Associated Chinese Chambers of iif Commerce and Industry of

Malaysia

KM Knowledge Management

TPB Theory of Planned-Behavior

SPSS Statistical Package for the Social Science

KSB Knowledge Sharing Behavior

IF Individual Factors

OF Organizational Factor

IT Interpersonal Trust

VIF Variance Inflation Factor

KMO Keiser-Meyer-Oklin

ANOVA Analysis of Variance

HRM Human Resource Management

List of Appendices

Appendix A	Sample of Questionnaire	83
Appendix B	SPSS Output	91

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Knowledge if managed effectively and applied accordingly would be a useful tool in transforming the business and sustain the competitive advantage. As argued by several authors, organizations that applied knowledge management as tools could gain competitive advantage through the generation and the use of new knowledge at the workplace (Alvesson, 2004; Harrison & Kessels, 2004).

However, knowledge primarily derived from people, and thus, managing knowledge among workforce would be critical to the organizations. The efforts in improving the use of knowledge does not only concern in better exploration of existing sources of knowledge management at workplace but also providing the work environment that can encourage the workers to distribute their knowledge to others. This kind of knowledge can be describes as tacit or explicit type of knowledge.

Knowledge sharing behavior can be considered as the foundation and most important part of knowledge management (Bock & Kim, 2002; Ahmad, Sharom & Abdullah, 2006). The possessed of knowledge among the individuals and the contribution of person's knowledge into organizational knowledge is depends on the worker's knowledge sharing behavior (Nonaka & Konno, 1998). Inherently, the knowledge exchange from a person or one unit of the organization to another are

importantly promotes to the organizational performances and productivity (Argote, Ingram, Levine & Moreland, 2000).

Indeed, knowledge is the significant assets of the workers to serve the organizations in meeting its mission and vision. The right use of worker's knowledge through knowledge sharing behavior could benefit the organizations to strengthen its stand within the industry. The success of knowledge-work-environment is possible upon beliefs on knowledge workers offering something specific (Alvesson, 2001). After all, the organizations should better manage the knowledge at workplace so that it will generate the positive output not only to the workers but also to the organization as a whole.

1.2 Problem Statement

For Malaysian SMEs, managing knowledge has becoming more critical. Apart from confronting with tight competition with large companies, many SMEs are facing with high turnover issues. Based on a survey conducted by The Associated Chinese Chambers of Commerce and Industry of Malaysia (ACCIM) (2012) where 62% of the respondents agreed that shortage and difficulty in hiring employees are the main problems faced by many SMEs. In addition, many SMEs are facing with challenges to attract, retain and motivate the best and high qualified employees (Beaver & Hutchings, 2005).

Issues of turnover have made many organizations including SMEs to realize that having knowledge workers per say would not be enough unless their knowledge

is shared with the rest of the employees in the organization. Though SMEs acknowledge that knowledge sharing might be the best option in sustaining the business and to overcome the issue of high turnover rate, many are still struggling to encourage their employees to share knowledge. Besides, it is not realistic to expect all employees to willingly share their knowledge without considering the results of their action. In the literature, reasons for why employees are reluctant to share their knowledge with others have been put forward and among them include lacking of motivation, assuming it as a threat to their status, feeling uneasy of losing the knowledge that distinguishes them with others, scared of losing some power and decrease the chances of personal success such as compensation and promotion and have to take on additional workload (Husted, Michailova, & Minbaeva, 2005; Lin, 2007; Samieh & Wahba, 2007; So & Bollojju, 2005)

Reviewing the literature has shown how individuals will be more willing to contribute in knowledge sharing activity if they are guaranteed that their action is worthy, if they could get the recognition from sharing the knowledge with others, if they can gain economic benefits like pay increase, job security, bonuses or career development, and if the knowledge that been shared will be used (Al-Alawi, Ismail, Al-Marzoki, Yousif, Mohammed & Fraidoon, 2007; Bart & Ridder, 2004).

In a study conducted by Lin (2007b) on 172 employees from 50 large organizations in Taiwan, they found that feeling of enjoyment in helping other workers and sense of self-worth were strongly related with worker willingness in sharing the knowledge. This result indicates that employees who have better sense of

self-worth and enjoy helping others tend to have strong motivation in sharing knowledge with others.

Apart from individual factors, organizational factors such as management support and incentives provided by the organization were also found to be related with the willingness of employees to share their knowledge. For example, several studies have shown how management support increased the level and quality of workers' knowledge exchange (Lee, Kim & Kim, 2006; Kulkarni, Ravindran & Freeze, 2006). Similar finding was also found in a study conducted by Liebowitz (2003) and Nelson, Sabatier and Nelson (2006) where acknowledgement and rewards have been found to encourage knowledge sharing behavior and indirectly assist in building supportive work culture. In other study, Yao, Kam and Chan (2007) found that lack of organizational incentives have been found to be the main barrier for knowledge sharing activity within the organization.

Interpersonal trust is another factor that has been found to contribute to knowledge sharing activity among employees. In past studies, interpersonal trust was found to be positively related to knowledge sharing (Bakker, Leenders, Gabbay, Kratzer & Van, 2006; Chowdury, 2005; Mooradian, Renzl & Matzler, 2006). The findings indicate that employees will share more knowledge with their colleague if they believed that their colleague is honest and can be trusted.

Though several factors have been put forward in the literature that were related to knowledge sharing behavior in the organization, it is still not known what factors might influence Malaysian Bumiputra SMEs' employees to share knowledge

with others as there are limited empirical studies investigating on knowledge sharing behavior in this context. Therefore, this study is conducted with the intention to explore whether individual factors such as sense of self-worth and attitude, and organizational factors like perceived organizational incentives and management support would contribute to knowledge sharing behavior as suggested by the literature. Apart from that, the study also investigates the role of interpersonal trust as a moderator.

1.3 Research Questions

Based on the above discussion, the central research question is "what factors might influence knowledge sharing behavior among SME's employees." Specifically, the research is interested to address the following questions:

- 1. Does the sense of self-worth related to knowledge sharing behavior among SME's employees?
- 2. Does attitude related to knowledge sharing behavior among workers at SME?
- 3. Does perceived organizational incentives related to knowledge sharing behavior among workers at SME?
- 4. Does management support related to knowledge sharing behavior among workers at SME?
- 5. Does interpersonal trust moderate the relationship between sense of self-worth and knowledge sharing behavior?
- 6. Does interpersonal trust moderate the relationship between individual attitude and knowledge sharing behavior?

- 7. Does interpersonal trust moderate the relationship between perceived organizational incentives and knowledge sharing behavior?
- 8. Does interpersonal trust moderate the relationship between management support and knowledge sharing behavior?

1.4 Research Objectives

The study attempts to address the following objectives:

- to investigate the relationships between sense of self-worth and knowledge sharing behavior;
- 2. to examine the relationships between attitudes and knowledge sharing behavior;
- 3. to determine the relationships between perceived organizational incentives and knowledge sharing behavior.
- 4. to examine the relationships between management support and knowledge sharing behavior; and
- 5. to investigate whether interpersonal trust moderate the relationship between sense of self-worth, attitudes, perceived organizational incentives, management support and knowledge sharing behavior.

1.5 Significance of the Study

Realizing that there is still limited study on knowledge sharing issues within the SMEs especially in the Malaysian context, it is a hope that the findings from this study will benefits both the scholars and practitioners. The findings will not only enrich the literature on knowledge sharing behavior, it can also make effective contribution of the best way to plan for encouraging knowledge sharing behavior among the employees within the organizations. Though the study was conducted at Malaysian Bumiputra SMEs, the broader contribution extends beyond the Malaysian SMEs context.

1.6 Scope and Aim of Study

The main focus of this study is to investigate which of the factors tested in this study that might influence knowledge sharing behaviors. Two independent variables were tested in this study namely, individual and organizational factors. Individual factors were measured by two dimensions which are sense of self-worth and attitudes, while organizational factors were measured by perceived organizational incentives and management support. The study also tested interpersonal trust as a moderator. The study, which was a cross-sectional study, involved a survey of 148 employees from 39 Bumiputra SMEs located in the state of Kedah.

1.7 Organization of Chapters

This chapter is the first of five chapters in this thesis. Chapter 2 gives general review of the literature on knowledge sharing behavior. The concept of knowledge, knowledge management and knowledge sharing behavior are also presented. Discussion in Chapter 2 continues with past empirical findings on factors that might influence knowledge sharing behavior such as sense of self-worth, attitude, perceived organizational incentives and management support. The chapter concludes with the development of the research hypotheses.

Chapter 3 describes the method for the study, namely the research design and procedure. The chapter reports the selection of participants, sample types and size, and the development of questionnaire for the research. Chapter 3 ends with a brief description of the strategies and procedures that were used to analyze data collected from the survey.

Chapter 4 reports the results and their interpretation for the study. There are reports of the descriptive statistical analysis, factor analysis, bivariate correlation analysis, and regressions analysis. The results are summarized in a number of tables to facilitate interpretation. The findings were compared to those found in the past research reviewed in Chapter 2. New findings were also discussed.

Chapter 5, the final chapter, presents the general discussions and conclusion of the study and their implications for both researchers and practitioners. Chapter 5 concludes with the limitations of the study and some suggestions for future research.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter explores the literature from previous studies on knowledge sharing behavior, sense of self-worth, attitudes towards knowledge sharing behavior, perceived organizational incentives, management support as well as the interpersonal trust. Reviewing the literature is necessary to formulate the research framework and hypotheses. This chapter concentrates on the definitions, conceptual issues and theoretical considerations.

2.2 Knowledge and Knowledge Management

Knowledge is referred to as familiarity towards something or someone that could be included information, descriptions, facts or skills get from the experiences or education. Knowledge can be referred to as the theoretical or practical understanding of a subject. Knowledge are divided into implicit and explicit type of knowledge where implicit knowledge basically related to practical skill or expertise while explicit knowledge is kind of theoretical understanding on the subject which can be less formal and systematic (Stanley, 2002).

Knowledge management can be referred to as the approach of multidisciplined to achieve the objectives of the organizations through developing the better use of knowledge (Davenport, 1994). It includes the process of systematic and structured that organizing the corporate information to be retrieved easily, distribution and reuse in the whole organization. Basically, the focus of knowledge management is on the processes that include acquiring, creating and sharing the knowledge and it is supported by the cultural and technical foundations. Knowledge management is also an audit for the intellectual assets which bolds the unique sources and the critical functions that hinder the knowledge to flow in the better point of use. It avoids the intellectual assets from lose; find chances to enhancing decisions, products and services by add up intelligence, improving value and giving flexibility. Knowledge management is becoming demanded especially between business and industries from legal services. There are many organizations that recognize the value of encouraging organizational knowledge since the performance metrics from early adopters are compiling the substantial benefits gain from knowledge management. Thus, knowledge management consulting the services and technologies is in a state of high demand where the software of knowledge management is rapidly enlarged.

Knowledge management is increasingly becomes more important as it could drives the organizational success in facilitating the decision-making capabilities, develop learning workplaces through making learning culture and stimulates the cultural change and innovation. It has three major components which contain people, processes and information. People refer to the individual that keep the knowledge and practice it and processes are where the individuals establish, capture, store, organize and share the knowledge. While information point out as the pieces of data and facts which individuals convert it into the application of as knowledge. Accordingly, it is

crucial that the three components stated previously to be considered before setting up the knowledge management program.

2.3 Knowledge Sharing and Knowledge Sharing Behavior

Knowledge sharing is one of the most significant aspects in the process of making the right knowledge accessible to the right person at the right time as the majority of the knowledge management initiatives depend on it (Frost, 2013). Knowledge sharing can be interpreted as push or pull. The recent is when the knowledge employees are actively explores out the knowledge sources such as through the cooperation with colleagues and library search. It is depends on the habit and readiness of the knowledge employees to find out and be approachable to the sources of knowledge. The right culture or incentives have to be present to support it.

The department of human resources can be seen to expose the knowledge sharing in a various way where in an internalized way is that they can pose as a mediator among staff and their objection to engage in the activity of knowledge sharing at the workplace. Yahya and Goh (2002) mentioned that the direct impact of the human resources objectives with the knowledge management systems in many ways such as by training programs, performance appraisals, decision making, financial rewards or compensation. Human resources departments have the capacity within company to assist frame morale of the staff; motivation and trust which could help impress the worker to adopt the shared working practices. Law and Ngai (2003) took out the thorough empirical research by studied 134 organizations to figure the benefits of knowledge sharing activity beyond the industries which includes

manufacturing, wholesale and retail. The results indicated that knowledge sharing and learning instructions and personnel's behaviors are strongly related in improving the processes of the business and productivity. Knowledge sharing could likely to accomplish healthier competition between the parties and boost the quality and standard of workers. Generally, the application of knowledge sharing approach in Malaysia could inspire the levels of widespread communication by internal or external, support, value, understanding and awareness in a way to improve the clarity of the organization's issues.

On the other hand, knowledge sharing behavior is more about 'share' manner from everybody to share what they know. In the literature, several authors have defined knowledge sharing behavior as the process of involving knowledge exchange or exchanging of information or assistance between individuals and groups of people (Connelly & Kelloway, 2003; Davenport & Prusak, 1998). Members of the organizations that believed that they would gain extrinsic benefits like promotion, monetary rewards or educational chances from their knowledge sharing behavior tend to evolve the more positive attitude on knowledge sharing (Bock & Kim, 2002; Kankanhalli, Tan & Wei, 2005). Further, the workers that believe that they would get intrinsic benefits like social acknowledgement, power or self-satisfaction could also have enjoyment in knowledge sharing (Kankanhalli, Tan & Wei, 2005). Organizational structure also must be taken into considerations in the knowledge sharing context especially when relates on the incentives and rewards system directives to the other (Yang & Chen, 2007).

Interpersonal trust which is an implied set of beliefs has been identified as the significant factor influencing knowledge sharing (Gefen, Karahanna & Straub, 2003). The achievement of knowledge sharing depends on the supply and quality of the interaction among learners and the ability and willingness of practicing the knowledge (Lagerstrom & Anderson, 2003). Knowledge sharing is depends on the interaction and connection among people. Without important interaction, learners would be disturbed easily or feel misunderstanding with other person. The firm can construct new values to enhance its development and hike by knowledge sharing (Bock & Kim, 2002). These values were then proved to have the positive impact on generating new services or products by interactions between departments (Armbrecht, Chapas, Chappelow, Farris, Friga, Hartz, McIlvaine, Postle & Whitwell, 2001; Tsai, 2000).

Workers are more affected through the work environment when creative ideas are made in the organizational context. The increase of team support within an organization will shape an environment where workers can receive inspiration and compliment from their company or supervisors in order to expand further climate of innovation in the organization in reassuring the innovative behavior and creativity of workers more appropriately (Montes, Moreno & Fernandez, 2004). According to these conditions, organizational and individual factors affected knowledge sharing and innovation (Yu, Yu & Yu, 2013).

The transformation from managing knowledge against managing workers as the right owners of knowledge displays the consequences of human resource practices in the knowledge sharing context (Kelloway, 2000). A work practice that includes work design can affect worker's knowledge sharing behavior (Cabrera & Cabrera,

2005). However, the success of knowledge management initiatives are strongly depends on the person knowledge sharing (Yi, 2009; Wang & Noe, 2010). For example, there will be finite effects of the application on technology infrastructure if no support was given for knowledge sharing practices on organizational and individual levels (De & Fahey, 2000). Hence, it is crucial to further assess the antecedents for knowledge sharing as it turns up at the worker level (Felin & Foss, 2006; & Felin & Hesterly, 2007).

Appealing in the informal knowledge sharing processes from one individual to other person needs a high level of social and personal tenderness. More tacit knowledge could be shared when the personal interactions take place during lunch hours or any times (Yi, 2009; Taminiau, Smit & Lange, 2009). The issues discussed do not need a specific problem explanation or introduction where there might be a type of related chatter. Thus, personal interactions are an imperative part of knowledge sharing behavior between workers especially by their boundlessness.

2.4 Factors Influencing Knowledge Sharing Behavior

2.4.1 Individual Factors

2.4.1.1 Sense of Self-Worth

Sense of self-worth is defined as what people thought about themselves which is the basic of the self-concept that encompasses the positive or negative evaluations of the self like how they feel about it by self (Smith & Mackie, 2007). Sense of self-worth is about the psychology reflecting on the evaluation of person's emotion on his or her own worth. It is the intuition of one person which appears to be an attitude

toward the self. Self-worth describes as an emotional evaluation like pride, triumph, despair and shame (Hewitt, 2009). For example is, "I am competent". It is normally comes from the person's inside and become the foundation of people's ability to belief in their self.

In the context of knowledge sharing behavior, relevant feedback is very demanding in the ongoing interaction setting. Usually, individuals will conclude that their way of thinking and behavior are right when other workers respond in the way that they have anticipated. This process of reflected evaluation that contributes to the development of self-worth is strongly influenced by sense of competence and firmly tied to the effective performance (Bock, Zmud, Kim & Lee, 2005). Thus, Bock, Zmud, Kim and Lee (2005) found that workers that able to get the feedback on knowledge sharing action are more likely to recognize how many actions that have devoted to the other's work and enhancement of organizational performance. Accordingly, it could help in increasing sense of self-worth when they understand it which in turn would deliver these workers that are more likely to flourish the favorable attitudes toward knowledge sharing than workers that are unable to see the linkages of it.

2.4.1.2 Individual Attitude

Aiken (2000) stated that attitude is a learned disposition which determines the positive or negative feedback to the specific situation, person, object or institution. Consequently, attitude demonstrates on what the person is and thus, it is determining the factors of the person's attitude and affords individuals with the framework within

which to illustrate the world and organize new experiences (Ogunmoye, 2008). The attitude of a person towards a behavior is determined according to their beliefs on the importance of performing it. The definition of attitudes also vary as the predisposition of mental to act which is expose by evaluating certain entity with some degree of favor and disfavor.

2.4.2 Organizational Factors

2.4.2.1 Perceived Organizational Incentives

Meyer and Meyer (2009) viewed organizational incentives as parts of the motivational factors which could be able to improve the performance that is directed in gaining the organizational reward. Organizational incentives also could be defined as the non-financial inducement that intend to influence the future behavior of the workers by rewards or other motivational factors that is obtain from the worker's integration in the framework of the organization with the corresponding impact on employees and their behavior (Milkovich & Newman, 2001). Eventually, the aim of incentives at organizational context is providing value in term of money or any rewards which hopefully it could drive the workers to contribute in organizational success (Armstrong, 2013). Philip and Marshall (2010) defines organizational incentives in a theoretical foundations where they saw that organizational incentives itself motivate the behavior of the person. Thus, they argue that the organization is well served through the socially organizational incentives and individual financial incentives combination in a long term for organizational survival. From the literature, monetary incentives and rewards are the vital factors cited most regularly when it comes to the decision as to whether to share or not (Hahn & Subrami, 2000; Ruppel &

Harrington, 2001; Bartol & Srivastava, 2002, Dignum & Dignum, 2003; Syed-Ikhsan, 2004; Riege, 2005). The typical issue related with knowledge sharing is that the workers are not being rewarded for their involvements, hence discouraging them to participate. It is possible to increase the worker's participation through increasing the incentives linked with sharing the knowledge with others (Cabrera & Cabrera, 2002). Both non-monetary and monetary incentives are pivotal to make the passion with knowledge sharing practices (Cheng, Ho & Lau, 2009).

2.4.2.2 Management Support

In general, management support is referred to active involvement by the management team in supporting lower-level worker's activities (Igbaria, Zinatelli, Cragg & Cavaye, 1997; Ramamurthy & Premkumar, 1995). The management support is the encouragement from the top level management with the allocation of the resources (Guimaraes & Igbaria, 1997). Management support also can be referred to a situation when the high level managers are in a corporation intervention to assist the lower-level workers to develop the required behavior. It is also referring to the perception that the person has the available assistance from the person comes from the management team.

Workers could focus on the organization's commitment to them if managerial teams are concerned with their worker's commitment to the organization. It is likely described as give and take where both parties are in the win-win situation. The organization presents as the significant source of socio emotional resources for workers like caring and respect and tangible benefits like medical benefits and wages

(Rhoades & Eisenberger, 2002). It is actually helps in meeting the worker's needs for approval; esteem and affiliation when there are getting the management support in the organization (Rhoades & Eisenberger, 2002). Workers will indirectly motivated to take an active interest to the intervention held by the organization such as in the context of knowledge sharing activity in the regard where the positive valuation from the organization could provide the indication that increased effort will be rewarded and acknowledged.

2.5.3 Interpersonal Trust

Trust is defined as an expression of faith and confidence that a person or an institution will be fair, honest, trustworthy, decent, experienced and non-threatening (Caldwell & Clapham, 2003; Carnevale, 1995). Accordingly, individual's trust in their co-workers stems from the awareness of their interaction with co-workers such as ethics, morality, integrity, reliability, faith, honesty and competence (Garcı'a-Marza', 2005; Morgan & Hunt, 1994).

2.6 Research Framework

The research framework shown in Figure 2.1 is developed based on the discussion of literature on knowledge sharing behavior (Bock, Zmud, Kim & Lee, 2005; Chennamaneni, 2006; Tan & Zhao, 2003; Yilmaz & Hunt, 2001). The research framework for this study shows the relationship between sense of self-worth, attitudes, perceived organizational incentives, management support and knowledge sharing behavior. In this study, sense of self-worth, attitudes, perceived organizational

incentives and management support are the independent variables, while knowledge sharing behavior is the dependent variable. This research framework is also testing interpersonal trust as the moderating variable in the relationship between sense of self-worth, attitudes, perceived organizational incentives and management support and knowledge sharing behavior.

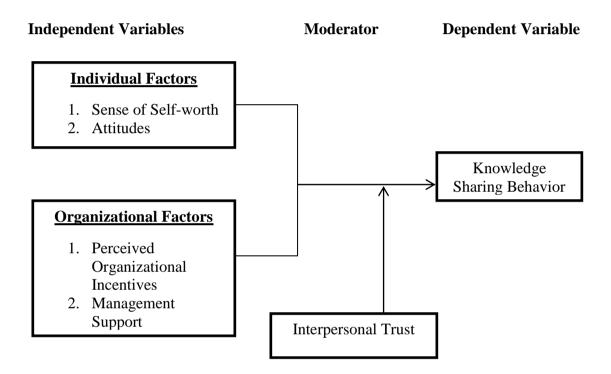


Figure 2.1 Research Framework

2.7 Development of Hypotheses

2.7.1 Relationship between Sense of Self-worth and Knowledge Sharing Behavior

Past studies on sense of self-worth and knowledge sharing behavior have shown mixed results. Joseph and Jacob (2011) found that sense of self-worth did not enhance people's intention in sharing the knowledge when tested on 125 IT knowledge workers in India. The subjective norm did not generate the self-worthiness

of workers to share the knowledge even though it is proved in the study that it could generate the intention to perform a task. In other study, Chow and Chan (2008) also found that sense of self-worth has no direct effect on knowledge sharing behavior when tested on 190 managers from Hong Kong firms. Similar findings were also found in a study conducted by Bock, Zmud, Kim and Lee (2005) where self-worth was not positively influence the knowledge sharing behavior.

In other studies, sense of self-worth was found positively related to knowledge sharing behavior. For example, in a study conducted on 154 managers from 27 Korean organizations, Bock, Zmud, Kim and Lee (2005) found that workers who hold high sense of self-worth towards knowledge sharing incline to share their knowledge with others.

Similar findings were also found in a study conducted by Ramayah, Yeap and Ignatius (2013). In their study on 447 academicians in 10 public universities scattered throughout Malaysia, they found that individual's sense of self-worth is positively related to the subjective norm to share their knowledge with others. Huber (2001) argued that those employees who have high sense of self-worth are more likely to be attentive towards other's expectations in regards to the knowledge sharing behaviors and practice at the workplace.

Based on the above discussion, the following hypothesis is proposed: H1: Sense of self-worth is positively related to knowledge sharing behavior.

2.7.2 Relationship between Individual Attitudes and Knowledge Sharing Behavior

Past studies have shown how one's attitude related to knowledge sharing behavior. For example, Bock Zmud, Kim and Lee (2005) found that attitude was significantly positively related to the knowledge sharing behavior when tested on 154 managers from 27 Korean organizations. Similar findings were also found in a study conducted by Kolekofski and Heminger (2003) on 34 % response rate of faculty members and supporting staff at the United State Air Force Institute of Technology (AFIT) where attitude was found positively related to knowledge sharing behavior. In other study, attitude was also found to be one of the factors that influence the intention to share knowledge when tested on 286 physicians from 13 hospitals in Korea (Ryu, Ho & Han, 2003).

Based on the above discussion, the following hypothesis is proposed: H2: Individual attitude is positively related to knowledge sharing behavior.

2.7.3 Relationship between Perceived Organizational Incentives and Knowledge Sharing Behavior

Studies on perceived organizational incentives and knowledge sharing behavior have shown mixed results. In one study conducted by Bock, Zmud, Kim and Lee (2005), extrinsic rewards were found negatively related to knowledge sharing behavior when tested on 154 managers from 27 Korean organizations. In other study, Chennamaneni (2006) also found that perceived organizational incentives does not

support its relationship with knowledge sharing behavior when tested on 180 respondents of full time workers enrolled in MBA and senior level classes in the college of business at University of Texas Arlington. In his study, perceived organizational incentives demonstrated a weak positive relationship on the knowledge sharing behavior among workers when motivators such as perceived benefits, perceived reputation enhancement, perceived loss of knowledge power and perceived enjoyment in helping others were included in the research model.

However, in other study, extrinsic incentives have been found to positively related with knowledge sharing behavior. For example, in a study conducted on 424 former interns of Certified Management Accountants in United State has shown how perceived organizational incentives increased knowledge sharing behavior (Cockrell, Stone & Wier, 2009).

Similar findings were also found in a study conducted by Chay, Menkhoff, Loh and Evers (2004). In their study on 262 academicians, administrators and students from tertiary educational institution in Singapore, they found that organizational incentives were positively related to the knowledge sharing. Quigley, Tesluk, Locke and Bartol (2007) study also found group incentives have a greater positive relationship on knowledge sharing behavior and this effect is stronger when sharing norms are strong when tested on 120 undergraduates who enrolled in upper-level management courses at Atlantic university.

Based on the above discussions, the following hypothesis is proposed:

H3: Perceived organizational incentives are positively related to knowledge sharing behavior.

2.7.4 Relationship between Management Support and Knowledge Sharing Behavior

Reviewing the literature on management support and knowledge sharing behavior has shown mixed results. A study conducted by King and Marks (2008) on 169 employees in United State department of defense has shown negative relationship between management support and knowledge sharing behavior.

Though there is negative relationship between management support and knowledge sharing behavior, most of the studies conducted in the past have shown positive relationship. For example, a study by Connelly and Kelloway (2003) on 126 undergraduates in MBA or MPA courses at four Canadian universities in two provinces have shown that management's support is significantly positive associated with knowledge sharing behavior.

Therefore, the following hypothesis is proposed:

H4: Management support is positively related to knowledge sharing behavior.

2.7.5 Interpersonal Trust as Moderator

Studies on interpersonal trust as a moderator in the context of knowledge sharing are limited. Most studies in the past tested interpersonal trust as independent variables instead of as a moderator with most studies showed positive relationship between interpersonal trust and knowledge sharing behavior. For example, Chang and Chuang (2011) conducted a study on 318 persons through website and found that interpersonal trust had a positive relationship on the quality but not quantity of shared knowledge. The involvement of the participants had the moderating influence of interpersonal trust towards the relationship with the knowledge sharing. In one study conducted on 131 utility workers at Austrian company has found that there are significant effects between interpersonal trust and knowledge sharing behavior among coworkers (Renzl, Matzler & Mader, 2005).

Based on the above discussion, the following hypotheses are proposed:

H5: Interpersonal trust moderates the relationship between sense of self-worth and knowledge sharing behavior.

H6: Interpersonal trust moderates the relationship between attitudes and knowledge sharing behavior.

H7: Interpersonal trust moderates the relationship between management support and knowledge sharing behavior.

H8: Interpersonal trust moderates the relationship between perceived organizational incentives and knowledge sharing behavior.

2.8 Conclusions

The chapter has discussed on the conceptual definitions, variable's dimension and discussion of the previous findings on knowledge sharing behavior. Also, eight hypotheses have been developed to be tested in this study. In the next chapter, Chapter 3, method of the study is discussed.

CHAPTER 3

METHOD

3.1 Introduction

Chapter 3 describes the method for the study. In this chapter, the sample design, survey materials used in this study, procedure for collecting data and the research measures are described. The chapter ends with strategies for analyzing the data.

3.2 Research Design

The study employed quantitative research design. Quantitative design is a systematic empirical approach to investigate social phenomena that used statistical or mathematical based methods that allow to test the relationship between the research variables (Given, 2008; Kreuger & Neuman, 2006). Therefore, quantitative research design is more suitable for this study as it allows the testing of relationship between variables using statistical methods. This corresponds with the primary objective of this study, which is to examine the relationship between sense of self-worth, attitude, perceived organizational incentives, management support and knowledge sharing behavior and the moderating effect of interpersonal trust on the relationship between sense of self-worth, attitude, perceived organizational incentives, management support and knowledge sharing behavior.

In this study, the unit of analysis is at the individual level (SMEs' employees) and the primary data for this study was collected through distribution of questionnaire. Respondents' perceptions about sense of self-worth, attitudes, perceived organizational incentives and management support become the basis for understanding the intention to share knowledge. Therefore, it is suitable to use individual as a unit of analysis to test all the variables shown in the research framework.

The study was cross-sectional, where the data was collected at one point of time. Cross-sectional study is cheaper and save time. Also, it allows examining many factors and outcome in a single study.

3.3 Population and Sampling

3.3.1 Population

Population for this study includes all the employees from all types of sector in Bumiputra SMEs in Kedah. Based on the statistics given by SME Corporation official website (http://www.smecorp.gov.my), there are 324 Bumiputra SMEs located in the state of Kedah. However, the statistics did not specify the total number of employees for each of the SMEs. Table 3.1 presents the total number of Bumiputra SMEs base on the sectors.

Table 3.1 *Number of Bumiputra SME by Sectors*

Sectors	Total number of SME
Manufacturing (Including Agro-Based)	109
Manufacturing Related Services	17
Services (Including ICT)	109
Construction	44
Primary Agriculture	12
Mining and Quarrying	1
Others	32
Total	324

3.3.2 Sample Size

Since the total number of employees was not known, the researcher follow Roscoe's (1975) rule of thumb where a sample that is larger than 30 and less than 500 is appropriate for most research.

3.3.3 Sampling Technique

Out of 324 Bumiputra SMEs, 220 SMEs from various sectors were chosen for this study. A total of 104 SMEs were excluded from the list because of difficulty of access to locations. The location of the companies was important for the purpose of scheduling for appointments and making repeated visits to the companies, as the survey was conducted on site. Another 56 SMEs were deleted from the list as they were no longer in business. Out of 164 remaining SMEs, only 39 of them were willing to participate in the study.

3.4 Operational Definitions and Measurements

3.4.1 Knowledge Sharing Behavior

Knowledge sharing behavior is the dependent variable in this study. Knowledge sharing behavior is operationalized as the process of involving knowledge exchange between individuals and groups of people (Davenport & Prusak, 1998). As shown in Table 3.2, knowledge sharing behavior was measured by 6-items developed by Bock, Zmud, Kim and Lee (2005). This 6-item knowledge sharing behavior scale has been shown to be both reliable and valid for measuring knowledge sharing behavior. Several studies have reported that the scale has adequate internal consistency (the Cronbach alphas ranging from .92 to .93) (Bock, Zmud, Kim & Lee, 2005; Lee, 2001; Wasko & Faraj, 2005). Based on a five-point scale whereby, 1 = strongly disagree, and 5 = strongly agree, participants rated their degree of agreement with the knowledge sharing behavior statements.

Table 3.2 Knowledge Sharing Behavior Items

Variable	Operational definition	Items	Authors
Knowledge Sharing Behavior (Dependent)	The process of involving knowledge exchange	I shared factual knowledge (knowwhat) from work with my coworkers.	Bock, Zmud, Kim & Lee (2005)
(Dependent)	between individuals and groups of people.	2. I shared business knowledge about the customers, products, suppliers and competitors with my coworkers.	
		3. I shared internal reports and other official documents with my coworkers.	

- 4. I shared work experiences with my co-workers.
- 5. I shared expertise from education or training with my co-workers.
- 6. I shared know-why knowledge from work with my co-workers.

3.4.2 Individual Factors

Individual factors are the independent variables. In this study, individual factors were measured by two dimensions, sense of self-worth and attitudes. Sense of self-worth is operationalized as an emotional evaluation like pride, triumph, despair and shame (Newman & Newman, 1975). Sense of self-worth was measured by 5-items that were adapted from Bock, Zmud, Kim and Lee (2005). Attitude towards knowledge sharing was measured by 8-items developed by Cheng and Chen (2007). Both of the scales have adequate internal consistency (the Cronbach alphas ranging from .93 to .94) (Bock, Zmud, Kim & Lee, 2005; Cheng & Chen, 2007; Fishbein & Ajzen, 1975).

Participants rated their degree of agreement with the sense of self-worth and attitudes toward knowledge sharing statements based on five-point scale whereby, 1 = strongly disagree, and 5 = strongly agree. Table 3.3 shows the sense of self-worth and attitude towards knowledge sharing items used in this study.

Table 3.3 *Individual Factor's Items*

Variable	Dimensions	Operational definitions	I Items		Authors	
Individual Factors (Independent).	Sense of self- worth	Emotional evaluation like pride, triumph, despair and shame.	1.	Sharing my knowledge would help other members in the organization solve problems.	Bock, Zmud, Kim & Lee (2005)	
			2.	Sharing my knowledge would create new business opportunities for the organization.		
			3.	Sharing my knowledge would improve work processes in the organization.		
			4.	Sharing my knowledge would increase productivity in the organization.		
			5.	Sharing my knowledge would help the organization achieve its performance objectives.		
	Attitudes towards knowledge	Predisposition of mental to act which is expose by evaluating	6.	If I share my knowledge with other members, I feel very beneficial.	Cheng & Chen (2007)	
	sharing behavior	certain entity with some degree of favor and disfavor.	7.	If I share my knowledge with other members, I feel very pleasant.		
			8.	If I share my knowledge with other members, I feel very expressive.		
			9.	It is a wise move if I share my knowledge with other members.		
			10.	To me, sharing knowledge with my coworkers is harmful.	-	

- 11. To me, sharing knowledge with my coworkers is good.
- 12. To me, sharing knowledge with my coworkers is worthless.
- 13. To me, sharing knowledge with my coworkers is wise.

3.4.3 Organizational Factors

Organizational factors are the second independent variables. Organizational factors are measured by two dimensions, perceived organizational incentives and management support. Perceived organizational incentives are operationalized as the motivational factors that can trigger performance which is directed at attaining organizational rewards (Meyer & Meyer, 2009). Perceived organizational incentives were measured by 5-item scale developed by Kankanhalli, Tan and Wei (2005).

The second dimension, management support is operationalized as the degree of general support provided by the top management team (Igbaria, Zinatelli, Cragg & Cavage, 1997). Management support was measured by 4-item scale adapted from Tan and Zhao (2003). Based on the previous study, both of the scales have adequate internal consistency (the Cronbach alphas ranging from .52 to .89) (Tan & Zhao, 2003; Lin, 2007a; Rahab, Sulistyandari & Sudjono, 2011).

In this study, participants rated their degree of agreement with perceived organizational incentives and management support statements based on five-point

scale whereby, 1 = strongly disagree, and 5 = strongly agree. Table 3.4 shows the perceived organizational incentives and management support items used in this study.

Table 3.4 *Organizational Factor's Items*

Variable	Dimensions	Operational definition		Items	Authors
Organizational Factors (Independent)	Perceived organizational incentives	The motivational factors that can trigger performance which is directed at	1. 2.	Sharing knowledge with my co-workers improves the likelihood of getting better work assignment for me. Sharing knowledge	Kankanhalli, Tan & Wei (2005)
		attaining organizational rewards.	2.	with my co-workers improves the likelihood of getting a promotion for me.	
			3.	Sharing knowledge with my co-workers improves the likelihood of getting a higher salary for me.	
			4.	Sharing knowledge with my co-workers improves the likelihood of getting bonus for me.	
			5.	I expect to get more job security when I share knowledge with my co-workers.	
	Management Support	General support provided by top	6.	Top managers think that encouraging knowledge sharing with colleagues is	Tan & Zhao (2003)
		management.	7.	beneficial. Top managers always support and encourage employees to share their knowledge with colleagues.	
			8.	Top managers provide most of the necessary help and resources to enable employees to	

	share knowledge.
9.	Top managers are keen
	to see that the
	employees are happy
	to share their
	knowledge with
	colleagues.

3.4.4 Interpersonal Trust

In this study, interpersonal trust is the moderator variable. Interpersonal trust is operationalized as the willingness to rely on the word, action and decisions of other party (McAllister, 1995). Interpersonal trust was measured by 5-items scale developed by Yilmaz and Hunt (2001). The scale had adequate internal consistency (the Cronbach alphas ranging from .84 to .95) (Larzelere & Huston, 1980; Morgan & Hunt, 1994; Yilmaz & Hunt, 2001).

Participants rated their degree of agreement with interpersonal trust statements based on five-point scale whereby, 1 = strongly disagree, and 5 = strongly agree. Table 3.5 shows the interpersonal trust items used in this study.

Table 3.5
Interpersonal Trust's Items

Variable	Operational definition	Items		Authors
Interpersonal Trust (Moderator)	The willingness to rely on the word, action, and decisions of other party.	1.	I consider my co-workers as people who can be trusted.	Yilmaz & Hunt (2001)
		2.	I consider my co-workers as people who can be counted on to do what is right.	
		3.	I consider my co-workers as people who can be counted on to get the job done right.	

- 4. I consider my co-workers as people whom are always faithful.
- I consider my co-workers as people whom I have great confidence in.

3.5 Layout of Questionnaire

All questionnaires were prepared in Bahasa Malaysia. Each participant in this survey received eight-page questionnaire (with cover letter attached). The questionnaire used in this study is shown in Appendix A.

The eight-page questionnaire consisted of five sections. Section 1 asked about knowledge sharing behavior and there are 6 items. Section 2 asked about participants' sense of self-worth and attitudes. There are 5 and 8 items respectively. In Section 3, there are 5 items on perceived organizational incentives and 4 items on management support. The final section of the questionnaire, Section 5, is the demographic variables.

3.6 Pilot Test

Pilot test which is also called as a pilot study is a small scale of initial research process study conducted to evaluate the feasibility, cost, time, adverse events and size of the statistical variability so as to predict the suitable sample size and brush up or improve the design of the current study related to full-scale research study performances (Hulley, 2007). The pilot test was conducted to find the validity and reliability of the questionnaire as to ensure the quality of the survey.

In this study, pilot test was conducted in the middle of August 2013. The questionnaire was distributed to 30 SMEs employees. There were no changes required to the questionnaire. The internal consistency reliabilities (Cronbach's Alpha) of the research measures from the pilot study are reported in Table 3.6. As shown in Table 3.6, all variables have satisfactory reliability values ranging from .75 to .86.

Table 3.6 The Cronbach's Alpha from the Pilot Study (n = 30)

Variable	Number of Items	Cronbach Alpha
Knowledge sharing behavior	5	.75
Individual factors	13	.79
Organizational factors	9	.84
Interpersonal Trust	5	.86

3.7 Data Collection Procedures

Potential SMEs listed under the SME Corporation official website were contacted personally by telephone. Through the initial telephone conversation, the researcher introduced herself, explained the purpose of the call and asked for an appointment with SME's representative to conduct the survey. Once the respondent agreed to participate in the study on behalf of the firm, a date was fixed at the respondent's convenience.

During the survey session with the respondents, the researcher personally administered and collected the completed questionnaire. Each respondent was first briefed about the purpose of the survey. They were assured that all the information

given will remain confidential at all times and will be used for the study only. Respondents were then given 30 minutes to complete the survey forms. Each meeting lasted between 30 to 60 minutes.

3.8 Technique of Data Analysis

Data collected through the survey were analyzed using SPSS (version 19) program for Windows. Prior to primary analyses, the data were examined for data entry accuracy, outliers and distributional properties.

3.8.1 Factor Analysis

Factor analysis is conducted to describe the variation between variables in the context of few underlying but unobservable random variables which is namely as factors. The analysis could be viewed as the statistical procedure for grouping the variables into the subsets like the variables of each set that are mutually highly correlated whereas the variables in different subsets are relatively uncorrelated at the same time. Items that show the value of 'a-square' that is below than .5 will be omitted. First, the KMO (Keiser-Meyer-Oklin) of the variable will be determined in the factor analysis. Generally, the higher the cumulative variance is the better the correlation among items of the variables.

The factor analysis of this study contributed all of the items that measure the dependent variable (knowledge sharing behavior), independent variables (individual factors and organizational factors) and a moderator (interpersonal trust). According to

Pallant (2010), sample size is important before the factor analysis can be conducted. For this study, the sample was adequate to conduct factor analysis as the minimum number required is 100 (Barlett, Kotrlik & Higgins 2001; Hair, Anderson, Tatham & Black, 1998; Pallant, 2010).

3.8.2 Correlation Analysis

According to Pallant (2010), correlation analysis is a statistical technique that explained the strength and direction of the linear relationship between two variables. Therefore, in order to determine the strength of the relationship between the variables in this study, the correlation technique will be used to understand the direction of the relationship and amount of correlation between the dimensions of independent variables (sense of self-worth, attitudes, perceived organizational incentives and management support), moderating variable (interpersonal trust) and dependent variable (knowledge sharing behavior). Pearson correlation coefficients (r) can only take on values from -1 to +1. In order to interpret the value between 0 (no relationship) and 1 (perfect relationship), Cohen's (1988) suggestion will be followed. The relationship is said to be small when the value of r is between \pm 0.1 to \pm 0.29. The relationship is considered medium when r value is between \pm 0.30 to \pm 0.49, and the relationship is considered to be large when r value is between+ 0.50 and above.

3.8.3 Regression Analysis

Multiple regression analysis is a statistical technique that can be used to explore the relationship between a single dependent variable and a number of

independent variables (Pallant, 2010). Multiple regression analysis can be used to address variety of research questions. For example, it can tell the researcher how well a set of variables is able to predict a particular outcome, provide information about the model as a whole and the contribution of each of the variables that make up the model and it can statistically control for an additional variable when exploring predictive ability of the model. As for this study, multiple regressions is conducted to determine the predictive power of the independent variables (sense of self-worth, attitudes, perceived organizational incentives, management support) toward the dependent variable (knowledge sharing behavior).

3.8.4 Test of Moderation

Moderation happens in the regression analysis when the relationship among the two variables is depends on the third variable which is referred to as a moderator (Cohen, Cohen, Leona & West 2003). A moderator is an independent variable that affects the strength and / or direction of association between another independent variable and an outcome variable. To assess the effects of a moderating variable, hierarchical multiple regression is used. In the first step of the regression, the independent variables (including the moderator) are entered into the model as predictors of the outcome variable. The independent variables do not have to be significant predictors of the outcome variable in order to test for an interaction. In a separate step, an interaction term (the product of two independent variables, which represent the moderator effect) is entered. If the interaction term explains a statistically significant amount of variance in the dependent variable, a moderator effect is present.

3.9 Conclusions

This chapter has explained the research method and strategy for the study. It described how the sample of organizations was obtained, the selection of the respondents, development of the questionnaire, the research materials and the survey procedure. This chapter also briefly explains the adoption of several analyses such as correlation and regression analysis to test the research hypotheses. The results of the study are reported in Chapter 4.

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter reports results of the study. The chapter begins by reporting the demographic characteristics of the respondents. It then presents the factor analysis and the bivariate relationship between the research variables. The chapter concludes with the regression analysis.

4.2 Demographic Characteristics of Participants

Detailed descriptive statistics of the participants' demographic characteristics are presented in Table 4.1. It is noted that 53.4% of the 148 participants in this survey were females. Most of the respondents (48.6%) were aged between 21 and 30 years old. Out of 148 participants, 37.2% had secondary education (11 years of schooling) and 41.9% earned a salary between RM901 and RM 1500. Most of the participants (33.1%) had served their organization between 1 to 3 years. Most of the SMEs (24.3%) participated in this study were other than construction, mining and quarrying, manufacturing (including agro-based), agriculture, manufacturing (related services) and manufacturing (including ICT).

Table 4.1 Demographic Characteristics of Participants

Descriptions	Frequency	Percentage	
Gender:			
Male	79	53.4	
Female	69	46.6	
Age:			
Below 20	8	5.4	
21 - 30	72	48.6	
31 – 40	42	28.4	
41 – 50	20	13.5	
51 and above	6	4.1	
Marital status:			
Single	56	37.8	
Married	87	58.8	
Divorce	5	3.4	
Academic Qualification:			
PMR	8	5.4	
SPM	55	37.2	
Certificate	37	25.0	
Degree	43	29.1	
Others	5	3.4	
Salary:			
Below RM 900	32	21.6	
RM 901 – RM 1500	62	41.9	
RM 1500 and above	54	36.5	
No. of years in organization:			

Descriptions	Frequency	Percentage
Less than 1 year	47	31.8
1-3 years	49	33.1
4 – 7 years	21	14.2
More than 7 years	31	20.9
Types of SME:		
Construction	12	8.1
Mining and Quarrying	6	4.1
Manufacturing (Including agro-based)	26	17.6
Agriculture	9	6.1
Manufacturing (related services)	35	23.6
Manufacturing (Including ICT)	24	16.2
Others	36	24.3

Note: Total respondents = 148

4.3 Data Screening

Data screening was done to ensure that the data collected is clean and ready for further statistical analysis. This is important so that the data are reliable, useful and valid to test the causal theory.

4.3.1 Missing Data

The analysis of missing data showed that there is .0% of missing values for all items in the questionnaire. Thus, there is no missing value in the data. The full results for missing value analysis were in the Appendix B.

4.3.2 Normality

Normality test was done to examine if the data is well-model with and without a normal distribution to compute the way that underlying random variable is distributing normally. The normality test is considered as prerequisite as sustaining the normal distribution of the data which is underlying the assumption of parametric testing in the statistical test's process. There are two ways to perform it which are graphically or numerically. Two of it has the advantages and disadvantages. However, the main focus is to figure out and presents the data's normality that is being used in this research. Normal Q-Q plot is used to detect the normality of the data. Data that follows a normal distribution will appear a straight line and linear in the normal probability plot (Coakes & Steed, 2003). The normality test was made for each variable and will be discussed accordingly through this section. The normal Q-Q Plot graph for the variables was attached in the Appendix B for review.

Based on the normal Q-Q Plot for every factor, the normality for some of the items in the variable are deviated from the line. However, it is not mean that there are abnormal. The chart might appear so due to the way the respondents chose the answer in the survey. In addition, it might cause the tabulation of the data which is not in stable strata as the same questionnaire may have different interpretation by different

respondent. The table of normality test below could be referred for further understanding on the normality test that been conducted on the variables. The test was prepared to the all items in the variables as shown in the Table 4.2 below so that the comparison can be made in the context of graphical and numerical while the charts shown previously are the normality test based on the factors.

Table 4.2 Normality Test for Knowledge Sharing Behavior, Individual Factors, Organizational Factors and Interpersonal Trust

	Kolog	gorov-Smirn	10V ^a	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
Knowledge sharing behavior (KSB).	.124	148	.000	.972	148	.004	
Individual Factor (IF).	.100	148	.001	.976	148	.012	
Organizational Factor (OF).	.080	148	.022	.987	148	.187	
Interpersonal Trust (IT).	.113	148	.000	.964	148	.001	

Note: a. Lilliefor Significance Correction

Table 4.2 showed the strong and acceptable relationship among items in the variables. Therefore, it is valid to be used as a basis to make the conclusions for this research. The table also exhibits the outcome from the two well-known normality tests which are Kolmogorov-Smirnov Test and Shapiro-Wilk Test. The Shapiro-Wilk Test is suits better for small sample size or less than 50 samples. However, it can also be done to the large sample size such as 2000. Due to this reason, Shapiro-Wilk test will be used as the numerical means to assess the normality. The data is considered normal if the sig. value from the Shapiro-Wilk test is more than .05 while the data is significantly deviate from the normal distribution if it is recorded less than .05.

4.3.3 Homoscedasticity

Homoscdedastic is a sequence of random variables that have the similar finite variance in statistics. It is also called as homogeneity of variance. The methods that used in evaluating the homoscedasticity needed the independent variables to be non-metric which are nominal or ordinal while dependent variable to be ordinal or interval. The assumption will evaluated as part of the multiple regression's residual analysis if both variables are metric. It produces a pretty straight line where it represents the constant relationship between dependent and independent variables in the research study. Table 4.3 shows the homogeneity of variances among the variables. The variance in the table is homogenous as the Levene Statistic for all variables are more than .001 (> .001).

Table 4.3 *Homogeneity of Variances among the Variables*

	Levene Statistics	df1	df2	Sig.
Knowledge sharing behavior and attitudes	1.917	11	136	.042
Knowledge sharing behavior and sense of self-worth	.636	10	137	.781
Knowledge sharing behavior and organizational incentives	2.790	15	131	.001
Knowledge sharing behavior and management support	1.293	10	136	.241

4.3.4 Outliers Detection

Outliers detection are the situation where there will have a typical score for a variable which is univariate outliers or a combination of variables which called as multivariate outliers. Generally, the concern for outliers detection is to find out whether

the analysis is more valid with the outlier case or more valid when the outlier case is excluded.

Table 4.4 *Percentiles for Knowledge Sharing Behavior*

			Percentiles					
		5	10	25	50	75	90	95
Weighted Average (Definition 1)	KSB	3.00	3.33	3.67	3.83	4.17	4.50	4.67
Tukey's Hinges	KSB			3.67	3.83	4.17		

Table 4.5
Outlier Detection Test

		Case Number	Value
Highest	1	1	5.00
	2	2	5.00
	3	3	5.00
	4	4	4.83
	5	5	4.83ª
Lowest	1	148	2.50
	2	147	2.67
	3	146	2.67
	4	145	2.67
	5	144	3.00 ^b

Note:

- a. Only a partial list of cases with the value 4.83 is shown in the table of upper extremes.
- b. Only a partial list of cases with the value 3.00 is shown in the table of lower extremes.

4.3.5 Multicollinearity

Multicollinearity is the correlation among independent and the dependent variable. However, the exact dependent variable is still knowledge sharing behavior. VIF showed in Table 4.6 is referred to as variance inflation factor which measures the variance of the regression coefficients that is inflated by multicollinearity problems.

Based on Table 4.6 the VIF for all independent variables, the VIF value is around 1.1 and above which meaning that there are no collinearity issues. The VIF that is measure of 1 is an indication to some association among predictor variables. However, literally it is not enough to cause problems. The maximum acceptable VIF value is 5.0 and anything higher could indicate a problem with multicollinearity.

On the other hand, tolerance that stated in the tables is the variance's amount in an independent variable which is not explained by the other independent variables. There are problem with multicollinearity if the other variables explain a lot of variance of the particular variable. Small values of tolerance could suggest there are problems of multicollinearity .20 are the minimum cutoff value for the tolerance. It is meaning to say that the tolerance which is smaller than .20 indicate a problem with multicollinearity. Since, there are no values smaller than .20 were found in this study, problem with multicollinearity was not occurred.

Table 4.6 *Coefficients for Collinearity Statistics*

(Constant)	Tolerance	VIF
	DV: Management Support	
Attitudes	.599	1.670
Sense of Self-Worth	.644	1.553
Organizational Incentives	.890	1.124
	DV: Organizational Incentives	
Attitudes	.603	1.657
Sense of Self-Worth	.615	1.626
Management Support	.779	1.283
Attitudes Management Support Organizational Incentives	DV: Sense of self- worth .785 .746 .814	1.275 1.340 1.229
Management Support Organizational incentives Sense of Self-Worth	DV: Attitudes .734 .844 .829	1.363 1.185 1.206

Note:

a: DV (Dependent Variable)

4.4 Factor Analysis

Factor analysis is purposely done to describe the variation between variables in the context of few underlying but unobservable random variables which is namely as factors. The analysis could be viewed as the statistical procedure for grouping the variables into the subsets like the variables of each set that are mutually highly correlated whereas the variables in different subsets are relatively uncorrelated at the same time. Items that show the value of 'a-square' that is below than .5 will be omitted. First and foremost, the KMO (Keiser-Meyer-Oklin) of the variable will be determined in the factor analysis. Generally, the higher the cumulative variance is the better the correlation among items of the variables.

The factor analysis of this study contributed all of the items that measure the dependent variable (knowledge sharing behavior), independent variables (individual factors and organizational factors) and a moderator (interpersonal trust). The sample size is important before the factor analysis can be run (Pallant, 2010). The number of data is enough as the minimum number of data is 100 to proceed the factor analysis (Barlett, Kotrlik & Higgins, 2001; Hair, Anderson, Tatham & Black., 1998; Pallant, 2010).

4.4.1 Knowledge Sharing Behavior (KSB) Constructs

The knowledge sharing behavior constructs were measured with using six items that was adapted from Bock, Zmud, Kim and Lee (2005). Table 4.7 was shown the KMO index that measure the accuracy of the sample is .730 with the significant Barlett's Test of Sphericity (chi-square = 186.523, p < .001). Thus, the factor analysis is suitable to be used in these data (Pallant, 2010). The reliability was done to the deleted items to see whether it is reliable to be tested in the actual test. As the Cronbach's Alpha value is < .5, thus, the items will not be used in this study for further analysis. While the

reliability for accepted items is .76, thus all the four items for component 1 is suitable to be analyzed in this study.

Table 4.7
Factor Analysis For Knowledge Sharing Behavior Construct

Items	Components		
	1	2	
KSB 6 I shared know-why	.842		
knowledge from work with			
my co-workers.			
KSB 5 I shared expertise from	.712		
education or training with			
my co-workers.			
KSB 4 I shared work experiences	.632		
with my co-workers.			
KSB 1 I shared factual knowledge	.489		
(know-what) from work			
with my co-workers.			
KSB 2 I shared business		.606	
knowledge about the			
customers, products,			
suppliers and competitors			
with my co-workers.			
KSB 3 I shared internal reports		.550	
and other official			
documents with my co-			
workers.			
Eigen value	2.467	1.33	
Total variance explained (%) =	41.11	22.16	
44.76			
Kaiser-Meyer-Olkin (KMO) = 0.730			
Barlett's Test of Sphericity Approx. Chi Square = 186.523			
df = 15			
Sig. = 0.000			

Note: Extraction Method: Principal Axis Factoring.

Table 4.8
Reliability Statistics for Deleted Items (Component 2)

Crobach's Alpha	Number of items
.48	2

Table 4.9
Reliability Statistics for Accepted Items (Component 1)

Crobach's Alpha	Number of items
.76	4

4.4.2 Individual Factors (IF) Constructs

Table 4.10 shows the KMO value is .841 which is more than .50 that presents as an acceptable number as it determined that the distribution of the items are nearly normal with a significant of .000. Thus, the factor loading analysis is unnecessary as the KMO value is considered high. The reliability test was done to each component. Two components were selected to be an accepted item to be tested in this study. While component three which consist of reverse type of questions were excluded further analyses.

Table 4.10 Factor Analysis For Individual Factor Constructs

Items	Components		
	1	2	3
Factor 1: Attitudes			
IF11 To me, sharing	.766		
knowledge with my co-			
workers is good.			
IF 8 If I share my	.753		
knowledge with other			
members, I feel very			
expressive.			
- Feedback Co.			
IF 9 It is wise move if I	.747		
share my knowledge with			
other members.			
omer memoers.			
	l	J	l .

IE 6 If I above	707		
IF 6 If I share my	.706		
knowledge with other			
members, I feel very			
beneficial.			
IF 13 To me, sharing	.644		
knowledge with my co-			
worker is wise.			
IF 7 If I share my	.464		
knowledge with other			
members, I feel very			
pleasant.			
Factor 2: Sense of Self-worth	h		
IF 3 Sharing my		.762	
knowledge would improve			
work processes in the			
organization.			
IF 2 Sharing my		.687	
knowledge would create			
new business opportunities			
for the organization.			
IF 4 Sharing my		.686	
knowledge would increase			
productivity in the			
organization.			
IF 5 Sharing my		.494	
knowledge would help the			
organization achieve its			
performance objectives.			
periormanee sojeenves.			
IF 1 Sharing my		.489	
knowledge would help			
other members in the			
organization solve			
problems.			
prodicins.			
IFF10To me, sharing		+	750
knowledge with my co-			
workers is harmful.			
workers is narilliur.			
IFF 12 To me, sharing		+	601
knowledge with my co-			
workers is worthless.			
workers is worthless.			
Eigen value	5.64	1.44	1.37
	5.01	1.11	1.57

Total variance explained	43.34	11.06	10.49
(%) = 54.66			
Kaiser-Meyer-Olkin = .841			
Barlett's Test of Sphericity Approx. Chi Square = 937.912			
df = 78			
Sig. = 0.000			

Note: Extraction Method: Principal Axis Factoring.

Table 4.11
Reliability Statistics for Accepted Items for Attitudes (Component 1)

Crobach's Alpha	Number of items
.86	6

Table 4.12
Reliability Statistics for Accepted Items for Sense Of Self-Worth (Component 2)

Crobach's Alpha	Number of items
.83	5

Table 4.13
Reliability Statistics for Deleted Items (Component 3)

Crobach's Alpha	Number of items
.64	2

Through the reference from the questionnaire, the researcher could determine the areas which each factor are related to. Based on Table 4.14, the factor 1 are consists of IF 11, IF 8, IF 9, IF 6, IF 13, and IF 7 which is measuring the attitudes. Factor 2 is referring to the measurement of sense of self-worth that consists of IF 3, IF 2, IF 4, IF 5 and IF 1.

Table 4.14 *Items of Individual Factors According To Factors*

Factor 1	Factor 2
IF 11	IF 3
IF 8	IF 2
1F 9	IF 4
IF 6	IF 5
IF 13	IF 1
IF 7	
No of items = 6	No of items = 5

4.4.3 Organizational Factor (OF) Constructs

The measurement of KMO for adequate sampling could inform that the high value which is close to 1.0 indicates that the factor analysis is useful with the data. According to the Table 4.15, the KMO value is .821 which is also more than .50 that presents as an acceptable number as it determined that the distribution of the items are nearly normal with a significant of .000. Thus, the factor loading analysis is unnecessary as the KMO value is considered high.

Table 4.15
Factor Analysis Individual Factor Constructs

Items	Components		
	1		
Factor 1: Organizational Incentives			
OF 3 Sharing knowledge with	.934		
my co-workers improves			
the likelihoods of getting a			
higher salary for me.			
OF 4 Sharing knowledge with	.897		
my co-workers improves			
the likelihod of getting			
bonus for me.			

OF 2 Sharing knowledge with	.860			
my co-workers improves	.000			
the likelihood of getting a				
promotion for me.				
OF 5 I expect to get more job	.660			
security when I share	.000			
knowledge with my co-				
workers.				
OF 1 Sharing knowledge with	.600			
my co-workers improves	.000			
the likelihood of getting				
better work assignment for				
me.				
Factor 2: Management Support				
OF 7 Top managers always		.898		
support and encourage		.070		
employees to share their				
knowledge with colleagues.				
OF 9 Top managers are keen to		.820		
see that the employees are		.020		
happy to share their				
knowledge with colleagues.				
OF 8 Top managers provide		.808		
most of the necessary help		.000		
and resources to enable				
employees to share				
knowledge.				
OF 6 Top managers think that		.689		
encouraging knowledge		.007		
sharing with colleagues is				
beneficial.				
Eigen value	4.24	1.90		
Total variance explained (%) =	47.06	21.06		
60.91	77.00	21.00		
Kaiser-Meyer-Olkin = .821		1		
Barlett's Test of Sphericity Approx. Chi Square = 760.268				
df = 36				
Sig. = 0.000				
515 0.000				

Note: Extraction Method: Principal Axis Factoring.

Based on Table 4.16, the factor 1 are consists of OF 3, OF 4, OF 2, OF 5 and OF 1 which is measuring the organizational incentives. While, factor 2 is referring to the measurement of management support that consists of OF 7, OF 9, OF 8 and OF 6. Thus, reliability test will be done according to the factors above in order to determine the reliability of every item in the particular factor.

Table 4.16

Items of Organizational Factors According To Factors

Factor 1	Factor 2
OF 3	OF 7
OF 4	OF 9
OF 2	OF 8
OF 5	OF 6
OF 1	
No of items = 5	No of items = 4

4.4.4 Interpersonal Trust (IT) Constructs

The interpersonal trust's contruct were measured by using five items that was adopted from Yilmaz and Hunt (2001). The KMO index shown in Table 4.17 is recorded the value of .778 with the significant Barlett's Test of Sphericity (chi-square = 493.637, p< .001). Thus, it means that the factor analysis is suitable to be used in these data (Pallant, 2010).

Table 4.17
Factor Analysis For Interpersonal Trust Constructs

Items	Components
	1
IT 5 I consider my co-workers as	.861
people whom I have great	
confidence in.	
IT 2 I consider my co-workers as	.859
people who can be counted on	
to do what is right.	
IT 3 I considermy co-workers as	.802
people who can be counted on	
to get the job done right.	
IT 4 I consider my co-workers as	.765

people whom are always		
faithful.		
IT 1 I consider my co-workers as	.693	
people who can be trusted.		
Eigen value	3.54	
Total variance explained (%)	63.75	
Kaiser-Meyer-Olkin (KMO) = .778		
Barlett's Test of Sphericity Approx. Chi Square = 493.637		
df = 10		
Sig.= 0.000		

Note: Extraction Method: Principal Axis Factoring.

4.4.5 Deleted Items

There are some items from the variables than have been deleted in order to obtain a better Cronbach's Alpha for the reliability analysis.

Table 4.18

Deleted Items for the Variables after the Factor Analysis

Variables	Deleted Items	No. of Items Deleted
Knowledge sharing behavior	KSB 2 & KSB 3	2
Attitudes	No deleted item	0
Sense of self-worth	IFF 10 & IFF 12	2
Organizational incentives	No deleted item	0
Management support	No deleted item	0
Interpersonal Trust	No deleted item	0

4.5 Correlation Analysis

Table 4.19 presents the means, standard deviations and Pearson correlations of variables for the 148 participants who participated in the study. The internal consistency reliabilities (Cronbach's Alpha) of the research measures are reported in parenthesis

along the diagonal of the correlation table. As shown in Table 4.19, the Cronbach's alphas for the individual factor were .89. The two dimensions of individual factors scale (sense of self-worth and attitudes) also have satisfactory reliability values ranging from .83 to .86. It is noted that Cronbach's alpha for organizational factor was .86 and its two dimensions scale (organizational incentives and management support) have satisfactory reliability values ranging from .84 to .87. Finally, interpersonal trust also has high reliability value of .90.

Overall, individual factors were found positively significantly correlated with knowledge sharing behavior (r = .54, p > .001). There were also significant positive correlation between all the individual factor's dimensions and knowledge sharing behavior, with correlation coefficients between .44 and .51. These results imply that the more positive attitudes and sense of self-worth the participants have, the more knowledge will be shared. These results support previous study conducted by Ahmad, Sharom and Abdullah (2006) where they also found similar relationship between the variables. This finding was not surprising. Logically, those who have positive attitudes towards knowledge sharing will demonstrate more positive knowledge sharing behavior. Similarly, if individuals feel that it is worth to share knowledge with others they will be more willing to share their knowledge with others.

Table 4.19 also revealed significant positive relationship between organizational factors (overall) with knowledge sharing behavior (r = .29, p > .01). Also, there were significant positive relationships between organizational incentives, management support and knowledge sharing behavior, with correlation coefficients between .26 and

.23. This result implies that the higher the incentives and management support received by the participants, the higher the knowledge sharing behavior. This results support previous study conducted by Kankanhalli, Tan and Wei (2005), Cockrell, Stone and Wier (2009), Connelly and Kelloway (2003) and O'Dell and Grayson's (1998). One possible explanation for these results might be because they are motivated by the incentives provided by the organization to share knowledge with others. Normally, individuals would like to see the benefits that they would gain by sharing knowledge with others. These benefits act as a motivator or a driver for them to share knowledge. Apart from that, management support such as providing medium for knowledge sharing will also speed up the process to encourage individuals to share their knowledge.

Table 4.19
Descriptive Statistics, Scale Reliabilities and Correlations of Variables

	Variables	N	Mean	S.D.	1	2	3	4	5	6	7	8
1.	Individual factors - overall	148	4.03	.48	(.89)							
2.	Sense of self-worth	148	4.06	.49	.86**	(.83)						
3.	Attitudes	148	4.01	.57	.93**	.61**	(.86)					
4.	Organizational factors - overall	148	3.48	.58	.42**	.34**	.40**	(.86)				
5.	Organizational incentives	148	3.17	.74	.28**	.21**	.29**	.90**	(.87)			
6.	Management support	148	3.86	.61	.46**	.41**	.42**	.75**	.39**	(.84)		
7.	Interpersonal trust	148	3.20	.78	.36**	.25**	.38**	.45**	.43**	.31**	(.90)	
8.	Knowledge sharing behavior	148	4.16	.52	.54**	.44**	.51**	.29**	.26**	.23**	.24**	(.76)

Note: ** Correlation is significant at the level 0.01 level (2-tailed), * Correlation is significant at the 0.05 level (2-tailed).

4.6 Multiple Regression Analysis

To test hypothesis 1 to 4, regression analysis was conducted. Results in Table 4.20 showed that 30% ($R^2 = .30$, F = 15.37 p<.01) of the variance in knowledge sharing behavior was significantly explained by sense of self-worth, attitudes, organizational incentives and management support. In the model, only sense of self-worth ($\beta = .225$, p<.05), and attitudes ($\beta = .357$, p<.01) were found positively associated with knowledge sharing behavior. Therefore, Hypothesis 1 and 2 were supported. The results demonstrated that people who have positive attitude and have high sense of self-worth are more likely to be involved in knowledge sharing activities with others. Thus, both variables were proved to be significantly affecting the level of knowledge sharing behavior at work between employees.

Table 4.20
Regression Results of Attitudes, Sense Of Self-Worth, Organizational Incentives and Management Support on Knowledge Sharing Behavior

	Dependent variable (Knowledge sharing behavior) (Standardized Beta)	Significant (p)	Tolerance	VIF
Independent variables				
Sense of self-worth	.225**	.014	.597	1.675
Attitudes	.357*	.000	.581	1.722
Organizational incentives	.130	.093	.826	1.210
Management support	059	.478	.712	1.405
3	15.37 .30 .28 1.97			
Adjusted R ² Durbin Watson	.28 1.97			

^{**}p< 0.05; *p<0.01

4.7 Hierarchical Regression Analysis

4.7.1 Test of Moderation

The three step of hierarchical regression analysis was done to test the hypotheses that consist of the direct and moderating effects of knowledge sharing behavior among workers at SME Kedah. However, this study is including a moderator which is interpersonal trust. Moderation happens in the regression analysis when the relationship among the two variables is depends on the third variable which is referred to as a moderator (Cohen, Cohen, Leona & West, 2003). The effect of the moderator is characterized statistically as the interaction where it could affects the direction or strength of the relationship among dependent and the independent variables (Cohen, Cohen, Leona & West 2003).

As noted in Table 4.21, the analysis on knowledge sharing behavior revealed that the main effects of the sense of self-worth were significant (p<.01). Specifically, Step 2 was found to be not significant on the contribution of interpersonal trust (p>.01). The interaction between sense of self-worth and interpersonal trust was not found to be significant in step 3. Therefore, interpersonal trust was not found to be a moderator for the relationships between sense of self-worth and knowledge sharing behavior and hypothesis 5 was rejected. This result implies that trust does not influence the relationship between sense of self-worth and knowledge sharing behavior. In other words, if an individual feels it is worth to share knowledge with others, they don't take into account whether they trust or not the person that they shared the knowledge. To them, sharing knowledge is more important than thinking about the consequences that they will get by sharing the knowledge with others.

Table 4.21 Hierarchical Regression Analysis On Interpersonal Trust As Moderator In Relationship Between Sense Of Self-Worth And Knowledge Sharing Behavior

Variables	Std Beta Step 1	Std Beta Step 2	Std Beta Step 3
Independent variable			
Sense of self-worth	.445	.411	.098
Moderating variable			
Interpersonal Trust		.137	513
Interaction between variables			
Sense of self-worth x Knowledge sharing behavior			.793
R ²	.198	.216	.222
Adjusted R ² Change in R ²	.193	.205	.206
Significant change in F	.198	.018	.006
Durbin Watson	36.118	3.262	1.070
			1.868

In Table 4.22, step 1 was found to be significant (p<.01). Nevertheless, step 2 and 3 were not found to be significant (p>.01). The direct effects of the predictors significantly explained 25.7% of the variability knowledge sharing behavior. Therefore, interpersonal trust was not found to be a moderator for the relationships between attitudes and knowledge sharing behavior and hypotheses 6 was rejected. This results demonstrate that trust was not play a significant role in knowledge sharing when an individual possess positive attitudes about sharing knowledge with others. In other words, people normally would not think about whether they trust the person whom knowledge will be shared when they have such a positive attitude that sharing knowledge with others will create a better benefit for the organizations as a whole.

Table 4.22 Hierarchical Regression Analysis On Interpersonal Trust As Moderator In Relationship Between Attitude And Knowledge Sharing Behavior

Variables	Std Beta Step 1	Std Beta Step 2	Std Beta Step 3
Independent variable			
Attitude	.507	.486	022
Moderating variable			
Interpersonal Trust		.055	834
Interaction between variables			
Attitude x Knowledge sharing behavior			1.184
R ²	.257	.260	.271
Adjusted R ² Change in R ²	.252	.250	.256
Significant change in F	.257	.003	.011
Durbin Watson	50.558	.511	2.221
			2.072

In Table 4.23, step 1, 2, and 3 were not found to be significant (p>.01). The direct effects of the predictors namely, perceived organizational incentives have significantly explained 66% of the variability in knowledge sharing behavior. Contribution of interpersonal trust was not found to moderate the relationship between organizational incentives and knowledge sharing behavior and thus, hypotheses 7 was not supported. The results indicate that the interaction effects of organizational incentives and interpersonal trust has not added significant contribution in explaining the variation in knowledge sharing behavior. In other words, trust was not considered as important when incentives are involved in knowledge sharing context. One possible explanation for this might be participants in this study regards incentives as more important factor than looking at whether to trust

others before sharing the knowledge. As long as they get the incentives provided by the organization, they won't pay serious attention to the issue of trust.

Table 4.23
Hierarchical Regression Analysis On Interpersonal Trust As Moderator In
Relationship Between Perceived Organizational Incentives And Knowledge Sharing
Behavior

Variables	Std Beta Step 1	Std Beta Step 2	Std Beta Step 3
Independent variable			
Organizational incentives	.257	.190	.015
Moderating variable			
Interpersonal Trust		.158	011
Interaction between variables			
Organizational incentives x Knowledge sharing behavior			.294
R ²	.066	.087	.089
Adjusted R ² Change in R ²	.060	.074	.070
Significant change in F	.066	.020	.002
Durbin Watson	10.357	3.252	.332
			1.824

Based on Table 4.24, the analysis on knowledge sharing behavior revealed that the main effects on the management support were significant (p<.01). Specifically, Step 2 was found to be not significant on the contribution respect of interpersonal trust. However, the interaction between management support and interpersonal trust was not found to be significant in step 3. Therefore, interpersonal trust was not found to be a moderator for the relationships between management support and knowledge sharing behavior and hypotheses 8 was not supported. The results demonstrate that trust might not be as important as receiving support from the management when comes to sharing knowledge with others. To them, as long as they

continually received support from the management, they would not worry about the issue of trusting others when sharing the knowledge.

Table 4.24 Hierarchical Regression Analysis On Interpersonal Trust As Moderator In Relationship Between Management Support And Knowledge Sharing Behavior

Variables	Std Beta Step 1	Std Beta Step 2	Std Beta Step 3
Independent variable			
Management support	.233	.176	.105
Moderating variable			
Interpersonal Trust		.185	.079
Interaction between variables			
Management support x Knowledge sharing behavior			.146
R ²	.054	.085	.086
Adjusted R ² Change in R ²	.048	.073	.066
Significant change in F	.054	031	.000
Durbin Watson	8.383	4.890	057
			1.883

4.8 Conclusions

This chapter described the demographic characteristics of the 148 participants and the results of correlation and regression analyses. The results indicated that individual factor such as sense of self-worth and attitudes, and organization factor such as perceived organizational incentives and management support have significant positive relationship with knowledge sharing behavior. However, only individual sense of self-worth and attitudes makes the strongest contribution to explain the knowledge sharing behavior. Interpersonal trust was also not found to moderate the relationship between all the variables tested. The research implications, limitations and direction for future research are discussed in the next chapter, Chapter 5.

CHAPTER 5

RESEARCH IMPLICTIONS, RECOMMENDATIONS AND CONCLUSIONS

5.1 Introduction

In this concluding chapter, summary of research is first discussed. It then followed by the discussions on the research implications which include theoretical and practical implications. The chapter ends with a discussion on the limitations and direction for future research.

5.2 Summary of Research

The main objective of this study is to investigate factors that might influence knowledge sharing behavior among employees at Bumiputra SMEs. Specifically, the study was interested to test the relationship between individual factors such as sense of self-worth and attitudes and organizational factors such as organizational incentives and management support and knowledge sharing behavior. Interpersonal trust was also tested as a moderator in the relationship between sense of self-worth and knowledge sharing behavior, between attitudes and knowledge sharing behavior, between organizational incentives and knowledge sharing behavior and between management support and knowledge sharing behavior.

In this study, the hypotheses were tested using multiple regression analysis and hierarchical regression analysis. Multiple regression analysis was used to test hypotheses 1 to 4. Results indicate that only sense of self-worth and attitudes were found to be positively associated with knowledge sharing behavior. Therefore, only hypotheses 1 and 2 were supported. Results from hierarchical regression analysis revealed that interpersonal trust was found not moderate the relationship between sense of self-worth and knowledge sharing behavior, between attitude and knowledge sharing behavior, between organizational incentives and knowledge sharing behavior and between management support and knowledge sharing behavior. Therefore, hypotheses 5 to 8 were not supported.

5.3 Implications for Practice

The current research findings also have several implications for management. The research results demonstrate that knowledge sharing behavior was influence more by the individual factors rather than by the organizational factors. Since employees' attitude and feeling of self-worth contribute to knowledge sharing behavior, management of organization must find ways of motivating the employees and highlighting the benefits that they and the organization will gain through the knowledge sharing.

Interestingly, results from the study also revealed that organizational factors such as organizational incentives and management support might not be the best way to encourage employees to share their knowledge. Therefore, if the management of the organization plans to continue utilizing incentives as an effort to encourage their

employees to share knowledge, the incentives given must be attractive and relevant with the needs of the employees. Similarly, the kind of support provided by the management must also relevant with what the employees are expected.

In summary, the prescriptions discussed above are suggestive of the types of actions that management of the organization can take in encouraging their employees to share their knowledge. It is hoped that results from the study will encourage new thinking among the management. The research results reported in this study suggest the need for management to reconsider their effort in encouraging knowledge sharing at the workplace.

5.4 Limitations of Study and Directions for Future Research

There are limitations in the design of this study that might influence the interpretations and generalizations of these findings. First, the study was conducted on only Bumiputra SMEs. Thus, the findings only captured perception of Malay employees regarding the knowledge sharing behavior issues and cannot be generalized to other races. Secondly, the study only tested few individual and organizational factors. Based on the regression analysis, the model only explained thirty percent of the variance in knowledge sharing behavior. Therefore, there is a need for future research to extend the exploration of knowledge sharing behavior on other types of industries involving other races and involving other variables such as types of medium for knowledge sharing, technological factors and human resource practices.

5.5 Conclusions

The aim of this study was to examine the factors that influence knowledge sharing behavior. The results indicate that individual factors such as sense of self-worth and attitudes were related to knowledge sharing behavior. Since the study was conducted at Bumiputra SMEs only, the findings must be interpreted with cautious and cannot be generalized to represent other organization. It is hoped that through the examination of the factors that influence knowledge sharing behavior, a more complete understanding of the kind of effort needed to enhance knowledge sharing will be achieved.

References

- Ahmad, H., Sharom, N., & Abdullah, C. S. (2006, March). *Knowledge sharing behavior in public sector: The business process management perspective*. Paper presented at the meeting of the Knowledge Management International Conference and Exhibition, Kuala Lumpur, Malaysia.
- Aiken, L. R. (2000). *Psychological testing and assessment* (10th ed.). Boston, MA: Allyn & Bacon.
- Al-Alawi, A. I., Al-Marzooqi, N. Y., & Mohammed, Y. F. (2007). Organizational culture and knowledge sharing: Critical success factors. *Journal of Knowledge Management*, 11(2), 22 42.
- Alvesson, M. (2004). *Knowledge work and knowledge-intensive firms*. USA: Oxford University Press.
- Alvesson, M. (2001). Knowledge work: Ambiguity, image and identity. *Human Relations*, 54(7), 863 886.
- Argote, L., Ingram, P., Levine, J. M., & Moreland, R. L. (2000). Knowledge transfer in organizations: Learning from the experiences of others. *Organizational Behavior and Human Decision Processes*, 82(1), 1-8.
- Armbrecht, F. M. R., Chapas, R. B., Chappelow, C. C., Farris, G. F., Friga, P. N., Hartz, C. A., McIlvaine, M. E., Postle, S. R., & Whitwell, G. E. (2001). Knowledge management in research and development. *Research-Technology Management*, 44(4), 28 48.
- Armstrong, M. (2013). *Employee reward* (3rd ed.). London: Chartered Institute of Personnel and Development.
- Bakker, M., Leenders, R. T. A. J., Gabbay, S. M., Kratzer, J., & Van, E. J. M. L. (2006). Is trust really social capital? Knowledge sharing in product development projects. *The Learning Organization*, 13(6), 594 605.
- Bart, H. V.D., & Ridder, J. A. (2004). Knowledge sharing in context: The influence of organizational commitment, communication climate and CMC use on knowledge sharing. *Journal of Knowledge Management*, 8(6), 117 130.

- Barlett, J. E., Kotrlik, J. W., & Higgins, C. C. (2001). Organizational research: Determining appropriate sample size in survey research. *Information Technology, Learning and Performance Journal*, 19(1), 23 29.
- Bartol, K. M., & Srivastava, A. (2002). Encouraging knowledge sharing: The role of organizational reward systems. *Journal of Leadership & Organizational Studies*, *9*(1), 64-76.
- Beaver, G. & Hutchings, K. (2005). Training and developing an age diverse workforce in SMEs: The need for a strategic approach. *Education & Training*, 47 (8/9), 592 604.
- Bart, H. V.D., & Ridder, J. A. (2004). Knowledge sharing in context: The influence of organizational commitment, communication climate and CMC use on knowledge sharing. *Journal of Knowledge Management*, 8(6), 117 130.
- Bock, G. W., Zmud, R. W., Kim, Y. G., & Lee, J. N. (2005). Behavioral intention formation in knowledge sharing: Examining the role of extrinsic motivators, social-psychological forces and organizational climate. *MIS Quarterly*, 29, 87 111.
- Bock, G. W., & Kim, Y. (2002). Breaking the myths of rewards: An exploratory study of attitudes about knowledge sharing. *Information Resources Management Journal*, 15(2), 14 21.
- Cabrera, E., & Cabrera, A. (2005). Fostering knowledge sharing through people management practices. *The International Journal of Human Resource Management*, 16(5), 720 735.
- Cabrera, A., & Cabrera, E. F. (2002). Knowledge-sharing dilemmas. *Organization Studies*, 23(5), 687–710.
- Caldwell, C., & Clapham, S. (2003). Organizational Trustworthiness: An International Perspective. *Journal of Business Ethics*, 47(4), 349-364, DOI: 310.1023/A:1027370104302.
- Carnevale, D. (1995). Trustworthy Government: Leadership and Management Strategies for Building Trust and High Performance: Jossey-Bass.

- Chang, H. H., & Chuang, S. S. (2011). Social capital and individual motivations on knowledge sharing: Participant involvement as moderator. *Information & Management*, 48, 9 18.
- Chay, Y. W., Menkhoff, T. Loh, B., & Evers, H., D. (2004). What makes knowledge sharing in organizations tick? An empirical study. Retrieved 28 January 2014, from http://ink.library.smu.edu.sg/lkcsb_research/2343
- Cheng, M. Y., Ho, J. S. Y., & Lau, P. M. (2009). Knowledge sharing in academic institutions: A study of Multimedia University Malaysia. *Electronic Journal of Knowledge Management*, 7(3), 313 324.
- Cheng, C. M., & Chen, L. J. (2007). A study on the knowledge sharing of health technology for technological college students' mobile learning. *International Journal of Education and Information Technologies*, *I*(1), 24 29.
- Chennamaneni, A. (2006). *Determinants of knowledge sharing behaviors: Developing and testing and integrated theoretical model*. (Doctoral dissertation). Retrieved from http://dspace.uta.edu/bitstream/handle/10106/305/uta-etd-1428.pdf?sequence=1
- Chow, W. S. & Chan, L. S. (2008). Social network social trust and shared goals in organizational knowledge sharing. *Information & Management*, 45 (7), 458 465.
- Chowdury, S. (2005). The role of affect and cognition-based trust in complex knowledge sharing. *Journal of Managerial Issues*, 17(3), 310 326.
- Coakes, S. J., & Steed, L. G. (2003). SPSS: Analysis without anguish: Version 11.0 for Windows. Brisbane: Jacaranda Wiley.
- Cockrell, R. C., Stone, D. N., & Wier, B. (2009). *The Janus Faced influence of financial incentives on knowledge sharing*. Retrieved 10 January 2014, from http://www.wlu.ca/documents/37166/Dan_Stone_Paper.pdf.
- Cohen (1988.). *Statistical power analysis for the behavioral sciences*. Hillsdale, New Jersey: Lawrence Erlbaum.

- Cohen, J., Cohen, P., Leona, S. A., & West, S. H. (2003). *Applied multiple regression/* correlation analysis for the behavioral sciences. Hillsdale, New Jersey: L. Erlbaum Associates.
- Connelly, C. E., & Kelloway, K. (2003). Predictors of employees' perceptions of knowledge sharing cultures. *Leadership & Organizational Development Journal*, 24(5/6), 294-301.
- Davenport, T. H., & Prusak, L. (1998). Working knowledge: How Organizations Manage What They Know. Cambridge, MA: Harvard Business School Press.
- Davenport, T. H. (1994). Saving IT's soul: Human centered information management. *Harvard Business Review*, 72(2), 119 – 131.
- De, L. D. W., & Fahey, L. (2000). Diagnosing cultural barriers to knowledge management. *The Academy of Management Executive*, 14(4), 113 127.
- Dignum, V., & Dignum, F. (2003). Knowledge market: Agent-mediated knowledge sharing. In V. Marik, J., Muller & M. Pechoucek (Eds.). *International central & Eastern European conference on multi-agent systems* (pp. 168-179). Prague, Czech Republic: Springer. DOI: 10927878
- Felin, T., & Hesterly, W. (2007). The knowledge-based view, nested heterogeneity and new value creation: Philosophical considerations on the locus of knowledge. *Academy of Management Review*, 32, 195 218.
- Felin, T., & Foss, N. J. (2005). Strategic organization: A field in search of microfoundations. *Strategic Organization*, *3*(4), 441 550.
- Fishbein, M., & Ajzen, I. (1975). *Beliefs, attitude, intention and behavior: An introduction to theory and research.* Reading, MA: Addison-Wesley.
- Frost, A. (2013). *An educational KM site: Knowledge sharing*. Retrieved 9 January 2014, from http://www.knowledge-management-tools.net/knowledge-sharing.html
- Garcia-Marza, D. (2005). Trust and Dialogue: Theoretical Approaches to Ethics Auditing. *Journal of Business Ethics*, *57*(3), 209-219, DOI: 210.1007/s10551-10004-18202-10557.

- Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. *MIS Quarterly*, 27(1), 51 90.
- Given, L. M. (2008). *The Sage encyclopedia of qualitative research methods*. Los Angeles, California: Sage Publications.
- Guimaraes, T., & Igbaria, M. (1997). Client/server system success: Exploring the human side. *Journal of Decision Sciences*, 28(4), 851 876.
- Hahn, J., & Subrami, M.R. (2000, December). A framework of knowledge management systems: Issues and challenges for theory and practice. Paper presented at the meeting of the Proceedings of the 21st International Conference on Information Systems, Brisbane, Australia.
- Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). *Multivariate data analysis* (5th ed.). Upper Saddle River, New Jersey: Prentice Hall.
- Harrison, R., & Kessels, J. (2004). *Human resource development in a knowledge economy An organizational view.* New York: Palgrave Macmillan.
- Hewitt, J. P. (2009). *Oxford handbook of positive psychology*. New York: Oxford University Press.
- Huber, J. C. (2001). A new method for analyzing scientific productivity. *Journal of the American Society for Information Science and Technology*. 52 (13), 1089 1099.
- Husted, K., Michailova, S., & Minbaeva, D. (2005, June). *Knowledge sharing and organizational performance: The role of extrinsic and intrinsic motives*. Paper presented at the meeting of the International Human Resources Management Conference, Cairns, Australia.
- Hulley, S. B. (2007). *Designing clinical research*. Baltimore, MD: Lippincott, Williams & Wilkins.
- Igbaria, M., Zinatelli, N., Cragg, P., & Cavaye, A. L. M. (1997). Personal computing acceptance factors in small firms: A structural equation model. *Journal MIS Quarterly*, 21(3), 279 305.

- Joseph, B., & Jacob, M. (2011). Knowledge sharing intentions among IT professionals in India. In S. Dua, S. Sahni, D.P. Goyal (Eds.) *Information intelligence, systems, technology and management:* 5th international conference, proceedings communications in computer and information science (pp. 23 31). Gurgaon, India: Springer. DOI: 10.1007/978-3-642-19423-8
- Kankanhalli, A., Tan, B.C. Y., & Wei, K. K. (2005). Contributing knowledge to electronic knowledge repositories: An empirical investigation. *MIS Quarterly*, 29(1), 113 145.
- Kelloway, E. K. (2000). Knowledge work as organizational behavior. *Queen's School of Business Framework Paper*, 1 25.
- King, W. R., & Marks, P. V., Jr. (2008). Motivating knowledge sharing through a knowledge management system. *Omega*, *36*(1), 131 146.
- Kolekofski, J. K. E., & Heminger, A. R. (2003). Beliefs and attitudes affecting intentions to share information in an organizational setting. *Information & Management*, 40(6), 521 532.
- Kreuger, L., & Neuman, W. L. (2006). Social work research methods: Qualitative and quantitative approaches with research navigator. USA: Pearson/Allyn and Bacon.
- Kulkarni, U. R., Ravindran, S., & Freeze, R. (2006). A knowledge management success model: Theoretical development and empirical validation. *Journal of Management Information Systems*, 23(3), 309 347.
- Lagerstrom, K., & Anderson, M. (2003). Creating and sharing knowledge within a transactional team the development of a global business system. *Journal of World Business*, 38, 84 95.
- Larzelere, R. E., & Huston, T. L. (1980). The dyadic trust scale: Toward understanding interpersonal trust in close relationships. *Journal of Marriage* and the Family, 42 (August), 595 604.
- Law, C. H., & Ngai, E. W. T. (2003). An empirical study of the effects of knowledge sharing and learning behaviors on firm performance. *Expert Systems With Applications*, 34(4), 2342 2349

- Lee, J. H., Kim, Y. G., & Kim, M. Y. (2006). Effects of managerial drivers and climate maturity on knowledge-management performance: Empirical validation. *Information Resources Management Journal*, 19(3), 48 60.
- Lee, J. (2001). The impact of knowledge sharing, organizational capability and partnership quality on IS outsourcing success. *Information & Management*, 38(5), 323 335.
- Liebowitz, J. (2003). A knowledge management strategy for the Jason organization: A case study. *Journal of Computer Information Systems*, 44(2), 1-5.
- Lin, H. F. (2007a). Knowledge sharing and firm innovation capability: An empirical study. *International Journal of Manpower*, 28(3/4), 315 332
- Lin, C. P. (2007b). To share or not to share: Modeling tacit knowledge sharing, its mediators and antecedents. *Journal of Business Ethics*, 70(4), 411 428.
- Meyer, P., & Meyer, M. (2009, June). Boom & bust and financial incentives: Bringing the organization back into performance incentivization. Paper presented at the meeting of the Summer Conference 2009 on Copenhagen Business School. Solbjerg Plads 3: Denmark.
- McAllister, D. (1995). Affect and Cognition Based Trust as Foundations for Interpersonal Cooperation in Organizations. *Academy of Management Journal*, *38*(1), 24-59, DOI: 10.2307/i302945.
- Milkovich, G. T., & Newman, J. M. (2001). Compensation. New York: McGraw-Hill.
- Montes, F.J.L., Moreno, A. R., & Fernandez, L. M. M. (2004). Assessing the organizational climate and contractual relationship for perceptions of support for innovation. *International Journal of Manpower*, 25(2), 167 180.
- Mooradian, T. Renzl, B., & Matzler, K. (2006). Who trust? Personality, trust and knowledge sharing. *Management Learning*, *37*(4), 523 540.
- Morgan, R., & Hunt, S. (1994). The Commitment Trust Theory of Relationship Marketing. *The Journal of Marketing*, 58(3), 20-38, DOI: 10.2307/i253430.

- Nelson, A., Sabatier, R., & Nelson, W. (2006). Toward an understanding of global Entrepreneurial Knowledge Management (EKM) practices: A preliminary investigation of EKM in France and the U. S. *Journal of Applied Management and Entrepreneurship*, 11(2), 70 89.
- Newman, B. M. & Newman, P. R. (1975). Development through life: A psychosocial approach. Dorsey: Homewood.
- Nonaka, I., & Konno, N. (1998). The concept of 'Ba': Building a foundation for knowledge creation. *California Management Review*, 40(3), 40 54.
- O' Dell, C., & Grayson, C. J. J. (1998). If only we knew what we know: Identification and transfer of internal best practices. *California Management Review*, 40(3), 154 174.
- Ogunmoye, E. M. (2008). A survey of the attitude of students towards online education in South-Western Nigerian Universities. (Masters Thesis, University of Ibadan, Nigeria). Retrieved from file:///C:/Users/Ain/Google%20Drive/Thesis/References/Ogunmoye.htm
- Pallant, J. (2010). SPSS Survival Manual (4th ed.). Berkshire, England: McGraw-Hill.
- Philip, M. D., & Marshall, W. M. (2010). Combining financial and organizational incentives to better align individual behavior with organizational goals.

 Retrieved 16 November 2013, from

 http://www.researchgate.net/publication/228197949 Combining Financial an d Organizational Incentives to Better Align Individual Behaviour with Organizational Goals.
- Quigley, N. R., Tesluk, P. E., Locke, E. A. & Bartol, K. M. (2007). A multilevel investigation of the motivational mechanisms underlying knowledge sharing and performance. *Organization Science*, 18 (1), 71 88
- Rahab, Sulistyandari & Sudjono (2011). The development of innovation capability of Small Medium Enterprises through knowledge sharing process: An empirical study of Indonesian creative industry. *International Journal of Business and Social Science*, 2(21), 112-123.
- Ramamurthy, K., & Premkumar, G. (1995). Determinants and outcomes of electronic data interchange diffusion. *IEEE Transactions on Engineering Management*, 42(4), 332 351.

- Ramayah T., Yeap, J. A. L., & Ignatius, J. (2013). An empirical inquiry on knowledge sharing among academicians in higher learning institutions. *Minerva*, 51(2), 131 154.
- Renzl, B., Matzler, K., & Mader, C. (2005, March). *Impact of trust in colleagues and management on knowledge sharing within and across work groups*. Paper presented at the meeting of the CD-Proceedings of the 6th European Conference on Organizational Knowledge, Learning and Capabilities, Bentley College, Boston.
- Reige, A. (2005), Three-dozen knowledge-sharing barriers managers must consider. Journal of Knowledge Management, 9(3), 18-35.
- Report of Associated Chinese Chambers of iif Commerce and Industry of Malaysia (ACCCIM) 2012 SMEs Survey. Retrieved 21 March 2013, from http://www.smecorp.gov.my/v4/node/2124.
- Rhoades, L., & Eisenberger, R. (2002). Perceived organizational support: A review of the literature. *Journal of Applied Psychology*, 87(4), 698-714.
- Roscoe, J. T. (1975). Fundamental research statistics for the behavioral sciences (2nd ed.). New York: Holt Rinehart & Winston.
- Ruppel, C. P., & Harrington, S. J. (2001). Sharing knowledge through intranets: A study of organizational culture and intranet implementation. *IEEE Transactions on Professional Communications*, 44(1), 37-52.
- Ryu, S., Ho, S. H., & Han, I. (2003). Knowledge sharing behavior of physicians in hospitals. *Experts Systems with Applications*, 25, 113 122.
- Samieh, H. M., & Wahba, K. (2007, January). *Knowledge sharing behavior from Game theory and socio-psychology perspective*. Paper presented at the meeting of the Proceedings of the 40th Annual International Conference on System Sciences, Big Island, Hawaii.
- Smith, E. R., & Mackie, D. M. (2007). *Social psychology* (3rd ed.). Philadelphia: Psychology Press.

- So, J. C. F., & Bolloju, N. (2005). Explaining the intentions to share and reuse knowledge in the context of IT service operations. *Journal of Knowledge Management*, 9(6), 30 41.
- Stanley, C. (2002). *Knowing and acknowledging, must we mean what we say?* USA: Cambridge University Press.
- Syed-Ihksan, R F. (2004). Benchmarking knowledge management in a public oganisation in Malaysia. *Benchmarking*, *Bradford*, 11(3), 238.
- Taminiau, Y., Smit, W., & Lange, A. D. (2009). Innovation in management consulting firms through informal knowledge sharing. *Journal of Knowledge Management*, 13(1), 42 55.
- Tan, H. H., & Zhao, B. (2003). Individual and perceived contextual level antecedents of individual technical information inquiry in organizations. *Journal of Psychology*, 137(6), 597 621.
- Tsai, W. (2000). Social capital relatedness and the formation of intraorganizational linkages. *Strategic Management Journal*, 21(9), 925 939.
- Wang, S., & Noe, R. A. (2010). Knowledge sharing: A review and directions for future research. *Human Resource Management Review*, 20(2), 115 131.
- Wasko, M. M., & Faraj, S. (2005). Why should I share? Examining knowledge contribution in networks of practice. *MIS Quarterly*, 29(1), 35 57.
- Yahya, S., & Goh, W. K. (2002). Managing human resources toward achieving knowledge management. *Journal of Knowledge Management*, 6(5), 457 468.
- Yang, C., & Chen, L. C. (2007). Can organizational knowledge capabilities affect knowledge sharing behavior? *Journal of Information Science*, 33(1), 95 109.
- Yao, L. J., Kam, T. H. Y., & Chan, S. H. (2007). Knowledge sharing in Asian public administration sector: The case of Hong Kong. *Journal of Enterprise Information Management*, 20(1), 51 69.
- Yi, J. (2009). A measure of knowledge sharing behavior: Scale development and validation. *Knowledge Management Research & Practice*, 7(1), 65 81.

- Yilmaz, C., & Hunt, S. (2001). Salesperson cooperation: The influence of relational, task, organizational and personal factors. *Journal of the Academy of Marketing Science*, 29(4), 335 357.
- Yu, C., Yu, T. F., & Yu, C. C. (2013). Knowledge sharing, organizational climate and innovative behavior: A cross-level analysis of effects. *Social Behavior and Personality: An International Journal*, 41(1), 143-156.

APPENDIX A

KAJIAN TENTANG GELAGAT PERKONGSIAN PENGETAHUAN

Tuan/Puan yang dihormati,

Terima kasih di atas persetujuan anda untuk menyertai penyelidikan tentang gelagat perkongsian pengetahuan.

Saya amat menghargai sekiranya anda dapat menjawab soalan dengan berhati-hati kerana maklumat yang anda beri akan mempengaruhi ketepatan dan kejayaan penyelidikan ini. Ia akan mengambil masa tidak lebih daripada 30 minit untuk menyiapkan soal selidik ini. Kesemua jawapan akan dianggap sebagai sulit dan hanya akan digunakan untuk tujuan kajian ini sahaja.

Sekiranya anda mempunyai apa-apa persoalan mengenai penyelidikan ini, anda boleh kemukakan kepada saya, Ain Zuraini binti Zin Aris seperti alamat di bawah.

Terima kasih di atas kerjasama yang diberi dan masa yang diambil untuk menjawab soal selidik ini.

Yang benar,

Ain Zuraini binti Zin Aris Pelajar Pascasiswazah Othman Yeop Abdullah Graduate School of Business Universiti Utara Malaysia

Email: ain.tOen@yahoo.com

HP: 016-2062640

BAHAGIAN SATU

		Sangat tidak setuju	Tidak setuju	Neutral	Setuju	Sangat Setuju
1.	Saya berkongsi pengetahuan berkaitan kerja (know-what) dengan rakan sekerja.	1	2	3	4	5
2.	Saya berkongsi pengetahuan perniagaan seperti pelanggan, produk, pembekal dan pesaing dengan rakan sekerja.	1	2	3	4	5
3.	Saya berkongsi laporan dalaman dan dokumen rasmi yang lain dengan rakan sekerja.	1	2	3	4	5
4.	Saya berkongsi pengalaman kerja dengan rakan sekerja.	1	2	3	4	5
5.	Saya berkongsi kepakaran daripada pembelajaran atau latihan dengan rakan sekerja.	1	2	3	4	5
6.	Saya berkongsi pengetahuan berkaitan kerja (know-why) dengan rakan sekerja.	1	2	3	4	5

BAHAGIAN DUA

		Sangat tidak setuju	Tidak setuju	Neutral	Setuju	Sangat setuju
1.	Dengan berkongsi pengetahuan yang saya ada dengan ahli lain dalam organisasi akan dapat membantu menyelesaikan masalah.	1	2	3	4	5
2.	Dengan berkongsi pengetahuan yang saya ada akan mewujudkan peluang perniagaan baru bagi organisasi.	1	2	3	4	5
3.	Dengan berkongsi pengetahuan yang saya ada akan dapat memperbaiki proses kerja dalam organisasi.	1	2	3	4	5
4.	Dengan berkongsi pengetahuan yang saya ada akan dapat meningkatkan produktiviti dalam organisasi.	1	2	3	4	5
5.	Dengan berkongsi pengetahuan yang saya ada akan dapat membantu organisasi mencapai objektif prestasinya.	1	2	3	4	5
6.	Saya berasa sangat bermanfaat sekiranya saya berkongsi pengetahuan dengan ahli-ahli lain.	1	2	3	4	5
7.	Saya berasa sangat gembira sekiranya saya berkongsi pengetahuan dengan ahli-ahli yang lain.	1	2	3	4	5
8.	Saya berasa sangat teruja sekiranya saya berkongsi pengetahuan dengan ahli-ahli yang lain.	1	2	3	4	5
9.	la adalah satu langkah yang bijak jika saya berkongsi pengetahuan dengan ahli-ahli yang lain.	1	2	3	4	5

		Sangat tidak setuju	Tidak setuju	Neutral	Setuju	Sangat setuju
10.	Bagi saya, berkongsi pengetahuan dengan rakan sekerja adalah tidak selamat.	1	2	3	4	5
11.	Bagi saya, berkongsi pengetahuan dengan rakan sekerja adalah baik.	1	2	3	4	5
12.	Bagi saya, berkongsi pengetahuan dengan rakan sekerja adalah sia-sia.	1	2	3	4	5
13.	Bagi saya, berkongsi pengetahuan dengan rakan sekerja adalah satu tindakan yang bijak.	1	2	3	4	5

BAHAGIAN TIGA

		Sangat tidak setuju	Tidak setuju	Neutral	Setuju	Sangat setuju
1.	Berkongsi pengetahuan dengan rakan sekerja akan meningkatkan keberangkalian saya dalam mendapatkan tugasan kerja yang lebih baik.	1	2	3	4	5
2.	Berkongsi pengetahuan dengan rakan sekerja akan meningkatkan keberangkalian saya mendapatkan kenaikan pangkat.	1	2	3	4	5
3.	Berkongsi pengetahuan dengan rakan sekerja akan meningkatkan keberangkalian saya mendapatkan gaji yang lebih tinggi.	1	2	3	4	5
4.	Berkongsi pengetahuan dengan rakan sekerja akan meningkatkan keberangkalian saya mendapatkan bonus.	1	2	3	4	5
5.	Saya berharap akan mendapat jaminan pekerjaan yang lebih baik apabila saya berkongsi pengetahuan dengan rakan sekerja.	1	2	3	4	5
6.	Pengurus atasan berpendapat bahawa menggalakkan perkongsian pengetahuan dengan rakan sekerja adalah berfaedah.	1	2	3	4	5
7.	Pengurus atasan sentiasa memberi sokongan dan galakan kepada pekerja untuk berkongsi pengetahuan dengan rakan sekerja mereka.	1	2	3	4	5
8.	Pengurus atasan menyediakan bantuan dan sumber yang diperlukan bagi membolehkan pekerja untuk berkongsi pengetahuan.	1	2	3	4	5
9.	Pengurus atasan sangat bersungguh untuk melihat pekerja gembira berkongsi pengetahuan dengan rakan sekerja mereka.	1	2	3	4	5

BAHAGIAN EMPAT

		Sangat tidak setuju	Tidak setuju	Neutral	Setuju	Sangat setuju
1.	Saya menganggap rakan sekerja sebagai orang yang saya boleh percayai.	1	2	3	4	5
2.	Saya menganggap rakan sekerja sebagai orang yang saya boleh bergantung dalam melakukan apa yang betul.	1	2	3	4	5
3.	Saya menganggap rakan sekerja sebagai orang yang saya boleh bergantung dalam menjalankan kerja dengan betul.	1	2	3	4	5
4.	Saya menganggap rakan sekerja sebagai orang yang sentiasa setia.	1	2	3	4	5
5.	Saya menganggap rakan sekerja sebagai orang yang saya yakini.	1	2	3	4	5

MAKLUMAT DEMOGRAFI

Bahagian ini mengandungi beberapa makumat umum mengenai diri sendiri. Sila tandakan ($\sqrt{\ }$) di dalam kotak yang sesuai atau isi ruang kosong yang disediakan.

1.	lentine cover
1.	Jantina saya:
	Lelaki Perempuan
2.	Umur saya:
	[] Bawah 20 tahun
	[] 31 – 40 tahun [] 41 – 50 tahun
	[] 51 tahun dan ke atas
3.	Status perkahwinan saya:
	Bujang Berkahwin Bercerai / Berpisah / Duda
	Bujang Berkahwin Bercerai / Berpisah / Duda
4.	Kelayakan tertinggi saya:
	[] PMR
	[] SPM [] ljazah
	[] Lain-lain (sila nyatakan):
5.	Gaji bulanan saya:
	[] RM 900 dan ke bawah
	[] RM 901 – RM 1500
	[] RM 1500 dan ke atas

6.	Bilan	gan tahun bersama organisasi sekarang:							
Kurang dari setahun				1 – 3 tahun					
		4 – 7 tahun		Lebih daripada 7 tahun					
7.	Jawa	tan semasa saya:							
8. Jenis Perusahaan Kecil dan Sederhana									
		Pembinaan				Perlombongan dan kuari			
		Perkilangan (termasuk asas tan		ii)		Pertanian utama			
	Perkilangan perkhidmatar		n berkaitan			Perkhidmatan (Termasuk ICT)			
		Lain-lain, sila nyatakan:				· 			

----TERIMA KASIH DI ATAS KERJASAMA ANDA----

SPSS Output

GET

FILE='C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test_1.sav'.
DATASET NAME DataSet1 WINDOW=FRONT.

FREQUENCIES VARIABLES=Jantina Umur Status Kelayakan Gaji Biltahun PKS /STATISTICS=MINIMUM MAXIMUM /ORDER=ANALYSIS.

Frequencies

[DataSetl] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test_1.sav

Statistics

		Jantina	Umur	Status	Kelayakan	Gaji bulanan
N	Valid	148	148	148	148	148
Ì	Missing	0	0	0	0	0
Minimum		1.00	1.00	1.00	1.00	1.00
Maximum		2.00	5.00	3.00	5.00	3.00

Statistics

		Bilangan tahun bersama organisasi sekarang	Jenis PKS
N	Valid	148	148
	Missing	0	0
Minimum		1.00	1.00
Maximum		4.00	7.00

Frequency Table

Jantina

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Lelaki	79	53.4	53.4	53.4
ļ	Perempuan	69	46.6	46.6	100.0
	Total	148	100.0	100.0	

Umur

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Bawah 20 tahun	8	5.4	5.4	5.4
	21 - 30 tahun	72	48.6	48.6	54.1
	31 - 40 tahun	42	28.4	28.4	82.4
	41 - 50	20	13.5	13.5	95.9
	51 tahun dan ke atas	6	4.1	4.1	100.0
	Total	148	100.0	100.0	

Jenis PKS

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Pembinaan	12	8.1	8.1	8.1
	Perlombongan dan kuari	6	4.1	4.1	12.2
	Perkilangan (termasuk asas tani)	26	17.6	17.6	29.7
	Pertanian utama	9	6.1	6.1	35.8
ļ	Perkilangan perkhidmatan berkaitan	35	23.6	23.6	59.5
	Perkhidmatan (termasuk ICT)	24	16.2	16.2	75.7
	Lain- lain	36	24.3	24.3	100.0
	Total	148	100.0	100.0	

MVA VARIABLES=KSB2 KSB3 KSB4 KSB5 KSB6 IF2 IF3 IF4 IF5 IF6 IF7 IF8 IF9 IFF1 0 IF11 IFF12 IF13 OF2 OF3 OF4 OF5 OF6 OF7 OF8 OF9 IT2 IT3 IT4 IT5 IF1 OF1 I T1 Gender Age Status Qualification Income Jobtenure SME

```
/MAXCAT=25
/ID=KSB1
/CATEGORICAL=Gender Age Status Qualification Income Jobtenure SME
/TTEST PROB PERCENT=5
/CROSSTAB PERCENT=5
/TPATTERN PERCENT=5
/LISTWISE
/PAIRWISE
/EM(TOLERANCE=0.001 CONVERGENCE=0.0001 ITERATIONS=100)
/REGRESSION(TOLERANCE=0.001 FLIMIT=4.0 NPREDICTORS=1 ADDTYPE=RESIDUAL).
```

MVA

[DataSet1] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test 1.sav

Warnings

There are no missing values. The t statistics are not computed.

There are no variables with 5% or more missing values. CROSSTAB tables are not produced.

There are no missing values. TPATTERN is not produced.

There are no missing values. EM estimates are not computed.

There are no missing values. Regression estimates are not computed.

Univariate Statistics

				Missing		No. of Ex	tremes ^b
	N	Mean	Std. Deviation	Count	Percent	Low	High
KSB2	148	3.7905	.85915	0	.0	0	0
KSB3	148	2.8784	1.08738	0	.0	0	0
KSB4	148	4.1757	.74429	0	.0	6	0
KSB5	148	4.1216	.61617	0	.0		•
KSB6	148	4.0878	.68937	0	.0	3	0
IF2	148	3.8986	.66741	0	.0	0	0
IF3	148	4.0541	.59228	0	.0	•	•
IF4	148	4.1149	.63378	0	.0	0	0
IF5	148	4.0270	.63830	0	.0		
IF6	148	4.1689	.70362	0	.0	0	0
IF7	148	4.0541	.76295	0	.0	3	0
IF8	148	3.6757	.85090	0	.0	3	0
IF9	148	4.1081	.64031	0	.0	0	0
IFF10	148	2.2500	1.12410	0	.0	0	0
IF11	148	4.0135	.74675	0	.0		
IFF12	148	1.8919	.93412	0	.0	0	14
IF13	148	4.0405	.72729	0	.0	2	0
OF2	148	2.9797	.87652	0	.0	0	0
OF3	148	2.8851	.94418	0	.0	0	0
OF4	148	2.8311	.96460	0	.0	0	8
OF5	148	3.3919	.93048	0	.0	5	0
OF6	148	4.0203	.65434	0	.0		
OF7	148	3.9324	.74379	0	.0	-	
OF8	148	3.6892	.75459	0	.0	0	0
OF9	148	3.7905	.81025	0	.0	0	0
IT2	148	3.2027	.95447	0	.0	0	0
IT3	148	3.2905	.97068	0	.0	8	0
IT4	148	3.0000	.88832	0	.0	0	0
IT5	148	3.1757	.94557	0	.0	8	0
IF1	148	4.1892	.62107	0	.0	0	0
OF1	148	3.7703	.83377	0	.0	0	0
IT1	148	3.3581	.85722	0	.0	0	0
Gender	148			0	.0		
Age	148			0	.0		
Status	148			0	.0		
Qualification	148			0	.0		
Income	148		_	0	.0		

EXAMINE VARIABLES=MeanKSB MeanIF MeanOF MeanIT

/PLOT STEMLEAF HISTOGRAM NPPLOT

/STATISTICS DESCRIPTIVES

/CINTERVAL 95

/MISSING LISTWISE

/NOTOTAL.

Explore

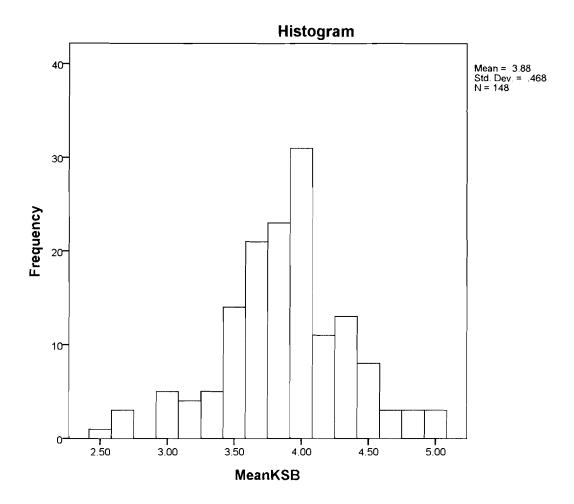
[DataSetl] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test_1.sav

Case Processing Summary

		Cases							
	Valid		Miss	sing	Total				
	N	Percent	N	Percent	N	Percent			
MeanKSB	148	100.0%	0	.0%	148	100.0%			
MeanIF	148	100.0%	0	.0%	148	100.0%			
MeanOF	148	100.0%	0	.0%	148	100.0%			
MeanIT	148	100.0%	0	.0%	148	100.0%			

Descriptives

			Statistic	Std. Error
MeanKSB	Mean	<u></u>	3.8829	.03847
	95% Confidence Interval for Mean	Lower Bound	3.8069	
	for Mean	Upper Bound	3.9589	
	5% Trimmed Mean		3.8884	
	Median		3.8333	
	Variance		.219	
	Std. Deviation		.46797	
	Minimum		2.50	
	Maximum		5.00	
	Range		2.50	
	Interquartile Range		.50	
	Skewness		216	.199
	Kurtosis		.652	.396
MeanIF	Mean		3.7297	.03171
	95% Confidence Interval	Lower Bound	3.6671	
	for Mean	Upper Bound	3.7924	
	5% Trimmed Mean		3.7337	
	Median		3.7692	
	Variance		.149	
	Std. Deviation		.38576	
	Minimum		2.85	
	Maximum		4.54	
	Range		1.69	
	Interquartile Range		.38	
	Skewness		122	.199
_	Kurtosis		324	.396

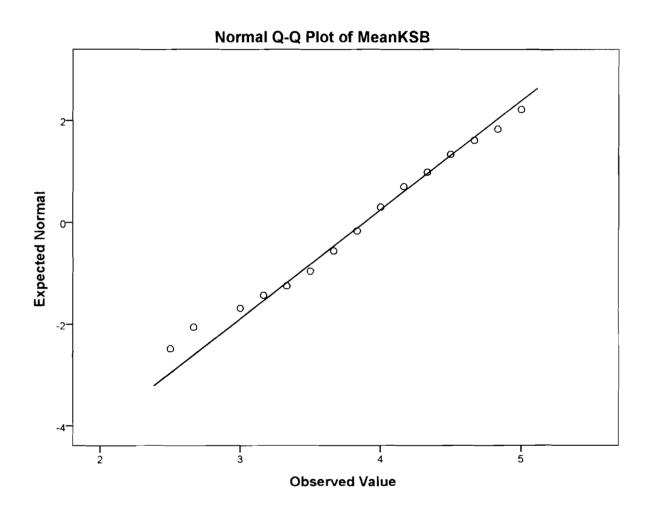

Descriptives

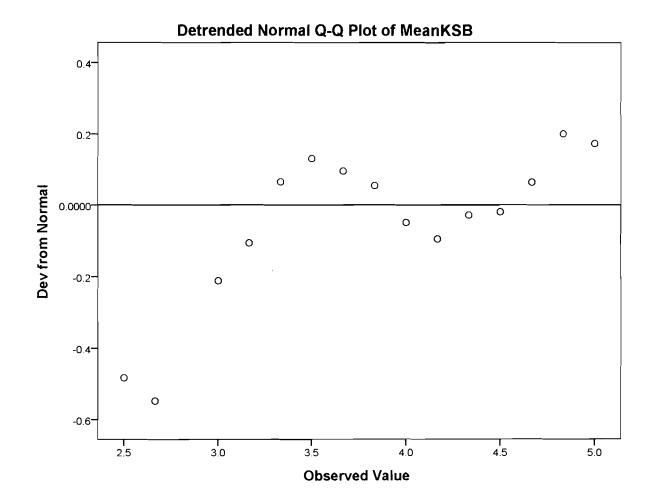
			Statistic	Std. Error
MeanOF	Mean		3.4767	.04734
	95% Confidence Interval	Lower Bound	3.3832	
	for Mean	Upper Bound	3.5703	
	5% Trimmed Mean		3.4708	
	Median		3.4444	
	Variance		.332	
	Std. Deviation		.57586	
	Minimum		2.22	
	Maximum		5.00	
	Range		2.78	
	Interquartile Range		.89	
	Skewness		.082	.199
	Kurtosis		292	.396
MeanIT	Mean		3.2054	.06389
	95% Confidence Interval	Lower Bound	3.0792	
	for Mean	Upper Bound	3.3317	
	5% Trimmed Mean		3.2231	
	Median		3.4000	
	Variance		.604	
	Std. Deviation		.77721	
	Minimum		1.20	
	Maximum		5.00	
	Range		3.80	
	Interquartile Range		1.20	
	Skewness		396	.199
	Kurtosis		325	.396

Tests of Normality

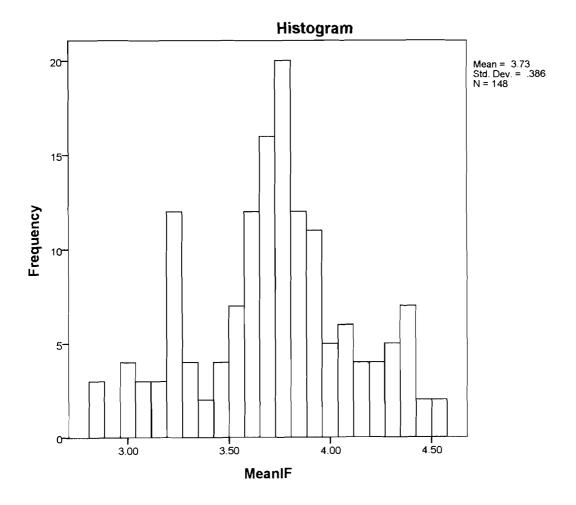
	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
MeanKSB	.124	148	.000	.972	148	.004	
MeanIF	.100	148	.001	.976	148	.012	
MeanOF	.080	148	.022	.987	148	.187	
MeanIT	.113	148	.000	.964	148	.001	

a. Lilliefors Significance Correction



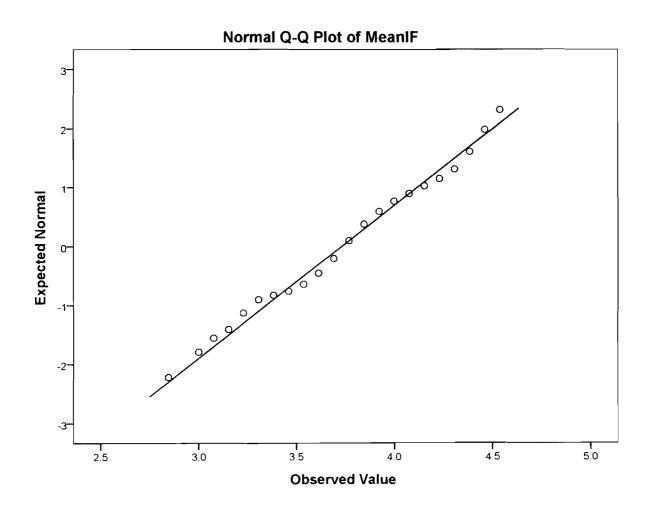

MeanKSB Stem-and-Leaf Plot

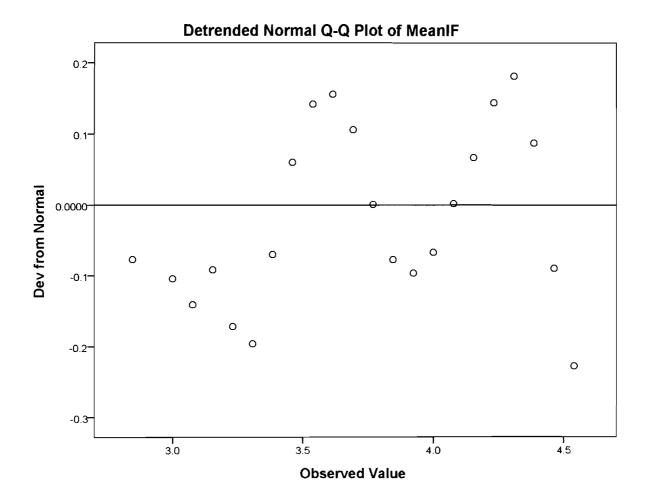
Frequency	y Stem a	&	Leaf
4.00	Extremes		(=<2.67)
5.00	30		00000
4.00	31		6666
.00	32		
5.00	33		33333
.00	34		
14.00	35		0000000000000
21.00	36		666666666666666666
.00	37		
23.00	38		33333333333333333333
.00	39		
31.00	40		000000000000000000000000000000000000000
11.00	41		6666666666
.00	42		
13.00	43		333333333333
.00	44		


8.00 45 . 00000000 3.00 46 . 666 .00 47 . 3.00 48 . 333 3.00 Extremes (>=5.00)

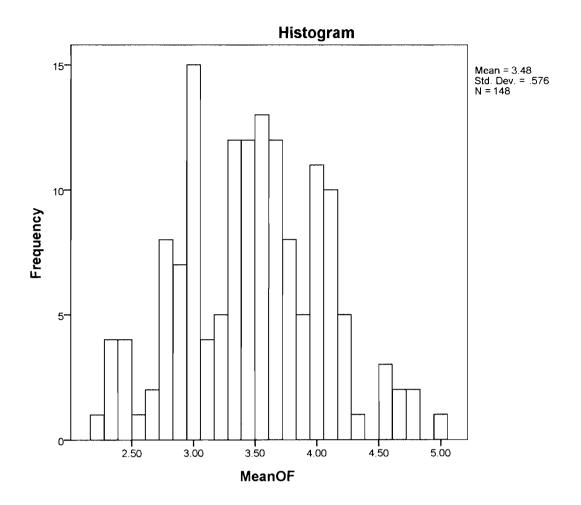
Stem width: .10
Each leaf: 1 case(s)

MeanIF


MeanIF Stem-and-Leaf Plot

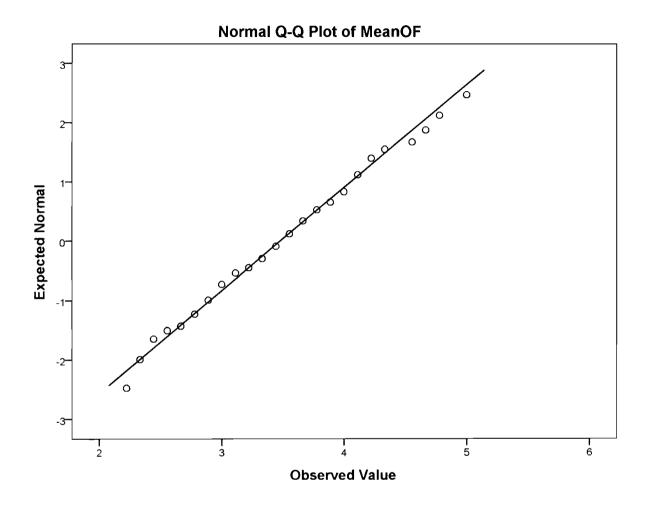

Frequency	Stem	&	Leaf
3.00	Extremes		(=<2.85)
7.00	30	•	0000777
3.00	31		555
12.00	32		33333333333
6.00	33		000088
4.00	34		6666
7.00	35		3333333
28.00	36		1111111111119999999999999999
20.00	37		666666666666666666
12.00	38		44444444444
11.00	39		222222222
11.00	40		00000777777
4.00	41		5555
4.00	42		3333
12.00	43		0000088888888
2.00	44		66

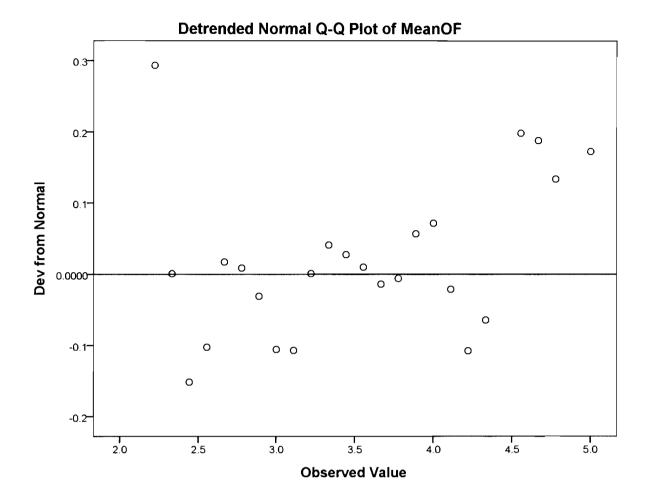
2.00 Extremes (>=4.54)


Stem width: .10

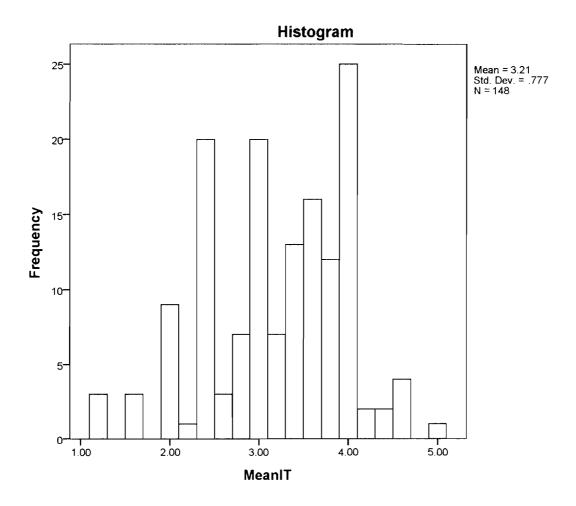
Each leaf: 1 case(s)

MeanOF

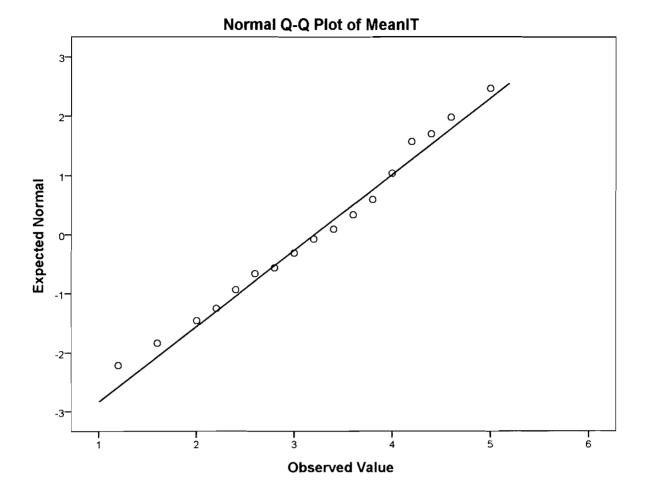


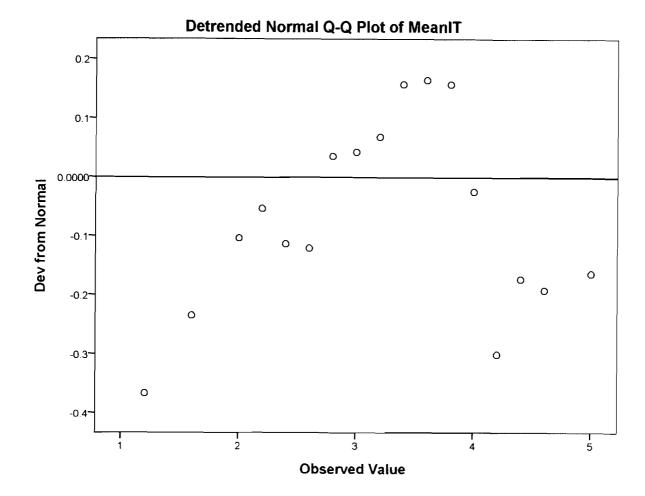

MeanOF Stem-and-Leaf Plot

Frequency	Stem	&	Leaf
5.00	2	•	23333
5.00	2		44445
10.00	2		667777777
7.00	2		888888
19.00	3		000000000000001111
17.00	3		22222333333333333
25.00	3		4444444444455555555555555
20.00	3		6666666666677777777
5.00	3		88888
21.00	4		00000000001111111111
6.00	4		222223
3.00	4		555
4.00	4		6677
.00	4		
1.00	5		0


Stem width: 1.00

Each leaf: 1 case(s)




MeanIT

MeanIT Stem-and-Leaf Plot

Frequency	Stem &	Leaf
3.00	1.	222
3.00	1.	666
30.00	2.	00000000244444444444444444
10.00	2.	6668888888
40.00	3.	000000000000000000002222224444444444444
28.00	3.	666666666666666888888888888
29.00	4.	0000000000000000000000002244
4.00	4.	6666
1.00	5.	0
Stem width:	1.0	00
Each leaf:	1 0	case(s)

ONEWAY MeanKSB BY Meansense /STATISTICS HOMOGENEITY /MISSING ANALYSIS.

Oneway

[DataSetl] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test_1.sav

Test of Homogeneity of Variances

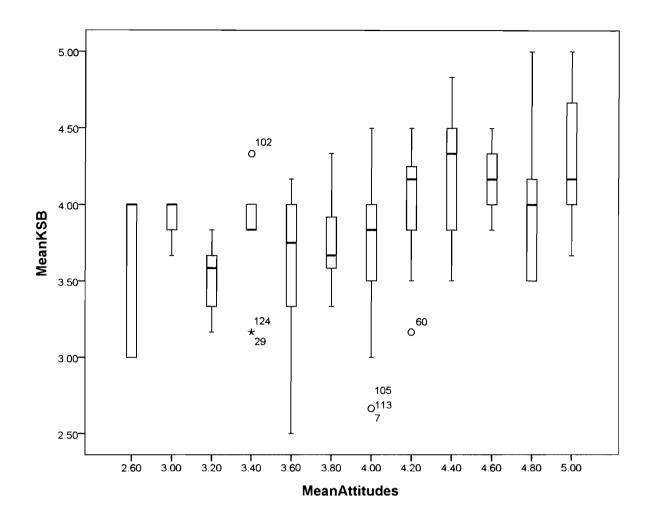
MeanKSB

Levene Statistic	df1	df2	Sig.	
.636	10	137	.781	

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	9.758	10	.976	5.959	.000
Within Groups	22.434	137	.164		
Total	32.192	147			

EXAMINE VARIABLES=MeanKSB BY MeanAttitudes
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL.


Explore

[DataSet1] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test_1.sav

MeanAttitudes

Case Processing Summary

		Cases					
		Va	lid	Miss	Missing		tal
	MeanAttitudes	N	Percent	N	Percent	Ν	Percent
MeanKSB	2.60	9	100.0%	0	.0%	9	100.0%
	3.00	3	100.0%	0	.0%	3	100.0%
	3.20	6	100.0%	0	.0%	6	100.0%
	3.40	9	100.0%	0	.0%	9	100.0%
	3.60	6	100.0%	0	.0%	6	100.0%
	3.80	23	100.0%	0	.0%	23	100.0%
	4.00	32	100.0%	0	.0%	32	100.0%
	4.20	15	100.0%	0	.0%	15	100.0%
	4.40	17	100.0%	0	.0%	17	100.0%
	4.60	9	100.0%	0	.0%	9	100.0%
	4.80	6	100.0%	0	.0%	6	100.0%
	5.00	13	100.0%	0	.0%	13	100.0%

ONEWAY MeanKSB BY MeanAttitudes
/STATISTICS HOMOGENEITY
/MISSING ANALYSIS.

Oneway

[DataSet1] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test_1.sav

Test of Homogeneity of Variances

MeanKSB

Levene Statistic	df1	df2	Sig.
1.917	11	136	.042

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	8.057	11	.732	4.128	.000
Within Groups	24.135	136	.177		
Total	32.192	147			

ONEWAY MeanKSB BY Meanincentive /STATISTICS HOMOGENEITY /MISSING ANALYSIS.

Oneway

 $[DataSet1] \ C: \ \ Drive \ Thesis \ SPSS \ Actual \ Test_1.sav$

Test of Homogeneity of Variances

MeanKSB

Levene Statistic	df1	df2	Sig.
2.790	15	131	.001

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	4.823	16	.301	1.443	.132
Within Groups	27.369	131	.209		
Total	32.192	147			

ONEWAY MeanKSB BY Meansupport /STATISTICS HOMOGENEITY /MISSING ANALYSIS.

Oneway

[DataSetl] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test_1.sav

Test of Homogeneity of Variances

MeanKSB

Levene Statistic	df1	df2	Sig.
1.293	10	136	.241

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	4.575	11	.416	2.048	.028
Within Groups	27.617	136	.203		
Total	32.192	147			

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS COLLIN TOL

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT Meansupport

/METHOD=ENTER MeanAttitudes Meansense Meanincentive.

Regression

[DataSet1] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test 1.sav

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	Meanincentive , Meansense, MeanAttitudes		Enter

- a. All requested variables entered.b. Dependent Variable: Meansupport

Coefficients

		Unstandardized Coefficients		
Model		В	Std. Error	
1	(Constant)	1.138	.382	
	MeanAttitudes	.200	.092	
	Meansense	.295	.110	
	Meanincentive	.228	.061	

Coefficients

		Standardized Coefficients	-		Collinearity	Statistics
Model		Beta	t	Sig.	Tolerance	VIF
1	(Constant)		2.982	.003		_
ł	MeanAttitudes	.196	2.161	.032	.599	1.670
	Meansense	.236	2.693	.008	.644	1.553
	Meanincentive	.278	3.727	.000	.890	1.124

a. Dependent Variable: Meansupport

Collinearity Diagnostics^a

Model	Dimension	Eigenvalue	Condition Index
1	1	3.948	1.000
	2	.035	10.548
	3	.011	18.941
	4	.006	25.738

Collinearity Diagnostics^a

	-	Variance Proportions			
Model	Dimension	(Constant)	MeanAttitudes	Meansense	Meanincentive
1	1	.00	.00	.00	.00
	2	.03	.02	.03	.97
	3	.53	.63	.00.	.00
	4	.44	.34	.97	.02

a. Dependent Variable: Meansupport

REGRESSION

/MISSING LISTWISE /STATISTICS COEFF OUTS COLLIN TOL /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT Meanincentive

/METHOD=ENTER MeanAttitudes Meansense Meansupport.

Regression

[DataSetl] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test 1.sav

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	Meansupport, Meansense, MeanAttitudes		Enter

a. All requested variables entered.b. Dependent Variable: Meanincentive

Coefficients^a

	-	Unstandardized Coefficients		
Model		В	Std. Error	
1	(Constant)	.916	505	
	MeanAttitudes	.287	.120	
	Meansense	093	.146	
	Meansupport	.385	.103	

Coefficients^a

		Standardized Coefficients			Collinearity	Statistics
Model		Beta	t	Sig.	Tolerance	VIF
1	(Constant)		1.813	.072		
	MeanAttitudes	.232	2.403	.018	.603	1.657
	Meansense	061	642	.522	.615	1.626
	Meansupport	.317	3.727	.000	.779	1.283

a. Dependent Variable: Meanincentive

Collinearity Diagnostics^a

Model	Dimension	Eigenvalue	Condition Index
1	1	3.969	1.000
	2	.014	16.634
	3	.011	19.052
	4	.006	25.541

Collinearity Diagnostics^a

		Variance Proportions				
Model	Dimension	(Constant)	MeanAttitudes	Meansense	Meansupport	
1	1	.00	.00	.00	.00	
	2	.03	.14	.05	.97	
	3	.57	.55	.01	.03	
	4	.40	.31	.94	.00	

a. Dependent Variable: Meanincentive

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS COLLIN TOL

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT Meansense

/METHOD=ENTER MeanAttitudes Meansupport Meanincentive.

Regression

[DataSet1] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test_1.sav

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	Meanincentive , Mean Attitudes, Meansupport		Enter

a. All requested variables entered.b. Dependent Variable: Meansense

Coefficients a

		Unstandardized Coefficients		
Model		В	Std. Error	
1	(Constant)	1.819	.249	
	MeanAttitudes	.427	.060	
	Meansupport	.162	.060	
	Meanincentive	031	.048	

Coefficients a

		Standardized Coefficients	-	_	Collinearity	Statistics
Model		Beta	t	Sig.	Tolerance	VIF
1	(Constant)		7.295	.000		_
[MeanAttitudes	.525	7.122	.000	.785	1.275
	Meansupport	.203	2.693	.008	.746	1.340
	Meanincentive	046	642	.522	.814	1.229

a. Dependent Variable: Meansense

Collinearity Diagnostics^a

Model	Dimension	Eigenvalue	Condition Index
1	1	3.944	1.000
	2	.032	11.087
	3	.013	17.216
ļ	4	.011	19.078

Collinearity Diagnostics^a

	· ·	Variance Proportions			
Model	Dimension	(Constant)	MeanAttitudes	Meansupport	Meanincentive
1	1	.00	.00	.00	.00
ľ	2	.06	.05	.03	.98
	3	.05	.39	.90	.01
	4	.90	.56	.08	.00

a. Dependent Variable: Meansense

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS COLLIN TOL

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT MeanAttitudes

/METHOD=ENTER Meansupport Meanincentive Meansense.

Regression

[DataSetl] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test_1.sav

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	Meansense, Meanincentive , Meansupport		Enter

- a. All requested variables entered.
 b. Dependent Variable: MeanAttitudes

Coefficients^a

		Unstandardized Coefficients		
Model		В	Std. Error	
1	(Constant)	.492	.347	
	Meansupport	.157	.073	
ł	Meanincentive	.134	.056	
	Meansense	.611	.086	

Coefficients

		Standardized Coefficients			Collinearity	Statistics
Model		Beta	t	Sig.	Tolerance	VIF
1	(Constant)		1.418	.158	-	
1	Meansupport	.160	2.161	.032	.734	1.363
ļ	Meanincentive	.166	2.403	.018	.844	1.185
	Meansense	.496	7.122	.000	.829	1.206

a. Dependent Variable: MeanAttitudes

Collinearity Diagnostics a

Model	Dimension	Eigenvalue	Condition Index
1	1	3.946	1.000
	2	.034	10.746
]	3	.013	17.323
	4	.007	23.653

Collinearity Diagnostics ^a

			Variance Proportions					
Model	Dimension	(Constant)	Meansupport	Meanincentive	Meansense			
1	1	.00	.00	.00	.00			
}	2	.04	.01	.94	.05			
1	3	.16	.97	.05	.08			
	4	.80	.01	.01	.87			

a. Dependent Variable: MeanAttitudes

GET

FILE='C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test Ain.sav'.
DATASET NAME DataSet1 WINDOW=FRONT.

FACTOR

/VARIABLES KSB1 KSB2 KSB3 KSB4 KSB5 KSB6

/MISSING LISTWISE

/ANALYSIS KSB1 KSB2 KSB3 KSB4 KSB5 KSB6

/PRINT INITIAL CORRELATION SIG DET KMO REPR AIC EXTRACTION ROTATION FSCOR

/FORMAT SORT BLANK(.45)

/CRITERIA MINEIGEN(1) ITERATE(25)

/EXTRACTION PAF

/CRITERIA ITERATE(25)

/ROTATION VARIMAX

/METHOD=CORRELATION.

Factor Analysis

[DataSetl] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test Ain.sav

Correlation Matrix^a

		KSB1	KSB2	KSB3	KSB4	KSB5	KSB6
Correlation	KSB1	1.000	.299	.151	.333	.386	.392
	KSB2	.299	1.000	.322	.100	.190	.181
	KSB3	.151	.322	1.000	.001	008	067
	KSB4	.333	.100	.001	1.000	.443	.540
	KSB5	.386	.190	008	.443	1.000	.599
	KSB6	.392	.181	067	.540	.599	1.000
Sig. (1-tailed)	KSB1		.000	.033	.000	.000	.000
	KSB2	.000		.000	.112	.010	.014
	KSB3	.033	.000		.493	.460	.208
	KSB4	.000	.112	.493		.000	.000
	KSB5	.000	.010	.460	.000	'	.000
	KSB6	.000	.014	.208	.000	.000	

a. Determinant = .274

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Me	Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		
Bartlett's Test of	Approx. Chi-Square	186.523	
Sphericity	df	15	
_	Sig.	.000	

Anti-image Matrices

		KSB1	KSB2	KSB3	KSB4	KSB5	KSB6
Anti-image Covariance	KSB1	.742	150	092	091	109	096
	KSB2	150	.815	260	.040	045	057
	KSB3	~.092	260	.867	024	.016	.092
	KSB4	091	.040	024	.673	097	212
	KSB5	109	045	.016	097	.598	237
	KSB6	096	057	.092	212	237	.522
Anti-image Correlation	KSB1	.818 ^a	192	115	129	163	154
	KSB2	192	.649 ^a	309	.054	065	087
	KSB3	115	309	.505 ^a	031	.022	.137
	KSB4	129	.054	031	.780 ^a	152	357
	KSB5	163	065	.022	152	.760 ^a	424
	KSB6	- 154	087	.137	357	424	.702 ^a

a. Measures of Sampling Adequacy(MSA)

Communalities

	Initial	Extraction
KSB1	.258	.354
KSB2	.185	.402
KSB3	.133	.307
KSB4	.327	.400
KSB5	.402	.514
KSB6	.478	.708

Extraction Method: Principal Axis Factoring.

Total Variance Explained

		Initial Eigenvalu	ies	Extraction	on Sums of Squar	ed Loadings
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	2.467	41.109	41.109	1.980	32.995	32.995
2	1.330	22.160	63.268	.706	11.762	44.757
3	.676	11.274	74.543			
4	.619	10.316	84.859			
5	.536	8.927	93.785			
6	.373	6.215	100.000			

Total Variance Explained

	Rotation Sums of Squared Loadings					
Factor	Total	% of Variance	Cumulative %			
1	1.892	31.538	31.538			
2	.793	13.219	44.757			
3						
4						
5						
6						

Extraction Method: Principal Axis Factoring.

Factor Matrix^a

	Factor					
	1	2				
KSB6	.812					
KSB5	.709					
KSB4	.616					
KSB1	.561					
KSB3		.548				
KSB2		.535				

Extraction Method: Principal Axis Factoring.

a. 2 factors extracted. 12 iterations required.

Reproduced Correlations

		KSB1	KSB2	KSB3	KSB4	KSB5	KSB6
Reproduced Correlation	KSB1	354 ^a	.298	.155	.317	.377	.411
	KSB2	.298	.402 ^a	.321	.134	.186	.159
	KSB3	.155	.321	.307 ^a	027	.001	055
	KSB4	.317	.134	027	.400 ^a	452	.532
	KSB5	.377	.186	.001	.452	.514 ^a	.599
	KSB6	.411	.159	055	.532	.599	.708 ^a
Residual	KSB1		.001	003	.016	.009	020
	KSB2	.001		.001	034	.004	.022
	KSB3	003	.001		.029	~.009	012
	KSB4	.016	034	.029		009	.008
	KSB5	.009	.004	009	009		.000
	KSB6	020	.022	012	.008	.000	

Extraction Method: Principal Axis Factoring.

a. Reproduced communalities

b. Residuals are computed between observed and reproduced correlations. There are 0 (.0%) nonredundant residuals with absolute values greater than 0.05.

Rotated Factor Matrix^a

	Fac	Factor					
	1	2					
KSB6	.842						
KSB5	.712						
KSB4	.632						
KSB1	.489						
KSB2		.606					
KSB3		.550					

Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in3 iterations.

Factor Transformation Matrix

Factor	1	2
1	.965	.262
2	262	.965

Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization.

Factor Score Coefficient Matrix

	Factor			
	1	2		
KSB1	.124	.204		
KSB2	.002	.451		
KSB3	047	.365		
KSB4	.188	023		
KSB5	.262	.015		
KSB6	.532	132		

Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization.

Factor Score Covariance Matrix

Factor	1	2
1	.816	.045
2	.045	.544

Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization.

```
FACTOR

/VARIABLES IF1 IF2 IF3 IF4 IF5 IF6 IF7 IF8 IF9 IFF10 IF11 IFF12 IF13

/MISSING LISTWISE

/ANALYSIS IF1 IF2 IF3 IF4 IF5 IF6 IF7 IF8 IF9 IFF10 IF11 IFF12 IF13

/PRINT INITIAL CORRELATION SIG DET KMO REPR AIC EXTRACTION ROTATION FSCOR

E

/FORMAT SORT BLANK(.45)

/CRITERIA MINEIGEN(1) ITERATE(25)

/EXTRACTION PAF

/CRITERIA ITERATE(25)

/ROTATION VARIMAX
```

Factor Analysis

/METHOD=CORRELATION.

[DataSet2] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test_1.sav

Correlation Matrix^a

_		IF1	IF2	IF3	IF4	IF5	IF6
Correlation	IF1	1.000	.408	.527	.480	.399	.440
	IF2	.408	1.000	.582	.478	.374	.326
	IF3	.527	.582	1.000	.636	.410	.402
	IF4	.480	.478	.636	1.000	.715	.582
	IF5	.399	.374	.410	.715	1.000	.490
	IF6	.440	.326	.402	.582	.490	1.000
	IF7.	.366	.251	.280	.367	.276	.452
	IF8	.452	.169	.264	.410	.442	.615
	IF9	.530	.217	.361	.539	.542	.669
	IFF10	156	029	112	146	256	217
	IF11	.390	.180	.291	.457	.342	.630
	IFF12	187	214	309	347	303	355
	IF13	.344	.205	.342	.477	.364	.492
Sig. (1-tailed)	IF1		.000	.000	.000	.000	.000
	IF2	.000	'	.000	.000	.000	.000
	IF3	.000	.000		.000	.000	.000
	IF4	.000	.000	.000		.000	.000
	IF5	.000	.000	.000	.000		.000
	IF6	.000	.000	.000	.000	.000	
	IF7.	.000	.001	.000	.000	.000	.000
	IF8	.000	.020	.001	.000	.000	.000
	IF9	.000	.004	.000	.000	.000	.000
	IFF10	.029	.361	.087	.039	.001	.004
	IF11	.000	.014	.000	.000	.000	.000
	IFF12	.011	.004	.000	.000	.000	.000
	IF13	.000	.006	.000	.000	.000	.000

Correlation Matrix^a

		IF7.	IF8	IF9	IFF10	IF11
Correlation	IF1	366	.452	.530	156	.390
	IF2	.251	.169	.217	029	.180
	IF3	.280	.264	.361	112	.291
1	IF4	.367	.410	.539	146	.457
	IF5	.276	.442	.542	256	.342
	IF6	.452	.615	.669	217	.630
	IF7.	1.000	.394	.392	.000	.369
	IF8	.394	1.000	.652	092	.542
	IF9	.392	.652	1.000	151	.552
	IFF10	.000	092	151	1.000	304
	IF11	.369	.542	.552	304	1.000
	IFF12	097	173	185	.473	203
	IF13	.315	.494	.487	~.204	.738
Sig. (1-tailed)	IF1	.000	.000	.000	.029	.000
	IF2	.001	.020	.004	.361	.014
	IF3	.000	.001	.000	.087	.000
	IF4	.000	.000	.000	.039	.000
	IF5	.000	.000	.000	.001	.000
	IF6	.000	.000	.000	.004	.000
	IF7.		.000	.000	.500	.000
	IF8	.000)	.000	.132	.000
	IF9	.000	.000		.033	.000
	IFF10	.500	.132	.033		.000
	IF11	.000	.000	.000	.000	
	IFF12	.121	.018	.012	.000	.007
	IF13	.000	.000	.000	.006	.000

Correlation Matrix^a

	_	IFF12	IF13
Correlation	IF1	187	.344
	IF2	214	.205
	IF3	309	.342
	lF4	347	.477
	IF5	303	.364
	IF6	355	.492
	IF7.	097	.315
	IF8	173	.494
	IF9	185	.487
	IFF10	.473	- 204
	IF11	203	.738
	IFF12	1.000	264
	IF13	264	1.000
Sig. (1-tailed)	IF1	.011	.000
	IF2	.004	.006
	IF3	.000	.000
	IF4	.000	.000
	IF5	.000	.000
	IF6	.000	.000
	IF7.	.121	.000
	IF8	.018	.000
	IF9	.012	.000
	IFF10	.000	.006
	IF11	.007	.000
	IFF12		.001
	IF13	.001	

a. Determinant = .001

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Me	.841	
Bartlett's Test of Sphericity	Approx. Chi-Square	937.912
1	df	78
	Sig	.000

Anti-image Matrices

		IF1	IF2	IF3	IF4	IF5	IF6
Anti-image Covariance	IF1	.542	090	129	009	.010	.033
	IF2	090	.594	182	018	069	054
	IF3	129	182	.441	133	.058	.001
	IF4	009	018	133	.290	188	048
	IF5	.010	069	.058	188	.399	.009
	IF6	.033	054	.001	048	.009	.349
	IF7.	075	038	.005	027	.013	081
	IF8	077	.040	.017	.048	073	090
	IF9	108	.069	007	013	079	108
	IFF10	.059	061	.006	076	.124	007
	IF11	022	.008	.026	030	.054	105
	IFF12	024	.015	.050	.048	010	.109
	IF13	.025	.006	034	032	006	.056
Anti-image Correlation	IF1	.902 ^a	159	264	022	.021	.076
	IF2	159	844 ^a	355	043	142	118
	IF3	264	355	.838 ^a	371	.139	.002
	IF4	022	043	371	.839 ^a	551	149
	IF5	.021	142	.139	551	.814 ^a	.025
	IF6	.076	118	.002	149	.025	.882 ^a
	IF7.	-,119	058	.009	059	.024	160
	IF8	155	.076	.037	.131	171	226
	IF9	238	.146	017	040	204	298
	IFF10	.100	098	.010	177	.245	015
	IF11	053	.019	.070	100	.153	317
	IFF12	041	.025	.095	.113	021	.233
	IF13	.053	.012	080	094	014	.148

Anti-image Matrices

		IF7.	IF8	IF9	IFF10	IF11
Anti-image Covariance	IF1	075	077	108	.059	022
	IF2	038	.040	.069	061	.008
	IF3	.005	.017	007	.006	.026
	IF4	027	.048	013	076	030
	IF5	.013	073	079	.124	.054
	IF6	081	090	108	007	105
	IF7.	.724	- 048	007	065	028
	IF8	048	.455	107	074	035
	IF9	007	-, 107	.378	010	018
	IFF10	065	074	010	.642	.133
	IF11	028	035	018	.133	.313
	IFF12	025	.013	048	287	092
	IF13	006	054	022	044	211
Anti-image Correlation	IF1	- 119	155	238	.100	053
	IF2	058	.076	.146	098	.019
	IF3	.009	.037	017	.010	.070
	IF4	059	.131	040	177	100
	IF5	.024	171	204	.245	.153
	IF6	160	226	298	015	317
	IF7.	.948 ^a	084	014	096	059
	IF8	084	.900 ^a	257	137	092
	IF9	014	- 257	.901 ^a	021	-,052
	IFF10	096	137	021	.560 ^a	.298
	IF11	059	092	052	.298	.789 ^a
	IFF12	037	.024	100	453	208
	IF13	012	127	056	086	594

Anti-image Matrices

		IFF12	IF13
Anti-image Covariance	IF1	024	.025
	IF2	.015	.006
	IF3	.050	034
	IF4	.048	032
	IF5	010	006
	IF6	.109	.056
	IF7.	025	006
	IF8	.013	054
	IF9	048	022
	IFF10	287	044
	IF11	092	- 211
	IFF12	.626	.080
	IF13	.080	.404
Anti-image Correlation	IF1	041	.053
	IF2	.025	.012
	IF3	.095	080
	IF4	.113	094
	IF5	021	014
	IF6	.233	.148
	IF7.	037	012
	íF8	.024	- 127
	IF9	100	056
	IFF10	453	086
	IF11	208	594
	IFF12	.717 ^a	.159
	IF13	.159	.826 ^a

a. Measures of Sampling Adequacy(MSA)

Communalities

	Initial	Extraction
IF1	.458	.436
IF2	.406	.483
IF3	.559	.640
IF4	.710	.707
IF5	.601	.474
IF6	.651	.652
IF7.	.276	.294
IF8	.545	.595
IF9	.622	.644
IFF10	.358	.576
IF11	.687	.663
IFF12	.374	.444
IF13	.596	.497

Extraction Method: Principal Axis Factoring.

Total Variance Explained

	Initial Eigenvalues			Extractio	n Sums of Square	ed Loadings
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	5.639	43.378	43.378	5.212	40.096	40.096
2	1.437	11.056	54.434	1.015	7.810	47.906
3	1.364	10.492	64.927	.878	6.752	54.658
4	.775	5.964	70.890			
5	.718	5.525	76.416			
6	.659	5.067	81.483			
7	.554	4.261	85.744			
8	.470	3.619	89.362			į
9	.398	3.062	92.425	1		
10	.333	2.559	94.983			
11	.285	2.190	97.173			
12	.191	1.467	98.640			
13	.177	1.360	100.000			_

Total Variance Explained

	Rotation Sums of Squared Loadings					
Factor	Total	% of Variance	Cumulative %			
1	3.482	26.786	26.786			
2	2.406	18.510	45.296			
3	1.217	9.363	54.658			
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						

Extraction Method: Principal Axis Factoring.

Factor Matrix^a

	Factor					
	1	2	3			
IF4	.792					
IF6	.791					
IF9	.757					
IF11	.711					
IF8	.680					
IF5	.670					
IF13	.657					
IF1	.637					
IF3	.633	.487				
IF7.	.496					
IF2	.482	.491				
IFF10			.696			
IFF12			.508			

Extraction Method: Principal Axis Factoring.

a. Attempted to extract 3 factors. More than 25 iterations required. (Convergence=.001). Extraction was terminated.

-		IF1	IF2	IF3	IF4	IF5
Reproduced Correlation	IF1	.436 ^a	.381	.471	543	.439
	IF2	.381	.483 ^a	.549	.522	.389
	IF3	.471	.549	.640 ^a	.639	.493
	IF4	.543	.522	.639	.707 ^a	.570
	IF5	439	.389	.493	.570	.474 ^a
	IF6	.485	.304	.424	.582	.506
	IF7.	.334	.230	.294	.382	.312
	IF8	.414	.188	.284	.454	.400
	IF9	.473	.272	.380	.543	.467
	IFF10	093	036	117	193	225
	IF11	.395	.144	.257	.452	.423
	IFF12	215	216	303	348	322
	IF13	.381	.188	.291	.449	.407
Residual	IF1		.027	.056	063	~.040
	IF2	.027		.033	044	015
	IF3	.056	.033		004	083
	IF4	063	044	004		.145
	IF5	040	015	083	.145	
	IF6	045	.023	021	001	017
	IF7 .	.032	.021	015	015	035
	IF8	.038	019	019	044	.043
	IF9	.057	055	019	004	.075
	IFF10	063	.007	.004	.047	031
	IF11	005	.036	.034	.005	081
	IFF12	.028	.002	006	.002	.019
	IF13	036	.016	.051	.028	043

		IF6	IF7.	IF8	IF9	IFF10
Reproduced Correlation	IF1	.485	.334	.414	473	093
	IF2	.304	.230	.188	.272	036
	IF3	.424	.294	.284	.380	117
	\F4	.582	.382	.454	.543	193
	IF5	.506	.312	.400	.467	225
	IF6	.652 ^a	.404	.591	.636	236
	IF7.	.404	.294 ^a	.393	.420	003
	IF8	.591	.393	.595 ^a	.611	102
	IF9	.636	.420	.611	.644 ^a	134
	IFF10	236	003	102	134	.576 ^a
	IF11	.624	.363	.597	.615	282
	IFF12	293	085	142	200	.462
	IF13	.560	.331	.518	.545	246
Residual	IF1	045	.032	.038	.057	063
	íF2	.023	.021	019	055	.007
	IF3	021	015	019	019	.004
	IF4	001	015	044	004	.047
	IF5	017	035	.043	.075	031
	IF6		.047	.023	.033	.019
	IF7.	.047		.001	029	.003
	IF8	.023	.001		.040	.009
	IF9	.033	029	.040		017
	IFF10	.019	.003	.009	017	
	IF11	.006	.006	055	063	022
	IFF12	062	011	031	.015	.011
	IF13	068	016	024	058	.042

		IF11	IFF12	IF13
Reproduced Correlation	IF1	.395	215	.381
	IF2	.144	216	.188
	IF3	. 257	303	.291
	IF4	.452	348	.449
	IF5	.423	322	.407
	IF6	.624	293	.560
	IF7	.363	085	.331
	IF8	.597	142	.518
	IF9	.615	200	.545
	IFF10	282	.462	246
	IF11	.663 ^a	265	.568
	IFF12	265	.444 ^a	256
	IF13	.568	- 256	.497 ^a
Residual ^b	IF1	005	.028	036
	IF2	.036	.002	.016
	IF3	.034	006	.051
	IF4	.005	.002	.028
	IF5	081	.019	043
	IF6	.006	062	068
	IF7.	.006	011	016
	IF8	055	031	024
	IF9	063	.015	058
	IFF10	022	.011	.042
	IF11		.063	.170
	IFF12	.063		008
	IF13	.170	008	

Extraction Method: Principal Axis Factoring.

a. Reproduced communalities b. Residuals are computed between observed and reproduced correlations. There are 17 (21.0%) nonredundant residuals with absolute values greater than 0.05.

Rotated Factor Matrix

,	Factor				
	1	2	3		
IF11	.766				
IF8	.753				
IF9	.747				
IF6	.706				
IF13	.644				
IF7.	.464				
IF3		.762			
IF2		.687			
IF4		.686			
IF5		.494			
IF1		.489			
IFF10			750		
IFF12			601		

Extraction Method: Principal Axis Factoring.
Rotation Method: Varimax with Kaiser Normalization

a. Rotation converged in 5 iterations.

Factor Transformation Matrix

Factor	1	2	3
1	.768	.577	.280
2	601	.799	.002
3	.222	.170	960

Extraction Method: Principal Axis Factoring.
Rotation Method: Varimax with Kaiser Normalization.

Factor Score Coefficient Matrix

		Factor	
	1	2	3
IF1	.037	.112	053
IF2	090	.275	046
IF3	124	.384	005
IF4	004	.360	.045
IF5	.010	.065	.057
IF6	.175	.006	.046
IF7.	.072	.031	087
IF8	.257	063	099
IF9	.257	023	098
IFF10	.073	.069	567
IF11	.336	218	.080
IFF12	.063	022	317
IF13	.113	053	.062

Extraction Method: Principal Axis Factoring.
Rotation Method: Varimax with Kaiser Normalization.

Factor Score Covariance Matrix

Factor	1	2	3
1	.842	.090	.060
2	.090	.787	.042
3	.060	.042	.674

Extraction Method: Principal Axis Factoring.
Rotation Method: Varimax with Kaiser Normalization.

RELIABILITY

/VARIABLES=IF11 IF8 IF9 IF6 IF13 IF7
/SCALE('ALL VARIABLES') ALL
/MODEL=ALPHA
/STATISTICS=DESCRIPTIVE SCALE
/SUMMARY=TOTAL.

Reliability

[DataSet2] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test_1.sav

Scale: ALL VARIABLES

Case Processing Summary

		N	%
Cases	Valid	148	100.0
	Excluded a	0	.0
	Total	148	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
.863	6

Item Statistics

	Mean	Std. Deviation	N
IF11	4.0135	.74675	148
IF8	3.6757	.85090	148
IF9	4.1081	.64031	148
IF6	4.1689	.70362	148
IF13	4.0405	.72729	148
IF7.	4.0541	.76295	148

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
IF11	20.0473	8.086	.730	.826
IF8	20.3851	7.762	.687	.836
IF9	19.9527	8.658	.710	.833
IF6	19.8919	8.260	.739	.826
IF13	20.0203	8.496	.641	.843
IF7.	20.0068	9.014	.469	.873

Scale Statistics

Mean	Variance	Std. Deviation	N of Items
24.0608	11.745	3.42704	6

RELIABILITY

/VARIABLES=IF3 IF2 IF4 IF5 IF1 /SCALE('ALL VARIABLES') ALL /MODEL=ALPHA /STATISTICS=DESCRIPTIVE SCALE /SUMMARY=TOTAL.

Reliability

Scale: ALL VARIABLES

Case Processing Summary

		N	%
Cases	Valid	148	100.0
	Excluded ^a	0	.0
	Total	148	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
.832	5

Item Statistics

	Mean	Std. Deviation	N
IF3	4.0541	.59228	148
IF2	3.8986	.66741	148
IF4	4.1149	.63378	148
IF5	4.0270	.63830	148
IF1	4.1892	.62107	148

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
IF3	16.2297	3.974	.692	.783
IF2	16.3851	3.994	.570	.817
IF4	16.1689	3.720	.752	.764
IF5	16.2568	4.029	.595	.809
IF1	16.0946	4.154	.561	.818

Scale Statistics

Mean	Variance	Std. Deviation	N of Items
20.2838	5.960	2.44126	5

RELIABILITY

/VARIABLES=IFF10 IFF12

/SCALE('ALL VARIABLES') ALL

/MODEL=ALPHA

/STATISTICS=DESCRIPTIVE SCALE

/SUMMARY=TOTAL.

Reliability

[DataSet2] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test_1.sav

Scale: ALL VARIABLES

Case Processing Summary

		N	%
Cases	Valid	148	100.0
	Excluded ^a	0	.0
	Total	148	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
.635	2

Item Statistics

	Mean	Std. Deviation	Z
IFF10	2.2500	1.12410	148
IFF12	1.8919	.93412	148

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
IFF10	1.8919	.873	.473	
IFF12	2.2500	1.264	.473	

Scale Statistics

Mean	Variance	Std. Deviation	N of Items
4.1419	3.129	1.76901	2

GET

FILE='C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test_1.sav'.
DATASET NAME DataSet1 WINDOW=FRONT.

FACTOR

/VARIABLES OF1 OF2 OF3 OF4 OF5 OF6 OF7 OF8 OF9

/MISSING LISTWISE

/ANALYSIS OF1 OF2 OF3 OF4 OF5 OF6 OF7 OF8 OF9

/PRINT INITIAL CORRELATION SIG DET KMO REPR AIC EXTRACTION ROTATION FSCOR

/FORMAT SORT BLANK(.45)

/CRITERIA MINEIGEN(1) ITERATE(25)

/EXTRACTION PAF

/CRITERIA ITERATE (25)

/ROTATION VARIMAX

/METHOD=CORRELATION.

Factor Analysis

[DataSetl] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test_1.sav

Correlation Matrix a

	_	OF1.	OF2	OF3	OF4	OF5	OF6
Correlation	OF1.	1.000	.450	.467	.434	.362	.233
	OF2	.450	1.000	.794	.728	.452	.262
	OF3	.467	.794	1.000	.838	.594	.202
	OF4	.434	.728	.838	1.000	.628	.243
	OF5	.362	.452	.594	.628	1.000	.333
	OF6	.233	.262	.202	.243	.333	1.000
	OF7	.227	.196	.154	.221	.363	.646
	OF8	.199	.268	.226	.273	.349	.371
	OF9	.240	.233	.262	.337	.407	.393
Sig. (1-tailed)	OF1.		.000	.000	.000	.000	.002
ļ	OF2	.000		.000	.000	.000	.001
	OF3	.000	.000		.000	.000	.007
	OF4	.000	.000	.000		.000	.001
	OF5	.000	.000	.000	.000		.000
ł	OF6	.002	.001	.007	.001	.000	
	OF7	.003	.008	.031	.003	.000	.000
	OF8	.008	.000	.003	.000	.000	.000
	OF9	.002	.002	.001	.000	.000	.000

Correlation Matrix^a

		OF7	OF8	OF9
Correlation	OF1.	.227	.199	.240
	OF2	.196	.268	.233
	OF3	.154	.226	.262
	OF4	.221	.273	.337
ļ	OF5	.363	.349	.407
	OF6	.646	.371	.393
	OF7	1.000	.629	.654
	OF8	.629	1.000	.705
	OF9	.654	.705	1.000
Sig. (1-tailed)	OF1.	.003	.008	.002
	OF2	.008	.000	.002
	OF3	.031	.003	.001
	OF4	.003	.000	.000
	OF5	.000	.000	.000
	OF6	.000	.000	.000
	OF7		.000	.000
	OF8	.000		.000
	OF9	.000	.000	

a. Determinant = .005

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Me	Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		
Bartlett's Test of	Approx. Chi-Square	760.268	
Sphericity	df	36	
	Sig.	.000	

Anti-image Matrices

		OF1.	OF2	OF3	OF4	OF5	OF6
Anti-image Covariance	OF1.	.737	062	047	005	038	026
	OF2	062	.327	127	059	.063	052
	OF3	047	- 127	.208	117	072	.015
	OF4	005	059	117	.255	093	- 001
	OF5	038	.063	072	093	.511	- 049
	OF6	026	052	.015	001	- 049	.551
	OF7	029	001	.024	.007	039	235
	OF8	.020	057	.010	.014	022	.034
	OF9	024	.043	005	042	033	.022
Anti-image Correlation	OF1.	.957 ^a	~.126	121	012	062	042
	OF2	126	.829 ^a	488	~.206	.153	123
	OF3	121	488	.785 ^a	509	221	.044
	OF4	012	206	509	.844 ^a	259	002
	OF5	062	.153	221	259	.906 ^a	093
	OF6	042	123	.044	002	093	.766 ^a
	OF7	057	003	.088	.022	093	533
	OF8	.036	151	.033	.041	047	.069
	OF9	043	.118	018	132	072	.048

Anti-image Matrices

		OF7	OF8	OF9
Anti-image Covariance	OF1.	029	.020	024
	OF2	001	057	.043
	OF3	.024	.010	005
	OF4	.007	.014	042
	OF5	039	022	033
	OF6	235	.034	.022
	OF7	.352	111	122
	OF8	-,111	.439	201
	OF9	122	201	.401
Anti-image Correlation	OF1.	057	.036	043
	OF2	003	151	.118
	OF3	.088	.033	018
	OF4	.022	.041	132
	OF5	093	047	072
	OF6	533	.069	.048
	OF7	.758 ^a	283	-, 325
	OF8	283	.802ª	479
	OF9	325	479	.804 ^a

a. Measures of Sampling Adequacy(MSA)

a. Measures of Sampling Adequacy(MSA)

	Initial	Extraction
OF1.	.263	.273
OF2	.673	.660
OF3	.792	.917
OF4	.745	.803
OF5	.489	.474
OF6	.449	.362
OF7	.648	.812
OF8	.561	.560
OF9	.599	.620

Extraction Method: Principal Axis Factoring.

Total Variance Explained

		Initial Eigenvalu	ies	Extraction	on Sums of Squar	ed Loadings
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	4.235	47.057	47.057	3.886	43.181	43.181
2	1.895	21.060	68.117	1.595	17.724	60.905
3	.761	8.455	76.572			
4	.667	7.413	83.985			
5	.537	5.972	89.957			
6	.305	3.385	93.341			
7	.247	2.740	96.081			
8	.209	2.323	98.404			
9	.144	1.596	100.000			

Total Variance Explained

	Rotation Sums of Squared Loadings					
Factor	Total	% of Variance	Cumulative %			
1	3.019	33.549	33.549			
2	2.462	27.355	60.905			
3						
4						
5						
6						
7						
8						
9						

Extraction Method: Principal Axis Factoring.

Factor Matrix^a

	Factor				
	1	2			
OF4	.801				
OF3	.799	527			
OF2	.716				
OF5	.684				
OF9	.631	.471			
OF8	.586	.465			
OF1.	.503				
OF6	.498				
OF7	.619	.655			

Extraction Method: Principal Axis Factoring.

a. 2 factors extracted. 10 iterations required.

Reproduced Correlations

		OF1.	OF2	OF3	OF4	OF5
Reproduced Correlation	OF1.	.273 ^a	.415	.477	.460	.355
	OF2	.415	.660 ^a	.775	.728	.520
	OF3	.477	.775	.917 ^a	.852	.588
	OF4	.460	.728	.852	.803 ^a	.579
i	OF5	.355	.520	.588	.579	.474 ^a
	OF6	.202	.226	.220	.262	.314
	OF7	.218	.192	.150	.232	.373
	OF8	.228	.241	.223	.282	.365
	OF9	.250	.270	.256	.315	.395
Residual	OF1.		.035	009	026	.007
	OF2	.035		.020	-7.244E-5	068
	OF3	009	.020		015	.006
	OF4	026	-7.244E-5	015	,	.049
	OF5	.007	068	.006	.049	
	OF6	.031	.035	018	020	.019
1	OF7	.009	.004	.003	011	010
	OF8	029	.027	.003	009	016
	OF9	009	037	.006	.022	.012

		OF6	OF7	OF8	OF9
Reproduced Correlation	OF1.	.202	.218	.228	250
	OF2	.226	.192	.241	.270
	OF3	.220	.150	.223	.256
	OF4	.262	.232	.282	.315
	OF5	.314	.373	.365	.395
	OF6	.362 ^a	.529	.449	.473
	OF7	.529	.812 ^a	.668	.699
	OF8	.449	.668	.560 ^a	.589
	OF9	.473	.699	.589	.620 ^a
Residual ^b	OF1.	.031	.009	029	009
	OF2	.035	.004	.027	037
	OF3	018	.003	.003	.006
	OF4	020	011	009	.022
	OF5	.019	010	016	.012
	OF6		.116	078	080
	OF7	.116		039	045
	OF8	078	039		.116
	OF9	080	045	.116	

Extraction Method: Principal Axis Factoring.

a. Reproduced communalities b. Residuals are computed between observed and reproduced correlations. There are 5 (13.0%) nonredundant residuals with absolute values greater than 0.05.

Rotated Factor Matrix^a

	Factor				
	1	2			
OF3	.954				
OF4	.879				
OF2	.801				
OF5	.587				
OF1.	.484				
OF7		.897			
OF9		.759			
OF8		.727			
OF6		.572			

Extraction Method: Principal Axis Factoring.
Rotation Method:
Varimax with Kaiser Normalization.

a. Rotation converged in3 iterations.

Factor Transformation Matrix

Factor	1	2
1	.788	.615
2	615	.788

Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization.

Factor Score Coefficient Matrix

	Factor				
	1	2			
OF1.	.044	.014			
OF2	.077	.021			
OF3	.650	187			
OF4	.275	004			
OF5	.020	.070			
OF6	.030	.026			
OF7	100	.610			
OF8	007	.175			
OF9	033	.241			

Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization.

Factor Score Covariance Matrix

Factor	1	2
1	.946	.021
2	.021	.888

Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization. FACTOR

/VARIABLES IT1 IT2 IT3 IT4 IT5

/MISSING LISTWISE

/ANALYSIS IT1 IT2 IT3 IT4 IT5

/PRINT INITIAL CORRELATION SIG DET R

/PRINT INITIAL CORRELATION SIG DET KMO REPR AIC EXTRACTION ROTATION FSCOR

Ε

/FORMAT SORT BLANK(0.45)

/CRITERIA FACTORS(1) ITERATE(25)

/EXTRACTION PAF

/CRITERIA ITERATE(25)

/ROTATION VARIMAX

/METHOD=CORRELATION.

Factor Analysis

[DataSet1] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test_1.sav

Correlation Matrix^a

		ĪT1	IT2	IT3	IT4	IT5
Correlation	IT1	1.000	.659	.544	.482	.585
}	IT2	.659	1.000	.795	.594	.646
	IT3	.544	.795	1.000	.552	.648
Ì	IT4	.482	.594	.552	1.000	.818
	IT5	.585	.646	.648	.818	1.000
Sig. (1-tailed)	IT1		.000	.000	.000	.000
	IT2	.000		.000	.000	.000
	IT3	.000	.000		.000	.000
]	IT4	.000	.000	.000		.000
	iT5	.000	.000	.000	.000	

a. Determinant = .033

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Me	.778	
Bartlett's Test of Sphericity	Approx. Chi-Square	493.637
Орпспону	df	10
	Sig	.000

Anti-image Matrices

		IT1	IT2	IT3	IT4	IT5
Anti-image Covariance	IT1	.519	148	.018	.028	090
	IT2	148	.281	188	050	.003
	IT3	.018	188	.335	.021	074
	IT4	.028	050	.021	.321	- 199
	IT5	090	.003	074	199	.256
Anti-image Correlation	IT1	.857 ^a	387	.043	.069	247
	IT2	387	.768 ^a	613	167	.011
	IT3	.043	613	.788 ^a	.063	252
	IT4	.069	167	.063	.751 ^a	693
	IT5	- 247	.011	252	693	.754 ^a

a. Measures of Sampling Adequacy(MSA)

Communalities

	Initial	Extraction
IT1	.481	.480
IT2	.719	.738
IT3	.665	.643
IT4	.679	.586
IT5	.744	.741

Extraction Method: Principal Axis Factoring.

Total Variance Explained

	Initial Eigenvalues			Extraction	on Sums of Squar	ed Loadings
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.538	70.753	70.753	3.188	63.753	63.753
2	.631	12.627	83.380		ļ	
3	.474	9.475	92.855			
4	.208	4.162	97.018			
5	.149	2.982	100.000			

Extraction Method: Principal Axis Factoring.

Factor Matrix^a

	Factor
	1
IT5	.861
IT2	.859
IT3	.802
IT4	.765
IT1	.693

Extraction Method: Principal Axis Factoring.

a. 1 factors extracted. 6 iterations required.

Reproduced Correlations

		IT1	IT2	IT3	IT4	IT5
Reproduced Correlation	IT1	.480 ^a	.595	.555	.530	.596
	IT2	.595	.738 ^a	.689	.658	.739
	IT3	.555	.689	.643 ^a	.614	.690
	IT4	.530	.658	.614	.586 ^a	.659
	IT5	.596	.739	.690	.659	.741 ^a
Residual ^b	IT1		.064	011	048	011
	IT2	.064		.106	064	093
	IT3	011	.106		~.062	042
	IT4	048	064	062		.159
_	IT5	011	093	042	.159	

Extraction Method: Principal Axis Factoring.

a. Reproduced communalities b. Residuals are computed between observed and reproduced correlations. There are 6 (60.0%) nonredundant residuals with absolute values greater than 0.05.

Rotated Factor Matrix

a. Only one factor was extracted. The solution cannot be rotated.

Factor Score Coefficient Matrix

	Factor
	1
IT1	.092
IT2	.364
IT3	.154
IT4	.102
IT5	.388

Extraction
Method:
Principal Axis
Factoring.
Rotation
Method:
Varimax with
Kaiser
Normalization.

Factor Score Covariance Matrix

Factor	1
1	.913

Extraction
Method:
Principal Axis
Factoring.
Rotation
Method:
Varimax with
Kaiser
Normalization.

CORRELATIONS

 $\label{thm:continuous} $$ \VARIABLES=MeanIF MeanSense of S MeanAttitudes MeanOF MeanIncentives MeanMS upport MeanTrust MeanKSB$

/PRINT=TWOTAIL NOSIG

/STATISTICS DESCRIPTIVES

/MISSING=PAIRWISE.

Correlations

[DataSet1] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test Ain.sav

Descriptive Statistics

	Mean	Std. Deviation	N
MeanIF	4.0313	.48043	148
MeanSenseofs	4.0568	.48825	148
MeanAttitudes	4.0101	.57117	148
MeanOF	3.4767	.57586	148
MeanIncentives	3.1716	.74249	148
MeanMSupport	3.8581	.61110	148
MeanTrust	3.2054	.77721	148
MeanKSB	4.1571	.52187	148

Correlations

		MeanlF	MeanSenseof s	MeanAttitudes	MeanOF
MeanIF	Pearson Correlation	1	.858	.931	.421
	Sig. (2-tailed)		.000	.000	.000
	N	148	148	148	148
MeanSenseofs	Pearson Correlation	.858	1	.611	.342
	Sig. (2-tailed)	.000		.000	.000
	N	148	148	148	148
MeanAttitudes	Pearson Correlation	.931	.611	1	.405
	Sig. (2-tailed)	.000	.000		.000
	N	148	148	148	148
MeanOF	Pearson Correlation	.421	.342	.405	1
	Sig. (2-tailed)	.000	.000	.000	
	N	148	148	148	148
MeanIncentives	Pearson Correlation	.284	.207	.291	.901
	Sig. (2-tailed)	.000	.012	.000	.000
	N	148	148	148	148
MeanMSupport	Pearson Correlation	.460	.410	.417	.752
	Sig. (2-tailed)	.000	.000	.000	.000
	N	148	148	148	148
MeanTrust	Pearson Correlation	.361	.249	.379	.453
	Sig. (2-tailed)	.000	.002	.000	.000
	N	148	148	148	148
MeanKSB	Pearson Correlation	.535	.445	.507	.294
	Sig. (2-tailed)	.000	.000	.000	.000
	N	148	148	148	148

Correlations

		MeanIncentive	Mean		
		S	MSupport	MeanTrust	MeanKSB
MeanIF	Pearson Correlation	.284	.460	.361	.535
	Sig. (2-tailed)	.000	.000	.000	.000
	N	148	148	148	148
MeanSenseofs	Pearson Correlation	.207	.410	.249	.445
	Sig. (2-tailed)	.012	.000	.002	.000
	N	148	148	148	148
MeanAttitudes	Pearson Correlation	.291	.417	.379	.507
	Sig. (2-tailed)	.000	.000	.000	.000
	N	148	148	148	148
MeanOF	Pearson Correlation	.901	.752	.453	.294
	Sig. (2-tailed)	.000	.000	.000	.000
	N	148	148	148	148
MeanIncentives	Pearson Correlation	1	.391	.427	.257
	Sig. (2-tailed)		.000	.000	.002
	N	148	148	148	148
MeanMSupport	Pearson Correlation	.391	1	.311	.233
	Sig. (2-tailed)	.000		.000	.004
	N	148	148	148	148
MeanTrust	Pearson Correlation	.427	.311	1	.239
	Sig. (2-tailed)	.000	.000		.003
	N	148	148	148	148
MeanKSB	Pearson Correlation	.257	.233	.239	1
	Sig. (2-tailed)	.002	.004	.003	
	N	148	148	148	148

^{**.} Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

REGRESSION

/DESCRIPTIVES MEAN STDDEV CORR SIG N

/MISSING PAIRWISE

/STATISTICS COEFF OUTS CI(95) R ANOVA COLLIN TOL CHANGE ZPP

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT MeanKSB

/METHOD=ENTER MeanSenseofs MeanAttitudes MeanIncentives MeanMSupport

/SCATTERPLOT=(*ZRESID ,*ZPRED)

/RESIDUALS DURBIN NORMPROB(ZRESID)

/CASEWISE PLOT(ZRESID) OUTLIERS(3)

/SAVE MAHAL COOK.

Regression

[DataSetl] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test Ain.sav

Descriptive Statistics

	Mean	Std Deviation	N
MeanKSB	4.1571	.52187	148
MeanSenseofs	4.0568	.48825	148
MeanAttitudes	4.0101	.57117	148
MeanIncentives	3.1716	.74249	148
MeanMSupport	3.8581	.61110	148

Correlations

		MeanKSB	MeanSenseof s	MeanAttitudes
Pearson Correlation	MeanKSB	1.000	.445	.507
	MeanSenseofs	.445	1.000	.611
	MeanAttitudes	.507	.611	1.000
	Meanincentives	.257	.207	.291
No	MeanMSupport	.233	.410	.417
Sig. (1-tailed)	MeanKSB		.000	.000
	MeanSenseofs	.000		.000
	MeanAttitudes	.000	.000	
	MeanIncentives	.001	.006	.000
	MeanMSupport	.002	.000	.000
N	MeanKSB	148	148	148
	MeanSenseofs	148	148	148
i	MeanAttitudes	148	148	148
	MeanIncentives	148	148	148
	MeanMSupport	148	148	148

Correlations

		Mean Incentives	Mean MSupport
Pearson Correlation	MeanKSB	.257	.233
	MeanSenseofs	.207	.410
	MeanAttitudes	.291	.417
	MeanIncentives	1.000	.391
	MeanMSupport	.391	1.000
Sig. (1-tailed)	MeanKSB	.001	.002
	MeanSenseofs	.006	.000
	MeanAttitudes	.000	.000
	MeanIncentives		.000
	MeanMSupport	.000	
N	MeanKSB	148	148
	MeanSenseofs	148	148
	MeanAttitudes	148	148
}	MeanIncentives	148	148
	MeanMSupport	148	148

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	Mean MSupport, Mean Incentives, Mean Senseofs, MeanAttitudes		Enter

a. All requested variables entered.b. Dependent Variable: MeanKSB

Model Summary b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.548 ^a	.301	.281	44248

Model Summary b

Model	R Square Change	F Change	df1	df2	Sig. F Change	Durbin- Watson
1	.301	15.371	4	143	.000	1.971

a. Predictors: (Constant), MeanMSupport, MeanIncentives, MeanSenseofs, MeanAttitudes b. Dependent Variable: MeanKSB

ANOVA

Mode		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	12.038	4	3,009	15.371	.000 ^a
	Residual	27.998	143	.196		
	Total	40.035	147			

a. Predictors: (Constant), MeanMSupport, MeanIncentives, MeanSenseofs, MeanAttitudes
b. Dependent Variable: MeanKSB

Coefficients

		Unstandardized Coefficients		
Model		В	Std. Error	
1	(Constant)	1.780	.337	
]	MeanSenseofs	.240	.097	
	MeanAttitudes	.326	.084	
	MeanIncentives	.091	.054	
	MeanMSupport	050	.071	

Coefficients^a

		Standardized Coefficients			95.0% Confidence Interval for E	
Model	I	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)		5.286	.000	1.115	2.446
ľ	MeanSenseofs	.225	2.482	.014	.049	.431
	MeanAttitudes	.357	3.886	.000	.160	.492
	MeanIncentives	.130	1.691	.093	015	.198
	MeanMSupport	059	711	.478	190	.090

Coefficients^a

	Correlations			Collinearity Statistics		
Model		Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)					
	MeanSenseofs	.445	.203	.174	.597	1.675
1	MeanAttitudes	.507	.309	.272	.581	1.722
	MeanIncentives	.257	.140	.118	.826	1.210
	MeanMSupport	.233	059	050	.712	1.405

a. Dependent Variable: MeanKSB

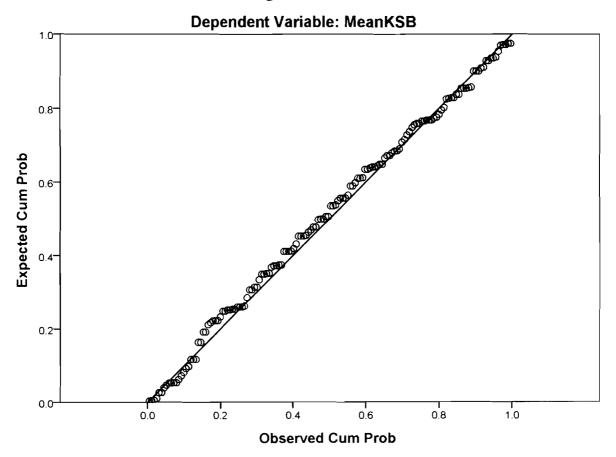
Collinearity Diagnostics^a

Model	Dimension	Eigenvalue	Condition Index
1	1	4.934	1.000
	2	.036	11.659
	3	.014	18.863
	4	.010	22.341
	5	.006	29.068

Collinearity Diagnostics^a

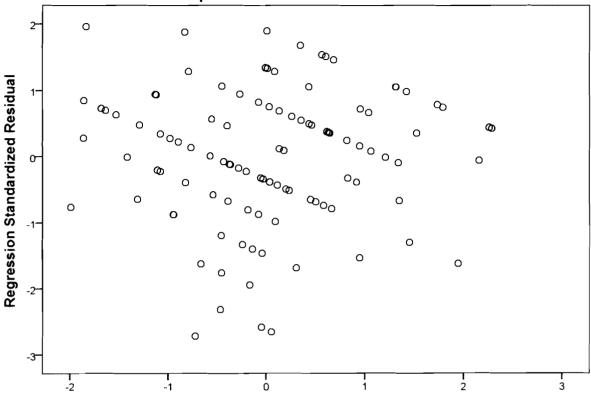
			Variance Proportions						
Model	Dimension	(Constant)	MeanSenseof s	MeanAttitudes	Mean Incentives	Mean MSupport			
1	1	.00	.00	.00	.00	.00			
	2	.02	.02	.02	.92	.00			
]	3	.03	.03	.09	.07	.98			
ĺ	4	.67	.00	.49	.00	.02			
	5	.28	.95	.40	.02	.00			

a. Dependent Variable: MeanKSB


Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	3.5879	4.8119	4.1571	.28616	148
Std. Predicted Value	-1.989	2.288	.000	1.000	148
Standard Error of Predicted Value	.037	.186	.078	.024	148
Adjusted Predicted Value	3.5843	4.7964	4.1565	.28718	148
Residual	-1.19980	.86743	.00000	.43642	148
Std. Residual	<i>-</i> 2.712	1.960	.000	.986	148
Stud. Residual	-2.752	2.014	.001	1.002	148
Deleted Residual	-1.23584	.91566	.00060	.45066	148
Stud. Deleted Residual	-2.818	2.036	001	1.009	148
Mahal. Distance	.055	24.960	3.973	3.122	148
Cook's Distance	.000	.045	.007	.009	148
Centered Leverage Value	.000	.170	.027	.021	148

a. Dependent Variable: MeanKSB


Charts

Normal P-P Plot of Regression Standardized Residual

Scatterplot

Regression Standardized Predicted Value

```
GET
  FILE='C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test Ain.sav'.
DATASET NAME DataSet1 WINDOW=FRONT.
COMPUTE MeanSensexTrust=MeanSenseofs * MeanTrust.
EXECUTE.
REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING PAIRWISE
  /STATISTICS COEFF OUTS CI(95) R ANOVA COLLIN TOL CHANGE ZPP
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT MeanKSB
  /METHOD=ENTER MeanSenseofs
  /METHOD=ENTER MeanSenseofs MeanTrust
  /METHOD=ENTER MeanSensexTrust
  /SCATTERPLOT=(*ZRESID ,*ZPRED)
  /RESIDUALS DURBIN NORMPROB(ZRESID)
  /CASEWISE PLOT(ZRESID) OUTLIERS(3)
```

Regression

/SAVE MAHAL COOK.

[DataSet1] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test Ain.sav

Descriptive Statistics

	Mean	Std. Deviation	N
MeanKSB	4.1571	.52187	148
MeanSenseofs	4.0568	.48825	148
MeanTrust	3.2054	.77721	148
MeanSensexTrust	13.0973	3.97571	148

Correlations

		MeanKSB	MeanSenseof s	MeanTrust	MeanSensex Trust
Pearson Correlation	MeanKSB	1.000	.445	.239	.380
	MeanSenseofs	.445	1.000	.249	.599
	MeanTrust	.239	.249	1.000	.919
	MeanSensexTrust	.380	.599	.919	1.000
Sig. (1-tailed)	MeanKSB		.000	.002	.000
	MeanSenseofs	.000		.001	.000
]	MeanTrust	.002	.001		.000
	MeanSensexTrust	.000	.000	.000	
N	MeanKSB	148	148	148	148
	MeanSenseofs	148	148	148	148
	MeanTrust	148	148	148	148
	MeanSensexTrust	148	148	148	148

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	MeanSenseof s		Enter
2	MeanTrust ^a	-	Enter
3	MeanSensex Trust		Enter

- a. All requested variables entered.b. Dependent Variable: MeanKSB

Model Summary^d

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	445 ^a	198	.193	.46886
2	.465 ^b	.216	.205	.46527
3	.471 ^c	.222	.206	.46516

Model Summary^d

	Change Statistics					
Model	R Square Change	F Change	df1	df2	Sig. F Change	Durbin- Watson
1	.198	36.118	1	146	.000	
2	.018	3.262	1	145	.073	
3	.006	1.070	1	144	.303	1.868

- a. Predictors: (Constant), MeanSenseofs
 b. Predictors: (Constant), MeanSenseofs, MeanTrust
 c. Predictors: (Constant), MeanSenseofs, MeanTrust, MeanSensexTrust
 d. Dependent Variable: MeanKSB

ANOVA

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	7.940	1	7.940	36.118	.000ª
	Residual	32.095	146	.220		
	Total	40.035	147			
2	Regression	8.646	2	4.323	19.970	.000
	Residual	31.389	145	.216		
	Total	40.035	147			
3	Regression	8.878	3	2.959	13.676	.000°
	Residual	31.158	144	.216		
	Total	40.035	147			

a. Predictors: (Constant), MeanSenseofs b. Predictors: (Constant), MeanSenseofs, MeanTrust c. Predictors: (Constant), MeanSenseofs, MeanTrust, MeanSensexTrust d. Dependent Variable: MeanKSB

Coefficients^a

		Unstandardized Coefficients		
Model		В	Std. Error	
1	(Constant)	2.226	.324	
	MeanSenseofs	.476	.079	
2	(Constant)	2.079	.331	
	MeanSenseofs	.440	.081	
	MeanTrust	.092	.051	
3	(Constant)	3.475	1.389	
	MeanSenseofs	. 105	.334	
	MeanTrust	345	.425	
	MeanSensexTrust	.104	.101	

Coefficients

Model		Standardized Coefficients	t	Sig.	95.0% Confidence Interval for B	
		Beta			Lower Bound	Upper Bound
1	(Constant)		6.879	.000	1.587	2.866
	MeanSenseofs	.445	6.010	.000	.319	.633
2	(Constant)		6.274	.000	1.424	2.734
l	MeanSenseofs	.411	5.417	.000	.279	.600
	MeanTrust	.137	1.806	.073	009	.193
3	(Constant)	-	2.501	.014	.728	6.221
ŀ	MeanSenseofs	.098	.314	.754	555	.764
	MeanTrust	513	811	.419	-1.185	.496
	MeanSensexTrust	.793	1.034	.303	095	.303

Coefficients^a

		Correlations		Collinearity Statistics		
Model		Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)					
	MeanSenseofs	.445	.445	.445	1.000	1.000
2	(Constant)	_				
	MeanSenseofs	.445	.410	.398	.938	1.066
	MeanTrust	.239	.148	.133	.938	1.066
3	(Constant)					
	MeanSenseofs	.445	.026	.023	.055	18.040
	MeanTrust	.239	067	060	.013	74.243
	MeanSensexTrust	.380	.086	.076	.009	108.683

a. Dependent Variable: MeanKSB

Excluded Variables^c

Model		Beta In	t	Sig.	Partial Correlation
1	MeanTrust	.137 ^a	1.806	.073	.148
	MeanSensexTrust	.176 ^a	1.920	.057	.157
2	MeanSensexTrust	.793 ^b	1.034	.303	.086

Excluded Variables^c

		Collinearity Statistics				
Model		Tolerance	VIF	Minimum Tolerance		
1	MeanTrust	.938	1.066	.938		
	MeanSensexTrust	.641	1.560	.641		
2	MeanSensexTrust	.009	108.683	.009		

a. Predictors in the Model: (Constant), MeanSenseofs b. Predictors in the Model: (Constant), MeanSenseofs, MeanTrust c. Dependent Variable: MeanKSB

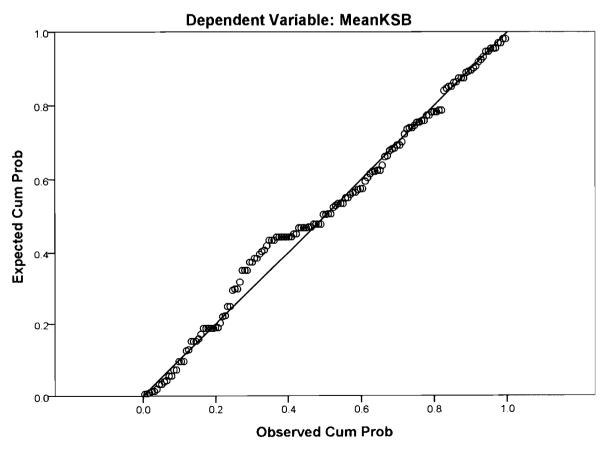
Collinearity Diagnostics^a

Model	Dimension	Eigenvalue	Condition Index
1	1	1.993	1.000
	2	.007	16.734
2	1	2.958	1.000
	2	.035	9.210
	3	.007	20.387
3	1	3.929	1.000
	2	.058	8.229
	3	.013	17.543
	4	.000	142.086

Collinearity Diagnostics^a

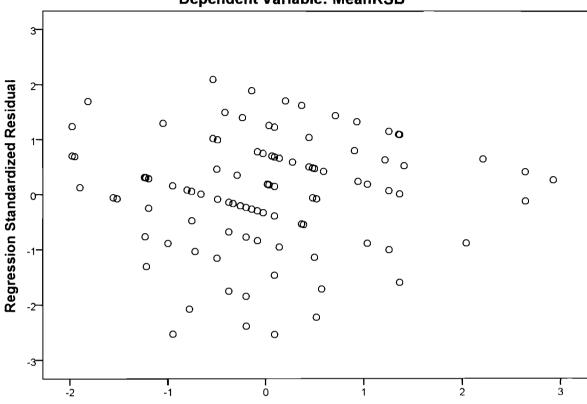
	-	Variance Proportions						
Model	Dimension	(Constant)	MeanSenseof s	MeanTrust	MeanSensex Trust			
1	1	.00	.00					
	2	1.00	1.00					
2	1	.00	.00	.01				
ļ	2	.06	.06	.99				
	3	.94	.94	.00				
3	1	.00	.00	.00	.00			
ì	2	.00	.00	.00	.00			
	3	.01	.02	.02	.01			
	4	.99	.98	.98	.99			

a. Dependent Variable: MeanKSB


Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	3.6714	4.8758	4.1571	.24575	148
Std. Predicted Value	-1.976	2.925	.000	1.000	148
Standard Error of Predicted Value	.040	.192	.071	.029	148
Adjusted Predicted Value	3.6339	4.8557	4.1563	.24750	148
Residual	-1.17930	.97560	.00000	.46039	148
Std. Residual	-2.535	2.097	.000	.990	148
Stud. Residual	-2.558	2.107	.001	1.002	148
Deleted Residual	-1.20271	.98423	.00076	.47175	148
Stud. Deleted Residual	-2.609	2.132	.000	1.009	148
Mahal. Distance	.072	24.005	2.980	3.920	148
Cook's Distance	.000	.080	.006	.012	148
Centered Leverage Value	.000	.163	.020	.027	148

a. Dependent Variable: MeanKSB


Charts

Normal P-P Plot of Regression Standardized Residual

Scatterplot

Dependent Variable: MeanKSB

Regression Standardized Predicted Value

```
GET
  FILE='C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test Ain.sav'.
DATASET NAME DataSet1 WINDOW=FRONT.
COMPUTE MeanAttitudesxKSB=MeanAttitudes * MeanKSB.
EXECUTE.
COMPUTE MeanAttitudesxTrust=MeanAttitudes * MeanTrust.
EXECUTE.
REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING PAIRWISE
  /STATISTICS COEFF OUTS CI(95) R ANOVA COLLIN TOL CHANGE ZPP
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT MeanKSB
  /METHOD=ENTER MeanAttitudes
  /METHOD=ENTER MeanAttitudes MeanTrust
  /METHOD=ENTER MeanAttitudesxTrust
  /SCATTERPLOT=(*ZRESID ,*ZPRED)
  /RESIDUALS DURBIN NORMPROB(ZRESID)
  /CASEWISE PLOT(ZRESID) OUTLIERS(3)
```

Regression

/SAVE MAHAL COOK.

[DataSet1] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test Ain.sav

Descriptive Statistics

	Mean	Std. Deviation	N
MeanKSB	4.1571	.52187	148
MeanAttitudes	4.0101	.57117	148
MeanTrust	3.2054	.77721	148
MeanAttitudesxTrust	13.0212	4.22699	148

Correlations

		MeanKSB	MeanAttitudes	M eanTrust	MeanAttitudes xTrust
Pearson Correlation	MeanKSB	1.000	.507	.239	.407
	MeanAttitudes	.507	1.000	.379	.713
	MeanTrust	.239	.379	1.000	.913
	MeanAttitudesxTrust	.407	.713	.913	1.000
Sig. (1-tailed)	MeanKSB		.000	.002	.000
	MeanAttitudes	.000		.000	.000
	MeanTrust	.002	.000		.000
	MeanAttitudesxTrust	.000	.000	.000	
N	MeanKSB	148	148	148	148
	MeanAttitudes	148	148	148	148
	MeanTrust	148	148	148	148
	MeanAttitudesxTrust	148	148	148	148

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	MeanAttitudes		Enter
2	MeanTrust ^a		Enter
3	MeanAttitudes xTrust		Enter

a. All requested variables entered.b. Dependent Variable: MeanKSB

Model Summary^d

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.507 ^a	.257	.252	.45131
2	.510 ^b	.260	.250	.45207
3	.521 ^c	.271	.256	.45018

Model Summary^d

		-				
Model	R Square Change	F Change	df1	df2	Sig. F Change	Durbin- Watson
1	.257	50.558	1	146	.000	
2	.003	.511	1	145	.476	
3	.011	2.221	1	144	.138	2.072

a. Predictors: (Constant), MeanAttitudes
b. Predictors: (Constant), MeanAttitudes, MeanTrust
c. Predictors: (Constant), MeanAttitudes, MeanTrust, MeanAttitudesxTrust
d. Dependent Variable: MeanKSB

$\mathsf{ANOVA}^\mathsf{d}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	10.298	1	10.298	50.558	.000ª
	Residual	29.737	146	.204		
	Total	40.035	147			
2	Regression	10.402	2	5.201	25.450	.000
	Residual	29.633	145	.204		
	Total	40.035	147			
3	Regression	10.852	3	3.617	17.850	.000°
	Residual	29.183	144	.203		
	Total	40.035	147			

a. Predictors: (Constant), MeanAttitudes
b. Predictors: (Constant), MeanAttitudes, MeanTrust
c. Predictors: (Constant), MeanAttitudes, MeanTrust, MeanAttitudesxTrust
d. Dependent Variable: MeanKSB

Coefficients a

	_	Unstandardized Coefficients		
Model		В	Std. Error	
1	(Constant)	2.299	.264	
ĺ	MeanAttitudes	.463	.065	
2	(Constant)	2.257	.271	
	MeanAttitudes	.444	.071	
	MeanTrust	.037	.052	
3	(Constant)	4.128	1.284	
	MeanAttitudes	020	.319	
	MeanTrust	560	.404	
	MeanAttitudesxTrust	.146	.098	

Coefficients ^a

		Standardized Coefficients			95.0% Confidence Interval for B
Model		Beta	t	Sig.	Lower Bound
1	(Constant)		8.709	.000	1.777
	MeanAttitudes	.507	7.110	.000	.335
2	(Constant)		8.330	.000	1.721
	MeanAttitudes	.486	6.299	.000	.305
	MeanTrust	.055	.715	.476	065
3	(Constant)		3.214	.002	1.590
	MeanAttitudes	022	062	.951	651
	MeanTrust	834	-1.386	.168	-1.358
	MeanAttitudesxTrust	1.184	1.490	.138	048

Coefficients^a

		95.0% Confidence Interval for B	Correlations		
Model		Upper Bound	Zero-order	Partial	Part
1	(Constant)	2.821			
	MeanAttitudes	.592	.507	.507	.507
2	(Constant)	2.792			
	MeanAttitudes	.584	.507	.463	.450
	MeanTrust	.140	.239	.059	.051
3	(Constant)	6.666			
	MeanAttitudes	.611	.507	005	004
	MeanTrust	.238	.239	115	099
	MeanAttitudesxTrust	.340	.407	.123	.106

Coefficients^a

			Statistics
Model		Tolerance	VIF
1	(Constant)		
	MeanAttitudes	1.000	1.000
2	(Constant)		
	MeanAttitudes	.856	1.168
ľ	MeanTrust	.856	1.168
3	(Constant)		
	MeanAttitudes	.041	24.108
	MeanTrust	.014	71.460
	MeanAttitudesxTrust	.008	124.663

a. Dependent Variable: MeanKSB

Excluded Variables^c

Mode		Beta In	t	Sig.	Partial Correlation
1	MeanTrust	.055ª	.715	.476	.059
	MeanAttitudesxTrust	.092 ^a	.899	.370	.074
2	MeanAttitudesxTrust	1.184 ^b	1.490	.138	.123

Excluded Variables^c

	_	Collinearity Statistics		
Model		Tolerance	VIF	Minimum Tolerance
1	MeanTrust	.856	1.168	.856
	MeanAttitudesxTrust	.491	2.037	.491
2	MeanAttitudesxTrust	.008	124.663	.008

- a. Predictors in the Model: (Constant), MeanAttitudesb. Predictors in the Model: (Constant), MeanAttitudes, MeanTrustc. Dependent Variable: MeanKSB

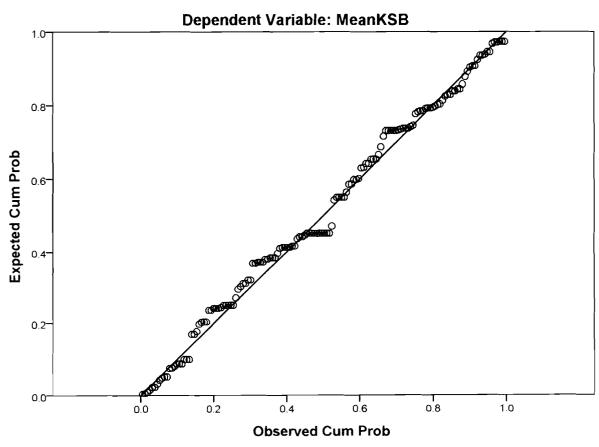
Collinearity Diagnostics^a

Model	Dimension	Eigenvalue	Condition Index
1	1	1.990	1.000
	2	.010	14.160
2	1	2.958	1.000
	2	.032	9.586
	3	.010	17.372
3	1	3.926	1.000
	2	.058	8.203
	3	.015	15.999
]	4	.000	139.449

Collinearity Diagnostics

		Variance Proportions			
Model	Dimension	(Constant)	MeanAttitudes	MeanTrust	MeanAttitudes xTrust
1	1	.00	.00		
	2	1.00	1.00		
2	1	.00	.00	.01	
	2	.12	.07	.98	
ł	3	.88	.93	.02	
3	1	.00	.00	.00	.00
	2	.01	.00	.00	.00
	3	.01	.02	.02	.01
	4	.99	.98	.98	.99

a. Dependent Variable: MeanKSB


Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	3.5647	4.8837	4.1571	.27171	148
Std. Predicted Value	-2.180	2.674	.000	1.000	148
Standard Error of Predicted Value	.040	.178	.070	.025	148
Adjusted Predicted Value	3.5805	4.8620	4.1561	.27278	148
Residual	-1.19264	.87498	.00000	.44556	148
Std. Residual	-2.649	1.944	.000	.990	148
Stud. Residual	-2.676	1.979	.001	1.002	148
Deleted Residual	-1.21695	.90689	.00096	.45634	148
Stud. Deleted Residual	-2.736	1.999	.000	1.008	148
Mahal. Distance	.195	22.044	2.980	3.217	148
Cook's Distance	.000	.036	.006	.008	148
Centered Leverage Value	.001	.150	.020	.022	148

a. Dependent Variable: MeanKSB


Charts

Normal P-P Plot of Regression Standardized Residual

Scatterplot

Regression Standardized Predicted Value

```
GET
```

```
FILE='C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test Ain.sav'.
DATASET NAME DataSetl WINDOW=FRONT.
COMPUTE MeanIncentivexTrust=MeanIncentives * MeanTrust.
EXECUTE.
REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING PAIRWISE
  /STATISTICS COEFF OUTS CI(95) R ANOVA COLLIN TOL CHANGE ZPP
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT MeanKSB
  /METHOD=ENTER MeanIncentives
  /METHOD=ENTER MeanIncentives MeanTrust
  /METHOD=ENTER MeanIncentivexTrust
 /SCATTERPLOT=(*ZRESID ,*ZPRED)
  /RESIDUALS DURBIN NORMPROB(ZRESID)
  /CASEWISE PLOT(ZRESID) OUTLIERS(3)
  /SAVE MAHAL COOK.
```

Regression

[DataSetl] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test Ain.sav

Descriptive Statistics

	Mean	Std. Deviation	N
MeanKSB	4.1571	.52187	148
MeanIncentives	3.1716	.74249	148
MeanTrust	3.2054	.77721	148
MeanIncentivexTrust	10.4114	4.05809	148

Correlations

		MeanKSB	Mean Incentives	MeanTrust
Pearson Correlation	MeanKSB	1.000	.257	.239
	MeanIncentives	.257	1.000	.427
	MeanTrust	.239	.427	1.000
	MeanIncentivexTrust	.298	.840	.829
Sig. (1-tailed)	MeanKSB		.001	.002
	MeanIncentives	.001		.000
	MeanTrust	.002	.000	
	MeanIncentivexTrust	.000	.000	.000
N	MeanKSB	148	148	148
	MeanIncentives	148	148	148
	MeanTrust	148	148	148
	MeanIncentivexTrust	148	148	148

Correlations

		Mean Incentivex Trust
Pearson Correlation	MeanKSB	.298
	MeanIncentives	.840
	MeanTrust	.829
	MeanIncentivexTrust	1.000
Sig. (1-tailed)	MeanKSB	.000
	MeanIncentives	.000
	MeanTrust	.000
	MeanIncentivexTrust	
N	MeanKSB	148
	MeanIncentives	148
	MeanTrust	148
	MeanIncentivexTrust	148

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	Mean Incentives		Enter
2	MeanTrust ^a		Enter
3	Mean Incentivex Trust		Enter

- a. All requested variables entered.b. Dependent Variable: MeanKSB

Model Summary^d

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.257 ^a	.066	.060	.50601
2	.294 ^b	.087	.074	.50215
3	.298 ^c	.089	.070	.50331

Model Summary^d

		_				
Model	R Square Change	F Change	df1	df2	Sig. F Change	Durbin- Watson
1	.066	10.357	1	146	.002	
2	.020	3.252	1	145	.073	
3	.002	.332	1	144	.565	1.824

a. Predictors: (Constant), MeanIncentives
b. Predictors: (Constant), MeanIncentives, MeanTrust
c. Predictors: (Constant), MeanIncentives, MeanTrust, MeanIncentivexTrust
d. Dependent Variable: MeanKSB

$\mathsf{ANOVA}^\mathsf{d}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2.652	1	2.652	10.357	.002ª
	Residual	37.383	146	.256		
	Total	40.035	147			
2	Regression	3.472	2	1.736	6.885	.001 ^B
	Residual	36.563	145	.252		
	Total	40.035	147			
3	Regression	3.556	3	1.185	4.679	.004 ^c
	Residual	36.479	144	.253		
_	Total	40.035	147			

a. Predictors: (Constant), MeanIncentives
b. Predictors: (Constant), MeanIncentives, MeanTrust
c. Predictors: (Constant), MeanIncentives, MeanTrust, MeanIncentivexTrust
d. Dependent Variable: MeanKSB

Coefficients^a

		Unstandardized Coefficients		
Model		В	Std. Error	
1	(Constant)	3.583	.183	
	MeanIncentives	.181	.056	
2	(Constant)	3.393	.210	
	MeanIncentives	.133	.062	
	MeanTrust	.106	.059	
3	(Constant)	3.753	.658	
	MeanIncentives	.011	.222	
	MeanTrust	007	.205	
	MeanIncentivexTrust	.038	.066	

Coefficients^a

		Standardized Coefficients			95.0% Confidence Interval for B
Model		Beta	t	Sig.	Lower Bound
1	(Constant)		19.574	.000	3.222
	MeanIncentives	.257	3.218	.002	.070
2	(Constant)		. 16.161	.000	2.978
	MeanIncentives	.190	2.161	.032	.011
	MeanTrust	.158	1.803	.073	010
3	(Constant)		5.705	.000	2.453
	MeanIncentives	.015	.048	.962	427
	MeanTrust	011	034	.973	413
	MeanIncentivexTrust	.294	.577	.565	092

Coefficients

		95.0% Confidence Interval for B	Correlations		
Model		Upper Bound	Zero-order	Partial	Part
1	(Constant)	3.945			
	MeanIncentives	.292	.257	.257	.257
2	(Constant)	3.808			
	MeanIncentives	.255	.257	.177	.171
	MeanTrust	.223	.239	.148	.143
3	(Constant)	5.053			
	MeanIncentives	.449	.257	.004	.004
	MeanTrust	.399	.239	003	003
	MeanIncentivexTrust	.167	.298	.048	.046

Coefficients^a

		Collinearity Statistics		
Model		Tolerance	VIF	
1	(Constant)			
	MeanIncentives	1.000	1.000	
2	(Constant)			
	MeanIncentives	.817	1.224	
	MeanTrust	.817	1.224	
3	(Constant)	_		
	MeanIncentives	.064	15.715	
	MeanTrust	.068	14.779	
	MeanIncentivexTrust	.024	41.029	

a. Dependent Variable: MeanKSB

Excluded Variables^c

Model		Beta In	t	Sig.	Partial Correlation
1	MeanTrust	.158ª	1.803	.073	.148
	MeanIncentivexTrust	.277 ^a	1.896	.060	.156
2	MeanIncentivexTrust	.294 ^b	.577	.565	.048

Excluded Variables^c

		Collinearity Statistics			
Model		Tolerance	VIF	Minimum Tolerance	
1	MeanTrust	.817	1.224	.817	
	MeanIncentivexTrust	.294	3.397	.294	
2	MeanIncentivexTrust	.024	41.029	.024	

a. Predictors in the Model: (Constant), MeanIncentives
b. Predictors in the Model: (Constant), MeanIncentives, MeanTrust
c. Dependent Variable: MeanKSB

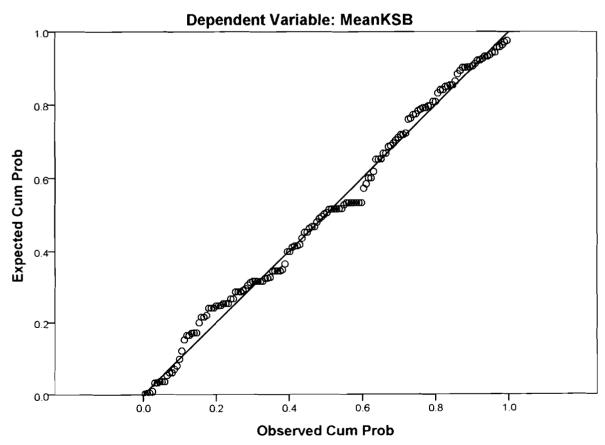
Collinearity Diagnostics^a

Model	Dimension	Eigenvalue	Condition Index
1	1	1.974	1.000
	2	.026	8.687
2	1	2.944	1.000
	2	.031	9.77 4
	3	.026	10.709
3	1	3.901	1.000
	2	.068	7.575
	3	.031	11.292
	4	.001	65.213

Collinearity Diagnostics^a

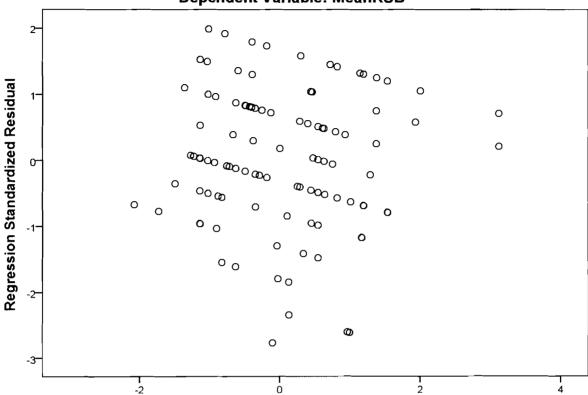
		Variance Proportions				
Model	Dimension	(Constant)	Mean Incentives	MeanTrust	Mean Incentivex Trust	
1	1	.01	.01			
	2	.99	.99			
2	1	.00	.00	.01		
	2	.04	.50	.88		
	3	.96	.49	.11		
3	1	.00	.00	.00	.00	
	2	.03	.00	.00	.02	
	3	.00	.05	.06	.00	
	4	.97	.95	.94	.98	

a. Dependent Variable: MeanKSB


Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	3.8338	4.6422	4.1571	.15554	148
Std. Predicted Value	-2.079	3.119	.000	1.000	148
Standard Error of Predicted Value	.044	.212	.076	.033	148
Adjusted Predicted Value	3.9061	4.6224	4.1568	.15135	148
Residual	-1.39093	1.00086	.00000	.49815	148
Std. Residual	-2.764	1.989	.000	.990	148
Stud. Residual	-2.842	2.004	.000	1.002	148
Deleted Residual	-1.47069	1.01624	.00034	.51095	148
Stud. Deleted Residual	-2.915	2.025	001	1.009	148
Mahal. Distance	.155	25.175	2.980	4.507	148
Cook's Distance	.000	.116	.006	.012	148
Centered Leverage Value	.001	.171	.020	.031	148

a. Dependent Variable: MeanKSB


Charts

Normal P-P Plot of Regression Standardized Residual

Scatterplot

Regression Standardized Predicted Value

```
GET
```

```
FILE='C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test Ain.sav'.
DATASET NAME DataSet1 WINDOW=FRONT.
COMPUTE MeanMSupportxTrust=MeanMSupport * MeanTrust.
EXECUTE.
REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING PAIRWISE
  /STATISTICS COEFF OUTS CI(95) R ANOVA COLLIN TOL CHANGE ZPP
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT MeanKSB
  /METHOD=ENTER MeanMSupport
  /METHOD=ENTER MeanMSupport MeanTrust
  /METHOD=ENTER MeanMSupportxTrust
  /SCATTERPLOT=(*ZRESID ,*ZPRED)
  /RESIDUALS DURBIN NORMPROB(ZRESID)
  /CASEWISE PLOT(ZRESID) OUTLIERS(3)
  /SAVE MAHAL COOK.
```

Regression

[DataSet1] C:\Users\Ain\Google Drive\Thesis\SPSS\Actual Test Ain.sav

Descriptive Statistics

	Mean	Std. Deviation	N
MeanKSB	4.1571	.52187	148
MeanMSupport	3.8581	.61110	148
MeanTrust	3.2054	.77721	148
MeanMSupportxTrust	12.5135	4.08748	148

Correlations

		MeanKSB	Mean MSupport	MeanTrust
Pearson Correlation	MeanKSB	1.000	.233	.239
	MeanMSupport	.233	1.000	.311
	MeanTrust	.239	.311	1.000
	MeanMSupportxTrust	.290	.712	.877
Sig. (1-tailed)	MeanKSB		.002	.002
	MeanMSupport	.002		.000
	MeanTrust	.002	.000	
	MeanMSupportxTrust	.000	.000	.000
N	MeanKSB	148	148	148
	MeanMSupport	148	148	148
	MeanTrust	148	148	148
<u></u>	MeanMSupportxTrust	148	148	148

Correlations

		Mean MSupportx Trust
Pearson Correlation	MeanKSB	.290
	MeanMSupport	.712
	MeanTrust	.877
ļ 	MeanMSupportxTrust	1.000
Sig. (1-tailed)	MeanKSB	.000
	MeanMSupport	.000
	MeanTrust	.000
	MeanMSupportxTrust	
N	MeanKSB	148
	MeanMSupport	148
	MeanTrust	148
	MeanMSupportxTrust	148

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	Mean MSupport		Enter
2	MeanTrust ^a		Enter
3	Mean MSupportx Trust		Enter

a. All requested variables entered. b. Dependent Variable: MeanKSB

Model Summary^d

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.233ª	.054	.048	.50924
2	.292 ^b	.085	.073	.50259
3	.292 ^c	.086	.066	.50423

Model Summary^d

	Change Statistics					
Model	R Square Change	F Change	df1	df2	Sig. F Change	Durbin∹ Watson
1	.054	8.383	1	146	.004	
2	.031	4.890	1	145	.029	
3	.000	.057	1	144	.812	1.883

a Predictors: (Constant), MeanMSupport b. Predictors: (Constant), MeanMSupport, MeanTrust c. Predictors: (Constant), MeanMSupport, MeanTrust, MeanMSupportxTrust d. Dependent Variable: MeanKSB

ANOVAd

Mode		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2.174	1	2.174	8.383	.004ª
]	Residual	37.861	146	.259		
	Total	40.035	147			
2	Regression	3.409	2	1.705	6.748	.002 ^b
	Residual	36.626	145	.253		
	Total	40.035	147			
3	Regression	3.423	3	1.141	4.488	.005
	Residual	36.612	144	.254		
	Total	40.035	147			

a. Predictors: (Constant), MeanMSupport b. Predictors: (Constant), MeanMSupport, MeanTrust c. Predictors: (Constant), MeanMSupport, MeanTrust, MeanMSupportxTrust d. Dependent Variable: MeanKSB

Coefficients^a

		Unstandardized Coefficients		
Model		В	Std. Error	
1	(Constant)	3.389	.268	
	MeanMSupport	.199	.069	
2	(Constant)	3.181	.281	
	MeanMSupport	.150	.071	
	MeanTrust	.124	.056	
3	(Constant)	3.409	.998	
	MeanMSupport	.089	.264	
	MeanTrust	.053	.303	
	MeanMSupportxTrust	.019	.078	

Coefficients^a

		Standardized Coefficients			95.0% Confidence Interval for B
Model		Beta	t	Sig.	Lower Bound
1	(Constant)		12.625	.000	2.859
	MeanMSupport	.233	2.895	.004	.063
2	(Constant)		11.312	.000	2.625
	MeanMSupport	.176	2.100	.037	.009
	MeanTrust	.185	2.211	.029	.013
3	(Constant)		3.415	.001	1.436
	MeanMSupport	.105	.339	.735	431
	MeanTrust	.079	.175	.862	- 547
	MeanMSupportxTrust	.146	.238	.812	136

Coefficients

		95.0% Confidence Interval for B	Correlations		
Model		Upper Bound	Zero-order	Partial	Part
1	(Constant)	3.920		-	
	MeanMSupport	.335	.233	.233	.233
2	(Constant)	3.737			
	MeanMSupport	.291	.233	.172	.167
i	MeanTrust	.235	.239	.181	.176
3	(Constant)	5.382			_
	MeanMSupport	.610	.233	.028	.027
	MeanTrust	.653	.239	.015	.014
	MeanMSupportxTrust	.173	.290	.020	.019

Coefficients

		Collinearity Statistics		
Model		Tolerance	VIF	
1	(Constant)			
	MeanMSupport	1.000	1.000	
2	(Constant)			
	MeanMSupport	.903	1.107	
l	MeanTrust	.903	1.107	
3	(Constant)		_	
	MeanMSupport	.067	14.996	
	MeanTrust	.031	32.160	
	MeanMSupportxTrust	.017	58.859	

a. Dependent Variable: MeanKSB

Excluded Variables^c

Mod	del	Beta In	t	Sig.	Partial Correlation
1	MeanTrust	.185	2.211	.029	.181
	MeanMSupportxTrust	.251 ^a	2.218	.028	.181
2	MeanMSupportxTrust	.146 ^b	.238	.812	.020

Excluded Variables^c

		Collinearity Statistics			
Model		Tolerance	VIF	Minimum Tolerance	
1	MeanTrust	.903	1.107	.903	
	MeanMSupportxTrust	.494	2.026	.494	
2	MeanMSupportxTrust	.017	58.859	.017	

a. Predictors in the Model: (Constant), MeanMSupport b Predictors in the Model: (Constant), MeanMSupport, MeanTrust c. Dependent Variable: MeanKSB

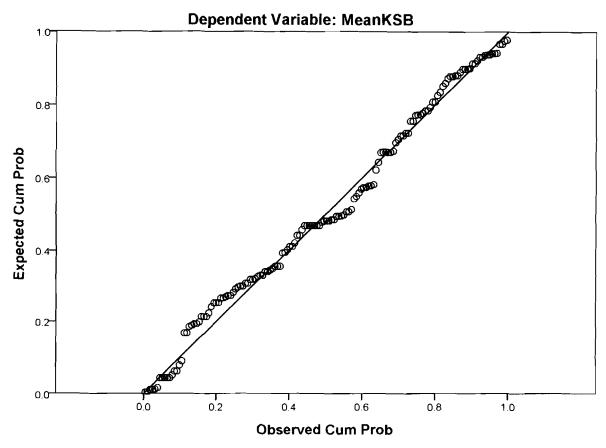
Collinearity Diagnostics^a

Model	Dimension	Eigenvalue	Condition Index
1	1	1.988	1.000
	2	.012	12.748
2	1	2.954	1.000
	2	.034	9.385
	3	.012	15.544
3	1	3.922	1.000
	2	.057	8.287
	3	.020	13.832
	4	.000	95.541

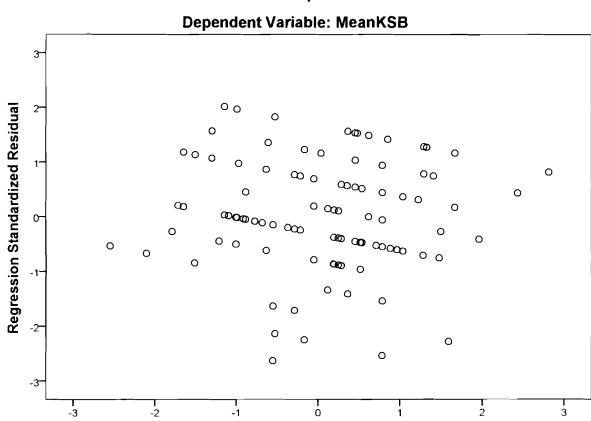
Collinearity Diagnostics^a

		Variance Proportions				
Model Dimension		(Constant)	Mean MSupport	MeanTrust	Mean MSupportx Trust	
1	1	.01	.01			
	2	.99	.99			
2	1	.00	.00	.01		
	2	.10	.11	.99		
1	3	.90	.88	.00		
3	1	.00	.00	.00	.00	
	2	.01	.00.	.00	.01	
	3	.01	.03	.03	.01	
	4	.98	.97	.96	.98	

a. Dependent Variable: MeanKSB


Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	3.7686	4.5867	4.1571	.15261	148
Std. Predicted Value	-2.546	2.815	.000	1.000	148
Standard Error of Predicted Value	.044	.215	.075	.035	148
Adjusted Predicted Value	3.8279	4.5187	4.1559	.15184	148
Residual	-1.32287	1.01770	.00000	.49906	148
Std. Residual	-2.624	2.018	.000	.990	148
Stud. Residual	-2.648	2.040	.001	1.001	148
Deleted Residual	-1.34781	1.03997	.00114	.51052	148
Stud. Deleted Residual	-2.706	2.063	.000	1.008	148
Mahal. Distance	.137	25.610	2.980	4.616	148
Cook's Distance	.000	.050	.006	.009	148
Centered Leverage Value	.001	.174	.020	.031	148


a. Dependent Variable: MeanKSB

Charts

Normal P-P Plot of Regression Standardized Residual

Scatterplot

