

STUDENT SUCCESS MODEL IN PROGRAMMING COURSE:

A CASE STUDY IN UUM

SALAM ABDULABBAS GHANIM

MASTER OF DEGREE

UNIVERSITI UTARA MALAYSIA

2014

STUDENT SUCCESS MODEL IN PROGRAMMING COURSE:

A CASE STUDY IN UUM

A thesis submitted to Dean of Awang Had Salleh Graduate School in

Partial Fulfillment of the Requirements for the Degree

Master of Science of Information Technology

University Utara Malaysia

By

Salam Abdulabbas Ghanim

i

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the Universiti Library may make it

freely available for inspection. I further agree that permission for the copying of this

thesis in any manner, in whole or in part, for scholarly purpose may be granted by

my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate

School of Arts and Sciences. It is understood that any copying or publication or use

of this thesis or parts thereof for financial gain shall not be allowed without my

written permission. It is also understood that due recognition shall be given to me

and to Universiti Utara Malaysia for any scholarly use which may be made of any

material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUMCollege of Arts and Sciences

Universiti Utara Malaysia

ii

Abstrak

Kesukaran dan kerumitan dalam pengaturcaraan komputer telah dianggap sebagai

punca kadar kegagalan dan keciciran yang tinggi. Pengaturcaraan telah dianggap

oleh pelajar novis dan pertengahan, malah pelajar cemerlang juga sebagai satu

kursus yang memerlukan kaedah pembelajaran yang pelbagai dengan menghasilkan

dapatan yang pelbagai. Faktor-faktor kejayaan kursus pengaturcaraan di institusi

pengajian tinggi telah dikaji. Rekod di Universiti Utara Malaysia (UUM)

menunjukkan 38% dari pelajar semester satu ijazah sarjanamuda yang mengambil

kursus pengaturcaraan dalam tahun 2013 telah gagal. Ini merupakan motivasi bagi

kajian ini, yang meletakkan matlamat untuk mengenalpasti faktor praktikal yang

mempengaruhi kejayaan dalam kursus pengaturcaraan, dan untuk menokok dapatan

teoritikal di kalangan dapatan-dapatan sediaada oleh kajian lain. Kaedah kuantitatif

telah digunakan, dengan mendapatkan data dari 282 responden yang telah

disampelkan di kalangan pelajar sarjanamuda dan sarjana Teknologi Maklumat (IT)

dan Teknologi Komunikasi dan Maklumat (ICT). Setelah data ditapis dan

dibersihkan, dengan empat rekod yang mengandungi data terpencil dihapuskan dari

senarai, ujian-T bebas, korelasi, dan regresi dijalankan bagi menguji hipotesis yang

telah dibentuk. Dapatan dari Korelasi Pearson menunjukkan alatan pengajaran,

konsep OOP, motivasi, penilaian kursus, dan keupayaan matematika mempunyai

hubungan positif dengan pencapaian akademik. Manakala, ketakutan mempunyai

hubungan yang negatif. Analisis regresi seterusnya menunjukkan hubungan adalah

kuat, kecuali hubungan negatif iaitu ketakutan dengan pencapaian akademik. Ujian-

T bebas pula membuktikan perbezaan antara kumpulan yang telah mempunyai

pengalaman dan yang belum mempunyai pengalaman tidak wujud.

Keywords: Pengaturcaraan berasaskan objek, Java, kesukaran pengaturcaraan,

pembelajaran, faktor

iii

Abstract

The complexity and difficulty ascribed to computer programming has been asserted

to be the causes of its high rate of failure record and attrition. It is opined that

programming either to novice, middle learner, and the self-branded geeks is always a

course to be apprehensive of different studies with varying findings. Studies on

factors leading to the success of programming course in higher institution have been

carried out. The record at Universiti Utara Malaysia (UUM) shows that 38% of

semester one undergraduate students failed the programming course in 2013. This

really motivates this study, which aims at investigating the practical factors affecting

the success of programming courses, and to position its’ theoretically findings to

complement the existing findings. Data were gathered using a quantitative approach,

in which a set of questionnaire were distributed to 282 sampled respondents, who are

undergraduate and postgraduate students of Information Technology (IT) and

Information and Communication Technology (ICT). Having screened and cleaned

the data, which led to the deletion of four outlier records, independent T-test,

correlation, and regression were run to test the hypotheses. The results of Pearson

correlation test reveal that teaching tools, OOP concepts, motivation, course

evaluation, and mathematical aptitude are positively related to academic success in

programming course, while fear is found to be negatively related. In addition, the

regression analysis explains that all the elicited independent variables except fear are

strongly related. Besides, the independent T-test also discovers no deference between

groups with and without previous programming experience.

Keywords: Object Oriented Programming, Java, programming difficulties, learning,

Factors

iv

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing

this thesis.

Special appreciation goes to my supervisor, Mdm Alawiyah Abd Wahab, for her

supervision and constant support. Her invaluable help of constructive comments and

suggestions throughout the success of this research. This thesis would not have been

possible without her help, support and her patience.

I sincerely thank to my evaluators Dr. Mazni Omar and Ms. Rohaida Romli, for

graciously reviewing this work and giving valuable suggestion and comments on my

work.

My deepest gratitude goes Prof. Dr. Huda (Dean, College of Arts and Sciences), Dr.

Norliza , Dr. Hizbullah and all administrative staff of school of information

technology specially Madam latifah.

I would also like to say a big thanks all UUM lecturers and staff members at the

School of Computing who were kind enough to give me their precious time and

assistance, without which I would not have been able to complete this Master’s

Thesis.

I am indebted and thankful to the Chancellor of University Utara Malaysia who

referred me to valuable e-resources at the Sultanah Bahiyah Library.

Sincere thanks to all my friends especially Nasser Jabir, was always willing to help

and give his best suggestions. I have been a lonely without him, and others for their

kindness and moral support during my study. Thanks for the friendship and

memories.

Last but not the least, I would like to thank my family: my Mother. She was always

there praying me. Also to my elder brothers, and elder sisters. They were always

supporting me and encouraging me with their best wishes. Special thank to my

cousin Mohammed Tuama, Be on the go to do any requirements in my country

when i ask.

Finally, I would like to thank my wife for her personal support and great patience at

all times. She was always there stood by me through the good times and bad.

v

TABLE OF CONTENTS

Permission to Use ... i

Abstrak ... ii

Abstract ... iii

ACKNOWLEDGEMENT ... IV

TABLE OF CONTENTS .. V

LIST OF FIGURES ... IX

LIST OF TABLES .. X

CHAPTER ONE INTRODUCTION .. 1

1.0 Background of the Study .. 1

1.1 Problem Statement ... 6

1.2 Research Questions .. 8

1.3 Research Objectives ... 8

1.4 Significance of the Study ... 9

1.5 Scope of the Study ... 9

1.6 Organization of the Research ... 10

CHAPTER TWO LITERATURE REVIEW ... 12

2.0 Introduction .. 12

2.1 Object Oriented Programming ... 12

2.2 Java Programming .. 15

2.3 Related Works .. 18

2.4 Student Success Model in programming Course and Hypothesis 21

2.4.1 Teaching Tools ... 23

2.4.2 Experience with Other Programming Languages 24

2.4.3 Fear .. 25

2.4.4 OOP Concepts .. 26

I. Object.. 26

II. Class .. 27

vi

III. Attributes and Methods .. 27

IV. Constructors and Destructors .. 27

V. Abstraction and Associations .. 28

VI.Polymorphism and Dynamic Binding 28

2.4.5 Motivation .. 28

2.4.6 Course Evaluation .. 29

2.4.7 Student Aptitude in Mathematic .. 30

2.5 Summary .. 32

CHAPTER THREE RESEARCH METHODOLOGY .. 33

3.0 Introduction .. 33

3.1 Hypothesis of the Study ... 34

3.2 Research Method .. 34

3.3 Data Collection... 36

3.3.1 Population and Study Sample .. 37

3.3.2 Research Instrument ... 38

3.3.3 Pilot Test .. 39

3.4 Validity and Reliability .. 39

3.4.1 Face Validity .. 40

3.5 Pilot Testing Result .. 41

3.5.1 Reliability Testing Results ... 42

3.5.2 Population Distribution of the Pilot Study ... 42

3.6 Data Analysis ... 44

3.7 Data Coding: .. 45

3.7.1 Data Coding for Academic Success in Computer Programming 45

3.7.2 Data Coding for Motivation ... 46

3.7.3 Data Coding for Fear ... 46

3.7.4 Data Coding for OOP Concepts ... 47

3.7.5 Data Coding for Teaching Tools .. 47

3.7.6 Data Coding for Course Evaluation ... 48

3.7.7 Data Coding for Aptitude in Mathematics ... 48

3.8 Summary .. 49

vii

CHAPTER FOUR DATA ANALYSIS AND RESEARCH FINDING 50

4.0 Introduction .. 50

4.1 Respondent Profile ... 50

4.2 Reliability Test ... 52

4.3 Data Screening ... 53

4.3.1 Missing Data .. 54

4.3.2 Detection of Outliers .. 54

4.3.3 Normality of the Data .. 54

4.3.4 Homogeneity of the Respondents .. 55

4.4 Testing the Research Hypotheses .. 55

4.5 Summary .. 64

CHAPTER FIVE CONCLUSION AND RECOMINDATION 65

5.0 Introduction .. 65

5.1 Discussion .. 67

5.1.1 Hypothesis 1 ... 68

5.1.2 Hypothesis 2 ... 68

5.1.3 Hypothesis 3 ... 69

5.1.4 Hypothesis 4 ... 69

5.1.5 Hypothesis 5. .. 70

5.1.6 Hypothesis 6 ... 70

5.1.7 Hypothesis 7 ... 71

5.2 Conclusion ... 72

5.3 Contribution of the Study ... 73

5.4 Limitations of the Study ... 74

5.5 Recommendation for Future Study .. 74

5.6 Summary .. 75

REFERENCES ... 76

APPENDIX 1 ... 92

APPENDIX 2 ... 99

viii

APPENDIX 3 ... 101

APPENDIX 4 ... 103

APPENDIX 5 ... 105

APPENDIX 6 ... 106

ix

LIST OF FIGURES

Figure 2. 1 The didactic triangle (Diederich, 1988). .. 13

Figure 2. 2 Level of learning difficulties on different topics of Java programming. 17

Figure 2. 3 Factors that may affect the academic success in programming course. 22

Figure 3. 1 The strategies that are adopted in this study. ... 33

Figure 3. 2 Procedure of Data Collection .. 36

Figure 5. 1 Student Success Model. ... 66

x

LIST OF TABLES

Table 3.1 Questionnaires sources .. 38

Table 3.2: Reliability Testing Result ... 42

Table 3.3: Gender Distribution of the Pilot Study ... 43

Table 3.4: Course Level Distribution of the Pilot Study ... 43

Table 3.5: Previous Programming Experience of the Pilot Study 44

Table 3.6: Statistical Analysis technique used ... 46

Table 3.7: Academic Success in Computer Programming .. 45

Table 3.8: Motivation... 46

Table 3.9: Fear ... 46

Table 3.10: Java Concepts ... 47

Table 3.11: Teaching Tools ... 47

Table 3.12: Course Evaluation ... 48

Table 3.13: Aptitude in Mathematics... 48

Table 4.1 Gender .. 50

Table 4.2 Course .. 51

Table 4.3 Age ... 51

Table 4.4 Experience ... 52

Table 4.5 Reliability Test ... 53

Table 4.6: Correlation Result for Hypothesis 1 ... 56

Table 4.7: Regression Result for Hypothesis 1 .. 57

Table 4.8: Independent T-test Result for Hypothesis 2 ... 58

Table 4.9: Correlation Result for Hypothesis 3 ... 59

Table 4.10: Regression Result for Hypothesis 3 .. 59

Table 4.11: Correlation Result for Hypothesis 4 ... 60

Table 4.12: Regression Result for Hypothesis 4 .. 60

Table 4.13: Correlation Result for Hypothesis 5 ... 61

Table 4.14: Regression Result for Hypothesis 5 .. 61

Table 4.15: Correlation Result for Hypothesis 6 ... 62

Table 4.16: Regression Result for Hypothesis 6 .. 63

Table 4.17: Correlation Result for Hypothesis 7 ... 63

Table 4.18: Regression Result for Hypothesis 7 .. 64

1

CHAPTER ONE

INTRODUCTION

1.0 Background of the Study

Modern curriculum needs to emphasize the development of programming

skills for citizens of a technological society (Pejcinovic, Holtzman, Chrzanowska, &

Jeske, 2013). Programming is a cognitive activity that requires abstract

representations and logical expressions. The program must translate abstract

representations into correct codes by using a formal language to create, modify,

reuse, or debug a program (Wiedenbeck, 2005). Furthermore, programming is often

viewed as a problem-solving activity rather than a linguistic activity, often ignoring

the fact that programming languages are a case of formal languages. The

interpretation of formal languages is unique for every individual.

Programming skills are an essential part of computer science (CS) and

information technology (IT) courses (Raina Mason, Cooper, & Raadt, 2012). Robins,

Rountree, and Rountree (2003a) argue that programming skills are useful in

programming knowledge and strategies, such as program generation and

comprehension. Programming can also lead to a rewarding career, such as an

analyzer, programmer, or debugger.

Zdancewic and Weirich (2013) state that programming is a conceptual

foundation in the study of computations. Programming is a prerequisite for almost

every other course in CS. Renumol, Jayaprakash, and Janakiram (2009) said that

“programming is the process of writing, testing and debugging of computer

programs using different programming languages.” However, according to

2

Schreiner (2011), a program is the formal description of a method that solves a

particular problem.

Programming languages have two basic levels: a high-level languages, which

are classified into three groups, namely, procedural (C, C++, Visual Basic, and

Java), non-procedural (LISP and PROLOG), and, problem oriented (MATLAB,

MATHEMATIC, and LATEX); a low-level languages, such as machine language

and assembly language (VRajaraman, 1998). Matravers (2011) argues that the low-

level representation of a central processing unit instruction set is known as the

machine language of a computer. Thus, directly writing instructions in binary form is

difficult.

A programming language is the usual way of presenting a paradigm to allow

the programmer to write a program that solves a certain problem (Rinard, Scales, &

Lam, 1993). A programming language is a formal representation of a program. A

program may be written in different programming languages, similar to a human

thought that may be formulated in different human languages (Grogono, 1989).

According to Li, Liu, Mao, and Zhou (2013), the program derivation process begins

with an informal specification of a given problem. Thereafter, the informal

specification is formalized in terms of pre-conditions and post-conditions.

Teaching programming at the university level has been the basis for many

lively discussions among CS teachers (Moderator, Koffman, Kölling, & Reges,

2005;Bailie, 2003;Bruce, 2005). Furthermore, it is not an easy task (Renumol et al.,

2009). Students typically encounter early challenges when learning programming for

the first time. These difficulties arise because programming is mainly taught by

using an intuitive approach that treats programming more as an art than a science.

Novices learn programming in a “trial and error” or “guess and test” manner. Thus,

3

novices obtain little confidence on program development and obtain a “fear” of

practicing programming (Li, Liu, Mao, & Zhou, 2013). An individual requires

procedural knowledge in computer programming to write a program. Renumol

(2009) says that knowledge of programming language semantics and syntax, which

requires comprehension and memorization, is necessary. In addition, he stressed that

program design and problem solving skills , which require extra skills such as

domain knowledge, logic, and abstraction, are also needed to be programmer.

Therefore, programming is a difficult undertaking that requires several computer

skills and knowledge. Studies on programming education argue that the dropout and

failure rates of programming courses are comparatively high (Bergin & Reilly, 2005;

Bennedsen & Caspersen, 2007) and that their overall effectiveness is poor.

Tutors spend a significant amount of class time explaining fundamental

computer language concepts and relevant algorithms to computer programming

students (Carlisle, 2009). However, certain novice students learn their first computer

language without any difficulty, whereas others struggle and require considerable

support and assistance from tutors (Garner, Haden, & Robins, 2005). According to

Robins, Rountree, and Rountree (2003b), these differences between novices can be

attributed to their past knowledge, strategies, and mental models of the programs.

This mean there are factors and skills that effect on students abilities in their

programming learning.

The object-oriented programming (OOP) paradigm has been taught in

different university departments either as an introductory programming course or a

subsequent programming course in the last few years (Sivasakthi & Rajendran,

2011a; Xinogalos, 2006).

4

However, most studies on OOP education show that students often confuse

elements in a programming language such as: object, class, attributes and methods.

Furthermore, students face difficulties in implementing solutions to specific

problems by using other programming language (Holland et al., 1997).

This study was focuses on Java as OOP. According to Bennett, Fisher, and

Lees (2011), no differences exist between OOP and the restructuring of a high-level

world view where the object in OOP has attributes are same the attributes of the

object in the real world (i.e car has name, color, model, etc). Furthermore, Poo and

Ashok (2007) state that OOP set data and operations into units called objects and

allowed objects to be combined into systemic networks to build a program. Objects

and their interactions are the main elements of program design in OOP. Each object

has a state (data) and a behavior (operations on data).Thus, Objects in OOP are not

much different from ordinary physical objects.

OOP is a method of software enhancement wherein the form of the program

depends on objects and on objects interacting with each other to achieve a task

(Sajaniemi & Kuittinen, 2003). Java programming language is very well established

(Madden & Chambers 2002). Consequently, Sivasakthi and Rajendran (2011) state

that OOP, particularly Java, has become taught to undergraduate and postgraduate

IT, ICT, and CSE students.

Factors that influence programming education have been identified over the

years (Wiedenbeck & Labelle, 2004). As well as they add the following: “we still far

from a full understanding of why some students learn to program easily and quickly

while others flounder.” Factors such as cognitive engagement, learning process,

computing tasks (Carbone & Hurst, 2009), spatial ability, mathematical aptitude

(Patil, 2009), knowledge, aspirations, dispositions, perceptions, expectations, skills,

5

values, needs, and goals (Helme & Clarke, 2001) contribute to the propensity of the

student to learn. Student success model has been the finding of this study contained

five factors which are teaching tools, motivation, course evaluation, OOP concepts

and student aptitude in mathematics. Survey made up from 282 post/undergraduate

students in UUM enrolled in IT and ICT departments. The model seeks to help

instructors to improve their approach in teaching programming course, as well as

policy decisions makers by consideration the mentioned factors, where they have

affect the academic success of students in programming course. The model was

based on the students’ perceptions (more details in section 5.1).

6

1.1 Problem Statement

Computer programming is an area that is both complex and difficult

(Rainalee Mason, 2012). According to El-Zakhem and Melki (2013) and Rainalee

Mason (2012), most CS students face major problems in their first programming

course. Furthermore, Dehnadi and Bornat (2006) state that programming is difficult

to learn. Educating novices on programming has been considered a big challenge

since the early 1970s (Floyd & London, 1970;Gries, 1974; McCracken et al., 2001;

Robins et al., 2003b; Spohre 1989;Wenger, 1998).Teaching programming is

considered one of the seven grand challenges in computing education (McGettrick et

al., 2005).

First year students encounter a wide variety of challenges in learning

objected oriented programming, including understand the principles of OOP such as

(Data Abstraction, Polymorphism, Encapsulation and Inheritance) and the efficient

design of programs (Butler & Morgan, 2007). As well as, Sharp and Schultz (2013)

find that learning OOP is difficult for students because it requires skills of

comprehension and memorization abilities; the latter involves high-level abilities,

which require additional skills such as abstraction, encapsulation, polymorphism,

and inheritance. In addition, Biju (2013, p. 1) state that “Understanding object

oriented concepts is always a difficult task for students. It is equally challenging for

lecturers to teach these concepts”.

Sivasakthi and Rajendran (2011) observe that students have learning

difficulties on Java programming topics. For example, Milne and Rowe (2002) state

that students will struggle in learning programming until they obtain a clear mental

model of how programming “works,” that is, how programming is stored in memory

and how the objects in memory relate to each other.

7

An international survey of introductory programming teachers conducted in

2006 found that Java was used as the first language by 58% of respondents followed

by C++ at 18% and Pascal at 9% (Schulte & Bennedsen, 2006). It can be clearly

show that java widely usage comparison with the other programming languages.

Butler and Morgan (2007) indicated that introductory computer programming

has been studied extensively in a wide range of technical and educational facets.

Numerous studies have also focused on OOP programming. However, these studies

do not focus on the challenges faced by first year students with Java as OOP.

Furthermore, Eckerdal (2006) mentions that the problems encountered by students

include the increasing complexity of programming languages such as Java.

According to the aforementioned statements and statistics provided by the

ASIS (Academic and Student Information System) at the final semester of 2013,

found that 38% of students who took programming courses in Universiti Utara

Malaysia (UUM) obtained a grade of C- or below. Thus, the classification of this

rates of student failure are considerable (Butler & Morgan, 2007). Therefore, this

study attempts to identify and investigate the significant factors that affect the

propensity of UUM students to learn Java programming as OOP. Furthermore, this

study addresses the lack of information from previous studies.

8

1.2 Research Questions

1. What are the factors that may affect the academic success of students in

computer programming?

2. How to develop student success model based on the factors that have

affected the academic success of students in computer programming?

3. How to evaluate the student success model?

1.3 Research Objectives

1. To identify the factors that affects the academic success of students in

computer programming.

2. To develop student success model based on the factors that have affected the

academic success of students in computer programming.

3. To evaluate the student success model.

9

1.4 Significance of the Study

 The researcher expects that this study will be significant in several areas.

First, this study will add to literature on the academic success of students in

computer programming by identifying factors that may affect the academic success

of students in computer programming. This research helps academics who are

interested in understanding the factors that affect the propensity of students to learn

programming because only a few similar studies have addressed this particular issue.

Additionally, based on understanding of significant factors that affect the

academic success of students undertaking programming course in UUM, this study

attempts to provide recommendations to programming instructors on how to improve

their approach to teaching programming. The researcher anticipates that by

implementing the recommendations failure rate in the OOP subject particularly in

Java programming could be reduced.

1.5 Scope of the Study

Although OOP languages exist, this study has been focused on the Java OOP

programming language (see Section 1.1). In addition, Java programming is popular

both in Academia and the IT Industry. Further, it is the most used programming

language across the world (Bennedsen & Paterson, 2007; Sivasakthi & Rajendran,

2011).

Nikishkov, Nikishkov, and Savchenko (2003) argued that Java is completely

OOP. On the other side, Singer, Li, and David (2013) stated that Java is the most

used programming language in educational institutions. According to many

researchers, The time, cost and willingness of the participants important criteria for

researcher to identify the scope (Sekaran, 2003; Creswell, 2009). Therefore, this

10

study highlighted on the factors that affect academic success in computer

programming. Thereby, the effect of these factors on UUM post/undergraduate

students (IT/ICT) taking programming courses has been investigated. This study

was broadly included students in UUM.

1.6 Organization of the Research

This study is organized into five major chapters:

Chapter One: Introduction. The first chapter constitutes the background of

the study and highlights the definitions of programming, program, and programming

languages. This chapter also presents some of the difficulties and challenges that

students encounter when studying programming. Furthermore, the research

objectives and research questions are covered and the rationale of the study is

explained.

Chapter Two: Literature Review. The second chapter comprises the

literature review of this study. All studies on programming and studies that

emphasize significant programming factors, such as teaching tools, experience with

other programming languages, OOP concepts, motivation, course evaluation, fear

and mathematical aptitude are reviewed. These factors have been considered in this

study for investigating them whether they effect on academic success in computer

programming.

11

Chapter Three: Research Methodology. The third chapter explained the

methodology used in collecting relevant data for this research. This chapter was also

explained the sampling procedure and statistical approach used to analyze the data.

Chapter Four: Data Analysis and Research Findings. The fourth chapter

addresses the data analysis stage of this study. It presents the data analysis process as

done stage by stage in view of answering the earlier elicited research questions.

Chapter Five: Discussion, Conclusion and Recommendation. The fifth

chapter concludes this study. It entails the discussion of the research findings,

interpretation of the entire result of this study and the accompanying discussion. It

argues the position of the findings of this study amidst the previous studies’ findings.

12

CHAPTER TWO

LITERATURE REVIEW

2.0 Introduction

This chapter covers the literature review, including the OOP definition,

related studies in this field, and factors considered to the objectives of this study.

Literature reviews play important roles in shaping the research problem because

the literature review process helps researchers understand the subject area, thus

helping to conceptualize the research problem clearly and precisely. The

literature review also makes the research problem relevant and pertinent to the

field of inquiry (Smith, 2012). Also, he suggested that the researcher should start

with general information and gradually narrow it down to the specific.

2.1 Object Oriented Programming

Programming knowledge includes skills and concepts such as problem

investigation, problem-solving design, transformation of the design into code and

data structure by writing a highly constrained language, and verification of the

validity of the program (Herman & Salam, 2011). In recent years, OOP has become

the most influential programming paradigm. OOP is widely used in education and

different industries; furthermore, almost every university includes object orientation

in the curriculum (Sivasakthi & Rajendran, 2011b). Learning to program is

notoriously difficult. For instance, Bergin and Reilly (2005, p.293) note that “it is

well known in the computer science education (CSE) community that students have

difficulty with programming courses and this can result in high dropout and failure

rates.” . At the same time, according to many researchers, teaching programming to

13

novices has been considered a big challenge for almost 40 years (Floyd & London,

1970;Gries, 1974; McCracken et al., 2001; Robins et al., 2003b; Spohre

1989;Wenger, 1998). Teaching programming is considered one of the seven grand

challenges in computing education (Mcgettrick et al., 2005). According to Diederich

(1988), the relevant elements in teaching can often be described by the didactic

triangle (Figure 2.1). Unfortunately, more studies concentrate on the teacher as the

substantial factor, and few studies focus on the students and content. Many published

research materials on the Java programming language mostly focus on technology

issues and related enhancements. Therefore, this study seeks to fill this gap in

literature by identifying factors that affect the teaching of programming from the

perspective of students.

Figure 2. 1 The didactic triangle (Diederich, 1988).

Madsen and Møller-Pedersen (1988, p.16) defined OOP as follows: “a

program execution is regarded as a physical model, simulating the behavior of

either a real or imaginary part of the world.” OOP is a clever concept and has

become a very common term (Henderson & Zorn, 1994). As stated beforehand, OOP

was used as the first language in most universities, in particular Java programming

14

(Schulte & Bennedsen, 2006). However, numerous studies focus on how to develop

OOP programming learning.

According to El-Zakhem and Melki (2013) and Rainalee Mason (2012), most

CS students face major problems, such as in OOP principles (i.e object, class,

attributes and methods) and efficient program design (Butler & Morgan,

2007),during their first programming course.

Some researchers have published articles that describe the factors affecting

introductory programming students. However, studies on OOP that takes students as

the main sample are lacking. According to the annual statistic conducted in UUM in

2013, 38% of students undertaking programming courses got C− or below; thus, the

student failure rates are considerably high (Section 1.1). This study strives to identify

and investigate the significant factors that affect the propensity of UUM first year

students to learn Java programming as OOP.

Georgatos (2002, p.3) noted that programming “is a human activity that is a

great challenge, involving the design of machine behavior that can assist, and at

times replace, humans in tasks of intellectual nature.”

The product of this activity is a “program” that can be different things at different

times:

 The program can describe calculations; the imperative or procedural

programming model.

 The program can describe and treat objects; the OO programming model.

 The program can define functions; the functional programming model.

 The program can define logical relationships; the logical programming

model.

15

Another definition of a program is syntactical which means, a program is a text

constructed according to certain grammar rules (Pair, 1993). Programs are always

full of errors and debugging takes time because tracking bugs and correcting them is

often difficult. OOP is a programming technique and a paradigm for writing “good”

programs for a set of problems. Only some programming languages are “OO”

(Stroustrup, 1991).

2.2 Java Programming

Sivasakthi and Rajendran (2011b, p.1) state the following: “Java

programming is popular both in Academia and IT Industry. Further, it is the

maximum usage of programming across the world.” Moreover, given the new

possibilities provided by Java for the web, the Java paradigm has received

considerable attention. Thus, many universities and colleges have introduced Java

into their undergraduate and postgraduate CS curriculum (Said Hadjerrouit, 1998).

Thus, the teaching and learning Java programming in academia has become a great

responsibility. Madden and Chambers (2002) adds that the Java programming

language is very well established and is often the first object-oriented (OO) language

taught to students.

Despite the popularity of programming languages such as Java, issues still

exists on the suitability of these languages for education, particularly in the

introduction of programming to novices (for instance, Mody, 1991; Said Hadjerrouit,

1998;Biddle & Tempero, 1998;Close, Kopec, 2000;Clark, MacNish, & Royle, 1998).

Pears et al., (2007) state that Java is not designed for educational purposes compared

with Python, Logo, Eiffel, and Pascal.

16

This study aims to investigate the factors that cause the learning difficulties

of students with regard to Java as OOP. Java has become the most influential

programming paradigm in recent years. Although empirical studies of programmers

and programmer comprehension have been conducted with regard to procedural and

OO languages, few studies have been conducted to discover the individual traits

cause the most difficulty to novice programming students (Milne & Rowe, 2002).

Java programmers generally require declarative and OO knowledge

(Sivasakthi & Rajendran, 2011a). The former involves knowledge on Java

programming language syntax and semantics, which require comprehension and

memorization abilities; the latter involves high-level abilities, which require

additional skills such as abstraction, encapsulation, polymorphism, and inheritance.

Consequently, learning OOP by using Java includes many challenges (Butler &

Morgan, 2007) and requires multiple skills and types of knowledge. This study used

data collection and analysis to identify the various learning difficulties involved in

Java programming. Many researchers have argued against the use of Java. These

researchers highlight the inherent difficulties in using Java as a first programming

language (Hadjerrouit, 1998; Crawford & Boese, 2006; Powers et. al. 2006;Gross &

Powers, 2005).

Teaching Java is challenging (Nedzad & Yasmeen, 2001). Gosling (1996)

noted that Java is a general-purpose OO language that is designed to be simple to

enable many programmers to achieve fluency in the language. Iain and Glenn (2002)

state that students will struggle to understand this language until they gain a clear

mental model of how programming “works,” that is, how programming is stored in

memory and how objects in memory relate to one another.

17

Certain interactive and integrated environments such as “BlueJ,”“Greenfoot,”

and “Processing,” make Java programming easy to learn and teach. The following

section will discuss these tools in detail. A survey of Java textbooks supported by a

survey of student perceptions regarding the difficulty of various topics has yielded a

hierarchy of topics from the least difficult to the most difficult: comments, output,

assignment, expressions, if- statements, for-loops, arrays, methods, classes, and input

(Yau and Joy,2004).

Figure 2. 2 Level of learning difficulties on different topics of Java programming.

However, Herman and Salam (2011) stated that novice students often face

difficulties in learning programming because of various issues and the nature of the

subject, which can be vague and invisible. This research focuses on UUM students,

most of which are programming novices. Mow (2008) refers to the differences

between novices and experts in the following:

 Novices have difficulty recognizing incorrect grammar and struggle with

syntactic knowledge, whereas experts readily recognize grammatical errors.

 In terms of semantic knowledge, experts have effective mental models of

virtual or notional machines, whereas novices have yet to build these models.

18

 For schematic knowledge (knowledge of the structure of a program) experts

use deep structures to categorize programs based on the type of routines

required. By contrast, novices use superficial features for categorization.

Furthermore, novices are inclined to use low-level plans and are unskilled at

problem decomposition, whereas experts maintain an overall view of the problem in

mind while decomposing problems into small, manageable sub-problems. Experts

also consider more alternative solutions and are more adept at comparing different

solutions than novices (Lahtinen, Ala-Mutka, & Järvinen, 2005).

2.3 Related Works

The high dropout and failure rates in programming subjects have drawn the

attention of researchers. A number of papers have also been written to address

problems that occur when teaching Java. However, most of these studies focused

more on the teacher than on the student. Therefore, this section elaborates on studies

that are related to this field. A debate is taking place in many computer/information

science departments on the best approach to teach programming. Students should be

exposed immediately to the new OOP paradigm by using a language such as Java

(Burton & Bruhn, 2003). Therefore, this section will also discuss the methods used

in previous studies to solve difficulties in programming course.

There are many studies achieved in teaching the programming languages, such

conducted by Byrne, Catrambone, and Stasko (1999) who use two experiments

designed to test whether animating algorithms will assist students to learn algorithms

effectively. However, this study focused only on software visualization (teaching

tools). While, Wilson and Shrock (2001) state that many factors affect the success or

failure of students in programming.

19

 The study conducted by Byrne and Lyons (2001) focuses on the BASIC

programming language and their data has been gathered from academic records. In

contrast, this research concentrates on the OOP as noted by Wiedenbeck (1999) the

choice of programming language affects the understanding of programming.

Furthermore, Milne and Rowe (2002) have investigated C++ and asked both

tutors and students on the individual concepts of the programming language they

strive to teach and learn, the conclusion of their study is the motivation to design a

program visualization tool. As well as, they focused on participants who have

experience in programming languages, while, this study deals with the novice

students.

Wiedenbeck and Labelle (2004) investigated the combined effects of mental

model, self-efficacy, and prior experience on programming learning. However, the

respondents came from different disciplines. Most respondents are not involved in

CS.

Wiedenbeck (2005) concentrated on important factors that affect program

learning: perceived self-efficacy, knowledge organization, and prior programming

experience. The differentiation of Wiedenbeck study was non-major students were

his participants. Programming courses are complex for a majority of university

students, particularly students who have little previous exposure to programming.

In addition, Bennedsen and Caspersen (2006) focused on learning OOP.

Their study depended on the perspectives of lecturers and that of the university

administration. By contrast, this research concentrated particularly on the perspective

of students. On the other hand, study by Caspersen and Kölling (2006) aimed to

assist novice programmers learn better and faster. in the same time, laying the

foundation for a thorough treatment of the aspects of software engineering. Their

20

study does not identify the factors that affect how students learn programming and

instead focuses on the programming process (Concepts of the program).

Carbone and Hurst (2009) discussed the internal domain factors which are

motivation and capability that influences how students learn programming. In their

study, data was gathered from few students by semi-structured interviews. The

results of their study depend on how the students deal with an introductory

programming language. By contrast, This research strives to identify the significant

factors that affect the success of Java as the OOP.

Li, Liu, Mao and Zhou (2013) concentrated on the factor of fear. However,

their study focuses on non-CS major students and on the experiences of researchers

as lecturers. Thus, this study was focused directly on IT and ICT students.

Additionally, studies into whether choice of programming language affects

program comprehension are well documented, and have shown that different

notations facilitate the understanding of different kinds of information found in

programs (Wiedenbeck, 1999). Other studies have conducted research into the types

of mental models formed by both novice and expert programmers, and how such

models affect their understanding of the problem and its solution (Burkhardt et al.,

1997;Blackwell, 1996; Turner, 2001). Unfortunately, few researchers have examined

the OOP learning experience of programming students and the difficulties that they

face in their field.

Research on success factors has been conducted in the sub-areas of

introductory programming and in general CS education. Studies have identified the

problems and solutions in programming education. However, these studies have

mostly focused on programming education in foreign countries such as Australia,

Finland, the United States, and the United Kingdom. Therefore, this study has been

21

conducted in Malaysia, particularly in UUM. The perception of students toward their

learning problems and their ideal OOP learning method was examined in this study.

2.4 Student Success Model in programming Course and Hypothesis

Programming students are strained by the learning challenges in their field

(Astrachan, Selby & Unger 2006;Garner, 2001). Several studies have tried to modify

the OOP teaching and learning mechanisms, particularly for Java, to help students

overcome such challenges. Most novice programmers still struggle to become

proficient in the subject (Mow, 2008). Therefore, this study was focused on the

following factors and investigate them whether they have affected the academic

success of novice students in computer programming. Eventually, use them to

develop student success model (Figure 2.3):

22

Figure 2. 3 Factors that may affect the academic success in programming course.

F
a

ct
o

rs
 t

h
a

t
m

a
y

 a
ff

e
ct

e
d

 o
n

 a
ca

d
e

m
ic

 s
u

cc
e

ss
 i

n
 p

ro
g

ra
m

m
in

g
 c

o
u

rs
e

Independent variables

Dependent variable

Experience with Other

Programming Languages

Fear

OOP Concepts

Motivation

Course Evaluation

Student Aptitude in

Mathematics

Academic Success

 in

Programming Course

Teaching Tools

23

2.4.1 Teaching Tools

Teaching programming languages is a challenging issue with a long history

(Costa, Aparicio, & Pierce, 2009;Ulloa, 1980). The teaching of OOP is

undertaken using a combination of lectures, some tutorials and supervised labs

(Madden & Chambers, 2002). Graf, Lan, and Liu (2009) found that

programming students adopted different ways to learn their subject. Some

programming students may regard individual learning as the most suitable

learning process. However, Jenkins (2002) found that some students opted for a

dynamic learning environment (Classroom), which greatly improved their

learning by studying with their peers. Moreover, programming instructors are

having difficulties in instilling favorable programming habits into their students.

Ulloa (1980) found that interactive software can be automated to help the

instructors in teaching their students individually and in solving their problems

regarding the subject.

Many researchers have suggested the use of functionally reduced

development environments (e.g., DrJava(Reis, 2004) and BlueJ (Kölling, 2003))

that are specifically designed for educational purposes. These tools assist

programming students by providing them with clear descriptions of Java

programming mechanics. Some researchers have proposed the use of

environments that support the visualizations and animations of computational

elements that are based on structures and simple command syntaxes, such as

Karel-3D (Brusilovsky, Calabrese, Hvorecky, Kouchnirenko, & Miller, 1997)

and Alice3D (Cooper, Dann, & Pausch, 2003).

Some researchers have suggested the adoption of visualization and

interaction techniques for the creation of interactive environments that provide

24

freedom to programming students to explore their field. Milne and Rowe (2002)

argues that a program visualization tool can help programmers interpret the

processes occurring in memory while a specific program is being operated. The

adoption of teaching tools significantly affects the understanding of

programming students of their subject. Several studies have identified numerous

problems that are associated with OOP instruction and that concerns different

aspects of the adopted systems (Black et al., 2013;Kölling, 1999).

2.4.2 Experience with Other Programming Languages

Students who are about to enter IT-related university courses are expected to

have basic computer literacy (Wit, Heerwegh, & Verhoeven, 2012) and

programming experience (Hardy, Heeler, & Brooks, 2006). Study by Howles

(2007) have examined the number of students who have no programming

experience and have limited computer usage take an IT-related course in the

university. (Thompson, 1995) argues that the previous experiences of an

individual can significantly affect his or her collection and use of knowledge.

Therefore, this theory defines learning as an active, subjective process that

allows students to create knowledge from their previous experiences or by

extending their present knowledge.

According to Armoni, Gordon and Harel (2012), only few studies have

examined how the previous experiences of students affect their understanding of

programming languages and models. Several academic programs have been

developed to suit all IT students despite their varying knowledge of other

programming languages (Madden & Chambers, 2002). However, not all of these

programs focus on OOP. Yau and Joy (2004) argues that Java should not be

25

taught to students with no programming background given that OOP paradigms

are highly abstract than procedural paradigms. Armoni et al., (2012) also argued

that the programming background of a student could influence his or her attitude

toward learning another programming language.

2.4.3 Fear

The teaching and learning processes in the CS and IS fields have received

significant research attention because of the high attrition rates of these courses

(Robins et al., 2003a). However, the educational environment of these courses

remains a global problem in the field of computer programming (Mead et al.,

2006).

Study by Rogerson and Scott (2010a) defines fear as the lack of appreciation

or interest of students toward the programming subject. This term may also refer

to the apprehension or the lack of confidence of these students on their

programming knowledge. Programming is defined in this study as the full cycle

of systems development, including the coding process, the use of basic

theoretical concepts, and preparation of the final product for implementation

(Bruce et al., 2004). Rogerson and Scott (2010, p. 148) defined this fear as

“experiencing a lack of confidence or apprehension regarding their ability to

code or program”. Several researchers have used the same term to describe the

anxiety that some students feel when developing a program and to describe their

feelings of discomfort that may reduce their interest in the subject (Simon et al.,

2006). Bergin and Reilly (2005b) stated that such feeling of discomfort will

discourage programming related inquiries and discussions from these students.

26

2.4.4 OOP Concepts

Students are greatly challenged by several elements in the Java programming

language. The inclusion of Java in programming courses has been the subject of

several studies and experience reports over the previous decade (Sivasakthi &

Rajendran, 2011a; Xinogalos et al., 2006; Madden and Chambers 2002). These

reports suggest that the use of diagrammatic representations can help students

improve their understanding of OOP, such as UML or other analogous notations (

Object Management Group, 2003; Alphonce & Ventura, 2002). Sicilia (2006) argued

that programming instructors should carefully help their students in comprehending

the OO concepts and in translating the conceptual models into Java programs. The

OOP learning of these students is also hindered by several factors, such as their

associations, generic containers, and differences between interfaces and classes.

Moreover, Madden and Chambers (2002) asserted that, comprehension of a list of

broad Java language tools such as (e.g. syntax, file handling, inheritance,

Appletviewer, JCreator, GUI programming, etc) help to understanding OOP

concepts. Many researchers have explained the OOP concepts as shown below:

I. Object

Object refers to the main component of the OO paradigm that is used for

carrying out specific tasks (Garrido, 2003). Actual examples of an object include a

bus, a book, or a student. Therefore, people think about, identify, act upon, or assign

concepts to several objects on a daily basis (Satzinger & Ørvik 2001).

27

II. Class

Students must clearly differentiate the concept of “object” from the concept of

“class” (Eckerdal, Box, & Thun, 2005). The latter refers to a general category,

whereas the former refers to a specific instance (Satzinger & Ørvik, 2001). Objects

are grouped together into classes that specify the type of an object, whereas a class

can be used as a template for a potential object (Weisfeld, 2004).

III. Attributes and Methods

Both attributes and operations are equally important in the OO approach. The

former refers to the descriptive properties of an object that represent its state,

whereas the latter refer to an operation determines the behavior of an object or what

the object can do (Havenga, 2006).

IV. Constructors and Destructors

Constructors and destructors are special methods that play important roles in

OOP. Constructors are used when creating new objects for the allocation of memory

and the initialization of variables. Sebesta (2004) referred that, Delphi uses the

“create” constructor to create an object. Additionally, he state that, All objects in

Java are explicit heap dynamic (i.e., created explicitly on the heap during runtime)

and are allocated into the new operator. Destructors are used to reclaim the heap

storage and to destroy objects. Instead of using a destructor, Java uses an implicit

garbage collection process that does not require the programmer to create a code for

the destructor (Havenga, 2008).

28

V. Abstraction and Associations

Abstraction refers to the ability of an individual to define and use variables

and operations that ignore several details. Abstraction aims to simplify the

presentation of entities and to reduce their complexity during the programming

process (Sebesta, 2004). Abstraction is classified into process abstraction and data

abstraction. The former refers to the calling of a subprogram

(method/procedure/function) without providing its details, whereas the latter refers to

the declaration of the type and the operations in objects that are contained in a single

unit, which restricts data access by sending messages to the methods (Schach,

2005;Sebesta, 2004).

VI. Polymorphism and Dynamic Binding

Polymorphism refers to the provision of multiple forms and methods. When

used in the OOP context, this term implies that different objects may respond

individually to the same message. Therefore, polymorphism may be used to indicate

different implementations (Weiss, 2000). Polymorphism also supports greater

abstraction wherein a single message can evoke different behavior (Rosson & Alpert,

1990).

2.4.5 Motivation

Helme and Clarke (2009) stated that students need motivation (the will to

learn) and skills (capability) in order to be successful in their respective fields.

Williams (2011) argued that the learning methods, motivation, and expectation of

students can significantly effect to their learning. Several studies have identified the

motivation and attitude of these students to learning as the core influential factors to

29

their successful learning (Gomes & Mendes, 2007;Jenkins, 2002;Robins et al.,

2003b;Simon et al., 2006). Moreover, Jenkins (2001); Bergin and Reilly (2005)

pointed that, the motivation can encourage the students to learning programming

language well. In this case, motivation can be divided into intrinsic, extrinsic, and

achievement motivation (Entwistle, 1998).

 Intrinsic motivation is present when the individual is interested and

curious about the activity that he or she is currently performing;

 Extrinsic motivation is present when the individual anticipates a reward

after successfully completing the activity; and

 Achievement motivation is observed when the performance of an

individual is better than that of his or her peers.

Carbone, Hurst, Mitchell, and Gunstone (2009) found that intrinsically motivated

students generally display higher programming capabilities, whereas externally

motivated (i.e., passing the course) or achievement-motivated (i.e., obtaining higher

marks) students do not cognitively engage themselves into the subject.

2.4.6 Course Evaluation

A non-personalized learning environment (Gomes & Mendes, 2007b) poses

additional learning-related problems to students, reduces their motivation, and

weakens their cognitive abilities (Simon et al., 2006). Students rarely receive

feedback or explanations from their instructors given their lack of time and the

large class sizes in universities. The failure of instructors to pay individual

attention to their students and to address their learning styles poses additional

problems (Jenkins, 2002). Souza et al., (2008, p.75) observed that the struggle

30

among programming students in their learning “affects most facets of their study,

for example: their progress through their study program, their study habits, their

confidence and their time management.” Programming students must not merely

rely on their textbooks to develop programs successfully (Gomes & Mendes,

2007; Jenkins, 2002; Lahtinen et al., 2005).

Instructors should consider using programming patterns and playing games

with their students to help improve their problem-solving abilities (Wangenheim

& Shull, 2009). In addition, Madden and Chambers (2002) suggested that, it is

important to ask students whether they found the course useful and enjoyable.

Also whether they believe the course is well tied between theory and laboratory

work.

2.4.7 Student Aptitude in Mathematic

Aptitude are usually used to refer to behavior that is used to predict performance

or future learning (Macklem & Gayle, 1990). Students are required to study

mathematics materials throughout their studies. Mathematic is used in multiple

subjects such as finance, physics and computing, so attaining higher knowledge

depends on the student’s background in mathematics primitive. In addition, IT is a

discipline that needs to build alliances with other disciplines, Mathematics an

obvious alliance for IT, consequently, IT might learn from mathematic by

developing options in computing (Guthrie, Yakura, & Soe, 2011).

 Furthermore, Patil (2009) state that students admitted with passing level in

mathematics aptitude show significant effects in development factors as well as

programming skills. Also, he argues there is considerable enhancement in spatial

31

ability and hence programming ability of student groups, having mathematics

aptitude up to passing level.

On the other hand, There are significantly need the mathematical skills in

programming learning where, programming is based on new mathematical

foundations which identifies the programming process with a step by step

expansion of mathematical functions into structures of logical connectives and

sub functions (Mills, 1972). As well as, Cheney and Kincaid (2012) state that

aim of mathematics aptitude is to examine the underlying algorithmic techniques

so that students learn how the software found the answer. Quenemoen,Thompson

and Thurlow (2003) State that, in mathematics, decisions are made about how

many items test basic students’ programming skills and how many items test

their problem-solving abilities. While, Jenkins (2002) argued that students who

find programming difficult are simply and solely those for whom programming

is difficult. There is nothing inherently difficult in the subject; it is simply that

some students have no aptitude in mathematics. The skills often cited are

problem solving and mathematical ability. Similarity Byrne and Lyons (2001)

that hint link between mathematics ability and programming is widely accepted.

In addition, Jenkins (2002) add that it is important to give students some

exercises that involve simple mathematical manipulation such as: stock levels,

collections of student marks, bank account details or baseball statistics.

32

2.5 Summary

 This chapter presented a review of literature focused on the objected oriented

programming, Java programming, related works in which how previous studies dealt

with programming and what the attempts that used to decrease student challenges in

programming learning. Finally, the student success model and hypothesis of the

factors that may affect the academic success of student in programming course

which are: teaching tools, experience with other programming languages, fear, OOP

concepts, motivation, course evaluation and student aptitude in mathematics.

33

CHAPTER THREE

RESEARCH METHODOLOGY

3.0 Introduction

This chapter presents and justifies the methodology and design of this

research. This chapter also presents the hypothesis, research method, data collection,

population and study sample, research instrument, pilot test, data analysis and

validity and reliability of the instrument development (questionnaires).

The strategies for answering the research questions must be identified after planning

the research design (Smith, 2012). Figure 3.1 shows the strategies adopted in this

study:

Figure 3. 1 The strategies that are adopted in this study.

34

3.1 Hypothesis of the Study

H1: Teaching tools can affect the academic success in programming course.

H2: Experience with other programming languages can affect the academic success

of programming students.

H3: Fear can affect the academic success of programming students.

H4: OOP concepts can affect the academic success of programming students.

H5: Motivation can affect the academic success of programming students.

H6: Course evaluation (which include: lectures, laboratory work, tutorials, and

assignments) can affect the academic success of programming students.

H7: Mathematical aptitude can affect the academic success of programming

students.

3.2 Research Method

Quantitative data are expressed in numerical and statistical figures, which are

analyzed and measured through statistical analyses (Hossein, 2007). The quantitative

research design is used in this study to examine the responses from a large sample

with regard to the proposed phenomenon. This research design also allows the

researcher to analyze the behavior of respondents (Lakshman et al., 2000).

Questionnaires are used as the main data gathering tool for this research.

Smith (2012) stated that quantitative research design can validate the

conclusion of the study by verifying the established concept and by proving or

disproving a proposed concept. Sekaran (2009) added that the quantitative research

design can produce consistent results when used with a descriptive research design.

Several researchers have also identified the quantitative research design as the most

suitable approach for investigating the individual opinions and the motives behind

35

the actions, behavior, and attitudes of respondents. Kumar (2011) and Atieno (2009)

also identified the quantitative research design as the best scientific research method

given its precise measurements via deductive approach and its employment of

measurable data collection tools.

Babbie (2010) identified the quantitative research design as the most

appropriate method to examine the relationship between dependent and independent

variables. The academic success of programming students and other related factors

can be examined by the quantitative research approach. The analysis hopefully

answer the research questions and test the research hypotheses. According to Smith,

(2012), questionnaires are better than most data collection instruments because of

their inexpensiveness and anonymity.

36

PROCEDUE

OF DATA

COLLECTN

Developing data collection instrument (questionnaire)

Pilot test execution

Making corrections that are necessary from pilot test

participants comments

Collection of the main data

Data analysis

3.3 Data Collection

The findings of most studies are generally supported by field data (Zikmund

et al., 2010).

In this research, data has been collected as following:

Figure 3. 2 Procedure of Data Collection

37

3.3.1 Population and Study Sample

This study was focused on the undergraduate and postgraduate programming

students in IT and ICT of UUM. Several sampling methods are adopted to reveal the

unidentified characteristics of the selected population.

This study adopts the simple random sampling technique in which all

elements in the population are considered and such elements has an equal chance of

being chosen as the subject in order for each aspect of the population to be

represented in the sample (Zikmund et al., 2010) and to provide accurate statistical

descriptions of the population. According to Smith (2012) survey participants should

be gathered in such a way that they are confined in one space. For example, a survey

can be administered to students inside classrooms or to people in the middle of a

seminar or a program. This method saves money for postage and ensures a high

response rate given that the potential subjects will have no choice but to participate

in the survey. The sample size for this study is determined through the rule of thumb,

which states that the sample must include between 30 to 500 respondents (Sekaran &

Bougie, 2010). According to the official letter from UUM the number of

postgraduate and undergraduate students (IT and ICT programmes) of the years

2012-2013 is 566 students. A total of 286 students are selected to participate in this

study based on Sekaran & Bougie (2010, P. 295). As mentioned by Notani (1998),

studies on working behavior should focus on the general adult population than on the

student population given that the former population are more experienced than the

latter.

38

3.3.2 Research Instrument

A survey has been conducted to gather primary information on related

factors. The use of questionnaire as the data gathering instrument is considered as

efficient (Kumar, 2011). Furthermore, questionnaire that are self-administered

having closed-ended questions.

The questionnaires for this study has adapted from Rogerson and Scott

(2010), Bergin and Reilly (2005), Jenkins, (2001a), Jenkins (2001b), Gayle and

Macklem (1990); Quenemoen, Thompson and Thurlow (2003), Barchard (2003) and

Madden and Chambers (2002). as shown in the table 3.1:

Table 3.1 Questionnaires sources

No Questionnaires of the factors Adopted from

1 Academic success in

programming

Kimberly and Barchard (2003)

2 Motivation Jenkins (2001); Bergin and Reilly (2005)

3 Student Aptitude in

Mathematics

Gayle and Macklem (1990);

Quenemoen,Thompson and Thurlow(2003)

4 Fear Rogerson and Scott (2010)

5

Experience with Other

Programming Languages

Madden and Chambers (2002) 6 OOP Concepts

7 Teaching Tools

8 Course Evaluation

For the instrument design, the questionnaire is divided into three parts: A, B

and C. Part A asks questions related to the respondents demographic background

which are gender, age group, course and previous programming experience. Part B

contains items to measure the academic success in computer programming, while

39

Part C contains items measuring each of the elicited factors: motivation, fear, OOP

concepts, teaching tools, course evaluation, and students’ aptitude in Mathematics.

3.3.3 Pilot Test

A pilot study must be conducted before collecting data to validate the survey

instrument (Bryman, 2004; Saunders et al., 2003). A pilot study is conducted to

determine if the questionnaire can be amended further for the respondents to

understand and answer all questions with ease. Acceptable number of 30

respondents, were enough for the pilot study as the researcher was aiming only to

examine to what extent the instrument was clear and therefore improve on it (Hair et

al., 2010). A total of 40 questionnaires were distributed to UUM students to identify

if these instruments are properly constructed and if the questions can be easily

understood by the respondents. The students have been asked to answer these

questionnaires and to provide some feedback with regard to the validity and clarity

of the instrument.

3.4 Validity and Reliability

The validity and reliability of the developed measures must be ensured. The

former refers to the capability of the instrument to assess the target items, whereas

the latter refers to its consistency (Sekaran, 2003). According to Smith (2012, p. 5),

“the quality of a measurement procedure that provides repeatability and accuracy.”.

The validity and reliability of the instrument has been analyzed after the pilot test.

Smith (1991, p. 106) added the following: “validity is defined as the degree to which

the researcher has measured what he has set out to measure.”

40

Smith (2012) argued that validity only pertained to a particular instrument.

However, a reliable measure may not be able to assess a specific item despite

showing consistency. The reliability coefficient is expressed in terms of Cronbach’s

alpha.

An α of 0.70 to 0.80 is generally acceptable (Kaplan & Sacuzzo, 2008). The

correlation between the dependent and independent variables must be estimated after

ensuring the reliability of the measurements. However, ensuring the reliability of the

measurements does not necessarily ensure their validity. The questionnaires can be

validated by a group of expert judges (Kidder & Judd, 1986). Therefore, this study

has sent the questionnaires to the expert who is (Dr Abdullah Al Swidi), where he

has professional qualification in SPSS, SAS (Statistical Analysis Software), AMOS

(SEM), Smart PLS (SEM), QM for Windows and Arena for Simulation. In addition

he is member of the quantitative studies and development experts group, College of

Arts and Sciences, University Utara Malaysia. Thereby, he reported that “I have seen

the questionnaire and the items used can serve the factors they were designed to

measure”. Validity can be used to improve and evaluate the reliability of existing

scales. Different procedures, such as factor analysis, can be used to establish

construct validity (Zikmund et al., 2010; Smith, 2012). Therefore, a pilot study was

conducted to enhance the reliability and validity of the measures.

3.4.1 Face Validity

Face validity which is also called Content validation has to do with the

testing respondents’ comprehension of the items in the instrument. It refers to the

transparency or relevance of a test as they appear to test participants Holden and

Ronald (2010). This is very essential in this kind of research settings; it has been

41

done before proceeding to the main data collection stage, for the purpose of

observing the mistakes in the instrument and to be corrected before going for the

main data collection. For this purpose, each question of the instrument items was

reframed and duplicated to examine if there could be any variation or

misunderstanding to the response of any of the questions, this to ensure the

research on how objective and authentic the gathered data are. Due to some

constraints of getting feedback from the real candidates of face validity which

were among the lecturers who has specialized in computing area, five PhD

students specifically those that have defended their PhD thesis proposal were

chosen for the face validity of the questionnaire. As Pallant (2011) and Zikmund

et al. (2010) suggested, researchers are also among the suitable persons to be

employed for face validity during the questionnaire development process.

3.5 Pilot Testing Result

The components of the pilot testing are the reliability testing of the items

contained in the questionnaire and population distribution of the pilot study. The

results shown in the following tables, and Appendix 2 (a-g) also shows the SPSS

generated tables for all the variables studied.

42

3.5.1 Reliability Testing Results

The first of the pilot testing is the reliability testing of the items contained in

the questionnaire. Table 3.2 presents the result of the reliability testing.

Table 3.2: Reliability Testing Result

Variable Cronbach’s

Alpha

No of Items

Academic Success in Computer

Programming

0.733 3

Motivation 0.901 8

Fear 0.776 12

Java concept 0.886 17

Teaching Tools 0.721 4

Course Evaluation 0.847 7

Aptitude in Mathematics 0.719 8

To achieve the reliability of the instrument, items of academic success in

computer programming were seven items, after the reliability test, the Cronbach’s

Alpha was 0.4. There are four items has been dropped from academic success in

computer programming based on option (scale if items deleted) in SPSS to enhance

the Cronbach’s Alpha. Thereby, the result as shown in the table 3.2 is accepted.

3.5.2 Population Distribution of the Pilot Study

This pilot study involves 38 males representing 95.0%, and 2 females represented by

5%. The result is shown in Table 3.2 below.

43

Table 3.3: Gender Distribution of the Pilot Study

 Frequency Percent %

Valid Male 38 95.0

 Female 2 5.0

 Total 40 100.0

Thirteen (13) out of the respondents are undergraduate students of Information

technology (IT) and twenty-seven (27) are Master students (MSCIT/ICT), making

32.5% and 67.5% respectively. Table 3.3 shows the course level distribution.

Table 3.4: Course Level Distribution of the Pilot Study

 Frequency Percent

%

Valid BSC IT 13 32.5

 MSc

IT/ICT

27 67.5

 Total 40 100.0

From the respondents administered during the pilot testing phase, thirty (30) which is

75% have previous experience of programming, while ten (10) i.e. 25% do not.

Table 3.4 shows the population distribution of respondents with previous experience

with those without.

44

Table 3.5: Previous Programming Experience of the Pilot Study

 Frequency Percent

%

Valid Yes 30 75.0

 No 10 25.0

 Total 40 100.0

3.6 Data Analysis

SPSS 20 has been used to analyze the data. Independent-Samples T test,

correlation and regression are conducted as the descriptive analysis. In choosing the

right statistic, need to consider a number of different factors. These include

consideration of the type of question you wish to address, the type of items and

scales that were included in your questionnaire, the nature of the data you have

available for each of your variables and the assumptions that must be met for each of

the different statistical techniques (Pallant, 2011). This study has two types of

variables, continuous or ordinal variables which are (academic success in computer

programming, teaching tools, fear, OOP concepts, motivation, course evaluation and

students’ aptitude in mathematics), and categorical variable which is (experience

with other programming languages). Pearson correlation and linear regression has

been used for the continuous or ordinal variables and Independent-Samples T test for

the categorical variable.

 According to Smith (2012), statistics and computers play a significant role

in the research after the data collection procedure. The data analysis has been

conducted to test the hypotheses and answer the research questions (Pallet, 2003).

45

The descriptive analysis examines the gathered responses and the distribution of the

data to draw a possible conclusion. The table 3.6 showed the statistical analysis

technique used.

Table 3.6: Statistical Analysis technique used

Hypothesis
Statistical Analysis technique

used
Justification

H1,H3,H4,H5,H6,H7

 Pearson Correlation

Coefficient

 Linear Regression

The type data and items

were continuous or

ordinal

H2  Independent - Samples T

Test

The type of data and

items were categorical

3.7 Data Coding:

As mentioned above SPSS 20 has been used as statistical analysis

technique for this study, one of the required steps is data coding which means

represent each item of the questionnaires into code as shown in the tables below.

3.7.1 Data Coding for Academic Success in Computer Programming

Table 3.7: Academic Success in Computer Programming

No Items Coding

1 I do not get less than Bs in my programming related courses AS1

2 I have won awards based on my programming proficiency AS2

3 I have got scholarships/incentives based on my programming

proficiency.

AS3

46

3.7.2 Data Coding for Motivation

Table 3.8: Motivation

No Items Coding

1 I want to be academically successful for my own satisfaction MO1

2 I want to be academically successful to please my parents or

family.

MO2

3 I want to be academically successful to please my teacher. MO3

4 I want to be academically successful to get a good job. MO4

5 I just want to be academically successful. MO5

6 I want to be academically successful so as to be called a smart

student

MO6

7 I want to be academically successful to get scholarship. MO7

8 I want to be academically successful to get awards. MO8

3.7.3 Data Coding for Fear

Table 3.9: Fear

No Items Coding

1 I have a problem associated with learning programming. FE1

2 The word “programming” evokes the feeling of apprehension. FE2

3 The word “programming” evokes the feeling of discomfort FE3

4 I feel anxious during programming class FE4

5 I feel panic during programming class FE5

6 I feel stressed during programming class FE6

7 I am very excited about learning programming FE7

8 I am not distressed when I find any error in a program. FE8

9 I have no problems with programming FE9

10 I grasp programming concepts quite easily. FE10

11 I do not achieve my blueprint through coding FE11

12 My application takes much more time before it is successful FE12

47

3.7.4 Data Coding for OOP Concepts

Table 3.10: OOP Concepts

No Items Coding

1 Syntax (e.g., language constructs and flow of control) JC1

2 Using and defining methods JC2

3 Using and defining arrays JC3

4 String handling JC4

5 Using I/O streams JC5

6 File handling JC6

7 Using and defining objects JC7

8 Object-oriented programming (e.g., inheritance and

polymorphism)

JC8

9 Exception handling JC9

10 Using and writing applets JC10

11 GUI programming JC11

12 Multithreaded Programming JC12

13 Using JDK library classes JC13

14 Using JCreator JC14

15 Using Netbeans JC15

16 Using Eclipse JC16

17 Java SDK development tools (e.g., appletviewer) JC17

3.7.5 Data Coding for Teaching Tools

Table 3.11: Teaching Tools

No Items Coding

1 Lectures TT1

2 Supervised labs TT2

3 Tutorials TT3

4 Assignments TT4

48

3.7.6 Data Coding for Course Evaluation

Table 3.12: Course Evaluation

No Items Coding

1 I find the course useful. CE1

2 I find the course enjoyable. CE2

3 The recommended course textbook(s) are useful. CE3

4 The course strikes good balance between theory and lab work. CE4

5 The course provides hands-on practical work CE5

6 The course provides employable knowledge CE6

7 The course fairly touches all the core areas CE7

3.7.7 Data Coding for Aptitude in Mathematics

Table 3.13: Aptitude in Mathematics

No Items Coding

1 I love dealing with figures than text SA1

2 I am good at solving linear equations SA2

3 I am good at solving exponential equations SA3

4 I prefer expressing concepts using mathematics SA4

5 I understand discrete mathematics SA5

6 I do teach my classmates Mathematics SA6

7 I understand mathematical representation of algorithm SA7

8 I have a good knowledge of mathematics in data structure SA8

49

3.8 Summary

The methodology of the research is presented in this chapter. Several

procedures and justifications are incorporated in the methodology to fulfill the

objectives and to answer the questions of the research. The research framework is

also presented in this chapter.

This study uses a questionnaire as the primary data collection instrument. The

questionnaire also has been piloted before conducting the main survey to test the

validity and reliability of the measures (Chapter four). The survey data then be used

to test the hypotheses and to fulfill the research objectives.

50

CHAPTER FOUR

DATA ANALYSIS AND RESEARCH FINDING

4.0 Introduction

This chapter addresses the data analysis stage of this study. It presents the

data analysis process as done stage by stage in view of answering the earlier elicited

research questions. This chapter presents the main data analysis consisting of data

screening and cleaning, normalization of the data, homogeneity of the respondents,

descriptive statistics, independent- T test, correlation and regression to duly answer

the research questions and test the hypotheses.

4.1 Respondent Profile

The population distribution of the respondents is based on gender, course of

study, age and previous experience in programming language. This is holistically

presented in appendix 3.

For the gender distribution, out of the 286, 222 making 77.6% are males while 64 of

22.4% are the females. Table 4.1 presents the gender distribution of the respondents.

Table 4.1 Gender

 Frequency Percent

Valid Male 222 77.6

 Female 64 22.4

 Total 286 100.0

51

To depict the academic background of the respondents, the questionnaire

administered inquires about the courses of the respondents. This is necessary so as to

establish the compatibility of their academic background with the objective of the

study. The respondents are exclusively drawn from BSc IT and MSc IT/ICT

departments, and the distribution shows that 99 making 34.6% are BSc IT and 187 of

65.4% are MSc IT/ICT. Table 4.2 shows the course distribution of the respondents.

Table 4.2 Course

 Frequency Percent

Valid BSc IT 99 34.6

 MSc

IT/ICT

187 65.4

 Total 286 100.0

The age distribution of the respondents is also reported. Out of the 286

respondents, 121 which is 42.3% are between 18-30 years old, 137; 47.9% are

between 31-43 years old, while 28; 9.8% are 44 years and above. Table 4.3 presents

the age distribution of the respondents.

Table 4.3 Age

 Frequency Percent

Valid 18-30 121 42.3

 31-43 137 47.9

 44 and

Above

28 9.8

 Total 286 100.0

52

The questionnaire administered asked to enquire about the previous

programming experience of the respondents. It is important to note that previous

programming experience is one of the factors that their relationships to academic

success in computer programming are being studied. The profile shows that 218

which is 76.2% have previous experience in programming while 68; 23.8% do not

have a previous programming experience. Table 4.4 shows the previous

programming experience distribution.

Table 4.4 Experience

 Frequency Percent

Valid Yes 218 76.2

 No 68 23.8

 Total 286 100.0

4.2 Reliability Test

After the main data is gathered, a construct reliability test is done. The main

data reliability test is to confirm the consistency of the construct scale and compare

with the results gathered from the pilot testing. This is essential to establish the

reliability of the study’s instrument. Table 4.5 presents the verification –comparing

the main with the pilot test results.

53

Table 4.5 Reliability Test

No Variable No. of

Item

Pilot Test

Cronbach’s

Alpha

Main Test

Cronbach’s

Alpha

1 Academic Success in

Computer Programming

3 0.733 0.705

2 Motivation 8 0.901 0.848

3 Fear 12 0.776 0.898

4 OOP concept 17 0.886 0.871

5 Teaching Tools 4 0.721 0.732

6 Course Evaluation 7 0.847 0.840

7 Aptitude in Mathematics 8 0.719 0.794

Assessing the table presented in 4.5 above with a comparative consideration

to the values of Cronbach’s Alpha generated for the pilot and main tests for each of

the variables, it is observed that Academic Success in Computer Programming,

Motivation and Course Evaluation recorded a lower value to what is obtained during

the pilot test. However, values obtained at both ends are still greater than 0.7 which

suggest the consistency of the items and the construct.

4.3 Data Screening

After the descriptive part of the data that concentrates on the population

distribution is reported, data screening is performed on the gathered data sets so as to

make it suitable for the inferential part of the data analysis. In this stance, the

research questions and hypotheses testing can be confidently done. As Hair et al.

(2010) posited stages of data screening to be executed before analyzing multivariate

data specifically are missing data, detection of outliers, and normalization of the

datasets.

54

4.3.1 Missing Data

All the items of the variables as gathered by this study are fed into the SPSS

20 for the detection of the missing values. Missing data are detected on items FE8,

JC14, MO1, SA2 and SA3. These missing data were transformed appropriately using

the missing value analysis procedure (Pallant, 2011).

4.3.2 Detection of Outliers

According to Tabachink and Fidel (2006), outliers are individual respondents

of extreme scores on a specific variable among the set of variables in the

questionnaires administered. It is also opined that it may distract the general result.

Detection of outliers is done through the calculation of Mahalanobis distance for

each respondent and then be compared with the Chi-Square with a significant error

of 0.001. The Chi-Square is to be obtained from the general Chi-Square table using

the number of items designed in the questionnaire as the determinant. This study has

a total number of 59 items, making a critical value (X2) of 98.34, and the maximum

Mahalanobis distance (D2) is 284.004. In totality, four respondents (coded 113, 132,

133 & 134) with D2values 100.03, 230.10, 284.00 and 284.00 respectively are

detected as outliers. Therefore, the sample size for the continuation of the data

analysis becomes 282. Appendix 5 shows the output of the SPSS generated analysis

process.

4.3.3 Normality of the Data

Data normality is necessary before proceeding to inferential analysis. In

doing this, Skewness and Kurtosis are employed as measures for data normality

(Pallant, 2011). Hair et al. (2010) posited that less than 2 z-skewness value is

55

appropriate for a sample size that is not big. Appendix 6 shows the descriptive

statistics of the maximum and minimum values of the z-score that confirms the

normality of the data used in this study.

4.3.4 Homogeneity of the Respondents

For a cogent reason, this study confirms the homogeneity of the respondents.

The data collected for this study has students of undergraduate and postgraduate as

its elements. This is done to ensure that there is no difference between the above two

groups to be able for including them in the sample of this study. Therefore, the

researcher conducts an independent t-test analysis on the data collected to confirm

the insignificance of the course level to the recorded academic success value. The

T-test result gives 12.80 and 12.61 as the mean value for BSc IT and MSc IT/ICT

respectively. The results for the independent t-test are presented in Appendix 4.

The t-value of the result is 0.475 and the significant value (2-tailed) is 0.635

(greater than 0.05). This shows there is no significant variance in the mean value of

academic success in computer programming for both the BSc IT and MSc IT/ICT

students. This confirms that the sample elements of this study can be regarded as

homogenous.

4.4 Testing the Research Hypotheses

As earlier posited, hypothesis testing of this study was exclusively be done

using SPSS 20, however with varying statistical techniques determined by the

peculiarity of the hypothesis to be tested. After the successful data screening and

cleaning stage, varieties of statistical techniques are employed as found suitable for

the research hypotheses. This study employs independent t-test, to compare the mean

56

score of the group with previous programming and the group without. Pearson

Product-Moment correlation and Linear Regression are then used to find the strength

and direction of the relationship between the variables, and the effect of each of the

independent variables on the dependent variable (Sekaran, 2003; Hair et al, 2010).

H1: Teaching Tools can affect the students’ academic success in programming

course

The academic success in programming course being continuous and teaching

tools effectiveness are firstly tested through Pearson product-moment correlation.

The result showed that there is an insignificant and low positive relationship between

teaching tool effectiveness and academic success in programming course.

For the regression analysis, although there is impact of teaching tools on

academic success in programming course, yet, the effect is not highly significant as

the value of adjusted R square indicate that the impact is quite weak.

The results for the correlation and regression are presented in table 4.6 and

4.7 respectively below. This points that the hypothesis: Teaching Tools affect the

students’ academic success in programming course is accepted.

Table 4.6: Correlation Result for Hypothesis 1

 Academic Success in

Programming

Course

Teaching Tools Pearson Correlation

N

.040

282

57

Table 4.7: Regression Result for Hypothesis 1

Model Summaryb

Mode

l

R R Square Adjusted R

Square

Std. Error of

the Estimate

 1 .040a .002 .002 3.151

a. Predictors: (Constant), TTT (Total sum of Teaching

Tools Items)

b. Dependent Variable: TAS (Total sum of Academic

Success Items)

 H2: Previous Experience with other programming language can affect the

academic success in programming course

The academic success in programming course being continuous and previous

experience with programming language which is designed as a dichotomous variable

(Yes or No) is firstly tested using Independent t-test. The descriptive statistics of the

respondents showed that out of the 282 respondents, 215 answered ‘Yes’ to having

previous experience in programming language, while 67 answered ‘No’. The t-test

result gives 12.69 as the mean value for the Yes group, and 12.63 for the No group.

Though with a slight difference, it shows that the group with previous programming

experience has a greater academic success mean value than those without.

The results for the independent t-test are presented in table 4.8 below. On the

other hand, the t-value of the result is 0.139 (equal variance assumed) because the

significant value of Levene’s Test of Equality is 0.369, i.e. greater than 0.05.

However, with the Significant value (2-tailed) of 0.889 (greater than 0.05), it shows

that there is no significant variance in the mean value of the group’s academic

success in computer programming. This points that the hypothesis: Previous

Experience with other programming language affects the academic success in

programming course is not accepted.

58

Table 4.8: Independent T-test Result for Hypothesis 2

H3: Fear can affect the academic success in programming course

The academic success in programming course being continuous and fear are

firstly tested through Pearson product-moment correlation. The result showed that

there is an insignificant and low negative relationship between fear and academic

success in programming course. This is explained by the correlation result given as r

= -0.004, n = 282 and p >.05.

For the regression analysis, the value of R2is given as 0.000 as illustrated in

table below. Thereby, there is no impact of fear on academic success in

programming course.

 The results for the correlation and regression are presented in table 4.9 and

4.10 respectively below. This points that the hypothesis: Fear affect the students’

academic success in programming course is not accepted.

59

Table 4.9: Correlation Result for Hypothesis 3

 Academic Success in

Programming

Course

Fear Pearson Correlation

N

-.004

282

Table 4.10: Regression Result for Hypothesis 3

Model Summaryb

Mode

l

R R Square Adjusted R

Square

Std. Error of

the Estimate

1 -.004a .000 -.004 3.153

a. Predictors: (Constant), TFE (Total sum of Fear Items)

b. Dependent Variable: TAS (Total sum of Academic

Success)

H4: OOP Concepts can affect the academic success in programming course

The academic success in programming course being continuous and OOP

concepts are firstly tested through Pearson product-moment correlation. The result

showed that there is a significant and high positive relationship between OOP

concepts and academic success in programming course. This is explained by the

correlation result given as r = 0.817, n = 282 and p < .05. The result shows

approximately 81% variance in OOP concepts can be explained by 81% changes in

the academic success in programming course variable.

For the regression analysis, the value of R2is given as 0.668 which shows that

66% variance of the predictor (OOP concepts) explains 66% of the dependent

variable; Academic success in programming course.

60

The results for the correlation and regression are presented in table 4.11 and

4.12 respectively below. This points that the hypothesis: OOP Concepts affect the

academic success in programming course is accepted.

Table 4.11: Correlation Result for Hypothesis 4

 Academic Success in

Programming

Course

OOP Concepts Pearson Correlation

N

**.817

282

**. Correlation is significant at the 0.01 level (2-tailed).

Table 4.12:Regression Result for Hypothesis 4

Model Summaryb

Mode

l

R R Square Adjusted R

Square

Std. Error of

the Estimate

1 .817a .668 .667 1.817

a. Predictors: (Constant), TJC (Total Sum of OOP

Concepts (OOP) items)

b. Dependent Variable: TAS (Total sum of Academic

Success)

H5: Motivation can affect the academic success in programming course

The academic success in programming course being a continuous variable

and motivation are firstly tested through Pearson product-moment correlation. The

result showed that there is significant and high positive relationship between

motivation and academic success in programming course. This is explained by the

correlation result given as r = 0.746, n = 282 and p < .05. The result shows 76%

61

variance in motivation can be explained by 76% changes in the academic success in

programming course variable.

For the regression analysis, the value of R2is given as 0.556 which shows that

55% variance of the predictor (motivation) explains 55% of the dependent variable;

Academic success in programming course.

The results for the correlation and regression are presented in table 4.13 and

4.14 respectively below. This points that the hypothesis: Motivation affects the

academic success in programming course is accepted.

Table 4.13: Correlation Result for Hypothesis 5

 Academic Success in

Programming

Course

Motivation Pearson Correlation

N

**.746

282

**. Correlation is significant at the 0.01 level (2-tailed).

Table 4.14:Regression Result for Hypothesis 5

Model Summaryb

Mode

l

R R Square Adjusted R

Square

Std. Error of

the Estimate

1 .746a .556 .554 2.102

a. Predictors: (Constant), TMO (Total sum of Motivation

Items)

b. Dependent Variable: TAS (Total sum of Academic

Success)

62

H6: Course Evaluation can affect the academic success in programming course

The academic success in programming course being a continuous variable

and course evaluation are firstly tested through Pearson product-moment correlation.

The result showed that there is a significant and high positive relationship between

course evaluation and academic success in programming course. This is explained by

the correlation result given as r = 0.602, n = 282 and p < .05. The result shows 60%

variance in course evaluation can be explained by 60% changes in the academic

success in programming course variable.

For the regression analysis, the value of R2is given as 0.362 which shows that

approximately 36% variance of the predictor (course evaluation) explains 36% of the

dependent variable; Academic success in programming course.

The results for the correlation and regression are presented in table 4.15 and

4.16 respectively below. This points that the hypothesis: Course Evaluation affects

the academic success in programming course in programming course is accepted.

Table 4.15: Correlation Result for Hypothesis 6

 Academic Success in

Programming

Course

Course Evaluation Pearson Correlation

N

**.602

282

**. Correlation is significant at the 0.01 level (2-tailed).

63

Table 4.16:Regression Result for Hypothesis 6

Model Summaryb

Mode

l

R R Square Adjusted R

Square

Std. Error of

the Estimate

1 .602a .362 .360 2.518

a. Predictors: (Constant), TCE (Total sum of Course

Evaluation Items)

b. Dependent Variable: TAS (Total sum of Academic

Success)

H7: Mathematical Aptitude can affect the academic success in programming

course

The academic success in programming course being a continuous variable

and mathematical aptitude are firstly tested through Pearson product-moment

correlation. The result showed that there is an insignificant and positive relationship

between mathematical aptitude and academic success in programming course.

For the regression analysis, although there is impact of mathematical aptitude

on academic success in programming course, yet the effect is not highly significant

as the value of adjusted R square indicate that the impact is weak.

The results for the correlation and regression are presented in table 4.17 and

4.18 respectively below. This points that the hypothesis: Mathematical aptitude

affects the students’ academic success in programming course is accepted.

Table 4.17: Correlation Result for Hypothesis 7

 Academic Success in

Programming

Course

Mathematical

Aptitude

Pearson Correlation

N

.082

282

64

Table 4.18:Regression Result for Hypothesis 7

Model Summaryb

Mode

l

R R Square Adjusted R

Square

Std. Error of

the Estimate

1 .082a .007 .003 3.143

a. Predictors: (Constant), TSA (Total sum of Students’

Aptitude in Mathematics)

b. Dependent Variable: TAS (Total sum of Academic

Success)

4.5 Summary

The findings of the study which contains the respondents’ profile, population

distribution, data cleaning and screening stage, the hypotheses testing using Pearson

Correlation and Linear Regression are presented in this chapter. In view of this, the

hypotheses as tested by the study are brought to the fore with appropriate answers to

the research questions elicited. At the end, hypotheses 2 and 3 are the ones that are

not accepted. The following chapter ends this report of this study by extensively

discussing the findings in view of its position and relevance among previous related

studies.

65

CHAPTER FIVE

CONCLUSION AND RECOMINDATION

5.0 Introduction

This chapter concludes this study. It entails the discussion of the research

findings, interpretation of the entire result of this study and the accompanying

discussion. It argues the position of the findings of this study amidst the previous

studies’ findings. Finally, it points to the accomplishment of the study’s objectives

and establishes its practical and theoretical contribution. (Figure 5.1) showed the

student success model based on the finding of this study, discussion of each factor in

the following sections.

66

Figure 5. 1 Student Success Model

Independent variables

Dependent variable

F
a

ct
o

rs
 t

h
a

t
m

a
y

 a
ff

e
ct

e
d

 o
n

 a
ca

d
e

m
ic

 s
u

cc
e

ss
 i

n
 p

ro
g

ra
m

m
in

g
 c

o
u

rs
e

Experience with

Other Programming

Languages

Academic Success

 in

Programming Course
OOP Concepts

 Teaching Tools

 Fear

Motivation

 Course Evaluation

Student Aptitude in

Mathematics

67

5.1 Discussion

The discussion of the findings of this study starts from the descriptive

analysis done. Firstly, out of the total 286 respondents studied, 222 were males,

while 64 were females. This result does not have any analytical importance because

gender is not involved in the determining variables of this study. Also, the course of

study distribution of the respondents reveals 99 respondents to be of BIT, while 187

respondents are MSc IT or/and MSc ICT. This study deals with this distribution as

being homogenous since they are all students of IT irrespective of their course of

study. The age distribution shows that 121 respondents are between 18-30 years, 137

are between 31-43 years, and 28 are 44 years and above. Age as a variable does not

have any analytical importance in this study also. However, since previous

experience in programming course is one of the studied variables, an item was

designed to enquire this from the respondents, and serve as classifying guide into

two groups; namely, respondents with previous experience, and respondents without

previous experience. The experience distribution of the respondents shows that 218

respondents have previous experience in programming language, while 68 do not

have. The result of the independent t-test conducted to test if previous experience in

programming course affects success in programming success is discussed under

section 5.1.2. more details in the following sections.

68

5.1.1 Hypothesis 1: Teaching tools can affect the students’ academic success in

programming course

This study found that teaching tool is related to academic success in

programming, though with a low variance, and it also has weak impact on academic

success in programming course. This result agrees with findings from studies like

Brusilovsky, Calabrese, Hvorecky, Kouchnirenko, and Miller (1997), Cooper, Dann,

and Pausch (2003) and Milne and Rowe (2002), and Ulloa (1980), without an

explicit information about the effect relationship. In their cases, e-learning materials

and tools like program visualization tool and animations of computational elements

are the examples of teaching tools studied. Other studies like Jenkins (2002) claimed

teaching tools affects academic success in programming course when they are

employed with peers teaching method.

5.1.2 Hypothesis 2: Experience with other programming languages can affect

the academic success of programming students

The result of this hypotheses shows that the Levene significant (2-tailed)

value is greater than 0.05, contrary to the expected less than 0.05 to prove that there

is significant variation in the mean value of academic success in programming

course for group with previous experience is higher than that of no experience, so as

to accept the hypothesis. This however shows that previous experience does not

affect academic success in programming course. This result is in disagreement with

Thompson (1995). Other related studies (Armoni et al., 2012; Burton & Bruhn,

2003) were just conceptual arguments to support that previous experience affects

academic success in programming course, without any empirical study. This means

the finding of this study can be placed for further empirical findings.

69

5.1.3 Hypothesis 3: Fear can affect the academic success of programming

students

This study found that fear and academic success in programming course are

negatively related. This implies that increase in fear leads to decrease in academic

success in programming course, and vice versa. Also recorded, with the regression

result is that fear does not have effect on academic success of programming course.

To the best knowledge of the researcher, no empirical study has been instituted in

this direction. Robins et al. (2003a) and Mead et al. (2006) only reported that the

fear of computer science and information technology courses have been recorded to

be responsible for high rate of attrition in these courses.

5.1.4 Hypothesis 4: OOP concepts can affect the academic success of

programming students

The finding of this study reveals that having a grasp of OOP concepts is

related to students’ academic success. The regression analysis also showed that it

affects academic success of programming course. Abstraction (Sebesta, 2004) and

polymorphism (Weiss, 2000;Rosson & Alpert, 1990) are the key leading OOP

concepts identified. There are no empirical findings to support this proposition

extensively, however, reports of Object Management Group (2003) and Alphonce

and Ventura (2002) suggested that the use of diagrammatic representations can help

students improve their understanding of OOP, and UML or other analogous

notations are also recommended.

70

5.1.5 Hypothesis 5: Motivation can affect the academic success of programming

students.

This study found that motivation is highly related to academic success of

programming course. The regression analysis also showed that it affects academic

success of programming course. This finding aligns with studies of Gomes and

Mendes (2007), Jenkins (2002), Robins et al. (2003b) and Simon et al. (2006). While

Carbone, Hurst, Mitchell, and Gunstone (2009) explanation was basically on the

categorization of motivation into externally motivated (i.e., passing the course) or

achievement-motivated (i.e., obtaining higher marks), Helme and Clarke (2009)

stated that students need motivation (the will to learn) and skills (capability) in order

to be successful in their respective fields. Therefore, it is recommended that

programming language educators and instructors should find ways of motivating the

students, so as to enhance their performance.

5.1.6 Hypothesis 6: Course evaluation (which include: lectures, laboratory

work, tutorials, and assignments) can affect the academic success of

programming students

This study found that course evaluation is related to academic success of

programming course and the regression result also showed that it affects it. To the

best knowledge of the researcher, no study has ever empirically tested this

relationship. Souza et al., (2008) was said to have observed that programming

students learning activities affects the instructors’ attention to course evaluation.

(Jenkins, 2002) reported that instructors may not be paying attention to their students

and not addressing their learning styles had been posing additional problems.

71

5.1.7 Hypothesis 7: Mathematical aptitude can affect the academic success of

programming students

This study found that mathematical aptitude is related to academic success of

programming course. The regression analysis also showed that it affects academic

success of programming course. Findings of Patil (2009) stated that students

admitted with passing level in mathematics aptitude show significant effects in

development factors as well as programming skills, and Jenkins (2002) also argued

that students who find programming difficult are simply and solely those for whom

programming is difficult. Although none of their positions is empirically backed, it

points to the fact the result of this study align with their propositions on the effect of

mathematical aptitude on the academic success in programming courses. This can be

further understood considering that Mathematics is a prerequisite for admission to

study Computer science in the university. Also, there are courses of mathematical

background that usually helps in the understanding of programming logic. These

explain why mathematical aptitudes could have effect on academic success in

programming language.

72

5.2 Conclusion

With the highlights from the literature review and the outlined previous

studies’ findings that are related to the objectives of this study, the data analysis duly

accomplished the hypotheses testing stage, though with varying results. From the

result of the correlation testing as shown previously, this study found that all the

factors studied, i.e. teaching tools, previous programming experience, fear, OOP

concepts, motivation, course evaluation, and mathematical aptitudes are related with

academic success in programming course, with fear as the only variable that is

negatively related. The regression analysis to investigate the effect of the elicited on

independent variables on the dependent variable and independent t-test revealed that

previous experience and fear do not affect academic success in programming. This

made hypotheses 1, 4, 5, 6 and 7as the accepted ones, while hypotheses 2 and 3 are

not accepted.

From the earlier posed research questions and their corresponding research

objectives, literature review reveals teaching tools, previous programming

experience, fear, OOP concepts, motivation, course evaluation, and mathematical

aptitudes as factors that may affect academic success of students in computer

programming. These elicited factors amount to the development of computer

programming students’ success model presented in figure 2.3. Thereafter, the

evaluation of this model is done through the outlined data analysis processes and

hypotheses testing methods. The findings of the study however state that the earlier

listed factors affect academic success in programming course, but previous

experience and fear do not. H2 and H3 are not accepted probably because most of

the participants’ age were 31 years old and above, which means that the fear does not

really contribute as the main predictor on academic success in computer

73

programming. In addition, most of them have previous experience with other

programming languages. However, they still struggle for getting high performance in

programming course. Consequently, there is no different between the group with or

without previous experience.

In conclusion, empirical findings presented by this study established the

effect relationship between teaching tools, OOP concepts, motivation, course

evaluation, and mathematical aptitudes and fear with academic success in

programming.

5.3 Contribution of the Study

Theoretically, this study has presented an updated success model for

measuring students’ academic success. This model as presented in figure 5.1 shows

the antecedents factors that lead to academic success. It is adaptable and adoptable

for future studies investigating academic success generally. The model has been able

to be supported by findings of some previous studies, and equally presented findings

that are new, therefore require further studies. Practically, the findings of this study,

most especially the factors identified by the empirical findings can be implemented

so as to improve the academic performance of student in programming courses.

This findings presented by this study will guide policy makers, educators and

IT training in academics and industry in formulating policies, education curriculum

and teaching modules. In such case, the factors identified to have effect on academic

success of programming language will be taken into consideration in policy

implementation so as to enhance students’ academic success. It is opined that doing

this will positively contribute to the students’ performance improvement in computer

programming courses.

74

5.4 Limitations of the Study

This study focuses solely on the student’s perceptions to identify the factors

that lead to academic success instead of their performance which can also contribute

as a moderate variable. While, teacher’s perceptions also can aim to generate

different factors that impact on the learning process. Unfortunately, due the time

constraints and financial aspects led to a narrowing of the scope of this research.

This was confirmed by Sekaran (2003) and Creswell (2009), where referred that, the

time, cost and willingness of the participants important criteria for researcher to

identify the scope.

5.5 Recommendation for Future Study

Since research is naturally in continuum, the end of a study signifies the

continuation of another one. This study, as instructing as its findings are further

suggested future study that will investigate the possible interplay of some variables

as mediators and/or moderators in the cause of academic success in computer

programming course. Also recommended is the employment of more sophisticated

statistical tool like structural equation model using AMOS or PLS-R. Grounding the

findings through more sophisticated tools will also add to the strength of the

findings.

75

5.6 Summary

This chapter is the end of this study’s report. It concludes the findings

presented by this study as detailed and duly marshaled to address the objective of

this study. The comparison of the findings presented by this study with other related

previous studies showed that this study has been able to contribute both theoretically

and practically. Recommendations for further studies are made and the areas are

duly suggested.

76

REFERENCES

Alphonce, C., & Ventura, P. (2002). Object Orientation in CS1-CS2 by Design.

ACM SIGCSE Bulletin, 34(3). doi:10.1145/637610.544437.

Armoni, M., Gordon, M., & Harel, D. (2012). The Effect of Previous Programming

Experience on the Learning of Scenario-Based Programming. In Proceedings of

the 12th Koli Calling International Conference on Computing Education

Research.ACM, 151–159.

Astrachan, & T. Selby, J. U. (2006). An object-oriented, apprenticeship approach to

data structures using simulation. In Frontiers in Education Conference, 1996.

FIE'96. 26th Annual Conference., Proceedings of (Vol. 1, pp. 130-134). IEEE.

Atieno, O. (2009). An Analysis of the Strengths and Limitations of Qualitative and

Quantitative Research Paradigms. Problems of Education in the 21st century,

13, 13–18.

Babbie, E. (2010). The Practice of Social Research,12th Edition. Wadsworth

Cengage Learning, USA.

Bailie, F. (2003). Objects First - Does It Work ? Journal of Computing in Small

Colleges, 19(2), 303–305.

Bennedsen, J., & Caspersen, M. E. (2006). Abstraction ability as an indicator of

success for learning object-oriented programming? ACM SIGCSE Bulletin,

38(2), 39. doi:10.1145/1138403.1138430.

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory

programming. ACM SIGCSE Bulletin, 39(2), 32.

doi:10.1145/1272848.1272879.

Bennett, G., Fisher, M., & Lees, B. (2011). Object-Oriented Programming with

Objective-c. In Objective-C for Absolute Beginners, 87–102.

77

Bergin, S., & Reilly, R. (2005a). Programming : Factors that Influence Success. In

ACM SIGCSE Bulletin, 411–415.

Bergin, S., & Reilly, R. (2005b). The influence of motivation and comfort-level on

learning to program. In Proceedings of the PPIG, (June), 293–304.

Biddle, R., & Tempero, E. (1998). Java Pitfalls for Beginners. SIGCSE Bulletin,

30(2), 48–52.

Biju, S. M. (2013). Difficulties in understanding object oriented programming

concepts. In Innovations and Advances in Computer, Information, Systems

Sciences, and Engineering (pp. 319-326). Springer New York.

Black, A. P., Bruce, K. B., Homer, M., Noble, J., Yannow, R., Weishaupt, A., &

Hazlitt, W. (2013). Seeking Grace : A new object-oriented language for

novices. In Proceeding of the 44th ACM Technical Symposium on Computer

Science Education, 129–134.

Blackwell, A. F. (1996). Metacognitive theories of visual programming: what do we

think we are doing? Proceedings IEEE Symposium on Visual Languages, 240–

246. doi:10.1109/VL.1996.545293.

Bougie, R., & Sekaran, U. (2010). Research methods for business (5th ed.). West

Sussex, United Kingdom: John Wiley & Sons Ltd.

Bruce, C., Buckingham, L., Hynd, J., Mcmahon, C., Roggenkamp, M., & Stoodley,

I. (2004). Ways of Experiencing the Act of Learning to Program : A

Phenomenographic Study of Introductory Programming Students at University.

Journal of Information Technology Education, 3, 143-160. Retrieved from

http://www.jite.org/documents/Vol3/v3p143-160-121.pdf on 3rd February,

2014.

Bruce, K. B. (2005). Controversy on how to teach CS 1: A discussion on the

SIGCSE-members mailing list. SIGCSE Bulletin (Association for Computing

Machinery, Special Interest Group on Computer Science Education), 37(2),

111–117.

78

Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., & Miller, P. (1997).

Mini-languages: a way to learn programming principles. Education and

Information Technologies, 83, 65–83.

Bryman, A. (2004). Social research methods. New York: Oxford University Press

Inc.

Burkhardt, J., Détienne, F., Wiedenbeck, S., Voluceau, D. De, & Chesnay, L. (1997).

Mental Representations Constructed by Experts and Novices in Object-Oriented

Program Comprehension. In Human-Computer Interaction INTERACT’97, pp.

339-346). Springer US., 339–346.

Burns, R. B. (1997). “Introduction to Research Methods in Education,” Melbourne,

Victoria: Longman Cheshire.

Burton, P. J., & Bruhn, R. E. (2003). Teaching Programming in the OOP, ERA,

35(2), 111–114.

Butler, M., & Morgan, M. (2007). Learning challenges faced by novice

programming students studying high level and low feedback concepts. In

Proceedings of Ascilite, 99–107.

Byrne, M. D., Catrambone, R., & Stasko, J. T. (1999). Evaluating animations as

student aids in learning computer algorithms. Computers & Education, 33(4),

253–278. doi:10.1016/S0360-1315(99)00023-8.

Byrne, P., & Lyons, G. (2001). The effect of student attributes on success in

programming. Proceedings of the 6th Annual Conference on Innovation and

Technology in Computer Science Education - ITiCSE ’01, 49–52.

doi:10.1145/377435.377467.

Carbone, A., & Hurst, J. (2009). An E xploration of I nternal F actors I nfluencing S

tudent L earning of P rogramming. Proceedings of the Eleventh Australasian

Conference on Computing Education, 95(Ace), 25–34.

79

Carbone, A., Hurst, J., Mitchell, I., & Gunstone, D. (2009). An exploration of

internal factors influencing student learning of programming. In Proceedings of

the Eleventh Australasian Conference on Computing Education . Australian

Computer Society, Inc.., 95, 25–34.

Carlisle. (2009). Raptor: A Visual Programming Environment For Teaching Object-

Oriented Programming*. Journal of Computing Sciences in Colleges, 24, 275–

281.

Caspersen, M. E., Kölling, M., Ct, K., & Beck, K. (2006). A Novice ’ s Process of

Object-Oriented Programming. Companion to the 21st ACM SIGPLAN

Symposium on Object-Oriented Programming Systems, Languages, and

applications,ACM, 892–900.

Cheney, E. E. W., & Kincaid, D. R. (2012). Numerical mathematics and computing.

Cengage Learning.

Clark, D., MacNish, C., & Royle, G. F. (1998). Java as a teaching language—

opportunities, pitfalls and solutions. In Proceedings of the 3rd Australasian

Conference on Computer Science education,ACM, 173–179.

Close, D. Kopec, and J. A. (2000). CS1: Perspectives on Programming Languages

and the Breadth-First Approach. In Proceedings of the 5th Annual CCSC

Northeastern Conference on Computing in Small Colleges, 1–7.

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching objects-first in introductory

computer science. ACM SIGCSE Bulletin, 35(1), 191.

doi:10.1145/792548.611966

Costa, C. J., Iscte, A., & Pierce, R. (2009). Evaluating Information Sources for

Computer Programming Learning and Problem Solving. In Proceedings of the

9th WSEAS International Conference on APPLIED COMPUTER SCIENCE,

218–223.

Crawford, S. & Boese, E. (2006). ActionScript: a gentle introduction to

programming. Journal of Computing Sciences in Colleges, 21(3), 156–168.

80

Dehnadi, S., & Bornat, R. (2006). The Camel Has Two Humps (working title).

Middlesex University, UK. 1–21.

Eckerdal, A., Box, P. O., & Thun, M. (2005). Novice Java programmers' conceptions

of object and class, and variation theory. In ACM SIGCSE Bulletin (Vol. 37,

No. 3, pp. 89-93).

Eckerdal. (2006). Novice Students ’ Learning of Object-Oriented Programming.

El-Zakhem, I., & Melki, A. (2013). Difficulities In Learning Programming

LanguagesAmong Freshman Students. INTED2013 Proceedings, 1202–1206.

Entwistle, N. (1998). Motivation and approaches to learning: motivation and

conceptions of teaching. In: Brown, S., Armstrong, S., Thompson, G. (Eds.),

Motivating Students. Kogan Page, London, United Kingdom.

Floyd, B., & London, R. (1970). I . Notes on Structured Programming:

Technological University Eindhoven.

Garner, S. K. (2001). Cognitive load reduction in problem solving domains.

Garner, S., Haden, P., & Robins, A. (2005). My Program is Correct But it Doesn ’ t

Run: A Preliminary Investigation of Novice Programmers ’ Problems. In

Proceedings of the 7th Australasian Conference on Computing Education, 42,

173–180.

Garrido, J. M. (2004). Object-Oriented Programming: From Problem Solving to

Java. Firewall Media.

Georgatos (2008). How applicable is Python as first computer language for teaching

programming in a pre-university educational environment, from a teacher's

point of view?. arXiv preprint arXiv:0809.1437.

Gomes, A., & Mendes, A. J. (2007). Learning to program - difficulties and solutions.

In International Conference on Engineering Education–ICEE.

81

Graf, S., Lan, C. H., & Liu, T.-C. (2009). Investigations about the Effects and

Effectiveness of Adaptivity for Students with Different Learning Styles. 2009

Ninth IEEE International Conference on Advanced Learning Technologies,

415–419. doi:10.1109/ICALT.2009.135

Gries, D. (1974). What should we teach in an introductory programming course?

SIGCSE ’74: Proceedings of the Fourth SIGCSE Technical Symposium on

Computer Science Education.

Grinnell, R. jr. (ed.). (1993). Social Work, Research and Evaluation”, (4th ed),

Illinois, F.E Peacock Publishers.

Grogono. (1989). Comments, assertions and pragmas. ACM SIGPLAN Notices,,

24(3), 79–84.

Gross, P. & Powers, K. (2005). Evaluating assessments of novice programming

environments. Proceedings of the 2005 International Workshop on Computing

Education Research ICER ’05, 99–110.

Guthrie, R., Yakura, E., & Soe, L. (2011). How Did Mathematics and Accounting

Get So Many Women Majors ? What Can IT Disciplines Learn?, 1886(909),

15–19.

Hadjerrouit, S. (1998). Java as First Programming Language: A Critical Evaluation,

30(2).

Hadjerrouit, S. (1998). Java as First Programming Language: A Critical Evaluation,.

ACM SIGCSE Bulletin, 30(2), 43–47.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E. &Tattam, R. L. (2010).

Multivariate Data Analysis (7th ed.), New Jersey: Pearson Education Inc.

Hardy, C., Heeler, P., & Brooks, D. (2006). Are High School Graduates

Technologically Ready For Post-Secondary Education? Journal of Computing

Sciences in Colleges, 21(4), 52–60.

82

Hasan, N. M. and Y. (2001). Challenges in teaching java technology. Informing Sci.,

365–371.

Havenga, H. M. (2006). An Investigation Of Students ’ Knowledge , Skills And

Strategies During Problem Solving In Object-Oriented Programming.

Havenga, M., Mentz, E., & De Villiers, R. (2008). Knowledge, skills and strategies

for successful object-oriented programming: a proposed learning repertoire.

South African Computer Journal, 42, 1–8.

Helme & Clarke. (2009). Identifying cognitive engagement in the mathematics

classroom. Mathematics Education Research Journal, 13, 133–153.

Helme, S. U. E., & Clarke, D. (2001). Identifying cognitive engagement in the

mathematics classroom. Mathematics Education Research Journal, 131–153.

Henderson, R., & Zorn, B. (1994). A Comparison of Object-oriented Programming

in Four Modern Languages, 24(June), 1077–1095.

Herman, N. S., & Salam, S. B. (2011). A Study of Tracing and Writing Performance

of Novice. In Software Engineering and Computer Systems . Springer Berlin

Heidelberg., 557–570.

 Holden, Ronald B. (2010). "Face validity". In Weiner, Irving B.; Craighead, W.

Edward. The Corsini Encyclopedia of Psychology (4th ed.). Hoboken, NJ:

Wiley. pp. 637–638. ISBN 978-0-470-17024-3.

Holland, S., Griffiths, R., Woodman, M., Hall, W., Keynes, M., & Kingdom, U.

(1997). Avoiding Object Misconceptions. In ACM SIGCSE Bulletin, 29, 131–

134.

Hossein, S. (2007). Response modeling in direct marketing. Master thesis,

Department of business administration and social science, University of

Technology, Iran.

http://books.google.com/books?id=pa5vKqntwikC&pg=PA637
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-470-17024-3

83

Howles, T. (2007). Preliminary Results Of A Longitudinal Study Of Computer

Science Student Trends, Behaviors and Preferences. Journal of Computing

Sciences in Colleges, 22, 18–27.

Jenkins, T. (2001a). Teaching programming–A journey from teacher to motivator.

Paper Presented at the The 2nd Annual Conference of the LSTN, Center for

Information and Computer Science.

Jenkins, T. (2001b). The motivation of students of programming. ACM SIGCSE

Bulletin, 33(3), 53–56.

Jenkins, T. (2002). On the difficulty of learning to program. In Proceedings of the

3rd Annual Conference of the LTSN Centre for Information and Computer

Sciences, 53–58.

Kaplan, R., & Sacuzzo, D. (2008). Psychological Testing: Principles, applications

and Issues, Brooks Cole. Pacific Grove, CA.

Kerlinger, F. N. (1986). Foundation of Behavioral Research, 3th edition. New York:

Holt, Rinehart & Winston.

Kidder, L. H., & Judd, C. M. (1986). Research methods in social relations (5th ed.).

New York: Holt, Rinehart and Winston.

Kimberly A. Barchard. (2003). Does Emotional Intelligence Assist in the Prediction

of Academic Success? Educational and Psychological Measurement; 6(3), 840-

858.

Kölling, M. (1999). The problem of teaching object-oriented programming. In ACM

Sigplan Notices, 11(8), 8–15.

Kölling. (2003). The BlueJ system and its pedagogy 1. Computer Science Education,

13(4),1–12.

Kumar, R. (2011). Research methodology: A step-by-step guide for beginners (3rd

ed.).Thousand Oaks, CA: SagePublications Inc.

84

Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-M. (2005). A study of the difficulties of

novice programmers. ACM SIGCSE Bulletin, 37(3), 14.

doi:10.1145/1151954.1067453

Lakshman, M., Sinha, L., Biswas, M., Charles, M., & Arora, N. K. (2000).

Quantitative Vs qualitative research methods. The Indian Journal of Pediatrics,

67(5), 369–377. doi:10.1007/BF02820690

Li, T., Liu, W., Mao, X., & Zhou, H. (2013). Introduction to Programming : Science

or Art? In Proceedings of the 18th ACM Conference on Innovation and

Technology in Computer Science Education, 4503.

Macklem, Gayle L. (1990). Measuring aptitude. Practical Assessment, Research &

Evaluation, 2(5).

Madden, M., & Chambers, D. (2002a). Evaluation of Student Attitudes to Learning

the Java Language. In Proceedings of the inaugural conference on the

Principles and Practice of programming, 2002 and Proceedings of the second

workshop on Intermediate representation engineering for virtual machines, (pp.

125-130). National University of Ireland.

Madsen, O. L., & Møller-Pedersen, B. (1988). What object-oriented programming

may be-and what it does not have to be. In ECOOP’88 European Conference

on Object-Oriented Programming (pp. 1-20). Springer Berlin Heidelberg.

Mason, R. (2012). Designing introductory programming courses: the role of

cognitive load.

Mason, R., Cooper, G., & Raadt, M. De. (2012). Trends in Introductory

Programming Courses in Australian Universities – Languages , Environments

and Pedagogy. Computing Education Conference (ACE2012), 123, 33–42.

Matravers, J. (2011). Introduction to computer systems architecture and

programming. University of London.

85

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B., &

Al., E. (2001). A multi-national, multi-institutional study of assessment of

programming skills of first-year CS students. SIGCSE Bulletin (Association for

Computing Machinery, Special Interest Group on Computer Science

Education), 33(4), 125–180.

Mcgettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, G., & Mander, K. (2005).

Grand Challenges Education. The Computer Journal, 48(1), 49–52.

McGettrick. (2005). Grand challenges in computing: Education--A summary. The

Computer Journal,, 48(1), 42–48.

Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., Clair, C. St., & Thomas, L.

(2006). A cognitive approach to identifying measurable milestones for

programming skill acquisition. In ACM SIGCSE Bulletin, 38, 182–194.

doi:10.1145/1189215.1189185

Mills, H. D. (1972). Mathematical Foundations for Structured Programming.

Milne, I., & Rowe, G. (2002). Difficulties in Learning and Teaching Programming

— Views of Students and Tutors. Education and Information Technologies, 55–

66.

Moderator, O. A., Koffman, E., Kölling, M., & Reges, S. (2005). Resolved : Objects

Early Has Failed. In ACM SIGCSE Bulletin, 37, 451–452.

Mody, R. P. (1991). C in education and software engineering. ACM SIGCSE

Bulletin, 23(3), 45–56. doi:10.1145/126459.126471

Mow, I. T. C. (2008). Issues and difficulties in teaching novice computer

programming. In Innovative Techniques in Instruction Technology, E-learning,

E-assessment, and Education (pp. 199-204). Springer Netherlands.

Nikishkov, G. P., Nikishkov, Y. G., & Savchenko, V. V. (2003). Comparison of C

and Java Performance in Finite Element Computations. Computers &

Structures, 81(24), 2401–2408.

86

Notani, A. S. (1998). Moderators of perceived behavioural control’s predictiveness

in the theory of planned behaviour: A meta-analysis. Journal of Consumer

Psychology, 7(3), 247–271.

Object Management Group. (2003). Unified Modeling Language Specification.

Version 1.5 March 2003, Doc. Number formal/03-03-01.

Pair, C. (1993). Programming, programming languages and programming methods.

Psychology of Programming, 9-19.

Pallant, J. (2003). SPSS survival manual: A step by step guide to data analysis using

SPSS for Windows (Version 10). Australia: Allen & Unwin.

Pallant, J. (2011). For the SPSS Survival Manual website , go to

www.allenandunwin.com/spss This is what readers from around the world say

about the SPSS Survival Manual.

Patil, P. S. P. (2009). The effect of developments in student attributes on success in

Programming of management students. In Education Technology and

Computer, 2009. ICETC’09. International Conference on IEEE., 191–193.

doi:10.1109/ICETC.2009.35

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Uni, J. M., … Paterson,

J. (2007). A Survey of Literature on the Teaching of Introductory Programming.

In ACM SIGCSE Bulletin, 39(4), 204–223.

Pejcinovic, Holtzman, M., Chrzanowska-Jeske, & W. (2013). Just because we teach

it does not mean they use it: Case of programming skills. In Frontiers in

Education Conference, 1287–1289.

Poo, D. C., Kiong, D. B. K., & Ashok, S. (2007). Object-Oriented Programming and

Java (2nd Editio). Springer.

Powers, K., Gross, P., Cooper, S., McNally, M., Goldman, K. J., Proulx, V. &

Carlisle, M. (2006). Tools for teaching introductory programming: what works?

ACM SIGCSE Bulletin , Proceedings of the 37th SIGCSE Technical Symposium

on Computer Science Education SIGCSE ’06, 38(1), 560–561.

87

Quenemoen, R., Thompson, S. & Thurlow, M. (2003). Measuring academic

achievement of students with significant cognitive disabilities: Building

understanding of alternate assessment scoring criteria(Synthesis Report 50).

Minneapolis, MN: University of Minnesota, National Center on Educational

Outcomes.

Reis, C., Tx, H., & Cartwright, R. (2004). Taming a Professional IDE for the

Classroom. In ACM SIGCSE Bulletin, 36, 156–160.

Renumol, V. G., Jayaprakash, S., & Janakiram, D. (2009). Classification of

Cognitive Difficulties of Students to Learn Computer Programming. Indian

Institute of Technology, India.

Rinard, M. C., Scales, D. J., & Lam, M. S. (1993). Jade: A High-Level , Language

for Parallel Programming,26, 28–28.

Robins, A., Rountree, J., & Rountree, N. (2003a). Learning and Teaching

Programming: A Review and Discussion. Computer Science Education, 13(2),

137–172. doi:10.1076/csed.13.2.137.14200

Robins, A., Rountree, J., & Rountree, N. (2003b). Learning and Teaching

Programming: A Review and Discussion. Computer Science Education, 13(2),

137–172. doi:10.1076/csed.13.2.137.14200

Rogerson, C., & Scott, E. (2010). The Fear Factor: How It Affects Students Learning

to Program in a Tertiary Environment. Journal of Information Technology

Education.

Rosson, M. B., & Alpert, S. R. (1990). The cognitive consequences of object-

oriented design. Human-Computer Interaction, 5(4), 345–379.

Rowe, I. M. and G. (2002). Difficulties in learning and teaching programming-

Views of students and tutors. J. Edu. & Info. Tech., 7, 55–66.

88

Sajaniemi, J., & Kuittinen, M. (2003). Program animation based on the roles of

variables. Proceedings of the 2003 ACM Symposium on Software Visualization

- SoftVis ’03, 7. doi:10.1145/774834.774835

Satzinger, J.W. & Ørvik, T. U. (2001). The Object-Oriented Approach. Concepts,

System Development, and Modeling with UML.

Saunders, M., Lewis, P., & Thronhill, A. (2003). Research method for business

students (3 ed). England: Person Education Limited.

Schach, S. R. (2005). Object-Oriented and Classical Software Engineering. (6th

ed.). Boston: McGraw-Hill.

Schreiner, w. (2011). Introduction to Programming (pp. 1–156).

Schulte, C., & Bennedsen, J. (2006). What do teachers teach in introductory

programming? In Proceedings of the Second International Workshop on

Computing Education Research ACM, p 17–28.

Sebesta, R. W. (2004). Concepts of Programming Languages. (6th ed.). Boston:

Pearson Addison Wesley.

Sekaran, U. (2003). Research Methods for Business: A skill building approach. John

Wiley and Sons Inc., New York.

Sekaran, U., & Bougie, R. (2009). Research methods for business: A skill building

approach. Wiley: London.

Sekaran, U., & Bougie, R. (2010). Research methods for business: A skill building

approach. Wiley.

Sharp & Schultz. (2013). An Exploratory Study of the use of Video as an

Instructional Tool in an Introductory C# Programming Course. Information

Systems Education, 11(6).

Sicilia, M.-Á. (2006). Strategies for teaching object-oriented concepts with Java.

Computer Science Education, 16(1), 1–18. doi:10.1080/08993400500344431

89

Simon, S., Fincher, S., Robins, A., Baker, B, Box, I., Cutts, Q., de Raadt., M.,

Haden, P., Hamer, J., H., & M., Lister, R., Petre, M., Sutton, K., Tolhurst, D., &

Tutty, J. (2006). Predictors of Success in a First Programming Course. In

Proceedings of the 8th Australasian Conference on Computing Education, 52,

189–196.

Singer, Wing Hang Li , David R. White, J. (2013). JVM-Hosted Languages: They

Talk the Talk, but do they Walk the Walk? In Proceedings of the 2013

International Conference on Principles and Practices of Programming on the

Java Platform: Virtual Machines, Languages, and Tools,ACM, 101–112.

Sivasakthi, M., & Rajendran, R. (2011a). Learning difficulties of “ object-oriented

programming paradigm using Java ”: students ’ perspective. Indian Journal of

Science and Technology, 4(8), 983–985.

Sivasakthi, M., & Rajendran, R. (2011b). Learning difficulties of “ object-oriented

programming paradigm using Java ”: students ’ perspective. Indian Journal of

Science and Technology, 4(8), 983–985.

Smith, H. W. (1991). Strategies of social research: Holt, Rinehart and Winston.

Smith. (2012). Research Methodology: A Step-by-step Guide for Beginners.

Soloway, S. and. (1989). Studying the novice programmer. Hillsdale, New Jersey,

United States: Lawrence Erlbaum.

Souza, D. D., Hamilton, M., Thevathayan, C., Harland, J., Walker, C., & Muir, P.

(2008). Transforming Learning of Programming: A Mentoring Project. In

Proceedings of the Tenth Conference on Australasian Computing Education,

78, 78–84.

Stroustrup, B. (1991). What is "Object-Oriented Programming"?(1991 revised

version).

Tabachink, B. G. &Fidell, L. S. (2006). Using Multivariate Statistics (5th Ed.), USA:

Pearson Education Inc.

90

Thompson, P. (1995). Constructivism in education (p. 159). Hillsdale, NJ: Lawrence

Erlbaum.

Turner, J. A., & Zachary, J. L. (2001). Javiva: A Tool for Visualizing and Validating

Student-Written Java Programs. In ACM SIGCSE Bulleti, 33(1), 45–49.

Ulloa, M. (1980). Teaching and learning computer programming: a survey of student

problems, teaching methods, and automated instructional tools. ACM SIGCSE

Bulletin, 12(2), 48–64.

Von Wangenheim, C. G., & Shull, F. (2009). voice of evidence. IEEE, 26(2), 92–94.

VRajaraman. (1998). Programming Languages.

http://ezproxy.unimap.edu.my:Comparison and Classification of Programming

Languages (Springer), 1–12.

Weisfeld, M. (2004). The Object-Oriented Thought Process. (2nd ed.).Developer’s

Library.

Weiss, M. A. (2000). Data structures and problem solving using Java. ACM SIGACT

News, 29(2), 42–49. doi:10.1145/288079.288084

Wenger, E. (1998). Communities of practice: Learning as A social practice. The

Systems Thinker, 9(5).

Wiedenbeck, S. (2005). Factors affecting the success of non-majors in learning to

program. Proceedings of the 2005 International Workshop on Computing

Education Research - ICER ’05, 13–24. doi:10.1145/1089786.1089788

Wiedenbeck, S. et al. (1999). A comparison of the comprehension of object-oriented

and procedural programs by novice programmers. Interacting with Computers,

11, 255–282.

Wiedenbeck, S., & Labelle, D. (2004). Factors Affecting Course Outcomes in

Introductory Programming, (April), 97–110.

91

Williams, K. C., & Williams, C. C. (2011). Five key ingredients for improving

student motivation. Research in Higher Education Journal, 1–23.

Wilson, B. C., & Shrock, S. (2001). Contributing to Success in an Introductory

Computer Science Course : A Study of Twelve Factors. In ACM SIGCSE

Bulletin, 33, 184–188.

Wit, K. De, Heerwegh, D., & Verhoeven, J. C. (2012). Do ICT Competences

Support Educational Attainment at University? Journal of Information

Technology Education: Research 11. Available at

http://www.jite.org/documents/Vol11/JITEv11p001-025DeWit1037.pdf

[Accessed 22-05-2012], 11.

Xinogalos, S., Sartatzemi, M., & Dagdilelis, V. (2006). Studying Students ’

Difficulties In An Oop Course Based On Bluej. In IASTED International

Conference on Computers and Advanced Technology in Education, 82–87.

Yau, J. Y., & Joy, M. (2004). Introducing Java: the Case for Fundamentals-first.

Zdancewic& Weirich. (2013). Programming Languages and Techniques.University

of Pennsylvania, 1–387.

Zikmund, W., Babin, B., Carr, J., & Griffin, M. (2010). Business research methods

South-Western Cengage: Canada.

