A MODEL OF SOFTWARE COMPONENT INTERACTIONS
USING THE CALL GRAPH TECHNIQUE

NOORAINI ISMAIL

MASTER OF SCIENCE (INFORMATION TECHNOLOGY)
UNIVERSITI UTARA MALAYSIA
2013

A MODEL OF SOFTWARE COMPONENT INTERACTIONS
USING THE CALL GRAPH TECHNIQUE

A thesis submitted to the UUM College of Arts and Sciences in
fulfilment of the requirements for the degree of Master of Science
Universiti Utara Malaysia

by
Nooraini Ismail

© 2013

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree from
Universiti Utara Malaysia, | agree that the Universiti Library may make it freely available
for inspection. | further agree that permission for the copying of this thesis in any
manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or,
in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and
Sciences. It is understood that any copying, publication, or use of this thesis or parts
thereof for financial gain shall not be allowed without my written permission. It is also
understood that due recognition shall be given to me and to Universiti Utara, Malaysia
for any scholarly use that may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole

or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences
UUM College of Arts and Sciences
Universiti Utara, Malaysia
06010 UUM Sintok

Abstrak

Maklumat interaksi yang berkaitan dengan operasi antara komponen adalah penting,
terutama apabila program perlu diubahsuai dan diselenggara. Oleh itu, komponen yang
terlibat perlu dikenal pasti dan dipadankan berdasarkan keperluan sistem. Maklumat
berkenaan boleh diperolehi menggunakan teknik kod ulasan. Walau bagaimanapun,
proses ini mengambil masa yang panjang. Penyelidikan ini mencadangkan suatu model
untuk mewakili maklumat tersebut yang mana ia diperolehi secara automatik daripada
kod sumber untuk menyediakan paparan yang berkesan untuk perwakilan interaksi antara
komponen perisian. Untuk mencapai objektif kajian, metodologi reka bentuk kajian yang
mengandungi lima fasa telah diadaptasikan iaitu kesedaran kepada masalah, cadangan,
pembangunan, penilaian dan kesimpulan. Fasa pembangunan mempunyai proses yang
lebih terperinci yang mana maklumat interaksi antara komponen perlu diperolehi secara
automatik menggunakan peralatan kejuruteraan balikan dan program tambahan. Program
ini digunakan untuk mendapatkan maklumat perisian, maklumat interaksi komponen
dalam program perisian, dan untuk mewakili model dalam bentuk call graph. Graf yang
dihasilkan ini dinilai melalui dua cara, iaitu menggunakan alatan penggambaran yang
bersesuaian dan juga melalui kajian oleh pakar. Alatan penggambaran digunakan untuk
memaparkan graf yang dihasilkan daripada format teks ke paparan grafik. Proses
penilaian model pula dijalankan melalui teknik kajian pakar. Hasil kajian ini
menunjukkan bahawa model yang terhasil boleh digunakan dan dimanipulasikan untuk
tujuan menggambarkan maklumat interaksi antara komponen. Model ini boleh digunakan
untuk menyediakan paparan penggambaran bagi penganalisis untuk melihat interaksi
maklumat yang relevan dalam komponen perisian. la juga dalam meningkatkan
pemahaman mengenai integrasi komponen itu sendiri, supaya penganalisis boleh
memanipulasi dan mengekalkan perisian untuk tujuan tertentu.

Kata kunci: Model interaksi komponen, Perwakilan call graph, Kefahaman program,
Alatan penggambaran

Abstract

Interaction information that is related to operations between components is important,
especially when the program needs to be modified and maintained. Therefore, the
affected components must be identified and matched based on the requirement of the
system. This information can be obtained through performing the code review technique,
which requires an analyst to search for specific information from the source code, which
is a very time consuming process. This research proposed a model for representing
software component interactions where this information was automatically extracted
from the source code in order to provide an effective display for the software components
interaction representation. The objective was achieved through applying a research
design methodology, which consists of five phases: awareness of the problem,
suggestion, development, evaluation, and conclusion. The development phase was
conducted by automatically extracting the components’ interaction information using
appropriate reverse engineering tools and supporting programs that were developed in
this research. These tools were used to extract software information, extract the
information of component interactions in software programs, and transform this
information into the proposed model, which was in the form of a call graph. The
produced model was evaluated using a visualization tool and by expert review. The
visualization tool was used to display the call graph from a text format into a graphical
view. The processed model evaluation was conducted through an expert review
technique. The findings from the model evaluation show that the produced model can be
used and manipulated to visualize the component interactions. It provides a process that
allows a visualization display for analysts to view the interaction of software components
in order to comprehend the components integrations that are involved. This information
can be manipulated and improved the program comprehension, especially for other
software maintenance purposes.

Keywords: Component interaction model, Call graph representation, Program
comprehension, Visualization tool

Acknowledgement

Alhamdulillah. A thousand gratitude to Allah S.W.T for giving me strengths to finish my
studies.

First of all, | would like to express my deepest gratitude to my supervisor, Dr Nor Laily
Hashim for her excellent guidance, moral support and advice throughout my studies.

For my thesis examiners, who give me their valuable comments and feedbacks.

I would like to acknowledge my sponsor, Ministry of High Education for granting
sponsorship of my research study.

My dearest thanks I own to my husband Mohd Hafiz Abdullah, for his encouragement,

patient, prayers and support throughout my studies.

| also thanks to my family, my masters colleagues and friends for their help and

encouraged me through this thesis. May Allah bless us, InsyaAllah.

Table of Contents

Permission to Use i

Abstrak ii
Abstract ii
Acknowledgement Y
Table of Contents v
List of Tables IX
List of Figures X
CHAPTER ONE: INTRODUCTION 1
1.1 Overview 1
1.2 Introduction 1
1.3 Problem Statement 3
1.4 Research Questions 5
1.5 Research Objectives 5
1.6 Research Scope 5
1.7 Significant of Study 7
1.8 Overview of Thesis 8
1.9 Summary 9
CHAPTER TWO: LITERATURE REVIEW 10
2.1 Introduction 10
2.2 Software Maintenance 10
2.3 Software Comprehension 14

2.3.1 Cognitive models of program comprehension strategies 15
2.4 Software Component 18

2.4.1 Existing study concerning software component extraction techniques 21
2.5 Existing studies on related component extraction tools 25

2.5.1 Appropriate tool to be used 26

2.6 Software representation
2.6.1 Techniques Representation
2.6.2 Program Visualization
2.6.3 Technique for program visualization
2.6.3.1 Visual Model
2.6.4 Technique for model visualization
2.7 Dependence Graph
2.7.1 Call graph
2.7.2 Related studies using call graph
2.7.3 Call graph techniques
2.7.4 Call Graph Interpretation
2.7.5 Application model
2.8 Graphviz as a visualization tool
2.8.1.1 Model elaboration
2.8.1.2 Representation for vertices and edges

2.9 Summary

CHAPTER THREE: RESEARCH METHODOLOGY
3.1 Introduction
3.2 Research Design
3.2.1 Phase 1: Awareness of Problem
3.2.2 Phase 2: Suggestion
3.2.2.1 Research Framework
3.2.3 Phase 3: Development
3.2.3.1 Process 1: Sampling
3.2.3.2 Process 2: Reverse engineering to extract software information
3.2.3.3 Process 3: Component Extraction
3.2.4 Phase 4: Evaluation

3.2.4.1 Evaluation 1: Goal-based evaluation using existing tool

Vi

27
29
30
34
34
37
38
41
44
45
49
52
52
54
54
55

58
58
58
59
60
61
62
63
66
67
68
68

Tools used in experiment

3.2.4.2 Evaluation 2: Heuristics Review

3.2.5 Phase 5: Conclusion
3.3 Summary

CHAPTER FOUR: MODEL IMPLEMENTATION

4.1 Introduction
Extract software Info
4.2 Model Implementation
4.2.1 Sampling

4.2.2 Extract the program by using the existing tool

4.2.3 Component Extraction

4.2.3.1 Extract Software Information

4.2.3.2 Extract Component Program
4.2.3.3 Create Call Graph Program

4.3 Call Graph Size
4.3.1JUnit 4.7
4.3.2UML20.9

4.4 Call Graph Visualization
4.4.1 Sample 1: JUnit 4.7
4.4.2 Sample 2: UML 0.9

4.5 Summary

CHAPTER FIVE: EVALUATION
5.1 Introduction
5.2 Evaluation processes
5.3 Evaluation procedure
5.3.1 Respondent’s profile
5.4 Result and discussion

5.5 Summary

Vil

70
71
73
74

75
75
75
76
77
77
79
80
83
86
87
87
88
89
90
93
98

99
99
99
100
100
102
105

CHAPTER SIX: CONCLUSION 106

6.1 Achievement of Objectives 106
6.1.1 Research Objective 1 106
6.1.2 Research Objective 2 107
6.1.3 Research Objective 3 108

6.2 Research Contributions 109

6.3 Limitation of study 110

6.4 Future Work 110

REFERENCES 112

APPENDIX A: RESPONDENT’S PROFILE 125

APPENDIX B: QUESTIONNAIRE FOR HEURISTIC REVIEW 126

APPENDIX C: DECLARATION 127

viii

List of Tables

Table 2.1: Advantages of static analysis and dynamic extraction analysis
Table 2.2: Types of dependence graph representation

Table 2.3: Existing tools for software representation using graph

Table 3.1: Criteria used in the comparative study (adopted from Beacker, 1998)
Table 4.1: Symbol in model representation

Table 4.2: Parsing for parameters in ExtractJavaGenerator program

Table 4.3:Parsing for type of relationships in ExtractJavaGenerator program
Table 4.4: ExtractJavaGenerator tables descriptions

Table 4.5: Parsing for parameters in ExtractTestDataNew program

Table 4.6 : Type of relationships in ExtractTestDataNew program

Table 4.7: ExtractTestDataNew tables descriptions

23
40
44
73
76
82
82
83
84
85
85

Table 4.8: The number of classes and interfaces that are extracted from the program87

Table 4.9: The number of classes and interfaces that are extracted from the program

No. of classes

Table 5.1: Result of comparative study

88

103

List of Figures

Figure 2.1. Ten knowledge areas adapted from Abran et al. (2004) 10
Figure 2.2. Area of software maintenance adapted from Abran et al. (2004) 13
Figure 2.3. Graphical description of the interaction interface between two components
(adopted from Broy & Kruger, 1998) 20
Figure 2.5. Different techniques in representing software 29
Figure 2.6. Example of a matrix view showing component patterns for the top

developers (adopted from Eick et al., 2002) 31
Figure 2.7. Example of a cityscape view (adopted from Eick et al., 2002) 32
Figure 2.8. Example of a bar chart: numbers of software changes 33
Figure 2.9. Basic concept of dependence graph 39
Figure 2.10(a). Contact-Insensitive Figure 2.10(b). Contact-Sensitive 42
Figure 2.11. Design Behaviour Tree (DBT) 46
Figure 2.12. Edit behaviour tree (EBT) 46
Figure 2.13. Representing change nodes adopted from Lin et al. (2009) 48
Figure 2.14. Transformation dependence call graph to expression language (adapted
from Kuck et al., 1981) 50
Figure 2.15. Transformation of dependence call graph (adapted from Ferrante et al.,
1987) 51
Figure 2.4. Graphical representation for call graph 54
Figure 3.1. Research Design Methodologies (Vaishnavi & Kuechler, 2008) 59
Figure 3.2. Research Framework 61
Figure 3.3. Flow chart of the development process 63

Figure 3.4. Screenshot of a JUnit HTML report (Source: http://docs.codehaus.org) 64
Figure 3.5. Screenshot example of UML2 0.9 (Source: http://www.sourceforge.net) 65

Figure 3.6. Interface Ptidej screenshot (Source: http://www.ptidej.net) 67
Figure 3.7. Screenshot of the extract component program 68
Figure 3.8. Graphviz screenshot 69
Figure 4.1. Model representing a call graph 75
Figure 4.2. Screenshot of example output file in text format 78

Figure 4.3. Screenshot of example output file in UML document 79

Figure 4.4. Screenshot of ExtractJavaGenerator program 81
Figure 4.5. Screenshot of ExtractTestDataNew program 84
Figure 4.6. Screenshot of createGraph program 86
Figure 4.7. Screenshot dot file for JUnit 4.7 88
Figure 4.8. Screenshot dot file for UML2 0.9 89
Figure 4.9. Call graph produced for getName service from TestClass interface for
JUnit 4.7 92
Figure 4.10. Call graph produced for new Instance service from Log Monitor Adapter
interface for UML2 9.0 96
Figure 5.1. Evaluation process 99

Xi

CHAPTER ONE
INTRODUCTION

1.1 Overview

This chapter includes an overall research plan of this study by introducing the
research foundation and motivation to be undertaken in this research. It also includes
a detailed description of the issues to be studied, the research objectives, scope of the
research, the research framework, and the contribution expected to be gained in this

research.

1.2 Introduction

A software component can be a single element of software that can be integrated with
other components (Szyperski, 1998). Two components are integrated if they can
potentially react to the same events (Fiege, 2005), which is bypassing messages
through their interfaces when the components are provided or required for specific
events (Inverardi et al., 2003). The communication between components typically is

realized by procedure calls or any kind of messaging (Bure et al., 2009).

When new components are integrated, a newly added component has an effect on
another component and it can be used by other components. Because of this situation,
the program may crash or immediately stop the execution of the system. For this
reason, a programmer must scan through the program and investigate which

components are causing the errors.

The contents of
the thesis is for
internal user
only

REFERENCES

Abran, A., Moore, J., Bourque, P., Dupuis, R., & Tripp, L. (2004). Guide to the
software engineering body of knowledge: 2004 version: IEEE Computer
Society, Los Alamitos, CA. Retrieved 23 July 2010, from
http://www.swebok.org

Acharya, R. (2013). Object-oriented design pattern extraction from Java source code.
Master’s thesis. UPPSALA University.

Ackermann, C. & Lindvall, M. (2007). Understanding change requests to predict
software impact. Paper presented at the Software Engineering Workshop,
2006. SEW*06.

Aldrich, J., Chambers, C., & Notkin D. (2002). Architectural reasoning in ArchJava.
In Proceedings ECOOP 2002, volume 2374 of LNCS, pp 334-367. Berlin, DE:
Springer Verlag.

Ali, Q. (2008). Static program visualization within the ASF+ SDF meta-environment.
Master’s thesis. University of Amsterdam, Holland, Netherlands.

Arafa, Y., Boldyreff, C., Tawil, A. H., & Liu, H. (2012). A high level service-based
approach to software component integration. Paper presented at Sixth
International Conference on the Complex, Intelligent and Software Intensive
Systems.

Arboleda, H., Royer, J. C (2011). A comparison of two Java component extraction
approaches. Paper presented at Proceedings of the 4th India Software

Engineering Conference (ISEC “11), New York, NY, USA. pp. 155-164.

112

http://www.swebok.org/
http://www.csi-sigse.org/isec2011/index.htm

Ardakan, M. A. & Mohajeri, K. (2009). Applying design research method to IT
performance management: Forming a new solution. Journal of Applied
Sciences, 9(7), 1227-1237.

Arrington, C. T. (2001). Enterprise Java with UML. New York, NY: John Wiley &
Sons.

Ayewah, N., Hovemeyer, D., Morgenthaler, J., Penix, J., & Pugh, W. (2008). Using
static analysis to find bugs. Software, IEEE, 25(5), 22-29.

Baecker, R. (1988). Enhancing program readability and comprehensibility with tools
for program visualization. Proceedings of the 10th international conference on
Software engineering. pp. 356-366.

Becker, B. (2011). Modeling and verification of self-adaptive service-oriented
systems. Proceedings of the 5th Ph. D. Retreat of the HPI Research School on
Service-oriented Systems Engineering, 5, 149.

Bergeron, J., Debbabi, M., Desharnais, J., Erhioui, M., Lavoie, Y., & Tawbi, N.
(2001). Static detection of malicious code in executable programs.
International Journal of Requirements Engineering, 184-189.

Bollobas, B. (1998). Modern graph theory. New York, NY: Springer-Verlag.

Briand, L., Labiche, Y., & Séwka, M. (2006). Automated, contract-based user testing
of commercial-off-the-shelf components. Paper presented at the Proceedings of
the 28th international conference on Software engineering.

Brooks, R. (1983). Towards a theory of the comprehension of computer programs.

International Journal of Man-Machine Studies. 18, 543-554.

113

Broy, M. & Kruger, 1. (1998). Interaction interfaces-towards a scientific foundation
of a methodological usage of message sequence charts. Proceedings of the
Second International Conference on Formal Engineering Methods.

Brusilovsky, P., Grady, J., Spring, M. & Lee, C. (2006) What should be visualized?
Faculty perception of priority topics for program visualization. In:
ACMSIGCSE Bulletin, 38(2), 44-48.

Bures, T., Hnetynka, P., & Malohlava, M. (2009). Using a product line for creating
component systems. Paper presented at Proceeding of the 2009 ACM
symposium on Applied Computing. pp. 501-508.

Caserta, P. & Zendra, O. (2011). Visualization of the static aspects of software: A
survey. IEEE Transactions Journal on Visualization and Computer Graphics,
17(7), 913-933.

Chatzigeorgiou, A., Tsantalis, N., & Stephanides, G. (2006). Application of graph
theory to OO software engineering. Paper presented at the Proceedings of the
2006 international workshop on interdisciplinary software engineering
research, Shanghai, China.

Chen, H., Dean, D., & Wagner, D. (2004). Model checking one million lines of C
code. Paper presented at the Proceedings of the 11th Annual Network and
Distributed System Security Symposium (NDSS).

Chen, K. & Rajlich, V. (2000). Case study of feature location using dependency
graph. Paper presented at the Proceedings of Intern. Workshop on Program

Comprehension (IWPC’00), pp. 241-249.

114

Chen, K. & Rajlich, V. (2001). RIPPLES: Tool for change in legacy software. Paper
presented at the Proceedings of IEEE International Conference on Software
Maintenance.

Chikofsky, E. J. & Cross 11, J. H. (1990). Reverse engineering and design recovery: A
taxonomy in IEEE software. IEEE Computer Society, 13-17.Chouambe, L.,
Klatt, B., & Krogmann, K., (2008). Reverse engineering software-models of
component-based systems. European Conference on Software Maintenance
and Reengineering, pp. 93-102. IEEE.

Claub, M. (2001). Generic modeling using UML extensions for variability. Paper
presented at the Workshop on Domain Specific Visual Languages at Object-
Oriented Programming, Systems, Languages, & Applications.

Corritore, C. L. & Wiedenbeck, S. (2001) An exploratory study of program
comprehension strategies of procedural and object-oriented programmers.
International Journal of Human-Computer Studies, 54(1). pp. 1-23.

Crnkovic, 1. (2003). Component-based software engineering-new challenges in
software development. Paper presented at Proceedings of the 25th
International Conference on Information Technology Interfaces (ITI).

Cross, J. H., Hendrix, T. D., & Maghsoodloo, S. (1998). The control structure
diagram: An overview and initial evaluation. Empirical Software Engineering,
3(2), 131-158.

Deo, N. (2004). Graph theory with applications to engineering and computer science.

New Delhi, India: PHI Learning Pvt. Ltd.

115

Détienne, F. & Bott, F. (2001) Software design—Cognitive aspects. New York, NY:
Springer-Verlag.

Devadas, S., & Lehman, E. (2005). Mathematics for computer science. Retrieved 12
May 2010, from http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-
Computer-Science/6-042JSpring-2005/FF95BA8F-6457-4592-B473-
349A5C1CA277/0/18_graphsl.pdf

Diehl, S. (2007). Software visualization: Visualizing the structure, behaviour, and
evolution of software, Secaucus, NJ. New York, NY: Springer-Verlag.

Eick, S., Graves, T., Karr, A.,, Mockus, A., & Schuster, P. (2002). Visualizing
software changes. IEEE Transactions on Software Engineering, 28(4), 396-
412.

ElI-Ramly, M. (2006). Experience in teaching a software reengineering course. Paper
presented at the Proceedings of the 28th International Conference on Software
Engineering, New York.

Emanuelsson, P., & Nilsson, U. (2008). A comparative study of industrial static
analysis tools. Electronic Notes in Theoretical Computer Science, 217, 5-21.

Evalguide Online.org (n.d). Retrieved 18.06.2012, from:
http://www.evalguide.ethz.ch/project_evaluation/introduction/goalbased_eval
uation_EN

Ferrante, J., Ottenstein, K., & Warren, J. (1987). The program dependence graph and
its use in optimization. ACM Transactions on Programming Languages and

Systems (TOPLAS), 9(3), 319-349.

116

http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-042JSpring-2005/FF95BA8F-6457-4592-B473-349A5C1CA277/0/l8_graphs1.pdf
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-042JSpring-2005/FF95BA8F-6457-4592-B473-349A5C1CA277/0/l8_graphs1.pdf
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-042JSpring-2005/FF95BA8F-6457-4592-B473-349A5C1CA277/0/l8_graphs1.pdf

Fiege, L. (2005). Visibility in event-based systems. (PhD. Thesis). Technische
Universitat Darmstadt, Darmstadt, Germany.

Gansner, E. R. (2012). Drawing graphs with Graphviz technical report. Murray Hill,
NJ: AT&T Bell Laboratories.

Garousi, V. & Koochakzadeh, N. (2010). An empirical evaluation to study benefits of
visual versus textual test coverage information. Testing—Practice and
Research Techniques, 189-193.

Garrison, R. (2000). Theoretical challenges for distance education in the 21st century:
A shift from structural to transactional issues. The International Review of
Research in Open and Distance Learning, 1(1).

Gelber, N. (2006). Bridging component models and integration problems. Vaxjo
University, Sweden. Retrieved 20 February 2010, from
http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-677.

Gibbons, A. (1985). Algorithmic graph theory. Cambridge, UK: Cambridge
University Press.

Grove, D. & Chambers, C. (2001). A framework for call graph construction
algorithms. ACM Transactions on Programming Languages and Systems,
23(6), 746.

Grove, D., DeFouw, G., Dean, J., & Chambers, C. (1997). Call graph construction in
object-oriented languages. ACM SIGPLAN Notices, 32(10), 108-124.

Grubb, P. & Takang, A. (2003). Software maintenance. Singapore, Singapore: World

Scientific Publishing Company, Incorporated.

117

http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-677

Gueheneuc, Y. G. (2005). Ptidej: Promoting patterns with patterns. Paper presented
at European Conference on Object Oriented Programming, workshop on
Building a System with Patterns, Glasgow, Scotland.

Hopkins, J. (2000). Component primer. Communications of the ACM, 43(10), 27-30.

Inverardi, P. & Tivoli, M. (2003). Software architecture for correct components
assembly. Formal Methods for Software Architectures, 92-121.

Iwanari, Y., Tasaki, M., Yokoo, M., lwasaki, A., & Sakurai, Y. (2009). Introducing
communication in Dis-POMDPs with finite state machines. Paper presented at
IEEE/WIC/ACM International Joint Conferences on Web Intelligence and
Intelligent Agent Technologies WI-IAT'09.

Jackson, C. & Pascual, R. (2008). Optimal maintenance service contract negotiation
with aging equipment. European Journal of Operational Research, 189(2),
387-398.

Jin, Y. & Han, J. (2005). Specifying interaction constraints of software components
for better understandability and interoperability. COTS-Based Software Systems
Journal, 54-64.

Kaeli, A. & Calder, B. (1997). Procedure mapping using static call graph estimation.
Paper presented at the Proceeding of Workshop Interaction between Compiler
and Computer Architecture.

Koehler, J. & Vanhatalo, J. (2007). Process anti-patterns: How to avoid the common
traps of business process modelling. IBM WebSphere Developer Technical

Journal, 10(2), 4.

118

Koivulahti-Ojala, M. & Ké&kola, T. (2010). Framework for evaluating the version
management capabilities of a class of UML modeling tools from the viewpoint
of multi-site, multi-partner product line organizations. Paper presented at the
Proceedings of 43rd Hawalii International Conference on Systems Sciences
(HICSS-43). IEEE.

Kothari, J., Denton, T., Shokoufandeh, A., Mancoridis, S., & Hassan, A. (2006).
Studying the evolution of software systems using change clusters. Paper
presented at the Proceedings of the 14th International Conference on Program
Comprehension. IEEE Computer Society.

Kuck, D., Kuhn, R., Padua, D., Leasure, B., & Wolfe, M. (1981). Dependence graphs
and compiler optimizations. Paper presented at the Proceedings of the 8th
ACM SIGPLAN-SIGACT Symposium on Principles of programming
languages.

Lanza, M. (2001). The evolution matrix: Recovering software evolution using
software visualization techniques. Paper presented at the Proceedings of the
4th international workshop on principles of software evolution.

Lavagno, L., Martin, G. E., & Selic, B. (2003). UML for real: Design of embedded
real-time systems. Alphen aan den Rijn: Netherlands, Kluwer Academic
Publishers.

Lee, D. & Yannakakis, M. (1996). Principles and methods of testing finite state

machines. PROCEEDINGS-IEEE, 84, 1090-1123.

119

Letovsky, S. (1986a) Cognitive processes in program comprehension. In Empirical
Studies of Programmers. 58-79. New York, NY: Ablex Publishing
Corporation.

Lilius, J. & Paltor, 1. (1999). Formalising UML state machines for model checking.
Paper presented at the Unified Modeling Language: UML‘99: Beyond the
Standard: Second International Workshop, Fort Collins, CO, October 28-30,
1999: Proceedings.

Lin, Y., Zhang, S., & Zhao, J. (2009). Incremental call graph reanalysis for AspectJ
software. Paper presented at the International Conference on Software
Maintenance. (ICSM 2009). IEEE.

Lindvall, M. & Publica, F. (2003). Impact analysis in software evolution. Advances in
computers, 59, 130-211.

McMillan, J. H. & Schumacher, S. (1984). Research in education: A conceptual
introduction. Boston, MA: Little, Brown.

Muller, H. & Kilashinsky, K. (1988). Rigi—A system for programming-in-the-large.
Paper presented at the Proceedings of the 10th International Conference on
Software Engineering.

Murata, M., Tozawa, A., Kudo, M., & Hada, S. (2006). XML access control using
static analysis. ACM Transactions on Information and System Security, 9(3),
324.

Najumudheen, E., Mall, R., & Samanta, D. (2009). A dependence graph-based

representation for test coverage analysis of object-oriented programs.

120

SIGSOFT Software Engineering Notes, 34(2), 1-8. 100-113. Norwood, NJ:
Ablex.

O’Brien, M. (2003) Program comprehension—A review & research direction
technical report UL-CSIS-03-3, University Of Limerick.

Ore, O. (1967). Theory of graphs. Providence, RI: American Mathematical Society.

Pennington, N. (1987). Comprehension strategies in programming. G. M. Olson, S.
Sheppard, & E. Soloway, (eds.). Empirical Studies of Programmers: Second
Workshop.

Piel, E. & Gonzalez-Sanchez, A. (2009). Data-flow integration testing adapted to
runtime evolution in component-based systems. Paper presented at the
Proceedings of the ESEC/FSE workshop on Software integration and
evolution@ runtime.

Price, B. A., Small, I. S., & Baecker, R. M. (1992). A taxonomy of software
visualization. Proceedings of the Twenty-Fifth Hawaii International
Conference on System Sciences, vol 2, pp. 597-606.

Prowell, S. (2005). Using Markov chain usage models to test complex systems. Paper
presented at the Proceeding 38th Annual Hawaii International Conference.
System Sciences (HICSS’05), Big Island, Hawaii.

Rader, J. (1997). Mechanisms for integration and enhancement of software
components. Paper presented at the Proceedings Fifth International

Symposium on Assessment of Software Tools and Technologies.

121

Rajan, H. & Sullivan, K. (2005). Classpects: Unifying aspect- and object-oriented
language design. Paper presented at the Proceedings of 27th International
Conference on Software Engineering (ICSE).

Rajlich, V. (1997). A model for change propagation based on graph rewriting. Paper
presented at the 13th International Conference on Software Maintenance
(1ICSM'97), October 1-3 2007, Wayne State University (pp. 84), Bari, ITALY.

Rajlich, V., Damaskinos, N., Linos, P., & Khorshid, W. (2006). VIFOR: A tool for
software maintenance. Software: Practice and Experience, 20(1), 67-77.

Reekie, H. & Lee, E. (2002). Lightweight component models for embedded systems.
Electronics Research Laboratory, College of Engineering, University of
California.

Royer, J. C. (2010). Short draft about the Java component extractor. Academic
Society For Competition Law, INRIA Nantes, France: Mines de Nantes.

Ruiz, M., Espana, S., & Gonzalez, A. (2012). Model-driven organisational
reengineering: A framework to support organisational improvement. Paper
presented at the Informatica (CLEI), 2012 XXXVIII Conferencia
Latinoamericana En.

Saidi, H. (2008). Logical foundation for static analysis: Application to binary static
analysis for security. ACM SIGAda Ada Letters, 28(1), 96-102.

Schilling, J. W. (2007). A cost effective methodology for quantitative evaluation of

software reliability using static analysis. The University of Toledo.

122

Schilling, W. & Alam, M. (2008). A methodology for quantitative evaluation of
software reliability using static analysis. Paper presented at the Proceedings of
the 2008 Annual Reliability and Maintainability Symposium. volume 00.

Scholz, B., Zhang, C., & Cifuentes, C. (2008). User-input dependence analysis via
graph reachability. Mountain View, CA: Sun Microsystems, Inc.

Sherburne, P. & Fitzgerald, C. (2004). You don’t know jack about VVoIP. Queue, 2(6),
30-38.

Shneiderman, B. & Mayer, R. (1979) Syntactic semantic interactions in programmer
behavior: A model and experimental results. In International Journal of
Computers & Information Sciences, 8(3), 219-238.

Soloway, E. & Ehrlich, K. (1984) Empirical studies of programming knowledge. In
IEEE Transactions on Software Engineering, SE-10, 595-609.

SoMoX SOftware = MOdel eXtractor, Retrieved 10.02.2013, from
http://www.somox.org

Suman, R. R. & Mall, R. (2009). State model extraction of a software component by
observing its behaviour. SIGSOFT Software Engineering Notes, 34(1), 1-7.

Szyperski, C. (1998). Component software: Beyond object-oriented programming,
New York, NY: ACM Press/Addison-Wesley Publishing Co.

The JCE checker. (2013). Retrieved 2 November 2013, from http://www.emn.fr/z-
info/jroyer/JCE/index.html.

Travis, D. (2007). Retrieved 24 July 2013.

http://www.userfocus.co.uk/articles/expertreviews.html

123

http://www.somox.org/
http://www.emn.fr/z-info/jroyer/JCE/index.html
http://www.emn.fr/z-info/jroyer/JCE/index.html

Vaishnavi, V. K. & Kuechler, W. (2008). Design science research methods and
patterns (1st Ed.). Boca Raton, FL: Auerbach Publications.

Von Mayrhauser, A. & Vans, A. M. (1995). Program understanding: Models and
experiments. Advances in Computers, 40(4), 25-46.

Wen, L. & Dromey, R. (2004). From requirements change to design change: A
formal path. Paper presented at SEFM 2004. Proceedings of the Second
International Conference on Software Engineering and Formal Methods.

Winslow, L. E. (1996). Programming pedagogy—A psychological overview. ACM
SIGCSE Bulletin, 28(3), 17-22.

Wu, X. & Woodside, M. (2004). Performance modelling from software components.
ACM SIGSOFT Software Engineering Notes, 29(1), 301.

Xue, J., Hu, C., Wang, K., Ma, R., & Leng, B. (2009). Constructing a knowledge base
for software security detection based on similar call graph. Paper presented
Second International Conference on Computer and Electrical Engineering.

Zhang, L., Marinov, D., Zhang, L., & Khurshid, S (2011). An empirical study of JUnit
test-suite reduction. Paper presented at 22nd IEEE International Symposium
on Software Reliability Engineering.

Zwillinger, D. (2002). CRC standard mathematical tables and formulae. Boca Raton,

FL: CRCPr I Llc.

124

