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Abstract

Electricity demand patterns have many variables related to uncertainty
behaviour such as gross domestic product, population, import and export. The
characteristics of these variables lead to two problems in forecasting the electricity
demand. The first problem is the fitness evaluation in the electricity demand
forecasting model in which more than one variable are included which leads to
increase the sum of squared deviations. The second problem is the use of a single
algorithm that failed to solve local optima. These problems resulted in estimation
errors and high computational cost. Hybrid genetic algorithm (GA) and Nelder-
Mead local search model has been used to minimize demand estimation errors.
However, hybrid GA and Nelder-Mead local search failed to reach the global
optimum solution and involve high number of iteration. Hence, an electricity
demand forecasting model that reflects the characteristics of electricity demand
has been developed in this research. The model is known as the hybrid Real-Value
GA and Extended Nelder-Mead (RVGA-ENM). The GA has been enhanced to
accept real value while the Nelder-Mead local search is extended to assist in
overcoming the local optima problem. The actual electricity demand data of
Turkey and Indonesia were used in the experiments to evaluate the performance of
the proposed model. Results of the proposed model were compared to the hybrid GA
and Nelder-Mead local search, Real Code Genetic Algorithm and Particle Swarm
Optimisation. The findings indicate that the proposed model produced higher
accuracy for electricity demand estimation. The proposed RVGA-ENM model
can be used to assist decision-makers in forecasting electricity demand.

Keywords: Genetic algorithm, Electricity demand forecasting, Nelder-Mead local
search, Local optimal.
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Abstrak

Corak permintaan elektrik mempunyai banyak pembolehubah yang berkaitan dengan
tingkah laku tidak menentu seperti keluaran dalam negara kasar, penduduk, import
dan eksport. Ciri pembolehubah ini membawa kepada dua masalah dalam ramalan
permintaan elektrik. Masalah pertama ialah penilaian kecergasan dalam model
ramalan permintaan elektrik di mana lebih daripada satu pembolehubah yang
dimasukkan yang membawa kepada peningkatan jumlah sisihan kuasa dua. Masalah
kedua ialah penggunaan algoritma tunggal yang gagal menyelesaikan optima
setempat. Masalah ini mengakibatkan kesilapan anggaran dan kos pengkomputeran
tinggi. Model hibrid algoritma genetik (GA) dan pencarian setempat Nelder-Mead
telah digunakan untuk mengurangkan kesilapan anggaran permintaan. Walau
bagaimanapun, hibrid GA dan pencarian setempat Nelder-Mead gagal mencapai
penyelesaian optimum global dan melibatkan jumlah lelaran yang tinggi. Oleh itu,
satu model ramalan permintaan elektrik yang menggambarkan ciri permintaan
elektrik telah dibangunkan dalam kajian ini. Model ini dikenali sebagai hibrid G4
bernilai real dan  Nelder-Mead yang diperluaskan (RVGA-ENM). GA telah
dipertingkatkan untuk menerima nilai real manakala pencarian setempat Nelder-
Mead telah diperluaskan untuk membantu dalam mengatasi masalah optima
setempat. Data sebenar permintaan elektrik Turki dan Indonesia telah digunakan
dalam eksperimen untuk menilai prestasi model yang dicadangkan. Keputusan model
yang dicadangkan dibandingkan dengan keputusan model hibrid G4 dan pencarian
setempat Nelder-Mead, algoritma genetik kod real dan pengoptimuman zarah
swarm. Dapatan kajian menunjukkan bahawa model yang dicadangkan
menghasilkan ketepatan anggaran yang lebih tinggi untuk permintaan bekalan
elektrik. Model RVGA-ENM yang dicadangkan boleh digunakan untuk membantu
pembuat keputusan dalam ramalan permintaan bekalan elektrik.

Kata kunci: Algoritma genetik, Ramalan permintaan elektrik, Pencarian setempat
Nelder-Mead, Optimal setempat.
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CHAPTER ONE
INTRODUCTION

Sound and realistic electricity demand forecasting (EDF) is essential to good
planning in any industry. One of the most important things in the planning of
electricity demand in the utility industry is electricity demand forecasting that is
more realistic. This means that the development of the electricity demand forecasts is
essential in the planning of new resources for the system to meet the future demand.
The importance of electricity demand forecasting is becoming clear to best demand
utilities as they must sustain the demand expectations. However, the impossibility of
developing truly accurate demand forecasts must be recognised. Results obtained
from the electricity demand forecasting process are used in areas such as planning
and operation (EL-Naggar & AL-Rumaih, 2005; Ghods & Kalantar, 2008; Ghods &

Kalantar, 2011).

The soundness of a method for electricity demand forecasting performances should
not be assessed only in a single case over the short term but using its record of
success or failure over the long term. The usefulness of an electricity demand
forecasting method should focus on issues such as the relationship of demand and
weather, demand characteristics, pressure demand, demand growth patterns, and

socioeconomic data (Ali, 2012; Fan, Methaprayoon, & Lee, 2010).

Based on the time horizon, electricity demand forecasting can be categorised into

three types: (i) short-term electricity demand forecasting (STEDF), (i1) medium-term
1



electricity demand forecasting (MTEDF), and (iii) long-term electricity demand

forecasting (LTEDF) (Singh et al., 2012).

STEDF plays an important role in everyday operations such as daily utility
operations. MTEDFs are necessary in fuel procurement planning, energy trading,
utility revenue assessments, and scheduling unit maintenance. LTEDF is important
for decision making in transmission expansion and system generation of energy

planning (Eghbal et al., 2011; Fan et al., 2010; Singh et al., 2012).

The demand model varies from one application to another. The applications include
demand for food, housing, transport, and utilities. Some demand models depend on
the population size and some depend on the economic state of the country. There are
demands that are seasonal in nature, namely the demand for utilities (e.g. electricity).
Higher demands can be observed during the hot season compared to the wet season

and during a festival season compared to a non-festival season.

Historical data are an important aspect of electricity demand forecasting and data
preparation. For example, in LTEDF, historical data from one to ten years is applied
in expansion planning and tariff setting. It is also applied in parameter estimation and
the capital investment return problem. In general, there is a need for historical data to
obtain an accurate LTEDF. An accurate LTEDF performance should be validated
using historical information; then it is applied to predict the future long-term
electricity demand (EL-Naggar & AL-Rumaih, 2005; Dalvand, Azami, &

Tarimoradi, 2008; Hyndman & Fan, 2010; Zhao & Niu, 2010).

2



The driven variables for an electricity demand pattern are data with various

uncertainties (e.g. measurement, estimation of parameters, and in processing).

The uncertainty variables for an electricity demand include socioeconomic
conditions, weather conditions, population growth, general randomness inherent in
individual usage, and changing technologies (Babayan, Savic, & Walters, 2007).
Based on the complex relationships between the uncertainty variables and an
electricity demand, the researchers categorised the electricity demand in the

nondeterministic-polynomial (NP) (Ozturk & Ceylan, 2005; Zhang & Ye, 2011).

The risk of the “natural uncertainty” in electricity demand problems can severely
increase the estimation error and affect the reliability of mathematical modelling. In
this case, if the electricity demand forecasting model recognises the natural
uncertainties with good accuracy, the system can reduce estimation error, search
region, and computational time. Therefore, taking into account the uncertainty is of
great practical interest when developing the methodology in predicting the behaviour

of the system (Babayan et al., 2007; Zhang & Ye, 2011).

The original objective function of the mathematical model of long-term electricity
demand pattern was to minimise forecasting errors where the demand variables
contain population and economic indicators. Two classic approaches of optimisation
have been applied to LEDF to estimate model parameters. They are: (i) static and,

(i1) dynamic state estimation techniques.



In static state estimation approaches such as the least square (LS) techniques, the
entire set of data is needed to obtain the optimal estimation solution (Franco et al.,
2006; Yang, Huang, & Ma, 2009; Hsu & Huang, 2010). In dynamic state estimation
approaches such as Kalman filtering and least absolute value filtering algorithms, a

new measurement is used to update the new estimation.

As a modern estimation approach including expert system and neural network,
artificial intelligence (AI) methods have been proposed by this researcher. This
modern approach has shown promising and encouraging results. However, there are
disadvantages of this approach; for example, unless using a large number of data
points, when the dataset is contaminated with a bad measurement, the accuracy of

estimation may decrease (Mohammad & Masoumi, 2010).

One of the AI approaches using genetic algorithm (GA) for various optimisation
problems has received much attention of the researcher because GA as a stochastic
search has promising robust results. This method is based on parallel search
mechanism in various areas such as load flow problems and combinatorial

optimisation problems.

The difference between genetic algorithm and conventional optimisation and search
procedures are: (i) most search algorithms work with solution directly, while GA
works with coding of the solutions, (ii) most search algorithms start the search from
single solution, while GA starts from population of solutions, (iii) most algorithms

use deterministic transition techniques, while GA uses probabilistic techniques. That
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i1s why this study focuses on improving GA as an Al approach to solve the problem

of electricity demand forecasting.

Genetic algorithms have great importance in research and development because it
can tackle the hard optimisation problems (Aljanabi, 2010). These problems have
only a finite number set of feasible solutions and the aim is to find the optimal

solution.

However, genetic algorithm promises convergence but not optimally. Even though
there is no guarantee of optimality in genetic algorithm, exponential convergence is
assured. Genetic algorithm will converge at different optimal chromosomes if it runs
several times (Mamta & Sushila, 2010). The drawback of GA as a single algorithm
contributed to decrease the model performance of electricity demand forecasting in

terms of errors.

The ability of single algorithm decreases when the search is close to the optimal
solutions (Huan, 2009). The stagnation in the bad optimal solution in a single
algorithm is contributed to decrease the prediction accuracy. Genetic algorithm alone
or local search algorithm alone cannot guarantee to reach the best optimal solution
(Mamta & Sushila, 2010). However, a combination of optimisation and heuristic
approaches has become the current popular approach in solving electricity demand

pattern forecasting problem.



The effort to tackle the single algorithm problem in previous models is by combining
several algorithms into hybrid algorithms such as genetic algorithm and local search.
For instance, genetic algorithm can be used to search the optimal (or near-optimal)
solutions in a considerable search space based on the objective function, and
operates the local search algorithm for unconstrained function minimisation that will

start at the points where the genetic algorithm stops.

The solutions that have been found by genetic algorithm will be used as the initial
points by local search algorithm to find global (or best) optimum solutions. This may
lead to efficient algorithms in terms of computation time, which inspires the

development of hybrid genetic algorithm (HGA).

Therefore, this study focuses on the hybrid genetic algorithm and local search for
electricity demand pattern models because the hybrid genetic algorithm and local
search seem to be the appropriate approach and offer a good opportunity to find

global optimal solutions.

1.1 Problem Statement

For most electricity demand forecasting models that use evolutionary algorithms
(e.g. genetic algorithm); the objective function cannot obtain a good result. In single
genetic algorithm, convergence cannot be obtained because the solution is trapped in
the near local optimum (EI-Mihoub et al., 2006; Lian et al., 2009; Tan et al., 2010).

This problem cannot be solved even though the single genetic algorithm operations
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are repeatedly applied. This is difficult to fit into other methods in order to produce a

good solution.

The ability of previous methods decreases because they fail to overcome the early
convergence and local optimality problems. These problems will produce estimation
errors when forecasting is made for the electricity demand. The accuracy of previous
electricity demand forecasting models that apply genetic algorithms to complex
problems is greatly related to the high computational cost due to their slow
convergence rate (Yen et al., 1995; Wu et al., 2010). These issues, if not properly
addressed prior to the model’s development, could lead to inaccurate and unreliable

prediction.

Technically, the early convergence and local optimality problems can be addressed
by other methods like hybridising several algorithms such as combining genetic
algorithm and local search algorithm. A combination of a genetic algorithm and a
local search algorithm can speed up the search to locate the global optimum (Tan et
al.,, 2010; Mamta and Shusila, 2010). In the existing method of hybrid genetic
algorithm and simplex local search, the simplex method converges really well with
small scale problems of some variables (Pham, 2012). However, in large scale
problems of multiple variables, it does not have much success. The existing method
needs a high computational cost in term of iterations to reach the global optimum
solution because the search is on the wrong direction. A new technique is introduced
to improved hybrid algorithm in terms of convergence rate with guidance search on

the true direction by improved local search.



Two solutions are introduced to answer the following questions:
1. How to construct the hybrid algorithm that can give the electricity demand
forecasting solutions with precision?
2. How to confront the hybrid algorithm that can converge without too
expensive computing cost and has the ability to converge a wide range of

problems?

1.2 Research Objectives
The aim of this study is to propose electricity demand forecasting using linear and
nonlinear models based on the hybrid genetic algorithm and improved local search.

In order to achieve this, two specific objectives are listed below:

1. To propose an improved hybrid genetic algorithm that can minimise the
errors of electricity demand pattern forecasting using linear and nonlinear
models.

2. To propose a new technique that could overcome early convergence and local
optimality problems via combination between genetic algorithms and

improved local search.

1.3 Scope and Limitation
This study will focus on the hybrid genetic algorithm for optimisation. A new

algorithm technique which consists of genetic algorithm and local search algorithm
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will be proposed to overcome early convergence problems occurred in the original
genetic algorithm optimisation process. The concentration of activities is on
improving the performance of electricity demand pattern forecasting model and

reducing the errors by combining genetic algorithm and local search algorithm.

The scope of the application domain of this research is the static optimisation
problem. The type of problem chosen is long-term electricity demand pattern
forecasting and projected future electricity demand by scenarios analysis. Different
models of these problems are considered with various independent variables and

scenarios to overcome the uncertainties of demand.

There are many independent variables as economic indicators are used in forecasting
electricity demand models. However, this research work is limited into the case of
handling long-term electricity demand pattern forecasting model that is estimated
based on data of population, growth of gross domestic product, and the growth of

import and export as the independent variables.

This study focuses on comparison between Electricity Demand Pattern (EDP)
forecasting model using original genetic algorithm approaches and EDP forecasting
model using hybrid genetic algorithm approaches. The accuracy is taken as the main

indicator for model selection.



1.4 Significance of the Research
The output of this research is a hybrid algorithm optimisation technique that can be
considered as a new technique that offers the chance to enhance the performance of

available electricity demand pattern forecasting models.

A good EDP forecasting has a substantial effect on operational cost of power
systems that is quite sensitive to forecasting errors. Power utility can save millions of
dollars even for a small reduction of average forecasting errors. Accurate electricity
demand pattern forecasting holds a great saving potential when it is used to control
operation and decision planning such as fuel allocation, dispatch, and off-line

network analysis and unit commitment.

In supply and demand fluctuation and the changes of weather conditions during peak
situations, the energy prices increase by a factor of ten or more. In this situation,
EDP forecasting is vitally important for the utility companies in operational decision

and good planning.

EDP forecasting can help to reduce the occurrences of equipment failures and
blackouts because its estimate can prevent overloading on time. It is also more
important in the deregulated economy when the energy pricing and rate increases

because of the market demand.

10



1.5 Thesis Organisation

This thesis has been divided into six chapters:

Chapter one introduces the general framework in which the thesis has been
developed. First, the overview of electricity demand forecasting is presented
followed by an explanation of the problem statement, research objectives, scope and

limitation and significance of the research.

Chapter two presents the literature reviews related to the background of forecasting
methods, electricity demand forecasting, variables and types of electricity demand
forecasts, the applications of HGA in electricity demand forecasts and the summary

of the chapter.

Chapter three contains the methodological steps, data collection and preparation,
mathematical model development for HGA and local search. The performance
evaluation of the proposed hybrid algorithm and local search is also described, and

finally the summary of the chapter.

Chapter four discusses the results obtained in the experiments. The comparison
between the proposed hybrid genetic algorithm approach and that of conventional

approach is offered. Several benchmarking are also discussed in this chapter.

Chapter five discusses the improved hybrid algorithm and the application of selected

models into future prediction of electricity demand. Electricity and economic profile
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as the main consideration in a scenario is also discussed before the summary of this

chapter is presented.

The ends of this thesis are the conclusion and future work suggestion that are

presented in chapter six.
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CHAPTER TWO
REVIEW OF RELATED LITERATURE

This chapter discusses the literature related to the research field considered in this
thesis. Section 2.1 presents an overview of forecasting methods. Electricity demand
forecasting is reviewed in section 2.2. Several types and variables of electricity
demand forecasts are surveyed in section 2.3. Section 2.4 reviews the hybrid
algorithm including the methods in hybridisation of several techniques that are used
to solve the electricity demand forecasting problems; and the chapter summary is

given in section 2.5.

2.1 Forecasting Methods

The review of forecasting methods start with the discussions on methods commonly
used in forecasting which include: Time Series, Econometric, End Use, Statistical

based approach, Neural Network based model, and Hybrid Algorithm based models.

2.1.1 Time Series

Time series is one of the most attractive and mysterious mathematical subjects.
Weather, temperature, rainfall, water flow volume of a river and other similar cases
in meteorology are known as predictable time series; amount of load peak, electricity

price and other similar cases in electrical engineering are considerable time series
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(Reyhani & Moghadam, 2011). Time series forecasting is highly taken into account
in economy. Stock prices in stock exchange market, currency equivalent rate in such
market, world price of petroleum, sugar, gas, gold and other key items are best
known time series. The discovery of chaos in economic time series such as stock
exchange is highly regarded by scholars of economics (Reyhani & Moghadam,

2011).

Time Series forecasting method is a significant aspect on the field of research, which
includes energy demand, statistics, econometrics, and computer sciences. The
traditional procedures include the combination of linear auto-regression (AR) and
moving-average (MA) in Time Series forecasting method, which was made popular
by Box and Jenkins in the 1970s (Ardalani-Farsa, 2006). However, the need for
nonlinear forecasting procedures arises since data are nowadays abundantly

available, and complex patterns that are frequently not linear can be extracted.

The future state of a complex system is not known to anyone; however, the attempt
to approximately predict the future state is beneficial to decision makers. In the past
several decades, some nonlinear techniques have been introduced in the literature to

forecast the future state of chaotic systems (Ardalani-Farsa, 2006).

The traditional linear autoregressive moving average (ARMA) models were popular
models in the area of forecasting. However, ARMA models are linear and are not

capable of forecasting nonlinear, non-stationary and chaotic time series. Therefore,
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ARMA models are unpopular, inaccurate and unpractical methods to forecast

nonlinear time series.

There are two main approaches to forecast chaotic time series: (i) local modelling,
and (ii) global modelling. A combination of forecasting methods known as the
ensemble method is also used for forecasting. Local models perform the forecasting
by searching for the local regions of the time series which approximately present a
region of the data immediately before the point to be forecasted. In local modelling,
the overall prediction model consists of several local estimators where the local

estimators define the various portions of the input space (Ardalani-Farsa, 2006).

In global models, only one fitting function is engaged to forecast the future of the
system. Since the 1970s, numerous global methods are introduced in the literature,
such as bilinear models, exponential autoregressive models, state-dependent models,
threshold auto-regression (TAR), the threshold model, neural gas, adaptive memory-
based regression (AMB), the long short-term memory (LSTM), Gaussian process
(GP), echo-state networks (ESNs), the flexible neural tree (FNT), and the dynamic

evolving computation system (DECS) (Soelaiman et al., 2009).

The nonlinear autoregressive model with exogenous input (NARX) has also been
applied to chaotic time series forecasting. The ensemble method is introduced to
improve the result of forecasting by merging individual predictors. An ensemble can
be the combination of the same class of models such as ANN, SOM, SVR or

different types. The example of ensemble models are combination of the nearest
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neighbours, artificial neural networks, and genetic algorithms (Soelaiman et al.,

2009).

Adapting ensemble method on time series prediction is done by Soelaiman et al.
(2009) using boosting algorithm. On boosting algorithm, recurrent neural networks
(RNN) are generated, each for training on a different set of examples on time series
data. The difference between new algorithm and the original algorithm is the
introduction of a new parameter for tuning the boosting influence on given
examples. The boosting result is then tested on real time series forecasting, using a

natural dataset and function-generated time series.

The middle-term electric load forecasting is an existing difficult work and often has
a large error. To address the problem, Yang et al. (2006) proposed a novel cloud
theory based time series predictive method for middle-term electric load forecasting.
In this method, the time series of daily maximum load is partitioned into two parts,
historical dataset and current tendency dataset. Backward cloud algorithm is applied
to the two datasets to form the historical cloud and the current cloud, and the
corresponding rule sets are mined. Then the historical cloud and current cloud are
integrated to create predictive clouds through synthesised clouds. Finally, via cloud
reasoning, the forecast result can be obtained. This predictive method effectively
integrates quasi-periodical regularity and current tendency of time series data, and

has a simple computing model.
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On the experiment result, Soelaiman et al. (2009) proved that ensemble method is
better than standard method, back-propagation through time for one step ahead of
time series prediction. Ensemble methods used for classification and regression have
been shown that they are superior to other methods, theoretically and empirically.
However, the drawback of the method is an ineffective method for nonlinear data

series in short-term load forecasting.

Tanuwijaya and Chen (2009) presented a new method to forecast enrolments using
fuzzy time series and clustering techniques. First, the authors presented an automatic
clustering algorithm to partition the universe of discourse into different lengths of
intervals. Then, the authors presented a new method for forecasting enrolments using
fuzzy time series and the proposed clustering algorithm. The historical data are used
to illustrate the forecasting process of their method. As the experimental results, the
authors concluded that their method receives a higher average forecasting accuracy
rate than the existing methods (Tanuwijaya & Chen, 2009). However, a huge

historical data is needed in time series forecasting methods.

2.1.2 Econometric

Econometrics is a set of quantitative tools for analysing economic data. Economists
need to use economic data for three reasons: 1) to decide between competing
theories, 2) to predict the effect of policy changes, and 3) to forecast what may
happen in the future (Contos et al., 2009). The econometric approach combines
economic theory and statistical techniques for forecasting electricity demand. The

approach estimates the relationships between energy consumption (dependent
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variables) and factors influencing consumption. The relationships are estimated by

the least-squares method or time series methods (Contos et al., 2009).

Economists deal with different kinds of data (Like & Zongyi, 2007): (1) Time series
data. For instance GDP data are collected each quarter of a year. Macroeconomics
and finance use such data. In macroeconomics, frequencies are annual, quarterly or
monthly. (2) Cross-sectional data. For instance, in a labour survey, 1000 workers of
the chemistry industry were interviewed on their wages, their labor conditions, etc.
All these interviews took place at about the same date. Each question gave many
answers. Cross-sectional data are mainly met in microeconomics (observations can
bear on workers, households or firms). But, macroeconomics can use such data when
it compares different countries (for instance their GDP per head) (Like & Zongyi,

2007).

Time series data and cross-sectional data differ on a very important point. Time is
oriented where the past comes before the future. One can use the past to forecast the
future, but cannot use the future to forecast the past. Of course, the past and the
present depend on the expectations of the future by economic agents. However, the
expected future is based on the experienced past, and not on the true future which is
unknown. On the other hand, there is no natural way orienting cross-sectional data.
Because of its specificity, the econometrics of time series data is a bit special (Like

& Zongyi, 2007).
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There is a special field of econometrics to deal with this kind of data. In most cases,
one will have a large number of individual units, and a small number of time periods.
Like and Zongyi (2007) in their study, applied the spatial econometric model to
examine the relationship between power consumption and real GDP for China. The
estimation results indicated that the regional economic development level is
influenced not only by "home" power consumption and economy, but also the
neighbouring energy consumption. In order to keep the remarkable growth of China
economy, the government should speed up the nationwide interconnection of power

networks and upgrade interregional distribution grids.

Econometric models can be very useful for estimating the marginal impacts of
changes in policy. A study by Contos et al. (2009) used the context of modelling
taxpayer compliance burden for small businesses to explore some extensions to
standard econometric simulation techniques that provide more robust support of the
distribution of the characteristics of interest. However, their broader application as a

tool for micro-simulation analysis posed a number of challenges and limitations.

Liu, Ang, and Goh (1991) in their study, compared two forecasting models, an
econometric model and a neural network model, through a case study on electricity
consumption forecasting for Singapore. The results of the study showed that the two
models that forecasted the historical consumption gave very different results. This
anomaly arises partly from the differences in the structure of the two models, and the
problem is examined using the concept of elasticity in econometric studies. The

results also showed that a fully trained neural network model with a good fitting
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performance is a better method to forecast the past. However, it may not give a good
forecasting performance for the future. The econometric and end-use methods
require a large amount of information relevant to appliances, customers, economics,

etc. Their application is complicated and requires human participation.

2.1.3 End-Use

A variety of methods have been developed for short-term forecasting, which include
regression models, similar day approach, statistical learning algorithms, fuzzy logic,
time series, neural networks and expert systems. Two of the methods, so-called End-
use and Econometric approach are broadly used for medium and long-term

forecasting (Feinberg et al., 2003).

End-use models focus on the various uses of electricity in the industrial, commercial,
and residential sectors. These models are based on the principle that electricity
demand is derived from customer’s demand for heating, cooling, refrigeration, light,
etc. In this method, the distribution of equipment age is important for particular types
of appliances. End-use models explain energy demand as a function of the number of

appliances in the market (Feinberg et al., 2003).

The improvements and investigation of the mathematical tools will lead to the
development of more accurate and appropriate load forecasting techniques.
However, the statistical and simulation models based on the End-use approach
require the description of appliances used by customers, customer behaviour, the size

of the houses, population dynamics, the age of equipments and technology changes.
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Ideally, End-use is a very accurate approach (Feinberg et al., 2003). However, its
forecast requires less historical data and more information about customers and their

equipment. End-use is sensitive to the amount and quality of end-use data.

2.1.4 Statistical based approach

The statistical approach is developed in order to simplify the medium-term forecasts,
making them more accurate, and to avoid the use of the unavailable information. A
statistical model that learned the load model parameters from the historical data was

developed in a study by Feinberg et al. (2003).

A mathematical model that represents load as function of different factors such as
weather, time, and customer class are used in statistical approaches. Additive models
and multiplicative models are two important categories of such mathematical models

(Feinberg et al., 2003).

Regression is one of the most widely used statistical techniques. For electric load
forecasting, regression methods are usually used to model the relationship of load
consumption and other factors such as weather, day type, and customer class.
Regression models incorporate deterministic influences such as holidays, stochastic

influences such as average loads, and exogenous influences such as weather.

However, the complexity of the regression models prevents the specification of a

very highly parameterised hierarchical structure. The regression methodology faces
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important limitations due to the presence of potential unmeasured time-varying
confounders. Important methodological developments, among others, focus on the
definition of effect of interest, occurrence of non-linear trends and lagged effects,

and inclusion of control areas.

2.1.5 Neural Network Based Models

Artificial neural networks (ANN) have been widely used in order to solve the time
series forecasting problems. One of its most promising approaches is the
combination with other intelligence techniques such as genetic algorithms,
evolutionary strategies, etc. The efficiency of these techniques, if used correctly, can

be very high (Reyhani & Moghadam, 2011).

Artificial Neural networks have been a widely studied electric load forecasting
technique, which are essentially nonlinear circuits that have the demonstrated
capability to do nonlinear curve fitting. The inputs of an artificial neural network
may be the outputs of other network elements as well as actual network inputs. The
outputs are some linear or nonlinear mathematical functions of its inputs (Feinberg et

al., 2003).

Artificial neural networks (ANNs) as part of global modelling were employed by
researchers to forecast chaotic time series. In recent years, chaos is discovered in
many economic time series such as stock changes. Moreover, it has been proven that

the discovery of chaos will help to forecast time series by intelligent algorithms
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better than before. Reyhani & Moghadam (2011) proposed a new heuristic method
inspired from chaotic characteristics of economic time series, with forecasting this
time series by means of artificial neural networks. In this method, the output of

chaotic function is used to help time series prediction well.

Redrigues et al. (2009) proposed other fitness functions (instead of conventional
MSE based) and presented an experimental investigation of eight different fitness
functions for time series prediction based on five well-known measures of statistical
performance in the literature. Using a hybrid method for the tuning of the ANN
structure and parameters (a modified genetic algorithm), an analysis of the final
result effects are made according to four relevant time series. This work showed that
the small changes of the fitness function evaluation can lead to a significantly

improved performance (Rodrigues, et al., 2009).

Artificial neural networks are widely used as predictor systems for the pollutant time
series. In recent years, the dynamic system theory has also been exploited to find the
optimal sampling time interval and the minimum embedding dimension of
environmental time series in order to get helpful information and to implement
appropriately the forecasting networks. A novel approach have been presented by
Marra et al. (2003) to predict the concentration level of air pollutants in the area of
the Messina Strait, whose harbour represents the unique link to reach Sicily Island
from Europe by cars and trucks. By coupling feed-forward neural networks with

Cao's method, the authors predicted the level of carbon monoxide and hydrocarbons
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from one to ten hours ahead with an accuracy of more than 90% (Marra, Morabito,

& Versaci, 2003).

However, in terms of fitness function, there are still a few shortage of experimental
(and theoretical) results to help the practitioners to use these techniques in order to
find better predictions. In applying a neural network to electricity demand
forecasting, one must select one of a number of architectures (e.g. Hopfield, back
propagation, Boltzmann machine), the number and connectivity of layers and
elements, use of bi-directional or uni-directional links, and the number format (e.g.

binary or continuous) to be used by inputs and outputs, and internally.

2.1.6 Hybrid Algorithm Based Models

One method that combines forecasting using adaptive coefficients is applied in the
electricity demand forecasting system to effectively take advantage of the
meteorological prediction. The forecasting that shares the strength of the different
temperature forecasts demonstrates the superiority of the methodology (Fan et al.,
2010). There are several optimisation approaches in electricity demand forecasting.
They are categorised as: (i) the classic optimisation approach: the approach which
uses classical methods in finding solutions, and (ii) the modern approach: the
approach which uses artificial intelligence (Al) e.g. the hybrid algorithm methods in

finding the best solutions.

Hybrid algorithm approaches such as the hybrid genetic algorithm and artificial

neural network with other heuristics undertake the difficult problem in electricity

24



demand forecasting. These approaches have taken more attention in the researches of
electricity demand related to their capabilities in overcoming local optimality

problems (Fan et al., 2010).

Several optimisation approaches to solve the problems in original algorithms such as
slow convergence, local optimality, speeding up the computational time, early-
convergence, large iteration and finding the global optimal solutions are reviewed
here in the next description. Related studies by Mamta & Sushila (2010) explored the
capability of local search. These local approximations do not require additional
evaluations; they are only generated using information already collected by the
algorithm during the evolutionary process. Thus, the local search can speed up the
process of overall optimisation through the improvement of some individuals of the

population.

Due to various types of local search, the combination of local search and genetic
algorithm is therefore found to be the favorite of many researchers. Local search is
frequently used for determining the local optimum within a well-defined feasible
region. The hybridisation of local search and the genetic algorithm, for example, was
proposed by Mamta & Sushila (2010), the local search for improving the
performance of a genetic algorithm was proposed by Tutum & Fan (2011) and Mei

etal. (2011).

Several studies about the use of local search have been proposed among others by

Guimaraes et al. (2007) and Carrano et al. (2008) proposed the local search phase of
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memetic algorithms using local approximations for cost optimisation functions. Two
basic approaches have been adopted in utilising local information, which are: (i) the
Lamarckian approach, and (ii) the Baldwinian approach. The Lamarckian approach
forces the genetic structure to reflect the result of local search based on the
inheritance of acquired characteristics obtained through learning. The fitness and
genetic structure of individuals are changed to match the solution found by a local

search method (Mamta & Sushila, 2010).

The local search method used in the Lamarckian approach is a refinement operator
that modifies the genetic structure of an individual and places it back. Lamarckian
evolution can interrupt the schema processing. This can badly affect the exploring
abilities of a genetic algorithm, which may lead to premature convergence. On the
other hand, the advantage of Lamarckian evolution is that it can accelerate the search
process of a genetic algorithm (Mamta & Sushila, 2010). The Lamarckian approach
is used in most hybrid genetic algorithms to satisfy constraints. The technique that
repairs chromosomes has been especially effective in solving the travelling salesmen
problem (TSP). The Lamarckian approach only retains the fitness of the parents; it

does not allow their acquired characteristics to be passed on.

The Baldwinian approach is usually used in a local search method as a part of an
individual’s evaluation process. The global genetic algorithm uses local search to
improve the results by using local search knowledge to produce a new fitness score.

In the Baldwinian approach, by applying a local search, individual fitness is

improved without changing the genotype. This approach follows the normal process
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of evolution that allows an individual to propagate its structure to the next

generation. It is in contrast to the Lamarckian approach.

Mamta and Sushila (2010) exemplified how the Baldwinian effect can transform the
fitness landscape of a difficult optimisation into a less difficult problem and how
genetic search is profited. The Baldwinian effect consists of two learning steps: (i)
learning gives individuals the chance to change their phenotypes to improve
performance, and (ii) learning can accelerate the genetic acquisition of learned traits

in genetic assimilation.

In a genetic algorithm, only the objective function for fitness evaluation is required
after undergoing genetic operations, not the domain knowledge. It deals with a
coding of the problem instead of decision variables. To guide the search, unlike most
conventional methods and some meta-heuristics, which are conducted of a single
directional search, the genetic algorithm uses stochastic transition rules to perform

multiple directional searches using a set of candidate solutions.

Thus, as an artificial intelligent optimisation technique, genetic algorithm is one of
the most favoured and effective approaches that has proved to be versatile (Lian,
Zhang, Li, & Gao, 2009). However, the simple genetic algorithm in many situations

does not perform well.

An improvement mechanism to overcome the early convergence problem in a single

genetic algorithm is necessary. Among them are: improved crossover operation,
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nonlinear ranking selection, combining nonuniform mutation operation and
arithmetic crossover with differential computation (Lian, Zhang, Li, & Gao, 2009).
Holland in 1975, assumed that the population size is infinite and the interactions
between genes are very small, so the fitness function accurately reflected the
suitability of a solution according to his assumptions. However, in practice, the
population size is finite, which influenced the sampling ability of a single genetic

algorithm and as a result affected single genetic algorithm performance.

A genetic algorithm, due to its limited population size, may also sample good
representatives of bad search regions and bad representatives of good search regions
(EI-Mihoub et al., 2006; Tan et al., 2010). Integrating a local search method within a
genetic algorithm can ensure fair representation of the different search areas and can
reduce the possibility of early convergence. Therefore, it can help to overcome the

growth of most of the obstacles resulting from finite population size.

The solution quality produced by local search methods may be higher compared with
the solution quality produced by a genetic algorithm; this is caused by the limited
population size. The best solution is difficult to obtain, even in the best region
accounts for the genetic algorithm, because a genetic algorithm operator lacks the

power to make small acts in the neighbourhood of current solutions.

Exploiting the ability improvement of the algorithm search without limiting its
exploring ability can be achieved by applying a local search method within a genetic

algorithm. The algorithm can easily produce high solution accuracy if the right
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balance between local exploitation and global exploration capabilities can be
achieved (El-Mihoub et al., 2006; Huang, Huang, & Zhang, 2008; Tan, Huang, Hsu,

& Wu, 2010).

Mamta and Shusila (2010) showed the effect of the selection of any form of learning
in a hybrid genetic algorithm using performance on an optimisation problem. They
compared pure genetic algorithms, Lamarckian and Baldwinian, in evolving the
architecture that learns Boolean functions. The conclusion stated that any form of
learning has a great effect on hybrid genetic algorithm performance, and it is better

than a pure genetic algorithm.

The effect of individual learning of a local search in a hybrid optimisation algorithm
was used to train a recurrent neural network (RNN) in a study by Delgado, Cuellar,
and Pegalajar (2008). Each weight in RNN was encoded as a floating-point number
to form a chromosome that contains a chain of numbers. The hybrid algorithms were
used to train the RNN to solve a long-term dependency problem. Baldwinian and
Lamarckian mechanisms were compared in the hybrid algorithm mechanism to train
the RNN. The authors found that Baldwinian learning lacked the ability to assist the

cellular genetic algorithm.

In contrast, the Lamarckian mechanism in most of the combinations showed an
improvement for an optimum network in reducing the number of generations.
However, only a few of the combinations can reduce the actual time taken. To make

it the fastest method, it is necessary to embed the delta rule in the cellular genetic
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algorithm (Singh & Khandelwal, 2010). A genetic algorithm derives its behaviour
from an evolutionary biology metaphor. As a population-based meta-heuristic, the
genetic algorithm creates a population of individuals as solutions. Individuals as
solutions are termed chromosomes, in essence, character strings loosely based on

DNA 4 chromosomes.

The chromosomes as the solutions are usually termed solution strings that are
randomly generated. These string solutions formed into a population represent a
variety of solutions for a given problem. These strings are encoded in some defined
alphabets in some manner. They are evaluated according to the objective function or

fitness function after decoding (Singh & Khandelwal, 2010).

After the evaluation process, selected individuals undergo reproduction to produce
the next generation of offspring. Those parents who have higher fitness are assigned
to produce offspring. Based on the fitness function, they have a higher probability of

being selected. The parent population is then replaced by a new offspring population.

Singh et al. (2008), in their study described a novel algorithm based on evolutionary
techniques to obtain an optimised input bit pattern. This algorithm, such as a genetic
algorithm and swarm intelligence, is utilised to optimise input bit patterns that can
result in noise and in the worst-case channel jitter. In a few test cases, the optimised
bit pattern can be used for a large range of topologies and are resilient to the channel

topology changes have also been shown.
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The evolutionary algorithm has also been considered in optimising beam-forming
weights in a nonlinear array system. These multi-objective optimisations use several
constraints of the nonlinear array antenna: (i) constrain two variables, the level of the
side lobe and the width of the main lobe or (ii) constrain an additional variable, the
energy of beam forming weights on the former system. The cost of beam-forming
weights is computed in each generation of each case. The optimal solution set

(Pareto frontier) can be obtained at the end of the generations (Singh et al., 2008).

A genetic algorithm is also used to obtain optimal pulse density modulation patterns.
Pulse density modulation (PDM) is an alternative to pulse width modulation (PWM)
and can be utilised to drive resonant power converters. The main advantage of PWM
is its simplicity. This allows achieving zero voltage (or current) switching of a power
device while performing load power regulation. Switching stress reduction hinders
polluting power lines with electromagnetic noise (Pimentel et al., 2006; Zhang et al.,
2010). This technique is appropriate for designing power converters that show low

total harmonic distortion and a good overall power factor.

PDM is more useful to drive resonant power converters (parallel or series). These
converters deliver a wide range of output power and are required to operate at high
frequencies. They are frequently used in induction heating applications. In a
convenient manner, the power factor produced by a PDM converter is near unity,
and at high-output power, total harmonic distortion is low. In contrast, the power
factor moves away from unity because total harmonic distortion increases at low-

output powers.
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A technique presented by Pimentel et al. (2006) and Zhang et al. (2010) using
simulations makes obtaining an optimal PDM pattern possible. The simulation, using
a genetic algorithm to show intelligent PDM pattern generation, allows for an
improved power factor. It also reduced total harmonic distortion at low-output
powers (Pimentel et al., 2006; Zhang et al., 2010). As a result, a PDM pattern, based
on a genetic algorithm technique, showed much better performance compared to

other techniques.

A genetic algorithm combined with the steepest descent algorithm has been proposed
by Toyama (2006). A genetic algorithm is used to overcome the local optima
problem in the steepest descent algorithm. Using the steepest descent algorithm is
very attractive because, an optimum solution is given in a relatively short
convergence time. However, they depend much on initial conditions. The
combination of the steepest descent algorithm and a genetic algorithm yield the best
solution that satisfied all of the requirements. By using binary codes to determine the
initial positions, the steepest descent algorithm can find an optimum solution. A

unique method involves using sub-array positions represented by binary codes.

A comparative study was done by Zuniga, Erdogan and Arslan (2010) in a linear
antenna array to find an optimal radiation pattern. They compared the particle swarm
optimisation (PSO) and a standard genetic algorithm. In order to steer the beam in
the intended direction, a set of phase shift weights is generated. The calculations of

the phase shift weights in optimisation are allowed using an objective function. The
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results showed that the PSO achieves a better solution than the genetic algorithm and

the PSO obtains a more consistent radiation pattern.

A hybrid algorithm that combines fuzzy and neural networks and a genetic algorithm
were used to optimise the operational pattern of a copper flash smelting process.
Fuzzy and neural networks are applied for pattern decomposition after the optimal
sample set is filtered. To search the optimal operational sub pattern, a chaotic genetic
algorithm is applied. This operational pattern optimisation method was proposed by
Peng et al. (2007). Their method can improve the processing of the copper flash
smelting and can demonstrate instructions for production. Therefore, a number of
experiments showed the capability of their methods on average in solving the

problem using fewer objective function evaluations.

An objective function has a chromosome, which consists of individual variables or
genes. A combination of evolution and genetics corresponds in function to the
numerical optimisation in obtaining the best result within constraints on the
variables. An objective function input is a chromosome; a population consists of a
group of chromosomes. The individual in a population with high fitness means the

low cost is selected as a new offspring (Haup & Werner, 2007).

The basic form of genetic algorithm is referred to as a canonical genetic algorithm.
The basic building block of the canonical genetic algorithm is the genome that
consists of a number of “alleles” (representing locations that store genetic

information). The canonical genetic algorithm utilises a binary-valued
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representation, where the only allowable values in each allele location are either 0 or
1. A genome of length # can encode a total of 27 different states. A simple binary
genome in a canonical genetic algorithm is shown in Figure 2.1. One such class of
canonical algorithms is compact genetic algorithm that dramatically reduces the

number of bits required to store the population and has a faster convergence speed

(Al-Dabbagh et al., 2012).

A
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Figure 2.1 Binary genome used in a canonical genetic algorithm

The binary representation of the genome contains all of the genetic information that
is manipulated by the genetic algorithm. The genetic representation is then mapped
to a representation that is compatible with the problem domain. For example, the
information encoded in the genome may be translated into one or more parameters of
a constraint-optimisation problem. The Darwinian model requires that a measure of
fitness be determined for each member of the population (Gallant, 2001; Wang, Li,

Qi, & Li, 2008).

In optimisation, the fitness function is a carefully chosen function that measures the
performance of the parameters. The fitness function is determined by the genetic
algorithm and encoded into the genome for the particular problem under

consideration. An individual is considered a collection of chromosomes each of
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which is constituted by genes. The characteristics of individuals depend on the
composition of chromosomes (Wang, Li, Qi, & Li, 2008). However, the possible
action of the operation by a genetic algorithm will be very low if the number of
chromosomes is fewer than normal and it only searches in a small part of the search

space.

The selection of individuals or solutions from a set of possible solutions is based on
the quality of individuals (fitness values). There are three basic processes that control
the evaluation of individuals in a genetic algorithm, namely reproduction, crossover
and mutation (Zablotskiy et al., 2011). However, the size of the population (number

of chromosomes) should be determined to find the best solutions.

The genetic algorithm does not require the allowable range of each parameter
because it works with a set of populations of possible solutions (example, sets of
parameter values). The population is some set of possible solutions, while the
chromosome is a parameter of a component that affected the forecasting value

(Zablotskiy et al., 2011).

A genetic algorithm is a famous algorithm that has been used in many fields to solve
many problems because of its suitability to nearly any function. It simulates the
mechanism and the process of evolution, as unique biological features. An algorithm
generated from a genetic algorithm, namely the estimation of distribution algorithm

(EDA), becomes a hot topic because it is superior.
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The estimation of distribution algorithms replace some operations in a genetic
algorithm, such as learning and sampling of the best individuals of the population,
replacing the crossover and the mutation in each iteration of the algorithm (Qiu, Liu,
Feng, & Huang, 2008). The application of a genetic algorithm is useful for
estimations such among others has been proposed by Yang, Huang and Ma (2009)

for target tracking and non-linear tracking problems.

A genetic algorithm has been used to optimise the tracking problem in an extended
Kalman particle filter (EKPF). As a suboptimal filtering algorithm, it has good
performance for nonlinear tracking and target tracking problems. In order to improve
the estimation performances, EKPF used a resampling scheme to decrease the
degeneracy phenomenon (Yang et al., 2009). A novel method is used to overcome
the EKPF problem, namely the genetic particle filter (GA-EKPF). The GA-EKPF
algorithm can enhance the filtering precision and overcome the deprivation of
particles; experimental results show the superiority of this method. However, the

precision of the target tracking mutation system is poorer.

Another approach in state estimation is based on the hybrid genetic algorithm
(HGA). This approach combines HGA and simulated annealing to obtain optimal
measurement placement for a power system. The optimal solution is obtained using
the acceptance criterion of simulated annealing for chromosome selection. Results of
this method indicated faster computational time and the best match at higher

frequency, making it superior to other methods (Yang et al., 2009).
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Parameter estimation using a genetic algorithm has attracted great attention from
many researchers. A method for parameter pattern estimation using a hybrid genetic
algorithm was proposed by Liu, Wu, & Zhang (2012). The hybrid algorithm is
applied to characterise molecular biological systems and analyse the system

dynamics.

An approach for cost estimation has been proposed by Li, Xie and Goh (2007); Alaei
and Alaei (2011). The previous approach is analogy-based estimation (ABE), which
is essentially a case-based reasoning approach. The previous study proposed
effective methods to optimise the weights of the features to estimate the cost with a
current project by referring to data collected from past projects. The results of the
study by Li et al. (2007); Alaei and Alaei (2011) indicated that their methods were

more effective for software cost estimation than other methods.

Therefore, to prevent early convergence in the genetic algorithm, the mutation
probability and crossover are changed according to the fitness values of the
population in each generation. These methods are successful in solving the problem
of parameter estimation. This approach applied a genetic algorithm to alleviate the

drawback of the previous study in terms of low prediction accuracy.

2.2 Electricity Demand Forecasting

The electricity demand model has an important input variable. It is the annual growth

pattern of demand. The electricity demand is driven by data variable with various
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uncertainties. The uncertainties exist in data measurement, estimation of parameters,

data processing, etc.

The risk of the “natural uncertainty” in electricity demand pattern problems can
severely increase the estimation error and affect the reliability of mathematical
modelling (Babayan et al., 2007). In this case, if the electricity demand forecasting
model recognises the natural uncertainties with good accuracy, a system can reduce
estimation rate, search region, and accelerate convergence speed. Therefore, taking
into account the uncertainty is of a great practical interest when developing the

methodology in predicting the behaviour of the system (Babayan et al., 2007).

The demand for a utility such as the demand for electricity, has a set of input
variable uncertainties. Electricity, as an important energy industry, is the
infrastructure of the national economy. To provide a reliable energy supply for
national economic development, balancing electricity supply and demand is
necessary (Jian-Chao et al., 2008). The characteristics of electricity sectioning are
that it is unable to be stored on a large scale and needs a long construction period.
The government may decide to cancel power resource projects in the following years
if electricity supply exceeds demand. This is caused by the incorrect results of
electricity forecasting, so it affects the fluctuation of electricity investment over the

years (Jian-Chao et al., 2008).

Based on the analysis above, the rising trend of electricity demand can effectively be

restricted by the economic structure adjustment. Alternatively, to solve the energy
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problem under the current energy situation by lowering the percentage of heavy

industry in the economic structure is a reasonable solution (Jian-Chao et al., 2008).

In a recent work on short-term demand forecasting for an electric utility, Fan,
Methaprayoon, and Lee (2010) focused on short-term operation and market. Several
alternative forecasts are available for meteorological and different commercial
weather services as their target is to cover a large geographical area of the power

system.

The load diversity on the entire area sometimes caused issues; satisfactory
forecasting accuracy cannot be guaranteed by a single model for electricity demand
forecasting. Therefore, for a power system occupying a large geographical area, Fan
et al. (2010) developed a multi-region electricity demand forecasting model, which
can obtain the optimal region partition under diverse load and weather conditions,

and achieved more accurate forecasts for aggregated system demand.

The role of long-term electricity demand forecasting is significant in planning
facilities, such as for future generation facilities and transmission augmentation. It
presents the first step in planning and developing facilities in transmission,

distribution and future generation (Sing et al., 2012).

The main task of demand utilities is accurately predicting the electricity demand
requirements during long periods. The outcome of accurate electricity demand

forecasting is applied to coordinate the resources of a utility company with the
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lowest cost plan to meet the forecasted demand (Ghods & Kalantar, 2008; Ghods &

Kalantar, 2011).

The decision maker in a demand utility company in a long-term context must take
into account the probabilistic view of potential peak demand levels. The full
probability distributions of the possible values of demand in the future are more
helpful and necessary to hedge and evaluate the financial risk accrued by uncertainty

of forecasting and variability of demand (Hyndman & Fan, 2010).

In a given season, peak electricity demand is driven by a range of randomness,
including economic conditions, weather conditions, changing technology, underlying
population growth, and the timing of those conditions as well as the natural
uncertainty inherent in individual usage. The peak electricity demand also refers to

calendar effects due to time and holidays.

A study by Hyndman and Fan (2010) proposed a comprehensive methodology of
electricity demand forecasting. This new method is used to forecast the density of
peak demand in long term. The relationships between the driver variables and
electricity demand including economic variables, calendar effect, demographics and

temperatures are estimated by semi-parametric additive models in the first step.

The next step forecasts the distributions of electricity demand using simulation of a
variety of temperature, residual bootstrapping and scenarios of economic

assumptions. The implementation of temperature simulation is done using a new
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seasonal bootstrapping method with variable blocks. To test the performance of this
methodology, forecasting results are evaluated using the probability distribution of
annual peak electricity demand and comparing it with the actual electricity demand

(Hyndman & Fan, 2010).

Depending on time horizon, electricity demand forecasting is categorised as short-
term forecasting, medium-term forecasting and long-term forecasting (Singh et al.,
2012). Electricity demand forecast is concerned with the prediction of hourly, daily,
weekly and annual values of the electricity demand system and electricity demand
peak. Long-term electricity demand forecasting is an integral process in scheduling
the development of transmission and distribution systems and the construction of
new generation facilities. It usually corresponds to the forecast horizon from several

months to several years ahead.

Long-term electricity demand forecasting has not received much attention, despite its
value for system planning and budget allocation. Underestimated electricity demand
forecasts will result in unmet electricity demand and insufficient generation, while an
overestimate of long-term electricity demand forecasts will result in significant
wasted investment in the construction of excess power facilities (Hyndman & Fan,

2010).

Figure 2.2 demonstrates an example of electricity demand pattern. It is a non-
stationary demand pattern because the pattern trends according to time scale. This

pattern can categorise as time series and forecasting methods using linear and
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nonlinear models are required in order for the model to fit the pattern correctly.
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Figure 2.2 Electricity Demand Pattern for the Jawa-Bali System (Abimanyu, 2004)

Modelling and optimisation of production systems have received substantial

attention by the research community in the last decades. In the literature, it was

reported that production nodes modelling, among the works in the field, is

categorised into two streams; continuous-time models and discrete-event models

(Giglio, Minciardi, Sacone, & Siri, 2009).

Discrete-event models, in which the whole system dynamic is driven by the

occurrence of asynchronous events, are generally studied with simulative

approaches. In this approach, the results are suitable for representing real cases with

a high level of detail. It is also suitable for comparing different scenarios when it is

not possible to determine feedback solutions (Giglio et al., 2009).
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2.3 Variables and Types of Electricity Demand Forecasts

Electricity demand has several characteristics, depending on weather conditions,
work days, weekends, etc.; the growth of electricity demand depends on economic

boom times and periods of recession.

2.3.1 Variables of Electricity Demand Forecasts

When economic growth increases, more needs are created to accompany the higher
standard of living, more energy is needed to satisfy energy consumption. The
absence of electricity has a negative effect on economic development. During the
economic boom, a large number of projects for power resources should be
constructed. This places heavy pressure on natural resources, the environment and
the economy because it is beyond the allowable extent of the national economy

(Ozturk & Ceylan, 2005; Jian-Chao et al., 2008).

A vital problem in economic development is a study on how to harmonise the
fluctuation relationships between electricity construction and economic national
development. It also requires scientific demand forecasts for future projections (Jian-
Chao et al., 2008). Such a relationship is a difficult task and some specialists argue

that it requires too many inputs and is circular.

Causal factors of energy consumption include gross domestic product, oil prices and
population growth rate (Ozturk & Ceylan, 2005; Dalvand, Azami, & Tarimoradi,
2008). This study proposed a methodology that used population growth, gross
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domestic product, import, and export as the input variables to determined electricity
energy demand as the output of the proposed model. Thus, in the proposed model,
electricity demand is the function of population, gross domestic product, import and
export. The relationship between electricity demand and independent variables is

measured by using historical data over a long term period (Zhao & Niu, 2010).

In electrical load forecasting, electrical load is affected by various factors such as
meteorological and economic conditions, and it has a time-varying nature (Ozturk &
Ceylan, 2005; Dalvand, Azami, & Tarimoradi, 2008). Since the time horizon is
relatively small in short-term load forecasting, the social and economic conditions

have no influence in generating the forecast.

On the other hand, weather has a major role in forecasting load in the short term. The
load patterns during the weekdays differ from those during the weekends and load

patterns during the holidays and festive days differ from those of normal days.

The daily peak load normally occurs around the extreme maximum or minimum
temperature, depending on weather energy is required for space cooling or heating,

respectively. The daily load curve normally follows the daily temperature profile.

2.3.2 Types of Electricity Demand Forecasts

Based on time horizon, electricity demand forecasting can be categorised in three

types: (i) short-term forecasts, (ii)) medium-term forecasts, and (iii) long-term
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forecasts (Fan, Chen, & Lee, 2009). Short-term forecasts are required by utility
planners for tactical operational planning and day-to-day decision-making. These
forecasts are aimed at predicting the load on a system during an interval of hours or
days, and they play a substantial role in determining unit commitment, spinning

reserve, economic power interchange, load management, etc.

Short-term electricity demand forecasts as a famous topic in the electricity utility
industry are basic for system operation and energy planning. They are important
because their role is to increase prediction accuracy. The effect of a few percentage

points in prediction accuracy can save millions of dollars (Fan, Chen, & Lee, 2009).

Medium-term electricity demand and energy forecasting is necessary in scheduling
unit maintenance, fuel procurement and diversity interchanges. The forecast horizon
is in the range of 1 to 5 years. Since the time horizon in medium-term forecasting is
longer than that for short range, both load and energy consumption is to be
forecasted. The monthly peak load forecast is required for scheduling unit
maintenance and diversity interchanges for interconnected utilities. On the other
hand, the energy forecast is required for the fuel procurement purposes (Zhao & Niu,

2010).

Unlike short-range forecasting, medium-range forecasting is influenced by many
more factors apart from the weather conditions. Socioeconomic variables also play
an important role in developing monthly load and energy forecasts. Energy

consumption pattern is more or less cyclic in nature but load peak is shifting
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increasingly due to growth. It is then the job of the forecaster to recognise the pattern

and identify the underlying growth trend (Dalvand et al., 2008).

Long-term electricity demand forecasting (commonly known as annual peak load
and energy consumption forecasting) is of extreme importance for generation and
transmission expansion planning, feasibility studies for interconnecting utilities, long
term fuel requirement and tariff planning. The forecast horizon is normally 5-25
years. The time interval between the decision making and the project completion for
generating unit installation could be anything from 2-12 years. Therefore, planning

ahead is of extreme importance (Zhao & Niu, 2010).

Long-term electricity demand forecasts have a significant role in system expansion
planning. Interconnection between utilities has often become necessary for better
reliability and economy. However, feasibility studies of such huge capital intensive
projects require that the project is spread and justified over a longer period. Long-
term load and energy forecast are integral to such studies. In addition to the variables
used for medium-term forecasting, population and gross domestic product (GDP)
were also considered to be candidate variables in building the long-term model (Li &

Meng, 2008).

The forecasting accuracy of an electricity demand forecast has a potential effect on
the company in terms of profit, safety inventory and competitive power. The power

demand forecast is the basis for making a power development plan. Through
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analysing the factors that affect power demand, one model by Yang and Li (2006)

for forecasting power demand has been established and its data are standardised.

Then by designing the structure of back propagation neural networks and applying
the improved genetic algorithm, the network structure and weights of neural
networks for power demand are optimised. Finally, through training the data, a
nonlinear relation model between power demand and its influential factors is
obtained (Shi, Yang, Ding, & Pang, 2008). The method avoids the shortcomings
such as the slow speed of obtaining the optimal solution by genetic algorithm and
easily trapping into a local optimal solution by the neural networks. The study

showed that the method is accurate and feasible (Yang, & Li, 2006; Shi et al., 2008).

The role of historical data in electricity demand forecasts is of great significance; the
availability of data is largely affected by the success of an electricity demand
forecasting method. Several variables heavily influence electricity demand of a
power system such as percentage relative humidity, global radiation, wind speed,
temperature, vapor pressure, cloud coverage in a day and duration of bright sunshine,

precipitation, etc. They are categorised as demographic and socioeconomic variables.

Some other useful variables are also obtained by synthesising these raw variables.
Temperature-humidity index and comfort index are examples of such variables.
Degree days (DD), measures the deviation of average daily temperature from the air-
conditioning threshold level. If DD is positive, energy is required for cooling and if it

is negative, energy is required for heating.
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Other data of considerable significance, especially for medium and long-term
forecasts, are socioeconomic variables like the number of new housing and industry
permits allotted, the number of new infrastructural projects, population of the
franchise area, number of consumers connected, gross domestic product of the
nation, etc. (Ozturk & Ceylan, 2005; Azadeh, Ghaderi, Tarverdian, et al., 2006;
Deng, 2010). The number of variables that should be selected refers to the nature and
the range of the forecast. Human intuition can be used as the criterion of the
selection and their contribution and their correlation should be validated and
analysed for a medium-term forecast. In addition to the above variables, there are
some causal variables, which seldom arise but have a definite impulse-like effect on

load such as the lunar festivals, religious events, national holidays, etc.

An electricity demand forecasting model based on a genetic algorithm has been
proposed by Xie and Lie (2010). The authors enhanced the traditional gray
forecasting model using a genetic algorithm to optimise the gray modelling process.
The authors used the advantages of a genetic algorithm and the characteristic of the
gray forecasting model to find a global solution. This method found an effective tool

that was more accurate for electricity demand forecasting.

The error of electricity demand forecasting occurs mainly due to the load deviation.
It is caused by variation in temperature, which increases the cost of each thermal unit
and affects unit commitment scheduling. A method for short-term generation
scheduling has been presented in a study by Senjyu et al. (2008). The unexpected

deviation on electricity demand was considered in this methodology for thermal
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units integrated with a wind energy system. At a particular hour, it tracks down the
load deviation using this method and repredicts the next hour electricity demand
using a neural network forecasting technique. In this way, the learning process of
NN can assist in achieving an accurate forecasting that will reduce fuel costs. The
inclusion of wind energy on the base thermal unit system can also minimise fuel
cost. To solve the problem in the unit commitment, a genetic algorithm is used, and

the results show the effectiveness of this method (Senjyu et al., 2008).

The adoption of Al techniques such as GA, ANFIS, ANN in the forecasting in the
past few years, has taken more attention to solve the different problems in
engineering. It is vital for managing demand and supply using accurate load

forecasting in power systems (Zhao & Niu, 2010; Yu & Zhang, 2010).

A study by Ghanbari et al. (2010) investigated all Al technique effects on
performance after they are equipped with the preprocessing concept in order to
improve forecasting accuracy. The outcomes of the approaches (in term of errors)
have finally been evaluated. The results of this approach are: (i) Al outcomes are
more approximate to the actual loads than other methods, and (i1) data preprocessing
can significantly improve performance of the Al techniques. So Al techniques can be
considered ideal in solving short-term load forecasting (SLTF) problems (Ghanbari,

Hadavandi, & Abbasian-Naghneh, 2010).

Proper selection of relevant factors that really influence the STLF is very important

to improve the accuracy of forecasting. In electric power operation, robust and
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accurate STLF plays a substantial role. However, it is a difficult task to select the
appropriate factor because it is also influenced by the uncertainties and randomness

of the load demand (Zhang & Ye, 2011; Singh et al., 2012).

A novel method was developed by Wang et al. (2008) to enhance the robustness of
load forecasting results and improve the accuracy of STLF. The method combines
rough set (RS) theory and genetic programming (GP); it employs RS to process a
large amount of data to find relevant factors and GP to establish a forecasting model.

Forecasted results show the method is more accurate than the BP ANN method.

2.4 Application of HGA in Electricity Demand Forecasts

The early sections have discussed several statistical and artificial intelligence
techniques that have been developed for short, medium, and long-term electricity
demand forecasting. Several statistical models and algorithms that have been
developed, though, are operating ad hoc. The accuracy of the forecasts could be
improved, if one would study these statistical models and develop a mathematical
theory that explains the convergence of these algorithms (Zhao & Niu, 2010; Yu &

Zhang, 2010).

Researchers should also investigate the boundaries of applicability of the developed
models and algorithms. So far, there is no single model or algorithm that is superior

for all utilities. The reason is that utility service areas vary in differing mixtures of
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industrial, commercial, and residential customers. They also vary in geographic,

climatologic, economic, and social characteristics.

As a hard optimisation problem, the electricity demand problem needs the capability
of local search to overcome the convergence problem in the pure genetic algorithm
to find a global solution. Selecting the most suitable algorithm by a utility can be
done by testing the algorithms on real data. In fact, some utility companies use
several electricity demand forecasting methods in parallel (Zhao & Niu, 2010; Yu &

Zhang, 2010).

Local search based on their exploration capability for finding a solution from the
neighbourhood of solutions is used as the general approach for hard optimisation
problems. They try to determine a high quality solution by local changes to improve

the current solution.

Neighbourhood structures are used to determine the quality of a solution obtained
and the type of local changes to be applied. Larger neighbourhood size increases the

quality of the solution obtained (Ali, Pant, & Nagar, 2010).

Local search starts the search from the initial solution. Because it is based on the
neighbourhood concept, it then searches the neighbourhood of the initial solution
that was randomly selected. A target of the search process is to determine one of the

best solutions with the lowest cost (global optimum solution). The capability of local

51



search to find the local optimum is obvious but there is no guarantee for a global

optimum solution (Ali, Pant, & Nagar, 2010).

Local search might be used as a stand-alone algorithm as described above or in
conjunction with some other algorithms (like GA and ACO) that have the ability to
find a good starting solution and this solution is then improved using local search to
reach its local optimum solution. The latter approach has recently been used in
solving many problems such as neighbourhood improvement for the classic
travelling salesmen problem (Ali, Pant, & Nagar, 2010), optimisation of the input

manufacturing allocation problem (Mamta & Sushila, 2010).

Typically, neighbourhood sizes are exponential and in the worst case, searching to
improve solutions from the neighbourhood may take exponential time. Practically
speaking, each step of a local search can be done in the polynomial time required.
Therefore, this technique is not guaranteed for determining solutions to hard
optimisation problems based on the solution quality of local optima (Ali, Pant, &

Nagar, 2010).

In exact neighbourhoods, every local minimum is also a global minimum, so a
guarantee can be given, but it is infeasible for searching because exact
neighbourhoods are of exponential size. Alternatively, the number of steps needed
for iterative improvement cannot be bounded by a polynomial for some problems.
To speed up the overall process of optimisation, some individuals of the populations

must be improved by local search (Guimaraes et al., 2007).
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Applying a genetic algorithm to guide a local search to find the most promising
region of the global optimum solution can reduce the time needed. Such a hybrid
method can speed up the search to reach the exact global optimum. However, a
genetic algorithm can take a relatively long time to locate the exact global optimum
in the region of convergence, even though it can rapidly locate the region in which

the global optimum exists (Mamta & Sushila, 2010).

In the next section, the applications of hybrid genetic algorithms are reviewed
through presenting the different ways in which the roles of a local search method and

a genetic algorithm can be integrated.

2.4.1 Application of HGA for Electricity Demand Optimisation Models

The optimality is the inherent nature of humans such as electric utility company
wants to produce its products with the lowest cost. This is the typical example which
optimisation theories can be applied to give optimal solutions. The goal of the
optimisation theories is the creation of a reliable method to optimised models by an
intelligent process. Applications of these theories play more important roles for
modern engineering and planning. Many engineering problems can be defined as

optimisation problems (Pham, 2012).

Electricity demand problem as a combinatorial optimisation problem needs a specific
method to obtain optimal solutions. There are three methods to find optimal solution

in combinatorial optimisation problems (Aljanabi, 2010). They are exact methods,
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approximate methods, and meta-heuristic methods. Exact algorithms are guaranteed

to find an optimal solution to any instance within an instance-dependent run time.

Clausen and Woeginger, in their attempt to obtain an optimal solution for a given
problem (as cited in Aljanabi, 2010), found the search is maintained as a reference
point to the best solution found so far. The partial solution is discarded if it proves to
be worse than the present best solution, and another potential solution is computed as
the alternative solution. Then, a recursive search is continued until the optimal
solution is obtained. The application of exact algorithms for many combinatorial

problems remains limited to relatively small instances.

In contrast, in combinatorial optimisation problems, the number of candidate
solutions is finite. Therefore, to solve the problem, one way is to enumerate all
candidates by comparing the solutions against each other. However, this approach
proves to be impractical in most combinatorial optimisation problems as the number
of candidate solutions is simply too large. In 2003, Blum and Roli (as cited in
Aljanabi, 2010) applied the heuristic search to tackle this problem but there is no

guarantee of finding the optimum solution using that heuristic.

Practically, using a meta-heuristic and an approximate algorithm is one choice to
tackle these problems. Approximate (heuristic) methods are methods that search an
optimal solution in a short time for an optimisation problem (Aljanabi, 2010). In the

certain range, there is no guarantee of finding the optimal solution. However, these
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methods have great practical importance to solve combinatorial optimisation

problems since they are able to find a solution of high quality in a short time.

In practice, optimisation algorithms are able to solve these problems but to find the
best solution for these problems is often not very easy and straightforward because
they include large search spaces. It will be more challenging particularly in real live

systems, which require optimal solutions in an acceptable amount of time.

With a few modifications to the heuristics, a meta-heuristic method formed by
adding problem-dependent heuristics can be used to tackle a hard optimisation
problem. They are general algorithmic frameworks that can efficiently avoid the
local optimality problem and find the optimal solution as the objective of this

algorithm (Aljanabi, 2010).

The hybrid genetic algorithm is an appropriate algorithm to tackle the optimisation
problem in electricity demand forecasting model. The combination method consists
of two algorithms, a genetic algorithm as a global search and a local search addition,

that work together to solve a combinatorial optimisation problem (Aljanabi, 2010).

The local search method is a part of the optimisation algorithms, divided into two
types: the gradient-based methods and the non-gradient-based methods. Gradient-
based methods require the derivative information to update and compute the decision
variable values of the objective function, while non-gradient based methods do not

require the derivative information. These methods are the most widely used in
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nonlinear optimisation methods. However, the disadvantages of gradient-based
methods are liable to converge at a local minimum, and it is often difficult to achieve

convergence in a global optimal solution (Huang, 2009).

Non-gradient methods generally start with one or more initial guesses to the model
parameters. Although they are not as fast as the gradient-based methods, these
methods only evaluate the objective function values without involving the
calculation of derivatives and can generally explore a larger search space than

gradient-based methods.

The goal of local search in electricity demand forecasting model is to find a set of
parameter values to minimise the error between actual demand and model
predictions. It is difficult to measure the error using the derivative of the objective
function because it dependent on the parameter values except for a very simple
model (Huang, 2009). Therefore, gradient-based methods may not be used for an
electricity demand forecasting model and thus, the non-gradient-based methods are

the only choice.

However, hybridisation of genetic algorithms with other appropriate local search
methods would also increase the performance of genetic algorithms in solving global

optimisation of continuous multimodal functions (Asyikin, 2011).

Local search in optimisation to overcome early convergence has been implemented

in many studies. Some of them used the simplex method, local gradient-based
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algorithms, and iterative hill climbing combined with global meta-heuristics such as
genetic algorithm, simulated annealing, particle swarm optimisation, etc. These
studies reported that the new hybrid algorithms have significantly reduced the speed

of convergence of the algorithm compared with a single algorithm.

The local search method is applied on the first half of the sorted population while the
mutation of differential evolution (DE) is applied on the other half after crossover.
This mechanism can accelerate the speed of convergence and is implemented and
tested to optimise crucial characteristics with practical constraints. The results
indicated that the new algorithm is effective and efficient, compared with

conventional GA (Lo, Yiming, & Li, 2010).

2.4.2 Application of HGA and Nelder-Mead Simplex Method

The main obstacle in applying genetic algorithm to combinatorial optimisation
problems has been the high computational cost due to their slow convergence rate.
One attempt to encounter this problem for estimating parameters of electricity
demand model, developing a hybrid algorithm that combines genetic algorithm with
a stochastic simplex method is needed. The Nelder Mead’s simplex method is one of
the most popular derivative-free optimisation algorithms in the fields of engineering,
science, and statistics. NM simplex algorithm is widely used because of its simplicity
and fast convergence. This method converges really well with small scale problems
of some variables. However, for large scale problems with multiple variables, it does
not have much success (Pham, 2012). As a solution to this problem, the quasi-

gradient method was introduced by Pham (2012) in the study to improve NM
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simplex algorithm in terms of the convergence rate and the convergence speed. The
author has succeeded to obtain the significant improvement of the method compared

to the original simplex method.

In non-gradient-based methods, solutions are tried and progressively improved based
on a set of rules. Examples of these methods are the random search method, the grid
search method, the pattern search method, Rosenbrock’s method, and the Nelder-
Mead downhill simplex method. Among others, the simplex method and the
downhill simplex method are widely used (Hai, Ashida, Thawonmas, & Rinaldo,
2012). They have some common features and do not require the calculation of the

gradients of the objective function.

The Nelder-Mead downhill simplex method is an iterative algorithm using only
function values to minimise a scalar-valued nonlinear function of real variables. This
method is intended to move the simplex until it surrounds the minimum, and contract

the simplex around the minimum until finding an acceptable error.

The minimisation of an objective function is started from a polyhedron simplex in N-
dimensional space with N+lvertices. In three dimensions, the simplex is a
tetrahedron, and in two dimensions, it is a triangle. This method evaluates the
objective function in each iteration at trial points. The location of a trial point is
dependent on the function values of the vertices and the earlier trial points. In order
to find a new point to improve the worst vertex, the simplex is altered using

reflection, reflection and expansion, contraction, and multiple contractions (Huang,
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2009). The Nelder-Mead's simplex method contributed towards stronger exploitation
capabilities to achieve a global optimum solution in an effective way. However, the
capabilities of existing Nelder-Mead’s simplex method needs a high computational
cost in term of iterations on the processes of reflection, expansion, contraction and
multiple contractions or shrinking. In order to minimised the computational cost, the

author proposed the improved Nelder-Mead simplex.

2.4.3 Application of HGA with Other Methods

There are various applications of hybrid genetic algorithms in solving optimisation
problems and NP-hard problems. The application of hybrid genetic algorithms can
be categorised into three types of hybridisation; application of hybrid genetic
algorithms with other methods, application of hybrid genetic algorithms with local
search and application of hybridisation genetic algorithms with parameter adaptation

(Asyikin, 2011).

A hybrid genetic algorithm with other methods from various application domains has
been widely published in recent years, for example, solving the global optimisation
of continuous multimodal functions by hybrid genetic algorithms with a niche
technique. The niche technique was claimed to assist the hybridisation genetic

algorithm in maintaining population diversity.

Global algorithms such as the genetic algorithm are known for their drawbacks such
as slower convergence to the true global optimum after the optimum region is found.

By combining them with local gradient-based algorithms, the hybrid approaches can
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overcome that drawback. The faster convergence of a local gradient-based algorithm
can improve the efficiency of the hybrid algorithm and avoid the need to specify a

good initial point (Song & Xi, 2009).

Another source of the limitation of GA in solving real-world problems is improper
choice of control parameters because it is a detrimental influence on the exploitation
and the exploration capability of the algorithm. The algorithm can either succeed in
finding a near optimum solution in an efficient way or fail depending on these

parameters.

The selection of correct parameter values needs a long time. Alternatively, the
evolutionary spirit of a genetic algorithm is in contrast with constant control
parameters. Therefore, to set the values of these parameters whilst the search is

progressing, other search techniques can be utilised.

Global search methods are able to find the highest or lowest function values. A
number of global search methods have been used in model prediction. These
methods are more robust than local search methods (Ali et al., 2010). However, they
suffer from the limitation of intensive computation involved in the searching process,
making it unrealistic to apply them directly in prediction models that are

computationally demanding.

A number of global search methods such as GA, SA, ACO, the shuffled complex

evolution algorithm and PSO, have been developed in the recent decades. Of the
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research, a genetic-based algorithm and particle swarm optimisation (Tang, Xu, &
Lu, 2012) for load forecasting; genetic algorithm and extended Kalman particle filter
(Yang, Huang, & Ma, 2009) for non-linear state estimation; ANN and GA (Azadeh,
et al., 2006) for energy consumption estimation; genetic algorithm for grade
estimation (Li, Wu, Zhang, Weng, & Qi, 2010); and genetic algorithm for state

estimation (Yang, Huang, & Ma, 2009; Bahabadi, Mirzaei, & Moallem, 2011).

There were some attempts to improve the global search methods by modifying the
algorithm itself or combining it with other algorithms. The improved global search
methods include for job scheduling problems; improved genetic algorithm and its
application in artificial neural network training; an improved genetic algorithm by
combined algorithm for a time-varying system based on the damped least-squares

estimation algorithm, etc. (Yan, 2010).

Hybrid genetic algorithm and particle swarm optimisation (GA + PSO) were
proposed by Sheikhalishahi et al. (2013) for reliability optimisation in redundancy
allocation problem. This approach is developed to identify the optimal solution and
improve computation efficiency. Their approach found the improvement capabilities

and effectiveness compared to the similar studies.

2.5 Summary

Based on literature, nothing is known on a priori condition that could detect which

forecasting method is more suitable for a given load area. An important question is
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to investigate the sensitivity of the electricity demand forecasting algorithms and
models to the number of customers, characteristics of the area, energy prices, and

other factors.

The most common model trends are linear, exponential and quadratic. In some cases
concerning to electricity demand, trend forecasting can be useful. In many cases, it
can be hazardous such as they did not forecast well out of sample. A constructive
alternative is to forecast growth rates, such as for the consumptions expenditure.
Linear and nonlinear models can utilise to forecast the electricity demand. Modern
approach using hybrid algorithms methods such as genetic algorithm coupled with
simplex local search can improve the performance of electricity demand forecasting

especially in term of error rates.

The performance of electricity demand forecasting model is naturally affected by the
uncertainties of independent variables such as GDP. The relationship between
electricity demand and the driven variables, however, is highly nonlinear in nature
and a rather complex task that requires many inputs. This is typically estimated by a
linear model after taking logs of the variable to be forecasted. In logarithms, the
trend is approximately linear. Most economic series which are growing (aggregate
output such as GDP, investment, consumption) are exponentially increasing. These

series cannot be fit by a linear trend, but by their (natural) logarithm linear trend.

An accurate load forecasting is very important for electric utilities in a competitive

environment created by the electric industry deregulation. This chapter reviewed
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some statistical and artificial intelligence techniques that are used for electricity
demand forecasting. It also discussed the factors that affect the accuracy of the
forecasts such as weather data, time factors, customer classes, as well as economic

and end-use factors.

The heuristic search can be applied to handle linear and nonlinear trends in
electricity demand variable problems but the heuristic delivers no guarantee of
finding the optimum solution. Hybrid algorithm methods can be used to solve
different hard optimisation problems with few modifications by adding local search.
The goal of hybrid algorithms is to efficiently explore the search space in order to

find an optimal or near-optimal solution and to avoid local optimality.
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CHAPTER THREE
RESEARCH METHODOLOGY

This chapter presents the research methodology related to electricity demand
forecasting model using a hybrid algorithm technique that has been adopted in this
research. Section 3.1 introduces the proposed research methodological steps. Section
3.2 to section 3.6 present six steps of the methodology. The detailed explanations are
included in subsections. Section 3.5 presents the objective function development
including the objective function formulation. Section 3.7 presents the summary of

the chapter.

3.1 Research Methodological Steps

In developing the electricity demand pattern forecasting model, these six steps are
the forecaster’s responsibility, which are: (i) select the best possible forecasting
tools, (i1) collect data as required, (iii) data preparation, (iv) the objective function
development, (v) the design of the improved GA-LS, and finally, (vi) model

performance evaluation. The methodological steps are illustrated in Figure 3.1.
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Step 1:
Forecasting Artlflclaltlgltrlhgence Classic Approach
Tool Selection
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Step 3:
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for GA and Improved Local
Search

Step 5: The ]
design of the The Design of the GA +
Improved hybrid Improved LS
GA +LS

Step 4: Objective
Function
Development

Step 6:
Evaluation

Update data by
Scenarios

Model Evaluation

Figure 3.1 Methodological Steps

3.2 Forecasting Tool Selection

The first step in the proposed research methodology is to select an appropriate

forecasting tool. Selection among these techniques will depend on the forecast time
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horizon selected, available data, available time, and the cost of operating with a poor
or inadequate forecast. In this study, a long-term electricity demand forecasting was
chosen because it appropriate to be applied in decision planning. The forecasting tool
selected used the available data for electricity consumption gathering from Enerdata,
and the data for model variables from National Statistic Office. In addition,
benchmarking proposed forecasting tool used the available data from previous

studies.

In general, there is seldom one single superior forecasting method. One organisation
may find one approach to be effective, but another organisation may use several
approaches. The approaches in forecasting tools can be categorised as: (i) classic
approach, such as regression, and (ii) modern approach such as artificial intelligence
(AD) in finding the best solutions. A modern approach using linear and nonlinear
models based on genetic algorithm and simplex local search in the proposed

forecasting tool was chosen to obtain a robust electricity demand forecasts.

In Al, approaches such as hybrid genetic algorithm and hybrid artificial neural
network, along with other heuristics are used to tackle the problem in electricity
demand forecasting. These approaches have gained more attention in researches of
energy demand forecasting related to their capabilities in overcoming the local

optimality problems.

The proposed methods chosen were the hybrid of GA and local search (LS) which

are introduced as new Al approaches in the field of energy forecasting by exploring
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the capability of each approach to obtain a proper forecasting tool. The GA was
chosen because of its capability in exploring the solutions in the range where the best
solution exists, and LS was chosen because of its capability in finding the best

solution through the exploitation of the solution on the neighbourhood solutions.

A robust forecasting tool that is obtained from simulations should have higher
accuracy than other estimation models. The model that shows good forecasts in
prediction would be the model selected for future projection of electricity demand

using the economic scenarios.

In developing an electricity demand forecasting model, simulating and processing
each model with the available data to obtain the forecast distributions of electricity
demand is needed. Any method of electricity demand forecasting is then based on a
special way of relating the above variables to demand. Zhang and Ye (2011) used the

load forecast to predict future demand based on historical data.

3.3 Data Collection

In forecasting electricity demand, the role of historical information is very important.
The success of an electricity demand forecasting method largely depends on the
availabilty of data. Historical information of variables that are the gross domestic
product, populations, import and export during the period from 1990 to 2009 were
collected from various sources such as from the National Statistic Office. Historical

information for electricity demand for Turkey and Indonesia were collected from

67



International Energy Agency (IEA) and Enerdata-Global Energy and CO2

(www.enerdata.net) for National electricity consumptions.

For more than two decades, Enerdata has been developing a full suite of energy
information services, including databases, reports, forecasts, and business
intelligence. The Enerdata online portal is the best single source of data and analysis
for business developers, economists, strategists, analysts and researchers seeking the

most comprehensive and up-to-date information, with the widest global coverage.

Enerdata Value proposition includes six points: (a) over 200 first-class statistical
sources in a single interface, (b) exclusive government data, (c) harmonised data and
units, (d) up to 184 countries covered, () outputs from the globally recognised

POLES forecasting model, and (f) premium support from Enerdata’s analysts.

Once data for a set of candidate variables are collected, data analysis should then be
used to weed out the potential input variables from a wish list generated so that only
the most relevant variables are used to develop the electricity demand forecasting
model. Some of the more popular statistical techniques used are the coefficient of
correlation R, the coefficient of determination R?, and ordinary least squares (OLS)

regression analysis.

Data collected for electricity demand and variables can be categorised as time series
data and may be an integer sequence, so it will be normalised to zero at first

observation. The normalised data using a simple method, for example dividing all
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historical data by a constant value. After the forecasting process, denormalised data

is needed in order to obtain the original values.

3.4 Data Preparation

Data for electricity demand and economic indicators are collected from various
sources. Electricity demand data for Turkey and Indonesian are gathered from the
International Energy Agency (IEA), Enerdata-Global Energy and CO2. Economic
indicator data for Turkey and Indonesia are gathered from the Turkish Statistical

Institute (TSI) and Indonesian Statistical Yearbook (BPS).

The data figures of Turkey from 1980 to 2009 are collected from the International
Energy Agency (IEA) and Turkish Statistical Institute (TSI) as the last update data
for electricity until 2009. These data are available and divided into three sections.
Two-thirds are used for model development or observations and one-third is used for

testing or measuring accuracy.

Hence, the data for total electricity consumption from IEA and economic indicators
from TSI (gross domestic product, population, import and export) from 1980 to 1998
(19 years) will be needed to be used as the main data for observations or developing
experiments. The rest of the available data for total electricity consumption and
economic indicators from 1999 to 2009 (11 years) are used to test model

performance or prediction accuracy.
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For example, Experiment 2 in Chapter Four using the historical information of
Indonesian electricity demand and socioeconomic data were collected from different

sources such as from the National Statistic Office of Indonesia (www.bps.org.id) for

Indonesian gross domestic product, populations, import and export during 1990 to
2009 and Indonesian electricity consumption during 1990 to 2009 from Enerdata-

Global Energy and CO2 (www.enerdata.net).

Indonesia is not a member of the International Energy Administration (IEA), but the
IEA is one of the sources of data for Enerdata-Global energy and CO2. For more
than two decades, Enerdata has been developing a full suite of energy information

services, including databases, reports, forecasts, and business intelligence.

Experiment 2 is a long-term electricity demand forecasting model for Indonesian
energy using historical data or historical information during the period of 1990-2009
for variables: (1) yearly electricity domestic consumption (TWh) from Enerdata-
Global Energy and CO2 data, year 1990-2009 (20 years), (2) population (million
person), (3) gross domestic product (billions U.S. dollars), (4) import (million U.S
dollars), and (5) export (million U.S dollars) from the National Statistical Office of

Indonesia for 1990-2009 (20 years).

The historical data of Indonesian electricity demand and socioeconomic indicators

are presented in Table 3.1.
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Table 3.1 Indonesian electricity demand and socioeconomic data

Year Electricity =~ Population GDP Import Export

Con.(TWh) (1076) (10"9) (10"9) (10"9)
1990 27.100 179.830 125.720 21.837 25.675
1991 30.700 182.940 140.820 25.869 29.142
1992 34.100 186.040 152.850 27.280 33.967
1993 38.000 189.140 174.600 28.328 36.823
1994 43.200 192.220 195.470 31.984 40.053
1995 49.800 195.290 223.360 40.629 45.418
1996 56.900 198.320 250.750 42.928 49.815
1997 64.500 201.350 238.410 41.680 53.444
1998 65.300 204.390 105.470 27.337 48.848
1999 71.300 207.440 154.710 23.995 48.652
2000 79.200 205.130 165.520 33.515 62.124
2001 84.500 207.930 160.660 31.010 56.454
2002 87.100 210.740 195.590 31.289 57.159
2003 90.400 213.550 234.830 32.551 61.058
2004 100.100 216.380 257.010 46.525 71.585
2005 107.000 219.850 285.860 57.701 85.660
2006 112.600 222.750 364.350 61.066 100.799
2007 121.200 225.640 432.230 74.473 114.101
2008 129.000 228.580 511.490 129.197 137.020
2009 136.100 240.300 539.380 96.829 116.510

The total “native demand pattern” of Indonesian electricity demand from 1990 to
2009 as a dependent variable is shown in Figure 3.2 and Indonesian population and

economic indicators as independent variables is shown in Figure 3.3.
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Figure 3.2 Demand pattern for Indonesian Electricity
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Figure 3.3 Population and socioeconomic variables data for Indonesian Electricity

demand
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The pattern of Indonesian electricity demand tends to rise as linearly as shown in

Figure 3.2 and the gross domestic product rises as exponentially as shown in Figure

3.3.

3.5 Objective Function Development for Genetic Algorithm and Local Search

Objective Function representation of each model is the fitness functions that
represent the relation between electricity-demand (ED) with independent variables.
In this research, independent variables are population (X;), gross domestic product
(X3), import (X3) and export (X4) in linear and nonlinear forms. In this method, the
objective functions are the linear model, the logarithmic model, the exponential
model, and the quadratic model. After a model has been developed, this model can
be applied according to the range-term of time. Each model was tested using

electricity demand data with and without preprocessing and local search.

The mathematical formulas are:
Linear ED = B0+ Bl X+ BzXz + B3X3 + B4X4 (31)

Nonlinear i.e. the exponential form
, _ B p B p
Exponentlal ED = Bl + Bz X1 3 + B4X2 5 + B6X3 7 + BgX4 9 (32)

Where Bo, B1, B2, Po are the weighting parameters.
The objective function in this research is to minimise errors by measuring the least

square error of the objective function values. The objective function is the difference
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between ED actual values and ED forecasting values using least square approach as
stated in equation 3.3.
Objective Function:

n
S = Z (ED actual - ED forecasting)?
i=1

(3.3)
Where

S = sum of the squared prediction errors
n = the number of data
ED actual = the existing recorded data
ED forecasting = approximation values

The evaluation of the objective function values and fitness is the process to calculate
the objective function value’s association with the chromosomes. A fitness value is
calculated and assigned to each chromosome based on its objective function value
through the proposed HGA operations. The process of the hybrid genetic algorithm
and local search algorithm starts from the initial population of parameter values.
Their objective function values are calculated using an objective function through a
genetic algorithm process. Figure 3.4 shows the main phases of the existing hybrid

genetic algorithm and the local search algorithm.
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Figure 3.4 Hybrid algorithm of GA and Local Search (Huang, 2009)

The technical aspect combining an improved local search algorithm and a genetic
algorithm is referred to as the HGA approach. The combining process starts by
running GA with small iterations in order to be effective in computational time.

During the process, the capability of GA to find a solution quickly in exploring the

area of solutions and is the main consideration.

75



3.5.1 Population Initialisation

The population initialisation is the process of generating the initial population of N-
pop chromosomes (N-pop sets of initial parameter values) where N-pop is the
population size. Heuristic methods and random methods can be used to initiate the
population. The commonly used random methods generated N-p,, X N parameter
values between 0 and 1 and then all of these values are scaled to their feasible ranges
by;
X = (Xup = Xiow) X Xpand T Xiow (3.4)

Where x = the actual value of the parameter; x;,,, = the lower bound of the parameter;
x, = the upper bound of the parameter; x,.,,s = a randomly generated value.
However, the heuristic method requires some prior knowledge about the parameter
set. One way is by taking default values as one chromosome and other chromosomes

are generated randomly.

3.5.2 Evaluation of Objective Function Values and Fitness

The chromosomes after the initialisation in the previous step are inputted into the
demand forecasting model, and the model is run to produce outputs. The model
outputs associated with the chromosomes are passed to calculate the objective
function value. If the objective function value is smaller than a predetermined value,
then the process stops. Otherwise, a fitness value is calculated and assigned to each

chromosome based on its objective function value.
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In this study, the objective function formula is the mathematical models that are used
to calculate demand as a function of socioeconomic variables. The formula consists
of three models, which are linear logarithmic, exponential and quadratic models, as

described in the mathematical representation in equations (3.5) until (3.7).

Linear logarithmic model:
IOgY:ﬁo‘i‘ﬂl 11’1X1+ﬂ2 11’1X2+ﬂ3 11’1X3 +ﬁ4th4 (35)

Exponential model:

Exponential Y= f; + /> X; '83 + f1 X ﬁS + P X3 '87 + fs Xu ﬁ9 (3.6)

Quadratic Model:

Quadratic Y = f; + /> Xj '83 + ,B4X2ﬁ5 +ﬂ6X3'B7 +ﬂ8X4ﬁ9 + L0 X1 Xo +

PuXiXs + XXy + i3 XoXs + fraXoXy + Pis XaXy  (3.7)

In equations (3.5) to (3.7); X; represents the GNP (10%), X, represents the population
(10% , X; represents the import (10%) , X, represents the export (10°) and By, 81, B2

... B s are the weighting parameters.

In a genetic algorithm for a demand forecasting model, the parameters are
represented by floating-point numbers. Assume there are N-parameters (an N-
dimensional problem) to be optimised, given by x;, x»,..., xy, and then a chromosome
can be written as an array with 1xN elements so that:

chromosome =[ x, X2, ..., Xy | (3.8)
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In this way, the precision of the parameter values is no longer dependent on how
many bits are used to represent the parameters as that binary genetic algorithm, but
on the internal precision and round-of error of the computer. Figure 3.5 shows the
example of the binary encoding for three parameters f;, 2, and f3 as well as the
related decimal number of each parameter. f is associated with the objective function
suchas y=/f; +f>Ln X; + S5 Ln X, where X; and X, are independent variables

and y is the dependent variable.

Parameter B1 B2 B3

Binary number 1 1 1 1 110 1 0
g1 g & g 8 g12

Decimal number 11 14 3

Figure 3.5 Binary encoding schemes

g to g4 are the group four bits for B, gs to gg are the group four bits for B,, and gy to
g2 are the group four bits for ;. Each group bits represent the binary number values
depend on binary positions. For example, the binary number for B; (1 x 2°+ 0 x 2%+1

x2'+1x 2% =8+2+1=11 in decimal form.

3.5.3 Minimised Objective Function by GA operations

The main operations of GA are selection, crossover and mutation. The GA
terminates if conditions are satisfied. First, if the objective function value is less than
the prescribed threshold, the GA terminates with an optimal solution. Second, if the

maximum number of prescribed generations has been reached, the GA terminates
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without an optimal solution. Then the solution from the GA 1is used as the initial

point for another optimisation solver that is faster and more efficient for local search.

The general pseudo-code of GA is illustrated in Figure 3.6.

GA Algorithm
Input: Size of random population (P), no. of generations/iterations, termination criterion
Output: Optimal value for GA parameters (3, fval) and classification of accuracy
BEGIN
Initial Population Generation;
Each individual fitness Computation;
REPEAT /* create new generation /*
FOR size_of population /2 DO
Two parent’s selection from old generation;
/* Favouring ones of the fitter */
Recombine parents for two offspring;
Offspring Fitness Computation;
Offspring insert in new generation;
END FOR
UNTIL population has converged
/* sort solutions and select the best one
END

Figure 3.6 Pseudo-code of GA

The ability of GA to find the feasible solution to a given problem is inspired by
natural evolution. Evolution comprises the population of individual feasible solutions
to a problem. The fitness function for each individual is used to select the individual
to reproduce offspring for a new generation. The individual who has higher fitness
has more chance to reproduce. Offspring that are reproduced from two parents have
a combination of properties of those two parents. The population will converge to an

optimal solution if well designed.
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GA has an exploration capability that is quick to find the region in which the global
optimum exists but it is difficult to find the global optimum. Generally, the main
steps of operation of a genetic algorithm are selection, crossover and mutation. Each

process is described in detail in the following subsections.

Step 1: Selection

The operator selections in a genetic algorithm mimic nature’s survival of the fittest
principle. This principle translates into discarding the chromosomes with the lowest
fitness and ensuring that fitter chromosomes have high possibility to produce
offspring, thereby gaining a higher chance of surviving in the new generations. This

process consists of the following three steps.

The first step is to rank the N,,, chromosomes from the lowest to the highest in terms
of their objective function values (for a minimisation problem). Then, only the best
are kept; the rest are deleted to make room for new offspring. This process is called
natural selection in some literature, such as in Chunyu & Xiaobo (2009) and Wang,
Sun, & Ren (2009). The retained chromosomes form the mating pool. The number of
chromosomes that are kept in each generation, Ny, , 1s calculated by:
Nkept =Xrare X Npop (3-9)

Where X, 1s the natural selection rate, which is the fraction of N,,, that survive for
mating. Determining the chromosome numbers to keep is still an open question and
is usually determined by trial and error. Too many numbers of chromosomes allow
bad chromosomes to contribute their traits to the offspring, while too few

chromosomes limit the available genes to the next generation (Huang, 2009).
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The second step is to assign fitness to each chromosome, which is used for the
selection of individuals for mating. To select chromosomes from the retained
chromosomes to generate new chromosomes to fill the discarded (Nyop-Niepr)
chromosomes, each chromosome in the mating pool is assigned a fitness value in

terms of its objective value.

To ensure that fitter chromosomes have high possibility to produce offspring, higher
fitness should be assigned to them. The famous methods for fitness assignments are:
(1) rank-based, and (ii) proportional. In the rank-based assignment, sorting the
population according to their objective function values, the fitness is assigned to
each chromosome dependent on its position in the individual rank. In contrast, in
proportional fitness assignment, the fitness assigned to each individual depends on
its actual value of objective function. However, one problem with the proportional
fitness assignment is that selection pressure depends largely on the shape of the
fitness function, which therefore needs to be carefully chosen to provide the right

selection pressure.

A selection pressure that is too high brings the optimisation to a premature
convergence and conversely, a selection pressure that is too low does not direct the
optimisation strongly enough and genetic drift will appear in the population

(Goldberg, 1989 as cited in Huang, 2009).

Another problem comes from the fact that even with a good fitness function, the

selection pressure will vary from one generation to another. In the beginning, the
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selection pressure will be quite high and with large improvements in the population,
it will then weaken along the optimisation to finish very low towards the end when

only small improvements are possible.

Rank-based fitness assignment is more robust than proportional assignment because
it overcomes the problems of proportional fitness assignment; that is, it provides an

effective and simple way of controlling selective pressure.

The third step is to select chromosomes for mating. This process chooses the
chromosomes in the current generation to generate offspring to replace the discarded
chromosomes. Several methods are available for selection operations. Among them,
tournament selection and roulette wheel selection are widely used. Figure 3.7 shows
an example of the roulette wheel selection method. Roulette wheel selection is

performed based on the relative fitness f, (p;) of chromosome i, which is defined as

follows:
. . Nkept .
frod =f@d/ X, f®) (3.10)
K4 Chromosomes | Fitness Value
K1 K1 1
K3
K2 2
K3 0.5
K2

K4 0.5
Total 4

Figure 3.7 Roulette wheel selections
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The cumulative fitness f.(p;) is calculated by:

)= 3 freh (3.11)

A random number r is generated within the range [0, 1] and selects chromosome pi
whose cumulative fitness is greater or equal to the random number r as follows:
Jfp) = r (3.12)

Each chromosome has a space proportional to the fitness values. K1 has a
cumulative interval [0:0.25]; K2 has a cumulative interval [0.25:0.75]; K3 has a
cumulative interval [0.75:0.875]; and K4 has a cumulative interval [0.875:1]. A
chromosome can be selected if the generated random number values are in the range
interval of its chromosome. For example, if a generated random number value is 0.6,
the chromosome K2 is selected as a parent, but if a generated random number is 0.9,

chromosome K4 is selected as a parent (Sanjoyo, 2006).

As another method, tournament selection involves randomly picking a small subset
of chromosomes from the mating pool; the chromosomes in this subset with the

lowest value of objective function become parents.

Step 2: Crossover

One of the crossover methods used to implement the crossover operation is the
simplest method. To mark the crossover point, it chooses one or more points in the

chromosome. The genes on these points are then swapped between the two parents.
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MOther = [XMala Xm,Z, Xm,37 Xm,49 Xm,5a Xm,6,- cy Xm,N] (313)
father = [Xd,l, ng, Xd,3a Xd,4, Xd,5> ng,. . Xd,N] (314)

Where the d=father, and m = mother.

Figure 3.8 shows the one-point crossover. The point is randomly selected, and then
the first part of parent 1 (mother) is combined with the second part of parent 2

(father).

B B> Bs
Mother | O | O | 1 |1 |1 [1 |11 |1 ]1[1]]1
Father | 1 [ 1 [0]0]|O0]O0O]|]O0O|]O0O]O]|O]O]O

Offsor.1 O[O OfO|JO]O[O]O[O]O|O]O
Offsor.2 | 1 |1 |1 (1|1 (1|11 }1]1}]1]1

Figure 3.8 Example of crossover process

The gene or genes between crossover points are exchanged after they are randomly
selected. Assume point 3 and 5 in equation (3.13) and (3.14) are selected and the two
parents can be mated to produce the following offspring:

offspring 1 = [Xum,1, X2, Xd3s Xd 4> Xd.5» Km,6s--+» Xm.N] (3.15)

oﬁ’spring 2= [Xd,l, ng, mej, Xm,4, Xm’j, Xd,6:- . Xd,N] (316)

In the uniform crossover method, the two parents that would contribute genes at each

position in the extreme case are selected and randomly chosen from N points. For
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example, assume genes 1, 3, 4 and 6 in the two parents in equation (3.13) and (3.14)
are chosen to swap genes, the following offspring are generated:
ojj‘spring 1 = [Xd,la Xm,g, Xd,39 Xd,4, Xm,5, ng,. vy Xm,N] (317)

oﬁvpring 2 = [Xm,l, ng, Xm’g, Xm,4, Xd,5a Xm,g,. vy Xd,N] (318)

However, no new information is introduced in this point crossover method. To
introduce new genetic material, it is completely reliant on mutation. The genes are

propagated from the parents to the next generation, only in different combinations.

The blending methods are finding ways to solve this problem by combining genes
from parents into new genes in the offspring. A combination of the two genes from
corresponding parents, produce a single offspring gene in the following way:
X oftspringl,i = P X, i 7 (1- B) X, i (3.19)
Where f € [0, 1] can be a variable or a constant value depending on the age of the
population; Xq ; = i" gene in the father chromosome; and X, ; = in gene in the
mother chromosome. The same gene of the second offspring is the complement of
the first (i.e., f replacing by 1- ). That is:
Xogspring2, i= (14) X, i + B Xa, i (3.20)
If =1, then X, ; propagates in its entirety and Xq ; dies. In contrast, if f = 0, then
X4, i propagates in its entirety and X,, ; dies. When £ = 0.5, the result is an average of

the genes of the two parents.
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Step 3: Mutation

Genetic algorithms commonly use the nonuniform and uniform mutation method.
The mutation operators introduce their variability by altering some of their genes to
randomly selected chromosomes (Huang, 2009). The frequency of mutating the

parameters to the next generation is different from one method to the next.

The number of genes to be mutated in uniform mutation is determined by mutation
rate, while in nonuniform mutation, the mutation rate is reduced from one generation
to another as the run progresses. The number of chromosomes to be mutated (V,,) in
uniform mutation is determined by mutation rate (7,,) and the number of genes in a
chromosome (N), i.e. N,, = r,, X N. Given a chromosome as follows:

X =Xy, Xz, Xk, Xn) (3.21)
Then every randomly selected gene X, (k= 1, N) has an equal opportunity of having
the mutative process. The result of a single application of this operator is a
chromosome

X = (X1, X2, Xk new» XN) (3.22)
Where Xj. ., 1s @ random value from the domain corresponding to the K gene. The

process continues until N,, chromosomes have been mutated.

In the execution of a genetic algorithm, one generation is formed by the process of
evaluation, selection, crossover and mutation. A new generation of chromosomes is
produced after the process is complete. However, there is no guarantee that the best
chromosome is carried through to the next generation, the new generation might not

be better than the previous one.
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The genetic algorithm terminates if conditions are satisfied. First, if the objective
function value is below the prescribed threshold, the genetic algorithm terminates
with an optimal solution. Second, if the maximum number of prescribed generations
has been reached, the genetic algorithm terminates without an optimal solution.

The genetic algorithm is a population-based meta-heuristic; in many situations it
does not perform well (Lian et al., 2009). A hybrid algorithm is used to solve this
problem, by adding a local search algorithm. This method uses a hybrid optimisation
scheme between local search and the genetic algorithm optimisation method for an

objective function.

3.5.4 Minimised Objective Function by Improved Local Search Process

The local search phase usually improves the constructed solution generated by an
original algorithm that is not necessarily optimal, even with respect to simple
neighbourhoods. The local search process is required based on the objective function
values. If the GA operation convergence and local search process are not required,
then the process stops; otherwise, it returns to GA operations. If the local search
process is required, it updates fitness and individuals until the processes converge. If
the local search process is not convergent, it will continue with GA operations. This

process is repeated until convergence is achieved.

A local search algorithm works in an iterative fashion by successively replacing the
current solution with a better solution in the neighbourhood of the current solution. It

terminates when no better solution is found in the neighbourhood. The pseudo-code
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of a basic local search algorithm starting from the solution constructed in the first

phase and using a neighbourhood N is given in Figure 3.9.

1: Procedure Local-Search(V,dom,C)

2 Inputs

3 V: a set of variables

4: dom: a function such that dom(X) is the domain of variable X
5: C: set of constraints to be satisfied

6: Output

7 Complete assignment that satisfies the constraints
8: Local

9: A[V] an array of values indexed by V

10: repeat

11: for each variable X do

12: A[X] < a random value in dom(X)

13: while (stopping criterion not met & A is not a satisfying assignment)
14: Select a variable Y and a value V ¢ dom(Y)

15: Set A[Y] <V

16: if (A is a satisfying assigment) then

17: return A

18: until termination

Figure 3.9 Pseudo-code of the local search phase

Local search has a capability that quickly exploits the solutions in the neighbourhood
starting from the initial point. Setting the initial point is very important because local

search is sensitive to the initial point (the worst of local search).

The mechanism to exploit the solutions, for example, is through the reflection,
expansion, contraction, shrinkage process, such as in the Nelder-Mead downhill
simplex method. To solve the unusage repetitions of iteration that take a great deal of
computation time, setting the coefficients of reflection, contraction, expansion, and

shrinking is very important. A simplex is the most elementary geometrical figure that
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can be formed in dimension N and has N + 1 side (e.g., a triangle in two-dimensional

space) as shown in Figure 3.10.

Figure 3.10 Nelder-Mead dowghill simplex methods

Starting at the N + 1 point, this forms the initial simplex. Only one point of the

simplex, PO, is specified by the user. The other N points are found by
Pn=P0+csen (3.23)

Where en is N unit vectors and cs is a scaling constant. The steps used to trap the

local minimum inside a small simplex are stated as follows:

(1) Creation of the initial triangle. Three vertices start the algorithm:
A= (1, yl), B=(x2 y2), and C = (x3, y3) (3.24)
(2) Reflection. A new point, D = (x4,y4), is found as a reflection of the lowest
minimum (in this case A) through the midpoint of the line connecting the
other two points (B and C).

D=B+C-4 (3.25)
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(3) Expansion. If the cost of D is smaller than that at A, then the move was in the
right direction and another step is made in that same direction.
E=3(B+C)/ (2-2A) (3.26)
(4) Contraction. If the new point, D, has the same cost as point 4, then two new
points are found.
F=(2A+B+C)/4, G =3(B+C)/ (2-2A) (3.27)
The smaller cost between F and G is kept, thus contracting the simplex.
(5) Shrinkage. If neither F' nor G has smaller costs than A4, then the side
connecting 4 and C must move toward B in order to shrink the simplex. The
new vertices are given by:

H=(A+B)2, I=(B+C)2 (3.28)

Each of iterations generates a new vertex for the simplex. If this new point is better

than at least one of the existing vertices, it replaces the worst vertex. This way, the

diameter of the simplex gets smaller and the algorithm stops when the diameter

reaches a specified tolerance.

The local search process is required based on the objective function values after the

genetic algorithm operations. Fitness value fval is evaluated based on the objective

function. If the function is to minimise cost or find minimum values of the objective

function, the deviation (usually known as ‘error’) between the result estimated by

simulation and observation or the actual value must be calculated. The original

simplex local search process for a minimisation problem with more than two

decision variables is illustrated in the following steps as presented in Figure 3.11.
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Step 1: Start with initial guess Xy, X;,...,Xy, where X; (i=0,1,...,N) is a vertex of a
simplex in N-dimensional space, and where X; = (x;,x2,...,%n). X0,X/,...,.XN
are set to the top N+1 chromosomes (i.e. parameter set) that have the lowest
objective function values and then go to Step 3.

Step 2: Evaluate the objective function at these N+1 points (including the original
point Xy), i.e., f(X;), i =0, I, N.

Step 3: Sort the points in terms of their objective function values and select the point
with the highest (X;), second highest (X;), and the least (X;) function values.

Step 4: Judge the convergence. If the difference between the highest and lowest
function values is below the prescribed tolerance, i.e., f (X;)-f (X)) < €, then
the process is terminated; otherwise, perform reflection as explained in the
next step.

Step 5: Calculate the centroid (X,) of all points except the highest, as given by
1an .
X, =ﬁzi=1Xl (3.29)

And generate a new point X, by reflecting X, about the centroid X, and is
given by the following expression
X=X +1(Xe—Xp) (3.30)
Where r is the reflection coefficient (» = 1). A function evaluation is
performing at the reflected point. If the reflection is successful, i.e., if AX,) <
f(X)), the point is further expanded as explained in next step.
Step 6: A new expanded point, X, is obtained using the following expression

X, =X, + e (X.-X,) (3.31)
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Where e is the expansion coefficient (e = 1). A function evaluation is
performed at the expanded point. If the expansion is succeeds, 1.e., if AX.) <
(X)), the point is further expanded. If the expansion fails, i.e., if AX.) >
S(X,), the point is contracted.
The contracted point X, is obtain by

X=X+ ¢ (Xe—Xp) (3.32)
Where c is the contraction coefficient (¢ = 0.5).

Step 7: If all the operation including reflection, expansion, and contraction fail,
multiple contraction is used to scale the simplex around the point with the
least function value (X;), which shrinks the simplex. The new scaled points
XCiare given by
XCi=X;+s(X;—X;) i=0,..., N, i #1 (3.33)
Where s is the multiple contraction coefficient, also call the shrinkage

coefficient (s = 0.5).

If both the expansion and the contraction stages fail, then the previously

reflected point X, is accepted.
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Step 8: After performing the multiple contractions, go back to step 2 with the N+1

new simplex point.

Steps 2-8 are repeated until the local search convergence is achieved or the

predetermined maximal number of iterations has been reached.

3.6 The Design of the Improved GA - LS

Hybridisation genetic algorithms with local search are commonly implemented in
solving many complex problems where each new generated offspring follows local
optimisation procedures to lead the solution towards a local optimum area before
continuing to the next generation. In the improved version of binary genetic
algorithm, the genetic algorithm involves binary genetic sequences that are
converted from real valued variables before the crossover and mutation processes.
After these processes, the binary genetic sequences are converted back to real-valued
variables. It can handle real-valued variables while processing the crossover and
mutation process. In this work, it is named the real-value genetic algorithm (RVGA).
The improved local search performs local exploitation around individuals in the local

neighbourhood, while genetic algorithms make global explorations in a population.

The proposed approach is known as hybrid real-value genetic algorithm and
extended Nelder-Mead (RVGA-ENM). In order to take advantage of both, these
hybrid algorithms basically use the way to hybridise the RVGA and ENM. The

results solution from RVGA is returns as the initial solutions of the ENM. Individual
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solutions will experience both evolution from RVGA and the exploitation of local
neighbourhood solutions from ENM in every iteration. To better exploit the ENM
and real-value genetic algorithm, advance discussion of the hybrid mechanism is

presented in Chapter Five.

3.7 Performance Evaluation of Proposed Hybrid Algorithm

Finally, to evaluate the performance of the electricity demand forecasting model
based on the proposed hybrid algorithm, the actual demand and estimation results of
each model were compared. Once forecast results are obtained from the selected
model(s), they need to be validated for accuracy. Model selection for this study is

based on several criteria.

Generally, the criteria are goodness of fit, information loss and the quality of being
near the true value or accuracy. Some models for electricity energy demand were
tested using available energy and socioeconomic data. Some of the common indices
that are used to determine forecast accuracy are illustrated in (3.36) until (3.40).
These indices are extremely useful in comparing forecast accuracy (Jing et al.,
2011). To measure the fitness of the proper model, the fitness values of several

candidate models can be used to rank the models after given a dataset:

a) the mean absolute error (MAE) = 1/nY.1—; |(yt — §t)| (3.36)
Where, yt is the history value, and yt is the predictive value (the same as the
followings).

b) the sum square error (SSE) = Y.1—4 | (yt — yt)|? (3.37)
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¢) the mean square error (MSE) = l/n\/z?:1 |(yt - ﬁt) |2 (3.38)

d) the mean absolute percentage error (MAPE)

1 t—vt
|yt]

- (3.39)

e) the mean square percentage error (MSPE)

1 t—yt
mspE=—V Y, (u)z (3.40)

Iyt
When evaluating the different forecasting techniques, an essential consideration that
the objective of any forecasting activity is to provide a forecast with a sufficient
degree of accuracy at the least possible cost. In this methodology, a model with a
sufficient degree of accuracy will be a candidate for the chosen model for forecasting

future demand.

Data inputs for forecasting future demand are updated using scenarios. These
scenarios are based on trends of annual growth of historical data. There are three
scenarios that will be used in this research; the basic scenario, low scenario and high
scenario. The actual annual growth of historical data is used as the basic for

calculating the scenarios analysis.
In validating and evaluating the degree of accuracy, this work presents the genetic

algorithm approach to find the optimum values that minimised the absolute

summation of the forecasting errors. In order to emphasise the best string and speed
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up convergence of the iteration procedure, fitness is normalised between 0 and 1.
The fitness function (ff) can be expressed as follows (Ghods & Kalantar, 2008):

1
ff = 3.39
1k ST (0] ©.39)

The scaling constant is & and » (¢) represents the forecasting errors. Like other
stochastic methods, the GA has a number of parameters that must be selected: size of
population, probability of crossover and probability of mutation. The associated error
vector is r (t) and GA tries to keep the r (t) in the allowed limit. If r (t) is kept in the
allowed limitation, the fitness function has the best values for demand forecasting.

The values of demand forecasting can be calculated using the following equation:
y(©) =ag+ X, at+r(t) (3.40)

Where y (t) is the demand at time t, a, a; are the regression coefficients relating the

demand y (t) to time t, and r (t) is the residual demand at year (t).

3.8 Summary

Six methodological steps for electricity demand forecasting models using a hybrid
genetic algorithm technique have been presented. Several models that will be used to
forecast the relationship between electricity demand and its independent variables

have been described in more detail.

The original objective function in the proposed method was to minimise errors by

measuring the least square error of the objective function values. The objective
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function is the difference between electricity demand actual values and electricity

demand forecasting values.

The evaluation of the objective function values and fitness is the process to calculate
the objective function value’s association with the chromosomes. A fitness value is
calculated and assigned to each chromosome based on its objective function value
through the GA operations. A local search is used to assist GA in overcoming
uncertainty in demand and local optima problems. Genetic algorithms are efficient
heuristics and stochastic global search methods that have the ability to handle
complicated problems. Unfortunately, these results can only be achieved at the
expense of intensive computational requirement. This ability decreases in searching
the point that is close to the optimal solution. It can be increased by using an
improved local search capability, which is good at converging at the local optima

from nearby starting points.

In overcoming the limitation of a single meta-heuristic, the proper method is the
hybridisation of a heuristic. In general, better results can be found in hybrid
heuristics for classes of instances of the optimisation problem and a hybrid heuristic
would outperform a standalone heuristics, although a priori there is no guarantee.
One promising family of hybridisation algorithms is that of population-based

heuristics with local search heuristics.

98



CHAPTER FOUR
EXPERIMENTS, ANALYSIS AND RESULTS VALIDATION

This chapter shows the experiments using a hybrid genetic algorithm with an original
simplex local search algorithm for electricity demand (HGAED) to find the optimum
solution. Section 4.1 presents the experimental design including dataset description
and model description respectively in sub sections. Several experiments and
analyses were done to evaluate the performance of a hybrid genetic algorithm and
original simplex local search compared to other methods. Section 4.2 presents the
evaluation of HGAED using electricity demand data. Firstly, comparison of HGAED
and other methods using Turkish data is discussed. Next, the HGAED performance
using Indonesian data is evaluated. In addition, the evaluation of the HGAED
performance using the secondary data in Ozturk and Ceyland (2005) and Toksari
(2007), and evaluate relativeness to some benchmarks using the original simplex
local search is included. The results found in each experiment are also illustrated in

subsections. Finally, section 4.3 presents the summary of the chapter.

4.1 Experimental Design

The first experiment is to evaluate the performance of HGAED in Turkey’s data

using the hybrid method as described in Chapter 3.
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4.1.1 Models Description

There are five electricity demand models used in these experiments, namely: (1) the
GAED-1 and GAED-2 models by Ozturk and Ceyland (2005), (2) the Linlog-ED
model by Azadeh et al. (2006), (3) the Lin-ED model by Toksari (2007), (4) the

DLin-ED model by Deng (2010), and (5) the HGAED1 and HGAED2 models.

The estimation of electricity demand based on economic indicators uses various
forms of equations. These forms are linear, exponential and quadratic. In the GAED-
1 and GAED-2 models by Ozturk and Ceyland (2005), electricity demand values are
the function of gross national product, population, import and export in exponential
and quadratic form, respectively. In the Linlog-ED by Azadeh et al. (2006),
electricity demand values are the function of economic indicators in linear
logarithmic form. While in the Lin-ED model by Toksari (2007) and DLin-ED
model by Deng J. (2010), electricity demand values are the function of gross

domestic product, population, import and export in linear form.

The forecasting model is given by equations (4.1) to (4.7) as the following:

GAED-1:
EXpI Y= Bﬁ‘ Bz X1 ﬁ3 + [34 X2 BS + B6 X3 B7 + Bg X4 B9 (41)
GAED-2:

Bi+PaXiP3 + BaXaP5 + B X3 7
Quad: Y={+Bs X4 P9+ BioXiXo +B11 XiXs + B2 XiXy (4.2)
+ B13 XoXs5 + Pra XoXy + P15 X3Xy

LinLog-ED:
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Log: Y=Bot+B:i LnX; +BLnX; +B3LnX;5 +PsLnXy (4.3)

Lin-ED:

Lint Y=+ X; +B3Xs +PsX5 +Ps5 X4 (4.4)
Dlin-ED:

LinY=Ci Xi+C Xu +C3 X3+ Cy Xy +Cs 4.5)

HGAED Models Development

The estimation of functions in a linear form needs many simplifications particularly
in electricity demand forecasting models with economic and social variables that
include complex interaction. The HGAED models considered the interaction
between variables. Suppose that electricity demand is the function of gross domestic
product, population, import and export. The impact of population growth rate may
have a complex relation with gross domestic product, and so as the other variables.
Therefore, considering these interactions in forecasting, some nonlinear functions are
used in the HGAED models. These are the derivation of exponential and quadratic

models in the new logarithmic formulations.

HGAED1:
For example, consider the following exponential model:
EXpI Y= B]"‘ Bz X] ﬁ3 + B4 X2 BS + B6 X3 B7 + Bg X4 B9 (463)

The formulation can be rewritten in logarithmic formula as shown in 4.6b.
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In(B1) + B3 In(B2) + BsX1 + Bs In(Ba) + Bs X2

Log: Y =Exp{ + B7In(Bs) + 7 X3+ Bo In (Bs) + PoXa

(4.6b)

Reformulation for quadratic model to linear logarithms form can also be done as

shown in 4.7.

HGAED?2:

In(B1) + B3 In(B2) + B3 X1 + Ps In(B4) + Ps Xz
+ B7 In(Bs)+ B7 X3+ Bo In(Bs)+ BoXa
+ InB1o +3X1 + InB11+3X2 + InP12 +3X3
+ InB14 + 3X4 + InPi1s

Quad: Y= (4.7a)

Mix: Y =B+ B2 * exp (Bs + s X1+ Bs Xo + Pe X3+ B7 Xy) (4.7b)
In equations (4.1) to (4.7), X; is the gross domestic product (10%), X, is the
population (106), Xj; is the import (109), X, is the export (109) and Lo, S, pa...Pis
are the weighting parameters, Cl,..,C5 are the regression coefficients. The fitness
value is calculated for minimum least square error using the fitness evaluation

function in equation (3.3).

Equations 4.1 to 4.5 in this study have been implemented using single algorithms

compared to equation 4.6 to 4.7 using a hybrid algorithm.

4.1.2 Dataset for Experiments

HGA Experiment 1 used the Turkish data for electricity demand and economic
indicators as tabulated in Table 4.1. The Turkish data for electricity demand were
obtained from IEA (International Energy Agency) as Turkey is a member of the [EA

at www.ela.gov/countries/data.cfm, and the data for economic indicators was

obtained from TSI.
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Table 4.1 Electricity demand and socioeconomic data for Experiment 1

Electric
Consumption
(Billion GDP Population Import Export
Years KWh) (1009 U.S.$) (1076) (10"9°$) (10799)
1980 21.84 94.26 42.17 7.91 291
1981 22.49 95.5 43.12 8.93 4.70
1982 24.90 86.77 44.28 8.84 5.75
1983 26.15 82.91 46.97 9.24 5.73
1984 29.63 80.64 48.07 10.76 7.13
1985 32.57 90.38 49.17 11.34 7.96
1986 31.73 101.8 50.27 11.10 7.46
1987 35.02 117.18 51.37 14.16 10.19
1988 40.37 122.13 50.53 14.34 11.66
1989 40.19 144.03 51.25 15.79 11.62
1990 47.84 202.38 52.44 22.30 12.96
1991 50.46 202.72 53.52 21.05 13.59
1992 55.51 213.58 54.55 22.87 14.71
1993 60.45 242.14 55.59 29.43 15.35
1994 62.79 174.45 56.55 23.27 18.11
1995 68.39 227.51 57.51 35.71 21.64
1996 75.27 243.9 58.48 43.63 23.22
1997 82.73 255.07 58.1 48.56 26.26
1998 88.67 269.13 59.01 45.92 26.97
1999 91.63 249.82 59.91 40.67 26.59
2000 98.57 266.44 62.76 54.50 27.77
2001 97.39 195.55 63.82 41.40 31.33
2002 102.55 232.28 64.85 51.55 36.06
2003 110.43 303.26 65.89 69.34 47.25
2004 120.04 392.21 66.9 97.54 63.17
2005 129.01 482.69 67.9 116.77 73.48
2006 141.46 529.19 68.13 139.58 85.53
2007 153.66 649.13 68.89 170.06 107.27
2008 160.37 730.32 69.66 201.96 132.03
2009 155.19 614.47 70.54 140.93 102.14

Before algorithm processes can take place, the data must be processed in a form that
is meaningful to the genetic algorithm. Each input variable should be preprocessed

so that its values are close to zero. In this study, all input patterns have been
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normalised to the same ranges of values. Normalisation is simply dividing all values
of a set by an arbitrary reference value, usually the maximum value. However, this
process carries with it the potential for loss of information as it can distort the data if

one or a few values are larger than the rest of the data.

The preprocessing normalises these original data in Table 4.1 to find usable data
using the formula as described in section 3.4.3. The formula is selected based on
trial and error until the normalised data are usable and the model obtains the

goodness of fit results.

Figure 4.1 and 4.2 presents the pattern of original and normalised data of electricity
demand and economic indicators, respectively. These patterns are nonlinear for gross
domestic product and import and can be expressed as exponential and quadratic
mathematical representations. The population growth rate may have a complex
relation with gross domestic product and other variables. This interaction is

considered in non linear models development for electricity demand forecasting.
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HGA Experiment 2 uses a dataset for Indonesian electricity demand and economic

indicators during the period from 1990 to 2009 as presented in Chapter 3.

The hybrid model for Indonesian data used the linear and exponential form as
presented in equations 4.9 to 4.10.
HGAED-1:

Lin: Y = B1Xin + B2Xon + B3Xzn + PaXan + Ps (4.9)
HGAED-2:

(In(B1) + B31In(B2) + B3 Xin

) ) + Bs In (B4) + BsXzn
Logarithmic: Y = (4.10)
+ B7In(Be) + P7Xzn

U +Bsln (Bs) + BoXen
Where Y is the normalised electricity demand, X, is normalised gross domestic
product, X, is normalised population, X3, is normalised import, X4, is normalised

export, and f; to Sy are the weighting parameters.

In Experiment 3 and Experiment 4, the investigation is made for the single algorithm
models (GAED-1 and GAED-2), and hybrid algorithm models (HGAED-1 and
HGAED-2) using the secondary data in Ozturk and Ceyland (2005). The data for
total electricity consumption and industrial electricity consumption for Experiment 3

are tabulated in Table-4.2.
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Table 4.2 Electricity demand and socioeconomic data for Experiments 3 and 4

Total net Industrial

Years electricity sector GNP Population Import Export
con. electricity  (10"9) (10 *6) (10%9) (10n9)
(TWh) con. (TWh)
1980 24.62 13.01 69.75 44.74 7.91 291
1981 26.29 14.21 72.78 45.86 8.93 4.70
1982 28.32 15.20 65.94 47.00 8.84 5.75
1983 29.57 15.58 62.19 48.18 9.24 5.73
1984 33.27 18.03 60.76 49.38 10.76 7.13
1985 36.36 19.61 68.20 50.66 11.34 7.96
1986 40.47 20.89 76.46 51.78 11.10 7.46
1987 44.93 23.87 87.73 52.92 14.16 10.19
1988 48.43 25.26 90.97 54.08 14.34 11.66
1989 52.60 27.60 108.68 55.27 15.79 11.62
1990 56.81 29.21 152.39 56.47 22.30 12.96
1991 60.50 28.51 152.35 57.50 21.05 13.59
1992 67.22 31.54 160.75 58.55 22.87 14.71
1993 73.43 34.25 181.99 59.61 29.43 15.35
1994 77.78 34.14 131.14 60.70 23.27 18.11
1995 85.55 38.01 171.98 61.81 35.71 21.64
1996 94.79 40.64 184.72 62.93 43.63 2322
1997 105.52 43.49 194.36 64.08 48.56  26.26
1998 114.02 46.14 205.98 65.24 4592 2697
1999 118.48 43.77 187.66 06.43 40.69  26.59
2000 128.28 48.37 201.48 67.64 4415 2749
2001 126.87 48.70 144.00 68.59 41.40  31.30
2002 132.55 181.60 69.82 51.50  36.00
2003 140.86 238.00 71.08 68.70  46.90

Figure 4.2 and Figure 4.3 present the pattern of total electricity consumption and
industrial electricity consumption for Experiment 3, respectively. The patterns are
linear especially the industrial sector. The growth patterns of both total and industrial

electricity demands are almost linear.
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Figure 4.3 The total net electricity consumption for Experiment 3
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Figure 4.4 The industrial electricity consumption for Experiment 4
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Experiment 5 used the secondary data in Toksari (2007). These data consist of the
data for electricity demand that were collected from MENR and the data for

economic indicators from TSI. The data are tabulated in Table 4.3.

Table 4.3 Electricity demand and economic indicators data for Experiment 5

Energy GDP  Population Import Export
Years Demand ($1079) (1076) ($10%9) ($10"9)

(MTOE)
1979 30.71 82 43.531 5.07 2.26
1980 31.97 68 44.439 7.91 291
1981 32.05 72 45.54 8.93 4.7
1982 34.39 64 46.688 8.84 5.75
1983 35.7 60 47.864 9.24 5.73
1984 37.43 59 49.07 10.76 7.13
1985 39.4 67 50.307 11.34 7.95
1986 42.47 75 51.433 11.1 7.46
1987 46.88 86 52.561 14.16 10.19
1988 4791 90 53.715 14.34 11.66
1989 50.71 108 54.894 15.79 11.62
1990 52.98 151 56.098 223 12.96
1991 54.27 150 57.193 21.05 13.59
1992 56.68 158 58.248 22.87 14.72
1993 60.26 179 59.323 29.43 15.35
1994 59.12 132 60.417 23.27 18.11
1995 63.68 170 61.532 35.71 21.64
1996 69.86 184 62.667 43.63 23.22
1997 73.78 192 63.823 48.56 26.26
1998 74.71 207 65.001 45.92 26.97
1999 76.77 187 66.432 40.67 26.59
2000 80.5 200 67.421 54.5 27.78
2001 75.4 146 68.365 41.4 31.33
2002 78.33 181 69.302 51.55 36.06
2003 83.84 239 70.231 69.34 47.25
2004 87.82 299 71.152 97.54 63.17
2005 91.58 361 72.974 116.77  73.48

The data is divided into two parts, one part is for observation and the rest is for

measurement of accuracy (compare actual and estimation results).
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4.2 Experimental Results

Several experiments were done to obtain the appropriate method for solving the
electricity demand pattern problem. These include experiments on a single algorithm
for electricity demand pattern, application of preprocessing and the local search

method, and comparison between the HGAED and other methods.

The experimental results in the first section are compared from the single genetic
algorithm with and without preprocessing data, the genetic algorithm with local
search, and the genetic algorithm with local search and preprocessing data for the
electricity demand model as described in section 4.1.1 using the data as described in
section 4.1.2. Next, the experiments compared the performance of the proposed
model with other models. Therefore, the experiments in the second section will
include: (i) Experiment 1 using data in Table 4.1, (i) Experiment 2 using data in
Table 3.1 in Chapter 3, (iii)) Experiment 3 using data in Table 4.2 for Total, (iv)
Experiment 4 using data in Table 4.2 for Industrial, and (v) Experiment 5 using data

in Table 4.3.

4.2.1 Comparison of Single GA and Hybrid Algorithm

The literature reported that there are several disadvantages in the single algorithm
performance in overcoming local optimality problems (Huan, 2009; Mamta &
Sushila, 2010; Qiusheng, Hao, & Xiaoyao, 2011). This study is to investigate single
genetic algorithm performance by measuring the average error using available data
of electricity demand, testing the effect of using normalised data, testing the effect of

using local search when combined with genetic algorithm and testing the
110



preprocessing data in the hybrid genetic algorithm and local search algorithm. Table

4.4 and Figures 4.5, 4.6 and 4.7 present the findings from the experiments.

Table 4.4.Comparison of single GA and hybrid algorithm

Data Turkey-1 Indo-2 O&CTot-3 O&CInd-4 Toks-5
Average errors ( % )

GA 29.8392 13.369 8.4727 12.5832 8.6511
GA + Prep 25.5609 9.7307 7.2525 9.5239 8.3136
GA +LS + Prep 6.6571 4.389 3.3004 1.7370 3.464

Data: 1. Turkey’s Electricity Demand; 2. Indonesia Electricity Demand; 3.0zturk & Ceylan
(2005) for Total Electricity Demand; 4. Ozturk & Ceylan (2005) for Industrial Electricity
Demand; 5 Toksari (2007) Turkey Energy Demand.

Comparation model using GA, GA+preprocessing,(GA+Local Search)+preprocessing

3 T T T T T T T
—@— GA alone

9 —l— GA+preprocessing i
—&— GA+local search+data preprocessing

Average Error (%)

| |
1 1.5 2 25 3 35 4 4.5 5
Data Experiment

Figure 4.5 The average error of single GA and hybrid GA using normalised data
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Error Comparison using Multiple Approach
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Figure 4.6 Performance of single GA and hybrid GA with preprocessing in terms of
error

Through the experimental analysis, results indicated that the hybrid genetic
algorithm and local search algorithm using preprocessing data obtained the best
solutions. The application of local search combined with genetic algorithms resulted

in good solution quality in solving the electricity demand pattern problem.

4.2.2 Experiment 1: Turkey’s Data for Electricity Demand and Variables

Experiment 1 is compared between the HGAED model and other models using data
in Table 4.1 in terms of relative errors. These models are taken as a basic comparison
since they are long-term electricity demand forecasting models and used similar data
variables. Experiment 1 results are presented in Table 4.5 and the visual results of

simulation are illustrated in Figure 4.7.
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Table 4.5 Results for Experiment 1

e} o -
s = £ = = == o) =
I} —_ 0= o= - M o = @/ ; a o~ -
<= 3 = 3 = A © < B = = A= :
555 138 98 2c-F 4 0 Z4 a3 aE
o= A = A= w8 = A : 23 25)
%) 5 3 5 & Bh o0%2%Cc H e S » o
=] 153 R 2 = fo M 2 n 2 s =~ g o < = < =
5 stz <82 <52 =3I =8 3= S OF
> nmes®f ol ©ola8 43<& IS8 A T A T A
1999 91.63 79.241 63.710 77.943 73.994 75.578 84.440 72.585
2000 98.57 86.711 87.737 86.655 86.773 92.005 108.564 78.029
2001 97.39 69.074 106.364 81.695 67.320 88.615 105.623 86.430
2002  102.55 80.949 111.636 92.665 75.386 96.533 112.164 91.344
2003 11043 103.637 117941 113.209 86.465 108.169 115.907 100.836
2004  120.04 132.969 137.582 140.663 100.312 126.775 120972 112.957
2005 129.01 160.441 135.409 159.147 116.261 138.183 125.458 121.137
2006 14146 177.317 162.840 177.250 122.549 153.617 128.081 129.075
2007 153.66 215.789 174.261 206422 136.809 171.288 125.938 145.420
2008 160.37 245463 211.275 235.030 141.737 192.657 123.561 164.791
2009  155.19 203.809 138.538 193474 127.027 154.149 122.6591 149.102

Average Err(%) 20.238 11.2129 17.3587 12.792 6.728 8.811 6.657

From the results above, the HGAED-1 found fit better than other models in the
estimated electricity demand during the period of 1999 to 2009. The integrated
ability between genetic algorithm and local search into hybrid genetic algorithm has
shown better performance than either of them separately. Combining global search
methods and local search methods which formed the hybrid algorithms have led to

the best performance.
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Comparison Some Models for Turkey Electricity Demand
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Figure 4.7 Visual results for Experiment 1

The performance of the electricity demand models which are measured by the
goodness of fit between model outputs and the required target (actual electricity
demand) are shown in Figure 4.7. It can be seen that the HGAED-1 using the hybrid
genetic algorithm and local search approach has better performance. Although
further investigation is required to compare the performances of the goodness of fit,
the HGAED-1 model is considered to be used in further study. The goodness of fit is

plotted in Figure 4.8.
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Scatter Plot between Actual and Output HGAED-1
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Figure 4.8 Scatter plot between target (actual) and predicted (output HGAED-1)

4.2.3 Experiment 2: Indonesian Data for Electricity Demand and Variables

Experiment 2 compared simulation results obtained from a model and the HGAED
model for Indonesian data as presented in Table 3.1 in Chapter 3. Table 4.6 presents
the comparison results, and the visual results of goodness of fit are shown in Figure
4.9 and Figure 4.10. The goodness of fit of the HGAED-1 for Indonesian data based

on experiment 2 are illustrated in Figure 4.11
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Table 4.6 Comparison results for Experiment 2
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2001  84.5 79.521 131.419  81.022 82.280 91.222 75.908 75.9079
2002  87.1 82.566 118.636  76.879 79.893 85.991 78.7994  78.7989
2003  90.4 88.774 110.587  78.544 81.916 87.235 84.7542  84.7533
2004 100.1 103.651 165.166  86.676  100.360 102.466 92.3553 92.355
2005 107.0 122.129 213.404 102.063 122.678 126.762 105.566  105.5662
2006 112.6 138.873 200.979 116.901 136.123 145911 123.0078 123.0078
2007 121.2 155497 225.713 124.667 151.477 157.735 134.0133 134.0135
2008 129.0 187.313 389.613 131.086 191.912 169.584 137.4547 137.4572
2009 136.1 174.726  277.498 111.161 155.094 133977 138.4148 138.4144
Average Err(%) 15.293 70.619 6.426 13.842 9.731 5.364 4.389
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Figure 4.9 Scatter plot between target and predicted output HGAED-1
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Actual vs Estimated by Some Model and HGAED
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Figure 4.10 Visual results for Experiment 2

The visual results of Indonesian data estimated by the HGAED model and other
electricity demand models for Experiment 2 are illustrated in Figure 4.10. From
Table 4.6, Figure 4.9 and Figure 4.10, it is shown that the HGAED-1 model using a
hybrid algorithm approach has performed more accurately and had a better fit than
other models. Therefore, the HGAED-1 model is chosen as a robust model and is
considered to be used in further study for the Indonesian electricity demand

prediction.

4.2.4 Experiment 3: Ozturk and Ceylan (2005) Data for Total

Experiment 3 shows the comparison between the former models (GAED-1 model,
GAED-2 model, GAED-3 model, MENR model) and the HGAED-1 and the

HGAED-2 model using the data in Table 4.2 in terms of relative errors. These
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models used variables similar to the long-term electricity demand forecasting models

and this is taken as a basic comparison. The simulation results are presented in Table

4.7, the visual results of comparison are illustrated in Figure 4.11 and the goodness-

of-fit is illustrated in Figure 4.12.

Table 4.7 Simulation results of total electricity demand for Experiment 3

s =EETE T Sx  Tx P A A
& SYE= A Aact= a= & = o= o =
PoiEiEi: 3 BB iz i iz
1997 105.52 106.06 103.75 103.21 84.37 108.130 100.5399
1998  114.02 111.25 110.07 111.35 93.57 109.394 106.1839
1999 11848 111.54 118.23 120.80 103.78 104.596 111.7817
2000 12828 117.57 128.47 132.88 115.11 108.810 120.7550
2001  126.87 130.23 145.48 141.21 125.11 110.952 125.2162
2002  132.55 154.64 158.22 155.20 135.99 128.787 136.3701
2003  140.86 219.73 168.61 169.05 147.81 164.022 148.3939
Average Err(%) 13.207 7.304 8.353 9.938 8.461 4.017

*TWh = Tera Watt hour = Billion Kilo Watt hour
**MENR = Ministry of Energy and Natural Resources
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Actual vs Estimated by Some Model
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Figure 4.11 Visual results of total electricity consumption for Experiment 3

Table 4.7 analyses demonstrate that the HGAED-2 model with the HGA-estimation
approach for total net electricity demand presents better forecasting accuracy than
the former (GAED-1, GAED-2, GAED-3 and MENR) models. It can be seen from
Table 4.7 that the previous method was a relative error that tends to rise as
exponential especially in the last two years, whereas in the hybrid method (HGAED-
2 with hybrid algorithm approach), it was found that the relative errors tend to be

stable.

The average error in the GAED-1 model is 13.207% (larger than 10% of normal
long-term electricity demand forecasting error), whereas in the HGAED-2 model
with HGA estimation, the average error is 4.654% (less than the standard normal for

long-term electricity demand forecasting error). Therefore, the HGAED-2 model is
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chosen as one of the best model and can be used for total electricity demand

projection of Turkey.
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Figure 4.12 Scatter plot between actual vs. predicted electricity demand HGAED-2

for Experiment 3

4.2.5 Experiment 4: Ozturk and Ceylan (2005) Data for Industrial

The next experiment investigated the HGAED model and GAED model for

industrial electricity consumption using the data in Table 4.2. The simulated results

are presented in Table 4.8 and visual results in Figure 4.13.
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Table 4.8 Simulation results of industrial electricity demand for Experiment 4

- —_ S A N~ P~ & o~ E _ i _~

Ha- O CR A T = = =
1995 38.01 54.59 43.21 40 41.25 38.4321
1996 40.64 73.96 47.03 40 44.76 40.6186
1997 43.49 102.05 52.47 47.48 48.40 43.3224
1998 46.14 106.43 53.32 53.08 48.47 45.4234
1999 43.77 84.03 51.45 59.34 46.48 46.5808
2000 48.37 102.55 53.67 66.31 48.29 48.9272
2001 48.70 76.96 57.55 72.25 48.79 49.9258
Average Err (%) 93.283 16.045  29.049 5.46 1.737

*MENR = ministry of energy and natural resources

Hybridisation of genetic algorithms with local search has proven to provide

significant improvement, which was able to explore ability and enhance exploitation

towards feasible and highly accurate solutions in solving combinatorial problems.

Therefore, this study aims to apply a hybridisation approach in an electricity demand

forecasting problem and combines local search with genetic algorithms to guide the

search towards a feasible solution that minimises the forecasting error.

Experiment 4 compared the actual values of industrial electricity demand and results

found by the GAED model (Ozturk & Ceylan, 2005) and the simulation results of

the HGAED model using HGA estimation.
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Figure 4.13 Visual result of industrial electricity demand for Experiment 4

It can be seen from Table 4.8 analyses that the HGAED-2 with the hybrid algorithm
approach has the least average error (1.737%), leading so far than GAED model
average error (93.283%) for industrial electricity demand. Therefore, the HGAED-2

model is more robust and is used in prediction of the industrial electricity demand

projection of Turkey. It can be seen in a scatter plot as shown in Figure 4.14
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Scatter Plot between Actual and HGAED-2 for Experiment-4
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Figure 4.14 Scatter plot between actual and predicted electricity demand by
HGAED? for Experiment 4

4.2.6 Experiment 5: Toksari (2007) Data for Energy Demand
Experiment 5 investigated the performance of four models, which are Toksari-ED1
and Toksari-ED2, HGAED1 and HGAED?2. The mathematical representations of the

four models are presented in equations (4.12) to (4.15).

Toksari-ED1:

Linear: Y = wy + wp X + w3 Xo+ wy X3+ wsXy (4.12)

Toksari-ED-2:

w1 + w2X1 + w3Xo+ waX3+ wsXs + weX1X2
+w7X1X3 + wgX1X4 + wo X2X3 + w1o X2X4
+ w11 X3X4 + w12 X12 + w13 X22
+ w14 X3% + wis X42

Quadratic: Y = (4.13)

HGAED1:
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EXpI Y= Bl+ Bz X] B3 + ﬁ4 X2 BS + Bﬁ X3 B7 + Bg X4 B9 (414)
HGAED2:

B1+ B2X1P3 + BaX2PB5 + B X3P7 + Ps X4 P9
Quad: Y = B1oX1X2 + P11 X1X3 + P12 X1Xs + (4.15)
+ B13X2X3 + B1a X2Xs + P15 X3X4
In the hybrid models (4.14 and 4.15), Bi, B2, ..., P15 are the weights parameters and
these are obtained by simulation using the historical data of variables (X;,X,, X3 and
X4) and estimate the electricity demand by comparing the actual values and

forecasting values. The HGAED models are derived based on identified data in order

to be easily implemented in Matlab code for simulation program.

The comparison results between Toksari models (T-ED1 and T-ED2) and the hybrid
models (HGAEDI1 and HGAED?2) are presented in Table 4.9 and the visual results of

comparison are provided in Figure 4.15

Table 4.9 Result for Experiment 5

Observed Estimated Energy Demand (MTOE)
Years  Energy Demand

(MTOE) T-EDI1 T-ED2 HGAED1 HGAED2
1996 69.86 69.48  70.52 65.86 68.77
1997 73.78 72.06  73.67 68.29 71.60
1998 74.71 73.14  75.67 70.85 74.26
1999 76.77 73.8 76.09 72.14 74.73
2000 80.5 80.1 81.47 74.21 76.53
2001 75.4 74.94  73.73 73.85 75.56
2002 78.33 78.55  80.55 77.28 80.52
2003 83.84 82.25 84.38 82.44 88.16
2004 87.82 87.54 88.1 88.15 95.78
2005 91.58 93.1 93.01 94.71 103.10

Average Error (%) 1.231 1.0395 3.4647 3.9191
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Actual vs Estimated by Some Model
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Figure 4.15 Visual results for Experiment 5

Figure 4.15 and Table 4.9 demonstrated that the HGAED models are comparable to
the Toksari models in estimating electricity demand using different data. Although
further investigations are required to increase the performance of the accuracy, the
HGAED model is considered to be used in further study for electricity demand
projection. The goodness of fit by the HGAED-1 to the actual electricity demand are

illustrated in the scatter plot shown in Figure 4.16
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Scatter Plot between Actual and HGAED-1 for Experiment-5
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Figure 4.16 Scatter plot between actual and predicted electricity demand by
HGAED-1 for Experiment 5

4.2.7 Optimum Parameter Values and Model Expression

The objective of the electricity demand model is to find parameter values with the
lowest objective function value. Therefore, the lowest objective function value in
each GA generation or iteration of a local search is the focus in the electricity
demand model using HGAs. A greater decrease of the lowest objective function
value from one GA generation or iteration of local search to the next implies a
quicker convergence. The smaller the final objective function value, the better the
HGAs perform. The parameter values with the best (i.e. lowest) objective function

value are the final solution.

The two HGAED models were executed and the final parameter values found by the
two HGAED in Experiment 1 to Experiment 5 are presented in Table 4.10.
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Each experiment has obtained final parameter values that are used in estimation and
in this section, only the best final parameter values are taken. In Experiment 1 to
Experiment 4, the HGAED-1 and HGAED-2 models were used to obtain the lowest
average errors. All parameters can be obtained in the estimation process and the next
sections are illustration of the process of convergence for the HGAED in each
experiment. Greater detail of each process is found in the appendices.

1) Run Program Experiment 1

Best: 0.017944 Mean: 108.3801

600
© L4 Best fithess
g 400 ® L d Mean fitness
L d
T e
@ o o P © e ®o
= 200 ) ° e .e
T .~ © o ° ® % o S oe
°® oo . L4 oo
0 " " - Sece -~ | 1 1 I |
(0] 10 20 30 40 50 60 70 80 90 100
Generation
Stopping Criteria
Generation _
Time =
Stall (G) -
Stall (T) -
1 1 1 1 1 1 1 1 1
(6] 10 20 30 40 50 60 70 80 90 100

[ step | [ Pause | % of criteria met

Optimisation terminated: average change in the fitness value less than
options.TolFun.
First-order

Iteration Func-count f(x) Step-size optimality

0 10 0.0179443 1.25

1 50 0.0167471  0.00080079  0.245
2 60 0.0167052 1 0.153
3 70 0.0164706 1 0.312
4 80 0.0160544 1 0.556
63 860 0.00116647  0.690876  0.385
64 870 0.00116535 1 0.716
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65 890 0.00116445 0.466705 0.255
66 900 0.00116323 1 0.278
Maximum number of function evaluations exceeded;
increase options.MaxFunEvals
X =
0.5751 -0.0081 -0.0100 0.7846 2.3112 0.5010 -0.1485 1.9193 0.9355
fval =
0.0179
Av err =
6.6571

The HGAED-1 has convergence in 66 iterations for data Experiment 1, the
convergence curve reaches a best fitness value (0.017944) and mean fitness value
(108.301). It can be seen that the total number of iteration is reduced significantly,
indicated by the small number of iterations to reach convergence. If the GA run time
process is compared to HGA with local search run time process, the GA is very
computationally time demanding. This computational time increased as the number
of variables increased. In Experiment 1, the number of parameters is nine (x1 to x9),

and the HGAED average error is 6.6751%.

2) Run Program Experiment 2:

In experiment 2, the HGAED reached convergence in 30 iterations and the best
optimal fitness value is 5.7687e-004 (ideally, the best fitness is zero), average error

1s 4.3893% and x1 to x5 are the optimum parameter values.
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Best: 0.0078873 Mean: 1.4181

40
L Best fithess
‘H 30 e o Mean fitness
E 20 o
®o®
o P s
L J
L 10 e ® ®ec'e e o .
ogme )
0 - oSes. - ‘.°..“. .ﬁ I I I | |
(0] 10 20 30 40 50 60 70 80 90 100
Generation
Stopping Criteria
Generation -
Time —
Stall (G) -
Stall (T) -
L L L L L L L L L
(6] 10 20 30 40 50 60 70 80 90 100

[ stop | [ Pause | % of criteria met

Optimisation terminated: average change in the fitness value less than
options.TolFun.
First-order

Iteration Func-count f(x) Step-size optimality
0 6 0.00788734 0.124
1 24 0.00761296  0.0215401  0.0319
2 36 0.00735702 10 0.0281
28 222 0.000576885 1 7.81e-005
29 228 0.000576873 1 1.85e-005
30 234 0.000576872 1 1e-006

Optimisation terminated: relative infinity-norm of gradient less than options.TolFun.
X =

0.7769 0.0017 -0.4386 1.0918 -0.5512
fval =

5.7687e-004

AVER err HGA =

4.3893
>>

3) Run Program Experiment 3
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Best: 0.1279 Mean: 32.2683

% o Best fitness
(_;S ° Mean fitness
{
i
L L L L |
60 70 80 90 100
Generation
Stopping Criteria
Generation i
Time —
Stall (G) f
Stall (T) N
L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
| stop | [ Pause | % of criteria met

Optimisation terminated: average change in the fitness value less than
options.TolFun.
First-order

Iteration Func-count  f(x) Step-size optimality
0 10 0.127903 0.573
1 50 0.127146 0.00192671 0.0559
2 80 0.126031 91 0.0477
3 90 0.12579 1 0.0823
65 820 0.0075309 1 7.35e-005
66 830 0.0075309 1 4.12e-006
67 840 0.0075309 1 6.01e-007

Optimisation terminated: relative infinity-norm of gradient less than options.TolFun.
X =

1.0156 1.5415 -0.0210 2.0374 3.7811 1.0482 0.1680 0.8192 -0.0978
fval =

0.0075
MAPE HGA =

3.3004
>>

The HGAED in experiment 3 reached convergence in 60 iterations with the best
fitness value of 0.0075; error is 3.3004%. Optimum parameter values can be
obtained. A similar process is applied to the run program in Experiment 4 and

Experiment 5.
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The values of parameters for both the HGAED-1 model and the HGAED-2 model
in Experiment 1 to Experiment 4 are illustrated in Table 4.10 and the mathematical

expressions are presented in equations 4.14 to 4.16.

Results in Table 4.10 demonstrate that in each experiment, several parameter values
are more significant to others. This indicate that one variable or more are dominant
to others which affect energy demand. Based on the data in Table 4.10, when the
parameter values are substituted to the mathematical representation of each model
as described in section 4.1, the equation form is as presented in equations 4.16 to
4.18 (no preprocessing data conducted for examples in Experiment 3 and

Experiment 4).

Table 4.10 Optimum parameter values of Experiments

HGAED-1 HGAED-2
Exp.-1 Exp.-2 Exp.-4 Exp.-5 Exp.-3
B1=0.5751; B1=0.7769; P1=0.9126;  B1=39.4363; B1=1.0156;
2=-0.0081; 2=0.0017;  B2=4.7097; [B2=0.0439; B2=1.5415;
3=0.0100;  B3=-0.4386; B3=-2.9006; B3=1.5125; $3=-0.0210;
B4=0.7846;  P4=1.0918; P4=-2.1227; PB4=-0.0108; B4=2.0374;
B5=23112;  B5=-0.551;  B5=-0.9927; PB5=0.1248; B5 =3.7811;
B6=0.5010; B6 = 0.8707; B6 =1.0482;
B7=-0.1485; B7=-3.0073 ; B7=0.1680;
B8=1.9193; B8=0.5152 ; $8=0.8192;
$9=0.9355; $9=-2.8064 ; $9=-0.0978;
B10=1.5747 ;
B11=-2.7192
B12=-1.5083 ;
B13=-2.9475 ;
B14=-3.8909 ;
B15=0.8052
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Model: HGAED?2

Tot.net Electricity Consumption = 1.0156 + 1.5415 X[O'OZIO +2.0374 X, 37811 +
1.0482 x, 19801 0 8192 x, 00978 (4.16)
Or

. . . -0.0210
Total electricity consumption (TWh) = 1.0156 + 1.5415* [GNP(10"9 US $)]
+ 2.0374 *[Population(10°6)] 51" + 1.0482* [mport(10r9 US $)]" %0 +
0.8192* [Export (1049 US $)] %78 (4.17) and
Model: HGAED1

. . . . -2.9006

Industrial Electricity Consumption = 0.9126 + 4.7097 X; -
21227, _0.8707x, % 1 0.5152x, 2% 15747 x0x, - 2.7192
X X; -1.5083 XX, -29475 X,X; -3.8909 XoX, + 0.8052 X3X, (4.18)
Where
XI= [GNP (1009 US $)] X2 = [Population (1076)]
X3=[Import (10"9 US $)] X4 = [Export (1019 US $)]

Industrial Electricity Consumption in Tera Watt hour [TWh]

If the preprocessing data have been conducted before estimation, all constants that

are used in normalised data should be recalculated to obtain the original data.

4.2.8 Evaluate Relativeness to Some Benchmarks

In 2012, Piltan et al. proposed linear and nonlinear models based on evolutionary
algorithms to estimate the electricity consumption function in Turkey. They used the

four fitness functions (MSE, RMSE, MAD and MAPE) in the evolutionary
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algorithms and data from Ozturk and Ceylan (2005). The different linear and
nonlinear models which were used for the estimation of electricity demand function
of Turkey using evolutionary algorithms (PSO and RCGA) are Logarithmic model in
addition to Exponential and Quadratic models and Mix models as the improvement

of Ozturk and Ceylan (2005) results.

In the present study, the use of evolutionary algorithms (hybrid genetic algorithm
and local search with simplex method) was developed to estimate the electricity
demand of Turkey industrial sector using linear and nonlinear models as described in
formulations 4.6(a, b) and 4.7(a, b) above using the data in Experiment 4. The best
final results of the Hybrid GA+LS approach and also the best results of Piltan et al.

(2012) are shown in Table 4.11.

Table 4.11 Compare of the best results (error in percentage) to Piltan et al. (2012)

Fitness Functions

Methods Models MAPE RMSE MSE MAD

- Mix  91.33 33.70 34.76 59.48
e~ PSO Quad  84.56 42.41 44.14 89.22
e Log  7.48 4.54 4.63 5.90
RS
ZE R Mix  57.01 62.81 66.75 88.45
M RCGA  Quad  209.24 148.17 16647  118.48
Log 831 4.71 4.46 6.43
23 Mix  8.5774 7.1298  50.8335  4.1772
28 GA+LS  Quad 77615 50092 25.0925  3.7799
T = Log 17370 1.0183  1.0369  0.8459

In the hybrid models, Logarithmic (Log), Quadratic (Quad) and Mix models were

used for the estimation of electricity demand in Turkey as they were used in Piltan et
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al. (2012) and Ozturk et al. (2005). In this study, Turkey’s industrial electricity
consumption is the function of gross domestic product, import and export. The four

fitness functions of error rate impact on the results can be seen in this experiment.

The best final results of hybrid genetic algorithm and local search approach can be
compared to the RCGA and PSO approaches in Piltan et al. (2012). Their best result
has 4.46% of error with Log model and MSE fitness function, whereas the hybrid
genetic algorithm and local search has less error percentage of 0.8459 using Log
model. The GA+LS algorithm are better than PSO and RCGA, whereas with the
Quad model, the results of hybrid algorithm are better than other algorithms. The
best forecasting model with optimum parameters can be expressed by substituting
the optimum parameter values into Log and Quad models using MAD fitness

function of error rate.

In further evaluation of the performance, the HGAED models (GA+LS) must be
benchmarked with the state-of-the-arts models, which include PSO, RCGA, and
hybrid (GA+PSO) models. The results of the two models as stated before is
conducted and shown in Table 4.11. Table 4.12 presents the comparison of HGAED
models with hybrid GA and PSO using data in Ozturk and Ceylan (2005) for

industrial electricity consumption.

134



Table 4.12 Benchmarked HGAED models with other hybrid models

Methods Models Fitness Functions

MAPE RMSE MSE MAD

Mix 63.6152 96.6473 9340.7 81.6056
GA+PSO  Quad 72.0496 108.882 11855.3 92.4253
Log 4.9371 5.9957 35.9485 6.3333

Other hybrid
model

Mix 8.5774 7.1298  50.8335  4.1772
GA+LS Quad 77615 5.0092 25.0925 3.7799
Log 1.7370 1.0183 1.0369 0.8459

HGAED
Models

One can see in Table 4.11 and Table 4.12 that using PSO, GA and RCGA as an
optimiser for industrial electricity demand forecasting systems reduced the error
rates on the average of 5-6%, which is the significant improvement on the existing
previous models. But with the use of hybrid algorithms (GA and PSO; GA and the
original simplex local search), the improvements reached the error rates on the
averages of 1.7370 — 4.9371%. These improvements justified the use of the hybrid
algorithm (GA and PSO; and GA and original simplex local search) as far as the

error rates are concerned.

4.3 Summary

All experimental result findings in Experiment 1 to Experiment 5 are summarized in
Table 4.13. It presents the comparison of average errors between other related

models and the HGAED models.
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Table 4.13 Summary of results in Experiment 1 to Experiment 5

Experiment 1 2 3 4 5

Model Average errors

(%)
GAED-1 20.328 15.293 13.207
GAED-2 11.213 70.619 7.304  93.283
GAED-3 8.353 16.045
MENR 9.938  29.049
LinLog-ED 17.359 6.426
Lin-ED-1 12.792 13.842 1.231
Lin-ED-2 1.040
DLin-ED 6.728 9.731
HGAED-2 8.811 5.364 4.017 5.46 3.919
HGAED-1 6.657 4.389 8.461 1.737 3.464

From Table 4.13, it can be seen that the HGAED models have good performance for
all data used in the experiments, the average error of the HGAED models is less than
6%, even in benchmarking to PSO and RCGA models in Piltan et al. (2012), the
hybrid version of the HGAED achieved less error percentage of 0.061 using MSE
fitness function of error rate. It can be concluded that linear and nonlinear
(exponential and quadratic) models using genetic algorithm and local search are

more effective than other existing models for electricity demand.

These experimental results indicate that the hybrid genetic algorithm and local
search approach generally have better performance, as measured by accuracy. The
hybrid genetic algorithm and local search algorithm approach are promising for

nonlinear model estimation.
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CHAPTER FIVE
IMPROVED HYBRID ALGORITHM FOR ELECTRICITY
DEMAND PREDICTION

From the results as presented in Chapter 4 using original hybrid genetic algorithm
and local search, the study comes to propose the improved hybrid genetic algorithm
for electricity demand predictions. Section 5.1 introduced the proposed improved
hybrid algorithm for electricity demand prediction. Section 5.2 discusses the model
application for Turkey electricity demand prediction. Section 5.3 discusses

Indonesian electricity demand prediction, and the summary is given in section 5.4.

5.1 Introduction

In this section, the proposed improved hybrid algorithm for electricity demand
prediction that has been mentioned in Chapter 3 as RVGA-ENM is discussed with
the aims of understanding the steps and algorithms of solving electricity demand
prediction problem for Turkey and Indonesia. Figure 5.1 presents the proposed

improved hybrid algorithm.

5.1.1 Real-value Genetic Algorithm

In general, the steps in real-value genetic algorithm (RVGA) can be divided into
seven steps which are: (1) initialization, (2) encode the individuals, (3) crossover and
mutation, (4) decode the individuals, (5) evaluation of fitness, (6) check stopping

criteria, and (7) ending the algorithm.
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Figure 5.1 Proposed RVGA-ENM flowchart for electricity demand forecasting

The real-value genetic algorithm steps are presented as following:
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Step 1: The initialisation step is to generate the first generation of individuals for
starting the algorithm. To initialise the algorithm, every variable of an individual will
be randomly generated within their defined range. In this study, the range is a two-
element vector specifying to converted decimal number. The range of the initial
population will have to cover the entire space of possible solutions. Depending on
the nature of the problems, the population size can be from several to hundreds. In

this study, the population is set to 50.

Step 2: Selection.

As one of the evolution progress steps, the proportion of the existing population is
selected to breed a new generation during each succesive generation. Usually,
individual solutions are selected through a fitness-based process, which means that
fitter chromosomes have high possibility to be selected as ‘parents’ to produce
offspring (solutions). There are different selection methods as have been described in

Chapter 2, and in this work, roulette wheel selection is used.

Step 3: Converted to binary-valued. The ‘parents’ solutions will come from those
individuals selected to survive from last generation. The ‘children’ solutions will be
first generated by crossover process which all the variables of an individual solution
will be clustered and converted into a binary form with ones and zeros. Its encode

the individuals.

Step 4: Crossover and Mutation (Reproduction)
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The reproduction step consists of crossover and mutation process. It will produce
new born ‘children’ solutions which share the characteristics of their ‘parents’
solutions. One or more crossover point on both ‘parents’ organism string is randomly
selected. All data beyond that point in either organism string is swapped between the
two ‘parents’ organisms. The ‘children’ will be the resulting organisms. Different
crossover methods such as one-point, two-point, and uniform crossover, have
different rules on how the children solutions inherit the characteristics from their

‘parents’. In this study, uniform crossover is used for 40 bits of each individual.

After crossover, the mutation process will prevent the premature convergence on
poor solutions. In the classic genetic algorithm, the mutation operator involves an
arbitrary bit in a genetic sequence having a probability to be changed from its
original state. That is to flip some random part of the genetic sequence from ‘0’ to

‘1’ or from ‘1’ to ‘0’.

Step 5: Converted back to real-valued. A parameter of mutation rate will be defined
so that the higher the rate is, the more likely the ‘children’ will mutate. The newborn
individual data will be evaluated by the fitness values after the reproduction process.

After crossover and mutation, the individuals will be converted back to real form.

Step 6: Evaluation of fitness
This step focuses on the application demands. In this study, MSE, RMSE, MAD, and
MAPE are used as the fitness evaluation functions to measure the least error between

the actual electricity demand and the forecasting values.
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Step 7: Termination
The reproduction process will repeat until one of the stopping conditions is met.
Usually, the ending criteria will be one of the following:
1. A solution is found that satisfies the minimum criteria
2. A fixed number of generations is reached. The solution obtained from RVGA
is returns as initial point (x0) for extended Nelder Mead (ENM) local search

algorithm in step-8.

5.1.2 The proposed Extended Nelder Mead (ENM) Local Search

The proposed ENM simplex local search algorithm with additional vertex is similar
to the original NM simplex local search method but with slight modifications in the
reflection and expansion process that it has to approximate gradients to search for its
reflected and expansion vertex. In other words, its convergence will rely on the true
direction through the new reflected vertex R’ and the new expansion vertex E’ rather
than the reflected vertex R calculated through the centroid vertex proposed by the
original NM simplex local search algorithm. This method is effective for

multidimensional unconstrained optimisation problems.

The original NM simplex local search algorithm (Huang, 2009) assumes that the
direction to local minima can be found by the operations of reflection, contraction
and expansion without caring about the gradient direction. However this assumption
is not always true in reality. That is why the simplex algorithm fails easily with high

dimensional optimization problems (Pham et al., 2011).

141



The proposed extended NM (ENM) simplex local search algorithm steps (Fig. 5.1)
will follow the basic steps of improved NM version as described in Pham et al.
(2011), but with slight modifications in the expansion processes (steps 13,

14,15,16,17). The proposed ENM local search steps as the following:

Step 8: Initialise a simplex with (n+1) random vertices x1, x2,..., Xn

Step 9: Select an additional vertex XA with its coordinates composed from n vertices
in the simplex. Coordinates of the selected vertex are a diagonal of the matrix
X from n vertices in the simplex. XA =[X1.1, X225 ---» Xnn)]-

Step 10: Approximate gradients based on the additional vertex A with other n
vertices in the selected simplex. To illustrated how this method works, a two
dimensional case which has a triangular simplex AHSL, highest (xH), second
highest (xS) and the least (xL) vertices is shown in Figure 5.2.

Step 11: Calculate the new reflected vertex R’ based on the highest vertex H, where
XR’ = XH — ©S. Parameter ¢ is the learning constant or step size. In this
work, ¢ = 1.

Step 12: If the function value at R’ is smaller than the function value at H, it means
that HR’ is on the right direction of the gradient.

Step 13: Calculate the new expanded point E’ based on the new reflected point R’.
The R’ can be expanded to E’ using the formula XE’ = (1 —y) XH +y XR’.
v is the expansion coefficient (in this work, y=0.5). R’ and E’ are rely on the
right direction towards global optimum point (Fig.5.2).

Step 14: Check if the termination criteria has been achieved. If convergence or

termination criteria not met, go back to step 9 with (n+1) vertices.
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Step 15: Returns the best function evaluation values and parameter values for
forecasts the electricity demand.

Step 16: Update the electricity demand (ED) variables using scenarios based on the
economic and the population growth

Step 17: Prediction for future electricity demand using selected model

S Highest: H(x;,y;)

Second highest: S(x,y,)
Least: L(x3,y3)

R e Additional: 4(x;,y2)

R’: new reflected point

E’: new expansion point

Figure 5.2 The Simplex AHSL with Additional Vertex A

A is the additional vertex which has its coordinates formed from H and S. The

approximate gradient of this dimensional plane will be:

1_%_ fH—fA_ 2_%_ fs—fa
Ax X2 — X1 g Ay  yi1—y2

(5.1)

In order to improve the convergence rate and speed, the algorithm needs to rely on
the gradient (search in true direction). An improvement to the original NM simplex
local search algorithm, one method is created as the guidance to the search direction.

Its approximate gradients of a (n+/) dimensional plane created from a geometrical
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simplex. First, it selects an additional vertex compose from (n+/) vertices in a
simplex and then combines this vertex with other n selected vertices in the same
simplex. This method can estimate gradients more accurately, therefore, it converges

faster.

5.1.3 Improved Hybrid Algorithm Benchmarking

The final evaluation of the performance, the proposed models based on hybrid GA
and the extended NM simplex local search algorithm must be benchmarked with the
hybrid model based on GA and the original simplex local search. Figure 5.3 shows
the improved hybrid algorithm (RVGA+ENM) results for forecasting Turkey

electricity demand using Mix (linear and nonlinear) models.

Generation 99: 1(0.0302 0.0503 0.0951 1.2635 1.8742 1.0955 1.8062)=0.060711
Generation 100: £{0.0302 0.0503 0.0951 1.2635 1.8742 1.0955 1.8062)=0.060711
x0=10.0303 0.0503 0.0951 1.2636 1.8743 1.0956 1.8063

Iteration = 1; Minimum value of f = 0.0024306

located at x =[-0.13143 0.21153 -0.56203  0.4248 2.4978 -1.4075 6.4775].
Iteration = 2; Minimum value of f= 0.000965;

located at x =[-0.0576  0.0221 0.2693 0.2669  7.7153 -0.2584 2.9479]

act pred err =

56.8100 60.2221 3.4121
60.5000 63.8661 3.3661
67.2200 68.8178 1.5978
73.4300 71.9428 1.4872
77.7800 °  75.7123 2.0677
85.5500 89.2974 3.7474
94.7900 93.5093 1.2807
105.5200 105.6721 0.1521
114.0200 116.5410 2.5210
118.4800 116.6038 1.8762
128.2800 123.6716 4.6084
126.8700 128.5275 1.6575

MAPE =1.0295; MAD =1.3206; MSE =0.4134; RMSE =0.6429

Figure 5.3 The proposed RVGA-ENM results for Turkey electricity demand
forecasting
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In five times of RVGA-ENM process, the best value of fitness have been reached by
the hybrid algorithm (iteration=2, Minimum value of f = 0.00096588), it means that
the ENM process have been reached 62.85 time less than optimisation value

obtained by RVGA in 100 generations.

Figure 5.4 shows the fitness evaluation by proposed RVGA-ENM algorithm. Ideally,
its converged fast at zero (minimum error) measured from the difference between
forecasting values and actual values of electricity demand. But in this study, the

minimum deviation required for termination was set initially to 0.0001.

Plot the best fitness
006 T T T T T T

O RVGA-ENM fitness
[0 Best fitness

0.05F

0.04 -

0.03 -

Error

0.02 |- i

0.01

0 20 40 60 80 100 120 140 160 180 200
lterations

Figure 5.4 Fitness evaluation by proposed RVGA-ENM
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Figure 5.5 Turkey electricity demand forecasting by proposed RVGA-ENM

Table 5.1 presents the comparison of proposed models based on hybrid RVGA and
the extended NM simplex (ENM) local search with hybrid GA and the original local

search.

The comparison between the proposed RVGA-ENM models and the hybrid GA-
original simplex local search are summarized below. From Table 5.1, a conclusion
can be draw that the proposed hybrid RVGA-ENM algorithm shows its better
performance than the original simplex method in terms of errors and convergence

rate.
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Table 5.1 The comparison of proposed RVGA-ENM models and GA-OLS models for
Turkey electricity demand

Fitness Functions

Methods Models Max MAPE RMSE MSE MAD

Iter

. Mix 1.0295  0.6429  0.4134  1.3206
€ § RVGA+ENM Quad 5, 36771  0.6685 04469  4.7170
2 ) Log 1.768 0.248 0.061 2.268

Exp 2.9458  1.8909  3.5755  3.7788
g3 Mix 85774  7.1298  50.8335  4.1772
@S GA+OLS  Quad 2194 77615 50092 250925  3.7799
= Log 34178 24365 59364  1.6645

The experimental result tell that the improved local search with gradients based on
the additional vertex converge faster than the original simplex because the search is

rely on the true directions.

5.2 Turkey Electricity Demand Prediction

The Turkish electricity demand prediction is calculated based on the two scenarios
(low and high) for population, gross national product, import and export. The
prediction of electricity demand to 2020 is made by using the proposed RVGA +
ENM model. The data prediction is based on economic and population growth. The

scenarios are similar to the scenarios applied in Ozturk and Ceyland (2005).

In the low scenario; gross national product, import and export average growth is 4%
per year respectively, and population growth is 1.5% per year. While in the high

scenarios; gross national product, import and export average growth is 5% per year
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respectively, and population growth is 1.8% per year. These data are used as the

inputs of the proposed RVGA+ENM model. The prediction data for variables based

on the scenarios until 2020 are presented in Table 5.2

Table 5.2 Variables data for Turkey electricity demand prediction until 2020

Low Scenario

High Scenario

GNP Population Import Export GNP Population  Import Export Year
(10798) (10 "6) (1079%) (10"9%) (10"99) (10 "6) (1079%)  (10"9%)

238.00 71.08 68.70 4690  238.00 71.08 68.70 46.90 2003
247.52 71.19 71.45 48.78  249.90 71.21 72.14 49.25 2004
257.42 71.29 74.31 50.73 26240 71.34 75.74 51.71 2005
267.72 71.40 77.28 5276 27551 71.46 79.53 5429 2006
278.43 71.51 80.37 54.87  289.29 71.59 83.51 57.01 2007
289.56 71.61 83.58 57.06  303.76 71.72 87.68 59.86 2008
301.15 71.72 86.93 5934  318.94 71.85 92.06 62.85 2009
313.19 71.83 90.40 61.72  334.89 71.98 96.67 65.99 2010
325.72 71.94 94.02 64.19  351.63 72.11 101.50 69.29 2011
338.75 72.05 97.78 66.75  369.22 72.24 106.58 72.76 2012
352.30 72.15 101.69  69.42  387.68 72.37 111.91 76.40 2013
366.39 72.26 105.76 ~ 72.20  407.06 72.50 117.50 80.21 2014
381.05 72.37 109.99  75.09  427.41 72.63 123.38 84.23 2015
396.29 72.48 11439  78.09  448.78 72.76 129.54 88.44 2016
412.14 72.59 11897 8122  471.22 72.89 136.02 9286 2017
428.62 72.70 12372 84.46  494.78 73.02 142.82 97.50 2018
445.77 72.81 128.67 87.84  519.52 73.15 14996 10238 2019
463.60 72.91 133.82  91.36  545.50 73.29 15746  107.50 2020

Figure 5.6 illustrates the Turkey electricity demand prediction for the period of

2003-2020 using the proposed RVGA-ENM model with scenario analysis. The

model is selected for future prediction because it has good performance with MAPE

error is 1.0295%.
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Table 5.3 Turkish Electricity Demand Prediction 2003 to 2020

Scenarios( Low_High) = Years
199.5875 199.5875 2003
208.2377  210.3916 2004
217.4679  222.2531 2005
227.5417 235.2178 2006
238.4415 249.6897 2007
250.1438  265.7102 2008
262.9679  283.5005 2009
276.9601  303.3342 2010
292.1941  325.5281 2011
308.7985  350.4553 2012
326.8828  378.4958 2013
346.8682  410.1028 2014
368.8399  446.0594 2015
393.0160  486.9258 2016
419.7779  533.6223 2017
4493167  587.2126 2018
482.1763  649.0743 2019
518.5802  720.9708 2020

Figure 5.6 is plotted based on the data for future prediction of total net electricity
consumption in Turkey 2003 - 2020 as presented in Table 5.3. This future prediction
is based on two scenarios calculated using economic growth, which has been

adopted from the data in Ozturk and Ceylan (2005).
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Turkey Electricity Demand Prediction by proposed RVGA-ENM
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Figure 5.6 Prediction of Turkish electricity demand 2003 — 2020

From the data in Table 5.3, the proposed RVGA-ENM is applicable for the long-
term electricity demand prediction up to 2020 using high economic growth of
scenario and low economic growth of scenario. In high scenario, electricity demand
has reached 720.9708 Billion Kilo Watt hour in 2020, while in low scenario,

electricity demand has reached 518.5802 Billion Kilo Watt hour in 2020.
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5.3 Indonesian Electricity Demand Prediction

The future prediction of Indonesian electricity demand is based on the latest data of
economic indicators and electricity. The scenarios used the growth of electricity
demand, economic indicators and populations in several years during the subject of
study as the main consideration. The scenario is calculated based on the trends of the

average growth of economic indicators in the period of 1990-2009.

Table 5.4 Indonesian electricity demand forecasting by proposed RVGA-ENM

actual_prediction_error =| Years %

65.3000 75.1275 9.8275 1998 MAPE =
71.3000 76.3497 5.0497 1999

2.3063
79.2000 78.9180 0.2820 2000
84.5000 80.7108 3.7892 2001 MAD =
87.1000 82.9010 4.1990 2002
90.4000 86.6671 3.7329 2003 31388
100.1000 94.8039 5.2961 2004

MSE =

107.0000 106.5117 0.4883 2005
112.6000 114.7307 2.1307 2006 17.2592
121.2000 121.5115 0.3115 2007
129.0000 128.9098 0.0902 2008
136.1000 138.5688 2.4688 2009

RMSE =

4.1544

The data in Experiment 2 is the economic indicator and electricity demand data of
Indonesia. The proposed RVGA-ENM is eligible to be used in the electricity demand

prediction until 2030.
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Indonesian Electricity Demand Forecasting by proposed RVGA-ENM
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Figure 5.7 Indonesia electricity demand forecasting by proposed RVGA-ENM
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Figure 5.8 Fitness evaluation by proposed RVGA-ENM model for Indonesia
electricity demand
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Table 5.5 The comparison of proposed RVGA-ENM models for Indonesian
electricity demand
Fitness Functions

Methods Models I}g‘ MAPE RMSE MSE MAD
cvaa | Mix 23063 4.1544 172592 3.1388
h Quad 101145 167894 2818854  13.7658
Log 3.6293 55958 313127 4.9394

ENM ¢
Xp 24878 39694  15.7560  3.3859

Indonesian final energy consumption during the period of 1971 to 2009 had
significant growth, i.e. approximately 14 times larger in 2009 than that of 1971 or

increased with annual average growth of 7.3% (Ibrahim, 2010).

Table 5.6 Scenarios of prediction for Indonesian Variables

Parameters Scenarios
High Low
Pop 1.25% 1.20%
GDP 7.00% 5.00%
Import 7.00% 5.00%
Export 7.00% 5.00%

Table 5.6 shows the values of two scenarios for future prediction of population and

economic indicators during the period of 2010 to 2030. The High and Low scenario

data is tabulated in Table 5.7.

The prediction of Indonesian electricity consumption until 2030 using the proposed

RVGA-ENM model is presented in Table 5.8 and the visual prediction is illustrated

in Figure 5.9.
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Table 5.7 High-Low scenario 2010 to 2030 for population and economic indicators

High Low

—car__Population GDP___Import _Export Population GDP__ Import  Export
2010 260.223 257.121 103.607 124.666 260.094 252315 101.670 122.336
2011 263.475 275.119 110.860 133.392 263.215 264.931 106.754 128.452
2012 266.769 294378 118.620 142.730 266374 278.177 112.092 134.875
2013 270.103 314984 126.923 152.721 269.570 292.086 117.696 141.619
2014 273.480 337.033 135.808 163.411 272.805 306.690 123.581 148.700
2015 276.898 360.626 145314 174.850 276.079 322.025 129.760 156.135
2016 280.359 385.869 155.486 187.090 279.392 338.126 136.248 163.941
2017 283.864 412.880 166.370 200.186 282.744 355.033 143.061 172.138
2018 287412 441.782 178.016 214.199 286.137 372784 150.214 180.745
2019 291.005 472706 190.477 229.193 289.571 391.423 157.724 189.783
2020 294.642 505.796 203.811 245.236 293.046 410.995 165.610 199.272
2021 298.326 541.202 218.077 262.403 296.562 431.544 173.891 209.235
2022 302.055 579.086 233.343 280.771 300.121 453.121 182.586 219.697
2023 305.830 619.622 249.677 300.425 303.723 4757778 191.715 230.682
2024 309.653 662995 267.154 321.455 307.367 499.566 201.301 242.216
2025 313.524 709.405 285.855 343.957 311.056 524.545 211.366 254.327
2026 317.443 759.063 305.865 368.034 314.788 550.772 221.934 267.043
2027 321411 812.198 327.275 393.796 318.566 578311 233.031 280.395
2028 325429 869.052 350.185 421.362 322389 607.226 244.682 294.415
2029 329.496 929.885 374.698 450.857 326.257 637.587 256.916 309.136
2030 333.615 994.977 400.927 482.417 330.172  669.467 269.762 324.593

During the period of 2010 to 2030, the electricity consumption of Indonesia has
increased 2.895 times, from 220.0877 TWh (low scenario) in 2010 and in 2030 has
reached 637.5702 TWh. The average growth of electricity consumption during those

periods is 5% per year for low scenario.
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Table 5.8 Indonesian Electricity Consumption (TWh) 2010-2030

Indonesian Electricity Demand Prediction 2010-2030
by proposed RVGA-ENM

LOW_HIGH = YEARS
220.0877 221.6878 2010
231.4672  234.9271 2011
243.4436  249.0661 2012
256.0545  264.1848 2013
269.3507  280.3888 2014
283.3822  297.7840 2015
298.2028  316.5004 2016
313.8734  336.6810 2017
330.4658  358.4848 2018
348.0526  382.1019 2019
366.7109  407.7370 2020
386.5290  435.6449 2021
407.6119  466.0922 2022
430.0658  499.4043 2023
454.0049  535.9606 2024
479.5729  576.1917 2025
506.9067  620.6016 2026
536.1823  669.7847 2027
567.5782  724.4425 2028
601.2954  785.3882 2029
637.5702  853.6150 2030

For the high scenario, the average growth is 7% per year. These annual growth are
realistic compared to the average annual growth of electricity consumption is 6.2%
during the period of 1970 to 2009. Final energy consumption for the period of 1971
to 2009 had significant growth; it increased with the annual average growth of 7.3%

from 6.78 MTOE in 1971 to 97 MTOE in 2009 (MEMR, 2009).
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Indonesian Electricity Demand Prediction 2010-2030 by proposed RVGA-ENM
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Figure 5.9 Prediction of Indonesian electricity consumption to 2030

5.4 Summary

Based on the above results, it has been shown that the integration of local search into
a hybrid genetic algorithm method is applicable for the long-term electricity demand
forecast with high approximation accuracy and fast convergence time capability to
reach the global optimal solution. The model has been developed in such a way that
outputs for different socioeconomic scenarios can be obtained. The solution obtained
using the proposed RVGA-ENM indicated improved quality over that obtained by a
single genetic algorithm or standard hybrid GA-local search. This enhanced the
confidence of long-term electricity demand forecasts, especially under uncertain

economic conditions.
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CHAPTER SIX
CONCLUSION

This chapter presents the conclusion of the study discussed in the earlier sections.
Section 6.1 discusses the introduction; the conclusion and contributions of the study

are presented in section 6.2 and 6.3, and section 6.4 discusses the future work.

6.1 Introduction

The objective of the study is to solve electricity demand forecasting problems. The
proposed technique to increase the performance of electricity demand forecasting is
by using linear and nonlinear models based on genetic algorithm coupled with local
search simplex method. Integrating exploration capability of genetic algorithm and
exploitation capability of local search produces more improvements as compared to
their ability alone. Upon the comparative study of hybrid genetic algorithm and local
search used to forecast electricity demand, it seems like the hybrid method has more
advantages than other algorithms based on evolutionary computations. The
comparison were summarised in Tables 5.1 and 5.5. The technique used to solve the
electricity demand forecasting problems is known as hybrid real-value genetic

algorithm and extended Nelder-Mead (RVGA-ENM).
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6.2 Research Conclusion

Linear and nonlinear models based on genetic algorithm and local search were
utilised to forecast electricity demands in Turkey and Indonesia. These models were
tested over several benchmark problems of electricity demand forecasting models,
and show better performance than the original algorithm methods in terms of error

rates and the number of iterations.

Based on the extensive experiments and obtained results, it appears that the proposed
RVGA-ENM is more accurate than the conventional genetic algorithm approach. In
the proposed RVGA-ENM, improved hybrid algorithms and preprocessing of
available data and variables have more effect towards the forecasting process,

therefore, the obtained results proved to have the best accuracy.

The performance of the proposed RVGA-ENM model was evaluated and it was also
used to predict future electricity demand using a scenario analysis of economic
growth. The predictions are useful for an energy planner as the significant input for

national energy decision planning.

Based on the experimental analysis in Chapter 4, there are several advantages and
disadvantages of the related model using conventional genetic algorithms. Among
them are: (a) conventional GA is quick in exploring the area of the global optimum,
and (b) conventional GA easily obtains the best solutions for a low number of
independent variables, but if the number of variables is high, conventional GA needs

a long time to obtain the global optimum; at times, it is does not converge.
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The performance of electricity demand forecasting model can be improved by
overcoming the trends of variables using the natural logarithmic process. In addition,
preprocessing or normalising data are important tasks. In logarithms, the trend is
approximately linear. Most economic series which are growing (aggregate output
such as GDP, investment, consumption) are exponentially increasing. Percentage
changes are stable in the long run. These series cannot be fit by a linear trend, but by

their (natural) logarithm linear trend.

The experiments indicate that to overcome the early convergence problem in
conventional GA, utilised local search have to improve their performance and obtain
a robust result with good quality, which indicate the hybrid algorithm is a promising

approach in solving the slow convergence and local optimality problems.

The genetic algorithm is one of the optimisation techniques that have been
successfully applied in a few optimisation problems including function and
parameter optimisation. However, unnecessary repetition such as if traps caused

slow convergence, is the downside of a single algorithm.

One attempt to eliminate the slow convergence in GA is to introduce a small total
number of iterations, but this does not guarantee better processing time and in the
worst case, it is unable to achieve an optimal solution. A combination of the fitness
functions and utilised extended NM (ENM) local search for the minimisation
approach is used to exploit the faster convergence on the single genetic algorithm. A

mixture of the RVGA exploration capability and ENM local search exploitation
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capabilities produced optimum global solutions. Therefore, it shows a great deal of
large scale optimisation problems and has been successful in forecasting electricity

demand.

6.3 Research Contribution

The most significant contribution of the study is a new approach for energy demand
forecasting using linear and nonlinear models based on RVGA and ENM local
search. Experimental results have revealed that the approach was capable of
accelerating the convergence and subsequently improving the iteration rate. The
main contributions of this study can be categorised into three parts: (i) the new
objective function formulation to obtain a good solution. Therefore, the performance
of electricity demand forecasting model can be improved by overcoming the trends
of variables using the natural logarithmic process in its formula, (i) extended NM
local search to help real-value genetic algorithm in overcoming the slow
convergence and local optimality problems, and (iii) the proposed RVGA-ENM
algorithm discovered multidimensional vertices on the variables of electricity
demand. Hence, the extended NM local search when combined with RVGA was able
to improve prediction rates. It was a main contribution of the study towards theory.
The impacts of the study were the significant contribution towards practitioners

(energy demand utility planners) and governments.
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6.3.1 Contribution of Study towards Theory

The objective function formulation has more effect towards the results of forecasting
models in terms of accuracy. The new objective function formulation was derived to
overcome exponential trend of electricity demand variables by using the natural
logarithmic linear trend. This effort makes significant contributions towards the
theory of evolutionary algorithm, specifically in hybrid genetic algorithm
approaches. The combination of optimisation methods and a heuristic approach has
contributed to solving nonlinear and linear trends that involve many variables and

uncertainties of electricity demand.

This research offers a new technique of a hybrid between a real-value genetic
algorithm and an extended Nelder-Mead local search algorithm to decrease the
percentage of error rates and the number of iterations. The new objective function
formula for proposed hybrid algorithm is also an effort to decrease the estimation

error of the available electricity demand forecasting models.

The performance of linear and nonlinear models based on real-value genetic
algorithm and extended Nelder-Mead local search were investigated using multiple
fitness evaluation functions of error rate. They are: Mean Absolute Percentage Error
(MAPE), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean
Absolute Deviation (MAD). The previous linear and nonlinear models were used as

the basic of comparisons.
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The addition of an extended NM local search into a hybrid real-value genetic
algorithm in the proposed RVGA-ENM and the new objective function formulation
will have a great effect on the search process, and increase the performance of the
algorithm. Thus, the research output is a new technique that offers the chance to

enhance the performance of available electricity demand forecasting models.

6.3.2 Contributions of Study towards Governments

The proposed RVGA-ENM for electricity demand can help to assist the government
and the utility company in developing countries with the least cost long-term
electricity planning. Therefore, they can overcome the more dynamic electricity
demand and manage their sustainable electricity supply. The sustainability of
electricity supply is one of the indicators for developed countries. Electricity demand
forecasting can provide benefits such as: (i) prevent overloading, (ii) help to estimate
load flows, (iii) improve the reliability of the network, and (iv), to reduce the

occurrences of blackouts and the equipment failures.

Another importance of the proposed RVGA-ENM for an electricity demand
forecasting is the increase in the deregulated economy for contract evaluations and
financial product evaluations. In this economic situation, rate increases could not be

justified by capital expenditure projects but by the market.

The factors that affected the electricity demand in a nation in the long term are the
economic indicators, population growth etc. For the utility corporation that deals

with the demand for utility, sustainable supply and cost optimality are the
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importance tasks. They need hard efforts to control these variables. The proposed
RVGA-ENM for electricity demand has taken into account these factors and
estimated all the parameters. By this simulation, the planner can choose which

variables that significantly affect the demand.

6.3.3 Contributions of Study towards Practitioner

This study has several advantages to electricity demand planning practice especially
for those who are operating power generations, transmission and distribution. In the
planning and operation of utilities of demand, electricity demand forecasts have a
central and integral role in process. In control operation and decisions of a demand
utility, accurate electricity demand forecasts hold a great savings potential in fuel

allocation and off-line network analysis, and unit commitment and dispatch.

The power system operations may be quite sensitive to forecasting errors. Therefore,
the accuracy of electricity demand forecasts has a substantial effect to control the
economy of operations. For example, if the prediction accuracy increased for a few
percentages, it can save millions of dollars of operation cost. It makes electricity
demand forecasts become more important. The accuracy of electricity demand
forecasts has substantial effect on operational cost of power systems that are quite

sensitive to forecasting errors.

163



6.4 Future Work

The proposed long-term electricity demand forecasting using linear and nonlinear
models based on genetic algorithm and local search has been applied to estimate and
predict future prediction of electricity demand. The experimental results indicated
that the proposed hybrid approach could achieve a higher quality performance than
single algorithm optimisation. However, the local search algorithm presented in this
study can be improved by using other techniques to estimate the demand parameters
more accurately. The improved simplex method can converge at least ten times
faster than the conventional simplex local search method. This type of improvement

can be a good topic of future research.

The application of the proposed RVGA-ENM is not only for electricity demand
forecasting models. These approaches can also be applied in solving more
environmental system optimisation problems that are highly nonlinear and

computationally intensive.

The hybrid approach can be adopted in other demand pattern forecasting processes
that have similar characteristics to the electricity demand problems in study cases. In
general, this proposed hybrid approach can be applied to solve problems such as

evolutionary computations and optimisation problems.
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