DEVELOPMENT AND EVALUATION OF AN ENGAGING WEB-BASED CONTENT SEQUENCING SYSTEM FOR LEARNING BASIC PROGRAMMING

NOOR ‘AQILAH BINTI HALIM

MASTER OF SCIENCE
UNIVERSITI UTARA MALAYSIA
2014
Permission to Use

In presenting this thesis in fulfillment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely available for inspection. I further agree that permission for the copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences
UUM College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Abstrak

Kata Kunci: Sistem kandungan berurutan, Pembelajaran berasaskan web, Pembelajaran adaptif, Perbezaan secara individu, Teori Aliran, Penglibatan, Tiada penglibatan, Kemahiran menyeimbangkan cabaran.
Abstract

Java basic programming is one of programming languages that is offered to students as a compulsory course for Information Technology or Computer Science programs. This subject requires students to learn skills and techniques of programming rather than theoretical concepts. Usually, students have problems to capture and understand the content of the course which resulted in low performance or withdrawal from the program and even the education system. In general, web-based learning can be used as a tool to improve learning including programming courses. A specific instance of web-based learning; called content sequencing systems have a high potential to provide adaptive learning for programming languages. Adaptive content sequencing systems analyze individual difference of students and sequence the learning contents based on the students’ needs. By addressing students’ individual differences, it helps students to be actively engaged in the learning process. An engagement is a key element in learning. In this research, the level of students’ engagement is measured using "flow theory". This theory suggested three cognitive conditions when one is doing a particular activity, namely flow (engaged), boredom, and anxiety. Engagement occurs when an individual has an equal level of skill with the given level of challenge. Anxiety and boredom occur when there is unequal level of challenge and skill. The fundamental concepts of the theory are represented in a user interface design by imposing a component known as "flow buttons". The used of the buttons is described as Skill-Challenge Balancing (SCB) technique and it is adapted in a web-based learning system called "LearnJava". It incorporates SCB where its main components are a user interface design and a sequencing engine. Based on this technique, the students’ level of knowledge will be evaluated and analyzed to identify their current level of skill. The technique will sequence the learning contents based on the students’ current level of skill to keep them engage in the web-based learning. An experimental study was conducted to evaluate how effective SCB in helping students to engage in web-based learning. The results suggested that the SCB technique improved students’ engagement in web-based learning.

Keywords : Content sequencing system, Web-based learning, Adaptive learning, Individual difference, Flow theory, Engagement, Disengagement, Skill-challenge balancing.
Acknowledgement

‘By the name of Allah s.w.t., the Most Gracious and Most Merciful’

Alhamdulillah and thanks to Allah s.w.t., the Most Gracious and Most Compassionate which has given me the commitment and strength to start and complete this study. With the help and permission of Allah s.w.t., I succeeded in completing this project.

I would like to express my endless appreciation and gratitude to my supervisor, Dr Norliza Katuk for her invaluable input and guidance, patient, encouragement, advices and flourish on knowledge during completing this study. Indeed, without her assistance and numerous beneficial comments and advices, this study would have never been successful.

Special thanks to all lecturers at School of Computing, Universiti Utara Malaysia for their time and commitments given to me to finish this project and to the others who gave encouragement and support me to finish this study.

Throughout the entire study process, thanks to my strongest source of motivation and inspiration due to their underlying love, support, encouragement, blessing and pray from my both beloved parents Haji Halim bin Awang and Hajjah Faridah binti Haji Omar. In addition, thanks to my beloved brother and sisters, Muhammad Zakwan, Noor Aznin, Wan Siti Mannam and Nur Iman Fayyadhah respectively for their understanding and patience.

Special gratitude goes to my colleagues and friends for their encouragement, advice and guidance in helping me with this study. Without their help and support, this project would not finish in time. Last but not least, thanks to all my friend who have contributed to the success of this study, directly or indirectly.
Table of Contents

Permission of Use ... ii
Abstrak ... iii
Abstract ... iv
Acknowledgement .. v
Table of Contents .. vi
List of Tables .. ix
List of Figures ... x
List of Appendices .. xi
List of Abbreviations .. xii

CHAPTER ONE : INTRODUCTION .. 1

1.1 Overview of Chapter 1 ... 1
1.2 Introduction of the Research 1
1.3 Problem Statement ... 3
1.4 Research Questions .. 6
1.5 Research Objectives ... 6
1.6 Scopes of the Research ... 6
1.7 Significance of the Research 7
1.8 The Research Organization 7
1.9 Summary of Chapter 1 .. 8

CHAPTER TWO : LITERATURE REVIEW 9

2.1 Overview of Chapter 2 ... 9
2.2 Java Basic Programming 9
2.3 Web-based Learning (WBL) 12
2.4 Adaptive Learning ... 15
2.5 Web-based Content Sequencing (WBCS) Method in Learning Materials 18
2.6 Student Engagement with Flow Theory Concept 22
2.7 Skill-Challenge Balancing (SCB) Technique 24
2.8 Previous Research on Techniques to Achieve the Maximum Level of Student Engagement in Learning ... 25
2.9 Summary of Chapter 2 ... 27

CHAPTER THREE : METHODOLOGY ... 28
3.1 Overview of Chapter 3 ... 28
3.2 An Overview to LearnJava: An Adaptive Web-Based Learning (WBL) System .. 28
 3.2.1. Flow Theory to Achieve Students’ Engagement in WBCS 29
 3.2.2. Implementation of SCB in LearnJava .. 32
3.3 Research Framework ... 33
 3.3.1. Phase I : Literature Review ... 34
 3.3.2. Phase II : System Analysis and Design ... 35
 3.3.2.1. Requirements Gathering ... 35
 3.3.2.2. System Analysis and Development .. 56
 3.3.2.2.1. The Architecture and Components of LearnJava ... 57
 3.3.2.2.2. LearnJava: User and WBCS Interactions 62
 3.3.2.2.3. The Implantation of SCB in LearnJava 63
 3.3.2.2.4. Transforming the Design into Rules 66
 3.3.2.2.5. LearnJava Development and Deployment 67
 3.3.2.2.6. LearnJava Programming Code 69
 3.3.2.3. Usability Test .. 70
 3.3.2.3.1. Methods ... 70
 3.3.2.3.2. Participants .. 70
 3.3.2.3.3. Instruments .. 71
 3.3.2.3.4. Procedure ... 71
 3.3.2.3.5. Result ... 72
 3.3.3. Phase III : Evaluation .. 72
 3.3.3.1. Evaluation of Student Engagement 72
 3.3.3.1.1. The Experiment ... 75
 3.3.3.2. Validation .. 80
3.4 Summary of Chapter 3 ... 81
List of Tables

Table 3.1 List of Functional Requirements for LearnJava (Sign Up) 36
Table 3.2 List of Functional Requirements for LearnJava (Login) 37
Table 3.3 List of Functional Requirements for LearnJava (Forgot Password) 37
Table 3.4 List of Functional Requirements for LearnJava (Test) 38
Table 3.5 List of Functional Requirements for LearnJava (Notes) 39
Table 3.6 List of Functional Requirements for LearnJava (Result) 39
Table 3.7 List of Functional Requirements for LearnJava (Participants) 39
Table 3.8 List of Functional Requirements for LearnJava (Change Password) ... 40
Table 3.9 List of Functional Requirements for LearnJava (Logout) 40
Table 3.10 List of Non-Functional Requirements for LearnJava 41
Table 3.11 Use Case Description of LearnJava for Sign Up 43
Table 3.12 Use Case Description of LearnJava for Login 44
Table 3.13 Use Case Description of LearnJava for Forgot Password 45
Table 3.14 Use Case Description of LearnJava for Test 46
Table 3.15 Use Case Description of LearnJava for Notes 48
Table 3.16 Use Case Description of LearnJava for Result 49
Table 3.17 Use Case Description of LearnJava for Participants 50
Table 3.18 Use Case Description of LearnJava for Change Password 51
Table 3.19 Use Case Description of LearnJava for Logout 52
Table 3.20 Tool Used ... 56
Table 3.21 Progressive Learning Experience Information 77
Table 3.22 Learning Experience Questionnaire Information 78
Table 4.1 Student Demographic Information .. 83
Table 4.2 The means and mean ranks for SCB-non-SCB 86
Table 4.3 The means for SCB - non-SCB (Progressive Learning Experience by stages) ... 87
Table 4.4 The means and mean ranks for the learning experience in the three stages .. 88
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The organization of the research</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Changes of mental states based on flow theory concept</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>The overall research activities</td>
<td>33</td>
</tr>
<tr>
<td>3.3</td>
<td>The keywords of this study</td>
<td>34</td>
</tr>
<tr>
<td>3.4</td>
<td>Requirements for LearnJava system</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Activity Diagram for Login, Sign Up, and Forgot Password</td>
<td>53</td>
</tr>
<tr>
<td>3.6</td>
<td>Activity Diagram for Change Password, Participants, and Logout</td>
<td>54</td>
</tr>
<tr>
<td>3.7</td>
<td>Activity Diagram for Test, Notes, and Result</td>
<td>55</td>
</tr>
<tr>
<td>3.8</td>
<td>The “anxiety” button and “boredom” button</td>
<td>58</td>
</tr>
<tr>
<td>3.9</td>
<td>The process of SCB technique</td>
<td>59</td>
</tr>
<tr>
<td>3.10</td>
<td>The flow of process in LearnJava with SCB</td>
<td>61</td>
</tr>
<tr>
<td>3.11</td>
<td>The architecture of LearnJava</td>
<td>62</td>
</tr>
<tr>
<td>3.12</td>
<td>The learning process using LearnJava</td>
<td>65</td>
</tr>
<tr>
<td>3.13</td>
<td>The rules and algorithm for LearnJava</td>
<td>66</td>
</tr>
<tr>
<td>3.14</td>
<td>Example of screenshot for “anxiety” button</td>
<td>68</td>
</tr>
<tr>
<td>3.15</td>
<td>Example of screenshot for “boredom” button</td>
<td>68</td>
</tr>
<tr>
<td>3.16</td>
<td>Examples of code snippets in LearnJava system</td>
<td>69</td>
</tr>
<tr>
<td>3.17</td>
<td>The procedure for conducting the experiment</td>
<td>74</td>
</tr>
<tr>
<td>3.18</td>
<td>The interface for both LearnJava systems</td>
<td>76</td>
</tr>
<tr>
<td>4.1</td>
<td>Progressive Learning Experience ratings for three stages</td>
<td>89</td>
</tr>
<tr>
<td>4.2</td>
<td>Types of SCB button usage</td>
<td>90</td>
</tr>
<tr>
<td>4.3</td>
<td>The notes usage during non-SCB learning process</td>
<td>91</td>
</tr>
</tbody>
</table>
List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Materials for the Usability Evaluation</td>
<td>103</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Materials for Experiment</td>
<td>107</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Learning Contents in LearnJava</td>
<td>116</td>
</tr>
<tr>
<td>Appendix D</td>
<td>LearnJava Algorithm and Rules</td>
<td>136</td>
</tr>
<tr>
<td>Appendix E</td>
<td>LearnJava Screenshots</td>
<td>140</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Raw Data</td>
<td>145</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT (Hons)</td>
<td>Bachelor of Science with Honors (Information Technology)</td>
</tr>
<tr>
<td>CTT</td>
<td>Classical Test Theory</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>KS</td>
<td>Kolmogorov Smirnov</td>
</tr>
<tr>
<td>IRT</td>
<td>Item Response Theory</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>Msc (IT)</td>
<td>Master of Science (Information Technology)</td>
</tr>
<tr>
<td>PAT</td>
<td>Programming Adaptive Testing</td>
</tr>
<tr>
<td>PHP</td>
<td>Hypertext Preprocessor</td>
</tr>
<tr>
<td>SCB</td>
<td>Skill Challenge Balancing</td>
</tr>
<tr>
<td>SOC</td>
<td>School of Computing</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Science</td>
</tr>
<tr>
<td>TBL</td>
<td>Team Based Learning</td>
</tr>
<tr>
<td>UUM</td>
<td>Universiti Utara Malaysia</td>
</tr>
<tr>
<td>WBCS</td>
<td>Web-based Content Sequencing</td>
</tr>
<tr>
<td>WBL</td>
<td>Web-based Learning</td>
</tr>
</tbody>
</table>
CHAPTER ONE

INTRODUCTION

1.1 Overview of Chapter 1

Chapter 1 describes the background of the study which includes problem statement, research questions, research objectives, scope of the research, the significance of the research and a summary of each chapter.

1.2 Introduction of the Research

Research on adaptive web-based learning (WBL) has been conducted since more than a decade ago. Adaptive WBL is a learning technology that enables students to learn independently adapting to their needs. This technology aims to provide an independent learning opportunity for students through modification of activities, methods, tools, and the learning environment. It helps them to involve in a learning process that is more effective than traditional e-learning systems.

In general, students are individually different in terms of their prior knowledge, motivation, personality, and preferences (Roberts, 2010). For that reason, students need a WBL system that acts differently and adapt to their individual differences. This is because WBL can provide students the opportunity to learn in a variety of techniques and styles. This can ensure that learning content can be delivered more effectively to each student. Adaptive learning is a learning technique that uses computers as an important medium in the learning process. It considers and manipulates students learning
The contents of the thesis is for internal user only
REFERENCES

transformative use of small groups in college teaching. Stylus Publishing: Sterling, VA.