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Abstrak 

Pengoptimum Koloni Semut (ACO) adalah algoritma metaheuristik yang boleh 

digunakan untuk menyelesai pelbagai masalah pengoptimuman kombinasi. Halatuju 

baru bagi ACO adalah untuk mengoptimumkan pembolehubah selanjar dan 

bercampur (diskrit dan selanjar). Mesin Vektor Sokongan (SVM) adalah satu 

pendekatan klasifikasi corak yang berpunca daripada pendekatan statistik. Walau 

bagaimanapun, SVM mempunyai dua masalah utama iaitu pemilihan atribut subset 

dan penalaan parameter. Kebanyakan pendekatan yang berkait dengan penalaan 

parameter SVM mendiskritkan nilai selanjar parameter dan ini akan memberi kesan 

negatif kepada prestasi klasifikasi. Tesis ini melaporkan empat algoritma untuk 

menala parameter SVM dan memilih atribut subset yang meningkatkan prestasi 

klasifikasi SVM dengan saiz attribute subset yang lebih kecil. Ini boleh dicapai 

dengan melaksanakan proses pemilihan subset dan penalaan parameter SVM secara 

serentak. Penghibridan algoritma ACO dan teknik SVM telah dicadangkan. Dua 

kelompok algoritma pertama iaitu algoritma ACOR-SVM dan IACOR-SVM akan 

menala parameter SVM manakala dua algoritma kedua iaitu algoritma ACOMV-R-

SVM and IACOMV-R-SVM boleh melaksanakan penalaan parameter SVM dan 

pemilihan atribut subset secara serentak. Sepuluh dataset penanda aras dari 

University California, Irvine, telah digunakan dalam eksperimen untuk mengesahkan 

prestasi algoritma yang dicadangkan. Dapatan eksperimen daripada algoritma yang 

dicadangkan adalah lebih baik berbanding pendekatan lain dari segi ketepatan 

klasifikasi dan saiz subset atribut. Purata ketepatan klasifikasi bagi algoritma ACOR-

SVM, IACOR-SVM, ACOMV-R dan IACOMV-R adalah 94.73%, 95.86%, 97.37% dan 

98.1%. Purata saiz atribut subset adalah lapan bagi algoritma ACOR-SVM dan 

IACOR-SVM dan empat bagi algoritma ACOMV-R dan IACOMV-R. Dapatan kajian ini 

turut menyumbang kepada halatuju baru bagi ACO yang boleh digunakan untuk  

pembolehubah ACO  yang selanjar dan bercampur. 

 
Kata kunci: Pengoptimum koloni semut selanjar, Pengoptimum koloni semut bercampur, 

Mesin vektor sokongan, Penalaan parameter SVM, Pemilihan subset atribut. 
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Abstract 

Ant Colony Optimization (ACO) is a metaheuristic algorithm that can be used to 

solve a variety of combinatorial optimization problems. A new direction for ACO is 

to optimize continuous and mixed (discrete and continuous) variables. Support 

Vector Machine (SVM) is a pattern classification approach originated from statistical 

approaches. However, SVM suffers two main problems which include feature subset 

selection and parameter tuning. Most approaches related to tuning SVM parameters 

discretize the continuous value of the parameters which will give a negative effect on 

the classification performance. This study presents four algorithms for tuning the 

SVM parameters and selecting feature subset which improved SVM classification 

accuracy with smaller size of feature subset. This is achieved by performing the 

SVM parameters’ tuning and feature subset selection processes simultaneously. 

Hybridization algorithms between ACO and SVM techniques were proposed. The 

first two algorithms, ACOR-SVM and IACOR-SVM, tune the SVM parameters while 

the second two algorithms, ACOMV-R-SVM and IACOMV-R-SVM, tune the SVM 

parameters and select the feature subset simultaneously. Ten benchmark datasets 

from University of California, Irvine, were used in the experiments to validate the 

performance of the proposed algorithms. Experimental results obtained from the 

proposed algorithms are better when compared with other approaches in terms of 

classification accuracy and size of the feature subset. The average classification 

accuracies for the ACOR-SVM, IACOR-SVM, ACOMV-R and IACOMV-R algorithms 

are 94.73%, 95.86%, 97.37% and 98.1% respectively. The average size of feature 

subset is eight for the ACOR-SVM and IACOR-SVM algorithms and four for the 

ACOMV-R and IACOMV-R algorithms. This study contributes to a new direction for 

ACO that can deal with continuous and mixed-variable ACO. 

 

 

Keywords: Continuous ant colony optimization, Mixed-variable ant colony 

optimization, Support vector machine, Tuning SVM parameters, Feature subset 

selection. 
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CHAPTER ONE 

INTRODUCTION 

Classification is a supervised learning approach which is a significant field of 

research involving labeling an object to one of a group of classes, related to features 

of that object (Qian, Chen & Cai, 2011; Khashei, Hamadani & Bijari, 2012; Khashei, 

Hamadani & Bijari, 2011; Tsai et al., 2011; Cheng et al., 2010; Liu, Liu & Zhang, 

2010; Mastrogiannis, Boutsinas & Giannikos, 2009; Tseng & Lee, 2009; and Uney 

& Turkay, 2006) and it is considered one of the basic difficulties in a numerous 

decision making processes. Many decision making processes are examples of 

classification difficulty or can be simply transformed into classification difficulty, 

for example, prognosis processes, diagnosis processes, and pattern recognition 

(Orkcu & Bal, 2011). Data classification process consists of: training and testing and 

this is undertaken in a two stage procedure. First, the training data are used to build 

the classifier (model for classification) and subsequently, the classifier will be tested 

using the test data (Uney & Turkay, 2006; and Cheng et al., 2010). The execution of 

the classification procedure is determined by the precision of the distinguishing 

function for the particular problem to which it is applied. A distinguishing function is 

improved to minimize the misclassification percentage, regarding the few present 

examples of input and output vector pairs, which are known as the training data 

group. This distinguishing function is then utilized to classify new examples into 

pre-defined categories and to test the precision of the classification (Qian, Chen & 

Cai, 2012; Khashei, Hamadani & Bijari, 2012; Khashei, Hamadani & Bijari, 2011; 

Tsai et al., 2011; Cheng et al., 2010; Liu, Liu & Zhang, 2010; Mastrogiannis, 

Boutsinas & Giannikos, 2009; Tseng & Lee, 2009; and Uney & Turkay, 2006). The 



 

2 

 

majority of the available research is centred on enhancing the classification accuracy 

by utilizing statistical approaches (Tseng & Lee, 2009). 

 

Pattern classification is an important area in machine learning and artificial 

intelligence. It attaches the input samples into one of a present number of groups 

through an approach. The approach is found through learning the training data group 

(Wang et. al, 2012). In other words, it aims to classify input features into pre-

determined groups consisting of classes of patterns (Thomas & Oommen, 2013 and 

Sivagaminathan & Ramakrishnan, 2007) and it requires comprehending the 

classification function. The classification function allocates a present input pattern 

often appearing as a vector of attribute values to a finite group of classes (Kanan, 

Faez & Taheri, 2007; and Basiri, Aghaee & Aghdam, 2008). Certain pattern 

classification techniques allow the input data to include many features but, in reality, 

only a few of them are relevant to the classification. In certain circumstances, it is 

not suitable to choose a large number of features, as this may be difficult to calculate 

or may be incomplete (Vieira, Sousa & Runkler, 2007). Therefore, choosing few and 

related features has its benefits, minimizing both the calculation effort and 

complexity of the approach as the generalization capability may be enhanced 

(Maldonado, Weber & Basak, 2011). In order to classify features, classification 

methods seek to determine the most pertinent features. Less pertinent features may 

be translated as noise which would decrease the accuracy of the classification. Good 

classification is usually achieved by using classifiers that are constructed from data 

or heuristic information (Vieira, Sousa & Runkler, 2007). Approaches such as a 
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Neural Network (NN) (Khashei, Hamadani & Bijari, 2012 and Ahsan, Ibrahimy & 

Khalifa, 2012), Ant Colony Optimization (ACO) (Otero, Freitas & Johnson, 2012), 

Fuzzy (Verma & Yadava, 2012; and Wang et al., 2012), Support Vector Machine 

(SVM) (Sarafrazi & Pour, 2013; Fu et al., 2013; Lázaro-Gredilla, Gómez-Verdejo & 

Parrado-Hernández, 2012; Bhadra, Bandyopadhyay & Manlik, 2012; Kapp, Sabourin 

& Maupin, 2012; Lin et al., 2012; Atienza et al., 2012; Feki, Ishak & Feki, 2012; Xie 

& Wang, 2011; Zhao et al., 2011; and Huang, 2009), and hybrid approach (Kabir, 

Shahjahan & Murase, 2012; Phokharatkul & Phaiboon, 2011; and Zhang et al., 2010) 

have been used to classify patterns. 

 

SVM is an excellent classifier built on a statistical learning approach; however, it is 

not able to avoid the influence of huge numbers of unrelated or redundant features on 

the classification results. Therefore, selecting a few numbers of suitable features 

would result in obtaining good classification accuracy (Liu & Zhang, 2009). The 

main concept of SVM is to obtain the Optimal Separating Hyperplane (OSH) 

between the positive and negative samples. This can be completed through 

maximizing the margin between two parallel hyperplanes. Finding this plane, SVM 

can then forecast the classification of unlabeled sample through asking on which side 

of the separating plan the sample lies (Vapnik & Vashist, 2009; Qi, Tian & Shi, 

2013; Fu et al., 2013; Khalid & Razzaq, 2012; Khashei, Hamadani & Bijari, 2012; 

Tasi et al., 2011; Li & Tan, 2010; Al-Naami et al., 2010; Cortes & Vapnik, 1995). 

Margin means the distance of the closest training sample to the hyperplane (Bajla et. 

al, 2009; Zhang & Mao, 2009; Liu & Yuan, 2009; Wang & Chen, 2007; Zhang, 

http://www.sciencedirect.com/science/article/pii/S0952197612001431
http://www.sciencedirect.com/science/article/pii/S0952197612001431
http://www.sciencedirect.com/science/article/pii/S0952197612001431
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Pham & Zhang, 2007; Choi & Noh, 2004; and Ren et al., 2004). SVM is initially 

designed to classify a binary classes problem (Zhang et al., 2009), later, SVM is 

expanded to classify multi-class problems through utilizing decomposition 

approaches like One-Against-One (OAO) and One-Against-All (OAA) (Tasi et al., 

2011). Nevertheless, there are two problems in the SVM classifier that influence the 

classification accuracy: selecting the optimal feature subset; and, tuning SVM 

parameters to be used in the SVM classifier. These two problems are essential 

because they affect each other (Huang & Wang, 2006; Pham et al., 2007; Lin et al., 

2008; Huang & Dun, 2008; Lin & Chien, 2009; Ding & Li, 2009; and Zhao et al., 

2011). Other SVM problems include selecting suitable kernel functions (Tasi et al., 

2011). 

 

The selection of features to be used for classification could affect the classification 

accuracy function, required dataset training, and applicable costs related with the 

classification (Sivagaminathan & Ramakrishnan, 2007). Feature Selection (FS) is the 

process of determining a subset of fields in the database, minimizing the number of 

fields that appear during data classification (Sivagaminathan & Ramakrishnan, 2007; 

Huang & Wang, 2006; and Huang, 2009). The main idea behind FS is to select a 

subset of input variables by deleting features that contain less or no information 

(Vieira, Sousa & Runkler, 2007). FS aims to decrease the dimension of the initial 

features group by determining the unauthentic features which would eventually 

supply the best performance under a certain classification dataset (Kabir, Shahjahan 

& Murase, 2009 and Kabir, Shahjahan & Murase, 2012), and to delete unrelated, 
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unneeded, or noisy features while preserving the richness of the instructive ones 

(Abd-Alsabour, 2010; and Sanz et al., 2002). FS may be considered as an 

optimization problem which seeks potential features subsets which ultimately 

determines the optimal one (Abd-Alsabour, 2010). Exhaustive search is the easiest 

way to identify the best subsets. A FS problem is a hard combinatorial process in 

machine learning but it has high practical importance (Frohlich, Chapelle & 

Scholkopf, 2003). Recently, research works have been centered on solving FS 

problems using ACO. However, in FS problems, there is no previous information 

about the features to be selected that can be used to guide the search procedure such 

as in the Traveling Salesman Problem (TSP) where the distance between cities can 

be used to help search (Abd-Alsabour, 2010; Vieira, Sousa & Runkler, 2007; and 

Jensen, 2006). The goal of feature selection built on ACO is to obtain, if possible, 

the minimum number of features and to find high classification accuracy with 

minimum calculation efforts. This problem must be expressed as a TSP so that ACO 

can be used. Nodes or cities in TSP express features in the feature group source and 

the edge between nodes express the selection of the next feature. The search for the 

optimal feature subset is then changed into the problem of obtaining the path with 

the smallest number of nodes utilizing certain conditions, like classification accuracy 

(Huang et al., 2012; Nemati et al., 2009; Kanan & Faez, 2008; Khushaba et al., 

2008a; Khushaba et al., 2008b; and Al-Ani, 2005).  

 

In order to find optimal feature subset for SVM, optimization techniques such as 

Tabu Search (TS), Simulated Annealing (SA), Genetic Algorithm (GA), Particle 



 

6 

 

Swarm Optimization (PSO), and ACO can be used to select suitable features (Kanan, 

Faez & Taheri, 2007; and Basiri, Aghaee & Aghdam, 2008). While for tuning the 

SVM parameters value, approaches such as trial and error, grid, cross validation, 

generalization error estimation and gradient descent and, also, global stochastic 

optimization approaches such as GA, PSO, SA, and ACO may be utilized (Qiu et al., 

2011 and Zhang, Chen & He, 2010). 

 

ACO is a metaheuristic for hard discrete optimization problems initially suggested at 

the beginning of 1990s. ACO is based on the behavior of real ants in collecting food. 

Ants when seeking for food, firstly investigate the region bordering their nest in a 

non-systematic way. When an ant detects a food source, it evaluates quantity and 

quality of the food and transports some of it to the nest. Throughout the return trip, 

the ant deposits pheromones on the land and the amount of pheromone depends on 

the amount and quality of the food. This pheromone will be used to lead other ants to 

the food source. This situation will help other ants to find the shortest paths between 

their nest and food sources (Dorigo & Stützle, 2003; Blum & Dorigo, 2004; and 

Blum & Dorigo, 2005). In order to solve the optimization problem, ACO will repeat 

the following two steps (Dorigo & Blum, 2005): nominee solutions are built using a 

pheromone and the nominee solutions are used to update the pheromone values in 

order to gain high quality solutions. 

 

While ACO was first presented to solve discrete optimization problems, it is 

modified to solve continuous and mixed optimization problems. However, some 



 

7 

 

research has expanded ACO, applying it to continuous and mixed-variables 

optimization problems. One of the most interesting ACOs for continuous variables 

and mixed-variables is Socha’s work which is called continuous ACO (ACOR) and 

mixed-variable ACO (ACOMV) respectively (Socha, 2004; Blum, 2005; Dorigo & 

Blum, 2005; Socha & Blum, 2006; Dorigo, Birattari & Stutzle, 2006b; Castro, 2007; 

Socha, 2008; Socha & Dorigo, 2008; Dorigo & Stutzle, 2010; Liao, 2011; and Liao 

et al., 2011). ACOR was later modified by Liao (2011) and introduces two new 

algorithms called Incremental ACOR (IACOR) and Incremental ACOR with Local 

Search (IACOR-LS) (Liao, 2011; and Liao et al. 2011). Additionally, Liao (2011) 

suggests modifying ACOMV regarding his two new algorithms.  

 

All four ACO variants follow the same classical ACO framework, apart from the 

discrete probability used to build the ant solution which is replaced by continuous 

probability 

1.1 Problem Statement 

SVM has been used to solve classification problems with acceptable accuracy while 

simultaneously optimizing both feature subset selection and SVM parameters. The 

simultaneous operation is produced by hybridizing ACO (Huang, 2009), Simulated 

Annealing (SA) (Lin et al., 2008), Particle Swarm Optimization (PSO) (Huang & 

Dun, 2008 and Lin et al., 2008), Bess algorithms (Pham et al., 2007), Cat Swarm 

Optimization (CSO) (Lin & Chien, 2009), Clonal Selection Algorithm (CSA) (Ding 

& Li, 2009), Genetic Algorithm (GA) (Huang & Wang, 2006 and Zhao et al., 2011) 
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or Gravitational Search Algorithm (GSA) with SVM (Sarafrazi & Pour, 2013). 

However, when ACO or other approaches such as GA (Huang & Wang, 2006 and 

Zhao et al., 2011), PSO (Lin et al., 2008), CSO (Lin & Chien, 2009) and CSA (Ding 

& Li, 2009) are hybridized in SVM, the continuous values of SVM parameters will 

have to be converted into discrete values before an optimization process is carried 

out (Zavar et al., 2011; Blondin & Saad, 2010; and Huang, 2009). The average 

classification accuracy for the studies is 92.27. This conversion process has resulted 

in the loss of some information and will affect the classification accuracy (Huang, 

2009), because it will restrict the details at which hopeful regions of the seek domain 

can be investigated (Blondin & Saad, 2010). To overcome this problem, new ways to 

take continuous values of SVM parameters without converting to discrete forms will 

be researched. 

 

When ACO is used to select feature subset, the features would be represented as 

discrete graph nodes, while SVM parameters are naturally continuous (Huang, 

2009). To overcome this problem, new ways to accept mixed-variables (continuous 

and discrete) (Sarafrazi & Pour, 2013) of SVM mixed-variables will also be 

researched. 

 

In a bid to overcome the limitation of working with discrete values, an algorithm that 

can handle both discrete or continuous values, and even mixed (discrete and 

continuous) values with the ability to perform the simultaneous optimization process 

for both feature subset selection and tuning SVM parameters has to be proposed. The 
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classification accuracy can be enhanced by selecting suitable feature subset and 

tuning SVM parameters based on feedback supplied by ACO. Hence, the research 

questions posited center on finding high classification accuracy by answering the 

following: 

i. How to optimize SVM parameters? 

ii. How to select the suitable feature subset for the SVM? 

iii. How to hybridize ACO with the SVM? 

iv. Can the proposed algorithms enhance the performance of the SVM in terms 

of classification accuracy and size of feature subset selection? 

1.2 Objective 

The main objective of this research is to propose new algorithms that simultaneously 

optimize both feature subset selection and tune SVM parameters based on hybridized 

ACO and SVM for pattern classification. The following specific research objectives 

are to be fulfilled: 

i. To propose enhanced pattern classification algorithms based on ACO-SVM 

that can handle continuous SVM parameters. 

ii. To propose techniques for feature subset selection in non inductive and 

inductive learning approaches. 

iii. To propose enhanced pattern classification algorithms based on ACO-SVM 

that can simultaneously optimize feature subset and SVM parameters.  
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iv. To evaluate the performance of the proposed enhanced pattern classification 

algorithms. 

1.3 Significance of the Research 

The approach in this research sets a new direction for ACO by extending the 

established standard ACO that handles mainly discrete values to now handle both 

discrete or continuous and mixed-variables. This new direction will then be used in 

this research to simultaneously optimize feature subset selection and tuning 

parameters for SVM using ACO. This research suggests intelligent algorithms that 

hybridize four new algorithms; standard ACO for discrete variables and its extension 

for continuous and mixed-variables hybrid with SVM. The outcome of this study is a 

novel algorithmic optimization that can notably increase the classification accuracy 

with small numbers of selected features as compared to the existing classification 

approaches. 

1.4 Scope, Assumption and Limitations of the Research 

This thesis focuses on using ACO and its variants (ACOR, IACOR, ACOMV-R, and 

IACOMV-R) to identify the suitable input feature subset and value for SVM 

parameters. Also, in this research, ACO and its variants will be hybridized with 

SVM through a wrapper-based feature selection approach. This is done because it 

gives the ability to hybridize the classification accuracy and necessary features 

introduced to the classifier from ACO and its approach to variants. It is also done 

because feature subset selection via the wrapper approach is dependent on the 
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inductive learning approach. Beside the wrapper approach, a filter approach through 

using Fisher (F)-score technique is also utilized in this thesis in order to selecting 

suitable feature subset to introduce to SVM. The kernel function that will be used in 

this study is the Radial Basis Function (RBF) because it requires a few parameters 

and has been proven to produce good results in many problems. A binary SVM 

classifier as well as a multi-class SVM classifier through utilizing OAO is used in 

this thesis. 

 

All experiments were carried out utilizing ten benchmark datasets from the 

University of California, Irvine (UCI) Repository of Machine Learning’s benchmark 

datasets from various fields. The proposed algorithms were compared with the GSA-

SVM (Sarafrazi & Pour, 2013), GAwith feature chromosome-SVM and Grid search (Zhao et 

al., 2011), ACO-SVM (Huang, 2009), CSO-SVM (Lin & Chien, 2009), CSA-SVM 

(Ding & Li, 2009), PSO-SVM (Lin et al., 2008), SA-SVM (Lin et al., 2008), and 

GA-SVM (Huang & Wang, 2006) in terms of classification accuracy and feature 

subset size. 

 

This thesis deals with solving two problems of classical SVM. These are: selecting 

suitable feature subset; and tuning SVM parameters. Other SVM problems related to 

selecting suitable kernel function are not the concern of this thesis. Also other 

variants of SVM regarding classification or regression are not considered in this 

thesis. 
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1.5 Thesis Organization 

This thesis has six chapters, including the introductory chapter, which covers the 

background information related to the problem that this thesis attempts to solve it. 

Chapter Two covers the literature review of related studies on pattern classification 

and its approaches. The second part of this chapter focuses on the SVM and its 

problems. Meanwhile, the third part presents the studies used by ACO to select 

feature subset as well as extending the classical ACO to handle continuous and 

mixed-variables. 

 

Chapter Three presents the methodology that has been used in conducting this 

research. It is divided into five sections. The first section outlines the research 

framework that has been used in this thesis. The second section presents the datasets’ 

development that has been used in this thesis which is, in turn, divided into four 

subsections. The first subsection presents a description of the datasets that have been 

used; the second subsection is related to cleaning datasets while the third subsection 

describes the needed transformation for some datasets; and the last subsection relates 

to how the datasets are scaled. The third section presents the methodology that has 

been used to tune SVM parameters; and the fourth section presents the methodology 

that has been used to simultaneously tune SVM parameters and select feature subset. 

Finally the summary of the chapter is given in fifth section. 

 

Chapter Four presents two new hybridized algorithms of ACOR and IACOR with 

SVM. These two approaches are used only to tune SVM parameters in order to 
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obtain optimal values for SVM parameters to use it to classify patterns. This chapter 

compares the results with other hybrid SVM approaches in terms of classification 

accuracy and feature subset size. 

 

Chapter Five presents another two new hybridized algorithms of ACOMV-R and 

IACOMV-R with SVM. Differing from the two algorithms proposed in Chapter Four 

these approaches, instead of only optimizing SVM parameters, also simultaneously 

optimize feature subset selection and tuning SVM parameters. This chapter 

compares the results with other hybrid SVM approaches in terms of classification 

accuracy and feature subset size. 

 

Finally, Chapter Six gives the concluding remarks on the four proposed hybrid 

algorithms. The concluding remarks consist of the description of features, 

capabilities and weaknesses of the four proposed approaches. This chapter also 

presents some recommendations as guidelines for further research for hybrid ACO 

and SVM for pattern classification. 
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CHAPTER TWO 

LITERATURE REVIEW 

This chapter reviews the literature related to the research field considered in the 

thesis. Section 2.1 presents the concept of pattern classification and its techniques, 

while Section 2.2 discusses the SVM and the solution for its problems. Section 2.3 

gives the variations of the implementation of ACO for feature subset selection, and 

continuous and mixed-variables optimization problems. Finally, Section 2.4 

summarises this chapter. 

2.1 Pattern Classification Technique 

Pattern classification is a significant topic whose objective is to utilize the training 

data to discover the planning relationship among the input and a number of classes. 

It is broadly exploited in a variety of subjects involving pattern recognition, decision 

making and artificial intelligence. At the present time, with classification difficulties 

becoming increasingly complicated, it may appear a good idea but it is more difficult 

to achieve a reliable classification execution (Acharya et al., 2010; Zhang & Li 2010; 

and Reed, Reed & Dascalu, 2010). 

 

Pattern classification systems are improved to distinguish, classify, describe, or 

group patterns or items, which are often characterized through a number of 

measurements (i.e. feature vectors). After the pattern classification systems are built, 

it is an extremely important concern to assess the systems’ executions (Tsai, 2010). 
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Particularly, the main goal of pattern classification systems is to accomplish the 

automated assign pattern into one of a limited group of classes with the smallest 

percentage of misclassification. To achieve this goal, the new pattern classification 

research generally involves two cases: the build-up of strong single pattern 

classification algorithms or hybrid classifiers. 

 

When a difficult classification crisis is faced, the majority of single classification 

algorithms will be deficient in obtaining a high classification accuracy percentage, 

stability of system and strength. To overcome these faults, some hybrid classifiers 

are proposed. These hybrid classifiers are possible and helpful in accomplishing high 

classification accuracy percentages. Hybrid algorithms research is presently growing 

in the pattern classification machine learning and decision sciences (Zhang et al., 

2010). In the literature, much research deals with pattern classification, some of 

these are as follows. 

 

A recent study by Theresa and Raj (2013) names “Fuzzy based genetic neural 

networks for the classification of murder cases using Trapezoidal and Lagrange 

Interpolation Membership Functions” to classify murder cases to help judges about 

to pass sentence in murder cases and as a learning tool for law students. The authors 

propose two classification systems: fuzzy neural network with random weights and 

fuzzy neural network with genetic algorithm based weights. Both systems, built on 

three layered artificial neural network with 27-3-3 architecture, utilize Lagrange 

interpolation and Trapezoidal membership functions. In this study, the feature value 
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converts into fuzzy data based on: Gaussian, Lagrange and Trapezoidal membership 

functions used as input and output of a neural network which is trained using 

BackPropagation. 399 samples were used to evaluate the proposed classification 

systems, collected from district courts, high courts and Supreme Court decisions and 

law experts in India. The results demonstrate that fuzzy neural networks with 

random weights and genetic algorithm based weights utilizing trapezoidal 

membership function better than Lagrange interpolation and Gaussian membership 

functions. 

 

Another recent study introduced by Tsai et al. (2013) called “Genetic algorithms in 

feature and instance selection” tries to classify patterns through not only selecting 

features but also through selecting instances by utilizing genetic algorithms. Five 

different strategies are used to build Support Vector Machine (SVM) with Radial 

Basis Function (RBF) kernel function and k-Nearest Neighbor (k-NN) classifiers 

with different parameter values were tested. These strategies are: baseline, feature 

selection, instance selection, feature selection then instance selection and, finally, 

instance selection then feature selection. Eight University of California, Irvine (UCI) 

datasets varying from small scale to large scale are used to evaluate the proposed 

approach. Each dataset is divided into training and testing subsets and 10-fold cross 

validation is used to evaluate the classifier. The experimental results show that 

feature selection, then instance selection strategy, is better than other strategies in 

terms of classification accuracy for small scale datasets; while for large scale 

datasets, feature selection then instance selection and instance selection then feature 



 

17 

 

selection strategies are better than other strategies. The authors suggest to compare 

baseline strategy with other algorithms that simultaneously select feature and 

instance and to test the execution of combining different features and instance 

selection algorithms as a hybrid approach. 

 

Recent research was conducted on pattern classification using k-NN classifier, called 

“Data weighting method on the basis of binary encoded output to solve multi-class 

pattern classification problems” by Polat (2013). In this research, the author attempts 

to increase the classification accuracy and to simplify the complexity of datasets by 

data pre-processing through utilizing a new data weighting strategy named Binary 

Encoded Output Based Data Weighting (BEOBDW) to represent the output labels of 

datasets in only binary form, then the datasets are weighted utilizing relationships 

between datasets’ features and these two binary codes. Subsequently, the k-NN 

classifier is used as to classify datasets and different values of k are used to decide 

upon the best k value in the classification of datasets. To test the proposed approach, 

five UCI datasets are used and the experimental results show that the proposed 

approach is very efficient and has robust discrimination ability in the classification of 

datasets. Unfortunately, the author does not compare his results with other exiting 

approaches, but he uses many performance measurements to evaluate his proposed 

approach. 

 

A study based on Artificial Neural networks (ANNs) and Multiple Linear Regression 

(MLR) prototypes was presented by Khashei, Hamadani and Bijari (2012). MLR is 
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utilized to summarize linear elements of features in new features then ANNs are 

utilized for data modelling and classification by utilizing original features and 

produced linear features through multiple linear regression. The authors evaluated 

their study on six benchmark synthetic and real life binary and multi-class datasets. 

One-versus-one, one-versus-all, and one-versus-rest approaches are utilized to solve 

multi-class problems, and the experiments’ results show that one-versus-all was 

better than the other two approaches. The result of all experiments demonstrates the 

success of the proposed approach compared with classical multilayer perceptions, 

linear discriminant analysis, quadratic discriminant analysis, kNN, and SVM. 

 

Fu et al., (2012) present a study called “Efficient nonlinear classification via low-

rank regularized least squares”. In their study, they utilize low-rank formulation of 

Regularized Least Squares (RLS) for large scale nonlinear classification and the 

results are compared with kernel and Linear SVM (LSVM) on the UCI repository 

benchmark datasets as well as on synthetic datasets. Both kernel SVM and LSVM 

were implemented using Library SVM (LibSVM) software with five-fold Cross 

Validation (CV) in order to choose regularization variable C, while RLS were 

implemented using Library Linear (LibLinear) software with Leave-One-Out Cross-

Validation (LOOCV) to choose gamma variables. Additionally, a one-versus-all 

approach was used for multi-class datasets. The experiment results show that low-

rank RLS accomplished comparable application. The authors suggest performing 

their approach on music annotation classification problems. 
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Research was conducted on classification using an Ant Colony Optimization (ACO) 

called “Inducing decision trees with an ant colony optimization algorithm” by Otero, 

Freitas and Johnson (2012). The main issue the authors attempt to solve is to 

maximize classification accuracy with a reasonably sized induced decision tree. Four 

variants of Ant-Tree-Miner based on discretization and pruning mechanisms were 

proposed; these variants are a binary entropy established discretization process, two 

stage tree pruning named Ant-Tree-Miner, and C4.5 mistake established pruning. All 

these variants were compared against two famous decision tree induction 

approaches, C4.5 and CART, implemented in Weka as well as against ACO 

established CART decision tree approaches.  The experiments were made on twenty 

two datasets from UCI with ten-fold cross validation in terms of classification 

accuracy and size of obtained decision trees; and the results demonstrate that the 

Ant-Tree-Miner approach is better than other compared approaches, while the Ant-

Tree-Miner based binary entropy established discretization process with two stage 

tree pruning are the best. For future work, the authors suggested using alternative 

heuristic information measures and utilizing alternative discretization approaches. 

 

A study introduced by Ahsan, Ibrahimy and Khalifa (2012) aimed to classify 

ElectroMyoGraphy (EMG) signals of hand motion by utilizing many models of 

ANN. ANN was trained with back-propagation Levenberg-Marquardt with seven 

statistical time and time frequency based features: Moving Average (MAV), Root 

Mean Square (RMS), Variance (VAR), Standard Deviation (SD), Zero-Crossing 

(ZC), Slop Sign Change (SSC) and Waveform Length (WL). The results show that 
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ANN with ten neurons in hidden layers gives best classification accuracy. The 

authors suggest testing their approach with EMG signals taken from disabled or aged 

people because they could have alternate muscle structure and different ways to 

move hand muscles in all directions (right, left, down, and up). 

 

Another study introduced by Verma and Yadava (2012) called “Fuzzy C-Means 

Clustering Based Uncertainty Measure for Sample Weighting Boosts Pattern 

Classification Efficiency” tries to minimize fuzziness in datasets to increase 

classification accuracy. In order to do this, the authors utilized Fuzzy C-Means 

(FCM) clustering for boosting the execution of RBF pattern classifier. The boost 

includes weighting pattern vectors related to fuzziness associated with them as 

created by the FCM clustering, which are then presented to an RBF classifier. The 

feature extraction is completed by utilizing Principle Component Analysis (PCA) on 

the dimensionally auto scaled data and this auto scaling is carried out by means of 

centring and variance normalization along measurement dimensions. The authors 

apply their work on fifteen datasets and the results show that FCM is highly 

reproducible and extremely easy. 

 

A study on the use of Fuzzy Set for Classification by Wang et al., (2012) attempts to 

mine association rules for classification using fuzzy sets and underlying logic 

operation produced through Axiomatic Fuzzy Set (AFS). The authors present a new 

idea of a fuzzy class support to understand mining significant rules from data with 

imbalanced classes. Moreover, they also propose optimal fuzzy confidence 



 

21 

 

truncation guiding to decrease the existing rule base in order to prevent the 

complexity of calculating the minimal confidence level. In order to evaluate AFS’s 

accuracy and interpretability (rule size), the authors use their approach to examine 

twelve UCI datasets with ten-fold cross validation. They compare AFS with rule-

based classifiers and with traditional classification approaches involving Bagging, k-

NN, SVM, and Naïve Bayes; all the results illustrate that AFS performance is better 

than other methods in terms of obtaining high accuracy and smaller rule size while 

maintaining sensible trade-off between accuracy and interpretability. 

 

Another study, presented by Aribarg, Supratid and Lursinsap (2012) titled 

“Optimizing the modified fuzzy ant miner for efficient medical diagnosis”, improves 

Modified Fuzzy Ant Miner (MFAM) to prevent failures in local optimal issues by 

using Simulated Annealing (SA) to dynamically obtain optimal fuzzy set variables 

within MFAM; this will enhance quality of rule building in MFAM which depends 

on fuzzy set variables. Optimizing MFAM (OMFAM) evaluates six UCI medical 

datasets and compares them against MFAM, Fuzzy Ant Miner (FAM), and SVM. 

The results show that OMFAM is the best in terms of accuracy and interpretability. 

The authors suggest applying other advanced seeking approaches instead of SA. 

 

The goal of a study between Fourier Descriptors and Neural Network (NN), 

presented by Phokharatkul and Phaiboon (2011), is to control chart pattern 

classification. The control chart data is portioned into three categories utilizing 

Pearson’s correlation coefficients and then the Fourier Descriptor is utilized to 
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extract control chart features which will be used as input vectors to train Back 

Propagation Neural Network (BPNN) to classify control chart patterns. The training 

process will be halted if epochs are reached or when average Mean Square Error 

(MSE) fails. The authors compare their work with a symbol-sequence histogram and 

the results show that their system gives reliable verification and high classification 

accuracy. 

 

A paper titled “Novel Delta Zero Crossing Regression Features for Gait Pattern 

Classification” was presented by Ibrahim, Sethu and Ambikairajah (2010). In their 

approach, they utilize linear regression on delta Zero Crossing Counts (∆ZCC) to 

extract new dynamic features from a waste-mounted accumulated triaxial 

accelerometer to classify five kinds of walking patterns: flat, slope down, slope up, 

stairs down, and stairs up gait pattern. They utilized a single piezo-resistive waist-

mounted tri-axial accelerometer which can capture both static and dynamic 

acceleration with in all orthogonal axes x, y, and z from 15 female and 37 males 

aged between 21 and 65 over a period of three months. They use the Gaussian 

Mixture Model (GMM) as a classifier and for every class of movement they trained a 

separate GMM by utilizing the Expectation Maximization (EM) approach, followed 

by the Bayesian approach to classify the overall individual’s gait patterns. The 

results show that a ∆ZCC regression feature is better when compared to the ZCC; 

also ∆ZCC regression features execute well when integrated with filter bank 

features. As a future work, the authors suggest to examine higher order regression 

parameters. 
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Zhang et al. (2010) propose a new ensemble intelligent classifier. In their approach, 

they use three well-known classifiers which are a BPNN with twelve neurons in 

hidden layer, one neuron sigmoid output layer with Levenberg-Marquardt as the 

training method, a standard RBF with ten neurons in a hidden layer and Gaussian 

RBF as a transfer function, one neuron in the output layer, and finally a SVM with 

Gaussian kernel function. Each classifier is considered as a group of agents, so the 

whole structure can be considered as a multi-agent construct. Every agent contains a 

group of the same kind of intelligent classifiers by selecting alternative setting 

parameters or alternative sample training groups. The authors evaluate their 

approach on Monk’s problem dataset and compare their approach against single 

BPNN, single Radial Basis Function Neural Network (RBFNN), single SVM, BPNN 

ensemble, and RBFNN ensemble. The results show that their approach produces 

very high classification accuracy. 

 

Two similar studies, one introduced by Santana, Canuto and Silva (2011) called 

“Bio-inspired meta-heuristic as feature selection in ensemble systems: a comparative 

analysis” and the other by Santana et al., (2010) called “A comparative analysis of 

genetic algorithm and ant colony optimization to select attributes for an 

heterogeneous ensemble of classifiers” try to utilize Ant Colony Optimization 

(ACO), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) to select 

feature subset to introduce to the ensemble system classifier to classify four datasets 

and utilize 10-fold cross validation to evaluate the performance of the ensemble 

classifier as well as with and without selected features. The ensemble classifier 
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system comprises of three individual classifiers which are k-NN, Decision Tree 

(DT), and Multi-Layer Perceptron Neural Network (MLP). In order to construct and 

define the learning process of the ensemble classifier system, the authors utilize a 

stacking procedure. Individual diversity and group diversity are two alternative 

parameters utilized in ensemble classifier systems and the results show that when 

GA is used selected feature subset is better than others in individual diversity, while 

PSO supplies better than other in diversity groups. 

 

One-class classification through clustering was introduced by Salama, Hassanien and 

Fahmy (2010) in their paper titled “Uni-class Pattern-based Classification Model”. In 

their approach, they present a Pattern Based Classification (PBC) prototype that can 

extract patterns with likeness through all objects in an exact class. The difficulty lies 

in the user-defined threshold that arises in the pattern based subspace clustering is 

built on a classical clustering approach. The new element in this work is that the 

input training set has assigned class labels. The authors test their approach on two 

UCI datasets and the Chiba university dataset. The results show effectiveness and 

capability of PBC in term of classification accuracy compared against the Bayesian 

network, SVM, Multilayer Neural Network and Decision table. The authors suggest 

obtaining a suitable missing data imputation for information data (selected feature) 

and obtaining a method for rule extraction because it is considered as a challenge in 

the prototype. 
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Fang and Li (2009) propose an approach titled “An integrated space-time pattern 

classification approach for individuals’ travel trajectories”. Their approach can 

integrate space-time to classify individuals’ local and global travel trajectories. The 

main benefits of their approach are its sensitivity of travel movements and also its 

capability providing space-time analysis and pattern mining. The authors utilize 

Equal Interval Standard Deviation, Defined Interval, Natural Breaks and Quintile as 

classification techniques. Household travel characteristics survey data is utilized to 

classify and implement their approach. The results show that their approach is 

certainly appropriate to classify huge amounts of individual travel trajectories; 

however, it is not able to calculate the likeness between trajectories. Handling the 

classification and recognition of online-human activities is addressed by the authors 

in their future work. 

 

Yang, Han and Han (2009) present Shortest Feature Line Segment (SFLS). The main 

idea of SFLS is that it tries to obtain the shortest feature line segment give geometric 

relation limitations and does not compute the distance between the query point and 

the feature line as with Nearest Feature Line (NFL); in this case, it can resolve 

NFL’s disadvantages which are related to extrapolation, interpolation and 

computational efforts. SFLS is tested on three UCI datasets and compared against 

Nearest Neighbor (NN), k-NN, Bayesian NFL, and Refined Nearest Feature Line 

Segment (RNFLS). The experiment results show that SFLS is an easy and successful 

classification technique. The authors suggest investigating for a faster and more 

successful approach for SFLS, modifying SFLS to be, for example, k-SFLS which 
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follows the same concept of k-NN, utilizing other distance calculations in the SFLS 

approach and, finally, improving SFLS by some way to minimize the cost for 

computation. 

2.2 Support Vector Machine 

The SVM has been introduced as a successful statistical learning approach for 

classification. The original SVM was improved by Vapnik and it has obtained wide 

recognition due to many interesting features and practical implementations. The 

SVM was improved based on the concept of structural risk minimization (Yuxia & 

Hongtao, 2012; Li & Zhou, 2011; Qiu et al., 2011; Jin, Chen & Ma, 2010; Al-Naami 

et al., 2010; Zhang & Mao, 2009; Kapp, Sabourin & Maupin, 2009; Lu et al., 2009; 

Liu & Zhang, 2009; and Luo et al., 2008) which means, it decreases the tradeoff 

between the experimental mistake and the difficulty that arises from classification of 

estimating functions to prevent over fitting (Ju et al., 2009; and Bajla et al., 2009). 

The concept of structural risk minimization plans the data into high dimensional 

domains via kernel functions by using kernel tricks (Wang et al., 2010; Ye et al., 

2009; Shieh & Yang, 2008; Lessmann, Stahlobock & Crone, 2006; Kadoury & 

Levine, 2006; Nguyen et al., 2006; and Vapnik, 1999). There are many types of 

kernel functions, such as polynomial, RBF, linear, and sigmoid kernel function. 

Nevertheless, RBF is the most popular kernel function because of its capability to 

manage high dimensional data (Moustakidis & Theocharis, 2010), good performance 

in major cases (Zhang et al., 2009), and it only needs to use one parameter, which is 

kernel parameter gamma ( ) (Huang & Wang, 2006). However, the disadvantage of 
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RBF is that it will fail if it deals with large numbers of features (Huang & Dun, 

2008). 

 

SVM has an extremely good generalization capability and strong theoretical 

foundation (Liu & Zhang, 2009). Generalization capability can be defined as the 

ability of SVM to classify unknown data examples correctly through constructed 

SVM. This is achieved by learning SVM from training examples which is also 

known as SVM performance (Zhang, Chen & He, 2010). The SVM manipulates the 

“curse of dimensionality”, which means the computational complexity for the SVM 

training or testing is not affected by the feature space dimensionality (Wang et al., 

2010 and Liu & Zhang, 2009). 

 

There are two types of SVM: binary and multi-class. Binary SVM is the core of 

SVM. It is capable of distinguishing between two classes. Multi-class SVM expands 

binary SVM by being able to classify three or more classes. The main algorithm 

involved in multi-class SVM is to divide the classification problem to many binary 

problems with its own classifier (Harvey, 2009). Two main methods are related to 

SVM multi-class classification: One-Against-All (OAA) and One-Against-One 

(OAO). In OAA, a group of binary classifiers are trained to isolate each class from 

all others. Based on the largest decision value, each data object would be classified 

to the class. The main advantage of this method is its fast method; unfortunately, it is 

prone to errors obtained from the marginally unstable training groups. The other 

method, OAO, is a sequence of classifiers that is implemented on a pair of classes 
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with the popular calculated class preserved in each object. Subsequently, a max-min 

operator is applied to calculate to which class the object will finally be allocated. 

This method is considered as being more accurate but it is slower than OAO 

(Tzotsos & Argialas, 2008). 

 

Classification work of SVM strongly depends on selecting the appropriate kernel 

function, kernel parameter and suitable value for the regularization parameter C 

(Bhadra, Bandyopadhyay & Maulik, 2012; Zavar et al., 2011; Hric, Chmulik & 

Jarina, 2011; Jin et al., 2011; Liao, Yang & Ding, 2011; Zhang, Chen & He, 2010; 

Sun et al., 2010; Zhou & Xu, 2009; Zhang, 2008; Acir, Ozdamar & Guzelis, 2006; 

Lessmann, Stahlbock & Crone, 2006; and Wu & Li, 2006). Additionally, selecting 

small numbers and suitable feature subset also has an effect on SVM performance 

(Feki, Ishak & Feki, 2012; Tan et al., 2012; Hu et al., 2012; Xie & Wang, 2011; 

Zavar et al., 2011; Nguyen & Torre, 2010; Dunbar et al., 2010; and Liu & Zhang, 

2009). 

 

Nonetheless, there are two main strategies to classify patterns using SVM: 

simultaneous and non-simultaneous. Non-simultaneous strategy may be divided, in 

turn, into two approaches: optimizing only the value for the SVM parameters or 

optimizing only feature subset selection. One of the main downsides to the non-

simultaneous strategy is that the selecting feature subset and tuning SVM parameters 

are completed separately and this would greatly influence the classification process 

as there might be relevant information which is lost during this process (Nguyen & 
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Torre, 2010). The current research direction has moved towards simultaneously 

optimizing both feature subset selection and tuning SVM parameters by using 

optimization algorithms. This approach will increase the classification accuracy 

because selecting suitable feature subset and values for SVM parameters influence 

each other and, in turn, will influence classification accuracy (Sarafrazi & Pour, 

2013; Zavar et al., 2011; Han, Hou-Jun & Xiucheng, 2011; Zhao et al., 2011; Huang, 

2009; Ding & Li, 2009; Lin & Chien, 2009; Huang & Dun, 2008; Pham et al., 2007; 

Lin et al., 2008; and Huang & Wang, 2006). Techniques such as PSO, ACO, GA, 

Cat Swarm Optimization (CSO), and Clonal Selection Algorithm (CSA) are used to 

simultaneously optimize feature subset selection and value for SVM parameters. The 

following subsections illustrate these strategies. 

2.2.1 Approach in Solving Model Selection Problem 

The SVM has recently been seen as a stronger approach for resolving difficulties in 

pattern classification but its execution depends, especially, on the variables chosen 

for it. Variables chosen for SVM are very complex and difficult to resolve via 

conventional optimization approaches (Reif, Shafait & Dengel, 2012; Anguita & 

Ghio, 2011; Xusheng, Wei & Yongxiang, 2010; and Zong, Liu & Don, 2006). The 

difficulty in selecting the values of SVM variables that decrease the prediction of test 

error is called the model selection problem (Kapp, Sabourin & Maupin, 2012; 

Anguita & Ghio, 2011; Glasmachers & Igel, 2010; Zhang, 2008; Chapelle & Vapnik, 

2000; and Vapnik & Chapelle, 2000). However, researchers use previous skills in 

choosing SVM variables. In order to seek suitable variable groups, some 
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implementation conditions of the prototype need to be selected. This point, at which 

a minimum training group mistake or validation group mistake is achieved, is chosen 

as the variable group to apply training and thereafter forecasting (Saini, Aggarwal & 

Kumar, 2010). 

 

Model selection alternates, mainly, between two features: the chosen conditions and 

the seeking approaches utilized. The chosen conditions – meaning fitness function - 

is an assessment that directs the seek. Some are especially associated with the SVM 

formulation, such as: radius margin bound, span bound, and support vector number. 

Others are traditional, such as cross validation and hold-out assessments (Kapp, 

Sabourin & Maupin, 2012). Many researchers choose SVM variables experimentally 

by applying a bounded number of values and preserving the values that provide the 

minimum test mistake. Manual selection is avoided because it is not accurate and 

does not provide any assurance on the quality of the result (Imbault & Lebart, 2004). 

 

As mentioned earlier, in order to optimize value for SVM parameters, techniques 

like trial and error, grid search, generalization error estimation and gradient descent, 

and evolutionary algorithms may be used to tune SVM parameters. Some 

disadvantages are associated with a few of these techniques such as: the trial and 

error technique has its shortcomings in uncounted results; grid search algorithm 

suffers from calculation complexity; and discretization of the seek domain in 

constant values is critical to achieve high performance; cross validation has the 

disadvantage of having long and complex computations; while in the gradient-based 
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technique, choosing a non-suitable beginning point, will pose a problem; also, it 

needs a differentiable objective function regarding the hyper parameters and the 

kernel, which requires it to be differentiable; additionally, this technique suffers from 

multiple local minima in objective functions. Evolutionary algorithms such as ACO 

can simplify the choice of optimal value processes for SVM parameters (Kapp, 

Sabourin & Maupin, 2012 and Zhang, Chen & He, 2010). 

 

The variables involved in optimization, C and kernel parameters, are necessary in 

constructing a successful and highly executable SVM prototype. When utilizing 

SVM, it is difficult to choose parameters in order to obtain high generalization 

execution. Therefore, investigating better approaches to choose optimal variables is 

often carried out. The purpose of optimizing variables for SVM is to obtain variables 

that decrease generalization mistakes (Diosan, Rogozan & Pecuchet, 2012 and Dong 

et al., 2007). It is seen as difficult because it requires either exhaustive searching 

through the space of variables or optimizing approaches that discover only a 

bounded subgroup of the potential values (Imbault & Lebart, 2004). There is also no 

regular methodology that accepts advance approximation of their optimal values. In 

fact, in the present classification work, obtaining good values for these parameters is 

not an easy model selection problem that requires either an exhaustive search 

through the space of hyper variables or an optimization approach that searches only a 

bounded sub group of the potential values (Zhang, Chen & He, 2010). 
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The kernel function parameter indirectly defines non-linear planning from the input 

domain to a high dimensional feature (attribute) domain where the maximal margin 

hyperplane is obtained (Zhang, Chen & He, 2010 and Tang, Guo & Gao, 2009); an 

extremely large value for kernel parameter can be due to over fitting, otherwise, it is 

due to under fitting; while regularization parameter C monitors the tradeoff between 

the complexity of the machine and the amount of non-separable points (training 

error). In other words, the C parameter monitors the tradeoff between margin 

maximization and error minimization (Lázaro-Gredilla, Gómez-Verdejo & Parrado-

Hernández, 2012; Li, Liu & Gong, 2011; Zhang, Chen & He, 2010; Tang, Guo & 

Gao, 2009; and Chapelle et al., 2002). If C is too large, the assessment of precise 

percentage is very high in the training stage, but very low in the testing stage. If C is 

too small, the assessment precision is unsatisfied, and the model is useless. Kernel 

parameter has much greater impact on assessment than C (Liu et al., 2013). In the 

literature, much research deals with solving model selection problems, some of these 

are discussed below. 

 

A recent paper titled “Multi-fault classification based on wavelet SVM with PSO 

algorithm to analyze vibration signals from rolling element bearings” introduced by 

Liu et al. (2013) uses PSO to tune SVM parameters: C and wavelet kernel parameter 

α for multi-fault classification. In this paper, the author uses an empirical model 

decomposition (EMD) method to extract vibration signals measured from rolling: 

fourteen time-domain statistical features and thirteen frequency-domain statistical 

features are extracted from these signals, and then a distance evaluation method is 

http://www.sciencedirect.com/science/article/pii/S0952197612001431
http://www.sciencedirect.com/science/article/pii/S0952197612001431
http://www.sciencedirect.com/science/article/pii/S0952197612001431
http://www.sciencedirect.com/science/article/pii/S0952197612001431
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used to select most superior features. In order to evaluate the proposed study, the 

authors compare SVM with Gaussian RBF kernel. The experimental results show 

that Wavelet SVM (WSVM) with two types of wavelet function: the Morlet and the 

Mexican wavelet kernel functions, obtain better classification accuracy than RBF–

SVM, but the authors do not mention which wavelet kernel function type is better 

than others, also, they do not mention what PSO type is used to optimize and deal 

with the continuous value of SVM parameters. The authors suggest improving their 

work through utilizing advanced wavelet kernel functions that can adaptively match 

any curve in quadratic continuous integral domain because the wavelet kernel 

function used in their study presents as translation and dilation of one fixed function, 

the characteristics of the wavelet functions are isolated with the processed signals. 

 

Another study on tuning SVM parameters conducted by Abdi and Giveki (2013) 

titled “Automatic detection of erythemato-squamous diseases using PSO–SVM 

based on association rules” uses Association Rules (ARs) to select feature subset and 

then utilizes PSO to tune SVM parameters: C and σ of RBF kernel parameter; they 

name their approach AR-PSO-SVM. The authors test their approach on an 

erythemato-squamous diseases dataset taken from UCI and this dataset is considered 

as a multi-class classification problem; so the author uses a OAA decomposition 

technique to construct a multi-class SVM classifier. In order to evaluate their 

approach, the authors also implement a Multi-Layer Perceptron (MLP) classifier 

utilizing ARs to select feature subset. Both approaches are implemented using 

MATLAB software and the authors compare their results with AR-MLP and SVM 
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alone. The experimental results show that AR-PSO-SVM performs better in terms of 

classification accuracy and size of feature subset selection. Also in this paper, the 

authors do not mention what type of PSO is used to tune the continuous value of 

SVM parameters. The authors suggest applying their approach on other datasets 

benchmarks to test the applicability of their approach. 

 

A recent study introduced by Azadeh et al. (2013) aims to classify two types of faults 

condition of centrifugal pump through six features: flow, temperature, suction 

pressure, discharge pressure, velocity and vibration, by implementing four methods: 

SVM alone, SVM with GA, SVM with PSO and feed forward MLP. The authors do 

not mention how the feature subset is selected. In this study, classical GA and PSO 

are used to tune SVM parameters: C and parameter of four kernel functions named: 

linear, quadratic, Gaussian, and polynomial. First SVM parameters are generated 

randomly then GA or PSO optimize this parameter and select the one that produces 

the best classification accuracy. The average classification accuracy is computed 

through utilizing a 10-fold cross validation method. The comparison results are 

carried in two directions: first, the four proposed methods are compared against each 

other and the results show that SVM-GA and SVM-PSO produce better 

classification accuracy while the second direction compares the proposed methods 

against k-NN and Decision Tree; the results show that ANN, SVM-GA and SVM-

PSO produce better classification accuracy. The authors suggest applying their 

approach on multi-class classification problems. 
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A study presented by Lázaro-Gredilla, Gómez-Verdejo & Parrado-Hernández (2012) 

called “Low-cost model selection for SVMs using local features” uses a 10-fold CV 

technique to optimize the C parameter while, for optimizing Gaussian kernel width 

parameter, they present three different methods that combine information about the 

local construction of each dataset. These methods are, k-NN, nearest enemy, and 

redundant fast clustering. In their study, they implement the three methods for 

optimizing Gaussian kernel parameter in Matlab and they use LibSVM for 

implementing SVM. They evaluate their study on six UCI datasets and compare it 

with CV. The results show that k-NN finds the best value for kernel parameter for 

three datasets, nearest enemy obtains best value in only one dataset, and CV obtains 

the best value in two datasets; whereas, redundant clustering could not find any best 

value. The authors suggest extending their study to deal with multi-class 

classification; they also suggest determining the single features of each dataset that 

support application for each of the three methods in addition to using the information 

found regarding the local construction of the problem to generate a multi-kernel 

classifier, where every support vector is labelled to a different value of kernel 

parameter. 

 

Research conducted on optimizing SVM parameters using Differential Evolution 

(DE) by Bhadra, Bandyopadhyay and Maulik (2012) attempts to solve how to 

optimize SVM parameters. In order to solve this issue, three factors are utilized 

(accuracy, sensitivity, and specificity) to generate fitness function that requires to be 

maximized; unfortunately, the authors do not explain how to compute these three 

http://www.sciencedirect.com/science/article/pii/S0952197612001431
http://www.sciencedirect.com/science/article/pii/S0952197612001431
http://www.sciencedirect.com/science/article/pii/S0952197612001431
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factors or how the proposed study is to work. In their research, they propose a meta-

classification prototype (SVMDEMeta) using four types of kernel function which are 

linear, polynomial, RBF, and sigmoid. SVMDEMeta is evaluated on three real-life 

datasets: TargetMiner, and two UCI datasets. LibSVM is utilized to implement SVM 

and the experiments move in two directions; the first relates to comparing 

SVMDEMeta with SVMDELin, SVMDERBF, SVMDEPoly, and SVMDESig and the 

second relates to comparing SVMDEMeta with ensemble classifier such as Bagging, 

AdaBoost, LogicBoost, Classification Via Clustering (CVC), and ensemble 

selection. The results from these two directions show that SVMDEMeta is the most 

successful compared with other stated methods in terms of accuracy, sensitivity, and 

specificity. 

 

Kapp, Sabourin and Maupin (2012) propose, in a study to optimize hyper-parameters 

for SVM by utilizing PSO and grid search in a dynamic environment, alternating 

among three stages: best solution obtained so far will be utilized; utilizing adapted 

grid search to seek for a new solution; or perform dynamic optimization procedure. 

To do this, their framework includes three basic modules; the first module is a 

change detection module to monitor the intensity of the seek task through addressing 

how the solutions are obtained by the stages of the framework; the second is an 

adapted grid search to supply optimum solutions through re-evaluating the 

knowledge taken from past optimizations applied by the Dynamic Particle Swarm 

Optimization (DPSO) module which will become the third and last module 

responsible for obtaining new solutions through re-optimization procedures. The 
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authors examined their approach on fourteen datasets and compared their work with 

classical Grid Search (GS), 1
st
 Grid Search (1

st
 GS), Chained PSO (CPSO), and 

Dynamic Model Selection (DMS). The results show that their approach outperforms 

the classical methods in term of model complexity. 

 

Another study, conducted by Lei and Qiao (2012), named “Text categorization using 

SVM with exponent weighted ACO” attempts to find the optimal value for σ kernel 

and C SVM parameters to enhance performance on classified Chinese text provided 

by Sogou Labs. The authors utilize exponent weighted ACO to optimize SVM 

parameters, the reason for which is to avoid local optimization and slow convergence 

speed in ACO. A Kernel Condition Random Field (KCRF) was utilized as a pre-

processing step to segment words, extract features and representation, and then a 

combination of Principle Component Analysis (PCA) and noise elimination 

threshold was utilized to select feature subset. A one-to-one strategy was utilized in 

this study to classify multi-class text and the results compared with standard SVM, 

Linear Kernel Function SVM (LKF-SVM), AdaBoost, and Naive Bayes; the results 

show that the proposed study had optimal execution in terms of classification 

accuracy and efficiency. The authors suggest the use of a mutation procedure in 

ACO to avoid the local convergence problem as well as to use other swarm 

optimization techniques. 

 

A study called “Parameter Selection Algorithm for Support Vector Machine” was 

conducted by Wang and Meng (2011) for solving SVM model selection problems. In 
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this study, the modified PSO is utilized to choose the optimal value for SVM 

parameters. The modified PSO made through virtue of chaotic motion with sensitive 

count on initial conditions and ergodicity (CPSO) and the error of k-fold CV is 

utilized as the objective function of PSO. Wang and Meng use SVM with Gauss 

kernel (GSVM) and SVM with WSVM and, in order to use wavelet kernel, Marr 

wavelet is utilized to build a translation invariant wavelet kernel. The performance of 

GSVM and WSVM is compared against BPNN with four neurons in the input layer, 

ten neurons in the hidden layer, and one neuron in the output layer. The results show 

that WSVM has fast convergence speed and high generalization capability compared 

with GSVM; and compared with BPNN, SVM it has simple construction, fast 

convergence speed with high generalization capability. 

 

Qiu et al., (2011) conducted a study on SVM parameters optimization by using Bare 

Bones Differential Evolution (BBDE). BBDE is a hybrid of the barebones PSO and 

DE. It deletes the monitor variables of PSO and substitutes the static DE monitor 

variables by dynamically alternating variables to generate a general parameter-free, 

self-adaptive, optimization algorithm. Qiu, Li, Zhang and Gu test their method on 

four UCI datasets. They run their algorithm 20 times and they compare their results 

with a grid algorithm. The results show that the testing accuracy is higher the grid 

search which indicates that the parameters chosen by BBDE and DE are better than 

the ones chosen by grid search. The testing accuracy of BBDE-SVM is higher than 

DE-SVM and BBDE-SVM is quicker than DE-SVM, this is because BBDE-SVM 

has fewer parameters to set than DE-SVM. 
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Model Parameters Selection for SVM Classification using Particle Swarm 

Optimization was proposed by Hric, Chmulik and Jarina (2011). In this work, the 

authors utilize a standard type PSO and each value of the particle is rounded to one 

decimal place where parameter range is the same as in the grid search model 

selection. Additional to PSO, GA that works with real parameters to tune SVM 

parameters is also implemented. They compare their work with a grid search 

algorithm. In order to evaluate their work, they examine their work on two datasets: 

a letter recognition database and speech dataset for speaker recognition processes. 

They utilize a five-fold CV. Both PSO and GA seek for the optimal value of C and 

RBF kernel SVM parameters in 20 iterations. The results showed that both PSO and 

GA are faster than grid search in model selection, both techniques present 

comparable results and have a capability to optimize more than two parameters. The 

results for the letter dataset show that PSO and GA obtain classification accuracy 

that is as good as grid search, while in case of the speaker dataset, the results show 

that PSO can obtain good parameters and obtain classification accuracy five times 

better than GA. 

 

Liao, Yang and Ding (2011) produced a paper named “Approximate Parameter 

Tuning of Support Vector Machines” which considers a novel productivity model 

selection strategy for SVM through kernel matrix approximation. They examine the 

feasibility and efficiency of model selection on five UCI datasets and the results 

indicate that the sampling sizes decrease in a certain range, therefore, the alternations 

of test set accuracy do not need to be taken into consideration closely ignorable. 
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Also, they compare the 5-fold cross validation accuracy between accurate and 

approximate optimal models. For future work they suggest building a complete 

approximate model selection theory which has a close fitting approximation mistake 

range and can be directly or indirectly performed in the design of adaptive 

approximate model selection algorithms. 

 

A novel study named “Hepatitis disease diagnosis using a novel hybrid method 

based on support vector machine and simulated annealing (SVM-SA)” proposed by 

Sartakhti, Zangooei and Mozafari (2011) was carried out. SA is used to find the 

optimal value for SVM parameters which are C and γ RBF kernel parameter. Firstly, 

SA parameters are initialized, as are random SVM parameters (C and γ); 

subsequently regarding these random SVM values, SA is used to seek best 

neighbours. k-fold CV is utilized to obtain CVs and compare the alternation 

combination of C and γ. If the combination is satisfied the algorithm will stop and 

construct the leaner classifiers for Pair-Wise Coupling (PWC) probability 

guesstimate, otherwise, it must tune them and continue. Apart from hepatitis disease 

diagnosis, SVM-SA is also applied on a two-spiral dataset and a chain link dataset. 

The results show that the SVM-SA approach can find very hopeful results in 

classifying. The authors suggest to expand their work to employ some feature 

selection techniques and other learning approaches will be utilized in order to 

maximize the precision of their approach. 
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GA and SVM was used for a model selection problem proposed by Samadzadegan, 

Soleymani and Abbaspour (2010). The authors show that the hybridization between 

GA and SVM can improve the classification accuracy and convergence speed when 

compared with classical grid search algorithm and SVM. In this study, the authors 

utilize GA to optimize C and RBF kernel function parameter encoded as real value 

chromosomes; the fitness value for each chromosome is computed with regard to the 

chromosome’s classification accuracy obtained from multi-class decomposition 

(one-versus-one and one-versus-all). The implementation of GA-SVM was carried 

out on Java by expanding the LibSVM and JGAP package for implementing the GA 

part. In order to evaluate this study, the authors examine it on five datasets, three 

from UCI and two found in LibSVM. The authors suggest applying their study on a 

binary class SVM, on other kernel functions, and also on optimizing feature subset 

which are considered to be another problem of SVM. 

 

A paper written by Zhang, Chen and He (2010) is presented, using an ACO and grid 

search to solve a SVM model selection problem. The author presents a novel ACO 

pheromone model and divides the ranges of RBF and C parameter into a number of 

grids and allows ants to select the best combination of RBF and C parameters. To 

examine the execution of this approach, the author uses five UCI datasets compared 

against grid search SVM, 5-fold CV, radius margin bound, span bound as well as 

with the method proposed by Adankon and Cheriet (2007). The results show that the 

proposed approach is feasible and efficient to optimize the SVM parameters and 

produce hopeful results in term of classification accuracy. 
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Zhou and Xu (2009) present a study named “A SVM Model Selection Method Based 

on Hybrid Genetic Algorithm and Empirical Error Minimization Criterion”. In the 

study, the authors integrate GA with a gradient descent method to build hybridized 

techniques to select the optimal value for RBF and C parameters. Their technique 

first selects the best chromosome as the initial solution, then utilizes a gradient 

descent approach to seek for optimal kernel parameters for the best chromosome as 

its iterative solution. After examining a new generation, the new best chromosome 

was taken from three nominees: the best solution in the past generation, the best 

solution in the new generation, and the iterative enhanced version of the past best 

solution. Zhou and Xu evaluate their approach on thirteen datasets and compare their 

approach with simple GA-SVM, 5-fold CV, Radius Margin Bound (R-M bound), 

span bound and Adankon’s approach; the results show that this approach finds better 

results compared with other approaches. Zhou and Xu suggest examining their 

approach on more real applications and applying it with other kernel function as well 

as using some heuristic mechanisms to speed up their approach. 

 

Tang, Guo and Gao (2009) propose research called “Efficient Model Selection for 

Support Vector Machine with Gaussian Kernel Function”. The authors propose a 

two-phase heuristic parameter selection approach which is able to automatically set 

the Gaussian kernel parameter and the cost parameter in SVM. Firstly, a new 

Gaussian kernel parameter selection method is proposed. Subsequently, to choose 

the cost parameter C and Gaussian kernel parameter, the proposed method, 

integrated with a one-dimension cross validation seek mechanism, develops a 
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complex parameters method. The authors evaluate their approach on eight real world 

datasets taken from UCI and compare their work with the standard grid search 

method which has high accuracy in parameter selection, a two stage Uniform Design 

(UD) schema which has computational efficiency, and also with Empirical Set (ES) 

method. The results show that the proposed approach finds the highest test accuracy 

of SVM in six datasets among the eight UCI datasets. The proposed approach 

reliably obtains a good parameter string for Gaussian kernel SVM in a small number 

of trail pairs. The authors suggest as future work to apply their work to other types of 

kernel function as well as to apply it on SVM regression. 

 

A study presented by Fang and Bai (2009) titled “Share price prediction using 

wavelet transform and ant colony algorithm for parameters optimization in SVM” 

aims to optimize C and σ kernel function SVM parameters through utilizing ACO. 

Both parameters C and σ are divided into a number of sub intervals. In each sub 

interval, one point is chosen unsystematically to be the location of artificial ants. 

Before starting each loop, advance knowledge and heuristic information are 

modified. In every loop, the transition probability of each ant is predetermined. The 

ant will move to the next interval if the state transition rule is met, otherwise, the ant 

will search for optimal variables within the local interval. Their results show a very 

promising hybrid SVM model for forecasting share price in terms of accuracy and 

generalization ability. 
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Zhou, Zhang and Bai (2008) present a study called “Client classification on credit 

risk using rough set theory and ACO-based support vector machine”. In their study 

they firstly discretize the continuous feature through the Average Linkage method 

and then compute t-tests for each feature. After that rough sets are utilized to select 

suitable feature subset and ACO is used to tune SVM parameters which are σ of 

Gaussian kernel and C parameter. In order to evaluate their work, the authors apply it 

on a Chinese bank credit risk classification problem and compare the result with 

Fisher, Probit, fix SVM parameters and PBNN with eight input neurons, seven 

hidden neurons, and one output neuron. The results show that their approach 

outperformed other approaches in terms of best classification accuracy, the lowest 

error of Type I (mean the first year before failure, failed firms are classified as non-

failures), and Type II (means non-failed firms are classified as failures). 

 

Zhang (2008) proposed a study titled “Evolutionary computation based automatic 

SVM model selection” aiming to optimize SVM parameters through utilizing 

evolutionary computation approach and using recollection, accuracy and mistake 

ratio as an optimization goal. The concept of constructing a kernel prototype is used 

which is then modified to the data group with the help of evolutionary computation 

approaches. The modification procedure is directed by the feedback information 

obtained from SVM execution. Both GA and PSO are used as evolutionary 

computation approaches to resolve optimization difficulty that occurs due to their 

robustness and global seeking capability. The results show that PSO produces better 

results compared with GA when it is used to optimize SVM parameters. 
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Saini, Aggarwal and Kumar (2010) use GA to optimize SVM variables. The 

regularization parameter C and kernel parameters are dynamically optimized through 

GA. SVM parameters are encoded into chromosomes and the GA operation 

including crossover and mutation are applied on these chromosomes to obtain the 

optimal value for SVM parameters. The authors use unconnected time strings for 

each worked trading interval instead of utilizing single time strings to model each 

day’s price profile. From their experiments they conclude that their model supplies 

better predicting capability with sensible levels of accuracy and stability. 

 

A grid-based ACO technique was introduced by Zhang et al., (2008) to select 

variables C and σ RBF kernel automatically for SVM instead of choosing variables 

randomly through human skill to minimize generalization mistakes and 

generalization execution may be enhanced concurrently. The ranges of SVM 

parameters are divided into many intervals and then ACO search for optimal 

combination of SVM parameters values to present to SVM. Their work provides 

high accuracy compared with other methods like an exhausting seeking approach 

with human experience, grid algorithm and cross validation approach. However, one 

dataset is used to evaluate the performance of the proposed technique. The authors 

suggest applying their approach on more datasets to examine the power of their 

work. 
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2.2.2 Approach in Solving Feature Subset Selection Problem 

A recognized difficulty in classification particularly, and machine learning 

universally, is to obtain methods to minimize the dimensionality of the feature 

domain to prevent the danger of over fitting (Guyon et al., 2002) and, as mentioned 

earlier, SVM is an established optimization approach for data classification 

problems; additionally, it is widely used for classification in machine learning. SVM 

can avoid having repeated features. Contemporary datasets mostly involve large 

features, many of which may be noisy or non-related to the context of the analysis, 

so eliminating the irrelevant features can minimize SVM complexity, accelerate 

SVM convergence, and also improve its execution (Feki, Ishak & Feki, 2012; Tan et 

al., 2012; Hu et al., 2012; Xie & Wang, 2011; Nguyen & Torre, 2010; Dunbar et al., 

2010; and Liu & Zhang, 2009). Researches related to Feature Selection (FS) 

constantly deals with the issue of choosing suitable input features to produce good 

classification results. Therefore, it has been noticed that successful application using 

datasets of large numbers of features, would be difficult to manipulate (Wang, 2012; 

Xiong & Wang, 2008; Shieh & Yang, 2008; Verleysen, Rossi & Francois, 2009; 

Jensen & Shen, 2004; and Partridge, Wang & Jones, 2001). 

 

A FS algorithm can be seen as three groups, depending on how the classification 

model is built using machine learning and feature selection search, these are 

wrapper, filter, and embedded, sometimes called hybrid approaches (Atienza et al., 

2012; Unler, Murat & Chinnam, 2011; Brogin & Slanzi, 2010; Moustakidis & 

Theocharis, 2010; Peng & Jiang, 2010; and Schaffernicht, Stephan & Grob, 2007; 
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and Weston et al., 2001). Filter and wrapper approaches may be further classified 

into five main methods: forward selection, backward elimination, forward/backward 

combination, random choice and, finally, instance based method (Basiri, Aghaee & 

Aghdam, 2008 and Kanan, Faez & Taheri, 2007). 

 

A filtering method can be used in the preprocessing phase to minimize space 

dimensionality, over fitting and independency on the classifier. The main idea 

behind using a filtering approach is to look for related features and delete the non-

related features through using statistical measurements (Atienza et al., 2012; 

Foithong, Pinngern & Attachoo, 2012; Lian, 2012; Unler, Murat & Chinnam, 2011; 

Peng, Wu Jiang, 2010; Brogin & Slanzi, 2010; Moustakidis & Theocharis, 2010; and 

Su & Yang, 2008). There are two steps in using a filters approach: In the first step 

criteria such as information, distance, dependence, or stability are used for feature 

selection without classifier; in the second step, with the selected features, a classifier 

would learn from the training data and be examined on the test data (Moustakidis & 

Theocharis, 2010; Brogin & Slanzi, 2010; and Su & Yang, 2008). 

 

A wrapper approach searches through the area of all potential feature subset by 

applying the forecasted accuracy based on classification algorithms. These 

approaches are exhaustively calculated and rely on the classification algorithm, but 

they also consider feature dependencies (Atienza et al., 2012; Foithong, Pinngern & 

Attachoo, 2012; Lian, 2012; Unler, Murat & Chinnam, 2011; Peng, Wu & Jiang, 

2010; Moustakidis & Theocharis, 2010; Shieh & Yang, 2008; and Liu & Zheng, 
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2006). A wrapper approach is seen as useful but is very slow to run because the 

learning approach is called repeatedly. Hence, wrappers do not perform well on large 

datasets that have many features (Atienza et al., 2012; Foithong, Pinngern & 

Attachoo, 2012; Lian, 2012; Unler, Murat & Chinnam, 2011; and Hall, 2000). 

 

The quality of features and feature subset size are often used as the terminating 

condition in wrapper techniques (Moustakidis & Theocharis, 2010). The wrapper 

approach involves two steps: choosing the good feature subset by utilizing the 

accuracy of the classifier (on the training data) as a condition to learn and 

understand; and the second step, a learning classifier is taken from the training data 

with the best feature subset, and would be examined on the test data (Su & Yang, 

2008). 

 

If a comparison is made between filter and wrapper approaches, it is obvious that the 

filter is able to perform at a much faster rate compared to the wrapper. Therefore, it 

can be used on large datasets with many features. The generic existence allows them 

to work with any learner. This is not the same when it comes to the wrapper because 

the wrapper needs to be re-executed when changing from one learning approach to 

another. The filter technique is more efficient than the wrapper technique based on 

calculation. However, a major disadvantage is that an optimal selection of features 

may not be treated separately from the inductive and representational influences of 

learning approach, which is used to build the classifier. The wrapper technique on 

the other hand, includes extra calculation which measures nominated feature subset 
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by running a provided learning approach on the database using each feature subset 

under restriction (Atienza et al., 2012; Foithong, Pinngern & Attachoo, 2012; Lian, 

2012; Unler, Murat & Chinnam, 2011; Wang et al., 2010; and Oliveira et al., 2003). 

 

In the hybrid or embedded approach, the advantage of both feature and wrapper 

technique is utilized. The optimal feature subset is constructed into the classifier 

when it is being built. The interaction with classification prototype enhances the 

calculation complexity and considers feature dependencies (Lian, 2012; Brogin & 

Slanzi, 2010; and Peng, Wu & Jiang, 2010). In the literature, there much research 

that deals with using SVM and feature selection, some of these are as follow. 

 

A recent study presented by Hidalgo-Muňoz et al. (2013) titled “Application of 

SVM-RFE on EEG signals for detecting the most relevant scalp regions linked to 

affective valence processing” tries to select feature subset for SVM classifiers 

through using Recursive Feature Elimination (RFE). The authors evaluate their study 

on brain oscillation dynamics from Electroencephalography (EEG) signals 

throughout the scalp. EEG signals are recorded during visualization of selected 

pictures belonging to an International Affective Picture System (IAPS). In order to 

transfer EEG signal from input domain to topography-time–frequency feature 

domain, A Morlet wavelet filter is used and SVM-RFE is performed for detecting 

Scalp Spectral Dynamics Of Interest (SSDOI) in this feature space. In order to 

evaluate the proposed study, 26  healthy females are included in this study aged 

between 18-62 years with normal or corrected to normal vision, none of whom had a 
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history of severe medical treatment, either psychological or neurological disorders. 

Each image is presented three times, the different conditions are counterbalanced 

along the experiment and trial order is pseudo-random. The classification accuracy 

of SVM is computed using a LOOCV strategy. The experiment results are compared 

with the t-test statistical approach utilized to select feature subset and show that 

SVM-RFE outperforms t-test. The authors of this study do not mention what type of 

kernel function they use and also they do not mention how they tune SVM 

parameters. 

 

A recent research conduct by Garde et al. (2013) called “SVM-based feature 

selection to optimize sensitivity-specificity balance applied to weaning” aims to 

optimize SVM’s feature subset selection through utilizing a new metric named 

balance index (B) which measures the alternation between miss-classified data 

within each data class. RBF kernel function is used and SVM parameters are tuned 

using grid search algorithm. 10-fold cross validation is used to compute the average 

classification accuracy of the proposed approach and the proposed approach is 

evaluated to classify 154 patients’ weaning trials from mechanical ventilation: 94 

patients with successful trials were able to maintain spontaneous breathing after 48 

hours and 39 patients failed to maintain spontaneous breathing and were reconnected 

to mechanical ventilation after 30 minutes. The proposed approach compared with 

quadratic discriminant, classification trees, naive Bayes classifier, SVM and k-NN 

classifier. The experimental results show that the proposed approach gives good 

results. 
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A study presented by Lin et al. (2012) aims to improve SVM performance by 

choosing suitable features to classify liver disease metabolome datasets. The authors 

use SVM-RFE as a famous embedded approach for feature selection and propose a 

Mutual Information (MI)-SVM-RFE approach which initially filters out the noisy 

features via utilizing Artificial Variables and MI (AV-MI) then uses SVM-RFE to 

compute the weight of each feature regarding the support vectors of the present 

learning model and choose the best feature subset. The authors use LibSVM for 

SVM implementation and C++ for implementing MI-SVM-RFE and SVM-RFE. In 

order to choose the necessary features regarding liver disease, the authors portion 

their research into five sub-objects: (1) a binary problem to classify normal set and 

the disease set, (2) three binary problems to classify every two of Chronic Hepatitis 

B (CHB), CIRrhosis (CIR), and HepatoCellular Carcinoma (HCC), (3) three class 

problem to classify CHB, CIR, and HCC simultaneously and utilize a ten-fold cross 

validation to evaluate the performance of MI-SVM-RFE as well as being compared 

with the original SVM-RFE. The results show that MI-SVM-RFE outperforms the 

original SVM-RFE in terms of classification accuracy. 

 

Atienza et al. (2012) present a novel embedded features selection method based on 

SVM and Bootstrap Resampling (BR) approaches for Ventricular Fibrillation (VF) 

detection. A group of temporal, spectral, and time-frequency variables selected from 

the ElectroCardioGram (ECG) signal databases is utilized as the input domain to 

SVM. The pertinence of input parameters is examined via comparing the detection 

execution of the complete group of input parameters and reduced subsets by using a 
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corresponding a group strategy of filter approaches, which are, accounting for 

second order approaches (correlation criterion), mutual information approaches 

(difference and quotient schema), and maximum separability Fisher criterion. This 

comparison is accomplished regarding to a nonparametric statistical test based on 

BR. The authors compare their approach with SVM-RFE and apply it on toy set and 

ECG signals databases. A five-fold cross validation technique is used to set the SVM 

parameters. The results demonstrate good application of SVM-BR for detecting VF. 

The authors suggested extending their approach to improve VF-Ventricular 

Tachycardia (VT) discrimination and analysing possible discriminatory ECG 

variables to develop real-time VF detectors. 

 

Another study, presented by Feki, Ishak and Feki (2012), proposes a wrapper 

features selection approach using Gaussian marginal densities for a Bayesian 

prototype and ranking score process to examine the contribution of each feature of 

the prototype which is taken from a multi class SVM. In this study, the authors use 

OAO and OAA approaches for a multi class SVM and utilize Hamming decoding, 

Loss decoding and Reordering Adaptive Directed Acyclic Graph (RADAG) to 

gathers the OAA and OAO hyperplane while for the Gaussian Bayes prototype, the 

authors utilize two parametrics under both dependence and independence 

assumptions. The authors evaluate their approach on a toy data and on ten alternation 

commercial Tunisian banks during a period from 2000 to 2006 to classify seventy 

instances into three classes of risk regarding the level of Nonperforming Loans 

(NPLs) utilizing twenty-eight input features. The results show that the Bayesian 
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prototype under independence assumption accomplishes the best result while the loss 

function decoding method outperforms all other techniques. The authors suggest 

applying their approach in other studies when the number of features is high 

compared with the number of instances as well as applying their approach in many 

other business studies like prediction of issuer credit rating. 

 

A study presented by Xie and Wang (2011) proposes a novel feature selection 

approach called Improved F-score and Sequential Forward Search (IFSFS) to obtain 

the optimal feature subset in the procedure of feature selection where F-score is 

considered as a filter technique while Sequential Forward Search (SFS) is a wrapper 

technique. In this study, the SVM parameters which are C and γ of RBF kernel 

function are obtained through a grid search method utilizing four alternation 

training-testing portions to obtain optimal parameter values. To examine the success 

of this study, the authors apply their technique to the diagnosis of erythemato-

squamous diseases; they build 34 models with alternative feature subset and compare 

them with other studies; the results show that their approach outperforms others. The 

authors suggest applying their improved F-score to other fields as a filter technique 

for discrimination measure. 

 

Liu et al., (2011) undertook a study for wrapper feature subset selection by using 

SVM with RBF kernel built on RFE (SVM-RBF-RFE). This study extends nonlinear 

RBF into Maclaurin series then calculates the weight vector from the series 

regarding the contribution for classification via each feature. After that, they utilize 
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square weight for each feature as a score rank. To evaluate the success of this 

approach, the authors compare their approach with SVM-RFE and information 

gained from WEKA which they use to evaluate the feature subset chosen by their 

approach, SVM with linear kernel (SVML), SVM with RBF kernel, 5-NN and with 

10-NN as well as applying it to three UCI datasets and three sets of microarray data 

using 10-fold cross validation. The results show that a SVM-RBF-RFE approach is 

very competitive and can identify the most important features; the authors conclude 

that their approach is very successful on feature selection for SVM with RBF kernel 

function. 

 

A study called “mr
2
 PSO: A maximum relevance minimum redundancy feature 

selection method based on swarm intelligence for support vector machine 

classification” was conducted by Unler, Murat and Chinnam (2011). They propose a 

schema between filter and wrapper feature subset selection technique built on PSO 

for SVM classification. MI is used as a filter technique, while the wrapper technique 

adapts a discrete PSO approach. In order to evaluate their approach, the authors 

utilize six UCI datasets, 2-fold cross validation and set SVM parameters which are C 

to 100 and RBF kernel parameter σ to 2 in addition to utilizing a OAA technique for 

multi-class SVM. mr
2
 PSO is compared with hybrid filter-wrapper technique based 

on GA, and PSO based wrapper technique in terms of classification accuracy. The 

results show that the proposed approach is competitive in terms of classification 

accuracy. The author suggests searching for best parameters’ values to enhance 

classification accuracy, using 10-fold cross validation rather than 2-fold cross 
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validation, applying back tracking at the end of feature selection and arbitrarily re-

evaluating the features in the subset, and finally comparing it with features extraction 

approaches. 

 

A paper written by Garbarine et al. (2011) utilizes three filter techniques based on 

information theory for features selection that enhance SVM genome classification. 

These techniques are: (1) a method that gathers Kullback-Leibler Mutual 

Information and distance information, (2) a text mining method, Term Frequency-

Inverse Document Frequency (TF-IDF), (3) minimum Redundancy-Maximum-

Relevance (mRMR). These techniques are compared against each other in terms of 

enhanced SVM classification accuracy and also with non-information theoretic 

features techniques and applied on 100 bacterial genomes. The authors use N-mers 

terms which are utilized to construct frequency profiles (how often each word 

happens in a present sequence) which are then utilized to construct classification 

models. The results show that N=6 produces better results than both N=3 and N=9 

demonstrating that there is a balance between size of features set and classification 

accuracy. Additionally, TF-IDF performs better on N=9 level for fine resolutions. 

However, mRMR utilizing N=6 executes well in most taxonomic levels (strain, 

species, genus, family, order, and phyla) especially on a phyla level. 

 

A paper titled “hybrid feature selection algorithm based on dynamic weighted ant 

colony algorithm” introduced by Xiong, Wang and Lin (2010) attempts to enhance 

SVM performance on classifying eight UCI datasets through utilizing dynamic 
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weighted ACO to select feature subset. The reason for utilizing dynamic weighted 

ACO was to preserve a good tread-off between the convergence rate and the stagnant 

pheromone which was calculated and updated based on SVM outputs. The authors 

implemented their approach in Matlab for programming dynamic weighted ACO and 

LibSVM for implemented SVM sections. All features are discretized and normalized 

before carrying out the experiments. The authors compare their results with other 

approaches and the results show that their approach is the best in terms of 

classification accuracy and number of selected features. The authors suggest 

proposing other heuristic functions and pheromone updating mechanisms for the 

particular field datasets. 

 

A study introduced by Abd-Alsabour and Randall (2010) aims to improve the 

performance of SVM on classified ten binary datasets taken from statistical and UCI 

datasets through integrating Ant Colony System (ACS) via a wrapper approach to 

selecting limited numbers of features. The authors implement their approach in C-

classification SVM of package e1071 of the R language and WEKA machine 

learning tool. SVM performance is computed through utilizing a 5-fold cross 

validation technique and with two directions of experiments which are with and 

without selected feature subset. The results are compared with other approaches and 

demonstrate that the proposed approach, SVM-ACS, was the best compared with 

others in terms of classification accuracy and size of feature subset. The authors 

suggest making an investigation into tuning the parameters of their approach also 

utilizing an ensemble features selection strategy to enhance the overall performance 
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of the proposed approach. Finally, the authors also suggest utilizing high 

performance calculation approaches such as parallel multi category SVM. 

 

Another study, introduced by Li and Chen (2010) called “Weed identification based 

on shape features and ant colony optimization algorithm”, tries to minimize 

classification errors of SVM through selecting suitable feature subset. Two 

optimization techniques, ACO and GA, are utilized to achieve this goal. These two 

optimization techniques are integrated with SVM through a wrapper approach. The 

features are initially extracted from the weed leaves; after that ACO and GA are 

utilized to choose the optimal feature subset to introduce to SVM and; lastly, this 

technique is performed on a lab plant image database of a cotton area. The 

experiment results show that when ACO is integrated with SVM it is better than 

when GA is integrated with SVM. The authors suggest improvement of high 

performance approaches built on multi features combination to distinguish between 

plants and weeds containing substantial types of weeds and crops. 

 

A study conducted by Wang et al., (2010) to select features for l1-norm soft margin 

SVM for binary classification set the parameters of the Gaussian Automatic 

Relevance Determination (ARD) kernel through optimizing kernel polarization; after 

that the whole features are ranked in descending order of necessity, so if any input 

features badly in the classification problem its scaling factor is small and potentially 

can be eliminated without impact on the classification execution. This is done by 

maximizing kernel polarization with the Gaussian ARD kernels. The authors utilize a 
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classical correlation coefficients approach to evaluate the execution of their work 

and the optimal values of the SVM parameters which are C and γ RBF kernel 

function are set a through grid search 10-fold cross validation approach. The authors 

examine their approach on four UCI datasets and suggest applying their approach on 

regression and multi-class SVM as well as appending the theoretical verifications of 

fine execution of their study and comparing it with other techniques. 

 

A study presented by Moustakidis and Theocharis (2010) titled “SVM-FuzCoC: A 

novel SVM-based feature selection method using a fuzzy complementary criterion” 

enhances SVM performance by selecting the suitable feature subset by using a 

forward filter technique. The authors utilize OAA to decomposed multi-class SVM 

and train a group of binary K-SVM classifiers on each feature to obtain fuzzy 

membership of each pattern to its class. The entire data is portioned into training-

testing data and Fuzzy Complementary of Criterion (SVM-FuzCoC) performed on 

training data, k-NN classifier is utilized as an evaluation approach. The authors apply 

their approach on twelve real-world classification problems and group it into three 

with regard to their calculation difficulties and compare it with eleven well known 

feature selection approaches in the literature. The results show the success of SVM-

FuzCoC in terms of accuracy, dimensional minimization, and calculation effort by 

comprehensive experimental setting. 

 

Akay (2009) proposes an approach using F-score to select relevant feature subset for 

SVM to classify a Wisconsin breast cancer dataset from the UCI repository. The F-



 

59 

 

score is computed for each feature in the training dataset and sorted in descending 

order; a number of features are then selected that have the highest F-scores to 

generate feature subset, followed by a grid search with 10-fold cross validation in 

order to obtain the optimal values for C and γ RBF kernel function and train the 

selected feature subset with these values of C and γ RBF kernel function and the 

SVM classifier model is found and utilized to classify test dataset. The author 

compares his approach with other approaches and the results show that his approach 

produces the highest classification accuracy. As an extension to his study, the author 

suggests to apply his approach to more datasets. 

 

Another study “A new feature selection method on classification of medical data 

sets: kernel F-score feature selection” was conducted by Polat and Gunes (2009) to 

select feature subset for Least Square SVM (LS-SVM). Their approach proposes a 

novel feature selection named Kernel F-score Feature Selection (KFFS) which firstly 

maps the input features to kernel domain through using Linear (Lin) or RBF kernel 

functions then applies F-score on this domain, followed by the mean value of 

computed F-score as a threshold to decide which feature will be chosen; if the 

feature’s F-score value is higher than the mean value, this feature will be chosen, 

otherwise the feature is discarded. LS-SVM and Levenberg-Marquart Artificial 

Neural Network (LMANN) are used in this study as a classifiers. In order to evaluate 

the performance of their approach, the authors apply it on three medical UCI 

datasets; and they fix the value for σ of RBF kernel function to 100 and C value is 

computed through a trial and error approach and the best value is 1000. The results 
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show that KFFS generates very successful results compared to F-score features 

selection. The authors suggest applying their approach on more medical datasets as 

well as replacing the F-score approach with other approaches. 

 

Maldonado and Weber (2009) present a study titled “A wrapper method for feature 

selection using Support Vector Machines”. In their study, they propose a wrapper 

technique to select features based on sequential backward selection. The authors 

utilize a hold-out approach as a measure to judge which feature to delete at each 

iteration instead of a measure to build simply on one dataset, gradient-based measure 

or Fisher correlation score. The authors start their approach by solving a model 

selection problem using 10-fold cross validation, they apply SVM without features 

selection in direction to determine the best kernel function; the Gaussian kernel 

function is the best when compared with the polynomial kernel function. In order to 

evaluate their approach, the authors apply the study on four datasets and compares it 

with RFE-SVM, concave feature selection as well as performing a Fisher criterion 

score filter approach; the results show that their approach was strong according to 

selected features and improved classification accuracy. The authors suggest applying 

their approach on other kernel functions and on support vector regression also to 

apply their approach on weighted SVM. 

 

Another study was presented by Mesleh and Kanaan (2008) titled “Support vector 

machine text classification system: using ant colony optimization based feature 

subset selection”, to utilize a combining of Ant System (AS) and Elitist Ant System 
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(EAS) to select a small number of feature to present to SVM to classify 1445 online 

Arabic newspaper archives, taken from Al-Jazera, Al-Nahar, Al-hayat, Al-Ahram, 

and Al-Dostor, into nine categories. In this paper, Chi-square statistic is computed 

for each feature and utilized as heuristic information for ACO to guide ants to select 

the best features. Apart from Chi-square, the authors implement five traditional 

feature subset selection techniques including Information Gain (IG), Ng, Goh, and 

Low (NGL), Galavotti, Sebastiani, and Simi (GSS), MI and Odds Ratio (OR). The 

results show that when using Chi-square as heuristic information the result is the best 

compared to other techniques. The authors suggest comparing their work with others 

like Max-Min Ant Colony algorithm and also suggest applying their approach on 

larger datasets. Another suggestion from the authors is to try other statistic 

approaches as heuristic information for ACO. 

2.2.3 Approach in Simultaneously Solving Model Selection and Feature Subset 

Selection Problem 

Twelve similar works (Zhang & Jiao, 2005; Huang & Wang, 2006; Pham et al., 

2007; Lin et al., 2008; Huang & Dun, 2008; Lin et al., 2008; Ding & Li, 2009; Lin & 

Chien, 2009; Huang, 2009; Zhao et al., 2011; Vieira et al., 2013; and Sarafrazi & 

Pour, 2013) suggest using hybrid systems to enhance classification accuracy by 

using limited, suitable feature subset. All eleven works optimize feature subset and 

SVM parameters which are C and   RBF kernel variable simultaneously. Ultimately, 

SVM is used to measure the quality of the solution for all hybrid systems. However, 

what differs is what the hybrid system is based on. 
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Zhang and Jiao (2005) propose utilizing a hybrid system based on Immune Clonal 

Algorithm (ICA) and SVM. They utilize ICA to simultaneously choose feature 

subset and SVM parameters which are represented in the encoded antibody 

population. Huang and Wang (2006) and Zhao et al., (2011) propose the use of a 

hybrid system which is based on GA and SVM. They would use GA to select 

suitable features simultaneously with optimized SVM parameters which are 

represented in the encoded chromosomes. Huang and Dun (2008), Lin et al., (2008) 

and Vieira et al. (2013), on the other hand, choose to use a hybrid system which is 

based on PSO and SVM. In Huang and Dun (2008), they mix discrete PSO with 

continuous valued PSO to simultaneously select suitable features and optimize SVM 

parameters, Lin et al., (2008) use only the discrete version of PSO to optimize 

feature subset selection and SVM parameters, while Vieira et al. (2013) use 

Modified Binary Particle Swarm Optimization (MBPSO) to simultaneously select 

suitable features and optimize SVM parameters. Conversely, Lin et al., (2008) use 

SA to simultaneously optimize model selection and feature subset selection. They 

use a continuous Hide-and-Seek SA to optimize the continuous values of SVM 

parameters and they represent the features as discrete values. The authors, for this 

paper, not explain how they can handle the discrete values for features while they 

use the continuous version of SA to optimize SVM parameters. 

 

Also, Pham et al., (2007) propose utilizing a Bees algorithm to simultaneously 

choose the best combination of feature subset and SVM parameters values for the 

process of classifying faults in wood layer pieces. Huang (2009) decides to use a 
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hybrid system which is based on ACO and SVM. He uses classical ACO to 

simultaneously select suitable features and optimize SVM parameters. Ding and Li 

(2009) propose using a hybrid system which is based on a Clonal Selection 

Algorithm (CSA) and SVM. They would then use CSA to select suitable features 

simultaneously and optimize SVM parameters, while Lin and Chien (2009) propose 

the use of a hybrid system which is based on Cat Swarm Optimization (CSO) and 

SVM. They would then use CSO to select suitable features simultaneously with 

optimized SVM parameters. Finally, Sarafrazi and Pour (2013) utilize two versions 

of Gravitational Search Algorithm (GSA) which are Real value GSA (RGSA) to 

optimize the real value of SVM parameters and Binary (discrete) value GSA 

(BGSA) to select feature subset. GSA is considered as a swarm based metaheuristic 

seek approach built on the law of gravity and motion and it is derived from the 

Newtonian law of universal gravitation. Sarafrazi and Pour (2013) apply their 

approach only on a binary class classification problem; they did not test multi class 

classification problems. 

 

All the above works - except Huang and Dun (2008) who apply their work on 

distributed parallel architecture - examine their approaches on different UCI datasets. 

From the view point of Huang and Wang (2006), Huang and Dun (2008), and Huang 

(2009), they consider their works to be a novel and first studies that combine GA, 

PSO, and ACO with SVM to simultaneously optimize both feature subset selection 

and model selection. 
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The general conclusions of all twelve works give good results in the concept of 

classification accuracy and a few numbers of selected features while the general 

suggestions of all these works are as follows: Vieira et al. (2013) implement their 

method with other medical databases; Zhang and Jiao (2005) implement their 

method on the territory classification in remote sensing images; Huang and Wang 

(2006) and Huang (2009) suggest applying their work on Support Vector Regression 

(SVR), because SVR accuracy counts mainly on SVR parameters and selected 

feature subset; Huang and Wang (2006), Huang (2009), Ding and Lie (2009), and 

Lin et al., (2008) suggest using other types of kernel function not simply RBF. Lin 

and Chien (2009), Ding and Lie (2009), Lin et al., (2008), and Zhao et al., (2011) 

suggest applying their works on other real world problems to test and expand their 

works. And finally Huang (2009) suggests using continuous ACO to optimize the 

continuous value of SVM parameters. 

 

A paper titled “Simultaneous feature selection and classification using kernel-

penalized Support Vector Machine” is presented by Maldonado, Weber and Basak 

(2011). The main idea of their approach is to simultaneously optimize kernel 

function and choose optimal feature subset for classification. The authors utilize dual 

formula SVM involving a penalization function based on 0-norm approximation and 

modifying Gaussian kernel utilizing gradient descent approximation for kernel 

optimization and feature deletion. 10-fold cross validation is utilized to calculate the 

classification accuracy and compare the best result of the model for linear, 

polynomial and Gaussian kernel function using standard deviation; then the best 
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values of kernel parameter are utilized as kernel-penalized SVM (kp-SVM) input. 

kp-SVM was compared with SVM-RFE, FSV in addition to applying a Fisher score 

filter approach and the results show that kp-SVM is the best. The authors suggest 

applying kp-SVM to multi-class SVM as well as on regression problems. 

Additionally, the authors also suggest the use of other kernel functions or weighted 

SVM. 

2.3 Ant Colony Optimization 

ACO is a group of algorithms to deal with optimization problems that is motivated 

by means of the pheromone trail put down and following the mannerisms of some 

ant kinds. While exploring, ants set down on the land a chemical material, named a 

pheromone that interests fellow nest colleagues. The placing of a pheromone trail 

and following manner of the ants creates a positive feedback procedure whereby 

trails of high densities of pheromones become increasingly attractive  the further ants 

follow them. As an outcome, at any time two routes to the exact source of food are 

detected, the colony is further able to choose the shortest route because ants will 

cross it quickly and thus it will have a higher pheromone density than a longer trail 

(Dorigo et al., 2011; Twomey et al., 2010; and Birattari, Pellegrini & Dorigo, 2007). 

 

ACO algorithms use a procedure similar to the one that permits colonies of real ants 

to obtain the shortest pathways. In ACO, (artificial) ants build nominee solutions to 

the problem under consideration. Their solution building is stochastically influenced 

through (artificial) pheromone trails, which are given in the shape of numerical 
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information that is assigned by means of suitable defined solution components, and 

through heuristic information established on the input data of the problem being 

solved. A fundamental feature of an ACO algorithm is the utilization of a positive 

feedback loop applied via iterative updates of the artificial pheromone trails that are 

a function of the ants’ seek knowledge; this feedback loop aims to influence the 

colony in the direction of, on the whole, hopeful solutions. 

 

The ACO metaheuristic is a high-level algorithmic framework for implementing the 

previous concepts to the approximate solution of optimization problems. When 

implemented to a particular optimization problem, this ACO framework requires to 

be concretized through taking into account the details of the problem under 

consideration and probably through appending extra techniques, for example, as a 

problem-specific solution enhancement process (Dorigo et al., 2011). 

 

The basic idea, broadly outlined by the behavior of actual ants, is that of a parallel 

seek through the foundation of many useful, calculating possibilities on local 

problem data and on memory construction involving information on the quality of 

past results obtained. The cooperative manner of the interaction of the alternative 

seek possibilities proves successful in solving problems. A group of calculations 

simultaneous and asynchronous agents (a colony of ants) walks the problem to solve. 

The ants walk by implementing a stochastic local decision policy built on two 

parameters, named trail and attractiveness. During the walking, each ant increasingly 

builds a solution to the problem. When an ant finishes a solution, or whilst building 
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the process, the ant judges the solution and updates the trail value on the pieces used 

in its solution. This pheromone information will guide the seeking of the future ants. 

 

Two important questions will appear in the foraging manner of ants: How does an 

ant know where to move? Who directs the ant? No-one directs the ant in its path to 

food origin. The grouping behavior of the ants is self-organized which means that the 

stigmergic interactions (build on local information) between ants are responsible for 

the global manner of the system. In other words, self-organization and stigmergic 

groups are responsible for the complex manner of an ant colony. 

 

The first variant of ACO is Ant System (AS) (Colorni, Dorigo & Maniezzo, 1991) 

where the pheromone trail is updated only after all ants have constructed their 

solutions and the pheromone quantity deposit by each ant is calculated based on the 

solution quality.  The first improvement on the ant system is called the Elitist 

strategy for Ant System (EAS) (Dorigo & Stützle, 2004). The improvement was 

done by providing strong additional reinforcement to the arcs belonging to the best 

tour found since the start of the algorithm. Rank-Based Ant System (ASrank) is 

another improvement over ant system introduced by Bullnheimer, Hartl & Strauss 

(1999). In ASrank, each ant deposits an amount of pheromone that decreases with its 

rank. This is similar to EAS, where the best-so-far ant always deposits the largest 

amount of pheromone. 
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Max-Min Ant System (MMAS) proposed by Stützle & Hoos (1997) has four 

improvements over AS algorithm. First, the best-so-far solution during the execution 

is exploited by allowing only one ant to update the pheromone trail after iteration. 

The second improvement is the implementation of the limit range of pheromone trail 

values to the interval [τmin, τmax]. Third, the pheromone trails is initialized to τmax in 

order to achieve higher exploration of solution at the start of the algorithm. Finally, 

in case of stagnation or no improved solution is generated for a specific number of 

iteration, MMAS will reinitialize to τmax. MMAS algorithm achieves better 

performance than AS algorithm because of the modification over AS structure.  Ant 

Colony System (ACS) is then introduced by Dorigo & Gambardella (1997) to 

improve the performance of AS in solving travelling salesman problem. In ACS 

algorithm, ants apply exploitation and exploration mechanisms when they select the 

next node to move to. ACS also applies local pheromone updates and global 

pheromone updates to direct the search for the next iteration. The global update is 

calculated based on the quality of the best solution so far while the local update 

applies the evaporation concept. All the above variants of ACO implement single 

colony of ants. However, multiple ant colonies can also be used to implement the 

variants of ACO (Pellegrini et al. 2007; Sim & Sun, 2003; and Al-Janabi, 2010). 

 

The two main elements that make ACO successful when solving problems are that it 

utilizes of a group of priori information (heuristics) regarding the quality of nomine 

solutions (greedy strategy) and posteriori information (pheromone) about the 

reliability of the past solutions (positive or autocatalytic process). In other words, 
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ACO does not simply utilize heuristics to select a solution from a group of nomine 

solutions but additionally utilizes the accumulated experiences concerning obtaining 

good solutions in the past iterations and directs the search in the neighborhood of 

these good solutions which are more likely to guide to enhancements and well 

solutions. The previous route looks logical since much research studies the properties 

of some good defined optimization problems, where it appears there is a relation 

between the solution quality and the distance from optimal solution. In other words, 

the neighborhood of the optimal solution usually involves good solutions and the 

quality of these solutions minimizes when they search far from the optimal solution 

(Al-Janabi, 2010). 

2.3.1 Ant Colony Optimization for Feature Subset Selection 

Feature subset selection is considered as a problem which needs to be optimized. In 

order to use ACO to solve this problem, there is a need to re-express this into a 

proper ACO problem. ACO needs a problem to be expressed as a graph. Vertices 

(nodes) represent features, with the edges between them representing the selection of 

the next feature. This is done by each ant moving through the graph with as small a 

number of vertices are visited that meet the termination condition. 

 

Vertices are totally connected to permit any feature to be chosen next. All ants will 

have an alternative number of features to be chosen; therefore, it is not necessary for 

ant to visit all features in the seek domain as they move from one feature to another. 
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An ant will halt visiting the feature domain if it reaches a pre-defined chosen feature 

subset size or any other condition. 

 

On the foundation of this re-expression of the graph representation, the moving laws 

and pheromone modification law of established ACO algorithms can be performed 

with minimum changes. In this situation, pheromone and heuristic value are not 

linked, but each feature has its own heuristic value and pheromone. 

 

In order to build a solution, the procedure starts by creating an arbitrary number of 

ants which are then laid arbitrarily on the graph, that is, each ant begins with one 

arbitrary feature. From these initial places, the ants move vertices probabilistically 

until a moving condition is met. The resulting subsets are grouped and then 

evaluated. If the optimal subset has been obtained or the algorithm has run a specific 

number of paths, then the procedure stops and outputs the optimal feature subset. If 

none of these criteria is met, the procedure iterates once more (Al-Ani, 2005 and 

Rasmy et al., 2012). In the literature, much research deals with using ACO to select 

feature subset, some of these are as follows. 

 

A recent research proposed by Li et al. (2013) named “An Ant Colony Optimization 

Based Dimension Reduction Method for High-Dimensional Datasets” aims to select 

feature subset for a SVM classifier with linear kernel function through proposing a 

method named Ant Colony Optimization-Selection (ACO-S) consisting of two 

phases: first, a modified ant system is utilized to filter features while an improved ant 
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colony system is utilized to select features in the next phase. Additionally, the 

authors use two fuzzy logic controllers: one to dynamically adjust the number of ants 

in the ant system and the other to set the value for the q0 parameter in the ant colony 

system. Also, F-score is used as heuristic information for ACO and the average 

classification accuracy is computed through utilizing 10-fold cross validation. Many 

values for SVM parameters were tested and one that gives the best result was 

selected. In order to evaluate the proposed approach, five microarray datasets are 

used and the experiment carried out in two directions: first the proposed approach 

compares GA based, ACO based, PSO based and SA based methods. The 

experiment results show that the proposed approach is better than other approaches 

while the second direction of experiment is to evaluate the performance of ACO-S 

with different classifiers additional to SVM. The experimental results show that 

ACO-S based SVM classifier outperforms other classifiers. 

 

Another recent study introduced by Chen et al. (2013) entitled “Efficient ant colony 

optimization for image feature selection” aims to select feature subset using ACO. 

The main difference point between this study and other exiting studies that use ACO 

to select feature subset is that the ants in this study traverse with only O(2n) arc on a 

direct graph and not O(n
2
) arc like existing studies that use ACO to select feature 

subset where n is the number of features. Classification accuracy and size of feature 

subset are used as heuristic information guidance. After producing feature subset, 

SVM classifier is used for classification purposes and a cross validation method with 

ten-fold and five-fold is used to evaluate the average classification accuracy of SVM; 
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however, the authors do not mentioned how they tune SVM parameters.  In order to 

evaluate the proposed approach, two large image databases and 15 non-image UCI 

datasets are used and the experimental results show that the proposed approach 

obtains high classification accuracy with small size of feature subset compared with 

other existing approaches. 

 

Huang et al., (2012) undertook a study to improve classification performance of a 

BPNN. They use ACO to a solve features selection problem utilizing heuristic 

information calculated through a mRMR criterion. A Back Propagation (BP) model 

had twenty neurons in hidden layers with a tan-sigmoid activation function and 

output layer with linear activation function. The authors evaluate their approach in a 

classified hand motion surface of EMG signals on ten subjects’ datasets with eight 

upper limb motions. Two features groups which are time domain features gathered 

with auto regression prototype coefficient and Wavelet Transform (WT) features are 

extracted from EMG signals. Their approach is compared with PCA and the results 

show that their approach produces higher classification accuracy. The authors 

suggest applying their approach in other physiological signals, alternative variant of 

ACO or other swarm intelligence as well as applying ACO to concurrently optimized 

BPNN structures. 

 

Another hybrid study named “A new hybrid ant colony optimization algorithm for 

feature selection” was conducted by Kabir, Shahjahan and Murase (2012) that 

hybridized ACO and a BPNN for pattern classification. In their study Ant Colony 
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Optimization for Feature Selection (ACOFS), the authors utilize a filter and wrapper 

approach with bounded schema feature subset size to assist ACO to choose feature 

subset with minimum size and, in regard to this, ACOFS update classical pheromone 

update and heuristic information measurement rules. A constructive technique was 

used to build BPNN models automatically. The authors tested their approach on nine 

benchmark UCI datasets and compared against seven famous features selection 

approaches. The results show that ACOFS was the best in terms of classification 

accuracy with a small size of feature subset selection. 

 

Another hybrid study, conducted by Rasmy et al., (2012) titled “A hybridized 

approach for feature selection using ant colony optimization and ant-miner for 

classification”, attempts to improve Ant-Miner performance by hybridizing with 

ACO to choose suitable feature subset through a wrapper approach. In this study, 

five variants of ACO: AS, EAS, Rank-based Ant System (ASrank), Max-Min Ant 

System (MMAS), and ACS are used. The pheromone is updated based on the 

classification accuracy and heuristic information and the transition probability to 

choose a solution track for each ant is computed based on the pheromone table and 

size of feature subset. The authors implement their approach with C programming 

language and use a myra-3.5.0 package for the Ant-Miner part. Cross validation is 

utilized to evaluate their work and applied on two groups of datasets taken from 

statistical and five UCI datasets. The results show that the proposed approach is 

better than others in terms of classification accuracy and size of feature subset. The 

authors suggest making more investigation on the parameters values of their work. 
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A study, presented by Chen, Liu and Xiong (2011) called “A novel feature selection 

method for affective recognition based on pulse signal”, aims to classify face 

emotion into six emotions which are happiness, surprise, disgust, grief, anger, and 

fear with high classification and few numbers of features through combined Max-

Min ant colony algorithm and correlation analysis. Initially, Sequential Backward 

Selection (SBS) is utilized to select features, and then linear correlation coefficient is 

used to calculate the correlation degrees between features and those with high scores 

are eliminated. Finally, the features are chosen through a MMAS. The experiment 

results show that their approach is an effective and affective recognition technique 

using fixed and effective feature subset selection from original features. 

 

A study based on ACO and BPNN, presented by Karnan and Akila (2010), is applied 

in a security domain to classify a keystroke dynamics typing pattern. 100 samples of 

digraph, duration, latency and their combination of each user keystroke for 27 users 

were considered as a feature and extracted in the extraction stage within the period of 

one week as well as the mean, median, and standard deviation being computed for 

each feature. The execution of their approach is evaluated by the overall 

classification mistake and accuracy. The authors compared their approach with PSO 

and GA as an optimization approach used to select feature subset; and the results 

show that when ACO is used to select the feature, the performance of ACO is the 

best in terms of classification accuracy and number of features selected. 
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Research conducted on selecting feature subset using ACO called “Edge and 

characteristic subset selection in image using ACO” by Venkatesan and Karnan 

(2010) attempts to maximize classification accuracy of ANNs through using ACO 

with two local search algorithms, local significance of features and overall execution 

of feature subset, to select the least numbers of feature subset to classify 56, 456 

segments into six categories including vowel, fricative, glide, nasal, silence, and 

stop. MSE of trained ANNs with 2,000 arbitrarily selected segments is utilized as an 

objective function. Three groups of features are extracted from each frame of speech 

which are 16 log Mel-Filter Bank (MFB), 12 Linear Predictive Reflection (LPR) 

coefficient, and 10 wavelet energy bands. The authors compare their approach with 

SFS and GA. The result shows that MFB achieves the best execution compared with 

LPR and wavelet energy bands; however, it utilizes more features. Also, the results 

show that both ACO and GA achieve comparable execution to MFB utilizing like 

numbers of features with GA being slightly better than ACO, while SFS achieves a 

good execution when choosing fewer numbers of features; however, its execution is 

worse as the preferred number of features increases. The authors suggest applying 

their work on other classification problems. 

 

A study introduced by Deriche (2009) aims to classify 16 log MFB, 12 linear LPR, 

and 10 wavelet energy bands speech segments into six categories including vowel, 

fricative, glide, nasal, silence, and stop. The author uses filter approaches including 

fisher criterion, mutual information based feature selection and mutual information 

evaluation function to compute the significance of features and then utilizes these 
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scores as heuristic information for ACO to guide ant to select best feature subset and 

to predict the overall execution of subsets and local significant features. Beside this 

filter approach, a randomly chosen approach is also utilized to select feature subset. 

The author, unfortunately, did not mention anything about the classifier that used. 

The results show that the filter approaches are better than those randomly chosen 

when the number of selected features was less than 50, but in case of greater than 50 

features, randomly chosen performance became close to other approaches. The 

author suggests investigating more on the effect of this filter approach when 

choosing large numbers of features. 

 

Wei and Yuan (2009) propose a study to improve classification performance of k-

NN classifier by selecting suitable feature subset through utilizing ACO. In their 

approach, they use wavelet transform to extract features from ECG signals and then 

utilized AS and ACS to select feature subset to present to the k-NN classifier to 

classify emotions of  joy and sadness in 150 Southwest University undergraduate 

students aged from 19 to 25. The data was acquisitioned by high definition camera 

for about 20 minutes and the original ECG signals were gathered through a multi-

channel physical acquisition device using SuperLab software to record the 

physiological data. The results show that ACS is better than AS in terms of feature 

subset size. 

 

Another hybrid study named “A hybrid ant colony optimization and random forest 

feature selection method for microarray data”, conducted by Xiong and Wang, 
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(2009) hybridized enhancement self-adaptive ACO and Random Forest (RF) for 

leukaemia and colon tumour datasets’ classification. ACO was used to choose 

suitable feature subset to present to the RF for classification. Initially, statistical t-test 

integrated with RF is utilized as a pre-selection for best features and the score of this 

integration is used as heuristic information combined with classification accuracy 

produced by RF and utilized as positive feedback for ACO to filter the pre-selected 

features. Subsequently, SFS is applied to compute LOOCV accuracy of feature 

subset. The authors compare their results with other approaches and the results 

shown that their approach obtains higher classification accuracy with fewer numbers 

of selected features. 

2.3.2 Ant Colony Optimization for Optimizing Continuous Variable 

While ACO was firstly presented to solve discrete optimization problems, it is 

modified to solve continuous-variables and mixed-variables optimization problems, 

because it cannot be applied to continuous-variable or mixed-variables optimization 

problems directly; consequently this direction is more interesting and one of the 

modern research fields in ACO (Socha, 2004; Blum, 2005; Dorigo & Blum, 2005; 

Socha & Blum, 2006; Dorigo, Birattari & Stutzle, 2006b; Castro, 2007; Socha & 

Dorigo, 2008; Socha, 2008; Dorigo & Stutzle, 2010; Liao, 2011; and Liao et al., 

2011). 
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Kovarik (2006) categorizes the literature of ACO to the continuous domain based on 

how ACO extended to handle continuous domain in three categories: direct 

simulation, discretization, and probabilistic sampling. 

 

Direct simulation approaches did not directly follow ACO, but attempt to directly 

simulate real ants’ movement and communication. Below are some studies that are 

included in this category. 

 

Bilchev and Parmee (1995) present Continuous Ant Colony Optimization (CACO) 

integrated with GA as a global seek procedure. CACO is considered as the first study 

related to using ACO to a continuous domain, while Monmarch, Venturini and 

Slimane (2000) present pachycondyla apicalis (API). Dreo and Siarry (2002 and 

2004) propose Continuous Interacting Ant Colony (CIAC) then CIAC was modified 

in 2006 by the same authors and presents a new algorithm called Hybrid CIAC 

(HCIAC). HCIAC is CIAC but hybridized with Nelder-Mead local search algorithm. 

HCIAC solved the drawbacks of CIAC. The drawbacks include the high amount of 

testing needed, the objective function and bad productivity. In 2007, Dreo and Siarry 

enhanced HCIAC and present Dynamic HCIAC (DHCIAC). DHCIAC includes two 

algorithms: DHCIACfind which hybridized with Nelder Mead local search algorithm; 

and DHCIACtrack hybridized with adaptive simplex local search algorithm. The 

experiment shows that DHCIACtrack performs better than DHCIACfind when working 

on fast problems, while DHCIACfind performs better results for value-based 

problems than for location-based problems as in DHCIACtrack. DHCIACtrack 
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implements the intensification strategy and enhances better performance for 

location-based problems while DHCIACfind implements the diversification strategy 

and offers more productivity on value-based problems. 

 

According to Socha (2004), Socha and Blum (2006), Socha (2008), and Socha and 

Dorigo (2008); CACO and CIAC try to extract stimulation from the ACO, but they 

do not follow it directly, because they append some extra mechanisms, for example, 

direct communication in CIAC and API or nest term as in CACO which do not 

appear in classical ACO. Also they remove some other mechanisms such as 

properties of ACO like stigmergy was not in all API or incremental building 

solutions. CACO and CIAC deal with continuous optimization, while API may be 

utilized for discrete and continuous problems also. 

 

ACO with discretization discretizes the search domain of continuous variables and 

labels pheromone quantity to a finite number of places expressed by these ranges. 

The following studies are ACO with discretization. 

 

Yang et al., (2010) propose enhancing Ant Colony Algorithm (ACA) by hybridized 

elite strategy and distribution function to optimize continuous domain. Wei, Tuo and 

Jing (2010) present adaptive and commutative Binary Ant Colony Optimization 

(ACBACO) which is based on Binary Ant Colony Optimization (BACO). Xue, Sun 

and Peng (2010) propose to use the mutation process to enhance ACA. Hu, Zhang 

and Li (2008) present Continuous Orthogonal Ant Colony (COAC). COAC uses an 
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orthogonal concept and ACO to optimize continuous variables. A hybridization 

approach between Orthogonal Scheme (OS) and ACO (OSACO) is presented by 

Zhang et al. (2009). Huang and Hao (2006) present Continuous ACO-Direct 

Encoding (CACO-DE). CACO-DE is based on direct encoding and uses strings of 

integer digits (0-9) to encode limit-accuracy real value parameters as well as adding 

extra digits at the start of the string to indicate the sign of the real value. Kong and 

Tian (2005) propose a Binary Ant System (BAS) which is considered as a variant of 

hyper cube frame for ACO. 

 

ACO with probabilistic sampling would not discretize a seek domain, but an ant’s 

position can be expressed probabilistically. These approaches simulate continuous 

quantities of pheromone in the seek domain. ACO with probabilistic sampling 

studies are listed below. 

 

Seҫkiner et al. (2013) propose a new method based on continuous ACO (ACOR) with 

novel pheromone updating. The pheromone is modifying based on ratios which 

compute the number of ants to track the best solution. Pourtakdoust and Nobahari 

(2004) modify ACS to optimize continuous variables and propose a new algorithm 

named Continuous Ant Colony System (CACS). Kong and Tian (2006a and 2006b) 

propose Direct Ant Colony Optimization (DACO). Hong and Shibo (2008) present 

Dynamic ACA (DACA). Franca et al., (2008) present a Multivariate Ant Colony 

Algorithm for Continuous Optimization (MACACO). Chen, Sun and Wang (2009) 

propose a new method based on replacing the discrete frequency in the ant choosing 
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probability by a continuous probability distribution. They use the same mechanism 

used in ACOR in storing the solution and updating it and name it solution array. 

 

Socha (2004) and Socha and Dorigo (2008) propose ACO for continuous and mixed-

variable optimization. Their work considers being the first approach that extends 

ACO framework to deal with continuous problems. They follow the same concept of 

established ACO but shift from using discrete probability distribution to utilizing a 

continuous probability distribution which is the Gaussian Probability Density 

Function (PDF) in the solution building step which is a very simple manner for data 

sampling. The disadvantage of this PDF is the inability to express circumstances 

where two disjointed regions of the seek domain are hopeful, as it only has one 

maximum. To overcome the problem, a PDF based on enhanced Gaussian functions 

(Gaussian kernel PDF) is utilized. A Gaussian kernel is a weighted sum of several 

one-dimensional Gaussian functions. For this, many Gaussian kernel PDFs are used 

as the number of dimensions of the problem increases instead of utilizing only a 

single PDF. The authors compare their work with three ant methods: CACO, API, 

and CIAC. The comparison shows that ACOR is the best. They suggest executing 

ACOR to mixed-variable (continuous + discrete) optimization problems. The original 

performance of ACOR is in R that is a language and environment for statistical 

computing and graphics. For higher execution productivity, it must be implemented 

with compiled programming language, like C or C++ for example. 
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Socha (2008) proposes Ant colony optimization for continuous and mixed-variables 

domains. He follows same concept in his previous works (Socha, 2004 and Socha & 

Dorigo, 2008) except he utilizes a typical benchmark examining function. He also 

applies ACOR to train an ANN. Medical pattern classification is used as a test 

problem; these problems hybridize types of ACOR, called ACOR-BP and ACOR-

Levenberg Marquardt (ACOR-LM). ANN is utilized as a classifier and the training 

approach for the ANN was ACOR. His experiment shows that the execution of 

simply ACOR does not achieve the execution of derivative build approaches and the 

hybridized ACOR execution is not bad and the results can be enhanced with ACOR-

BP or ACOR-LM rather than simply ACOR. He compares his results with the results 

obtained from using GA applied on the same problem and his results indicate that 

ACOR supplies high execution for the examiner. His initial result was hopeful and 

this encourages examining ACOR on more complex problems. 

 

Liao (2011) and Liao et al. (2011) propose two new algorithms for solving 

continuous parameter optimization problems. These two new algorithms, based on 

ACOR, are Incremental Ant Colony Optimization (IACOR) and Incremental Ant 

Colony Optimization with Local Search (IACOR-LS). Both of these algorithms 

enhance the original ACOR. These enhancements are as follows. The size of solution 

archive in IACOR and IACOR-LS is increased over time until it reaches a specific 

number, the mechanism for choosing the solution that directs the creation of new 

solutions and, finally, in solving stagnation. The algorithm involves an algorithm-

level diversification strategy to avoid and solve stagnation. The strategy includes 
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restarting the algorithm and initializing the new initial archive with the best-so-far 

solution. The restart condition is the number of successive iterations, with a relative 

solution improvement lower than a certain threshold. IACOR-LS algorithm is a 

hybridization of IACOR with a local search method. The local seek procedures halt if 

it reaches a maximum number of iterations or when the tolerance that is the related 

alternation between solutions obtained in two succeeding iterations is lower than a 

defined variable. They utilize an adaptive step size for the local seek methods. In 

order to avoid stagnation at the level of the local seek, the local seek method will be 

called from many alternative solutions from time to time. A variable MaxFailures 

computes the maximum number of duplicated calls to the local seek procedure from 

the same initial solution that does not result in a solution enhancement. The inventors 

of IACOR-LS use three procedures for local seek, which are, Powell’s conjugate 

directions set, Powell’s BOBYQA and Lin-Yu Tseng’s Mtsls1 procedures. From 

their experiments on nineteen functions, IACOR-Mtsls1 appears to be more 

successful compared with other two local search types. Also, IACOR-Mtsls1 

compared with sixteen algorithms characterized in a recent special issue of the Soft 

Computing Journal show that IACOR-Mtsls1 notably executes better than the 

original ACOR and it can be competitive with the state of the art. IACOR-Mtsls1 also 

tested twenty one extra functions taken from a special session on continuous 

optimization of the IEEE 2005 Congress on Evolutionary Computation and the 

results show that IACOR-Mtsls1 remains very competitive. The authors suggest 

modify IACOR and IACOR-LS to deal with mixed-variable optimization problems. 
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2.3.3 Ant Colony Optimization for Optimizing Mixed-Variable 

Many real world problems are, lately, handled utilizing mixed kinds of decision 

parameters. A popular example is a mixture of discrete parameters and continuous 

parameters. Because of the empirical applicable of such problems, many mixed-

parameters optimization algorithms have been presented built on GA, Differential 

Evolution, PSO, and Pattern Search. One of the most interesting ACO’s for mixed-

variables is Socha’s work. 

 

Socha (2008) proposes ant colony optimization for continuous and mixed-variables 

domains (ACOMV). ACOMV is an ACOR expanding for mixed-variable optimization 

problems. ACOMV combines an element of a continuous relaxation method ACOMV-O 

and an element of a native mixed-variable optimization method ACOMV-C, as well as 

ACOR. ACOMV permits the definition of each parameter of the related problem as 

continuous, ordered discrete or categorically discrete. The continuous parameters of 

mixed-variable problems will be handled exactly as in ACOR. If ordered discrete 

parameters are presented, an element of the continuous relaxation method, ACOMV-O, 

is utilized and managed as in the original ACOR. ACOMV-C is used for categorical 

parameters and the values of these parameters are created with an alternative 

approach, one that is near to the standard combinatorial ACO. To avoid stagnation, 

an easy restart mechanism involves restarting the algorithm but preserving the best-

so-far solution in the archive. The restart condition is the number of iterations of ants 

modifying the archive with related solution enhancement lower than a constant 

threshold. In order to evaluate ACOMV, Socha proposes new benchmark problems 
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constructed on a rotated ellipsoid function as well as applying ACOR and ACOMV on 

three mixed-variables mechanical engineering examination problems which are, 

Pressure Vessel Design (PDS), Coil Spring Design (CSD), and Designing Thermal 

Insulation System (DTIS). The results show that ACOR executes better on the PVD 

and CSD problems because these two problems do not involve any categorical 

parameters, ACOMV is better on the DTIS problem which involves categorical 

parameters. Also the results taken from ACOR and ACOMV are good compared with 

the best results taken from the literature for the same three problems. Socha suggests 

undertaking more research on the execution of ACOR and ACOMV on different 

mixed-variable optimization problems; this is required to obtain better understanding 

of the advantages and disadvantages. Also, he suggests re-implementing his 

approach in C or other compiled language which is properly optimized, because he 

implements his approach with R-based implementation which is not efficient, nor is 

it properly optimized. 

 

There are also another two approaches applied to mixed-variables, as discussed 

below. 

 

A paper written by Madadger and Afshar (2011) proposes Modifies Improved ACOR 

(M-IACOR) which is a modification to ACOR in utilized explorer ants and adaptation 

operator to guarantee the trustworthiness of the final solution, and the ants must 

vastly discover the decision domain at initial seek steps and gradually shrink 

surround the best solutions while explorer ants are utilized to jump from failing into 
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local optimum. A discretization technique is used to deal with continuous variables. 

In order to evaluate M-IACOR, the authors apply it on forced cross-country water 

main design and shared pumping sites’ problems as a non-convex and highly non-

linear problem. The authors suggest applying M-IACOR on different mixed 

parameters engineering design problems and on multi-objective optimization 

problems in order to explain the execution of their approach. 

 

Sampling Ant Colony Optimization (SamACO), presented by Hu et al., (2010) 

alternates from ACOR in which it is sampling a nominee value for each parameter 

and choosing the values to form solutions. The contribution of SamACO is that the 

solution of a continuous optimization problem is, in effect, a group of feasible 

parameter values, which can be considered as a solution “track” moved by an ant. 

SamACO utilizes the benefits of classical ACO by means of sampling hopeful 

parameter values from the continuous space and utilizing pheromones on the 

nominee parameter values to direct the ants’ solution building. SamACO examines 

sixteen benchmark numerical functions (unimodal and multimodal) and compares 

them with three methods. The first involves the ant-based methods such as CACO, 

COAC, and ACOR. The second includes other well-known SI methods like ACO and 

PSO which is an enhancement version of PSO. The third and final kind includes 

representative methods that utilize an explicit probability learning notion. The results 

show that the execution of SamACO is the best compared with other techniques in 

terms of accuracy and computation. 
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2.4 Summary 

Many approaches have been applied to classify patterns with high classification 

accuracy and SVM is considered as an excellent approach to classify patterns. It 

suffers from dealing with huge numbers of features and poor settings to its 

parameters which influence its performance. ACO is considered as an excellent 

optimization tool that can be used to solve SVM problems. However, the classical 

ACO cannot deal with continuous value. Recent ACO algorithms extend the 

established ACO to deal with continuous and mixed-variables optimization problems 

which can be used to solve SVM problems. Integrating ACO and SVM is an 

approach that can be studied to optimize feature subset and values for SVM 

parameters. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

This chapter presents the framework and methodology for this thesis to develop 

algorithms to classify patterns using hybrid Support Vector Machine (SVM) and Ant 

Colony Optimization (ACO) algorithm variants. Section 3.1 discusses the research 

framework. Section 3.2 gives the datasets development. While Section 3.3 presents 

the proposed methodology that used to tune SVM parameters; Section 3.4 presents 

the methodology used to simultaneously tune SVM parameters and select feature 

subset. Finally, section 3.5 summarizes this chapter. 

3.1 Research Framework 

The research framework is the roadmap of the research that aims to provide guidance 

to industry, researchers, and funding agencies (Forrester, 2006). 

 

The research framework starts with the datasets’ development. After that, new 

enhanced pattern classification algorithms are proposed for continuous SVM 

parameters. The third phase deals with proposing new enhanced pattern 

classification algorithms that have the ability to simultaneously optimize SVM 

parameters and feature subset selection. Figure 3.1 depicts the phases of the research 

framework. 
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Figure 3.1 Research framework phases 

Each phase of the framework has its own methodology. Research methodology is the 

route used to solve the research problem. It may be understood as a science of 

studying how research is carried out scientifically. The research methodology relates 

to the logic behind the methods used in the context of the research study and 

explains the used of one particular method or technique rather than another order to 

evaluate the research results. The research methodology is divided into retrospective, 

prospective, experimental, and non-experimental studies (Kumar, 2011). 

 

This thesis proposes an enhanced pattern classification of algorithms based on 

hybridized ACO and SVM techniques. The proposed algorithms require to be 

evaluated with other approaches. In order to do this evaluation, conducting 

experiments are needed using datasets. Therefore, an experimental methodology 

approach is adopted in this thesis. 

Start 

Datasets’ Development 

Formulation of New Enhanced Pattern Classification Algorithms for Continuous SVM Parameter 

Formulation of New Enhanced Pattern Classification Algorithms to Simultaneously Optimize 

SVM Parameter and Feature Subset Selection 

End 
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3.2 Datasets’ Development 

3.2.1 Datasets’ Description 

A collection of ten datasets from a University of California, Irvine (UCI) repository 

have been used in this study. The datasets comprise: Australian, Pima-Indian 

Diabetes, Heart (Statlog), Ionosphere, German, Sonar, Splice, Image Segmentation, 

Iris, and Vehicle. Table 3.1 summarizes the main characteristics for these datasets. 

Table 3.1: Summary of UCI Datasets’ Repository 

Datasets 
Number of 

Instances 

Number of 

Features 

Number of 

Classes 
Features’ Type 

Australian 690 14 2 
Categorical, 

Integer, Real 

German 1000 20 2 
Categorical, 

Integer 

Heart (Statlog) 270 13 2 
Categorical, 

Real 

Image Segmentation 2310 19 7 Real 

Ionosphere 351 34 2 Integer, Real 

Iris 150 4 3 Real 

Pima-Indian Diabetes 768 8 2 Integer, Real 

Sonar 208 60 2 Real 

Splice 3190 61 3 Categorical 

Vehicle 846 18 4 Integer 

 

The Australian Credit Approval dataset relates to credit card applications. This 

dataset contains 690 instances with 14 features, divided into two classes: 307 

positive instances and 383 negative instances as well as containing missing values. 
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The German Credit dataset provided by Prof. Hofmann contains 1000 instances with 

20 features, divided into two classes: 700 good instances and 300 bad instances; no 

information regarding missing data was available for this dataset. 

 

The Heart dataset relates to the heart disease database and involves 270 instances 

with 13 features divided into two classes: 150 absent instances and 120 present 

instances with no missing data. 

 

The Image Segmentation dataset was generated by Vision Group, University of 

Massachusetts. This dataset contains 2310 instances with 19 features, divided into 

seven classes: brickface, sky, foliage, cement window, path, and grass and with no 

missing data in this dataset. 

 

The Ionosphere dataset consists of radar information returning from the ionosphere 

collected by a system in Goose Bay, Labrador. This dataset includes 351 instances 

with 34 features, divided into two classes: 225 good instances of radar returns are 

those showing evidence of some kind of structure in the ionosphere and 126 bad 

instances returns are those that do not, their signals pass through the ionosphere. This 

dataset contains no missing data. 

 

The Iris dataset, developed by R. A. Fisher, includes 150 instances with four 

features, divided into three classes: Iris Setosa, Iris Versicolour, and Iris Virginica. 

There is no missing data with this dataset. 
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The Pima Indians Diabetes dataset, collected from female patients at least 21 years 

old, includes 768 instances with eight features, divided into two classes: 500 tested 

positive for diabetes and 268 tested negative for instances of diabetes. There are no 

missing values in this dataset. 

 

The Sonar dataset, utilized by Gorman and Sejnowski, includes 208 instances 

utilized to distinguish between sonar signals bounced off a metal cylinder (Mines) 

and those bounced off a roughly cylindrical shape (Rock). This dataset includes 60 

features divided into two classes: 97 Rock instances and 111 Mines instances; 

missing data information is not available for this dataset. 

 

Splice junctions are positions on Deoxyribonucleic acid (DNA) series at which extra 

DNA is eliminated during the task of protein generation in higher organisms. The 

problem presented in this dataset is to recognize, given a series of DNA, the 

boundaries between exons (the parts of the DNA sequence retained after splicing) 

and introns (the parts of the DNA sequence that are spliced out). This problem 

includes two subtasks: recognizing exon/introns boundaries (referred to as EI sites 

referred to as acceptors), and recognizing introns/exon boundaries (IE sites referred 

to as donors). This dataset includes 3190 instances with 61 features, divided into 

three classes: 767 EI, 768 IE, and 1655. There is no missing data in this dataset. 

 

The last dataset utilized in this thesis is the vehicle dataset, developed by Dr. Pete 

Mowforth and Barry Shepherd at the Turing Institute, Glasgow. The purpose is to 
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classify a present silhouette as one of four kinds of vehicle, utilizing a group of 

features extracted from the silhouette. This dataset contained 946 instances with 18 

features, divided into four classes: 212 Opel instances, 217 Saab instances, 218 bus 

instances, and 199 Van instances with no missing data. 

3.2.2 Datasets’ Cleaning 

Data cleaning is needed to enhance the quality of the raw data for classification 

which will maximize the classification efficiency. Data from real-world sources are 

usually incorrect, imperfect, and conflicting, perhaps due to execution mistakes or 

system application flaws. Such low-quality data require to be cleaned prior to 

classifying the data (Colak, Sagiroglu & Yesilbudak, 2012; Gurbuz, Ozbakir & 

Yapici, 2011; Saltan, Terzi & Kucuksille, 2011; Farvaresh & Sepehri, 2011; and 

Christen, 2009). Table 3.2 summarizes the main characteristics for the used datasets 

after cleaning and this is again depicted in Figures 3.2-3.4. 
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Table 3.2: Summary of Cleaning Datasets in the UCI Repository 

Datasets 
Number of 

Instances 

Number of 

Features 
Number of Classes 

Australian 397 11 2 

German 1000 20 2 

Heart (Statlog) 270 13 2 

Image Segmentation 2310 18 7 

Ionosphere 351 34 2 

Iris 150 4 3 

Pima-Indian Diabetes 395 8 2 

Sonar 208 60 2 

Splice 1000 61 3 

Vehicle 846 18 4 
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The Australian Credit Approval dataset incorporated incorrect data so, in the 

cleaning phase, all incorrect data were deleted. Features 10, 13, and 14 were deleted, 

because the values for these features are continuous, albeit given in a discrete form. 

Beside these features, any instances given in discrete form which were 

hypothetically of continuous value were deleted also. 

 

In the case of the Image Segmentation dataset, all values of third features were equal 

to nine, so this feature was deleted. 

 

In the Pima Indians Diabetes dataset, some instances contain a value of zero which is 

biologically impossible, therefore, every instance containing a zero value was 

deleted. 

 

The Splice dataset did not have any missing or incorrect data, but to simplify 

calculation only 1000 instances were selected randomly with a class label of only EI 

or IE, because it is required only to distinguish between these two classes. 

3.2.3 Datasets’ Transformation 

The Australian Credit Approval, Heart, German Credit, and Splice datasets contain 

categorical values. In order to deal with these datasets any categorical value were 

converted to a numerical value to manipulate these datasets. Also, the class labels of 

all binary classes’ datasets were converted from 1 and 0 to +1 and -1. In the case of 
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multi class datasets the same strategy was used, but after grouping each two classes 

to become binary class datasets. 

3.2.4 Datasets’ Scaling 

All the datasets were scaled through the dataset development step to avoid features 

with high numerical ranges from dominating those in lower numerical ranges and to 

minimize the computation efforts. All attributes were linearly scaled to [0, 1] rang 

using this formula (Huang & Wang, 2006; Pham et al., 2007; Lin et al., 2008; Huang 

& Dun, 2008; Ding & Li, 2009; Lin & Chien, 2009; Huang, 2009; Chang & Lin, 

2011; Zhao et al., 2011; and Sarafrazi & Pour, 2013): 

 ̅  
      

         
         (3.1) 

Where x is the original attribute value,  ̅ is the scaled attribute value, and maxi and 

mini are the maximum and minimum attribute values of attribute i respectively. 

3.3 Formulation of New Enhanced Pattern Classification Algorithm for 

Continuous SVM Parameter 

The first SVM’s problem, relating to selecting its model, will be dealt with using 

only continuous ACO variants which are continuous ACO (ACOR) and Incremental 

continuous ACO (IACOR) for solving this problem without using ACO to select 

suitable feature subset, but an Fisher (F)-score will be used to select suitable feature 

subset. Here, a filter based approach is used to select feature subset after which the 

SVM classifier will be trained. In this way, it will not be possible to tightly gather 

the overall classification accuracy produced by SVM classifier and necessary 
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features. The drawback for this schema is that the optimal feature subset selection 

will not be dependent of the inductive and representational biases of the learning 

algorithm that is utilized to build SVM classifier. An ant solution was used to 

represent a combination of the SVM classifier parameters, penalty parameters C and 

Radial Basis Function (RBF) kernel function parameter  . Based on the solution 

archives, the transition probability is computed to choose a solution path for an ant. 

 

The proposed algorithms are tested on ten benchmark datasets from the UCI 

repository and compared with other approaches such as Genetic Algorithm (GA)-

SVM (Huang & Wang, 2006), GAwith feature chromosome-SVM and Grid search (Zhao et 

al., 2011), ACO-SVM (Huang, 2009), Particle Swarm Optimization (PSO)-SVM 

(Lin et al., 2008) and Simulated Annealing (SA)-SVM (Lin et al., 2008) in terms of 

classification accuracy and feature subset size. The proposed algorithms have been 

implemented in C programming language. To compare the classification accuracy of 

the proposed algorithms with other approaches, the non-parametric Wilcoxon signed 

rank test for all of the datasets is used as it entails fewer and simpler calculations 

(Weiss, 2008). 

3.4 Formulation of New Enhanced Pattern Classification Algorithm to 

Simultaneously Optimize SVM Parameter and Feature Subset Selection 

The second SVM’s problem, which is related to selecting suitable feature subset with 

a small number of features besides the SVM model selection problem, will be dealt 

with using mixed-variables ACO variants which are mixed-variable ACO (ACOMV-
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R) and Incremental mixed-variable ACO (IACOMV-R). Features are represented as 

discrete graph nodes while C and   SVM parameters are continuous values, so there 

will be a need to use ACOMV that can deal with discrete, continuous, or both values’ 

types. The number of chosen features varies from ant to ant. Hence, it is not 

necessary for an ant to visit all the features. The termination criterion for ant to stop 

its visits to the feature is when the ant arrives at a predefined selection of features 

which will be generated randomly. The ant’s solution will represent a mix of SVM 

parameters which are penalty parameters C and   for RBF kernel function and 

feature subset. Based on the solution archive, pheromone table and suitable features, 

the probability of transition is computed to choose a solution track for the ant. The 

pheromone table and solution archives will be modified based on the classification 

accuracy and feature quality. Wrapper approach strategy, to select feature subset, 

will be used to hybridize ACO variant with SVM. This will use the overall 

classification accuracy produced through the SVM classifier and the necessary 

features to hybridize together into ACO variants’ algorithms. In this case, the 

optimal selected features will be dependent on the inductive and representational 

biases the learning algorithms that are utilized to build the SVM classifier. 

 

The proposed algorithms are tested on ten benchmark datasets from the UCI 

repository and compared with other approaches such as Gravitational Search 

Algorithm (GSA)-SVM (Sarafrazi & Pour, 2013), GAwith feature chromosome-SVM and 

Grid search (Zhao et al., 2011), ACO-SVM (Huang, 2009), Cat Swarm Optimization 

(CSO)-SVM (Lin & Chien, 2009), Clonal Selection Algorithm (CSA)-SVM (Ding & 
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Li, 2009), PSO-SVM (Lin et al., 2008), SA-SVM (Lin et al., 2008), and GA-SVM 

(Huang & Wang, 2006) in terms of classification accuracy and feature subset size. 

The proposed algorithms have been implemented in C programming language. To 

compare the classification accuracy of the proposed algorithms with other 

approaches, the non-parametric Wilcoxon signed rank test was used for all of the 

datasets as it entails fewer and simpler calculations (Weiss, 2008). 

3.5 Summary 

In constructing hybrid ACO-SVM, it is necessary to work with the continuous value 

of SVM parameters and prevent discretization which, if done, will affect the 

classification accuracy. Additionally, proposed algorithms that have the ability to 

simultaneously optimize model and feature subset selection by each ant can produce 

classifier models that could classify data with acceptance classification accuracy and 

help humans to understand data better, especially for large amounts of data. 
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CHAPTER FOUR 

ENHANCED ACO-SVM PATTERN CLASSIFICATION 

ALGORITHM FOR CONTINUOUS SVM PARAMETER 

This chapter presents the proposed algorithms for tuning Support Vector Machine 

(SVM) parameters. Section 4.1 presents the proposed two algorithms; while Section 

4.2 presents the experiments made on ten datasets from the University of California, 

Irvine (UCI) repository to evaluate the performance of the proposed algorithms. 

Finally, the summary of the chapter is presented in Section 4.3. 

4.1 Enhanced Pattern Classification Algorithm for Continuous SVM Parameter 

A classification algorithm is a methodical approach to construct classification 

models from an input data set. Each algorithm utilizes a learning algorithm to 

identify a model that best matches the correlation between the attribute group and 

class label of the input data. The model produced through a learning algorithm 

should both perfectly match the input data and exactly forecast the class labels of 

records it has never seen before. Therefore, the main goal of the learning algorithm is 

to construct models with good generalization capability; i.e., models that precisely 

forecast the class labels of previously unknown records (Tan, Steinbach & Kumar, 

2006). Figure 4.1 depicts the generic flowchart for constructing a classification 

model. The result, which is the classification accuracy, will depend on the learning 

algorithm that is used. The learning algorithm in Figure 4.1 will be represented in 

detail in Figure 4.2 and Figure 4.3. 
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Figure 4.1 Generic flowchart for constructing a classification model 

Figure 4.2 depicts the general flowchart of SVM pattern classification approaches 

that will convert the continuous value of SVM parameters to discrete values. As 

mentioned in Chapter One, this conversion process has produced classification errors 

and, thus, affects the classification accuracy (Huang, 2009), because it will limit the 

details at which optimistic regions of the seek domain can be explored (Blondin & 

Saad, 2010). Studies that discretize the continuous values have been reported in Zhao 

et al. (2011), Zhang Chen & He (2010), Huang (2009), Lin et al. (2008), and Huang 

& Wang (2006).  

 

 

 

Induction 

Deduction 

Training Set 

Testing Set 

Apply Learning Algorithm on Training Set 

Learned Model 

Apply Model on Testing Set 

Result 



 

103 

 

Figure 4.2 Flowchart for SVM pattern classification approach 

In this thesis, two algorithms are proposed based on Ant Colony Optimization 

(ACO) variants, continuous ACO (ACOR) and Incremental continuous ACO 

(IACOR), in order to obtain the optimal continuous value for SVM parameters to 

classify patterns with acceptable classification accuracy (refer to Figure 4.3). These 

two proposed algorithms can directly handle the continuous nature of SVM 

parameters values in order to optimize it and then reduce the classification error. 

This was not possible in other approaches as mentioned earlier. One of the new ACO 

research directions is to optimize the continuous problem; so, ACOR is considered 

the first algorithm that can handle the continuous variable and follow the same 
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ACO’s framework, while IACOR is used to improve ACOR performance in solving 

stagnation. 

Figure 4.3 Flowchart for enhanced ACO-SVM pattern classification algorithm 

Figure 4.4 presents the generic architecture for the proposed pattern classification 

algorithms. As shown in this figure, the proposed algorithm starts with dataset 

development followed by selection of the feature subset through filtering features by 

using the Fisher (F)-score and passing it to the SVM. Subsequently, and regarding 

user specification, ACOR or IACOR will be executed to optimize the value of SVM 

parameters and will be sent to the SVM to compute classification accuracy which 

will be fed back to ACOR or IACOR to update the solution archive in case the 

Yes 

Start 

Dataset Development 

 

 Calculate Features Importance 

Features Selection (Filtering Feature) 

Class Assignment Using SVM 

Classification Accuracy 

= 100% or Number of 

Iterations = 10 

SVM Parameter Optimization by either 

i) Continuous ACO (ACOR) or 

ii) Incremental Continuous ACO (IACOR) 

End 
No 



 

105 

 

produced classification accuracy is not satisfied, otherwise the proposed algorithms 

will be halted. 
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Figure 4.4 Enhanced generic ACO-SVM pattern classification algorithm 
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Finally, Figure 4.5 presents the generic pseudo code for the proposed algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Generic pseudo code for proposed enhanced ACO-SVM algorithm 

4.1.1 Datasets’ Development 

The proposed algorithms begin with the develop of the datasets as explained in 

Chapter Three which includes cleaning missing data from the dataset, data 

transformation and scaling the dataset using Eq. (3.1) to avoid features with high 

numerical ranges from dominating those in lower numerical ranges and to minimize 

the computation efforts. All attributes are linearly scaled to [0, 1] range.  

4.1.2 Select Feature Subset 

After the datasets are developed, selecting feature subset through filtering features 

using a F-score technique will be made. F-score is used as a measurement to 

The Proposed Algorithm 

Input: Datasets 

Output: Optimal value for SVM parameters and classification accuracy 

Begin 

clean dataset 

scale cleaned dataset using Eq. (3.1) 

//filtered features 

for each dataset do 

calculate F-score for each feature according to Eq. (4.1) 

  calculate threshold = average F-score 

  for i = 1 to no. of features do 

   if F-score for featurei ≥ threshold then 

    append featurei to features subset 

   end 

  end 

for i = 1 to no. of runs do 

 for j = 1 to no. of iterations do 

//tune SVM parameters 

    call ACOR-SVM or IACOR-SVM 

   end 

end 

end 

End 
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determine the importance of features. The reason for using this measurement is 

because it is an easy measurement that judges the favoritism capability of a feature. 

A high value F-score means that it is most likely that this feature is favorable. The 

disadvantage of this measurement is that it takes each feature in isolation so it cannot 

reveal mutual information between features (Chen & Lin, 2006; and Chang & Lin, 

2011). The equation for the F-score is as follows (Chen & Lin, 2006; Chang & Lin, 

2011; and Huang, 2009): 
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where   is the number of categories of target variables.    is the number of features. 

  
( )

 is the number of samples of the  th feature with categorical value c, c   {1, 2, …, 

 }.  ̅   
( )

 is the j
th

 training sample for the  th feature with categorical value c. j   {1, 2, 

…,   
( )

},  ̅  is the  th feature, and  ̅ 
( )

 is the  th feature with categorical value c. The 

numerator considers the inter-class variance and the denominator considers the sum 

of the variance within each class. 

 

Subsequently, the average F-score is computed and it is considered as the threshold 

for choosing features in the feature subset. Features with F-scores equal to or greater 

than the threshold are chosen and placed in the feature subset and this subset is 

presented to the SVM to assign a class label for data instances. Table 4.1 shows the 

difference in selecting feature subset between the proposed algorithms used in this 

thesis and in other research. 
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Table 4.1: Filtering Method 

Approaches Filtering methods 

Proposed ACOR-SVM Algorithm F-Score + Threshold 

Proposed IACOR-SVM Algorithm F-Score + Threshold 

ACO-SVM 
F-Score + keep the first features 

according to the sorted F-Score 

Particle Swarm Optimization (PSO)-SVM All features 

Genetic Algorithm (GA)-SVM Did not mentioned 

Simulated Annealing (SA)-SVM All features 

Grid-SVM All features 

 

After filtering features and produced feature subset, one of the two new continuous 

ACO variants will be used to optimize and tune SVM parameters. The following 

subsection presents details of the proposed ACOR-SVM and IACOR-SVM 

algorithms. 

4.1.3 Proposed ACOR-SVM Algorithm 

The first proposed ACOR-SVM algorithm is based on using ACOR to tune SVM 

parameters. ACOR is considered as the first ACO algorithm used to optimize 

continuous variables (Socha, 2004; Blum, 2005; Socha & Blum, 2006; Socha, 2008; 

Socha & Dorigo, 2008; Liao et al., 2011; and Liao, 2011). Figure 4.6 depicts the 

details of the steps of the proposed ACOR-SVM algorithm. 
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Figure 4.6 Pseudo code of proposed ACOR-SVM algorithm 

ACOR-SVM starts with randomly initializing two solution archives for SVM 

parameters; one for regularization or soft margin parameter C value and the other for 

Radial Basis Function (RBF) kernel function parameter γ value. These solution 

archives will be filled with solutions initially generated randomly by dividing C and 

γ value over parameter k which represents the size of solution archives. This is then 

used by SVM to compute its objective function. 

 

After initializing solution archives are achieved, the solution will be established by 

each ant. For each ant establishing a solution path for parameter C and parameter γ, 

these two solution archives are needed to design the transition probabilities for C and 

ACOR-SVM Algorithm 

Input: Size of solution archive (k), no. of ants (m), q, range of C, range of γ, and termination 

criterion 

Output: Optimal value for SVM parameters (C and γ) and classification accuracy 

Begin 

Initialize k solutions 

call SVM algorithm to evaluate k solutions 

//sort solutions and store them in the archives 

T = Sort (S1, …, Sk) 

while classification accuracy ≠ 100% or number of iteration ≠ 10 do 

//generate m new solutions 

for i = 1 to m do 

//construct solution 

select S according to its weight 

sample selected S 

store newly generated solutions 

call SVM algorithm to evaluate newly generated solutions 

end 

//sort solutions and select the best k 

T = Best  (Sort S1, … Sk + m), k) 

end 

End 
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for γ. The weight vector (w) is then computed for each sample for C and γ stored in 

solution archives as follows: 

   
 

  √  
 
 
(   ) 

             (4.2) 

where k is the size of solution archive, q is the algorithm’s parameter to control 

diversification of the search process, and l is the index of solutionl in the solution 

archive which is depend on its objective function. The weights values are also stored 

in solution archives. Once this step is completed, the sampling procedure is made 

through two phases. Phase one involves choosing one of the weight vectors 

according to its probability as follows: 

   
  

∑   
 
   

               (4.3) 

 

The second phase involves sampling selecting w via a random number generator that 

is able to generate random numbers according to a parameterized normal 

distribution. In this thesis, the size of solution achieved (k) is used as a random 

number to sample the selecting w. This initializing constructs the transition 

probabilities for ants. The solution will be constructed by each ant; each ant builds 

its own solution which will be a combination of C and γ. This solution will be sent to 

the SVM to classify data instances and based on the outcome of the SVM the 

solution archives will be updated by appending the newly generated group solution 

that gives the best classification accuracy to the solution archive and then delete the 

exact number of worst solutions. This ensures that the size of solution archive does 
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not change. This procedure guarantees that only good solutions are stored in the 

archives, and it will efficiently influence the ants in the seek process. 

4.1.4 Proposed IACOR-SVM Algorithm 

The second proposed algorithm is IACOR-SVM which incorporates IACOR to tune 

SVM parameters. The IACOR algorithm is an enhanced ACOR and attempts to solve 

the main drawbacks of ACOR which are related to stagnation problems and the 

application gap with the state-of-art continuous solvers (Liao, 2011 and Liao et al., 

2011). 

 

IACOR-SVM as compared to ACOR-SVM has more seek diversification 

mechanisms. The optimization procedure in IACOR-SVM starts with a small archive 

size. A parameter InitArhiveSize defines its size which will be equal to the k 

parameter as in ACOR-SVM. Like ACOR-SVM, IACOR-SVM starts with randomly 

initializing two solution archives for SVM parameters; one for regularization or soft 

margin parameter C value and the other for RBF kernel function parameter, γ value. 

These solution archives will be filled with solutions initially generated randomly as 

in ACOR-SVM by dividing C and γ value over parameter k and then these samples 

will be sent to the SVM to evaluate it and compute objective function for each 

sample. 

 

IACOR-SVM also characterizes a strategy alternate from the one utilized in ACOR-

SVM for choosing the solution that directs the creation of new solutions. The new 
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procedure is built on parameter p   [0, 1], which monitors the probability of 

utilizing only the best solution in the archive as a directing solution. With a 

probability 1 - p, all the solutions in the archive are utilized to create new solutions. 

Once a directing solution is chosen, and a new one is created exactly the same way 

as in ACOR-SVM, they are compared according to their objective function which is 

computed according to the SVM output. If the newly created solution is better than 

the directing solution, it replaces it in the archive. This replacement mechanism is 

alternate from the one utilized in ACOR-SVM in which all solutions in the archive 

and all the newly created ones compete. A new solution is appended to them every 

growth iteration until a maximum archives size, defined by MaxArchiveSize, is 

reached. A parameter Growth monitors the percentage at which the archives grow. 

Fast growth percentage support seeks diversification while slow growth supports 

intensification. Each time a new solution is appended, it is initialized utilizing 

information from the best solution in the archives. First, a new solution Snew is 

created fully in an arbitrary way, and then it is moved in the direction of the best 

solution in the archive Sbest utilizing the following formula: 

  ̅            (   )(          )     (4.4) 

where rand(0, 1) is an arbitrary number in range [0, 1). 

 

IACOR-SVM involves an algorithm-level diversification strategy for fighting 

stagnation. The strategy includes restarting the algorithm and initializing the new 

initial archive with the best-so-far solution. The restart condition is the number of 

successive iterations, MaxStagIter, with a relative solution improvement lower than a 
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certain threshold which is the classification accuracy. Figure 4.7 depicts the pseudo 

code of proposed IACOR-SVM algorithm. 

Figure 4.7 Pseudo code of proposed IACOR-SVM algorithm 

IACOR-SVM Algorithm 

Input: p, InitArhiveSize, Growth, MaxArchiveSize, MaxStagIter, No. of ants, and Termination 

criterion 

Output: Optimal Value for C and γ 

k =  InitArhiveSize 

initialize k solutions 

call SVM algorithm to evaluate k solutions 

while classification accuracy ≠ 100% or number of iteration ≠ 10 do 

 // Generate new solutions 

 if rand (0,1) < p then 

  for i = 1 to no. of ants do 

   Select best solution using Eq. (4.3)  

   Sample best selected solution 

Call SVM algorithm to evaluate the new generated solutions 

   if Newly generated solution is better than Sbest then 

    Substitute newly generated solution for Sbest 

   end 

  end  

 else 

  for j = 1 to k do 

   Select S using Eq. (4.3) 

   Sample selected S 

   Store newly generated solutions 

Call SVM algorithm to evaluate the new generated solutions 

   if Newly generated solution is better than Sj then 

    Substitute newly generated solution for Sj 

   end  

  end  

 end 

 // Archive Growth 

 if current iterations are multiple of Growth & k < MaxArchiveSize then 

  Initialize new solution using Eq. (4.4) 

  Add new solution to the archive 

  k + + 

 end  

 // Restart Mechanism 

 if # (number) of iterations without improving classification accuracy of Sbest =       

MaxStagIter then 

  Re-initialize T (solution archive) but keeping Sbest  

 end  

End 
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4.1.5 Class Assignment Using SVM and Evaluation 

A classifier model is constructed after each ant builds its solution to assign a class 

label for each dataset instance. A solution is generated by each ant and is evaluated 

based on the classification accuracy obtained by the SVM model utilizing k-fold 

Cross Validation (CV) with the training set. The benefits of using CV are (1) each of 

the test groups is independent and (2) the dependent outcomes can be enhanced 

(Huang, 2009). k-fold CV will randomly rearrange the whole dataset and divide it 

into approximately equal sized k fold subsets, and the holdout approach is repeated k 

times. One of the k sub-groups is utilized as the test set and the remaining k-1 sub-

groups are combined to construct the training group (Ding & Li, 2009 and Huang, 

2009). The following procedure shows a k-fold CV technique (Sartakhti, Zangooei & 

Mozafari, 2011): 

1. Re-order data and divide: randomly re-arrange the whole data and then divide 

it into k non-overlapping, approximately equally sized subgroups. 

2. Train classifiers over folds: one subgroup is tested using the classifier trained 

on the remaining k-1 subgroups. For each i = 1, 2, …, k creates a classifier. 

Thus, each instance of the whole training group is forecast. 

3. Evaluate the percentage of instances that are classified in the correct way to 

determine k-folds through computing test accuracy using the following 

formula: 

               
                              

                  
         (4.5) 
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4. The above steps will be repeated k times through taking the next subgroup as 

a test set and the remaining subgroups as training sets, each time utilizing an 

alternative subgroup as a test set. 

5. k different test results available for each training-test arrangement: the 

average of these results produces the test accuracy of the algorithm. CV 

accuracy is calculated as follows: 

           
∑               

 
              (4.6) 

 

For binary class classification problems, given M training examples where each 

example is represented through a pair of (xi, yi) where i = 1, …, M, xi   R
M

 

corresponds to the feature group for the i
th

 example, and yi   {+1, -1} denotes the 

class label, SVM needs to find the optimal hyperplane that will classify each pattern 

xi into the correct class yi. If the patterns are linearly separable, the following 

expressions can be used to give the parameters w and b of the hyperplane (Vapnik, 

1995; Vapnik, 1999; Chapelle et al., 2002; Cortes & Vapnik, 1995; Vapnik & 

Chapelle, 2000; Tan, Steinbach & Kumar, 2006; and Pham et al., 2007): 

〈    〉                      (4.7) 

〈    〉                      (4.8) 

Gathering inequalities (4.7) and (4.8) gives: 

  (〈    〉   )                   (4.9) 

 

The SVM obtains the optimal hyperplane through solving the following 

minimization problem: 
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            (4.10) 

Subject to   〈    〉   )          (4.11) 

 

To solve this quadratic optimization problem one must obtain the saddle point of the 

Lagrangian function: 

  (     )  
 

 
     ∑ (    (〈    〉   )   )

 
      (4.12) 

where    represents Lagrange multipliers;    > 0. The saddle point can be located by 

minimizing the Lagrangian function    with respect to the primal variable w and b 

and maximizing    with respect to the non-negative dual variable   . 

 

The following equations are produced after differentiating Eq. (4.12) with respect to 

w and b: 

 

  
       ∑       

 
          (4.13) 

 

  
     ∑     

 
           (4.14) 

 

Substituting Eqs. (4.13) and (4.14) into Eq. (4.12) yields the dual Lagrangian    to 

be maximized: 

       (  )  ∑    
 

 
∑         〈     〉
 
   

 
       (4.15) 

Subject to    > 0, i = 1, …, M, and ∑     
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As mentioned previously, to obtain the optimal hyperplane, maximizing the dual 

Lagrangian   (  ) with respect to non-negative    is needed. This quadratic 

optimization problem can be solved by utilizing a standard optimization program. 

When the optimal values   
  of    have been computed, the optimal decision 

hyperplane is given by: 

 (    
    )  ∑     

 〈    〉   
  

         (4.16) 

 

For non-zero   
 ,    can be obtained from the Kuhn-Tucker condition: 

  (   
    )                      (4.17) 

Note that vectors xi for which Eq. (4.17) holds are called support vectors and w is the 

feature’s weight, utilizing Eq. (4.13): 

   ∑   
     

 
           (4.18) 

 

In non-separable cases, the goal is to build a hyperplane that will generate the 

smallest number of classification mistakes. Slack variables              are 

introduced in Inequalities Eq. (4.7) and Eq. (4.8) such that: 

〈    〉                         (4.19) 

〈    〉                         (4.20) 

   relax the constraints on the location of the data relative to the hyperplane. The 

optimization problem becomes: 

        
 

 
     ∑   

 
          (4.21) 

Subject to   (〈    〉   )                    
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where C represent the penalty of misclassifying the training instances, in other 

words, it is a weight representing the trade-off between misclassifying certain points 

and correctly classifying others. 

 

Again, the Lagrangian method can be utilized to solve the above optimization 

problem. The Lagrangian   (  ) is to be maximized, i.e. 

       (  )  ∑    
 

 
∑         〈     〉
 
   

 
       (4.22) 

Subject to       , i = 1, …, M, and ∑     
 
      

Note that Eq. (4.22) is the same as Eq. (4.15) for the case of linearly separable data, 

except that    is now bounded by C. The optimum hyperplane can be found as 

described previously once the values    have been computed. 

 

In most cases, the data are not linearly separable, and are consequently mapped to a 

higher dimensional feature space. Therefore, if the data cannot be classified clearly 

in the current dimensional space, then the SVM will map them to a higher 

dimensional space for classification (Lin et al., 2008). Input data are mapped to a 

higher dimensional feature space by plotting a nonlinear curve utilizing kernel 

function  (  ) = k (. , .). When applied to two points xi and xj, k (xi, xj), is a 

generalized form of the inner product in Eq. (4.15) (Pham et al., 2007). The 

Lagrangian maximization problem becomes: 

       (  )  ∑    
 

 
∑          〈     〉
 
   

 
       (4.23) 

Subject to       , i = 1, …, M, and ∑     
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Here, the kernel function used is RBF which is shown below: 

 (    )     
(  ‖    ‖

 )       (4.24) 

 

The classification decision function formula for testing data becomes: 

   (   ( )   )     (∑   
 
      (    )   )    (4.25) 

where *  +   
  is Lagrange Multipliers which is computed according to pseudo code 

express in Appendix A and the bias (b) is compute using the following formula: 

  
 

   
∑ (       )
   
          (4.26) 

where     is the number of support vectors    that has    greater than zero. 

 

After obtaining the sign for the testing set instance, the accuracy test is computed 

using Eq. (4.5) which is computed for only one fold testing set and after finishing 

computing the all k-fold testing sets; the classification accuracy is computed using 

Eq. (4.6). Figure 4.8 depicts the algorithm’s steps for binary class SVM. 

 

 

 

 

 

 

Figure 4.8 Binary class SVM’s algorithm 

Binary Class SVM’s Algorithm 

Input: Optimal Value for C, Optimal Value for γ, and Features Subset 

Output: Classification Accuracy 

Begin 

Compute RBF kernel matrix for training sets using Eq. (4.24) 

Call    routine in Appendix A 

Compute weight w for training sets’ features using Eq. (4.18) 

Compute b for training sets using Eq. (4.26) 

Classify testing set using Eq. (4.25) 

Compute test accuracy using Eq. (4.5) 

Compute cross validation accuracy using Eq. (4.6) 

End 
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For multi class SVM, One-Against-One (OAO) strategy is used in this thesis, 

because it is more accurate compared with One-Against-All (OAA). OAO constructs 

a number of binary SVM classifiers where each one is trained on data from two 

classes. The number of binary SVM classifiers is computed according to the 

following formula: 

  
  

 (   )

 
         (4.27) 

 

In classification, a voting strategy is used, each binary classification is related to be a 

vote where votes can be direct for all data points; ultimately, a point is considered to 

be in the class with the maximum number of votes. In cases where two classes have 

identical votes, the class appearing first in the array of storing class names is chosen 

(Hsu & Lin, 2002a; Hsu & Lin, 2002b; and Chang & Lin, 2011). 

 

Subsequently, if the termination conditions are satisfied the algorithm will be 

stopped, otherwise it will be returned to tune SVM parameters by using ACO 

variants. Figure 4.9 depicts the algorithm steps for a multi-class SVM. 

 

 

 

 

 

Figure 4.9 Multi class SVM’s OAO algorithm 

Multi Class SVM’s (One-Against-One) Algorithm 

Input: Optimal Value for C, Optimal Value for γ, and Features Subset 

Output: Classification Accuracy 

Begin 

Compute number of binary classes SVM using Eq. (4.27) 

Call Figure 4.8 binary class SVM to train number of binary classes 

Predicting all binary SVMs for a testing data 

Select the one with the largest vote 

End 
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4.2 Experiment and Result 

The proposed algorithms were tested on ten datasets from the UCI repository using a 

ten-fold Cross Validation (CV) technique. The experiment repeats CV technique ten 

times and the program runs ten times to enable each fold of data to take a turn as the 

testing dataset, producing ten individual sets of performance statistics, such as 

classification accuracy. Finally, the experiment averages these performance statistics 

and calculates the standard deviations for each of the performance statistics. 

 

C programming language was used to implement the proposed algorithms. 

Experiments were performed on an Intel(R) Core (TM) 2 Duo CPU T5750, running 

at 2.00 GHZ with 4.00 GB RAM and 32-bit operating system. 

 

The search range for C was [2
-1

, 2
12

] and γ [2-12, 22] (Huang, 2009). The number of 

tested ants was (2, 4, 6, 8, and 10). The results show that the performance of the 

proposed algorithms did not depend on number of ants, therefore, only two ants were 

selected to execute the proposed algorithms. The value of tested q variable which is 

the algorithm’s parameter to control diversification of search process was (0.1, 0.3, 

0.5, 0.7, and 0.9) and the results show that when the q value is small it gives a better 

result, so the q value was selected to be equal to 0.1. 

 

The performance of the proposed algorithms is evaluated by comparing it with 

GAwith feature chromosome-SVM and Grid search (Zhao et al., 2011), ACO-SVM (Huang, 

2009), PSO-SVM and GA-SVM (Lin et al., 2008), and SA-SVM (Lin et al., 2008). 
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Table 4.2-4.5 summarizes the performance statistics for ACOR-SVM, IACOR-SVM, 

ACO-SVM, GAwith feature chromosome-SVM and Grid search (Zhao et al., 2011), PSO-

SVM and GA-SVM (Lin et al., 2008), and SA-SVM (Lin et al., 2008). 

 

Table 4.2 and Figure 4.10 compare the classification accuracy between the proposed 

ACOR-SVM and IACOR-SVM algorithms and GAwith feature chromosome-SVM, Grid 

search, PSO-SVM, GA-SVM, and SA-SVM. The comparison result  shows that the 

proposed IACOR-SVM algorithm achieves highest classification accuracy in all 

datasets, while ACOR-SVM achieves highest classification accuracy in nine datasets 

and only in one dataset, the Ionosphere dataset, GAwith feature chromosome-SVM was 

better than ACOR-SVM in 0.81% while the performance of the proposed ACOR-

SVM algorithm was similar to PSO-SVM and SA-SVM for the same dataset. The 

reason the proposed algorithms performed better than other approaches is because 

that the proposed algorithms tune SVM parameters without the need to discretize the 

continuous value. It shows that the proposed algorithms can handle categorical, real 

and integer values. Also, the experiment results show that the proposed IACOR-SVM 

algorithm was better than ACOR-SVM in the Pima-India Diabetes, Australian, 

German, and Heart datasets, while in other datasets (Image Segmentation, Splice, 

Ionosphere, Iris, Sonar, and Vehicle datasets) the performance of the proposed 

ACOR-SVM algorithms and IACOR-SVM algorithms was similar. 
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Table 4.2: Comparison of Classification Accuracy 

Datasets 1 2 3 4 5 6 7 

Australian 
91.99 ± 

0.29 

94.62 ± 

0.52 

86.81 ± 

3.64 
88.09 88.34 88.09 

84.74 ± 

4.52 

German 
88.72 ± 

0.04 

91.56 ± 

0.1 

80.80 ± 

2.10 
79.00 - 84.24 

78.9 ± 

1.73 

Heart 
94.87 ± 

0.4 

96.28 ± 

0.21 

91.11 ± 

2.58 
- - - 

88.15 ± 

5.18 

Ionosphere 
97.76 ± 

0.55 

98.90 ± 

0.52 

98.57 ± 

2.02 
97.50 97.50 96.61 

94.29 ± 

3.56 

Iris 
99.87 ± 

0.29 

99.86 ± 

0.29 

96.00 ± 

3.44 
98.00 - 97.56 

94.09 ± 

4.77 

Pima-India 

Diabetes 

88.00 ± 

0 

91.25 ± 

0.13 

81.97 ± 

5.34 
80.19 80.19 82.98 

76.58 ± 

5.14 

Sonar 
98.36 ± 

0.63 

98.92 ± 

0.08 

95.00 ± 

2.36 
88.32 91.85 95.22 

90.50 ± 

8.32 

Vehicle 
93.00 ± 

0 

93.20 ± 

0.18 

84.74 ± 

2.32 
88.71 88.76 85.87 

83.94 ± 

2.74 

1 Proposed ACOR-SVM Algorithm  2 Proposed IACOR-SVM Algorithm  

3 GAwith feature chromosome-SVM  4 PSO-SVM    5 SA-SVM 

6 GA-SVM    7 Grid 
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Figure 4.10 Comparison of classification  accuracy 

Table 4.3 and Figure 4.11 compare the classification accuracy between the proposed 

ACOR-SVM and IACOR-SVM algorithms and ACO-SVM. The comparison results 

show that the proposed algorithms are better than ACO-SVM and achieve higher 

classification accuracy in all datasets as the proposed algorithms handle the 

continuous value of SVM parameters directly without the need to discretize them. It 

also shows that the proposed algorithms can handle categorical, real and integer 

values. 

Table 4.3: Percentage Accuracy of Average Classification 

Datasets 
Proposed ACOR-SVM 

algorithm 

Proposed IACOR-SVM 

algorithm 
ACO-SVM 

Image Segmentation 98.00 ± 0 97.29 ± 0.08 54.64 

Pima-India Diabetes 88.00 ± 0 91.25 ± 0.13 63.57 

Splice 96.72 ± 0.18 96.76 ± 0.48 64.73 
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Figure 4.11 Percentage accuracy of average classification 

Table 4.4 and Figure 4.12 compare the size of feature subset between the proposed 

ACOR-SVM and IACOR-SVM algorithms and GAwith feature chromosome-SVM, Grid 

search, PSO-SVM, GA-SVM, and SA-SVM. The comparison results show that the 

proposed ACOR-SVM algorithms and IACOR-SVM algorithms achieve the smallest 

feature subset size for nine datasets, while in only one dataset, the Iris dataset, GA 

with feature chromosome-SVM approach achieves the smallest feature subset size. Both of 

the proposed algorithms produce similar feature subset size; this is because both the 

proposed algorithms use the same technique to select features. The smallest 

reduction in feature size was 48.33% for the Vehicle dataset, while the highest 

reduction in feature size was 80.82% for the Splice dataset. 
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Table 4.4: Comparison of Feature Subset Size 

Datasets 

Original 

number of 

features 

1 2 3 4 5 6 7 

Australian 11 
3.2 ± 

0.4 

3.3 ± 

0.46 

6.7 ± 

3.16 
15 15 14 14 

German 20 
6.2 ± 

0.77 

6.4 ± 

0.63 

11.8 ± 

3.33 
30 - 24 24 

Heart 13 
6.2 ± 

0.6 

6.0 ± 

0.45 

7.0 ± 

1.05 
- - - 13 

Ionosphere 34 
11.0 ± 

1 

10.6 ± 

1.74 

15.4 ± 

3.32 
34 34 34 34 

Iris 4 2 ± 0 2 ± 0 
1.8 ± 

0.38 
4 - 4 4 

Pima-India 

Diabetes 
8 

2.6 ± 

0.49 

2.6 ± 

0.49 

5.1 ± 

1.63 
8 8 8 8 

Sonar 60 
21.5 ± 

1.12 

21.7 ± 

1.42 

28.7 ± 

4.00 
60 60 60 60 

Vehicle 18 
8.9 ± 

1.04 

9.3 ± 

1.0 

10.3 ± 

2.72 
18 18 18 18 

1 Proposed ACOR-SVM Algorithm  2 Proposed IACOR-SVM Algorithm 

3 GAwith feature chromosome-SVM  4 PSO-SVM    5 SA-SVM  

6 GA-SVM    7 Grid 
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Figure 4.12 Comparison of feature subset size 

Table 4.5 and Figure 4.13 compare the size of feature subset between the proposed 

ACOR-SVM and IACOR-SVM algorithms and ACO-SVM. The comparison results 

show that the proposed ACOR-SVM algorithms and IACOR-SVM algorithms 

achieve the smallest feature subset size for all datasets. 

Table 4.5: Average Feature Subset Size 

Datasets 
Original number 

of features 

Proposed 

ACOR-SVM 

algorithm 

Proposed 

IACOR-SVM 

algorithm 

ACO-SVM 

Image Segmentation 18 8.3 ± 0.46 8.3 ± 0.46 16.7 

Pima-India Diabetes 8 2.6 ± 0.49 2.6 ± 0.49 6.1 

Splice 61 11.7 ± 1.27 11.7 ± 1 12.3 
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Figure 4.13 Average feature subset size 

Table 4.6 shows the p value of nonparametric Wilconxon signed-rank test in 

comparison with the proposed IACOR-SVM algorithm with GAwith feature chromosome-

SVM, Grid search, PSO-SVM, GA-SVM, and SA-SVM approaches. As shown in 

Table 4.6 the p-value for the Ionosphere dataset of GAwith feature chromosome-SVM is 

greater than the preselected statistical significance level of 0.05, but other p-values 

are lower than the significance level of 0.05. Generally, the proposed IACOR-SVM 

algorithm has higher classification accuracy. 
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Table 4.6: p-value for Wilcoxon test between Proposed IACOR-SVM
1
 Algorithm, 

GAwith feature chromosome-SVM
2
, PSO-SVM

3
, SA-SVM

4
, GA-SVM

5
 and Grid

6
 

Datasets 1 & 2 1 & 3 1 & 4 1 & 5 1 & 6 

Australian 0.0025 0.0025 0.0025 0.0025 0.0025 

German 0.0025 0.0025 - 0.0025 0.0025 

Heart 0.0025 - - - 0.0025 

Ionosphere 0.1013 0.0025 0.0025 0.0025 0.0025 

Iris 0.0025 0.0025 - 0.0025 0.0025 

Pima-India Diabetes 0.0216 0.0216 0.0216 0.0216 0.0216 

Sonar 0.0025 0.0025 0.0025 0.0025 0.0025 

Vehicle 0.0025 0.0025 0.0025 0.0025 0.0025 

 

Table 4.7 shows the p value of nonparametric Wilconxon signed-rank test with the 

comparison of the proposed ACOR-SVM algorithm with GAwith feature chromosome-SVM, 

Grid search, PSO-SVM, GA-SVM, and SA-SVM approaches. As shown in Table 

4.7 the p-value for the Ionosphere dataset of GAwith feature chromosome-SVM, PSO-SVM, 

and SA-SVM is greater than the preselected statistical significance level of 0.05, but 

other p-values are lower than the significance level of 0.05. Generally, the proposed 

ACOR-SVM algorithm has higher classification accuracy. 
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Table 4.7: p-value for Wilcoxon test between Proposed ACOR-SVM
1
 Algorithm, 

GAwith feature chromosome-SVM
2
, PSO-SVM

3
, SA-SVM

4
, GA-SVM

5
 and Grid

6
 

Datasets 1 & 2 1 & 3 1 & 4 1 & 5 1 & 6 

Australian 0.0025 0.0025 0.0025 0.0025 0.0025 

German 0.0025 0.0025 - 0.0025 0.0025 

Heart 0.0025 - - - 0.0025 

Ionosphere 0.9975 0.1931 0.1931 0.0025 0.0025 

Iris 0.0025 0.0025 - 0.0025 0.0025 

Pima-India Diabetes 0.0216 0.0216 0.0216 0.0216 0.0216 

Sonar 0.0025 0.0025 0.0025 0.0025 0.0025 

Vehicle 0.0025 0.0025 0.0025 0.0025 0.0025 

 

Table 4.8 shows the p value of nonparametric Wilconxon signed-rank test of the 

comparison of the proposed IACOR-SVM and ACOR-SVM algorithms with ACO-

SVM approach. As shown in Table 4.8 the p-values for all datasets are smaller than 

the preselected statistical significance level of 0.05 meaning that the proposed 

IACOR-SVM and ACOR-SVM algorithms are better than the ACO-SVM approach in 

terms of producing high classification accuracy. 

Table 4.8: p-value for Wilcoxon test between Proposed IACOR-SVM
1
 Algorithm, 

Proposed ACOR-SVM
2
 Algorithm and ACO-SVM

3
 

Datasets 1 & 3 2 & 3 

Image Segmentation 0.0025 0.0025 

Pima-India Diabetes 0.0216 0.0216 

Splice 0.0025 0.0025 
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Finally, Table 4.9 shows the p value of nonparametric Wilconxon signed-rank test 

with the comparison of the proposed IACOR-SVM and ACOR-SVM algorithms. The 

p-value for the Image Segmentation, Splice, and Iris datasets was greater than the 

preselected statistical significance level of 0.05, but other p-values are lower than the 

significance level of 0.05. Generally, the proposed IACOR-SVM algorithm has 

higher classification accuracy compared with ACOR-SVM. 

Table 4.9: p-value for Wilcoxon test between Proposed IACOR-SVM
1
 Algorithm and 

Proposed ACOR-SVM
2
 Algorithm 

Datasets 1 & 2 

Australian 0.0025 

German 0.0025 

Heart 0.0025 

Image Segmentation 0.9975 

Ionosphere 0.0025 

Iris 0.0697 

Pima-India Diabetes 0.0216 

Sonar 0.0025 

Splice 0.3994 

Vehicle 0.0063 

4.3 Summary 

This chapter had proposed enhanced pattern classification algorithms based on 

ACOR and IACOR with SVM. ACOR and IACOR act as optimization algorithms in 

order to tune SVM parameters. This chapter compared the performance of the 

proposed algorithms to ACO-SVM, GAwith feature chromosome-SVM, Grid search, PSO-

SVM, GA-SVM, and SA-SVM concerning classification accuracy and found the 

proposed algorithms to be the best. Also, the experiments’ results show that IACOR-



 

133 

 

SVM is better than ACOR-SVM in four datasets. Moreover, the experiments in this 

chapter found that the size of features selected by the proposed algorithms were 

smaller than the compared approaches in nine datasets while in only one dataset, 

GAwith feature chromosome-SVM produced the smaller size for the Iris dataset. The size of 

feature subset selected by ACOR-SVM and IACOR-SVM were almost similar 

because both the proposed algorithms used same technique to select feature subset. 

However, ACOR and IACOR are able to help SVMs to enhance performance in 

addition to the proposed technique being used to select feature subset. 

 



 

134 

 

CHAPTER FIVE 

ENHANCED ACO-SVM PATTERN CLASSIFICATION 

ALGORITHM FOR SIMULTANEOUS SVM PARAMETER 

OPTIMIZATION AND FEATURE SUBSET SELECTION 

This chapter presents the proposed algorithms for simultaneously optimizing Support 

Vector Machine (SVM) parameters and feature subset selection. Section 5.1 presents 

the proposed two algorithms while Section 5.2 presents the experiments carried out 

on ten datasets from the University of California, Irvine (UCI) repository to evaluate 

the performance of the proposed algorithms. Finally, the summary of the chapter is 

present in Section 5.3. 

5.1 Enhanced Pattern Classification Algorithm to Simultaneously Optimize 

SVM Parameter and Feature Subset Selection 

In this thesis, two algorithms are proposed in order to simultaneously optimize 

feature subset selection and SVM parameters. Other approaches that simultaneously 

optimize feature subset selection and SVM parameters differ from these two 

proposed algorithms in the section related to optimizing SVM parameters. Other 

approaches discretize the continuous value of SVM parameters which will be 

affected on classification accuracy through maximizing the classification error. 

Figure 5.1 depicts the general flowchart of the other SVM pattern classification 

approaches that simultaneously optimize SVM parameters and feature subset 

selection. 

 



 

135 

 

Figure 5.1 Flowchart for SVM pattern classification approach for simultaneous 

optimization 

In this thesis, two algorithms are proposed based on new mixed-variable Ant Colony 

Optimization variants: mixed-variable Ant Colony Optimization (ACOMV) (Socha, 

2008) and Liao et al.’s (2011) suggestion of Incremental mixed-variable Ant Colony 

Optimization (IACOMV) in order to simultaneously obtain the optimal continuous 

value for SVM parameters and feature subset to classify patterns with acceptable 

classification accuracy. 
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End 
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These two proposed algorithms work directly with the continuous value of SVM 

parameters without the need to discretize it and convert it from continuous values to 

discrete values and then optimize the discrete values. Also, the two proposed 

algorithms differ from the two proposed algorithms presented in Chapter Four in that 

they can simultaneously optimize SVM parameters and feature subset selection. One 

of the new ACO research directions is to optimize mixed-variable (continuous and 

discrete) problems. ACOMV is considered the first algorithm that can handle the 

mixed-variable and follow the same ACO framework, while IACOMV is suggested 

by Liao et al. (2011) to improve ACOMV performance in solving stagnation. Figure 

5.2 depicts the proposed enhanced (ACOMV-R-SVM and IACOMV-R-SVM) 

algorithms. 
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Figure 5.2 Flowchart for enhanced ACO-SVM pattern classification algorithm for 

simultaneous optimization 

Figure 5.3 presents the generic architecture for the proposed enhanced pattern 

classification algorithm. As shown in this figure, the proposed algorithms start with 

dataset development and compute the importance of each feature through using 

Fisher (F)-scores. 

 

The first proposed algorithm will simultaneously select feature subset and tune SVM 

parameters using continuous ACO (ACOR), while the second proposed algorithm 
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= 100% or Number of 

Iterations = 10 
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End 
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will also simultaneously select feature subset and tune SVM parameters using 

Incremental ACOR (IACOR). The output of both proposed algorithms will assign the 

class by using SVM and compute classification accuracy which will be fed back to 

ACO algorithms to update solution archives and pheromone tables in cases where 

the produced classification accuracy is not satisfied. Otherwise, if the classification 

accuracy is acceptable, the proposed algorithms will terminate. 

 

Details of the ACOR and IACOR are explained in Chapter Four. The feature subset 

selection phase is explained in Section 5.1.2. 
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Figure 5.3 Enhanced generic ACO-SVM pattern classification algorithm 

architecture for simultaneous optimization  
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Figure 5.4 presents the generic pseudo code for proposed algorithms. 

Figure 5.4 Generic pseudo code for proposed enhanced ACO-SVM algorithm for 

simultaneous optimization 

5.1.1 Datasets’ Development 

As with the proposed algorithms in Chapter Four, the proposed algorithms in this 

chapter also begin with developed datasets as explained in Chapter Three which 

includes cleaning missing data from datasets and scaling the cleaned dataset using 

Eq. (3.1) to avoid features with high numerical ranges from dominating those in 

lower numerical ranges and to minimize the computation efforts. All attributes are 

linearly scaled to the [0, 1] range. 

5.1.2 Proposed Algorithm for Simultaneously Optimizing Support Vector 

Machine Parameter and Optimizing Feature Subset Selection 

The ACOMV algorithm has the ability to optimize mixed-variable problems which 

are the continuous variables for the SVM parameters and feature subset represented 

as discrete graph nodes. 

Input: Datasets 

Output: Optimal value for SVM parameters, Optimal feature subset, and classification accuracy 

Begin 

//dataset development 

clean dataset 

scale cleaned dataset 

calculate F-score for each feature using Eq. (4.1) 

 for i = 1 to no. of runs do 

for j = 1 to no. of iterations do 

//simultaneously optimize feature subset selection and tune SVM 

parameters 

   call ACOMV 

end 

end 

End 
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In general ACOMV is like ACOR and IACOR in keeping generated solutions’ values 

and its fitness function values in solution archives rather than pheromone tables. 

ACOMV begins by initializing this solution’s archives with arbitrary solutions and 

then orders them according to its fitness function to influence the seek procedure in 

the direction of the best solutions obtained through seeking. The solutions in the 

solution archives are often stored on the basis of their fitness function, so that the 

best solution is always at the top. 

 

ACOMV-SVM starts by initializing three solution archives, one for C values, one for 

γ values, and the third for feature subset. The initialization for C and γ values will be 

randomly and made as in Chapter Four by dividing the range of C and γ over 

parameter k which represents the size of the solution archives. The solution archive 

for a feature subset will be initialized by store and sort features related to their F-

score as computed in Eq. (4.1). After initializing these three solution archives, each 

solution which will include three parts; the first for C, the second for γ, and the third 

for features will be sent to the SVM to compute its objective function and, according 

to this objective function, the solutions will be sorted in the solution archives. 

 

After that, each ant will start to construct its solution by calling ACOMV-tune SVM 

parameter and ACOMV-feature subset selection, because in this thesis ACOMV-SVM consists of 

two parts. Figure 5.5 depicts the pseudo code of proposed ACOMV-SVM algorithm. 
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Figure 5.5 Pseudo code for proposed enhanced ACOMV-SVM algorithm for 

simultaneous optimization 

The first part is ACOMV-tune SVM parameter which relates to the optimization of the 

continuous value of SVM parameters through using ACOR or IACOR as explained in 

Chapter Four, but it differs from them where an ant is establishing its solution which 

will included three parts; the first for C value, the second for γ Radial Basis Function 

(RBF) kernel parameter, and the third for features. C and γ values will be generated 

according to Eqs. (4.2) and (4.3) and then sampling a selected weight over k, this 

constructed solution will not be sent to the SVM together with the feature subset 

generated through the second part ACOMV-feature subset selection of the ACOMV-SVM. 

Based on the outcome of SVM, the solution archives will update through using the 

same strategies used in ACOR or IACOR as explained in Chapter Four. 

Input: features, termination condition, no. of ant (m), size of solution archive (k), q, range of C, 

range of γ, α, and β 

Output: classification accuracy, optimal features subset, and optimal value for SVM parameters 

Begin 

//initialize solution archive 

C  solution archiveC 

γ  solution archiveγ 

features  solution archivefeature 

call SVM algorithm to evaluate the initialize solution in solution archive 

while classification accuracy ≠ 100% or number of iteration ≠ 10 do 

//construct ant solution 

for n = 1 to Nants do 

//construct solution (S1, …, SNant) 

//probabilistic solution construction for tuning SVM parameters 

call ACOMV-tune SVM parameter 

//probabilistic solution construction for feature subset 

call ACOMV-feature subset Selection 

call SVM algorithm to evaluate the newly built solution 

end 
solution archive = first  Rank (Sold U S1, …SNants) 

update solution archives 

end 

End 
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The second part of ACOMV-SVM is ACOMV-feature subset selection which is related to 

optimization of feature subset selection. The ACOMV-feature subset selection algorithm that 

has been used to construct feature subset is shown in Figure 5.6.  

 

  

 

 

 

 

 

 

 

 

Figure 5.6 Pseudo code of proposed enhanced algorithm for feature subset selection 

The ACOMV-feature subset selection algorithm starts by computing the size of the feature 

subset for each ant randomly and then initializing a pheromone table using the 

following formula: 

                      
 

∑               
             
   

    (5.1) 

 

After that, the ant will start to construct its feature subset. The first feature in the 

feature subset will be selected according to its probability as follows: 

Input: Features 

Output: Optimal feature subset 

Begin 

calculate feature subset size randomly 

initialize pheromone table 

for i = 1 to no. of features do 

//select first feature in feature subset 

compute weight for each feature using Eq. (5.2) 

compute probability for each feature using Eq. (5.1) 

select feature with highest probability  

append feature with highest probability to feature subset 

remove appended feature from original features set  

end 

for j = 1 to feature subset size - 1 do 

//select other features in feature subset 

compute probability for remaining features using Eq. (5.4) 

select feature with highest probability  

append feature with highest probability to feature subset 

remove appended feature from original features set 

end 

update pheromone table 

End 
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∑          
              
   

       (5.2) 

Where the                 is computed using Eq. (4.1) and           is the weight 

of featurei and it is computed using the following formula: 

          
 

 
 
 

 
        (5.3) 

where w is computed using Eq. (5.4), u as a counter that counts how many times 

featurei is selected, q as in Chapter Four, is the algorithm’s parameter to control 

diversification of search process, and   is a number of unselected features. 

  
 

  √  
 
 (   ) 

             (5.4) 

where l is as in Chapter Four, it is the index of solutionl in the solutions archive 

which is dependent on its fitness function, and k is the number of features. 

 

The reason for using the probability function as shown in Eq. (5.2) instead of using 

the standard established discrete probability is because there is a need to traverse 

from continuous variables, (SVM parameters), to discrete, (feature subset), variables. 

 

After selecting the first feature in the feature subset as explained above, the ant 

continues to build its feature subset by selecting other features and appending them 

to the feature subset. The selection of other features is completed through computing 

the probability for each of the features as follows: 

      
 ( )  {

(                     )
 (               )

 

∑ (                     )
 (               )

 
    

 

 

       
 

         
 (5.5) 
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where                       is the pheromone value on the edge that connects 

featurei and featurej and the                 is computed using Eq. (4.1). 

 

After all ants finish building the feature subset, the pheromone will be updated using 

the following formula: 

                     (   )                           

∑                       
 ( )

          
            (5.6) 

where   is a random number generated in the range of (0, 1),                       

is the current pheromone on the edge that connects featurei and featurej, and 

                      
 
 is computed as following: 

                      
   

{
                     

                
                   (                )

          

(5.7) 

where CVACC
k
 is the cross validation classification accuracy generated by SVM 

from antk solution,               
  and               

  is the weight of featurei and  

featurej respectively generated from SVM on the training set from antk solution. 

 

Ultimately, the ant solution will include three parts; the first two parts will be related 

to SVM parameters which include the C and γ values, and the third part is related to 

feature subset. 
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5.1.3 Class Assignment Using SVM and Evaluation 

The class assignment using SVM and to evaluate its performance, here in this 

chapter, is as explained in Chapter Four which includes computing the RBF kernel 

matrix, Q matrix,    , weight w for training sets’ features, b for training sets, and 

then classifying the testing set using and computing test accuracy and cross 

validation accuracy. 

5.2 Experiment and Result 

The proposed algorithms were tested on ten datasets from the UCI repository using a 

ten-fold Cross Validation (CV) technique. The experiment repeats the CV technique 

ten times and the program runs ten times to enable each fold of data to take a turn as 

the testing dataset, producing ten individual sets of performance statistics, such as 

classification accuracy. Finally, the experiment averages these performance statistics 

and calculates the standard deviations for each of the performance statistics. 

 

C programming language was used to implement the proposed algorithms. 

Experiments were performed on an Intel(R) Core (TM) 2 Duo CPU T5750, running 

at 2.00 GHZ with 4.00 GB RAM and 32-bit operating system. 

 

In these experiments, the search range for C was [2
-1

, 2
12

] and γ [2-12, 22]. The 

number of ants and q value used was the same as in Chapter Four, where number of 

ants = 2 and q = 0. α = 1 and β = 2 are the recommended values according to Dorigo 

& Stützle (2004). Finally the Growth test value was (2, 4, 6, 8, and 10). The results 
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show that the best value was 5. While for Stag test the value was (1, 2, 3, 4, and 5) 

and the results show that the best value is 2. The Initial solution archive size test 

value was (2, 4, 6, 8, 10, 12, and 14). The result shows that the best value was 10, 

while for Maximum solution archive size test the value was (3, 5, 7, 9, 11, 13, and 

15) and the results show that the best value was 15. 

 

The performance of the proposed algorithms is evaluated by comparing it with 

Gravitational Search Algorithm (GSA)-SVM (Sarafrazi & Pour, 2013), Genetic 

Algorithm (GA)with feature chromosome-SVM (Zhao et al., 2011), Ant Colony 

Optimization (ACO)-SVM (Huang, 2009), Cat Swarm Optimization (CSO)-SVM 

(Lin & Chien, 2009), Clonal Selection Algorithm (CSA)-SVM (Ding & Li, 2009), 

Particle Swarm Optimization (PSO)-SVM (Lin et al., 2008), Simulated Annealing 

(SA)-SVM (Lin et al., 2008), and GA-SVM (Huang & Wang, 2006). Table 5.1-5.8 

summarizes the performance statistics for ACOMV-R-SVM, IACOMV-R-SVM, GSA-

SVM (Sarafrazi & Pour, 2013), GAwith feature chromosome-SVM (Zhao et al., 2011), 

ACO-SVM (Huang, 2009), CSO-SVM (Lin & Chien, 2009), CSA-SVM (Ding & Li, 

2009), PSO-SVM (Lin et al., 2008), SA-SVM (Lin et al., 2008), and GA-SVM 

(Huang & Wang, 2006). 

 

Table 5.1 and Figure 5.7 compares the classification accuracy between the proposed 

ACOMV-R-SVM and IACOMV-R-SVM algorithms with CSA-SVM, CSO-SVM, PSO-

SVM, SA-SVM, and GA-SVM. The comparison results show that the proposed 

IACOMV-R-SVM algorithm achieves highest classification accuracy in nine datasets, 
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while in only one dataset, the Iris dataset, IACOMV-R-SVM was comparative with 

GA with feature Chromosome-SVM, CSA-SVM, and GA-SVM. On the other hand, the 

proposed ACOMV-R-SVM algorithm achieves the highest classification accuracy in 

eight datasets, while in only two datasets, where the Image Segmentation dataset, 

GAwith feature Chromosome-SVM achieves higher classification accuracy; and the Iris 

dataset, ACOMV-R-SVM is comparative with GAwith feature Chromosome-SVM, CSA-SVM, 

and GA-SVM. The proposed algorithms performed better than other approaches 

because the proposed algorithms simultaneously tune SVM parameters without the 

need to discretize the continuous value as well as selecting feature subset. It shows 

that the proposed algorithms can handle categorical, real and integer values. Also, 

the experiment results show that the proposed IACOMV-R-SVM was better than 

ACOMV-R-SVM algorithm in Image Segmentation, Pima-India Diabetes, and German 

datasets, while in other datasets the performance of the proposed ACOMV-R-SVM 

algorithm and IACOMV-R-SVM algorithm was similar. 
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Table 5.1: Comparison of Classification Accuracy 

Datasets 1 2 3 4 5 6 7 8 

Australian 
96.33 

± 0.91 

96.96 

± 0.53 

91.59 

± 2.14 
90.82 

93.77 

± 2.27 
91.03 

92.19 

± 3.23 

88.10 

± 2.25 

German 
96.16 

± 0.57 

97.23 

± 0.46 

86.10 

± 1.97 
86.40 

82.20 

± 2.82 
81.62 - 

85.60 

± 1.96 

Heart 
97.70 

± 0.93 

98.01 

± 0.35 

95.56 

± 2.34 
92.59 

97.04 

± 2.34 
- - 

 94.80 

± 3.32 

Ionosphere 
99.86 

± 0.25 

99.99 

± 0.02 

99.43 

± 1.21 
98.56 

99.43 

± 1.2 
99.01 

99.07 

± 0.73 

98.56 

± 2.03 

Iris 
99.95 

± 0.08 

99.98 

± 0.03 

100 ± 

0 
100 

99.33 

± 2.1 
99.20 - 

100 ± 

0 

Pima-India 

Diabetes 

95.07 

± 1.73 

97.22 

± 0.81 

83.84 

± 5.14 
82.70 

84.73 

± 5.37 
82.68 

82.22 

± 3.55 

81.50 

± 7.13 

Sonar 
99.94 

± 0.97 

99.99 

± 0.02 

99.00 

± 2.11 
98.80 

98.10 

±3.33 
96.26 

95.99 

± 3.90 

98.00 

± 3.5 

Vehicle 
93.32 

± 2.20 

93.92 

± 0.29 

88.24 

± 1.47 
90.20 

90.77 

± 2.7 
89.83 

90.14 

± 2.21 

84.06 

± 3.54 

1 Proposed ACOMV-R-SVM Algorithm 2 Proposed IACOMV-R-SVM Algorithm 

3 GAwith feature chromosome-SVM  4 CSA-SVM   5 CSO-SVM 

6 PSO-SVM    7 SA-SVM   8 GA-SVM 
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Figure 5.7 Comparison of classification accuracy 

Table 5.2 and Figure 5.8 compare the classification accuracy between the proposed 

ACOMV-R-SVM and IACOMV-R-SVM algorithms with ACO-SVM and GAwith feature 

chromosome-SVM. The results show that the proposed ACOMV-R-SVM and IACOMV-R-

SVM algorithms achieve best classification accuracy in all datasets compared with 

ACO-SVM, while when compared with GAwith feature chromosome-SVM, the proposed 

algorithms were the best in two datasets, while in one dataset, Image Segmentation, 

the performance of the proposed algorithms was slightly similar to the performance 

of GAwith feature chromosome-SVM. The proposed algorithms performed better than other 

approaches because the proposed algorithms simultaneously tune SVM parameters 

without the need to discretize the continuous value as well as selecting feature 

subset. It shows that the proposed algorithms can handle categorical, real and integer 
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values. Also, the comparison results show that the proposed algorithm IACOMV-R-

SVM was better than the performance of the proposed algorithm ACOR-SVM. 

Table 5.2: Average Classification Accuracy % 

Datasets 

Proposed 

ACOMV-R-SVM 

algorithm 

Proposed 

IACOMV-R-SVM 

algorithm 

GAwith feature 

chromosome-

SVM 

ACO-SVM 

Image Segmentation 97.5 ± 2.5 98.96 ±0.41 98.12  94.76 

Pima-India Diabetes 95.07 ± 1.73 97.22 ±0.81 83.84 76.28 

Splice 97.90 ± 0.68 98.65 ±0.55 90.53 94.65 

 

 

Figure 5.8 Average classification accuracy % 
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Table 5.3 and Figure 5.9 compare the classification accuracy between the proposed 

ACOMV-R-SVM and IACOMV-R-SVM algorithms with GSA-SVM. The results show 

that the performance of the proposed algorithms was slightly better than GSA-SVM 

for only Ionosphere dataset. The results also showed that the proposed algorithms 

performed well on datasets with big number of features.  

Table 5.3: Comparison between Proposed Algorithm and GSA-SVM 

Datasets 
Proposed ACOMV-R-

SVM algorithm 

Proposed IACOMV-R-

SVM algorithm 
GSA-SVM 

Australian 96.33 ± 0.91 96.96 ± 0.53 98.88 ± 0.62 

German 96.16 ± 0.57 97.23 ± 0.46 98.25 ± 0.97 

Ionosphere 99.86 ± 0.25 99.99 ± 0.02 99.45 ± 0.31 

Pima-India Diabetes 95.07 ± 1.73 97.22 ± 0.81 98.90 ± 0.61 

Figure 5.9 Comparison between proposed algorithm and GSA-SVM  
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Table 5.4 and Figure 5.10 compare the proposed ACOMV-R-SVM and IACOMV-R-

SVM algorithms with the proposed ACOR-SVM and IACOR-SVM algorithms. The 

comparison results between the four proposed algorithms show that the results 

produced by the proposed IACOMV-R-SVM algorithm were better than other 

proposed algorithms’ results in all ten datasets and in some datasets, Iris and Vehicle 

datasets, the results slightly differ than other proposed algorithms because the 

proposed ACOMV-R-SVM and IACOMV-R-SVM algorithms can simultaneously tune 

SVM parameters and select feature subset. 

Table 5.4: Comparison of Proposed Algorithm 

Datasets 1 2 3 4 

Australian 91.99 ± 0.29 94.62 ± 0.52 96.33 ± 0.91 96.96 ± 0.53 

German 88.72 ± 0.04 91.56 ± 0.1 96.16 ± 0.57 97.23 ± 0.46 

Heart 94.87 ± 0.4 96.28 ± 0.21 97.70 ± 0.93 98.01 ± 0.35 

Image Segmentation 98.00 ± 0 97.29 ± 0.08 97.5 ± 2.5 98.96 ±0.41 

Ionosphere 97.76 ± 0.55 98.90 ± 0.52 99.86 ± 0.25 99.99 ± 0.02 

Iris 99.87 ± 0.29 99.86 ± 0.03 99.95 ± 0.08 99.98 ± 0.29 

Pima-India Diabetes 88.00 ± 0 91.25 ± 0.13 95.07 ± 1.73 97.22 ± 0.81 

Splice 96.72 ± 0.18 96.76 ± 0.48 97.90 ± 0.68 98.65 ±0.55 

Sonar 98.36 ± 0.63 98.92 ± 0.08 99.94 ± 0.97 99.99 ± 0.02 

Vehicle 93.00 ± 0 93.20 ± 0.18 93.32 ± 2.20 93.92 ± 0.29 

1 Proposed ACOR-SVM Algorithm    2 Proposed IACOR-SVM Algorithm 

3 Proposed ACOMV-R-SVM Algorithm   4 Proposed IACOMV-R-SVM Algorithm 
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Figure 5.10 Comparison of proposed algorithm 

 

Table 5.5 and Figure 5.11 compare the size of feature subset selection between the 

proposed ACOMV-R-SVM and IACOMV-R-SVM algorithms with GA with feature 

chromosome-SVM, CSA-SVM, CSO-SVM, PSO-SVM, SA-SVM, and GA-SVM. The 

comparison results show that the proposed ACOMV-R-SVM algorithm and IACOMV-

R-SVM algorithm achieve the smallest feature subset size for eight datasets, while in 

only two datasets, Ionosphere and Iris, the size of feature subset produced by the 

proposed algorithms was comparative with CSA-SVM. Both of the proposed 

algorithms produced similar feature subset size; this is because both the proposed 

algorithms count on the ants to select features. The smallest reduction in feature size 

was 75% for the Iris dataset, while the highest reduction in feature size was 87.22% 

for Splice and Vehicle datasets. 
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Table 5.5: Comparison of Feature Subset Size 

Datasets 

Original 

number of 

features 

1 2 3 4 5 6 7 8 

Australian 11 
1.6 ± 

0.49 

1.8 ± 

0.4 

5.2 ± 

2.15 
6.7 

7.2 ± 

2.25 

9 ± 

2.01 

10.60 ± 

2.46 

3 ± 

2.45 

German 20 
3.3 ± 

1.19 

3.9 ± 

0.3 

10.3 ± 

1.76 
12 

12.5 ± 

3.31 

18 ± 

3.49 
- 

13 ± 

1.83 

Heart 13 
1.9 ± 

0.3 
2 ± 0 

6.2 ± 

1.12 
4.5 

8 ± 

2.49 
- - 

5.4 ± 

1.85 

Ionosphere 34 
5.4 ± 

1.5 
6 ± 0 

13.9 ± 

3.45 
6 

17 ± 

6.16 

21 ± 

3.23 

22.36 ± 

5.02 
6 ± 0 

Iris 4 1 ± 0 1 ± 0 
1.2 ± 

0.28 
1 

2.6 ± 

0.51 

2 ± 

0.64 
- 1 ± 0 

Pima-India 

Diabetes 
8 

1.6 ± 

0.49 
2 ± 0 

3.7 ± 

1.26 
3.5 

5.2 ± 

0.92 

5  ± 

1.26 

5.86 ± 

1.17 

3.7 ± 

0.95 

Sonar 60 
10.8 ± 

2.56 

12 ± 

0 

26.4 ± 

3.20 
13.7 

24.4 ± 

8.11 

37 ± 

4.75 

48.18 ± 

45.53 

15 ± 

1.1 

Vehicle 18 
2.3 ± 

0.9 

2.8 ± 

0.4 

9.2 ± 

1.71 
10.3 

13.8 ± 

2.66 

13 ± 

1.85 

15.56 ±  

2.17 

9.2 ± 

1.4 

1 Proposed ACOMV-R-SVM Algorithm  2 Proposed IACOMV-R-SVM Algorithm 

3 GAwith feature chromosome-SVM   4 CSA-SVM  5 CSO-SVM 

6 PSO-SVM     7 SA-SVM  8 GA-SVM 
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Figure 5.11 Comparison of feature subset size 

Table 5.6 and Figure 5.12 compare the size of feature subset selection between the 

proposed ACOMV-R-SVM and IACOMV-R-SVM algorithms with ACO-SVM and 

GAwith feature chromosome-SVM. The results show that the proposed ACOMV-R-SVM and 

IACOMV-R-SVM algorithms achieve the smallest feature subset size. 

Table 5.6: Average Feature Subset Size 

Datasets 

Original 

number of 

features 

1 2 3 4 

Image Segmentation 18 2.3 ±  0.9 3 ± 0 18 13.2 

Pima-India Diabetes 8 1.6 ± 0.49 2 ± 0 3.7 5.4 

Splice 61 10.5 ± 3.2 9.5 ± 4.18 61 7 

 1 Proposed ACOMV-R-SVM Algorithm  2 Proposed IACOMV-R-SVM Algorithm 

 3 GAwith Feature Chromosome-SVM   4 ACO-SVM 
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Figure 5.12 Average feature subset size 

Table 5.7 and Figure 5.13 compare the size of feature subset selection between the 

proposed ACOMV-R-SVM and IACOMV-R-SVM algorithms with GSA-SVM. The 

results show that the size of feature subset selection of the proposed algorithms was 

similar to the size of feature subset selection produced by GSA-SVM. 

Table 5.7: Comparison of Feature Subset Size between Proposed Algorithm and 

GSA-SVM 

Datasets 

Original 

number of 

features 

1 2 3 

Australian 11 1.6 ± 0.49 1.8 ± 0.4 2.2 ± 1.3 

German 20 3.3 ± 1.19 3.9 ± 0.3 4.6 ± 2.1 

Ionosphere 34 5.4 ± 1.5 6 ± 0 5.8 ± 2.49 

Pima-India Diabetes 8 1.6 ± 0.49 2 ± 0 2 ± 1 

 1 Proposed ACOMV-R-SVM Algorithm 2 Proposed IACOMV-R-SVM Algorithm 
 3 GSA-SVM  
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Figure 5.13 Comparison of feature subset size between proposed algorithm and 

GSA-SVM 

Table 5.8 and Figure 5.14 compares the size of feature subset selection of the 

proposed ACOMV-R-SVM and IACOMV-R-SVM algorithms with the size of feature 

subset selection produced by the proposed ACOR-SVM and IACOR-SVM 

algorithms. The comparison results between the four proposed algorithms show that 

the proposed ACOMV-R-SVM algorithm and IACOMV-R-SVM algorithm produced the 

smallest feature subset size compared with the proposed ACOR-SVM algorithm and 

IACOR-SVM algorithm. This is because the proposed ACOMV-R-SVM algorithm and 

IACOMV-R-SVM algorithm depend on ants to select feature subset unlike that used in 

the proposed ACOR-SVM algorithm and IACOR-SVM algorithm which filtered the 

features to select the feature subset. As mentioned in Chapter Four, The smallest 

reduction in feature size was 48.33% for the Vehicle dataset, while the highest 

reduction in feature size was 80.82% for the Splice dataset. 
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Table 5.8: Comparison of Feature Subset Size between Proposed Algorithm 

Datasets 
Original no. 

of features 
1 2 3 4 

Australian 11 3.2 ± 0.4 3.3 ± 0.46 1.6 ± 0.49 1.8 ± 0.4 

German 20 6.2 ± 0.77 6.4 ± 0.63 3.3 ± 1.19 3.9 ± 0.3 

Heart 13 6.2 ± 0.6 6.0 ± 0.45 1.9 ± 0.3 2 ± 0 

Image Segmentation 18 8.3 ± 0.46 8.3 ± 0.46 2.3 ±  0.9 3 ± 0 

Ionosphere 34 11.0 ± 1 10.6 ± 1.74 5.4 ± 1.5 6 ± 0 

Iris 4 2 ± 0 2 ± 0 1 ± 0 1 ± 0 

Pima-India Diabetes 8 2.6 ± 0.49 2.6 ± 0.49 1.6 ± 0.49 2 ± 0 

Splice 61 11.7 ± 1.27 11.7 ± 1 10.5 ± 3.2 9.5 ± 4.18 

Sonar 60 21.5 ± 1.12 21.7 ± 1.42 10.8 ± 2.56 12 ± 0 

Vehicle 18 8.9 ± 1.04 9.3 ± 1.0 2.3 ± 0.9 2.8 ± 0.4 

1 Proposed ACOR-SVM Algorithm    2 Proposed IACOR-SVM Algorithm  

3 Proposed ACOMV-R-SVM Algorithm   4 Proposed IACOMV-R-SVM Algorithm 
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Figure 5.14 Comparison of feature subset size between proposed algorithm 

Table 5.9 shows the p value of nonparametric Wilconxon signed-rank test of the 

comparison of the proposed IACOMV-R-SVM algorithm with GA with feature chromosome-

SVM, CSA-SVM, CSO-SVM, PSO-SVM, SA-SVM, and GA-SVM. As shown in 

Table 5.9, the p value for the Iris dataset of GA with feature chromosome-SVM, CSA-SVM, 

and GA-SVM is greater than the preselected statistical significance level of 0.05, but 

other p values are lower than the significance level of 0.05. Generally, the proposed 

IACOMV-R-SVM algorithm has higher classification accuracy. 
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Table 5.9: p-value for Wilcoxon test between Proposed IACOMV-R-SVM
1
Algorithm, 

GAwith feature chromosome-SVM
2
, CSA-SVM

3
, CSO-SVM

4
, PSO-SVM

5
, SA-

SVM
6
 and GA-SVM

7
 

Datasets 1 & 2 1 & 3 1 & 4 1 & 5 1 & 6 1 & 7 

Australian 0.001 0.001 0.001 0.001 0.001 0.001 

German 0.001 0.001 0.001 0.001 - 0.001 

Heart 0.0025 0.0025 0.0025 - - 0.0025 

Ionosphere 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 

Iris 0.9661 0.9661 0.0025 0.0025 - 0.9661 

Pima-India 

Diabetes 
0.0216 0.0216 0.0216 0.0216 0.0216 0.0216 

Sonar 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 

Vehicle 0.001 0.001 0.001 0.001 0.001 0.001 

 

Table 5.10 shows the p value of nonparametric Wilconxon signed-rank test of the 

comparison of the proposed ACOMV-R-SVM algorithm with GAwith feature chromosome-

SVM, CSA-SVM, CSO-SVM, PSO-SVM, SA-SVM, and GA-SVM. As shown in 

Table 5.10, the p value for the Iris dataset of GAwith feature chromosome-SVM, CSA-SVM, 

and GA-SVM is greater than the preselected statistical significance level of 0.05, but 

other p values are lower than the significance level of 0.05. Generally, the proposed 

ACOMV-R-SVM algorithm has higher classification accuracy. 

 

 

 



 

162 

 

Table 5.10: p-value for Wilcoxon test between Proposed ACOMV-R-SVM
1
Algorithm, 

GAwith feature chromosome-SVM
2
, CSA-SVM

3
, CSO-SVM

4
, PSO-SVM

5
, SA-

SVM
6
 and GA-SVM

7
 

Datasets 1 & 2 1 & 3 1 & 4 1 & 5 1 & 6 1 & 7 

Australian 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 

German 0.001 0.001 0.001 0.001 - 0.001 

Heart 0.0035 0.0025 0.0297 - - 0.0025 

Ionosphere 0.0047 0.0025 0.0047 0.0025 0.0025 0.0025 

Iris 0.9784 0.9784 0.0025 0.0025 - 0.9784 

Pima-India Diabetes 0.0216 0.0216 0.0216 0.0216 0.0216 0.0216 

Sonar 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 

Vehicle 0.0025 0.0142 0.0142 0.0025 0.0142 0.0025 

 

Table 5.11 shows the p value of nonparametric Wilconxon signed-rank test of the 

comparison of the proposed IACOMV-R-SVM algorithm with GAwith feature chromosome-

SVM and ACO-SVM approaches as well as between the proposed ACOMV-R-SVM 

algorithm with GAwith feature chromosome-SVM and ACO-SVM approaches. As shown in 

Table 5.11, the p values for Image Segmentation dataset of GAwith feature chromosome-

SVM is greater than the preselected statistical significance level of 0.05 compared 

with the proposed ACOMV-R-SVM algorithm, but other p-values are lower than the 

significance level of 0.05. Generally, the proposed IACOMV-R-SVM and ACOMV-R-

SVM algorithms produced higher classification accuracy. 
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Table 5.11: p-value for Wilcoxon test between Proposed IACOMV-R-SVM
1
 Algorithm, 

Proposed ACOMV-R-SVM2
2
Algorithm, GAwith feature chromosome-SVM

3
 and 

ACO-SVM
4
 

Datasets 1 & 3 1 & 4 2 & 3 2 & 4 

Image Segmentation 0.001 0.001 0.8987 0.0025 

Pima-India Diabetes 0.0216 0.0216 0.0216 0.0216 

Splice 0.001 0.001 0.001 0.001 

 

Table 5.12 shows the p value of nonparametric Wilconxon signed rank test of the 

comparison between the proposed IACOMV-R-SVM algorithm and GSA approaches 

as well as between the proposed ACOMV-R-SVM algorithm and GSA approaches. As 

shown in Table 5.12, the p values for the Ionosphere dataset is lower than the 

preselected statistical significance level of 0.05, but other p values are greater than 

the preselected nonparametric Wilconxon signed-rank test meaning that the proposed 

IACOMV-R-SVM and ACOMV-R-SVM algorithms produced lower classification 

accuracy compared with the GSA-SVM approach. 

Table 5.12: p-value for Wilcoxon test between Proposed IACOMV-R-SVM
1
 Algorithm, 

Proposed ACOMV-R-SVM
2
Algorithm and GSA-SVM

3
 

Datasets 1 & 3 2 & 3 

Australian 0.999 0.9975 

German 0.999 0.999 

Ionosphere 0.0025 0.0047 

Pima-India Diabetes 0.9784 0.9784 

 

Table 5.13 shows the p-value of the comparison results between IACOMV-R-SVM 

and ACOMV-R-SVM. The p-value for all datasets was lower than the preselected 

statistical significance level of 0.05 meaning that the proposed IACOMV-R-SVM 
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algorithm has higher classification accuracy compared with the proposed ACOMV-R-

SVM algorithm. 

Table 5.13: p-value for Wilcoxon test between Proposed IACOMV-R-SVM
1
 Algorithm 

and Proposed ACOMV-R-SVM
2
Algorithm 

Datasets 1 & 2 

Australian 0.002 

German 0.001 

Heart 0.0142 

Image Segmentation 0.001 

Ionosphere 0.0025 

Iris 0.0178 

Pima-India Diabetes 0.0216 

Sonar 0.0025 

Splice 0.002 

Vehicle 0.001 

 

Finally, Table 5.14 shows the p-value of the comparison results between IACOMV-R-

SVM and ACOR-SVM, IACOMV-R-SVM
 
and

 
IACOR-SVM, ACOMV-R-SVM and 

ACOR-SVM, and ACOMV-R-SVM
 

and
 

IACOR-SVM. The p-value for Image 

Segmentation and Vehicle datasets of ACOMV-R-SVM and ACOR-SVM, and 

ACOMV-R-SVM
 

and
 

IACOR-SVM are greater than the preselected statistical 

significance level of 0.05. Generally, the proposed IACOMV-R-SVM and ACOMV-R-

SVM algorithms have higher classification accuracy compared with the proposed 

ACOR-SVM, and IACOR-SVM algorithms. 
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Table 5.14: p-value for Wilcoxon test between Proposed IACOMV-R-SVM
1 

Algorithm, 

Proposed ACOMV-R-SVM
2 

Algorithm, Proposed ACOR-SVM
3
 Algorithm 

and
 
Proposed

 
IACOR-SVM

4
Algorithm 

Datasets 1 & 3 1 & 4 2 & 3 2 & 4 

Australian 0.001 0.001 0.0025 0.0035 

German 0.001 0.001 0.001 0.001 

Heart 0.0025 0.0025 0.0025 0.0035 

Image Segmentation 0.001 0.001 0.8987 0.1013 

Ionosphere 0.0025 0.0025 0.0025 0.0025 

Iris 0.0025 0.0025 0.0109 0.0083 

Pima-India Diabetes 0.0216 0.0216 0.0216 0.0216 

Sonar 0.001 0.001 0.001 0.001 

Splice 0.0025 0.0025 0.0025 0.0025 

Vehicle 0.001 0.001 0.4797 0.4797 

5.3 Summary 

This chapter proposed enhanced pattern classification algorithms based on ACOMV-R 

and IACOMV-R with SVM for pattern classification. ACOMV-R and IACOMV-R act as 

optimization algorithms in order to simultaneously optimize SVM parameters and 

feature subset selection. This chapter compared the performance of the proposed 

algorithms to GSA-SVM, ACO-SVM, GAwith feature chromosome-SVM, CSA-SVM, CSO-

SVM, PSO-SVM, GA-SVM, and SA-SVM concerning the classification accuracy 

and found the proposed algorithms to be better than other approaches and 

comparative with GSA-SVM. Also, the experiments’ results show that IACOMV-R-

SVM is better than ACOMV-R-SVM. Moreover, the experiments in this chapter found 

that the size of feature selected by the proposed algorithms were smaller than the 
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compared approaches in all datasets while the size of feature subset selected by 

ACOMV-R-SVM and IACOMV-R-SVM were almost similar, this is because both the 

proposed algorithms count on the ants to select feature subset. However, ACOMV-R 

and IACOMV-R are able to aid the SVM in enhancing its performance due to 

increased classification accuracy.  



 

167 

 

CHAPTER SIX 

CONCLUSION AND FUTURE WORK 

Continuous Ant Colony Optimization (ACOR) and Incremental continuous Ant 

Colony Optimization (IACOR) as an extension of the Ant Colony Optimization 

(ACO) algorithm offer the opportunity to deal with continuous optimization 

problems while mixed-variable Ant Colony Optimization (ACOMV-R) and 

Incremental mixed-variable Ant Colony Optimization (IACOMV-R) as extensions of 

the ACO algorithm offer the opportunity to deal with mixed-variable (discrete and 

continuous) optimization problems (Socha, 2008; Socha & Dorigo, 2008; Socha & 

Blum, 2005; and Liao et al., 2011). Support Vector Machine (SVM) is considered as 

one of the most successful classifiers, but it has two problems. The problems 

comprise how to tune parameters and select the best feature subset for input. The 

idea to hybridize ACO and SVM in solving SVM problems was first introduced by 

Huang (2009) where ACO was used for feature selection and tuning SVM 

parameters. 

 

Four research questions have been considered in this study and four research 

objectives have been stated to answer these questions. Four generic algorithms have 

been proposed and comparisons have been made with other well known approaches 

to test the credibility of the proposed algorithms. Results obtained show significant 

contributions towards tuning SVM parameters and selecting feature subset. 
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This chapter presents the research contributions and future work related to pattern 

classification. Section 6.1 presents the research contributions while Section 6.2 

provides the possible extensions of this research. 

6.1 Research Contribution 

The main goal of this research is to design an enhanced ACO based SVM algorithm 

for pattern classification. In this study, the four proposed algorithms focus on tuning 

SVM parameters and selecting feature subset. 

 

The first two proposed ACOR-SVM and IACOR-SVM algorithms have been used to 

tune SVM parameters. The continuous variants of ACO, which are ACOR and 

IACOR, have been used as an optimization algorithm to tune SVM parameters to 

improve the performance of SVM without the need to discretize the continuous value 

of SVM parameters. Selecting feature subset is made through filter approach using a 

threshold technique. Average Fisher (F)-score has been used as the threshold value 

to select feature subset. The differences between the two proposed algorithms are: (i) 

the size of solution archive in IACOR-SVM grows over time until it reaches a 

predefined maximum size while in ACOR-SVM the size of solution archive will be 

fixed, (ii) the mechanism for selecting a solution that directs the creation of new 

solutions in IACOR-SVM is different from the mechanism used in ACOR-SVM, and 

(iii) solving stagnation, a diversification technique was utilized in IACOR-SVM. This 

technique includes restarting the algorithm and initializing the new initial solution 

archive with the best-so-far solution. The restarting condition is the number of 
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successive iterations through a relation solution enhancement lower than a certain 

threshold. 

 

Both algorithms produced good classification accuracy because they can handle 

continuous values of SVM parameters. However, IACOR produced better results 

than ACOR. 

 

The next two proposed ACOMV-R-SVM and IACOMV-R-SVM algorithms have been 

used to simultaneously tune SVM parameters and select feature subset. The mixed-

variable variants of ACO which are ACOMV-R and IACOMV-R have been used as an 

optimization algorithm to simultaneously tune SVM parameters and select feature 

subset without the need to discretize the continuous value of SVM parameters. The 

benefit in solving these two problems simultaneously is accumulation of error from 

feature selection phase to tuning SVM parameters phase can be eliminated. In 

principle, the differences between the two proposed algorithms are the same as the 

differences between the proposed ACOR-SVM and IACOR-SVM algorithms. 

 

The proposed ACOMV-R-SVM and IACOMV-R-SVM algorithms select feature subset 

through a wrapper approach and not through a filter approach as has been used with 

the first two proposed ACOR-SVM and IACOR-SVM algorithms. This is done 

because it gives the ability to integrate the classification accuracy and necessary 

features introduced to the classifier from an ACO’s variants. Furthermore, feature 

subset selection via the wrapper approach follows the inductive learning approach 
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where, feedback is obtained from the classifier and the process of features selection 

is repeated to obtain better features. 

 

The contributions mentioned above are employed towards enhancing SVM 

classification accuracy which is the main objective of this research. Experiments in 

this thesis show that continuous variant ACO and mixed-variable ACO variants were 

able to reduce misclassification problems of the SVM classifier. In other words, 

continuous and mixed-variable ACO variants work successfully to optimize the 

SVM parameters as well as simultaneously optimizing SVM parameters and 

selecting suitable feature subset. 

 

To the knowledge of the researcher, there is no study that considers using continuous 

and mixed-variable ACO based SVM for pattern classification. This study has also 

covered all the important constraints which make the SVM classifier more accurate 

compared to previous studies. Comprehensive testing was also performed using ten 

benchmark datasets. 

6.2 Future Work 

The first future direction is to apply the proposed algorithms on Support Vector 

Regression (SVR). According to Huang (2009) and Huang & Wang (2006), SVR has 

the same problems as SVM. This task requires minimal changes to the generic 

proposed algorithms by defining other benchmarks datasets. Regression is a data 

mining task in predicting the value of the target (numerical variable) by building a 
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model based on one or more predictors (numerical and categorical variables). SVR is 

extended from Support Vector Classification (SVC). Both SVR and SVC are often 

used with the kernel trick. The kernel trick maps data to a higher dimensional space 

and employs a kernel function. 

 

Another future direction is to use the proposed algorithms in tackling dynamic 

problems. In dynamic optimization, the search space changes with time. This 

requires a modification of the proposed algorithms to consider the dynamism of 

search space. 

 

Other variants of SVM such as least square SVM can be used to tackle classification 

problems. It would be accomplished by modifying the SVM’s mathematical 

equation. 

 

Future work could also focus on the area where other kernel parameters besides 

Radial Basis Function (RBF) can be used or to design a mechanism for using many 

kernel functions and selecting the most successful kernel function that gives the best 

classification accuracy. 

 

Experimental results taken from the University of California, Irvine (UCI) 

repository, other benchmark datasets and real world problems can be examined in 

the future to prove and enhance the proposed algorithms. 
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