STUDENT SUCCESS MODEL IN PROGRAMMING COURSE:
A CASE STUDY IN UUM

SALAM ABDULABBAS GHANIM

MASTER OF DEGREE
UNIVERSITI UTARA MALAYSIA
2014

STUDENT SUCCESS MODEL IN PROGRAMMING COURSE:
A CASE STUDY IN UUM

A thesis submitted to Dean of Awang Had Salleh Graduate School in
Partial Fulfillment of the Requirements for the Degree
Master of Science of Information Technology

University Utara Malaysia

By
Salam Abdulabbas Ghanim

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree
from Universiti Utara Malaysia, | agree that the Universiti Library may make it
freely available for inspection. | further agree that permission for the copying of this
thesis in any manner, in whole or in part, for scholarly purpose may be granted by
my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate
School of Arts and Sciences. It is understood that any copying or publication or use
of this thesis or parts thereof for financial gain shall not be allowed without my
written permission. It is also understood that due recognition shall be given to me
and to Universiti Utara Malaysia for any scholarly use which may be made of any

material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences
UUMCollege of Arts and Sciences

Universiti Utara Malaysia

Abstrak

Kesukaran dan kerumitan dalam pengaturcaraan komputer telah dianggap sebagai
punca kadar kegagalan dan keciciran yang tinggi. Pengaturcaraan telah dianggap
oleh pelajar novis dan pertengahan, malah pelajar cemerlang juga sebagai satu
kursus yang memerlukan kaedah pembelajaran yang pelbagai dengan menghasilkan
dapatan yang pelbagai. Faktor-faktor kejayaan kursus pengaturcaraan di institusi
pengajian tinggi telah dikaji. Rekod di Universiti Utara Malaysia (UUM)
menunjukkan 38% dari pelajar semester satu ijazah sarjanamuda yang mengambil
kursus pengaturcaraan dalam tahun 2013 telah gagal. Ini merupakan motivasi bagi
kajian ini, yang meletakkan matlamat untuk mengenalpasti faktor praktikal yang
mempengaruhi kejayaan dalam kursus pengaturcaraan, dan untuk menokok dapatan
teoritikal di kalangan dapatan-dapatan sediaada oleh kajian lain. Kaedah kuantitatif
telah digunakan, dengan mendapatkan data dari 282 responden yang telah
disampelkan di kalangan pelajar sarjanamuda dan sarjana Teknologi Maklumat (IT)
dan Teknologi Komunikasi dan Maklumat (ICT). Setelah data ditapis dan
dibersihkan, dengan empat rekod yang mengandungi data terpencil dihapuskan dari
senarai, ujian-T bebas, korelasi, dan regresi dijalankan bagi menguji hipotesis yang
telah dibentuk. Dapatan dari Korelasi Pearson menunjukkan alatan pengajaran,
konsep OOP, motivasi, penilaian kursus, dan keupayaan matematika mempunyai
hubungan positif dengan pencapaian akademik. Manakala, ketakutan mempunyai
hubungan yang negatif. Analisis regresi seterusnya menunjukkan hubungan adalah
kuat, kecuali hubungan negatif iaitu ketakutan dengan pencapaian akademik. Ujian-
T bebas pula membuktikan perbezaan antara kumpulan yang telah mempunyai
pengalaman dan yang belum mempunyai pengalaman tidak wujud.

Keywords: Pengaturcaraan berasaskan objek, Java, kesukaran pengaturcaraan,
pembelajaran, faktor

Abstract

The complexity and difficulty ascribed to computer programming has been asserted
to be the causes of its high rate of failure record and attrition. It is opined that
programming either to novice, middle learner, and the self-branded geeks is always a
course to be apprehensive of different studies with varying findings. Studies on
factors leading to the success of programming course in higher institution have been
carried out. The record at Universiti Utara Malaysia (UUM) shows that 38% of
semester one undergraduate students failed the programming course in 2013. This
really motivates this study, which aims at investigating the practical factors affecting
the success of programming courses, and to position its’ theoretically findings to
complement the existing findings. Data were gathered using a quantitative approach,
in which a set of questionnaire were distributed to 282 sampled respondents, who are
undergraduate and postgraduate students of Information Technology (IT) and
Information and Communication Technology (ICT). Having screened and cleaned
the data, which led to the deletion of four outlier records, independent T-test,
correlation, and regression were run to test the hypotheses. The results of Pearson
correlation test reveal that teaching tools, OOP concepts, motivation, course
evaluation, and mathematical aptitude are positively related to academic success in
programming course, while fear is found to be negatively related. In addition, the
regression analysis explains that all the elicited independent variables except fear are
strongly related. Besides, the independent T-test also discovers no deference between
groups with and without previous programming experience.

Keywords: Object Oriented Programming, Java, programming difficulties, learning,
Factors

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful
Alhamdulillah, all praises to Allah for the strengths and His blessing in completing
this thesis.

Special appreciation goes to my supervisor, Mdm Alawiyah Abd Wahab, for her
supervision and constant support. Her invaluable help of constructive comments and
suggestions throughout the success of this research. This thesis would not have been
possible without her help, support and her patience.

| sincerely thank to my evaluators Dr. Mazni Omar and Ms. Rohaida Romli, for
graciously reviewing this work and giving valuable suggestion and comments on my
work.

My deepest gratitude goes Prof. Dr. Huda (Dean, College of Arts and Sciences), Dr.
Norliza , Dr. Hizbullah and all administrative staff of school of information
technology specially Madam latifah.

I would also like to say a big thanks all UUM lecturers and staff members at the
School of Computing who were kind enough to give me their precious time and
assistance, without which | would not have been able to complete this Master’s
Thesis.

I am indebted and thankful to the Chancellor of University Utara Malaysia who
referred me to valuable e-resources at the Sultanah Bahiyah Library.

Sincere thanks to all my friends especially Nasser Jabir, was always willing to help
and give his best suggestions. | have been a lonely without him, and others for their
kindness and moral support during my study. Thanks for the friendship and
memories.

Last but not the least, | would like to thank my family: my Mother. She was always
there praying me. Also to my elder brothers, and elder sisters. They were always
supporting me and encouraging me with their best wishes. Special thank to my
cousin Mohammed Tuama, Be on the go to do any requirements in my country
when i ask.

Finally, 1 would like to thank my wife for her personal support and great patience at
all times. She was always there stood by me through the good times and bad.

TABLE OF CONTENTS

PErmMISSION t0 USEccviviiiiiiiiiii i i
A 01 1 PSSR i
AADSTTACT ...t bbbt iii
ACKNOWLEDGEMENT ..ottt v
TABLE OF CONTENTS ...ttt bbb \Y
LIST OF FIGURES ...ttt nae e e e annna e IX
LIST OF TABLESottt e e nnee e X
CHAPTER ONE INTRODUCTION ...coiiiiiiieiit ittt 1
1.0 Background of the STUAY.........ccceeiiiiiii e 1
1.1 Problem STatemMENTcc.voiiiieeee e 6
1.2 RESEAIrCN QUESTIONSeeereeieiiieieeie e sie et et e sttt eteaseesneenteeneesreenseaneenneas 8
1.3 RESEAIrCH ODJECHIVEScvieiieciecie ettt are s 8
1.4 Significance of the StUAYcceooiiiiii e 9
1.5 SCOPE OF the STUAY ..o e 9
1.6 Organization of the RESEAICNcooiiiiiii e 10
CHAPTER TWO LITERATURE REVIEWcccccooiiiiiiiiiiee s 12
2.0 INEFOTUCTION ...ttt 12
2.1 ODbject Oriented Programmingccoeeiieeiieiieeiie et 12
2.2 JAVA PrOgrammIiNgcc.ooeiiiiieiieisie ettt 15
2.3 REIALEA WOTKS ...ttt ettt st eeeraesneensesneenrens 18
2.4 Student Success Model in programming Course and Hypothesis........................ 21
2.4.1 Teaching TOOIS......ccoiiiie e 23
2.4.2 Experience with Other Programming Languagescocovervreneneennenn 24
243 FRAN ..ttt re et 25
2.4.4 OOP CONCEPES . ..ctvieitiieiiiie it e sieeesteeesteeesbee s sbe e s srae e e srreessseeeaseeeaseeeannes 26

L ODJECT. .. e 26

[CIASS .o 27

1. Attributes and Methods...........veeevveeee e 27

IV. Constructors and DEeStruCtorsccooveveiereneneneseeeeeeen, 27

V. Abstraction and ASSOCIALIONS..........cccervrrierieiieie e 28
VI.Polymorphism and Dynamic Bindingccccccceevevveieiiennn, 28

2.4.5 MOTIVALION ..ot bbbt 28
2.4.6 COUrSE EVAIUALIONcoiuieiiiie et 29
2.4.7 Student Aptitude in MathematiCccooeiiiiiiiiiiicee e 30

2.5 SUMIMAIY ©oeiiiiieiiiee sttt sttt e st e e sa e e e s nb e e e e bbe e e nbb e e abb e e e bbeeanses 32
CHAPTER THREE RESEARCH METHODOLOGYccccceiviiirieiniieieeee e 33
3.0 INTrOAUCTION ...ttt bbbt 33
3.1 Hypothesis OF the STUYcooiiiiiiiice e 34
3.2 ReSEArCh MEthOU.covieii et 34
3.3 Data COlECLION.eiuieiieieiee et 36
3.3.1 Population and Study SAMPIEcccoeveiieiiiieiecce e 37
3.3.2 Research INStrUMENT.........coov i 38
TR G o 1 o S 1= SO STSS 39

3.4 Validity and Reliabilityccoeiiiiiicciece e 39
AL FACE Valitity ..o 40

3.5 POt TESHING RESUIT ... 41
3.5.1 Reliability Testing RESUITSccooveiiiiiiiiiiisieeee e, 42
3.5.2 Population Distribution of the Pilot Study..........ccccccoovveviiiiiiieeceee, 42

3.6 DAta ANAIYSISecvieiieeiee et 44
3.7 DAta COUING: ...ttt bbbttt bbbt 45
3.7.1 Data Coding for Academic Success in Computer Programming............... 45
3.7.2 Data Coding for MOtIVatION..........cccueiiiiiieieccc e 46
3.7.3 Data Coding FOr FEATccviiie et 46
3.7.4 Data Coding fOr OOP CONCEPLS.....ccveverieriiriesiisiisieeieie et 47
3.7.5 Data Coding for Teaching TOOIS........cccoceririiiiiiiiieeere e, 47
3.7.6 Data Coding for Course Evaluation.............ccccocuvivieiie s 48
3.7.7 Data Coding for Aptitude in MathematiCs...........ccooviviereniniinieee e, 48

3.8 SUMMAIY ..ttt sb bbb e bt e e e bb e e e nbe e e e nbeeeenes 49

CHAPTER FOUR DATA ANALYSIS AND RESEARCH FINDING.................... 50

O L1 oo 0ol o] o OSSOSO 50
4.1 ReSPONAENt Profile ..o 50
4.2 RElIADIILY TOST....ciiiieiicie ettt e re e ae e nreas 52
4.3 DAtA SCIEENING ...ecvveitietieiesteesteee st e ste e e e te s e staesteaseesreesteaseesbaesteenaesraeseaneesreas 53
4.3.1 MISSING DA ..ot 54
4.3.2 DeteCtion OF OULHEIS.......eciiiieiiesie e 54
4.3.3 Normality of the Dataccccoveiiiieiecce e, 54
4.3.4 Homogeneity of the Respondentscccccevvveieeieeiiese e 55
4.4 Testing the Research HYpotheseSccoveiiiie i 55
4.5 SUMIMAIY ...ttt b et b e bbb e n e nne s 64
CHAPTER FIVE CONCLUSION AND RECOMINDATIONcccccoooviiiiieiieeen. 65
5.0 INFOAUCTION ...ttt bbb 65
5.1 DISCUSSION «..vvervetiiesieetie ettt sttt bbbt b b s et e ettt be b e eneeneenens 67
5.1 L HYPOTNESIS ...t 68
5.1.2 HYPOTNESIS 2.ttt 68
5.1.3 HYPONESIS 3.ttt 69
5.1.4 HYPONESIS 4.ttt 69
5.1.5 HYPOTNESIS 5. e 70
5.1.6 HYPOTNESIS B....c.eveiiieisieriee e 70
5.1.7 HYPONESIS 7.ttt 71
5.2 CONCIUSION ..ttt ettt sttt r e sbe e e nreas 72
5.3 Contribution of the STUAY.........cccuoiiiii s 73
5.4 Limitations OF the STUAY ..o s 74
5.5 Recommendation for Future Studycccooeiiieiieiii i 74
5.6 SUMMAIY .ottt e s e e st e e srb e e e ssb e e e nneeeeseeeasneeanses 75
REFERENGCES.ottt e e ree e e e e anneas 76
APPENDIX L.ttt e e e e e e e e e e a e e e raae e 92
APPENDIX 2.ttt et a e rre e 99

vii

APPENDIDIX 3. 101

APPENDIX 4 ... s 103
APPENDIX S s 105
APPENDDX B ... 106

viii

LIST OF FIGURES

Figure 2. 1 The didactic triangle (Diederich, 1988)..........cccccoiiiiiiiriiinieesse e 13
Figure 2. 2 Level of learning difficulties on different topics of Java programming. 17
Figure 2. 3 Factors that may affect the academic success in programming course. 22
Figure 3. 1 The strategies that are adopted in thiS StUAY.ccoceriiiriieiiir e 33
Figure 3. 2 Procedure Of Data COHECTIONccooiiiiiiiiiieiccss e 36
Figure 5. 1 Student SUCCESS MOTEL.coveiiiiiiiie e 66

LIST OF TABLES

Table 3.1 QUESHIONNAITES SOUICESccveiirieiuieiieesieesteesteeste e st e ee e e e e sreeeaeesreeaneas 38
Table 3.2: Reliability Testing ReSUILc.coviiiiiieiiie e 42
Table 3.3: Gender Distribution of the Pilot Studycccccovvveiieiiiecce e, 43
Table 3.4: Course Level Distribution of the Pilot Studyccccooiviiiiiniiiiien 43
Table 3.5: Previous Programming Experience of the Pilot Studyccccceieeneee. 44
Table 3.6: Statistical Analysis technique USEd...........cccevverveiierieeii e 46
Table 3.7: Academic Success in Computer Programmingccccceeveveeveeieeseennenn, 45
Table 3.8: MOTIVALION.oiieieiie et ee e 46
QLI 0 Lo T I T T USSP 46
Table 3.10: JaVa CONCEPLScviiieeieeie ettt sre e e e 47
Table 3.11: Teaching TOOIScveiieieie e 47
Table 3.12: Course EVAlUALION........cccviieiieieeieseee e 48
Table 3.13: Aptitude in MathemMatiCS.........ccoveiiiiieiiie e 48
TADIE 4.1 GENAETottt nes 50
TADIE 4.2 COUISE ..ottt sttt ne e nes 51
TADIE 4.3 AQE ..o 51
Table 4.4 EXPEIIEINCEocuiieiiiiiiieieeie ettt 52
Table 4.5 Reliability TeST......coiiiiee s 53
Table 4.6: Correlation Result for HypothesiS 1cccoveiiiiieiieie e, 56
Table 4.7: Regression Result for Hypothesis L..........ccccvvveiiiieieeie e, 57
Table 4.8: Independent T-test Result for Hypothesis 2 ..., 58
Table 4.9: Correlation Result for Hypothesis 3. 59
Table 4.10: Regression Result for Hypothesis 3. 59
Table 4.11: Correlation Result for HypothesSiS 4ccocoovveiieiiiciie e 60
Table 4.12: Regression Result for Hypothesis 4. 60
Table 4.13: Correlation Result for HypothesiS 5 ... 61
Table 4.14: Regression Result for Hypothesis 5. 61
Table 4.15: Correlation Result for HypothesiS 6ccccovveviiiiiciie e 62
Table 4.16: Regression Result for Hypothesis 6.............ccovviiiiiienenieece 63
Table 4.17: Correlation Result for Hypothesis 7ccccoveviiieiieere e 63
Table 4.18: Regression Result for Hypothesis 7..........ccooeiiiininiiiin e, 64

X

CHAPTER ONE
INTRODUCTION

1.0 Background of the Study

Modern curriculum needs to emphasize the development of programming
skills for citizens of a technological society (Pejcinovic, Holtzman, Chrzanowska, &
Jeske, 2013). Programming is a cognitive activity that requires abstract
representations and logical expressions. The program must translate abstract
representations into correct codes by using a formal language to create, modify,
reuse, or debug a program (Wiedenbeck, 2005). Furthermore, programming is often
viewed as a problem-solving activity rather than a linguistic activity, often ignoring
the fact that programming languages are a case of formal languages. The
interpretation of formal languages is unique for every individual.

Programming skills are an essential part of computer science (CS) and
information technology (IT) courses (Raina Mason, Cooper, & Raadt, 2012). Robins,
Rountree, and Rountree (2003a) argue that programming skills are useful in
programming knowledge and strategies, such as program generation and
comprehension. Programming can also lead to a rewarding career, such as an
analyzer, programmer, or debugger.

Zdancewic and Weirich (2013) state that programming is a conceptual
foundation in the study of computations. Programming is a prerequisite for almost
every other course in CS. Renumol, Jayaprakash, and Janakiram (2009) said that
“programming is the process of writing, testing and debugging of computer

programs using different programming languages.” However, according to

Schreiner (2011), a program is the formal description of a method that solves a
particular problem.

Programming languages have two basic levels: a high-level languages, which
are classified into three groups, namely, procedural (C, C++, Visual Basic, and
Java), non-procedural (LISP and PROLOG), and, problem oriented (MATLAB,
MATHEMATIC, and LATEX); a low-level languages, such as machine language
and assembly language (VRajaraman, 1998). Matravers (2011) argues that the low-
level representation of a central processing unit instruction set is known as the
machine language of a computer. Thus, directly writing instructions in binary form is
difficult.

A programming language is the usual way of presenting a paradigm to allow
the programmer to write a program that solves a certain problem (Rinard, Scales, &
Lam, 1993). A programming language is a formal representation of a program. A
program may be written in different programming languages, similar to a human
thought that may be formulated in different human languages (Grogono, 1989).
According to Li, Liu, Mao, and Zhou (2013), the program derivation process begins
with an informal specification of a given problem. Thereafter, the informal
specification is formalized in terms of pre-conditions and post-conditions.

Teaching programming at the university level has been the basis for many
lively discussions among CS teachers (Moderator, Koffman, Kélling, & Reges,
2005;Bailie, 2003;Bruce, 2005). Furthermore, it is not an easy task (Renumol et al.,
2009). Students typically encounter early challenges when learning programming for
the first time. These difficulties arise because programming is mainly taught by
using an intuitive approach that treats programming more as an art than a science.

Novices learn programming in a “trial and error” or “guess and test” manner. Thus,

novices obtain little confidence on program development and obtain a “fear” of
practicing programming (Li, Liu, Mao, & Zhou, 2013). An individual requires
procedural knowledge in computer programming to write a program. Renumol
(2009) says that knowledge of programming language semantics and syntax, which
requires comprehension and memorization, is necessary. In addition, he stressed that
program design and problem solving skills , which require extra skills such as
domain knowledge, logic, and abstraction, are also needed to be programmer.
Therefore, programming is a difficult undertaking that requires several computer
skills and knowledge. Studies on programming education argue that the dropout and
failure rates of programming courses are comparatively high (Bergin & Reilly, 2005;
Bennedsen & Caspersen, 2007) and that their overall effectiveness is poor.

Tutors spend a significant amount of class time explaining fundamental
computer language concepts and relevant algorithms to computer programming
students (Carlisle, 2009). However, certain novice students learn their first computer
language without any difficulty, whereas others struggle and require considerable
support and assistance from tutors (Garner, Haden, & Robins, 2005). According to
Robins, Rountree, and Rountree (2003b), these differences between novices can be
attributed to their past knowledge, strategies, and mental models of the programs.
This mean there are factors and skills that effect on students abilities in their
programming learning.

The object-oriented programming (OOP) paradigm has been taught in
different university departments either as an introductory programming course or a
subsequent programming course in the last few years (Sivasakthi & Rajendran,

2011a; Xinogalos, 2006).

However, most studies on OOP education show that students often confuse
elements in a programming language such as: object, class, attributes and methods.
Furthermore, students face difficulties in implementing solutions to specific
problems by using other programming language (Holland et al., 1997).

This study was focuses on Java as OOP. According to Bennett, Fisher, and
Lees (2011), no differences exist between OOP and the restructuring of a high-level
world view where the object in OOP has attributes are same the attributes of the
object in the real world (i.e car has name, color, model, etc). Furthermore, Poo and
Ashok (2007) state that OOP set data and operations into units called objects and
allowed objects to be combined into systemic networks to build a program. Objects
and their interactions are the main elements of program design in OOP. Each object
has a state (data) and a behavior (operations on data). Thus, Objects in OOP are not
much different from ordinary physical objects.

OORP is a method of software enhancement wherein the form of the program
depends on objects and on objects interacting with each other to achieve a task
(Sajaniemi & Kuittinen, 2003). Java programming language is very well established
(Madden & Chambers 2002). Consequently, Sivasakthi and Rajendran (2011) state
that OOP, particularly Java, has become taught to undergraduate and postgraduate
IT, ICT, and CSE students.

Factors that influence programming education have been identified over the
years (Wiedenbeck & Labelle, 2004). As well as they add the following: “we still far
from a full understanding of why some students learn to program easily and quickly
while others flounder.” Factors such as cognitive engagement, learning process,
computing tasks (Carbone & Hurst, 2009), spatial ability, mathematical aptitude

(Patil, 2009), knowledge, aspirations, dispositions, perceptions, expectations, skills,

values, needs, and goals (Helme & Clarke, 2001) contribute to the propensity of the
student to learn. Student success model has been the finding of this study contained
five factors which are teaching tools, motivation, course evaluation, OOP concepts
and student aptitude in mathematics. Survey made up from 282 post/undergraduate
students in UUM enrolled in IT and ICT departments. The model seeks to help
instructors to improve their approach in teaching programming course, as well as
policy decisions makers by consideration the mentioned factors, where they have
affect the academic success of students in programming course. The model was

based on the students’ perceptions (more details in section 5.1).

1.1 Problem Statement

Computer programming is an area that is both complex and difficult
(Rainalee Mason, 2012). According to El-Zakhem and Melki (2013) and Rainalee
Mason (2012), most CS students face major problems in their first programming
course. Furthermore, Dehnadi and Bornat (2006) state that programming is difficult
to learn. Educating novices on programming has been considered a big challenge
since the early 1970s (Floyd & London, 1970;Gries, 1974; McCracken et al., 2001,
Robins et al., 2003b; Spohre 1989;Wenger, 1998).Teaching programming is
considered one of the seven grand challenges in computing education (McGettrick et
al., 2005).

First year students encounter a wide variety of challenges in learning
objected oriented programming, including understand the principles of OOP such as
(Data Abstraction, Polymorphism, Encapsulation and Inheritance) and the efficient
design of programs (Butler & Morgan, 2007). As well as, Sharp and Schultz (2013)
find that learning OOP is difficult for students because it requires skills of
comprehension and memorization abilities; the latter involves high-level abilities,
which require additional skills such as abstraction, encapsulation, polymorphism,
and inheritance. In addition, Biju (2013, p. 1) state that “Understanding object
oriented concepts is always a difficult task for students. It is equally challenging for
lecturers to teach these concepts”.

Sivasakthi and Rajendran (2011) observe that students have learning
difficulties on Java programming topics. For example, Milne and Rowe (2002) state
that students will struggle in learning programming until they obtain a clear mental
model of how programming “works,” that is, how programming is stored in memory

and how the objects in memory relate to each other.

6

An international survey of introductory programming teachers conducted in
2006 found that Java was used as the first language by 58% of respondents followed
by C++ at 18% and Pascal at 9% (Schulte & Bennedsen, 2006). It can be clearly
show that java widely usage comparison with the other programming languages.

Butler and Morgan (2007) indicated that introductory computer programming
has been studied extensively in a wide range of technical and educational facets.
Numerous studies have also focused on OOP programming. However, these studies
do not focus on the challenges faced by first year students with Java as OOP.
Furthermore, Eckerdal (2006) mentions that the problems encountered by students
include the increasing complexity of programming languages such as Java.

According to the aforementioned statements and statistics provided by the
ASIS (Academic and Student Information System) at the final semester of 2013,
found that 38% of students who took programming courses in Universiti Utara
Malaysia (UUM) obtained a grade of C- or below. Thus, the classification of this
rates of student failure are considerable (Butler & Morgan, 2007). Therefore, this
study attempts to identify and investigate the significant factors that affect the
propensity of UUM students to learn Java programming as OOP. Furthermore, this

study addresses the lack of information from previous studies.

1.2 Research Questions

1. What are the factors that may affect the academic success of students in
computer programming?

2. How to develop student success model based on the factors that have
affected the academic success of students in computer programming?

3. How to evaluate the student success model?

1.3 Research Objectives

1. To identify the factors that affects the academic success of students in

computer programming.

2. To develop student success model based on the factors that have affected the

academic success of students in computer programming.

3. To evaluate the student success model.

1.4 Significance of the Study

The researcher expects that this study will be significant in several areas.
First, this study will add to literature on the academic success of students in
computer programming by identifying factors that may affect the academic success
of students in computer programming. This research helps academics who are
interested in understanding the factors that affect the propensity of students to learn
programming because only a few similar studies have addressed this particular issue.

Additionally, based on understanding of significant factors that affect the
academic success of students undertaking programming course in UUM, this study
attempts to provide recommendations to programming instructors on how to improve
their approach to teaching programming. The researcher anticipates that by
implementing the recommendations failure rate in the OOP subject particularly in

Java programming could be reduced.

1.5 Scope of the Study

Although OOP languages exist, this study has been focused on the Java OOP
programming language (see Section 1.1). In addition, Java programming is popular
both in Academia and the IT Industry. Further, it is the most used programming
language across the world (Bennedsen & Paterson, 2007; Sivasakthi & Rajendran,
2011).

Nikishkov, Nikishkov, and Savchenko (2003) argued that Java is completely
OOP. On the other side, Singer, Li, and David (2013) stated that Java is the most
used programming language in educational institutions. According to many
researchers, The time, cost and willingness of the participants important criteria for

researcher to identify the scope (Sekaran, 2003; Creswell, 2009). Therefore, this

study highlighted on the factors that affect academic success in computer
programming. Thereby, the effect of these factors on UUM post/undergraduate
students (IT/ICT) taking programming courses has been investigated. This study

was broadly included students in UUM.

1.6 Organization of the Research

This study is organized into five major chapters:

Chapter One: Introduction. The first chapter constitutes the background of
the study and highlights the definitions of programming, program, and programming
languages. This chapter also presents some of the difficulties and challenges that
students encounter when studying programming. Furthermore, the research
objectives and research questions are covered and the rationale of the study is

explained.

Chapter Two: Literature Review. The second chapter comprises the
literature review of this study. All studies on programming and studies that
emphasize significant programming factors, such as teaching tools, experience with
other programming languages, OOP concepts, motivation, course evaluation, fear
and mathematical aptitude are reviewed. These factors have been considered in this
study for investigating them whether they effect on academic success in computer

programming.

10

Chapter Three: Research Methodology. The third chapter explained the
methodology used in collecting relevant data for this research. This chapter was also

explained the sampling procedure and statistical approach used to analyze the data.

Chapter Four: Data Analysis and Research Findings. The fourth chapter
addresses the data analysis stage of this study. It presents the data analysis process as

done stage by stage in view of answering the earlier elicited research questions.

Chapter Five: Discussion, Conclusion and Recommendation. The fifth
chapter concludes this study. It entails the discussion of the research findings,
interpretation of the entire result of this study and the accompanying discussion. It

argues the position of the findings of this study amidst the previous studies’ findings.

11

CHAPTER TWO
LITERATURE REVIEW

2.0 Introduction

This chapter covers the literature review, including the OOP definition,
related studies in this field, and factors considered to the objectives of this study.
Literature reviews play important roles in shaping the research problem because
the literature review process helps researchers understand the subject area, thus
helping to conceptualize the research problem clearly and precisely. The
literature review also makes the research problem relevant and pertinent to the
field of inquiry (Smith, 2012). Also, he suggested that the researcher should start

with general information and gradually narrow it down to the specific.

2.1 Object Oriented Programming

Programming knowledge includes skills and concepts such as problem
investigation, problem-solving design, transformation of the design into code and
data structure by writing a highly constrained language, and verification of the
validity of the program (Herman & Salam, 2011). In recent years, OOP has become
the most influential programming paradigm. OOP is widely used in education and
different industries; furthermore, almost every university includes object orientation
in the curriculum (Sivasakthi & Rajendran, 2011b). Learning to program is
notoriously difficult. For instance, Bergin and Reilly (2005, p.293) note that “it is
well known in the computer science education (CSE) community that students have
difficulty with programming courses and this can result in high dropout and failure

rates.” . At the same time, according to many researchers, teaching programming to

12

novices has been considered a big challenge for almost 40 years (Floyd & London,
1970;Gries, 1974; McCracken et al., 2001; Robins et al.,, 2003b; Spohre
1989;Wenger, 1998). Teaching programming is considered one of the seven grand
challenges in computing education (Mcgettrick et al., 2005). According to Diederich
(1988), the relevant elements in teaching can often be described by the didactic
triangle (Figure 2.1). Unfortunately, more studies concentrate on the teacher as the
substantial factor, and few studies focus on the students and content. Many published
research materials on the Java programming language mostly focus on technology
issues and related enhancements. Therefore, this study seeks to fill this gap in
literature by identifying factors that affect the teaching of programming from the

perspective of students.

Content

Teacher Student

Figure 2. 1 The didactic triangle (Diederich, 1988).

Madsen and Magller-Pedersen (1988, p.16) defined OOP as follows: “a
program execution is regarded as a physical model, simulating the behavior of
either a real or imaginary part of the world.” OOP is a clever concept and has
become a very common term (Henderson & Zorn, 1994). As stated beforehand, OOP

was used as the first language in most universities, in particular Java programming

13

(Schulte & Bennedsen, 2006). However, numerous studies focus on how to develop
OOP programming learning.

According to El-Zakhem and Melki (2013) and Rainalee Mason (2012), most
CS students face major problems, such as in OOP principles (i.e object, class,
attributes and methods) and efficient program design (Butler & Morgan,
2007),during their first programming course.

Some researchers have published articles that describe the factors affecting
introductory programming students. However, studies on OOP that takes students as
the main sample are lacking. According to the annual statistic conducted in UUM in
2013, 38% of students undertaking programming courses got C— or below; thus, the
student failure rates are considerably high (Section 1.1). This study strives to identify
and investigate the significant factors that affect the propensity of UUM first year
students to learn Java programming as OOP.

Georgatos (2002, p.3) noted that programming “is a human activity that is a
great challenge, involving the design of machine behavior that can assist, and at

times replace, humans in tasks of intellectual nature.”

The product of this activity is a “program” that can be different things at different

times:

e The program can describe calculations; the imperative or procedural
programming model.

e The program can describe and treat objects; the OO programming model.

e The program can define functions; the functional programming model.

e The program can define logical relationships; the logical programming

model.

14

Another definition of a program is syntactical which means, a program is a text
constructed according to certain grammar rules (Pair, 1993). Programs are always
full of errors and debugging takes time because tracking bugs and correcting them is
often difficult. OOP is a programming technique and a paradigm for writing “good”
programs for a set of problems. Only some programming languages are “O0O”

(Stroustrup, 1991).

2.2 Java Programming

Sivasakthi and Rajendran (2011b, p.1l) state the following: “Java
programming is popular both in Academia and IT Industry. Further, it is the
maximum usage of programming across the world.” Moreover, given the new
possibilities provided by Java for the web, the Java paradigm has received
considerable attention. Thus, many universities and colleges have introduced Java
into their undergraduate and postgraduate CS curriculum (Said Hadjerrouit, 1998).
Thus, the teaching and learning Java programming in academia has become a great
responsibility. Madden and Chambers (2002) adds that the Java programming
language is very well established and is often the first object-oriented (OO) language
taught to students.

Despite the popularity of programming languages such as Java, issues still
exists on the suitability of these languages for education, particularly in the
introduction of programming to novices (for instance, Mody, 1991; Said Hadjerrouit,
1998;Biddle & Tempero, 1998;Close, Kopec, 2000;Clark, MacNish, & Royle, 1998).
Pears et al., (2007) state that Java is not designed for educational purposes compared

with Python, Logo, Eiffel, and Pascal.

15

This study aims to investigate the factors that cause the learning difficulties
of students with regard to Java as OOP. Java has become the most influential
programming paradigm in recent years. Although empirical studies of programmers
and programmer comprehension have been conducted with regard to procedural and
OO languages, few studies have been conducted to discover the individual traits
cause the most difficulty to novice programming students (Milne & Rowe, 2002).

Java programmers generally require declarative and OO knowledge
(Sivasakthi & Rajendran, 2011a). The former involves knowledge on Java
programming language syntax and semantics, which require comprehension and
memorization abilities; the latter involves high-level abilities, which require
additional skills such as abstraction, encapsulation, polymorphism, and inheritance.
Consequently, learning OOP by using Java includes many challenges (Butler &
Morgan, 2007) and requires multiple skills and types of knowledge. This study used
data collection and analysis to identify the various learning difficulties involved in
Java programming. Many researchers have argued against the use of Java. These
researchers highlight the inherent difficulties in using Java as a first programming
language (Hadjerrouit, 1998; Crawford & Boese, 2006; Powers et. al. 2006;Gross &
Powers, 2005).

Teaching Java is challenging (Nedzad & Yasmeen, 2001). Gosling (1996)
noted that Java is a general-purpose OO language that is designed to be simple to
enable many programmers to achieve fluency in the language. lain and Glenn (2002)
state that students will struggle to understand this language until they gain a clear
mental model of how programming “works,” that is, how programming is stored in

memory and how objects in memory relate to one another.

16

Certain interactive and integrated environments such as “Bluel,”**Greenfoot,”
and “Processing,” make Java programming easy to learn and teach. The following
section will discuss these tools in detail. A survey of Java textbooks supported by a
survey of student perceptions regarding the difficulty of various topics has yielded a
hierarchy of topics from the least difficult to the most difficult: comments, output,
assignment, expressions, if- statements, for-loops, arrays, methods, classes, and input

(Yau and Joy,2004).

2)

(

mEHZmocHW®w

TOPICS

IHVery Easy DEasy OAverage OHard BlVery Hard I

Figure 2. 2 Level of learning difficulties on different topics of Java programming.

However, Herman and Salam (2011) stated that novice students often face
difficulties in learning programming because of various issues and the nature of the
subject, which can be vague and invisible. This research focuses on UUM students,
most of which are programming novices. Mow (2008) refers to the differences
between novices and experts in the following:

e Novices have difficulty recognizing incorrect grammar and struggle with

syntactic knowledge, whereas experts readily recognize grammatical errors.

¢ In terms of semantic knowledge, experts have effective mental models of

virtual or notional machines, whereas novices have yet to build these models.

17

e For schematic knowledge (knowledge of the structure of a program) experts
use deep structures to categorize programs based on the type of routines

required. By contrast, novices use superficial features for categorization.

Furthermore, novices are inclined to use low-level plans and are unskilled at
problem decomposition, whereas experts maintain an overall view of the problem in
mind while decomposing problems into small, manageable sub-problems. Experts
also consider more alternative solutions and are more adept at comparing different

solutions than novices (Lahtinen, Ala-Mutka, & Jéarvinen, 2005).

2.3 Related Works

The high dropout and failure rates in programming subjects have drawn the
attention of researchers. A number of papers have also been written to address
problems that occur when teaching Java. However, most of these studies focused
more on the teacher than on the student. Therefore, this section elaborates on studies
that are related to this field. A debate is taking place in many computer/information
science departments on the best approach to teach programming. Students should be
exposed immediately to the new OOP paradigm by using a language such as Java
(Burton & Bruhn, 2003). Therefore, this section will also discuss the methods used
in previous studies to solve difficulties in programming course.

There are many studies achieved in teaching the programming languages, such
conducted by Byrne, Catrambone, and Stasko (1999) who use two experiments
designed to test whether animating algorithms will assist students to learn algorithms
effectively. However, this study focused only on software visualization (teaching
tools). While, Wilson and Shrock (2001) state that many factors affect the success or

failure of students in programming.

18

The study conducted by Byrne and Lyons (2001) focuses on the BASIC
programming language and their data has been gathered from academic records. In
contrast, this research concentrates on the OOP as noted by Wiedenbeck (1999) the
choice of programming language affects the understanding of programming.

Furthermore, Milne and Rowe (2002) have investigated C++ and asked both
tutors and students on the individual concepts of the programming language they
strive to teach and learn, the conclusion of their study is the motivation to design a
program visualization tool. As well as, they focused on participants who have
experience in programming languages, while, this study deals with the novice
students.

Wiedenbeck and Labelle (2004) investigated the combined effects of mental
model, self-efficacy, and prior experience on programming learning. However, the
respondents came from different disciplines. Most respondents are not involved in
CS.

Wiedenbeck (2005) concentrated on important factors that affect program
learning: perceived self-efficacy, knowledge organization, and prior programming
experience. The differentiation of Wiedenbeck study was non-major students were
his participants. Programming courses are complex for a majority of university
students, particularly students who have little previous exposure to programming.

In addition, Bennedsen and Caspersen (2006) focused on learning OOP.
Their study depended on the perspectives of lecturers and that of the university
administration. By contrast, this research concentrated particularly on the perspective
of students. On the other hand, study by Caspersen and Kolling (2006) aimed to
assist novice programmers learn better and faster. in the same time, laying the

foundation for a thorough treatment of the aspects of software engineering. Their

19

study does not identify the factors that affect how students learn programming and
instead focuses on the programming process (Concepts of the program).

Carbone and Hurst (2009) discussed the internal domain factors which are
motivation and capability that influences how students learn programming. In their
study, data was gathered from few students by semi-structured interviews. The
results of their study depend on how the students deal with an introductory
programming language. By contrast, This research strives to identify the significant
factors that affect the success of Java as the OOP.

Li, Liu, Mao and Zhou (2013) concentrated on the factor of fear. However,
their study focuses on non-CS major students and on the experiences of researchers
as lecturers. Thus, this study was focused directly on IT and ICT students.

Additionally, studies into whether choice of programming language affects
program comprehension are well documented, and have shown that different
notations facilitate the understanding of different kinds of information found in
programs (Wiedenbeck, 1999). Other studies have conducted research into the types
of mental models formed by both novice and expert programmers, and how such
models affect their understanding of the problem and its solution (Burkhardt et al.,
1997;Blackwell, 1996; Turner, 2001). Unfortunately, few researchers have examined
the OOP learning experience of programming students and the difficulties that they
face in their field.

Research on success factors has been conducted in the sub-areas of
introductory programming and in general CS education. Studies have identified the
problems and solutions in programming education. However, these studies have
mostly focused on programming education in foreign countries such as Australia,

Finland, the United States, and the United Kingdom. Therefore, this study has been

20

conducted in Malaysia, particularly in UUM. The perception of students toward their

learning problems and their ideal OOP learning method was examined in this study.

2.4 Student Success Model in programming Course and Hypothesis
Programming students are strained by the learning challenges in their field
(Astrachan, Selby & Unger 2006;Garner, 2001). Several studies have tried to modify
the OOP teaching and learning mechanisms, particularly for Java, to help students
overcome such challenges. Most novice programmers still struggle to become
proficient in the subject (Mow, 2008). Therefore, this study was focused on the
following factors and investigate them whether they have affected the academic
success of novice students in computer programming. Eventually, use them to

develop student success model (Figure 2.3):

21

Factors that may affected on academic success in programming course

Independent variables

Dependent variable

Figure 2. 3 Factors that may affect the academic success in programming course.

22

2.4.1 Teaching Tools

Teaching programming languages is a challenging issue with a long history
(Costa, Aparicio, & Pierce, 2009;Ulloa, 1980). The teaching of OOP is
undertaken using a combination of lectures, some tutorials and supervised labs
(Madden & Chambers, 2002). Graf, Lan, and Liu (2009) found that
programming students adopted different ways to learn their subject. Some
programming students may regard individual learning as the most suitable
learning process. However, Jenkins (2002) found that some students opted for a
dynamic learning environment (Classroom), which greatly improved their
learning by studying with their peers. Moreover, programming instructors are
having difficulties in instilling favorable programming habits into their students.
Ulloa (1980) found that interactive software can be automated to help the
instructors in teaching their students individually and in solving their problems
regarding the subject.

Many researchers have suggested the use of functionally reduced
development environments (e.g., DrJava(Reis, 2004) and BlueJ (Kélling, 2003))
that are specifically designed for educational purposes. These tools assist
programming students by providing them with clear descriptions of Java
programming mechanics. Some researchers have proposed the use of
environments that support the visualizations and animations of computational
elements that are based on structures and simple command syntaxes, such as
Karel-3D (Brusilovsky, Calabrese, Hvorecky, Kouchnirenko, & Miller, 1997)
and Alice3D (Cooper, Dann, & Pausch, 2003).

Some researchers have suggested the adoption of visualization and

interaction techniques for the creation of interactive environments that provide

23

freedom to programming students to explore their field. Milne and Rowe (2002)
argues that a program visualization tool can help programmers interpret the
processes occurring in memory while a specific program is being operated. The
adoption of teaching tools significantly affects the understanding of
programming students of their subject. Several studies have identified numerous
problems that are associated with OOP instruction and that concerns different

aspects of the adopted systems (Black et al., 2013;K6lling, 1999).

2.4.2 Experience with Other Programming Languages

Students who are about to enter IT-related university courses are expected to
have basic computer literacy (Wit, Heerwegh, & WVerhoeven, 2012) and
programming experience (Hardy, Heeler, & Brooks, 2006). Study by Howles
(2007) have examined the number of students who have no programming
experience and have limited computer usage take an IT-related course in the
university. (Thompson, 1995) argues that the previous experiences of an
individual can significantly affect his or her collection and use of knowledge.
Therefore, this theory defines learning as an active, subjective process that
allows students to create knowledge from their previous experiences or by
extending their present knowledge.

According to Armoni, Gordon and Harel (2012), only few studies have
examined how the previous experiences of students affect their understanding of
programming languages and models. Several academic programs have been
developed to suit all IT students despite their varying knowledge of other
programming languages (Madden & Chambers, 2002). However, not all of these

programs focus on OOP. Yau and Joy (2004) argues that Java should not be

24

taught to students with no programming background given that OOP paradigms
are highly abstract than procedural paradigms. Armoni et al., (2012) also argued
that the programming background of a student could influence his or her attitude

toward learning another programming language.

2.4.3 Fear

The teaching and learning processes in the CS and IS fields have received
significant research attention because of the high attrition rates of these courses
(Robins et al., 2003a). However, the educational environment of these courses
remains a global problem in the field of computer programming (Mead et al.,
2006).

Study by Rogerson and Scott (2010a) defines fear as the lack of appreciation
or interest of students toward the programming subject. This term may also refer
to the apprehension or the lack of confidence of these students on their
programming knowledge. Programming is defined in this study as the full cycle
of systems development, including the coding process, the use of basic
theoretical concepts, and preparation of the final product for implementation
(Bruce et al., 2004). Rogerson and Scott (2010, p. 148) defined this fear as
“experiencing a lack of confidence or apprehension regarding their ability to
code or program”. Several researchers have used the same term to describe the
anxiety that some students feel when developing a program and to describe their
feelings of discomfort that may reduce their interest in the subject (Simon et al.,
2006). Bergin and Reilly (2005b) stated that such feeling of discomfort will

discourage programming related inquiries and discussions from these students.

25

2.4.4 OOP Concepts

Students are greatly challenged by several elements in the Java programming
language. The inclusion of Java in programming courses has been the subject of
several studies and experience reports over the previous decade (Sivasakthi &
Rajendran, 2011a; Xinogalos et al., 2006; Madden and Chambers 2002). These
reports suggest that the use of diagrammatic representations can help students
improve their understanding of OOP, such as UML or other analogous notations (
Object Management Group, 2003; Alphonce & Ventura, 2002). Sicilia (2006) argued
that programming instructors should carefully help their students in comprehending
the OO concepts and in translating the conceptual models into Java programs. The
OOP learning of these students is also hindered by several factors, such as their
associations, generic containers, and differences between interfaces and classes.
Moreover, Madden and Chambers (2002) asserted that, comprehension of a list of
broad Java language tools such as (e.g. syntax, file handling, inheritance,
Appletviewer, JCreator, GUI programming, etc) help to understanding OOP

concepts. Many researchers have explained the OOP concepts as shown below:

I. Object
Object refers to the main component of the OO paradigm that is used for
carrying out specific tasks (Garrido, 2003). Actual examples of an object include a
bus, a book, or a student. Therefore, people think about, identify, act upon, or assign

concepts to several objects on a daily basis (Satzinger & @rvik 2001).

26

Il. Class

Students must clearly differentiate the concept of “object” from the concept of
“class” (Eckerdal, Box, & Thun, 2005). The latter refers to a general category,
whereas the former refers to a specific instance (Satzinger & @rvik, 2001). Objects
are grouped together into classes that specify the type of an object, whereas a class

can be used as a template for a potential object (Weisfeld, 2004).

I11. Attributes and Methods

Both attributes and operations are equally important in the OO approach. The
former refers to the descriptive properties of an object that represent its state,
whereas the latter refer to an operation determines the behavior of an object or what

the object can do (Havenga, 2006).

IV. Constructors and Destructors

Constructors and destructors are special methods that play important roles in
OOP. Constructors are used when creating new objects for the allocation of memory
and the initialization of variables. Sebesta (2004) referred that, Delphi uses the
“create” constructor to create an object. Additionally, he state that, All objects in
Java are explicit heap dynamic (i.e., created explicitly on the heap during runtime)
and are allocated into the new operator. Destructors are used to reclaim the heap
storage and to destroy objects. Instead of using a destructor, Java uses an implicit
garbage collection process that does not require the programmer to create a code for

the destructor (Havenga, 2008).

27

V. Abstraction and Associations

Abstraction refers to the ability of an individual to define and use variables
and operations that ignore several details. Abstraction aims to simplify the
presentation of entities and to reduce their complexity during the programming
process (Sebesta, 2004). Abstraction is classified into process abstraction and data
abstraction. The former refers to the «calling of a subprogram
(method/procedure/function) without providing its details, whereas the latter refers to
the declaration of the type and the operations in objects that are contained in a single
unit, which restricts data access by sending messages to the methods (Schach,

2005;Sebesta, 2004).

VI. Polymorphism and Dynamic Binding

Polymorphism refers to the provision of multiple forms and methods. When
used in the OOP context, this term implies that different objects may respond
individually to the same message. Therefore, polymorphism may be used to indicate
different implementations (Weiss, 2000). Polymorphism also supports greater
abstraction wherein a single message can evoke different behavior (Rosson & Alpert,

1990).

2.4.5 Motivation

Helme and Clarke (2009) stated that students need motivation (the will to
learn) and skills (capability) in order to be successful in their respective fields.
Williams (2011) argued that the learning methods, motivation, and expectation of
students can significantly effect to their learning. Several studies have identified the

motivation and attitude of these students to learning as the core influential factors to

28

their successful learning (Gomes & Mendes, 2007;Jenkins, 2002;Robins et al.,
2003b;Simon et al., 2006). Moreover, Jenkins (2001); Bergin and Reilly (2005)
pointed that, the motivation can encourage the students to learning programming
language well. In this case, motivation can be divided into intrinsic, extrinsic, and
achievement motivation (Entwistle, 1998).
e Intrinsic motivation is present when the individual is interested and
curious about the activity that he or she is currently performing;
e Extrinsic motivation is present when the individual anticipates a reward
after successfully completing the activity; and
e Achievement motivation is observed when the performance of an

individual is better than that of his or her peers.

Carbone, Hurst, Mitchell, and Gunstone (2009) found that intrinsically motivated
students generally display higher programming capabilities, whereas externally
motivated (i.e., passing the course) or achievement-motivated (i.e., obtaining higher

marks) students do not cognitively engage themselves into the subject.

2.4.6 Course Evaluation

A non-personalized learning environment (Gomes & Mendes, 2007b) poses
additional learning-related problems to students, reduces their motivation, and
weakens their cognitive abilities (Simon et al., 2006). Students rarely receive
feedback or explanations from their instructors given their lack of time and the
large class sizes in universities. The failure of instructors to pay individual
attention to their students and to address their learning styles poses additional

problems (Jenkins, 2002). Souza et al., (2008, p.75) observed that the struggle

29

among programming students in their learning “affects most facets of their study,
for example: their progress through their study program, their study habits, their
confidence and their time management.” Programming students must not merely
rely on their textbooks to develop programs successfully (Gomes & Mendes,
2007; Jenkins, 2002; Lahtinen et al., 2005).

Instructors should consider using programming patterns and playing games
with their students to help improve their problem-solving abilities (Wangenheim
& Shull, 2009). In addition, Madden and Chambers (2002) suggested that, it is
important to ask students whether they found the course useful and enjoyable.
Also whether they believe the course is well tied between theory and laboratory

work.

2.4.7 Student Aptitude in Mathematic

Aptitude are usually used to refer to behavior that is used to predict performance
or future learning (Macklem & Gayle, 1990). Students are required to study
mathematics materials throughout their studies. Mathematic is used in multiple
subjects such as finance, physics and computing, so attaining higher knowledge
depends on the student’s background in mathematics primitive. In addition, IT is a
discipline that needs to build alliances with other disciplines, Mathematics an
obvious alliance for IT, consequently, IT might learn from mathematic by

developing options in computing (Guthrie, Yakura, & Soe, 2011).

Furthermore, Patil (2009) state that students admitted with passing level in
mathematics aptitude show significant effects in development factors as well as

programming skills. Also, he argues there is considerable enhancement in spatial

30

ability and hence programming ability of student groups, having mathematics
aptitude up to passing level.

On the other hand, There are significantly need the mathematical skills in
programming learning where, programming is based on new mathematical
foundations which identifies the programming process with a step by step
expansion of mathematical functions into structures of logical connectives and
sub functions (Mills, 1972). As well as, Cheney and Kincaid (2012) state that
aim of mathematics aptitude is to examine the underlying algorithmic techniques
so that students learn how the software found the answer. Quenemoen, Thompson
and Thurlow (2003) State that, in mathematics, decisions are made about how
many items test basic students’ programming skills and how many items test
their problem-solving abilities. While, Jenkins (2002) argued that students who
find programming difficult are simply and solely those for whom programming
is difficult. There is nothing inherently difficult in the subject; it is simply that
some students have no aptitude in mathematics. The skills often cited are
problem solving and mathematical ability. Similarity Byrne and Lyons (2001)
that hint link between mathematics ability and programming is widely accepted.
In addition, Jenkins (2002) add that it is important to give students some
exercises that involve simple mathematical manipulation such as: stock levels,

collections of student marks, bank account details or baseball statistics.

31

2.5 Summary

This chapter presented a review of literature focused on the objected oriented
programming, Java programming, related works in which how previous studies dealt
with programming and what the attempts that used to decrease student challenges in
programming learning. Finally, the student success model and hypothesis of the
factors that may affect the academic success of student in programming course
which are: teaching tools, experience with other programming languages, fear, OOP

concepts, motivation, course evaluation and student aptitude in mathematics.

32

CHAPTER THREE
RESEARCH METHODOLOGY

3.0 Introduction

This chapter presents and justifies the methodology and design of this
research. This chapter also presents the hypothesis, research method, data collection,
population and study sample, research instrument, pilot test, data analysis and
validity and reliability of the instrument development (questionnaires).

The strategies for answering the research questions must be identified after planning

the research design (Smith, 2012). Figure 3.1 shows the strategies adopted in this

ey = -~
:‘——"“——‘—‘l-——----—‘l \—/

study:

e e - v
i Toidentify the factors thatmay affectedthe | W

| academic success of students in computer !

| programming. ~. - Phase 2

H ~

S s

- =T A
! Todevelop student success modelbasedon |
| the factors thathave affectedthe academic

] '\ .
1 5
' | successofstudentsin computer -
L T
T Omestionnaires for | C " 77" B‘Q
i
I ! -
I ! i
i I

Figure 3. 1 The strategies that are adopted in this study.

33

3.1 Hypothesis of the Study

H1: Teaching tools can affect the academic success in programming course.

H2: Experience with other programming languages can affect the academic success
of programming students.

H3: Fear can affect the academic success of programming students.

H4: OOP concepts can affect the academic success of programming students.

H5: Motivation can affect the academic success of programming students.

H6: Course evaluation (which include: lectures, laboratory work, tutorials, and
assignments) can affect the academic success of programming students.

H7: Mathematical aptitude can affect the academic success of programming

students.

3.2 Research Method

Quantitative data are expressed in numerical and statistical figures, which are
analyzed and measured through statistical analyses (Hossein, 2007). The quantitative
research design is used in this study to examine the responses from a large sample
with regard to the proposed phenomenon. This research design also allows the
researcher to analyze the behavior of respondents (Lakshman et al., 2000).
Questionnaires are used as the main data gathering tool for this research.

Smith (2012) stated that quantitative research design can validate the
conclusion of the study by verifying the established concept and by proving or
disproving a proposed concept. Sekaran (2009) added that the quantitative research
design can produce consistent results when used with a descriptive research design.
Several researchers have also identified the quantitative research design as the most

suitable approach for investigating the individual opinions and the motives behind
34

the actions, behavior, and attitudes of respondents. Kumar (2011) and Atieno (2009)
also identified the quantitative research design as the best scientific research method
given its precise measurements via deductive approach and its employment of
measurable data collection tools.

Babbie (2010) identified the quantitative research design as the most
appropriate method to examine the relationship between dependent and independent
variables. The academic success of programming students and other related factors
can be examined by the quantitative research approach. The analysis hopefully
answer the research questions and test the research hypotheses. According to Smith,
(2012), questionnaires are better than most data collection instruments because of

their inexpensiveness and anonymity.

35

3.3 Data Collection

The findings of most studies are generally supported by field data (Zikmund

etal., 2010).

In this research, data has been collected as following:

PROCEDUE
OF DATA
COLLECTN

Developing data collection instrument (questionnaire)

\
—

P
Pilot test execution }

—
Making corrections that are necessary from pilot test
participants comments

|
Data analzsis

Figure 3. 2 Procedure of Data Collection

36

3.3.1 Population and Study Sample

This study was focused on the undergraduate and postgraduate programming
students in IT and ICT of UUM. Several sampling methods are adopted to reveal the
unidentified characteristics of the selected population.

This study adopts the simple random sampling technique in which all
elements in the population are considered and such elements has an equal chance of
being chosen as the subject in order for each aspect of the population to be
represented in the sample (Zikmund et al., 2010) and to provide accurate statistical
descriptions of the population. According to Smith (2012) survey participants should
be gathered in such a way that they are confined in one space. For example, a survey
can be administered to students inside classrooms or to people in the middle of a
seminar or a program. This method saves money for postage and ensures a high
response rate given that the potential subjects will have no choice but to participate
in the survey. The sample size for this study is determined through the rule of thumb,
which states that the sample must include between 30 to 500 respondents (Sekaran &
Bougie, 2010). According to the official letter from UUM the number of
postgraduate and undergraduate students (IT and ICT programmes) of the years
2012-2013 is 566 students. A total of 286 students are selected to participate in this
study based on Sekaran & Bougie (2010, P. 295). As mentioned by Notani (1998),
studies on working behavior should focus on the general adult population than on the
student population given that the former population are more experienced than the

latter.

37

3.3.2 Research Instrument

A survey has been conducted to gather primary information on related
factors. The use of questionnaire as the data gathering instrument is considered as
efficient (Kumar, 2011). Furthermore, questionnaire that are self-administered
having closed-ended questions.

The questionnaires for this study has adapted from Rogerson and Scott
(2010), Bergin and Reilly (2005), Jenkins, (2001a), Jenkins (2001b), Gayle and
Macklem (1990); Quenemoen, Thompson and Thurlow (2003), Barchard (2003) and
Madden and Chambers (2002). as shown in the table 3.1:

Table 3.1 Questionnaires sources

No | Questionnaires of the factors Adopted from

1 Academic success in Kimberly and Barchard (2003)
programming

2 Motivation Jenkins (2001); Bergin and Reilly (2005)

3 Student Aptitude in Gayle and Macklem (1990);

Mathematics Quenemoen, Thompson and Thurlow(2003)

4 Fear Rogerson and Scott (2010)

Experience with Other
Programming Languages

6 OOP Concepts Madden and Chambers (2002)
7 Teaching Tools
8 Course Evaluation

For the instrument design, the questionnaire is divided into three parts: A, B
and C. Part A asks questions related to the respondents demographic background
which are gender, age group, course and previous programming experience. Part B

contains items to measure the academic success in computer programming, while

38

Part C contains items measuring each of the elicited factors: motivation, fear, OOP

concepts, teaching tools, course evaluation, and students’ aptitude in Mathematics.

3.3.3 Pilot Test

A pilot study must be conducted before collecting data to validate the survey
instrument (Bryman, 2004; Saunders et al., 2003). A pilot study is conducted to
determine if the questionnaire can be amended further for the respondents to
understand and answer all questions with ease. Acceptable number of 30
respondents, were enough for the pilot study as the researcher was aiming only to
examine to what extent the instrument was clear and therefore improve on it (Hair et
al., 2010). A total of 40 questionnaires were distributed to UUM students to identify
if these instruments are properly constructed and if the questions can be easily
understood by the respondents. The students have been asked to answer these
questionnaires and to provide some feedback with regard to the validity and clarity

of the instrument.

3.4 Validity and Reliability

The validity and reliability of the developed measures must be ensured. The
former refers to the capability of the instrument to assess the target items, whereas
the latter refers to its consistency (Sekaran, 2003). According to Smith (2012, p. 5),
“the quality of a measurement procedure that provides repeatability and accuracy.”.
The validity and reliability of the instrument has been analyzed after the pilot test.
Smith (1991, p. 106) added the following: “validity is defined as the degree to which

the researcher has measured what he has set out to measure.”’

39

Smith (2012) argued that validity only pertained to a particular instrument.
However, a reliable measure may not be able to assess a specific item despite
showing consistency. The reliability coefficient is expressed in terms of Cronbach’s
alpha.

An a of 0.70 to 0.80 is generally acceptable (Kaplan & Sacuzzo, 2008). The
correlation between the dependent and independent variables must be estimated after
ensuring the reliability of the measurements. However, ensuring the reliability of the
measurements does not necessarily ensure their validity. The questionnaires can be
validated by a group of expert judges (Kidder & Judd, 1986). Therefore, this study
has sent the questionnaires to the expert who is (Dr Abdullah Al Swidi), where he
has professional qualification in SPSS, SAS (Statistical Analysis Software), AMOS
(SEM), Smart PLS (SEM), QM for Windows and Arena for Simulation. In addition
he is member of the quantitative studies and development experts group, College of
Arts and Sciences, University Utara Malaysia. Thereby, he reported that “l have seen
the questionnaire and the items used can serve the factors they were designed to
measure”. Validity can be used to improve and evaluate the reliability of existing
scales. Different procedures, such as factor analysis, can be used to establish
construct validity (Zikmund et al., 2010; Smith, 2012). Therefore, a pilot study was

conducted to enhance the reliability and validity of the measures.

3.4.1 Face Validity

Face validity which is also called Content validation has to do with the
testing respondents’ comprehension of the items in the instrument. It refers to the
transparency or relevance of a test as they appear to test participants Holden and
Ronald (2010). This is very essential in this kind of research settings; it has been

40

done before proceeding to the main data collection stage, for the purpose of
observing the mistakes in the instrument and to be corrected before going for the
main data collection. For this purpose, each question of the instrument items was
reframed and duplicated to examine if there could be any variation or
misunderstanding to the response of any of the questions, this to ensure the
research on how objective and authentic the gathered data are. Due to some
constraints of getting feedback from the real candidates of face validity which
were among the lecturers who has specialized in computing area, five PhD
students specifically those that have defended their PhD thesis proposal were
chosen for the face validity of the questionnaire. As Pallant (2011) and Zikmund
et al. (2010) suggested, researchers are also among the suitable persons to be

employed for face validity during the questionnaire development process.

3.5 Pilot Testing Result

The components of the pilot testing are the reliability testing of the items
contained in the questionnaire and population distribution of the pilot study. The
results shown in the following tables, and Appendix 2 (a-g) also shows the SPSS

generated tables for all the variables studied.

41

3.5.1 Reliability Testing Results

The first of the pilot testing is the reliability testing of the items contained in

the questionnaire. Table 3.2 presents the result of the reliability testing.

Table 3.2: Reliability Testing Result

Variable Cronbach’s No of Items
Alpha
Academic Success in Computer 0.733 3

Programming

Motivation 0.901 8
Fear 0.776 12
Java concept 0.886 17
Teaching Tools 0.721 4
Course Evaluation 0.847 7
Aptitude in Mathematics 0.719 8

To achieve the reliability of the instrument, items of academic success in
computer programming were seven items, after the reliability test, the Cronbach’s
Alpha was 0.4. There are four items has been dropped from academic success in
computer programming based on option (scale if items deleted) in SPSS to enhance

the Cronbach’s Alpha. Thereby, the result as shown in the table 3.2 is accepted.

3.5.2 Population Distribution of the Pilot Study

This pilot study involves 38 males representing 95.0%, and 2 females represented by

5%. The result is shown in Table 3.2 below.

42

Table 3.3: Gender Distribution of the Pilot Study

Frequency Percent %
Valid Male 38 95.0
Female 2 5.0
Total 40 100.0

Thirteen (13) out of the respondents are undergraduate students of Information
technology (IT) and twenty-seven (27) are Master students (MSCIT/ICT), making

32.5% and 67.5% respectively. Table 3.3 shows the course level distribution.

Table 3.4: Course Level Distribution of the Pilot Study

Frequency Percent

%
Valid BSCIT 13 32.5
MSc 27 67.5
IT/ICT
Total 40 100.0

From the respondents administered during the pilot testing phase, thirty (30) which is
75% have previous experience of programming, while ten (10) i.e. 25% do not.
Table 3.4 shows the population distribution of respondents with previous experience

with those without.

43

Table 3.5: Previous Programming Experience of the Pilot Study

Frequency Percent

%
Valid Yes 30 75.0
No 10 25.0
Total 40 100.0

3.6 Data Analysis

SPSS 20 has been used to analyze the data. Independent-Samples T test,
correlation and regression are conducted as the descriptive analysis. In choosing the
right statistic, need to consider a number of different factors. These include
consideration of the type of question you wish to address, the type of items and
scales that were included in your questionnaire, the nature of the data you have
available for each of your variables and the assumptions that must be met for each of
the different statistical techniques (Pallant, 2011). This study has two types of
variables, continuous or ordinal variables which are (academic success in computer
programming, teaching tools, fear, OOP concepts, motivation, course evaluation and
students’ aptitude in mathematics), and categorical variable which is (experience
with other programming languages). Pearson correlation and linear regression has
been used for the continuous or ordinal variables and Independent-Samples T test for
the categorical variable.

According to Smith (2012), statistics and computers play a significant role
in the research after the data collection procedure. The data analysis has been

conducted to test the hypotheses and answer the research questions (Pallet, 2003).

44

The descriptive analysis examines the gathered responses and the distribution of the
data to draw a possible conclusion. The table 3.6 showed the statistical analysis
technique used.

Table 3.6: Statistical Analysis technique used

_ Statistical Analysis technique o
Hypothesis q Justification
use

» Pearson Correlation | The type data and items
Coefficient

H1,H3,H4,H5,H6,H7 » Linear Regression

were continuous or

ordinal
H2 > Independent - Samples T The type of data and
Test items were categorical

3.7 Data Coding:

As mentioned above SPSS 20 has been used as statistical analysis
technique for this study, one of the required steps is data coding which means

represent each item of the questionnaires into code as shown in the tables below.

3.7.1 Data Coding for Academic Success in Computer Programming

Table 3.7: Academic Success in Computer Programming

No Items Coding
1 I do not get less than Bs in my programming related courses AS1
2 I have won awards based on my programming proficiency AS2
3 I have got scholarships/incentives based on my programming AS3

proficiency.

45

3.7.2 Data Coding for Motivation

Table 3.8: Motivation

No Items Coding
1 I want to be academically successful for my own satisfaction MO1
2 I want to be academically successful to please my parents or MO2
family.
3 I want to be academically successful to please my teacher. MO3
4 I want to be academically successful to get a good job. MO4
5 I just want to be academically successful. MO5
6 I want to be academically successful so as to be called a smart MO6
student
7 I want to be academically successful to get scholarship. MO7
8 I want to be academically successful to get awards. MO8
3.7.3 Data Coding for Fear
Table 3.9: Fear

No Items Coding
1 I have a problem associated with learning programming. FE1
2 The word “programming” evokes the feeling of apprehension. FE2
3 The word “programming” evokes the feeling of discomfort FE3
4 | feel anxious during programming class FE4
5 | feel panic during programming class FE5
6 | feel stressed during programming class FE6
7 | am very excited about learning programming FE7
8 I am not distressed when I find any error in a program. FES8
9 I have no problems with programming FE9
10 | grasp programming concepts quite easily. FE10
11 | do not achieve my blueprint through coding FE11
12 My application takes much more time before it is successful FE12

46

3.7.4 Data Coding for OOP Concepts

Table 3.10: OOP Concepts

No Items Coding
1 Syntax (e.g., language constructs and flow of control) JC1
2 Using and defining methods JC2
3 Using and defining arrays JC3
4 String handling JC4
5 Using I/O streams JC5
6 File handling JC6
7 Using and defining objects JC7
8 Object-oriented programming (e.g., inheritance and JC8
polymorphism)
9 Exception handling JC9
10 Using and writing applets JC10
11 GUI programming JC11
12 Multithreaded Programming JC12
13 Using JDK library classes JC13
14 Using JCreator JC14
15 Using Netbeans JC15
16 Using Eclipse JC16
17 Java SDK development tools (e.g., appletviewer) JC17
3.7.5 Data Coding for Teaching Tools
Table 3.11: Teaching Tools

No Items Coding
1 Lectures TT1
2 Supervised labs TT2
3 Tutorials TT3
4 Assignments TT4

47

3.7.6 Data Coding for Course Evaluation

Table 3.12: Course Evaluation

No Items Coding
1 | find the course useful. CEl
2 | find the course enjoyable. CE2
3 The recommended course textbook(s) are useful. CE3
4 The course strikes good balance between theory and lab work. CE4
5 The course provides hands-on practical work CE5
6 The course provides employable knowledge CE6
7 The course fairly touches all the core areas CE7
3.7.7 Data Coding for Aptitude in Mathematics
Table 3.13: Aptitude in Mathematics
No Items Coding
1 I love dealing with figures than text SAl
2 I am good at solving linear equations SA2
3 I am good at solving exponential equations SA3
4 | prefer expressing concepts using mathematics SA4
5 | understand discrete mathematics SA5
6 I do teach my classmates Mathematics SA6
7 I understand mathematical representation of algorithm SA7
8 I have a good knowledge of mathematics in data structure SA8

48

3.8 Summary

The methodology of the research is presented in this chapter. Several
procedures and justifications are incorporated in the methodology to fulfill the
objectives and to answer the questions of the research. The research framework is
also presented in this chapter.

This study uses a questionnaire as the primary data collection instrument. The
questionnaire also has been piloted before conducting the main survey to test the
validity and reliability of the measures (Chapter four). The survey data then be used

to test the hypotheses and to fulfill the research objectives.

49

CHAPTER FOUR
DATA ANALYSIS AND RESEARCH FINDING

4.0 Introduction

This chapter addresses the data analysis stage of this study. It presents the
data analysis process as done stage by stage in view of answering the earlier elicited
research questions. This chapter presents the main data analysis consisting of data
screening and cleaning, normalization of the data, homogeneity of the respondents,
descriptive statistics, independent- T test, correlation and regression to duly answer

the research questions and test the hypotheses.

4.1 Respondent Profile

The population distribution of the respondents is based on gender, course of
study, age and previous experience in programming language. This is holistically
presented in appendix 3.
For the gender distribution, out of the 286, 222 making 77.6% are males while 64 of

22.4% are the females. Table 4.1 presents the gender distribution of the respondents.

Table 4.1 Gender

Frequency Percent
Valid Male 222 77.6
Female 64 22.4
Total 286 100.0

50

To depict the academic background of the respondents, the questionnaire
administered inquires about the courses of the respondents. This is necessary so as to
establish the compatibility of their academic background with the objective of the
study. The respondents are exclusively drawn from BSc IT and MSc IT/ICT
departments, and the distribution shows that 99 making 34.6% are BSc IT and 187 of

65.4% are MSc IT/ICT. Table 4.2 shows the course distribution of the respondents.

Table 4.2 Course

Frequency Percent
Valid BScIT 99 34.6
MSc 187 65.4
IT/ICT
Total 286 100.0

The age distribution of the respondents is also reported. Out of the 286
respondents, 121 which is 42.3% are between 18-30 years old, 137; 47.9% are
between 31-43 years old, while 28; 9.8% are 44 years and above. Table 4.3 presents

the age distribution of the respondents.

Table 4.3 Age
Frequency Percent
Valid 18-30 121 42.3
31-43 137 47.9
44 and 28 9.8
Above
Total 286 100.0

51

The questionnaire administered asked to enquire about the previous
programming experience of the respondents. It is important to note that previous
programming experience is one of the factors that their relationships to academic
success in computer programming are being studied. The profile shows that 218
which is 76.2% have previous experience in programming while 68; 23.8% do not
have a previous programming experience. Table 4.4 shows the previous

programming experience distribution.

Table 4.4 Experience

Frequency Percent
Valid Yes 218 76.2
No 68 23.8
Total 286 100.0

4.2 Reliability Test

After the main data is gathered, a construct reliability test is done. The main
data reliability test is to confirm the consistency of the construct scale and compare
with the results gathered from the pilot testing. This is essential to establish the
reliability of the study’s instrument. Table 4.5 presents the verification —comparing

the main with the pilot test results.

52

Table 4.5 Reliability Test

No Variable No. of Pilot Test Main Test
Item Cronbach’s Cronbach’s
Alpha Alpha
1 Academic Success in 3 0.733 0.705
Computer Programming
2 Motivation 8 0.901 0.848
3 Fear 12 0.776 0.898
4 OOP concept 17 0.886 0.871
5 Teaching Tools 4 0.721 0.732
6 Course Evaluation 7 0.847 0.840
7 Aptitude in Mathematics 8 0.719 0.794

Assessing the table presented in 4.5 above with a comparative consideration
to the values of Cronbach’s Alpha generated for the pilot and main tests for each of
the variables, it is observed that Academic Success in Computer Programming,
Motivation and Course Evaluation recorded a lower value to what is obtained during
the pilot test. However, values obtained at both ends are still greater than 0.7 which

suggest the consistency of the items and the construct.

4.3 Data Screening

After the descriptive part of the data that concentrates on the population
distribution is reported, data screening is performed on the gathered data sets so as to
make it suitable for the inferential part of the data analysis. In this stance, the
research questions and hypotheses testing can be confidently done. As Hair et al.
(2010) posited stages of data screening to be executed before analyzing multivariate
data specifically are missing data, detection of outliers, and normalization of the

datasets.

53

4.3.1 Missing Data

All the items of the variables as gathered by this study are fed into the SPSS
20 for the detection of the missing values. Missing data are detected on items FES8,
JC14, MO1, SA2 and SA3. These missing data were transformed appropriately using

the missing value analysis procedure (Pallant, 2011).

4.3.2 Detection of Outliers

According to Tabachink and Fidel (2006), outliers are individual respondents
of extreme scores on a specific variable among the set of variables in the
questionnaires administered. It is also opined that it may distract the general result.
Detection of outliers is done through the calculation of Mahalanobis distance for
each respondent and then be compared with the Chi-Square with a significant error
of 0.001. The Chi-Square is to be obtained from the general Chi-Square table using
the number of items designed in the questionnaire as the determinant. This study has
a total number of 59 items, making a critical value (X?) of 98.34, and the maximum
Mahalanobis distance (D?) is 284.004. In totality, four respondents (coded 113, 132,
133 & 134) with D?values 100.03, 230.10, 284.00 and 284.00 respectively are
detected as outliers. Therefore, the sample size for the continuation of the data
analysis becomes 282. Appendix 5 shows the output of the SPSS generated analysis

process.

4.3.3 Normality of the Data

Data normality is necessary before proceeding to inferential analysis. In
doing this, Skewness and Kurtosis are employed as measures for data normality

(Pallant, 2011). Hair et al. (2010) posited that less than 2 z-skewness value is

54

appropriate for a sample size that is not big. Appendix 6 shows the descriptive
statistics of the maximum and minimum values of the z-score that confirms the

normality of the data used in this study.

4.3.4 Homogeneity of the Respondents

For a cogent reason, this study confirms the homogeneity of the respondents.
The data collected for this study has students of undergraduate and postgraduate as
its elements. This is done to ensure that there is no difference between the above two
groups to be able for including them in the sample of this study. Therefore, the
researcher conducts an independent t-test analysis on the data collected to confirm
the insignificance of the course level to the recorded academic success value. The
T-test result gives 12.80 and 12.61 as the mean value for BSc IT and MSc IT/ICT

respectively. The results for the independent t-test are presented in Appendix 4.

The t-value of the result is 0.475 and the significant value (2-tailed) is 0.635
(greater than 0.05). This shows there is no significant variance in the mean value of
academic success in computer programming for both the BSc IT and MSc IT/ICT
students. This confirms that the sample elements of this study can be regarded as

homogenous.

4.4 Testing the Research Hypotheses

As earlier posited, hypothesis testing of this study was exclusively be done
using SPSS 20, however with varying statistical techniques determined by the
peculiarity of the hypothesis to be tested. After the successful data screening and
cleaning stage, varieties of statistical techniques are employed as found suitable for

the research hypotheses. This study employs independent t-test, to compare the mean
55

score of the group with previous programming and the group without. Pearson
Product-Moment correlation and Linear Regression are then used to find the strength
and direction of the relationship between the variables, and the effect of each of the

independent variables on the dependent variable (Sekaran, 2003; Hair et al, 2010).

H1: Teaching Tools can affect the students’ academic success in programming
course

The academic success in programming course being continuous and teaching
tools effectiveness are firstly tested through Pearson product-moment correlation.
The result showed that there is an insignificant and low positive relationship between
teaching tool effectiveness and academic success in programming course.

For the regression analysis, although there is impact of teaching tools on
academic success in programming course, yet, the effect is not highly significant as
the value of adjusted R square indicate that the impact is quite weak.

The results for the correlation and regression are presented in table 4.6 and
4.7 respectively below. This points that the hypothesis: Teaching Tools affect the

students’ academic success in programming course is accepted.

Table 4.6: Correlation Result for Hypothesis 1

Academic Success in

Programming

Course
Teaching Tools Pearson Correlation .040
N 282

56

Table 4.7: Regression Result for Hypothesis 1

Model Summary®

Mode R R Square [Adjusted R | Std. Error of
I Square the Estimate

1 .040? .002 .002 3.151
a. Predictors: (Constant), TTT (Total sum of Teaching
Tools Items)

b. Dependent Variable: TAS (Total sum of Academic
Success Items)

H2: Previous Experience with other programming language can affect the
academic success in programming course

The academic success in programming course being continuous and previous
experience with programming language which is designed as a dichotomous variable
(Yes or No) is firstly tested using Independent t-test. The descriptive statistics of the
respondents showed that out of the 282 respondents, 215 answered ‘Yes’ to having
previous experience in programming language, while 67 answered ‘No’. The t-test
result gives 12.69 as the mean value for the Yes group, and 12.63 for the No group.
Though with a slight difference, it shows that the group with previous programming
experience has a greater academic success mean value than those without.

The results for the independent t-test are presented in table 4.8 below. On the
other hand, the t-value of the result is 0.139 (equal variance assumed) because the
significant value of Levene’s Test of Equality is 0.369, i.e. greater than 0.05.
However, with the Significant value (2-tailed) of 0.889 (greater than 0.05), it shows
that there is no significant variance in the mean value of the group’s academic
success in computer programming. This points that the hypothesis: Previous
Experience with other programming language affects the academic success in

programming course is not accepted.

57

Table 4.8: Independent T-test Result for Hypothesis 2

Independent Samples Test
Leveng's Test for Cquality of
Variances tast for Equality of Means
0R%; Confidence Interval ofthe
Mean S, Ermor Cifeence

F 8ig. t df | Sig.(2ailed) | Difference Difference Lower Unper

TAS Equalvariances 809 il 13 260 il 062 AN =807 30
assumed

Equalvariances not 13510479 403 062 A5G -3 5ef
assumed

H3: Fear can affect the academic success in programming course

The academic success in programming course being continuous and fear are
firstly tested through Pearson product-moment correlation. The result showed that
there is an insignificant and low negative relationship between fear and academic
success in programming course. This is explained by the correlation result given as r
=-0.004, n =282 and p >.05.

For the regression analysis, the value of R2is given as 0.000 as illustrated in
table below. Thereby, there is no impact of fear on academic success in
programming course.

The results for the correlation and regression are presented in table 4.9 and
4.10 respectively below. This points that the hypothesis: Fear affect the students’

academic success in programming course is not accepted.

58

Table 4.9: Correlation Result for Hypothesis 3

Academic Success in

Programming

Course
Fear Pearson Correlation -.004
N 282

Table 4.10: Regression Result for Hypothesis 3

Model Summary®

Mode R R Square [Adjusted R | Std. Error of
I Square the Estimate
1 -.0042 .000 -.004 3.153

a. Predictors: (Constant), TFE (Total sum of Fear Items)
b. Dependent Variable: TAS (Total sum of Academic

Success)

H4: OOP Concepts can affect the academic success in programming course

The academic success in programming course being continuous and OOP
concepts are firstly tested through Pearson product-moment correlation. The result
showed that there is a significant and high positive relationship between OOP
concepts and academic success in programming course. This is explained by the
correlation result given as r = 0.817, n = 282 and p < .05. The result shows

approximately 81% variance in OOP concepts can be explained by 81% changes in

the academic success in programming course variable.

For the regression analysis, the value of R?is given as 0.668 which shows that

66% variance of the predictor (OOP concepts) explains 66% of the dependent

variable; Academic success in programming course.

59

The results for the correlation and regression are presented in table 4.11 and
4.12 respectively below. This points that the hypothesis: OOP Concepts affect the

academic success in programming course is accepted.

Table 4.11: Correlation Result for Hypothesis 4

Academic Success in

Programming

Course
OOP Concepts Pearson Correlation ** 817
N 282

**_Correlation is significant at the 0.01 level (2-tailed).

Table 4.12:Regression Result for Hypothesis 4

Model Summary®
Mode R R Square [Adjusted R | Std. Error of
I Square the Estimate
1 8172 .668 .667 1.817
a. Predictors: (Constant), TJIC (Total Sum of OOP
Concepts (OOP) items)
b. Dependent Variable: TAS (Total sum of Academic
Success)

H5: Motivation can affect the academic success in programming course

The academic success in programming course being a continuous variable
and motivation are firstly tested through Pearson product-moment correlation. The
result showed that there is significant and high positive relationship between
motivation and academic success in programming course. This is explained by the

correlation result given as r = 0.746, n = 282 and p < .05. The result shows 76%

60

variance in motivation can be explained by 76% changes in the academic success in
programming course variable.

For the regression analysis, the value of R?is given as 0.556 which shows that
55% variance of the predictor (motivation) explains 55% of the dependent variable;
Academic success in programming course.

The results for the correlation and regression are presented in table 4.13 and
4.14 respectively below. This points that the hypothesis: Motivation affects the

academic success in programming course is accepted.

Table 4.13: Correlation Result for Hypothesis 5

Academic Success in

Programming

Course
Motivation Pearson Correlation ** 746
N 282

**_Correlation is significant at the 0.01 level (2-tailed).

Table 4.14:Regression Result for Hypothesis 5

Model Summary®
Mode R R Square [Adjusted R | Std. Error of
I Square the Estimate
1 7462 .556 .554 2.102
a. Predictors: (Constant), TMO (Total sum of Motivation

Items)
b. Dependent Variable: TAS (Total sum of Academic

Success)

61

H6: Course Evaluation can affect the academic success in programming course

The academic success in programming course being a continuous variable
and course evaluation are firstly tested through Pearson product-moment correlation.
The result showed that there is a significant and high positive relationship between
course evaluation and academic success in programming course. This is explained by
the correlation result given as r = 0.602, n = 282 and p < .05. The result shows 60%
variance in course evaluation can be explained by 60% changes in the academic
success in programming course variable.

For the regression analysis, the value of R?is given as 0.362 which shows that
approximately 36% variance of the predictor (course evaluation) explains 36% of the
dependent variable; Academic success in programming course.

The results for the correlation and regression are presented in table 4.15 and
4.16 respectively below. This points that the hypothesis: Course Evaluation affects

the academic success in programming course in programming course is accepted.

Table 4.15: Correlation Result for Hypothesis 6

Academic Success in

Programming

Course
Course Evaluation Pearson Correlation ** 602
N 282

**_Correlation is significant at the 0.01 level (2-tailed).

62

Table 4.16:Regression Result for Hypothesis 6

Model Summary®
Mode R R Square [Adjusted R | Std. Error of
I Square the Estimate
1 6022 .362 .360 2.518
a. Predictors: (Constant), TCE (Total sum of Course
Evaluation Items)
b. Dependent Variable: TAS (Total sum of Academic
Success)

H7: Mathematical Aptitude can affect the academic success in programming

course
The academic success in programming course being a continuous variable

and mathematical aptitude are firstly tested through Pearson product-moment
correlation. The result showed that there is an insignificant and positive relationship
between mathematical aptitude and academic success in programming course.

For the regression analysis, although there is impact of mathematical aptitude
on academic success in programming course, yet the effect is not highly significant
as the value of adjusted R square indicate that the impact is weak.

The results for the correlation and regression are presented in table 4.17 and
4.18 respectively below. This points that the hypothesis: Mathematical aptitude

affects the students’ academic success in programming course is accepted.

Table 4.17: Correlation Result for Hypothesis 7

Academic Success in

Programming

Course
Mathematical Pearson Correlation 082
Aptitude
N 282

63

Table 4.18:Regression Result for Hypothesis 7

Model Summary®
Mode R R Square [Adjusted R | Std. Error of
I Square the Estimate
1 .082? .007 .003 3.143
a. Predictors: (Constant), TSA (Total sum of Students’
Aptitude in Mathematics)
b. Dependent Variable: TAS (Total sum of Academic
Success)

4.5 Summary

The findings of the study which contains the respondents’ profile, population
distribution, data cleaning and screening stage, the hypotheses testing using Pearson
Correlation and Linear Regression are presented in this chapter. In view of this, the
hypotheses as tested by the study are brought to the fore with appropriate answers to
the research questions elicited. At the end, hypotheses 2 and 3 are the ones that are
not accepted. The following chapter ends this report of this study by extensively
discussing the findings in view of its position and relevance among previous related

studies.

64

CHAPTER FIVE
CONCLUSION AND RECOMINDATION

5.0 Introduction

This chapter concludes this study. It entails the discussion of the research
findings, interpretation of the entire result of this study and the accompanying
discussion. It argues the position of the findings of this study amidst the previous
studies’ findings. Finally, it points to the accomplishment of the study’s objectives
and establishes its practical and theoretical contribution. (Figure 5.1) showed the
student success model based on the finding of this study, discussion of each factor in

the following sections.

65

Factors that may affected on academic success in programming course

Independent variables

Figure 5. 1 Student Success Model

66

Dependent variable

5.1 Discussion

The discussion of the findings of this study starts from the descriptive
analysis done. Firstly, out of the total 286 respondents studied, 222 were males,
while 64 were females. This result does not have any analytical importance because
gender is not involved in the determining variables of this study. Also, the course of
study distribution of the respondents reveals 99 respondents to be of BIT, while 187
respondents are MSc IT or/and MSc ICT. This study deals with this distribution as
being homogenous since they are all students of IT irrespective of their course of
study. The age distribution shows that 121 respondents are between 18-30 years, 137
are between 31-43 years, and 28 are 44 years and above. Age as a variable does not
have any analytical importance in this study also. However, since previous
experience in programming course is one of the studied variables, an item was
designed to enquire this from the respondents, and serve as classifying guide into
two groups; namely, respondents with previous experience, and respondents without
previous experience. The experience distribution of the respondents shows that 218
respondents have previous experience in programming language, while 68 do not
have. The result of the independent t-test conducted to test if previous experience in
programming course affects success in programming success is discussed under

section 5.1.2. more details in the following sections.

67

5.1.1 Hypothesis 1: Teaching tools can affect the students’ academic success in

programming course

This study found that teaching tool is related to academic success in
programming, though with a low variance, and it also has weak impact on academic
success in programming course. This result agrees with findings from studies like
Brusilovsky, Calabrese, Hvorecky, Kouchnirenko, and Miller (1997), Cooper, Dann,
and Pausch (2003) and Milne and Rowe (2002), and Ulloa (1980), without an
explicit information about the effect relationship. In their cases, e-learning materials
and tools like program visualization tool and animations of computational elements
are the examples of teaching tools studied. Other studies like Jenkins (2002) claimed
teaching tools affects academic success in programming course when they are

employed with peers teaching method.

5.1.2 Hypothesis 2: Experience with other programming languages can affect

the academic success of programming students

The result of this hypotheses shows that the Levene significant (2-tailed)
value is greater than 0.05, contrary to the expected less than 0.05 to prove that there
Is significant variation in the mean value of academic success in programming
course for group with previous experience is higher than that of no experience, so as
to accept the hypothesis. This however shows that previous experience does not
affect academic success in programming course. This result is in disagreement with
Thompson (1995). Other related studies (Armoni et al., 2012; Burton & Bruhn,
2003) were just conceptual arguments to support that previous experience affects
academic success in programming course, without any empirical study. This means

the finding of this study can be placed for further empirical findings.

68

5.1.3 Hypothesis 3: Fear can affect the academic success of programming

students

This study found that fear and academic success in programming course are
negatively related. This implies that increase in fear leads to decrease in academic
success in programming course, and vice versa. Also recorded, with the regression
result is that fear does not have effect on academic success of programming course.
To the best knowledge of the researcher, no empirical study has been instituted in
this direction. Robins et al. (2003a) and Mead et al. (2006) only reported that the
fear of computer science and information technology courses have been recorded to

be responsible for high rate of attrition in these courses.

5.1.4 Hypothesis 4: OOP concepts can affect the academic success of

programming students

The finding of this study reveals that having a grasp of OOP concepts is
related to students’ academic success. The regression analysis also showed that it
affects academic success of programming course. Abstraction (Sebesta, 2004) and
polymorphism (Weiss, 2000;Rosson & Alpert, 1990) are the key leading OOP
concepts identified. There are no empirical findings to support this proposition
extensively, however, reports of Object Management Group (2003) and Alphonce
and Ventura (2002) suggested that the use of diagrammatic representations can help
students improve their understanding of OOP, and UML or other analogous

notations are also recommended.

69

5.1.5 Hypothesis 5: Motivation can affect the academic success of programming

students.

This study found that motivation is highly related to academic success of
programming course. The regression analysis also showed that it affects academic
success of programming course. This finding aligns with studies of Gomes and
Mendes (2007), Jenkins (2002), Robins et al. (2003b) and Simon et al. (2006). While
Carbone, Hurst, Mitchell, and Gunstone (2009) explanation was basically on the
categorization of motivation into externally motivated (i.e., passing the course) or
achievement-motivated (i.e., obtaining higher marks), Helme and Clarke (2009)
stated that students need motivation (the will to learn) and skills (capability) in order
to be successful in their respective fields. Therefore, it is recommended that
programming language educators and instructors should find ways of motivating the

students, so as to enhance their performance.

5.1.6 Hypothesis 6: Course evaluation (which include: lectures, laboratory
work, tutorials, and assignments) can affect the academic success of

programming students

This study found that course evaluation is related to academic success of
programming course and the regression result also showed that it affects it. To the
best knowledge of the researcher, no study has ever empirically tested this
relationship. Souza et al., (2008) was said to have observed that programming
students learning activities affects the instructors’ attention to course evaluation.
(Jenkins, 2002) reported that instructors may not be paying attention to their students

and not addressing their learning styles had been posing additional problems.

70

5.1.7 Hypothesis 7: Mathematical aptitude can affect the academic success of

programming students

This study found that mathematical aptitude is related to academic success of
programming course. The regression analysis also showed that it affects academic
success of programming course. Findings of Patil (2009) stated that students
admitted with passing level in mathematics aptitude show significant effects in
development factors as well as programming skills, and Jenkins (2002) also argued
that students who find programming difficult are simply and solely those for whom
programming is difficult. Although none of their positions is empirically backed, it
points to the fact the result of this study align with their propositions on the effect of
mathematical aptitude on the academic success in programming courses. This can be
further understood considering that Mathematics is a prerequisite for admission to
study Computer science in the university. Also, there are courses of mathematical
background that usually helps in the understanding of programming logic. These
explain why mathematical aptitudes could have effect on academic success in

programming language.

71

5.2 Conclusion

With the highlights from the literature review and the outlined previous
studies’ findings that are related to the objectives of this study, the data analysis duly
accomplished the hypotheses testing stage, though with varying results. From the
result of the correlation testing as shown previously, this study found that all the
factors studied, i.e. teaching tools, previous programming experience, fear, OOP
concepts, motivation, course evaluation, and mathematical aptitudes are related with
academic success in programming course, with fear as the only variable that is
negatively related. The regression analysis to investigate the effect of the elicited on
independent variables on the dependent variable and independent t-test revealed that
previous experience and fear do not affect academic success in programming. This
made hypotheses 1, 4, 5, 6 and 7as the accepted ones, while hypotheses 2 and 3 are
not accepted.

From the earlier posed research questions and their corresponding research
objectives, literature review reveals teaching tools, previous programming
experience, fear, OOP concepts, motivation, course evaluation, and mathematical
aptitudes as factors that may affect academic success of students in computer
programming. These elicited factors amount to the development of computer
programming students’ success model presented in figure 2.3. Thereafter, the
evaluation of this model is done through the outlined data analysis processes and
hypotheses testing methods. The findings of the study however state that the earlier
listed factors affect academic success in programming course, but previous
experience and fear do not. H2 and H3 are not accepted probably because most of
the participants’ age were 31 years old and above, which means that the fear does not

really contribute as the main predictor on academic success in computer

72

programming. In addition, most of them have previous experience with other
programming languages. However, they still struggle for getting high performance in
programming course. Consequently, there is no different between the group with or
without previous experience.

In conclusion, empirical findings presented by this study established the
effect relationship between teaching tools, OOP concepts, motivation, course
evaluation, and mathematical aptitudes and fear with academic success in

programming.

5.3 Contribution of the Study

Theoretically, this study has presented an updated success model for
measuring students’ academic success. This model as presented in figure 5.1 shows
the antecedents factors that lead to academic success. It is adaptable and adoptable
for future studies investigating academic success generally. The model has been able
to be supported by findings of some previous studies, and equally presented findings
that are new, therefore require further studies. Practically, the findings of this study,
most especially the factors identified by the empirical findings can be implemented

so as to improve the academic performance of student in programming courses.

This findings presented by this study will guide policy makers, educators and
IT training in academics and industry in formulating policies, education curriculum
and teaching modules. In such case, the factors identified to have effect on academic
success of programming language will be taken into consideration in policy
implementation so as to enhance students’ academic success. It is opined that doing
this will positively contribute to the students’ performance improvement in computer

programming Courses.
73

5.4 Limitations of the Study

This study focuses solely on the student’s perceptions to identify the factors
that lead to academic success instead of their performance which can also contribute
as a moderate variable. While, teacher’s perceptions also can aim to generate
different factors that impact on the learning process. Unfortunately, due the time
constraints and financial aspects led to a narrowing of the scope of this research.
This was confirmed by Sekaran (2003) and Creswell (2009), where referred that, the
time, cost and willingness of the participants important criteria for researcher to

identify the scope.

5.5 Recommendation for Future Study

Since research is naturally in continuum, the end of a study signifies the
continuation of another one. This study, as instructing as its findings are further
suggested future study that will investigate the possible interplay of some variables
as mediators and/or moderators in the cause of academic success in computer
programming course. Also recommended is the employment of more sophisticated
statistical tool like structural equation model using AMOS or PLS-R. Grounding the
findings through more sophisticated tools will also add to the strength of the

findings.

74

5.6 Summary

This chapter is the end of this study’s report. It concludes the findings
presented by this study as detailed and duly marshaled to address the objective of
this study. The comparison of the findings presented by this study with other related
previous studies showed that this study has been able to contribute both theoretically
and practically. Recommendations for further studies are made and the areas are

duly suggested.

75

REFERENCES

Alphonce, C., & Ventura, P. (2002). Object Orientation in CS1-CS2 by Design.
ACM SIGCSE Bulletin, 34(3). doi:10.1145/637610.544437.

Armoni, M., Gordon, M., & Harel, D. (2012). The Effect of Previous Programming
Experience on the Learning of Scenario-Based Programming. In Proceedings of
the 12th Koli Calling International Conference on Computing Education
Research.ACM, 151-1509.

Astrachan, & T. Selby, J. U. (2006). An object-oriented, apprenticeship approach to
data structures using simulation. In Frontiers in Education Conference, 1996.
FIE'96. 26th Annual Conference., Proceedings of (Vol. 1, pp. 130-134). IEEE.

Atieno, O. (2009). An Analysis of the Strengths and Limitations of Qualitative and
Quantitative Research Paradigms. Problems of Education in the 21st century,
13, 13-18.

Babbie, E. (2010). The Practice of Social Research,12th Edition. Wadsworth
Cengage Learning, USA.

Bailie, F. (2003). Objects First - Does It Work ? Journal of Computing in Small
Colleges, 19(2), 303-305.

Bennedsen, J., & Caspersen, M. E. (2006). Abstraction ability as an indicator of
success for learning object-oriented programming? ACM SIGCSE Bulletin,
38(2), 39. d0i:10.1145/1138403.1138430.

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory
programming. ACM SIGCSE Bulletin, 39(2), 32.
doi:10.1145/1272848.1272879.

Bennett, G., Fisher, M., & Lees, B. (2011). Object-Oriented Programming with
Objective-c. In Objective-C for Absolute Beginners, 87-102.

76

Bergin, S., & Reilly, R. (2005a). Programming : Factors that Influence Success. In
ACM SIGCSE Bulletin, 411-415.

Bergin, S., & Reilly, R. (2005b). The influence of motivation and comfort-level on
learning to program. In Proceedings of the PPIG, (June), 293-304.

Biddle, R., & Tempero, E. (1998). Java Pitfalls for Beginners. SIGCSE Bulletin,
30(2), 48-52.

Biju, S. M. (2013). Difficulties in understanding object oriented programming
concepts. In Innovations and Advances in Computer, Information, Systems

Sciences, and Engineering (pp. 319-326). Springer New York.

Black, A. P., Bruce, K. B., Homer, M., Noble, J., Yannow, R., Weishaupt, A., &
Hazlitt, W. (2013). Seeking Grace: A new object-oriented language for
novices. In Proceeding of the 44th ACM Technical Symposium on Computer
Science Education, 129-134.

Blackwell, A. F. (1996). Metacognitive theories of visual programming: what do we
think we are doing? Proceedings IEEE Symposium on Visual Languages, 240-
246. doi:10.1109/VL.1996.545293.

Bougie, R., & Sekaran, U. (2010). Research methods for business (5th ed.). West
Sussex, United Kingdom: John Wiley & Sons Ltd.

Bruce, C., Buckingham, L., Hynd, J., Mcmahon, C., Roggenkamp, M., & Stoodley,
I. (2004). Ways of Experiencing the Act of Learning to Program: A
Phenomenographic Study of Introductory Programming Students at University.
Journal of Information Technology Education, 3, 143-160. Retrieved from
http://www.jite.org/documents/Vol3/v3p143-160-121.pdf on 3™ February,
2014,

Bruce, K. B. (2005). Controversy on how to teach CS 1: A discussion on the
SIGCSE-members mailing list. SIGCSE Bulletin (Association for Computing
Machinery, Special Interest Group on Computer Science Education), 37(2),
111-117.

77

Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., & Miller, P. (1997).
Mini-languages: a way to learn programming principles. Education and

Information Technologies, 83, 65-83.

Bryman, A. (2004). Social research methods. New York: Oxford University Press
Inc.

Burkhardt, J., Détienne, F., Wiedenbeck, S., Voluceau, D. De, & Chesnay, L. (1997).
Mental Representations Constructed by Experts and Novices in Object-Oriented
Program Comprehension. In Human-Computer Interaction INTERACT 97, pp.
339-346). Springer US., 339-346.

Burns, R. B. (1997). “Introduction to Research Methods in Education,” Melbourne,

Victoria: Longman Cheshire.

Burton, P. J., & Bruhn, R. E. (2003). Teaching Programming in the OOP, ERA,
35(2), 111-114.

Butler, M., & Morgan, M. (2007). Learning challenges faced by novice
programming students studying high level and low feedback concepts. In
Proceedings of Ascilite, 99-107.

Byrne, M. D., Catrambone, R., & Stasko, J. T. (1999). Evaluating animations as
student aids in learning computer algorithms. Computers & Education, 33(4),
253-278. d0i:10.1016/S0360-1315(99)00023-8.

Byrne, P., & Lyons, G. (2001). The effect of student attributes on success in
programming. Proceedings of the 6th Annual Conference on Innovation and
Technology in Computer Science Education - I[TiCSE °01, 49-52.
doi:10.1145/377435.377467.

Carbone, A., & Hurst, J. (2009). An E xploration of | nternal F actors | nfluencing S
tudent L earning of P rogramming. Proceedings of the Eleventh Australasian
Conference on Computing Education, 95(Ace), 25-34.

78

Carbone, A., Hurst, J., Mitchell, I., & Gunstone, D. (2009). An exploration of
internal factors influencing student learning of programming. In Proceedings of
the Eleventh Australasian Conference on Computing Education . Australian
Computer Society, Inc.., 95, 25-34.

Carlisle. (2009). Raptor: A Visual Programming Environment For Teaching Object-
Oriented Programming*. Journal of Computing Sciences in Colleges, 24, 275—
281.

Caspersen, M. E., Kolling, M., Ct, K., & Beck, K. (2006). A Novice ’ s Process of
Object-Oriented Programming. Companion to the 21st ACM SIGPLAN
Symposium on Object-Oriented Programming Systems, Languages, and
applications,ACM, 892-900.

Cheney, E. E. W., & Kincaid, D. R. (2012). Numerical mathematics and computing.

Cengage Learning.

Clark, D., MacNish, C., & Royle, G. F. (1998). Java as a teaching language—
opportunities, pitfalls and solutions. In Proceedings of the 3rd Australasian

Conference on Computer Science education,ACM, 173-179.

Close, D. Kopec, and J. A. (2000). CS1: Perspectives on Programming Languages
and the Breadth-First Approach. In Proceedings of the 5th Annual CCSC

Northeastern Conference on Computing in Small Colleges, 1-7.

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching objects-first in introductory
computer science. ACM SIGCSE Bulletin, 35(2), 191.
doi:10.1145/792548.611966

Costa, C. J., Iscte, A., & Pierce, R. (2009). Evaluating Information Sources for
Computer Programming Learning and Problem Solving. In Proceedings of the
9th WSEAS International Conference on APPLIED COMPUTER SCIENCE,
218-223.

Crawford, S. & Boese, E. (2006). ActionScript: a gentle introduction to
programming. Journal of Computing Sciences in Colleges, 21(3), 156-168.

79

Dehnadi, S., & Bornat, R. (2006). The Camel Has Two Humps (working title).
Middlesex University, UK. 1-21.

Eckerdal, A., Box, P. O., & Thun, M. (2005). Novice Java programmers' conceptions
of object and class, and variation theory. In ACM SIGCSE Bulletin (Vol. 37,
No. 3, pp. 89-93).

Eckerdal. (2006). Novice Students > Learning of Object-Oriented Programming.

El-Zakhem, 1., & Melki, A. (2013). Difficulities In Learning Programming
LanguagesAmong Freshman Students. INTED2013 Proceedings, 1202—-1206.

Entwistle, N. (1998). Motivation and approaches to learning: motivation and
conceptions of teaching. In: Brown, S., Armstrong, S., Thompson, G. (Eds.),

Motivating Students. Kogan Page, London, United Kingdom.

Floyd, B., & London, R. (1970). I . Notes on Structured Programming:
Technological University Eindhoven.

Garner, S. K. (2001). Cognitive load reduction in problem solving domains.

Garner, S., Haden, P., & Robins, A. (2005). My Program is Correct But it Doesn ’ t
Run: A Preliminary Investigation of Novice Programmers ° Problems. In
Proceedings of the 7th Australasian Conference on Computing Education, 42,
173-180.

Garrido, J. M. (2004). Object-Oriented Programming: From Problem Solving to

Java. Firewall Media.

Georgatos (2008). How applicable is Python as first computer language for teaching
programming in a pre-university educational environment, from a teacher's

point of view?. arXiv preprint arXiv:0809.1437.

Gomes, A., & Mendes, A. J. (2007). Learning to program - difficulties and solutions.

In International Conference on Engineering Education—ICEE.

80

Graf, S., Lan, C. H., & Liu, T.-C. (2009). Investigations about the Effects and
Effectiveness of Adaptivity for Students with Different Learning Styles. 2009
Ninth IEEE International Conference on Advanced Learning Technologies,
415-419. doi:10.1109/ICALT.2009.135

Gries, D. (1974). What should we teach in an introductory programming course?
SIGCSE ’74: Proceedings of the Fourth SIGCSE Technical Symposium on

Computer Science Education.

Grinnell, R. jr. (ed.). (1993). Social Work, Research and Evaluation”, (4th ed),
Illinois, F.E Peacock Publishers.

Grogono. (1989). Comments, assertions and pragmas. ACM SIGPLAN Notices,,
24(3), 79-84.

Gross, P. & Powers, K. (2005). Evaluating assessments of novice programming
environments. Proceedings of the 2005 International Workshop on Computing
Education Research ICER 05, 99-110.

Guthrie, R., Yakura, E., & Soe, L. (2011). How Did Mathematics and Accounting
Get So Many Women Majors ? What Can IT Disciplines Learn?, 1886(909),
15-19.

Hadjerrouit, S. (1998). Java as First Programming Language: A Critical Evaluation,
30(2).

Hadjerrouit, S. (1998). Java as First Programming Language: A Critical Evaluation,.
ACM SIGCSE Bulletin, 30(2), 43-47.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E. &Tattam, R. L. (2010).
Multivariate Data Analysis (7th ed.), New Jersey: Pearson Education Inc.

Hardy, C., Heeler, P., & Brooks, D. (2006). Are High School Graduates
Technologically Ready For Post-Secondary Education? Journal of Computing
Sciences in Colleges, 21(4), 52-60.

81

Hasan, N. M. and Y. (2001). Challenges in teaching java technology. Informing Sci.,
365-371.

Havenga, H. M. (2006). An Investigation Of Students ° Knowledge , Skills And

Strategies During Problem Solving In Object-Oriented Programming.

Havenga, M., Mentz, E., & De Villiers, R. (2008). Knowledge, skills and strategies
for successful object-oriented programming: a proposed learning repertoire.

South African Computer Journal, 42, 1-8.

Helme & Clarke. (2009). Identifying cognitive engagement in the mathematics

classroom. Mathematics Education Research Journal, 13, 133-153.

Helme, S. U. E., & Clarke, D. (2001). Identifying cognitive engagement in the

mathematics classroom. Mathematics Education Research Journal, 131-153.

Henderson, R., & Zorn, B. (1994). A Comparison of Object-oriented Programming
in Four Modern Languages, 24(June), 1077-1095.

Herman, N. S., & Salam, S. B. (2011). A Study of Tracing and Writing Performance
of Novice. In Software Engineering and Computer Systems . Springer Berlin
Heidelberg., 557-570.

Holden, Ronald B. (2010). "Face validity". In Weiner, Irving B.; Craighead, W.
Edward. The Corsini Encyclopedia of Psychology (4th ed.). Hoboken, NJ:
Wiley. pp. 637-638. ISBN 978-0-470-17024-3.

Holland, S., Griffiths, R., Woodman, M., Hall, W., Keynes, M., & Kingdom, U.
(1997). Avoiding Object Misconceptions. In ACM SIGCSE Bulletin, 29, 131—
134.

Hossein, S. (2007). Response modeling in direct marketing. Master thesis,
Department of business administration and social science, University of

Technology, Iran.

82

http://books.google.com/books?id=pa5vKqntwikC&pg=PA637
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-470-17024-3

Howles, T. (2007). Preliminary Results Of A Longitudinal Study Of Computer
Science Student Trends, Behaviors and Preferences. Journal of Computing

Sciences in Colleges, 22, 18-27.

Jenkins, T. (2001a). Teaching programming—A journey from teacher to motivator.
Paper Presented at the The 2nd Annual Conference of the LSTN, Center for

Information and Computer Science.

Jenkins, T. (2001b). The motivation of students of programming. ACM SIGCSE
Bulletin, 33(3), 53-56.

Jenkins, T. (2002). On the difficulty of learning to program. In Proceedings of the
3rd Annual Conference of the LTSN Centre for Information and Computer
Sciences, 53-58.

Kaplan, R., & Sacuzzo, D. (2008). Psychological Testing: Principles, applications

and Issues, Brooks Cole. Pacific Grove, CA.

Kerlinger, F. N. (1986). Foundation of Behavioral Research, 3th edition. New York:
Holt, Rinehart & Winston.

Kidder, L. H., & Judd, C. M. (1986). Research methods in social relations (5th ed.).
New York: Holt, Rinehart and Winston.

Kimberly A. Barchard. (2003). Does Emotional Intelligence Assist in the Prediction
of Academic Success? Educational and Psychological Measurement; 6(3), 840-
858.

Kolling, M. (1999). The problem of teaching object-oriented programming. In ACM
Sigplan Notices, 11(8), 8-15.

Kolling. (2003). The BlueJ system and its pedagogy 1. Computer Science Education,
13(4),1-12.

Kumar, R. (2011). Research methodology: A step-by-step guide for beginners (3rd
ed.).Thousand Oaks, CA: SagePublications Inc.

83

Lahtinen, E., Ala-Mutka, K., & Jérvinen, H.-M. (2005). A study of the difficulties of
novice programmers. ACM SIGCSE Bulletin, 37(3), 14,
doi:10.1145/1151954.1067453

Lakshman, M., Sinha, L., Biswas, M., Charles, M., & Arora, N. K. (2000).
Quantitative Vs qualitative research methods. The Indian Journal of Pediatrics,
67(5), 369-377. doi:10.1007/BF02820690

Li, T., Liu, W., Mao, X., & Zhou, H. (2013). Introduction to Programming : Science
or Art? In Proceedings of the 18th ACM Conference on Innovation and
Technology in Computer Science Education, 4503.

Macklem, Gayle L. (1990). Measuring aptitude. Practical Assessment, Research &
Evaluation, 2(5).

Madden, M., & Chambers, D. (2002a). Evaluation of Student Attitudes to Learning
the Java Language. In Proceedings of the inaugural conference on the
Principles and Practice of programming, 2002 and Proceedings of the second
workshop on Intermediate representation engineering for virtual machines, (pp.
125-130). National University of Ireland.

Madsen, O. L., & Magller-Pedersen, B. (1988). What object-oriented programming
may be-and what it does not have to be. In ECOOP’88 European Conference
on Object-Oriented Programming (pp. 1-20). Springer Berlin Heidelberg.

Mason, R. (2012). Designing introductory programming courses: the role of

cognitive load.

Mason, R., Cooper, G., & Raadt, M. De. (2012). Trends in Introductory
Programming Courses in Australian Universities — Languages , Environments
and Pedagogy. Computing Education Conference (ACE2012), 123, 33-42.

Matravers, J. (2011). Introduction to computer systems architecture and
programming. University of London.

84

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B., &
Al., E. (2001). A multi-national, multi-institutional study of assessment of
programming skills of first-year CS students. SIGCSE Bulletin (Association for
Computing Machinery, Special Interest Group on Computer Science
Education), 33(4), 125-180.

Mcgettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, G., & Mander, K. (2005).
Grand Challenges Education. The Computer Journal, 48(1), 49-52.

McGettrick. (2005). Grand challenges in computing: Education--A summary. The
Computer Journal,, 48(1), 42-48.

Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., Clair, C. St., & Thomas, L.
(2006). A cognitive approach to identifying measurable milestones for
programming skill acquisition. In ACM SIGCSE Bulletin, 38, 182-194.
doi:10.1145/1189215.1189185

Mills, H. D. (1972). Mathematical Foundations for Structured Programming.

Milne, I., & Rowe, G. (2002). Difficulties in Learning and Teaching Programming
— Views of Students and Tutors. Education and Information Technologies, 55—
66.

Moderator, O. A., Koffman, E., Kélling, M., & Reges, S. (2005). Resolved : Objects
Early Has Failed. In ACM SIGCSE Bulletin, 37, 451-452.

Mody, R. P. (1991). C in education and software engineering. ACM SIGCSE
Bulletin, 23(3), 45-56. d0i:10.1145/126459.126471

Mow, I. T. C. (2008). Issues and difficulties in teaching novice computer
programming. In Innovative Techniques in Instruction Technology, E-learning,

E-assessment, and Education (pp. 199-204). Springer Netherlands.

Nikishkov, G. P., Nikishkov, Y. G., & Savchenko, V. V. (2003). Comparison of C
and Java Performance in Finite Element Computations. Computers &
Structures, 81(24), 2401-2408.

85

Notani, A. S. (1998). Moderators of perceived behavioural control’s predictiveness
in the theory of planned behaviour: A meta-analysis. Journal of Consumer
Psychology, 7(3), 247-271.

Object Management Group. (2003). Unified Modeling Language Specification.
Version 1.5 March 2003, Doc. Number formal/03-03-01.

Pair, C. (1993). Programming, programming languages and programming methods.

Psychology of Programming, 9-19.

Pallant, J. (2003). SPSS survival manual: A step by step guide to data analysis using
SPSS for Windows (Version 10). Australia: Allen & Unwin.

Pallant, J. (2011). For the SPSS Survival Manual website , go to
www.allenandunwin.com/spss This is what readers from around the world say
about the SPSS Survival Manual.

Patil, P. S. P. (2009). The effect of developments in student attributes on success in
Programming of management students. In Education Technology and
Computer, 2009. ICETC’09. International Conference on IEEE., 191-193.
d0i:10.1109/ICETC.2009.35

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Uni, J. M., ... Paterson,
J. (2007). A Survey of Literature on the Teaching of Introductory Programming.
In ACM SIGCSE Bulletin, 39(4), 204-223.

Pejcinovic, Holtzman, M., Chrzanowska-Jeske, & W. (2013). Just because we teach
it does not mean they use it: Case of programming skills. In Frontiers in
Education Conference, 1287-1289.

Poo, D. C., Kiong, D. B. K., & Ashok, S. (2007). Object-Oriented Programming and
Java (2nd Editio). Springer.

Powers, K., Gross, P., Cooper, S., McNally, M., Goldman, K. J., Proulx, V. &
Carlisle, M. (2006). Tools for teaching introductory programming: what works?
ACM SIGCSE Bulletin , Proceedings of the 37th SIGCSE Technical Symposium
on Computer Science Education SIGCSE 06, 38(1), 560-561.

86

Quenemoen, R., Thompson, S. & Thurlow, M. (2003). Measuring academic
achievement of students with significant cognitive disabilities: Building
understanding of alternate assessment scoring criteria(Synthesis Report 50).
Minneapolis, MN: University of Minnesota, National Center on Educational

Outcomes.

Reis, C., Tx, H., & Cartwright, R. (2004). Taming a Professional IDE for the
Classroom. In ACM SIGCSE Bulletin, 36, 156-160.

Renumol, V. G., Jayaprakash, S., & Janakiram, D. (2009). Classification of
Cognitive Difficulties of Students to Learn Computer Programming. Indian

Institute of Technology, India.

Rinard, M. C., Scales, D. J., & Lam, M. S. (1993). Jade: A High-Level , Language
for Parallel Programming,26, 28-28.

Robins, A., Rountree, J., & Rountree, N. (2003a). Learning and Teaching
Programming: A Review and Discussion. Computer Science Education, 13(2),
137-172. doi:10.1076/csed.13.2.137.14200

Robins, A., Rountree, J., & Rountree, N. (2003b). Learning and Teaching
Programming: A Review and Discussion. Computer Science Education, 13(2),
137-172. doi:10.1076/csed.13.2.137.14200

Rogerson, C., & Scott, E. (2010). The Fear Factor: How It Affects Students Learning
to Program in a Tertiary Environment. Journal of Information Technology

Education.

Rosson, M. B., & Alpert, S. R. (1990). The cognitive consequences of object-
oriented design. Human-Computer Interaction, 5(4), 345-379.

Rowe, I. M. and G. (2002). Difficulties in learning and teaching programming-
Views of students and tutors. J. Edu. & Info. Tech., 7, 55-66.

87

Sajaniemi, J., & Kuittinen, M. (2003). Program animation based on the roles of
variables. Proceedings of the 2003 ACM Symposium on Software Visualization
- SoftVis '03, 7. d0i:10.1145/774834.774835

Satzinger, JW. & @rvik, T. U. (2001). The Object-Oriented Approach. Concepts,
System Development, and Modeling with UML.

Saunders, M., Lewis, P., & Thronhill, A. (2003). Research method for business
students (3 ed). England: Person Education Limited.

Schach, S. R. (2005). Object-Oriented and Classical Software Engineering. (6th
ed.). Boston: McGraw-Hill.

Schreiner, w. (2011). Introduction to Programming (pp. 1-156).

Schulte, C., & Bennedsen, J. (2006). What do teachers teach in introductory
programming? In Proceedings of the Second International Workshop on
Computing Education Research ACM, p 17-28.

Sebesta, R. W. (2004). Concepts of Programming Languages. (6th ed.). Boston:

Pearson Addison Wesley.

Sekaran, U. (2003). Research Methods for Business: A skill building approach. John
Wiley and Sons Inc., New York.

Sekaran, U., & Bougie, R. (2009). Research methods for business: A skill building
approach. Wiley: London.

Sekaran, U., & Bougie, R. (2010). Research methods for business: A skill building
approach. Wiley.

Sharp & Schultz. (2013). An Exploratory Study of the use of Video as an
Instructional Tool in an Introductory C# Programming Course. Information
Systems Education, 11(6).

Sicilia, M.-A. (2006). Strategies for teaching object-oriented concepts with Java.
Computer Science Education, 16(1), 1-18. doi:10.1080/08993400500344431

88

Simon, S., Fincher, S., Robins, A., Baker, B, Box, I., Cutts, Q., de Raadt., M.,
Haden, P., Hamer, J., H., & M., Lister, R., Petre, M., Sutton, K., Tolhurst, D., &
Tutty, J. (2006). Predictors of Success in a First Programming Course. In
Proceedings of the 8th Australasian Conference on Computing Education, 52,
189-196.

Singer, Wing Hang Li , David R. White, J. (2013). JVM-Hosted Languages: They
Talk the Talk, but do they Walk the Walk? In Proceedings of the 2013
International Conference on Principles and Practices of Programming on the

Java Platform: Virtual Machines, Languages, and Tools,ACM, 101-112.

Sivasakthi, M., & Rajendran, R. (2011a). Learning difficulties of “ object-oriented
programming paradigm using Java ”: students * perspective. Indian Journal of
Science and Technology, 4(8), 983-985.

Sivasakthi, M., & Rajendran, R. (2011b). Learning difficulties of “ object-oriented
programming paradigm using Java ”: students * perspective. Indian Journal of
Science and Technology, 4(8), 983-985.

Smith, H. W. (1991). Strategies of social research: Holt, Rinehart and Winston.
Smith. (2012). Research Methodology: A Step-by-step Guide for Beginners.

Soloway, S. and. (1989). Studying the novice programmer. Hillsdale, New Jersey,

United States: Lawrence Erlbaum.

Souza, D. D., Hamilton, M., Thevathayan, C., Harland, J., Walker, C., & Muir, P.
(2008). Transforming Learning of Programming: A Mentoring Project. In
Proceedings of the Tenth Conference on Australasian Computing Education,
78, 78-84.

Stroustrup, B. (1991). What is "Object-Oriented Programming"?(1991 revised

version).

Tabachink, B. G. &Fidell, L. S. (2006). Using Multivariate Statistics (5th Ed.), USA:
Pearson Education Inc.

89

Thompson, P. (1995). Constructivism in education (p. 159). Hillsdale, NJ: Lawrence

Erlbaum.

Turner, J. A., & Zachary, J. L. (2001). Javiva: A Tool for Visualizing and Validating
Student-Written Java Programs. In ACM SIGCSE Bulleti, 33(1), 45-49.

Ulloa, M. (1980). Teaching and learning computer programming: a survey of student
problems, teaching methods, and automated instructional tools. ACM SIGCSE
Bulletin, 12(2), 48-64.

Von Wangenheim, C. G., & Shull, F. (2009). voice of evidence. IEEE, 26(2), 92-94.

VRajaraman. (1998). Programming Languages.
http://ezproxy.unimap.edu.my:Comparison and Classification of Programming

Languages (Springer), 1-12.

Weisfeld, M. (2004). The Object-Oriented Thought Process. (2nd ed.).Developer’s
Library.

Weiss, M. A. (2000). Data structures and problem solving using Java. ACM SIGACT
News, 29(2), 42-49. doi:10.1145/288079.288084

Wenger, E. (1998). Communities of practice: Learning as A social practice. The
Systems Thinker, 9(5).

Wiedenbeck, S. (2005). Factors affecting the success of non-majors in learning to
program. Proceedings of the 2005 International Workshop on Computing
Education Research - ICER ’05, 13-24. doi:10.1145/1089786.1089788

Wiedenbeck, S. et al. (1999). A comparison of the comprehension of object-oriented
and procedural programs by novice programmers. Interacting with Computers,
11, 255-282.

Wiedenbeck, S., & Labelle, D. (2004). Factors Affecting Course Outcomes in
Introductory Programming, (April), 97-110.

90

Williams, K. C., & Williams, C. C. (2011). Five key ingredients for improving

student motivation. Research in Higher Education Journal, 1-23.

Wilson, B. C., & Shrock, S. (2001). Contributing to Success in an Introductory
Computer Science Course: A Study of Twelve Factors. In ACM SIGCSE
Bulletin, 33, 184-188.

Wit, K. De, Heerwegh, D., & Verhoeven, J. C. (2012). Do ICT Competences
Support Educational Attainment at University? Journal of Information
Technology Education: Research 11. Available at
http://www.jite.org/documents/Vol11/JITEv11p001-025DeWit1037.pdf
[Accessed 22-05-2012], 11.

Xinogalos, S., Sartatzemi, M., & Dagdilelis, V. (2006). Studying Students ’
Difficulties In An Oop Course Based On Bluej. In IASTED International

Conference on Computers and Advanced Technology in Education, 82-87.
Yau, J. Y., & Joy, M. (2004). Introducing Java: the Case for Fundamentals-first.

Zdancewic& Weirich. (2013). Programming Languages and Techniques.University

of Pennsylvania, 1-387.

Zikmund, W., Babin, B., Carr, J., & Griffin, M. (2010). Business research methods

South-Western Cengage: Canada.

91

