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Abstrak

Sejak beberapa dekad yang lalu, Mesin Sokongan Vektor Kuasa Dua Terkecil
(LSSVM) telah digunakan secara meluas dalam masalah ramalan di pelbagai domain
aplikasi. Walaubagaimanapun, literatur sedia ada menunjukkan keupayaan LSSVM
bergantung kepada nilai parameter hiper, iaitu parameter regularisasi dan parameter
kernel, di mana ianya akan mempengaruhi generalisasi LSSVM dalam tugasan
ramalan. Kajian ini mencadangkan algoritma hibrid, berdasarkan Koloni Lebah
Buatan (ABC) dan LSSVM yang terdiri dari tiga algoritma; ABC-LSSVM, [vABC-
LSSVM and cmABC-LSSVM. Algoritma /vVABC diperkenalkan untuk mengatasi
masalah minimum setempat dengan menambah baik proses carian menggunakan
mutasi Levy. Dalam pada itu, algoritma cmABC yang menggunakan mutasi
konvensional dapat mengatasi masalah penyesuaian terlebih atau penyesuaian
terkurang. Kombinasi algoritma /vVABC dan ¢mABC, yang kemudiannya dikenali
sebagai algoritma Koloni Lebah Buatan Dipertingkat-Mesin Sokongan Vektor Kuasa
Dua Terkecil (eABC-LSSVM) telah direalisasikan pada ramalan harga komoditi
sumber asli yang tidak boleh diperbaharui. Setelah tugas pengumpulan data dan pra
pemprosesan data siap dilakukan, algoritma eABC-LSSVM direkabentuk dan
dibangunkan. Keupayaan eABC-LSSVM dinilai berdasarkan lima metrik statistik,
iaitu Min Peratusan Ralat Mutlak (MAPE), ramalan ketepatan, simetri Min Peratusan
Ralat Mutlak (sMAPE), Peratusan Ralat Punca Kuasa Min (RMSPE) dan Theil’s U.
Keputusan menunjukkan eABC-LSSVM mempunyai kadar ralat ramalan yang lebih
rendah berbanding dengan lapan model hibrid antara LSSVM dan algoritma Evolusi
Pengkomputan (EC). Tambahan pula, algoritma yang dicadangkan juga telah
dibandingkan dengan teknik ramalan tunggal iaitu Mesin Sokongan Vektor (SVM)
dan Rangkaian Neural dengan Rambatan ke Belakang (BPNN). Secara umumnya,
eABC-LSSVM telah menghasilkan ramalan ketepatan melebihi 90%. Ini
menunjukkan eABC-LSSVM  berkeupayaan dalam menyelesaikan masalah
optimisasi terutamanya dalam bidang ramalan. Algoritma eABC-LSSVM dijangka
dapat memberi manfaat kepada para pelabur dan pedagang komoditi dalam
perancangan pelaburan dan pengunjuran keuntungan.

Kata kunci: Koloni Lebah Buatan, Mesin Sokongan Vektor Kuasa Dua Terkecil,
Ramalan Siri Masa
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Abstract

Over the past decades, the Least Squares Support Vector Machines (LSSVM) has
been widely utilized in prediction task of various application domains. Nevertheless,
existing literature showed that the capability of LSSVM is highly dependent on the
value of its hyper-parameters, namely regularization parameter and kernel parameter,
where this would greatly affect the generalization of LSSVM in prediction task. This
study proposed a hybrid algorithm, based on Artificial Bee Colony (ABC) and
LSSVM, that consists of three algorithms; ABC-LSSVM, IvABC-LSSVM and
cmABC-LSSVM. The /IvABC algorithm is introduced to overcome the local optima
problem by enriching the searching behaviour using Levy mutation. On the other
hand, the cmABC algorithm that incorporates conventional mutation addresses the
over-fitting or under-fitting problem. The combination of /VABC and c¢mABC
algorithm, which is later introduced as Enhanced Artificial Bee Colony — Least
Squares Support Vector Machine (eABC-LSSVM), is realized in prediction of non
renewable natural resources commodity price. Upon the completion of data
collection and data pre processing, the eABC-LSSVM algorithm is designed and
developed. The predictability of eABC-LSSVM is measured based on five statistical
metrics which include Mean Absolute Percentage Error (MAPE), prediction
accuracy, symmetric MAPE (sMAPE), Root Mean Square Percentage Error
(RMSPE) and Theils’ U. Results showed that the eABC-LSSVM possess lower
prediction error rate as compared to eight hybridization models of LSSVM and
Evolutionary Computation (EC) algorithms. In addition, the proposed algorithm is
compared to single prediction techniques, namely, Support Vector Machines (SVM)
and Back Propagation Neural Network (BPNN). In general, the eABC-LSSVM
produced more than 90% prediction accuracy. This indicates that the proposed
eABC-LSSVM is capable of solving optimization problem, specifically in the
prediction task. The eABC-LSSVM is hoped to be useful to investors and
commodities traders in planning their investment and projecting their profit.

Keywords: Artificial Bee Colony, Least Squares Support Vector Machines, Time
series prediction
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CHAPTER ONE
INTRODUCTION

1.1 Background Study

Since its emergence in the past decades, Least Squares Support Vector Machines
(LSSVM) (Suykens, Van Gestel, De Brabanter, De Moor, & Vandewalle,
2002)which is an extension of Support Vector Machines (SVM) (Vapnik,1995) has
contributed significant impact in machine learning community. As a powerful
algorithm, it has been recognized as one of the standard tools in solving various data
mining tasks which include prediction, classification and many others (Cheng, Guo,
& Wu, 2010, Li, 2009).Nonetheless, besides its diversity in application, it is worth
noting that the capability of LSSVM is highly dependent on the value of its hyper-
parameters, namely regularization parameter, y and kernel parameter, o (Jiang &

Zhao, 2013).

In this regard, this study proposes a hybridization of LSSVM with a relatively new
optimization algorithm namely Artificial Bee Colony (ABC) (Karaboga, 2005). The
ABC algorithm which has been introduced by Dervis Karaboga is enlightened from
the intelligent foraging behavior of honey bees swarm (Karaboga, 2005). In 2008, an
extensive review and comparative analysis regarding its performance efficiency was
examined which concluded that the ABC algorithm is comparable to the other
existing optimization algorithms including Differential Evolution (DE), Particle
Swarm Optimization (PSO) and Genetic Algorithm (GA) (EI-Abd, 2012; Karaboga

& Basturk, 2008).
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