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Abstrak

Maklumat interaksi yang berkaitan dengan operasi antara komponen adalah penting,
terutama apabila program perlu diubahsuai dan diselenggara. Oleh itu, komponen yang
terlibat perlu dikenal pasti dan dipadankan berdasarkan keperluan sistem. Maklumat
berkenaan boleh diperolehi menggunakan teknik kod ulasan. Walau bagaimanapun,
proses ini mengambil masa yang panjang. Penyelidikan ini mencadangkan suatu model
untuk mewakili maklumat tersebut yang mana ia diperolehi secara automatik daripada
kod sumber untuk menyediakan paparan yang berkesan untuk perwakilan interaksi antara
komponen perisian. Untuk mencapai objektif kajian, metodologi reka bentuk kajian yang
mengandungi lima fasa telah diadaptasikan iaitu kesedaran kepada masalah, cadangan,
pembangunan, penilaian dan kesimpulan. Fasa pembangunan mempunyai proses yang
lebih terperinci yang mana maklumat interaksi antara komponen perlu diperolehi secara
automatik menggunakan peralatan kejuruteraan balikan dan program tambahan. Program
ini digunakan untuk mendapatkan maklumat perisian, maklumat interaksi komponen
dalam program perisian, dan untuk mewakili model dalam bentuk call graph. Graf yang
dihasilkan ini dinilai melalui dua cara, iaitu menggunakan alatan penggambaran yang
bersesuaian dan juga melalui kajian oleh pakar. Alatan penggambaran digunakan untuk
memaparkan graf yang dihasilkan daripada format teks ke paparan grafik. Proses
penilaian model pula dijalankan melalui  teknik kajian pakar. Hasil kajian ini
menunjukkan bahawa model yang terhasil boleh digunakan dan dimanipulasikan untuk
tujuan menggambarkan maklumat interaksi antara komponen. Model ini boleh digunakan
untuk menyediakan paparan penggambaran bagi penganalisis untuk melihat interaksi
maklumat yang relevan dalam komponen perisian. la juga dalam meningkatkan
pemahaman mengenai integrasi komponen itu sendiri, supaya penganalisis boleh
memanipulasi dan mengekalkan perisian untuk tujuan tertentu.

Kata kunci: Model interaksi komponen, Perwakilan call graph, Kefahaman program,
Alatan penggambaran



Abstract

Interaction information that is related to operations between components is important,
especially when the program needs to be modified and maintained. Therefore, the
affected components must be identified and matched based on the requirement of the
system. This information can be obtained through performing the code review technique,
which requires an analyst to search for specific information from the source code, which
is a very time consuming process. This research proposed a model for representing
software component interactions where this information was automatically extracted
from the source code in order to provide an effective display for the software components
interaction representation. The objective was achieved through applying a research
design methodology, which consists of five phases: awareness of the problem,
suggestion, development, evaluation, and conclusion. The development phase was
conducted by automatically extracting the components’ interaction information using
appropriate reverse engineering tools and supporting programs that were developed in
this research. These tools were used to extract software information, extract the
information of component interactions in software programs, and transform this
information into the proposed model, which was in the form of a call graph. The
produced model was evaluated using a visualization tool and by expert review. The
visualization tool was used to display the call graph from a text format into a graphical
view. The processed model evaluation was conducted through an expert review
technique. The findings from the model evaluation show that the produced model can be
used and manipulated to visualize the component interactions. It provides a process that
allows a visualization display for analysts to view the interaction of software components
in order to comprehend the components integrations that are involved. This information
can be manipulated and improved the program comprehension, especially for other
software maintenance purposes.

Keywords: Component interaction model, Call graph representation, Program
comprehension, Visualization tool
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CHAPTER ONE
INTRODUCTION

1.1 Overview

This chapter includes an overall research plan of this study by introducing the
research foundation and motivation to be undertaken in this research. It also includes
a detailed description of the issues to be studied, the research objectives, scope of the
research, the research framework, and the contribution expected to be gained in this

research.

1.2 Introduction

A software component can be a single element of software that can be integrated with
other components (Szyperski, 1998). Two components are integrated if they can
potentially react to the same events (Fiege, 2005), which is bypassing messages
through their interfaces when the components are provided or required for specific
events (Inverardi et al., 2003). The communication between components typically is

realized by procedure calls or any kind of messaging (Bure et al., 2009).

When new components are integrated, a newly added component has an effect on
another component and it can be used by other components. Because of this situation,
the program may crash or immediately stop the execution of the system. For this
reason, a programmer must scan through the program and investigate which

components are causing the errors.
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