

**EFFECT OF WORKING CAPITAL MANAGEMENT AND
FINANCIAL CONSTRAINTS ON CORPORATE
PERFORMANCE**

NUREIN SAHEED ADEBOWALE

**MASTER OF SCIENCE
UNIVERSITI UTARA MALAYSIA
July 2014**

**EFFECT OF WORKING CAPITAL MANAGEMENT AND FINANCIAL
CONSTRAINTS ON CORPORATE PERFORMANCE**

BY

NUREIN SAHEED ADEBOWALE

814283

**Thesis Submitted to
Othman Yeop Abdullah Graduate School of Business
Universiti Utara Malaysia
In Fulfilment of the Requirement for the Degree of Master of Finance**

DECLARATION

I declare that the substance of this project paper has never been submitted for any degree or postgraduate program and qualifications.

I certify that all the support and assistance received in preparing this project paper and the entire source abstracted have been acknowledged in this stated project paper.

NUREIN SAHEED ADEBOWALE

814283

Othman Yeop Abdullah

Graduate School of Business

Universiti Utara Malaysia

06010 Sintok

Kedah Darul Aman

PERMISSION TO USE

In presenting this thesis in fulfilment of the requirement for a postgraduate degree from Universiti Utara Malaysia, I agree that university library may make it freely for inspection. I further agree that permission for the copying of the thesis in any manner, whole or in part for the scholarly purpose may be granted by my supervisor, or in her absence by the Dean of Othman Yeop Abdullah Graduate school of Business. It is understood that any copying or publication or use of thesis or parts therefore for financial gain shall not be allowed without any written permission. It is also understood that due recognition will be given to me and Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Request for permission to copy or to make other use of the material in this thesis, in whole or part should be addressed to:

Dean of Othman Yeop Abdullah Graduate School of Business

Universiti Utara Malaysia

06010 UUM Sintok

Kedah Darul Aman, Malaysia.

ABSTRAK

Tujuan penyelidikan ini adalah untuk menyumbang kepada kajian lepas dengan memberi bukti yang empirikal terhadap kesan pengurusan modal kerja kepada prestasi korporat dan pengaruh kekangan kewangan ke atas hubungan antara prestasi korporat dan pengurusan modal kerja di firma yang tersenarai di Bursa Malaysia. Data untuk kajian ini diambil daripada Data stream, yang terdiri daripada 215 firma bagi tempoh 2008-2012. Tobin's Q digunakan sebagai proksi untuk prestasi korporat, manakala kitaran perdagangan bersih dan nisbah semasa digunakan sebagai proksi untuk modal kerja. Pemboleh ubah yang lain adalah seperti saiz firma, leveraj, peluang pertumbuhan dan pulangan ke atas asset, manakala dividen digunakan sebagai proksi untuk kekangan kewangan. Dengan menggunakan kaedah *ordinary least square* dan analisis kesan rawak, keputusan menunjukkan prestasi korporat adalah behubung kait dan berimpak negatif kepada kitaran perdagangan bersih tetapi berimpak positif kepada nisbah semasa. Kajian ini juga mendapati kekangan kewangan oleh firma adalah berhubung kait secara positif dengan pengurusan modal kerja dan prestasi korporat. Hasil kajian ini juga mendapati, kekangan kewangan firma adalah berhubung kait secara positif kepada pengurusan modal kerja dan prestasi korporat. Kajian ini mendapati mengurus modal kerja secara efektif dan efisen akan memberi kesan kepada prestasi korporat dan firma yang mempunyai kurang kekangan kewangan memiliki prestasi korporat yang lebih baik berbanding firma yang mempunyai masalah kekangan kewangan. Kajian ini mencadangkan kepada firma yang ingin mencapai prestasi yang lebih baik dan untuk meningkatkan nilai kepada pemegang saham mereka perlu mempunyai modal kerja yang lebih baik dengan kitaran perdagangan bersih yang pendek serta dapat memenuhi obligasi kewangan dalam masa jangka pendek.

Kata kunci: prestasi korporat, pengurusan modal kerja, kekangan kewangan, kitaran perdagangan bersih, nilai pemegang saham.

ABSTRACT

The aim of this paper is to contribute to the previous studies by given an empirical evidence of the impact of working capital management on corporate performance and the influence of financial constraints on the relationship between corporate performance and working capital management of Malaysian listed firms in Bursa Malaysia. The data for this study was retrieved from the DataStream, consisting of 215 firms for the period 2008-2012. Tobin's Q is used as a proxy for corporate performance, while net trade cycle (NTC) and current ratio (CR) are used as proxies for working capital management. Other independent variables are firm size (SIZE), leverage (LEVERAGE), growth opportunity (GROWTH) and return on assets (ROA), while dividend (DDIV) is used as a proxy for financial constraints. By applying correlation, Ordinary Least Square (OLS), Fixed-Effect and Random-Effect regression analyses, the results show that corporate performance is related and positively significant to net trade cycle. This study also finds that firms' financial constraint is significant and positively related to working capital management and corporate performance. These findings indicate that managing an efficient and effective working capital as impact on corporate performance and firms with less financial constraints achieve better corporate performance than firms with high financial constraints. This study suggests that for a firm to achieve a better performance cum maximizing shareholder's value, it must achieve a better working capital with a longer net trade cycle (NTC) as well as meeting its short-term obligations.

Keywords: Corporate performance, working capital management, financial constraints, net trade cycle, shareholder's value.

ACKNOWLEDGEMENT

This thesis has been packaged with the help of Allah (S.W.T) and the support of many people. Firstly, I give thanks to Allah the lord of the universe, who in His infinite mercy and grace set my affairs right and made the completion of this thesis a reality. I wish to express my profound gratitude to my reliable supervisor, Associate. Prof. Dr. Rohani Md Rus for her inspiration and motivation in ensuring that a standard was accomplished for this thesis. Her inspiration, tolerance, advises, understanding and encouragement cannot be quantified. This indeed made my work a great learning experience; surely you will remain in my memory.

I am also grateful to my family members especially my wife Hajar Abdul-Muhmin for her inspiration, endurance and understanding during the course of this project, then to my siblings AbdulFatai, Teslim, Moshhood, Ibrahim, Abubakar, Abdul-Qodri and Rahmat for their encouragements and support towards the achievement of this thesis. I pray that Allah protect and guide them through all their endeavours.

I also use this medium to appreciate the support and advice of Dr. Yahya Toyin Muritala, Dr. Aliyu Olayemi Abdullateef, Dr. Musa Yusuf Owoyemi and all my friends who have contributed in one way or the other towards the success of this study. I pray that Allah reward them abundantly.

Nurein Saheed Adebawale.

TABLE OF CONTENT

DECLARATION.....	III
PERMISSION TO USE.....	IV
ABSTRAK.....	V
ABSTRACT.....	VI
ACKNOWLEDGEMENT.....	VII
LIST OF APPENDICES.....	XII
LIST OF TABLES.....	XIII
LIST OF ABBREVIATIONS.....	XIV
CHAPTER ONE.....	1
1.0 INTRODUCTION.....	1
1.1 PROBLEM STATEMENT.....	8
1.2 RESEARCH QUESTIONS.....	12
1.3 RESEARCH OBJECTIVES.....	13
1.4 SIGNIFICANCE OF THE STUDY.....	13
1.5 SCOPE AND LIMITATIONS OF THE STUDY.....	14
1.6 ORGANIZATION OF THE STUDY.....	14
1.7 SUMMARY OF THE CHAPTER.....	14
CHAPTER TWO: LITERATURE REVIEW.....	15
2.0 INTRODUCTION.....	15
2.1 WORKING CAPITAL MANAGEMENT AND CORPORATE PERFOMANCE.....	32
2.2 INVESTING IN WORKING CAPITAL AND FINANCIAL CONSTRAINTS.....	32
2.3 IMPACT OF FINANCIAL CONSTRAINTS ON CORPORATE PERFORMANCE.....	36
2.4 WORKING CAPITAL MANAGEMENT, CORPORATE PERFOMANCE AND FINANCIAL CONSTRAINTS.....	40

2.5	DISCUSSION ON FIRM PERFORMANCE, WORKING CAPITAL MANAGEMENT AND FINANCIAL CONSTRAINTS VARIABLES	42
2.6	SUMMARY OF THE CHAPTER.....	47
CHAPTER THREE: METHODOLOGY.....		48
3.0	INTRODUCTION.....	48
3.1	DESCRIPTION OF VARIABLES.....	48
3.2	THEORETICAL FRAMEWORK.....	51
3.3	SPECIFICATION OF THE MODEL AND METHODOLOGY.....	53
3.4	HYPOTHESES.....	54
3.5	SUMMARY OF THE CHAPTER.....	57
CHAPTER FOUR: ANALYSIS AND FINDING.....		58
4.0	INTRODUCTION.....	58
4.1	DATA AND SUMMARY STATISTICS.....	58
4.2	EFFCET OF WORKING CAPITAL MANAGEMENT ON COROPORATE PERFORMANCE	60
4.3	FINANCIAL CONSTRAINTS, WORKING CAPITAL MANAGEMENT AND CORPORATE PERFOMANCE	62
4.4	SUMMARY OF THE CHAPTER.....	64
CHAPTER FIVE: CONCLUSION AND RECOMMENDATION.....		63
5.0	INTRODUCTION.....	63
5.1	CONCLUSION.....	63
5.2	IMPLICATIONS.....	64
5.3	FUTURE RESEARCH.....	65
5.4	SUMMARY OF THE CHAPTER.....	65
REFERENCE		66

LIST OF APPENDICES

APPENDIX 1: Fixed and Random- effect results.....	79
APPENDIX 2: OLS results.....	81
APPENDIX 3: Data for Variables.....	82

LIST OF TABLES

Table 2.1: Findings of some previous studies.....	29
Table 3.1: Measurement for the variables.....	52
Table 3.2: List of firms per industry.....	53
Table 4.1: Summary statistics.....	57
Table 4.2: Correlation Matrix.....	58
Table 4.3: Variance Inflation factors.....	58
Table 4.4: Regression Analysis for model 1.....	61
Table 4.5: Regression Analysis for model 2.....	62

LIST OF ABBREVIATIONS

NTC: Net trade cycle

CCC: Cash conversion cycle

CR: current ratio

LEV: Leverage

ROA: Return on Assets

ROIC: Return on invested capital.

ROS: Return on sales

ROE: Return on equity

CHAPTER ONE

1.0 INTRODUCTION

One of the vital issues that must be vividly considered before making financial decision is the working capital; because it is an integral part of the investment and has a direct effect on the liquidity cum the performance of the organization (Ray, 2012). Though, working capital encompasses short term financing and investments, it is always overlooked when making financial decisions (Ray, 2012). Furthermore, its lack of contribution to return on equity makes it work as a hold back for financial performance (Sanger, 2001).

Managing an efficient and effective working capital needs proper plan and control of firm's current assets and its liabilities in such a way that it will reduce the incapability risk of meeting short term commitments in one hand, and the avoidance of investing excess in the assets in the other hand (Ray, 2012; Eljelly, 2004). Managing an efficient and effective working capital contributes a vital role in the general corporate strategy of a company towards creating shareholder wealth. Working capital can be referred to as outcome of time interval that exists between expenditure for purchasing raw material and collection of sales of finished goods (Ray, 2012). The approach towards managing working capital of a firm can result in a significant influence on both its profitability and liquidity (Shin and Soenen, 1998).

According to Ganesan (2007), optimizing the balance of working capital means minimizing the requirements of working capital and realizing maximum probable revenues. Furthermore, companies' free cash flow is increased by managing an efficient and effective working capital, which has positive influence on the shareholders wealth

and the companies' growth opportunity. Thus, companies always try to maintain the working capital at an optimal level in order to maximize their targeted value (Afza and Nazir, 2007), and while managing working capital efficiently is likely to provide a positive significant results, neglecting it can lead to highly dangerous situation to any company (Christopher and Kamalavalli, 2009).

The previous studies on investment decisions are based on numerous empirical and theoretical facts. These studies were carried out globally by different authors for the purpose of hypothesize firms' performance (see example, Uyar, 2009; Christopher and Kamalavalli, 2009; Raheman and Nasr, 2007; Ganesan, 2007; Chowdhury and Amin, 2007; Afza and Nazir, 2007; Sayaduzzaman, 2006; Padachi, 2006; Lazaridis and Tryfonidis, 2006; Narware, 2004; Shin and Soenen, 1998). A direct linkage between investment in working capital and firm value has been shown by some studies (Burton, 1999; Chung, 1998; McConnell & Muscarella, 1985). Moreover, a wide-range of studies (Hubbard 1998; Fazzari, Hubbard and Petersen, 1988) which focused on the imperfections of the capital market have support the findings of Modigliani and Miller (1958) that financing decisions and investment are independent.

In spite of the significance of the interconnections that exist between the items of working capital when assessing their impact on firm performance (Kim & Chung, 1990; Sartoris & Hill, 1983; Schiff & Lieber, 1974), only a few studies found significant relation between investment effects on working capital, and the impact of financing (Baños-Caballero, García-Teruel and Martínez-Solano, 2013).

There are two competing views on investment in working capital management. The first view argues that increase in sales and higher discounts for early payment will be achieved by companies with high level of working capital and this will increase the value of the firm (Deloof, 2003). The other view argues that financing is required to achieve a high level of working capital; hence firms will incur extra financing expenses to achieve this and subsequently, will increase the probability of bankruptcy (Kieschnick, LaPlante, & Moussawi, 2011). This indicates that inefficient and ineffective working capital management processes may also result into bankruptcy, even if the company continues to have positive profitability (Samiloglu and Demirgunes, 2008).

The fundamental part of strategy for business in generating shareholders' value is efficient and effective working capital management. A substandard investment returns by a firm can be caused by excessive level of current assets (Raheman and Nasr, 2007). In contrary, lower levels of current assets may cause a firm funds shortage and hinder smooth maintenance of business operations (Horne and Wachowicz, 2000). Precisely, an investment in working capital encompasses a trade-off between risk and profitability because it has effects on the firm performance and firm value (Sharma and Kumar, 2010). Increased risk is caused by corporate decisions that wish to increase profitability, while reduced of potential profitability is caused by corporate decisions that has its focus on reduction of risk (Sharma and Kumar 2010).

Wang (2002) showed that in Taiwan and Japan, a lower working capital investment is significantly held by firms with high values than firms that are low in value. Furthermore, the study of Kieschnick et al., (2011) on the relation that exist between firm value and working capital management showed that a dollar held in cash is worthy than averagely

investing an additional dollar in net working capital. In addition, their findings also show that on average, the excess in stock return would be reduced by an increase in net working capital, and firms that have limited access to external financing will benefit more from this reduction. This is in line with the study of Faulkender & Wang (2006) who study showed that better accessibility of capital markets, higher leverage, higher cash holdings, and firms choosing of greater cash distribution through dividends than repurchases cause decline of marginal value of cash. According to Fazzari et al., (1988) due to the fact that cost of external capital is increased by the market imperfections relative to the internal funds generated (Jensen and Meckling, 1976; Myers and Majluf, 1984; Greenwald et al., 1984) and which could cause debt rationing (Stiglitz and Weiss, 1981), firms' investment could rely on financial influences such as cost of financing, access to capital markets, and internal finance availability. Moreover, Fazzari and Petersen (1993) suggested that investing in working capital is highly sensitive to financial constraints than investing on fixed capital.

Aggressive working capital management policy is a strategy that involves targeting high risk as well as high return in investing and financing working capital. However, Conservative policy of working capital management is a policy that involves targeting lower risk and lower return in investing and financing in working capital (Weinraub and Visscher, 1998). Meanwhile, while the working capital aggressive investment policy involves investing less in current assets than in fixed assets to generate more returns; the working capital conservative investment policy involves investing more in current assets than in fixed assets (Tufail, Sidra and Amjad, 2013).

Working capital management policy that is aggressive may be adopted by a firm with a low level of current assets or finance the firm working capital by keeping current liabilities at high level (Nazir and Afza 2009; Sharma and Kumar 2010). Keeping current assets at high level could negatively influence the profitability of the firm, while a lower stock-outs and liquidity level may be caused by keeping current assets at low level, which could result in problems of maintaining efficient and effective operations (Van Horne & Wachowicz, 2004). Thus, aggressive investment strategy gives room for generating more profits via investment of major part of firms' resources on fixed assets. Conservative investment strategy helps to evade bankruptcy risk.

According to Wang (2002), a firm with aggressive policies that reduces its inventory levels to the lowest point is risking losing sales. On the other hand, a firm that applies conservative policies or investing hugely in working capital may also achieve higher profitability. Maintenance of high level of inventory reduces possible interruption cost and business loss caused by product scarcity, reduction in costs of supply, and protecting price fluctuations (Garcia-Teruel & Martinez-Solano, 2007). However, these types of benefits offset reduction in profit that is caused by the firm increase in investing in the current assets.

According to Baños-Caballero S., et al., (2013), a nonlinear relation will be achieved between investment in working capital and firm value through the combination of both the positive effects of working capital, which is higher working capital levels increases sales and higher early payments discounts (Deloof, 2003), and the negative effects of working capital, which is financing is required to achieve higher levels of working capital (Kieschnick et al., (2011).

In an imperfect capital markets, firms that are incapable of raising sufficient external funds to finance their investment activities are regarded as been in financial constraints (La Cava, 2005). Due to this assertion, investment could be significantly affected by the level of internal funding in the short run. A proof of financial constraints can be seen from the findings that internal funding significantly impact the level of firm's investments. In principle, firms that are financially constrained should show better investment sensitivity to cash flow than financially unconstrained firms. On the other hand, internal funding can also be pertinent for investment due to its provision of information on future investment opportunities (Bond et al., 2004).

Ismail, Ibrahim, Yusoff, and Zainal (2010) define financial constraints as financial difficulties hindering companies' ability to acquire external funds to finance their investment objectives. Due to this, it is necessary for firms in financial constraints to retain sufficient parts of their revenue for financing their impending investments. Ultimately, these investments may fluctuate and come to be relatively volatile depending on the internal funds availability.

Meanwhile, La Cava (2005) defines a financially constrained firm as a firm whose cost of investment rises if it generates increase in retained earnings, and fall if it generates decrease in retained earnings. Guariglia (2007) describes internal financial constraints as unavailability of internal funds for firms' investment, while external financial constraints as inaccessibility of external finance for companies' investment.

In a perfect capital markets, Modigliani-Miller theorem assumes that the capital structure of a firm is immaterial to its value. This indicates that internal finance (retained earnings)

and external finance (equity issues and/or new debt) are flawless substitutes and a company's decisions on financing and investment are absolutely independent of each other. The determinant of investment does not really depend on internal fund availability, thus, the only financial consideration in defining the level of firm investment is the price of obtaining funds (La Cava, 2005).

However, the reasons behind imperfect capital markets are numerous. Specifically, taxes, information asymmetries (between borrowers and lenders, and/or between shareholders and managers) and transaction costs contribute to high cost of external finance compare to internal finance. If there is imperfect information in a market, investment finance may not be available, or only be provided and available on less favorable terms and conditions in the external capital markets. This indicates that there may be unavailability of internal funds leading to financial constraint for investment spending of some firms. As a result, empirically, a significant determinant of investment is the level of internal funding (La Cava, 2005).

Though, most study have focused on the influence of additional working capital investment on firm value, the form of the relationship that exist between corporate performance and working capital investment shall be examine by this study. Assuming that conditions of financing could play a vital role in this relation, this study further examine whether the financing constraints of firms' affect the relationship stated above.

1.1 PROBLEM STATEMENT

The majority of the findings on the study of the relation between corporate performance or profitability and working capital management have been able to give an evidence of their relativity through findings of their respective measurements.

The combination of Tobin's q as a proxy of firm performance or profitability and net trade cycle (NTC) or cash conversion cycle (CCC) as a proxy of working capital management to find the relationship between firm performance and working capital management is expected to show either a negative or positive significant relationship. Tobin's q developed by Tobin (1969) is expected to have a negative sign because it gives a comparison to the value of the firm provided by financial markets and the value of its assets (Nasir and Afza, 2009). CCC or NTC could be negative or positive. A positive outcome shows the number of days a firm must tie up or borrow capital while expecting customers' payment. A negative outcome is indicating number of days a firm has obtained cash from sales before its suppliers must be paid (Hutchison et al., 2007).

Previous studies with negative significant relation between working capital management and firm performance using these variables (Tobin's q, and CCC or NTC) indicate that the reduction in NTC or CCC will increase firm performance, and also indicate that managing working capital efficiently will increase firms' market value [Mohamad and Mohd Saad (2010); Baños-Caballero, S., et al., (2013)]. In contrast, studies with positive relation between working capital management and firm performance using these variables (Tobin's q, and CCC or NTC) indicate that firm with higher CCC will achieve higher firm value [Vural, Sökmen and Çetenak (2012); and Abuzayed (2011)]. The

implication of this positive relationship on the stock market is that investors do not base their firm selection on firms with efficient and effective working capital, and also ignores liquidity as a crucial factor in evaluating companies' performance (Abuzayed, 2011). A positive relationship also shows that firms that are more profitable are less driven to manage working capital efficiently; the letdown of the financial market to penalize these companies with managing working capital inefficiently leads to such positive relationship. Though, investors realized that companies practicing and formulating efficient and effective working capital management merit more value, the financial market show less reaction in providing evidence of negative significant relation between cash conversion cycle and market valuation of firm (Abuzayed, 2011).

Moreover, Baños-Caballero, S., et al., (2013) found that NTC is positively and its square is negatively related with corporate performance. This is confirming a huge and statistically significant inverted U-shaped relationship between corporate performance and working capital. The implication of the finding is that the results of higher sales couple with early payments discounts arises when working capital level is below the optimal level, therefore, firm performance is positively influenced by working capital.

On the contrary, the financing cost as well as the opportunity cost effects arises when the level of working capital of the firm is above this optimum and, as a result, corporate performance and working capital management will be negatively related. Therefore, since there are mixed results regarding the relation between corporate performance and managing of working capital, there is need to examine the influence of requirements of working capital management on firm performance to ascertain an improvement in the

market value of the firm, which the firm's operational and strategic thinking relies on for efficient and effective operation (Mohamad and Saad, 2010).

Meanwhile, using Tobin's q, and CCC or NTC to measure the influence of working capital investment policy on firm performance shows that firm performance is negatively related to the relative degree of firm policy on aggressive investment in working capital (Nazir and Afza, 2009). This finding implicates that adopting aggressive approach towards working capital management is not acceptable to investors and do not add any significant value to the companies (Nazir and Afza, 2009). On the other hand, using Tobin's q, and CCC or NTC to measure the influence of financing policy of working capital on performance also show that firm performance is positively related to the relative degree of firm policy on aggressive financing in working capital (Nazir and Afza, 2009). This findings implicates that adopting aggressive approach in financing working capital and achieving higher levels of spontaneous and short-term financing in the balance sheet by firms are recognized and giving more values to by investors (Nazir and Afza, 2009).

Mohamad and Saad (2010) used current ratio as one of their variables to measure effect of working capital on firm performance. Their findings showed that current ratio and Tobin's q are negatively insignificant. This implies that current ratio do not affect any increase in firm performance represented by Tobin's q. It also indicates that reduction in current assets will lead to positive returns for the firms.

On other independent variables, one of the studies using Tobin's q and CCC finds leverage to be negatively related with firm value; which indicates that lower leverage will

lead to increase in firm performance (Vural et al., 2012). The firm's value will be adversely affected by an increase in the firm leverage. A positive relationship between CCC and firm leverage from Abuzayed (2011) study indicates that the longer the CCC, the higher the external financing needed by the firm, which results in incurring higher borrowing cost.

For optimal working capital level and financial constraints, Baños-Caballero, S., et al. (2013) stressed that since financing is essential for higher level of working capital, which signifies additional expenses, it is expected that a lower optimal working capital level firm should be financially constrained than firm with higher optimal working capital level. They found that NTC of more financially constrained firms are negatively significant base on all the classification they used, this indicate that these firms also held on a concave relation.

However, optimal working capital investments of firms depend on how they can bear financing constraints. According to the study of Baños-Caballero, S., et al. (2013), the present of financing conditions in their analysis shows that firms that highly financially constrained has lower optimal level of working capital compare to firms that have low financial constraints. The causes of this could be traced to their incurring of higher financing costs and more rationing of capital, because lower working capital investment indicate lower necessity for external financing.

In the context of this study, Ismail, Ibrahim, Yusoff and Zainal (2010) found that firms in Malaysia capital market are generally in financial constraints, which is caused by their retained earnings and cash flows fluctuations. This implies that easy accessibility of firms

to external funds are hinder by the existence of financial constraints, and financing of future investments by a constrained firm depends on retaining sufficient rations of its income flows.

In addition, the study of Mohamad and Saad (2010) showed that the performance of Malaysia listed companies is negatively related to their working capital. Their recommendations for further studies to improve their findings are based on increasing of sample size, usage of different variables as a proxy for working capital, and other control variables that will give a robust relationship between the selected variables and facilitate in revealing better performance of firms in Malaysia context.

1.2 RESEARCH QUESTIONS

1. How do working capital decisions affect firm performance?
2. How do working capital decisions and financial constraints of the firm influence firm performance?

1.3 RESEARCH OBJECTIVES

The objectives of this study are:

1. To examine whether working capital decision affect firm performance.
2. To test whether working capital decision and financial constraints influence firm performance.

1.4 SIGNIFICANCE OF THE STUDY

The contributions of this study are as follows:

1. This study is different from the previous studies on relation between working capital and corporate performance in Malaysia based on the number of firms and large firm-year for the observation.
2. It also contributes to previous studies by investigating whether financial constraints have impact on the optimal level of working capital investment of Malaysia companies.
3. This study also contributes to previous research on management of working capital by showing new proof of working capital management influencing firm performance by considering probable non-linearities of their relationship.
4. Usage of panel data method to estimate the models for the elimination of unobservable heterogeneity.
5. Dealing with the problems of endogeneity by applying Pooled OLS, fixed-effect, and random-effect.

1.5 SCOPE AND LIMITATION OF THE STUDY

The data used for this study are limited and applicable to non-financial firms in Malaysia. However, the results and the recommendations are useful for any non-financial firms, governments, financial analysts, researchers, managers, accountants and stakeholders.

1.6 ORGANIZATION OF THE STUDY

Chapter one contains introduction. Chapter two deals with the reviewing of literature. Chapter three discusses the methodology. Chapter four deals with the analyses of the data used for this study. Chapter five entails conclusion and recommendation of this study.

1.7 SUMMARY

Insights to the relationship between corporate performance, working capital management, and financial constraints have been given by this chapter. This serves as an introduction into the topic of discussion. The problem statement, research questions, research objectives, significance of the study, scope and limitation of the study, and organization of study are also discussed in this chapter.

CHAPTER TWO

LITERATURE REVIEW

2.0 INTRODUCTION

Previous chapter gives an insight on what this study entails through expatiating on the views of researchers on firm performance, working capital management and financial constraints; and issues arising from their studies. However, this chapter provides an overview of the findings of previous researches on corporate performance, working capital management and financial constraints. The purpose is to develop the expected relation between corporate performances, working capital and also frame out the probable impact of financial constraints on corporate performance. This chapter is divided into sections. Section 2.2 deals with the relation between corporate performance and working capital. Section 2.3 expatiates on the relation between working capital investment and financial constraints. Section 2.4 focuses on the influence of financial constraints on corporate performance. The relation between corporate performance and working capital while putting financial constraints into consideration is discussed in section 2.5. Section 2.6 discusses the previous studies on variables application. Meanwhile, the conceptual framework of this study will be depicted in section 2.7.

2.1 WORKING CAPITAL MANAGEMENT AND CORPORATE PERFORMANCE

Different researches have examined the extent of managing working capital, and review of previous studies showed that significant relationship exist between managing of working capital and firm performance by applying various variables for their analyses.

One of the instances of such studies is Shin and Soenen (1998). Their study was based on 58,985 US firm-year observation that covers the period from 1975-1994. Their findings showed that net- trade cycle, used as a proxy for working capital has a strong negative significant relationship with firm profitability. Their findings also indicated that companies with shorter Net-Trade Cycle will achieve higher stock returns. They recommend that for a firm to achieve shareholder value, it must maintain a low level of Net-Trade Cycle. On the study of Lyroudi and Lazaridis (2000), that based their study on the relation between working capital and performance of firms in Greek beverage and food industry. Their findings show that cash conversion cycle (CCC), quick ratios, and current ratios are positively related, and return on assets (ROA) and CCC are also positively related. CCC and profit margin are observed to be positively related, while leverage ratio is not related with CCC.

Deloof (2003) is of the view that huge amount of cash had been invested in working capital by many of the companies and it is expected that managing of the working capital of this companies would affect their profitability. His study found that accounts receivables, account payables and inventories are negatively related with gross operating income by examining of 1,009 non-financial firms in Belgium between the period of 1992-1996 using correlation and regression analysis. He recommended that shareholder value can be achieved by managers through plummeting account receivables days and inventories. On contrary, negative relationship between firms' profitability and account payable gives support to his hypothesis that companies that generate lower profits will take longer period to repay their creditors.

Eljelly (2004) empirically investigate the relation between firm's profitability and it's liquidity for a sample firms in Saudi Arabia. The study took cash gap and current ratio as a measure of liquidity. Using correlation and regression analysis, a negative relationship was found between profitability and liquidity, where current ratio was taken as measure of liquidity. At company level it was observed that cash gap (cash conversion cycle) is highly important as proxy for liquidity rather than using current ratio as measure of liquidity that affects profitability. At industry level it was observed that size have significant effect on profitability.

Padachi (2006) study the effect of cash conversion cycle, inventories days, accounts payable days and accounts receivables days on return on assets. Working capital requirements tendency of firms is also analyzed by this study for 58 small firms in the manufacturing industry in Mauritius from 1998-2003. Applying fixed effect and pooled OLS regression model, the results showed that higher investment in inventories and receivables are related with lower profitability. The results also indicate that there is higher propensity in financing short-term component of working capital.

Lazaridis and Tryfonidis (2006) also investigate the relation between corporate profitability and working capital management for 131 listed firms in Greece for the period 2001 to 2004. Their findings indicate a statistical significant relation between profitability using gross operating profit and working capital using cash conversion cycle. They stressed that the managers can achieve shareholders value by optimizing cash conversion cycle.

Khan, Shah and Hijazi (2000) conducted their study on 30 Pakistani non-financial listed firms to evaluate the influence of working capital management on profitability. Their findings indicate that firm's gross profit is significant and negatively related to Cash conversion cycle, days inventories and days payables. Their study cannot be really generalized across other sectors because of their narrow datasets.

Shah and Sana (2006) also investigate the relationship between firm's profitability and working capital, by making use of financial data of oil and gas firms in Pakistan from 2001-2005. Their findings suggested that financial managers can maximize shareholders' through efficient and effective management of working capital. Their findings showed that cash cycles, receivables, inventory conversion periods, and sales growth significantly move in reverse direction to profit margin. In addition, their study also evaluates the underlying relationship that establishes that profitability moves in positive direction with managing working capital efficiently.

Afza and Nazir (2007) examine the relationship that exists between conservative policy and aggressive policy of working capital for 205 listed companies in 17 industries in Karachi Stock Exchange from 1998-2005. Their findings indicate that firm's profitability and degree of aggressive working capital financing and investment policies are negatively related.

Ganesan (2007) examine the firms' efficiency in managing working capital in telecommunication equipment firms. He used current ratio, days' payable outstanding, days' inventory outstanding, days' sales outstanding, and days' working capital as proxies for working capital management, while income to sales, income to total assets,

and cash conversion efficiency are used as proxies for liquidity and profitability. His findings showed that despite negative relation between profitability and days' working capital, it does not have significant impact on firms' profitability.

These previous findings above showed that working capital management is therefore deemed as an important tool that facilitates the measurement of both the financial and operational efficiency of firm business. Raheman and Nasr (2007) evaluate the financial data of 94 listed Pakistani companies in Karachi Stock Exchange from 1999-2004. Their major result is that there is negative significant relationship between profitability and liquidity. Their study is in line with some previous studies because it reiterates the negative relation between working capital components and firms profitability.

Garcia-Teruel and Martinez-Solano (2007) evaluate the effect of working capital management on firms' profitability by analyzing the financial data of 8,872 Spanish companies from 1996-2002. Their findings indicated that efficient management of working capital contributing factors will increase profitability. They summarize their findings by stating that firms that are profitable ensure shorter CCC, pay dues early, and convert inventories to finished goods in less time.

An attempt have been made by Anand and Malhotra (2007) to establish objective metrics in measuring efficiency at firm and industry level by using data of 339 Indian firms between 2001-2004. Their findings showed reduction in firms' both CCC and operating cycles, but efficient working capital management and profitability is not positively related.

Samiloglu and Demirgunes (2008) examine the impact of managing working capital on profitability of firms listed on the Stock Exchange Istanbul, Turkey. After applying multiple regressions, their result indicates a negative relationship between inventory period, leverage, account receivables and firms' profitability. However, sales growth showed a positive relation with firms' profitability.

Zariyawati, Annuar, and Abdul Rahim (2009), investigate the relation that exist between profitability and working capital management of the firms in Malaysia by analyzing 1628 firm-year observation between 1996-2006. Using pooled regression model, the result showed that CCC is negatively significant with profitability of firms. It indicates that reducing of cash conversion cycle will increase firm's profitability.

Sen and Oruc (2009) examine the relations that exist between return on assets and firms efficiency level of the firms listed on Istanbul Stock Exchange. By applying random and fixed effect model for regression, their findings showed that firms net working capital level, cash conversion cycle, accounts receivable days, current ratio, and return on assets have a negative significant relationship.

Mathuva (2009) evaluates the influence of managing working capital components on firms' profitability by using sample of 30 firms listed on Nairobi Stock Exchange for the period 1992-1993 to 2007-2008. After using Spearman's and Pearson's correlations for correlation matrix, and fixed effects and pooled OLS models for regression, his study showed that a negative relation exist between profitability and debtors' age, while profitability has a positive relationship between inventory conversion period and creditors' age.

Nobanee and Al-Hajjar (2009) evaluate the effect of managing working capital on firms' profitability by analyzing 2,123 non-financial Japanese listed firms in Tokyo Stock Exchange from 1990-2004. They suggested that the profitability of the firm can be increased by firm managers through shortening of days' receivables, days' inventories, and cash conversion cycle. Their results also indicate that profitability could be increased through extension of the payables deferral periods. Though, firm's credit reputation could be damaged through extension of payables deferral period, and it may have long run effect on its profitability.

Chatterjee (2010) evaluates the significance of current fixed assets in running a successful organization, which will have direct influence on firm's liquidity and profitability. This has been a normal phenomenon that is observed in business where most firms increase profit or loss margin to shrink working capital size in relation to sales. However, any firm that is interested in improving or increasing its liquidity needs increase in working capital. So, the firm needs to reduce its sales which will affect its profitability. Based on this thought, 30 firms based in United Kingdom were chosen from London Stock exchange from the period 2006-2008. The findings showed that there is impact of working capital components such as average collection period, Inventory turnover, average days of payment, C.C.C, current ratios, on firms' profitability.

Charitou, Elfani and Lois (2010) investigate managing working capital effect on the firm performance of firms in a developing market. Their hypothesis is on working capital management influence increase in profitability. They use data collected from the firms listed on Cyprus Stock Exchange for the period 1998 - 2007. They used a multivariate regression analysis, which the results show support for their hypothesis. The results of

their findings indicate that the profitability of the firms is related to their cash conversion cycle and other main variables.

Dong (2010) finds that liquidity and firm's profitability are influenced by managing working capital. He used a pooled data to examine the firms listed on the Vietnam stock market for the period 2006-2008. The focus of his study is on the relation that exists between profitability variables, and conversion cycle as well as its related components. His findings showed that the variables are strongly negatively related. This indicates that any increase in cash conversion cycle will reduce the firm profitability. The findings of the study also show that decrease in the number of days inventories and account receivables will increase the profitability.

Gill et al. (2010) also studied the interaction between profitability and managing of working capital by evaluating 88 listed American firms in the New York Stock Exchange from the period 2005-2007. Their findings also show that the variables are significantly related.

Mohammad and Saad (2010) examine working capital management effect on firms' performance. They analyze 172 non-financial listed Malaysia firms on the Bloomberg database for the periods 2003-2007. They examined the influence of working capital variables dimensions by using CCC, current liabilities to total asset ratio (CLTAR), current asset to total asset ratio (CATAR), debt to asset ratio (DTAR), and current ratio (CR) as proxies for working capital, while Tobin's Q was used as a proxy for firm value, return on invested capital (ROIC) and return on asset (ROA) were used as proxies for firm profitability. Both correlations and multiple regressions were used to analyze the

data. Their findings show that the relation between firms' performance and working capital components is negatively significant.

Rimo and Panbunyuen (2010) examine the effect of firm characteristics on the management of working capital. Quantitative method was used to evaluate the relation between cash conversion cycle used as a proxy for working capital and firm characteristics of 40 Swedish firms listed on the Stockholm Stock Exchange. Financial data of these firms for 2007 and 2008, extracted from their financial statements were used for the study. Based on the outcome of regression analysis, the findings show that sales growth, operating cash flow, profitability, and company size are influenced by management of working capital. Their results also indicate that profitability and cash conversion cycle are significant and positively related. They also find that operating cash flow, firm size and growth opportunities are significant and negatively related to cash conversion cycle. The evaluation of the industry effect showed that the CCC is significant with a positive relation to four classifications of industry: industrials, materials, information technology and health care.

Ching, Novazzi & Gerab (2011) examine the relationship that exists between profitability and managing of working capital of firms listed in Brazil. They aim to investigate the difference firm profitability and managing of working capital in two different groups of firms: fixed capital intensive and working capital intensive; as well as identifying the components that most impacted on profitability. They used three different methods to measure profitability: return on equity (ROE), return on assets (ROA), and return on sales (ROS). Days' inventory, days' receivable, days of working capital, debt ratio, and cash conversion efficiency are used as independent variables. Based on the results of the

multiple linear regressions, profitability is negatively related to debt ratio and cash conversion cycle.

Saghir, Hashmi and Hussain (2011) examine the relation that exist between profitability and the managing of working capital of 60 textile companies listed in Karachi Stock Exchange from 2001 to 2006, which indicate 360 firm-year observations. Their objective of studying is to find the statistical significant relation that exists between profitability and CCC and its major variables. The results of their findings showed that profitability has a statistical negative significance relationship with CCC. Its indicates that companies profitability can increase if the cash conversion cycle is properly handled and optimum level days' account payables, days' accounts receivables, and days' inventory is always maintained by the managers.

Singh (2011) evaluates working capital management efficiency of the companies from cement industry in India. Descriptive, correlation and regression analysis are used to evaluate the relation that exist between net working capital level, other working capital management measures and the proxy for profitability (return on capital employed). The study used data of 11 firms selected randomly from cement industry in India. 12 years financial statement of these 11 firms was collected from 1999-2010, indicating that 132 firm-year observations are applied for the study. The findings indicate that firm profitability and days' payable outstanding are negatively related, which is different from previous studies. The findings also showed that there is no relation between CCC, days' sales outstanding and profitability of the firm in India cement industry. Furthermore, the study indicates that net working capital measures liquidity comprehensively and effectively if it is properly managed by the cement industry firms.

Garcia (2011) examines the effect of managing working capital and its variables on the profitability of European companies. In measuring profitability and working capital, he applied Gross operating Profit and CCC respectively. The sample size for the research is 2,974 listed non-financial firms in 11 of European Stock Exchanges from 1998-2009 (12 years period). By applying both GLS and OLS in regression analysis, the findings showed Receivables Collection Period, Inventory Conversion Period, Payables Deferral Period and CCC are negatively significantly related to Profitability. This findings implicate that there can be improvement in the profitability of companies if the time span of tying up working capital in the company is reduced. The result of the findings also showed that profitability and liquidity proxy by Current Ratio are inversely related. Meanwhile, additional regression analysis made indicated that differentiated influence of the Cash Conversion Cycle on operating profitability is caused by different levels of liquidity.

Ali (2011) examines the relation that exists between profitability and managing working capital of Pakistan's textile industry. The efficiency in working capital management was measured in this study through application of three variables namely: days of working capital, days operating cycle and cash conversion efficiency. Meanwhile, profitability was measured by using return on assets, economic value added, profit margin on sales, and return on equity. The analysis covers 160 textile firms' panel dataset for a five-year period from 2000-2005 using an ordinary least squares and fixed effect model for estimation. The result showed that return on assets is significant and negatively related with average receivable days and average payable days, but significant and positive relation with average days in inventory. A positive significant relation also exists

between return on assets and CCC. This indicates that a longer CCC can result in more profitability for the textile industry. The regression analysis findings indicate that return on assets is significantly and economically influenced by average days receivable, average days payable, and average days in inventory. The fixed effect regression findings indicate that both average receivable days and average inventory days influenced return on assets significantly.

Bagchi, Chakrabarti and Roy (2012) evaluate the impact of managing working capital on Profitability in Indian Fast-Moving Consumer Goods (FMCG) Companies. The aims of studying is in determining the effects of managing working capital components such as CCC, debtors' age, inventory days, creditors' age, debt equity ratio and debt to total assets on FMCG firms' profitability. They measured firm profitability using return on total assets and return on investment. The secondary data used for their analysis was for the period 2001 to 2010, retrieved from the Prowess Database of CMIE. Aside applying Pearson's correlation analysis, they also apply both pooled OLS and fixed effect LSDV model for the panel data regression analysis. Their findings showed a durable negative relation between firms' profitability and working capital management variables. Their finding also proves how better fixed effect LSDV model in explanation of regressed variables is than pooled OLS model.

Ali and Ali (2012) evaluate data of six years from 15 companies in 3 different sectors that are listed in Karachi Stock Exchange for the periods 2003 to 2008 obtained through State Bank of Pakistan official website. The researchers also studied and compared 15 research articles of different authors. Their aim is to prove whether profitability is really affected by working capital management, using Pakistan as a case study. Their result supported

the hypotheses and show that working capital has an impact on profitability. They suggested that for sufficient and effective working capital, companies should make sure that their current asset components specifically receivables is improved. Firms' profitability can be enhanced by inventories efficient and effective management. They concluded that higher profitability ratio will be achieved by firms that possess higher working capital, and higher profitability ratio will also be achieved by firms that possess higher total assets. Firms with adequate total assets also possess enough working capital. Thus, firms that possess an adequate working capital proportion will have positive effect on its profitability and total assets.

Napompech (2012) examines effect of managing working capital on Thai Listed Companies' profitability. A regression analysis was made on a panel data of 255 companies listed in Stock Exchange of Thailand from 2007-2009. The results of the findings showed that inventory conversion period and receivables collection period are negatively related to gross operating profits. This indicates that the profitability of the firms can be increased by the managers through shortening of inventory conversion period, cash conversion cycle, and receivables collection period. On the other hand, profitability of the firms cannot be increased by lengthening deferral period of the payables.

Ray (2012) examines the relation between profitability and the components of working capital management of 311 firms in India manufacturing industry from 1997-2010 (14 years). The variables used as measures of working capital management are ratio of financial assets to total assets, firm size, debt ratio, current ratio, CCC, average payment period, inventory turnover days, and average collection period; while the proxy for

profitability is net operating profitability. The findings showed that there is a robust negative relationship between corporate profitability and the components of working capital management, which include CCC, accounts receivable days and financial debt ratio.

Tufail, Sidra and Amjad (2013), investigate the working capital management impact on firms' profitability in Pakistan textile industry. The aim of their study is to evaluate the influence of working capital policies on firms' profitability. Ratios of current liabilities to total assets and current assets to total assets are used as measures of working capital financing policy and working capital investment policy respectively; while return on assets is used as a proxy for profitability. The data for the study comprises 117 listed textile companies in stock exchange of Karachi from 2005-2010. The findings indicate that profitability and aggressive policies of working capital are significant and negatively related. Meanwhile, profitability, firm size and liquidity are positively related whereas profitability and debt to equity ratio are negatively correlated.

Golas, Bieniasz and Czerwinska-Kayzer (2013) examine the relationship between profitability and working capital of 30 branches of firms in the food industry in Poland for the period of 2005 to 2009. Return on assets is used to measure profitability, while cash conversion cycles, receivables, liabilities, inventories, are used as measures for working capital. The findings showed that there is strong impact of length of inventory and liabilities cycles on profitability. This indicates that the shortest the CCC, the higher the return on assets.

There is wide acceptance that firm value is affected by efficient and effective management of working capital, however the empirical prove on working capital investments valuation effects is limited in some areas. One of the aims of this study is to contribute to the previous study on management of working capital by evaluating its influence on the performance of firms, in Malaysia context. Some of the findings are summarized below in table 2.1.

Table 2.1: Summary of some previous findings

Author	Variables	Methodology	Findings
Shin & Soenen (1998)	Adjusted Stock return and NTC	58,985 US firm-year observation from the period of 1975-1994 obtained from COMPUSTAT.	Working capital is negatively related with profitability
Lyroudi & Lazaridis (2000)	ROA, CCC, net profit margin, interest earned ratio, current ratio, quick ratio, debt ratio	Greek beverage and food industry. Regression and correlation analysis, and t-tests.	CCC positively related with ROA and net profit margin
Deloof (2003)	CCC, Gross operating income, account receivables days, account payables days, Inventories, Sales growth and financial debt	1,009 non-financial firms in Belgium. Regression and correlation analysis	Gross operating income, account receivables days, account payables days and inventories are negatively significant.
Eljelly (2004)	Cash Gap, Current ratio, Net Operating Income, Total Assets and Net	Correlation & regression analysis of Joint stock firm in Saudi Arabia	Firm's Profitability relation with its liquidity is negatively significant. CCC is a better measure of liquidity than current

	Sales		ratio (CR)
Padachi (2006)	Accounts receivables days, inventories days, accounts payable days ,CCC and ROTA	Applying fixed effect regression model and pooled OLS to 58 small manufacturing firms in Mauritius.	A significant strong relationship between profitability and working capital. Also showing increase in the trend of short-term component of financing working capital.
Lazaridis and Tryfonidis (2006)	Gross operating profit and CCC	Correlation & regression analysis of 131 firms listed in Stock Exchange of Athens for the period of 2001-2004.	Negative significant relation between Gross operating profit and CCC.
Khan, Shah, & Hijazi (2006)	Gross Profit, Days Inventory, Days Payables and CCC	Correlation & regression analysis of 30 non-financial firms listed in Pakistan Stock exchange.	Negative significant relationship between CCC, DI, DP and Gross Profit.
Shah & Sana (2006)	Profit margins, CCC, Sales growth, account receivables and Inventory conversion period	Correlation & regression analysis of oil & gas firms in Pakistan.	Negative significant relationship between CCC, account receivables, Inventory conversion period, sales growth and profit margin.
Afza & Nazir (2007)	Tobin's q, ROA, ROE, Current Assets, Current Liabilities.	Correlation & regression analysis of 205 listed companies in Pakistan from 1998-2005.	Firm's profitability and degree of aggressive policies of investing or financing in working capital are negatively related.
Ganesan (2007)	Days Sales Outstanding (DSO), Days Inventory	Correlation & regression analysis of 443 annual financial statements	Firm Profitability and days working capital are negatively related but not

	Outstanding (DIO), Days Payable Outstanding (DPO), Days Working Capital (DWC), Current Ratio (CR), Cash Conversion Efficiency (CCE), Income to Total Assets (IA) and Income Sales (IS)	of 349 telecommunication equipment firms in US from 2001-2007.	significant.
Raheman & Nasr (2007)	Average collection period, CCC, Current ratio, and Net Operating assets.	Pearson correlation & regression analysis of 94 firms in Karachi Stock Exchange, Pakistan from the period 1999-2004.	Working capital variables and firm's profitability are negatively related and significant.
Garcia-Teruel & Martinez-Solano (2007)	CCC, Account Receivables, Account Payables, SIZE, GROWTH, DEBT, GDPGR	Univariate and Multivariate regression analysis of 8,872 SME companies in Spain from 1996-2002.	Reducing of inventories by managers could create value for firm, and shorter CCC improves firm's profitability.
Anand & Malhotra (2007)	CCC, Day's operating Cycle, GROWTH	Objective metrics for measuring efficiency of 339 firms in India from 2001-2004.	Little proof of positive relation between firm profitability and working capital.

2.2 INVESTING IN WORKING CAPITAL AND FINANCIAL CONSTRAINTS

Sensitivity of investing in working capital to financial constraints is greater than that of investing on fixed assets (Fazzari & Petersen, 1993). As a result of this, since there is

need to finance a positive level of working capital, it is expected that working capital optimal level must be lower for firm that is highly financially constrained. Based on this thought, empirical prove has shown that working capital investment depends highly on financing conditions of a company.

Hill, Kelly, & Highfield (2010) examine the behavior of net operating working capital. They evaluate their study using a unbalanced panel data sample set of 3,343 firms from the Compustat database from the period of 1996 to 2006, equaling observations of 20,710 firm-year. They integrate components to examine the factors that influence the net investment in operating working capital by applying working capital requirement. The result of their findings showed that mean working capital requirement (WCR) is averagely 23% of capital structure. The results of the statistic indicates that there is need for closer scrutiny of working capital behavior, specifically based on the findings of Fazzari and Petersen (1993) that fixed investment is reduced by increasing net working capital, while proving that the cash conversion cycle is negatively related to risk-adjusted returns and profitability (Deloof, 2003; Shin & Soenen, 1998). It indicate that financing capabilities influenced working capital behavior, since WCR has a direct relationship with size and operating cash flow, and an inverse relationship with financial distress and market-to-book ratio. However, WCR and market share is weak and negatively correlated. The outcomes of these results indicate that firms that have inadequate access capital market, insufficient internal financing capability, and high external financing costs will use payables more aggressively better than inventory and receivables. The evidence of the findings indicates that financing and operating conditions should be deliberated upon when appraising working capital behavior.

Fatemeh and Baghiyan (2013) evaluate the relationships between financing constraints and investment in fixed and working capital of listed companies in the Tehran Stock Exchange in Iran. A panel data of 134 stock companies over the period of 2005 to 2011 was collected and regressed. The results of the their findings indicate that an efficient and effective management of working capital may aid companies in alleviating financing constraints effect on fixed investment.

Wasiuzzaman and Arumugam (2013) examine the determining factors of investment levels in net operating working capital of listed firms in Malaysia. The data sample for the study was collected from 192 firms from 2000-2007 (8 years), while applying OLS regression analysis. The findings indicate that during economic expansion, smaller and younger companies with lower tangible assets, higher immediate sales growth, low leverage, stable revenues, little levels of information asymmetric and higher operating cash flows will likely achieve maximum operating working capital investment. The board characteristics such as independence of the board and size are insignificant to firms' investment in working capital.

Chan (2008) evaluates the relationship between financial constraints, firm dynamic behavior and working capital. Developing a model of simple working capital and financial constraints. The awareness of the influence of financial constraints on the company's operations which are not considered by existing models are provided by the models, through putting into account the necessity in financing both investment and working capital, and the likelihood of financing from funds generated internally. At first, the model showed that optimal factor ratios to demand shocks response is distorted by financial constraints, which is in addition to the scale inefficiencies affected by

suboptimal output levels constrained. Binding constraints makes investment to be countercyclical to shocks. This will not only lead to lower profits but generating cost of a dollar in revenue are more for firms in constrained than the unconstrained firms. Secondly, this will not only lead to the constrained company achieving less earning in each period, but growth and production are negatively affected by the suboptimal revenue level generated over the period. Thirdly, the firm is prevented from benefiting from production opportunities by financial constraints. Financing demand and inputs demand are related by the working capital model. Financial constraints affect firm when the firms wish to expand, but are not affected during contraction periods.

Ding, Guariglia & Knight (2010) examine the relationships that exist between fixed capital and working capital investment, and financing constraints with a panel data of more than 120,000 Chinese companies managed by various representatives from 2000-2007. The study reveals that high working capital firms achieve high working capital investment sensitivities to cash flow (WKS), as well as low fixed capital investment sensitivities to cash flow (FKS). Firm-level FKS and WKS measures were also constructed and analyzed. The findings showed that in spite of austere external financing constraints, highest rates of investment is achieved by firms with high WKS and low FKS. This indicates that efficient and effective working capital management may aid companies in alleviating the impact of financial constraints on firm investment.

Azam and Shah (2011) evaluate the influence of both internal financing constraints and external financing constraints on choice of investment. The data for the study was collected from nine sectors which contains 52 firms listed in the stock exchange of Karachi. These sectors include: Cement, Industrial metal and Mining, Fixed line

Telecommunication, Oil and Gas, Chemicals, Tobacco, Sugar, Textile, Pharmaceutical & Bio Technology sectors. The data collected was for the period 2004-2010. The multiple regression analysis was done to evaluate the relations that exist among investment, firm's age, dividend payout ratio, and firm size. The results showed that investment and firms' size are positively related, while investment and firms' age are negatively related. It also shows that investment and dividend payout ratio are negatively related; indicating that a firm that grows high or old dividend payout ratio will spend less in expansion than firms with young or old dividend payout ratio.

Guariglia (2007) examine the difference of extent of investment sensitivity to cash flow in companies with different external and internal levels of financing constraints by using panel sample data of 24184 firms in United Kingdom from 1993 to 2003. The result indicates that the relation between cash flow and investment is U-shaped when the sample is separated base on the internal fund level accessible to the company. Conversely, investment sensitivity to cash flow increases with the level of external financing constraint encountered by firms. The combination of the internal and external financing constraints shows that firms that encountered more external financial constraints and high internal funds level depend more on cash flow for investment than dependence on cash flow

2.3 IMPACT OF FINANCIAL CONSTRAINTS ON CORPORATE PERFORMANCE

Access to finance is indisputably a vital source for better firm performance and economic growth. Firms that have sufficient access to finance are often more productive. Boermans and Willebrands (2012) examine firm performance under financial constraints and Risks, using micro finance clients in Tanzania as a context. The objective of their study is to evaluate how financial constraints as well as the way in which entrepreneurs cope with risk that affect their business. The study analyzes the influence of financial constraints on firm performance based on an exclusive sample of entrepreneurs who have restricted access to micro credit. Based on new evidence collected among 653 small business owners in Dar es Salaam, Tanzania, several financial constraint measurements was utilize which include unique information derived from the micro finance institute (MFI). The study include a detailed set of covariates that have been often omitted in other studies such as asset wealth, household size, consumption and the entrepreneur's risk taking predispositions and apply a wide range of robustness tests. The main finding is that financial constraints are a key determinant of firm performance and severely limit profitability of micro and small enterprises (MSEs). Risk perception is associated with better firm performance while the reverse holds for risk taking propensity.

Ahmed and Hamid (2011) examine the determining factors for firm growth, specially the level of which financially constrained firm grow, more also exploring the determining factors of access to external financing in Pakistan. The data used for this study were retrieved from the 2nd part of the Investment Climate Assessment Survey that the World Bank conducted in 2007. An instrumental variable method was used to analyze the effect

of access to external financing on company growth while applying a probit model for exploring the determining factors of access to external financing. The findings indicated the following: Firstly, finance has become a mandatory constraint to the growth of firms in Pakistan because an increase of 10 percent in financing working capital through external funding is expected to averagely increase annual growth rate by 5.6 percent. Secondly, financial deepness is essential for access all over the country. Access is better in an environment with better saturation in financial infrastructure. Thirdly, some of the internal factors like organizational form, quality of human capital, export status, and size appear to be essential determinants of access to external financing in Pakistan.

Crisóstomoa, López-Iturriagab and Vallelado (2012) investigate the presence of financial constraints in investing in Brazil and the specific firm size effect on it. A sample data of 289 nonfinancial Brazilian firms from 1995 to 2006 was used to estimate an active investment models. The findings indicated that firms in Brazil face financial constraints since their investment depend on internally generated funds. Firm size has shown to be, effectively, an important determinant of it. The sensitivity to cash flow of smaller firms in investment is higher than that of larger firms. At the firm level, the findings suggested the need for further developments on information disclosure as a way to mitigate asymmetric information problem. At the policy level, additional advance in the institutional environment might also be important for minimizing financial constraints for Brazilian firms.

Fazzari et al. (1988) (as cited in Ismail et al, 2010 and Baños-Caballero et al, 2013) reveal that financing is one of the issues that are affecting investment. The existence of financial constraints is explained by this finding. Shaller (1993) discover that only some

certain firms in Canadian market are affected by the presence of financial constraints. The study of Barran and Peeters (1998) showed that the investments of Belgian firms' depend on financial factors; this suggested that financial constraints exist in Belgian market. Cleary (2006) reveals that seven largest economies have the presence of financial constraints in their economy; these countries include: United States, United Kingdom, Japan, Germany, France, Canada, and Australia. The findings of Kadapakkam et al. (1998) revealed that availability of internal fund and investment of six Organization for Economic Cooperation and Development (OECD) countries are negatively related. These countries include Japan, France, United Kingdom, Germany, Canada, and United States. A panel data constructed by Bond et al. (2003) on manufacturing companies in Germany, France, Belgium, and the United Kingdom show the presence of financial constraints in these countries but relatively high in the United Kingdom. Bougheas et al. (2003) reveal that investing in R&D is faced by financial constraints in Ireland Republic. Their study is in line with previous studies on US firms such as Himmelberg & Petersen (1994), Hao & Jaffe (1993), and Hall (1992).

Chen (2007) examine how sensitivity of investment-cash flow varies among firms encountering different external and internal levels of financial constraints, and firms owned and not owned by state, using a panel data of 815 listed Chinese firms from 1998 to 2004. All the firms based in various geographical locations. The results of the findings indicate that firms that is encountering less internal financial constraints achieve more sensitivity investment-cash flow, while firms that encountered more external constraints achieve more sensitivity investment-cash flow. State owned firms depend less on cash flow for investment, specifically the large firms, while non-state owned firms depend

more on cash flow for investment. Stronger and significant financial constraints is encountered by companies in the central and eastern part of China, while firms in the western part of China face weak and significant financial constraints, which is narrowly associated to the regional development policy of China.

Ding et al. (2010) examine the relationship among working capital, investment, and financial constraints, using sample data of 12000 firms in China from 2000 to 2007 by constructing sensitivities of firm level to cash flow. Their findings indicate that larger and older firms have presence of fluctuations, while allowing growing firms, the internal financial constraints is bear by firms with less cash flows and active in the adjustment of fixed and working capital investment.

Fazzari and Petersen (1993) highlighted another benefit of working capital, by stating that it facilitates the smoothing of firms fixed capital investment in the existence of shocks in cash flow. Since high adjustment costs characterized fixed capital investment, smoothing of fixed investment bring benefit for firms. However, when there are financing constraints and negative shocks in cash flow, it is only firms with adequately high working capital levels that can engross these shocks without reducing fixed investment.

Ismail et al, (2010) examine the firm investment and financial constraints in Malaysia. They evaluate the relationship between investment and cash flow by applying annual data from 1988 to 2005; their results indicate that financial constraints exist in the capital market of Malaysia. Though, the level of strictness is comparatively low, showing that no accessibility to external fund for firms. Therefore, their findings reject the neoclassical investment theory that based is assumption on complete information, stressing that only

the factor of technology and prices can determine firm's anticipation for stock capital. Finally, fluctuation in retained earnings and cash flows strongly affect their investments. They also found that the realization of monetary policies in enhancing economic growth is determined by the existence of financial constraints, since financial constraints expand the shocks instigated by the policies especially the unexpected monetary policies (Kocherlakota 2000). Thus, Agung (2000) recommends to the governments to take precaution when implementing any policy that will result in financial constraints and lead to deteriorating of the present economic conditions.

2.4 CORPORATE PERFORMANCE, WORKING CAPITAL MANAGEMENT AND FINANCIAL CONSTRAINTS

Baños-Caballero et al., (2013) examine the association between corporate performance, working capital management and the sensitivity of optimal level of working capital to different financial constraints measures. A sample data of UK non-financial listed firms were used for the study. Contrary to prior studies, the results offer solid backing for existence of an inverted U-shaped relationship between firm performance and working capital investment, indicating the presence of investing in optimal level of working capital that offsets benefits and costs, and maximizes shareholder's value. The findings recommended that negative implications on corporate performance should be avoided by managers due to loss of sales and loss of discounts in early payments, and or other financing expenses. They also find that more financially constrained firms achieve lower optimal level of working capital.

Kieschnick et al., (2011) attempted to evaluate the relation between shareholders' value and managing of working capital. Their findings demonstrate that the worth of investing one dollar on working capital has a significant impact on the expected future sales, financial restrictions, and debt pressure of the company. Furthermore, compared to investing more in inventory, investing more in increasing the limit of credit given to customers has a greater effect on the wealth of shareholders. Michalski (2010) studied the levels of investing in operational cash. They maintain that cash assets management is a complex process. On one side, when surplus cash is invested in working capital, the companies faces high cost of its maintenance, and on the other hand, this can help increasing sales revenue.

However, the more increase in firm working capital, the more experience of financial distress, as well as bankruptcy threat. This prompts firms that maintained high working capital investment incentives to minimize their levels of working capital, and reduce financial distress risk and high cost of bankruptcy. Also, keeping of high levels of working capital indicate locking up money in working capital (Deloof, 2003), thus, large working capital investment could hamper firms ability to engage in additional value-enhancing projects. These effects of working capital that have positive and negative sides indicate that the decisions in working capital encompass a trade-off. Thus, this is expected for firms in order to achieve an optimal level of working capital that offset these benefits and costs, and also maximizes their shareholder value. Obviously, it is also expected that an increase in working capital should increase corporate performance till a certain level of working capital is achieved. Conversely, it is expected that, away from this optimum, firm performance and working capital relationship will be negatively

significant. This study tends to contribute its quota to this assertion in the context of Malaysia companies.

2.5 DISCUSSION ON FIRM PERFORMANCE, WORKING CAPITAL MANAGEMENT AND FINANCIAL CONSTRAINTS VARIABLES

There are diverse views on the measurement of corporate performance or firm profitability. Garcia-Teruel & Martinez-Solano (2007), Samiloglu & Demirgunes (2008), Nazir & Afza (2009), Sharma & Kumar (2011), Bagchi et al., (2012), Azam and Haider (2011), and Uyar (2009) use return on asset as a measure of profitability. Padachi (2006) justify this usage when he stressed that return on asset is a better proxy for profitability because it is related to the asset of the organization. Most of their findings show a negative relationship between working capital variables used in their studies [Padachi (2006); Garcia-Teruel and Martinez-Solano (2007); Deloof (2003); Zariyawati et al. (2009); Raheman and Nasr (2007); and Sharma and Kumar, (2011)].

Another group of studies believe that the best measurement for corporate performance or firm profitability is by using net operating profit [Ashraf (2012); Ray and, (2012); Raheman et al (2010); Oladipupo and Okafor (2013); Gakure (2012); and Rehn (2012)]. It is calculated by summing up the operating income with depreciation and amortization and dividing it with the subtraction of financial assets from total assets. They argued that return on asset should not be regarded as a measure of profitability because there will be little contribution from operating activities to return on assets in a situation where a firm balance sheet consist of mainly financial assets (Ray, 2012). The findings in these various

studies showed a negative relation between the operating profit and working capital variables applied for the models.

Furthermore, another group of researchers believed that corporate performance should be calculated as the ratio of the sum of the market value of equity and the book value of debt to the book value of assets (Agrawal and Knoeber, 1996; Himmelberg, Hubbard, and Palia, 1999; Thomsen, Pedersen, and Kvist, 2006; Florackis, Kostakis, and Ozkan, 2009; Wu, 2011; Baños-Caballero, S., et al., 2013). This is referred to as Tobin's q. It gives a comparison to the value of the company provided by financial markets with the value of its assets (Nasir and Afza, 2009). They argued that this variable alleviates many of the inadequacies innate in accounting profit ratio. This is because accounting profit ratios is affected by accounting practices, and firm risk which is appropriately incorporated by capital market valuation minimizes any misrepresentations introduced by accounting conventions and tax laws (Baños-Caballero, S., et al., 2013; Smirlock, Gilligan, & Marshall, 1984). However, according to Perfect and Wiles (1994) (cited by Baños-Caballero, S., et al., 2013), there are limited improvements on this variable acquired through Tobin's q estimation which are related to replacement costs.

For working capital variables, Cash Conversion Cycle (CCC) and Net Trade Cycle (NTC) are used interwoven. However, one of the broad measures of working capital management is Cash Conversion Cycle (CCC) (Ashraf, 2012; Ray 2012). CCC is used as a comprehensive of working capital because it gives details of the time frame amidst the disbursement that is made for the procuring of raw materials and the assorting of sales of finished products. Thus, the longer this time frame, the larger is the investment in working capital blocked (Bagchi et al., 2012).

Moreover, Cash Conversion Cycle can also be referred to as an appendage in the evaluation of working capital because it indicates the number of days a company will be in need of extra funds for the financing of its current assets. A shorter cash conversion cycle is better for a company because as costs of financing activity decrease then the money used to provide current assets will return faster (Gołaś, Dorota, Czerwińska-Kayzer and Bieniasz, 2012).

Therefore, by combination of the essential components of a company's liquidity coupled with the short term operating efficiency, CCC can be maintained to be working capital management core variable. Though, Shin and Soenen (1998) (cited in Karadagli, 2012) proposed Net Trade Cycle (NTC) as a similar substitute measure of working capital management to CCC. NTC also focuses on the three core components of working capital specifically the accounts receivable, inventory and the accounts payable but it is different from CCC because it (NTC) measures all the components of CCC as a percentage of sales.

According to Nobanee (2010), NTC is easier to calculate and not so complex compare to CCC because of the situation of expressing all its components as a fraction of sales. In addition, the property of NTC enables it to be an alternative for extra working capital needs as a function of the projected sales growth (Gill et al., 2010). It also makes estimation of the financing needs of working capital expressed as the function of the expected sales growth easy and with confidence by the working capital manager (Nobanee and AlHajjar 2009; Karadagli, 2012).

However, the findings of Karadagli (2012) indicates that firm performance will improve in terms of both the operating income and the stock market return by an increase in both the CCC and the NTC for SMEs while for bigger companies a decrease in CCC and NTC is associated with enhanced profitability.

Another limitation of using CCC as a measure of working capital is that it does not put into consideration some current liabilities items such as interest, taxes and payroll. These items may also create a significant influence on the liquidity of a company (Cagle, Campbell and Jones, 2013).

Various studies have used some independent variables along with the main variables of working capital in order to support the analysis of working capital management on the profitability of firms (Lamberson, 1995; Smith and Begemann, 1997; Deelof, 2003; Eljelly, 2004; Teruel and Solano, 2005 and Lazaridis and Tryfonidis, 2006). They are also used by some previous studies in the performance model to control for other possible impacts on the firm performance (Baños-Caballero, S., et al., 2013).

These variables are opportunity growth (GROWTH), leverage (LEV), return on assets (ROA) and firm size (SIZE).

Meanwhile, on the financial constraint, in previous studies several measures have been used to separate firms that are suffering from financial constraints from those that are not, but there is still the problem of which one is the best for measuring. Fazzari et al. (1988) and Baños-Caballero, S., et al. (2013) used **dividends** to identify a firm's degree of financial constraints. They argue that financially constrained firms tend not to pay dividends (or to pay lower dividends) to reduce the probability of raising external funds

in the future. Almeida, Campello, and Weisbach (2004), Faulkender and Wang (2006) and Baños-Caballero, S., et al. (2013) also measure financial constraint based on **dividend payout ratio**. They believe that firms with a dividend payout ratio above a certain sample median are less financially constrained than those with a payout ratio below the certain sample median.

Moyen (2004) and Baños-Caballero, S., et al. (2013) categorized financial constraint firms based on their **cash flow**. They argue that this variable will allow someone to focus on the firm's beginning of funds. It is the ratio of earnings before interest and tax plus depreciation to total assets. Firms with a cash flow above a given sample median are assumed to be less likely to involve in financing constraints.

Size is another variable used as an inverse proxy of financial constraints. They argue that smaller firms face higher agency costs and informational asymmetry and, therefore, will involve more financing constraints (Almeida et al., 2004; Carpenter, Fazzari, & Petersen, 1994; Faulkender & Wang, 2006; Baños-Caballero, S., et al, 2013). Since larger companies have better prospect in the capital market, they face lower costs of external financing and lower borrowing constraints. In this regards, firm will be separated base on their size, measured by the natural logarithm of sales. It will be assumed that firms with size above (below) the sample median to be less (more) likely to be financially constrained. Hence, it is important to study whether financial constraint proxy by size is significant in explaining the relationship between corporate performance and working capital management.

2.6 SUMMARY

Previous studies on the topic of this study have been discussed elaborately in this chapter.

The empirical findings of different researchers and different methodologies have been explained vividly in this chapter. This entails a comprehensive breakdown of what previous studies have found on this topic.

CHAPTER THREE

METHODOLOGY

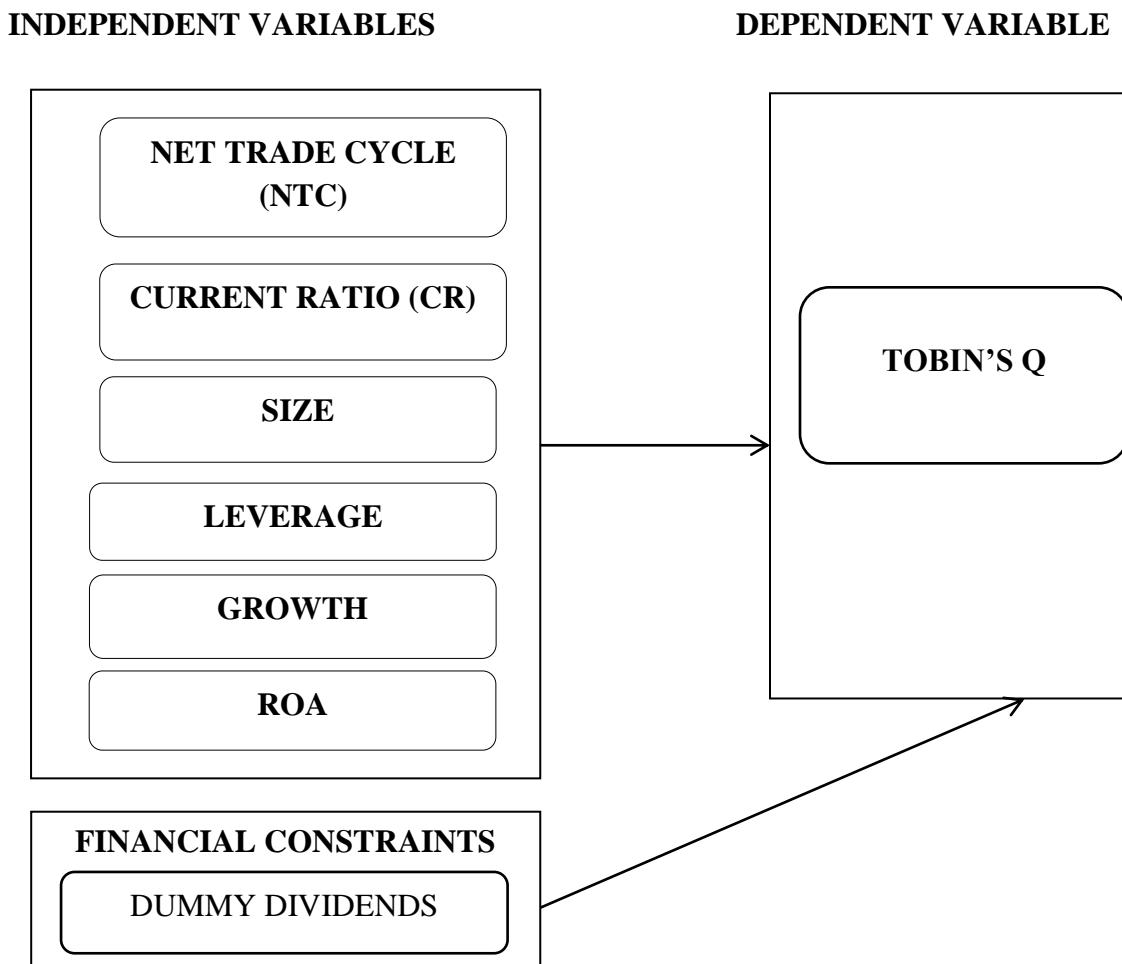
3.0 INTRODUCTION

Previous chapter expatiate on the findings of various authors that evaluate the impact of working capital and its relationship with corporate performance; and also those authors who put financial constraints into consideration when examining this impact and relationship. This chapter discusses the variables used for this study, followed by the theoretical framework; development of hypotheses is discussed, and followed by the specification of model.

3.1 DESCRIPTION OF VARIABLES

This study measures corporate performance as the dependent variable by using Tobin's q. The measure is in line with previous studies such as Baños-Caballero, S., et al. (2013), Wu (2011), Ozkan (2009), Florackis, Kostakis, & Ozkan (2009), Thomsen, Pedersen, & Kvist (2006), Himmelberg, Hubbard, & Palia (1999), and Knoeber (1996). Net Trade Cycle (NTC) and Current Ratio (CR) are the main proxies for working capital management. Both variables have also been used together or separately by previous studies such as Shin and Soenen (1998); Baños-Caballero, S., et al. (2013); Lyroudi & Lazaridis, (2000), and Mohamad & Saad, (2010). Net trade cycle is regarded as a dynamic measure of continuing liquidity management that make available an easy estimation of additional financing requirements with respect to working capital, a shorter NTC indicate a lower investment in working capital. Meanwhile, current ratio (CR) is one of the traditional and major indicators of firm liquidity. A higher current ratio indicates a company with a better liquidity position. Higher current ratio could be

attained by maintaining current assets (CA) at high level or current liabilities (CL) at low level.


Other independent variables are firm size (SIZE), leverage (LEV), opportunity growth (GROWTH), and return on assets (ROA). Based on firm size, it has been proven by previous studies that a positive significant firm size influenced firm's profitability (Abuzayed, 2011; Su, 2001; Peel & Wilson; 1996; and Chan, 1993). This is because large firms that possess higher credit worthy can assess capital through the stock market more easily, which will make them always keep cash at low level. Thus, larger firms commonly enjoy more easy way to growth opportunities that eventually leads to positive performance. On the side of the opportunity growth, it has been also demonstrated by previous studies that short-term investment and cash holding of a firm will increase when there is more future cash flow fluctuations and more opportunities for growth (Abuzayed, 2011; Opler et al., 1999; Kim et al., 1998); this growth would increase performance of firms. On leverage, the pecking order theory stated that a firm that lack funds will like to raise funds internally before attempting to borrow externally or issue new stocks (Myers, 1984). Hence, firms keep their own available capital for internal utilization and /or for debt payments. Firms with more debt will have low internal capital for their business operations, which will increase firm risk, while the projected debt ratio and market value are negatively related. However, this may persuade the capability to raise fund and improve profitability. For return on assets (ROA), it has been widely used as a measure in determining the intensity and level of returns generated by a firm through engaging its total assets. Firms are comfortable when they are able to attract more lenders and investors, but in distress if there is necessity for them to raise the funds needed for capital

projects and growth, or if their level of ROA could not convince or attract financiers. The earnings acquired through capital invested reflected on ROA. Thus, the asset turnover ratio of a firm increases when there is reduction in investment in working capital, which will in turn increases ROA. As this situation occurs, the return on equity (ROE) increases, and it will have positive effect on the shareholder value.

Financial constraint is measured by using the dummy variable of dividend (DDIV). As investment of a firm depends on various financial constraints such as internal finance availability, financing cost, or capital market accessibility (Fazzari et al., 1988), dividend policy of firms in financial constrained tend to be on two options of either paying lower dividends or not paying dividend at all, in order to lessen the possibility of the need for external financing in the nearest future.

3.2 THEORETICAL FRAMEWORK

The conceptual framework for this study is depicted below:

The measurements for the variables are depicted in table 3.1.

Table 3.1

DEPENDENT VARIABLE	MEASUREMENTS
TOBIN'S Q	The market value of equity plus liabilities divided by the book value of equity plus liabilities.

INDEPENDENT VARIABLES

Net Trade Cycle (NTC)	(accounts receivable/sales) x 365 + (inventories/sales) x 365 – (accounts payable/sales) x 365.
Current Ratio (CR)	Current assets to current liabilities
SIZE	natural logarithm of sales
LEVERAGE	total debt to total assets
GROWTH	(book value of intangibles assets/ total assets
ROA	earnings before interest and taxes over total assets.

FINANCIAL CONSTRAINTS VARIABLE

DIVIDEND PER SHARE	1 for dividend paid, 0 for non-payment of dividend
--------------------	--

3.3 SPECIFICATION OF THE MODEL AND METHODOLOGY

The data for this study is collected from the DataStream. The sample comprises of non-financial listed firms in Malaysia and listed at the Bursa Malaysia stock exchange. The data was for the period of 2008 - 2012. At the first stage, 255 firms was collected but after sorting and filtering by eliminating companies with missing values and errors in the accounting data, it was left with 215 firms, making a total of 1075 firm-year observations. Table 3.2 below depicts the names and numbers of firms per industry used for this study.

Table 3.2: LIST OF FIRMS PER INDUSTRY

	INDUSTRY	NUMBERS SORTING	BEFORE	NUMBERS SORTING	AFTER
1	Beverages	9		7	
2	Food Producers	74		66	
3	General Industrials	33		30	
4	Household Goods	38		30	
5	Leisure Goods	6		5	
6	Media	4		4	
7	Personal Goods	36		26	
8	Support services	26		22	
9	Travel and Leisure	29		25	
		255		215	

Descriptive statistics is used to test the frequency distribution, while Ordinary Least Square (OLS), Fixed-effect, Random-effect were used for testing the variables in the model to examine the significant of the independent variables.

3.4 HYPOTHESES

From the literature review of this study, it has been revealed that some previous studies on the relationship between firm performance and working capital management found a

negative relationship [(Shin & Soenen (1998); Deloof (2003); Mohamad and Mohd Saad (2010); Baños-Caballero, S., et al. (2013)], while some previous studies also found a positive relationship [Vural, Sökmen and Çetenak (2012); and Abuzayed (2011); Lyroudi & Lazaridis (2000)]. Ganesan (2007) findings revealed a negative relationship but not significant. Since there are mixed findings, this study aim to test whether the relationship between Tobin's Q is negative or positive. Thus hypothesis 1 is then written as:

H1: There is a relationship between Tobin's Q and Working Capital variables.

As discussed earlier in the introduction and problem statement section of this study that financial constraints may hinder firm financing decision. This may occur either through internal or external financing constraints. Moreover, as one of the study finds that financial constraints affect firms in Malaysia capital market (Ismail et al., 2010), it is crucial to identify this as a stumbling block and determinant of performance of firm in Malaysia. Thus, this study aims to examine the relationship that exists between financial constraints and firms' performance in Malaysia. This is stated in hypothesis 2 as:

H2: There is a relationship between financial constraints and corporate performance

In order to test the proposed hypotheses, a model was analyzed. The parameter λ_t is a time dummy variable that aims to capture the influence of economic factors that may also affect corporate performance but which companies cannot control. η_i is the unobservable heterogeneity or the firm's unobservable individual effects, so we can control for the particular characteristics of each firm. Finally, $\varepsilon_{i,t}$ is the random disturbance.

Therefore, the following model was estimated:

$$Q_{it} = \beta_0 + \beta_1 NTC_{i,t} + \beta_2 CR_{i,t} + \beta_3 SIZE_{i,t} + \beta_4 LEV_{i,t} + \beta_5 GROWTH_{i,t} + \beta_6 ROA_{i,t} + \lambda_t + \eta_i + \varepsilon_i \quad (1)$$

Where:

NTC = Net Trade Cycle

CR = Current Ratio

SIZE = Firm Size

LEV = Leverage

GROWTH = Opportunity Growth

ROA = Return on Assets

λ = Time dummy

η = unobservable heterogeneity

ε = random disturbance

To determine whether financial constraints of firms affect their performance, a dummy variable of dividends is induced into the variables used in Equation (1) to form Equation (2). Thus, the equation (2) is specified as follows:

$$Q_{it} = \beta_0 + \beta_1 NTC_{i,t} + \beta_2 CR_{i,t} + \beta_3 SIZE_{i,t} + \beta_4 LEV_{i,t} + \beta_5 GROWTH_{i,t} + \beta_6 ROA_{i,t} + \beta_6 DDIV_{i,t} + \lambda_t + \eta_i + \varepsilon_i \quad (2)$$

Where:

DDIV = Dummy Dividend

In order to expatiate more on the relationship that exist between firm performance, working capital management and financial constraints, regression analysis was applied.

3.5 SUMMARY

This chapter has been able to explain and describe vividly the variables used for this study, depict the theoretical framework and the measurements for the variables. This chapter also explains the specification of the model and the method to apply. It finally expatiates on the hypotheses of the study.

CHAPTER FOUR

ANALYSIS AND FINDINGS

4.0 INTRODUCTION

Previous chapter elaborate on the study on the variables used for this study, theoretical framework, development of hypotheses, and specification of model and methodology applied. However, this chapter will elucidate vividly the descriptive statistics, correlation matrix and analysis of the results of the data regressed for this study.

4.1 DATA AND SUMMARY STATISTICS

The analysis of this study started with the summary of the descriptive statistics. The descriptive statistics for firm performance, net trade cycle, current ratio and the control variables are reported in Table 4.1.

Table 4.1: SUMMARY STATISTICS

Variable	Mean	Std.Dev.	Median	Minimum	Maximum	Variance
TOBIN'S Q	1.11737	2.1396	0.7484	-43.5157	7010.22	4.5777
NTC	100.5638	62.0934	90.7894	-19465.74	1881.80	375887
C. RATIO	3.092	4.2100	1.8412	0.1046	46.3696	17.7244
SIZE	12.2280	1.6078	12.1301	0	17.6784	2.5851
LEVERAGE	0.1906	0.1587	0.1665	0	0.7722	0.02520
GROWTH	0.0444	0.1017	0.0033	0	0.6498	0.0103
ROA	0.0734	0.1977	0.0672	-1.2126	5.5471	0.0391

Market to book ratio is on average of 1.12, while the median is 0.75. The mean NTC is 100.56 days (median is 90.79 days). Average of current assets to current liabilities is 3.09, while its median is 1.84. On leverage, 19.06% of total assets are financed with financial debt. The mean GROWTH ratio is 0.04 while its wide range is spread between 0 and 64.98% indicating a low variation of firms growing policies within this period of

study. Mean ROA is 7.07% (median is 6.72%), indicating 7.07% of total assets are generated from earnings.

Table 4.2: CORRELATION MATRIX

	TOBIN's Q	NTC	CR	SIZE	LEVERAGE	GROWTH	ROA
TOBIN's Q	1.0000						
NTC	0.5942	1.0000					
CR	-0.0116**	0.0175**	1.0000				
SIZE	0.3077	0.0288**	-0.3019	1.0000			
LEVERAGE	-0.0185**	0.0513*	-0.4264	0.1982	1.0000		
GROWTH	0.1578	-0.0117**	-0.1120	0.1590	0.0426**	1.0000	
ROA	0.3108	0.1743	0.1117	0.1597	-0.1343	0.0141**	1.0000

Note: **, * indicate significant at 5% and 10% respectively.

Table 4.3: VARIANCE INFLATION FACTORS (VIF)

NTC	1.040
CR	1.328
SIZE	1.469
LEVERAGE	1.465
GROWTH	1.059
ROA	1.121

Meanwhile, table 4.2 shows the correlations that exist among the variables. Correlation coefficient is applied to measure the degree of linear relationship that exists between two or more variables. A formal test was used to ascertain that multicollinearity is not present in this analysis by using variance inflation factor (VIF) that is depicted in Table 4.3 for each independent variable in the models. The largest VIF is 1.469 (SIZE), confirming that multicollinearity is not present in the sample, because it is not up to 5 (Studenmund, 1997).

Table 4.2 depict that current ratio (CR) is negatively correlated with TOBIN's Q (-1.16%), indicating that firm with lower current ratio achieve lower corporate performance. The correlation table also shows that current ratio (CR) is positively correlated with NTC (1.75%), implying that firm with high current ratio achieve better working capital management. LEVERAGE is negatively correlated with TOBIN's Q (-1.85%) at 5% significant level, indicating that firm with less debt financing achieve better firm performance. The positive correlation between SIZE and NTC (2.88%) shows that larger firms are less concern about efficient management of working capital. NTC and GROWTH has a negative significant correlation (-1.17%), indicating that efficient management of working capital affect firm's growth. LEVERAGE is positively correlated with NTC (5.13%) at 10% significant level, indicating that firm with high debt financing do not manage their working capital efficiently and effectively. LEVERAGE is also positively correlated with GROWTH (4.26%) indicating that firms with more debt financing create more opportunities for growth. Meanwhile, positive significant correlation between GROWTH and ROA (1.41%) indicates firm with high growth opportunities achieve high return on assets.

4.2 EFFECTS OF WORKING CAPITAL MANAGEMENT ON CORPORATE PERFORMANCE

The results of equation (1) are depicted in table 4.4. The NTC is positively significant with TOBIN's Q in the three regression analysis applied (Pooled OLS, Fixed-effect, and Random-effect) at 1% confidence level, indicating a positive significant relationship between corporate performance and working capital management. A firm with higher

NTC will achieve a higher corporate performance. This is consistent with predictions because it shows evidence that a statistically significant positive relationship exist between working capital and corporate performance. Current ratio is not significant with corporate performance under all the regression analysis applied. This indicates that maintaining higher or lower current ratio does not really affect the efficient and effective working capital management and corporate performance of firms under review. All the other independent variables are positively significant with firm performance at 1% except for leverage which is negatively significant at also 1%. Lower leverage will lead to lower interest expenses, which will lead to increase in firm performance. These findings are in line with the study of Lyroudi & Lazaridis (2000); Vural et al., (2012); Abuzayed (2011) etc.

Table 4.4: Regression Analysis for Model 1

	Pooled OLS	Fixed-Effect	Random-Effect
NTC	0.00197 0.000***	0.00196 0.000***	0.00197 0.000***
CR	-0.03326 0.006***	0.01189 0.353	0.01253 0.328
SIZE	0.08525 0.000***	0.35492 0.000***	0.35801 0.000***
LEVERAGE	-1.30058 0.000***	-0.99124 0.003***	-1.00713 0.002***
GROWTH	2.91262 0.000***	2.74732 0.000***	2.64012 0.000***
ROA	2.01522 0.000***	1.66189 0.000***	1.67725 0.000***

Note: ***, **, * significant at 0.01, 0.05 and 0.1 respectively.

4.3 FINANCIAL CONSTRAINTS, WORKING CAPITAL MANAGEMENT AND CORPORATE PERFORMANCE

Since the findings of the relationship between corporate performance and working capital management shows that working capital management has a negative significant relation with corporate performance, equation 2 ascertain whether financial constraints influence this relation. The result is depicted in table 4.5.

Table 4.5: Regression Analysis for Model 2

	Pooled OLS	Fixed-Effect	Random-Effect
NTC	0.00198 0.000***	0.00196 0.000***	0.00197 0.000***
CR	-0.03121 0.010**	0.01041 0.416	0.01129 0.378
SIZE	0.05396 0.000***	0.32259 0.000***	0.32933 0.000***
LEVERAGE	-0.76588 0.038**	-0.71114 0.047**	-0.75967 0.033**
GROWTH	3.17447 0.000***	2.91092 0.000***	2.78168 0.000***
ROA	1.87433 0.000***	1.60224 0.000***	1.62480 0.000***
DIVIDEND	0.43605 0.000***	0.23889 0.041**	0.21352 0.067*

Note: ***, **, * indicate significant at 1%, 5% and 10% respectively.

The findings (in table 4.5) show that the dummy dividend used as a proxy for financial constraints has a positive significant relationship with corporate performance with all the regression analysis applied in this study (Pooled OLS, Fixed-effect, and Random-effect).

This indicates that firms with less financial constraints have better performance than firms with high financial constraints.

This is expected since a higher working capital level needs financing, more financial constraints firms will have a lower working capital level than the less financial constraints firms. The financing constraints incurred by firms have effect on their optimal investment in working capital. The major cause of this is their huge financing costs and larger capital rationing, since the lower working capital investment result in lower need of external financing. Thus, this finding justify previous studies that find that working capital investment depends on external financing costs, internal financing resources, financial distress of the firms and capital market accessibility. The NTC is also positively significant under all the models (0.20%) at 1% significant level. This indicates that firms with less financial constraints manage their working capital efficiently and effectively. Meanwhile, current ratio (CR) is negatively significant under pooled OLS (3.12%), but it is insignificant under Fixed-effect and Random-effect. This shows that firms with less financial constraints were able to meet their short-term obligations, resulting to an efficient and effective management of working capital.

4.4 SUMMARY

The findings of this study have been expressly analyzed in this chapter. This consist of the summary statistics of data for this study, the correlation matrix showing the correlation between the independent variables, the Variance Inflation factors that indicates the level of multicollinearity of the variables, and the regression analyses of the data using Pooled OLS, Fixed-effects, and Random-effects .

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

5.0 INTRODUCTION

Previous chapter discussed the findings of this study through the results of the descriptive statistics, correlation matrix and the regression analysis. However, this chapter focused on the conclusions, implications and further research recommended by this study.

5.1 CONCLUSION

Theoretical and empirical evidence have been provided by this study to justify the relationship that exist between corporate performance and managing of working capital by putting financial constraints into consideration. The objectives of this study are to examine whether working capital decision affect firm performance, to test whether working capital decision and financial constraints influence firm performance, and to investigate if financial constraint is related to working capital. The data for this study is collected from the DataStream. The sample comprises of non-financial quoted firms in Malaysia and listed at the Bursa Malaysia stock exchange. The data for 215 firms was analyzed from the period of 2008 - 2012. A panel data model is used and the methods applied for the regression analysis were Pooled OLS, Fixed-effects, and Random-effect, which allow for the control for unobservable heterogeneity and for potential endogeneity problems. Multitude of previous studies has shown that corporate performance is influenced by efficient and effective working capital management. Most of these studies found a negative significant relationship between firms' performance and working capital management, while few studies came out with a positive significant relationship between

them. However, this study is in line with previous studies that found positive relationship between corporate performance and working capital management. Moreover, few studies have empirically evaluated the effect of financial constraints on this relationship. Thus, this study contributes to previous studies by putting financial constraints into consideration, with the findings that financial constraints slightly affect the relationship that exist between corporate performance and working capital management of non-financial firms listed in Bursa Malaysia stock exchange. This study recommends that for a firm to achieve a better performance cum maximizing shareholder's wealth, it must achieve a better working capital with a longer net trade cycle (NTC) as well as meeting its short-term obligations.

5.2 IMPLICATIONS

This study implies that maintaining an efficient and effective working capital should be a priority for managers because of its effect on overall firm performance. In addition, working capital should be of concern to managers due to the costs that could be incurred if optimal working capital level is not achieved by the firm. Moreover, negative impact on corporate performance that arises through early payments lost discounts, lost sales, or through incurring additional financing expenses.

5.3 FUTURE RESEARCH

This study is open for further research. Further study should focus on optimal level of working capital and control of financial constraints, and also the effect of financial constraints on the optimal level of working capital should also be further researched.

5.4 SUMMARY

This chapter entails the conclusion of the study, the implication of the study and suggestion on future research on this study.

References

Abuzayed, B. (2011). Working capital management and firms' performance in emerging markets: the case of Jordan. *International Journal of Managerial Finance*, Vol. 8 No. 2.

Afeef, M. (2011). Analyzing the Impact of Working Capital Management on the Profitability of SME's in Pakistan. *International Journal of Business and Social Science*, 2(22), 173–183.

Afza T., & Nazir, M.S. (2007). Is it better to be aggressive or conservative in managing working capital?, Paper presented at Singapore Economic Review Conference (SERC) on August 02-04, Singapore

Agrawal, A., & Knoeber, C. R. (1996). Firm performance and mechanisms to control agency problems between managers and shareholders. *Journal of Financial and Quantitative Analysis*, 31, 377–397.

Agung, J. (2000) Financial Constraints, Firms' Investments and the Channels of Monetary Policy in Indonesia, *Applied Economics*, 32, 1637–1646.

Ahmed, H., & Hamid, N. (2011). Financing Constraints : Determinants and Implications for Firm Growth in Pakistan. *The Lahore Journal of Economics*, (September), 317–346.

Ali, A., & Ali, S. A. (2012). Working Capital Management: Is It Really Affects the Profitability? Evidence from Pakistan. *Global Journal of Business & Management* ..., 12(17).

Ali, S. (2011). Working Capital Management and the Profitability of the Manufacturing Sector: A Case Study of Pakistan's Textile Industry. *Lahore Journal of Economics*, 2(Winter), 141–178.

Almeida, H., Campello, M., & Weisbach, M. S. (2004). The cash flow sensitivity of cash. *Journal of Finance*, 59, 1777–1804.

Altman, E. (1968). Financial ratios, discriminant analysis and the prediction of the corporate bankruptcy. *Journal of Finance*, 23, 589–609.

Anand, M., & Malhotra, K. (2007). Working capital performance of corporate India: An empirical study. *ICFAI Journal of Applied Finance*, 13(1), 46–81.

Arellano, M., & Bond, S. (1991). Some test of specification for panel data: Monte Carlo evidence and an application to employment equations. *Review of Economic Studies*, 58, 277–297.

Ashraf, C. K. (2012). The relationship between working capital efficiency and profitability. *Journal of Accounting and Management*, 2(3).

Azam, M., & Haider, S. I. (2011). Impact of Working Capital Management on Firms ' Performance : Evidence from Non-Financial Institutions of KSE-30 index. *Interdisciplinary Journal of Contemporary Research In Business*, (2005), 481–492.

Azam, M., & Shah, S. (2011). Internal financial constraints, external financial constraints and investment choice: evidence from Pakistani firms. *Australian Journal of Business and Management Research*, 1(8), 18–22.

Bagchi, B., & Khamrui, B. (2012). Relationship between Working Capital Management and Profitability : A Study of Selected FMCG Companies in India. *Business and Economics Journal*, BEJ-60.

Bagchi, B., Chakrabarti, J., & Basu Roy, P. (2012). Influence of Working Capital Management on Profitability: A Study on Indian FMCG Companies. *International Journal of Business and Management*, 7(22), 1–10.

Baños-Caballero, S., García-Teruel, P. J., & Martínez-Solano, P. (2013). Working capital management, corporate performance, and financial constraints. *Journal of Business Research*, 67(3), 332–338.

Barran, F., & Peeters, M. (1998). Internal finance and corporate investment: Belgian evidence with panel data. *Economic Modelling*, (15), 67–89.

Bieniasz, A. B., & Gołaś, Z. G. (2011). The Influence of Working Capital Management on the Food Industry Enterprises Profitability. *Contemporary Economics*, 5(4), 68.

Blinder, A. S., & Maccini, L. J. (1991). The resurgence of inventory research: What have we learned? *Journal of Economic Surveys*, 5, 291–328.

Boermans, M., & Willebrands, D. (2012). Financial constraints, risk taking and firm performance: Recent evidence from microfinance clients in Tanzania. *DNB Working Paper*, (358).

Bond, S., Elston, J., Mairesse, J., and B. Mulkay (2003). "Financial Factors and Investment in Belgium, France, Germany, and the United Kingdom: A Comparison Using Company Panel Data." *Review of Economics and Statistics*, 85, 153-65.

Bond, S., Klemm, A., Newton-Smith, R., Syed, Z., and Vlieghe, G. (2004). The roles of expected profitability, Tobin's Q and cash flow in econometric models of company investment', Bank of England Working Paper Series No 222.

Bougheas, S., Görg, H. and E. Strobl (2003), Is R&D Financially Constrained? Theory and Evidence from Irish Manufacturing, *Review of Industrial Organization* 22(2), 159-174.

Brennan, M., Maksimovic, V., & Zechner, J. (1988). Vendor financing. *Journal of Finance*, 43, 1127–1141.

Burton, M. B., Lonie, A. A., & Power, D.M. (1999). The stock market reaction to Investment announcements: The case of individual capital expenditure projects. *Journal of Business Finance & Accounting*, 26, 681–708.

Cagle, C. S., Campbell, S. N. & Jones, K. T. (2013). Analyzing liquidity: Using the cash conversion cycle. planoaccountant.wordpress.com.

Carpenter, R. E., Fazzari, S. M., & Petersen, B. C. (1994). Inventory investment, internal finance fluctuations, and the business cycle. *Brookings Papers on Economic Activity*, 2, 75–138.

Chan, C. (1993), “The study on working capital management of manufacturing business”, unpublished master’s dissertation, Department of Management Science, Tam Kang University, Taiwan.

Chan, R. (2008). Financial Constraints , Working Capital and the Dynamic Behavior of the Firm, 1–33.

Charitou, M. S., Elfani, M., & Lois, P. (2010). The Effect Of Working Capital Management. *Journal of Business & Economic Research*, 8(12), 63–68.

Chatterjee, S. (2010). The impact of working capital management on the profitability of the listed companies in the London stock exchange. Available at SSRN 1587249.

Chen, M. (2007), Financial Constraints and the Investment of Chinese Listed Firms, mimeo, School of Economics, University of Nottingham.

Ching, H., Novazzi, A., & Gerab, F. (2011). Relationship between working capital management and profitability in Brazilian listed companies. *Journal of Global Business and Economics*, 3(1), 74–86.

Chowdhury, A., & Amin, M. 2007. Working Capital Management Practiced in Pharmaceutical Companies listed in Dhaka Stock Exchange. *BRAC university Journal* ,4(2), 75 -86.

Christopher, S. B., and Kamalavalli, A. L. (2009). Sensitivity of profitability to working capital management in Indian corporate hospitals. [Online] Available: <http://ssrn.com/abstract=1331500>

Chung, K. E., Wright, P., & Charoenwong, C. (1998). Investment opportunities and Market reaction to capital expenditure decisions. *Journal of Banking & Finance*, 22, 41–60.

Cleary, S. (2006), 'International corporate investment and the relationships between financial constraint measures', *Journal of Banking & Finance* 30(5), 1559-80.

Crisóstomo, V., López-Iturriaga, F., & Vallelado, E. (2012). Firm Size Matters for Financial Constraints: Evidence from Brazil. *Sistemas & Gestão*, 7(3), 490–501.

Cuñat, V. (2007). Trade credit: Suppliers as debt collectors and insurance providers. *Review of Financial Studies*, 20, 491–527.

Danuletiu, A. E. (2010). Working capital management and profitability: a case of Alba county companies. *Annales Universitatis Apulensis-Series Oeconomica*, 12(1).

Deloof, M. (2003). Does working capital management affect profitability of Belgian firms? *Journal of Business Finance & Accounting*, 30, 573–587.

Deloof, M., & Jegers, M. (1996). Trade credit, product quality, and intragroup trade: Some European evidence. *Financial Management*, 25, 33–43.

Ding, S., Guariglia, A., & Knight, J. (2013). Investment and financing constraints in China: does working capital management make a difference? *Journal of Banking & Finance*, (September 2010), 1–38.

Dong, H., & Su, J. (2010). The relationship between working capital management and profitability: a Vietnam case. *International Research Journal of Finance and 1.*

Eljelly, A. (2004). Liquidity-profitability tradeoff: an empirical investigation in an emerging market. *International Journal of Commerce and Management*, Vol.14 (2), pp. 48- 61.

Emery, G. (1984). A pure financial explanation for trade credit. *Journal of Financial and Quantitative Analysis*, 19, 271–285.

Emery, G. W. (1987). An optimal financial response to variable demand. *Journal of Financial and Quantitative Analysis*, 22, 209–225.

Fatemeh Baghiyan. (2013). Working Capital Management, Investment and Financing Constraints in Companies Listed on the Tehran, Iran Stock Exchange. International Journal of Business and Economics Research, 2(6), 130.

Faulkender, M., & Wang, R. (2006). Corporate financial policy and the value of cash. *Journal of Finance*, 61, 1957–1990.

Fazzari, S. M., Hubbard, R. G., & Petersen, B. C. (1988). Financing constraints and corporate investment. *Brookings Papers on Economic Activity*, 1, 141–195.

Fazzari, S. M., & Petersen, B. (1993). Working capital and fixed investment: New evidence on financing constraints. *The Rand Journal of Economics*, 24, 328–342.

Florackis, C., Kostakis, A., & Ozkan, A. (2009). Managerial ownership and performance. *Journal of Business Research*, 62, 1350–1357.

Gakure, R., Cheluget, J. K., Onyango, J. A., & Keraro, V. (2012). Working capital management and profitability of manufacturing firms listed at the Nairobi stock exchange. *Prime Journal of Business Administration and Management*, 2(9), 680–685.

Ganesan, V. (2007). An analysis of working capital management efficiency in telecommunication equipment. *Industryrivier Academic Journal*, 3, No. 2, Fall.

Garcia, F. L. G. (2011). The Impact of Working Capital Management upon Companies ' Profitability: Evidence from European Companies. *Fep Working Paper*. Faculdade de Economia, Universidade do Porto (p. 438).

García-Teruel, P. J., & Martínez-Solano, P. (2007). Effects of working capital management on SME profitability. *International Journal of Managerial Finance*, 3(2), 164–177.

Gill, A., Biger, N., & Mathur, N. (2010). The relationship between working capital management and profitability: Evidence from the United States. *Business and Economics Journal*, 2010, 1-9.

Golas, Z., Bieniasz, A., & Czerwinska-Kayzer, D. (2013). The relationship between working capital and profitability in food industry firms in Poland. *Journal of Central European Agriculture*, 14(1), 52–63.

Greenwald, B., Stiglitz, J. E., & Weiss, A. (1984). Informational imperfections in the capital market and macroeconomic fluctuations. *American Economic Review*, 74, 194–199.

Guariglia, A. (2007). Internal financial constraints, external financial constraints, and investment choice: Evidence from a panel of UK firms. *Centre For Finance and Credit Markets*, 44(0), 0–39.

Hall, B. (1992), Investment and Research and Development at the Firm Level: Does the Source of Financing Matter?, NBER Working Paper 4096.

Hao, K.Y., Jaffe, A.B. (1993), Effect of Liquidity on Firms' R&D Spending. *Economics of Innovation and New Technology* 2, 275-282.

Hill, M. D., Kelly, G., & Highfield, M. J. (2010). Net operating working capital behaviour: A first look. *Financial Management*, 39, 783–805.

Himmelberg, C., Hubbard, R., & Palia, D. (1999). Understanding the determinants of managerial ownership and the link between ownership and performance. *Journal of Financial Economics*, 53, 353–384.

Himmelberg, C.P., Peterson, B.C. (1994), R&D and Internal Finance. A Panel Study of Small Firms in High-Tech Industries. *Review of Economics and Statistics* 76, 38–51.

Hubbard, R. (1998). Capital-market imperfections and investment. *Journal of Economic Literature*, 36, 193–225.

Hutchison, P., Farris, I. and Anders, S. (2007), “Cash-to-cash analysis and management”, *The CPA Journal*, Vol. 77 No. 8, pp. 42-7.

Ismail, M. A., Ibrahim, M. H., Yusoff, M., & Zainal, M.-P. (2010). Financial Constraints and Firm Investment in Malaysia : An Investigation of Investment- Cash Flow Relationship. *Int. Journal of Economics and Management* (2010), 4(1), 29–44.

Jensen, M. C., & Meckling,W. H. (1976). Theory of the firm: Managerial behavior, Agency cost and ownership structure. *Journal of Financial Economics*, 3, 305–360.

Kadapakkam, P.-R., Kumar, P. and Riddick, L. (1998), 'The impact of cash flows and firm size on investment: The international evidence', *Journal of Banking & Finance* 22(3), 293-320.

Karadagli, E. C. (2012). The effect of working capital management on the profitability of Turkish SMEs. *British Journal of Economics, Finance and Management Sciences*, 5(2), 36– 44.

Khan, S., Shah, A. M., & Hijazi, S. T. (2006). Impact of working capital management on the profitability of firms: Case of listed Pakistani companies. *Journal of Social Sciences*, 13, 41–50.

Kieschnick, R., LaPlante, M., & Moussawi, R. (2011). Working capital management and shareholder wealth. Working paper (SSRN: <http://ssrn.com/abstract=1431165>)

Kim, C., Mauer, D. and Sherman, A. (1998), “The determinants of corporate liquidity: theory and evidence”, *Journal of Financial and Quantitative Analysis*, Vol. 33 No. 3, pp. 335-59.

Kim, Y. H., & Chung, K. H. (1990). An integrated evaluation of investment in inventory and credit: A cash flow approach. *Journal of Business Finance & Accounting*, 17, 381–390.

Kocherlakota, N. R. (2000). Creating Business Cycles Through Credit Constraints. *Federal Reserve Bank of Minneapolis Quarterly Review*, 24(3).

La Cava, G. (2005). Financial Constraints, the User Cost of Capital and Corporate Investment in Australia. Retrieved from <http://www.rba.gov.au/publications/rdp/2005/pdf/rdp2005-12.pdf>

Lamberson M (1995), “Changes in Working Capital of Small Firms in Relation to Changes in Economic Activity”, *Mid-American Journal of Business*, Vol. 10, No. 2, pp. 45-50.

Lee, Y. W., & Stowe, J. D. (1993). Product risk, asymmetric information, and trade credit. *Journal of Financial and Quantitative Analysis*, 28, 285–300.

Lewellen, W., McConnel, J., & Scott, J. (1980). Capital market influences on trade credit policies. *Journal of Financial Research*, 3, 105–113.

Lazaridis I & Tryfonidis, D. (2006), Relationship between working capital management and profitability of listed companies in the Athens stock exchange, *Journal of Financial Management and Analysis*, Vol.19 (1), pp 26 – 35.

Lyroudi, K. and Lazaridis, Y. (2000), “The cash conversion cycle and liquidity analysis of the food industry in Greece”, working paper, available at: <http://ssrn.com/paper/4236175> (accessed September 7, 2010).

Martínez-Solano, Pedro & García-Teruel, Pedro J. (2006). Effects of working capital management on sme profitability. [Online] Available: <http://ssrn.com/abstract=894865>

Mathuva, D. (2009). The Influence of Working Capital Management Components on Corporate Profitability: A Survey on Kenyan Listed Firms. *Research Journal of Business Management*, 4, 1–11.

McConnell, J. J., & Muscarella, C. J. (1985). Corporate capital expenditure decisions and the market value of the firm. *Journal of Financial Economics*, 14, 399–422.

Michalski, G. (2010). Planning optimal from the firm value creation perspective. Levels of operating cash investments. *JEL Classification*, 198–214.

Modigliani, F., & Miller, M. H. (1958). The cost of capital, corporation finance and the theory of investment. *American Economic Review*, 48, 261–297.

Mohamad, N., & Saad, N. (2010). Working Capital Management: The Effect of Market Valuation and Profitability in Malaysia. *International Journal of Business and Management*, 5(11), 140–147.

Mohammed, N. (2011). The effect of working capital policies management on firms' profitability (Doctoral dissertation, Addis Ababa University).

Moyen, N. (2004). Investment–cash flow sensitivities: Constrained versus unconstrained firms. *Journal of Finance*, 59, 2061–2092.

Myers, S. (1984), “The capital structure puzzle”, *Journal of Finance*, Vol. 39 No. 3, pp. 575-92.

Myers, S., & Majluf, N. (1984). Corporate financing and investment decisions when firms have information that investors do not have. *Journal of Financial Economics*, 13, 187–221.

Napompech, K. (2012). Effects of Working Capital Management on the Profitability of Thai Listed Firms. *International Journal of Trade, Economics and Finance.*, 3(3).

Narware P. C. (2004). “Working capital and profitability- an empirical analysis”. *The Management Accountant*, Vol, 39 (6), pp 120-127.

Nazir, M.S. (2009). Impact of working capital aggressiveness on firms' profitability. *IABR & TLC Conference Proceedings*, San Antonio, Texas, USA.

Nazir, M. S., & Afza, T. (2009). Working Capital Requirements and the Determining Factors in Pakistan. *IUP Journal of Applied Finance*, 15(4), 28-38.

Nimalathasan, B. (2010). Working capital management and its impact on profitability : A study of selected listed manufacturing companies in Sri Lanka. *Information Management*, 12, 76–83.

Nobanee, H. (2010) “Working Capital Management and Firm’s Profitability: An Optimal Cash Conversion Cycle” available at <http://ssrn.com/abstract=1471230> accessed at 11 April 2012.

Nobanee, H., & Alhajjar, M. (2009). Optimizing Working Capital Management. *JEL Classification*, 1–21.

Oladipupo, A., & Okafor, C. (2013). Relative contribution of working capital management to corporate profitability and dividend payout ratio: Evidence from Nigeria. *International Journal of Business and Finance Management Research*, 1, 11–20.

Opler, T., Pinkowitz, L., Stulz, R. and Williamson, R. (1999), “The determinants and Implications of corporate cash holdings”, *Journal of Financial Economics*, Vol. 52 No. 1, pp. 3-46.

Padachi, K. (2006). Trends in working capital management and its impact on firms’ performance: an analysis of Mauritian small manufacturing firms. *International Review of Business Research Papers*, Vol. 2 (2), pp. 45 - 58.

Peel, M. and Wilson, N. (1996), “Working capital and financial management practices in the small firm sector”, *International Small Business Journal*, Vol. 14 No. 2, pp. 52-68.

Perfect, S., & Wiles, K. (1994). Alternative construction of Tobin's q: An empirical comparison. *Journal of Empirical Finance*, 1, 313–341.

Raheman & Nasr. (2007). Working capital management and profitability – case of Pakistani firms. *International Review of Business Research Papers*, Vol.3 (2), pp. 275 – 296.

Ramachandran, A., & Janakiraman, M. (2006). Management Efficiency and ebit. *Managing Global Transitions*, 7(1), 61–74.

Ray, D. (2012). Evaluating the Impact of Working Capital Management Components on Corporate Profitability: Evidence from Indian Manufacturing Firms. *International Journal of Economic Practices and Theories*, 2(3), 127-136.

Rimo, A., & Panbunyuen, P. (2010). The effect of company characteristics on working capital management: A quantitative study of Swedish listed companies.

Saghir, A., Hashmi, F. M., & Hussein, M. N. (2011). Working capital management and profitability : evidence from pakistan firms. *Interdisciplinary Journal of Contemporary Research In Business*, 3(8), 1092–1105.

Samiloglu, F., & Demirgunes, K. (2008). The Effect of Working Capital Management on Firm Profitability: Evidence from Turkey. *The International Journal of Applied Economics and Finance*, 2(1), 44–50.

Sanger, J. S. (2001). Working Capital: a modern approach. *Financial Executive*, 69.

Sartoris, W., & Hill, N. (1983). Cash and working capital management. *Journal of*

Finance, 38, 349–360.

Sayuddzaman, Md. (2006). Working capital management: A study on British American Tobacco Bangladesh Company Ltd'. The Journal of Nepalese Business Studies, III, No. 1.

Schaller, H. (1993). "Asymmetric Information, Liquidity Constraints and Canadian Investment." Canadian Journal of Economics, 26, 552–74.

Schiff, M., & Lieber, Z. (1974). A model for the integration of credit and inventory management. Journal of Finance, 29, 133–140.

Schmidt, R., & Tyrell, M. (1997). Financial systems, corporate finance and corporate governance. European Financial Management, 3, 333–361.

Sen, M., & Oruç, E. (2009). Relationship between Efficiency Level of Working Capital Management and Return on Total Assets in Ise. International Journal of Business and Management, 4(10), 109–114.

Shah, S. M. A., & Sana, A. (2006). Impact of Working Capital Management on the Profitability of Oil and Gas Sector of Pakistan. European Journal of Scientific Research, 15(3).

Sharma, a. K., & Kumar, S. (2010). Effect of Working Capital Management on Firm Profitability: Empirical Evidence from India. Global Business Review, 12(1), 159–173.

Shin, H. H., & Soenen, L. (1998). Efficiency of working capital and corporate profitability. Financial Practice & Education, 8, 37–45.

Singh, D. (2011). Net Working Capital Level and Return on Capital Employed In Firms of Cement Industries in India. VSRD International Journal of Business and Management Research, 1(4), 269–280.

Smirlock, M., Gilligan, T., & Marshall, W. (1984). Tobin's q and the structure–performance relationship. American Economic Review, 74, 1051–1060.

Smith, K. (1980). Profitability versus liquidity tradeoffs in working capital management. In K. V. Smith (Ed.), *Readings on the management of working capital* (pp. 549–562). West Publishing Company.

Smith, J. K. (1987). Trade credit and informational asymmetry. Journal of Finance, 42.

Smith M B and Begemann E (1997), "Measuring Association Between Working Capital and Return on Investment", South Africa Journal of Business Management, Vol. 28, No. 1, pp. 1-5.

Stiglitz, J., & Weiss, A. (1981). Credit rationing in markets with imperfect information. *American Economic Review*, 71, 393–410.

Studenmund, A. H. (1997). *Using econometrics: A practical guide*. New York Addison-Wesley.

Su, F. (2001), “The impact of the change of business cycle in manufacturing industry”, unpublished master’s dissertation, Department of Accounting, National Cheng Chi University, Taiwan.

Summers, B., & Wilson, N. (2000). Trade credit management and the decision to use factoring: An empirical study. *Journal of Business Finance & Accounting*, 27, 37–68.

Teruel P J G and Solano P M (2005), “Effects of Working Capital Management on SME Profitability”, *International Journal of Managerial Finance*, Vol. 3, No. 2, pp. 164-177.

Thomsen, S., Pedersen, T., & Kvist, H. (2006). Blockholder ownership: Effects on firm value in market and control based governance systems. *Journal of Corporate Finance*, 12, 246–269.

Tobin, J. (1969), “A general equilibrium approach to monetary theory”, *Journal of Money, Credit and Banking*, Vol. 1 No. 1, pp. 15-29.

Tufail, S., Sidra, B., & Amjad. (2013). Impact of Working Capital Management on Profitability of Textile Sector of Pakistan. *Elixir International Journal*, 14387 - 14397.

Uyar, Ali. (2009). The relationship of cash conversion cycle with firm size and profitability: an empirical investigation in Turkey. *International Research Journal of Finance and Economics*, ISSN 1450-2887 Issue 24, EuroJournals Publishing, Inc.

Van Horne, J. C. & Wachowicz, J. M. 2000. *Fundamentals of Financial Management*, 11th Ed. Prentice Hall Inc.

Vural, G., Sokmen, A. G., & Cetenak, E. H. (2012). Affects of Working Capital Management on Firm ’s Performance : Evidence from Turkey. *International Journal of Economics and Financial Issues*, 2(4), 488–495.

Wang, Y. J. (2002). Liquidity management, operating performance, and corporate value: Evidence from Japan and Taiwan. *Journal of Multinational Financial Management*, 12, 159–169.

Wasiuzzaman, S., & Arumugam, V. (2013). Determinants of Working Capital

Investment: A Study of Malaysian Public Listed Firms. *Australasian Accounting Business & Finance Journal*, 7(2), 49–70.

Weinraub, H. J., & VIsscher, S. (1998). Industry practice relating to aggressive conservative working capital policies. *Journal of Financial and Strategic Decisions*, 11(2), 11–18.

Wilner, B. S. (2000). The exploitation of relationship in financial distress: The case of trade credit. *Journal of Finance*, 55, 153–178.

Wu, H. L. (2011). Can minority state ownership influence firm value? Universal and contingency views of its governance effects. *Journal of Business Research*, 64, 839–845.

Zariyawati, M., Annuar, H. and Abdul Rahim, S. (2009), “Working capital management and corporate performance: case of Malaysia”, *Journal of Modern Accounting and Auditing*, Vol. 5 No. 11, pp. 47-54.

APPENDICES

APPENDIX 1

```

Fixed-effects (within) regression                               Number of obs      =      1075
Group variable (i): year                                    Number of groups   =         5
                                                              
R-sq:  within  = 0.4863                                     Obs per group: min =      215
                                                between = 0.8979                         avg =    215.0
                                                overall = 0.4872                         max =      215
                                                              
                                                              
                                                               F(6,1064)          =     167.87
corr(u_i, Xb)  = 0.0477                                     Prob > F        = 0.0000
                                                              
-----+
          Tobin's Q |      Coef.      Std. Err.          t      P>|t|      [95% Conf. Interval]
-----+
          ntc |   .0019583   .0000779     25.14    0.000     .0018055   .0021112
          curratio |   .0118865   .0128004      0.93    0.353    -.0132304   .0370034
          size |   .3549183   .0316381     11.22    0.000     .2928382   .4169984
          leverage |  -.9912401   .3312875     -2.99    0.003    -1.641291  -.3411891
          growth |   2.747318   .4688855      5.86    0.000     1.827273   3.667363
          roa |   1.661897   .2489542      6.68    0.000     1.1734    2.150394
          _cons |  -3.511028   .3970746     -8.84    0.000    -4.290167  -2.73189
-----+
          sigma_u |   .15864171
          sigma_e |   1.5327712
          rho |   .0105987  (fraction of variance due to u_i)
-----+
F test that all u_i=0:      F(4, 1064) =      2.28          Prob > F = 0.0590

```

```
. xtreg tobinq ntc curratio size leverage growth roa, re
```

Random-effects GLS regression		Number of obs	=	1075		
Group variable (i): year		Number of groups	=	5		
R-sq: within = 0.4863		Obs per group: min =	215			
between = 0.8985		avg =	215.0			
overall = 0.4872		max =	215			
Random effects u_i ~ Gaussian		Wald chi2(6)	=	1014.68		
corr(u_i, X) = 0 (assumed)		Prob > chi2	=	0.0000		
<hr/>						
tobinq		Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
<hr/>						
ntc		.0019694	.0000779	25.27	0.000	.0018166 .0021222
curratio		.0125277	.0128166	0.98	0.328	-.0125923 .0376477
size		.3580076	.0316831	11.30	0.000	.2959099 .4201052
leverage		-1.007134	.3309779	-3.04	0.002	-1.655839 -.3584293
growth		2.640116	.4683267	5.64	0.000	1.722212 3.558019
roa		1.677254	.2494528	6.72	0.000	1.188335 2.166172
_cons		-3.545241	.3977959	-8.91	0.000	-4.324907 -2.765576
<hr/>						
sigma_u		0				
sigma_e		1.5327712				
rho		0	(fraction of variance due to u_i)			
<hr/>						

Breusch and Pagan Lagrangian multiplier test for random effects:

```
tobinq[year,t] = Xb + u[year] + e[year,t]
```

Estimated results:

	Var	sd = sqrt(Var)
tobinq	4.577714	2.139559
e	2.349388	1.532771
u	0	0

Test: Var(u) = 0

chi2(1) =	1.63
Prob > chi2 =	0.2011

Fixed-effects (within) regression	Number of obs	=	1075
Group variable (i): year	Number of groups	=	5
R-sq: within = 0.4883	Obs per group: min	=	215
between = 0.8668	avg	=	215.0
overall = 0.4887	max	=	215
	F(7,1063)	=	144.92
corr(u_i, Xb) = 0.0431	Prob > F	=	0.0000

tobinq	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]	
<hr/>						
ntc	.0019632	.0000778	25.23	0.000	.0018105	.0021159
curratio	.0104087	.0128015	0.81	0.416	-.0147105	.0355279
size	.3225921	.0353125	9.14	0.000	.253302	.3918822
leverage	-.7111349	.3579357	-1.99	0.047	-1.413476	-.0087941
growth	2.910916	.4749447	6.13	0.000	1.97898	3.842851
roa	1.602243	.2502808	6.40	0.000	1.111142	2.093343
dividend	.2388932	.1166135	2.05	0.041	.0100744	.467712
_cons	-3.314395	.4079326	-8.12	0.000	-4.114839	-2.51395
<hr/>						
sigma_u	.16596528					
sigma_e	1.5304739					
rho	.01162266		(fraction of variance due to <u>i</u>)			
<hr/>						
F test that all <u>i</u> =0:			F(4, 1063) =	2.49		Prob > F = 0.0418

. xtreg tobinq ntc curratio size leverage growth roa dividend,re

Random-effects GLS regression	Number of obs	=	1075
Group variable (i): year	Number of groups	=	5
R-sq: within = 0.4883	Obs per group: min =	215	
between = 0.8732	avg =	215.0	
overall = 0.4888	max =	215	
Random effects u_i ~ Gaussian	Wald chi2(7)	=	1020.30
corr(u_i, X) = 0 (assumed)	Prob > chi2	=	0.0000

tobinq	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]	
-----+-----						
ntc	.0019741	.0000779	25.34	0.000	.0018214	.0021267
curratio	.0112926	.0128201	0.88	0.378	-.0138342	.0364195
size	.3293297	.035299	9.33	0.000	.2601449	.3985145
leverage	-.7596693	.3570775	-2.13	0.033	-1.459528	-.0598102
growth	2.781676	.4741318	5.87	0.000	1.852395	3.710958
roa	1.624801	.2508125	6.48	0.000	1.133217	2.116384
dividend	.2135245	.1164045	1.83	0.067	-.0146242	.4416731
_cons	-3.371724	.4084605	-8.25	0.000	-4.172292	-2.571156
-----+-----						
sigma_u	0					
sigma_e	1.5304739					
rho	0	(fraction of variance due to u_i)				

APPENDIX 2: POOLED OLS RESULTS

Model 1: Pooled OLS, using 1075 observations
 Included 5 cross-sectional units
 Time-series length = 215
 Dependent variable: TOBINQ

	<i>Coefficient</i>	<i>Std. Error</i>	<i>t-ratio</i>	<i>p-value</i>	
NTC	0.00196777	8.07461e-05	24.3699	<0.00001	***
CUR_RATIO	-0.0332641	0.0121646	-2.7345	0.00635	***
SIZE	0.0852536	0.00849169	10.0397	<0.00001	***
LEVERAGE	-1.30058	0.341203	-3.8117	0.00015	***
GROWTH	2.91262	0.484167	6.0157	<0.00001	***
ROA	2.01522	0.255438	7.8893	<0.00001	***

Mean dependent var	1.117373	S.D. dependent var	2.139559
Sum squared resid	2708.662	S.E. of regression	1.591800
R-squared	0.567212	Adjusted R-squared	0.565187
F(6, 1069)	233.5048	P-value(F)	1.8e-190
Log-likelihood	-2022.081	Akaike criterion	4056.162
Schwarz criterion	4086.042	Hannan-Quinn	4067.479
rho	-0.056196	Durbin-Watson	2.104925

Model 2: Pooled OLS, using 1075 observations
 Included 5 cross-sectional units
 Time-series length = 215
 Dependent variable: TOBINQ

	<i>Coefficient</i>	<i>Std. Error</i>	<i>t-ratio</i>	<i>p-value</i>	
NTC	0.00197746	8.03033e-05	24.6249	<0.00001	***
CUR_RATIO	-0.0312093	0.0121041	-2.5784	0.01006	**
SIZE	0.0539506	0.0118947	4.5357	<0.00001	***
LEVERAGE	-0.765883	0.36813	-2.0805	0.03772	**
GROWTH	3.17447	0.48634	6.5273	<0.00001	***
ROA	1.87433	0.256691	7.3019	<0.00001	***
DIVIDEND	0.436053	0.116745	3.7351	0.00020	***

Mean dependent var	1.117373	S.D. dependent var	2.139559
Sum squared resid	2673.736	S.E. of regression	1.582245
R-squared	0.572792	Adjusted R-squared	0.570392
F(7, 1068)	204.5647	P-value(F)	2.9e-192
Log-likelihood	-2015.105	Akaike criterion	4044.211
Schwarz criterion	4079.071	Hannan-Quinn	4057.413
rho	-0.061023	Durbin-Watson	2.113850

APPENDIX 3: DATA FOR VARIABLES

YEAR	ID	TOBIN Q	NTC	CR	SIZE	LEVERAGE	GROWTH	ROA	DIV
2008	1	0.2027	186.9507	2.15	12.2635	0.38049	0.0957	0.0124	0
2009	1	0.1482	131.368	2.07	12.3311	0.3726	0.0965	0.0222	0
2010	1	0.1560	136.425	2.14	12.3098	0.1918	0.1098	0.0041	0
2011	1	0.2812	148	4.49	12.3117	0.14804	0.1191	0.0158	1
2012	1	0.2051	163.3684	3.92	12.345	0.10774	0.173	0.0261	1
2008	2	1.9206	113.5524	1.09	14.7843	0.77218	0.001	-0.066	0
2009	2	1.0325	59.8584	1.3	14.9575	0.71456	0.0008	0.0937	0
2010	2	1.0077	41.8674	1.56	15.1887	0.62749	0.0007	0.1497	1
2011	2	1.7860	40.48937	1.73	15.3185	0.58113	0.0005	0.0858	1
2012	2	1.6277	68.23212	1.3	15.4141	0.51328	0.0004	0.1456	1
2008	3	0.3351	186.337	1.23	12.6444	0.26819	0.0824	0.0422	0
2009	3	0.2562	113.9458	1.09	12.7142	0.26167	0.0835	0.0423	0
2010	3	0.4033	107.2756	1.62	12.6714	0.19882	0.0749	0.1417	1
2011	3	0.7015	107.5265	2.04	12.7771	0.14584	0.0635	0.1564	1
2012	3	0.4845	236.0543	3.05	12.711	0.14553	0.1451	0.0935	1
2008	4	1.2142	356.4218	2.43	14.2316	0.21544	0.5139	0.1108	1
2009	4	0.7125	146.5112	1.49	15.2389	0.23828	0.4922	0.042	1
2010	4	0.9804	136.5372	1.62	15.2139	0.25635	0.465	0.0571	1
2011	4	1.1009	73.57545	0.96	15.2158	0.22915	0.4644	0.0558	1
2012	4	0.8190	76.31124	1.81	15.2496	0.21854	0.4616	0.055	1
2008	5	20.7968	2.770408	0.56	15.0027	0.35179	0.6043	0.5128	1
2009	5	13.0210	1.774786	0.67	15.1227	0.23681	0.5575	0.5422	1
2010	5	13.2949	1.085379	0.91	15.0372	0.36845	0.5272	0.4685	1
2011	5	12.6125	4.035372	1.32	15.049	0.38261	0.4471	0.3744	1
2012	5	12.4288	2.176491	1.38	15.0986	0.3893	0.4549	0.4294	1
2008	6	0.6228	859.2496	4.2	9.64336	0.24173	0.0072	0.1096	0
2009	6	0.2497	486.6046	1.7	9.88328	0.24439	0.0189	0.0906	0
2010	6	0.3460	419.42	1.51	10.0166	0.23807	0.0155	0.0115	0
2011	6	0.5524	153.0136	1.6	9.95347	0.07092	0.0086	0.4134	0
2012	6	0.4772	142.3197	1.27	10.1467	0.06432	0.0084	0.0264	0
2008	7	0.4046	284.3872	0.29	11.1432	0.21869	0.0061	0.0455	0
2009	7	0.2035	386.8883	0.3	10.9226	0.25385	0.0072	0.0464	0
2010	7	0.1931	483.1278	0.41	10.3651	0.1742	0	0.0338	0
2011	7	0.2002	201.2098	0.55	11.2542	0.03547	0	0.0672	0
2012	7	0.3283	529.1595	0.6	10.4938	0.03915	0	0.0137	0
2008	8	1.9044	27.96625	5.05	16.0219	0.19272	0.1298	0.0635	1

2009	8	1.1360	31.24843	4.82	16.0008	0.31129	0.1437	0.0638	1
2010	8	1.5773	44.97792	3.26	16.5365	0.27502	0.1148	0.1004	1
2011	8	2.3466	46.17971	2.6	16.7889	0.26139	0.1364	0.13	1
2012	8	1.8530	59.89608	4.54	16.6638	0.3113	0.0934	0.0819	1
2008	9	2.4004	11.68938	6.19	15.402	0	0	0.1197	1
2009	9	1.3565	10.04688	6.63	15.4233	0	0.0112	0.1556	1
2010	9	1.4600	11.69648	2.4	15.4894	0.0709	0.2127	0.118	1
2011	9	1.8404	4.03087	1.42	15.9548	0.10904	0.2625	0.117	1
2012	9	1.7168	-1.03587	2.41	15.8815	0.06593	0.2436	0.1101	1
2008	10	0.6198	20.97018	2.11	10.8632	0.03484	0	0.0618	1
2009	10	0.5453	21.87208	2.99	10.8026	0.02705	0.0134	0.0465	1
2010	10	0.5381	21.93585	3.18	10.5841	0.02995	0	0.0211	1
2011	10	0.4987	34.09135	9.44	10.5722	0.00021	0	0.0341	1
2012	10	0.5076	0	10.3	10.4947	0.00087	0	0.0507	1
								-	
2008	11	0.4320	84.9712	0.82	10.8094	0.20141	0	0.0718	0
2009	11	0.1984	150.152	1.4	10.9365	0.12524	0	0.063	0
								-	
2010	11	0.7562	76.24576	1.02	10.7803	0.11781	0	0.0844	0
2011	11	0.5819	137.6573	1.38	10.6966	0.09708	0	0.0082	0
								-	
2012	11	0.6346	103.9169	1.02	10.4966	0.1099	0	0.1035	0
2008	12	0.7114	83.6469	1.46	10.8171	0.23539	0.0233	0.0202	0
2009	12	0.4720	116.3738	1.46	10.5251	0.20138	0.0214	0.005	0
2010	12	0.6816	302.2916	0.93	10.1285	0.52402	0.0804	0.0409	0
2011	12	1.8543	58.48416	0.69	11.2338	0.4353	0.0852	0.1464	1
2012	12	1.3325	21.53907	0.83	11.2772	0.3372	0.101	0.1762	1
2008	13	0.7386	61.37703	0.61	12.5846	0.54507	0.2008	0.0538	0
								-	
2009	13	0.6043	-5.7841	0.36	12.5502	0.53653	0.2243	0.0003	0
								-	
2010	13	0.5573	5.254777	0.26	12.4856	0.38656	0.2262	0.0364	0
								-	
2011	13	0.4164	4.885863	0.28	12.4442	0.3393	0.2406	0.0491	0
2012	13	0.6007	31.20431	0.43	12.392	0.27458	0.2497	0.0317	0
								-	
2008	14	0.6584	238.5412	9.15	10.7939	0.044	0	0.0018	0
2009	14	0.2570	241.3513	10.7	10.7531	0.04041	0	0.0003	1
2010	14	0.3511	155.9728	10.5	10.6259	0.03765	0	-0.001	0
								-	
2011	14	0.4421	162.7561	8.66	10.6346	0.03373	0.0003	0.0038	0
								-	
2012	14	0.2706	175.5492	2.44	10.8122	0.02864	0.0003	0.0011	0
2008	15	1.5133	20.64771	1.38	16.5259	0.14668	0.0106	0.0301	0
2009	15	7.1130	4.704429	0.86	16.2412	0.2731	0.015	0.0628	0

2010	15	2.1499	-2.12157	0.74	16.379	0.29841	0.0111	0.0323	0
2011	15	5.8139	-11.0203	0.39	16.4295	0.45365	0.0121	0.1896	0
2012	15	2.0390	-6.98341	0.54	16.4023	0.55225	0.0089	0.0109	0
2008	16	0.6526	65.98538	1.38	15.1991	0.22146	0.0485	0.1023	1
2009	16	0.4915	59.68885	1.31	15.5744	0.21138	0.1669	0.0737	1
2010	16	0.6618	61.9687	0.95	15.5182	0.20838	0.1132	0.0927	1
2011	16	0.9762	66.15381	1.71	15.7674	0.22751	0.0953	0.1258	1
2012	16	1.3947	107.2356	1.22	13.7177	0.12218	0.003	0.0824	1
2008	17	0.5875	204.0703	1.76	13.6719	0.31194	0.0076	0.0194	0
2009	17	0.2035	234.4685	0.43	13.4178	0.36279	0.0058	0.0138	0
2010	17	0.4054	191.6905	2.51	13.5854	0.28605	0.0033	0.0142	0
2011	17	0.4194	327.2551	1	13.3652	0.2422	0.002	0.0371	0
2012	17	0.4171	394.6973	1.65	13.1999	0.30883	0.0023	0.0399	0
2008	18	0.9524	45.36084	2.52	14.9589	0.48065	0.5246	0.0803	0
2009	18	0.6622	41.73075	2.43	15.0165	0.43356	0.5075	0.1191	0
2010	18	1.0106	43.2102	3.13	15.101	0.34836	0.4669	0.1077	0
2011	18	0.9941	30.77148	2.66	15.0847	0.34309	0.394	0.1113	0
2012	18	1.1483	16.30407	2.43	15.0434	0.22353	0.4885	0.0817	0
2008	19	1.1933	333.5187	3.51	12.894	0.66339	0	0.084	0
2009	19	0.5112	323.2769	2.1	12.7005	0.56206	0	0.0122	0
2010	19	0.2295	443.8243	1.86	12.4371	0.20362	0	0.0114	0
2011	19	0.4173	493.7673	1.67	12.3962	0.18224	0	0.0221	0
2012	19	0.4299	424.1508	1.39	12.1595	0.25871	0	0.0006	0
2008	20	1.2251	963.9638	1.52	10.0022	0.39816	0	0.0025	0
2009	20	0.6226	1161.433	6.13	9.81203	0.22906	0.0417	0.0137	0
2010	20	0.6458	1208.622	3.78	9.77076	0.19943	0.0032	0.0493	0
2011	20	0.5927	1881.796	5.01	9.29881	0.16858	0.0033	0.0305	0
2012	20	0.9211	1808.714	5.9	9.31614	0.21338	0.0047	0.0216	0
2008	21	1.6248	145.5787	3.46	12.9325	0.34808	0.0146	0.068	1
2009	21	0.9992	133.4626	2.16	13.2242	0.3518	0.0688	0.0468	1
2010	21	1.0597	175.145	1.6	13.033	0.3794	0.0693	0.0279	1
2011	21	1.8057	108.0296	1.56	13.1311	0.29734	0.0369	0.03	0
2012	21	1.0729	227.6095	1.36	12.3886	0.30566	0.0599	0.0238	0
2008	22	2.1982	129.0299	0.81	12.3363	0.39997	0.0049	0.0151	0
2009	22	0.7780	32.70808	0.54	12.0447	0.37177	0.0064	0.1266	0
2010	22	1.4069	119.5787	0.62	11.9742	0.42454	0.0034	0.1593	0
2011	22	1.9723	52.46927	1.1	11.6802	0.43045	0.0033	-	0

										0.0919
2012	22	1.6429	65.8273	1.25	12.141	0.39179	0.0039	0.072	0	
2008	23	1.4103	21.41694	0.44	12.9371	0.16914	0	0.0739	1	
2009	23	1.1642	24.28525	0.34	12.8141	0.16593	0.0169	0.0502	1	
2010	23	1.0669	11.54675	0.38	12.9528	0.09755	0	0.0881	1	
2011	23	1.4279	3.792431	0.4	12.9709	0.06389	0	0.0769	1	
2012	23	1.5038	6.271285	0.46	13.0596	0.05315	0	0.0913	1	
2008	24	0.7691	679.4674	2.41	13.2117	0.04447	#####	0.0961	1	
2009	24	0.5496	433.6779	3.14	13.1908	0.04393	#####	0.0528	1	
2010	24	0.7706	268.9278	1.84	12.9883	0.16201	0.061	0.0375	1	
2011	24	0.8353	138.084	1.85	13.3356	0.17145	0.0613	0.0363	1	
2012	24	0.6269	21.11713	1.5	13.4533	0.19256	0.0624	0.0369	1	
2008	25	0.6361	90.08959	1.5	12.6379	0.17895	0.0017	0.0473	1	
2009	25	0.5720	108.618	1.86	12.6174	0.14835	0.0162	0.0387	1	
2010	25	0.7245	123.1404	1.6	12.8044	0.29073	0.0316	0.0498	1	
2011	25	0.6569	137.4999	1.47	13.0614	0.36874	0.0259	0.0538	1	
2012	25	0.5853	134.0635	1.36	13.1547	0.34298	0.0244	0.0796	1	
2008	26	0.6320	282.2787	1.59	9.78594	0.29364	0	-0.047	0	
2009	26	0.3513	397.4619	2.53	9.02918	0.31864	0	0.0927	0	
							-			
2010	26	0.4025	499.9826	1.91	8.60758	0.01899	0	0.0838	0	
2011	26	0.5041	198.6959	1.63	10.6789	0.26889	0	0.1502	0	
2012	26	0.5567	173.1721	1.79	10.8073	0.25385	0	0.028	0	
2008	27	2.0715	107.7884	2.07	12.6122	0.25458	0.0185	0.16	1	
2009	27	1.0903	98.04628	3.23	12.66	0.16003	0.02	0.1376	1	
2010	27	1.0286	90.89752	4.5	12.7941	0.11038	0.0183	0.1767	1	
2011	27	1.5719	101.4376	2.74	13.042	0.13755	0.1874	0.1586	1	
2012	27	1.8702	85.43329	2.71	13.2705	0.12621	0.1634	0.1669	1	
2008	28	2.1673	65.65689	3.85	12.1111	0.00122	0.0008	0.1672	1	
2009	28	1.4671	68.49967	5.13	11.9736	0.00217	0.0203	0.0807	1	
2010	28	1.6683	70.7542	6.19	11.8089	0.00089	0.0224	0.033	1	
2011	28	1.2420	85.38639	5.5	11.7486	0.00079	0.0265	0.0289	1	
2012	28	0.9774	88.33568	5.29	11.6598	0.00057	0.027	0.0146	1	
2008	29	0.9624	208.5978	3.24	12.2511	0.14881	0.0378	0.1042	1	
2009	29	0.6944	249.721	4.04	12.1515	0.15928	0.0452	0.1106	1	
2010	29	0.8838	271.7585	4.63	12.1295	0.12109	0.0364	0.104	1	
2011	29	0.8492	278.0126	3.88	12.3	0.12738	0.0298	0.1358	0	
2012	29	0.6377	260.3741	5.91	12.4324	0.13871	0	0.1202	1	
2008	30	1.9715	231.3616	3.78	11.1919	0.0096	0	0.1279	1	
2009	30	1.9779	174.8055	4.16	11.2328	0.01217	0.0451	0.0977	1	
2010	30	1.7956	150.6484	3.01	11.4866	0.00101	0	0.1506	1	
2011	30	2.1115	143.6293	3.82	11.4677	0.00057	0	0.1661	1	
2012	30	2.7061	164.8735	5.36	11.3421	2.15E-05	0	0.1722	1	

2008	31	0.6928	139.0368	2.68	12.0267	0.00068	0.0236	0.1315	1
2009	31	0.5828	141.1939	3.55	12.119	0.00054	0.0236	0.0927	1
2010	31	0.6202	138.0593	3.5	12.0477	0.00037	0.0499	0.029	1
								-	
2011	31	0.9546	126.6932	3.22	11.8572	0.04721	0.0637	0.3274	0
2012	31	0.6195	91.07073	6.29	11.7931	0	0.0279	0.0371	0
2008	32	0.9426	44.48696	7.33	9.08478	0	0	0.0027	0
2009	32	0.8119	4.410128	9.41	8.90463	0	0	0.0307	0
2010	32	0.9371	71.09385	1.19	9.86993	0.02518	0.0111	0.0325	0
2011	32	0.9500	57.31396	2.37	10.4774	0.02922	0.012	0.0659	0
2012	32	0.8775	74.24854	3.18	10.5142	0.03076	0.0116	0.0537	0
2008	33	0.5837	142.0567	2.92	11.4464	0.20012	0.0181	0.0866	1
2009	33	0.3919	141.9951	3.07	11.3002	0.16566	0.0561	0.048	1
2010	33	0.5833	132.9815	3.16	11.3142	0.14748	0.0196	0.0345	1
2011	33	0.5116	136.7557	3.44	11.2985	0.15067	0.0195	0.061	1
2012	33	0.4558	126.6982	4.1	11.3444	0.10589	0.0204	0.0626	1
2008	34	0.3492	168.6445	2.57	11.8612	0.15481	0.0249	0.1175	1
2009	34	0.3584	129.5001	3.92	11.8279	0.08307	0.0723	0.1376	1
2010	34	0.5511	137.1697	2.74	11.8117	0.04368	0.0595	0.1399	1
2011	34	0.7780	224.4304	3.48	11.7933	0.05863	0.0564	0.1616	1
2012	34	0.5978	212.2657	6.16	11.8168	0.0792	0.0561	0.2262	1
2008	35	0.4152	377.836	0.94	11.9357	0.4918	0	0.0339	0
2009	35	0.4481	398.269	0.9	11.8897	0.55119	0	0.0137	0
							-		
2010	35	0.4909	377.9146	0.81	11.8152	0.60347	0	0.0374	0
							-		
2011	35	0.2398	349.9704	0.93	11.7794	0.4868	0	0.0635	0
2012	35	0.4459	321.0659	0.57	11.4792	0.62596	0	-0.157	0
2008	36	0.5082	56.90434	1.45	12.5533	0.204	0.1784	0.0239	0
2009	36	0.2838	61.28407	1.31	12.5134	0.29044	0.1734	0.0177	0
2010	36	0.2822	82.93907	1.42	12.4367	0.2707	0.1691	0.022	0
2011	36	0.2158	90.93422	1.6	12.5508	0.26508	0.1684	0.0494	1
2012	36	0.3172	87.33213	1.81	12.6654	0.24932	0.168	0.0856	1
							-		
2008	37	0.6682	382.1541	10	9.33618	0.03745	0	0.0411	0
2009	37	0.4075	214.3448	10.9	9.84422	0.02346	0	0.0063	0
							-		
2010	37	0.6442	207.0367	13.9	9.82461	0.0106	0	0.0008	0
							-		
2011	37	0.6846	287.43	12.4	9.67168	0.01522	0	0.0243	0
2012	37	0.5023	211.9275	21.4	9.3739	0.00227	0	-0.08	0
2008	38	0.7246	59.4195	2.57	12.7357	0.04284	0	0.0782	1
2009	38	0.6572	48.19184	2.83	12.869	0.00148	0	0.0875	1
2010	38	0.6771	57.18237	2.94	12.8392	0.0005	0	0.1118	1

2011	38	0.6921	60.83018	2.87	13.0028	0	0	0.1099	1
2012	38	0.7571	51.56249	3.4	13.1884	0	0	0.1722	1
2008	39	1.6681	96.63816	1.43	12.6319	0.13769	0	0.151	1
2009	39	1.7679	101.5801	1.58	12.7898	0.14298	0	0.1938	1
2010	39	2.8752	107.8891	1.97	12.8561	0.11209	0	0.2271	1
2011	39	2.4375	113.6674	1.55	12.9486	0.19244	0	0.1736	1
2012	39	1.9626	120.556	1.7	13.0165	0.21751	0	0.1359	1
							-		
2008	40	1.1611	56.71752	2.17	12.6282	0.27697	0	0.0738	1
2009	40	1.0776	29.30459	2.99	12.6512	0.22279	0	0.0741	1
2010	40	1.0926	90.19851	3.24	11.8749	0.19488	0	0.0245	1
2011	40	0.9041	30.08193	2.18	12.3895	0.08437	0	0.05	1
2012	40	0.7147	27.53552	3.08	12.4731	0.03552	0	0.0365	1
2008	41	2.4836	90.83816	2.07	12.8566	0.10687	0	0.2215	1
2009	41	1.6441	74.04523	2.52	13.0721	0.11032	0	0.2395	1
2010	41	2.1163	34.16164	2.37	13.1633	0.10223	0.0201	0.2464	1
2011	41	2.4662	75.24069	2.54	13.2507	0.10637	0.015	0.2408	1
2012	41	2.8815	83.28877	3.16	13.4917	0.10556	0.0152	0.2765	1
2008	42	0.3588	112.85	1.03	13.0856	0.48174	#####	0.0231	0
							-		
2009	42	0.1711	101.4285	0.88	13.2966	0.49623	#####	0.0183	0
2010	42	0.3669	83.71507	1.22	13.0135	0.37428	#####	0.0294	0
2011	42	0.2722	96.82244	1.32	12.8451	0.35934	#####	0.0024	0
2012	42	0.2495	98.88729	1.41	12.7938	0.35726	#####	0.0293	0
2008	43	0.3611	60.08775	1.22	12.0244	0.30182	0.0346	-0.011	0
2009	43	0.3055	56.03379	1.42	11.8957	0.2568	0.0372	0.0515	0
2010	43	0.3655	70.4	1.64	11.8268	0.16293	0.0316	0.0786	0
2011	43	0.2819	70.92869	1.42	12.1252	0.15166	0.0284	0.0617	0
2012	43	0.4338	33.76141	2.11	12.1521	0.05448	0.03	0.1239	1
2008	44	0.4155	672.3589	3.8	11.0454	0.35666	0	0.0334	0
							-		
2009	44	-43.5157	-19465.7	0.98	7.28001	0	0	1.2126	0
2010	44	0.2004	88.28515	3.27	12.5432	0.09329	0	0.1973	0
2011	44	1.6636	194.0965	4.1	11.9289	0.10408	0	0.0494	0
2012	44	1.2258	161.1001	6.02	12.0053	0.0781	0	0.0354	0
2008	45	0.9293	210.7424	0.94	10.1074	0.42435	0	0.0134	0
							-		
2009	45	0.8890	179.0645	0.84	9.9936	0.41916	0	0.0445	0
							-		
2010	45	0.9284	170.7422	0.73	9.85456	0.36514	0	0.0182	0
							-		
2011	45	1.1869	149.1074	0.62	9.73175	0.36268	0	0.0429	0
2012	45	0.7069	185.7546	2.84	10.6561	0.15557	0.0069	-0.024	0
2008	46	0.3678	177.8703	1.6	11.5173	0.3853	0.0002	0.1696	0

2009	46	0.3799	186.3759	2.04	11.5247	0.25083	0.0002	0.11	1
2010	46	0.7648	185.5157	2.17	11.5401	0.20137	0	0.1347	1
2011	46	0.8574	234.2322	1.87	11.602	0.19243	0	0.1091	1
2012	46	0.9167	192.7522	2.19	11.5769	0.12988	0	0.1083	1
2008	47	0.8028	241.9313	2.06	12.5756	0.43206	0	0.1141	1
2009	47	0.4674	253.5506	2	12.6145	0.38858	0	0.1242	1
2010	47	0.4908	255.7323	2.25	12.7835	0.3864	0	0.1226	1
2011	47	0.5444	237.7725	2.1	13.1331	0.42959	0	0.1396	1
2012	47	0.6153	222.6138	2.25	13.2762	0.44961	0	0.0816	1
2008	48	1.2147	173.3437	1.8	11.9147	0.23912	0.003	0.1099	0
2009	48	1.0041	155.3844	2.04	11.9165	0.20057	0.0033	0.0743	1
2010	48	1.0127	168.9738	2.04	12.0148	0.20198	0.0055	0.0901	1
2011	48	0.7509	164.9278	2.06	12.1118	0.22866	0.005	0.0818	1
2012	48	0.6932	204.8096	1.91	12.1186	0.23871	0.0044	0.0526	0
2008	49	0.6817	117.2637	1.94	12.3815	0.33416	0	0.0883	1
2009	49	0.3030	131.6258	1.89	12.2364	0.33096	0	0.1177	1
2010	49	0.4828	125.6035	2.34	12.383	0.26189	0	0.0913	1
2011	49	0.6264	135.0091	1.84	12.4526	0.2639	0	0.0819	1
2012	49	0.5710	122.1749	2.27	12.4666	0.3053	0	0.0626	1
2008	50	0.6944	364.7943	7.79	10.9468	0.06004	0.0585	0.0207	0
2009	50	0.5579	354.8281	4.53	11.1481	0.07553	0.0491	0.0473	1
2010	50	0.9203	498.8777	2.81	10.7955	0.16207	0.0445	-0.014	1
							-	-	
2011	50	0.5850	463.3449	2.27	10.6748	0.18144	0.0284	0.1899	1
							-	-	
2012	50	0.7062	358.7296	1.67	10.5817	0.15806	0.0216	0.1313	0
2008	51	1.2960	100.9838	3.47	12.6234	0	0	0.2243	1
2009	51	1.2394	89.89576	4.46	12.6612	0	0.0354	0.2298	1
2010	51	2.4600	81.65493	4.45	12.6842	0	0.0029	0.1864	1
2011	51	2.0869	80.43961	4.55	12.787	0	0.0026	0.1787	1
2012	51	2.0156	89.85519	3.83	13.0179	0	0.0022	0.1787	1
2008	52	0.5300	90.39596	4.07	10.6603	0.04038	0.0045	0.0907	1
2009	52	0.4486	43.55876	6.68	10.9087	0.00268	0.0043	0.0887	1
2010	52	0.7779	90.66513	2.04	11.6348	0.00011	0.043	0.127	1
2011	52	0.6130	96.81347	3.38	11.8373	6.09E-05	0.0396	0.1302	1
2012	52	0.5860	126.9296	4.61	11.6991	0.01727	0.039	0.0984	1
							-	-	
2008	53	0.6786	128.2251	2.68	11.4937	0.0989	0.1248	0.0864	0
2009	53	0.4644	178.945	2.42	11.4854	0.08719	0.1197	0.0685	0
2010	53	0.8992	70.66683	2	12.1268	0.04382	0.0853	0.1631	1
2011	53	0.8635	74.29397	2.11	11.9441	0.04471	0.0824	0.104	1
2012	53	0.9248	179.4957	2.85	11.6193	0.05378	0.0522	0.0425	1
2008	54	0.6619	282.542	5.89	10.4722	0.05952	0	0.1219	0

2009	54	0.6922	150.9766	9.94	10.8876	0.00156	0	0.1481	1
2010	54	1.3004	165.5057	7.81	10.7968	0.01731	0	0.1136	1
2011	54	1.0903	143.4768	10.7	10.7395	0.03182	0	0.1097	1
2012	54	1.0307	172.9532	13.9	10.7441	0.01729	0	0.0884	1
2008	55	0.2938	97.00359	0.85	11.5861	0.36705	0.6498	0.0259	0
2009	55	0.1290	61.27928	0.85	11.9624	0.29646	0.6334	0.0621	0
2010	55	0.3825	46.1745	0.78	12.0186	0.22166	0.6277	0.0867	0
2011	55	0.4424	50.90276	0.77	12.1252	0.22622	0.595	0.0918	0
2012	55	1.1341	50.89177	1.08	12.1891	0.16022	0.5837	0.0864	0
2008	56	1.3331	30.67444	3.84	13.4401	0.00949	0.4785	0.0075	0
							-		
2009	56	2.7982	8.874231	2.16	13.5051	0.00059	0.3215	0.6304	0
2010	56	1.3945	16.20944	1.66	13.3659	0.09353	0.2752	-0.092	0
							-		
2011	56	1.8927	8.533385	1.25	13.3339	0.09182	0.2146	0.2062	0
							-		
2012	56	3.0178	12.0492	1.14	13.1696	0.13263	0.221	0.0701	0
2008	57	0.4900	196.9083	3.03	10.7315	0.34716	0.0176	0.0417	0
2009	57	0.2998	165.6466	1.73	10.7822	0.34526	0.0172	0.0388	0
2010	57	0.5926	152.1925	3.18	10.8821	0.25016	0.018	0.0806	0
2011	57	0.4932	154.6079	3.73	10.9122	0.21372	0.0177	0.0816	0
2012	57	0.5311	166.5652	3.11	10.91	0.20107	0.0171	0.0609	0
2008	58	0.6895	45.67253	1.17	15.1027	0.34141	0.0107	0.0262	1
2009	58	0.4111	33.44656	1.28	15.0852	0.23854	0.0413	0.045	1
2010	58	0.6709	30.82655	1.27	15.1681	0.20953	0.009	0.0476	1
2011	58	0.7179	31.8141	1.27	15.265	0.17137	0.0072	0.0607	1
2012	58	1.1218	35.51862	1.35	15.3727	0.1194	0.0062	0.0884	1
2008	59	1.5891	131.1669	6.44	10.9937	0.08659	0.0221	0.1787	1
2009	59	0.8040	90.46651	10.2	11.0891	0.07071	0.021	0.1614	1
2010	59	1.3842	154.4095	12.8	10.9811	0.06255	0.0165	0.1208	1
2011	59	0.9880	197.7678	14.3	10.8669	0.04837	0.0165	0.0466	1
2012	59	1.0977	204.4167	17.7	10.6441	0.03993	0.0149	0.0399	0
2008	60	0.8744	123.1174	1.11	12.0827	0.10449	0.0015	0.1149	1
2009	60	0.6691	116.2499	1.41	12.317	0.11636	0.0014	0.1605	1
2010	60	1.1940	101.5739	1.87	12.5394	0.09049	0.0011	0.177	1
2011	60	1.2986	99.42117	2.67	12.6065	0.07732	0.001	0.2173	1
2012	60	1.1534	75.09413	3.84	12.6121	0.00375	0.0009	0.1904	1
2008	61	0.3740	43.49409	2.03	13.8661	0.08742	0	0.0897	1
2009	61	0.4102	47.357	2.02	13.8706	0.06584	0	0.0945	1
2010	61	0.6908	49.57685	2.05	13.9848	0.07388	0	0.1068	1
2011	61	0.8206	49.50256	1.94	14.0585	0.11662	0	0.0964	1
2012	61	0.7564	57.7468	2.06	14.1273	0.12824	0	0.0829	1
2008	62	0.5169	73.52881	1.53	13.5191	0.2184	0.0025	0.0746	1

2009	62	0.4670	76.02345	1.61	13.4573	0.20383	0.0025	0.0742	1
2010	62	0.4128	75.65694	1.41	13.3887	0.21057	0.0041	0.0358	1
2011	62	0.3549	88.47762	1.35	13.3659	0.22645	0.004	0.0365	1
2012	62	0.3337	87.2354	1.31	13.3957	0.26877	0.0037	0.0259	1
2008	63	4.7566	38.25097	2.96	11.536	0.00617	0.0215	0.2922	1
2009	63	2.5171	41.46029	7.95	11.4332	0.00424	0.0189	0.2388	1
2010	63	3.8896	38.90088	6.46	11.6708	0.00261	0.0131	0.2541	1
2011	63	4.7841	34.28506	6.36	11.8484	0.00169	0.0113	0.2338	1
2012	63	3.3603	3.289311	2.16	11.9878	0.00073	0	0.2736	1
								-	
2008	64	0.6943	327.1237	1.43	10.8525	0.08742	0.0199	0.0679	0
2009	64	0.4531	283.0371	1.4	10.994	0.07189	0.0176	0.0094	0
								-	
2010	64	0.8371	174.0798	1.12	11.1714	0.07622	0.0063	0.0192	0
								-	
2011	64	0.6732	159.9364	1.11	10.9444	0.04174	0.0018	0.0179	0
								-	
2012	64	3.5806	-470.619	0.87	10.4954	0.03211	#####	0.2083	0
2008	65	4.9357	37.63704	6.16	10.8052	0.11279	0.328	0.2631	1
2009	65	3.4172	57.26077	3.71	10.8682	0.0715	0.2572	0.2208	1
2010	65	3.0604	177.8162	4.8	10.7725	0.07227	0.2315	0.2258	1
2011	65	4.4786	94.7351	2.04	10.9825	0.0864	0.1845	0.1959	1
2012	65	3.2663	143.4825	2.25	11.1113	0.0776	0.1545	0.1896	1
								-	
2008	66	0.6364	-133.344	1.24	9.76537	0.17048	0.0076	0.0055	0
2009	66	0.7085	167.1527	0.54	10.1887	0.15586	0	0.0617	0
2010	66	0.5730	25.41451	0.34	10.27	0.1665	0	0.082	0
2011	66	0.4552	-8.96414	0.28	10.047	0.15445	0	0.0098	0
								-	
2012	66	1.4374	111.9898	0.66	9.75921	0.27286	0	0.4705	0
2008	67	4.4373	93.88254	2.53	11.1766	0.10141	0.116	0.187	1
2009	67	3.3166	146.5109	2.63	11.2216	0.10664	0.1131	0.1335	1
2010	67	2.0677	118.0203	4.79	11.338	0.00669	0.1138	0	1
2011	67	1.6829	131.6131	4.87	11.3834	0.007	0.1041	0.1869	1
2012	67	1.2435	146.9161	1.49	11.4009	0.13105	0.0805	0.1317	1
2008	68	2.1405	74.44924	3.68	11.6807	0.005	0	0.11	1
2009	68	1.2870	86.91618	3.93	11.8822	0.01228	0	0.1507	1
2010	68	2.1946	97.9687	5.52	11.7172	0.00738	0	0.1155	1
2011	68	1.9480	87.94176	7.14	11.8563	0	0	0.1775	1
2012	68	1.8114	94.33047	8.87	11.7847	0	0	0.1827	1
2008	69	0.9524	122.8184	2.62	11.9739	0.14731	0.5133	0.0434	1
2009	69	0.7847	75.30873	2.95	12.0466	0.13837	0.5192	0.0433	1
								-	
2010	69	0.9171	86.79604	2.35	12.0701	0.17595	0.5371	0.0706	0

2011	69	0.6075	77.04137	1.71	12.1328	0.17072	0.5898	0.0123	0
2012	69	0.6584	97.73643	1.63	11.6801	0.14654	0.4088	0.1693	0
2008	70	0.6840	147.2485	1.27	12.1338	0.41429	0.1408	0.0696	1
2009	70	0.6724	85.53469	1.29	12.7026	0.39745	0.1199	0.0776	1
2010	70	0.8299	93.73279	1.32	12.7789	0.29177	0.0995	0.0617	1
2011	70	0.8104	85.5579	1.43	12.8702	0.25969	0.0899	0.1026	1
2012	70	0.9249	71.00524	1.45	12.9192	0.2043	0.0811	0.1069	1
2008	71	0.5054	107.0374	1.18	13.0883	0.52798	0.0002	0.0958	1
2009	71	0.3440	65.06318	1.37	13.363	0.37293	0.0003	0.116	1
2010	71	0.5522	104.2648	1.31	13.0611	0.40674	0.0002	0.0608	1
2011	71	0.5963	113.9898	1.16	13.3705	0.49393	0.0003	0.0857	1
2012	71	2.1294	112.0453	1.14	13.4812	0.50836	0.0002	0.0888	1
2008	72	2.3855	65.84595	5.33	11.6876	0	0	0.2234	1
2009	72	1.6235	48.55335	10.8	11.2775	0	0.0259	0.1704	1
2010	72	2.3005	45.18086	7.19	11.478	0	0	0.1867	1
2011	72	2.0454	62.0906	5.85	11.8265	0	0	0.2473	1
2012	72	2.6311	48.00526	6.21	11.9459	0	0	0.331	1
2008	73	0.2484	132.9433	1.24	12.0985	0.27785	0	0.0228	0
2009	73	0.1957	146.2848	1.21	11.9162	0.2835	0	0.0036	0
2010	73	0.2447	116.3516	1.22	12.0339	0.23909	0	0.0021	0
2011	73	0.3293	45.3542	1.18	12.226	0.24909	0	0.0232	0
2012	73	0.3567	69.62516	1.19	12.2945	0.35146	0	0.0779	0
2008	74	0.4884	337.1266	4.63	10.5618	0.46595	0	0.1458	1
2009	74	0.4656	156.6007	1.74	10.0178	0.66668	0	-0.285	0
2010	74	2.1462	71.05188	1.87	9.68272	0.77114	0	0.1497	0
2011	74	0.7131	71.1237	0.51	9.55556	0.65496	0	0.1752	0
2012	74	2.8644	39.01837	0.32	8.9597	0.6777	0	0.1113	0
2008	75	2.7897	49.80302	3.25	13.7749	0.01008	0.0132	0.1612	1
2009	75	2.1774	-14.3346	1.12	13.86	0.00908	0.4134	0.1071	0
2010	75	2.6840	21.62162	1.31	14.129	0.05687	0.428	0.1887	0
2011	75	3.8548	21.66783	1.46	14.2139	0.02316	0.4277	0.2257	0
2012	75	11.6117	21.96154	1.51	14.276	0.0088	0.0165	0.4276	0
2008	76	1.1007	89.56638	0.97	12.5792	0.32023	0.1835	0.0781	1
2009	76	0.8645	88.44423	1.29	12.8021	0.26666	0.1618	0.1118	1
2010	76	1.8299	87.72635	1.27	13.1546	0.24412	0.1227	0.132	1
2011	76	2.2923	96.59408	1.6	13.2721	0.35359	0.0958	0.1201	1
2012	76	1.7729	212.7067	16.4	10.6175	0.02088	#####	5.5471	0
2008	77	2.4261	92.25387	1.81	15.094	0.17879	0.0371	0.1032	1

2009	77	2.3832	91.29593	1.5	15.1338	0.20584	0.0481	0.1159	1
2010	77	2.1543	76.87361	2.09	15.1069	0.10119	0.0422	0.1336	1
2011	77	3.9013	62.43572	1.78	15.1804	0.0607	0.0515	0.1864	1
2012	77	4.3673	77.57117	1.18	14.9907	0.16766	0.0534	0.0932	1
2008	78	4.1113	30.99714	2.15	13.9933	0	0.0048	0.2729	1
2009	78	3.8577	40.68482	2.37	14.0666	0	0.0101	0.2968	1
2010	78	4.4762	50.15928	2.65	14.122	0	0.0158	0.3106	1
2011	78	5.8577	50.1267	3.32	14.2134	0	0.0133	0.3551	1
2012	78	10.1106	65.33883	2.38	14.3002	0.2566	0.0332	0.3612	1
2008	79	1.1990	192.2784	6.69	12.0922	0.06855	0.0207	0.2055	1
2009	79	0.4958	215.31	5.03	11.8361	0.03203	0.0223	0.0461	1
2010	79	0.9069	156.2443	4.57	11.9389	0.02194	0.0239	0.0589	1
2011	79	1.0078	166.8789	3.73	12.1272	0.02873	0.0244	0.0691	1
2012	79	0.8302	165.294	3.42	12.2878	0.03752	0.023	0.0846	1
2008	80	0.5620	188.6951	2.3	11.5003	0.14642	0.0002	0.0563	1
2009	80	0.5699	152.5439	2.44	11.5922	0.17385	0.0002	0.0542	1
2010	80	0.9237	158.9451	1.62	11.7878	0.31081	0.0002	0.0683	1
2011	80	0.8740	142.5774	1.21	11.9028	0.35326	0.0002	0.0515	1
2012	80	0.7178	133.6758	1.17	12.0907	0.32937	0.0001	0.0696	1
2008	81	0.8369	69.66885	4.18	12.2805	0	0	0.1251	1
2009	81	0.9179	101.1418	5.07	12.4043	0	0	0.1174	1
2010	81	1.4475	79.01278	5.38	12.5589	0	0	0.1289	1
2011	81	1.0962	84.85515	4.08	12.664	0	0.001	0.1182	1
2012	81	1.0619	90.64963	5.68	12.6905	0	0.001	0.1224	1
2008	82	1.1839	90.44804	9.19	12.107	0	0	0.1213	1
2009	82	0.9737	79.36919	14.2	12.0745	0	0	0.1209	1
2010	82	1.1615	80.45828	12.8	11.98	0	0	0.142	1
2011	82	1.1934	80.91028	12.3	12.0799	0	0	0.0966	1
2012	82	1.1081	73.20275	13.5	12.2088	0	0	0.119	1
2008	83	1.1643	39.96797	1.77	11.2732	0.00487	0	0.0908	1
2009	83	1.0476	63.07365	1.53	10.7185	0.00289	0	0.0112	1
2010	83	1.0142	10.34102	2.03	10.4805	0.00357	0	0.0668	1
2011	83	0.9482	10.19122	2.32	10.6371	0.00554	0	0.0657	1
2012	83	0.9254	-20.4412	1.27	10.5147	0.0038	0	0.0431	1
2008	84	0.7874	28.79232	0.94	13.1581	0.32108	#####	0.0698	1
2009	84	0.5385	41.70709	1.01	13.6208	0.34082	0.1535	0.0489	1
2010	84	0.6454	22.32722	1.21	14.0894	0.32523	#####	0.0827	1
2011	84	0.7489	11.1348	1.14	14.4556	0.27715	#####	0.1059	1
2012	84	1.1853	18.44297	1.31	14.4646	0.31274	#####	0.0905	1
2008	85	0.6234	30.39222	0.8	13.2286	0.33196	0.0094	0.0327	0
2009	85	0.5089	30.98333	0.77	13.1111	0.36127	0.0421	0.0253	0
2010	85	0.4443	29.86885	0.78	13.1385	0.35769	0.0106	0.062	0
2011	85	0.4194	30.73126	0.77	13.1041	0.34874	0.0074	0.0921	0

2012	85	0.3821	21.05797	0.7	13.1892	0.33945	0.0058	0.0166	0
2008	86	0.9970	78.82605	2.86	12.5632	0.09037	0.0004	0.1041	1
2009	86	0.6604	68.89136	3.24	12.7025	0.07934	0	0.1118	1
2010	86	0.8647	63.9213	3.51	12.7819	0.06296	0	0.1527	1
2011	86	0.9459	55.32626	3.48	12.8391	0.07382	0	0.1536	1
2012	86	1.0683	58.79157	2.17	12.9272	0.13583	0	0.143	1
2008	87	0.8777	27.54918	2.55	12.417	0.08354	0.2069	0.1221	1
2009	87	0.5359	39.11215	2.11	12.0076	0.05384	0.3495	0.0611	1
2010	87	0.5737	13.98808	2.3	12.3537	0.05219	0.1945	0.0761	1
2011	87	0.7161	22.47839	2.92	12.5783	0.08121	0.1772	0.1208	1
2012	87	0.9167	42.17345	1.99	12.297	0.15324	0.1595	0.0529	1
2008	88	1.3447	25.9167	11.6	12.0155	0	0	0.1992	1
2009	88	1.0910	19.99817	22.2	11.6286	0	0	0.1026	1
2010	88	1.3065	27.14827	22	11.6213	0	0	0.0971	1
2011	88	1.3068	18.93713	21.5	11.873	0	0	0.1346	1
2012	88	1.3393	27.31438	32.9	11.6888	0	0	0.1048	1
2008	89	1.1242	63.20727	2.66	11.7654	0.01935	0	0.0881	1
2009	89	1.1546	71.60716	2.91	11.7994	0.00114	0	0.2066	1
2010	89	1.0787	77.11083	4.76	11.8654	0.00029	0	0.0421	1
2011	89	2.0190	94.69979	3.89	12.0668	0	0	0.0989	1
2012	89	1.9943	81.23085	3.11	12.3159	0	0	0.1179	1
							-		
2008	90	0.7943	35.98746	0.37	11.445	0.62944	0	0.1029	0
2009	90	0.6748	1.71745	0.32	11.6395	0.58288	0.0418	0.018	0
2010	90	1.1223	22.43889	0.39	11.8341	0.59909	0	0.0106	0
							-		
2011	90	1.1546	56.53091	0.96	11.8114	0.39324	0	0.0085	0
							-		
2012	90	0.9475	8.398736	0.81	11.843	0.2897	0	0.0893	0
2008	91	5.0665	57.94003	1.76	13.4752	0	0	0.1999	1
2009	91	3.2879	51.28276	2	13.4471	0	0.0306	0.2935	1
2010	91	3.9459	38.03954	2.2	13.4738	0	0.0112	0.293	1
2011	91	4.0485	17.32186	2.4	13.6056	0	0.0061	0.3575	1
2012	91	10.3508	-5.37955	1.91	13.6902	0	0.0031	0.4406	1
2008	92	1.3313	17.58307	3.01	13.1742	0.00058	0	0.1646	1
2009	92	1.1077	24.59791	3.98	12.7713	0.00019	0.2687	0.0855	1
2010	92	1.0381	18.70305	4.26	12.9854	2.98E-05	0	0.0793	1
2011	92	1.0219	25.23867	4.57	13.08	0	0	0.0861	1
2012	92	1.0492	32.97783	5.31	13.0222	0	0	0.0804	1
2008	93	0.3738	124.8246	0.93	12.8999	0.52569	0.0317	0.0237	0
2009	93	0.2592	163.8793	0.92	12.7597	0.57669	0.0308	0.0189	0
2010	93	0.3739	180.0768	0.91	12.7103	0.57305	0.0314	0.051	0
2011	93	0.4520	150.3802	1.1	12.916	0.55159	0.0233	0.0808	0

2012	93	0.5054	149.4607	1.01	12.9005	0.59938	0.0111	0.03	0
2008	94	2.7234	91.55977	6.85	13.8509	0.00792	0.1377	0.1879	1
2009	94	1.4259	135.525	6.67	13.5352	0.02384	0.041	0	1
2010	94	1.7969	85.03288	5.5	13.804	0.07259	0.0532	0.1239	1
2011	94	1.8768	53.35931	6.09	14.1056	0.10447	0.0457	0.146	1
2012	94	2.1274	77.02447	5.55	14.0253	0.1499	0.0371	0.0843	1
2008	95	0.9135	30.06666	1.31	12.4991	0.2513	0.0784	0.159	1
2009	95	0.6117	18.61898	0.82	12.2478	0.23819	0.0761	0.0746	0
2010	95	0.5088	49.20478	1.23	12.3411	0.17456	0.0495	0.0344	1
2011	95	0.6202	10.60679	1.85	12.5046	0.20089	0.0436	0.081	1
2012	95	0.6612	19.65453	1.56	12.5177	0.20031	0.0427	0.0725	1
2008	96	0.5770	119.8155	0.65	9.69486	0.09543	0	0.0144	1
2009	96	0.4214	57.91545	0.48	9.44581	0.08532	0	0.0131	1
2010	96	0.4739	160.812	6.52	9.31991	0.06396	0	0.0578	0
2011	96	0.5459	105.5507	34.9	9.76864	0.00061	0	0.033	0
2012	96	0.5160	64.83553	46.4	9.60885	0.00011	0	0.0085	0
2008	97	1.4089	97.73969	1.04	13.4507	0.56441	0	0.0482	1
2009	97	1.3667	133.6605	1.11	13.3734	0.55514	0	0.0614	1
2010	97	0.7897	74.80867	1.22	13.964	0.42552	0.0059	0.2407	1
2011	97	2.9513	129.512	1.07	14.1389	0.48515	0.0029	0.1741	1
2012	97	2.7479	159.5672	1.2	14.1893	0.54733	0.0122	0.1422	1
2008	98	1.4527	35.78188	1.48	12.9701	0.04765	0	0.0937	1
2009	98	0.9048	40.47502	1.31	12.8297	0.04367	0.1757	0.0693	1
2010	98	1.0902	31.55731	2.17	13.0684	0.01733	0	0.1129	1
2011	98	1.2140	22.00313	4.4	13.3922	0	0	0.1608	1
2012	98	1.2822	31.32143	5.44	13.174	0	0	0.09	1
2008	99	0.6378	0.528147	0.27	11.8316	0.23949	0.0214	0.0847	1
2009	99	0.4401	9.493442	0.31	11.5432	0.27051	0.3891	0.0472	1
2010	99	0.5761	3.761398	0.19	11.7867	0.29092	0.0194	0.0614	1
2011	99	0.5472	-9.7265	0.17	12.0244	0.29739	0.0181	0.0671	1
2012	99	0.6615	0.389647	0.26	12.2891	0.32681	0.0171	0.025	0
2008	100	0.5991	46.76137	0.74	13.019	0.58127	0	0.0004	0
2009	100	0.3739	39.88939	0.65	13.1248	0.51492	0.0107	0.044	0
2010	100	0.3462	45.46361	0.68	13.3241	0.52777	0.0104	0.0849	1
2011	100	0.5602	40.73141	0.7	13.4136	0.43722	0.0081	0.0845	1
							-		
2012	100	0.9892	36.08586	0.57	13.4316	0.54632	0.0058	0.0193	0
2008	101	0.6203	64.98232	2.31	12.3029	0	0.079	0.1274	1
2009	101	0.6524	69.09524	2.73	12.2709	0	0.0709	0.1918	1
2010	101	1.2286	68.45614	2.93	12.2972	0	0.0459	0.1688	1
2011	101	1.4682	58.53073	2.78	12.3894	0	0	0.1356	1
2012	101	1.5660	56.24539	3.15	12.4204	0	0	0.2164	1
2008	102	1.4628	86.4172	0.79	11.2929	0.38357	0	0.0285	0

2009	102	0.7914	97.0232	0.98	11.1859	0.32248	0	0.0557	0
2010	102	1.0506	97.48689	0.99	11.2518	0.33077	0	0.0314	0
							-		
2011	102	1.5965	95.59571	0.91	11.2044	0.37351	0	0.0095	0
2012	102	1.6215	106.5167	0.89	11.1042	0.38704	0	0.0126	0
2008	103	3.0933	28.69428	2.45	13.0774	0.0701	0.4184	0.1937	1
2009	103	1.8513	24.87192	1.3	13.1054	0.03367	0	0.1559	1
2010	103	1.7039	57.49527	7.21	12.9159	0	0	0.0882	1
2011	103	1.7609	44.53963	6.52	13.1349	0	0	0.1283	1
2012	103	1.9231	32.18912	5.21	13.2886	0.11864	0	0.1176	1
2008	104	5.4804	94.93915	3.11	16.501	0.34664	0.0299	0.1883	1
2009	104	3.1758	72.59227	4.7	16.4966	0.34866	0.0323	0.1274	1
2010	104	3.4044	75.72573	5	16.3447	0.27584	0.0297	0.155	1
2011	104	2.8264	86.22007	3.37	16.5977	0.27532	0.0261	0.146	1
2012	104	2.7312	85.83337	4.17	16.5654	0.35321	0.0223	0.1051	1
2008	105	1.0845	80.64207	2.17	11.2282	0.02633	0.0023	0.1379	1
2009	105	0.9385	71.27152	2.3	11.3809	0.0738	0.1088	0.1663	1
2010	105	1.5325	79.9264	2.88	11.4316	0.05056	0	0.1553	1
2011	105	1.3973	97.64023	3.8	11.5524	0.03753	0	0.1435	1
2012	105	0.9292	81.41612	3.49	11.6103	0.02842	0	0.1219	1
2008	106	0.8942	62.95103	4.05	14.1381	0.03676	0.0002	0.075	0
2009	106	0.6230	96.73845	5.15	13.7247	0.0165	0.0005	0.0861	0
2010	106	0.7371	89.09893	10.9	13.8342	0.00704	0.0004	0.1724	1
2011	106	0.8612	75.30751	9.88	14.0426	0.01166	0.0003	0.0477	1
2012	106	0.7913	75.38877	10.8	13.8699	0.00678	0.0002	0.0476	0
2008	107	0.7996	119.0972	1.51	11.1096	0.13796	0.0198	0.0186	0
2009	107	0.6540	115.0911	1.32	11.0068	0.18627	0.015	0.0305	0
2010	107	0.4280	80.93613	1.13	11.1823	0.20117	0.0138	0.0341	1
2011	107	0.4088	93.22401	1.01	11.3162	0.27336	0.0119	0.0443	1
2012	107	0.2864	47.16633	0.61	11.3912	0.26845	0.0108	0.0417	0
2008	108	1.9143	16.04019	3.47	13.0602	0.0593	0.0031	0.1933	1
2009	108	1.5003	23.91753	3.63	13.1364	0.08639	0.0027	0.1985	1
2010	108	1.4853	25.26763	3.7	13.0204	0.07631	0.0053	0.1367	1
2011	108	1.5294	19.52146	3.18	13.2418	0.05775	0.0075	0.1508	1
2012	108	1.6110	20.53568	4.32	13.552	0.05512	#####	0.2356	1
2008	109	0.4293	10.65127	20.2	9.24465	0	0	0.0231	1
2009	109	0.3383	40.29781	27.4	8.81967	0	0	0.003	1
2010	109	0.3498	55.40484	28.5	8.76561	0	0	0.0033	1
2011	109	0.4086	15.80045	25.5	8.93287	0	0	0.0148	1
2012	109	0.4219	16.2041	24.9	8.87668	0	0	0.0071	1
2008	110	1.2766	91.38551	1.28	11.8402	0.26785	0.0226	0.1141	0
2009	110	0.8914	149.7177	1.75	11.6965	0.16609	0.1688	0.0945	0
2010	110	0.7484	134.7299	2.06	11.9622	0.00879	0.0239	0.1403	1

2011	110	0.5848	95.96459	2.14	12.4065	0.01527	0.0406	0.095	1
2012	110	0.9700	140.4391	2.16	12.4384	0.03182	0.0395	0.0526	0
2008	111	3.2223	85.89107	2.07	15.8767	0.20931	0.0345	0.1726	1
2009	111	2.1241	83.87107	2.56	15.7114	0.20364	0.0382	0.1072	1
2010	111	3.0033	88.4613	2.67	15.8292	0.18449	0.0352	0.1535	1
2011	111	3.1500	90.7894	1.91	16.1898	0.191	0.0309	0.1931	1
2012	111	3.6321	71.71563	3.05	16.1248	0.2188	0.027	0.1282	1
2008	112	0.7510	82.04758	2.38	11.4691	0.30165	0	0.075	0
								-	
2009	112	0.6051	58.03512	1.5	11.6672	0.26258	0	0.0617	0
								-	
2010	112	0.8122	39.67502	1.06	11.3657	0.22687	0	0.0577	0
								-	
2011	112	0.9307	47.91423	0.9	11.0534	0.12183	0	0.0129	0
								-	
2012	112	1.3191	54.43316	1.07	10.893	0.03743	0	0.1784	0
2008	113	1.5953	44.79233	0.97	15.0545	0.36054	0	0.1286	0
								-	
2009	113	0.6387	87.46837	0.67	14.2657	0.38277	0	0.0356	1
2010	113	0.5997	49.96977	0.45	14.0372	0.37621	0	0.0183	1
2011	113	0.5722	71.24592	0.7	14.0395	0.33584	0	0.0821	1
2012	113	0.5475	67.88595	0.64	14.0776	0.329	0	0.0318	1
2008	114	0.4908	50.22151	0.9	12.6683	0.36386	0.011	0.0456	0
2009	114	0.2814	45.92253	0.86	12.7672	0.35162	0.0099	0.0641	1
2010	114	0.4558	39.47405	0.92	12.8707	0.32462	0.0091	0.0702	1
2011	114	0.6444	42.78153	0.96	12.9554	0.25264	0.009	0.0778	1
2012	114	0.6790	48.8745	0.97	13.1064	0.2705	0.0099	0.0631	1
2008	115	0.5835	42.93962	0.58	11.8362	0.51256	0.0113	0.0486	0
2009	115	0.3149	95.62777	0.62	12.1243	0.4199	0.0283	0.0568	1
2010	115	0.5529	32.78619	0.72	12.3169	0.38478	0.0253	0.0472	1
2011	115	0.4547	54.84496	0.94	12.3577	0.36186	0.021	0.0504	0
2012	115	0.3292	78.26941	0.58	12.4432	0.38419	0.0206	0.0466	0
2008	116	0.4646	97.02391	1.58	11.5918	0.17	0	0.0704	1
2009	116	0.4555	68.47799	2.47	11.8021	0.09952	0	0.1087	1
2010	116	0.5745	72.31182	2.43	11.7862	0.1666	0	0.1378	1
2011	116	0.6437	79.54702	2.33	11.9217	0.19777	0	0.137	1
2012	116	0.6785	80.75552	2.63	11.965	0.14438	0	0.1227	1
2008	117	0.8255	137.6445	1.6	13.9968	0.35209	0.0042	0.1209	1
2009	117	0.7340	122.6942	1.81	13.9987	0.28906	0.0033	0.1286	1
2010	117	0.9088	120.4246	1.61	14.257	0.38076	0.0019	0.1346	1
2011	117	1.1741	104.9177	1.45	14.467	0.38944	0.0014	0.1001	1
2012	117	1.6254	113.3171	1.43	14.5228	0.42537	0.001	0.0481	0
2008	118	0.5947	33.85655	12.9	9.75051	0	0	0.0644	0
2009	118	0.4011	121.7854	13.6	9.23474	0	0.2055	0.0452	0

2010	118	0.4617	81.54502	13.2	9.44288	0	0	0.0656	0
2011	118	0.5505	10.97474	13.5	9.00147	0	0	0.0136	0
2012	118	0.5736	0	13.6	0	0	0	0.0212	0
2008	119	0.6503	36.29381	1.39	10.2577	0.09708	0.0724	0.0574	1
2009	119	0.4188	38.28167	1.14	10.0559	0.09999	0.138	0.0383	1
2010	119	0.4518	33.90039	1	10.216	0.09189	0.0607	0.0485	1
2011	119	0.6946	30.59446	0.7	10.4253	0.07576	0.0549	0.0607	1
2012	119	0.9008	57.82513	0.66	10.2431	0.12353	0.0495	0.033	1
2008	120	1.0477	30.31975	19.9	11.566	0	0	0.0827	1
2009	120	0.8868	32.79369	18.3	11.2814	0	0	0.1001	1
2010	120	1.0082	29.44459	17.2	11.3692	0	0	0.1001	1
2011	120	0.9860	22.43896	17.9	11.6366	0	0	0.1099	1
2012	120	1.1613	27.86178	15.3	11.3545	0	0	0.0263	1
2008	121	13.2720	49.03087	0.86	15.1706	0.06559	0.0368	0.2805	1
2009	121	12.0712	22.44893	1.08	15.1357	0.22547	0.0358	0.2703	1
2010	121	13.5035	24.98864	1.09	15.2084	0.23388	0.0345	0.2757	1
2011	121	17.4560	29.97763	1.11	15.3633	0.17158	0.0306	0.291	1
2012	121	17.4504	9.239587	0.9	15.332	0.05307	0.0326	0.3512	1
2008	122	1.3692	11.98239	0.7	12.9036	0.12834	0.0137	0.1907	1
2009	122	1.0063	17.48397	0.77	12.6592	0.11124	0.2351	0.1368	1
2010	122	0.8742	15.34126	0.76	12.89	0.1385	0.0106	0.1317	1
2011	122	0.8975	29.99462	1.43	13.0365	0.17161	0.0093	0.1194	1
2012	122	1.0670	50.61139	0.81	12.8996	0.36555	0.049	0.0462	1
2008	123	0.3479	100.7857	1.75	13.4549	0.31859	0.1538	0.0014	0
2009	123	0.2671	102.022	1.78	13.2414	0.29295	0.1837	0.0284	0
2010	123	0.2704	104.6354	1.5	12.9365	0.2729	0.1813	0.0102	0
2011	123	0.2570	165.1171	1.8	12.4053	0.24488	0.1855	0.0382	0
2012	123	0.2531	138.5707	1.79	12.4954	0.20239	0.1932	0.0529	1
2008	124	0.6440	82.86052	2.49	11.7312	0.10361	0	0.0457	1
2009	124	0.5086	73.36919	3.72	11.6822	0.09347	0	0.081	1
2010	124	0.7935	81.50438	3.79	11.7417	0.06267	0	0.1041	1
2011	124	0.8444	71.20061	2.93	11.9137	0.05693	0	0.0781	1
2012	124	0.7307	74.6565	2.64	12.1821	0.06622	0	0.1066	1
2008	125	1.2015	163.5379	1.38	14.7326	0.44561	0.0001	0.0618	0
2009	125	0.6287	141.7311	1.21	14.9972	0.36418	0.0048	0.1045	0
2010	125	0.8708	158.2359	1.84	14.9702	0.39534	#####	0.1027	0
2011	125	1.2356	163.2266	2.29	15.077	0.47628	#####	0.0956	0
2012	125	1.3094	153.7908	2.27	15.1054	0.47103	0.0139	0.0699	0
2008	126	0.4567	113.006	1.49	11.7357	0.38293	0.11	0.0363	0
2009	126	0.2777	168.6356	2.5	11.1972	0.10447	0.162	0.0052	0

2010	126	0.3375	133.0233	2.54	11.2718	0.10503	0.1751	0.0046	0
2011	126	0.3021	152.9818	3.76	11.2982	0.04402	0.1887	0.0161	0
2012	126	0.2331	147.8359	5.85	11.3576	0.04298	0.1859	0.0294	0
									-
2008	127	0.7418	12.5431	0.46	11.2564	0.2036	0	0.0304	0
2009	127	0.5913	-8.30977	0.14	10.8395	0.19137	0	0.0109	0
2010	127	0.5648	-70.7189	0.22	10.5781	0.23752	0	0.0112	0
2011	127	0.5695	-57.3092	0.21	10.8268	0.24837	0	0.0261	0
2012	127	0.6054	-62.674	0.15	10.6758	0.26371	0	0.0062	0
2008	128	1.0563	103.6631	2.53	15.0574	0.02886	0.0057	0.0355	1
2009	128	0.8500	114.6277	3.52	14.5114	0.008	0.0118	0.0147	1
2010	128	1.5986	98.2263	4.86	14.6371	0.00821	0.006	0.0255	1
2011	128	1.4096	118.7805	4.23	14.8127	0.01698	0.0058	0.016	1
2012	128	1.3822	114.2846	3.34	14.9201	0.024	0.0049	0.0134	1
2008	129	0.3580	75.53012	1.22	13.6155	0.41894	0.0572	0.043	1
2009	129	0.3063	70.42242	1.52	13.6617	0.40848	0.0788	0.0649	1
									-
2010	129	1.3645	71.32508	0.99	13.5786	0.42718	0.0607	0.0782	1
									-
2011	129	0.7500	0	37	0	0.00013	0	0.0142	0
2012	129	1.1308	1.89857	38.7	8.25453	0	0	0.0117	0
2008	130	0.2636	67.7092	0.7	12.7496	0.35119	0.017	0.0279	0
2009	130	0.1965	87.19467	0.75	12.5154	0.3778	0.0179	0.0201	0
2010	130	0.1962	108.3156	0.89	12.478	0.38252	0.0194	0.0486	0
2011	130	0.2207	82.3656	0.91	12.4851	0.34959	0.0215	0.0471	1
2012	130	0.1470	92.40752	0.8	12.2757	0.26028	0.0162	0.0153	0
2008	131	2.7175	68.92944	1.14	14.0831	0.38326	0.0048	0.1334	1
2009	131	1.9886	68.98447	1.3	14.1505	0.39799	0.0058	0.133	1
2010	131	2.6782	70.01052	1.55	14.2051	0.37322	0.0058	0.1351	1
2011	131	3.6154	72.32627	1.47	14.3905	0.33882	0.0059	0.1194	1
2012	131	3.2373	69.10069	1.29	14.4816	0.35718	0.0045	0.1117	1
2008	132	0.3576	190.3972	2.84	12.0678	0.21026	0.0671	0.0306	1
2009	132	0.3837	219.6152	3	11.9995	0.20347	0.065	0.0298	1
									-
2010	132	0.3054	260.9939	2.38	11.8174	0.23657	0.064	0.0084	0
2011	132	0.3146	218.0931	2.17	11.8624	0.2405	0.0655	0.0005	0
2012	132	0.2155	215.7423	2.28	11.8416	0.19722	0.0532	0.0182	0
2008	133	3.5014	22.02369	1.78	12.2643	0.5461	0.0129	0.2375	1
2009	133	1.7803	9.292613	1.32	11.9309	0.55122	0.0119	0.0992	1
2010	133	0.4485	-9.84701	0.11	12.2936	0.32206	0.0598	0.0514	1
2011	133	0.3776	-11.0657	1.06	12.7927	0.23698	0.0481	0.0707	1
2012	133	1.6753	13.42583	0.42	12.6567	0.23271	0.0562	0.0266	1
2008	134	0.9761	25.8645	7.64	10.1786	0	0	0.0906	1

2009	134	0.7564	22.14087	8.68	9.99616	0	0	0.0959	1
2010	134	1.0082	32.5184	8.87	10.082	0	0	0.0853	1
2011	134	1.1027	46.36009	6.26	10.2285	0	0	0.1031	1
2012	134	0.6724	69.17092	5.78	10.1294	0	0	0.0499	1
2008	135	1.6060	34.95994	2.18	13.435	0.19933	0.0012	0.1718	1
2009	135	1.1862	13.59859	2.43	13.1868	0.20627	0.0016	0.0996	1
2010	135	1.2720	28.86985	2.43	13.4983	0.18365	0.0031	0.1362	1
2011	135	1.2442	22.30007	2.86	13.9699	0.20476	0.0025	0.1802	1
2012	135	2.1960	46.18713	1.96	14.0893	0.26169	0.0021	0.0923	1
2008	136	2.1463	55.16506	1.64	12.477	0.08324	0	0.1164	1
2009	136	1.0366	57.38229	2.76	12.5965	0.10238	0.0536	0.0821	1
2010	136	1.1749	40.11315	3.26	12.7391	0.12985	0	0.081	1
2011	136	1.1465	27.58645	2.42	13.0802	0.10717	0	0.1418	1
2012	136	1.5166	18.8392	2.14	12.9719	0.09269	0	0.0937	1
							-		
2008	137	0.8959	50.26258	0.73	10.9761	0.27718	0.1014	0.0158	0
2009	137	0.4235	38.65322	0.72	11.0464	0.26142	0.2387	0.015	0
2010	137	0.7524	31.37987	0.59	10.9915	0.26	0.1009	0.0349	0
2011	137	0.6313	-9.81544	0.78	10.209	0.21615	0.1023	0.0446	0
2012	137	1.8185	-14.9198	0.32	10.0537	0.21353	0.114	0.0243	0
2008	138	0.6808	-39.3412	1.18	12.8502	0.00723	0.0012	0.1638	1
2009	138	0.5655	2.749654	1.4	12.7279	0.00714	0.204	0.0929	1
2010	138	0.6084	-9.80909	1.65	12.9491	0.00513	0.0016	0.1394	1
2011	138	0.5810	-5.85252	1.86	13.1288	0.00103	0.0059	0.1486	1
2012	138	0.9558	1.316462	2.34	13.0286	0.02007	0.0066	0.0984	1
2008	139	0.4780	52.11232	1.53	11.2715	0.00372	0.0281	0.0091	0
							-		
2009	139	0.3362	247.7211	4.39	11.6579	0.07519	0.0177	0.0394	0
2010	139	0.4179	481.8839	2.52	11.3352	0.19848	0.0137	0.0111	0
2011	139	0.5445	210.4629	3.39	12.0246	0.16781	0.0151	0.0845	0
2012	139	0.5071	72.11818	2.08	12.2318	0.48496	0.0196	0.0739	0
2008	140	1.6389	96.17032	0.92	12.4024	0.02044	0	0.1266	1
2009	140	1.7936	74.8737	1.41	12.626	0.10314	0.3934	0.0837	1
2010	140	1.4913	39.10486	1.59	12.8103	0.14987	0	0.1388	1
2011	140	1.7425	70.04783	1.65	12.9827	0.12032	0	0.1535	1
2012	140	1.3136	78.18085	1.11	12.8369	0.19413	0.0055	0.0776	1
2008	141	1.4257	130.1421	1.71	11.9333	0.32873	0	0.1099	1
2009	141	0.7800	158.513	3.1	12.0928	0.16901	0	0.1339	1
2010	141	3.6980	159.3308	2.31	12.425	0.23486	0	0.0808	1
2011	141	3.1912	154.5431	2.87	12.5017	0.18618	0	0.0661	1
2012	141	2.1355	168.398	2.39	12.6327	0.22879	0	0.0794	1
2008	142	1.8837	118.483	1.07	13.9198	0.32992	0.0282	0.0559	1
2009	142	0.9487	123.3183	1	13.7956	0.35016	0.1385	0.0592	1

2010	142	1.1168	118.6271	0.68	13.7195	0.38709	0.0272	0.0612	1
2011	142	1.3449	82.33235	0.75	13.9414	0.36922	0.0251	0.0835	1
2012	142	2.3519	128.7771	0.8	13.799	0.43623	0.0225	0.0503	1
2008	143	1.1950	48.45179	17.2	12.3113	0	0.0195	0.1157	1
2009	143	0.9752	37.05567	21.4	12.1812	0	0.0193	0.0904	1
2010	143	1.1881	39.56329	7.57	12.0925	0	0.0187	0.0776	1
2011	143	1.3748	76.37472	8.21	12.2342	0	0.0166	0.0901	1
2012	143	1.4645	107.1092	8.57	12.3518	0	0.016	0.091	1
2008	144	2.0333	76.00731	4.17	13.846	1.15E-05	0	0.2418	1
2009	144	1.3467	79.35684	5.02	13.613	6.72E-05	0.2091	0.2036	1
2010	144	1.6513	66.77962	4.67	13.7842	0.00074	0	0.1742	1
2011	144	1.8869	67.30199	7.68	14.1508	0.00018	0	0.2234	1
2012	144	2.4192	72.65986	8.4	13.9839	3.37E-05	0	0.1916	1
2008	145	0.2974	143.7239	0.5	10.3897	0.15498	0	0.0244	1
							-	-	
2009	145	0.1572	181.1601	0.54	9.87699	0.15825	0	0.0756	0
							-	-	
2010	145	0.2792	170.7601	0.51	9.88104	0.15456	0	0.0149	0
2011	145	0.2809	170.9994	0.67	9.93678	0.12902	0	0.0054	0
							-	-	
2012	145	0.5879	221.0629	0.63	9.60898	0.20671	0	0.7482	0
2008	146	0.3600	75.22719	0.94	13.4504	0.32664	0.0087	0.0685	1
2009	146	0.3109	83.49838	1	13.4632	0.33355	0.0944	0.0619	1
2010	146	0.5524	88.73296	1.02	13.5381	0.31689	0.0029	0.0627	1
2011	146	0.6706	92.52547	1.07	13.5511	0.29028	0.0029	0.0482	1
2012	146	0.5259	61.56974	1.12	13.4585	0.22473	0.003	0.0585	1
2008	147	3.5537	115.7144	1.01	13.5687	0.3377	0.1564	0.1389	1
2009	147	1.2029	181.0967	1.15	13.5198	0.29082	0.2126	0.1387	1
2010	147	1.8071	85.89628	1.82	14.2516	0.25262	0.1753	0.1477	1
2011	147	2.0013	101.6887	1.69	14.2993	0.213	0.1567	0.1309	1
2012	147	1.7504	93.19507	2.1	14.3449	0.26564	0.146	0.1177	1
2008	148	0.4849	159.0847	3.78	10.1088	0	0	0.0212	1
2009	148	0.3886	164.1084	4.06	9.91507	0	0	0.026	1
2010	148	0.4213	103.4783	3.73	10.0596	0	0.0007	0.0368	1
2011	148	0.4574	123.4784	3.14	10.1654	0	0.0007	0.07	1
2012	148	0.5689	130.9351	3.6	10.1791	0	0.0007	0.075	1
2008	149	2.1100	147.8025	6.03	13.6304	0.16526	0.0301	0.1248	1
2009	149	1.9195	91.04228	2.51	13.7891	0.16339	0.052	0.1189	1
2010	149	2.3876	128.7164	3.01	13.8754	0.06979	0.0401	0.1996	1
2011	149	2.3558	107.7717	4.27	13.881	0.16564	0.062	0.1666	1
2012	149	2.0743	108.5472	3.51	13.8924	0.15621	0.0721	0.1623	1
2008	150	0.3707	119.9035	2.24	12.8302	0.2842	0.0136	0.0261	1
2009	150	0.2765	131.8179	2.48	12.7618	0.2622	0.0084	0.0214	0

2010	150	0.3284	167.9248	1.73	12.7321	0.26998	0.0044	0.0158	0
2011	150	0.3005	114.6044	1.73	12.8119	0.26752	0.0033	0.0375	0
2012	150	0.3073	138.935	1.35	12.752	0.34037	0.004	0.0098	0
2008	151	0.5086	198.2321	1.66	10.3671	0.23882	0.0623	0.0094	0
2009	151	0.3366	300.4265	1.57	10.1305	0.22441	0.0586	0.0653	0
2010	151	0.4404	409.1575	1.72	10.2123	0.22462	0.0534	0.068	0
2011	151	0.4188	519.6084	1.69	9.96576	0.1372	0.0504	0.0561	0
2012	151	0.7091	661.0339	1.5	9.76371	0.12415	0.0523	0.0665	0
2008	152	2.5748	171.2908	3.03	12.2473	0.11276	0.0957	0.158	1
2009	152	1.9088	98.17416	2.34	12.6093	0.12255	0.0796	0.2096	1
2010	152	1.8114	122.7685	2.51	12.4967	0.09813	0.0735	0.1386	1
2011	152	1.4443	133.6255	2.72	12.4176	0.07395	0.0697	0.1202	1
2012	152	1.2196	171.8501	2.82	12.5293	0.05093	0.0662	0.1071	1
2008	153	0.5600	280.8339	4.36	11.2087	0.107	0	0.0721	0
2009	153	0.4414	309.4049	6.22	11.047	0.08439	0.0002	0.0612	0
2010	153	0.6912	280.5401	5.86	11.1542	0.15126	0	0.0576	0
2011	153	0.5275	291.913	5.1	11.1635	0.14726	0	0.0597	1
2012	153	0.4717	146.855	2.42	11.7278	0.25088	0.042	0.0277	0
2008	154	0.4124	175.1291	1.1	11.6119	0.44817	0.0502	0.032	0
2009	154	0.2745	148.937	1.12	11.5427	0.38852	0.0568	0.0298	0
2010	154	0.3537	167.66	1.12	11.5979	0.42166	0.0511	0.0224	0
2011	154	0.3796	169.1783	1.17	11.4767	0.38642	0.0377	0.0097	0
2012	154	0.4337	164.1568	1.25	11.3107	0.31486	0	0.0597	0
2008	155	0.9329	256.2214	13.9	10.7666	0	0.0091	0.0855	1
2009	155	0.4693	253.6222	18.6	10.6561	0	0.0088	0.0889	1
2010	155	0.8414	187.0033	11.8	10.9469	0	0.0087	0.1299	1
2011	155	1.0938	211.5588	14.8	10.864	0	0.009	0.1217	1
2012	155	1.0213	165.2394	10.4	11.0402	0	0.0083	0.1609	1
2008	156	0.6886	92.56141	2.29	11.5892	0.09943	0	0.0677	1
2009	156	0.7049	156.635	1.79	11.0808	0.24684	0	0.0353	0
2010	156	0.5380	140.0297	1.48	11.3874	0.28622	0	0.0165	0
2011	156	0.4092	115.0911	1.17	11.5813	0.31249	0	0.0215	0
2012	156	0.3645	120.5676	1.23	11.5442	0.32774	0	0.0355	0
2008	157	0.5570	66.70543	6.87	11.2089	0	0	0.0924	1
2009	157	0.4713	57.281	9.29	11.0477	0	0	0.0537	1
2010	157	0.5832	58.34431	7.94	11.037	0	0	0.0029	1
2011	157	0.7508	86.74412	3.14	11.0435	0.02247	0	0.1039	0

2012	157	0.5721	58.02746	2.51	11.066	0.05775	0	0.0919	0
2008	158	1.2223	126.355	1.06	10.8905	0.1729	0	0.0797	0
2009	158	0.5705	77.50687	1.27	10.5027	0.14718	0	0.0343	0
2010	158	0.4472	88.30027	1.37	10.5974	0.15804	0	0.037	0
2011	158	0.7567	124.8909	1.42	10.6632	0.14836	0	0.0757	0
2012	158	0.4558	98.52528	1.42	11.2883	0.12941	0	0.1172	0
2008	159	0.8186	90.97215	2.64	12.5559	0.17611	0.0041	0.0582	1
2009	159	0.6425	65.72129	2.91	12.4398	0.14654	0.0054	0.1255	1
2010	159	1.0226	72.65204	2.78	12.3345	0.10627	0.0055	0.1139	1
2011	159	0.7395	113.636	3.1	12.1656	0.1006	0.0042	0.0656	1
2012	159	0.5483	95.20525	2.81	12.3742	0.12999	0.0039	0.0926	1
2008	160	0.3348	129.6456	1.79	12.1301	0.21335	0.017	0.0821	1
2009	160	0.4921	115.5131	2.19	12.1205	0.20185	0.0167	0.1068	1
2010	160	0.5974	123.5833	1.93	12.186	0.27034	0.0137	0.1001	1
2011	160	0.7233	115.9186	1.76	12.3961	0.28649	0.0117	0.0751	1
2012	160	0.5742	121.8349	1.69	12.5728	0.32244	0.019	0.078	1
2008	161	0.2131	186.9522	0.97	11.6621	0.39188	0.0123	0.0359	0
2009	161	0.1358	172.961	0.91	11.6764	0.36983	0.0119	0.029	0
2010	161	0.1822	191.309	0.97	11.6262	0.37429	0.0114	0.0379	0
2011	161	0.1861	192.5743	1.01	11.6349	0.34839	0.0104	0.0354	0
2012	161	0.1836	176.3864	1.03	11.7227	0.30736	0.0205	0.0261	0
2008	162	0.4372	70.42065	1.09	12.9096	0.37909	0	0.0484	1
2009	162	0.3001	47.92842	1.14	12.8926	0.31132	0	0.0525	1
2010	162	0.7919	47.91982	1.28	13.136	0.31107	0.0002	0.1103	1
2011	162	0.6081	51.70513	1.09	13.1237	0.27579	0.0002	0.0675	1
2012	162	0.2880	52.33004	1.14	13.1575	0.24805	0.0002	0.0523	1
2008	163	0.5665	167.8088	1.13	11.2692	0.47004	0	0.0399	0
2009	163	0.8939	65.70451	1.1	11.0279	0.47607	0	0.2057	0
2010	163	0.5409	65.99084	1.19	11.0152	0.31823	0	0.061	0
2011	163	0.5628	45.59979	1.11	11.0274	0.30366	0	0.078	0
2012	163	0.9495	22.09976	0.94	11.0492	0.28982	0	0.0514	0
2008	164	0.7379	106.9887	1.11	10.5794	0.25943	0	0.0368	0
2009	164	0.4310	188.5934	1.24	10.0916	0.27421	0	0.0156	0
2010	164	0.4393	206.5018	1.25	10.1264	0.2621	0	0.0193	0
2011	164	0.3525	256.551	1.78	9.99962	0.20809	0	0.0153	0
2012	164	0.4751	211.6756	1.52	10.1451	0.25194	0	0.0061	0
2008	165	0.4212	100.8503	2.89	12.0621	0.13905	0.0015	0.0583	1
2009	165	0.3110	75.96036	3.44	12.2961	0.06301	0	0.1549	1
2010	165	0.6437	88.72418	2.65	12.4711	0.10103	#####	0.1514	1
2011	165	0.5835	76.11205	2.46	12.5587	0.10595	#####	0.0863	1

2012	165	0.4283	73.01011	2.48	12.7556	0.13802	0	0.1388	1
2008	166	1.3226	105.2732	24.4	9.76572	0.0077	0	0.0029	0
2009	166	1.1222	332.7588	0.94	9.90539	0.27812	0	0.0241	0
2010	166	1.1892	387.2077	2.04	9.86848	0.14636	0	0.0432	0
2011	166	0.9576	497.8651	3.34	9.92613	0.11712	0.0003	0.0453	0
2012	166	0.9345	674.2979	16	9.79596	0.01218	0.0003	0.0406	0
2008	167	0.8283	156.526	2.04	11.681	0.25036	0.0758	0.0919	1
2009	167	0.7022	190.3788	2.06	11.6208	0.27101	0.0732	0.0727	0
2010	167	1.1797	230.4803	1.99	11.3948	0.34919	0.059	-0.098	0
2011	167	1.0540	186.5604	2.48	11.2802	0.2222	0.0277	0.0798	0
							-	-	
2012	167	1.0941	225.5489	2.06	11.0235	0.26877	0.0261	0.0159	0
							-	-	
2008	168	0.5277	48.93013	1.7	10.7737	0.10302	0.5284	0.0759	0
							-	-	
2009	168	0.4363	77.99377	1.64	10.463	0.12193	0.5312	0.0116	0
2010	168	0.5575	98.92798	1.9	10.7876	0.06383	0.4821	0.1128	0
2011	168	0.5797	57.22184	1.95	10.3815	0.01986	0.5168	-0.05	0
2012	168	0.4141	54.74041	1.93	10.8832	0	0.4964	0.0152	0
2008	169	1.1548	21.47276	5.74	13.2401	0	0	0.0847	1
2009	169	1.0590	9.269756	5.44	13.3061	0	0	0.0755	1
2010	169	1.6477	10.12421	4.01	13.4295	0	0	0.0971	1
2011	169	2.1955	10.31952	4.43	13.5429	0	0	0.122	1
2012	169	2.0762	15.25752	4.79	13.6241	0	0	0.1048	1
2008	170	0.4525	314.6717	2.51	11.396	0.23699	0	0.0122	1
							-	-	
2009	170	0.5030	358.6763	2	10.8701	0.28666	0	0.1664	0
2010	170	0.3451	206.0493	2.2	10.968	0.25561	0	0.0323	0
2011	170	0.2688	234.4054	2.34	10.849	0.23192	0	0.0327	0
2012	170	0.2833	234.1856	2.23	10.7861	0.21905	0	0.0081	0
2008	171	1.5893	175.9324	1.63	14.069	0.24903	0.1103	0.0524	1
2009	171	0.5568	155.4829	1.5	13.9999	0.26155	0.1129	0.0458	1
2010	171	0.7721	119.5817	1.43	14.396	0.22249	0.0804	0.09	1
							-	-	
2011	171	0.8117	116.3493	1.23	14.4696	0.26018	0.0849	0.0279	1
							-	-	
2012	171	0.6578	108.2818	1.27	14.2863	0.26716	0.0823	0.0168	0
2008	172	0.4342	158.7586	1.37	12.6811	0.40604	0.0068	0.027	1
2009	172	0.3016	174.3803	1.42	12.54	0.40653	0.0074	0.0377	1
2010	172	0.4204	146.2579	1.44	12.624	0.3882	0.0075	0.0382	1
2011	172	0.7073	156.1145	1.45	12.6047	0.37972	0.0046	0.0387	1
							-	-	
2012	172	0.5425	127.8442	1.25	12.7618	0.44173	0.0043	0.0305	1
2008	173	0.7973	257.84	1.12	9.75568	0.14826	0.0425	-	0

										0.0748
2009	173	0.3804	194.5556	2.4	9.7964	0.06906	0.0964	0.0284	0	-
2010	173	0.4828	192.902	2.92	9.88583	0.04274	0.0534	0.0051	0	-
2011	173	1.7802	149.6675	1.66	10.0591	0.02665	0.046	0.0428	0	-
2012	173	1.3634	34.48178	1.31	11.8159	0.01836	0.0275	0.0313	0	-
2008	174	0.5041	33.3242	0.93	12.8616	0.17546	0.001	0.0453	1	-
2009	174	0.3665	32.0635	1.05	12.7058	0.13331	0.0712	0.0586	1	-
2010	174	0.4635	41.59219	1.13	12.7817	0.15577	0.0012	0.0556	1	-
2011	174	0.4301	51.40213	1.35	12.7919	0.17808	0	0.0242	1	-
2012	174	0.3188	49.96347	1.36	12.8791	0.14864	0	0.073	1	-
2008	175	0.2282	96.68405	1.13	11.9272	0.30051	0.01	0.0286	0	-
2009	175	0.1923	66.61858	1.4	11.8109	0.20929	0.0116	0.0111	0	-
2010	175	0.1714	72.79886	1.73	11.7464	0.18285	0	0.0662	1	-
2011	175	0.3963	114.643	1.78	11.4355	0.14889	0	0.0027	0	-
2012	175	0.2069	100.2981	1.77	11.4641	0.17499	0	0.0221	0	-
2008	176	1.4238	122.8161	2.5	11.61	0.04926	0	0.1967	1	-
2009	176	1.0280	121.1859	2.89	11.973	0.03871	0.0031	0.232	1	-
2010	176	1.3310	160.0731	2.59	11.8376	0.02866	0	0.1559	1	-
2011	176	1.0565	157.9738	2.7	11.6624	0.0795	0	0.0868	1	-
2012	176	0.7936	181.7324	2.34	11.48	0.12877	0	0.0626	1	-
2008	177	0.6538	63.723	1.05	12.3453	0.49984	0.059	0.0375	0	-
2009	177	0.7213	62.93176	1.03	12.1578	0.5382	0.0056	0.0626	0	-
2010	177	0.7429	67.89147	0.61	12.0577	0.63684	0	0.0044	1	-
2011	177	0.9579	91.19623	0.44	11.9584	0.64852	0	0.0421	0	-
2012	177	0.8891	102.1382	1.54	12.1989	0.14816	0	0.2259	0	-
2008	178	0.5465	71.40486	6.11	11.0358	0	0	0.0915	1	-
2009	178	0.4789	90.20286	4.39	10.4813	0	0.0295	0.0152	1	-
2010	178	0.4764	114.3785	5.78	10.5911	0	0	0.0155	0	-
2011	178	0.4297	123.8833	4.71	10.6465	0	0	0.0107	0	-
2012	178	0.3455	116.3586	5.63	10.501	0	0	0.0246	0	-
2008	179	0.3307	149.7728	1.22	11.846	0.36977	0	0.0501	0	-
2009	179	0.2440	88.23584	1.21	11.8325	0.29427	0	0.0264	0	-
2010	179	0.5905	92.78325	1.21	11.8839	0.32905	0	-	0	-

										0.0196
2011	179	0.4563	138.904	1.32	11.3984	0.29826	0	0.0203	0	
2012	179	0.4204	129.3457	1.46	11.6285	0.27879	0	0.0483	0	
2008	180	1.2638	325.0097	1.44	9.4265	0.18644	0.0067	0.0013	0	
										-
2009	180	0.7427	212.3298	2.25	9.62119	0.13751	0	0.1499	0	
2010	180	0.6961	221.7929	3.22	9.23464	0.12721	0	-0.023	0	
2011	180	1.4275	428.7083	5.42	9.16136	0.12261	0	0.0026	0	
2012	180	0.8540	301.8607	6.32	9.09863	0.12796	0	0.0677	0	
2008	181	1.1426	70.06388	2.81	12.7365	0.0032	0	0.0874	1	
2009	181	0.8505	58.5379	4.76	12.5423	0	0	0.0558	1	
2010	181	0.9758	65.5281	3.46	12.529	0	0	0.0639	1	
2011	181	0.8241	62.92697	2.77	12.5822	0	0	0.0675	1	
2012	181	0.7166	0	3.14	12.6662	0	0	0.0664	1	
2008	182	0.2949	51.42357	1.11	12.8045	0.55071	0.0594	0.02	0	
2009	182	0.1233	53.95488	0.95	12.8165	0.497	0.0522	0.0324	0	
2010	182	0.1995	40.6202	0.98	13.2896	0.32881	0.0345	0.0223	0	
2011	182	0.2715	36.09241	0.97	13.6526	0.39398	0.036	0.0265	0	
2012	182	0.2040	46.15287	0.99	13.6533	0.44732	0.0319	0.0354	0	
										-
2008	183	1.5260	126.9629	0.83	10.7114	0.33332	0.1328	0.2188	0	
										-
2009	183	1.3113	176.166	0.9	10.2514	0.36814	0.1558	0.0131	0	
2010	183	0.9957	500.8883	1.17	9.50024	0.1845	0	-0.056	0	
										-
2011	183	0.7612	947.7561	2.84	8.59397	0.11646	0	0.9136	0	
2012	183	1.8583	510.3543	3.85	9.30255	0.08052	0	0.0302	0	
										-
2008	184	0.5475	165.1603	2.09	10.4006	0.23778	0.0002	0.0522	1	
2009	184	0.4855	144.7797	2.87	10.2878	0.2435	0.0002	0.0332	1	
2010	184	0.4972	236.4632	2.93	9.80068	0.20916	0.0002	0.003	1	
2011	184	0.7929	172.3257	1.84	10.3491	0.18701	0.0004	0.0485	1	
2012	184	0.9122	135.138	2.1	10.2124	0.12852	0.0005	0.0763	1	
2008	185	0.9606	64.82475	4.96	11.4493	0.03226	0.0021	0.0606	1	
2009	185	0.8096	61.12823	5.01	11.4407	0.04235	0.0012	0.0736	1	
2010	185	0.9449	90.80423	3.42	11.6351	0.0664	0.0009	0.1059	1	
2011	185	1.0832	66.51873	4.18	11.761	0.03744	0.0012	0.1754	1	
2012	185	1.1196	100.8266	4.14	11.6518	0.05133	0.0014	0.165	1	
										-
2008	186	0.6326	104.8603	1.11	12.9622	0.20737	0	0.0058	0	
										-
2009	186	0.3459	210.8519	1.43	12.081	0.1289	0	0.0332	0	
2010	186	0.4825	311.3542	1.81	12.3913	0.28248	0	0.0221	0	
2011	186	0.5451	706.7	1.51	11.6092	0.28188	0	0.0572	0	

2012	186	0.3962	318.7296	5.38	12.4562	0.1853	0	0.0842	1
2008	187	0.5776	91.75531	1.49	11.9738	0.22788	0.1202	0.0767	1
2009	187	0.5397	98.48089	1.76	11.9715	0.1415	0.028	0.1044	1
2010	187	0.8939	90.80008	1.4	12.1834	0.15824	0.0006	0.071	1
2011	187	0.8079	72.29465	1.52	12.424	0.14249	0.0008	0.0966	1
2012	187	0.9605	79.31343	1.94	12.485	0.14737	0.0001	0.1109	1
2008	188	0.4246	110.9553	1.58	10.8789	0.14765	0	0.0575	0
2009	188	0.3369	63.47041	2.06	10.7891	0.04171	0	0.072	0
2010	188	0.7623	163.3898	3.43	10.6906	0.0239	0	0.0478	0
2011	188	0.5649	72.71237	1.74	10.8095	0	0	0.085	0
2012	188	1.1714	51.08177	2.09	10.9344	0	0	0.1128	0
2008	189	0.8479	153.5346	1.17	12.9329	0.50057	0.0042	0.0716	1
2009	189	0.7671	140.3483	1.5	12.9139	0.44416	0.0345	0.1094	1
2010	189	0.7623	136.475	1.49	13.0149	0.41188	0.0037	0.0759	1
2011	189	0.7071	118.87	1.35	13.355	0.44061	0.003	0.089	1
2012	189	0.7681	102.0338	1.42	13.5671	0.45876	0.0017	0.0806	1
2008	190	0.6235	168.8186	1.71	12.0892	0.26506	0.002	0.0956	1
2009	190	0.4718	87.42283	2.58	12.222	0.12258	0.0022	0.123	1
2010	190	0.7022	117.5823	2.65	12.02	0.12866	0.0019	0.1353	1
2011	190	0.6408	122.2868	3.86	12.0465	0.08647	0.0019	0.1291	1
2012	190	0.6952	139.4106	4.73	12.1096	0.04574	0	0.1251	1
2008	191	0.5610	68.47222	1.6	11.267	0.08581	0	0.0521	1
2009	191	0.5870	59.03606	2.47	11.3216	0.04982	0	0.0658	1
2010	191	0.7256	63.2866	2.34	11.1184	0.01898	0	0.0466	1
2011	191	0.6770	67.27747	2.54	11.0787	0.01179	0	0.0431	1
2012	191	0.6472	70.61976	2.88	11.0291	0.00778	0	0.0327	1
2008	192	0.4088	72.98239	1.49	11.993	0.27494	0.0027	0.0094	0
2009	192	0.1063	65.25545	1.46	12.036	0.26392	0.0028	0.0097	0
2010	192	0.7321	65.28223	1.49	12.1368	0.22207	0.0026	0.0585	0
2011	192	0.3991	71.86949	1.54	12.0535	0.22192	0.0029	0.072	0
2012	192	0.3245	82.38763	1.24	12.0304	0.31253	0.0024	0.0524	0
2008	193	0.4344	98.24318	1.48	12.2884	0.19641	0	0.0575	1
2009	193	0.4006	119.112	1.99	12.3095	0.1092	0	0.1496	1
2010	193	1.9336	103.2242	1.77	12.4978	0.1393	0	0.1159	1
2011	193	1.4020	98.26898	1.73	12.5575	0.15588	0	0.1165	1
2012	193	1.4227	107.3963	1.76	12.5381	0.12785	0	0.1465	1
2008	194	0.5307	169.7573	0.82	12.071	0.15483	0.0068	#####	1
2009	194	0.3371	80.42076	0.63	12.2675	0.14672	0.008	0.0023	0
2010	194	0.5439	105.5413	0.48	12.198	0.17841	0.0072	0.0024	0
2011	194	0.9762	90.46467	0.6	12.4845	0.20006	0.003	0.0059	1
2012	194	0.9182	54.37758	1.31	12.1792	0.12813	0.0002	#####	1

2008	195	0.9500	89.20871	1.46	11.1337	0.20512	0	0.0082	0
2009	195	0.7884	84.46539	1.38	11.283	0.18944	0	0.0522	1
2010	195	0.9420	98.923	1.37	11.5071	0.2264	0	0.0489	0
2011	195	1.1690	100.6825	1.39	11.7665	0.26552	0	0.0435	1
2012	195	0.9526	101.4196	1.41	11.7352	0.26058	0	0.0578	1
2008	196	0.3706	249.5312	2.82	11.5636	0.24903	0	0.0411	1
2009	196	0.3527	198.3395	5.17	11.5835	0.14818	0.0026	0.0764	1
2010	196	0.3776	249.3465	4.04	11.4675	0.16615	0.0001	0.0751	1
2011	196	0.3949	232.9566	2.03	11.8072	0.24473	0.0554	0.0757	1
2012	196	0.6152	126.9968	3.29	12.4146	0.15836	0.0487	0.1352	1
2008	197	0.7573	170.6959	1.98	13.6826	0.19308	0.0006	0.0945	1
2009	197	0.6503	169.1283	2.15	13.6827	0.12054	0.0086	0.0642	1
2010	197	0.6418	154.2524	2.72	13.8082	0.09594	0.0068	0.1142	1
2011	197	1.2102	162.894	2.61	13.898	0.14681	0.0095	0.1088	1
2012	197	0.9210	157.2437	3.14	13.9664	0.13417	0.0001	0.11	1
2008	198	0.8063	46.43413	1.33	13.7018	0.18097	0.0244	0.0686	1
2009	198	0.5324	80.98359	1.46	13.6735	0.1838	0.0708	0.1058	1
2010	198	0.7920	71.76565	1.51	13.5876	0.19914	0.0825	0.0403	1
2011	198	1.6234	51.96011	1.36	13.4708	0.20708	0.0673	0.0738	0
2012	198	1.3412	55.36557	1.29	13.6252	0.20473	0.0012	0.0259	0
2008	199	0.4135	120.8615	1.41	12.6402	0.14968	0.0208	0.095	1
2009	199	0.3543	132.1386	1.5	12.8187	0.13258	0.0202	0.1242	1
2010	199	0.6762	117.4358	2.09	12.925	0.09115	0.0179	0.149	1
2011	199	0.8991	100.5668	2.61	12.9759	0.0807	0.0158	0.1676	1
2012	199	0.9038	98.15666	3.55	13.0621	0.0168	0.0145	0.1641	1
2008	200	0.8746	76.47702	0.13	11.1761	0.6992	0.0163	0.0011	0
2009	200	0.9692	97.2046	0.1	10.9013	0.75681	0.0168	0.0119	0
2010	200	2.1445	278.6237	0.62	11.9954	0.63364	0.0156	0.2264	0
2011	200	2.2127	345.8019	1.68	11.1007	0.16057	0.0347	0.1418	0
2012	200	1.3250	131.2255	1.52	11.2695	0.1457	0.0278	0.0351	0
2008	201	0.9444	84.3194	1.28	11.222	0.48812	0	0.0459	0
2009	201	0.6539	93.33737	1.36	11.0283	0.45212	0	0.0261	0
2010	201	0.5514	105.5058	1.04	11.0946	0.4606	0	0.0216	0
2011	201	0.5021	83.48044	1.09	11.0936	0.50591	0	0.0403	0
2012	201	0.4247	92.44669	1.4	11.2257	0.47697	0.028	0.089	0
2008	202	0.7975	185.363	1.09	10.6577	0.40092	0.0027	0.0282	0
2009	202	0.3944	163.364	1.33	10.8733	0.32343	0.0026	0.0935	0
2010	202	0.4225	140.4002	2	11.0235	0.27456	0.0026	0.0946	1

2011	202	0.3732	138.1034	1.8	11.1053	0.2834	0.0025	0.0633	1
2012	202	0.5494	146.5377	2.04	11.0357	0.26162	0.0025	0.044	0
2008	203	0.2207	148.6555	1.22	12.1579	0.37033	0.0091	0.0381	0
2009	203	0.1519	169.4885	1.25	11.9606	0.34575	0.0085	0.0482	1
2010	203	0.2595	110.1674	1.25	12.2854	0.31311	0.0085	0.0522	0
2011	203	0.3504	105.3361	1.17	12.3268	0.32406	0.0085	0.0538	0
2012	203	0.2901	99.09157	1.26	12.3429	0.31168	0.0079	0.0581	0
2008	204	0.1448	111.0256	0.99	12.0049	0.32684	0.0035	0.0413	0
2009	204	0.3558	116.0309	1.13	11.788	0.28055	0.0035	0.0637	1
2010	204	0.4004	118.889	1.1	11.891	0.28501	0.0035	0.0576	1
2011	204	0.3735	121.7599	1.17	11.9271	0.28457	0.0033	0.0595	0
2012	204	0.3376	121.0765	1.42	11.8463	0.23579	0.0033	0.0949	0
2008	205	1.0729	72.73525	0.91	11.6183	0.26583	0	0.035	0
2009	205	0.7341	63.43296	1.11	11.3724	0.25636	0	0.0955	0
2010	205	1.1995	49.46071	1.06	11.5168	0.29826	0	0.0516	0
2011	205	0.9182	55.32581	1.54	11.5699	0.20814	0	0.0367	0
								-	
2012	205	0.5851	53.61662	1.45	11.4337	0.18678	0	0.0095	0
2008	206	1.0914	83.16248	4.64	11.074	0.13306	0	0.1792	1
2009	206	0.9378	151.842	7.68	11.0309	0.11488	0	0.1124	1
2010	206	0.8108	139.7701	4.71	11.1231	0.10104	0	0.1242	1
2011	206	0.7408	156.1132	3.78	11.2262	0.08358	0	0.1055	1
2012	206	1.0189	153.9685	3.89	11.3158	0.05724	0	0.1118	1
2008	207	0.7987	61.02197	1.35	13.3948	0.1139	0.0026	0.0954	1
2009	207	0.6146	64.50447	1.56	13.1416	0.06263	0	0.071	1
2010	207	0.8327	67.61117	1.4	13.4514	0.10101	0.0004	0.1038	1
2011	207	1.2106	58.155	1.54	13.5974	0.06552	0	0.1344	1
2012	207	1.0587	63.4444	1.39	13.6888	0.06887	0.0004	0.133	1
2008	208	2.6476	97.67441	2.1	17.3432	0.13695	0.0023	0.1521	1
2009	208	1.7980	113.9478	1.71	17.2499	0.16083	0.0037	0.0949	1
2010	208	2.5524	91.50365	1.65	17.3073	0.20532	0.0029	0.0592	1
2011	208	2.2673	90.72594	1.71	17.5498	0.16722	0.002	0.1335	1
2012	208	2.2881	99.29667	1.53	17.6784	0.20712	0.0183	0.1266	1
2008	209	0.4105	91.70013	1.17	11.7334	0.24472	0	0.1104	1
2009	209	0.3621	79.53863	1.29	11.8739	0.25603	0.0029	0.1051	1
2010	209	0.3810	100.9135	1.59	11.7134	0.16175	0.003	0.0964	1
2011	209	0.4159	87.57817	1.76	11.8382	0.10825	0.0029	0.1032	1
2012	209	0.4185	99.36501	2.29	11.5512	0.06871	0.003	0.0576	1
2008	210	0.9242	51.75729	1.11	14.1734	0.43804	0.0822	0.0381	0
2009	210	0.7508	60.628	1.06	13.96	0.43838	0.1094	0.0172	0
2010	210	0.7808	72.68489	0.91	13.8725	0.47077	0.0872	0.0297	0
2011	210	0.6957	71.54543	0.98	13.8961	0.47546	0.0828	0.0322	0
2012	210	0.4021	52.3162	0.98	13.8262	0.3481	0.0641	0.0136	0

2008	211	0.5765	83.1843	1.84	13.2438	0.18633	0	0.0204	1
2009	211	0.4120	91.31741	2.4	12.9209	0.07799	0	0.0669	1
2010	211	0.3863	70.46995	2.24	13.0993	0.09096	0	0.0721	1
2011	211	0.4436	92.26167	2.07	13.1993	0.10518	0	0.078	1
2012	211	0.5468	71.89284	2.41	13.3554	0.1179	0	0.0765	1
2008	212	0.2632	98.20612	1.34	12.1164	0.34566	0.0014	0.0832	1
2009	212	0.2130	98.47644	1.89	11.9771	0.13901	0.0011	0.1728	1
2010	212	1.4896	113.4016	1.92	12.1241	0.15361	0.0007	0.1281	1
2011	212	1.1561	102.8553	2.15	12.2663	0.1213	0.0006	0.1051	1
2012	212	0.9887	109.338	2.11	12.2864	0.13209	0.0016	0.1476	1
2008	213	0.6125	200.9394	4.79	11.8375	0.11282	0	0.1075	1
2009	213	0.5228	247.8843	3.05	11.6875	0.16689	0	0.0901	1
2010	213	0.5878	222.8828	4.12	11.77	0.1021	0	0.0928	1
2011	213	0.6675	199.3364	3.8	11.7557	0.1051	0	0.0628	1
2012	213	0.5782	232.837	3.68	11.7186	0.10101	0	0.0699	1
2008	214	0.4813	117.6595	0.79	11.0948	0.32835	0.1912	-0.117	0
2009	214	0.3353	101.2022	0.69	10.87	0.29329	0.2063	0.0333	0
2010	214	0.3467	114.3457	0.75	10.9599	0.31081	0.1922	0.0081	0
2011	214	0.3873	102.7258	0.72	10.9112	0.30011	0.1798	0.0426	0
2012	214	0.5665	124.9769	0.89	11.0146	0.24884	0.1314	0.0324	0
2008	215	0.8521	69.29684	0.83	11.425	0.39754	0.1589	0.1584	0
2009	215	0.9149	72.21442	0.76	11.3241	0.37715	0.1765	0.0785	0
2010	215	2.0680	62.22533	0.46	11.1501	0.33607	0.0802	0.0836	0
2011	215	1.9248	67.75384	0.73	11.1611	0.31525	0.0874	0.0763	0
2012	215	3.7786	75.13739	0.67	10.9042	0.34449	0.0966	-0.067	0