
TCP SINTOK: TRANSMISSION CONTROL PROTOCOL
WITH DELAY-BASED LOSS DETECTION AND CONTENTION

AVOIDANCE MECHANISMS FOR MOBILE AD HOC
NETWORKS

ADIB HABBAL

DOCTOR OF PHILOSOPHY
UNIVERSITI UTARA MALAYSIA

2014

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely

available for inspection. I further agree that permission for the copying of this thesis

in any manner, in whole or in part, for scholarly purpose may be granted by my su-

pervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of

Arts and Sciences. It is understood that any copying or publication or use of this thesis

or parts thereof for financial gain shall not be allowed without my written permission.

It is also understood that due recognition shall be given to me and to Universiti Utara

Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

ii

Abstrak

Rangkaian Ad hoc Mudah Alih (MANET) terdiri daripada peranti mudah alih yang
bersambung antara satu sama lain dengan menggunakan saluran tanpa wayar. Ia mem-
bentuk satu rangkaian sementara tanpa bantuan infrastruktur tetap; yang mana hos
adalah bebas untuk bergerak secara rawak dan juga bebas untuk menyertai atau me-
ninggalkan sesuatu rangkaian. Sifat berpusat MANET tampil dengan cabaran baru
yang melanggar konsep reka bentuk Protokol Kawalan Penghantaran (TCP); sejenis
protokol dominan untuk Internet pada masa kini. TCP sentiasa merumuskan kehilang-
an paket sebagai petunjuk kesesakan rangkaian dan menyebabkan ia melaksanakan pe-
ngurangan mendadak kepada kadar penghantaran data. MANET mengalami beberapa
jenis kehilangan paket disebabkan oleh ciri mobiliti dan pertelagahan capaian saluran
tanpa wayar dan ini akan melemahkan prestasi TCP. Oleh itu, kajian eksperimental ini
menyiasat satu protokol yang dikenali sebagai TCP Sintok. Protokol ini mempuntai
dua mekanisme: Mekanisme Pengesanan Kehilangan berasaskan kelewatan (LDM)
dan Mekanisme Pengelakan Perebutan (CAM). LDM diperkenalkan untuk menentuk-
an punca kehilangan paket dengan memantau trend sampel kelewatan hujung-ke-akhir.
CAM telah dibangunkan untuk penyesuaian pada kadar penghantaran (tetingkap ke-
sesakan) mengikut keadaan rangkaian semasa. Kajian eksperimen telah dijalankan
bagi mengesahkan keberkesanan TCP Sintok dalam mengenal pasti punca kehilangan
paket dan menyesuaikan kadar penghantaran yang bersesuaian. Dua varian protokol
TCP yang dikenali sebagai TCP NewReno dan ADTCP telah dipilih untuk menilai
prestasi TCP Sintok melalui simulasi. Keputusan menunjukkan bahawa TCP Sintok
memperbaiki ketaran, kelewatan dan daya pemprosesan berbanding dengan dua varian
tersebut. Hasil penemuan penyelidikan ini mempunyai implikasi penting dalam me-
nyediakan pemindahan data yang boleh dipercayai dalam MANET dan menyokong
penempatan pada komunikasi peranti mudah alih.

Kata kunci: Protokol kawalan penghantaran, Rangkaian ad hoc mudah alih, Penge-
lakan pertelagahan, Teori penyesuaian komunikasi

iii

Abstract

Mobile Ad hoc Network (MANET) consists of mobile devices that are connected to
each other using a wireless channel, forming a temporary network without the aid of
fixed infrastructure; in which hosts are free to move randomly as well as free to join or
leave. This decentralized nature of MANET comes with new challenges that violate
the design concepts of Transmission Control Protocol (TCP); the current dominant
protocol of the Internet. TCP always infers packet loss as an indicator of network
congestion and causes it to perform a sharp reduction to its sending rate. MANET
suffers from several types of packet losses due to its mobility feature and contention
on wireless channel access and these would lead to poor TCP performance. This ex-
perimental study investigates mobility and contention issues by proposing a protocol
named TCP Sintok. This protocol comprises two mechanisms: Delay-based Loss
Detection Mechanism (LDM), and Contention Avoidance Mechanism (CAM). LDM
was introduced to determine the cause of the packet loss by monitoring the trend of
end-to-end delay samples. CAM was developed to adapt the sending rate (congestion
window) according to the current network condition. A series of experimental studies
were conducted to validate the effectiveness of TCP Sintok in identifying the cause of
packet loss and adapting the sending rate appropriately. Two variants of TCP protocol
known as TCP NewReno and ADTCP were chosen to evaluate the performance of
TCP Sintok through simulation. The results demonstrate that TCP Sintok improves
jitter, delay and throughput as compared to the two variants. The findings have signif-
icant implication in providing reliable data transfer within MANET and supporting its
deployment on mobile device communications.

Keywords: Transmission control protocol, Mobile ad hoc network, Contention avoid-
ance, Communication accommodation theory

iv

Declaration Associated with This Thesis

Some of the works presented in this thesis have been published or submitted as listed

below.

[1] Adib M. Monzer Habbal and Suhaidi Hassan, “A Model for Congestion Control

of Transmission Control Protocol in Mobile Wireless Ad hoc Networks ”, Journal of

Computer Science (JCS), Vol. 9(3), pp. 468-473 (2013), ISSN: 1549-3636. [Citation

indexed by SCOPUS]

[2] Suhaidi Hassan, Adib M. Monzer Habbal, Suki Arif " End-To-End Loss Discrim-

ination Mechanism for TCP over MANET" in the Proceedings of LEADS SEMINAR

2013, Convention Centre, Universiti Utara Malaysia, 10-11 June 2013. [Chapter in

Book]

[3] Suhaidi Hassan, Adib M. Monzer Habbal, “Modeling TCP Delay in IEEE 802.11

multi-hop Wireless Ad hoc Networks”, in the Proceedings of the 3rd European Con-

ference for the Applied Mathematics and Informatics (AMATHI ’12), Montreux,

Switzerland, 29-31 December 2012. ISBN 978-1-61804-148-7. [Citation indexed

by SCOPUS]

[4] Adib M. Monzer Habbal and Suhaidi Hassan, “Contention Avoidance Mecha-

nism for TCP in Mobile Ad hoc Network ”, in the Proceedings of the 4thGlobal Infor-

mation Infrastructure and Networking Symposium (GIIS 2012), Choroni, Venezuela,

17-19 December 2012. ISBN 156-9-67736-1. [Citation indexed by SCOPUS]

[5] Khuzairi Mohd Zaini, Adib M. Monzer Habbal, Fazli Azzali, Suhaidi Hassan

and Mohamad Rizal, “An Interaction between Congestion-Control Based Transport

Protocols and MANET Routing Protocols”, Journal of Computer Science (JCS), Vol.

8(4), pp. 468-473 (2012), ISSN: 1549-3636. [Citation indexed by SCOPUS]

v

[6] Haniza N., Md Khambari, M. N, Shahrin S., Adib M. Monzer Habbal and Suhaidi

Hassan, “Topology Influence on TCP Congestion Control Performance in Multi-hop

Ad hoc Wireless”, in the Proceedings of the nternational Conference on Wireless

Communication and Sensor Network (ICWCSN2012), United Arab Emirates, 29-31

January 2012. [Citation indexed by ISI/SCOPUS]

[7] Adib M. Monzer Habbal and Suhaidi Hassan, “Delay-Based Loss Discrimination

Mechanism for Congestion Control in Wireless Ad-hoc Network”, in the Proceedings

of the International Conference on Informatics Engineering & Information Science

(ICIEIS2011), Malaysia, on 14-16 November 2011. Communications in Computer

and Information Science” (CCIS) Series of Springer LNCS. ISBN: 978-3-642-25461-

1 [Citation indexed by ISI/SCOPUS]

[8] Adib M. Monzer Habbal and Suhaidi Hassan, “A Reference Model for TCP over

MANET”, in the Proceedings of the 3rd IEEE International Conference on Computer

Modeling ad Simulation (ICCMS2011), India, 7-9 January 2011. ISBN: 978-1-4244-

9241-1. [Citation indexed by ISI]

[9] Adib M. Monzer Habbal and Suhaidi Hassan, “Loss Detection and Recovery

Techniques for TCP in MANET”, in the Proceedings of the 2nd International Confer-

ence on Network Applications, Protocols and Services 2010 (NetApps2010), Malaysia,

22-23 September 2010. ISBN 978-1-4244-8048-7. [Citation indexed by SCOPUS]

vi

Acknowledgements

In the name of ALLAH, Most Gracious, Most Merciful:

“Work; so Allah will see your work and (so will) His Messenger and the believers;”

______________________________________(The Holy Quran - AtTawbah 9:105)

Conducting this research marks the end of an interesting and eventful journey. The

completion of this thesis took a longer time than I expected to signify the fulfillment

of a long-awaited goal. It could not have been achieved without the academic profes-

sional and personal support of the following wonderful and talented people.

I will start by extending my deep and sincere gratitude to my supervisor Professor

Dr. Suhaidi Hassan (School of Computing, Universiti Utara Malaysia) for his tireless

encouragement, wisdom and experience, who provided me with constant guidance and

constructive criticism throughout all stages of my research. I must say a huge thank

you to the current and past members of InterNetWorks Research Lab whom I enjoyed

working with; especially, Assoc. Prof. Dr. Osman Ghazali, Dr. Ahmad Suki Che

Mohamed Arif, Dr. Mohd. Hasbullah Omar, Dr. Yaser Miaji, Mr. Khuzairi Mohd

Zaini, Dr. Massudi Mahmuddin, and others.

My grateful thanks are also extended to Dr. Peter W. Staecker (2013 IEEE President

and CEO) for his encouragement and motivation, Prof. Dr. Srinivasan Keshav (Chair

of ACM SIGCOMM) and Prof. Dr. Rahmat Budiarto (Surya University, Indonesia)

for useful and insight discussion, and to Prof. Dr. Zulikha Jamaludin (UUM) and Prof.

Dr. Giovanna Di Marzo Serugendo (University of Geneva, Switzerland) for their ex-

cellent and moral support during my research. Further, my truthful acknowledgement

goes to Dr. Zhenghua Fu, (University of California, Los Angeles) for his advice on

the implementation of TCP in NS-2 as well as making the source code of ADTCP

available for research community; and to Mr. Sachin Gajjar, (Nirma University, India)

vii

for sharing his experience in implementing I-ADTCP in NS-2 environment.

My deepest gratitude goes to network research community. In particular, I would like

to thank the team of the Internet Society’s Next Generation Leaders (NGL) program

for their kind support and guidance given to me while serving as ISOC Fellow to the

Internet Engineering Task Force (IETF) and especially to Steve Conte and my men-

tors: David Black, Mirja Kuehlwind, and Richard Scheffenegger for their scientific

advice, knowledge and many insightful discussions. Further, special thanks to Asia

Pacific Advanced Networking (APAN) fellowship committee for their guidance and

good humor offered to me while participating as APAN fellow to the Techs in Paradise

meeting. Also, I would like to thank those researchers who reviewed my papers and

commented on my publications. Special thanks to Mr. Faisal Zulhumadi for editing

this manuscript. Additionally, I would like to take this opportunity to present my grat-

itude to Universiti Utara Malaysia for their support and having trust in me to complete

this study.

Finally, my heartiest gratitude goes to my family, to my late father M. Monzer, to my

mother Faten who always has faith in me and prays for my success, to my brothers

Amjad and Ayman, who are willing to extend a helping hand, to my beloved wife

Rawaa for her understanding, support, and love, also deepest thanks to my daughter

Faten for being so sweet and loving.

viii

Dedication

For my family . . .

in memory of my father M. Monzer;

my mother Faten; and

my brothers Amjad, and Ayman

my wife Rawaa; and

our daughter Faten

ix

Table of Contents

Perakuan Kerja Tesis/Disertasi . i

Permission to Use . ii

Abstrak . iii

Abstract . iv

Acknowledgements . vii

Table of Contents . x

List of Tables . xiv

List of Figures . xv

List of Appendices . xviii

List of Abbreviations . xix

CHAPTER ONE INTRODUCTION . 1

1.1 TCP and Ad hoc Networks . 1

1.2 Mobile Ad hoc Networks Challenges . 3

1.2.1 Mobility . 4

1.2.2 Wireless Channel . 5

1.3 Research Motivation . 9

1.3.1 Misinterpretation of Mobility Induced Loss as Congestion Loss . 10

1.3.2 Contention on the Wireless Channel Access 11

1.4 Problem Statement . 12

1.5 Research Questions . 13

1.6 Research Objectives . 14

1.7 Research Scope . 15

1.8 Significance of the Research . 16

1.9 Organization of the Thesis . 16

CHAPTER TWO LITERATURE REVIEW 18

2.1 Transmission Control Protocol (TCP) 18

2.1.1 Flow Control . 20

2.1.2 Connection Management . 20

x

2.1.3 Retransmission Mechanism . 20

2.1.4 Congestion Control . 21

2.1.4.1 Slow Start and Congestion Avoidance 24

2.1.4.2 Fast Retransmit . 26

2.1.4.3 Fast Recovery . 27

2.2 Performance Model of TCP Congestion Control 30

2.2.1 High Bit Error Rate . 30

2.2.2 Contention . 33

2.2.3 Mobility . 34

2.2.4 Discussion . 36

2.3 TCP Proposal Classification for Mobile Ad hoc Networks 36

2.3.1 Reactive Approach . 37

2.3.1.1 Dealing with Route Failure/Change 38

2.3.1.2 Dealing with Wireless Error Loss 45

2.3.1.3 Hybrid Approach . 48

2.3.1.4 Discussion . 55

2.3.2 Proactive Approach . 57

2.3.2.1 Sender Perspective . 57

2.3.2.2 Receiver Perspective 64

2.4 Theories Pertinent to Congestion Control 68

2.4.1 Detection Theory . 68

2.4.2 Communication Accommodation Theory (CAT) 69

2.5 Summary . 71

CHAPTER THREE RESEARCH METHODOLOGY 72

3.1 Research Approach . 72

3.2 Research Clarification (RC) . 75

3.3 Descriptive Study-I (DS-I) . 76

3.3.1 Conceptual Model of TCP Sintok 77

3.4 Prescriptive Study (PS) . 78

3.4.1 Verification and Validation . 80

3.5 Descriptive Study-II (DS-II) . 84

xi

3.5.1 Evaluation Approach Consideration 84

3.5.1.1 Analytical Modeling 85

3.5.1.2 Measurement . 86

3.5.1.3 Simulation . 86

3.5.2 Evaluation Environment . 87

3.5.2.1 Network Simulator 2 (NS-2) 90

3.5.2.2 Experiment Steps . 91

3.5.2.3 Experiments Setup . 92

3.5.2.4 Performance Metrics 96

3.5.2.5 Confidence Level of Simulation Results 97

3.6 Summary . 98

CHAPTER FOUR DELAY-BASED LOSS DETECTION MECHANISM . 99

4.1 Theoretical Analysis . 99

4.2 System Model . 103

4.2.1 Packet Dropping Probability . 106

4.2.2 Single Hop Case . 108

4.2.3 Multi-Hop Case (Generalization of RTT) 113

4.2.4 Model Validation . 114

4.3 Design Objective of Loss Detection Mechanism (LDM) 117

4.4 The Design of Loss Detection Mechanism (LDM) 119

4.5 The Verification of LDM . 122

4.6 The Validation of LDM . 123

4.7 Summary . 127

CHAPTER FIVE CONTENTION AVOIDANCE MECHANISM 129

5.1 Theoretical Analysis . 129

5.2 Applying CAT to TCP Congestion Control 132

5.3 The Design of Contention Avoidance Mechanism (CAM) 135

5.4 The Implementation of Contention Avoidance Mechanism (CAM) 139

5.5 Verification and Validation of CAM . 141

5.5.1 Chain Topology . 143

5.5.2 Grid Topology . 146
xii

5.6 Summary . 151

CHAPTER SIX TCP SINTOK PERFORMANCE ANALYSIS 153

6.1 TCP Sintok: An Overview . 153

6.2 The Implementation of TCP Sintok . 157

6.3 Performance Evaluation of TCP Sintok 159

6.3.1 Chain Scenario . 160

6.3.2 Grid Scenario . 162

6.3.3 Random Scenario . 165

6.4 Performance Improvement of TCP Sintok 168

6.4.1 TCP Sintok versus ADTCP . 168

6.4.1.1 Mobility Scenario . 169

6.4.1.2 Mobility with 5% Channel Error Scenario 170

6.4.1.3 Mobility with 5% Channel Error and Three UDP Flows 170

6.4.2 TCP Sintok versus TCP ELFN 171

6.4.2.1 Mobility Scenario . 172

6.4.2.2 Mobility with 5% Channel Error Scenario 172

6.4.2.3 Mobility with 5% Channel Error and Three UDP Flows 173

6.5 Discussion on TCP Sintok Performance 174

6.6 Summary . 177

CHAPTER SEVEN CONCLUSION AND FUTURE WORKS 179

7.1 Summary of the Research . 179

7.2 Research Contributions . 181

7.3 Research Limitation . 183

7.4 Future Works . 184

REFERENCES . 186

xiii

List of Tables

Table 2.1 Identification Rules of Network State (Adopted from[1]) 49

Table 2.2 Comparison among TCP Proposals 56

Table 2.3 Delay Window at TCP-DCA Receiver 67

Table 2.4 Detection Table . 69

Table 2.5 List of Top Ten Subject Areas of CAT Articles 70

Table 3.1 Comparison of Performance Evaluation Techniques (Adopted from

[2]) . 85

Table 3.2 Comparisons Between Three Simulators (Adopted from [3]) 89

Table 3.3 Parameters Values . 95

Table 4.1 Percentage of False Alarms . 126

Table 4.2 Overall Percentage of False Alarms 127

Table 5.1 Optimal and Measured Congestion Window Size 146

Table 5.2 TCP with CAM versus Theory Congestion Window Size in Grid . . 148

Table 5.3 TCP NewReno versus Theory Congestion Window Size in Grid . . 150

xiv

List of Figures

Figure 1.1 Ad hoc Network . 2

Figure 1.2 Network Partition (Adopted from [4]) 5

Figure 1.3 Intraflow Contention . 6

Figure 1.4 Interflow Contention . 7

Figure 1.5 Hidden Terminal Problem . 8

Figure 1.6 Exposed Terminal Problem . 9

Figure 1.7 Buffer Overflow at the Bottle-neck Router (Adopted from [5]) . . . 10

Figure 2.1 Transport Layer Provide Logical End-to-End Communication . . 19

Figure 2.2 Congestion Control of TCP Tahoe (Adopted from [5]) 26

Figure 2.3 Congestion Control of TCP Reno (Adopted from [6]) 27

Figure 2.4 Congestion Control of TCP NewReno (Adopted from [6]) 29

Figure 2.5 Performance Model of TCP Congestion Control 32

Figure 2.6 A Possible Case of Route Change (Adopted from [7]) 41

Figure 2.7 TCP WELCOME Loss Differentiation Algorithm (Adopted from

[8]) . 54

Figure 3.1 Research Approach . 74

Figure 3.2 Main Steps in the Research Clarification Stage 75

Figure 3.3 Main Steps in the Descriptive Study-I Stage 77

Figure 3.4 Conceptual Model of TCP Sintok 78

Figure 3.5 Main Steps in the Prescriptive Study Stage 80

Figure 3.6 Eclipse C/C++ Development Tools 81

Figure 3.7 Code Analysis in Eclipse . 82

Figure 3.8 Simulation Steps (Adopted from [9]) 92

Figure 4.1 The IEEE 802.11 Basic Access Method 101

Figure 4.2 The IEEE 802.11 RTS/CTS Access Method 102

Figure 4.3 System Model of TCP with Single Hop 104

Figure 4.4 Successful Transmission Time Based on RTS/CTS Access Method

According to [10] . 110

xv

Figure 4.5 Contention Window Value According to [11] 111

Figure 4.6 Initial Collision Time . 112

Figure 4.7 Initial Transmission Error Time 113

Figure 4.8 Dumbbell Topology . 114

Figure 4.9 End-to-End Delay in Chain Topology with BER = 10−6 115

Figure 4.10 End-to-End Delay in Chain Topology with BER = 10−5 116

Figure 4.11 End-to-End Delay in Dumbbell Topology with Different Number

of Back Ground Traffic . 116

Figure 4.12 End-to-End Delay in Dumbbell Topology with Different Number

of UDP Flows of 180Kbps Sending Rate 117

Figure 4.13 Sample Space Content . 120

Figure 4.14 LDM Sample Space . 121

Figure 4.15 LDM Code in Eclipse . 123

Figure 4.16 Probability Tree Structure in Normal Case 124

Figure 4.17 Probability Tree Structure in the Case of Using LDM 125

Figure 5.1 TCP Throughput in Chain Topology 131

Figure 5.2 TCP Throughput in Grid Topology 132

Figure 5.3 Implementation of CAM in Eclipse 142

Figure 5.4 Chain Topology with 6-hop . 144

Figure 5.5 The Impacts of Chain Length in # of hops 145

Figure 5.6 Grid Topology with 5X5 Nodes 147

Figure 5.7 TCP with CAM versus Theory Congestion Window Size in Grid

with nXn Nodes . 148

Figure 5.8 TCP NewReno versus Theory Congestion Window Size in Grid

with nXn Nodes . 149

Figure 6.1 Finite State Machine of TCP Sintok Congestion Control 155

Figure 6.2 TCP Sintok in Eclipse . 159

Figure 6.3 Chain Topology with 6-hop . 160

Figure 6.4 Throughput in Chain Topology with 5-hop 161

Figure 6.5 Throughput in Chain Topology with 6-hop 162

Figure 6.6 Grid Topology with 5x5 Nodes 163

xvi

Figure 6.7 Throughput in Grid Topology with nXn Nodes 164

Figure 6.8 Delay in Grid Topology with nXn Nodes 164

Figure 6.9 Throughput in Random Topology 166

Figure 6.10 Delay in Random Topology . 166

Figure 6.11 Jitter in Random Topology . 167

Figure 6.12 Throughput over Different Speeds 169

Figure 6.13 Throughput over Different Speeds and 5% Channel Error Rate . . 170

Figure 6.14 Throughput over Different Speeds, 5% Channel Error Rate, and

Three UDP Flows . 171

Figure 6.15 Throughput over Different Speeds 172

Figure 6.16 Throughput over Different Speeds and 5% Channel Error Rate . . 173

Figure 6.17 Throughput over Different Speeds, 5% Channel Error Rate, and

Three UDP Flows . 174

Figure A.1 Factor, Attribute and Element . 200

Figure A.2 Graphical Representation of a Statement and Associated Modelling

Terminology . 202

xvii

List of Appendices

Appendix A Performance Model Notation 200

xviii

 xix

List of Abbreviations

ABSE - Adaptive Bandwidth Share Estimation

ACK - Acknowledgement

ADSN - ACK Duplication Sequence Number

ADTCP - TCP-friendly Transport Protocol for Ad hoc Networks

AIMD - Additive Increase, Multiplicative Decrease

AODV - Ad Hoc On-Demand Distance Vector

ASP - Adaptive Packet Size

ASP-FeW - Adaptive Packet Size on Top of FeW

BEB - Binary Exponential Backoff

BER - Bit Error Rate

BDP - Bandwidth Delay Product

CAM - Contention Avoidance Mechanism

CAT - Communication Accommodation Theory

CR - Contention Ratio

CSMA/CA - Carrier Sensing Multiple Access with Collision Avoidance

CWA-CD - Congestion Window Adaptation through Contention Detection

CWL - Congestion Window Limit

CWND - Congestion Window

DACK - Delay ACKnoweledgment

DCF - Distributed Coordination Function

DIFS - Distributed Inter Frame Space

DRM - Design Research Methodology

DS-I - Descriptive Study-I

DS-II - Descriptive Study-II

DSR - Dynamic Source Routing

DUPACK - DUPlicate ACKnowledgements

ECN - Explicit Congestion Notification

ELFN - Explicit Link Fail Notification

ELU - Efficient Link Utilization

FEDM - Fuzzy-based Error Detection Mechanism

xx

Few - Fractional Window increment

FIFO - First In First Out

FTP - File Transfer Protocol

GM - Gauss Markov

GUI - Graphical User Interface

HTTP - HyperText Transfer Protocol

IADTCP - Improved-ADTCP

IETF - Internet Engineering Task Force

IDD - Inter-packet Delay Difference

IW - Initial value of cwnd

LDA - Loss Differentiation Algorithm

LRA - Loss Recovery Algorithm

LW - Loss Window

LDM - Loss Detection Mechanism

LRL - Long Retry Limit

M-ADTCP - Modified AD-hoc Transmission Control Protocol

MAC - Media Access Control

MANET - Mobile Ad hoc NETwork

MME-TCP - Multi-metric Measurement based Enhancement of TCP

MATLAB - MATrix LABoratory

NS-2 - Network Simulator ver2

OLSR - Optimized Link State Routing

OOO - Out-Of-Order

PCT - Pair wise Comparison Test

PDA - Personal Digital Assistant

PHY - PHYsical layer

PLR - Packet Loss Ratio

POR - Packet Out-of-order Arrival

RPGM - Reference Point Group Mobility

PS - Perspective Study

RC - Research Clarification

RFC - Request For Comments

xxi

RSD - Relative Sample Density

RTO - Retransmission Time Out

RTHC - Round-Trip Hop-Count

RTS/CTS - Request To Send / Clear To Send

RTT - Round Trip Time

RW - Random Waypoint

RWND - Receiver’s Advertised Window

SACK - Selective ACKnoweledment

SANET - Static Ad hoc NETwork

SIFS - Short InterFrame Space

SMTP - Simple Mail Transfer Protocol

SMSS - Sender Maximum Segment Size

SRL - Short Retry Limit

SRTT - Smooth RTT

SSTHRESH - Slow Start THRESHold

STG - Short Term Goodput

STT - Short Term Throughput

TCP - Transmission Control Protocol

TCP/IP - Transmission Control Protocol/Internet Protocol

TCP ADA - TCP with Adaptive Delayed Acknowledgement

TCP AR - TCP Adaptive RTO

TCP-AP - TCP with Adaptive Pacing

TCPCC - TCP-Channel utilization and Contention Ratio

TCP DAA - Dynamic Adaptive Acknowledgement

TCP DCA - TCP Delayed Cumulative Ack

TCP DCR - TCP Delayed Congestion Response

TCP DOOR - TCP Detection of Out-of-Order and Response

TCP-MEDX - TCP-Mobile Error Detection eXtension

TCP-R - Protocol for Mobility-induced Packet Reordering

TCPW - TCP Westwood

TPSN - TCP Packet Sequence Number

PAT - Partition-Aware TCP

xxii

P2P - Peer-to-Peer

PDA - Personal Digital Assistant

PLR - Packet Loss Ratio

POR - Packet Out of order Delivery Ratio

Us - Sender’s Utilization

Un - Neighbors’ Utilization

VANET - Vehicular Ad hoc NETwork

VCRH - Variance of Contention RTT per Hop

WWW - World Wide Web

WLAN - Wireless Local Area Network

CHAPTER ONE

INTRODUCTION

The Internet success has contributed to the adaptation of the Transmission Control

Protocol/Internet Protocol (TCP/IP) suite to build different types of communication

networks including ad hoc network [2]. Transmission Control Protocol (TCP), the

predominant transport protocol, is used in the TCP/IP stack to support the multitude

of Internet services. This thesis presents a new Transmission Control Protocol, named

TCP Sintok, and its verified performance in IEEE 802.11 ad hoc networks. This chap-

ter aims to place the thesis of this work within its context, where the general back-

ground of the research is described briefly. This chapter begins with an introductory

overview of TCP and ad hoc networks, followed by a brief description of the popular

applications of ad hoc networks. Characteristics of mobile ad hoc networks are de-

liberated in Section 1.2, while Section 1.3 discusses the motivating factors that drive

the need for studying the design concept of TCP congestion control. The problem

statement is stated in Section 1.4 where the current issues and challenges of TCP are

addressed. In Section 1.5, the research questions are presented, so as to frame the

research objectives and scope of which are presented in Section 1.6 and 1.7, respec-

tively. Meanwhile, the research significance is highlighted in Section 1.8, and finally,

the thesis organization is outlined in Section 1.9.

1.1 TCP and Ad hoc Networks

The need for wireless computing devices such as tablets, Personal Digital Assistants

(PDAs), and notebooks has accompanied the increasing interest in the usage of ad hoc

networks. An ad hoc network is a set of wireless mobile or static devices that connect

to each other using wireless links, forming a temporary network without depending on

fixed infrastructure [12]. In contrast to infrastructure based wireless networks, nodes

1

(hosts) in ad hoc networks can communicate directly if they are within transmission

coverage of each other. Otherwise, data will be sent through intermediate nodes which

replace infrastructure devices, such as routers or access point, and directly forward

data to the desired destination [13], as shown in Figure 1.1. Thus, normal nodes act as

end hosts and intermediary nodes. With recent performance advancements in wireless

communication technologies, such as IEEE 802.11 [14] and Bluetooth [15, 16], ad

hoc networks are expected to experience widespread use and deployment for various

commercial purposes.

Figure 1.1: Ad hoc Network

Ad hoc networks can be realized through a variety of networks such as Mobile Ad

hoc NETworks (MANETs), mesh networks, Static Ad hoc NETworks (SANET), Ve-

hicular Ad hoc NETworks (VANET), home networks, and wireless sensor networks.

Ad hoc networks can run in a stand-alone mode or it could be connected to the Inter-

net. This flexibility and ease of building a network without any existing infrastructure

would allow users to freely share information anytime and anywhere. Other scenar-
2

ios where ad hoc networks can be used are in education, such as information sharing

among educators on campus; in homes, such as information and document exchange;

in emergency disaster relief efforts, such as personal coordination efforts after a natu-

ral disaster like an earthquake or flooding; and in the military, used in battlefields and

training exercises.

Transmission Control Protocol is the de facto standard protocol that provides end-to-

end, reliable, and connection-oriented data delivery over unreliable networks [17, 18].

This protocol is the dominant protocol implemented in the Internet today, since a vast

number of applications utilize TCP, such as World Wide Web (WWW), Email (SMTP),

File Transfer Protocol (FTP), and Peer-to-Peer (P2P) file sharing. In other words,

around 90 percent of Internet traffic is transmitted using TCP [19]. Since TCP is

well tuned and due to its wide acceptance for use in the Internet, using TCP over ad

hoc networks will make Internet applications portable to and compatible with ad hoc

networks, which would enable wireless devices to connect with the wired network and

the Internet easily. Additionally, TCP plays a crucial role in data transmission over ad

hoc networks due to its reliability [20]. These features and others make TCP use over

ad hoc networks a virtual certainty [21].

1.2 Mobile Ad hoc Networks Challenges

Mobile ad hoc networks can be considered as complex distributed systems that al-

low wireless devices to communicate with each other in an area that does not provide

pre-existing network infrastructure [12]. These networks are characterized by self-

organization (infrastructure-less), self-configuration (no authority), free movement,

scalability, robustness, and easy maintenance. Furthermore, ad hoc networks are not

only easy to build and implement but they are also less time consuming and cost effec-

tive. However, mobile ad hoc networks inherit several issues from wireless commu-

3

nications, such as high bit error rate, interference, hidden and exposed terminals, and

path asymmetry [22]. Furthermore, mobile ad hoc networks pose new challenges that

accompany node mobility, such as frequent route change, route failures, and network

partitions [4].

For instance, in wired networks, buffer overflow or congestion at the bottle-neck router

is the main cause of packet loss; while in contrast, ad hoc networks suffer from differ-

ent types of packet losses that are not related to buffer overflow (congestion). There-

fore, protocols that anticipate buffer overflow as the sole contributor to packet loss

may make a wrong assumption in MANET, thus reacting badly in this situation [23].

As a result, many TCP/IP protocols, specifically TCP which were all well designed

and developed for wired networks in the first place, are not directly usable in MANET.

The following subsections shall discuss the main challenges of mobile ad hoc networks

in line with the direction of this thesis.

1.2.1 Mobility

All nodes in MANET are free to move independently and randomly in any direction,

at any time. This leads to frequent changes in network topology [24]. Therefore, to

support mobility and keep ongoing connection alive, each individual node is respon-

sible to discover topology changes of its network [25]. More specifically, once a node

moves, the following situations may occur and the associated action triggered:

Route Failures: Since nodes can move in any direction randomly, route failures may

occur frequently in ad hoc networks. Furthermore, it may be associated with frequent

route changes, route failures, packet reordering, and also some packet loss at interme-

diate nodes [26, 27].

4

Network Partition: This event occurs when a node within the ad hoc network moves

away from other nearby nodes causing an isolation of some part of the network by

dividing it into isolated parts [4], called partitions, as shown in Figure 1.2. From this

figure, Node (D) moves away from node (C) causing a route failure between Node

(D) and Node (C), because the distance becomes more than the allowed transmission

range. Furthermore, this movement will break the network into two partitions, for

example in Figure 1.2, the first partition contains the sender (A) and two other nodes

(B) and (C), while the second partition consists of the receiver (F) in addition to node

(D) and node (E) .

Figure 1.2: Network Partition (Adopted from [4])

1.2.2 Wireless Channel

Wireless channel is used by nodes as a shared medium to transmit and receive data.

Wireless channel is well known as being unreliable and unprotected from interfering

external signals. Additionally, wireless channel is prone to the following challenges:

High Bit Error Rate: Wireless channel is exposed to errors due to interference, ob-

stacles, and signal attenuation and fading [13]. These errors may produce packet

drop within a very short period or receive corrupted data packet/ACK at the re-

ceiver/sender. In case of small number of hops, link layer retransmission mechanism is

capable of recovering from such loss type, but when the number of hops increases, this

5

type of loss may generate three DUPACKs that requires TCP to handle the situation

differently[28].

Contention: The usage of wireless channel as a shared medium limits the nodes’ abil-

ity to send packets. Once a node successfully obtains permission to access the wire-

less channel and performs its transmission, other nodes that are within the sender’s

transmission range should refrain from transmitting and schedule it for a later time.

Therefore, in ad hoc networks, channel contention is considered as a sign of network

overload that affects the entire area, rather than a single router [13, 29]. In particular,

packet loss due to link-layer contention dominates in ad hoc networks, while buffer

overflow-induced packet loss is rare [30].

There are two types of contention, namely interflow and intraflow.

(i) Intraflow contention refers to the contention between data packets and the ACKs

within the same flow [31], as shown in Figure 1.3.

Figure 1.3: Intraflow Contention

(ii) Interflow contention is experienced by a node due to transmission by a nearby node

[32], as illustrated in Figure 1.4.

6

Figure 1.4: Interflow Contention

Hidden and Exposed Station: In ad hoc networks, nodes rely on Carrier Sensing Mul-

tiple Access with Collision Avoidance (CSMA/CA) mechanism to determine an idle

channel, such as the IEEE 802.11 Distributed Coordination Function (DCF). However,

such hidden and exposed terminal problems could not be solved completely using a

sensing mechanism.

A hidden terminal is when two nodes located not within the transmission range of each

other transmit to the same node. A typical hidden terminal problem is shown in Figure

1.5. Node A (resp. C) is located outside the transmission range of node C (resp. A),

but both nodes have data to be transmitted to node B. Meanwhile, node B is located

between node A and node C, thus node A cannot detect the transmission of node C

because it is located outside the transmission range of node C, therefore Node C (resp.

A) is thus “hidden” to node A (resp. C). Therefore, the data frames or packets will

collide at node B if they are transmitted at the same time. These collisions make the

transmission from node A and node C to node B problematic. Other methods, such as

using Request To Send / Clear To Send (RTS/CTS), can be used to solve this problem

via the hand-shaking event that proceeds data transmission. However, in situations

with multihops, this problem will appear again and again, as the RTS/CTS scheme

would not be able to handle hidden terminals.

7

Figure 1.5: Hidden Terminal Problem

The exposed terminal problem happens when a transmission has to be deferred due to

the transmission of another node within the sender’s transmission range. Figure 1.6

shows a scenario of the exposed terminal problem. Nodes A and C are within node

B’s transmission range and node A is outside node C’s transmission range. Node B

has a frame to be transmitted to node A, while node C has data to be transmitted to

node D. Node C needs to sense the channel status before transmission, but it detects a

busy channel due to node B transmitting to node A. Therefore, node C will defer its

transmission, even though this transmission would not cause any interference at node

A; thus leading to a reduction of channel utilization.

8

Figure 1.6: Exposed Terminal Problem

1.3 Research Motivation

To exploit the potential use of mobile ad hoc networks, an efficient TCP congestion

control is extremely important to support a reliable transport service and make ad

hoc networks viable for many applications [23]. Most TCP variants were designed

based on the assumption that packet loss occurs mainly due to network congestion

at the bottle-neck router [33, 34, 35, 36, 37, 38]. In other words, congestion is the

main reason of network instability (an example of typical packet loss is shown in

Figure 1.7). However, mobile ad hoc networks are characterized by low bandwidth,

dynamic changing network topologies, high bit error rate, and shared wireless channel

[4]. These features violate some design principles of TCP that was initially intended

for use in wired networks, and thus impose on TCP several technical challenges to

resolve this issue, therefore if no modifications are made, TCP performance would

degrade [39, 40].

9

Figure 1.7: Buffer Overflow at the Bottle-neck Router (Adopted from [5])

Accurate insight about the impact of ignoring ad hoc networks’ special characteristics

on TCP performance is discussed in the following subsections.

1.3.1 Misinterpretation of Mobility Induced Loss as Congestion Loss

Nodes in mobile ad hoc networks may have different relative mobility that will even-

tually generate route failure (or route change) within the network. Once route failure

occurs, it is the responsibility of routing protocol to detect the link break and start

looking for a new route to the destination [24]. Meanwhile, all packets in the interme-

diate node will drop, so no packets will be delivered and no acknowledgements will be

received. Sometimes, discovering and establishing such an alternative route may take

time, longer than the Retransmission Time Out (RTO) value. In this case, TCP will

misinterpret the loss as congestion and reduce its transmission rate, while the RTO

value will double due to the BACK-OFF mechanism call [41]. During the process

of finding a new route, a sequence of route changes and failures may occur, as well

10

as packet loss. As a result, TCP will again erroneously trigger a congestion control

mechanism to decrease the transmission rate and increase RTO timer value. After a

new stable route has been established, the small congestion window (cwnd) and Slow

Start THRESHold (ssthresh) values would reduce the initial sending rate and the large

RTO value would reduce the responsiveness of TCP as well as link utilization, thus

resulting in poor performance [42].

1.3.2 Contention on the Wireless Channel Access

In IEEE 802.11 Distributed Coordination Function (DCF) multi-hop wireless ad hoc

networks, a single channel is shared by all nodes within the network. The shared

wireless channel allows a single sender to transmit at any given time, so the number

of packets that can be in flight concurrently is limited from a source to a destina-

tion. Although nodes cooperate to forward other packets, they compete within a local

neighborhood for wireless channel access before transmitting. Therefore, a control

handshake of RTS/CTS message precede each packet transmission. Nodes within the

sender or the receiver transmission range will defer their transmission upon overhear-

ing these handshaking messages. However, signals are broadcasted in the wireless

medium and may interfere with each other. When there exist concurrent transmissions

within the interference range of either sender, a collision will be sensed and transmis-

sions may fail. Therefore, the use of RTS/CTS in IEEE 802.11 MAC is a good solution

to avoid interference, but interference can still be observed in the mutli-hop topology

due to channel contention. Hence, a medium access protocol is required to coordinate

any wireless channel access [13]. However, contention-based medium access control

schemes, such as IEEE 802.11 MAC DCF protocol, have been shown to significantly

affect TCP performance [28, 43, 44].

In addition, the large congestion window size of the sender can cause an excessive

11

number of medium accesses [45]. Moreover, the correlated arrivals of data packets

(also retransmitted packets due to loss or RTO) and their ACKs lead to contention in

obtaining access to the wireless channel, thus causing extreme collisions and packet

loses [46]. This would thereby reduce achievable throughput of TCP while at the same

time increase delay. This is considered the main reason of poor TCP performance

over 802.11 MAC protocol, because the packet drops in ad hoc networks often occur

because of link layer contentions, while buffer overflows are rare [28].

1.4 Problem Statement

In theory, TCP should run independently regardless of the underlying networks, since

it should not care whether it is running over wired networks or even mobile ad hoc

networks. In practice, it does matter because most TCP flavors have been carefully

designed based on the assumption that all packet losses occur due to network con-

gestion at the bottle-necked router which is inspired from wired network feature, as

specified in a large number of RFCs [35, 36, 47, 37, 38]. TCP always infers packet

loss as an indicator of network congestion and thus performs a sharp reduction to its

sending rate. However, MANET suffers from several types of packet losses due to its

node mobility and contention on wireless channel access [4, 26, 40, 48, 49, 50, 51].

To continue ignoring these special characteristics, as discussed in Sections 1.2, would

lead to poor TCP performance [4, 21, 50]. The fundamental problem of using TCP in

MANET is its misinterpretation of packet loss due to mobility induced route change/-

failure as merely network congestion. Furthermore, TCP congestion control does not

have a proper technique to handle and avoid contention in MANET [4, 21, 22, 39, 40],

resulting in heavy underutilization of the available network resources.

Many researchers had clearly identified TCP problems in mobile ad hoc networks and

suggested a number of solutions. The two protocols, namely TCP-friendly Transport

12

Protocol for Ad hoc Networks (ADTCP) and Explicit Link Fail Notification (ELFN),

are particularly relevant here since they were proposed for specific MANET chal-

lenges. On the one hand, ELFN has advantages of providing the TCP sender with a

more accurate information about network conditions, since the intermediate node can

detect route failures faster than the end node. On the other hand, ADTCP does not need

intermediate nodes to identify network status and maintain layer-based end-to-end se-

mantics for supporting compatibility with TCP. However, most proposed schemes do

not represent complete and ready-to-use protocols, but rather solutions for a small set

of the identified problems [52]. Therefore, developing a reliable transport protocol for

mobile ad hoc networks is still an open research issue [23, 29]. Thus, the overall goal

of this thesis is to propose a new Transmission Control Protocol, named TCP Sintok,

for mobile ad hoc networks.

1.5 Research Questions

In addressing TCP performance issues over ad hoc networks, the following research

questions were raised up:

i. What are the requirements to enhance the performance of TCP over mobile ad

hoc networks?

ii. How could TCP distinguish between mobility induced packet loss and conges-

tion loss within mobile ad hoc networks to avoid unnecessary reduction of trans-

mission rate?

iii. How should TCP adapt the transmission rate or the growth of congestion win-

dow to avoid network contention?

iv. What is the impact of the proposed mechanisms on TCP Sintok performance?

13

1.6 Research Objectives

The aim of this research was to design a new Transmission Control Protocol to detect

the cause of packet loss in the IEEE 802.11 mobile ad hoc networks and to adapt the

sending rate of TCP based on network conditions. This aim can be further explained

by the following specific research objectives:

i. To develop a performance model for TCP congestion control over ad hoc net-

works which could serve as a benchmark for any future intended enhancement

and improvement of TCP in this dynamic environment.

ii. To design a new delay-based Loss Detection Mechanism (LDM) for TCP con-

gestion control to improve the accuracy of packet loss detection in mobile ad

hoc networks:

a. To develop a mathematical model of end-to-end delay in studying the im-

pact of congestion and contention on delay trend.

b. To validate the proposed delay model by comparing the model results with

results obtained from a valid network simulator.

c. To design delay-based LDM that is capable of accurately distinguishing

mobility loss from congestion loss within mobile ad hoc networks.

d. To verify and validate the proposed LDM via implementing LDM in NS-

2 simulation environment; then comparing the identified network state by

LDM to the actual network state collected in the trace file.

iii. To design a new Contention Avoidance Mechanism (CAM) to adapt TCP’s send-

ing rate (i.e., congestion window size) based on the current network condition

in an ad hoc network environment:

a. To explore the applicability of Communication Accommodation Theory

(CAT) in computer communication, specifically in ad hoc networks.
14

b. To design Contention Avoidance Mechanism (CAM) based on CAT fea-

tures and properties that is able to accurately adapt congestion window size

according to the network condition leading to optimal resource utilization.

c. To verify and validate the proposed CAM by implementing it in NS-2 and

comparing the obtained results with other results produced by real test bed

and simulation.

iv. To develop TCP Sintok for mobile ad hoc networks based on the standard TCP

NewReno:

a. To incorporate the proposed LDM and CAM into TCP Sintok.

b. To modify TCP congestion control action according to network status.

c. To measure the performance enhancement of TCP Sintok and compare it

with the standard TCP NewReno to reveal the strengths and weaknesses of

the proposed TCP Sintok.

d. To evaluate the performance of TCP Sintok by comparing it with the cur-

rent TCP proposals for mobile ad hoc networks, namely ADTCP and

ELFN.

1.7 Research Scope

The overall goal of this research was initially to develop TCP Sintok for mobile ad

hoc networks. More specifically, TCP Sintok is proposed to support any application

that requires reliable data delivery service over medium-sized IEEE 802.11 ad hoc

networks. Techniques aimed to detect the cause of packet loss and avoid contention

would be the point of focus for this study. Furthermore, the study concentrated on

maintaining an end-to-end semantic of TCP and looked at the sender side only, as this

is recommended to support deployability in such a dynamic environment where a wide

variety of mobile devices exists. As such, security and power consumption (energy)

issues in mobile ad hoc networks are excluded from the scope of this research.
15

1.8 Significance of the Research

This research proposed a new TCP Sintok that can detect the cause of packet loss

within the scope of IEEE 802.11 ad hoc networks. Furthermore, the proposed TCP

Sintok is capable of adapting the transmission rates in line with the current dynamic

network conditions. Output of this research can provide reliable delivery service to

assist ad hoc network applications that require reliable data transfer features, leading

to a set of acceptable performance levels that is required by the user. Additionally, the

findings have significant implications for both the usage and the real deployment of

mobile ad hoc networks, as well as supporting MANET in asserting a greater impact

on mobile device communications. Finally, TCP Sintok would be able to maximize

mobile ad hoc networks resource utilization by increasing throughput, and minimizing

delay and jitter.

1.9 Organization of the Thesis

This thesis is organized into seven chapters, where the following is a summary of key

chapter highlights:

Chapter One presents an overview about the thesis as a whole. Specifically, it presents

an introduction to the importance of TCP for ad hoc networks and the need for de-

signing a new transmission control protocol. In addition, this chapter discusses the

problem statement, motivation, objectives, and research significance.

Chapter Two critically evaluates the related work and the literature review in the

areas related to the research scope. In addition, a theoretical model is proposed as a

benchmark for future intended enhancement of TCP.

Chapter Three presents the Design Research Methodology (DRM) as the research
16

framework to conduct this study and combines several methods adopted to propose

and implement TCP Sintok.

Chapter Four is concerned about the modeling of end-to-end delay and proposing

Loss Detection Mechanism (LDM) for TCP Sintok. The chapter discusses the design

motivation of LDM and its verification and validation.

Chapter Five describes CAT theory and investigates the aplicability of CAT in com-

puter networks. In addition, it introduces and thoroughly discusses Contention Avoid-

ance Mechanism (CAM), including the verification and validation of this mechanism.

Chapter Six introduces TCP Sintok and presents in detail its performance evaluation

through simulation.

Chapter Seven states the conclusion as well as the contributions of the reseach work

presented in this thesis, then suggests future directions for further studies.

17

CHAPTER TWO

LITERATURE REVIEW

While Chapter One had introduced and described the overall research plan, this chap-

ter shall delve into greater detail the background and several important past research

related to Transmission Control Protocol (TCP) that is being implemented in mobile ad

hoc networks, which would assist in defining the general framework of this research.

In this chapter, the role of TCP is presented in Section 2.1 with special emphasis on

the revealed problem of congestion control, while the performance model of TCP in

ad hoc networks is introduced in Section 2.2. Next, TCP proposals that have been

classified are described in Section 2.3 to reveal some viable research directions. Ad-

ditionally, this chapter also provides a range of TCP proposals where some re-active

mechanisms are covered in Section 2.3.1; while a number of pro-active mechanisms

are covered in Section 2.3.2. Finally, this chapter concludes with theories pertinent to

congestion control in Section 2.4.

2.1 Transmission Control Protocol (TCP)

TCP is the accepted de facto standard protocol for commercial communication net-

works that have been implemented in the Internet and thus it has been universally

adopted as the norm. This widely used protocol provides many useful services for

numerous applications, such as summarized by [53], connection-oriented, reliability,

byte stream data transfer, full duplex, and end-to-end semantic services (as shown in

Figure 2.1). It characteristically guarantees that a byte stream sent from a program

or application software on the originating computer (known as the sender) would be

reliably delivered and in the same order to another program on another distant but

linked computer (known as the receiver). Historically, the first specification of TCP

was described in RFC793, which later on was modified and documented through a

18

large number of RFCs, such as [35, 36, 37, 38, 47]. To put things into perspective

so as to assist the research movement in this field, a roadmap to all documents that

specify and extend TCP was created and it is presented in [54]. Meanwhile, a list of

open research issues in Internet congestion control is also provided in RFC6077 [55].

Figure 2.1: Transport Layer Provide Logical End-to-End Communication

Generally, TCP’s role can take many forms, but the most common are classified into

four different types [5], namely flow control, connection management, retransmission

mechanism, and congestion control. Due to the importance of congestion control in the

context of this study, the following sub-sections shall provide a full, in-depth descrip-

tion of the congestion control concept, while a brief explanation is presented related

to the other tasks of TCP. If more information is required, readers can obtain more

details from several sources, for instance RFCs that formally present the functions of
19

TCP and additionally from Kurose and Ross [5].

2.1.1 Flow Control

Jacobson explained how TCP implements a window based flow control mechanism

to avoid overwhelming the buffer space located at the destination [56]. The destina-

tion/receiver node advertises the size of its buffer (using the advertised window field)

to the related sender/source that would indicate the data byte number the sender can

send to the receiver. In other words, the sender’s buffer or window size can be de-

termined by the receiver’s advertised window size. Each TCP (data or ACK) packet

header will contain this information.

2.1.2 Connection Management

In practice, TCP is a transport protocol that is connection-oriented, which would re-

quire the establishment of a logical connection between two applications or application

processes before any data exchange can even begin. In order to fulfil all the require-

ments of this part of the overall service, TCP utilizes port numbers and provides a

Three-Way Handshaking procedure for connection establishment, as well as a Four-

Way Handshaking method for connection termination.

2.1.3 Retransmission Mechanism

In order to ensure reliability of data delivery, which is one of the main responsibilities

of TCP, TCP uses acknowledgement (the acronym ACK is used to represent this) to

confirm (acknowledge) a successful reception of every segment that has been sent

[9]. In the event of a segment arrival being intact at its destination, the receiver will

respond by sending an ACK back to the sender to acknowledge the sequence number

of the received segment, and in turn, the sender will send a new segment. The use of

sequence numbers is for ensuring the in-sequence delivery of segments, as well as to

20

assist in identifying lost or corrupted segments. However, instead of acknowledging

every individual segment as it arrives (which would be time consuming), this protocol

employs the procedure of cumulative acknowledgments. Using this concept, an ACK

for a segment with sequence number, say (X), will acknowledge all segments correctly

received in the order with sequence number up to (X). Then, the receiver will request

the sender to dispatch a new segment with sequence number (X +1) .

If for one reason or another the segments that have been received are discovered not

to be in the correct sequence, i.e., Out-Of-Order (OOO) where some segments might

be missing, then the last ACK will be sent again (duplicate ACK). When the duplicate

ACK is received by the sender, an assumption would be some reordering of the seg-

ments has occurred, but once a third duplicate ACK arrives (four acknowledgments

carrying the same sequence number), the sender will then resend the segment with the

sequence number mentioned within the duplicate ACK (predicting that this segment

has been lost). Additionally, TCP uses a timer called the Retransmission Time Out

(RTO), which is used to detect the loss of a segment. If this RTO elapses without

receiving any ACK, the sender would then retransmit the unacknowledged segment

again. Because of its important role, the RTO value should be set accordingly in order

to avoid long delay and premature retransmissions. Details on how to set RTO value

are available in [57].

2.1.4 Congestion Control

This section will describe in great detail the main focus of this study. While TCP

performs all the other important roles, TCP’s main responsibility and top priority is to

reduce congestion within the network by adjusting its transmission rate to the current

available bandwidth [5]. Congestion can occur when the resource demand exceeds the

capacity [53]. In the current modern TCP congestion control implementations, there

21

could exist three mechanisms [35, 38, 56], namely:

• slow start,

• congestion avoidance,

• and fast retransmit and fast recovery.

TCP congestion control is not so much a provided service solely for the invoking

application in a particular instance, because it is a provided service for the whole

Internet [58], thus it is a factor that is pertinent for preserving the Internet stability and

robustness. Types, details, and flavors of TCP protocol can be found in [36, 37, 38,

59, 60].

Generally, the network is a combination of end systems and connecting devices, for ex-

ample routers, which can be called nodes. The transmitted packets would pass through

many routers before they reach their respective destinations, where each router has a

buffer which has limited capacity that stores incoming packets. If the router receives

packets faster than it can process and transmit, then it would start to collect and store

packets within its buffer. However, as mentioned earlier, this buffer has a limited ca-

pacity and thus the router would store incoming packets in its limited buffer until the

buffer becomes full. When the buffer limit has been reached, congestion would occur

and some packets would be dropped and lost, and thus causing delay in the entire data

communication process (as illustrated in Figure 1.7).

In instances where a packet does not reach its intended destination and there has been

no ACK sent for it, the sender would attempt to rescue the situation by retransmit-

ting the lost packet based on what has been explained in section 2.1.3. Although this

would be the logical thing to do, this action may create more congestion and more
22

dropping of packets if the filled buffers are still not cleared, which would lead to more

retransmissions and greater congestion. Therefore, unless an appropriate mechanism

has been implemented, the whole system may collapse and thus no more data can be

sent through this particularly congested route or network. This would mean that TCP

needs to find a way to avoid this from occurring, or in other words, the network itself

should be another entity that plays a major role in the determination of the size of the

sender’s window in addition to the receiver window. Thus TCP would use congestion

control mechanisms to avoid the network resources being overrun by senders.

Besides the receiver’s advertised window, which is known as (rwnd), TCP’s conges-

tion control has introduced for the connection two new variables, namely ssthresh (the

slow start threshold) and also cwnd (the congestion window). The congestion window

(cwnd) at a sender-side limits the amount of data the sender can transmit into the net-

work before receiving an acknowledgment (ACK). Specifically, the (cwnd) function

is to prevent the sender from sending more data than the network can accommodate

in the current load conditions. While the receiver’s advertised window (rwnd) is a

receiver-side limit on the amount of outstanding data. Specifically, (rwnd) is used to

prevent the sender from overrunning the resources (buffer) located at the receiver. The

minimum value of the (cwnd) and (rwnd) would control the data transmission (W).

The relationship of these variables is illustrated in the following Equation (2.1).

W = min(cwnd,rwnd) (2.1)

Last but not least, the slow start threshold (ssthresh) determines whether the slow start

or congestion avoidance algorithm is used for controlling the data transmission rate.

These algorithms will now be explained in the following subsections.

23

2.1.4.1 Slow Start and Congestion Avoidance

Any TCP sender is required to use the slow start mechanism as well as congestion

avoidance mechanism for controlling the outstanding data volume that is imminently

to be injected into the network (the details of which are available in [47, 38]). The

idea here is to adaptively and dynamically modify cwnd to reflect the current network

load. Practically, this can be implemented using the process of detecting lost segments.

Basically, a segment loss can be discovered using either a duplicate ACK mechanism

or a time-out mechanism, as elaborated in section 2.1.3.

Initially, the unknown conditions of the network during the commencement of the data

transmission would force the TCP to scan the network for determining the availability

of load capacity. This is performed to prevent transmissions from overwhelming the

network with large amounts of data. In order to combat this situation, a slow start

mechanism can be used at the first stage of data transmission or after the Retransmis-

sion Time Out (RTO) has been triggered.

In mathematical terms, the initial cwnd (IW) value is required to be equal to or less

than the Sender Maximum Segment Size (SMSS) multiplied by two (2xSMSS) bytes

(as an extension, an initial window of three to four segments can be used by the TCP

sender). The ssthresh starting value is set arbitrarily high. An example would be

the advertised window size. On the one hand, the slow start algorithm can be used

when the slow start threshold value is greater than the congestion window value (i.e.,

ssthresh > cwnd). On the other hand, the congestion avoidance algorithm can be

utilized when slow start threshold value is less than the congestion window value (i.e.,

ssthresh < cwnd). If both the cwnd value and ssthresh value are equal, an arbitrary

selection could be made by the sender to invoke either the slow start method or the

congestion avoidance algorithm.

24

In the slow start period, a TCP sender would increase the cwnd value by at most

(SMSS) bytes for each ACK received that acknowledges the new data. Slow start

will end as soon as the cwnd value reaches the ssthresh value or when congestion

is detected. Meanwhile for the congestion avoidance algorithm, the cwnd value is

incremented by one full-sized segment per Round-Trip Time (RTT), thus implying a

trend that is linear instead of exponential growth. During this congestion avoidance

phase, a commonly used formula for updating the cwnd value is given in Equation

(2.2):

cwnd = cwnd +
SMSSxSMSS

cwnd
(2.2)

This congestion avoidance algorithm shall proceed up until congestion has been de-

tected to occur. For every incoming non-duplicate ACK, this update or adjustment is

executed. Equation (2.2) gives an acceptable approximation to the underlying princi-

ple of increasing cwnd by one full-sized segment per RTT. The value of ssthresh must

then be adjusted when the TCP sender detects a loss of segment through the utilization

of the retransmission timer. This value is set to become not more than the following

calculated value (Equation 2.3):

ssthresh = max(
FlightSize

2
,2xSMSS) (2.3)

where the value of FlightSize refers to the outstanding data amount within the net-

work.

25

Upon the occurrence of a timeout, the value of cwnd shall then be modified to become

not more than the value of the Loss Window (LW), which is equal to a single full-sized

segment. Therefore after the dropped segment has been retransmitted, the sender of

the TCP segment then uses the slow start algorithm to adjust the window value by

incrementing it from the one segment that is full-sized to the new ssthresh value. At

this point, the algorithm for congestion avoidance again takes over (as illustrated in

Figure 2.2).

Figure 2.2: Congestion Control of TCP Tahoe (Adopted from [5])

2.1.4.2 Fast Retransmit

One method of detecting lost segments is using Duplicate ACKs, as shown in Figure

2.3. In an event where the sender receives one duplicate ACK, it cannot yet know

whether the segment is actually dropped or lost, or it has not been received in sequence.

However when several duplicate ACKs are received [61], it would then be reasonable

for the assumption that a packet loss event has occurred, can be made. The main role

of the fast retransmit mechanism is to speed up the retransmission process by allowing

the sender to retransmit a segment as soon as it has enough evidence that a segment

has been lost. This means that the sender shall proceed with the retransmission of
26

the missing segment immediately after three duplicate ACKs has been received, or in

other words, four identical ACKs has arrived without any other intervening segments

arriving, as an alternative to waiting for the Retransmit Timer (RTO) to expire.

Figure 2.3: Congestion Control of TCP Reno (Adopted from [6])

2.1.4.3 Fast Recovery

In the TCP Tahoe [18] which is one of TCP variations available, the slow start algo-

rithm is launched by the connection proceeding a packet loss detection, but if there

exists a condition where packet losses are rare and the window size is large, it is more

feasible for the connection to continue from the congestion avoidance phase. This

is because it would take some time for increasing the window size from one to the

ssthresh value. Meanwhile, the aim of the fast recovery algorithm in TCP Reno [61],

yet another variant, is to be able to perform this type of behavior and process. In

connection utilizing the fast retransmit method, the sender is able to use the duplicate

ACK flow to establish a record to clock the transmission of segments. The fast retrans-

mit algorithm and fast recovery algorithm are usually implemented together, and they

are given in the following:

27

i. After the arrival of the third duplicate ACK, the ssthresh is adjusted to become

one-half the current congestion window, cwnd, but no less than two segments.

ii. Retransmission of the lost segment will occur with the cwnd being set to ssthresh

value plus 3xSMSS. This effectively “inflates” or artificially increases the con-

gestion window value according to the number of segments that had left the

network but the receiver has buffered and accounted for (the number of which is

three segments).

iii. Next, any further duplicate ACKs that are received, this would cause an increase

in cwnd by SMSS. This artificially increases the congestion window value and

thus reflects the additional segment(s) that has/have left the network.

iv. A segment is then transmitted, depending on whether it is allowed by the new

cwnd value and advertised window value on the receiver’s end.

v. The arrival of the proceeding ACK which acknowledges new data segment will

cause the cwnd value to be set according to the ssthresh value, which is the value

that is set in step 1. This would reflect the decrease or “deflating” the window

value.

This particular ACK forms the acknowledgment that was requested during the retrans-

mission process from step 1, which is exactly one RTT value after the retransmission

process. In addition with the condition that no segments were lost, this ACK would

also form the acknowledgement of all the intermediate segments that were sent from

the actual lost segment to the receipt of the third duplicate ACK.

NewReno Modifications to Fast Recovery

The TCP NewReno variant was proposed in 1995–1996 by Floyd et al. [37], which

is a modification of TCP Reno to recover multiple losses that occurs within the same

28

window, thus improving retransmissions during the fast recovery phase (as illustrated

in Figure 2.4).

Figure 2.4: Congestion Control of TCP NewReno (Adopted from [6])

In this phase, a new unsent segment from the end of the congestion window is sent

for every duplicate ACK that is returned, to keep the transmit window full. For ev-

ery ACK that makes partial progress in the sequence space, the sender assumes that

the ACK points to a new hole, and the next segment beyond the acknowledged se-

quence number is sent. The progress in the transmit buffer resets the timeout timer,

and this allows TCP NewReno to fill large or multiple holes in the sequence space.

High throughput is maintained during the hole-filling process, because NewReno can

send new segments at the end of the congestion window during fast recovery. When

entering fast recovery, TCP records the highest outstanding unacknowledged segment

sequence number. Upon the acknowledgment of this sequence number, TCP returns to

the congestion avoidance state. TCP NewReno will misinterpret the situation if there

are no losses, but instead reordering of segments by more than three segment sequence

numbers. In such a case, NewReno mistakenly enters fast recovery, but when the re-
29

ordered segment is delivered, ACK sequence-number progress occurs and from there

until the end of fast recovery, every bit of sequence number progress produces a dupli-

cate and needless retransmission that is immediately acknowledged. TCP NewReno

protocol variant can substantially outperform the TCP Reno at high error rates. Be-

cause of its able performance, the TCP NewReno variant has been implemented as the

default TCP variant for MS Windows XP.

2.2 Performance Model of TCP Congestion Control

As briefly described in Chapter One, this study shall introduce a novel model to present

the state-of-the-art TCP congestion control over ad hoc networks. The model is ca-

pable of guiding researchers’ steps toward achieving greater enhancement of the TCP

congestion control mechanism. This model is also known as the performance model

(Figure 2.5). It comprises a collection of ad hoc network related factors impacting

TCP. It also exhibits the important measurable factors that could be used for study-

ing the performance of TCP under various conditions. The factors/links that require

greater attention in the model were identified using experimental studies conducted by

the researchers as a basis. Furthermore, a review and analysis of the current literature,

data were obtained to assist in supporting, verifying, and validating this new model.

The discussion has been classified according the respective phenomena, which are:

high bit error rate, mobility, and contention [4, 62, 40, 63].

2.2.1 High Bit Error Rate

Characteristically, it has been widely accepted as a well-known fact that the current

wireless channel is inherently unreliable and weak as well as being unprotected and

exposed to outside signals and interference. Thus, technologies in the link layer have

to be able to handle situations involving packet corruption. However, according to

[64], occasionally these corrupted packets may not be able to be repaired and provided

30

on time. Link layer retransmission techniques are capable of recovering from channel

error loss in situations with low number hops, thus this would be low error rates can

be achieved. However, increased number of hops would lead to greater difficulty in

recovery [65]. If and when the link layer ceases all attempts executed at the link-level

retransmission, TCP would consider the actual loss as an indication of congestion.

According to [21, 52, 66], this misinterpretation of packet loss as congestion rather

than due to the actual wireless channel error, has badly degraded the overall TCP

performance over the network. Therefore, the gap identified here is that a better and

improved detection mechanism is required that correctly detects and interprets the

packet loss not as a congestion occurrence, but rather as a corruption event.

Therefore, from the elaboration in the previous discussion above, the conclusion

reached is represented by Link A in Figure 2.5 and the following statement:

• Statement A – Low knowledge of wireless error loss has negative impact on

TCP performance [21, 66, 67, 68] (i.e., poor throughput).

31

Figure 2.5: Performance Model of TCP Congestion Control

32

2.2.2 Contention

Meanwhile, other researchers who want to achieve the same goals had looked at the

problem from different perspectives and using various approaches. The nodes that are

located within ad hoc networks would utilize a wireless channel for sending and re-

ceiving data, but this shared medium would only allow a single transmission at any

given time by a single transmitter [45]. This would mean that all members within a

local neighborhood that wish to transmit would have to compete with each other for

access to the wireless channel before proceeding with any data transmission. Addi-

tionally, the packets numbers which can be concurrently flowing through the network

would be restricted from a starting source to a given destination. Previous research by

[28] had reported that packets may drop because of link-layer contention, a condition

of which dominates in ad hoc networks, while common events in wired networks such

as buffer overflow-induced packet loss, would be considered a rare event in ad hoc

networks.

In order to overcome this problem, there are three identified factors that could con-

tribute in increasing the level of contention, which are: (1) according to [69, 70, 71],

contention of TCP data packets within the forward path would be increased by a large

congestion window; (2) according to [72, 73], the contention between data and ACK

packets within the forward and return paths would be increased by the ACK gener-

ation for every packet that arrives; and (3) the role of hidden and exposed terminals

[73, 74]. Thus, as summarized by [74, 75], an excessive number of medium accesses

by these factors would increase the level of contention. As a consequence, the follow-

ing can occur because of the high level of contention: (1) overall TCP performance

would degrade; (2) degradation of overall TCP performance (Link F in Figure 2.5)

due to increase in route failure probability (Link E in Figure 2.5); or (3) and according

to [21], further decrease in overall TCP performance due to high delay that leads to

33

unnecessary retransmission (Link I in Figure 2.5).

The following links and associated statements were produced from the previous dis-

cussion and shown in Figure 2.5:

• Statement B – Large congestion window size increases the level of contention

[69, 71, 76, 77];

• Statement C – Large number of generated ACKs increases the level of con-

tention [39, 72, 73, 78];

• Statement D – Hidden terminal increases the contention level [28, 74];

• Statement G – Large (high) contention level has negative impact on the TCP

performance [28, 73] (i.e., poor throughput and fairness; and high delay and

packet loss);

• Statement E – Large (high) contention level increases the probability of route

failure/change [75];

• Statement F – Frequent route failure/change has negative impact on the TCP

performance [21, 45, 51];

• Statement H – Exposed terminal increases the delay [21];

• Statement Q – High contention level increases the delay [21];

• Statement I – Large (high) delay increases the number of unnecessary retrans-

mission [79, 80]; and

• Statement J – High number of unnecessary retransmission has negative impact

on TCP performance [45, 79, 80] (i.e., poor throughput).

2.2.3 Mobility

Within the mobile ad hoc networks, constant connection is required to be kept active

and alive in order to support this mobility, since all devices are free to move randomly.

34

However, the topology will undoubtedly undergo change as the host moves, thus lead-

ing to network partitioning and/or route failure/change. Authors in [4, 26, 48, 81, 82]

observed that mobility-induced frequent route failures have a significant impact on the

performance of TCP, due to TCP’s inability to recognize the difference between route

failure/change loss and congestion loss.

This fact has led to the following links and associated statements, as shown in Figure

2.5:

• Statement K – Mobility increases the number of route failure/change [26, 48,

82, 83, 84]; and

• Statement F – Frequent route failure/change has negative impact on TCP perfor-

mance [4, 26, 48, 81, 82, 83] (i.e., poor throughput, high loss, and delay).

Meanwhile, the phenomenon of network partition occurs in MANET when a node

exits (move away from) the network thus causing the MANET to break into two parts

and an isolation emerges. These isolated parts are generally referred to as partitions.

During this period, the TCP sender cannot receive any ACKs transmitted by the TCP

receiver. The persistence of this disconnectivity greater than the Retransmission Time

Out (RTO) of the sender node would trigger the exponential back-off algorithm. This

algorithm consists of doubling the RTO value whenever timeout expires, therefore

exaggerating the effects of network partition. Hence in the event of network partition,

a series of expired RTOs will follow (Link M) and the RTO value will double (Link

N), leading to a large RTO value which will reduce the responsiveness of TCP (Link

O). In other words, as according to [85, 86], the key factor affecting TCP performance

is consecutive timeout.

35

The following statements and links in Figure 2.5 were produced from the above dis-

cussion:

• Statement L – Mobility increases the probabilities of network partition [24, 84,

85];

• Statement M – Long network partition produces a series of timeouts [85, 86];

• Statement N – Series of timeouts increases the RTO value [85, 86]; and

• Statement O – Large RTO value has negative impact on TCP performance [85,

86].

2.2.4 Discussion

The A to O derived statements are combined to form the performance model for TCP

Congestion Control, as shown in Figure 2.5. Researchers can now easily determine,

based on this proposed model, the key factor that they wish to address in their re-

spective studies in order to contribute toward improving TCP performance in ad hoc

networks. As an example, a research focus maybe on the reduction and elimination

wireless error loss influence on TCP congestion control performance. Accordingly,

a potential research output would be a mechanism for transforming the “low knowl-

edge of wireless error loss” to “high knowledge of wireless error loss”, thus reflecting

the relationship between TCP congestion control performance and wireless error loss

knowledge. Also as a consequence of using the proposed detection mechanism to

address the specific TCP congestion control problem, the researcher can design a con-

ceptual model illustrating the expected desired situation.

2.3 TCP Proposal Classification for Mobile Ad hoc Networks

To date, several schemes were proposed to improve TCP performance over MANET.

Al Hanbali et al. [4] classified proposals into layered proposal and cross layer pro-
36

posal, and then reported that cross layer proposals may report better performance.

However, layered proposals maintain the TCP end-to-end semantics, which is design-

ing protocols in isolation, so they are considered to be a long term solution rather than

short term. Furthermore according to [1, 87], end-to-end proposals provide flexibility

for backward compatibility, require no network support, and are easy to implement

and deploy. Therefore, this study focused on proposing an end-to-end TCP Sintok

variant with the ultimate objective of improving TCP performance within the ad hoc

networks.

Following the results and recommendations of previous research, this research has

classified the end-to-end TCP proposals into two main categories, which are the reac-

tive approach and proactive approach. On the one hand, reactive approach proposals

use a loss differentiation algorithm to identify the network status only after the packet

loss event has occurred, and then take appropriate action in recovering based on the

network condition. On the other hand, proactive proposals aim to improve the spatial

channel reuse from the start without waiting for any packet loss to occur before taking

action, and reduce the effect of medium contention on TCP performance.

Thus, the popular reactive-proactive TCP proposal classification is described in the

following sections.

2.3.1 Reactive Approach

This section discusses in greater detail the recent proposals that have been highlighted

to cope with the problem of TCP being unable to differentiate the different MANET

packet loss types. Out of all proposals, they can be characteristically classified with

their capability in detecting the reason for packet loss, which are as follows: dealing

with route failure/change loss, dealing with wireless error loss, and hybrid approach.

37

The following subsections describe the schemes according to the aforementioned tax-

onomy.

2.3.1.1 Dealing with Route Failure/Change

The following proposals focus more on the differentiating of congestion loss from

route change/failure loss. These include works by [86] investigating fixed RTO,

proposing the TCP Adaptive RTO (TCP AR) [88], looking into Partition-Aware TCP

(PAT) [89], implementing TCP Detection of Out-of-Order and Response (TCP DOOR)

[7], introducing Protocol for Mobility-induced Packet Reordering (TCP-R) [90], and

examining Tuning Rules in TCP Congestion Control on MANET [91].

a. Fixed RTO: Dye and Boppana in [86] compared the different TCP flavor perfor-

mances under three different routing protocols within the MANET environment. The

results of that study had shown that the exponentially growth of retransmission timeout

is problematic in MANET because of TCP being unable to differentiate between con-

gestion and route failure, which are packets loss caused by two completely different

reasons. As a possible solution to distinguish between congestion and route failures,

the authors proposed employing a heuristic approach while fixing the RTO value as a

constant after the first retransmission. When the second RTO expires and still an ACK

is not received, in other words when two timeouts expire in sequence, route failure has

occurred during transmission rather than network congestion, can be concluded by

the sender. Therefore, to overcome this problem after the packet loss type identifica-

tion, the unacknowledged packet can be retransmitted again without doubling the RTO

value, which remains a constant value until the retransmitted packet is acknowledged

and the route is reestablished.

Using NS2-based simulations, a comparison of this particular mechanism with em-

38

bedded selective acknowledgment extensions (SACK) and delayed acknowledgment

extensions (DACK) in TCP executed using three different reactive and proactive rout-

ing protocols was performed. The results of their NS-2 simulations showed that both

DACK and SACK yielded minor improvements, but a performance increase compa-

rable to ELFN [13] would be possible with fixed RTO value. Similar to ELFN’s

mechanism of sending probe packets, fixed RTO would lead to sending of packets

periodically, but it is simpler and no feedback is required. Nevertheless in cases of

interoperation wireless and wired environments, the assumption that two consecutive

timeouts being related to route failures would pose as a limitation. Furthermore in

cases of heavy contention, this matter would require further analysis.

b. TCP Adaptive RTO (TCP AR): Meanwhile, Touati et al. in [88] got similar

results to [86] that consecutive timeout is a key factor that affects TCP performance.

However, in contrast to the Fixed RTO factor, a new mechanism called TCP Adaptive

RTO (TCP AR) was proposed [88], comprising the adaptation of RTO value into the

network conditions. In order to distinguish network congestion from route failure,

these authors deployed a throughput filter, which was already proposed previously in

research associated with the Adaptive Bandwidth Share Estimation (ABSE). The level

of path congestion can be determined by the comparison of instantaneous sending rate

obtained from cwnd and the estimated rate, which is illustrated in the following TCP

AR Pseudo Code.

Algorithm 2.1 TCP AR Pseudo Code
// indication of temporary route loss

Step 1. If (thk * RTT >cwnd)

Step 2. Then maintain RTO value (fixed)

Step 3. Otherwise set RTO = RTO*2. // Indication of congestion loss

39

Using combinations of various network conditions in NS-2 and proactive and reactive

routing protocols, the authors then compared TCP AR throughput with TCP NewReno

and TCPW ABSE. The results of the simulations showed that in terms of efficiency,

TCP AR was able to achieve the best performance by approximately a 161% gain

in throughput when NewReno is implemented using OLSR, and up to approximately

277% when using DSR, all of which showed more outstanding performance improve-

ments as the node’s mobility increases.

c. Partition-Aware TCP (PAT): Another approach named Partition-Aware TCP

(PAT) Likes TCP Fixed and TCP AR. Because of the RTO value rapid increase phe-

nomenon, much focus has been given on the current exponential back off mechanism

of TCP being unable to effectively respond to reconnection after a long disconnection

period. In order to cope with this problem, Qianwen et al. proposed several modifica-

tions to the RTO back off mechanism of the current TCP [89]. Their study looked at

the duration of disconnection focusing more on the density and speed for four mod-

els of mobility, which were Gauss Markov (GM), Reference Point Group Mobility

(RPGM), Random Waypoint (RW), and Manhattan Grid (MG). The researchers used

MATLAB to derive an equation that described the relationship between the studied

factors. A relatively similar trend was observed in the results for the duration of

disconnection related to the four models. The exponential back off mechanism was

proposed for modification, which is adjustment of the increment method from expo-

nentially to arithmetically.

The maximum possible dead time would be incurred when RTO is large. Thus for

each mobility model, a capping of the maximum RTO value at the average duration of

disconnection would be done in order to avoid from RTO approaching a value that is

too large.

40

They then compared the potential improvement of PAT with Fixed-RTO and legacy

TCP using NS-2 under the same environment of four mobility models. Especially

at low node densities and high speeds, their results supported the PAT scheme be-

ing capable of offering much more throughput improvement compared to the original

TCP. Thus, significantly less number of retransmissions could prove useful and ap-

propriate in real networks, even though the throughput improvement may not exceed

the Fixed-RTO for some scenarios with single TCP flow. Nevertheless as stated by

the authors themselves, the outcome of their study as derived from simulation results

was solely based on partition behavior of various mobility models. However, previous

mathematicians using mathematical models had successfully described the behavior

and movement of these mobility models, so deriving from mathematical equations a

model to explain partition behavior under different mobility models would be more

precise and appropriate.

d. TCP DOOR: Meanwhile as an indicator for route change and to avoid unnecessary

invocation of congestion control, Wang and Zhang used an out-of-order (OOO) data

packet delivery and/or ACK [7]. By definition, when an earlier sent packet arrives

later than the next packet sent after it, OOO would occur (as shown in Figure 2.6).

Figure 2.6: A Possible Case of Route Change (Adopted from [7])

Both the sender and receiver sides can perform the OOO event detection where OOO

events would be detected by the sender using the non-decreasing property of ACK

sequence numbers. Each time an ACK packet arrives at the sender, a comparison is

41

made between the sequence number contained in the ACK and the one in the pre-

viously sent ACK. If the previous sequence number is greater, OOO is immediately

declared by the sender. In cases where ACKs carry the same sequence number (dupli-

cate ACK packets exist), the authors had proposed a modification of the TCP by the

addition of a TCP option of a single byte in the ACK header, which they named as the

Acknowledgement Duplication Sequence Number (ADSN). When the first ACK for a

data packet transmitted by the receiver, the ADSN variable would be set to zero. This

ADSN number would be incremented every occasion that the receiver transmits a du-

plicate ACK containing the same sequence number. Therefore, the TCP sender would

be capable of detecting a delivery of OOO since every ACK duplicate shall contain a

different ADSN number. However, an additional two more bytes are required for the

receiver to hold the TCP options, named the TCP Packet Sequence Number (TPSN),

in order to successfully detect the OOO event. With each TCP packet including the

retransmitted packets, the TPSN can be incremented and transmitted. For every OOO

event that the receiver detects, the sender can then set a specific option bit located

within the ACK packet header as a notification.

When the TCP sender is made aware of the OOO event, it can then take action accord-

ing to two mechanisms that have been suggested by the authors. Firstly, the sender

may temporarily keep its state variables constant to disable congestion control mech-

anisms in TCP for a specific period of time (T1). In addition, if the sender can invoke

Instant Recovery. This is when the sender has entered a congestion avoidance state

(by halving its window size value) and suffered from congestion symptoms during the

previous period (T2). The sender should then revert immediately to the state before

any action for congestion avoidance was initiated.

The TCP Detection of Out-of-Order and Response (TCP DOOR) was implemented

42

by the authors as a TCP-SACK derivative, and they further investigated its capability

by conducting simulations as an evaluation of TCP DOOR performance vis-a-vis the

standard TCP-SACK. TCP DOOR can significantly enhance TCP throughput by an

average of approximately 50%, as shown by their simulation results. The authors

stated that it would be sufficient for the OOO event to be detected by either sender or

receiver since both performing the detection do not significantly yield better results.

This approach is recommended for further investigation in situations where it would be

difficult to adopt a feedback-based approach, such as mixed wired and ad hoc wireless

network environments. However, especially in multi-path routing cases, the issue that

arises is that what if route changes did not cause the OOO event. More analysis is

required to investigate the assumption that OOO events are the exclusive results of

route change.

e. TCP-R: From another perspective, Wei et al. [90] proposed TCP-R to address

the issue of route change and mobility-induced link failure causing poor TCP per-

formance, which may lead to the persistent reordering of packets under the MANET

environment. TCP-R delays the triggering of congestion response algorithm for a short

period of time in order to enable the receiver in accepting packets that travel using dif-

ferent routes, which in contrast to TCP DOOR which attempts to detect OOO events

prior to taking any action. Therefore, unnecessary retransmission and reduction of

congestion window are avoided when TCP-R proceeds as if the packet was never lost

in the first place, if and when the packet is received before the end of delay period.

However, if by the end of the set delay period the packet does not arrive, a trigger of

the fast retransmission congestion recovery algorithm occurs.

Extensive simulation by the researchers showed that under persistent packet reorder-

ing, TCP-R achieves higher throughput than the existing mechanisms. Similarly, they

43

found that in cases where reordering does not occur, the TCP-R protocol would main-

tain equivalent throughput rates as in the NewReno variant, and thus fair in sharing

network resources. However, especially in cases of frequent route failure and change

that are very common in MANET, it was observed to be very difficult in obtaining

the desired delay value, which has two implications if an inappropriate value is set.

Firstly, the protocol is not fast enough to respond to congestion when too large a delay

is set, and too small delay would not allow the receiver to receive the “lost” packet.

So, the focus here would be on the accuracy of the delay period calculation.

f. Tuning Rules in TCP Congestion Control: Yang and Lin discussed several TCP

parameters that can affect TCP performance in the MANET environment [91]. They

found that TCP performance is affected by congestion control, which involves two

preliminary parameters of TCP congestion control, namely RTO and congestion win-

dow.

The RTO is used to check whether the time for the ACK to arrive is greater than the

RTO value for detecting congestion state (loss). Therefore, RTO not only becomes a

key to indicate packet loss, but it is also a key for adjusting the congestion window. The

Round Trip Time (RTT) samples between any two end-points is used to calculate the

RTO value. However since RTT is not very stable, calculating RTO is not an easy task,

especially when unstable RTT is characteristically produced from the free movement

of mobile node, such as the case in the MANET environment. The authors suggested

improving the efficiency of computing the RTO in the Jacobson Karels algorithm by

calculating the EstimateRTT and Deviation from the bit shift instead of floating point,

which illustrated as follows:

44

Algorithm 2.2 Using bit Shift to Calculate Deviation and EstimateRTT
Step 1. SampleRTT - = (EstimateRTT >> RTT_BITS) ;

Step 2. Then { EstimateRTT + = SampleRTT ; }

Step 3. if (SampleRTT < 0) SampleRTT = - SampleRTT ;

Step 4. SampleRTT - = (Deviation >> VAR_BITS); Deviation + = SampleRTT ;

Step 5. Deviation + = SampleRTT ;

Step 6. TimeOut = (EstimateRTT + (Deviation << VAR_EXP) * TICK);

The values of TICK, VAR_EXP, VAR_BITS, and RTT_BITS variables would directly

affect the RTO value. In order to find out the better or optimal values and combinations

of the parameters, the researchers had compared throughput, transmission time, and

packet delivery ratio of each of the parameter’s combinations under different mobility

rate models. They then proposed fine-tuning strategies for these RTO component pa-

rameters. In addition, they stated that different RTO parameters in different mobility

rates had yielded various TCP performance results. Hence, there is a greater need to

select the most appropriate or optimal RTO parameters according to the discernible

constraints and applications of the real-world environment. However, adjusting or

modifying RTO parameters certainly is not an easy task. Moreover, if the application

requirements are known, the issue that arises is that how the mobility models can be

identified.

2.3.1.2 Dealing with Wireless Error Loss

Moving on to the next concept of distinguishing congestion loss from wireless channel

loss, the following sections will elaborate further on this topic with proposals and

previous work performed by various active researchers in this particular field.

a. TCP-MEDX: In order to address this distinguishing issue, Xiong et al. in [92]

45

developed the TCP-Mobile Error Detection eXtension (TCP-MEDX) through their

research to address the non-congestive loss issue, distinguishing loss between conges-

tion and transmission error in MANET. Two parameters, namely propagation delay

and Differences between propagation delays, are used by TCP-MDEX as a predictor

for the determination of network congestion level. The following equation, similar to

RTT calculation in TCP, can be used to calculate the average propagation delay:

P = αP+(1−α)Pnew (2.4)

where α is the parameter that holds a value ranging between 0 and 1,

(Pnew) is the most recent value received for propagation delay, and

(P) is the threshold, which is also the average propagation delay.

The propagation calculation involves both sender and receiver. When the receiver ac-

cepts a packet, the (Trecv–T snd) calculation for propagation delay begins, where the

time when the source sends the packet is represented by Tsnd and the receiving time

is Trecv. The delayed acknowledgment strategy is not adopted by the TCP-MEDX for

constantly informing the sender about the state of the network. Meanwhile, the sender

updates its own propagation delay while at the same time stores the propagation de-

lay value obtained from the ACK header in its propagation buffer. The TCP-MEDX

performance is heavily influenced by the two (α) and (β) variables, so the authors

put forward a recommendation of values, namely proposing (α) to be set between 0.2

and 0.8, while (β) is at 1.2. If two conditions are satisfied, the state of the network

is considered congested by the TCP-MDEX method. The conditions are the delay of

46

propagation value increases by a certain number of packets, and the current delay of

propagation value is far beyond a threshold equaling (β ∗P), where β is specified by

the application and P is an average propagation delay.

TCP-MEDX will investigate any event related to the detection of packet loss according

to the above two criteria. A decision will be made as to whether a congestion has

indeed occurred or otherwise. The congestion window will be halved in the event of

congestion occurring, otherwise an assumption will be made by TCP-MEDX that a

transmission error has caused the packet loss and the congestion window will remain

unchanged.

From the simulation results, when compared to standard established TCP, TCP-MEDX

achieves significant improvement in throughput and is more capable of properly iden-

tifying cause of packet loss. However, it was not clear how the detection of the loss

was performed, either due to retransmission timer expiration or 3DUPACKs occur-

ring. However, since multiple packet losses within the same congestion window may

have occurred, halving the congestion window upon the expiration of retransmission

timer for resolving a burst loss event can be considered ineffective. Besides, because

it is only initiated after a loss event, TCP-MEDX is labelled energy efficient, but it

would require both the receiver and sender to modify the TCP header by inserting and

processing timestamps.

b. TCP-DCR: Meanwhile in the presence of channel error loss, Bhandarkar et al.

in [93] improved the performance of TCP by developing a TCP Delayed Congestion

Response (TCP-DCR) at the sender. After the first duplicate ACK is received, this ap-

proach implements a congestion response algorithm that is delayed for a period equal-

ing one RTT. This limits the TCP response to occur mostly during congestion losses

47

by allowing the mechanism at the link-level to recover the channel error lost packets.

On the one hand, TCP-DCR would avoid congestion window reduction during this

induced delay period by cancelling unnecessary retransmission during the occasion

when a missing packet is recovered. On the other hand, the packet would be treated

as a packet lost due to congestion if the packet is not recovered by the time the delay

period expires.

The TCP SACK in NS-2 was modified by implementing the TCP-DCR, and then the

modification was compared with the original in respect of their performance. When

the primary cause for packet loss is congestion, TCP-DCR is capable of offering sig-

nificantly better performance levels in the face of channel errors, but at the same time

having minimal impact on performance. Nevertheless, TCP-R used a similar idea by

delaying the trigger action when receiving the first ACK duplicate, but also allows

packets that followed a different route to be accepted by the receiver. However This

case does not take transmitted segments following different routes in TCP-DCR into

account which may required more than one RTT to recover. Hence, further analysis is

required regarding the choice of a single RTT.

2.3.1.3 Hybrid Approach

In contrast to the other approaches, the following proposals and possibly viable solu-

tions have taken a mixed-type or hybrid approach and thus capable of detecting two

packets loss types or more. The following sections shall elaborate further upon the

previous works related to the field of interest.

a. ADTCP: In order to improve the accuracy of detecting packet loss, instead of

relying on a single metric, the work by [1] combined multiple metrics, called TCP-

friendly Transport Protocol for Ad hoc Networks (ADTCP). Various network states

48

or conditions can be identified, such as congestion, channel error, route change, and

disconnection, by this pioneering approach that uses multi-metric end-to-end measure-

ments.

In this method, every time the receiver accepts a packet, the receiver would calculate

four metric values, namely Short-Term Throughput (STT), Inter-packet Delay Differ-

ence (IDD), Packet Loss Ratio (PLR), and Packet out-of-order Arrival (POR). Based

on a technique called Relative Sample Density (RSD), this would define a value to be

High or Low. The rules listed in Table 2.1 shows how the network state is estimated.

Table 2.1: Identification Rules of Network State (Adopted from[1])

IDD and STT POR PLR

Congestion (High, Low) *

Route Change Not (High, Low) High *

Channel Error Not (High, Low) High

Disconnection Not (High, Low) * *

Normal Default

High: Top 30%; Low: Bottom 30%; ‘*’: do not care

Next for every outgoing ACK packet, the receiver would pass information of the net-

work state straight back to the sender. The latest of the most current state feedback

can be obtained from these ACK packets, which the sender would maintain and pro-

ceed with normal TCP operations. This would continue up until the occurrence of a

packet loss by either a third duplicate ACK or retransmission timeout. Control action

will be taken by the sender in accordance with the estimation of the network state

by the receiver. In any cases of congestion, the same congestion control action (such

as conventional TCP) can be adopted by the sender. However, when the detection

49

of channel error occurs, a retransmission of the identified lost packet by the sender

would commence without slowing the performance down. Meanwhile, in the event of

a route change occurring, an estimated bandwidth of the new route can be calculated

by the sender via setting current sending rate to the slow start threshold, and proceed

with congestion avoidance initiation. Lastly, rather than invoking the mechanism for

exponential back off, the current state will be frozen by the sender if and when dis-

connection is detected, and periodic probing will be carried out until a reconnection is

established, while repeating the same steps in case of route changes occur.

The ADTCP method has become very famous and served as the basic platform for

many later approaches, since it is TCP friendly and provides flexibility for backward

compability. Furthermore, simulation results showed that ADTCP can achieve close to

ELFN performance, with an improvement in the throughput from 100% to 800% vis-

a-vis the TCP NewReno variant. Meanwhile in real testbed settings for weak channel

case scenarios, ADTCP shows 30% throughput improvement over Reno and in mo-

bility cases, 100% performance gain. However, due to its slightly high computational

cost, a 5% decrease in ADTCP throughput was observed in clear channel the testbed

settings. Nevertheless, a sample space is maintained by the ADTCP to set the metric

value to be high or low. By using a weight, high value would be given to the recent

sample as compared to the older sample, but sometimes a negative influence occurs

from the old value. This is especially true for route change cases, in which it is more

efficient for the sample space to be rebuilt for the elimination of old route influence.

b. TCP Enhanced Scheme for ADTCP: Previous researchers, like Li et al., used

ADTCP as a base for their new enhanced scheme [94]. They attempted to reduce the

calculation complexity in ADTCP by designing a much simpler and more effective

one. This new proposed scheme is capable of detecting three network states, namely

50

congestion, channel error, and route change, based on receiver measurements for IDD,

RTT, and Hop Limit (HOP). The variable IDD shows the actual buffer queue changes

and RTT describes the length of the buffer queue. The congestion state can be iden-

tified by both IDD and RTT. In cases where the network state is not congested, then

the HOP is used to detect whether a route change event had occurred or had not. Oth-

erwise, if the TCP sender detected a packet loss and it is not due to congestion or

route change, the assumption would be that the loss is due to wireless-related error.

Meanwhile, RSD is used to decide the high or low value of each metric. However,

the weight of each history record is characteristically uniform, and the sample space

would be requested to be rebuilt after a route change.

In order to evaluate the performance of this new scheme, a comparison using NS-2 was

conducted among NewReno, ELFN, ADTCP, and this particular proposed scheme.

The simulation result showed a significantly better performance by the new scheme

as compared to the NewReno method, while it achieve close to ADTCP and ELFN

performances. However, the new scheme can detect congestion state more accurately

than none-congestion state, thus making its performance degrades in cases of mobility

and channel errors.

c. I-ADTCP: As a positive extension of previous work, Gajjar and Gupta proposed

to improve ADTCP by applying Chen et al. [71] adaptive CWL strategy on top of it

to ensure sufficient bandwidth utilization of the sender-receiver path [95]. The TCP’s

congestion window would be limited below the upper bound of bandwidth delay prod-

uct of the path, which will avoid overloading the network. Furthermore, through a cal-

culation of STT and IDD using RSD, an incipient congestion check can be performed.

An avoidance of congestion build up by limiting the packets sent by the sender occurs

during the incipient congestion through the reduction of Congestion Window Limit

51

(CWL) by half.

From the output results of simulations, at all levels of traffic intensity, I-ADTCP can be

clearly observed to outperform ADTCP. Through the detection and reaction of incip-

ient congestion, I-ADTCP attempts to constantly remain in the congestion avoidance

phase at all times. Although better performance can be gained in most cases by com-

paring a small fixed CWL setting with setting the CWL in I-ADTCP, the small fixed

CWL perhaps cannot be outperformed in every single scenario. This comes from the

notion that certain assumptions under chain topology was the reason for the design

and development of adaptive CWL. Nevertheless, the I-ADTCP is neither capable of

handling the issue of sample space nor reducing the complexity of computation.

d. Imp-ADTCP: Next, Teng et al. in [96] proposed an improved scheme (Imp-

ADTCP) for the original end-to-end original ADTCP scheme. The Imp_ADTCP

method focuses on decreasing its aggressiveness and controlling the growth of the

congestion window. The congestion widow growth factor is set by the this scheme

which adaptively adjusts the threshold of congestion window in accordance with the

forward path hop counts. If the number of hop counts is less or equal to eight, the

growth factor is set to 0.01, otherwise it would be set to 0.1.

Simulation results showed that the Imp-ADTCP method can improve TCP throughput

in dynamic networks, but there is nothing reported on the performance of Imp-ADTCP

in static topology. Additionally, the value of the forward path hop count is obtained

with the support of lower layer, thus making this approach not a purely layered-based

method.

e. MME-TCP: Following a similar line of investigation, Kai et al. in [97] applied the

52

same ideas of ADTCP to the TCP NewReno variant, generally similar mechanisms

and identical combinations of metrics were used to differentiate the type of packet

loss. Thus, the corresponding action algorithms followed similar steps. However, the

differences between MME-TCP and ADTCP are that MME-TCP is sender based and

instead of using Short Term Throughput (STT) like in ADTCP, the MME-TCP method

uses Short Term Goodput (STG). Also as a network state, wireless error is completely

ignored by MME-TCP. Last but not least, in order to determine whether the state of

the metrics is high or low, MME-TCP uses a mean deviation-based algorithm.

Through simulation, the output results revealed the TCP NewReno variant was out-

performed by MME-TCP, by as much as 25% to 80% improvement in the throughput.

However, the study did not report any performance result for noisy channel which con-

tains high bit error rates. Also, each ACK is counted as one during the calculation of

STG, but sometimes more than one packet arrives and it is acknowledged by a single

ACK.

f. TCP WELCOME: On a different approach for enhancing TCP performance, TCP-

WELCOME was designed by [8] as a sender-based solution for resolving errors by

using the RTT variable to address issues in the MANET environment, such as con-

gestion, wireless error, and route failure. The TCP-WELCOME approach distinguishs

between packet loss causes and then triggers the most appropriate packet loss recovery

according to the identified loss cause. Through the observation of RTT sample evo-

lution history over the connection, this approach is capable of realizing the differing

loss types and the trigger for data packet loss (i.e., RTO and 3DuplACK). On the one

hand, wireless-related packet loss would be detected when RTT values are stable and

3DuplACK is detected, otherwise it would be considered as congestion type loss. On

the other hand, route failure related loss would be detected when RTT values are sta-

53

ble and RTO is detected, otherwise the loss would be treated as congestion. The loss

differentiation idea is illustrated by Figure 2.7.

Figure 2.7: TCP WELCOME Loss Differentiation Algorithm (Adopted from [8])

The TCP-WELCOME reaction then focuses on data transmission rate and RTO cal-

culation after using the proposed LDA to identify the data packet loss cause. No

modification is needed to the standard TCP NewReno method in cases of congestion

loss, as well as wireless error loss where the only remedy is the retransmission of the

lost packet. However, the cwnd and RTO values would be updated, once route failure

is detected, based on the new route characteristics of length, quality, and load, which

is performed according to the following:

RTOnew = (RT Tnew/RT Told)RTOold (2.5)

CWNDnew = (RT Told/RT Tnew)CWNDold (2.6)

In terms of energy consumption and throughput, simulation output results showed that

54

SACK, TCP NewReno, Westwood, and Vegas methods were all outperformed by the

TCP-WELCOME approach under various packet loss scenarios, such as interference,

congestion, link failure, and signal loss. However, during the evaluation period in these

simulations, the frequent route changes and network disconnection that may come into

effect were not taken into account. Nevertheless, it was reported by Biaz and Vaidya in

[98] that using RTT is not encouraging because of the large amount of noise associated

with the measurement. Furthermore, the challenge in ad hoc network is that delay is

no longer influenced by network queue length, but it is also susceptible to routing path

oscillation, disconnection, MAC layer contention (very common). These make such

measurement highly noisy.

2.3.1.4 Discussion

Several extensions and modifications have been proposed to mend the many challenges

encountered by TCP in MANETs. Some of these solutions that handle more than one

issue in MANET are presented in the following summary Table 2.2. This table aims to

discuss further the main proposals to gain a better understanding and highlight the gap

in the literature. In the table it is shown the based protocol, metrics used, approach,

and implementation issues with the respective congestion control proposal.

In the column “Based on” off the table it indicates whether the proposed protocol will

be based on TCP NewReno, Reno, SACK, or maybe other flavor. The “Used Metics”

column indicates the type of performance metrics used to propose the new protocol.

The column “Approach” identifies the issue(s) that been handled by the proposed pro-

tocol. Finally, the column “Implementation “ shows whether the approach can be

implemented independent from the underlying layer(s) or the receiver side.

55

Ta
bl

e
2.

2:
C

om
pa

ri
so

n
am

on
g

TC
P

P
ro

po
sa

ls

56

2.3.2 Proactive Approach

In this section, the recent proposals in ad hoc networks environment that have been

highlighted were aimed to alleviate the spatial contention effects on the performance

of TCP. They will be introduced, described, and analyzed. These proposed solutions

can be divided based on the following aspects:

• the sender’s perspective, and

• the receiver’s perspective.

Some representative schemes are presented in the following sections, according to the

above mentioned taxonomy.

2.3.2.1 Sender Perspective

The following viable proposed solutions are capable of reducing the excessive medium

accesses due to a large congestion window by selecting the optimal maximum conges-

tion window value or otherwise control the growth of the congestion window.

a. Congestion Window Limit (CWL): Previous research by Fu et al. in [28] revealed

several interesting results when they studied the effect of multi-hop wireless channel

on TCP congestion control and throughput. Their analysis using simulations revealed

that there is a window size (W), at which TCP throughput is highest through improved

spatial channel reuse. However, the average window size of standard TCP is much

larger than (W) and does not operate close to (W). The implication here is that reduced

spatial channel reuse would degrade throughput in TCP.

They did further studies in a h-hop chain of IEEE 802.11 wireless nodes and results

57

show that TCP’s optimal throughput is achieved when its window size is (h/4), where

h is the length of the chain. If TCP window size is below this value, it under-utilizes

the channel. Moreover, if it is larger, it will not further increase the channel utilization

but it will reduce TCP throughput.

b. Adaptive Congestion Window Limit Strategy: Meanwhile, Chen et al. took

up the observation and results by [28] in relation with TCP congestion window size

[71]. They established a strategy for turning the CWL in TCP into identifying the

bandwidth-delay product (BDP) of a path in MANET environment. They proved that

the BDP of the path cannot exceed its round trip hop count (RTHC), independent of

the respective MAC layer protocol being used. Furthermore where N is the path RTHC

value, N/5 forms the optimized value of the upper bound based on IEEE 802.11 MAC

layer protocol. They then dynamically adjust CWL in TCP according to the current

path RTHC value, which is the proposed adaptive CWL setting strategy. This strategy

is explained as follows:

Algorithm 2.3 Adaptive Congestion Window Limit Setting Strategy
Step 1. if (N <= 4) CWL = 2;

Step 2. else if (N <= 8) CWL = 1;

Step 3. else if (N <= 12) CWL = 2;

Step 4. else if (N <= 20) CWL = 3;

Step 5. else if (N <= 26) CWL = 4;

Step 6. else if (N <= 30) CWL = 5;

Their simulation, using NS-2, was conducted to demonstrate the performance gain of

this CWL setting strategy. From the output of their results, a 8% to 16% improvement

of TCP Reno performance was achieved using this simple strategy in comparison with

the unbounded congestion window in TCP Reno. However, this scheme heavily de-

58

pends on being aware of the path length by the routing protocol, such as the DSR.

Nevertheless, changing the maximum retransmission timeout of TCP into 2s in con-

trast to the 240s given in [99] might affect the results.

c. New Tuning Maximum Congestion Window: Kim et al. [70] proposed a new

technique to overcome drawbacks of adaptive congestion window limit setting strategy

presented in [71]. The basic idea in this method is that by collecting ECN and then

send the value to the TCP sender with the advertised window, an estimation of the

optimum window size can be performed by the TCP receiver. Whenever an ACK

packet is received, the advertised window value is used to set the limit of congestion

window at the TCP sender.

These researchers used the NS-2 simulator for evaluation of the proposed mechanism

validity using random, grid, and chain topologies. In dynamic ad hoc networks, the

simulation results showed that the proposed algorithm is capable of enhancing TCP

performance by 10% to 60%. However, the implementation of fine-tuning the maxi-

mum congestion window requires ECN to be enabled and the adaptation of LRED to

detect contention in the link layer. Nevertheless, the received information might be

out dated.

d. TCP with Adaptive Pacing (TCP-AP): Work by Eirakabawy et al. had intro-

duced a congestion control mechanism that is characteristically end-to-end [100]. The

proposed approach is better known as TCP with Adaptive Pacing (TCP-AP), where

within the current congestion window, it implements a scheduling that is rate-based.

TCP-AP uses two factors to adapt its transmission rate, the former one is the delay

of current out-of-interference estimation and latter one is the variation coefficient of

recently measured RTT.

59

Both test bed as well as NS-2 were used to test and evaluate TCP-AP, and the re-

sults demonstrated that TCP with adaptive pacing can yield significant performance

in terms of goodput and fairness with respect to TCP NewReno. However, TCP-

AP is customized for use in multihop wireless networks only. Furthermore, TCP-AP

achieves its best goodput when the number of hops is small and RTS/CTS is disabled.

As the number of hops increases, the performance gap reduces. When RTC/CTS is

enabled the performance of TCP-AP degrades significantly.

e. CWA-CD: Meanwhile for addressing the problem of cwnd overshooting, Zhang

et al. proposed a TCP variant to alleviate this [77]. Firstly, the authors investigated

the relation between BDP and congestion control algorithm, where they concluded

that the actual BDP value in wired networks is much larger than multihop ad hoc net-

works. Using the original method to control the growth of congestion window would

tend to increase cwnd way beyond the actual BDP, thus causing the entire network to

overload, while operating with bad congestion. To address this issue, the said authors

proposed to split RTT into two, which are contention RTT and congestion RTT. The

former is the totaled contention delays that exists down the path, while the latter is

made up of transfer delay that is characteristically end-to-end of all the links down

the pathway. More specifically, congestion RTT does not contain contention delay,

but comprises transmission delay, queuing delay, and processing delay. Therefore, the

authors revealed that only congestion RTT can determine BDP and there is no rela-

tion between contention RTT and BDP. As a result, the overshooting problem of the

TCP congestion window is caused by the inadequate use of contention RTT. Next,

for the evaluation of the degree of link contentions, the authors defined Variance of

Contention RTT per Hop (VCRH). Based on VCRH, the Congestion Window Adapta-

tion through Contention Detection (CWA-CD) was then proposed as a viable solution.

The cwnd value is adapted by the CWA-CD, based on VCRH in addition to RTO and

60

acknowledgment (ACK).

The researchers had claimed that the CWA-CD method is timely and accurate in lim-

iting the congestion window size overshooting. Their simulation results showed that

CWA-CD outperforms the conventional TCP within the static topology environment

from the aspects of throughput and delay. However in dynamic scenarios, CWA-CD

achieved similar throughput in comparison with the original TCP. The mobility factor

is ignored in the CWA-CD approach that only focuses on link contentions, which in

MANETs, is the main source of link unreliability. Therefore, a comprehensive investi-

gation of link failure due to mobility should be considered to improve the performance

of CWA-CD in dynamic topology.

f. FeW: This scheme that was proposed by Nahem et al. is a cross-layer approach

[101]. They firstly investigated in IEEE 802.11 ad hoc networks, the effect of MAC

contention and congestion window on the interaction between on-demand ad hoc rout-

ing protocol and TCP. The authors observed that the TCP’s window mechanism is one

of the main factors for throughput degradation. TCP generally sends at a high rate

and increase cwnd aggressively, which would cause network congestion and chan-

nel contention to occur. These losses would have a negative impact on the routing

protocol, because on-demand routing protocols would initiate a new route discovery

process since they treat such loss as a route failure. Therefore, the authors proposed a

Fractional Window increment (FeW) scheme to restrict the growth of the congestion

window and thus reduce the aggressiveness of the TCP implementation by using a

window update that is characteristically fractional and not exponential.

Also their simulation results showed dramatic improvement in the TCP FeW perfor-

mance. However, they had not made it clear as to how far does the slower conges-

61

tion window growth may adversely effect short connections with only relatively small

amounts of data. Furthermore depending on network conditions, TCP FeW perfor-

mance will vary. Therefore for a given network condition, TCP FeW needs some

fine-tuning to achieve the performance requirements.

g. ASP-FeW: Then, Wang et al. proposed a solution for FeW problems by introducing

a new Adaptive Packet Size (ASP) [102]. The authors further analyzed this proposed

solution and found that for transmission, it could not make appropriate use of its ac-

curate predicted window. This method limits the amount of data transmission and can

be considered to be too strict, so an Adaptive Packet Size (ASP) method on top of

FeW is therefore recommended. While FeW contains fixed packet size, the ASP-FeW

method fills the current predicted window by adapting packet size. The ASP-FeW

method calculates the current packet size using the following equation:

packetsize− = ((cwnd−XinitPacketsize−)/cwnd−) (2.7)

where packetsize_ is the current packet size, cwnd_ represents the congestion window

size, and initPacketsize_ contains the initial packet size which has a fixed value.

Every time there is a change in the cwnd, this equation is used to compute the new

packet size by the TCP sender. This is even more pertinent when the retransmission

timeout occurs. The TCP sender enters the slow-start phase by resetting the cwnd to 1.

It then repacks in its buffer the data with the given initial packet size and retransmits it.

There is then no need to repack the lost data packet, when TCP enters fast retransmit

when three duplicate ACKs occur, so a re-transmission of packets occurs.

62

h. TCPCC: Zhang et al. studied the effect of conventional window mechanism on

TCP performance [76], and highlighted that network congestion is caused by medium

contentions, and in the case of over-injection of current TCP window mechanism, it

would result in severe contentions. Then the authors introduced Contention Ratio (CR)

and Channel Utilization (CU) as the two metrics for network status characterization.

In relation to these new metric measurements, a new TCP transmission rate control

mechanism (TCPCC) was proposed, where the CU and CR are accordingly estimated

with each intermediate node collecting information about the network status. The

returned ACK will contain values of CU and CR. Then, the TCP sender is able to make

an adjustment in its transmission rate while considering the feedback information, as

shown in the pseudo code below:

Algorithm 2.4 TCPCC Mechanism Window Adaptation Scheme
Step 1. if (CU < CUmax and CR > CRmin) {

Step 2. cwnd = cwnd - (CUmax - UC)*cwnd

Step 3. } else {

Step 4. cwnd increase as TCP does

Step 5. CUmax = CU

Step 6. CRmin = CR }

The results of their simulations revealed that in terms of end-to-end delay and through-

put, conventional TCP is outperformed by TCPCC in static topology. However, there

is still the obvious problem in this mechanism when it comes to wireless networks,

because the status of bottleneck link defines these two parameters without considering

the whole path. Furthermore, evaluating TCPCC over mobile ad hoc networks and

studying its performance over channel with different BER is required.

63

2.3.2.2 Receiver Perspective

These viable solutions can reduce spatial contention by introducing fewer ACKs, in

other words, by sending cumulative ACK instead of sending separate ACKs for each

packet received successfully.

a. Dynamic DelAck: Altman et al. had extended the idea beyond two consecutive

ACKs in standard DACK’s combination [99]. They proposed a Dynamic DelACK to

reduce channel contention among ACKs and data, as a solution on the receiver-side of

the same TCP connection [103]. The Altman scheme serves as a basis for many later

approaches. The idea is to generate an ACK for every d data packets or after a certain,

fixed timeout. The authors observed in NS-2 simulation, significant improvements in

performance for (d = 2), and increased further for d equaling (3) and (4). However

when TCP operates at a small window size, this value may be problematic. Therefore,

they proposed a dynamic delayed ACK where d increases with the number of the

packet sequence, up to the maximum level of (d = 4).

Their simulation focused only on static multi-hop networks, but demonstrated that

performance gain is possible with this approach. Nevertheless, the receiver initially

delays four packets except for the startup, where it neither fills in the gap in the re-

ceiver’s buffer nor reacts to the case of out-of-order and uses fixed interval of 100ms

for timing out. In other words, in conditions of medium level change, there is a lack of

adaptability. In addition, the available bandwidth of a connection would be depended

upon by the congestion window size, which in turn is depended upon by the value of

d. In relation to the value of d, since information about the network status is not pro-

vided by the sequence number itself, the sequence number does not effectively reduce

channel contention of the intra-flow nature [13]. Furthermore every time a delayed

ACK is received by a source, network congestion may occur due to the burst of TCP

64

segments that may be injected into the network [58].

b. TCP-ADA: Meanwhile, Singh and Kankipati [78] studied in the mobile ad hoc

network environment the effect of the ACK number generated for a single window on

TCP throughput. When one ACK acknowledges a full window, maximum throughput

can be achieved as shown through mathematical analysis. Due to this analysis, they

proposed TCP with Adaptive Delayed Acknowledgement (TCP-ADA) as a receiver-

side solution, which is an attempt to reduce the number of ACKs to one per window.

The ACK generation time is adaptively determined by TCP-ADA, which is in contrast

to Dynamic DelAck that defers the ACK generation until a fixed number of data pack-

ets have arrived. In the event of every data packet arrival, before transmitting the cu-

mulative ACK, the receiver pauses for a duration equal to wait f actorXaverage inter-

arrival time. If another data packet is received during that pause period, the deferment

period can be calculated as per previous ACK. The assumption that all DATA packets

that are sent in the congestion window have been received is made by TCP-ADA once

the wait period expires, and for all received DATA, it would send the cumulative ACK.

In a comparison exercise using NS-2, with the wait factor equaling 1.2 and aver-

aging constant equaling 0.8, the authors compared the differences betweenTCP and

TCP delAck to TCP-ADA. It was observed over TCP that TCP DelAck exhibited less

throughput improvement than TCP-ADA. This is caused by the adaptive delay during

the transmission of cumulative acknowledgement. However, like Dynamic DelAck,

the scheme was not able to explain out-of-order packet reception and packet loss.

Furthermore, the sender woul be idle and may not send any new packets during the

deferment period, and the case could be even worse if the ACK got lost.

c. TCP-DAA: Following the same line, De Oliveira and Braun proposed the receiver-

65

side method to overcome some drawbacks in the Altman scheme [103]. They com-

bined the premise of higher numbers of delayed ACKs (like TCP-ADA) together with

the Altman et al. recommendation in [47] (i.e., direct reaction to filling in a gap or

packet out-of-order) to design the new scheme called Dynamic Adaptive Acknowl-

edgment (TCP-DAA) [104] . Furthermore, TCP-DAA is capable of adjusting itself

to the channel conditions by timeout interval computation for the receiver with the

incoming packet inter-arrival time serving as the basis.

In TCP-DAA, when the wireless channel is in good condition, the receiver combines

up to four ACK packets where the four packet limit is restricted by the congestion

window limit of the sender. The delay management is performed using the delay

window (dwin) that restricts the number of delayed ACKs. An ACK is immediately

send and a reduction of dwin by the size of two packets is performed whenever the

receiver timer expires or when it gets a packet that is either filling a gap or out-of-

order in the receiver’s buffer. There are two adjustments at the sender to minimize

the unnecessary retransmission, which are 1) a fivefold increase of the regular RTO

for compensation of the four combined regular ACK maximum and, 2) the duplicate

ACK number for fast retransmit trigger is reduced to two.

Simulation evaluation showed that TCP-DAA can outperform not only conventional

TCP but also similar techniques like large Delay ACK (LDA) in terms of throughput

and energy consumption. Yet in scenarios with no problem of hidden nodes, the re-

sults reported that TCP-DAA does not seem to be very friendly. Nevertheless, setting

congestion window limit to four seems to be appropriate in wireless environment with

up to 10 hops, as stated by the authors, but not appropriate for hybrid networks where

wired systems and wireless systems coexist together with the existence of high band-

width delay product. Finally, one issue that may arise here is what if the TCP sender

66

congestion window is not limited to four.

d. Delayed Cumulative Ack (TCP-DCA): The authors [73] proposed an adaptive

delayed ACK method based on the TCP path hop number. Unlike TCP-DAA, there is

no limit value expected for the cwnd sender. However, the sender has to send its current

cwnd in the TCP header to the receiver. This scheme is basically designed for short

paths where the problem of interference is at a minimum, and to maximally increase

TCP throughput, the receiver would delay its ACK as long as possible. In cases of

long paths, for achieving optimal performance of TCP and avoid high packet loss,

the receiver would use a suitable delay window size (dwin) restriction. The authors

performed extensive simulation for identifying the proper value of delay window based

on the path length. Table 2.3 lists these values.

Table 2.3: Delay Window at TCP-DCA Receiver

Parameter Path Length (h) Delay Window Limit

h ≤ 3 Congestion Window

3 < h ≤9 5

h ≥ 10 3

Similar to TCP-DAA, the receiver will generate one ACK to acknowledge one (dwin)

in case the packets arrive in order, otherwise, the ACK will immediately be gener-

ated. In addition, the receiver keeps the fall-back delay ACK timer updated, which the

estimated time for data packets to arrive (dwin).

67

TCP-DCA superior performance was revealed, in static networks producing up to

30% gain against the standard TCP and 20% better performance over different routing

protocols in MANETs. However, the TCP-DCA receiver requires the information of

the sender’s congestion window size using information contained in the data packet

header, namely the advertised window field. This is an apparent drawback to this ap-

proach. Moreover, the rate of congestion window increase is slowed down since the

receiver does not send ACKs as often as in standard TCP, and that could be fine but

there is nothing reported about RTT and RTO, so how can the sender appropriately

estimate these values?

2.4 Theories Pertinent to Congestion Control

There are two major theories adopted in this research; Detection Theory and Com-

munication Accommodation Theory. The following subsections will introduce these

theories in the context of this research.

2.4.1 Detection Theory

Detection theory, or signal detection theory, is a means to quantify the ability to dis-

tinguish between information-bearing patterns (called signal in machines or stimulus

in humans) and random patterns that distract from the information (called noise). It

provides a general framework to study decisions that are made in ambiguous or un-

certain situations [105]. According to the theory, there are a number of determiners of

how a detecting system will detect a signal, and where its threshold levels will be. To

apply detection theory to a data set where stimuli were either present or absent, and

the observer categorized each trial as having the stimulus present or absent, the trials

are sorted into one of four categories, as shown in the Table 2.4:

68

Table 2.4: Detection Table

Respond "Absent" Respond "Present"

Stimulus Present Miss Hit

Stimulus Absent Correct Rejection False Alarm

“Detection Theory is an introduction to one of the most important tools for the analysis

of data where choices must be made and performance is not perfect” [106]. Interest-

ingly Detection theory has applications in many fields such as telecommunications,

biomedicine, quality control, radar and sonar, and psychology. Detection theory will

provide the base for the proposed Loss Detection Mechanism (LDM) to be presented

in Chapter 4.

2.4.2 Communication Accommodation Theory (CAT)

Communication Accommodation Theory (CAT) is a theory of human communica-

tion developed by Howard Giles [107, 108]. CAT is an interesting theory revolving

largely around adjustment; it explains how individuals adjust to, or accommodate to,

the speaking style, vocal patterns, and gestures of each other to gain greater communi-

cation efficiency [109]. CAT is a robust paradigm in the sense that it is able to attend to

(1) social consequences, (2) ideological and macro social factors, (3) intergroup vari-

ables and processes, (4) discursive practices in naturalistic settings, and (5) individual

life span and group language shifts. Furthermore, CAT can be applied in almost any

situation that involves communication including computer communication [110].

The Scopus database was searched using the “Communication Accommodation The-
69

ory” keyword. There are a total (68) documents in Scopus database that include journal

articles (55), review (8), article in press (2), short survey (2), and conference paper(1).

The search was limited only to articles between years 1994 and 2012.

The results of the previous search showed that most of these articles came from dif-

ferent subject areas, with highest subject area being “SOCIAL SCIENCES”. Further-

more, it was interesting to reveal that CAT has attracted researchers’ attention from

multi-disciplinary areas, such as economics, health care, and computer science; and

has the potential to span across a wide range of new domains for future applications.

Table 2.5 lists the top ten subject areas that these articles were published in.

Table 2.5: List of Top Ten Subject Areas of CAT Articles

Subject Areas Record Count % number articles

1 Social Sciences 42 76.363%

2 Psychology 23 41.818%

3 Arts and Humanities 15 27.272%

4 Medicine 10 18.181%

5 Business, Management and Accounting 7 12.727%

6 Biochemistry, Genetics and Molecular Biology 3 5.454%

7 Economics, Econometrics and Finance 3 5.454%

8 Computer Science [111, 112] 2 3.636%

9 Health Professions 2 3.636%

10 Nursing 2 3.636%

70

2.5 Summary

This chapter provides the detailed background on issues that are covered in this thesis.

The background materials on loss detection and contention avoidance techniques were

reviewed and critically analyzed for content and significance. Furthermore, it intro-

duced the TCP congestion control performance model. This model forms the basis of

the theoretical framework for this research. It reveals the necessity for a reliable loss

detection mechanism that can effectively detect the cause of packet loss in mobile ad

hoc networks. Additionally, it highlights the obligation for adapting TCP sending rate

to avoid contention in the shared medium and support spatial channel reuse.

In the next Chapter, the research methodology for achieving the objectives of this

research and evaluating TCP Sintok will be presented.

71

CHAPTER THREE

RESEARCH METHODOLOGY

This thesis aims at designing an new Transmission Control Protocol (TCP Sintok)

for ad hoc networks named, specifically its loss detection and contention avoidance

mechanisms. Furthermore, verifying and validating the proposed mechanisms as well

as evaluating the performance of TCP Sintok are important tasks to be accomplished

as stated in Chapter One. In order to achieve these objectives, it requires a rigorous

methodology to follow, and this is the focus point of this chapter. For this purpose, this

research employs the Design Research Methodology (DRM) and introduces its main

stages according to the phenomena of this research. The chapter starts with the overall

research approach as shown in Section 3.1. Section 3.2 introduces the first stage of

DRM named Research Clarification (RC). It discusses the aims of RC stage, methods

to support this stage, and main deliverables. Section 3.3 describes the second stage

called Descriptive Study-I (DS-I). It discusses steps to obtain sufficient understanding

of the current situation, designs a reference model, and proposes a conceptual model.

Section 3.4 highlights the methods adopted in designing the proposed loss detection

and contention avoidance mechanisms in line with the third stage of DRM, named

Prescriptive Study (PS). Methods for performance evaluation and its metrics are dis-

cussed in Section 3.5 toward the end of the chapter, where a chapter summary rounds

of this chapter.

3.1 Research Approach

The prime aim of this research is to design loss detection and contention avoidance

mechanisms for Transmission Control Protocol, called TCP Sintok, with an intention

to change existing situations into preferred ones (i.e., to improve TCP performance

in ad hoc networks); this demands a careful mapping between understanding of the

72

traditional protocol and the development of a new one leading to an effective and effi-

cient solution [113]. These requirements are fitted with the design research definition

as proposed by Blessing [114], where "design research integrates the development of

understanding and the development of [protocol]".

These aspects complement each other in order to produce an efficient and effective

solution, which would result in a better/higher performance protocol. Blessing stated

that design research must be scientific in acquiring valid results both in the theoretical

and practical sense; and due to its unique features it needs a special methodology.

Hence, Blessing proposed the Design Research Methodology (DRM).

DRM is an approach, guideline, and a set of supporting methods to be used as a frame-

work for performing design research, where “it helps making design research more

rigorous, effective and efficient and its outcomes academically and practically more

worthwhile” [114]. Due to these attractive features, DRM has been adopted for con-

ducting this research. DRM specific objectives are listed as follows:

• to provide a framework for individual researchers to conduct design research;

• to help identify research areas that are academically and practically worthwhile

and realistic;

• to allow a variety of research methods in addition to help in selecting suitable

methods and combinations of methods; and

• to providing guidelines for rigorous research and systematic planning.

DRM can be divided into four different stages, namely Research Clarification (RC),

Descriptive Study-I (DS-I), Prescriptive Study (PS), and Descriptive Study-II (DS-

II) stages. In the following sections, a brief explanation of DRM stages from the
73

perspective of this research area is presented. Additionally, the main methods and

deliverables of each stage will be highlighted (for more details, refer to Blessing et al.

[114]).

Figure 3.1 illustrates the DRM framework where it shows the links between design

research methodology (DRM) stages, the methods used in each stage, and the main

deliverables. The light arrows between the stages illustrate the main process flow,

while the bold arrows to/from each stage demonstrate methods used and deliverables

of that particular stage.

Figure 3.1: Research Approach

74

3.2 Research Clarification (RC)

This research started with the first stage of DRM called RC, which was used to obtain

a precise understanding, as well as a challenging but realistic overall research plan.

RC consists of six iterative steps, as shown in Figure 3.2:

Figure 3.2: Main Steps in the Research Clarification Stage

In general, the deliverables of the RC stage is Chapter One. More specifically, the

deliverable is the overall research plan which includes the following points:

• research focus and motivation,

• research problem and research questions,
75

• relevant areas to be consulted,

• approach (type of research, scope, main stages, and methods), and last but not

least

• area of contribution and deliverables.

3.3 Descriptive Study-I (DS-I)

Upon the completion of the RC stage which formulated the overall research plan, the

research moves to the second stage, known as DS-I. The DS-I was used to gain a deep

understanding of the current situation and it involves a critical review of the literature

in the research area as well as empirical studies. During the course of this research, a

detailed review of the current proposals was discussed [68, 115] and many empirical

studies were critically evaluated to gain deep understanding of the existing solutions

and directions [116, 117]. The DS-I consists of five steps with many iterations, as illus-

trated in Figure 3.3, where every step aims to increase the understanding and may give

rise to further empirical studies or literature reviews leading to refining and updating

the performance and conceptual models.

The deliverables of the DS-I stage are:

• critical review of previous works as well as TCP Performance Model as pre-

sented in Chapter Two, and

• TCP Sintok Conceptual Model.

76

Figure 3.3: Main Steps in the Descriptive Study-I Stage

3.3.1 Conceptual Model of TCP Sintok

In order to improve TCP performance in ad hoc networks while basing on the pro-

posed performance model and the critical review of much related works, congestion

control was determined as the key factor to be addressed. Furthermore, the overall

ultimate goal for this research was on the reduction and/or elimination route failure

and route change loss influences in TCP and adjusting the congestion window size

growth in order to avoid network contention. As a consequence of addressing TCP

congestion control, a conceptual model of TCP Sintok was designed to describe the

expected desired and improved situation using the proposed contention avoidance and

loss detection mechanisms. The proposed conceptual model is shown in Figure 3.4

77

Figure 3.4: Conceptual Model of TCP Sintok

3.4 Prescriptive Study (PS)

The PS is the main stage in DRM, as it includes the design of the proposed mech-

anisms. For the purpose of this research, network modeling and simulation process

proposed by Guizani et al. was followed [118]. Figure 3.5 shows a block diagram

78

describing the main steps of the prescriptive stage according to this research phenom-

ena. The first block represents specifications of the proposed mechanism (protocol)

to be modeled. The second and third blocks constitute modeling development which

includes problem analysis, goals determination, and study of related theory. Further-

more, it frequently involves making assumptions and introducing a simplification to

reduce the model’s complexity. Blocks 4 and 5 illustrate model implementation and

it depends very much on the choice of the simulation environment. Finally, validation

will be covered in greater detail in the following subsection.

The deliverables of the PS stage are:

• Chapters Four and Five (Objectives 2 and 3) and part of Chapter Six (the devel-

opment of TCP Sintok),

• design and implementation of the proposed mechanisms, and

• validation of the proposed mechanisms.

79

Figure 3.5: Main Steps in the Prescriptive Study Stage

3.4.1 Verification and Validation

Model verification is a determination that the model is transformed from one form to

another with sufficient accuracy being maintained [119]. In other words, model verifi-

cation evaluates the accuracy of transforming a model representation from a flowchart

or pseudo code form into an executable computer program. In this research, all pro-

posed mechanisms were transformed into C++ code since NS-2 requires C++ as the

80

base programming language. Furthermore, all mechanisms (models) must be veri-

fied to ensure that they have been coded correctly and free of bugs or errors [120].

Therefore, Eclipse C/C++ Development Tools (CDT) that runs on top of the Eclipse

Platform was used for this purpose. The Eclipse IDE for C/C++ Developers provides

advanced functionality for C/C++ developers, including an editor, debugger, launcher,

parser, and makefile generator, as shown in Figure 3.6.

Figure 3.6: Eclipse C/C++ Development Tools

Furthermore, CDT’s Code Analysis (Codan) integrated in Eclipse is capable of as-

sisting the researcher by highlighting and indicating possible syntax errors to the re-

searcher as he or she types the code, find bugs, and other issues as problems, warnings,

or not at all. Codan works by scanning C++ code and checks for potential program-

ming problems as well as syntax and sematic errors, as shown in Figure 3.7. CDT’s

Code Analysis is a very important feature and was used to ensure that,

81

• the mechanism is programmed and implemented correctly, and

• the mechanism does not contain any errors or bugs.

Figure 3.7: Code Analysis in Eclipse

Model Validation is usually defined as the “substantiation that the model, within its do-

main of applicability, behaves with satisfactory consistent with the study objectives”

[121]. Model validation is also defined as the “substantiation that [is] a computerized

model within its domain of applicability possesses a satisfactory range of accuracy”

[122]. Validation needs to be performed to ensure that the mechanism meets its in-

tended requirements in terms of the methods employed and the results obtained, which

is all part of the process to build the correct model.

82

Meanwhile, Balci classified the verification and validation techniques into four main

categories, namely Informal, Static, Dynamic, and Formal [119]. The dynamic tech-

nique is commonly used in model verifying and validating and thus it is the primary

approach applied in this research. In particular, the comparison testing is used where

the mechanism is executed under different conditions and the values obtained are used

to determine whether the mechanism and its implementations are correct [123]. Fur-

thermore, this would ensure that the mechanism operates in accordance with the spec-

ifications; for example, (1) model results are compared with the actual simulation

output, (2) simulation model results are compared to results of analytic model, or (3)

simulation model results are compared to results of real measurement.

The dynamic technique generally requires model execution and is intended to vali-

date the model according to its execution behavior. Furthermore, dynamic techniques

require model instrumentation and there are three steps that are followed in order to

apply the dynamic technique for validating the proposed mechanisms in this research.

Firstly, the executable model is instrumented, which refers to the insertion of addi-

tional code into the executable model for collecting information related to the model

behavior during the actual execution. Secondly, the instrumented model is executed,

and lastly the model output is analyzed and compared to results of other valid models

(i.e., benchmarking).

As stated in Chapter One, this research concentrated on detecting the cause of packet

loss in IEEE 802.11 ad hoc networks, as such the research has proposed an analyti-

cal model of end-to-end delay and used simulation to verify and validate the results.

Then, the proposed model was used to design a loss detection mechanism which was

also verified and validated by comparing the proposed mechanism results to the actual

results obtained from the simulation. On the other hand, the research had focused on

83

adapting the sending rate of TCP to avoid contention and thus maximize the network

resource utilization. As such, the contention avoidance model has been implemented

in a simulation environment, and real measurement results were obtained from other

studies that can be used to validate/benchmark the simulation results.

3.5 Descriptive Study-II (DS-II)

The DS-II focused on the evaluation of the designed mechanisms and protocol. Per-

formance evaluation is a very important step in evaluating any research. The evalu-

ation of TCP performance can be conducted using three possible traditional methods

[124, 125, 126], namely analytical modeling, simulation, and measurement.

3.5.1 Evaluation Approach Consideration

Selecting the evaluation technique is a very crucial step in all performance evaluation

projects [2]. Table 3.1 outlines the strength and weaknesses of performance evaluation

techniques as stated in [2, 127, 128]. From Table 3.1 and according to [129, 130], it

is very clear that simulation would be the most desired approach for the performance

evaluation of this research.

84

Table 3.1: Comparison of Performance Evaluation Techniques (Adopted from [2])

3.5.1.1 Analytical Modeling

Analytical (also called mathematical) modeling is a set of equations formulated using

mathematical symbolism to describing the performance of an actual system [125]. A

mathematical model can be investigated using computer programming, which trans-

lates the operations by using functional relationships within the system. The results

of the mathematical model can be represented using a graphical representation drawn

from the output of the running program. Users can adjust the conditions of the system

by varying the input or parameters of the program. The technique is best suited in

studying the system behavior of the very rare or unsafe in real life. This might help

to better understand the initial view of a system before moving to the implementation

process. This technique is often used to study simple systems; where an analytical

model will be built and validated to explore and solve a specific problem in a system.

Once the system complexity increases, this technique would require simplification and

assumptions to focus on certain aspects of the system and fix the rest. According to

Jain in [2], mathematical modeling has several benefits and advantages such as low

cost, less time required, and easy in trade-off evaluation. However, analytical model-
85

ing has low accuracy as compared to other techniques in performance evaluation.

3.5.1.2 Measurement

Measurement based performance evaluation can be conducted using test-beds or im-

plementation of an actual network. Also, this approach provides very accurate results,

but it is costly due to the specialized equipments needed [131]. Furthermore, con-

structing a real ad hoc network test bed for a given scenario is typically expensive and

remains limited in terms of working scenarios, mobility models and so on. Addition-

ally, measurements are generally not repeatable.

3.5.1.3 Simulation

Simulation technique is widely used in representing dynamic responses and behaviors

of real systems. It is a computer-based system model or generated using computer

programming. Furthermore, simulation is a more flexible tool for studying the per-

formance of various protocols. It enables analysis the protocol performance in scal-

able, controllable, and repeatable environments [129, 132]. For this reason, simulation

was applied extensively for performance evaluation and validation of ad hoc networks

protocols [29, 120, 133] and it is the main evaluation method in this research. The

following are some of the advantages of using a network simulator to study TCP per-

formance:

• simulators need a single computer to run the simulation experiments and analyze

the obtained results,

• simulators allow network researchers to investigate a wide range of scenarios in

a short period,

• complex topologies can be easily created via simulation environment, whereas

such topologies would difficult to replicate in a testbed environment, and
86

• simulators provide access to data about all traffic transmitted during the simula-

tion experiment.

3.5.2 Evaluation Environment

Simulation was chosen for the purpose of performance evaluation in this research and

was used successfully for performance analysis, assessing network traffic loading, tun-

ing of resources, and the prediction and optimization of the performance of protocols

and architectures. There are many discrete event network simulators available for ad

hoc networks researchers, such as NS-2 [134], NS3 [135], GloMoSim [136], J-Sim

[137], OPNET [138, 139], Qualnet [140], and OMNeT++ [141]. Each one has its own

unique advantages and disadvantages, and in order to get an overview about any net-

work simulator, many studies were conducted to compare the performance of several

simulators.

Koksal wrote in [142] that NS-2 and OMNeT++ would be the best choices for net-

work researchers. While NS-2 is the most popular simulator for academic research, it

is generally criticized for its complicated architecture. However, its large widespread

use by the network research community makes up for it since there are many people

helping each other with their problems through the use of mailing lists and forums.

Meanwhile, OMNeT++ is gaining popularity in academic and industrial worlds. Un-

like NS-2, OMNeT++ has a well-designed simulation engine and supports hierarchical

modeling, so it is logically better for development. Also, OMNeT++’s powerful GUI

gives it a certain edge. However, OMNeT++ lacks the abundance of external mod-

els and user base NS-2 has. OPNET Modeler is also a good, complete solution; but,

it caters more to industrial researchers who need an extensive set of built-in reliable

models for constructing credible simulations in a quick way, rather than academic re-

searchers.

87

Table 3.2 provides the conclusions drawn in [3] from its comparison between NS-2,

OPNET, and J-Sim simulators that are perhaps considered the leading ones.

Lucio et al. [143] stated that NS-2 and OPNET Modeler reported very similar re-

sults, but the freeware version of NS-2 makes it more attractive to a researcher. From

the technical point of view, Lucio et al. showed similar performance for both simu-

lators. Additionally, Garrido et al. [144] presented a comparison restricted to NS-2

vs OPNET. They concluded based on the simulation results for the different MANET

scenarios that the trend of all the metrics in both simulators were rather consistent,

although in certain experiments absolute values were quite different.

Xian at el. [145] compared the performance of OMNET++ with NS-2 and with OP-

NET in the area of wireless sensor networks. The paper showed that OMNET++ has

better performance than both NS-2 and OPNET in terms of simulation time and mem-

ory. However, the paper does not address the reliability of the results obtained by the

different simulators.

According to Kurkowski in [120], simulation is an often used tool to analyze research

output in MANETs; 114 out of the 151 MobiHoc published papers (75.5%) used simu-

lation to test their research. Furthermore, NS-2 is the most used simulator in MANET

research; 35 of the 80 simulation papers that state the simulator used in their simula-

tion study used NS-2 (43.8%). Based on the previous discussions and the attractive

features of NS-2, it has been chosen as the evaluation environment for the purpose of

this research. More details about NS-2 are provided in the following subsection.

88

Ta
bl

e
3.

2:
C

om
pa

ri
so

ns
B

et
w

ee
n

Th
re

e
Si

m
ul

at
or

s
(A

do
pt

ed
fr

om
[3

])

89

3.5.2.1 Network Simulator 2 (NS-2)

Network Simulator (version 2), widely known as NS-2, is an open source object-

oriented simulator. It is a discrete event simulator targeted at network research [146].

It was developed as part of the Virtual Internet TestBed project (VINT) in 1989 and

evolve based on a collaboration of many institutes and research centers. The NS-2

simulator has had a smooth transition from the NS-1 version, which had a similar ar-

chitecture, and thus NS-2 was designed to be backward compatible with scripts written

in NS-1. In contrast, the gap between the architectures of NS-2 and NS-3 is very large

and NS-3 is not backward compatible. This would suggest that NS-2 will remain for

many years as a useful tool, with an advantage of having a huge amount of accessi-

ble open source modules that had been developed during the last decade, all of which

have not yet been ported to NS-3. The open source nature of NS-2 and the community-

based development practices of NS-2 which are one of the main sources for its rapid

development, are expected to continue with the NS-3 version.

NS-2 is one of the most popular used network simulators [147]. It provides libraries

containing pre-defined modules for most communication protocols [148] besides an

advanced environment to test and debug. NS-2 is a well-documented network simula-

tor and provides a convenient environment for network researchers to work or extend

any existing module. Furthermore, it is a well-validated tool. Hence all NS-2 modules

of applications and protocols have been validated against detailed sets of tests. Addi-

tionally, whenever a new module is developed, a new evaluation will be held to confirm

that the newly developed module works well and as specified with other modules of

NS-2.

The validity of any simulation experiment is very crucial to assess any proposed pro-

tocol, so the validation process included in NS-2 could enhance confidence in using it,

90

as confirmed in [149]. Moreover, as an evidence that NS-2 has been used and accepted

widely as a firm research tool in network research, a lot of studies conducted using NS-

2 have been published in credible and high impact publications such as IETF RFCs,

IEEE Transactions, IEEE/ACM Transactions on Networking, ACM SIGCOMM, IEEE

INFOCOM, and others, as mentioned in [150, 151].

3.5.2.2 Experiment Steps

A decomposition of the simulation performance evaluation into steps is certainly help-

ful. Previous researchers had divided the simulation steps into 8 or 12 steps. For ex-

ample, Hassan and Jain had divided the simulation task into eight steps [9], as shown

in Figure 3.8. This research follows [9] simulation steps that consists of pre-software

stage and software stage.

A. Pre-software stage includes four steps, as follows:

i. define the study objective precisely,

ii. design network model and select fixed parameters: this step is about design

network topology on a piece of paper, and select appropriate network parameters

to reflect a valid and real scenario,

iii. select performance metrics to be used for the evaluation study, and

iv. select variable parameters: in most TCP/IP simulations, the objective of the

performance evaluation is to study the impact of certain variables on the selected

performance metrics.

B. Software stage also includes four steps, as follows:

91

i. implement the topology designed in step A-2 into the software simulation pro-

gram,

ii. configure or program simulation software to generate relevant performance met-

rics selected in step A-3,

iii. execute simulation software, and after the simulation finishes its runs success-

fully, the performance metrics data will be collected, and

iv. present the data collected in the previous step in a meaningful format then inter-

pret the presented results.

Figure 3.8: Simulation Steps (Adopted from [9])

3.5.2.3 Experiments Setup

All experiments that are presented in Chapters 4, 5, and 6 were performed using the

network simulator (NS-2) version 2.34 on Ubuntu version 8 of the Linux operating

system. Furthermore, all the experiments executed a termination simulation for 500

seconds, as performed by many other works [77]; following the same set up described

92

below, unless stated. The detailed setting of all the parameters are illustrated in Table

3.3.

Physical and MAC Model: Wireless LANs (WLAN) based on IEEE 802.11 family

have recently become popular for allowing high data rates and relatively low cost

[152]. Furthermore, IEEE 802.11 can run in infrastructure and ad hoc modes. There-

fore, all nodes were configured with IEEE 802.11b PHY, IEEE 802.11b MAC Dis-

tributed Coordination Function (DCF) with RTS/CTS set ON [14, 10, 153, 154]. The

nodes communicate with identical half-duplex wireless radios. The transmission range

was set to 250 m and the sensing range was set to approximately 550 m. The data

transmission was set to 2 Mbps.

Error Model: Wireless channel error can be generated from a wide variety of error

models. Error model simulates link-level errors by marking the packet’s error flag.

For the purpose of this study and for creating a random uniformly distributed errors

in the wireless channel, Uniform error model was used with Packet Error Rate (PER)

between 1% and 10%.

Routing Protocol and Mobility Model: Two routing protocols, as recommended by

IETF, was used during the performance evaluation, namely the Ad Hoc On-Demand

Distance Vector (AODV) [155] as well as Dynamic Source Routing (DSR) [156]. DSR

is a suitable mobile ad hoc network routing protocol where networks need to be es-

tablished quickly [157]. However big overhead due to source-destination natural of

DSR makes AODV a good alternative. Furthermore, AODV has good performance

in different network sizes and it provides flexible and effective routing [158]. In the

random topology, nodes are moving according to Random Waypoint Mobility Model

[159]. This model is the most often used by researchers due to its properties in reflect-

93

ing the physical world movement, which is inherently unpredictable and unrepeatable.

In this model, a node moves from its current position to a randomly chosen new posi-

tion within the simulation area, using a random speed uniformly distributed between

[v min ,v max], where V min refers to the minimum speed of the node and V max

refers to the maximum speed. The Random Waypoint Mobility Model includes pause

times when a new direction and speed is selected. As soon as a mobile node arrives at

the new destination, it pauses for a selected time period (pause time) before starting to

travel again.

Traffic Generation Model: FTP is frequently used to test TCP performance over ad hoc

networks [157, 158]. FTP represents file transfer between two hosts and it has data to

be sent continually though the experiment time. The size of TCP packet was set to

1000 Bytes and the length of ACK packet was 40 Bytes. Size of headers in greater

detail are available in Table 3.3.

Topology and number of nodes: Several network topologies with different network

sizes and varying number of nodes were used to test and evaluate the ability of TCP

Sintok to react. More specifically, 6-hop and 7-hop chains; 5X5 nodes, 6X6 nodes,

7X7 nodes, and 8X8 nodes in grid topology; and random topology with 30 wireless

nodes.

94

Table 3.3: Parameters Values

Parameter Value

Simulation Topology Dumbbell, Chain, Grid, and random

TCP Application Protocol FTP

UDP/CBR flow rate MP3 compress rate 180 Kbps

Packet Size 1000 bytes

Routing Protocol AODV, DSR

MAC Protocol IEEE 802.11b (direct-sequence spread spectrum)

RTS/CTS ON

BasicRate 1 Mbps

DataRate 2 Mbps

RTS Length 160bits @ BasicRate + PHY header

CTS, ACK Length 112bits @ BasicRate + PHY header

MAC header 224 bits

PHY header 192 bits

TCP header 320 bits

SIFS 10 µs

DIFS 50 µs

Slot time σ 20 µs

CWmin 31

Short Retry limit (SRL) 7

Transmission Range 250 m

Carrier Sense Range 500 m

Long Retry Limit (LRL) 4

CTS_Timeout / ACK-timeout 300 µs

Queue Size 50 packets

95

3.5.2.4 Performance Metrics

Performance metrics can mean different things to different researchers depending on

the context in which it is used. Furthermore, it is a clear consensus that congestion

control mechanisms should be evaluated in tradeoff between a range of metrics such

as throughput versus delay and loss rates; rather than optimizing of a single metric

such as maximizing throughput or minimizing delay [160]. Furthermore, throughput

and delay are frequently used for the performance evaluation purpose of TCP [51, 161,

162]. This section provides common and mathematical definitions of the performance

metrics considered in the evaluation of the proposed TCP Sintok.

Throughput: It is simply defined by the total number of application bytes received

by the destination per unit of time (i.e., experiment time per seconds). In other words,

Throughput will be measured as a flow-based metric of per-connection transfer times.

It is a clear goal of any efficient congestion control mechanism to increase signif-

icantly the Throughput, subject to application demand and to the constraints of the

surrounding communication environment. In this research, throughput is measured as

the number of data packets received successfully at the destination node per a unit of

time (bit per second). The following formula is often used to calculate Throughput

value:

T hroughput =
N
T

(3.1)

where N is the total number of bits received by the receiver node during the time

interval T .

96

Delay: It is the total time required to send a packet from the source node to the des-

tination node and receive its ACK from destination back to the source. This is often

referred to it as Round Trip Time (RTT).

Jitter: Packet delay (Latency) variation is sometimes called “Jitter”. Jitter is often

used to measure the variability of end-to-end delay (e2e Delay) of packet delivery. It

is calculated using the following formula:

jitter = abs(e2eDelay− preve2eDelay) (3.2)

where (e2eDelay) is the latest end-to-end delay, while (preve2eDelay) is the previous

end-to-end delay

3.5.2.5 Confidence Level of Simulation Results

The goal of performance evaluation is to obtain the mean (u) of the performance met-

rics discussed previously (i.e., throughput, delay). Random numbers are used in sim-

ulation experiments to generate random events such as channel error, packet arrival

times, node movement, and so on. Due to this randomness, the obtained results will

experience random phenomena as well. Therefore, the exact value of (u) is not possi-

ble to be obtained but it can be estimated from a number of different runs of simulation

outputs. To emphasize, simulation output is only an estimation and some level of con-

fidence on this outcome should be established. For the purpose of this study, 10 runs

with different values of random number generator seeds were used for each scenario.

For all collected metrics, interval of 95% confidence was estimated as well as point

estimate for their averages. Details on the steps could be found in Hassan and Jain [9]

and Kim et al. chapter [163].

97

3.6 Summary

This chapter has described in great detail the research approach to ensuring that the re-

search objectives can be achieved. This research concentrates on developing TCP Sin-

tok and its loss detection and contention avoidance mechanisms for ad hoc networks.

Four main activities of the research were outlined in this chapter, in line with DRM.

The first activity is the Research Clarification (RC) stage, which discusses methods

to support the initial stage of this research. The aims of RC are to identify and re-

fine a research problem, objectives, and research questions that are both academically

and practically worthwhile and realistic. The second activity is called Descriptive

Study-I (DS-I), which discusses steps to obtain sufficient understanding of the cur-

rent situation, designs a reference model, and proposes a conceptual model. The third

activity highlights the methods adopted in designing the proposed loss detection and

contention avoidance mechanisms, named Prescriptive Study (PS). The last activity

named DS-II focuses on the evaluation of the designed mechanisms and TCP Sintok.

After describing the methodology and experimental tool that was used to design and

implement TCP Sintok in this chapter, the end-to-end delay model of TCP in ad hoc

network and the design issues of the loss detection mechanism will be presented in the

next chapter.

98

CHAPTER FOUR

DELAY-BASED LOSS DETECTION MECHANISM

After establishing the research methodology in Chapter Three as a guideline to achieve

the objectives of this research, this chapter proposes a new Loss Detection Mechanism

(LDM) for TCP in ad hoc networks. The proposed mechanism focuses on distinguish-

ing mobility induced packet loss, mostly due to route failure and route change events,

from congestion loss, by monitoring the trend of end-to-end delay as an indicator of

the current network status.

Section 4.1 introduces an end-to-end delay model for TCP in multihop wireless ad hoc

network. The model will be used to study the impact of congestion and contention on

the delay variation, while the design objectives of the proposed Loss Detection Mech-

anism is presented in Section 4.3. Then, the Delay-Based Loss Detection Mechanism

is designed to detect the cause of packet loss in Section 4.4. Finally, verification and

validation are presented in Sections 4.5 and 4.6, respectively.

4.1 Theoretical Analysis

IEEE 802.11 is the dominant technology standard used in WLANs that provides de-

tailed PHYsical layer (PHY) and MAC specifications for WLANs [10]. This standard

supports the Distributed Coordination Function (DCF) by default, while the point co-

ordination function (PCF) is used optionally [10]. The IEEE 802.11 DCF is used for

wireless ad hoc networks and it is based on the Carrier Sense Multiple Access with

Collision Avoidance (CSMA/CA) technique. CSMA/CA is a popular MAC scheme

that uses a combination of the CSMA and medium access with collision avoidance

schemes being implemented. Additionally, the IEEE 802.11 specification defines two

access techniques named basic access scheme and Request To Send / Clear To Send

99

(RTS/CTS) scheme.

In the basic access scheme, as shown in Figure 4.1, the transmitting node first senses

the medium to check whether it is idle or busy. If the channel is idle and keeps idle for

a period of Distributed Inter Frame Space (DIFS), the node transmits its frame. Oth-

erwise, if the channel is sensed busy or changed its status from idle to busy within the

period of DIFS, the nodes involved would generate a random backoff window to defer

the transmission of the frame using the Binary Exponential Backoff (BEB) algorithm.

The node selects a random backoff window from [0, CW]; the CW value is called con-

tention window and it depends on the number of transmissions failures of the frame.

The size of backoff window will be decreased by one if the channel has been in idle

status and keeps idle for a (σ) period. Meanwhile, if the channel is sensed busy, the

backoff window remains frozen. Once the backoff window size reaches zero, the node

transmits the entire frame and then waits for the acknowledgment (ACK). Once the

data frame arrives at the destination, the ACK will be transmitted after a period of time

called the Short InterFrame Space (SIFS) of the data frame arrival. If the transmitting

node receives the ACK that means its data frame has been transmitted successfully

to the destination. If the acknowledgment is not received within a specified period

(ACK_timeout), this means that the transmission has failed and the transmitting node

re-enters the backoff phase. The transmitting node reschedules frame transmission

based on the given backoff rules, while the contention window size will be doubled

and another random backoff window is chosen for retransmission.

100

Figure 4.1: The IEEE 802.11 Basic Access Method

Additionally, DCF also provides the RTS/CTS reservation scheme for transmitting

data packets, which uses small RTS/CTS packets to reserve the medium before large

packets are transmitted in order to reduce the duration of a collision as shown in Figure

4.2. The IEEE 802.11 protocol uses the RTS/CTS-DATA-ACK sequence for data

transmission. According to IEEE 802.11 DCF, each node that has a data packet for

transmission sends the RTS packet and waits in order to receive a CTS packet. The

receiver must wait a single SIFS time interval after receiving the RTS packet and then

begin to send its CTS. Receiving the CTS packet at the transmitter means that the

receiver is ready to receive a data packet, so the transmitter must wait a single SIFS

time interval after receiving the CTS packet and then begins to send its own data

frame. After receiving correct data packet by the receiver, the receiver will again wait

for another SIFS time period, before transmitting an ACK packet to the transmitter.

Before each node is allowed to transmit any RTS packets to start communication, the

nodes should listen to the channel. If the channel is observed as being idle for a time

interval longer than DIFS, then the BEB algorithm is launched.

101

Figure 4.2: The IEEE 802.11 RTS/CTS Access Method

The BEB algorithm uniformly selects the backoff window in the interval [0, CW].

First of all, the DCF sets CW with the predefined value CWmin. The backoff window

is decreased by one when the channel is sensed to be idle for more than a (σ) period,

while the backoff window remains frozen in the case of busy channel. After each

collision, the CW will be doubled until reaching another predefined CWmax value.

When it reaches this CWmax, it keeps its value with subsequent failures. If the number

of retransmissions of the same frame is greater than the maximum retry limit (by

default, value of 7), the frame will be dropped. On the other hand, after each successful

transmission, the backoff window and contention window (CW) will reset to the initial

level regardless of the history of network condition or number of active nodes.

Previous studies, as discussed in Chapter Two, presented various different approaches

to distinguish congestion loss from mobility loss based on one common ground, that

is, delay (such as RTT, IDD, or Jitter) is a good congestion loss indicator. They all

observed the delay variation of TCP in ad hoc network using network simulations and

then proposed their improvement or enhancements to the protocols. Very few works

however, had devoted more effort on theoretical analysis of TCP in IEEE 802.11 wire-

less ad hoc network [164, 165, 166]. This is because the analysis and modeling of

end-to-end delay of TCP over IEEE 802.11 DCF based ad hoc network is a challeng-

ing task due to several reasons [167]. Firstly, TCP is characterized by end-to-end
102

closed loop flow control, which is in contrary to IEEE 802.11 that is characterized

by a per link closed loop flow control. Secondly, IEEE 802.11 utilizes a four-way

hand-shaking procedure to avoid collision caused by hidden terminals. Furthermore,

ad hoc networks use a shared wireless channel which suffers from high bit error rates

and contention. As a result, the analytical model of end-to-end delay is required for

studying the delay variation of TCP segments in ad hoc networks.

In the literature, there are three models similar to the one presented in this thesis.

The first model was proposed by Xiao at al. to analyze TCP performance over single

and multihop wireless using the Markov chain model [165]. However, the model is too

simplified by ignoring the impact of buffer overflow and contention in addition to some

parameter values that were obtained from the simulation. The second model by Ding

et al. introduced an analytical model to analyze TCP throughput in wireless multihop

ad hoc networks over chain topology [164]. However, the model ignores wireless

channel error and queueing delay, so more analyses are sorely needed to prove and

validate the model in more complicated topologies. Recently, Ghadimi et al. [168]

proposed a mathematical model of delay in multihop wireless ad hoc networks from

the IEEE 802.11 MAC layer point of view, however, the model does not take wireless

error into consideration.

4.2 System Model

This section shall propose a mathematical model of end-to-end delay of TCP over

multihops IEEE 802.11 ad hoc networks. This model is built based on the Bianchi

model [169] and aims to understand the impact of contention, congestion, and channel

error on TCP end-to-end delay variation.

Let (s,d) denote a link from the source node (s) to the destination node (d) as depicted

103

in Figure 4.3. One TCP connection with infinite data is run from the node (s) to

the node (d). There are TCP packets (data) at the source and ACK packets at the

destination. Once a data packet is received by the destination node (d) an ACK will be

generated immediately and sent to inform the sender of the next expected packet.

Figure 4.3: System Model of TCP with Single Hop

The network consists of (n) contending nodes within the same interference ranges of

both (s) and (d) sharing a common wireless medium with capacity (µ) packet per

second and First In First Out (FIFO) buffer of size (B) packets. Furthermore, each

other node has packets available for transmission. All nodes use the IEEE 802.11

DCF with (RTS/CTS mode) as the MAC protocol.

The system model should capture TCP’s unique communication features in multihop

ad hoc networks including congestion (queueing delay), link layer contention, and

error-prone wireless channel. The assumptions made to develop this model are as

follows:

104

• Each data packet is acknowledged with an ACK packet.

• Data packet size is constant.

• The main cause of packet loss are collision (link layer contention) and channel

errors.

• Collision occurs only in RTS control packets. The packet loss probability of

CTS, DATA, and ACK due to collision is omitted. Furthermore, the collision-

error probability of a transmitted packet is constant and independent of the re-

transmissions that this packet has suffered in the past.

• Channel error will cause only TCP DATA packets to be corrupted. Furthermore,

the corruptions of any packets are identically, and independently distributed on

any links.

• Static route is used, where all nodes are stationary and routing protocol will

run once. The route will be chosen with minimum path from the source to the

destination. Packets are transmitted from the source node to the destination

node using already known route omitting one feature of ad hoc network, which

is dynamic frequent route changes due to mobility.

Delay is the summation of all transmission time and waiting time of a packet and its

ACK over all the links in the path between the source node and the destination node.

The delay in this context is named Round Trip Time (RTT) and its value is directly

related to the probability of packet dropping. Thus, the following subsections present

the packet dropping probability. Then, the delay model is formed for the case when

the source node and the destination node are a single hop away. After that, the Model

is generalized to represent the case when the source node and the destination node are

multiple hops away.

105

4.2.1 Packet Dropping Probability

Assuming a simple ad hoc network consists of (n) contending nodes within the same

interference ranges of both sender node (s) and destination node (d), each node has a

packet available for transmission. The Round Trip Time (RTT) is directly related to the

probability of packet dropping. Therefore, all packet dropping probabilities should be

identified first before starting to analyze RTT. Packet loss due to channel error as well

as simultaneous transmission (collision) is the point of focus based on the previous

assumptions.

It is assumed that bit errors appear in the channel randomly with Bit Error Rate (BER).

For convenience, Packet Error Rate (PER) is defined to represent the probability that

backoff occurs in a node due to bit errors in packets and is given by:

PER = 1− (1−BER)l+H (4.1)

where (l) is the packet payload size and (H) is the header size.

Let (p) denote the probability that a transmitted packet encounters a collision or is

received in error, which means at least one of the (n− 1) remaining nodes transmit

in the same time slot, while considering the impact of packet error rate (PER), the

following is obtained:

p = 1− (1− τ)n−1(1−PER) (4.2)

106

where (τ) denotes the probability that a node transmits a packet at a randomly chosen

time.

The transmission probability of a given node is adopted from Bianchi [169], as fol-

lows:

τ =
2.(1−2p)(1− p)

(1−2p)(W +1)+ pW (1− (2p)m)
(4.3)

where (W) is the minimum contention window at the MAC layer, while (m) is number

of backoff stages (equal to 6).

Equations (4.2 and 4.3) represent a nonlinear system in the two unknown parame-

ters (τ) and (P) , which can be solved using numerical techniques and has a unique

solution.

Let (Ptr) denote the probability that at least one transmission occurs in a randomly

chosen time slot:

Ptr = 1− (1− τ)n (4.4)

Let (Ps) denote the conditional probability that this transmission is successful:

Ps =
nτ(1− τ)n−1

1− (1− τ)n (1−PER) (4.5)

107

Let (Pc) denote the probability that an occurring transmission collides due to two or

more nodes transmitting at the same time:

Pc = 1− nτ(1− τ)n−1

1− (1− τ)n (4.6)

Let (Per) denote the probability that a packet is received in error:

Per =
n.τ.(1− τ)n−1

1− (1− τ)n .PER (4.7)

4.2.2 Single Hop Case

Let us have a link (s,d) that connects node (s) with node (d). Let (Ds) denote the

DATA transmission time over this link (s,d), and (As) denote the ACK transmission

time from node (d) to node (s) over the same link (s,d), then the Round Trip Time

(RTT) will be equal to:

RT T = Ds +As (4.8)

Although the transmission process of DATA packet and ACK packet are the same,

their sizes are different. Therefore, the transmission time of a packet from one node to

the next node is derived without discrimination whether it is DATA or ACK packets.

Hence, the minimum time incurred by a packet to be transmitted from node (s) to the

node (d) is given as follows:

108

Ds = E[Tsd]+
1
µs

(4.9)

where E[Tsd] is the expected time of transmitting a packet over the link (s,d) and (µs)

is the link speed.

The above analysis gives an optimistic one-way delay estimation, since it assumes that

packet arrives to an empty buffer (i.e., queuing delay is ignored). Therefore, to get a

more realistic formula the queuing delay should be added to the above estimation,

which is as follows:

Ds =
Bs+1

∑
1

(E[Tsd]+
1
µs

) (4.10)

where (BS) is the average number of packets waiting in the buffer when a new packet

arrives. Meanwhile, (BS) is estimated as follows:

Bs = λ (E[Tsd]+
1
µs

)≤ Bu f f erSize (4.11)

where (λ) is the average sending rate.

In addition to the processing time by the queue (i.e., queueing delay), the expected

time for transmitting a packet E[Tsd] over a link (s,d) consists of the following parts:

i. successful transmission time (Tss) of the packet from first node to the next one,
109

ii. backoff time (Tbos) based on the channel status and backoff window value,

iii. collision time (Tcs), and

iv. transmission error time (Ters).

The expected transmission time (Tsd) from node (s) to node (d) is equal to the sum-

mation of the following four parts:

E[Tsd] = Tss +Tbos +Tcs +Ters (4.12)

The successful transmission time value (Tss) depends on the medium access mecha-

nism and the RTS/CTS scheme, and it is defined as follows:

Tss = DIFS+TRT S +SIFS+TCT S +SIFS+TDATA +SIFS+TACK (4.13)

where TDATA,TACK,TRT S,TCT S are the transmission time of data (including payload and

header), acknowledgment, RTS and CTS packets respectively as shown in Figure 4.4.

Figure 4.4: Successful Transmission Time Based on RTS/CTS Access Method
According to [10]

The backoff time of a packet is determined by the probability of packet loss (P) at

110

the sender node (s) in the link (s,d) in addition to CW and backoff window values.

In the initial backoff level (Stage 0), the CW value has the value CWmin. After each

collision, the CW will be doubled until reaching the maximum CWmax as shown in

Figure 4.5. Given that CW is measured by time slot (σ), the expected backoff time is

calculated as follows:

Tbos =
SRL

∑
k=1

Pk−1(1−P).2k−1CW.σ (4.14)

where (σ) is the time slot length, (SRL) is the Short Retry Limit, and (CW) is the

minimum size of contention window.

Figure 4.5: Contention Window Value According to [11]

The collision time (Tc) is determined by the Initial Collision Time as shown in Figure

4.6 and the average number of collisions (NC). Tc is calculated as follows:

Tc = (DIFS+TRT S +CT S−timeout).NC (4.15)

111

where CT S−timeout is the sender’s waiting time to receive the CTS packet from the

receiver after transmission of RTS packet.

Figure 4.6: Initial Collision Time

The average number of packet collisions at the sender node (s) is needed. Suppose

(Ptr.PC) is the probability of collision of any transmission attempt, if the sender makes

independent attempts over and over, then the geometric random variable, denoted by

Nc ~ geo(1−Ptr.PC), counts the number of trials until obtaining the first successful

transmission. Accordingly, the average number of packet collisions is the expected

value of the random variable Nc. E[Nc] can be calculated as follows:

Nc =
SRL

∑
k=1

(Ptr.PC)
k−1(1−Ptr.PC)(k) (4.16)

where (SRL) is the Short Retry Limit.

The time cost of transmission error (TerS) depends on the average number of errors

(Ners) and the transmission time of TRT S, TCT S and TDATA:

TerS = (DIFS+TRT S +SIFS+TCT S +SIFS+TDATA +ACK−timeout).Ner (4.17)

112

Figure 4.7: Initial Transmission Error Time

The average number of transmission error (Ner) is the expected value of the geometric

random variable NER with the probability of transmission error (Ptr.Per). E[Ner] is

calculated by Equation 4.18:

Ners =
LRL

∑
k=1

(Ptr.Per)
k−1(1−Ptr.Per).(k) (4.18)

where (LRL) is the Long Retry Limit for data packet and its default value is equal to

4.

4.2.3 Multi-Hop Case (Generalization of RTT)

RTT is determined by the transmission time and waiting time of a DATA packet and

its corresponding ACK over all links through the path from the sender node to the

destination node. Let (Ds) denote the transmission and waiting time of a data packet;

(As) denote the transmission and waiting time of ACK packet from the destination

node (d) to the sender node (s); then the round trip time (RTT) for sending data packet

from the source node (s) and receiving its ACK is calculated as follows:

RT T = ∑
h
i=1Ds +∑

h
i=1As (4.19)

113

where (h) is the number of links (hops) between the source node (s) and destination

node (d). The round trip time is the summation of the transmission time as well as

the waiting time over each individual link between the source node and the destination

node for the DATA packet and its related ACK.

4.2.4 Model Validation

To validate the accuracy of the proposed end-to-end delay model, a linear chain as

well as dumbbell topologies were considered with a variety of scenarios using the NS-

2 simulator. The former topology (chain) is used to study the impact of multihop and

different BER; where the data packets originate at the first node in the chain and are

forwarded by the intermediate nodes to the last node of the chain. While the latter

topology (dumbbell) is used to investigate the impact of competing flows and con-

tention on TCP delay. Figure 4.8 shows a dumbbell simulated scenario. The distance

between any edge node and its neighboring intermediate node is set to 200 m. The

same distance is applied between the two intermediate nodes. AODV is used as the

routing protocol, while IEEE 802.11b DCF is used as the MAC protocol. More details

about all related parameter values have been presented in Chapter Three.

Figure 4.8: Dumbbell Topology

For each simulation scenario, the experiment is repeated ten times and the average
114

value of end-to-end delay is obtained. Then, the average value obtained from the sim-

ulation experiments is compared to the delay value calculated based on the proposed

model using MATLAB [170, 171]. Additionally, for coordination between the ana-

lytic and simulation results, the transmission rate is obtained from the simulation and

applied in the mathematical model for each case.

Figure 4.9 shows the average end-to-end delay of TCP over chain topology of one,

two, and three hops with 10−6 BER. With a single hop distance, both analytical and

simulation receive almost the same end-to-end delay values. When the number of hops

increases, the analytical model achieves a slightly higher average delay as compared

to simulation. However, both curves have the same delay trend with 90% accuracy

level accomplished by the proposed mathematical model.

1 2 3 4

100

150

200

250

Number of Hops

R
T

T
/D

el
ay

(m
s)

Simulation
Analytic

Figure 4.9: End-to-End Delay in Chain Topology with BER = 10−6

To gain a deep insight on the impact of bit error rate on delay value, the previous

scenario is repeated again with BER equal to 10−5. Figure 4.10 shows a comparison

between average end-to-end delay obtained from the simulation and the proposed an-

alytical model over one, two, and three hops chain. Again, both models produce the

115

same delay trend and the proposed delay model achieves 90% accuracy level.

1 2 3 4

100

150

200

250

Number of Hops

R
T

T
/D

el
ay

(m
s)

Simulation
Analytic

Figure 4.10: End-to-End Delay in Chain Topology with BER = 10−5

To study the impact of contention on the average end-to-end delay, dumbbell topology

is simulated with one TCP sender, and different number of competing UDP senders

with sending rate (180 Kbps), as illustrated in Figure 4.8. Figure 4.11shows the rela-

tion between end-to-end delay of TCP in three cases; single TCP sender, TCP with one

UDP competing flow, and TCP with two competing UDP flows in dumbbell topology.

0 1 2

200

250

300

350

Number of UDP Traffic

R
T

T
/D

el
ay

(m
s)

Simulation
Analytic

Figure 4.11: End-to-End Delay in Dumbbell Topology with Different Number of Back
Ground Traffic

116

Figures 4.9, 4.10, and 4.11 summarize the result of the comparison between the pro-

posed delay model and the simulation. The results prove that the proposed model is

fairly accurate with 90% accuracy level in almost all cases.

After the proposed model is validated using simulation and for the purpose of study-

ing the impact of contention and congestion in ad hoc network on end-to-end delay,

the dumbbell topology scenario is used again to calculate the delay based on the pro-

posed mathematical model. Dumbbell topology is used with three cases: i.e., single

TCP sender, TCP with one UDP flow, and TCP with two competing UDP flows. TCP

sending rate is fixed in all cases and the model is used to calculate the delay value as

presented in the Figure 4.12. Using the model, it is very clear that contention accom-

panies increasing delay. Moreover, delay increases when the number of competing

flows increases.

0 1 2

200

300

400

500

600

700

Number of UDP Traffic

R
T

T
/D

el
ay

(m
s)

Analytic

Figure 4.12: End-to-End Delay in Dumbbell Topology with Different Number of UDP
Flows of 180Kbps Sending Rate

4.3 Design Objective of Loss Detection Mechanism (LDM)

As stated in Chapter one, TCP should be able to identify congestion loss from packet

loss due to route failure or route change. However, using triple duplicate ACKs (3DU-
117

PACKs) and RTO alone are not enough to accurately determine network states. Ac-

cording to our proposed delay model, it is confirmed that network overload (con-

tention) in ad hoc networks is accompanied by increasing delay as shown in Figure

4.12. Even so, a high bit error rate contributes to increase the delay value as well.

However, most packet loss due to channel error could be recovered by the lower layer

and hide this loss from TCP. Therefore, end-to-end delay has a potential to be used

as a supporting metric to detect mobility loss from congestion loss. In line with that,

Delay-Based Loss Detection Mechanism (LDM) is proposed for TCP congestion con-

trol over ad hoc network to distinguish packet loss due to route failure and route change

from congestion loss. LDM is aimed to meet the following key features:

• Provide TCP sender with updated and accurate information about the network

condition without interfering with the traditional TCP operations.

• Maintain TCP end-to-end semantics. Furthermore, the proposed mechanism in

this research is a sender based only (i.e., no processing or data collection will be

conducted at the receiver side). Therefore, LDM is easier to be implemented in

such a heterogeneous environment.

• Use Delay as a loss indicator similar to previous works, but the proposed mech-

anism in this research applies a simpler approach to identify network condition.

Thus, LDM is expected to reduce the complexity and computational costs as

compared to others.

Traditional definition of congestion is a network overload at the bottleneck node (i.e.,

buffer overflow). Meanwhile, in ad hoc networks, contention for access to the shared

wireless channel offers the first sign of network overload or congestion. Furthermore,

simulations showed that link-layer contention induced packet drop dominates, while

buffer overflow is almost never experienced by TCP flows in typical multihop wireless
118

networks [28]. Thus, network overload becomes a phenomenon that occurs in an area

rather than in a single node and it is still accompanied by increasing delay as proven

by the proposed delay model. Consequently, it is more accurate to calculate the delay

along the forward and reverse paths to estimate the network status. However, the

following questions remain to be answered:

• How to calculate RTT samples and maintain TCP semantics?

• How to identify the RTT trend (evolution) based on the observed history of RTT

samples?

• What is the suitable sample space size? How to map RTT measurement to net-

work states?

• How to answer these questions without posing extra overhead to TCP?

All these questions will be answered by LDM mechanism.

4.4 The Design of Loss Detection Mechanism (LDM)

RTT is defined in [172] as the time interval between sending a packet and receiving

its acknowledgment (i.e., RTT measurements conflate delays along the forward and

reverse paths). For example, let (T Si) denote the sending time of packet (i), and (T Ri)

denote the receiving time of packet (i) ACK; then RTT is expressed as follows:

RT T = T Ri−T Si (4.20)

Accurate RTT estimation is necessary to identify changing network conditions. How-

ever, it may be difficult both in theory and in implementation. A solution to this issue

119

is using TCP options proposed in RFC1323 [172], where the sender places a times-

tamp in each data packet, and the receiver reflects these time stamps back in ACK

packets. Then a single subtraction gives the sender an accurate RTT measurement for

every packet, as illustrated in Equation 4.20.

The RTT values are collected by TCP sender and stored in a sample space (SS), where

the size of (SS) should be set appropriately. If it is set too small, the observed samples

are not enough to analyze network status; if it is too large, the observed samples may be

outdated or not valid. Conventional NewReno assumes a packet loss to have occurred

upon receiving of 3DUPACKS, in other words, four ACKs are enough to deduce a

packet loss event. Therefore, (SS) with four (RTT) samples will help to diagnose

network conditions. In addition to the four most recent (RTT) values, the Smooth RTT

(SRTT) will be added as well to the sample space as a representative of the previous

RTT values. As a result, the total (SS) size is equal to five and the content includes

four most recent (RTT) and (SRTT), as shown in Figure 4.13.

Value RTT1 (most recent) RTT2 RTT3 RTT4 (oldest one) SRTT

index 0 1 2 3 4

Figure 4.13: Sample Space Content

Next, the content of this (SS) should be determined to express the current network

status. The standard TCP uses RTT samples to update the averaged RTT measurement

only if the packet acknowledges some new data, i.e., only if it advances the left edge

of the send window. RTT value of any packet that contains duplicate acknowledgment

will be excluded in the calculation to avoid any fluctuation that may affect the accuracy

of smooth RTT estimation. Therefore, the sample space will contain the latest four

RTT of new ACK packets in addition to the SRTT. Figure 4.14 shows an example for

120

sample space values.

Figure 4.14: LDM Sample Space

Given the RTT samples, the proposed mechanism should indicate the trend of RTT

samples once the third DUPACKS arrived or when timeout has occurred. If the trend

is not increasing, it indicates a sign of route change or route failure. Otherwise, the

network is congested. To capture this trend, Pair Wise Comparison Test (PCT) [173] is

applied on the sample values, where each value in the sample space will be compared

to the next value, as follows:

PCT =
∑

4
k=1I(RT Tk−1 > RT Tk)

4
(4.21)

where I(X) is one if X holds (i.e., RT T1 Sample is greater than RT T2), and zero other-

wise.

PCT takes a value in the range between [0,1]. If there is an increasing trend, then PCT

121

approaches one. For the purpose of LDM, if PCT value is greater than 0.5, then the

trend is increasing. Pseudo code to illustrate LDM steps is presented as follows:

Algorithm 4.1 UPON 3rd DUPLICATE ACK or RTO
Step 1. Estimate the evolution of delay using PCT

PCT =
∑

4
k=1I(RT Tk−1 > RT Tk)

4
(4.22)

Step 2. if PCT <= 0.5 then {

Step 3. return network is not congested (ROUTE FAILURE/CHANGE status)

Step 4. } else {

Step 5. return network is congested (CONGESTION status)

Step 6. }

4.5 The Verification of LDM

Verification of LDM mechanism was done using the method illustrated in Chapter

Three. Portion of the LDM mechanism after the verification process is presented in

Figure 4.15 and confirmed the following:

• LDM has been programmed correctly, and

• LDM implementation does not contain any errors or bugs.

122

Figure 4.15: LDM Code in Eclipse

4.6 The Validation of LDM

It was proven that network congestion is accompanied with increasing delay. There-

fore, this section will focus on detecting mobility induced packet loss using the pro-

posed LDM mechanism. The validation of LDM mechanism was done to ensure that

the LDM mechanism meets its intended requirements in terms of distinguishing mo-

bility loss from congestion loss. In other words, the proposed LDM is intended to

increase the accuracy of loss detection by reducing the false alarm due to misinter-

preted mobility loss as congestion loss.

Assume two Hypotheses (H0) and (H1), where H0: Congestion is absent (Mobility

is present), H1: Congestion is present. One and only one of these hypotheses is true,

i.e., H0 and H1 are mutually exclusive.

123

Additionally, let event (A) denote that (H0) is selected and (Ac) denote that (H1) is

selected. Based on these assumptions, false alarm occurs due to choosing (H1) as

cause of packet loss when (H0) is true (congestion loss is present when it is actually

absent). Figure 4.16 shows the probability in tree structure and the average probability

of false alarm is estimated as follows:

P[FalseAlarm] = P[Ac|H0]P[H0] (4.23)

Figure 4.16: Probability Tree Structure in Normal Case

The proposed LDM focuses on distinguishing mobility loss from congestion loss lead-

ing to reduce false alarms as follows:

Let event (B) denote packet loss with increasing delay (RTT) trend and its comple-

ment (Bc) denote packet loss with non-increasing (RTT) trend. Figure 4.17 shows the

probability in tree structure in case of applying LDM. The average probability of false

alarms P[FalseAlarm] is calculated as follows:

124

P[FalseAlarm] = P[AcB|H0]P[H0] = P[Ac|H0]P[B|H0]P[H0] (4.24)

Figure 4.17: Probability Tree Structure in the Case of Using LDM

Since probability, 0 < P[(B|H0)] < 1 , is non-negligible, the proposed mechanism

achieves higher accuracy in terms of decreasing false alarms.

To give a quantitative analysis of the percentage of false alarm reduction, validation

experiments were conducted by using NS-2 simulator. The default settings of the

simulation are exactly as stated in Chapter Three. Simulations were run under non-

congested and congested scenarios. In the non-congested case, a single TCP flow was

created. In the congested case, four competing TCP flows were created. In both cases,

30 wireless nodes were initially positioned at random locations over a 400mX800m

area. Nodes move randomly following a random way point mobility model. During

the simulation, attention was given to detecting mobility losses using LDM to prove

the assumption that packet loss without increasing delay is a sign of mobility loss. For

each packet loss due to mobility, the actual network state obtained from NS-2 trace

125

file was compared to the identified network state by LDM to determine the percentage

of false alarm reduction.

Table 4.1 illustrates the percentage of false alarms reduction through non-congested

and congested scenarios, over a pause time zero and (10sec) cases. It is clear that

there is a consistent trend in the percentage of false alarm reduction in the case of

pause time zero, while the case of pause time (10sec) saw a downward trend.

Looking at the details, the percentage of false alarms reduction in the non-congested

case and pause time zero is 89.5%, and it is similarly maintained for the congested

case with 89.8%. However, in the case of pause time (10sec), the percentage of false

alarms reduction starts with 93.6%, and then dropped slightly to 80.4% .

Table 4.1: Percentage of False Alarms

Random Topology
% False Alarms

Non-congested Case Congested Case

Pause Time Zero 89.5% 89.8%

Pause Time 10 93.6% 80.4%

To eliminate the impact of randomness due to the mobility model, further experiments

were conducted with various speeds from 5, 10, and 15 m/s and different pause time

0, 10 and 20. The simulations were repeated 10 times for each speed and pause time

so as to avoid the impact of random factors. The average percentage of false alarms

reduction for non-congested case and congested case was calculated based on 90 ex-
126

periments, as shown in Table 4.2. In the non-congested case, mobility is the dominant

cause of packet loss. The observed false alarm reduction was 86.1% in the average of

90 experiments. On the other hand, in the multiple TCP flow case, congestion occurs

more frequently, and the observed accuracy reduced to 79.1%. This is due to the fact

the congestion and mobility happened at the same time in many cases. As a result, the

achieved accuracy is acceptable in all cases.

Table 4.2: Overall Percentage of False Alarms

% False Alarms

Non-congested Case Congested Case

Random Topology 86.1% 79.1%

4.7 Summary

This chapter introduced end-to-end delay model and Delay-Based Loss Detection

Mechanism (LDM) for TCP over mobile ad hoc networks. The proposed Loss Detec-

tion Mechanism (LDM) for distinguishing mobility loss from congestion loss using

delay trend was described in this chapter. TCP uses LDM only once packet loss is

detected by RTO or 3DUPACK. Results demonstrated the potential of using LDM for

reducing false alarms (i.e., distinguishing mobility induced packet loss from conges-

tion loss) and improving the accuracy of loss detection. LDM achieves around 86.5%

false alarms reduction in the non-congested case and 79.1% in the congested case.

LDM detects route failure/change loss without addressing the issue of contention loss.

Since detecting contention loss will not solve the problem, a Contention Avoidance
127

Mechanism is required to adapt the sending rate based on network conditions. The

following chapter will address this issue in greater detail.

128

CHAPTER FIVE

CONTENTION AVOIDANCE MECHANISM

In the previous chapter, Loss Detection Mechanism (LDM) was introduced to distin-

guish mobility loss from congestion loss. Furthermore, Chapter Four shows the need

for adapting the growth of congestion window to avoid contention and increase spatial

channel reuse. This chapter considers the design and implementation of Contention

Avoidance Mechanism (CAM) for TCP in ad hoc networks. Theoretical analysis of

TCP AIMD is presented in Section 5.1. Section 5.2 introduces Communication Ac-

commodation Theory (CAT) and its terminology as the main theory to be applied in

the proposed contention avoidance mechanism. In Section 5.3, the design of CAM

is discussed, while the implementation of CAM is presented in Section 5.4. Finally,

verification and validation of CAM are discussed in Section 5.5.

5.1 Theoretical Analysis

TCP congestion control is often referred to as an Additive Increase, Multiplicative De-

crease (AIMD) algorithm. TCP additively (linearly) increases its congestion window

until a triple duplicate ACKs (3DUPACKs) is received as an indication of packet loss

[161]. It then retransmits the lost packet and decreases its congestion window size

by a factor of two (multiplicatively decrease) but again begins increasing it linearly,

probing to see if there is additional available bandwidth.

AIMD is able to recover a single packet loss per window. However, it is not capable

of recovering multiple packet losses in the same congestion window and has a nega-

tive impact on TCP performance. Therefore, TCP NewReno is proposed to cater for

the recovery of multiple packet losses within the same window. Hence, it allows fast

retransmit to recover multiple losses while the sender only receives a partial new ac-

129

knowledgment and the fast recovery exits when all packets have been acknowledged.

With that, TCP was well designed to work over wired networks where most packet

losses occur due to a buffer overflow event at the bottleneck router (i.e., network over-

load). However in ad hoc networks, packet dropping may occur due to either buffer

overflow or link-layer contention. Further analysis of the packet loss reasons revealed

that link layer contention typically happens before buffer overflow [100]. In particu-

lar, packet loss due to link layer contention dominates while buffer overflow imposed

packet loss is rare [77, 174]. As a result, packet loss due to link layer contention offers

the first sign of network overload in ad hoc networks [175].

In ad hoc networks, senders within a local neighborhood have to compete for wireless

channel access before transmitting. The shared wireless channel allows a single sender

to transmit per time [176]. The likehood of packet loss due to link contention increases

when the offered load increases. Fu et al. in [28] showed that the optimal window size

(W*) at which TCP achieves the highest throughput depends on the number of hops

the TCP flow travels. However, TCP congestion avoidance mechanism increases the

window size largely beyond (W*). The large TCP window size of the sender causes

an excessive number of medium accesses leading to contention at the shared wireless

channel, thus resulting in excessive collisions and packet losses [69]. This implies that

TCP congestion avoidance, designed to adapt the sending rate (congestion window)

in wired networks, does not work well in wireless ad hoc networks where packet loss

due to link layer contention dominates. Thereby, this is considered one of the main

reasons for poor performance of TCP over IEEE 802.11 MAC protocol.

Simulation experiments were conducted to gain a deep understanding on the impact of

contention on TCP performance. Three TCP congestion control mechanisms, namely

TCP Tahoe, TCP Reno, and TCP NewReno were studied over chain and grid topolo-

130

gies with different number of hops. In each simulation experiment, a single TCP flow

runs between a pair of nodes. Single flow will cause TCP data and ACK packets of the

same flow to compete with each other (self contention) to access the shared medium.

Other ad hoc network features such as mobility, channel error, and congestion are

ignored to simplify the analysis and focus on contention.

Figures 5.1 and 5.2 show the throughput of TCP Tahoe, Reno, and NewReno in chain

and grid topologies, respectively. It is obvious that the throughput of all TCP flavors

over both topologies degrades as the number of hops increases between the source and

destination. This is because hidden and exposed terminals lead to collision among data

and ACK packets in the same flow. Additionally, results support that TCP NewReno

is recommended to be the benchmark for future improvements of TCP.

Figure 5.1: TCP Throughput in Chain Topology

131

Figure 5.2: TCP Throughput in Grid Topology

To this end, detecting contention loss will not solve the problem but avoiding the

contention has higher impact on improving TCP performance. Therefore, the main

objective of this chapter is to propose a new Contention Avoidance Mechanism (CAM)

to address this issue.

5.2 Applying CAT to TCP Congestion Control

In order to apply CAT, a foundational understanding of CAT strategies should be ob-

tained. Then, the mapping between CAT characteristics and TCP should be figured

out. The concepts and strategies invoked by CAT are available for addressing prag-

matic concerns such as understanding relational alternatives, the alignment of radio

broadcasters with their audiences, development, difficulties and outcomes in health

care, etc. The main strategies identified through CAT include discourse management,

interpretability, interpersonal control, and accommodation. Accommodation strategy

is the point of focus for this research. It can characterize wholesale realignments of

language selection or code patterns, attitudes, and socio structural conditions.

Accommodation is defined as the ability to adjust, revise, or regulate one’s behavior

132

in response to another. There are a variety of reasons for accommodating the commu-

nication including but not limited to elicit approval, maintain a positive social identity,

and achieve communicative efficiency. However, CAT maintains the following as-

sumptions [177]:

i. speech and behavioral similarities and dissimilarities exist in all conversations,

ii. the manner in which we perceive the speech and behaviors of another person

will determine how we evaluate a conversation,

iii. language and behaviors impart information about social status and group be-

longing, and

iv. accommodation varies in its degree of appropriateness, and norms guide the

accommodation process.

Accommodation has two different strategies called Convergence and Divergence.

Convergence is defined as other-directed strategy since it is deployed during the com-

munication as tendencies to emphasize similarities between the speaker (himself) and

the interlocutor. Whereas Divergence is defined as self-directed strategy targeted at

maintain one’s own speaking style without adjustments.

Convergence: Convergence has been defined as the process through which individuals

adapt to each other’s communicative behaviors to reduce interpersonal differences and

improve effectiveness of communication. People can converge in a wide range of

communication features for instance, speech rate, self-disclose, information density,

and response latency, but they do not necessarily have to converge simultaneously at

all of these levels.

Divergence: Divergence represents the opposite direction to convergence, in which
133

the individual accentuates speech and non-verbal differences between themselves and

others. Divergence can take many forms both verbal and non-verbal forms in order to

reinforce individual or group identity, maintain integrity, and distance from engaging

in lengthy conversation.

The benefits of CAT in increasing communication efficiency and accommodating the

differences in ability can meet the challenge of adapting TCP’s sending rate in ad

hoc networks [110]. More specifically, CAT is the primary theory to be applied in

proposing the Contention Avoidance Mechanism (CAM) for TCP Sintok in ad hoc

networks. CAM’s main objective is to provide TCP with contention avoidance and

control capabilities so that TCP can control the growth of congestion window and

avoid contention.

On the one hand, CAT assumes that individuals bring their background and previous

experience into conversations through their speech rate. Transferring this concept to

CAM, it is clear that current congestion window represents the previous experience of

network condition. Therefore, the congestion window parameter is preserved. CAT

also assumes that accommodation is influenced by the way in which individuals eval-

uate what takes place during a conversation, that is, how people interpret and judge

the messages exchanged in conversation. For example, a speaker initially exhibiting a

rate of 50 words per minute can move to match another speaker’s rate of 100 words

per minute or can move to a rate of 75 words per minute [178]. In ad hoc networks,

nodes are sharing the same transmission medium. Furthermore, nodes are helping

each other to transmit their data to the destination as each node is acting as a host and

an intermediate node. Therefore, there is a need to assess and estimate what happens

in the shared medium in addition to the path status from the source to the destination.

This is the missing part in the current congestion avoidance mechanism. According to

134

CAT, the proposed contention avoidance mechanism should have another parameter

in addition to congestion window to adapt the sending rate; in specific, to control the

growth of congestion window during congestion avoidance phase. CAM will evaluate

what is happening through the transmission by measuring the contention ratio during

the most recent congestion (contention) avoidance phase. Using both parameters, the

TCP sender will adapt the sending rate aiming at promoting communicative efficiency

between nodes. This goal is considered convergence since it seeks an effective com-

munication.

On the other hand, CAT assumes individuals accentuate speech and nonverbal dif-

ferences between themselves and others in order to distance themselves from their

conversation partners. The adjustment done here aims at maintaining positive image

of one’s in-group and hence to strengthen one’s social identity. This is seen as di-

vergent because the speaker wants to keep an identity with a reference group. In this

case, the interlocutors behave competitively diverging from each other by emphasing

the differences in their speech. This feature already exists in TCP where the sending

rate (i.e., congestion window size) will be cut once packet loss is detected.

5.3 The Design of Contention Avoidance Mechanism (CAM)

CAT shows the key parameters that should be included in the proposed contention

avoidance mechanism. TCP with CAM will converge to accomplish efficient commu-

nication. Nodes involved in the transmission process are expected to adjust and adapt

the sending rate according to the communicative situation of the wireless channel. The

main objectives of CAM are:

• to observe the link utilization ratio in order to maintain a high sending rate at

the TCP’s sender, with smaller rate variations, which assists to avoid contention
135

and improves link utilization; and

• to control the size of congestion window to avoid contention while maintaining

high link utilization.

In order to determine the contention level (i.e., communicative situation) of the wire-

less channel between the source node and destination node, Efficient Link Utilization

ratio (ELU) is proposed. ELU is estimated based on the Sender Utilization (U s) of the

link in addition to its Neighbors’ Utilization (Un) of the shared medium.

Let us define sender utilization as the number of data packets sent by the source plus

the number of ACKs received by the source node during period (T 0).

Us = ∑
T 0

PacketSent +∑
T 0

AckReceived (5.1)

Let us refer to neighbors’ utilization as the total number of packets lost by the sender

during period (T 0). GoBackN mechanism is applied here to estimate neighbors’ uti-

lization. Where, once packet loss is detected by RTO or 3DUPACKs, all packets in

flight are considered lost.

Un = ∑
T 0

PacketSent−∑
T 0

AckReceived (5.2)

From equations 5.1and 5.2, ELU is derived as follows:

136

ELU =
(SenderUtilization−Neighbors′Utilization)

SenderUtilization
(5.3)

ELU =
(∑T 0 PacketSent +∑T 0 AckReceived− [∑T 0 PacketSent−∑T 0 AckReceived])

∑T 0 PacketSent +∑T 0 AckReceived
(5.4)

ELU =
2(∑T 0 AckReceived)

∑T 0 PacketSent +∑T 0 AckReceived
(5.5)

where 0 < ELU ≤ 1

The ELU ratio is monitored by the sender node only during period (T 0). The length

of (T 0) should be appropriate and dynamic. Therefore, (T 0) is set to the congestion

(contention) avoidance interval. Upon receiving triple duplicate ACKs, the sender es-

timates the link contention level through the ELU ratio value as illustrated by Equation

5.5.

During congestion (contention) avoidance, conventional TCP continuously increases

its sending rate based on Equation (5.6) until a triple duplicate ACKs is received as an

indication of packet loss.

Wnew =Wcurrent +
1

Wcurrent
(5.6)

137

Whenever an ACK is received by the destination, the congestion window size is in-

creased by a fix rate equal to 1
Wcurrent

. However, it was proven that ignoring the con-

tention and increasing congestion window based on Equation (5.6) will let the window

size grow beyond the optimal size leading to high level of contention as a result degrad-

ing TCP performance. Therefore, the increase factor should be dynamic and related to

the contention status of the path as well as the shared medium status. To address this

issue, an increase factor (I) is proposed based on link utilization status. The increase

factor should be small if the utilization is high and vice versa. The increase factor (I)

is proposed to be calculated as follows:

I = 1−ELU (5.7)

where 0 < I ≤ 1 , if I = 1, this leads to the same window update rule of congestion

avoidance. In other words, the proposed scheme is compatible with the conventional

congestion avoidance mechanism.

Let us have a look at the following two cases:

i. if ELU is equal to one, this means the link is fully utilized and increasing the

window size will not provide a better performance, therefore, increase factor

will be zero, and

ii. if ELU is equal to zero, this means the link is underutilized and increasing the

window size is required, therefore, the increase factor will be one.

138

Based on CAT concepts and the above discussion, the new contention avoidance

scheme is proposed. Suppose that the current congestion window size is W , then

during the contention avoidance stage, the congestion window will be increased based

on Equation (5.8):

Wnew =Wcurrent +
I

Wcurrent
(5.8)

5.4 The Implementation of Contention Avoidance Mechanism (CAM)

The slow start algorithm is used when congestion window is less than slow start thresh-

old (cwnd < ssthresh), while the contention avoidance algorithm will be used when

congestion window is greater than or equal to slow start threshold (cwnd ≥ ssthresh).

During the slow start phase, a TCP sender increases cwnd size by at most SMSS bytes

for each ACK received that acknowledges new data. Slow start ends when cwnd size

exceeds or equals ssthresh (or, optionally, when it reaches it) or when loss is detected.

During contention avoidance period, cwnd is incremented based on the increase factor

per Round-Trip Time (RTT), implying linear growth instead of an exponential growth.

Contention avoidance continues until loss is observed. One formula commonly used

to update cwnd during contention avoidance is given in Equation (5.8). This adjust-

ment is executed on every incoming non-duplicate ACK. Equation (5.8) provides an

acceptable approximation to the underlying principles of CAT.

When the TCP sender detects packet loss using the 3DUPACKs, the value of ELU will

be calculated. Then, the increase factor of the next contention avoidance phase will be

derived. After that, fast retransmit and fast recovery will be invoked to recover from

139

the loss. The pseudo-code to illustrate the CAM steps is presented in Algorithm 5.1:

Algorithm 5.1 UPON receiving 3rd DUPLICATE ACK
Step 1. Calculate the value of ELU:

ELU =
2(∑T 0 AckReceived)

∑T 0 PacketSent +∑T 0 AckReceived

Step 2. Calculate Increase Factor (I) value

IncreaseFactor = 1−ELU

Step 3. Invoke Fast Retransmit and Fast Recovery Mechanism

During the contention avoidance phase, on the one hand, whenever the TCP sender

sends a packet, it increases the total packets sent by one. On the other hand, when-

ever ACK is received by the sender, the total ACK received will be increased by one.

Furthermore, the cwnd value will be adjusted using the recent increase factor (I) value

and current cwnd value based on the Equation (??). The pseudo-code to illustrate these

steps is presented in Algorithm 5.2:

140

Algorithm 5.2 DURING CONTENTION AVOIDANCE
Step 1. Increase the total number of PacketSent by one once packet sent

PacketSent = PacketSent +1

Step 2. Increase the total number of AckReceived by one once New Ack Received

AckReceived = AckReceived +1

Step 3. Increase congestion window based on the calculated increase factor (I)

Wnew =Wcurrent +
I

Wcurrent

As shown in the Algorithms 5.1 and 5.2, the implementation of CAM requires slight

modifications at the TCP layer without any feedback from the lower layer or inter-

mediate node. This amendment includes adding two counters for the total number of

packets sent and ACKs received; and one variable for the increase factor. These vari-

ables will be used by the sender to monitor the contention status during the contention

avoidance phase. Therefore, CAM can be deployed and implemented easily with very

minimum overload/overhead to TCP operations.

5.5 Verification and Validation of CAM

The verification’s primary concern is to ensure that the proposed CAM has been pro-

grammed correctly in the NS-2 simulation environment, and it has been implemented

properly on the computer. Verification was conducted following the techniques men-

tioned in Chapter Three. After the verification process, a snapshot of CAM implemen-

141

tation in Eclipse is illustrated in Figure 5.3 and confirmed the following:

• CAM is programmed correctly, and

• CAM implementation in NS-2 does not contain any errors or bugs.

Figure 5.3: Implementation of CAM in Eclipse

Next, CAM was validated to ensure that it meets its intended requirements in terms of

adjusting the sending rate based on the status of the shared medium. The validation

of CAM focused on examining the relationship between congestion window size and

the number of hops in a variety scenarios of multihop wireless ad hoc networks. This

is because the congestion window size is closely related to route length rather than to

the Bandwidth Delay Product (BDP). The obtained results using CAM are compared

to the standard TCP congestion avoidance and the optimal window size proposed in

theory based on the number of hops.

142

The validation was conducted using NS-2 simulator. The simulation default settings

have been provided in Chapter Three. The AODV protocol was used as it is the main

routing protocol used in the evaluation of various transport protocols. In addition,

since AODV is reactive, no routing overhead will be imposed after the route from the

source to the destination is established. A single TCP flow (of 500 seconds) was run

over two different network topologies with various number of hops in chain and grid

topologies. The result was obtained from the average of ten runs with different random

number seeds.

5.5.1 Chain Topology

It is quite common to have chain-like topology in ad hoc networks. Moreover, chain

topology offers only one path from the source node to the destination. For instance,

the successive transmission of a single TCP data flow interferes with each other as

they transfer toward the destination. Furthermore, data flow interferes with the ACK

flow (self-contention). So, chain topology impact on TCP performance can be clearly

observed as it is the most resource-limited topology. Therefore, CAM is validated over

a different number of hops in chain topology with a zero bit error rate. A single TCP

flow runs from the first node (S) of the chain and forwarded through the intermediate

nodes to the last node (D), as illustrated in Figure 5.4. All nodes are stationary and

separated by 200 m. The nodes communicate with identical, half-duplex wireless

radios. The assumption is that the source node has data packets to send, while the

destination node has ACK packets to send, while intermediate nodes have both data

and ACK packets to send. The detailed information of the simulation model is stated

in Table 3.2.

143

Figure 5.4: Chain Topology with 6-hop

The proposed Contention Avoidance Mechanism (CAM) was validated over chain

topologies with six to ten node lengths (i.e., five to nine hops). The conventional TCP

NewReno congestion avoidance was used as a reference of the performance bound.

Figure 5.5 shows the average congestion window size of CAM and TCP NewReno

over networks of chain topology within five to nine hops. Overall, TCP NewReno

congestion window size is considerably higher than CAM in all scenarios. The gap is

greatest in short chains and reduces/declines in long chains. TCP NewReno window

size fluctuates between seven packets in 5-hop and five packets in 9-hop chains, while

CAM window size increases gradually from two packets to three packets. To con-

clude, CAM gently adapts the growth of congestion window size as a result of using

the proposed increased factor. In contrast, TCP NewReno congestion avoidance could

not control the growth of congestion window size, instead the window size increased

and decreased randomly without an appropriate trend in line with the network status.

144

5 6 7 8 9

3

4

5

6

7

Numbero f Hops

C
on

ge
st

io
n

W
in

do
w

si
ze

(p
kt

) TCP with CAM
TCP NewReno

Figure 5.5: The Impacts of Chain Length in # of hops

Further validation was conducted by comparing CAM average window size with the

optimal window size obtained from real experiment results, as reported in Fu et al.

[28]. The simulation experiment was run in 6-hop and 7-hop chain topologies. The

same settings and parameters adopted in [28] were applied to the CAM simulation

experiment. Table 5.1 shows the optimal congestion window size in packets, average

window size of TCP NewReno, and average window size of TCP NewReno using

CAM in chain topologies with 6-hops and 7-hops. As shown in the table, the optimal

window size is equal to two packets in 6-hop and 7-hop chain topologies. In contrast,

TCP NewReno window size is higher than the optimal value with approximately seven

packets in 6-hop chain and six packets in 7-hop chain. CAM, meanwhile, manages

to keep average window size very close to the optimal size with 2.7 packet size in

both cases. This table shows that CAM with the new increase factor is capable of

controlling the growth of the congestion window value and keeps it very close to the

optimal window size. As a result, this would lead to improve the performance of TCP,

as will be illustrated later in Chapter Six.

145

Table 5.1: Optimal and Measured Congestion Window Size

Topology Optimal Win Size Avg. Win Size (*) Avg. Win Size (+)

6-hop Chain 2 7.4 2.7

7-hop Chain 2 5.5 2.7

* refers to TCP with congestion avoidance (original) mechanism

+ refers to TCP with contention avoidance (proposed) mechanism

5.5.2 Grid Topology

The previous section focused on validating CAM in chain topology while data packet

contends with each other as well as the ACK packet on the reverse path. This section

will present the CAM validation results using grid topology. CAM has been tested over

different scales of grid topology (5x5, 6x6, 7x7, and 8X8) with PER = 0. The optimal

value of congestion window obtained from dividing the number of hops between the

source node and the destination node to four is used as a benchmark. In this scenario,

there was only one TCP connection flow from the first node in the grid (sender) to

the last node in the grid (destination), as illustrated in Figure 5.6. Thus, packets are

lost due to contention among data and ACK packets only. All nodes are stationary,

separated by 200 m, and they communicate with identical, half-duplex wireless radios.

The detailed information of the simulation model is stated in Table 3.2.

146

Figure 5.6: Grid Topology with 5X5 Nodes

Figure 5.7 illustrates the average window size of TCP with CAM as compared with

optimal window size estimated based on the number of hops (theory) in grid topology

with different sizes. Overall, the graph shows gradual increased in window size of

both TCP with CAM and theory as the number of hops increases. Furthermore, there

is a slight difference in congestion window size between TCP with CAM and theory.

The difference becomes almost 1.9 in grid topology with 6X6 nodes.

147

5 6 7 8

2

2.5

3

3.5

Nodes nXn

C
on

ge
st

io
n

W
in

do
w

si
ze

(p
kt

) TCP-CAM
Theory h/4

Figure 5.7: TCP with CAM versus Theory Congestion Window Size in Grid with nXn
Nodes

The previous observation is further analyzed in Table 5.2. Table 5.2 presents the differ-

ence between average congestion window size of TCP with CAM and optimal window

size according to theory. It is evident that the difference declines in percentage from

22.22% in 5X5 grid, to 1.9% in 6X6 grid topology. Then, the difference increases

in percentage from 9.7% in 7X7 grid to 20.82% in 8X8 grid. This observation con-

firms that CAM responds to contention as intended and keeps sending rate close to the

optimal window size, even when the grid size increases.

Table 5.2: TCP with CAM versus Theory Congestion Window Size in Grid

Grid Size CAM Win Size Theory Win Size Difference (%)

5 X 5 2.5 2.0 22

6 x 6 2.55 2.5 2

7 X 7 2.72 3.0 10

8 X 8 2.84 3.5 21

148

To gain a deeper understanding on CAM performance, the previous scenario is re-

peated using the standard TCP NewReno. Figure 5.8 shows the average window size

of TCP NewReno as compared to optimal window size calculated based on the number

of hops (theory) in grid topology with different sizes. In brief, the graph shows gradual

increase in optimal window size (theory) as the number of hops increases, whereas the

average window size of TCP NewReno declines. In 5X5 grid, for instance, the av-

erage window size of TCP NewReno is three times more than reported by the theory

value. The gap decreases when the network size increases (i.e., the number of hops

between the sender and receiver increases). In 8X8 grid topology, TCP NewReno av-

erage window size is 5.2 packets while window size as estimated in theory is around

3.5 packets.

5 6 7 8

2

3

4

5

6

Nodes nXn

C
on

ge
st

io
n

W
in

do
w

si
ze

(p
kt

) TCP-NewReno
Theory h/4

Figure 5.8: TCP NewReno versus Theory Congestion Window Size in Grid with nXn
Nodes

Table 5.3 illustrates the difference between average congestion window size of TCP

NewReno and optimal window size according to theory in different scales of grid

149

topology. It is clear that there is a significant difference in congestion window size

between TCP NewReno and theory. In 5X5 grid, the difference in congestion window

value is (103.01%). In 6X6 grid, the difference becomes (80.95%). Then, the gap de-

creases to reach about (39.08%) in 8X8 grid topology. However, it is still considerably

high and this leads to TCP performance degrading in ad hoc networks.

Table 5.3: TCP NewReno versus Theory Congestion Window Size in Grid

Grid Size NewReno Win Size Theory Win Size Difference (%)

5 X 5 6.3 2.0 103

6 x 6 5.9 2.5 81

7 X 7 5.3 3.0 55

8 X 8 5.2 3.5 39

As a result based on Table 5.2 and Table 5.3, it it can be seen the CAM adapts conges-

tion window size closer to optimal window as compared to traditional TCP NewReno.

In 5X5 grid, the difference between CAM and theory is (22.22%) as compared to

(103.01%) in the case of TCP NewReno. The difference reduces as the grid size in-

crease. However, the difference between CAM and theory gets smaller and reaches the

smallest value with (1.9%) in 6X6 grid topology. On the other hand, TCP NewReno

difference reaches to (80.95%) which is considered very high in contrast to CAM.

Finally, the difference becomes (20.82%) between CAM and Theory in contrast to

(39.08%) for TCP NewReno.

150

5.6 Summary

Chapter Four highlighted the need to adapt the sending rate based on the current

medium conditions. This chapter explored the applicability of one matured human

theory named Communication Accommodation Theory (CAT) in computer communi-

cation. CAT shows significant impact in improving and enhancing the quality of hu-

man communication and have potential application in computer network. This Chapter

also revealed the state of the art of CAT theory by reviewing all articles published and

indexed in Scopus database between 1990 and 2012. Then, CAT assumptions and fun-

damental strategies are explained to identify all matching elements between CAT and

TCP congestion control. After that, the integration of CAT theory in TCP congestion

control was elaborated in greater detail.

Next, Contention Avoidance Mechanism (CAM) for TCP Sintok was designed based

on CAT recommendations. Two new parameters were proposed, referred to as Ef-

ficient Link Utilization (ELU) and Increase Factor (I). These parameters are used to

accommodate the sending rate in order to increase network resource utilization and

avoid contention.

Moreover, the proposed mechanism was implemented in the simulation tool. The final

section is the verification and validation of the proposed mechanism. The proposed

mechanism was verified inside the NS-2 simulator by observing the error and bugs in

the code. The validation was accomplished by examining CAM average window size

as compared to the result of real testbed experiments obtained by other researchers.

The validation requirements also were fulfilled by comparing the average window size

of CAM, conventional TCP NewReno, and the theory. Finally, the obtained results

prove the applicability of CAT in the proposed computer communication in general,

and in CAM application in specific.

151

The next Chapter introduces the new transport protocol called TCP Sintok by com-

bining the proposed two mechanisms LDM and CAM. The evaluation of the proposed

TCP Sintok will be carried out by comparing its performance with previously selected

proposals. The comparison and results will be presented in Chapter Six using the NS-2

simulation environment.

152

CHAPTER SIX

TCP SINTOK PERFORMANCE ANALYSIS

Previously, the design of LDM and CAM mechanisms were covered in Chapter Four

and Chapter Five, respectively. This chapter introduces a new TCP named TCP Sintok,

which is specifically designed for ad hoc networks. Furthermore, this chapter discusses

the new TCP design and implementation issues then presents detailed performance

evaluation of TCP Sintok. The chapter starts by describing the structure of TCP Sintok

in Section 6.1. In Section 6.2, the implementation of TCP Sintok is elaborated in

greater details. Results of the performance evaluations of TCP Sintok over the standard

TCP NewReno are discussed in Section 6.3. TCP Sintok is tested further in Section

6.4 by comparing its performance to recent related works. Lastly, discussion on the

performance evaluation is deliberated upon in Section 6.5.

6.1 TCP Sintok: An Overview

The ultimate aim of this thesis is to propose TCP Sintok for ad hoc networks. TCP

Sintok is an end-to-end transmission control protocol based on TCP NewReno. It

uses the same conventional connection establishment and tear-down approach of TCP

NewReno. Furthermore, it adopts TCP NewReno congestion control at the sender

whenever congestion state is detected at the network. In addition, TCP Sintok in-

corporates the two proposed mechanisms LDM and CAM, as elaborated in Chapter

Four and Chapter Five to improve TCP performance in ad hoc networks. Addition-

ally, TCP Sintok makes several changes and extensions at TCP sender to cope with the

new behaviors of ad hoc networks. Finally, it should be stated that the control actions

adopted at TCP Sintok sender are not necessarily the finest, however they are great

steps towards improving TCP’s performance over ad hoc networks.

153

TCP Sintok congestion control comprises the following three states: slow start, con-

tention avoidance, and fast retransmit/recovery, as shown in the Finite State Machine

(FSM) of TCP Sintok congestion control in Figure 6.1. Each state in the FSM diagram

addresses a particular condition in ad hoc networks and it is described as follows:

Slow Start:

This is the initial state after connection establishment in TCP Sintok and resembles the

conventional function of TCP NewReno. TCP Sintok enters this state when 1) TCP

connection begins and 2) timeout occurs. In the slow start, the value of congestion

window cwnd is initialized to one Maximum Segment Size (MSS) and increases by

one MSS for each incoming new ACK. This process doubles the congestion window

every RTT. Thus, TCP congestion window starts slowly/linearly. However it grows ex-

ponentially until threshold, ssthresh, is reached. Slow start ends when 1) cwnd equals

to ssthresh and TCP Sintok transitions into contention avoidance state, 2) there is a

loss event (i.e., congestion or route failure) indicated by a timeout, 3) three duplicate

ACKs are detected and TCP performs a fast retransmit and enters fast recovery state.

Contention Avoidance:

TCP Sintok increases cwnd value more cautiously when it is in contention avoidance

state. TCP Sintok enters this state when cwnd value is greater or equal to ssthresh.

TCP Sintok adopts proactive approach using CAM to control the growth of conges-

tion window and avoid contention in the shared medium. In the contention avoidance

state, TCP Sintok increases the value of congestion window by (I/cwnd) rather than

(1/cwnd) every time a transmitted segment is acknowledged. Furthermore, upon the

ACK arrival at the sender, RTT value will be saved in the sender sample space as stated

154

Fi
gu

re
6.

1:
Fi

ni
te

St
at

e
M

ac
hi

ne
of

TC
P

Si
nt

ok
C

on
ge

st
io

n
C

on
tr

ol

155

in LDM (in addition to CAM as well as the conventional operations). Moreover, the

total number of received segments will increase by one. The sender maintains these

values and proceeds with normal operations. Contention avoidance state ends when

loss is triggered by either a retransmission timeout (RTO) or third duplicate ACK being

received.

Once packet loss is detected, the sender identifies the network conditions using LDM.

In the case of retransmission timeout, if the delay trend is increasing; conventional

congestion control action will be invoked to react and recover. Otherwise, route failure

status is detected and TCP should recover in the normal way, except the RTO back off

mechanism will not be called to avoid increasing RTO timer value and reduce the

responsiveness of TCP. Hence, TCP will be in a probing state, where it transmits a

data packet and waits for its new ACK signaling that a new route is established. The

pseudo-code to illustrate these mechanism steps are presented as follows:

Algorithm 6.1 Sender Side: Upon Retransmission Timeout
Step 1. Check the network state using LDM;

Step 2. if Network status = = CONGESTION then {

Step 3. Invoke identical TCP NewReno congestion control to reccover

Step 4. Invoke RTO back off algorithm and double RTO value

Step 5. } else { // It is ROUTE FAILURE

Step 6. Invoke identical TCP NewReno congestion control to reccover .

Step 7. Reset RTO timer without increasing its value.

Step 8. }

In the case of three duplicate ACKs, if the delay trend is increasing then contention

(congestion) is detected, and the identical TCP NewReno congestion control will be

invoked. Otherwise, if route change status is detected, fast retransmit and fast recovery

156

will be invoked with exception that the new cwnd will be set to (3/4) of its current

value. After that, CAM will be invoked to calculate the Increase Factor of the next

contention avoidance phase. The pseudo-code to illustrate these mechanism steps are

presented as follows:

Algorithm 6.2 Sender Side: Upon 3rd Duplicate ACKs
Step 1. Check the network status using LDM;

Step 2. if Network status = = CONGESTION then {

Step 3. Invoke identical TCP NewReno congestion control to reccover

Step 4. } else { // It is ROUTE CHANGE

Step 5. Invoke identical TCP NewReno congestion control to reccover

Step 6. cwnd = cwnd * 3/4

Step 7. }

Step 8. Invoke CAM to calculate the Increase Factor for the next contention avoidance

phase.

Fast Retransmit/ Fast Recovery:

TCP Sintok enters the fast retransmit and fast recovery state when three duplicate

ACKs are detected in any of the other two states. In this state, the congestion win-

dow value is increased by one MSS for every duplicate ACK received for each of the

missing segment that caused the TCP to enter the fast recovery state. TCP Sintok exits

this state when 1) new ACK is received that acknowledges all missing segments, or 2)

there is a loss event indicated by a timeout.

6.2 The Implementation of TCP Sintok

TCP Sintok was implemented in the NS-2 (2.34) environment based on TCP NewReno

code. LDM and CAM mechanisms were plugged into TCP sender-side code. Incor-
157

porating LDM and CAM aims to help TCP sender to take more accurate control and

enhance TCP performance significantly. Some implementation details are provided as

follows:

Sender Side: Sample space of five doubles is allocated for storing the latest four delay

samples in addition to smooth RTT. Furthermore, two variables are declared to save

the total number of sent segments and total received segments during the contention

avoidance phase. Pairewise Comparison Test (PCT) related calculation is performed

once packet loss is triggered by RTO or third duplicate ACKs. In addition, the code

that handles third duplicate ACKs and retransmission timeouts is extended to follow

TCP Sintok design.

Receiver Side: Receiver will echo the time value stored in the TCP segments header

in its ACK header. This field records the time when this segments was sent and it will

be used by the sender to calculate the end-to-end delay value.

TCP Sintok Source code, as shown in Figure 6.2, will be made available at the Inter-

NetWorks Research Lab website: “http://internetworks.my” after the final presenta-

tion of this thesis. In addition, the author is ready to lend a hand and advice on the

implementation issues of TCP Sintok in any environments besides the NS-2 simulator.

158

Figure 6.2: TCP Sintok in Eclipse

6.3 Performance Evaluation of TCP Sintok

The main goal of these experimental evaluations is to test the ability of TCP Sintok to

react in ad hoc networks as compared to the standard TCP NewReno. The attempt was

not to measure TCP Sintok performance on a particular workload captured from a real

network, but rather to measure its performance under a range of network conditions

and scenarios. To achieve this goal, the focus was set on three network topologies,

namely chain, grid, and random with a variety of workloads and network conditions.

159

6.3.1 Chain Scenario

It is quite common to have chain-like topologies in ad hoc networks. Moreover, chain

topology is the most resource-limited case that offers only one path so that its impact

on TCP performance can be clearly observed. Therefore, TCP Sintok was tested over

5-hop and 6-hop chain topologies with varying channel error rates ranging from (0%)

to (10%). Single TCP flow runs from the first node (S) of the chain to the last node (D)

of the chain as illustrated in Figure 6.3. All nodes are stationary and separated by 200

m, where they communicate with identical, half-duplex wireless radios. The detailed

information of the simulation model is stated in Table 3.2.

Figure 6.3: Chain Topology with 6-hop

Figure 6.4 shows average throughput of TCP Sintok and TCP NewReno in a 5-hop

chain topology with channel error rates between (0%) to (10%). Both TCPs experi-

enced a considerable decline as the channel error rate increases. When channel error

rate is equal to zero, TCP Sintok average throughput is equal to (219.8 Kbps). Af-

ter that, there was a dramatic decline between channel error rates equaling to (3%)

and (7%); then it stabilized at about (12 Kbps) with channel error more than (8%).

Over the same channel error rate, TCP NewReno started at (188.5 Kbps) with (0%)

error rate and dropped dramatically to (6 Kbps) at (10%) channel error rate. In brief,

TCP Sintok achieves higher average throughput than TCP NewReno over all presented

channel error rates. Remarkably, the performance gap between TCP Sintok and TCP

NewReno increases with the channel error rate to reach almost double at channel error

160

equal to (10%).

0 2 4 6 8 10
0

50

100

150

200

PER

T
hr

ou
gh

pu
t(

K
bp

s)

TCPSintok
TCPNewReno

Figure 6.4: Throughput in Chain Topology with 5-hop

Figure 6.5 shows the average throughput in Kbps of TCP Sintok and TCP NewReno

in 6-hop chain topology with channel error rates between (0%) to (10%). The graph

demonstrated similarities between TCP Sintok and TCP NewReno throughput over

5-hop and 6-hop chain. Over all, average throughput declines sharply as the channel

error rate rises. However, the average throughput of TCP Sintok achieves approxi-

mately two times higher than TCP NewReno at (10%) channel error.

161

0 2 4 6 8 10

0

50

100

150

200

PER

T
hr

ou
gh

pu
t(

K
bp

s)

TCPSintok
TCPNewReno

Figure 6.5: Throughput in Chain Topology with 6-hop

From the above Figures 6.4 and 6.5, it is clear that average throughput decreases as

channel error rate increases. Yet, TCP Sintok achieves better throughput than TCP

NewReno in all previous cases. The next scenario is to study TCP Sintok in a grid

topology with different number of hops.

6.3.2 Grid Scenario

As mentioned previously, the grid topology has much more redundancy that provides

alternative routes and back-up resources as compared to chain topology. In this sub-

section, TCP Sintok has been tested over different scales of grid topology (5X5, 6X6,

7X7, 8X8, and 9X9) with (ChannelErrorRate = 5%). Two crossing TCP flows coex-

ist to see the possible performance improvement. An example of grid topology with

(5X5) nodes is shown in Figure 6.6. All nodes are stationary and separated by (200

m), where they communicate with identical, half-duplex wireless radios. The detailed

information of the simulation model is stated in Table 3.2.

162

Figure 6.6: Grid Topology with 5x5 Nodes

Figure 6.7 illustrates the average throughput in Kbps of TCP Sintok and TCP

NewReno over grid topology with different sizes scale from (5X5) to (9X9) nodes.

The general trend of TCP Sintok and TCP NewReno was a decline in the average

throughput as the number of hops increases between the sender and the receiver. How-

ever, TCP Sintok achieves higher throughput in all grid scales. For instance at (5X5)

grid, the average throughput of TCP Sintok is (73.8 Kbps) while TCP NewReno is

(63.2 Kbps). Approximately, TCP Sintok achieves (16.6%) higher throughput com-

pared to TCP NewReno. As the number of hops increases, TCP Sintok manages to

accomplish higher throughput. At (9X9) grid, TCP Sintok achieves (33%) higher than

TCP NewReno. Overall, it can be seen that average throughput of TCP Sintok was far

higher than the TCP NewReno in all grid sizes.

163

5 6 7 8 9

30

40

50

60

70

80

Number of Node nXn

T
hr

ou
gh

pu
t(

K
bp

s)

TCP−Sintok
TCPNewReno

Figure 6.7: Throughput in Grid Topology with nXn Nodes

Figure 6.8 presents the average end-to-end delay of TCP Sintok and TCP NewReno

over different grid size. As far as TCP NewReno is concerned, the average delay fluc-

tuated between (198.7 ms) and (359.4 ms). In contrast, TCP Sintok average delay in-

creases gradually from approximately (119.7 ms) to around (312.4 ms). Interestingly,

TCP Sintok reduces end-to-end delay significantly as compared to TCP NewReno.

5 6 7 8 9
100

150

200

250

300

350

Number of Node nXn

D
el

ay
(m

s)

TCPsintok
TCPNewReno

Figure 6.8: Delay in Grid Topology with nXn Nodes

164

6.3.3 Random Scenario

In order to model a more realistic network environment, TCP Sintok was evaluated

over a random topology of (30) mobile nodes moving according to Random Way Point

Mobility Model over a rectangular area (400m X 800m) for (500 sec) of simulation

time. The node speeds were varied from (5, 10, 15, and 20 m/s) with pause time

(0), and AODV was used as a routing protocol. A rectangular area was selected in

order to force the use of longer routes between the source node and the destination

node. All nodes were randomly distributed. The detailed information of the simulation

configuration and parameter values are provided in Table 3.2.

The simulations were performed under moving nodes with 5% channel error rate to

represent a rather noisy wireless channel and three competing TCP flows in addition

to the main one to introduce contention in the network. Three different performance

metrics, which are throughput, delay, and jitter were analyzed to study the performance

of TCP Sintok.

Figure 6.9 shows average throughput of the main flow for TCP Sintok and TCP

NewReno over a random topology. The vertical axis represents the average throughput

in Kbps. The horizontal axis represents the speed from (5 m/s) to (20 m/s). In (5 m/s)

speed, TCP Sintok throughput started at (368 Kbps), reached a peak in (10 m/s) of

(391.6 Kbps). This is followed by dramatic decline to its lowest value of (320 Kbps)

at (20 m/s). TCP NewReno throughput over the same speeds followed a similar trend,

but with lower values. Also both TCPs suffered from performance degradation as the

speed increases. However, there was considerable increase in TCP Sintok throughput

over TCP NewReno in all speed cases.

165

5 10 15 20

320

340

360

380

Speed (m/s)

T
hr

ou
gh

pu
t(

K
bp

s)

TCPSintok
TCPNewReno

Figure 6.9: Throughput in Random Topology

Figure 6.10 presents average end-to-end delay of TCP Sintok and TCP NewReno with

a variety of node movement speeds. As far as TCP NewReno is concerned, the aver-

age delay fluctuated between (184 ms) and (175 ms). In contrast, TCP Sintok delay

increased gradually from approximately (31 ms) to around (40 ms) on speed (20 m/s).

Interestingly, TCP Sintok reduces end-to-end delay significantly as compared to TCP

NewReno.

5 10 15 20

50

100

150

200

Speed (m/s)

D
el

ay
(m

s)

TCPSintok
TCPNewReno

Figure 6.10: Delay in Random Topology

166

The next Figure 6.11 illustrates average delay jitter differences of TCP Sintok and TCP

NewReno over four different speeds. Although both groups showed a gradual rise in

jitter as the nodes speed up, except for a slight drop at speed (10 m/s), TCP NewReno

seemed to have higher jitter than TCP Sintok. In brief, TCP Sintok achieves between

(29.6%) and (36.47%) lower than TCP NewReno jitter.

5 10 15 20
12

14

16

18

20

22

24

Speed (m/s)

Ji
tte

r(
m

s)
TCPSintok
TCPNewReno

Figure 6.11: Jitter in Random Topology

As a conclusion, TCP Sintok and TCP NewReno were compared in random topology

and results are presented in Figures 6.9 to 6.11. The analysis shows that both TCP

Sintok and TCP NewReno behave similarly in the dealing with various speeds and

network conditions. TCP Sintok achieves slightly higher throughput when compared

to TCP NewReno, and also TCP Sintok reduces significantly the average delay and

average Jitter experienced by FTP traffic. In the next section, the analysis is extended

to compare the performance of TCP Sintok with two recent proposals for ad hoc net-

works called ADTCP and ELFN.

167

6.4 Performance Improvement of TCP Sintok

While Section 6.3 focused on studying the ability of TCP Sintok to react in different

network conditions as compared to the conventional TCP NewReno, this section aims

to evaluate the performance of TCP Sintok relative to current TCP proposals for ad hoc

networks. Two proposals named ADTCP and ELFN were chosen to compare TCP

Sintok performance through an extensive simulation, since any performance gained

that is close to ADTCP or TCP ELFN would indicate the effectiveness of any proposal.

For all the simulation results discussed in this section, all settings and parameters

are kept identical to those in [1]. Thirty nodes move randomly in a (400m X 800m)

topology. The nodes follow Random Way Point Mobility Model in which the pause

time is set to zero so that each node is constantly moving. Dynamic Source Routing

(DSR) is used as routing protocol. The nodes communicate with identical, half-duplex

wireless radios. The data transmission and data packet size is set to (2 Mbps) and

(1460 bytes), respectively. Each value presented in any graph is the average of ten

experiments and each simulation experiment is run for (300sec). In addition to TCP

flow, three competing UDP/CBR flows are run to introduce congestion within the time

intervals [50,250], [100,200], and [130, 170], respectively. Each UDP flow transmits

at (180 Kbps). Three different scenarios will be carried out, the first is mobility only,

second mobility with 5% channel error rate, and final scenario is combined mobility

with 5% channel error rate in addition to three UDP flows.

6.4.1 TCP Sintok versus ADTCP

ADTCP is the first multi-metric end-to-end approach and it has served as a basis for

many later approaches. ADTCP was tested not only in simulation environment but real

testbed as well; and it improves TCP performance significantly in both cases. There-

fore, comparing the performance of any proposal to ADTCP is an essential step to

168

provide support for the new proposal. This section evaluates TCP Sintok performance

as compared to ADTCP in the NS-2 simulation environment.

6.4.1.1 Mobility Scenario

This scenario analyzes the performance of TCP Sintok and ADTCP in random topol-

ogy with single TCP flow and zero error rate. Figure 6.12 compares the average

throughput of TCP Sintok and ADTCP over (5 m/s), (10 m/s), (15 m/s), and (20 m/s)

speeds. As far as TCP Sintok is concerned, the average throughput decreased slightly

as the speed increases. In specific, the average throughput is (646.5 Kbps) at (5 m/s)

speed and declines to (588.6 Kbps) at (20 m/s). By contrast, ADTCP throughput

suffers a significant drop at the same speed rates from approximately (122.7 Kbps)

to (48.8 Kbps) at (20 m/s) speed. Interestingly, the graph showed that TCP Sin-

tok achieves a considerable increase over ADTCP from (136.2%) at (5 m/s) speed

to (169.3%) at (20 m/s) speed.

5 10 15 20
0

200

400

600

Speed(m/s)

T
hr

ou
gh

pu
t(

K
bp

s)

TCPSintok
ADTCP

Figure 6.12: Throughput over Different Speeds

169

6.4.1.2 Mobility with 5% Channel Error Scenario

In this section, the previous scenario is repeated with 5% channel error instead of 0%.

Figure 6.13 shows the differences in throughput over four different speeds. The aver-

age throughput of TCP Sintok has been relatively stable over all speeds. In contrast,

the throughput of ADTCP has suffered a severe decline, particularly in (20 m/s) speed

when throughput fell dramatically to (34.1 Kbps) as compared to TCP Sintok (363.4

Kbps). In (5 m/s) speed, TCP Sintok achieves (121.2%) better/higher average through-

put than ADTCP, then the gap increases as the node movement speeds up and reaches

to the highest at 20m/s with (165.7%).

5 10 15 20
0

100

200

300

400

Speed(m/s)

T
hr

ou
gh

pu
t(

K
bp

s)

TCPSintok
ADTCP

Figure 6.13: Throughput over Different Speeds and 5% Channel Error Rate

6.4.1.3 Mobility with 5% Channel Error and Three UDP Flows

In this scenario, three UDP flows are added to the last scenario to make it more re-

alistic. Figure 6.14 shows the average throughput of TCP Sintok and ADTCP over

four different speeds. Over all speeds, the average throughput of TCP Sintok has

steadily decreased while ADTCP throughput dropped dramatically. In speed (5 m/s),

TCP Sintok average throughput is (269.6 Kbps), around (128%) better than ADTCP

throughput. As the node speed rises up, TCP Sintok continues to gain more throughput

170

than ADTCP at approximately (156.3%) at (10 m/s) and (159.2%) at (15 m/s), respec-

tively. Interestingly, the performance improvement of TCP Sintok reaches (167.9%)

more than ADTCP at (20 m/s) speed.

5 10 15 20
0

100

200

Speed(m/s)

T
hr

ou
gh

pu
t(

K
bp

s)

TCPSintok
ADTCP

Figure 6.14: Throughput over Different Speeds, 5% Channel Error Rate, and Three
UDP Flows

Over all, TCP Sintok and ADTCP are compared and results are presented in Figures

6.12 to 6.14 . The analysis showed that both TCP Sintok and TCP NewReno behave

similarly in dealing with various speed and network conditions. However, TCP Sintok

increases the average throughput experienced by FTP packets significantly between

(121%) at speed (5 m/s) to (169%) at speed (20 m/s). Next section extends the analysis

to compare TCP Sintok with ELFN.

6.4.2 TCP Sintok versus TCP ELFN

TCP ELFN collects route state information from the network layer directly. Therefore,

it is expected to be more accurate. The previous scenario (i.e., TCP Sintok vs ADTCP)

is replicated with the difference in the transport protocol deployed. The comparison

between TCP Sintok and ELFN is conducted using the same network configuration

171

and setting presented in this work [1].

6.4.2.1 Mobility Scenario

This scenario analyzes the performance of TCP Sintok and ELFN in random topology

with single TCP flow and zero error rate. Figure 6.15 compares the average throughput

of TCP Sintok and ELFN over (5 m/s), (10 m/s), (15 m/s), and (20 m/s) speeds. As

far as TCP Sintok is concerned, the average throughput decreases slightly as the speed

increases. In specific, the average throughput is (646.5 Kbps) at (5 m/s) speed and de-

clines to (588.6 Kbps) at (20 m/s). By contrast, ELFN throughput suffers a significant

drop at the same speed rates from approximately (146.5 Kbps) to (58.6 Kbps) at (20

m/s) speed. Interestingly, The graph showed that TCP Sintok achieves a considerable

increase over ELFN from (126.1%) at (5 m/s) speed to (163.7%) at (20 m/s) speed.

5 10 15 20
0

200

400

600

Speed(m/s)

T
hr

ou
gh

pu
t(

K
bp

s)

TCPSintok
ELFN

Figure 6.15: Throughput over Different Speeds

6.4.2.2 Mobility with 5% Channel Error Scenario

In this section, the previous scenario is repeated with (5%) channel error. Figure 6.16

shows the differences in throughput over four different speeds. The average throughput

of TCP Sintok has been relatively stable over all speeds. In contrast, the throughput of

172

ELFN has suffered a severe decline, particularly in (20 m/s) speed when throughput

fell dramatically to (39.1 Kbps) as compared to TCP Sintok (363.4 Kbps). In (5 m/s)

speed, TCP Sintok achieves (109.1%) better/higher average throughput than ELFN,

then the gap becomes wider as the node speed increases and reaches the highest at (20

m/s) with (161.1%).

5 10 15 20

100

200

300

400

Speed(m/s)

T
hr

ou
gh

pu
t(

K
bp

s)

TCPSintok
ELFN

Figure 6.16: Throughput over Different Speeds and 5% Channel Error Rate

6.4.2.3 Mobility with 5% Channel Error and Three UDP Flows

In this scenario, three UDP flows are added to the last scenario to make it more real-

istic. Figure 6.17 shows the average throughput of TCP Sintok and ELFN over four

different speeds. Over all speeds, the average throughput of TCP Sintok has steadily

decreased while ELFN throughput dropped dramatically. In speed (5 m/s), TCP Sin-

tok average throughput is (269.6 Kbps), almost (123%) better than ELFN throughput.

As the node speed rises up, TCP Sintok continues to gain more throughput than ELFN

with approximately (143.6%) at (10 m/s) and (156.2%) at (15 m/s), respectively. In-

terestingly, the performance improvement of TCP Sintok reaches (165%) more than

ELFN at (20 m/s) speed.

173

5 10 15 20
0

50

100

150

200

250

Speed(m/s)

T
hr

ou
gh

pu
t(

K
bp

s)
TCPSintok
ELFN

Figure 6.17: Throughput over Different Speeds, 5% Channel Error Rate, and Three
UDP Flows

To conclude, TCP Sintok performance is compared to ELFN through this section and

the results are presented in Figures 6.15 to 6.17. TCP Sintok achieves higher through-

put than ELFN, which is between (109.1%) and (165%). Next section discusses the

results that have been presented in Sections 6.3 and 6.4.

6.5 Discussion on TCP Sintok Performance

This section discusses and analyzes TCP Sintok performance in ad hoc networks based

on the experimental results obtained in Section 6.3 and Section 6.4. It presents a

summary of several tests conducted to look into the behavior of TCP Sintok under

a variety of network conditions and scenarios. In specific, it illustrates the effects of

each individual factor, namely error rate, number of hops, contention, routing protocol,

speed, and network topology, as well as a combination of these factors on TCP Sintok

performance, which are as follows:

Impact of different channel error rate: Channel errors are masked pretty well by the

174

back-off and retransmission mechanism of IEEE 802.11 MAC protocol. However, the

presence of high channel error rate has negative impact on TCP performance. This is

true for both TCP Sintok and TCP NewReno, as shown in Figures 6.4 and 6.5 where

the performance drops as the error rate increases. However, TCP Sintok manages

to gain higher throughput, which is in contrast to TCP NewReno in a very resource

constrained topology (i.e., chain topology). The explanation is that since TCP Sintok

reduces self-contention between its data and ACK segments that leads to reduce the

impact of back-off mechanism of the underlying protocol. As a result, TCP Sintok

throughput is improved.

Impact of different number of hops: Also, RTS/CTS plays an important role to avoid

collision and hidden terminal, yet it becomes less effective as the number of hops

between the source and the destination is increased. On the other hand, increasing

the number of hops between the sender node and receiver node allows the sending

more data simultaneously (i.e., one segment can run in four hops, and two in eight

hops and so on). This will raise the probability of collision and contention resulting

in degraded TCP performance. From the plot of Figure 6.7 and 6.8, it is clear that the

performance of TCP Sintok and TCP NewReno drops as the number of hops increases.

However, TCP Sintok achieves higher throughput and lower average delay due to its

CAM mechanism that sets the congestion window size according to the contention

level of the medium. More interestingly, the performance gap between TCP Sintok

and TCP NewReno grows as the number of hops increases and TCP Sintok performs

(33%) better throughput than TCP NewReno.

Impact of different routing protocols named AODV and DSR: The characteristics of

different routing protocols have significant effects on TCP performance. Most studies

reported in the literature considered one particular routing protocol during the eval-

175

uation phase. However, this does not give a clear view on the performance of the

proposed transport protocol. In many simulation experiments carried out in this work,

as shown in Figures 6.9, 6.10, 6.12, and 6.15, TCP Sintok performance has been tested

using AODV and DSR over different scenarios and conditions. Even so, TCP Sintok

performance is affected by the type of routing protocol, but it outperforms other pro-

tocols regardless of the routing protocols being used. This is due to the ability of TCP

Sintok to detect mobility loss from congestion loss using its LDM without depending

on the underlying protocols.

Impact of different speeds: When the mobility is high, the performance of TCP de-

pends on the routing protocols. From the plot of Figures 6.12, 6.13, 6.15, and 6.16,

it was observed that, as a general trend, the performance of TCP Sintok and those of

ADTCP and ELFN performance would decrease as the mobility speed is increased.

However, the drop in ADTCP and ELFN performance is much more dramatic when

compared to that of TCP Sintok. This is because of TCP Sintok’s fast response to

topology changes as compared to the other which are wasting time in the backoff

phase when a new effective path is discovered.

Impact of topologies: The ad hoc network could be represented in a variety of topolo-

gies depending on the implementation environments. Among the most popular static

topologies are chain and grid. TCP Sintok was evaluated in 5-hop and 6-hop chain

topology as well as a range from (5x5) to (9X9) grid topology. In static topology,

TCP Sintok has achieved better performance as compared to TCP NewReno due to

its CAM. Moreover, this study reports on random topology over a rectangle area of

400mX800m size and 30 mobile nodes moving using Random Way Point Model.

Again, TCP Sintok outperforms TCP NewReno in random topology as shown in Fig-

ures 6.9, 6.10, and 6.11.

176

Impact of multiple factors: In order to emulate a real environment, different factors

such as contention, mobility, and channel error, should appear simultaneously within

the same scenario. Among these factors, contention has the most significant negative

impact on TCP performance. It happens before congestion and indicates the first sign

of network overload. In addition, increasing the speed from slow to fast affects TCP

performance. As shown in Figures (6.12, 6.13, 6.14) and Figures (6.15, 6.16, 6.17),

the improvement potential of ADTCP and ELFN has the tendency to decrease in the

existence of competing flows as well as increasing node speeds. However, in contrast,

the combination of LDM and CAM successfully increases TCP Sintok responsiveness

to topology change and reduces the contention in the shared medium and increase

special channel reuse, thus leading to a better overall performance by TCP Sintok, as

compared to ADTCP and ELFN.

6.6 Summary

This chapter introduced a new transport protocol named TCP Sintok, specially for ad

hoc networks. TCP Sintok was developed to extend the TCP NewReno functionalities.

The design of TCP Sintok was discussed in this chapter. Then, the proposed protocol

was implemented in the NS-2 simulation environment. Following this, the proposed

protocol was evaluated inside the NS-2 simulator by observing different performance

metrics over a variety of scenarios.

The evaluation was accomplished by examining TCP Sintok’s average throughput,

delay, and jitter as compared to that of TCP NewReno in different topologies. The

evaluation criteria have also been fulfilled by comparing the average throughput of

TCP Sintok over two recent proposals, named ADTCP and ELFN in random topology.

Finally, the obtained results showed that TCP Sintok outperforms three other TCP

proposals over ad hoc networks. Furthermore, TCP Sintok has been proven to be the

177

proper choice for developers and normal users in ad hoc networks.

178

CHAPTER SEVEN

CONCLUSION AND FUTURE WORKS

This thesis aimed at developing a new Transmission Control Protocol (TCP) called

TCP Sintok for mobile ad hoc networks, and evaluated its performance extensively

via simulation. This chapter provides the conclusion of the research work. It starts

with Section 7.1, where the research findings and importance of the TCP Sintok are

discussed with possible implementation and its benefits towards ad hoc networks. In

Section 7.2, the contributions made by this research are highlighted. The limitations

of the research is then presented in Section 7.3. Finally, Section 7.4 offers some sug-

gestions for further studies.

7.1 Summary of the Research

The decentralized nature of ad hoc networks, in contrast to wired networks, comes with

new features (pros) and challenges (cons) that violate the design concept of the Trans-

mission Control Protocol (TCP), since TCP was well designed to work over wired

networks where most packet losses occur due to network congestion at bottle-necked

routers. However, in mobile ad hoc networks, packet losses mostly occur due to node

mobility or link layer contention leading to the degradation of overall network TCP

performance. Yet, end users expect TCP to continue to provide fast and reliable data

delivery service without posing any drawback or side effects in ad hoc networks.

As was mentioned in Chapter 1, the research work presented in this thesis was moti-

vated by the need for a new TCP to improve the performance of reliable data delivery

over IEEE 802.11 DCF ad hoc networks. The main aim of this thesis was to introduce

a new TCP, named TCP Sintok, which responds to mobility induced packet loss ac-

curately, controls the growth of congestion window correctly according to the current

179

network conditions, and reacts to different types of packet loss appropriately.

It was observed and concluded that the current TCPs cannot handle the challenges

caused by the mobility features and contention on wireless channels in mobile ad hoc

networks, which have a negative impact on TCP performance. For instance, TCP

NewReno, which is the default TCP recommended by IETF for the Internet, suffers

from low throughput, high delay, high delay variance (jitter), and high packet loss,

as explained in detail in Chapter 2. This has encouraged and prompted this research

effort to introduce TCP Sintok for mobile ad hoc networks.

Design Research Methodology (DRM) was adopted as a framework and guideline

to accomplish this research. In addition, network modeling and simulation process

proposed by Guizani et al. [118] as well as Jain [9] were adopted to achieve the

research objectives.

Firstly, delay-based Loss Detection Mechanism (LDM) over mobile ad hoc networks

was introduced in Chapter Four. LDM determines the cause of packet loss by monitor-

ing the trend of delay samples and reacts according to the packet loss type. Theoretical

and simulation results showed that TCP with LDM improves loss detection accuracy.

Next, a novel Contention Avoidance Mechanism (CAM) was developed in Chapter

Five. The proposed mechanism was inspired by Communication Accommodation

Theory (CAT) in adapting the sending rate (congestion window). A new efficient

link utilization method was proposed for use in adjusting the sending rate. Simula-

tion experiments had confirmed that the proposed mechanism controls the growth of

congestion window within the optimal window size. This proposed mechanism was

validated using simulation experiments.

180

A series of experimental studies were conducted to validate the effectiveness of TCP

Sintok in identifying the cause of packet loss and adapting the sending rate appropri-

ately. Two variants of TCP protocol, known as ADTCP and ELFN, in addition to the

traditional TCP were chosen to evaluate the performance of TCP Sintok through sim-

ulation. The results demonstrated that TCP Sintok improves jitter, delay, and through-

put as compared to these current variants. The findings have significant implication in

providing reliable data transfer within MANET and thus encourage the development

of new ad hoc network applications. Thus, it aids in supporting the deployment of ad

hoc networks on mobile device communications.

In completing the TCP Sintok performance evaluation, the results confidently empha-

sizes the fact that the framed objectives of this research, as presented in this thesis,

have been well and wholly achieved.

7.2 Research Contributions

The overall contribution of this research was to develop a new TCP to improve the

performance of ad hoc networks. A mathematical model for end-to-end delay was

developed to investigate the impact of congestion on delay trends. Furthermore, a

loss detection mechanism and contention avoidance mechanism were proposed to in-

duce enhancements within TCP Sintok. The specific contributions of this thesis are as

follows:

i. The development of a performance model for TCP over ad hoc networks can

serve as a benchmark for any intended improvement and enhancement of TCP

in this dynamic environment.

ii. The improvement in the accuracy of packet loss detection in TCP congestion

control was achieved by introducing a new Loss Detection Mechanism (LDM).
181

a. The development of a mathematical model of end-to-end delay was per-

formed to study the impact of congestion and contention network condi-

tions on delay trend.

b. The validation of the proposed delay model was achieved by comparing

the model results with results obtained from a valid network simulator.

c. The design of delay-based loss detection mechanism (LDM) was formu-

lated which is capable of efficiently distinguishing mobility loss from con-

gestion loss within ad hoc networks.

d. The verification and validation of the proposed LDM was performed by

implementing it in NS-2 simulation environment and comparing the iden-

tified network state by LDM and the actual network state in trace file.

iii. The adaptation of the sending rate of TCP congestion control based on the

current network condition was made by designing a new contention avoidance

mechanism to help TCP control the growth of congestion window to avoid con-

tention and enhance network resource utilization.

a. Exploring the applicability of Communication Accommodation Theory

(CAT) was performed in computer communication.

b. The design of Contention Avoidance Mechanism (CAM) based on CAT

features and properties was carried out, which is able to accurately adapt

congestion window size according to the network condition leading to op-

timal resource utilization.

c. The verification and validation of the proposed CAM was achieved by im-

plementing it in NS-2 and comparing the obtained results with other results

produced by real test bed experiments.

iv. The development TCP Sintok for ad hoc networks was based on the standard

TCP NewReno.

182

a. Incorporation of the proposed LDM and CAM in TCP sender was

achieved.

b. The modification of TCP Congestion control actions according to network

status was performed.

c. The evaluation of TCP Sintok over a variety of scenarios was illustrated

by implementing it in NS-2 and showing significant improvement over the

standard TCP NewReno (legacy TCP).

d. The comparison of TCP Sintok to recent related works (namely, ELFN and

ADTCP) showing significant performance gained was performed.

7.3 Research Limitation

Although this study was conducted under careful selection and application of a set

of supporting methods and guidelines, it is limited to specific and precise utilization.

First of all, the proposed network topologies used in the implementation are widely

used and proven in ad hoc networks. The research was conducted in specific net-

work conditions and environments, and not including all the topologies and structures.

Moreover, the number of nodes used in the validation and performance evaluation was

limited and fixed, whereas in real ad hoc networks it is unpredictable and changeable.

Furthermore, not all types of IEEE 802.11 standards were used between the nodes, the

focus was only on IEEE 802.11 DCF b. Moreover, the random way point mobility

model was not discussed since it was presumed to not affect the result at all. However,

network behavior is always unpredictable. Also, only FTP was used during the eval-

uation phase, and not all applications were discussed due to the time limitation and

experiment sophistication.

183

7.4 Future Works

The proposed mechanisms in this research improve the performance of TCP in a va-

riety of scenarios. However, there are some limitations as well as pending works that

can be pursued for future directions. This section outlines some possible extensions,

which are as follows:

Extending end-to-end delay model:

The proposed delay model in Chapter 4 was designed with focus on contention, con-

gestion, and random channel error (Uniform Error Model). More accuracy appears

to be possible if another network state is adopted in the model. In addition, different

error distribution could be evaluated to determine to what extent they may influence

the model accuracy.

Automatic setting of congestion window size and RTO:

TCP Sintok was evaluated with fixed actions adopted at the sender to set cwnd and

RTO values upon packet loss detection. However, to accelerate the responsiveness,

cwnd and RTO values could be adaptive dynamically according to network conditions.

A customized increase factor:

The proposed CAM is currently focused on the sender side and maintained end-to-

end semantics. It is well-known that cross layers can give more accurate information,

but it would increase the complexity and deployability of the proposed mechanism.

Therefore, it is worth to conduct a comprehensive investigation on the cross layer

approach to deal with the effect of dynamic link layer contention.

184

Extending interoperability of TCP Sintok across and beyond the Internet:

The proposed TCP Sintok is completely customized to wireless ad hoc networks.

Users may find it useful to be connected with the Internet. In such scenarios, the TCP

in ad hoc network is required to be able to establish a connection with the Internet.

Furthermore, it is necessary to have some sort of gateway to establish this interopera-

tion. To investigate the presented changes and functionalities required in TCP Sintok

is indeed a viable extension of this research.

Evaluation of TCP Sintok in a testbed:

Although TCP Sintok was evaluated comprehensively and extensively through a val-

idated simulator, its implementation in a real testbed is definitely of interest. Fur-

thermore, to evaluate TCP Sintok using real traffic is surely a good extension to be

performed in extending the life of this research.

185

REFERENCES

[1] Z. Fu, B. Greenstein, X. Meng, and S. Lu, “Design and Implementation of a
TCP-friendly Transport Protocol for Ad Hoc Wireless Networks,” in Network
Protocols, 2002. Proceedings. 10th IEEE International Conference on. IEEE,
2002, pp. 216–225.

[2] R. Jain, Art of Computer Systems Performance Analysis: Techniques for Exper-
imental Design Measurements Simulation and Modeling. John Wiley & Sons,
Inc., 1991.

[3] M. Małowidzki, “Network Simulators: A Developer’s Perspective.” Citeseer,
2004, pp. 1–9.

[4] A. Al Hanbali, E. Altman, and P. Nain, “A Survey of TCP over Ad Hoc Net-
works,” IEEE Communications Surveys & Tutorials, vol. 7, no. 3, pp. 22–36,
2005.

[5] J. Kurose and K. Ross, Computer Networks: A Top Down Approach Featuring
the Internet. Pearson Addison Wesley, 2012.

[6] M. Z. Oo and M. Othman, “The Effect of Packet Losses and Delay on TCP
Traffic over Wireless Ad Hoc Networks,” in Mobile Ad-Hoc Networks: Appli-
cations, X. Wang, Ed. InTech, 2011, pp. 425–450.

[7] F. Wang and Y. Zhang, “Improving TCP Performance over Mobile Ad-hoc
Networks with Out-of-order Detection and Response,” in Proceedings of the
3rd ACM international symposium on Mobile ad hoc networking & computing.
ACM, 2002, pp. 217–225.

[8] A. Ghaleb-Seddik, Y. Ghamri-Doudane, and S. M. Senouci, “Coupling Loss
and Delay Differentiation to Eenhance TCP Performance within Wireless
Multi-hop Ad-hoc Networks,” Journal of Communications, vol. 7, no. 12, pp.
859–872, 2012.

[9] M. Hassan and R. Jain, High Performance TCP/IP Networking. Pearson Pren-
tice Hall, 2004.

[10] I. . L. S. Committee et al., Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications, Std., march 2012.

[11] A. Balador, A. Movaghar, S. Jabbehdari, D. Kanellopoulos et al., “A Novel
Contention Window Control Scheme for IEEE 802.11 WLANs,” IETE Techni-
cal Review, vol. 29, no. 3, p. 202, 2012.

[12] M. S. Corson and J. Macker, “Mobile Ad hoc Networking (MANET):
Routing Protocol Performance Issues and Evaluation Considerations,” Internet
Engineering Task Force, RFC 2501, Sep. 1999. [Online]. Available:
http://datatracker.ietf.org/doc/rfc2501/

186

http://datatracker.ietf.org/doc/rfc2501/

[13] K. Leung and V. Li, “Transmission Control Protocol (TCP) in Wireless Net-
works: Issues, Approaches, and Challenges,” IEEE Communications Surveys
& Tutorials, vol. 8, no. 4, pp. 64–79, 2006.

[14] B. Crow, I. Widjaja, J. G. Kim, and P. Sakai, “IEEE 802.11 Wireless Local
Area Networks,” IEEE Communications Magazine, vol. 35, no. 9, pp. 116–126,
1997.

[15] S. Bluetooth, Specification of the Bluetooth System, version 1.1, Std., 2001.

[16] B. A. Miller, C. Bisdikian, and T. Foreword By-Siep, Bluetooth Revealed.
Prentice Hall PTR, 2001.

[17] P. Mohapatra and S. Krishnamurthy, Ad Hoc Networks: Technologies and Pro-
tocols. Springer, 2005.

[18] J. Postel, “Transmission Control Protocol,” Internet Engineering Task Force,
RFC 0793, Sep. 1981. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc793.txt

[19] M. Allman and A. Falk, “On the Effective Evaluation of TCP,” ACM SIG-
COMM Computer Communication Review, vol. 29, no. 5, pp. 59–70, 1999.

[20] M. Morshed, M. Rahman, M. Rahman, and M. Islaml, “Performance Compari-
son of TCP Variants over AODV, DSDV, DSR, OLSR in NS-2,” in Informatics,
Electronics Vision (ICIEV), 2012 International Conference on, 2012, pp. 1069–
1074.

[21] A. Boukerche, Algorithms and Protocols for Wireless and Mbile Ad Hoc Net-
works. Wiley-IEEE Press, 2009, vol. 77.

[22] M.-Y. Park, S.-H. Chung, and C.-W. Ahn, “TCPs Dynamic Adjustment of
Transmission Rate to Packet Losses in Wireless Networks,” EURASIP Journal
on Wireless Communications and Networking, vol. 2012, no. 1, p. 304, 2012.

[23] E. Larsen, “TCP in MANETs–Challenges and Solutions,” Norwegian Defence
Research Establishment (FFI), Tech. Rep., Sep. 2012. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc793.txt

[24] B. Soelistijanto and M. Howarth, “Transfer Reliability and Congestion Con-
trol Strategies in Opportunistic Networks: A Survey,” Communications Surveys
Tutorials, IEEE, vol. PP, no. 99, pp. 1–18, 2013.

[25] F. Lee, “Routing in Mobile Ad Hoc Networks,” in Mobile Ad-Hoc Networks:
Protocol Design, X. Wang, Ed. InTech, 2011, pp. 299–322.

[26] G. Holland and N. Vaidya, “Analysis of TCP Performance over Mobile Ad Hoc
Networks,” Wireless Networks, vol. 8, no. 2/3, pp. 275–288, 2002.

[27] S. M. Mirhosseini and F. Torgheh, “ADHOCTCP: Improving TCP Performance
in Ad Hoc Networks,” in Mobile Ad-Hoc Networks: Protocol Design, X. Wang,
Ed. InTech, 2011, pp. 121–138.

187

http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt

[28] Z. Fu, H. Luo, P. Zerfos, S. Lu, L. Zhang, and M. Gerla, “The Impact of Mul-
tihop Wireless Channel on TCP Performance,” Mobile Computing, IEEE trans-
actions on, vol. 4, no. 2, pp. 209–221, 2005.

[29] M. Conti and S. Giordano, “Multihop ad hoc networking: The Theory,” Com-
munications Magazine, IEEE, vol. 45, no. 4, pp. 78–86, 2007.

[30] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “The Impact of Mul-
tihop Wireless Channel on TCP Throughput and Loss,” in INFOCOM 2003.
Twenty-second annual joint conference of the IEEE Computer and Communi-
cations. IEEE Societies, vol. 3. IEEE, 2003, pp. 1744–1753.

[31] H. Zhai, X. Chen, and Y. Fang, “Alleviating Intra-flow and Inter-flow Con-
tentions for Reliable Service in Mobile Ad Hoc Networks,” in Military Com-
munications Conference, 2004. MILCOM 2004. 2004 IEEE, vol. 3. IEEE,
2004, pp. 1640–1646.

[32] D. Berger, Z. Ye, P. Sinha, S. Krishnamurthy, M. Faloutsos, and S. K. Tri-
pathi, “TCP-friendly Medium Access Control for Ad-hoc Wireless Networks:
Alleviating Self-contention,” in Mobile Ad-hoc and Sensor Systems, 2004 IEEE
International Conference on. IEEE, 2004, pp. 214–223.

[33] K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe, Reno and
SACK TCP,” ACM SIGCOMM Computer Communication Review, vol. 26,
no. 3, pp. 5–21, 1996.

[34] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno Modification to TCPs
Fast Recovery Algorithm,” Internet Engineering Task Force, RFC 2582, 1999.
[Online]. Available: https://datatracker.ietf.org/doc/rfc2582/

[35] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery Algorithms,” Internet Engineering Task Force, RFC 2001, January
1997.

[36] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgment Options,” Internet Engineering Task Force, RFC 2018, Oct.
1996. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2018.txt

[37] S. Floyd, T. Henderson et al., “RFC 3782: The NewReno Modification to
TCP’s Fast Recovery Algorithm,” Internet Engineering Task Force, RFC 3782,
2004. [Online]. Available: http://www.rfc-editor.org/rfc/rfc3782.txt

[38] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,”
Internet Engineering Task Force, RFC 5681, 2009. [Online]. Available:
https://datatracker.ietf.org/doc/rfc5681/

[39] A. Al-Jubari, M. Othman, B. Mohd Ali, and N. Abdul Hamid, “An
Adaptive Delayed Acknowledgment Strategy to Improve TCP Performance in
Multi-hop Wireless Networks,” Wireless Personal Communications, vol. 69,
no. 1, pp. 307–333, 2013. [Online]. Available: http://dx.doi.org/10.1007/
s11277-012-0575-9

188

https://datatracker.ietf.org/doc/rfc2582/
http://www.rfc-editor.org/rfc/rfc2018.txt
http://www.rfc-editor.org/rfc/rfc3782.txt
https://datatracker.ietf.org/doc/rfc5681/
http://dx.doi.org/10.1007/s11277-012-0575-9
http://dx.doi.org/10.1007/s11277-012-0575-9

[40] N. Mast and T. J. Owens, “A Survey of Performance Enhancement of Transmis-
sion Control Protocol (TCP) in Wireless Ad Hoc Networks,” EURASIP Journal
on Wireless Communications and Networking, vol. 2011, no. 1, pp. 1–23, 2011.

[41] U. Ibom, “TCP Performance over MANET,” in Information Networking, 2008.
ICOIN 2008. International Conference on. IEEE, 2008, pp. 1–5.

[42] J. Choi, S. Yoo, and C. Yoo, “An Enhancement Scheme for TCP over Mobile Ad
Hoc Networks,” in Vehicular Technology Conference, 2003. VTC 2003-Spring.
The 57th IEEE Semiannual, vol. 3. IEEE, 2003, pp. 1522–1526.

[43] M. Gerla, R. Bagrodia, L. Zhang, K. Tang, and L. Wang, “TCP over Wireless
Multi-hop Protocols: Simulation and Experiments,” in Communications, 1999.
ICC’99. 1999 IEEE International Conference on, vol. 2. IEEE, 1999, pp.
1089–1094.

[44] H. Wu, Y. Peng, K. Long, S. Cheng, and J. Ma, “Performance of Reliable Trans-
port Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement,” in
INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, vol. 2. IEEE, 2002, pp.
599–607.

[45] B. Sreenivas, G. Bhanu Prakash, and K. Ramakrishnan, “L2DB-TCP: An Adap-
tive Congestion Control Technique for MANET Based on Link Layer Measure-
ments,” in Advance Computing Conference (IACC), 2013 IEEE 3rd Interna-
tional. IEEE, 2013, pp. 1086–1093.

[46] A. Gupta, I. Wormsbecker, and C. Wilhainson, “Experimental Evaluation
of TCP Performance in Multi-hop Wireless Ad Hoc Networks,” in Model-
ing, Analysis, and Simulation of Computer and Telecommunications Systems,
2004.(MASCOTS 2004). Proceedings. The IEEE Computer Society’s 12th An-
nual International Symposium on. IEEE, 2004, pp. 3–11.

[47] M. Allman, V. Paxson, W. Stevens et al., “TCP congestion control,”
Internet Engineering Task Force, RFC 2581, 1999. [Online]. Available:
http://datatracker.ietf.org/doc/rfc2581/

[48] Z. Fu, X. Meng, and S. Lu, “How Bad TCP Can Perform in Mobile Ad Hoc
Networks,” in Computers and communications, 2002. Proceedings. ISCC 2002.
Seventh international symposium on. IEEE, 2002, pp. 298–303.

[49] D. Kouvatsos, Network Performance Engineering: A Handbook on Convergent
Multi-service Networks and Next Generation Internet. Springer, 2011, vol.
5233.

[50] H. b. Liu and Y. Gu, “Survey on TCP Congestion Control for MANET,” Journal
of Central South University (Science and Technology), vol. 44, no. 1, pp. 156–
165, 2013.

[51] C. Sharma and B. Tyagi, “Performance Evaluation of TCP Variants Under Dif-
ferent Node Speeds Using OPNET Simulator,” in Advance Computing Confer-
ence (IACC), 2013 IEEE 3rd International. IEEE, 2013, pp. 302–307.

189

http://datatracker.ietf.org/doc/rfc2581/

[52] C. Lochert, B. Scheuermann, and M. Mauve, “A Survey on Congestion Control
for Mobile Ad Hoc Networks,” Wireless Communications and Mobile Comput-
ing, vol. 7, no. 5, pp. 655–676, 2007.

[53] M. Welzl, Network Congestion Control: Managing Internet Traffic. Wiley
Online Library, 2005.

[54] M. Duke, R. Braden, W. Eddy, and E. Blanton, “A Roadmap for
Transmission Control Protocol (TCP) Specification Documents,” Internet
Engineering Task Force, RFC 4614, 2006. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc4614.txt

[55] D. Papadimitriou, M. Welzl, M. Scharf, and B. Briscoe, “Open Research Issues
in Internet Congestion Control,” Internet Engineering Task Force, RFC 6077,
Feb. 2011. [Online]. Available: https://datatracker.ietf.org/doc/rfc6077/

[56] V. Jacobson, “Congestion Avoidance and Control,” in ACM SIGCOMM Com-
puter Communication Review, vol. 18, no. 4. ACM, 1988, pp. 314–329.

[57] V. Paxson and M. Allman, “Computing TCP’s Retransmission Timer,”
Internet Engineering Task Force, RFC 2988, Nov. 2000. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2988.txt

[58] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion control in
the Internet,” IEEE/ACM Transactions on Networking (TON), vol. 7, no. 4, pp.
458–472, 1999.

[59] H. Jiang, S. Cheng, and X. Chen, “TCP Reno and Vegas Performance in Wire-
less Ad Hoc Networks,” in Communications, 2001. ICC 2001. IEEE Interna-
tional Conference on, vol. 1. IEEE, 2001, pp. 132–136.

[60] S. Xu, T. Saadawi, and M. Lee, “Comparison of TCP Reno and Vegas in Wire-
less Mobile Ad Hoc Networks,” in Local Computer Networks, 2000. LCN 2000.
Proceedings. 25th Annual IEEE Conference on. IEEE, 2000, pp. 42–43.

[61] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Reno Perfor-
mance: A Simple Model and its Empirical Validation,” Networking, IEEE/ACM
Transactions on, vol. 8, no. 2, pp. 133 –145, Apr. 2000.

[62] W. Xu and T. Wu, “TCP Issues in Mobile Ad Hoc Networks: Challenges and
Solutions,” Journal of Computer Science and Technology, vol. 21, no. 1, pp.
72–81, 2006.

[63] A. M. Al-Jubari, M. Othman, B. M. Ali, and N. A. W. A. Hamid, “TCP Per-
formance in Multi-hop Wireless Ad Hoc Networks: Challenges and Solution,”
EURASIP Journal on Wireless Communications and Networking, vol. 2011,
no. 1, pp. 1–25, 2011.

[64] A. Gurtov and S. Floyd, “Modeling Wireless Links for Transport Protocols,”
ACM SIGCOMM Computer Communication Review, vol. 34, no. 2, pp. 85–96,
2004.

190

http://www.rfc-editor.org/rfc/rfc4614.txt
http://www.rfc-editor.org/rfc/rfc4614.txt
https://datatracker.ietf.org/doc/rfc6077/
http://www.rfc-editor.org/rfc/rfc2988.txt

[65] G. Holland and N. Vaidya, “Impact of Routing and Link Layers on TCP Per-
formance in Mobile Ad Hoc Networks,” in Wireless Communications and Net-
working Conference, 1999. WCNC. 1999 IEEE. IEEE, 1999, pp. 1323–1327.

[66] A. Ahmed, S. Zaidi, and N. Ahmed, “Performance Evaluation of Transmission
Control Protocol in Mobile aA Hoc Networks,” in Networking and Communi-
cation Conference, 2004. INCC 2004. International. IEEE, 2004, pp. 13–18.

[67] S. Fong, “Loss Discrimination Algorithm for Wired/Wireless Networks,” Jour-
nal of Computer Science, vol. 7, 2011.

[68] A. Habbal and S. Hassan, “Loss Detection and Recovery Techniques for TCP
in Mobile Ad Hoc Network,” in Network Applications Protocols and Services
(NETAPPS), 2010 Second International Conference on. IEEE, 2010, pp. 48–
54.

[69] D. Triantafyllidou, K. Al Agha, and V. Siris, “Adaptive setting of TCP’s maxi-
mum window in ad hoc multihop networks with a single flow,” in Wireless Com-
munications and Networking Conference, 2009. WCNC 2009. IEEE. IEEE,
2009, pp. 1–6.

[70] K. Kim, P. Lorenz, and M. Lee, “A New Tuning Maximum Congestion Win-
dow for Improving TCP Performance in MANET,” in Systems Communica-
tions, 2005. Proceedings. IEEE, 2005, pp. 73–78.

[71] K. Chen, Y. Xue, and K. Nahrstedt, “On Setting TCP’s Congestion Window
Limit in Mobile Ad Hoc Networks,” in Communications, 2003. ICC’03. IEEE
International Conference on, vol. 2. IEEE, 2003, pp. 1080–1084.

[72] R. de Oliveira and T. Braun, “A Smart TCP Acknowledgment Approach
for Multihop Wireless Networks,” Mobile Computing, IEEE Transactions on,
vol. 6, no. 2, pp. 192–205, 2007.

[73] J. Chen, M. Gerla, Y. Lee, and M. Sanadidi, “TCP with Delayed ACK for Wire-
less Networks,” Ad Hoc Networks, vol. 6, no. 7, pp. 1098–1116, 2008.

[74] M. Feeley, B. Cully, and S. George, “Understanding Performance for Two
802.11 Competing Flows,” Journal of Computer Science & Technology, vol. 3,
p. 006, 2008.

[75] D. Kim, J. Cano, P. Manzoni, and C. Toh, “A Comparison of the Performance
of TCP-Reno and TCP-Vegas over MANETs,” in Wireless Communication Sys-
tems, 2006. ISWCS’06. 3rd International Symposium on. IEEE, 2006, pp.
495–499.

[76] X. Zhang, N. Li, W. Zhu, and D. Sung, “TCP Transmission Rate Control Mech-
anism Based on Channel Utilization and Contention Ratio in Ad Hoc Net-
works,” Communications Letters, IEEE, vol. 13, no. 4, pp. 280–282, 2009.

[77] X. M. Zhang, W. B. Zhu, N. N. Li, and D. K. Sung, “TCP Congestion Win-
dow Adaptation Through Contention Detection in Ad Hoc Networks,” Vehicu-
lar Technology, IEEE Transactions on, vol. 59, no. 9, pp. 4578–4588, 2010.

191

[78] A. Singh and K. Kankipati, “TCP-ADA: TCP with Adaptive Delayed Acknowl-
edgement for Mobile Ad Hoc Networks,” in Wireless Communications and Net-
working Conference, 2004. WCNC. 2004 IEEE, vol. 3. IEEE, 2004, pp. 1685–
1690.

[79] S. Fu and M. Atiquzzaman, “DualRTT: Detecting Spurious Timeouts in Wire-
less Mobile Environments,” in Performance, Computing, and Communications
Conference, 2005. IPCCC 2005. 24th IEEE International. IEEE, 2005, pp.
129–133.

[80] D. Kim, C. Toh, and H. Yoo, “The Impact of Spurious Retransmissions on TCP
Performance in Ad Hoc Mobile Wireless Networks,” in Personal, Indoor and
Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th International
Symposium on. IEEE, 2007, pp. 1–5.

[81] A. Ahuja, S. Agarwal, J. Singh, and R. Shorey, “Performance of TCP over Dif-
ferent Routing Protocols in Mobile Ad-hoc Networks,” in Vehicular Technol-
ogy Conference Proceedings, 2000. VTC 2000-Spring Tokyo. 2000 IEEE 51st,
vol. 3. IEEE, 2000, pp. 2315–2319.

[82] M. Rahman and H. Tan, “Performance Evaluation of TCP over Routing Pro-
tocols for Mobile Ad Hoc Networks,” in Communications and Networking in
China, 2006. ChinaCom’06. First International Conference on. IEEE, 2006,
pp. 1–3.

[83] N. Premalatha and A. Natarajan, “Congestion Control in Wireless Ad Hoc Net-
works by Enhancement of Transmission Control Protocol,” Journal of Com-
puter Science, vol. 7, no. 12, p. 1824, 2011.

[84] C. P. Sahu, P. S. Yadav, S. Ahuja, R. Prasad, and A. K. Garg, “Optimistic Con-
gestion Control to Improve the Performance of Mobile Ad Hoc Network,” in
Advance Computing Conference (IACC), 2013 IEEE 3rd International. IEEE,
2013, pp. 394–398.

[85] H. Touati, I. Lengliz, and F. Kamoun, “Adapting TCP Exponential Backoff to
Multihop Ad Hoc Networks,” in Computers and Communications, 2009. ISCC
2009. IEEE Symposium on. IEEE, 2009, pp. 612–617.

[86] T. D. Dyer and R. V. Boppana, “A Comparison of TCP Performance over three
Routing Protocols for Mobile Ad hoc Networks,” in Proceedings of the 2nd
ACM international symposium on Mobile ad hoc networking & computing.
ACM, 2001, pp. 56–66.

[87] M. Kang, H. Park, and J. Mo, “Implementation and Evaluation of a New TCP
Loss Recovery Architecture,” EURASIP Journal on Wireless Communications
and Networking, vol. 2012, no. 1, pp. 1–9, 2012.

[88] H. Touati, I. Lengliz, and F. Kamoun, “Performance of TCP Adaptive RTO
in Ad-hoc Networks Based on Different Routing Protocols,” in Mobile Wireless
Communications Networks, 2007 9th IFIP International Conference on. IEEE,
2007, pp. 176–180.

192

[89] Q. Lin, K. Chan, K. Tan, and B. Yeo, “Partition-Aware TCP for Mobile Ad-Hoc
Networks,” in Communications, 2006. ICC’06. IEEE International Conference
on, vol. 8. IEEE, 2006, pp. 3777–3782.

[90] W. Sun, T. Wen, and Q. Guo, “A Novel Protocol for Mobile-Induced Packet
Reordering in Mobile Ad Hoc NetWorks,” in Information Science and Engi-
neering, 2008. ISISE’08. International Symposium on, vol. 1. IEEE, 2008, pp.
626–631.

[91] S. Yang and Y. Lin, “Tuning Rules in TCP Congestion Control on the Mobile
Ad Hoc Networks,” in Advanced Information Networking and Applications,
2006. AINA 2006. 20th International Conference on, vol. 1. IEEE, 2006, pp.
759–766.

[92] C. Xiong, J. Yim, J. Leigh, and T. Murata, “Energy-Efficient Method to Im-
prove TCP Performance for MANETs,” in Proceedings of 2004 International
Conference on Computing, Communications and Control Technologies (CCCT
04), 2004, pp. 327–331.

[93] S. Bhandarkar, N. Sadry, A. Reddy, and N. Vaidya, “TCP-DCR: A Novel Pro-
tocol for Tolerating Wireless Channel Errors,” Mobile Computing, IEEE Trans-
actions on, vol. 4, no. 5, pp. 517–529, 2005.

[94] M. Li, B. Song, and J. Liu, “An End-to-end TCP Enhanced Scheme for Ad Hoc
Wireless Networks,” in Wireless, Mobile and Multimedia Networks, 2006 IET
International Conference on. IET, 2006, pp. 1–4.

[95] S. Gajjar and H. Gupta, “Improving Performance of Adhoc TCP in Mobile
Adhoc Networks,” in India Conference, 2008. INDICON 2008. Annual IEEE,
vol. 1. IEEE, 2008, pp. 144–147.

[96] T. Yanping, W. Haizhen, J. Mei, and L. Dahui, “Improvement Scheme of End-
to-end TCP Congestion Control in Ad Hoc Network,” in Computer Science and
Network Technology (ICCSNT), 2012 2nd IEEE International Conference on,
2012, pp. 1068–1071.

[97] C. Kai, Y. Chen, and N. Yu, “An Improvement Scheme Applied to TCP Protocol
in Mobile Ad Hoc Networks,” in Mobile Technology, Applications and Systems,
2005 2nd International Conference on. IEEE, 2005, pp. 1–6.

[98] S. Biaz and N. Vaidya, “Distinguishing Congestion Losses from Wireless Trans-
mission Losses: A Negative Result,” in Computer Communications and Net-
works, 1998. Proceedings. 7th International Conference on. IEEE, 1998, pp.
722–731.

[99] R. Braden, “Requirements for Internet Hosts - Communication Layers,”
Internet Engineering Task Force, RFC 1122, Oct. 1989. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc1122.txt

[100] S. M. ElRakabawy and C. Lindemann, “A Practical Adaptive Pacing Scheme
for TCP in Multihop Wireless Networks,” IEEE/ACM Transactions on Network-
ing (TON), vol. 19, no. 4, pp. 975–988, 2011.

193

http://www.rfc-editor.org/rfc/rfc1122.txt

[101] K. Nahm, A. Helmy, and C. Kuo, “Cross-layer Interaction of TCP and Ad Hoc
Routing Protocols in Multihop IEEE 802.11 Networks,” Mobile Computing,
IEEE Transactions on, vol. 7, no. 4, pp. 458–469, 2008.

[102] X. Wang, Y. Han, and Y. Xu, “APS-FeW: Improving TCP Throughput over
Multihop Adhoc Networks,” Computer Communications, vol. 32, no. 1, pp.
19–24, 2009.

[103] E. Altman and T. Jiménez, “Novel Delayed ACK Techniques for Improving
TCP Performance in Multihop Wireless Networks,” in Personal Wireless Com-
munications. Springer, 2003, pp. 237–250.

[104] R. De Oliveira and T. Braun, “A Delay-based Approach Using Fuzzy Logic to
Improve TCP Error Detection in Ad hoc Networks,” in Wireless Communica-
tions and Networking Conference, 2004. WCNC. 2004 IEEE, vol. 3. IEEE,
2004, pp. 1666–1671.

[105] D. Los Angeles Thomas et al., Elementary signal detection theory. Oxford
University Press, 2001.

[106] N. A. Macmillan and C. D. Creelman, Detection theory: A user’s guide. Psy-
chology press, 2004.

[107] N. C. Howard Giles, Justine Coupland, “Accommodation Theory: Communica-
tion, Context, and Consequence,” Contexts of accommodation: Developments
in applied sociolinguistics, p. 1, 1991.

[108] H. Giles, J. Coupland, and N. Coupland, Contexts of Accommodation: Devel-
opments in AppliedSociolinguistics. Cambridge University Press, 1991.

[109] S. W. Littlejohn and K. A. Foss, Theories of Human Communication.
Wadsworth Publishing Company, 2007.

[110] J. A. DeVito, Essentials of Human Communication. Longman, 2002.

[111] L. Christopherson, “Can u Help me Plz? Cyberlanguage Accommodation in
Virtual Reference Conversations,” Proceedings of the American Society for In-
formation Science and Technology, vol. 48, no. 1, pp. 1–9, 2011.

[112] H. J. Ladegaard, “Pragmatic Cooperation Revisited: Resistance and Non-
cooperation as a Discursive Strategy in Asymmetrical Discourses,” Journal of
Pragmatics, vol. 41, no. 4, pp. 649–666, 2009.

[113] P. Offermann, O. Levina, M. Schönherr, and U. Bub, “Outline of a Design Sci-
ence Research Process,” in Proceedings of the 4th International Conference on
Design Science Research in Information Systems and Technology. ACM, 2009,
p. 7.

[114] L. Blessing and A. Chakrabarti, DRM: A Design Research Methodology.
Springer Verlag, 2009.

194

[115] A. M. M. Habbal and S. Hassan, “A Model for Congestion Control of Trans-
mission Control Protocol in Mobile Wireless Ad hoc Networks,” Journal of
Computer Science, vol. 9, no. 3, pp. 335–342, 2013.

[116] K. Zaini, A. Habbal, F. Azzali, S. Hassan, and M. Rizal, “An Interaction Be-
tween Congestion-Control Based Transport Protocols and MANET Routing
Protocols,” Journal of Computer Science, vol. 8, 2012.

[117] N. Haniza, M. Khambari, S. Shahrin, A. Habbal, and S. Hassan, “Topology
Influence on TCP Congestion Control Performance in Multi-hop Ad Hoc Wire-
less,” in Proceedings of World Academy of Science, Engineering and Technol-
ogy, no. 61. World Academy of Science, Engineering and Technology, 2012.

[118] M. Guizani, A. Rayes, B. Khan, and A. Al-Fuqaha, Network Modeling and
Simulation: A Practical Perspective. Wiley-Interscience, 2010.

[119] O. Balci, “Verification Validation and Accreditation of Simulation Models,” in
Proceedings of the 29th conference on Winter simulation. IEEE Computer
Society, 1997, pp. 135–141.

[120] S. Kurkowski, T. Camp, and M. Colagrosso, “MANET Simulation Studies: The
Incredibles,” ACM SIGMOBILE Mobile Computing and Communications Re-
view, vol. 9, no. 4, pp. 50–61, 2005.

[121] O. Balci, “Validation, Verification, and Testing Techniques Throughout the Life
Cycle of a Simulation Study,” Annals of operations research, vol. 53, no. 1, pp.
121–173, 1994.

[122] S. Schlesinger, R. E. Crosbie, R. E. Gagne, G. S. Innis, C. Lalwani, J. Loch,
R. J. Sylvester, R. D. Wright, N. Kheir, and D. Bartos, “Terminology for Model
Credibility,” Simulation, vol. 32, no. 3, pp. 103–104, 1979.

[123] R. G. Sargent, “Verification and validation of Simulation Models,” in Proceed-
ings of the 37th conference on Winter simulation. Winter Simulation Confer-
ence, 2005, pp. 130–143.

[124] S. Hassan, “Simulation-based Performance Evaluation of TCP-Friendly Proto-
cols for Supporting Multimedia Application in the Internet,” PhD Thesis, Com-
puter Science Department, University of Leeds, 2002.

[125] J. Mo, Performance Modeling of Communication Networks with Markov
Chains. Morgan & Claypool Publishers, 2010.

[126] J.-Y. Le Boudec, Performance Evaluation of Computer and Communication
Systems. EPFL Press, Lausanne, Switzerland, 2010.

[127] O. B. Lynn, “A Hybrid Mechanism for SIP over IPv6 Macromobility and Mi-
cromobility Management Protocols,” PhD Thesis, College of Arts and Sciences,
Universiti Utara Malaysia, 2008.

[128] O. Ghazali, “Scaleable and Smooth TCP-Friendly Receiver-Based Layered
Multicast Protocol,” PhD Thesis, College of Arts and Sciences, Universiti Utara
Malaysia, 2008.

195

[129] L. F. Perrone and Y. Yuan, “Modeling and Simulation Best Practices for Wire-
less Ad Hoc Networks,” in Simulation Conference, 2003. Proceedings of the
2003 Winter, vol. 1. IEEE, 2003, pp. 685–693.

[130] T. R. Andel and A. Yasinsac, “On the credibility of MANET simulations,” Com-
puter, vol. 39, no. 7, pp. 48–54, 2006.

[131] S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M. Handley,
A. Helmy, J. Heidemann, P. Huang, S. Kumar, S. McCanne, R. Rejaie,
P. Sharma, K. Varadhan, Y. Xu, H. Yu, and D. Zappala, “Improving Simulation
for Network Research,” University of Southern California, Tech. Rep. 99-702b,
Mar. 1999, revised September 1999, to appear in IEEE Computer. [Online].
Available: http://www.isi.edu/~johnh/PAPERS/Bajaj99a.html

[132] E. Weingartner, H. Vom Lehn, and K. Wehrle, “A Performance Comparison of
Recent Network Simulators,” in IEEE International Conference on Communi-
cations, ICC’09. IEEE, 2009.

[133] E. Schoch, M. Feiri, F. Kargl, and M. Weber, “Simulation of Ad Hoc Net-
works: NS-2 Compared to JiST/SWANS,” in Proceedings of the 1st interna-
tional conference on Simulation tools and techniques for communications, net-
works and systems & workshops. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2008, p. 36.

[134] “The Network Simulator NS-2,” http://www.isi.edu/nsnam/ns/.

[135] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley, “NS-3 Project Goals,” in
Proceeding from the 2006 workshop on ns-2: the IP network simulator. ACM,
2006.

[136] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, and M. Gerla, “Glomosim:
A Scalable Network Simulation Environment,” UCLA Computer Science De-
partment Technical Report, vol. 990027, p. 213, 1999.

[137] A. Sobeih, W.-P. Chen, J. C. Hou, L.-C. Kung, N. Li, H. Lim, H.-Y. Tyan, and
H. Zhang, “J-sim: A Simulation Environment for Wireless Sensor Networks,”
in Proceedings of the 38th annual Symposium on Simulation. IEEE Computer
Society, 2005, pp. 175–187.

[138] X. Chang, “Network Simulations with OPNET,” in Simulation Conference Pro-
ceedings, 1999 Winter, vol. 1. IEEE, 1999, pp. 307–314.

[139] O. Modeler, “OPNET Technologies Inc,” 2009.

[140] Q. N. Simulator, “Scalable network technologies,” Inc.[Online]. Available:
www. qualnet. com, 2011.

[141] A. Varga, “OMNet++.” [Online]. Available: http://www.omnetpp.org/

[142] M. K0ksal, “A Survey of Network Simulators Supporting Wireless Networks,”
lnea: http://www. ceng. metu. edu. trSurvey, vol. 20, 2008.

196

http://www.isi.edu/~johnh/PAPERS/Bajaj99a.html
http://www.isi.edu/nsnam/ns/
http://www.omnetpp.org/

[143] G. F. Lucio, M. Paredes-Farrera, E. Jammeh, M. Fleury, and M. J. Reed, “OP-
NET Modeler and NS-2: Comparing the Accuracy of Network Simulators for
Packet-level Analysis Using a Network Testbed,” WSEAS Transactions on Com-
puters, vol. 2, no. 3, pp. 700–707, 2003.

[144] P. P. Garrido, M. P. Malumbres, and C. T. Calafate, “NS-2 vs. OPNET: A Com-
parative Study of the IEEE 802.11 e Technology on MANET Environments,” in
Proceedings of the 1st international conference on Simulation tools and tech-
niques for communications, networks and systems & workshops. ICST (Insti-
tute for Computer Sciences, Social-Informatics and Telecommunications Engi-
neering), 2008, p. 37.

[145] X. Xian, W. Shi, and H. Huang, “Comparison of OMNET++ and other Simu-
lator for WSN Simulation,” in Industrial Electronics and Applications, 2008.
ICIEA 2008. 3rd IEEE Conference on. IEEE, 2008, pp. 1439–1443.

[146] K. Fall and K. Varadhan, “The Network Simulator (ns-2),” URL: http://www.
isi. edu/nsnam/ns, 2007.

[147] S. Floyd and V. Paxson, “Difficulties in Simulating the Internet,” IEEE/ACM
Transactions on Networking (TON), vol. 9, no. 4, pp. 392–403, 2001.

[148] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2.
Springer Verlag, 2008.

[149] J. Heidemann, K. Mills, and S. Kumar, “Expanding Confidence in Network
Simulations,” Network, IEEE, vol. 15, no. 5, pp. 58–63, 2001.

[150] K. Pawlikowski, H.-D. Jeong, and J.-S. Lee, “On Credibility of Simulation
Studies of Telecommunication Networks,” Communications Magazine, IEEE,
vol. 40, no. 1, pp. 132–139, 2002.

[151] E. Altman and T. Jiménez, “NS Simulator for Beginners,” Synthesis Lectures
on Communication Networks, vol. 5, no. 1, pp. 1–184, 2012.

[152] D. Cavalcanti, D. Agrawal, C. Cordeiro, B. Xie, and A. Kumar, “Issues in Inte-
grating Cellular Networks WLANs, and MANETs: A Futuristic Heterogeneous
Wireless Network,” IEEE Wireless Communications, vol. 12, no. 3, pp. 30–41,
2005.

[153] I. . L. S. Committee et al., Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications, Std., 1999.

[154] B. P. Crow, I. Widjaja, L. Kim, and P. T. Sakai, “IEEE 802.11 Wireless Local
Area Networks,” IEEE Communications Magazine, vol. 35, no. 9, pp. 116–126,
1997.

[155] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand Distance
Vector (AODV) Routing,” Internet Engineering Task Force, RFC 3561, 1981.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc3561.txt

197

http://www.rfc-editor.org/rfc/rfc3561.txt

[156] D. Johnson, Y. Hu, D. Maltz et al., “The Dynamic Source Routing Protocol
(DSR) for Mobile Ad Hoc Networks for IPv4,” Internet Engineering Task Force,
RFC 4728, 2007. [Online]. Available: http://www.rfc-editor.org/rfc/rfc4728.txt

[157] M. Arefin, M. Khan, and I. Toyoda, “Performance Analysis of Mobile Ad-hoc
Network Routing Protocols,” in Informatics, Electronics Vision (ICIEV), 2012
International Conference on, 2012, pp. 935–939.

[158] M. Ikeda, E. Kulla, M. Hiyama, L. Barolli, M. Younas, and M. Takizawa, “TCP
Congestion Control in MANETs for Multiple Traffic Considering Proactive and
Reactive Routing Protocols,” in Network-Based Information Systems (NBiS),
2012 15th International Conference on, 2012, pp. 156–163.

[159] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless
Networks,” Kluwer International Series in Engineering and Computer Science,
pp. 153–179, 1996.

[160] S. Floyd, “Metrics for the Evaluation of Congestion Control Mechanisms,”
Internet Engineering Task Force, RFC 5166, Mar. 2008. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc5166.txt

[161] D. Zhou, W. Song, and Y. Cheng, “A Study of Fair Bandwidth Sharing with
AIMD-Based Multipath Congestion Control,” Wireless Communications Let-
ters, IEEE, vol. 2, no. 3, pp. 299–302, 2013.

[162] S. Manaseer, “On Backoff Mechanisms for Wireless Mobile Ad Hoc Net-
works,” Ph.D. dissertation, University of Glasgow, 2010.

[163] J. S. Kim and R. J. Dailey, “Confidence Intervals and Sample Size,” Biostatistics
for Oral Healthcare, pp. 113–126, 2008.

[164] L. Ding, W. Zhang, and W. Xie, “Modeling TCP Throughput in IEEE 802.11
Based Wireless Ad Hoc Networks,” in Communication Networks and Services
Research Conference, 2008. CNSR 2008. 6th Annual. IEEE, 2008, pp. 552–
558.

[165] H. Xiao, Y. Zhang, J. Malcolm, B. Christianson, and K. C. Chua, “Modelling
and Analysis of TCP Performance in Wireless Multihop Networks,” Wireless
Sensor Network, vol. 2, no. 7, pp. 493–503, 2010.

[166] F. Azimi and P. Bertok, “An Analytical Model of TCP Flow in Multi-hop Wire-
less Networks,” in Local Computer Networks (LCN), 2010 IEEE 35th Confer-
ence on. IEEE, 2010, pp. 88–95.

[167] A. A. Kherani and R. Shorey, “Performance Modeling and Analysis of TCP
over Wireless Ad Hoc Networks with IEEE 802.11 MAC,” manuscript avail-
able at http://wwwsop. inria. fr/mistral/personnel/Arzad-Alam. Kherani.

[168] E. Ghadimi, A. Khonsari, A. Diyanat, M. Farmani, and N. Yazdani, “An An-
alytical Model of Delay in Multi-hop Wireless Ad Hoc Networks,” Wireless
networks, vol. 17, no. 7, pp. 1679–1697, 2011.

198

http://www.rfc-editor.org/rfc/rfc4728.txt
http://www.rfc-editor.org/rfc/rfc5166.txt

[169] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordina-
tion Function,” IEEE Journal on Selected Areas in Communications, vol. 18,
no. 3, pp. 535–547, 2000.

[170] C. S. Lent, Learning to Program with MATLAB: Building GUI Tools. Wiley,
2013.

[171] R. Pratap, Getting Started with MATLAB. Saunders College Publishing, 2002.

[172] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High
Performance,” Internet Engineering Task Force, RFC 1323, 1992. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2988.txt

[173] M. Jain and C. Dovrolis, Available Bandwidth: Measurement Methodology,
Dynamics, and Relation with TCP Throughput. ACM, 2002, vol. 32, no. 4.

[174] S. Prasanthi, S.-H. Chung, and Y.-H. Jo, “A New Loss Recovery Algorithm
for Increasing the Performance of TCP Over Wireless Mesh Networks,” in Ad-
vanced Information Networking and Applications (AINA), 2012 IEEE 26th In-
ternational Conference on. IEEE, 2012, pp. 229–236.

[175] F. R. Armaghani and S. S. Jamuar, “TCP-MAC interaction in multi-hop ad-hoc
networks,” in Mobile Ad-Hoc Networks: Applications, X. Wang, Ed. InTech,
2011, pp. 401–426.

[176] H.-J. Lee and J.-T. Lim, “Fair Congestion Control over Wireless Multihop Net-
works,” Communications, IET, vol. 6, no. 11, pp. 1475–1482, 2012.

[177] R. L. West and L. H. Turner, Introducing Communication Theory: Analysis and
Application. New York, NY: McGraw-Hill, 2010.

[178] M. L. McLaughlin, Communication Yearbook 10. Routledge, 2012.

199

http://www.rfc-editor.org/rfc/rfc2988.txt

	Main Chapters
	1 INTRODUCTION
	1.1 TCP and Ad hoc Networks
	1.2 Mobile Ad hoc Networks Challenges
	1.2.1 Mobility
	1.2.2 Wireless Channel

	1.3 Research Motivation
	1.3.1 Misinterpretation of Mobility Induced Loss as Congestion Loss
	1.3.2 Contention on the Wireless Channel Access

	1.4 Problem Statement
	1.5 Research Questions
	1.6 Research Objectives
	1.7 Research Scope
	1.8 Significance of the Research
	1.9 Organization of the Thesis

	2 LITERATURE REVIEW
	2.1 Transmission Control Protocol (TCP)
	2.1.1 Flow Control
	2.1.2 Connection Management
	2.1.3 Retransmission Mechanism
	2.1.4 Congestion Control
	2.1.4.1 Slow Start and Congestion Avoidance
	2.1.4.2 Fast Retransmit
	2.1.4.3 Fast Recovery

	2.2 Performance Model of TCP Congestion Control
	2.2.1 High Bit Error Rate
	2.2.2 Contention
	2.2.3 Mobility
	2.2.4 Discussion

	2.3 TCP Proposal Classification for Mobile Ad hoc Networks
	2.3.1 Reactive Approach
	2.3.1.1 Dealing with Route Failure/Change
	2.3.1.2 Dealing with Wireless Error Loss
	2.3.1.3 Hybrid Approach
	2.3.1.4 Discussion

	2.3.2 Proactive Approach
	2.3.2.1 Sender Perspective
	2.3.2.2 Receiver Perspective

	2.4 Theories Pertinent to Congestion Control
	2.4.1 Detection Theory
	2.4.2 Communication Accommodation Theory (CAT)

	2.5 Summary

	3 RESEARCH METHODOLOGY
	3.1 Research Approach
	3.2 Research Clarification (RC)
	3.3 Descriptive Study-I (DS-I)
	3.3.1 Conceptual Model of TCP Sintok

	3.4 Prescriptive Study (PS)
	3.4.1 Verification and Validation

	3.5 Descriptive Study-II (DS-II)
	3.5.1 Evaluation Approach Consideration
	3.5.1.1 Analytical Modeling
	3.5.1.2 Measurement
	3.5.1.3 Simulation

	3.5.2 Evaluation Environment
	3.5.2.1 Network Simulator 2 (NS-2)
	3.5.2.2 Experiment Steps
	3.5.2.3 Experiments Setup
	3.5.2.4 Performance Metrics
	3.5.2.5 Confidence Level of Simulation Results

	3.6 Summary

	4 DELAY-BASED LOSS DETECTION MECHANISM
	4.1 Theoretical Analysis
	4.2 System Model
	4.2.1 Packet Dropping Probability
	4.2.2 Single Hop Case
	4.2.3 Multi-Hop Case (Generalization of RTT)
	4.2.4 Model Validation

	4.3 Design Objective of Loss Detection Mechanism (LDM)
	4.4 The Design of Loss Detection Mechanism (LDM)
	4.5 The Verification of LDM
	4.6 The Validation of LDM
	4.7 Summary

	5 CONTENTION AVOIDANCE MECHANISM
	5.1 Theoretical Analysis
	5.2 Applying CAT to TCP Congestion Control
	5.3 The Design of Contention Avoidance Mechanism (CAM)
	5.4 The Implementation of Contention Avoidance Mechanism (CAM)
	5.5 Verification and Validation of CAM
	5.5.1 Chain Topology
	5.5.2 Grid Topology

	5.6 Summary

	6 TCP SINTOK PERFORMANCE ANALYSIS
	6.1 TCP Sintok: An Overview
	6.2 The Implementation of TCP Sintok
	6.3 Performance Evaluation of TCP Sintok
	6.3.1 Chain Scenario
	6.3.2 Grid Scenario
	6.3.3 Random Scenario

	6.4 Performance Improvement of TCP Sintok
	6.4.1 TCP Sintok versus ADTCP
	6.4.1.1 Mobility Scenario
	6.4.1.2 Mobility with 5% Channel Error Scenario
	6.4.1.3 Mobility with 5% Channel Error and Three UDP Flows

	6.4.2 TCP Sintok versus TCP ELFN
	6.4.2.1 Mobility Scenario
	6.4.2.2 Mobility with 5% Channel Error Scenario
	6.4.2.3 Mobility with 5% Channel Error and Three UDP Flows

	6.5 Discussion on TCP Sintok Performance
	6.6 Summary

	7 CONCLUSION AND FUTURE WORKS
	7.1 Summary of the Research
	7.2 Research Contributions
	7.3 Research Limitation
	7.4 Future Works

	REFERENCES

	Appendices
	A Performance Model Notation

