STUDENT SUCCESS MODEL IN PROGRAMMING COURSE: A CASE STUDY IN UUM

SALAM ABDULABBAS GHANIM

MASTER OF DEGREE
UNIVERSITI UTARA MALAYSIA
2014
STUDENT SUCCESS MODEL IN PROGRAMMING COURSE:
A CASE STUDY IN UUM

A thesis submitted to Dean of Awang Had Salleh Graduate School in Partial Fulfillment of the Requirements for the Degree
Master of Science of Information Technology
University Utara Malaysia

By
Salam Abdulabbas Ghanim
Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely available for inspection. I further agree that permission for the copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences
UUM College of Arts and Sciences
Universiti Utara Malaysia
Abstrak

Keywords: Pengaturcaraan berasaskan objek, Java, kesukaran pengaturcaraan, pembelajaran, faktor
Abstract

The complexity and difficulty ascribed to computer programming has been asserted to be the causes of its high rate of failure record and attrition. It is opined that programming either to novice, middle learner, and the self-branded geeks is always a course to be apprehensive of different studies with varying findings. Studies on factors leading to the success of programming course in higher institution have been carried out. The record at Universiti Utara Malaysia (UUM) shows that 38% of semester one undergraduate students failed the programming course in 2013. This really motivates this study, which aims at investigating the practical factors affecting the success of programming courses, and to position its’ theoretically findings to complement the existing findings. Data were gathered using a quantitative approach, in which a set of questionnaire were distributed to 282 sampled respondents, who are undergraduate and postgraduate students of Information Technology (IT) and Information and Communication Technology (ICT). Having screened and cleaned the data, which led to the deletion of four outlier records, independent T-test, correlation, and regression were run to test the hypotheses. The results of Pearson correlation test reveal that teaching tools, OOP concepts, motivation, course evaluation, and mathematical aptitude are positively related to academic success in programming course, while fear is found to be negatively related. In addition, the regression analysis explains that all the elicited independent variables except fear are strongly related. Besides, the independent T-test also discovers no deference between groups with and without previous programming experience.

Keywords: Object Oriented Programming, Java, programming difficulties, learning, Factors
ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful
Alhamdulillah, all praises to Allah for the strengths and His blessing in completing
this thesis.
Special appreciation goes to my supervisor, Mdm Alawiyah Abd Wahab, for her
supervision and constant support. Her invaluable help of constructive comments and
suggestions throughout the success of this research. This thesis would not have been
possible without her help, support and her patience.
I sincerely thank to my evaluators Dr. Mazni Omar and Ms. Rohaida Romli, for
graciously reviewing this work and giving valuable suggestion and comments on my
work.
My deepest gratitude goes Prof. Dr. Huda (Dean, College of Arts and Sciences), Dr.
Norliza, Dr. Hizbullah and all administrative staff of school of information
technology specially Madam latifah.
I would also like to say a big thanks all UUM lecturers and staff members at the
School of Computing who were kind enough to give me their precious time and
assistance, without which I would not have been able to complete this Master’s
Thesis.
I am indebted and thankful to the Chancellor of University Utara Malaysia who
referred me to valuable e-resources at the Sultanah Bahiyah Library.
Sincere thanks to all my friends especially Sultanah Jabir, was always willing to help
and give his best suggestions. I have been a lonely without him, and others for their
kindness and moral support during my study. Thanks for the friendship and
memories.
Last but not the least, I would like to thank my family: my Mother. She was always
there praying me. Also to my elder brothers, and elder sisters. They were always
supporting me and encouraging me with their best wishes. Special thank to my
cousin Mohammed Tuama, Be on the go to do any requirements in my country
when i ask.
Finally, I would like to thank my wife for her personal support and great patience at
all times. She was always there stood by me through the good times and bad.
TABLE OF CONTENTS

Permission to Use ... i
Abstrak .. ii
Abstract ... iii

ACKNOWLEDGEMENT ... IV

TABLE OF CONTENTS ... V

LIST OF FIGURES .. IX

LIST OF TABLES ... X

CHAPTER ONE INTRODUCTION ... 1
1.0 Background of the Study ... 1
1.1 Problem Statement ... 6
1.2 Research Questions .. 8
1.3 Research Objectives .. 8
1.4 Significance of the Study .. 9
1.5 Scope of the Study ... 9
1.6 Organization of the Research ... 10

CHAPTER TWO LITERATURE REVIEW .. 12
2.0 Introduction ... 12
2.1 Object Oriented Programming ... 12
2.2 Java Programming ... 15
2.3 Related Works ... 18
2.4 Student Success Model in programming Course and Hypothesis 21
 2.4.1 Teaching Tools .. 23
 2.4.2 Experience with Other Programming Languages 24
 2.4.3 Fear .. 25
 2.4.4 OOP Concepts ... 26
 I. Object ... 26
 II. Class .. 27
LIST OF FIGURES

Figure 2.1 The didactic triangle (Diederich, 1988) .. 13
Figure 2.2 Level of learning difficulties on different topics of Java programming 17
Figure 2.3 Factors that may affect the academic success in programming course 22

Figure 3.1 The strategies that are adopted in this study ... 33
Figure 3.2 Procedure of Data Collection .. 36

Figure 5.1 Student Success Model ... 66
LIST OF TABLES

Table 3.1 Questionnaires sources .. 38
Table 3.2: Reliability Testing Result ... 42
Table 3.3: Gender Distribution of the Pilot Study ... 43
Table 3.4: Course Level Distribution of the Pilot Study .. 43
Table 3.5: Previous Programming Experience of the Pilot Study 44
Table 3.6: Statistical Analysis technique used .. 46
Table 3.7: Academic Success in Computer Programming ... 45
Table 3.8: Motivation .. 46
Table 3.9: Fear ... 46
Table 3.10: Java Concepts ... 47
Table 3.11: Teaching Tools ... 47
Table 3.12: Course Evaluation ... 48
Table 3.13: Aptitude in Mathematics ... 48
Table 4.1 Gender ... 50
Table 4.2 Course ... 51
Table 4.3 Age .. 51
Table 4.4 Experience ... 52
Table 4.5 Reliability Test ... 53
Table 4.6: Correlation Result for Hypothesis 1 ... 56
Table 4.7: Regression Result for Hypothesis 1 ... 57
Table 4.8: Independent T-test Result for Hypothesis 2 .. 58
Table 4.9: Correlation Result for Hypothesis 3 .. 59
Table 4.10: Regression Result for Hypothesis 3 .. 59
Table 4.11: Correlation Result for Hypothesis 4 .. 60
Table 4.12: Regression Result for Hypothesis 4 .. 60
Table 4.13: Correlation Result for Hypothesis 5 ... 61
Table 4.14: Regression Result for Hypothesis 5 ... 61
Table 4.15: Correlation Result for Hypothesis 6 .. 62
Table 4.16: Regression Result for Hypothesis 6 .. 63
Table 4.17: Correlation Result for Hypothesis 7 .. 63
Table 4.18: Regression Result for Hypothesis 7 .. 64
CHAPTER ONE
INTRODUCTION

1.0 Background of the Study

Modern curriculum needs to emphasize the development of programming skills for citizens of a technological society (Pejcinovic, Holtzman, Chrzanowska, & Jeske, 2013). Programming is a cognitive activity that requires abstract representations and logical expressions. The program must translate abstract representations into correct codes by using a formal language to create, modify, reuse, or debug a program (Wiedenbeck, 2005). Furthermore, programming is often viewed as a problem-solving activity rather than a linguistic activity, often ignoring the fact that programming languages are a case of formal languages. The interpretation of formal languages is unique for every individual.

Programming skills are an essential part of computer science (CS) and information technology (IT) courses (Raina Mason, Cooper, & Raadt, 2012). Robins, Rountree, and Rountree (2003a) argue that programming skills are useful in programming knowledge and strategies, such as program generation and comprehension. Programming can also lead to a rewarding career, such as an analyzer, programmer, or debugger.

Zdancewic and Weirich (2013) state that programming is a conceptual foundation in the study of computations. Programming is a prerequisite for almost every other course in CS. Renumol, Jayaprakash, and Janakiram (2009) said that “programming is the process of writing, testing and debugging of computer programs using different programming languages.” However, according to
The contents of the thesis is for internal user only
REFERENCES

80

Pallant, J. (2011). For the SPSS Survival Manual website, go to www.allenandunwin.com/spss This is what readers from around the world say about the SPSS Survival Manual.

Pejcinovic, Holtzman, M., Chrzanowska-Jeske, & W. (2013). Just because we teach it does not mean they use it: Case of programming skills. *In Frontiers in Education Conference, 1287–1289.*

Schreiner, w. (2011). *Introduction to Programming* (pp. 1–156).

