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Abstrak

Proses Hierarki Analitikal (PHA) klasik mempunyai dua kelemahan utama. Pertama,
ia mengabaikan aspek ketidaktentuan yang lazimnya wujud dalam kebanyakan data
atau maklumat yang ditafsir oleh manusia. Kedua, ia tidak mengambil kira aspek
interaksi antara atribut semasa pengagregatan. Penggunaan nombor-nombor kabur
dapat membantu mengatasi isu pertama, manakala penggunaan Kamiran Choquet
membantu mengatasi isu kedua. Namun, penggunaan nombor-nombor kabur dalam
pembuatan keputusan berbilang atribut (PKBA) memerlukan beberapa langkah dan
maklumat tambahan daripada para pembuat keputusan. Sementara itu, proses
pengenalpastian nilai ukuran monoton yang perlu dilaksanakan sebelum
menggunakan Kamiran Choquet juga memerlukan bilangan langkah pengiraan dan
jumlah maklumat yang tinggi daripada para pembuat keputusan terutamanya dengan
peningkatan bilangan atribut. Justeru, kajian ini memperkenalkan satu prosedur
PKBA yang mampu mengurangkan jumlah langkah pengiraan dan maklumat yang
diperlukan daripada para pembuat keputusan apabila kedua-dua aspek tersebut
dipertimbangkan secara serentak. Untuk mencapai objektif utama kajian ini,
sebanyak lima fasa telah dilaksanakan. Pertama, konsep set kabur dan aplikasinya
dalam PHA telah dikaji. Kedua, analisa berkenaan pengagregat-pengagregat yang
boleh digunakan dalam masalah PKBA telah dilaksanakan. Ketiga, fokus kajian
telah dijuruskan kepada Kamiran Choquet dan konsep sekutunya, ukuran monoton.
Seterusnya, prosedur yang dicadangkan dibangunkan dengan kombinasi lima
komponen utama iaitu Analisis Faktor, Penganggar Kabur-Linguistik, Kamiran
Choquet, PHA Kabur Mikhailov, dan Purata Berwajaran Mudah. Akhirnya, satu
masalah PKBA sebenar telah diselesaikan untuk menguji kebolehfungsian prosedur
tersebut di mana imej tiga buah pasaraya yang terletak di Sabak Bernam, Selangor,
Malaysia telah dikaji dari perspektif suri rumah. Kajian ini berpotensi untuk
mendorong lebih ramai pembuat keputusan mengambil kira aspek ketidaktentuan
dalam data dan interaksi antara atribut secara serentak ketika menyelesaikan sesuatu
masalah PKBA.

Kata kunci: Proses Hierarki Analitikal (PHA), Kamiran Choquet, Teori set kabur,
Pembuatan Keputusan Berbilang Attribut (PKBA).



Abstract

The classical Analytical Hierarchy Process (AHP) has two limitations. Firstly, it
disregards the aspect of uncertainty that usually embedded in the data or information
expressed by human. Secondly, it ignores the aspect of interdependencies among
attributes during aggregation. The application of fuzzy numbers aids in confronting
the former issue whereas, the usage of Choquet Integral operator helps in dealing
with the later issue. However, the application of fuzzy numbers into multi-attribute
decision making (MADM) demands some additional steps and inputs from decision
maker(s). Similarly, identification of monotone measure weights prior to employing
Choquet Integral requires huge number of computational steps and amount of inputs
from decision makers, especially with the increasing number of attributes. Therefore,
this research proposed a MADM procedure which able to reduce the number of
computational steps and amount of information required from the decision makers
when dealing with these two aspects simultaneously. To attain primary goal of this
research, five phases were executed. First, the concept of fuzzy set theory and its
application in AHP were investigated. Second, an analysis on the aggregation
operators was conducted. Third, the investigation was narrowed on Choquet Integral
and its associate monotone measure. Subsequently, the proposed procedure was
developed with the convergence of five major components namely Factor Analysis,
Fuzzy-Linguistic Estimator, Choquet Integral, Mikhailov’s Fuzzy AHP, and Simple
Weighted Average. Finally, the feasibility of the proposed procedure was verified by
solving a real MADM problem where the image of three stores located in Sabak
Bernam, Selangor, Malaysia was analysed from the homemakers’ perspective. This
research has a potential in motivating more decision makers to simultaneously
include uncertainties in human’s data and interdependencies among attributes when
solving any MADM problems.

Keywords: Analytical Hierarchy Process (AHP), Choquet Integral, Fuzzy set theory,
Multi-Attribute Decision Making (MADM).
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CHAPTER ONE
INTRODUCTION

1.1 Multi-attribute Decision Making

In today’s highly competitive environment, be it in profit or non-profit based
organizations, it is unfeasible to make decisions by considering a single attribute or
objective. As a result, multi-criteria decision making (MCDM) emerges as one of the
prominent branches of decision making (Triantaphyllou, 2000) where it offers
various scientific or quantitative techniques to aid decision makers in identifying,
comparing, and evaluating alternatives based on varied, usually conflicting,
attributes or objectives (Choo, Schoner, and Wedley, 1999; Tavares, Tavares, and
Parry-Jones, 2008). Herein, decision makers are referred as an individual or a group
of individuals who has the obligation to provide some critical information on the
existing evaluation problem and to carry out the quantitative decision analysis by
employing the developed decision-aid tools.

In general, MCDM can be split into two domains namely multi-objective
decision making (MODM) and multi-attribute decision making (MADM) (Lu,
Zhang, Ruan, and Wu, 2007). Chen, Kilgour, and Hipel (2009) defined MODM as a
field which applies mathematical algorithms to identify alternatives that are optimal
or efficient, under certain constraints, with respect to a few objectives which are
expressed mathematically using decision variables. Linear programming is an
example of MODM technique. On the other hand, MADM aims to assist the decision
makers in making preference assessment on finite or available set of alternatives
described by a set of predefined, usually conflicting, attributes. To recapitulate, the

primary divergence between the two domains is MODM deals with infinite number

1



of alternatives, whereas MADM considers choices within a finite set of alternatives
(Hwang and Yoon, 1981). This research limits its concern on MADM problems.

Up to now, practitioners of decision theory have formulated various
techniques to aid decision makers in surmounting MADM problems. In general,
these techniques can be mainly classified into two categories namely multi-attribute
utility theory (MAUT) techniques and outranking techniques (Zopounidis and
Doumpos, 2002). However, applying MAUT techniques emerges as a well-accepted

standard approach for modeling MADM problems (Mussi, 1999).

1.1.1 Multi-attribute Utility Theory

Triantaphyllou (2000) concluded that there are 3 fundamental phases in executing
any of the MAUT techniques. In the first phase, the relevant alternatives and
attributes of existing problem are identified. The basic elements of a typical MAUT
model comprise a set of m alternatives denoted by a; = {a4, a,, ..., a,;,} and set of n
attributes represented by ¢; = {cy, ¢3, ..., ¢}

In following phase, the attributes’ weights and local scores (performance
scores of the alternatives with respect to each attribute) are derived. These weights
and local scores are commonly derived by questioning decision makers (Choo and
Wedley, 2008). The weight of each attribute in ¢; = {cy,c, ..., cp} is usually
represented by w; = {wy, wy, ..., w,} where wy, wy, ..., w,, are positive values. With
regards to MAUT method, attributes’ weights can be interpreted as the attributes’
importance in achieving the goal of a MADM problem (Choo et al., 1999). In other
words, these weights represent the contribution of each attribute in enhancing the

performance of specific target.



On the other hand, the local scores of an alternative, i with respect to each
attribute in ¢; = {cq, ¢y, ..., ¢} Can be denoted by x;; = {x;q, Xz, ..., Xin} Where
i =1,2,..,m. For instance, the set of local scores of alternative, a; with respect to
each attribute in ¢; can be represented by xi, = {X11,X12,...,X1n} Where
X11, X712, -, X1p, @re positive values. According to Zeleny (1982), a MADM problem
can be easily expressed in a matrix format, known as decision matrix. Decision
matrix is a (m x n) matrix which encompasses the local scores of the alternatives
with respect to each criterion under consideration. Table 1.1 presents the general

form of a decision matrix for a MADM problem.

Table 1.1: General Form of Decision Matrix

Alternatives/ Attributes ¢, c; .. Cp
aq X11 X12 X1n
az X21 Xzz nen .X'Zn
am Xm1 Xm2 e Xmn

The final phase of MAUT is known as aggregation phase. An aggregation
phase uses a specific function or an aggregation operator which synthesizes the set of
attributes’ weights and local scores of each alternative into a single global score
(Hazura, Abdul Azim, Mohd Hasan, and Ramlan, 2007; Marichal, 1999). The global
score of each alternative in a; can be denoted by v; = {v,, v,,..., v, }. Each global
score implies the preference score of each alternative which will be helpful for DMs
in selecting, ranking or sorting the alternatives. An alternative with highest global

score signifies the most preferred alternative for the existing problem.



The following example would offer better understanding on the execution of
MAUT techniques. Consider a best car selection problem where four cars a4, a,, as,
and a, which are being assessed based on three attributes, comfort (c;), speed (c,),
and design (c3).The basic elements of this MADM problem are as shown in Table
1.2.The local scores for each car, x;; = {x;1, x;2, x;3} Where i = 1,2,3,4 are derived
by questioning decision makers. In addition, the set of attributes’ weights, w; =
{wi,w,, w3} are also derived based on some data offered by decision makers.
Finally, the global score of each car, v; = {v;,v,,v3} can be computed by
composing the attributes’ weights and local scores of each car using a specific
aggregation operator. Then, the performance of cars can be ranked based on these
global scores where the higher is the global score, the better is the performance of

the car.

Table 1.2: Example of Car Selection Problem based on MAUT

Cars/ Attributes Comfort (¢;) Speed (c;) Design (c3) Global score, V

a, X11 X12 X13 U1

as X21 X22 X23 U2

as X31 X32 X33 U3

Qg Xa1 X42 X43 2
Attribute’s weight wy W, W3

Analytical Hierarchy Process (AHP) is an instance of MADM technique which
operates based on the previously-explained three fundamental MAUT phases (Fulop,

2005 and Matue, 2002).



1.1.2 Analytic Hierarchy Process
Analytical Hierarchy Process (AHP), which was developed by Saaty in early 1970’s
(Saaty, 1980), emerged as one of the broadly applied techniques due to its ability to
simplify a complex decision analysis into a systematic and structured mode (Warren,
2004).

According to Mau-Crimmins, de Steiguer, and Dennis (2005), AHP provides
a systematic approach for decision makers in comparing and weighting multiple
attributes and measuring the preference on alternatives that involves in a MADM
problem. The application of AHP is widespread in various domains such as
telecommunication (Tam and Tummala, 2001), business marketing (Chen and Wang,
2010), resource allocation (Ramanathan and Ganesh, 1995), and project management
(Zayed, Mohamad Amer, and Pan, 2008).

As mentioned beforehand, conventional AHP utilizes the 3 basic phases of
MAUT and the steps involved in each of these phases can be summarized as follows
(Dubois and Prade, 1980; Dagdeviren, Yavuz, and Kilinc, 2009; Bertolini, Braglia,

and Carmignani, 2006).

a) Phase 1 of AHP: Identification of alternatives and attributes
In the first phase, the existing MADM problem is defined by identifying the
relevant alternatives and attributes. The complex decision problem is then
decomposed into simpler hierarchy. Normally, the first level of hierarchy
comprises of alternatives or choices of the problem, the subsequent levels
consist of sub- attributes and attributes which are commonly determined

using the experience of the experts, and the top level represents the goal of
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the existing MADM problem,. An example of a structured MADM hierarchy

is as illustrated in Figure 1.1.

Selectng the best car

Attributas lenval

Symbels: ¢ node'slement @ A iz parent node of B

Figure 1.1: Hierarchy of Car Selection Problem (Example)

b) Phase 2 of AHP: Identifying local scores of alternatives and weights of
attributes
In the second phase, the “strength” or preference of each element of a level in
relation to their importance for an element in the next level needs to be
determined (Bouyssou et al., 2000). The assessment of the elements may start
from the bottom elements where all elements connected to the same parent
element are compared pair-wise.
For instance, if one wants to apply AHP in a MADM problem
consisting 3 levels as shown in Figure 1.1, firstly, pair-wise comparisons

between alternatives must be performed for each attribute to derive local



scores of alternatives. Then, attributes are also compared in a pair-wise
manner to model their importance or weight.

During pair-wise comparison, commonly, the decision makers are
required to express their preference based on Saaty’s 9-point AHP scale
which is actually an ordinal scaling ratio as shown in Table 1.3 (Lee, Mogi,

and Kim, 2008).

Table 1.3: Saaty’s AHP Scale

Preference scale Description Reciprocal
scale
1 Two elements contribute equally 1
3 One element is slightly favored over another 1
3
5 One element is strongly favored over another 1
5
7 One element is very strongly favored over another 1
7
9 One element is most favored over another 1
9
2,4,6,8 Used to compromise between two judgments 1111
2'4’6’8

*Note, when element i is compared to j then, the preference is assigned with one of the crisp scale.
Meanwhile, when element j is compared to i then, the preference is assigned with the corresponding
reciprocal.

Based to Table 1.3, each crisp number that ranges from 1 to 9
corresponds to the strength of preference for one element over another.
According to Saaty (1980), generally, the 9-point scale is used because the
qualitative distinctions are meaningful in practice and have an aspect of
precision when the items are compared with one another. Then, by
mathematically processing the data in pair-wise comparison matrices which

is usually achieved through the eigenvalue method, (Bana e Costa and



Vansnick, 2008) the local scores and attributes’ weights of the problem can
be derived.

However, the consistency of the pair-wise judgments offered by
decision makers need to be tested by computing consistency ratio (CR)
(Anderson, Sweeney, Williams, Camm, and Martin, 2012). If the CR value is
above 0.1 then, the decision maker has to refine the pair-wise matrix. This
procedure goes on until all pair-wise matrices satisfy CR value (Arsanjani,

2012).

c) Phase 3 of AHP: Aggregation
Finally, in the aggregation phase, the attributes’ weights and local scores of
alternatives are combined into global scores to determine the ranking of the
alternatives. Generally, in AHP, SWA operator which assumes independency

between attributes is applied for the aggregation purpose.

However, despite its popularity, AHP is still being criticized for several
drawbacks or issues such as rank reversal issue (Belton and Gear, 1985), lacking of
consistency in pair-wise comparison (Benitez, Delgado-Galvan, Gutiérrez, and
Izquierdo, 2011), incompetence in dealing with uncertainty or vagueness that exists
in data provided by human (Chou, Sun, and Yen, 2012), and issue of neglecting the
interaction aspect between attributes during aggregation process (Buyukozkan and

Ruan, 2010). The focus of this research is devoted on the last two issues.



1.1.3 Issue of Uncertainty in Human’s Data

As mentioned formerly, to execute the second phase of any MAUT methods such as
AHP, some data from decision makers are commonly required to derive the local
scores of alternatives and attributes’ weights. However, in reality, human are usually
uncertain or imprecise in expressing their preference or judgment due to insufficient
information on the occurring problem (Chen and He, 1997). Therefore, in many
practical cases, the decision makers are reluctant or find it is burdensome to express
their exact preference based on crisp numbers or scales (Torfi, Farahani, and
Rezapour, 2010; Yu and Hu, 2010). They generally tend to express their preference
in natural languages or linguistic terms (Onut, Kara, and Isik, 2009) such as
‘unimportant’, ‘important’, ‘very important’ and ‘extremely important’ over crisp
numbers (1,2,3,-:+) as they are always uncertain about their judgment.

However, the traditional MAUT methods such as classical AHP are based on
crisp numbers and not based on linguistic terms. Thus, these models are not exactly
representing actual or natural human thinking style. In order to mathematically deal
with uncertainty embedded in linguistic judgments (Kahraman, Cebeci, and Ulukan,
2003), fuzzy set theory which was introduced by Zadeh (1965) is usually applied
into MADM models. Many fuzzy MAUT models such as fuzzy AHP were
developed (Wu, Tzeng, and Chen, 2009) to deal with uncertainty in human’s data
with the intention to generate more practical analysis. Through fuzzy MAUT
models, the decision makers are permitted to provide or express the required data in
linguistic terms. Each of these linguistic terms will be then represented or quantified
with appropriate fuzzy numbers which are able to mathematically capture the

uncertainty embedded in linguistic estimations (Tseng, 2011).
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1.1.3.1 Drawback of Applying Fuzzy Sets in MADM Environment
Unfortunately, analyzing a MADM problem under fuzzy environment requires
higher computational effort from decision makers (Rao, 2007 and Zhang, 2004) than
analyzing the same problem under crisp setting where, it would demand them to
carry out some additional steps and to provide some extra information during the
analysis.

For instance, in fuzzy analysis, the decision makers are required to
translate the linguistic preference into appropriate fuzzy numbers based on a
conversion scale. Normally, this scale is constructed based on the decision makers’
knowledge, experience, or intuition as demonstrated in the studies conducted by
Tsaur, Chang, and Yen (2002) and Chou (2007). In other words, some prior
information is usually demanded from the decision makers for the fuzzification
process. Besides, to determine the ordinal ranking or priorities of the attributes and
alternatives, another additional process namely defuzzification (Opricovic and
Tzeng, 2008) is required as the overlapping fuzzy numbers cannot be simply
compared to each other.

Besides, to our knowledge, there is no any specific decision software or
tools (e.g. Decision Lens, Expert Choice Professional, Logical Decision, and
Criterium DecisionPlus which are designed to perform crisp analysis) have been
developed to aid the decision makers in conducting MADM analysis using fuzzy
MAUT models. Therefore, maintaining fuzziness or fuzzy numbers throughout an
analysis may demand extra effort from the decision makers (Chen and Hwang, 1992)

especially from those who are unfamiliar with quantitative analysis.
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To simplify, these additional requirements could impede the real-world

decision makers from evaluating the MADM problems under fuzzy environment.

1.1.4 Issue of Ignoring Interaction Aspect among Attributes

It is believed that aggregation is one of the most crucial stages in executing any of
the MAUT techniques. The major issue in the aggregation phase can be described as
follows. In most of the cases, even in some of the recent studies as listed in Table
1.4, the local scores of alternatives are simply aggregated with any of the additive
aggregation operators such as simple weighted average (SWA) and ordered weighted
average (OWA) which hypothesizes the attributes as being independent to each other

(Huang, Shieh, Lee, and Wu, 2010).

Table 1.4: Recent MADM Studies which Applied Additive Aggregators

Sources MADM problems Type of aggregators used
Al-Yahyai, Charabi, Indexing wind farm land OWA
Gastli, and Al-Badi. suitability
(2012).
Goshal, Naskar, and Bose.  Evaluating the performance of SWA
(2012) diploma institutes
Jiang, Zhang, Hu, Wang, Assessing the atmospheric SWA
and Zhang. (2012). environment comprehensive
guality in Xi'an

Liu'an, Xiaomei and Lin, Assessment on teaching quality ~ SWA
(2012)

Li, Ren, and Zheng. Risk evaluations in the SWA
(2013). spacecraft development

Prior to employing additive aggregation operator, the decision makers are

only required to derive or estimate the weight for each attribute where the sum of the
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weights always equals to one (Ceberio and Modave, 2006). This additive property
makes conventional aggregation operators fail to model the interaction information
among attributes during aggregation (Zhang, Zhou, Zhu, and Li, 2006). For instance,
the popular AHP simply presumes the attributes are always independent to each
other as it uses SWA operator during aggregation. But, this approach is not practical
in real application as in many problems the attributes are interacted to each other
(Marichal, 2000).

However, it is discovered that Choquet integral operator plays an important
role in capturing the interaction aspect among attributes during aggregation process
(Yue, Li, and Yin, 2005). Prior to employing Choquet integral, the decision makers
are not only required to define the individual weight of each attribute but also the
weight of all possible combinations or subsets of attributes which are known as
monotone measure (Beliakov and James, 2011). These monotone measure weights,
g, not only represent the importance of each attribute but also the importance of each
combination or subset of attributes (Marichal and Roubens, 2000).

Monotone measure should satisfy two key axioms namely boundary and
monotonicity conditions (Angilella, Greco, Lamantia, and Matarazzo, 2004). The
boundary condition interprets that an empty set, with the absence of any attributes,
has no importance where g{@} = 0 and the maximal set, with the presence of all
attributes, has maximal importance where g{c;} = 1. Meanwhile, monotonicity
condition implies that adding a new attribute to a combination or subset cannot
decrease its importance. Monotone measure can characterize super-additive and sub-
additive effect between attributes, which model the synergy support and redundancy

type of interaction respectively (Grabisch, 1996a). The successful application of
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Choquet integral relies on proper identification of monotone measure weights, which
capture the importance of single attribute or their combination.

The total number of monotone measure weights which need to be determined
in a particular MADM problem is equivalent to 2™ where n represents the number of
attributes (Meyer and Roubens, 2006). This total includes the weight of empty and
maximal set. For instance, consider a MADM problem with three attributes where
¢j = {c1, 2, ¢3}. Then, the monotone measure weights which need to be estimated
prior to applying Choquet integral are g{@}, g{ci}, g{c2}, g{c3}, g{ci, ¢z},
g{ci,c3}, g{c, c3}, g{c1, ¢z, c3} and obviously the weight of empty set, g(@) = 0
and weight of maximal set, g{c;, ¢3,c3} = 1 as per the axiom.

Several approaches were proposed in studies by Tahani and Keller (1990),
Chen and Wang (2001), and Takahagi (2007), to name but a few, to assist the
decision makers in estimating monotone measure weights. Each approach demands
different types and amount of information from decision makers. Further review on

these approaches is offered in chapter three of the thesis.

1.1.4.1 Drawback of Choquet Integral
The only issue on using Choquet integral is usually, a complex computational
process is required to determine the 2™ weights of monotone measure especially for
a larger set of attributes (Tzeng and Huang, 2011).

The total number of monotone measure weights (2™) which need to be
identified prior to employing Choquet integral increases with the increasing number
of attributes, n, for a MADM problem. Besides, the decision makers may not be able

to consistently analyze and provide the information on the type of interaction shared
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by the attributes within each subset, in the process of determining the monotone
measure weights especially when the number of attributes is large (Larbani, Huang,
and Tzeng, 2011).

These shortcomings could restrict the decision makers from utilizing Choquet

integral for real-world MADM problems.

1.2 Problem Statement

The identified gap or problem of this research can be recapitulated as follows:
Although the classical AHP emerges as one of the broadly applied MAUT
techniques for solving MADM problems, this technique is being disparaged due to
two major shortcomings. Firstly, this technique is ineffectual in dealing with the
aspect of uncertainty embedded in human’s estimation. Secondly, it disregards the
interaction between attributes during the aggregation phase.

The first issue can be elucidated as follows: Normally, in the second phase of
MAUT techniques, some data or preference values from decision makers are needed
to derive the local scores and attributes’ weights. In reality, due to lack of
knowledge, humans are usually uncertain or vague in expressing their preference
(Chen et al., 2011). Therefore, it is insensible to force decision makers to precisely
quantify or express their estimation or preference via crisp numbers. They actually
opt to express their preference via linguistic terms or natural languages due to the
factor of uncertainty or vagueness (Chou, 2007; Lee, Mogi, and Kim, 2009).
Nevertheless, the classical MAUT models such as classical AHP are based on crisp
numbers and not based on linguistic terms. As a result, these techniques do not

exactly reflect actual human thinking pattern.
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However, the application of fuzzy set theory in MAUT analysis has been
found to be helpful in modeling the usual uncertainty that existed in the data offered
by human (Shi et al., 2010). In fuzzy analysis, data can be provided in linguistic
terms which are then quantified with fuzzy numbers. Unfortunately, performing
fuzzy analysis requires higher computational effort from decision makers (Chen and
Hwang, 1992, as cited in Kahraman, 2008) than the crisp MADM analysis where it
would demand them to conduct some additional steps (i.e. fuzzification and
defuzzification) and to offer some extra information during the analysis. This
shortcoming restricts the application of fuzzy models into real MADM problems
(Rao, 2007) and could be one of the reasons that compel the decision makers such as
managers in an organization who are unversed in quantitative analysis to adhere on
the classical MADM models.

Meanwhile, the second issue can be highlighted as follows: Generally, while
implementing MAUT techniques such as classical AHP, decision makers tend to
employ any of the additive aggregation operators which assumes that there is no
interaction between the attributes (Bendjenna, Charre, and Zarour, 2012) (i.e. SWA
operator) to aggregate the local scores. However in reality, most attributes portray
inter-dependent or interactive characteristics and therefore, the aggregation should
not be always carried out via conventional additive operators (Tzeng, Yang, Lin, and
Chen, 2005).

However, it is proven that Choquet integral is capable to model the
interaction between attributes during aggregation (Grabisch, 1996b; Marichal, 1999).
Unfortunately, the process of estimating monotone measure weights prior to

applying Choquet integral can turn into a complex process (Zhu, Chen, Lu, and
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Zhang, 2009). The total number of monotone measure weights (2™) which needs to
be estimated prior to employing Choquet integral increases exponentially with
increasing number of attributes, n. (Alavi, Jassbi, Serra, and Ribeiro, 2009). Besides,
the decision makers may not be able to consistently analyze and offer the
information on the type of interaction shared by the attributes within each subset in
the process of estimating the monotone measure weights especially for a MADM
problem which involves large set of attributes (Marichal and Roubens, 2000;
Larbani, Huang, and Tzeng, 2011). These complications could limit the decision
makers in utilizing the advantageous Choquet integral tool for real-world MADM
problems.

With regards to abovementioned issues, it can be simplified that using fuzzy
set and Choquet integral together in a MADM problem demands higher
computational effort from decision maker where it would require higher number of
computational steps and large amount of information from decision makers. As a
result, this research discovers an opportunity or need to offer a MADM procedure
which can minimize the number of computational steps and amount of information
required from decision makers when simultaneously dealing with uncertainty in
human’s data and interaction among attributes. In other words, there is a necessity
for the decision makers to have a simple and straightforward MADM procedure
which concurrently captures the aspect of uncertainty in human’s data and
interaction among attributes. Figure 1.2 simplifies the gap identified through this
research.

It is undeniable that several MADM models such as generalized Choquet

fuzzy integral (GCFI), fuzzy analytical network process (FANP), and fuzzy
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partitioned hierarchy were developed with the intention to consider the formerly-

mentioned two aspects. However, these models came with some shortcomings

especially in the context of computational requirement. Table 1.5 summarizes the

shortcomings of the three MADM models.

Table 1.5: Shortcomings of GCFI, FANP, and Fuzzy Partitioned Hierarchy

MADM models

Shortcomings

GCFI (Tsai and
Lu, 2006)

FANP (Vinodh,
Ramiya, and
Gautham, 2011;
Promentilla,
Furuichi, Ishii,
and Tanikawa,
2008)

Fuzzy partitioned
hierarchy (Lin,
Shiu, and Tzeng,
2011)

a)

b)

c)

a)

b)

a)

The estimation of monotone measure weights (Demiral, Demiral, and
Kahraman, 2010) and aggregation process of identifying global score of
each alternative are complicated as the computation process involves fuzzy
or interval values. Even, Hwang and Chen (1992) and Nijkamp, Rietveld,
and Voogd (1990) affirmed that carrying out fuzzy numbers or interval
values throughout computation would drag decision makers to a
complicated situation.

Requires some additional defuzzification steps to identify the ordinal
ranking as the aggregated global scores exist in interval form.

In context of data requirement, this approach needs three types of data from
decision makers (importance of attributes, tolerance zone of expected local
scores and local scores of each alternative)

As the elements (attributes and alternatives) of a MADM problem increase,
the computation process of this model turns to be more complex since it will
be involving larger number of pair-wise comparison matrices (Yurdakul,
2003).

More data or judgments will be needed from decision makers with
increasing number of elements as this approach requires (n—1)/2
judgments for n elements to compute a pair-wise comparison matrix (Hsu,
Hung, and Tang, 2012).

Two different clustering on attributes could be yielded after performing
fuzzy factor analysis and so, twofold computation steps are required.

During analysis, the fuzzy global scores of alternatives can be determined
but not their ordinal ranking. Therefore additional defuzzification approach
required.

Uncertainty is omitted in measuring the performance of alternatives. It
requires exact judgment from decision makers or expert in assigning local
scores of alternatives. In other words, it should allow them to provide data in
linguistic terms as usually they will be uncertain with their judgment.
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Issues in classical AHP technique

\4 \4
Issue 1: Uncertainty that Issue 2: Interaction among
exists in data provided by attributes is ignored during
human is neglected aggregation
However However
Using fuzzy set (fuzzy numbers) in Using Choquet integral
MADM problems able to capture the operator able to capture the
uncertainty that embedded in interaction among attributes
human’s data during aggregation
Unfortunately Unfortunately
v
Applying fuzzy set into would demand The estimation of monotone measure
the decision makers to perform some weights prior of employing Choquet
additional steps and to offer some integral requires higher number of
extra information during the analysis. computational steps and larger
amount of information from decision
makers particularly with increasing
number of attributes.

A 4

Identified gap: There is a need for a MADM procedure which able to lessen the
number of computational steps and amount of information required from decision
makers when dealing with uncertainty in human’s data and interaction among
attributes concurrently.

Figure 1.2: Problem Statement of the Research

In the process of discovering a resolution for the identified gap, several

research questions are formulated as listed in the following section.
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1.3 Research Questions

The overall quest of this study is depicted through the formulated primary and

specific research questions are presented in Table 1.6.

Table 1.6: Research Questions

ltems

Research questions

Primary research
guestion

First specific
research
guestion

Second specific
research
question 2

Third specific
research
guestion

Fourth specific
research
guestion

Fifth specific
research
guestion

How to develop a MADM procedure which requires minimal number of
computational steps and amount of information from decision makers
when dealing with the aspect of uncertainty in human’s data and
interaction between attributes simultaneously?

What are the key elements or ideas in fuzzy set theory which are

significant to the field of MADM?

What are the pros and cons of the existing fuzzy AHP methods?

What are the types of aggregation operators which can be used in solving
MADM problems?

What are approaches that have been proposed with the intention to lessen
the amount of information and/or numbers of computational steps
required from decision makers in the process of estimating monotone
measure weights?

How to illustrate the feasibility of the proposed procedure?
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1.4 Objectives

Based on the identified research questions, the objectives of the study can be stated

as follows.

1.4.1 Main Objective

The primary goal of this research is to propose a MADM procedure which requires
minimal number of computational steps and amount of information from the
decision makers when modeling the aspect of uncertainty in human’s data and

interaction between attributes simultaneously.

1.4.2 Specific Objectives

There are a few specific objectives which need to be accomplished in order to meet
the main goal of this research. Firstly, this research aims to explore the crucial
elements or concepts in fuzzy set theory which are applicable to the field of MADM.
Secondly, this research targets to conduct a pros and cons analysis on the existing
fuzzy AHP models.

Thirdly, this research intends to identify types of aggregation operators which
are applicable in MADM problems. The fourth objective of this research is to
identify the approaches that have been suggested in reducing the amount of
information and numbers of computational steps required from decision makers in
estimating monotone measure weights.

Finally, this research aims to demonstrate the feasibility of the proposed

procedure by solving a real-world MADM problem.
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1.5 Significance of the Research

It is projected that this research would render several positive implications to the
field of MADM and its practitioners. The major contributions expected from this
research can be simplified as follows. First of all, this research would offer a MADM
procedure which could minimize the number of computational steps and amount of
information required from the decision makers when dealing with uncertainty in
human’s data and interaction among attributes concurrently.

Secondly, this research could be an endeavor to inspire or encourage more
decision makers (specifically the real managers from an organization who are
lacking of exposure on quantitative analysis) to consider the aspect of uncertainty in
human’s judgment and interaction among attributes while resolving real-world
MADM problems in order to assure more practical results. It was mentioned earlier
that most of the decision makers are reluctant to deal with the former two aspects as
they are usually dragged into a cumbersome or complicated computational
requirement by doing so.

Thirdly, since the aggregation phase is being one of the primary focuses of
this research, the thesis of this research would comprise a satisfactory appraisal on
the characteristics and types of aggregation operators. Consequently, the thesis could
be a good reference for decision makers in choosing an appropriate aggregation
operator based on the problem’s needs or for formulating novel operators.

Furthermore, it is hoped that this research would be helpful in stimulating
some ideas or hints for practitioners of MADM to further or gradually reducing the

number of computational steps and amount of information demanded from the
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decision makers when dealing with the aspect of uncertainty in human’s judgment
and interaction among attributes simultaneously.

Finally, via this research, a real-world MADM problem will be identified and
solved by applying the proposed procedure in the process of proving that the

proposed procedure is applicable in surmounting real-world MADM problems.

1.6 Scope of Research

The theoretical and geographical scopes of this research are as elucidated follows.

1.6.1 Theoretical Scope

As mentioned formerly, MCDM comprises of two branches namely MODM and
MADM. This research limits its focus into field of MADM which concerns on
decision making process involving a set of finite choices that described by a set of
evaluation attributes.

However, there are various MADM techniques which can be classified into
three families known as multi-attribute utility theory (MAUT) techniques,
outranking techniques and some other multi-attribute decision making (OMADM)
techniques. This research focuses on dealing with several issues that arise in MAUT
techniques such as classical AHP.

Three fundamental phases in implementing any MAUT techniques are as
follows. ldentification of alternatives and relevant attributes (Phase 1), estimation of
local scores of alternatives and attributes’ weights (Phase 2), and aggregation phase
(Phase 3). As the two current issues in MAUT techniques, issue of uncertainty in
human’s judgment and ignorance of interaction aspect among attributes commonly
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occur at Phase 2 and Phase 3 respectively then, the major concern of this research is
diverted to explore these two phases in order to deal with the formerly mentioned
issues. Figure 1.3 offers a clear understanding on how this research travels to its

major focal points of research.

Multi-attributes Decision Making (MCDM)
.- ,

v v
Multi-objective Multi-attribute
Decision Making Decision Making
(MODM) (MADM)

\ 2 v \4
Multi-attribute utility theory Outranking Other MADM
(MAUT) techniques techniques techniques
(OMADM)
v VAR 4
Identification  of Estimation of local Aggregation
alternatives and scores and attributes (Phase 3)
attributes (Phase 1) weights (Phase 2)
Vv Vv
Issue 1: Uncertainty Issue 2: Ignorance
in human’s of interaction
judgments aspect among
attributes

Figure 1.3: Scope of the Research

1.6.2 Geographical Scope
This research will identify and seek to find solution for a real-world MADM
problem that exists within the state of Selangor, Malaysia in order to illustrate the

feasibility of the proposed procedure.
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1.7 Organization of the Thesis

Overall, this thesis comprises of 6 main chapters which are organized as follows.
Chapter one introduces some fundamental concepts in MADM where the discussion
Is primarily concentrated on one of the well-accepted MAUT techniques namely
classical AHP. By exploring conventional AHP, the gap or problem of the research
is spotted and well-defined. Besides, this chapter identifies the objectives that need
to be achieved in the process of solving the identified gap and reveals the
significance of carrying out this research.

In chapter two, the literature review on the aspect of uncertainty in humans’
data is presented. The chapter begins by defining the issue of uncertainty in MADM.
Then, the appraisal concentrates on some key notions of fuzzy set theory and how
they are being useful in modeling the usual uncertainty embedded in humans’ data
while conducting a MADM analysis. The chapter is ended by presenting a pros and
cons analysis on the existing fuzzy AHP approaches.

Meanwhile, the aspect of interaction between attributes is examined in
chapter three. The chapter kicks off by describing the aggregation phase in MADM
and listing some of the essential properties expected from a good aggregation
operator. Subsequently, the review is narrowed on Choquet integral and its
associated monotone measure which can capture the interaction between attributes
during aggregation. The following section of the chapter probes into the approaches
which have been recommended so far in reducing the complexity of identifying
monotone measure weights. The chapter ends with a summary on application of

Chogquet integral into real problems.
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In chapter four, a new MADM procedure is proposed where this procedure is
developed accordingly to ensure it able to reduce the number of computational steps
and amount of information required from decision makers when dealing with aspect
of uncertainty and interaction between attributes. The steps of implementing the
proposed procedure are detailed either. At the end of chapter, a simple toy example
is presented to offer better understanding on the usage proposed procedure.

In the following chapter, the image of three stores located at Pekan Sabak,
Selangor, Malaysia from the perception of homemakers is assessed via proposed
procedure to authenticate it’s practicability in solving the real-world MADM
problems.

Lastly, through chapter six, the contributions gained by accomplishing this
research, limitations of the research, and the opportunities formed by this research

for future studies are summarized.

1.8 Summary of Chapter One

This chapter was commenced by presenting a brief survey on the field of MADM
which then focused into one of the widely applied MAUT techniques namely
classical AHP. This research discovers its problem by exploring classical AHP.

It was found that classical AHP has two inabilities. Firstly, it fails to capture
the usual uncertainty embedded in data provided by humans. Secondly, it neglects
the interaction between attributes during aggregation. But, it was learnt that these
two issues can be solved by utilizing the concept of fuzzy set theory and Choquet
integral respectively. Unfortunately, by doing so, the decision makers are usually

dragged into a tremendous or complicated computational requirement where higher
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number of computational steps and large amount of information would be required
from decision makers. Therefore, this research believes that there is a need for a
MADM procedure which requires minimal number of computational steps and
amount of information from decision makers when dealing with these two issues
simultaneously.

As a result, this research has set its primary goal to develop a MADM
procedure which reduces the number of computational steps and amount of
information demanded from the decision makers when modeling the aspect of
uncertainty in human’s data and interaction between attributes simultaneously. In
achieving the main goal, several specific objectives need to be accomplished as
identified in this chapter. By accomplishing all its objectives, it is believed that this
research could generate some significant contributions to the field of MADM and its

practitioners.
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CHAPTER TWO
ON THE ASPECT OF UNCERTAINTY IN HUMAN’S DATA

2.1 Introduction

There are two major issues hooked with the conventional AHP as clarified in chapter
one. Firstly, the conventional MAUT is incapable to cope with uncertainty in data
offered by human. Secondly, it ignores the aspect of interdependencies among
attributes during aggregation phase. This chapter is devoted to compile some
significant information pertaining to the former issue by reviewing past literature
that would be helpful in constructing the proposed procedure of the research.

This chapter begins with the discussion on the uncertainty phenomena in
decision making process. Then, the origin of fuzzy set theory and its applicability in
capturing the uncertainty embedded in data provided by human are probed. The
crucial elements of fuzzy set theory such as linguistic variables, linguistic terms,
fuzzy numbers, fuzzification, and defuzzification procedures that are applicable in
MADM environment are detailed as well. In the subsequent section, a review on
application of fuzzy set theory into MADM models is offered where a major
appraisal will focus on fuzzy AHPs. A pros and cons analysis on several fuzzy AHP
approaches which are frequently underlined in past studies is conducted at end of

this chapter.
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2.2 Defining Uncertainty in MADM

Most of the MADM problems engaged with issue of uncertainty. Uncertainty and
vagueness always exist in the human decision making process (Kahraman, 2008) due
to the presence of either incomplete information or abundance of information,
conflicting evidence, ambiguous information or subjective information
(Zimmermann, 2000). Ribeiro (1996) classified the uncertainty phenomena in
MADM into three categories namely ‘incompleteness’, ‘fuzziness’ and ‘illusion of
validity' (Tversky and Kahneman, 1990). This research focuses on ‘fuzziness’ type
of uncertainty where according to him, ‘fuzziness’ occurs when there are difficulties
in assigning precise assessment for qualitative features or attributes such as how to
assess ‘comfort” which is an attribute for buying a car.

As stated above, it is common for people to be uncertain about their
preference or judgment (Kangas, Kangas, and Kurttila, 2008) since they rarely have
ample level of information about the problem. For instance, they may not know
exactly how much they prefer a particular alternative over another with respect to a
criterion and there may be uncertainty while comparing the relative importance
among attributes. In addition, it is a cumbersome task for them to express their exact
preference via crisp numbers or scales (Lee, Mogi, Kim, and Gim, 2008). Hence,
they may need to rely on experts’ knowledge in solving the MADM problem at hand
(Bozbura, Beskese, and Kahraman, 2007).

Ribeiro (1996) highlighted that one way to reflect such uncertainty is to
present the uncertain preference or judgment using linguistic terms. Human actually
tend to offer the information in natural languages or linguistic scales such as ‘poor’,

‘fair’, and ‘good’ performance rather than using exact numbers as they are usually
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uncertain on their preference. An advantageous MADM model should reflect the
actual human thinking style and therefore, it must cope with imprecise, vague or
uncertain information such as ‘poor’, ‘fair’, and ‘good’ performance (Ribeiro, 1996)
in order to generate more trustworthy result. One commonly used approach for
dealing with uncertainty embedded in linguistic terms is by employing the fuzzy set

theory (Lai, Chang, and Chou, 2008; Zimmermann, 2001).

2.3 Fuzzy Set Theory

Fuzzy set theory was proposed by Zadeh (1965) in order to deal with vagueness in
human thought. Since its introduction by Zadeh, the theory has been widely applied
to mathematically reflect the ambiguities in human’s judgments and effectively
resolve the uncertainties in the available information in an ill-defined MADM
environment (Chu and Lin, 2009). The theory has been successfully applied to
problems in engineering, business, health sciences, and the natural sciences
(Kahraman, Gulbay, and Kabak, 2006).

According to Ertugrul and Karakasoglu (2008), fuzzy set theory is a
generalization of crisp or classical set theory. In crisp set theory, the membership of
elements in a set is assessed based on binary terms (1 = yes and 0 = no). It is used to
determine either an element belongs or does not belong to a specific set (Liou, Yen,
and Tzeng, 2007). In other words, it only permits only either full membership or
non-membership.

On the contrary, fuzzy sets allow partial membership where an element may
partially belong to a fuzzy set (Ertugrul and Karakasoglu, 2007). This is described

with the aid of a membership function, with the range encompassing the interval [0,
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1], operating on the domain of all possible values. In a nutshell, the fuzzy sets are
defined by the membership functions. Mathematically, fuzzy sets can be defined as
follows (Onut et al., 2009; Wibowo, 2011).

The fuzzy sets represent the grade of any element x of X that have the partial
membership to A. The degree to which an element, x belongs to a set, A is
characterized by p4(x) where it usually ranges from 0 to 1. If an element x really
belongs to A then, u,(x)= 1 and if it is clearly does not belong to A then, p,(x)= 0.
The higher is the membership value, p,(x), the greater is the belongingness of an
element x to the set A. Ertugrul and Tus (2007) affirmed that fuzzy sets theory which
provides a more extensive frame than classic sets theory, has been contributing in
reflecting real world scenario.

The following example, altered from the study conducted by Kangas,
Kangas, and Kaurttila (2008), could enlighten the distinctions between crisp set
theory and fuzzy set theory. For instance, a statement ‘an individual is young’ can
be more or less true. Therefore, fuzzy sets would be needed where a membership

function to define set ‘young’ can be illustrated as in Figure 2.1.

young () . Set of ‘Young

» X

0 25 45

Figure 2.1: Membership Function for Set ‘Young’ (Example)
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Based on Figure 2.1, the degree of membership, u(0 < x < 25)=1
implies that an individual clearly belongs to set ‘young’ when he or she aged
between 0 and 25. The belongingness of an individual to set ‘young’ decreases when
X or age increases, i.e. larger than 25. In addition, an individual clearly does not
belong to set “young’ when he or she reached 45, p(x = 45) = 0.

If a crisp definition is available, such as ‘an individual is young if the age of
the individual does not exceed 12’ then, crisp set is applicable where the membership
function would only have 0 (No) and 1 (Yes) values.

Fuzzy sets are being applied into MADM atmosphere as most of the MADM
problems involve linguistic variables. Further details on linguistic variables are

presented in the following section.

2.3.1 Linguistic Variables
A linguistic variable is a variable whose values are expressed in linguistic terms or
words in a natural or artificial language (Zadeh, 1975). The linguistic variable is a
very helpful concept for dealing with situations which are too complex or not so
well-defined to be sensibly described using exact or crisp numbers. Several examples
for better illustration on the concept of linguistic variables are as follows: ‘Age’ is a
linguistic variable if its values are expressed or defined linguistically such as young,
mature, old and so on, rather than using crisp numbers(0,1,2,--,100) (Bellman and
Zadeh, 1977).

With regards to MADM setting, ‘relative importance between two attributes’
could be a linguistic variable whose values can be expressed in natural languages as

equally important, moderately important, important, strongly important, extremely
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important, and so on. These linguistic terms can be further represented by specific
fuzzy numbers (Chu and Lin, 2009). Fuzzy number is an extension of basic number
which usually comprises of lower, upper and probable values that best represents a
linguistic preference or judgement. It used to mathematically capture or represent the
usual uncertainty embedded in linguistic preferences. By quantifying the preference
in linguistic terms into fuzzy numbers, the decision analysis can be carried out
quantitatively without losing the aspect of uncertainty. More details on fuzzy

numbers are offered in subsequent sections.

2.3.2 Fuzzy Numbers

Fuzzy numbers are fuzzy sets which are both convex and normal (Chen and Niou,
2011). A fuzzy number, A is a convex fuzzy set characterized by a given interval of
real numbers, each with range of membership between 0 and 1. Its membership
function is piecewise continuous and satisfies the following conditions (Hadi-

Vencheh and Mokhtarian, 2011):

a) u,(x)=0 outside of some interval [, u],
b) u,(x) is non-decreasing (monotonic increasing) on [I, m;] and non-
increasing (monotonic decreasing) on [m,, u],
¢) u,(x)=1foreachx € [m,, m,].
where | < m; < m, < u are real numbers in the real line R. To describe further, |
represents lower value, m; and m, denote middle or most probable values and u

signifies upper value of the membership function that defines set A.
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2.3.3 Types of Fuzzy Numbers

Among the various types of fuzzy numbers, triangular and trapezoidal fuzzy
numbers are the most commonly used fuzzy numbers (Hadi-Vencheh and
Mokhtarian, 2011). A triangular fuzzy number (TFN), A; can be defined by a triplet
(I, my,u) where | < my; < u as portrayed in Figure 2.2. The membership function of

TFN (2.1) is characterised as follows (Mansur, 1995):

(0 x <l
x —1 | <y <
x <m,,
my — 1 (2.1)
a4y
m; < x </,
u—m,
\0 x>u

Wz () &

Figure 2.2: Triangular Fuzzy Number, 4;= (I, m,, u) (Liao, 2009)

According to Lu and Zhang (2008), in a TFN such as 4; = (I, my,u), m,

denotes the maximal degree of pz (x) and it is the most possible or optimum value

of the set, whereas [ and u represent the lower and upper value of the same set. They

added that the narrower is the interval [l, u], the lower is the fuzziness of the set.
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Meanwhile, a trapezoidal fuzzy number (TrFN) A, can be denoted by a
quadruplet (I,my,m,,u) where | <m; <m, <u as illustrated in Figure 2.3.
Mathematically, the membership function of TrFN (2.2) is defined as follows

(Mansur, 1995):

(0 x <l
x—1
[<x<my,
my; — 1
|.1A‘;(X)< 1 mq SXsz, (22)
u—x
m <x<u,
u_ml
L0 x>u
uz; (x) 4
1 1 1
I : > X
0 m, m, u

Figure 2.3: Trapezoidal fuzzy number,4; = (I, m;, m,, u)(Lee, 2005)

It is apparent that TFNs are special cases of trapezoidal fuzzy numbers when
m,;= m,. TFEN is more advantageous over other types of fuzzy numbers in decision
making environment (Moon and Kang, 2001) due to the following three reasons
(Ramik, 2009). Firstly, the membership function of TFN is piecewise linear and
comparatively simple. Secondly, arithmetic operations such as addition and

subtraction can be performed easily in comparison to other types of fuzzy numbers.

34



Thirdly, crisp (or non-fuzzy) numbers which are the most practical values can be
represented as triangular ones.

Figure 2.4 shows an illustration on how fuzzy set theory can be utilized to
evaluate the age of people (Bellman and Zadeh, 1977) to offer clear perception on
the concept of linguistic variable, linguistic terms and fuzzy numbers. Based on
Figure 2.4, ‘age’ is a linguistic variable which can be defined or assessed using 3
linguistic terms namely ‘young’, ‘mature’ and ‘old’. Each of these linguistic terms is
represented or described by using TrFN consisting lower age, most optimum or
probable ages and upper age of each linguistic term. For instance, the TrFN for

‘mature’ 1s (25, 45, 55, 75).

Age
H(x)
A
1
Young Mature Oold
0 10 20 30 40 50 60 70 80 90 100 X

Figure 2.4: Fuzzy Numbers Used to Define Age

2.3.4 Arithmetic Operations on Triangular Fuzzy Numbers

This section only reviews the arithmetic operations involving triangular fuzzy
numbers which are considered to be necessary for this research. Let A; =
(I, my,u;) and 4, = (I,,m,,u,) be two positive triangular fuzzy numbers. Then,
the basic fuzzy arithmetic operations on these fuzzy numbers can be defined as

follows (Kaufmann and Gupta, 1991; Hanss, 2005):
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)mllll

)

a) Inverse: (4;)" ' = (ui
1

b) Addition: 4; + A4, = (I; + I, my + my, uy + uy)
C) SUthaCtlon A~1 - A~2 = (ll — U, My — My, U — lz)
d) Scalar multiplication: k x A; = (kl;, km, ku,) fork > 0
e) Multiplication: 4; x 4, = (1,15, mym,, u;uy)
ivision: 4. = A = (4 ™ %
f) Division: 4; ~ A, = (uz,mz, L
It has to be noted here that the above arithmetic operations involving trapezoidal

fuzzy numbers are conducted in a similar manner.

2.3.5 Fuzzification
Fuzzification refers to a process of converting each linguistic term used for
evaluation into its corresponding fuzzy number. Through several studies, some
fuzzification approaches are identified. The most common practise or approach for
this conversion is for the decision makers to identify the lower, probable, and upper
values of a fuzzy number corresponding to each linguistic preference based on their
background knowledge, experience or with the aid of experts, and finally, construct
the fuzzy conversion scale. This approach has been applied in many MADM studies
such as in Royes and Bastos (2001) and Hung, Li, and Chiang (2007).

On the other hand, Chen and Hwang (1992) have proposed 8 conversion
scales for fuzzification purpose which are applicable in MADM. In the proposed
conversion scales both the score, x and membership function p(x) are in the range

from 0 to 1. All the recommended scales are portrayed in Figure 2.5.
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Figure 2.5: Eight Conversion Scales Proposed by Chen and Hwang (1992)
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The selection and usage of each conversion scale rely on the total number of

linguistic terms used to assess the linguistic variable. The principle of this approach

is simply to identify a scale which contains all the linguistic terms used by decision
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makers and then, transform these linguistic terms into corresponding fuzzy numbers
as determined in the chosen scale (Cheng, 2000). If the provided linguistic terms
exist in more than one scale, the simplest one should be chosen. An example
illustrated in the study conducted by Aldian and Taylor (2003) could offer better
enlightenment on this approach. Let’s assume five linguistic terms, very low, low,
medium, high and very high, are used to represent the score of an alternative with
respect to a criterion. Then, scale C, F, G, and H would be the nominee scales.
However, scale C is selected as it contains all the terms besides being the simplest
among the others.

As carrying fuzzy numbers could demand extra computational effort from
decision makers, Chen and Hwang (1992) suggested that the converted fuzzy
numbers based on any of these scales, need to be directly transformed into
corresponding crisp values before applying them into any of the basic MADM
models.

Meanwhile, in a MADM analysis conducted by Zhu (2010), the fuzzy
conversion scale was constructed by identifying the triangular fuzzy number (TFN)

that corresponds to each linguistic term by simply applying equation (2.3).

t-1 : ,min{H—l,l}) (2.3)

A‘:(l"’mi'ui):(max{T—1’0}’T—1 T—1

where A, represents triangular fuzzy number consisting {; (lower value), m; (most
probable value), u; (upper value) that corresponds to each linguistic term, s; and T

denotes the ranking of final linguistic preference.

38



For instance, let’s assume total of seven linguistic terms are fixed to evaluate
the performance of a set of alternatives with respect to a criterion. The set of
linguistic terms, s; comprised of s, = absolutely poor (AP), s; = very poor (VP),
s, = poor (P), s; =fair (F), s, = good (G),ss = very good (VG), and sq =
absolutely good (AG) and so, T = 7. Then, the triangular fuzzy number corresponds
to each linguistic term can be obtained by applying equation (2.3) and the fuzzy

conversion scale as shown in Figure 2.6 can be constructed.

n(x)
A
1
N2 0 0
0 0.1667 0.3333 05 0.6667 0.8333 1 x

Figure 2.6: 7- point Linguistic Scale based on Zhu'’s Fuzzification Approach

Zhu’s approach which requires simple execution is recommended for the
decision makers who are unable to clearly define the fuzzy number corresponding to
each linguistic term, due to lack of information or experience. They can merely
convert each of the linguistic terms into triangular fuzzy number by employing
equation (2.3). The conversion scale developed from this approach is homogenous
where it only consists of triangular fuzzy numbers, and arithmetic operation can be
carried out without any complication.

On the other hand, while utilizing AHP method in fuzzy environment,
Saaty’s fuzzy AHP scale as presented in Figure 2.7 which is an extension of Saaty’s

crisp AHP scale, is commonly referred to convert linguistic terms in pair-wise
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comparison matrix into corresponding fuzzy numbers, as applied in studies

conducted by Duran and Aguilo (2008), and Kwong and Bai (2003).

n(x)
A Equal Moderate Strong Very strong Extreme
importance  importance importance importance importance
1
0 1 2 3 4 5 6 7 8 9 X

Figure 2.7: Saaty’s Fuzzy AHP Conversion Scale

Table 2.1: Saaty’s Fuzzy AHP Conversion Scale

Linguistic Corresponding TFN Explanation Reciprocal of TEN
preference (TFN~H)
Equal 1=(112) Two elements -1 _ 1 11
importance contribute equally = (E' 1)
Moderate 3=(235) One element is slightly 501 411
importance favoured over another a5 = (g'gig)
Strong § = (4,5,6) One element is o1 _ 111
importance strongly favoured over - (E'E'Z)
another
Very strong 7 =(6,7,8) One element is very =, 111
importance strongly favoured over 7= (5'7’6)
another
Extreme 9 = (8,9,9) One element is most ~, 111
importance favoured over another =Gy
The 2=(123),4= Used to compromise 71=,21),4 1=
intermediate (3,4,5), 6 = (56,7),8 = between 111 3~21
values (7,8,9) two judgments (5 307 =
1 111
(7 6’ 5) _(9’8’7)

*Note, when element i is compared to j then, the preference is assigned with one of the TFN scale.
Meanwhile, when element j is compared to i then, the preference is assigned with the corresponding

reciprocal.
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2.3.6 Defuzzification

Deng and Chan (2011) considered defuzzification as a crucial step in fuzzy MADM.
Defuzzification is actually a process of converting the fuzzy values into crisp values
(Tseng, 2011; Kahraman and Cebi, 2009) which would be helpful in determining the
ordinal ranking of MADM elements such as attributes or alternatives (Opricovic and
Tzeng, 2003).

However, it has to be mentioned here that a fuzzy set cannot be exactly
represented by a singleton and thus, the defuzzification can only be undertaken with
the loss of information (Harris, 2006) but different defuzzification techniques
extract different level of information (Deng and Chan, 2011). If a technique is
capable to minimize this loss then, it tends to yield a more accurate or precise result
(Luukka, 2010).

Some of the common defuzzification techniques are mean of maximum
(MOM), center of area (COA), last of maximum (LOM) and a- cut method (Wang,
Lu, and Chen, 2010). There is no systematic way for selecting a defuzzification
technique (Lee, 1990) but this study puts its major attention on COA technique due

to the following reasons:

a) This technique has been frequently applied in many MADM problems (Chu
and Velasquez, 2009; Jeng, 2012; Kabak and Burmaoglu, 2013; Yang, Chiu,
Tzeng, and Yeh, 2008) due to its simple and practical calculation requirement
especially in defuzzyfying TFNs (Chen and Tzeng, 2004) and also it does not
require any additional information from decision makers such as the

preferred o value (Chen, Tzeng, and Ding, 2008; Hsieh, Lu, and Tzeng,
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2004; Opricovic and Tzeng, 2003). Therefore, this technique should be
suitable and helpful in developing the intended MADM procedure as
specified through the primary objective of the study.

b) Besides, in many cases, this technique yields more accurate result than other
well-known techniques such as MOM and LOM, as reported in (Thammano,

1999 and Nurcahyo, Shamsuddin, Alias, and Sap, 2003).

The defuzzified value, A; of a triangular fuzzy number (TFN), 4; = (1;,m;,u;) can be

computed using COA equation (2.4) (Chou and Cheng, 2012).

A =1+ [(u; — ) + (m; — 1;)]/3 (2.4)

where [;, m;, and u; represent lower, middle, and upper value respectively.

2.4 Fuzzy MADM Models

One of the domains where fuzzy set theory has made a noteworthy contribution is in
the field of MADM (Kahraman, 2008). A fuzzy MADM model is used to assess
alternatives where the local scores of alternatives and importance of attributes can be
described in linguistic terms which will be later quantified into fuzzy numbers, in
order to mathematically capture the uncertainty embedded human’s perception
(Zhang, Ma, and Xu, 2005). Fuzzy TOPSIS (Aiello, Enea, Galante, and Scalia,
2009), fuzzy outranking (Aouam, Chang, and Lee, 2003), and fuzzy AHP are

examples of MADM models which were formulated by using the idea of fuzzy set
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theory. The following section is devoted to investigate the fuzzy AHP approaches

which earn widespread applications in MADM (Zhu, Shang, and Yang, 2012).

2.4.1 Application of Fuzzy Sets in AHP

Fuzziness or uncertainty issue in conventional AHP arises during pair-wise
comparison process. In classical AHP, the decision makers need to compare the
relative importance between attributes and between alternatives with respect to each
attribute based on a nine-point AHP scale where each exact value represents a
linguistic preference such as equally, slightly, strongly, very strongly or extremely
preferred (Jiang, Feng, and Shi, 2009) as presented in Table 2.1. The crisp AHP
scale is usually favoured by decision makers due its simplicity and ease of use
feature (Kwong and Bai, 2003).

However, it is not rational to replace the linguistic preferences or data
expressed by decision makers with crisp values as these linguistic preferences
usually present some degree of uncertainty (Jiang, Feng, Feng, and Shi, 2010;
Kwong and Bai, 2002). Indeed, it is more reasonable to represent them with fuzzy
numbers which are capable to mathematically model the usual uncertainty embedded
in the provided linguistic preferences.

As a result, many fuzzy AHP approaches were proposed by various authors
where, the pair-wise comparison process in those methods is carried out based on
linguistic terms scales that are associated with fuzzy numbers, with the intention of

generating more reliable solutions for MADM problems.
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2.4.2 Types of Fuzzy AHP Approaches

The available fuzzy AHP approaches can be classified into two groups, Group | and
Group Il (Zhu, Shang, and Yang, 2012). The former group comprises approaches
derive a set of fuzzy priorities of elements from fuzzy pair-wise comparison
matrices. Meanwhile, the latter group of approaches derive crisp priorities from
fuzzy pair-wise comparison matrices. Note, in this section, priorities refer to local
scores of alternatives and weights of attributes.

Firstly, the four fuzzy AHP approaches which belong to Group | are analysed
by mainly focusing on their pros and cons as follows. One the of earliest fuzzy AHP
approaches was proposed by Van Laarhoven and Pedrycs (1983). It is a direct
extension of Saaty’s AHP method which uses triangular fuzzy numbers for
fuzzification of pair-wise comparison matrices and applies logarithmic least square
method to derive fuzzy priorities from the fuzzy comparison matrices (Jaskowski,
Biruk, and Bucon, 2010). One of the advantages of this approach is it able to model
the opinions of multiple decision makers in the reciprocal matrix (Buyukozkan,
Kahraman, and Ruan, 2004).

However, it comes with some disadvantages too. For example, the systems of
TFNs’ linear equations are linear dependent and do not always have a unique
solution (Chiang and Tzeng, 2009). Besides, it demands high computational process
even for small problem and only allows the usage of triangular fuzzy numbers
(Buyukozkan et al., 2004). In addition, Wang, Elhag and Hua (2006) have criticized
this approach for its incorrectness in the normalization of fuzzy priorities,
infeasibility in generating the priorities, uncertainty of fuzzy priorities for incomplete

fuzzy comparison matrices, and unrealistic global fuzzy scores.
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In 1985, Buckley proposed another fuzzy AHP approach namely, geometric
mean method which determines fuzzy priorities from pair-wise comparisons
described by trapezoidal fuzzy numbers (as cited in Kahraman, Cebeci, and Ruan,
2004). Tzeng and Huang (2011) pointed out that even though the geometric mean
method simplifies the application of AHP in fuzzy atmosphere, but the main
shortcoming of this method is the problem of the irrational fuzzy interval as it does
not consider the condition, such that the sum of the priorities equals 1. Meanwhile,
from the study conducted by Buyukozkan et al. (2004), it is found that although this
method assures a unique solution to the reciprocal comparison matrix yet the
computational requirement is still tremendous.

Besides, Boender, de Grann and Lootsma (1989) has amended Laarhoven’s
fuzzy AHP with the intention to include a more robust approach for normalization of
priorities. However, Wang et al. (2006) proved that the normalization method in
Boender’s approach is inappropriate. Besides, although it has the ability to capture
the opinions of multiple decision makers, it still requires complex computation steps.

Therefore, Wang et al. (2006) proposed an enhanced version of Laarhoven’s
fuzzy AHP namely modified fuzzy logarithmic least squares method (MF-LLSM)
which derives fuzzy priorities. MF-LLSM is designed as a constrained nonlinear
optimization model and can directly derive normalized triangular fuzzy priorities for
both complete and incomplete triangular fuzzy comparison matrices. However, the
priorities obtained by MF-LLSM can change and even lead to rank reversal.
Furthermore, it involves arduous numerical computations (Zhu, 2012). Besides, this

method is only applicable with triangular fuzzy numbers.
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It is apparent that additional defuzzification process needs to be carried out in
the abovementioned four fuzzy AHP approaches if the decision makers insist to
discover the ordinal ranking of attributes and alternatives involved in a MADM
problem.

Now, the two fuzzy AHP approaches that belong to group Il are reviewed in
the same contexts. Chang (1996) introduced a new approach for dealing with fuzzy
AHP, with the use of pair-wise comparison described by triangular fuzzy numbers
and the use of the extent analysis method for the synthetic extent values of the pair-
wise comparisons. It derives crisp priorities from the fuzzy pair-wise comparison
matrices. The extent analysis method perhaps has been frequently utilized in many
applications due to its computational simplicity (Wang, Luo, and Hua, 2008).
However, according to Zhu et al. (2012), fuzzy extent method came with several
issues such as inappropriate use of normalization, inappropriate use of arithmetic
mean to synthesize group’s judgments, the robustness of the global scores derived by
the extent analysis is weak, sometimes derives zero priority (known as zero priority
dilemma), could lead to information loss and wrong rank and does not always derive
reasonable priorities. Besides, this method is only valid for triangular fuzzy numbers
(Tiryaki and Ahlatcioglu, 2009).

On the other hand, Mikhailov (2003) proposed a non-linear fuzzy preference
programming method where by simply constructing and solving the recommended
non-linear optimization model, the inconsistency value and crisp priorities of fuzzy
pair-wise comparison matrices can be derived concurrently. Besides, due to the non-
linearity of the Saaty 1-9 scale in the region of values between 9~1 and 171, this

method does not require the decision makers to construct fuzzy reciprocal matrices
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which could lead to some issues such as rank reversal. Although the method
generates appropriate priorities, it is unable to show these priorities in the form of
fuzzy numbers that could offer some information for decision makers in
understanding the variant degree of the uncertainty (Tzeng and Huang, 2011).

Table 2.2 gives the summary of the appraised fuzzy AHP models and their

corresponding advantages and disadvantages.
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Table 2.2: Analysis on Fuzzy AHP Approaches

Group

Source

Advantages/ Disadvantages

Van
Laarhoven
and
Pedrycs
(1983)

Buckley
(1985)

Boender et
al. (1989)

Wang et al.

(2006)

Chang
(1996)

Mikhailov
(2003)

(A)Able to model the opinions of multiple decision-makers (Buyukozkan et al., 2004)
(D) Tremendous computational requirement even for small problem (Buyukozkan et al.,
2004)

(D) There is no unique solution for the linear equation (Chiang and Tzeng, 2009)

(D) Inappropriate normalization method (Boender et al., 1989)

(D) Infeasibility in generating the fuzzy priorities (Wang et al., 2006)

(D) Uncertainty of fuzzy priorities for incomplete fuzzy comparison matrices(Wang et al.,
2006)

(D) Unreality of global fuzzy scores (Wang et al., 2006).

(D) Additional defuzzification process needed for understanding the ordinal ranking of
attributes or alternatives

(D) Only applicable with triangular fuzzy numbers (Buyukozkan et al., 2004)

(A) Easy to extend the AHP into fuzzy case (Tzeng and Huang, 2011)

(A\) Assures a unique solution to the reciprocal comparison matrix (Buyukozkan et al., 2004)
(D) Tremendous computational requirement (Buyukozkan et al., 2004)

(D)Ignores the condition, such that the sum of the priorities equals 1 (Tzeng and Huang,
2011)

(D) Additional defuzzification process needed for determining the ordinal ranking of
attributes or alternatives

(A) Able to model the opinions of multiple decision-makers (Buyukozkan et al., 2004)
(D)Tremendous computational requirement(Buyukozkan et al., 2004)

(D)Inappropriate normalization method (Wang et al., 2006)

(D)Defuzzification process is required to identify the ranking of attributes or alternatives
(D)Only applicable with triangular fuzzy numbers (Boender et al., 1989)

(A)Can directly derive normalized triangular fuzzy priorities for both complete and
incomplete triangular fuzzy comparison matrices (Wang et al. 2006)

(D)High computational requirement (Zhu, 2012)

(D) Priorities could change and lead to rank reversal issue(Zhu, 2012)

(D)Additional defuzzification process needed for understanding the ordinal ranking of
attributes or alternatives

(D)Only applicable with triangular fuzzy numbers (Wang et al., 2006)

(A)Low computational requirement (Wang et al., 2008)

(A)No need any additional defuzzification process needed to identify the ordinal ranking of
attributes or alternatives

(D)Inappropriate normalization method and use of arithmetic mean to synthesize group’s
judgments (Zhu et al., 2012)

(D) Poor robustness (Zhu et al., 2012)

(D)Zero priority dilemma(Zhu et al., 2012)

(D)Could lead to information loss and wrong rank (Zhu et al., 2012)

(D) Derive unreasonable priorities (Zhu et al., 2012).

(D)Only applicable with triangular fuzzy numbers (Tiryaki and Ahlatcioglu, 2009)

(A)Low computational requirement

(A)Derive crisp priorities and consistently value of a fuzzy pair-wise matrix simultaneously
by simply solving a non-linear optimization model (Tzeng and Huang, 2011)

(A)Avoid using reciprocal judgements which can cause rank reversal issue (Mikhailov,
2003)

(A)No need any additional defuzzification process needed to identify the ordinal ranking of
attributes or alternatives

(D) Unable to show priorities in fuzzy numbers which could offer some information for
decision makers in understanding the variant degree of the uncertainty (Tzeng and Huang,
2011)
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From the analysis of the types of fuzzy AHP models, Mikhailov’s fuzzy AHP
is recommendable for decision makers relatively to other methods as the
computational requirement for this approach is low where the crisp priorities and
consistency values of fuzzy pair-wise comparison matrices can be derived
simultaneously by simply constructing and solving the proposed non-linear
optimization model. Besides, the drawback associated with this approach can be
tolerated as this drawback would not render to unreliable priorities in any senses and
thus, would not lead to inaccurate ranking on alternatives. Meanwhile, the drawbacks
integrated with other approaches would lead to identification of infeasible priorities
which could lead to some undesirable consequences in MADM such as wrong

selection, ranking, and classification of alternatives.

2.5 Summary of Chapter Two
Some crucial findings from this chapter which would be helpful in achieving the
primary goal of this research can be recapped as follows.

It was learnt that people usually uncertain or vague in expressing their
preference or judgments as they may not have satisfactory level of information about
the existing problem. As a result, it is burdensome for them to express their exact or
precise preference based on crisp numbers or scales. In practice, people tend to
express their preference via natural languages or linguistic terms due to uncertainty.
Unfortunately, most of the MADM tools are based on numbers and not based on
linguistic terms. Therefore, fuzzy sets are usually applied into MADM analysis in
order to mathematically deal with the usual uncertainly embedded in linguistic

preferences.
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Fuzzy sets are used in MADM environment as it involves many linguistic
variables. A linguistic variable is a variable whose values can be expressed in natural
languages or linguistic terms. The linguistic term is a very helpful concept for
dealing with situations which are too complex to be precisely or sensibly described
via exact or crisp numbers. These linguistic terms can be further quantified or
transformed into corresponding fuzzy numbers which mathematically capture the
uncertainty in each linguistic preference so the decision analysis can be conducted
quantitatively.

A fuzzy number can be defined as an interval which comprises of lower,
most probable and upper values that best represents a linguistic preference. It was
also found that among various types of fuzzy numbers, triangular fuzzy numbers
(TFNSs) have more advantages especially the arithmetic operations involving TFNs is
simpler and easier to be manipulated.

It was discovered that fuzzification and defuzzification are two vital
processes in adapting fuzzy set theory into MADM environment. Fuzzification refers
to the process of transforming or quantifying the linguistic data into corresponding
fuzzy numbers. Several fuzzification approaches were discussed in this chapter.
Among them, Zhu’s approach which requires simple execution is recommended for
ill-informed decision makers who are unable to clearly define the fuzzy number
corresponding to each linguistic preference. On the other hand, while utilizing AHP
in fuzzy environment, Saaty’s fuzzy AHP scale can be used to transform linguistic
preferences in pair-wise comparison matrix into their corresponding fuzzy numbers.

On the contrary, defuzzification is a process of converting the fuzzy value

into a crisp value which would be commonly helpful in determining the ordinal
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ranking of MADM elements such as attributes or alternatives. It was found that
centre of area (COA) emerges as one of the frequently applied defuzzification
techniques as it only demands simple calculation process for defuzzyfying TFNs,
does not require any prior information from decision makers, and performs better in
the aspect of accurateness than some other familiar techniques.

The application of fuzzy set theory into MADM is gaining hiking attention
from decision theorist as various fuzzy MADM tools have been formulated to this
date. These fuzzy models are used to make assessment on a set of finite alternatives
where required data from decision makers to derive the local scores and attributes’
weights, can be provided in linguistic terms which will be then described by fuzzy
numbers, in order to mathematically capture the usual uncertainty that consists in
human’s perception. The review on this chapter concentrated on fuzzy AHP methods
which gain pervasive applications in MADM.

The uncertainty issue in conventional AHP arises during pair-wise
comparison process where decision makers are required to express their preference
between elements based on a crisp 9-point scale. Each crisp number in the scale
represents a linguistic preference such as equally, moderately, strongly, very strongly
or extremely preferred. Actually, it is more rational to represent these linguistic
terms with fuzzy numbers which are capable to mathematically model the usually
uncertainty embedded in the linguistic preferences offered by human. As a result,
various fuzzy AHP approaches were developed with the purpose of generating more
reliable solutions for MADM problems. In this chapter, the pros and cons analysis is

conducted on six fuzzy AHP approaches.
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From the analysis, it can be concluded that Mikhailov’s fuzzy AHP method is
recommendable for the decision makers relatively to other methods as the
computational requirement of this approach is not enormous where the crisp
priorities and consistency values of fuzzy pair-wise comparison matrices can be
derived concurrently by simply resolving the proposed non-linear optimization

model.
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CHAPTER THREE
ON THE ASPECT OF INTERDEPENDENCIES AMONG
ATTRIBUTES

3.1 Introduction

Aggregation is one of the crucial phases in implementing MAUT techniques such as
AHP. Aggregation refers to a process of synthesizing the local scores of an
alternative to obtain a single global score which would be helpful in selecting,
ranking or classifying the alternatives under evaluation. A function which composes
the local scores into a single score is commonly known as aggregation operator,
Aggre. As emphasized earlier in chapter one, the primary issue in the aggregation
phase is usually the decision makers tend to use any traditional operators which
disregard the interaction aspect among attributes during aggregation.

This chapter is organized as follows. Firstly, the features or properties of a
good aggregation operator are reviewed. Then, the review is extended to explore the
types of aggregation operators which are applicable in MADM problems. Thirdly,
the appraisal is narrowed on Choquet integral and its associated monotone measure
which can model the interaction among attributes. Next, several attempts by
researchers in dealing with the complexity of identifying monotone measure weights
are investigated. These weights are actually demanded for the application of Choquet
integral. The chapter ends with a summary of the past researches which focused on

solving real MADM problems by employing Choquet integral.
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3.2 Properties of an Aggregation Operator

A good aggregation operator is expected to satisfy several properties. These
properties can be perceived and analyzed based on two different dimensions namely
mathematical properties and behavioral properties (Clavo, Kolesarova,

Komornikova, and Mesiar, 2002).

3.2.1 Mathematical Properties of an Aggregation Operator

Even though there is a long list of mathematical properties expected from a good
aggregation operator, the 3 fundamental properties demonstrated by any aggregation
operators are identity when unary, boundary conditions, and monotonicity (Mesiar
and Komornikova, 1997). In this section, the mainly highlighted mathematical
properties are identified from the study conducted by Marichal (1999), Saminger-
Platz, Mesiar, and Dubois (2007), and Torra and Narukawa (2007) and summarized

as presented in Table 3.1.
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Table 3.1: Some Mathematical Properties Expected from an Aggregation Operator

Mathematical Description

property

Identity when Aggre(x) = xwhereAggre represents aggregation function or operator
unary

Boundary The expectation is that an aggregation operator,Aggre, satisfies:
conditions Aggre(0,...,0,...,0) = 0and Aggre(l,..,1,..,1) =1

Monotonicity

Idempotence

Associativity

Compensation

It is expected that if a local score increases then the final aggregation increases or
at least does not decrease.
Aggre(xy, .., Vi, v, Xn) = Aggre(xq, .., x;, .., X,) When y; = x;

If the same value is aggregated for n times, it is expected the result of the
aggregation is equal to the initial value:
Aggre(x,x, .., x) = x

This property demonstrates the ability to aggregate by packages. For three local
scores, the property can be written as follows.

Aggre(xy,x,,x3) = Aggre(Aggre(x,,xz),x3) = Aggre(x,, Aggre(x,, x3))

The aggregation operator with this property is expected to produce a ‘middle
value’ where the result of the aggregation is lower than the maximum
performance value and higher than the minimum one:

miin(xl-) < Aggre (x4, X3, 0., Xp) < mlax(xi)

Based on Table 3.1, Aggre represents the aggregation function or operator which

combines the scores within the parentheses, (:-+) into a single score.

3.2.2 Behavioral Properties of an Aggregation Operator

Grabisch (1996b) stated that having the ability to take into account the interaction

between attributes such as redundancy and synergy support is one of the salient

behavioral properties expected from a good aggregation operator. With regards to

MADM atmosphere, two attributes are considered redundant if they express more or

less the same thing. On the other hand, synergy support refers to the phenomenon
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where two attributes with little importance when taken separately, become very
important when considered jointly.

However, it has to be notified that if the decision makers are seeking for an
aggregation operator which satisfies the entire mathematical and behavioral
properties then, none of the existing aggregation operators is applicable in solving a

MADM problem (Grabisch, 1996b).

3.3 Types of Aggregation Operators

The existing aggregation operators can be classified into two different clusters
namely additive and non-additive operators (Wagholikar and Deer, 2007; Modave
and Eklund, 2001). This taxonomy structured based on the ability of the aggregation

operators in modeling the interaction between attributes during aggregation.

3.3.1 Additive Aggregation Operators

Additive aggregation operators are functions which aggregate local scores of an
alternative with the presumption that attributes are independent to each other. Some
crucial additive operators are identified from the studies carried out by Detyniecki
(2000) and Torra and Narukawa (2007) and presented in the following sections. In
following sections, to express the mathematical model of each additive operator

xj = (Xq,%2, ..., %) is used to represent the local scores of an alternative with
respect to n attributes and w; = (wq, wy, ..., wp)to denote the set of attributes’

weights.
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3.3.1.1 Arithmetic Mean

Arithmetic mean, commonly known as the average, is the simplest approach for
aggregation (Grasbich, 1998) since it merely combines the local score with the
absence of attributes” weights(w;).

n
, , 1 (3.1)
Arithmetic mean(xq, x5, ..., X,) = - Xj

j=1

3.3.1.2 Quasi- arithmetic Means

There are various means namely geometric mean, harmonic mean, quadratic mean,
root-power mean, and exponential mean which can be assembled into the family of
quasi-arithmetic (Liu, 2006). These means are actually the derivation of simple
arithmetic mean. The mathematical models of some quasi-arithmetic means are as

follows (Smolikova and Wachowiak, 2002).

1
n n
; — . (3.2)
Geometric mean(xq, X3, ..., Xp) Xj
j=1
. n
Harmonic mean(xq, x5, ..., X,) = 1 T (3.3)

3.3.1.3 Simple Weighted Average

Simple weighted average (SWA), which rooted from arithmetic means, permits
positioning of weights on the attributes. It is commonly preferred by decision makers
since it stands out as the simplest weight-based aggregator (Lopez Orriols and de la

Rosa, 2004). Mathematically, it can be expressed via formula (3.4).
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n

SWA(x1, %Xp, ..., Xp) = E(W]-.x]-) (3.4)
=1

where w; > 0 and Z}Lle =1.

3.3.1.4 Median

Median is an operator that engages to the idea of acquiring “a middle value”. The
median is a typical ordinal operator, taking into account the ordering of the local
scores. Then, the median value can be identified using formula (3.5) (Grasbich,

Marichal, Mesiar, and Pap, 2010).

x(m) if nisodd
2

Median(xq, x5, ...xX,) = 1< (3.5)
it

2 2

n + x((n)+1)) if nis even

where parentheses ( ) around the index show that the scores are arranged in

ascending order such that x;) < x;) < - x(). Order statistics are operators which

function similarly to median but they produce the k"* value of the ordered scores as

the final output (Domingo- Ferrer and Torra, 2003).

3.3.1.5 Minimum and Maximum

The minimum, Min(x,, x5, ..., x,), and the maximum,Max (x4, x5, ..., X,,) are basic
aggregation operators where the minimum produces the smallest value of a set of
local scores, while the maximum gives the greatest one. From the perspective of

decision making, the usage of minimum operator expresses conjunctive behavior
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whereas the maximum operator reflects disjunctive behavior (Sousa and Kaymak,

2002).

3.3.1.6 Weighted Minimum and Weighted Maximum

These operators were adapted from minimum and maximum operators by Dubois
and Prade (1985). Some of the characteristics of these operators are as follows. If a
weight w; equals zero, then the local score x; will be discarded from the aggregation.
Furthermore, if all weights are equal, then the minimum and maximum are obtained
concurrently. The weighted minimum and weighted maximum model are defined as

follows (Fodor and Roubens, 1995).

n
wWmin(xy, X2, ..., ) = Min [max(1—w;, x;)] (3.6)
n
Wmax(xy, X3, ..., x,) = Max[min(w;, x;)] (3.7)
n
where weights are normalized so that Max (w)) = 1.
j=1

3.3.1.7 Ordered Weighted Average

Ordered Weighted Average (OWA) is a generalization of minimum, maximum and
arithmetic mean operator (Lin and Jiang, 2011), proposed by Yager (1988). The
application of OWA operator can be summarized in three basic steps (Liu, 2011).
Firstly, the local scores are reordered in descending manner. Then, the weights

associated with the OWA models are estimated. Finally, the local scores and weights
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are precisely substituted into OWA model to obtain the single score (3.8) (Grabisch,
2011).

n
OWA(xq,X3,...,Xp) = z WX (j) (3.8)
j=1

where parentheses ( ) around the index show that the scores are arranged in

ascending order such that x ;) < x) < - x(n), w; = 0, and Y7, w; = 1.

3.3.2 Non-additive Aggregation Operators

Grabisch (1996b) and Detyniecki (2000) stated the one of the major drawbacks of
additive operators is that they are abortive in modeling the interaction among
attributes during aggregation. In other words, these operators are improper for real
world phenomenon since usually the attributes present some interdependent features
(Buyukozhan, 2010). As a result, non-additive or fuzzy integrals (Mesiar and
Mesiarova, 2008) such as Sugeno and Choquet integral are recommended as the
resolution to overcome this defect (Narukawa and Torra, 2007).

Although both integrals have the potential in capturing interaction between
attributes during aggregation, this study allocates its primary attention on the usage
of Choquet integral on several basis. Firstly, as affirmed by lourinski and Modave
(2003), Choquet integral is better suited for numerical or quantitative based problems
whereas the Sugeno integral is ideal for qualitative problems. In other words, it can
be stated that the application of Choquet integral can generate more practical
outcomes (Wang and Wang, 1997) as most of the MADM problems involve
numbers which have a real meaning (interval or ratio level of measurement) where
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cardinal aggregation is required, unlike Sugeno integral which is more suitable for
ordinal aggregation where only the order of the elements is important (Detyniecki,
2000 and Grabisch, 1998). Secondly, Choquet integral has the merit in producing

unique solution in comparison to the other integral (Chen and Wang, 2001).

3.4 Choquet Integral based Aggregation

The execution of Choquet integral into MADM problems comprises of three basic
steps as follows (Carter, Flores, Kassin, and Pajaro, 2008). Firstly, the occurring
problem need to be well-defined and the relevant attributes must be determined.
Subsequently, the monotone measure weights are estimated. Finally, the local scores
of each alternative and identified monotone measure weights are applied precisely

into Choquet integral model to compute the global scores.

3.4.1 Monotone Measure
Choquet integral is able to represent interaction among attributes due to the fact that
it utilizes the idea of monotone measure which able to model the interaction between
attributes (Saad, Hammadi, Benrejeb, and Borne, 2008). Monotone measure is a
generalization of classical measure (Yang, 2005) where the additivity is removed and
replaced with weaker monotoniciy property (Mikenina and and Zimmerman, 1999).
Monotone measure can be defined as follows. Let ¢; = (¢y, ¢y, ..., c,) be @
finite set. A set function g{.} defined on the subsets of ¢;, P(c;), is called a

monotone measure if it satisfies following conditions (Sugeno, 1974):
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a) g:P(c;) - [0,1], and g{®} =0, g{c;} = 1(satisfies boundary condition
whereby an empty set has no importance,g{@} = 0, and the maximal set has

a maximal importance, g{c;} = 1.
b) VA,B € P(c;), if A < B, then implies g{A} < g{B} (satisfies monotonicity
condition which means that adding a new element to a combination cannot

decrease its importance).

From the study conducted by Angilella, Greco, and Matarazzo (2010), it can
be concluded that the weights of monotone measure, g do not only imply the
individual importance of each attribute but also denote the importance of all possible
combinations or subsets of attributes. Therefore, the decision makers are generally
obliged to estimate 2™ weights of monotone measure if they intend to apply Choquet
integral (Alavi et al, 2009). For instance, consider a MADM problem involving three
attributes, ¢; = (cy, ¢z, c3). Then, the weights on eight(2°® = 8) subsets of attributes
comprising  of  g{®}, g{ci}, g{c.} gf{cs}, gfci, 2}, glcr, 3}, glcz c3} and
g{cy, ¢z, c3} need to be assigned where g{@} =0 and g{cy,c,,c3} =1 as per the
axiom.

Further clarification on how these weights able to express the interaction

effects between the attributes is offered in the following section.
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3.4.1.1 Representing Interaction via Monotone Measure

A monotone measure can express three types of interaction that could be shared by

the attributes. Suppose A and B are two subsets of attributes where A N B = @ then,

the interaction phenomena between these subsets can be described as follows

(Bonetti, Bortot, Fedrizzi, Pereira, and Molinari, 2012):

a)

b)

If the weight of the combination of A and B is equal to the sum of weight
ofA and B such that g{AUB} = g{A} + g{B}, then it can be regarded that
A and B are sharing additive effect or in other words, being independent to
each other.

If the weight of the combination of A and B is less than or equal to the sum
of weight of 4 and B such that g{AUB} < g{A} + g{B} then, it can be
regarded that A and B are sharing sub-additive effect or being redundant to
each other.

If the weight of the combination of A and B is greater than or equal to the
sum of weight ofA and B such that g{AUB} > g{A} + g{B}then, it can be
regarded that A and B are expressing super-additive effect or synergy

support.

For instance, consider a MADM problem comprising three attributes,

¢j = (¢1,¢3,¢3). The importance of each individual attribute in enhancing the

performance of target is as follows. g{c;} = 0.3, g{c,} = 0.2, and g{c;} = 0.1.

Then, weight on monotone measure consisting attributes ¢; and c¢,, g{c;,c,} can be

estimated as follows:
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a)

b)

Scores,

If ¢; and c, are being redundant, the presence or combination of both
attributes does not contribute to a significant enhancement on the
performance of the target as both of them share some similar information.
Therefore, too much weight should not be given on the combination of these
attributes. Thus, the weight assigned on the combination of these two
attributes should be less than or equal to 0.5 where g{c;,c;} < 0.3+ 0.2
(sub-additive effect).

If the synergy between c; and c, can significantly enhance the performance
of the target then, more weight should be given on the combination of these
attributes when considered jointly. Therefore, the weight assigned on
combination of these two attributes should be greater than or equal to 0.5,
where g{c;,c,} = 0.3 + 0.2 (super-additive effect).

If c; and c,are independent to each other, then the weight assigned on the
combination of these two attributes should be equal to 0.5, where

g{ci,c;} = 0.3 + 0.2 (additive effect).

This example could have offered better illustration on how monotone

measure weights able to represent the interaction effects between attributes in a

MADM problem.

3.4.2 Choquet Integral Model

With the complete estimation of the monotone measure weights and available local

the Choquet integral model can then be applied to compute the aggregated

score. Let g be a monotone measure on ¢; = (¢4, 3, ..., C) AN Xx; = (X1, X3, ..., Xp)
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be the local score of an alternative with respect to each attribute in ¢;. Suppose
Xy =Xy = =xp. Then, T, = (¢, ...,¢c,) and the aggregated score using

Choquet integral can be identified using (3.9) (Feng, Wu and Chia, 2010).

Choquet (x4, x3, ..., Xn)

= X 9{T} + [Xn_1-Xn]. (T} + oo+ [¥X1 — x2]. g{T1} (3.9)

= Xp. §{C€1, €2, o, Cp} + [Xn_1-Xu]. g{C1, €2, o g} + -+ [x1 — x32]. g{cq}

where the arrangement of attributes in T,, parallel with the descending order of the
performance scores.

For better understanding, presume that the scores of a student, x in three
subjects (attributes), Mathematics (x,,), Physic (x;), Biology (xz) are 75, 80, and 50
respectively. Hence, xp > x); = x5. Then, T,, = { P, M, B }and the aggregated score
of the student using Choquet integral, Choquet,(xy, xp,x5) = x5.g{ P,M,B } +
(xy-x5). g{ P, M} + (xp-x)). g{ P}. Figure 3 illustrates the idea of aggregation

via Choquet integral.
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Ordered local scores

A
x1 L
gic4} X1 — X2
/—%
Xn-1
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g{cl, wolCn-1» Cn} Xn
A — .
» Afttributes
C1 Cn-1 Cn

Figure 3.1: The Concept of Choquet Integral

The discrete Choquet integral captures the interaction between attributes by
means of the monotone measure weights, g (Shieh, Wu, and Liu, 2009). An
interesting property of Chogeut integral is that it simplifies as SWA operator if the
monotone measure is additive or in other words, when attributes are being

independent (Marques Pereira, Ribeiro, and Serra, 2008).

3.4.3 Significance of Considering Interaction among Attributes
In this section, two simple MADM instances have been extracted from two different
studies to illustrate how the usage of additive aggregation operator deviates from

norm of rational decision making, to analyze interaction effects between attributes,
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and to understand the necessity to consider the interaction among attributes during

aggregation which can be achieved by using Choquet integral.

3.4.3.1 Television (TV) Evaluation Problem

Consider a TV evaluation problem amended from the study conducted by Wang,
Yang, and Leung (2010). Assume there are three used TVs (A, B, C) in sales and a
customer wants to identify the best TV which has no any weak points to be
purchased. Further presume that the global qualities of the TVs are evaluated based
on two attributes namely, ‘picture’ and ‘sound’. The scores of the TVs with respect

to each attribute, ranging from 0 to 100, are assigned as presented in Table 3.2.

Table 3.2: Decision Matrix for TV Evaluation Problem

TV/ Attributes Picture (p) Sound (s)

A 100 20
B 20 90
C 55 60

Suppose the costumer wants to estimate the global quality of each TV using
SWA operator by allocating equal weight on each attribute where w, = 0.5 and

w, = 0.5. Then, the quality score of each TV measured using SWA operator is as

summarized in Table 3.3.
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Table 3.3: Result of TV Evaluation Problem via SWA

Attributes/ TV Picture (p) Sound (s) Global score Ranking
A 100 20 (100 x 0.5)+ (20x0.5) =60 1
B 20 90 55 3
C 55 60 57.5 2

Based on the result in Table 3.3, it can be interpreted that A is identified as
the worth-to-buy TV. But logically, A and B should not be identified as the best TV
because they possess some weak points in the aspect of ‘sound’ and ‘picture’
respectively. To our perception, C should be identified as the best TV because it has
no weak points with respect to any attributes. The root cause to this problem is due
to the usage of SWA operator which assumes that the attributes independently
contribute to the global quality. In other words, they are assumed to express additive
effect.

In order to capture the interaction that exists between these attributes,
appropriate monotone measure and Choquet integral can be used as described herein.
By adhering to initial ratio (1:1), assume the weights assigned on subsets consisting
single attribute are g{p} = 0.4 and g{s} = 0.4. Besides, usually, the synergy or
combination of good ‘picture’ or ‘sound’ quality will significantly boost the global
quality of a TV. In other words, both attributes are sharing super-additive or synergy
support effect. Therefore, the joint importance of ‘picture’ and ‘sound’ should be
higher than the sum of their individual importance; g{p, s} > g{p} + g{s}. Then, it
is set g{p,s} =1 (at the same time, as per the axiom of monotone measure, the

maximal subset should be equal to 1). Finally, the identified monotone measure
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weights and local scores are replaced into Choquet integral model (3.9) to aggregate

the global quality of each TV. The final result is as presented in Table 3.4.

Table 3.4: Result of TV Evaluation Problem via Choquet Integral

Student Global score Ranking

A a) Firstly, rank the local scores in ascending order where 2
Xp = Xxs . Thus, T, = {p, s}
b) Secondly, Choquet model (3.9) is applied to compute global
quality:
Choquet”(xp,xs)
= x5 * g{p, s} + (xp — %) * 9{p}
=201+ (100 —20)*0.4 =52

O

57 1

Based on the result in Table 3.4, it can be concluded that the expected TV,
(TVC) which has no any weak points is identified as the finest TV, via the usage of

Choquet integral.

3.4.3.2 Student Evaluation Problem

Consider a student evaluation problem borrowed from the study conducted by
Grabisch (1996b). Assume there are three students (A, B, and C) and we want to
identify the best student who has no any weak points. Further presume that the
overall performances of the students are assessed based on three subjects namely
Mathematics (M), Statistics (S) and Literature (L). The scores of the students with

respect to each subject, ranging from 0 to 20, are as presented in Table 3.5.
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Table 3.5: Decision Matrix for Student Evaluation Problem

Student M S L

A 18 17 10
B 10 12 18
C 14 15 15

Suppose the global performance of each student is assessed based on SWA

operator with equal weight is assigned on each subject as follows; wy, =

W

1
’ WS = 5 ’
and wy, =§. Then, the computed global performances and final ranking of the

students are as summarized in Table 3.6.

Table 3.6: Result for Student Evaluation Problem Using SWA

Student M S L Global score Ranking
1 1 1

A 18 17 10 —(18)+-(17)+=-(10)=15 1
3 3 3

B 10 12 18 13.33 3

C 14 15 15 14.67 2

The result derived using SWA shows that student A has the highest rank
followed by student C and B. However, logically, if the school is looking for well-
balanced students without any weak points, student C should be considered better
than student A.

The cause of this problem is that SWA operates based on the assumption that
there are no interactions between attributes during aggregation. To overcome this
issue, an appropriate monotone measure and Choquet integral operator can be used.
Prior to applying Choquet integral, monotone measure weights are identified as

follows. First of all, the weights of subsets consisting single subject (individual
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weights) are assigned by adhering to initial ratio (1:1:1) where g{M} = g{S} =
g{L} = 0.4. Since mathematics and statistics are redundant to each other, the
importance or weight on the combination of two subjects should be less than the sum
of their individual weights. Therefore, it is estimated that g{M,S} = 0.5 < g{M} +
9{S}.

Besides, the global performances of students would increase drastically if
they are being good at mathematics and literature (or statistics and literature). In
other words, mathematics (or statistics) shares super-additive effect with literature
(Grabisch and Labreuche, 2005). Then, the importance given on the combination of
L,M and L, S should be greater than the sum of their individual weights. Hence, it is
assigned g{L,M} =09 = g{L} + g{M} and g{L,S} =09 > g{L} + g{S}. Not
to forget, as per the monotone measure axioms, g{@} and g{M, S, L} = 1.

The estimated monotone measure weights and scores are then precisely
substituted into Chogeut integral model to compute the global performance of each
student. The global scores of students and their respective ranking are summarized in

Table 3.7.
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Table 3.7: Result for Student Evaluation Problem Using Choquet Integral

Student Global score Ranking

A a) Firstly, rank the local scores in descending order where 2
XM = Xg = xL.ThUS, Tn :{M,S,L}

b) Secondly, Choquet model (3.9) is applied to compute global
performance:
Choquet, (xy, s, x1,)
=x, * g{M, S, L} + (xg — x1) * g{M, S} + (xpy — x5) * g{M}
=101+ (17 -10)* 0.5+ (18 —17) * 0.4 = 13.9

oy)

14.2 3
14.9 1

O

Based on the result in Table 3.7, it can be concluded that by applying
Choquet integral which captures the interaction between the subjects, the expected

student (student C), who has no any weak points is identified as the best student.

3.4.2.3 Individual Weights of Attributes

Based on the presented two problems, it can be noticed that each problem involves
two types of individual weights, additive and non-additive individual weights. The
similarity and differences between these two weights are highlighted through Table

3.8.
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Table 3.8: Differences between Additive and Non-additive Individual Weights

Type of individual
weights /Aspects

Additive individual
weights

Non-additive individual
weights

Similarity

Differences

Common
interpretation

Sum of weights

Application

Marginal contribution or importance of each
attribute in achieving the overall goal (Choo et al.,

1999)

Sum of additive
individual  weights
which are usually
represented by
Wj = W1, Wy, ..., Wy
is equal to one
(Detyniecki, 2000)

Required by additive
aggregators such as
SWA and OWA
(Detyniecki,  2000;
Grabisch, 1996h)

Sum of non-additive
individual weights which
are normally denoted by
9(c) =

g(cl)l g(Cz): ---;g(cn)
could be sub-additive or
super-additive, not
necessarily equal to one
(Grabisch, 1996b)

Required for the
identification of weights of
all possible combinations
of attributes (monotone
measure) which will be
then applied into fuzzy
integrals such as Choquet
integral (Angilella et al.,
2010)

3.4.4 Attempts on Reducing the Complexity of Identifying Monotone Measure

Prior to utilizing Choquet integral as an aggregation operator in a MADM problem,

it is essential to identify the importance of all subsets of attributes or in other words,

the weights of monotone measure. However, it is rather unrealistic and burdensome

for the decision makers to subjectively estimate2™ weights of monotone measure

when the number of attributes, n is sufficiently large (Kojadinovic, 2004; Mikenina,

and Zimmermann, 1999; Yager, 2000). As a result, some identification procedures

such as minimization of squared error based approaches and constraint satisfaction

based approaches were introduced (Grabisch and Roubens, 2000) to assist the

decision makers in estimating these weights.
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However, both approaches came with several inconveniences. Firstly, both
approaches were developed based on optimization problems. Therefore, finding the
solution via these approaches becomes more complex as the number of variables
involved in the approaches increases exponentially with n (Kojadinovic, 2008).
Secondly, the main shortcoming of the former approach is that it requires the
information on the desired global score on each alternative which cannot always be
acquired from the decision makers (Grabisch, Kojadinovic, and Meyer, 2008).
Meanwhile, the later approach requires various types of initial data such as partial
ranking of the alternatives, partial ranking of the attributes, intuitions about the
importance of the attributes, and interaction among attributes (Marichal and
Roubens, 2000) which couldn’t be easily offered by the decision makers especially
when they are ill-informed on the existing MADM problem.

In order to assist decision makers who are unknowledgeable on the existing
problem and facing difficulties providing the necessary initial data, Kojadinovic
(2004) has formulated an unsupervised identification approach. Via this approach,
the weights of monotone measure can be estimated based on available local scores
by means information-theoretic functions. However, the major weakness of this
approach is that usually a large number of local scores is demanded to obtain precise
weights of monotone measure.

With the intention to further reduce the complexity involved in estimating
general monotone measure, several patterns or subfamilies of monotone measures
were proposed. In comparison to other monotone measure patterns, A- measure
which was introduced by Sugeno (Sugeno, 1974) emerges as one of the widely

applied monotone measures due to its ease of usage, mathematical soundness and
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modest degree of freedom (Ishii and Sugeno, 1985). According to Young (2008),
mathematical soundness is a property which gives us the confidence that we have
correctly find solutions for a system (Young, 2008). Meanwhile, modest degree of
freedom refers to number of variables needed to specify completely the solution for a
system (Tanton, 2005). This can be further elaborated as follows.

In identifying general monotone measure, the decision makers have to
determine the type interaction shared by the attributes within each and every subset.
Besides, they have to ensure the identified weights fulfill the axioms of monotone
measure. But for identifying the weights of A- monotone measure, the decision
makers just need a set of individual weights of attributes and a single interaction
parameter (implies the modest of degree property). Besides, these weights can be
simply estimated using the available Sugeno equation which will always ensure all
subsets satisfy the two axioms of monotone measure (shows the mathematical
soundness property).

A- measure can be defined as follows. Let ¢; = (¢, ¢y, ..., ¢;,) be a finite set.
A set function g,(.) defined on the set of the subsets of ¢;, P(c;), is called a A-

measure if it satisfies the following conditions (Liu, Jheng, Lin, and Chen, 2007):

a) ga:P(c;) - [0,1],and g;(®) = 0, g;(c;) = 1 (boundary condition)

b) VA,B € P(c;), if ASB, then implies g;(4) <g,(B) (monotonic
condition)

¢) ga(AUB) =g;(A) + gi1(B) + Agx(A)g,(B), for all A,B € P(c;) where

AnNB=¢@¢and A€ [-1,+x].
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Note that properties (a) and (b) are fundamental for any families of fuzzy measure
and (c) is the additional property of A- fuzzy measure.

The A- measure is constrained by a parameter A, which describes the degree
of additivity the attributes hold. In other words, the interaction phenomenon between
attributes can be interpreted based on the value, A as follows (Chu, Shyu, Tzeng, and

Khosla, 2007; Hu and Chen, 2010):

a) If 2 <0 then, it interprets that the attributes, ¢; = {cy, ¢3, ..., c,} are sharing
sub-additive effects. This means that the overall performance of a target can
be increased if some attributes in ¢; which have higher individual weights are
enhanced simultaneously.

b) If 2> 0 then, it implies that the attributes, ¢; = {cy,c;, ..., c,} are sharing
super-additive effects. This means that the overall performance of a target
can be increased if all the attributes in c; are enhanced simultaneously
regardless of their individual weights.

c) If A =0 then, it reflects that the attributes, ¢; = {cy,c3,...,c,} are non-
interactive. This means that the overall performance of a target can be
increased by simply enhancing the attribute(s) with higher individual

weights.

As ¢j = {cq, ¢y, ..., o} s finite, then the entire A- measure weights can be identified

by the following formula (3.10).
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9,1(6'1, C .y Cn)

n n-1 n
=Zgj+/12 Z 9i:-9j, +-+2"19,.92..9n (3.10)
i=1

Jj1=1j2=j1+1
= 2| Ty (1 + Ag)) — 1] for-1< A< +oo
whereg; = ga(c;),j = 1,...,n denotes the fuzzy density or weights of individual
attribute. If the weights of individual attribute, g; are given, then in the case

j=19; =1, A =0. Whereas if ¥7_, g; # 1, the parameter 1 can be calculated by

solving the following equation (Klir, Wang, and Harmanec, 1997).
n
1+A=II@+Am) (3.10)
i=1

Due to the well-acceptance of A- measure, various approaches were formulated with
the aim of assisting and gradually diminishing the burden of decision makers in
estimating A- measure weights.

In the early years, LeszczySnski, Penczek, and Grochulski (1985), Sekita and
Tabata (1977), Tahani and Keller (1990), and Wierzchon (1983) developed several
A-measure identification methods. However, these methods still require high number
of data (2") from decision makers for subjective weight estimation on subset of
attributes or demand complicated computations (Chen and Wang, 2001).

As a result, Lee and Leekwang (1995) developed a genetic algorithm (GA)
based identification approach which is computationally simpler. This approach does

not require complete subjective estimation for all subsets of attributes in order to
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identify A- measure. A few years later, Chen and Wang (2001) proposed a method
based on sampling design and GA which is also simple, fast, easily programmable,
and most vitally, it only requires a few data to run the solution procedure.
Nevertheless, these two methods still have a few drawbacks (Yue, Li, and Yin, 2005;
Larbani et al., 2011).

Firstly, more subjective data on weight of subsets of attributes are expected
for better solution although it is cumbersome for decision makers to offer such data.
In other words, these two methods fail to offer a scheme to control the amount of lost
information on the basis of generating a satisfactory solution. Secondly, these two
identification approaches are based on GA. Although GA as a random searching
method is feasible for most of non-linear programming models, it has many intrinsic
flaws such as its slow convergence speed and uncertainty of extreme position.

Then, Takahagi (2007) proposed a A-measure identification method based on
diamond pair-wise comparisons which requires two types. The horizontal axis of the
diamond is used to express the relative importance of attributes and the vertical axis
is used to express the interaction between the pair of attributes. Therefore, this
method only requires n(n — 1) data from decision makers. However, this method
possesses some gaps. Firstly, in order to ensure the decision makers are able to
answer the diamond pair-wise comparisons without any complications, an
understandable instruction is needed. Secondly, suitable interpretations and theatrical
supports of axis, especially vertical axis should be provided. Finally, unlike AHP,
where consistency index is defined, this method does not propose any means to

measure the consistency of interaction comparisons yet.
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Wang, Lu, and Chen (2010), in a study to evaluate high technology firm
performance, applied an identification procedure which is much simpler
comparatively to other procedures (Hereafter, for sake of simplicity, this approach
will be referred as fuzzy-linguistic estimator). This procedure mainly requires the
decision makers to estimate on weight or importance of individual attribute. Firstly,
to facilitate uncomplicated estimation and to model the usual uncertainty in human’s
estimation, the decision makers are allowed to estimate the individual weights of
attributes using natural languages which are then transformed into corresponding
fuzzy numbers. Next, these fuzzified individual weights are converted into crisp
weights. Finally, these weights are precisely replaced into equation (3.10) and (3.11)
in order to identify the parameter, A, and A- measure weights of the existing problem
respectively. However, this approach may need some extra information from
decision makers during fuzzification where they need to determine the boundary
values that best represent each of the linguistic estimation. It could turn as a
troublesome task for them if they are unfamiliar with the existing problem and thus,
forces them to seek for experts’ opinion.

Meanwhile, Lin, Shiu and Tzeng (2011) have introduced fuzzy partitioned

hierarchy model which reduces the number of A- measure weights which need to be
identified prior of applying Choquet integral from 2" to Zgzl ol &
Zgzl 21 lwhere fp = (1. fz, ., fq) represents set of factors extracted based on

left values and £, = (fi",f5", ..., f;") represents set of factors extracted based on
right values. However, analyzing a MADM problem using this model requires huge

computational effort from decision makers as enlighten in chapter one (Table 1.5).
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Table 3.9 summarizes the approaches developed to help the decision makers

in determining general monotone measure weights whereas Table 3.10 recaps the

approaches or attempts established to assist the decision makers in estimating A-

measure weights.

Table 3.9: Reducing the Complexity of Identifying General Monotone Measure

Approaches

Advantages (A)/ Disadvantages(D)

Minimization of squared error and
constraint satisfaction based approach

Unsupervised identification approach

(D) become more complex as the variable involved in
the approaches increases exponentially with n
(Kojadinovic, 2008)

(D) former types of approaches require information on
the desired global score on each alternative which
cannot always be acquired from the decision makers
(Grabisch, Kojadinovic, and Meyer, 2008)

(D) Later approaches commonly require various types
of initial data which are not easy to be expressed by the
decision makers (Marichal and Roubens, 2000)

(A) helpful for decision makers who are
unknowledgeable on the existing problem and have the
complication in providing necessary initial data
(Kojadinovic, 2004)

(D) large number of local scores is demanded to obtain
precise weights of monotone measures (Kojadinovic,
2004)
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Table 3.10: Reducing the Complexity of Identifying A-measure

Approaches

Advantages (A)/ Disadvantages (D)

LeszczySnski, Penczek, and Grochulski (1985),
Sekita and Tabata (1977), Tahani and Keller
(1990), and Wierzchon (1983)

Genetic algorithm (GA) based approach (Lee and

Leekwang, 1995)/ Sampling design and GA
based approach (Chen and Wang, 2001)

Diamond pair-wise comparisons approach
(Takahagi, 2007)

Fuzzy-linguistic estimator (Wang et al., 2010)

Fuzzy partitioned hierarchy model (Lin et al.,
2011)

(D) still require high number of data (2™) from
decision makers/ complicated computational
process (Chen and Wang, 2001)

(A) simple , fast , and easy to be programmed
(Chen and Wang, 2001)

(A) only requires a few data to run the solution
procedure (Chen and Wang, 2001)

(D) failed to have a scheme to control the amount
of lost information(Yue, et al., 2005; Larbani et
al., 2011)

(D) GA has many intrinsic flaws such as its slow
convergence speed, and uncertainty of extreme
position (Yue, et al., 2005; Larbani et al., 2011)

(D) to assure the decision makers able to answer
the diamond pair-wise comparisons without any
complications, an understandable instruction is
needed (Takahagi, 2007)

(D) still requires suitable interpretations and
theatrical supports of axis, especially vertical axis
(Takahagi, 2007)

(D) this method has not proposed any means to
measure  the consistency of interaction
comparisons (Takahagi, 2007)

(A) allows the decision makers to provide data in
linguistic terms

(A) only requires one type of data from decision
makers

(A) understandable and simple computational
steps

(D) need some extra data from decision makers
during fuzzification

(A) reduces the number of A- measure weights
which need to be identified prior of applying

Choquet integral from 2" to zg=12|fv‘| +
50, 21

(D) solving MADM problem using this model
still requires numerous computational steps
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3.4.5 Real Applications of Choquet integral

Choquet integral is currently gaining increasing attention and frequently used by

researchers. It is a flexible tool that models interaction among attributes (Grasbich,

1996b) and has been applied successfully in various domains such as logistic,

education, and hospitality, as shown in Table 3.11.

Table 3.11: Real Applications of Choquet Integral

Source Country Domain Problem definition
Peters and Ramanna Canada Software Estimating cost of software
(1996) engineering

Berrah, Mauris, and France
Montmain (2008)

Shieh et al. (2009) Taiwan

Buyukozkan and Ruan  Turkey

(2010)

Demiral et al. (2010) Turkey

Hu and Chen (2010) Taiwan

Huang and Wang China
(2011)
Yoo, Cho, and Kim Korea
(2011)

Manufacturing

Education
Software
engineering

Logistic

Hospitality

Health

Artificial
Intelligent(Al)

Monitoring the improvement
of an overall industrial
performance

Evaluating of  students’
overall performance

Software development risk
assessment

Selecting warehouse location
for a big Turkish logistic firm

Evaluating customer service
perceptions on fast food
stores

Evaluating competition
ability of private hospital

Generating composite facial
expressions for a robotic head
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3.5 Summary of Chapter Three

The review presented in chapter three was primarily revolves on the aggregation
process in MADM. Aggregation is a process of synthesizing local scores of
alternatives into single scores. The function which aggregates these local scores is
familiarly known as aggregation operator. The single scores obtained via aggregation
will be useful in ranking or classifying the alternatives.

To be labeled as a good aggregation operator, it was found that the
aggregation operator should satisfy several mathematical properties including three
fundamental properties namely, identity when unary, boundary condition, and
monotonicity. In addition, a good aggregation operator is also expected to portray
certain behavioral properties especially the ability to express the interaction among
attributes. Nevertheless, none of the available aggregation operators is applicable in
resolving MADM problem if the decision makers are looking forward for an
operator that fulfills the extensive list of expected properties.

The aggregation operators can be attributed into two clusters namely additive
and non-additive operator. The former group comprises arithmetic means, quasi-
arithmetic means, simple weighted average, minimum, maximum, weighted
minimum, weighted maximum and ordered weighted average operators. The major
drawback of these operators is they fail to model some understanding way of
interaction between attributes during aggregation. However, it was discovered that
the latter group, comprising Sugeno and Choquet integral operator have the potential
to handle this gap.

Between Sugeno and Choquet integral, Choquet integral gains more attention

for real applications as it is better suited for quantitative based problems, has the

83



merit in producing unique result and can derive more feasible outcomes than using
the other integrals in many cases.

Choquet integral able to capture the interaction among attributes as it utilizes
the idea of monotone measure. Monotone measure is capable to characterize the
interaction among attributes. Besides providing the weight of each attribute,
monotone measure offers the weights of all possible combination of attributes. To
say the least, the identification of monotone measure is essential prior to applying
Choquet integral.

However, the common obstruction of employing Choquet integral is the
necessity to estimate 2™ weights of monotone measure where n represents number
of attributes. The number of weights which needs to be identified increases
exponentially as n increases.

With regards to this issue, several means were proposed to assist and
minimize the burden of the decision makers in identifying monotone measure
weights. But, it was learnt that the attempt to reduce the complexity of estimating
these weights is endless. Further simpler approaches will be well-welcomed as it will
motivate more decision makers to utilize the beneficial aggregation tool, Choquet
integral.

Finally, it was discovered that Choquet integral is earning rising fame among

researchers from various domains in solving the occurring MADM problems.
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CHAPTER FOUR
METHODOLOGY

4.1 Introduction

In order to attain the main objective of this research, a series of phases are structured.

The execution of each phase is synopsized in this chapter. The vital 5 phases in

accomplishing this research are presented in Figure 4.1.

Phase 1: Probing into the conception of fuzzy set theory and its

anolication in AHP

y

Phase 2: Appraising aggregation operators in MADM

v

Phase 3: Examining the usage of Choquet integral and its associated

monotone measure

y

Phase 4: Developing the proposed procedure

v

Phase 5: Verifying the feasibility of the proposed procedure

Figure 4.1: Phases to Attain the Objective of the Study

4.2 Probing Fuzzy Set Theory and Its Application in AHP

In the first phase, this research stretched its investigation into the issue of vagueness
that usually exists in data or judgment offered by humans during decision making
process and its linkage to fuzzy set theory. First and foremost, an analysis on
preliminary studies pertaining fuzzy set theory was carried out to comprehend on

some significant notions such as linguistic variables, types of fuzzy numbers,
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arithmetic operations involving fuzzy numbers, fuzzification, and defuzzification
process that allied to the former theory. In addition, the usage of fuzzy sets in AHP
analysis was reviewed as well. Finally, a pros and cons assessment among various

types of fuzzy AHP methods was conducted.

4.3 Appraising the Aggregation Operators in MADM

A satisfactory level of review on aggregation phase in MADM would be helpful in
developing the proposed procedure. Thus via this phase, firstly, the concept of
aggregation was defined in relevant to MADM system. Then, the types of
aggregation operators which are relevant to MADM problems were identified.
Finally, the appraisal was centralized on aggregation operators which are able to

consider the interaction aspects among attributes.

4.4 Delving into Choquet Integral and Its Associated Monotone Measure

This phase is devoted to delve into the execution of Choquet integral, which is
capable to capture the interaction between attributes during aggregation. The concept
of monotone measure and the hurdles in identifying monotone measure weights prior
of employing Choquet integral were explored thoroughly. Moreover, the available
monotone measure identification approaches were analyzed from the aspects of

computational requirement, advantages and disadvantages.
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4.5 Formulating the Proposed Procedure

By assimilating the information gathered throughout the former three phases, this

research is now all set to develop a MADM procedure which is able to reduce the

number of computational steps and amount of information required from decision

makers when dealing with ‘uncertainty in data’ and ‘interaction between attributes’

simultaneously. The proposed procedure is configured with the convergence of five

key components namely factor analysis, a revised fuzzy-linguistic estimator,

Choquet integral, Mikhailov’s fuzzy AHP method, and simple weighted average

(SWA) in order to assure it functions as anticipated. Overall, the steps of

implementing the proposed procedure can be summarized as follows.

Step 1:
Step 2:
Step 3:

Step 4:
Step 5:
Step 6:

Step 7:
Step 8:
Step 9:

Step 10:
Step 11:
Step 12:
Step 13:

Step 14:

Defining problem and identifying evaluation attributes

Constructing linguistic scale for performance measurement

Designing questionnaire and reliability test

>|f the questionnaire is not reliable, revise it and go to step 3

>|f it is reliable, proceed to step 4

Data collection by means of questionnaire

Deriving decision matrix of the problem (alternatives versus attributes)
Transforming the collected data for factor analysis (FA)

>|f the data infringed any criteria for sensible FA, then skip to step 9, 10, and 14
>If the data met all the criteria for sensible FA, proceed to step 7

Performing factor analysis

Decomposing problem into simpler hierarchy structure

Identifying monotone measure weights within each factor using the revised fuzzy-
linguistic approach

Employing Choquet Integral to aggregate interactive scores within each actor
Constructing new decision matrix (alternatives versus factors)

Using Mikhailov’s fuzzy AHP to estimate the weights of independent factors
Compute the global score of each alternative via simple weighted average (SWA)
operator

Rank the alternatives based on the global scores

The elaborations on these 14 steps are offered in the next sections. Meanwhile,

Figure 4.2 reflects the graphical illustration on the proposed procedure.
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[ Defining the problem and evaluation attributes ]
v
[ Designing questionnaire with linguistic scale ]

Revising
questionnaire

A
Lo el Questionnaire is
No reliable
[ Data collection ]
v
Deriving decision matrix
from the collected data Verifying factor ability of the data:
: : -Presence ofcorrelation coefficients > 0.3
. = N
(alternatives vs. attributes) < "KMO value>0.6 > - \o .

-Bartlett’s test = significant

Yes

[ Perform factor analysis ]

\ 4

[ Decomposing problem into simpler hierarchy ]

A 4

[ Identifying monotone measure via fuzzy-linguistic estimator } ——————— |

\ 4 |

[ Applying Choquet integral to aggregate inter-related scores within factors } ______ ,:
\

[ Constructingthe new decision matrix (alternatives vs. factors) ]

4

[ Estimating weights of independent factors viaMikhailov’s Fuzzy AHP ]q_l

Consistency value, u = 0

Yes

Re-evaluate
pair-wise
comparison

[ Compute global score of each alternative via SWA ]
v
[ Classifying, ranking, choosing alternatives based on global scores. END. ]< _____ a

Figure 4.2: The Proposed Procedure
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4.5.1 Defining Problem and Identifying Evaluation Attributes

Alike other MADM models, the first stage of the procedure requires decision makers
to clearly delineate and understand the occurring problem, listing the available
alternatives and deriving appropriate set of attributes to assess the performance of the
pre-identified alternatives. Perhaps, this could be the most time consuming stage in
employing the proposed procedure but it is necessary to invest sufficient amount of
time to extract appropriate attributes as omitting any crucial attributes during
evaluation could lead to a dreadful decision making. The attributes can be elicited
by referring to past studies, based on decision makers’ self-experience or through

brainstorming with group of experts.

4.5.2 Constructing Linguistic Scale for Performance Measurement

Usually, the decision makers are required to express the performance of an
alternative with respect to qualitative attributes using crisp scale. Therefore, in the
proposed procedure, in order to capture the usual vagueness encompassed in the data
provided by decision makers and for the sake of convenient data offering, linguistic
scale is constructed. The steps to generate an appropriate linguistic scale for
measuring performance of alternative can be recapitulated as follows.

Firstly, the decision makers need to determine the linguistic terms or
preferences, s; = (s, sy, ..., Sp) t0 assess the performance of alternatives where s,
denotes ‘extremely unsatisfactory’ and sy denotes ‘extremely satisfactory’.

Secondly, the triangular fuzzy number (TFN) that corresponds to each

linguistic term is identified via Zhu’s equation (4.1).
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_ i—-1 i . (i+1
Al=(li,mi,u,-)=<max{T,0},f,mm{ T 1}) (4.1)

In (4.1), 4, represents TFN consisting I; (lower value), m; (most probable value), u;
(upper value) that best represent each linguistic preference, s;. Meanwhile, T
represents the ranking of final linguistic preference (for instance, if a decision maker
has determined nine linguistic preferences for the assessment then, T = 8 as the
ranking on the linguistic terms starts at zero level based on the Zhu’s equation). In
this procedure, the Zhu’s equation is used for fuzzification purpose due to its
simplicity and its merit on helping inexperienced decision makers who are unable to
clearly define the fuzzy number corresponding to each linguistic term as explained in
chapter two. Finally, with the available linguistic preference and their corresponding

TFNSs, the (T + 1)- point linguistic scale can be constructed.

4.5.3 Designing Questionnaire and Reliability Test

A questionnaire is then designed by adhering to the constructed (T + 1)- point
linguistic scale in order to acquire the performance scores of each alternative with
respect to each attribute. However, prior to carrying out the actual survey, it is
advisable and obligatory for the decision makers to conduct a pilot test to
authenticate the reliability of the questionnaire. The proposed procedure suggests
two widely accepted reliability estimators namely test-retest reliability or internal
consistency reliability for the purpose of reliability assessment on the designed

guestionnaire.
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The former approach is used to analyze the consistency of a measure from
one time to another. According to Surhone, Timpledon, and Marseken (2010), a
questionnaire’s test-retest reliability can be measured by conducting the same survey
within the same group of respondents in two different time periods. They added that
this approach is applicable if there is no drastic change is predicted in the construct
being measured between the two time intervals. If the correlation between the
separate surveys is equal or above 0.7, then it implies that the questionnaire has
satisfactory test-retest reliability.

Meanwhile, the later approach is used to assess the consistency of results
across items within a test or survey by computing Cronbach’s alpha coefficient
which ranges from 0 to 1 (Dornyei and Taguchi, 2010). Generally, Cronbach’s alpha
value, « > 0.7 indicates a good internal consistently of the questionnaire (George and
Mallery, 2003). Research conducted by Hsu (2012) is an instance of MADM study

which measures the reliability of questionnaire by computing Cronbach’s alpha.

4.5.4 Data Collection by Means of Questionnaire
The reliable questionnaire is then used to gather data on performance of each
alternative with respect to each attribute from a selected group of respondents. The

raw data gained from the survey can be portrayed as in Table 4.1.
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Table 4.1: Collected Raw Data Set by Means of Questionnaire

Alternatives Attributes/ cy c;, v Cp
Respondents
a; ay, S11 S12 7 S
a, S1,1 S1,2 7 S1,m
a, Si,1 S,z T Sim
a; az, S2i1 S252 t Saun
az, S2,1 S2,2 77 Sa,m
az, S2,1 S2,2  Szm
(L7 Am, Smi1 Smy2 7 Smyn
am2 Sm21 Sm22 szn
amr Smrl Smrz Smrn

Based on Table 4.1, a; = (ay,ay, -, a,,) indicates the set of alternatives, ¢; =
(c1,¢q, 00+, ¢p) represents the set of attributes, and a;, = (a;,, a;,, ..., a;,) denotes the
set of respondents who evaluate alternative i where r implies number of respondents.
Meanwhile, s;, ; = (s;, 1, Si,2, -+ Si;,j) represents the linguistic scores of alternative, i
that expressed by respondent, k.

The collected raw data will be further utilized to construct the decision matrix
of the existing problem as well as for the execution of factor analysis. Therefore, in
order to ensure a meaningful factor analysis, it is essential to obtain an adequate total
observations, N (N = number of respondents for each alternative, » x number of
alternatives, m) during data collection. The proposed procedure uses the familiar ‘ten
observations per attribute’ rule, (Treiblmaier and Filzmoser, 2010) to estimate the
ample total observations for factor analysis. For instance, based on this rule, if there

isa MADM problem involving 5 attributes then, N should be > 50.
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4.5.5 Deriving Decision Matrix of the Problem (Alternatives vs. Attributes)

The next stage in the proposed procedure is to derive the decision matrix

(alternatives versus attributes) of the existing MADM problem from the available

raw data. The process of generating decision matrix can be described as follows.
First of all, the linguistic scores in raw data need to be quantified into their

corresponding TFNs based on constructed performance scale. The fuzzified raw data

can be presented as shown in Table 4.2.

Table 4.2: Fuzzified Raw Data

Alternatives Attributes/ cq c, -  Cp
Observations
a ay, A1 A Ain
as, Alzl A122 Alzn
a1, Alrl A1r2 Alrn
a az, Ayr Az Azn
Az, A221 Azzz Azzn
a2, Azrl Azrz A2rn
am am1 Am11 Amlz Amln
amz Amzl Amzz Amzn
amr Amrl Amrz Amrn

According to Table 4.2, 4;,; = (4,1, Ai 2, -, Ay n) Tepresents the fuzzy scores of
alternative, i that derived from respondent, k. Secondly, the average fuzzy score, 4;;

of each alternative, i with respect to each attribute, j is computed based on equation

(4.2).

i (4.2)



At the end of the averaging process, the fuzzified raw data as in Table 4.2 can be

reduced into fuzzy decision matrix as shown in Table 4.3.

Table 4.3: Fuzzy Decision Matrix

Attributes/ cq c; .. €,
Alternatives
a, A, A, . A,
az Ay Ay e Apg
am Aml Amz Amn

Based on Table 4.3, 4;; = (41, Ay, ..., Ai) represents the fuzzy local scores of

alternative, i.

Finally, to attain the final decision matrix for the problem, each of these

fuzzy local scores, A'ij is converted into crisp local scores, x;; by employing the

centre of area (COA) technique (4.3).

xi; = Ly + [(uy — Iy) + (my; — 1)]/3 (4.3)

Based on (4.3), l;;, m;j, and u;; represent lower, middle, and upper value of a fuzzy

local score, 4;;. The final decision matrix after the defuzzification process can be
presented as in Table 4.4.

Table 4.4: Final Decision Matrix

Attributes/ ci €3 .. Cn
Alternatives
a X11 X122 - Xin
a; X21 X22 - Xop
am Xm1  Xmz - Xmn
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Based on Table 4.4, x;; = (x;1, X2, ..., Xin) represents the crisp local scores of

alternative, i.

4.5.6 Data Transformation for Factor Analysis

The same raw data from the survey is then utilized to perform factor analysis.
However, since the raw data from the survey comprises scores in the form of
linguistic terms, they need to be transformed into a valid form where factor analysis
can be performed. Therefore, a simple data conversion approach applied in a study
conducted by Senel and Senel (2011) is adapted in this proposed procedure. The
data manipulation process before performing factor analysis can be summarized as
follows.

Firstly, the raw data from survey need to be converted into fuzzified raw data
as shown in Table 4.2. However, this step can be omitted as the fuzzified raw data
should have been obtained in the process of deriving the decision matrix. Secondly,
by using COA equation (4.3), the fuzzy scores are directly defuzzified into crisp
scores. Finally, these crisp scores are translated into their equivalents in the (T + 1)-
point Likert scale which can be computed using equation (4.4).

X X (T + 1) (4.4)

i = Xig
Based on equation (4.4), x;, ; represents the crisp score of alternative, i with respect
to attribute, j by respondent, k. Meanwhile, X;, ; denotes the equivalent value of x;, ;
in (T + 1) - point Likert scale. Table 4.5 shows the modified data which are in the

valid state to be factor analyzed.
95



Table 4.5: Transformed Data for Factor Analysis

Alternatives Attributes/ cq c;, €
Respondents __ __ __ ___________________
1 1
T 1
a; ai, VX Xap2 Xin '
1 1
1 1
a, ! X110 X2 Xin !
| : |
1 1
1 1
a, i X1 Xi,2 Xi,n i
1 1
a; az, i X1 X2 Xon '
1
1 1
az, ! Xo1 Xop2 Xoon !
| : |
1 1
1 1
1 1
a, ! Xo1 X202 Xom !
| : |
1 1
1 1
1
Ay am1 : Xm11 Xm12 Xmln i
1 1
amz : Xm21 Xm22 szn :
| . |
1 1
1 1
1 1
amr : erl erz ern :
1 1
1 1

4.5.7 Performing Factor Analysis Data

According to Emin Ocal, Oral, Erdis, and Vural (2007), factor analysis is a statistical
tool which is capable to reduce larger set of variables or attributes into fewer
numbers of underlying factors. The fundamental idea of factor analysis is based on
correlation where attributes that belong to the same group are highly correlated
among themselves but relatively have small correlation with attributes in different
group (Dongxiao, Jie, and Ling, 2011; Zhang, Shin, and Pham, 2001). Since the
evaluation attributes in MADM problems are not absolutely independent to each
other, factor analysis can be exploited in order to extract the common factors where

the factors are mutually independent (Feng, Wu, and Chia, 2010).
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It is believed that apart from grouping a vast number of attributes into fewer
and mutually independent factors, there are another three crucial reasons which
motivates the inclusion of factor analysis into the proposed procedure. First of all,
factor analysis will be helpful in unraveling a complex problem into a simpler
hierarchy (Lin, Shiu, and Tzeng, 2011) and therefore, decision makers are able to
analyze the MADM problem in a more interpretable and systematic mode. Besides,
it helps to extract the main determinants of a MADM problem.

Moreover, it is expected that by conducting factor analysis, the actual number

of monotone measure weights which need to be estimated prior to employing
Choquet integral can be reduced from 2" to ZZ=1 2175 where fo = (fu, fur s fg) et

of extracted factors, g denotes the total number of factors, and |f, | represents the
number of attributes within factor, p. This phenomenon was justified in a study
conducted by Lin, Shiu, and Tzeng (2011) as well.

After processing the raw data into an appropriate state as elaborated in
section 4.5.6, factor analysis can be performed with the aid of SPSS software. The
execution of factor analysis can be summarized as follows (DeCoster, 1998; Pallant,
2011).

Firstly, the suitability or factor-ability of obtained data for factor analysis
need to be verified. The strength of inter-correlation between attributes needs to be
investigated as it is not so appropriate to perform factor analysis if there is no any
strong inter-correlation between attributes (Pallant, 2011).

To be considered suitable for factor analysis, the correlation matrix should
show at least some correlation, r = 0.3 (Tabachnick and Fidell, 2007). Besides,

another two statistical measures which can be generated via SPSS namely Barlett’s
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test of sphericity and Kaiser- Meyer-Olkin (KMO) are also useful to determine the
factor-ability of data. It is suggested the Bartlett’s test of Sphercity should be
statistically significant at p < 0.05 (Bartlett, 1954) and the KMO measure of
sampling adequacy value > 0.6 (Kaiser, 1974) for a sensible factor analysis. With
regards to the proposed procedure, if even one of these conditions is not satisfied
then, it is advisable to omit factor analysis and proceed the analysis with step 9, 10,
and 14.

Secondly, the smallest number of factors that can be used to best represent
the interrelations among the set of attributes is determined or extracted. As per the
proposed procedure, the well-known principal component technique is employed to
extract the number of underlying factors or dimensions. Then, the Kaiser’s criteria
(Cudeck, 2000) and scree test (Catell, 1966) rules can be further used as the
guideline in identifying the final number of factors that should retained to represent
the original attributes.

The third stage of factor analysis is known as factor rotation and
interpretation stage. At this level, the factors are rotated for the sake of ease and
meaningful interpretability on the extracted factors. In the proposed procedure, the
frequently used rotation method, Varimax which yields uncorrelated factors
(Treiblmaier and Filzmoser, 2010) is suggested for the rotation purpose. Then, the
factors are interpreted or renamed based to the meaning of attributes. Certainly, some
background knowledge on existing problem will be required for the renaming

purpose.
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4.5.8 Decomposing Problem into Simpler Hierarchy Structure

After performing factor analysis, in order to examine the problem in a more
interpretable means and to implement the decision making process in a systematic
mode, the existing problem are decomposed into simpler hierarchy diagram
consisting of four major levels namely ‘alternatives’ , ‘attributes’ , ‘factors’ and

‘goal’ level.

4.5.9 Estimating Monotone Measure via Revised Fuzzy-Linguistic Estimator
The attributes within each factor are inter-dependent. Thus, the local scores within
each factor will be aggregated using Choquet integral to obtain the ‘factor scores’ of
an alternative. However, prior to employing Choquet integral, the monotone measure
weights are identified. For this purpose, a trivial amendment is done on the existing
fuzzy-linguistic estimator (Wang et al., 2010) to come up with an easy-to-implement
identification approach for decision makers. The suggested estimation approach is as
follows.

Firstly, the decision maker should determine the linguistic terms, s; =
(sg,S1,...,S7) to assess the individual contribution or importance of attributes
toward their respective factor where s, denotes ‘least important’ and sy denotes
‘extremely important’. Secondly, each of these linguistic terms is quantified into
corresponding TEN using Zhu’s equation (4.1). With the determined linguistic terms
and their corresponding TFNs, the (T + 1)- point linguistic scale can be constructed.

Based on the developed scale, the decision makers can express their own

opinion on the importance of the attributes (in linguistic terms) which are then
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converted into corresponding TFNs. Subsequently, the average fuzzy importance, Ij,,

of attribute, j corresponding to factor, p can be identified using equation (4.5).

Tijz

N

z
2 IideP (4.5)
e=1

Suppose d, = {d4,d,, ...,d,} denotes the decision makers involved in the analysis.

Then, based on equation (4.5), I; represents the fuzzy importance of attribute, j

deb
given by decision maker, d, with respect to factor, p and z implies the number of
decision makers. The average fuzzy importance are then defuzzified into crisp
importance via COA technique (4.3). These crisp importance actually represent the
individual weight of attributes, g; = gx{¢;}, j = 1,2,...,n. If the sum of individual
weight of attributes within a factor, »7_; g; = 1 then, the interaction parameter A of

the specific factor is zero(4 = 0). On the other hand, if ¥.7_; g; # 1, the parameter A

can be calculated by solving the equation (4.6).
n
1+4= 1_[(1 +2g)) (4.6)
j=1

If —1 <A <0 then, it implies the attributes within the specific factor hold
sub-additive effect. Meanwhile, if A = 0 then, it implies the attributes within the
factor are additive. Lastly, if A > 0 then, it reflects the attributes possess super-

additive effect.
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Finally, with the available individual weights and interaction parameter, A,
the monotone measure weights can be identified using A- measure equation (4.7).

1 n
gilencn e =51 | [a+agp-1 (@.7)
j=1

The identification process is executed gradually from one factor to the other.

4.5.10 Using Choquet Integral to Aggregate Interactive Scores

The available A-measure weights and local scores will be then replaced into Choquet
integral model (4.7) to compute the score for each factor. Let g, be a monotone
measure on ¢; = (¢q, €z, ..., €) AN x; = (x4, X3, ..., X,) be the performance score of
an alternative with respect to each attribute in c;. Suppose x; = x, = --- = x,,. Then,

T, ={c1, ¢y, ..., ¢} and the aggregated score using Choquet integral can be identified

using (4.8)

Choquetgl(xl,xz, vy Xp)

= Xn. ga{Tn} + [Xn-1-Xn]. g2{Tn-1} + ...+ [x1 — x2]. g2{T1} 48)

= Xp. 92{C1, €2, o, €} + [Xn_1- 5] ga{C1, €2, o, Cpoq} + -+ [X1 — x2]. g2{C1}

where the arrangement of attributes in T,, parallel with the descending order of the

performance scores.
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4.5.11 Construction of New Decision Matrix (Alternatives vs. Factors)

At the end of foregoing stage, each alternative will have a set of factor scores (scores
with respect to each factor). Therefore, a new decision matrix, alternatives versus
factors, can be constructed as presented in Table 4.6. The further analysis will rely

on this decision matrix.

Table 4.6: New Decision Matrix (Alternatives vs. Factors)

Factors/ fi fz2 - fq
Alternatives
a; Yin. Yz - Yif
a Y21 Y22 - Yap
am yml }’mz qu

Based on Table 4.6, yi, = (Vi1,Yi2 -, Yig) refers to a set of factor scores of

alternative, i with respect to factors, £, = (f1, f2, ..., fg)-

4.5.12 Estimating Weights of Independent Factors
Since the extracted factors are completely independent to each other, the global score
of an alternative can be simply obtained by integrating factor scores via SWA
operator. However, the weight for each independent factor has to be identified prior
to applying SWA. For this purpose, Mikhailov’s Fuzzy AHP method will be
employed.

Besides dealing with aspect of uncertainty by allowing the decision makers to
express their comparison in linguistic terms, this approach has the capability to
simultaneously derive the consistency value of pair-wise comparison and weight of

factors in the form of crisp value. In addition, Mikhailov claimed that due to the non-
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linearity issue in Saaty’s 1-9 scale which lies in the region of values between 91
and 171, constructing fuzzy reciprocal matrices could lead to some other problems
such as rank reversal. Thus, in order to avoid using reciprocal judgment, in this fuzzy
AHP, the decision makers are only required to provide assessment whenever factor
fa 1s equally or more important than f,. If it is found that £, is less important than f,
then, the evaluation should be done oppositely where f;, is compared to f;,.

With regards to the proposed procedure, the steps to execute Mikhailov’s
fuzzy AHP for the estimation of factors’ weights can be described as follows. Firstly,
for sake of simplicity, the decision makers are required to linguistically express the
relative importance of factors through a single pair-wise comparison matrix (after
achieving consensus) based on Saaty’s fuzzy AHP scale as shown in Table 4.7
(Cakir and Canbolat, 2008). The reciprocal judgments are not offered in the table 4.7

as they are not required in implementing Mikhailov’s fuzzy AHP.

Table 4.7: Saaty’s fuzzy AHP scale (Cakir and Canbolat, 2008)

Linguistic terms  Corresponding TFN Descriptions

Equally important 1=(01,12) Two elements contribute equally

Slightly important 3=(234) One element is slightly favoured
over another

Strongly important 5= (4,5,6) One element is strongly favoured
over another

Very strongly 7 =(6,7,8) One element is very strongly

important favoured over another

Extremely 9 =(8,9,9) One element is most favoured

important over another

The intermediate 2=1(123),4=(345),6= Used to compromise between

values (5,6,7), 8 = (7,8,9) two judgments
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Secondly, the linguistic terms in the assessed pair-wise comparison matrix
are then converted into their corresponding TFN. Finally, the nonlinear optimization
model (4.9) as suggested by Mikhailov (2003) is developed to concurrently derive

the consistency value of pair-wise comparison and the weights of factors.

Maximize u
Subject to (mgp — Lap)uwy — wy + Lgpywy < 0,

(uab - mab)uwb + Wq — UgpWp < 0' (4-9)

q
pr = 1,wp >0p=1,..q
p=1

With regards to the proposed procedure, 1,5, u,p, and my, are the lower, upper and
most probable values corresponding to the fuzzy judgment given by the decision
makers when comparing factor, a with respect to b. Meanwhile, w,, denotes the
weight for factor, p and u is the consistency index of the pair-wise comparison.
According to Mikhailov (2003), if the consistency index is positive (u = 0)
then, it indicates that the fuzzy pair-wise comparison matrix is being consistent

where all the solution ratios completely satisfy the initial judgments such that

lij < :VV—; < u;;. Meanwhile, if the consistency index is negative (u < 0) then, it

implies that the comparison matrix is being inconsistent and re-evaluation on the

pair-wise comparison is required.
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4.5.13 Applying Simple Average Weighted to Compute Global Score
After identifying the weights for each independent factor through Mikhailov’s fuzzy
AHP, SWA operator (4.10) is applied to compute the global score of each

alternative.

q

Z(wp-yp) (4.10)

p=1

In relevant to the proposed procedure, w,, denotes the weight for factor, p and
Y, denotes the score of an alternative with respect to factor, p. Then, the alternatives
can be ranked, classified or chosen based on their global scores. An alternative with
the highest global score reflects the most favorable alternative whereas an alternative

with the lowest global score indicates the most unfavorable alternative.

4.6 Numerical Example

The purpose of this section is to facilitate a better understanding on the
computational process involved in the proposed procedure. With regards to this, a
simple MADM problem is formed and the steps involved in solving the problem
using the proposed procedure are presented.

Suppose a decision maker is required to perform an assessment on the
reputation of three airline industries in Malaysia namely a,, a,, and a5. Then, as the
first step to employ the procedure, the decision maker identifies five attributes
namely scheduling (s), promptness (p), comfort of seats (c), cabin service (cs), and
routes (r) to measure the reputation of each airline.

In the second step, he determines five linguistic preferences (s, = extremely

unsatisfactory, s; = unsatisfactory, s, =fair, s; =satisfactory, s, = extremely
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unsatisfactory) to assess the performance of airlines with respect to each attribute. In

this case, T = 4. By using equation (4.1), the TFN corresponding to each linguistic

preference is identified as presented in Table 4.8. As a result, a 5- point linguistic

scale for measuring airlines’ performance as portrayed in Figure 4.3 is developed.

Table 4.8: Linguistic Terms and Their Corresponding TFNs (Airline Problem)

Linguistic term TFEN
so = Extremely - < {0—1 } 0 .{0"‘1 })

. Ay = ,0¢, , —,1¢| = (0,0,0.25
unsatisfactory o=\ e G- ™M G- ( )
s, =Unsatisfactory A, = (0,0.25,0.5)

s, = Fair A, = (0.25,0.5,0.75)
s, = Satisfactory A; = (0.5,0.75,1)
s, = Extremely satisfactory A4, = (0.75,1,1)

9i(x)

A : Extremely

i i Satisfactor
Unsatjsfactory Fair y satisfactory

unsatisfactory

1
0.5
»X

0 0.5 0.75 1

Figure 4.3: 5- point Linguistic Scale for Measuring Airlines’ Performance

Based on the developed 5- point linguistic scale, a questionnaire is designed

in order to assess the performance of each airline corresponding to each attribute. For

this toy example, further assume that a pilot test is conducted to measure the internal

consistency of the questionnaire where the computed Cronbach’s alpha surpasses
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0.7. This value indicates that the instrument is reliable for data collection and can be
employed for actual survey.

The decision maker then disseminates the questionnaires to the particular
airlines consumers and asks them to linguistically express their satisfactions towards
each airline with respect to each attribute. In this example, assume that there are
three respondents (r = 3) which renders to the total observations of nine (N = 9).

Presume that the raw data set yielded from this survey is as presented in Table 4.9.

Table 4.9: Raw Data Set of Airline Problem

Airlines  Attributes/ S p c cs r

Respondents

a,; a,, U EU S S ES
a, EU F F S F
a, F F ES ES S

a, a, Uu S ES S S
as, EU S ES F F
as, ES EU EU S ES

as; as, ES U F S ES
as, S U U S F
as, F F S ES ES

*EU = extremely unsatisfactory, U = Unsatisfactory, F = fair, S = satisfactory,
ES = extremely satisfactory

In the process of deriving the decision matrix for this problem, firstly, the
decision maker quantifies the linguistic scores in raw data set into their
corresponding TFNs based on the 5- point linguistic scale. Hence, the fuzzified data

set as presented in Table 4.10 was obtained.
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Table 4.10: Fuzzified Data Set of Airline Problem

Airline  Attributes/ S p c cs r
Respondents

a, ai, (0,0.25,0.5) (0,0,0.25) (0.5,0.75,1) (0.5,0.75,1) (0.75,1,1)
ai, (0,0,0.25) (0.25,05,0.75)  (0.25,0.5,0.75)  (0.5,0.75,1) (0.25,0.5,0.75)
a, (0.25,05,0.75)  (0.25,0.5,0.75)  (0.75,1,1) 0.75,1,1) (0.5,0.75,1)

a, as, (0,0.25,0.5) (0.5,0.75,1) (0.75,1,1) (0.5,0.75,1) (0.5,0.75,1)
as, (0,0,0.25) (0.5,0.75,1) (0.75,1,1) (0.25,0.5,0.75) (0.25,0.5,0.75)
as, (0.75,1,1) (0,0,0.25) (0,0,0.25) (0.5,0.75,1) (0.75,1,1)

as as, (0.75,1,1) (0,0.25,0.5) (0.25,05,0.75)  (0.5,0.75,1) (0.75,1,1)
as, (0.5,0.75,1) (0,0.25,0.5) (0,0.25,0.5) (0.5,0.75,1) (0.25,0.5,0.75)
as, (0.25,05,0.75)  (0.25,0.5,0.75)  (0.5,0.75,1) (0.75,1,1) (0.75,1,1)

Subsequently, the average fuzzy scores of each airline is computed using

equation (4.2) to generate fuzzy decision matrix of the problem as presented in Table

4.11.
Table 4.11: Fuzzy Decision Matrix of Airline Problem
Attributes/ g p c cs r
Alternatives
1
a, ~10+0+025,025+0 (0.167,0.333,0.583) (0.5,0.75,0.917) (0.583,0.833,1) (0.5,0.75,0.917)
+0.5,0.5 + 0.25 + 0.75)
= (0.083,0.25,0.5)
a (0.25,0.417,0.583) (0.333,0.667,0.75) (050750875 (0.417,08670.917) (050750917)
a; (0.5,0.75,0.917) (0.083,0.333,0.583)  (0.2505,0.75) (058308331)  (0583,0.8330917)

Then, the final decision matrix for the further analysis is acquired by
defuzzifying the average fuzzy scores in Table 4.11 into their respective crisp scores
via the usage of COA technique (4.3). The final decision matrix of the problem after

the defuzzification process is as shown Table 4.12.
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Table 4.12: Decision Matrix of Airline Problem

Attributes/ s p c cs r
Alternatives
a, 0.278 0.361 0.721 0.805 0.722
a, 0.236 0.583 0.708 0.667 0.722
as 0.722 0.333 05 0.805 0.778

Next, in order to prepare the data for factor analysis, the decision maker
defuzzifies the fuzzy scores in Table 4.10 into crisp scores using COA equation

(4.3). The crisp data set for this problem is as presented in Table 4.13.

Table 4.13: Crisp Data Set of Airline Problem

Airlines  Attributes/ S p c cs r
Respondents

a;, 0.25 0.0832 0.75 0.75 0.9168

a,; a,, 0.0832 0.5 0.5 0.75 0.5
a, 0.5 0.5 0.9168 0.9168 0.75
a,, 0.25 0.75 0.9168 0.75 0.75

a, a,, 0.0832 0.75 0.9168 0.5 0.5
az, 0.9168 0.0832 0.0832 0.75 0.9168
as, 0.9168 0.25 0.5 0.75 0.9168

as a;, 0.75 0.25 0.25 0.75 0.5
as, 0.5 0.5 0.75 0.9168 0.9168

These crisp scores are then translated into their equivalents in the 5-point
Likert scale using equation (4.4) as shown in Table 4.14 where at this phase the data
is all set to be factor analyzed. Based on the ‘10 observations per attribute’ rule, the
minimum total observations, N for this problem should be 50 to assure a meaningful
factor analysis. However, for sake of simplicity, this study has deliberately

maintained a small number of total observations, N.

109



Table 4.14: Data for Factor Analysis: Airline Problem

Airlines  Attributes/ S p c cs r
Respondents

a, a, =0.25x5=125 0416 375 375 4584
a,, 0.416 25 2.5 375 25
a, 2.5 2.5 4584 4584 3.75

a, a, 1.25 375 4584 375 375
as, 0.416 375 4584 25 2.5
a,, 4.584 0.416 0.416 3.75 4.584

as; as, 4.584 125 25 3.75 4.584
as, 3.75 125 125 375 25
as, 2.5 2.5 3.75 4584 4584

Assume that the decision maker carries out factor analysis using the data in
Table 4.14 and the three statistical preconditions for a significant factor analysis are
satisfied where there are some correlation coefficients, » among attributes surpassed
0.3, the Kaiser-Meyer Olken value is larger than 0.6 and Barlett’s test of Sphercity is
statistically significant. In addition, assume that after completing factor analysis, two
common factors are extracted. The first factor which is renamed as ‘planning’
consists of scheduling, on time performance, and routes attributes. Meanwhile, the
second factor which is labeled as ‘service’ comprises comfort of seats and cabin
service attributes.

Next, by referring to the output of factor analysis, the decision maker
decomposes the airline problem into simpler yet interpretable hierarchy structure

encompassing 4 levels as illustrated in Figure 4.4.
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Goal level Ranking of airlines
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Planning Service
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Figure 4.4: Hierarchy Structure of Airline Problem

Since the scores within each factor possess interactive characteristic, Choquet
integral should be used to aggregate these scores. Therefore, before employing
Choquet integral, the decision maker estimates the weights of monotone measure
using the revised version of fuzzy-linguistic estimator. The identification process can
be summarized as follows.

First of all, the decision maker determines five linguistic terms, s; = (s, =
least important, s; = important, s, =strongly important, s; = very strongly
important, s, = extremely important) to assess the individual importance of
attributes. In this case, T = 4. Then, the TFN corresponding to each linguistic term
are identified via equation (4.1). With the determined linguistic terms and their
corresponding TFNs, 5- point linguistic scale for the assessment on the importance

of attributes is constructed.
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Based on the developed scale, the decision maker linguistically expresses the
individual importance of attributes which are then converted into corresponding
TFNs and finally, defuzzifies them into crisp importance via equation (4.3). These
crisp importance actually represent the individual weight of attributes. The
evaluation on the importance of attributes and identification of individual weights for
airline problem are summarized in Table 4.15. Note, since this problem only involve

one decision maker then, the equation (4.5) is not utilized.

Table 4.15: Individual Weight of Attributes within Each Factor

Factors  Attributes Importance (in Corresponding Crisp values/ Individual
linguistic terms) TFN weights of attributes)
Planning  Scheduling Very strongly (0.75,1,1) 0.9168
important
On time Strongly important (0.5,0.75,1) 0.75
performance
Routes Least important (0,0.25,0.5) 0.25
Service  Comfort of Important (0.25,0.5,0.75) 0.5
seats
Cabin service Least important (0,0.25,0.5) 0.25

With the available individual weights, equation (4.6) is then applied to
identify the interaction parameter, A of each factor and subsequently, equation (4.7)
is employed to estimate the monotone measure weights within each factor. The
identified monotone measure weights for each factor for the airline problem are

summarized in Table 4.16.
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Table 4.16: Weights of Monotone Measure for Airline Problem

Factors Parameter, . Subsets Weights

Planning -0.9796 g:{0} 0
9a{s} 0.9168
gfp} 075
ga{r} 0.25

gafs,p} 0.9932
g:{s,r}  0.9422
g:{p, v} 0.8163

als,pr} 1
Service 2 gy O
ga:{c} 0.5
gafes} 025
gialc,est 1

For better understanding, the computation involved in estimating g,{s,p} is
provided. Prior to identifying the weights of monotone measure, the interaction
parameter, A of attributes within the ‘planning’ factor is estimated using equation

(4.6) as follows.

n
1+a=] |a+agy
i=1

A+ 1= (091681 + 1)(0.751 + 1)(0.251 + 1)

0.171923 + 1.1044A + 0.91691 = 0

By solving the above equation, following roots are obtained, A=
(0,—5.445,—-0.9796). Since —1 < A1 < oo, then the value -5.445 is discarded. In
addition, since };i-; g; # 1 then, the value 0 is also unacceptable. Therefore, for this
problem, A = —0.9796 is pertinent. This value implies that the three attributes

within ‘planning’ factor are sharing sub-additive interaction.
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Then, the identified individual weight of scheduling and promptness and A

value are replaced into equation (4.6) to estimate g,{s, p} as follows.

14 (—0.9796 x 0.9168)][1 + (—0.9796 x 0.75)] — 1
g2{Sh, Pr} = [+ _3]9[796( )] = 0.9932

After completely identifying all the required A- measure weights, Choquet
integral model (4.8) is employed to aggregate the interactive local scores within each
factor to obtain the factor scores of each alternative. Then, based on these factor
scores, a new decision matrix (airlines vs. factors) is constructed as shown in Table

4.17 where the further evaluation is performed by adhering to this matrix.

Table 4.17: New Decision Matrix (Airlines vs. Factors)

Attributes/ Planning Service

Airlines
a, 0.436 0.742
a, 0.554 0.688
as 0.714 0.714

To facilitate clearer understanding on the aggregation using Choquet integral,
the computational process involved in finding the factor score of airline a; with
respect to ‘planning’ is elaborated as follows. First of all, the local scores within the
‘planning’ factor are arranged in descending order where xg, = = xp, = xg, and
thus, T,= {Ro, Pr,Sh}. Then, by adhering to the A-measure weights estimated in
Table 4.15 and based on local scores of a; as in Table 4.11, the factor score of

a,with respect to ‘planning’ is computed as follows by using equation (4.8).
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Y1(Planning)
= 0.278 X g,{Ro, Pr,Sh} + (0.361 — 0.278) X g {Ro, Pr} + (0.722 — 0.361) X g,{Ro}

=0.278 x 1 + 0.083 x 0.8163 + 0.361 x 0.25 = 0.436

Later, in order to estimate the weights for independent factors, the decision
maker utilizes Mikhailov’s fuzzy AHP technique. For this purpose, the decision
maker linguistically expresses the relative importance between factors through pair-
wise comparison matrix based on Saaty’s fuzzy AHP scale. The linguistic
preferences in the evaluated pair-wise comparison matrix are then transformed into
their corresponding TFNs. Assume the fuzzy pair-wise comparison matrix for airline

problem is as presented in Table 4.18.

Table 4.18: Pair-wise Comparison for Airline Problem

Factors Planning Service
Planning  (1,1,1) (2,3,4)
Service (1,1,

Based on the pair-wise comparison assessment, a mathematical programming
model (4.9) as suggested by Mikhailov (2000) is constructed to derive the weight for
factors and consistency value for pair-wise comparison concurrently.

Max u

Subject to pw, —w; + 2w, <0
uwy +wy — 4w, <0
wi+w, =1

wy,wy =0
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The solution obtained using EXCEL SOLVER shows w;= 0.6698, w,=
0.3209, and p = 1 where w; denotes the weight for ‘planning’ factor, and w, denotes
the weight for ‘service’ factor. u = 1 implies the pair-wise comparison matrix is
consistent.

Finally, according to estimated factors’ weights and available factor scores,
the global score of each alternative is computed via SWA operator (4.9). The final

result of this airline problem is as presented in Table 4.19.

Table 4.19: Final Result of Airline Problem

Attributes/ Planning Service Global score Ranking
Airlines w;,=0.6698 w,=0.3209

a; 0.436 0.742 (0.6698x0.436) + (0.3209x0.742) =0.5301 3

a, 0.554 0.688 0.5918 2

as 0.714 0.714 0.7074 1

The results obtained from the proposed procedure shows that airline a; topped the

ranking as the outstanding airline which is then followed by airline a, and a;.

4.7 Comparing Proposed Procedure, GFCI, and Fuzzy Partitioned Hierarchy
Model

In this section, the proposed procedure is compared with other MADM tools which
able to deal with aspects of uncertainty in human’s information and interaction
between attributes namely, GFCI and fuzzy partitioned hierarchy model as
highlighted in chapter one. Fuzzy ANP is discarded from this comparison as it
completely involves different computational procedure (especially, it does not use

Chogquet integral) and thus, most of the comparison aspects are not applicable for it.
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4.7.1 Comparison based on Numbers of Monotone Measure Weights Required

Firstly, the comparison is done based on the numbers of monotone measure weights
required by each of the method. It should be restated here that the actual number of
monotone measure weights which need to be identified by the decision makers in a
particular MADM problem is equivalent to 2™, where n represents number of

attributes. However, using proposed procedure these numbers can be reduced from
2™ to Zg=12|fp| where f, = (f1, f1, .., fg) denotes the set of extracted factors, q
denotes the total number of factors, and |f,| represents number of attributes within
factor, p. Meanwhile, the number of weights required remains as 2™ when using
GCFI. On the other hand, fuzzy partitioned hierarchy reduces these numbers from 2"
to Zg=12|fv_| + ZZ=12pr+| where f,;” = (fi’,f5, ... f; ) represents set of factors
extracted based on left values and f,f = (fi*,f5", ..., f;") represents set of factors

extracted based on right values.

To provide better illustration on this, a simple analysis is conducted where
the numbers of monotone measure weights required by each of the method across
different numbers of attributes (four, six, eight, and ten attributes) are identified. The
result of the analysis is portrayed via Figure 4.5. In this analysis, since the proposed
procedure and fuzzy partitioned hierarchy involves factor analysis, it is assumed that

after factor analyzing, n attributes are extracted into two factors where each factor

comprised of gattributes.

117



1200

1000
8
f;, 800
[<3]
= /
s 600
° /
[«b]
£ 400
5 //
z
200
| f— 2 ¢
0 7 v - A 4
Four Six Eight Ten
attributes attributes attributes attributes
== Proposed procedure 8 16 32 64
=i—GCFlI 16 64 256 1024
Fuzzy partitioned hierarchy 16 32 64 128

Figure 4.5: Number of Monotone Measure Weights Required by Each of the Method

Based on figure 4.5, it can be noticed that the requirement on numbers of
monotone measure weights hikes up with increasing number of attributes, regardless
of any methods. However, it can be concluded that the decision makers can expect to

identify lesser number of monotone measure weights using the proposed procedure

over the other two methods.

4.7.2 Comparison based on Amount of Information Required

Secondly, the number of information required from decision makers in implementing
each of the method is investigated. However, fuzzy partitioned hierarchy is excluded
from this comparison as there is no sufficient info on how the factors’ weights

should be derived (to understand what kind of information will be required from

decision makers for this identification process).
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By using the proposed procedure, the decision makers are only required to
provide the individual importance of attributes and relative importance between
factors which usually can be offered by decision maker easily (in linguistic terms). In
has to be reminded here that the performance scores in the proposed procedure can
be derived via the data collected from the respondents. Therefore, the total amount of
information required from the decision makers in using the proposed procedure is,
6 =n+q(q—1)/2 where n denotes the number of attributes and q implies the
number of factors. Meanwhile, GCFI requires the decision makers to estimate the
performance of the alternatives, importance of attributes, and tolerance zone with
respect to each attributes. Thus, the total information requirement is, 8 = n(m + 2).

For further understanding, the amount of information required from the
decision makers in each of the method under varying number of attributes (four, six,
eight, and ten) and alternatives (three, four, five alternatives) is analyzed. The results
of the analysis are portrayed through Figure 4.6, Figure 4.7, and Figure 4.8. Again,
since the proposed procedure and fuzzy partitioned hierarchy involves factor

analysis, in this analysis, it is assumed after factor analyzing, n attributes are

extracted into two factors where each factor comprised of g attributes.
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Figure 4.7: Number of Information Required From Decision Makers, (m = 4)
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Figure 4.8: Number of Information Required From Decision Makers, (m = 5)

Based on Figure 4.6, Figure 4.7, and Figure 4.8, following conclusions can be
drawn out. Firstly, the amount of information required from the decision makers in
the proposed procedure is not influenced by the number of alternatives involved in a
MADM problem. Secondly, the information requirement in both methods rises with
the growing number of attributes. However, it can be noticed that the proposed
procedure always requires lesser number of information from the decision makers

than GCFI with respect to any scenarios in the analysis.

4.7.3 Comparison based on Other Aspects

The other differences between the proposed procedure, GFCI, and fuzzy partitioned

hierarchy are summarized as portrayed in Table 4.20.
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Table 4.20:

Hierarchy Model

Comparison between Proposed Procedure, GFCI, and Fuzzy Partitioned

Models/ Proposed procedure GFCI (Tsai and Lu, Fuzzy partitioned

Aspects 2006 and Demiral, hierarchy (Lin, Shiu,
Demiral, and and Tzeng, 2011)
Kahraman, 2010)

Data The procedure has set some Not applicable No specific requisitions or

collection via  preconditions  before  and additional information on

questionnaire

Identification
of local
scores

Usage of
fuzzy
numbers

Uncertainty
in data

Fuzzification
approach

during data collection to ensure
sensible output (i.e. reliability
of questionnaire, total
observations)

The same collected linguistic
data is utilized to derive local
scores

Only applies triangular fuzzy
numbers (TFNs) which
naturally simple to be used by
decision makers

Uncertainty in every type of
data from human is taken into
consideration. Even at the stage
of identifying weights of
factors, Mikhailov’s fuzzy
AHP is applied.

Uses Zhu’s approach where by
simply determining the
linguistic terms for assessment
and utilizing Zhu’s equation,
the fuzzy conversion scale can
be constructed

Need to be provided by
decision makers or experts
(in linguistic terms)

Uses trapezoidal fuzzy
numbers (TrFNs) which are
then converted into interval
valued fuzzy  numbers
consisting left values and
rights. Therefore, twofold
computational process are
required

Uncertainty in every type of
data from human in taken
into consideration.

No specific approach is
defined and only uses the
fuzzy scale from past
literature

data collection

Need to be provided by
decision makers or experts.
In addition they are obliged
to provide data in crisp or

exact numbers. So,
uncertainty in these
particular data is not
captured.

The collected data for factor
analysis are converted into

interval  valued  fuzzy
numbers  consisting  left
values and rights. This

could yield two different
grouping after performing
fuzzy factor analysis and so,
twofold computational steps
are usually needed.

The uncertainties in most of
the data from human are not
taken into consideration
except the data from
respondents which are used
for factor analysis. For
example, it requires the
decision makers or experts
to exactly express the local
scores. Besides, there is no
any fuzzy approach
suggested to estimate the
weights of extracted factors.

No specific approach is
defined

122



Models/ Proposed procedure GFCI Fuzzy partitioned
Aspects hierarchy
Approach to Revised the existing fuzzy- Uses Sugeno equation to  Uses GA based approach

identify monotone
measure weights

Capability in
identifying the key
determinants of the
problem

Overall
computational
requirement

linguistic estimator
-Easy-to-implement

-1t models the uncertainty
that exists in the provided
data.

-The required data for
identification  (individual
importance of attributes)
can be simply provided in
linguistic terms

-Finally, Sugeno equation
is utilized to identify the
monotone measure weights

The model is helpful in
identifying the main
determinants of problem
thus, the existing problem
can be decomposed into
simpler hierarchy

Simple and possibility to
engage with generation of
mistakes during the
computational process
computation is higher

identify the weight.

- Involves interval-valued
fuzzy numbers (consisting
right and left values).
Therefore, twofold
computational process
needs to be carried out to
identify the weights (extra
complication for decision
makers)

Usually need to be
identified by decision
makers based on their
knowledge and experience

Requires higher
computational effort from
decision  makers and
possibility to engage with
generation of mistakes
during the computational
process computation is
higher

-Easy-to-implement
-But, this approach has

some drawbacks (i.e.
failed to control the
amount of information
lost)

- Involves interval-valued
fuzzy numbers (consisting
right and left values).
Therefore, twofold
computational process
needs to be carried out to
identify the weights

The model helpful in
identifying  the  main
determinants of problem
thus, the existing problem
can be decomposed into
simpler hierarchy

Requires higher
computational effort from
decision  makers  and
possibility to engage with
generation of mistakes
during the computational
process computation s
higher

4.8 Feasibility of the Proposed Procedure

In the final phase of this research, the workability of the proposed procedure is

verified by solving a real-world MADM problem. Chapter five is devoted for this

purpose.

4.9 Summary of Chapter Four

To accomplish the objectives of this research, five main phases were premeditated.

Firstly, the research explored the issue of uncertainty that engaged in the human’s

data, its linkage to fuzzy set theory, and application of the theory into AHP. In the

second phase, the investigation was extended on the aspect of interaction among
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attributes where the review was mainly focused on the conception of aggregation and
types of aggregation operators which are applicable for MADM problems.
Meanwhile, in the subsequent phase, the usage of Choquet integral and its associated
monotone measure are probed. Besides, an analysis on the past studies which are
focused on reducing the complexity of identifying monotone measure was
conducted.

In fourth phase, a new MADM procedure was formulated to reduce the
number of steps and amount of information required from decision makers when
dealing with the aspect of uncertainty in human’s judgement and interaction among
attributes simultaneously. The proposed procedure was constructed by assembling 5
main components namely factor analysis, revised fuzzy-linguistic estimator, Choquet
integral, Mikhailov’s fuzzy AHP, and Simple Average Weighted (SAW).

The comparison of the proposed procedure under certain aspects, with other
MADM models which also able to deal with fuzziness in human’s data and
interaction between attributes (CGFI and fuzzy partitioned hierarchy model) shows
that the proposed procedure is being more advantageous especially in term of
computational and information requirement from decision makers.

In final phase, this research will discover and solve a real MADM problem
using the proposed procedure in order to test its feasibility which will be presented in

the following chapter.
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CHAPTER FIVE
ASSESSING THE IMAGE OF STORES FROM HOMEMAKERS’
PERSPECTIVE: ACASE STUDY

5.1 Introduction

This chapter is dedicated to discover a real-world MADM problem and resolve it by
applying the proposed MADM procedure as offered in chapter four in order to verify
the procedure’s ability in generating practicable or feasible result. In this study, the
proposed procedure will be applied in order to quantitatively measure the image of
three chain stores situated in Pekan Sabak, Selangor, Malaysia from the
homemakers’ perception.

Store image actually defines the way a store is perceived by the customers
(Boulding, 1956 and Martineau, 1958, as cited in Hansen and Solgaard, 2004) or the
customers’ total attitude towards a store (Baker, Grewal, and Parasuraman, 1994).
Customers usually illustrate a store’s overall image via their own post-purchasing
experience, word-of-mouth sources, or through marketing communications such as
advertisements (Normann, 1991).

Every retail store has its own image and it influences a customer whether to
choose a store for purchasing (Verma and Gupta, 2005). A positive image usually
leads to customer satisfaction and increases number of loyal customers
(Kandampully and Suhartanto, 2000). If a store does not have a unique or favorable
image than their competitors, the customers would not find a reason on why they
should purchase there (Andersen, 1997). Therefore, the retailers should timely

analyze and enhance the store’s image because a desirable store image appears as a
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key determinant for long-term business success in an increasingly competitive
marketplace (Grewal, Krishnan, Baker, and Borin, 1998).

An evaluation on store image is obviously a MADM problem as it involves
multiple dimensions and should be measured via multiple attributes (Kim and Jin,
2001, as cited in Wong, Osman, Jamaluddin, and Yin-Fah, 2012). Unfortunately, the
review on past literature reveals that there are only handful numbers of quantitative
approaches which have been introduced to this date in assessing store’s image.
Therefore, through this study, the proposed MADM procedure which able deals with
the aspect of uncertainty in human’s judgment and interaction between the attributes
Is applied for the evaluating the image of three chain stores located at Pekan Sabak.
The results of this study would be helpful for the retailers to comprehend their
relative position with other stores and develop better strategies to enhance their
image from the customer’s point of view.

The following sections comprise the steps in utilizing the proposed procedure
which begins with defining background of the problem until the stage of computing
the stores’ overall image and determining the ranking of stores based on the global
image scores. Besides, based on the results, some potential strategies in recuperating

the stores’ image are discussed as well.

5.2 Background of the Case Study

Sabak is a subdivision of Sabak Bernam district, located at the northwest Selangor. It
is a rural area, largely covered by traditional villages and plantation estates where
most of the populace is engaged with agricultural activities. Alike other rural
regions, Sabak has its own, progressing town which is locally known as ‘Pekan

Sabak’. The town has been experiencing a satisfying growth for the past few years.
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Mushrooming of new housing and shop lots projects, the presence of new banks, fast
food franchise, new budget hotels, resort, and home-stays, mini convention centre,
government community college and not to forget, the emergence of chain stores are
reflecting the town’s development for the past 15 years.

Focusing on the chain stores, there are three chain stores operating in Sabak
Bernam namely Big Shop, 99 Speedmart, and Billion. Billion is the first chain store
of the town then followed by 99 Speedmart and Big Shop. Both Billion and Big
Shop are running their business in a double storey building whereas, 99 Speedmart is
operating in a broad, single storey building. The main selling products of these stores
are household items and foodstuffs.

It can be said that these stores are competing in attracting the customers for a
long survival. The main customers of these stores are the locals from the villages and
plantation estates situated close to the town. Therefore, it is necessary for the each
retailer to understand the behavior of rural people in choosing the retail stores. In
order words, it is essential for the retailers to analyze their stores’ image from the
view of local people and so, proper strategies can be organized to enhance their
image in order to boost up the number of repetitive and loyal customers.

However, in this study, we are only interested to measure the image of the
three stores from the perception of the homemakers living in Sabak Bernam
Plantation Estate, which is located three kilometers away from the town. But it is still
important to analyze the image of stores from homemakers’ perspective as they not
only make purchase decisions for their own consumption but also influence family

purchase decisions (James, 2012 and Kandoje, 2009).

127



5.3 Eliciting Store Attributes

As mentioned previously, the store image is usually characterized by multi-attribute

construct. A summary on some of the past studies which have discussed on attributes

that could influence the image of a store is presented through Table 5.1.

Table 5.1: Store Attributes Identified in Past Studies

Sources

Attributes/Components/Elements

Lindquist (1974)

Joyce and Lambert
(1996)

Thompson and
Chen (1998)

Hansen and
Solgaard (2004)

Yoo and Chang
(2005)

Chan and Chan
(2008)

Theodoridis and
Chatzipanagiotou
(2009)

Cornelius, Natter,
and Faure (2010)

Identified nine elements namely merchandise, service, clientele, physical
facilities, comfort, promotion, store atmosphere, institutional, and post
transaction satisfaction as the main determinants of a store’s image

Used attributes such as physical condition of store, the store’s selection on
merchandise, and courteousness of the salesperson for measuring store image

Provided a long list of attributes comprising elements such as uncongested
environment, trendy merchandise, availability of store cards, and large layout
as some pertinent criteria in gauging a store’s image

Employed attributes such as long opening hour, introduction of new products,
advertisement in local papers, and parking facility in assessing a store’s image

Identified quality of products, price, assortment, promotion, and advertisement,
convenience of shopping, convenience of location, salesperson service, and
credit service as several vital components of a store’s image

Proved that unique merchandise display also influences the desire of a
customer to purchase at the store

Identified twenty attributes to define a store’s image which were then clustered
into six main classes namely personnel (e.g. caring and friendly service),
atmosphere (e.g. temperature and cleanliness), products (e.g. variety and
quality), pricing (e.g. good price), merchandising (e.g. easy to find the products
and labeling), and in-store convenience (e.g. carriage)

Disclosed that an innovative storefront display able to improve a store’s image

With regards to this study, the two decision makers who involved in this

analysis have initially extracted fifteen attributes from past literature which were believed to

be significant for evaluating the image of stores located in small towns but latterly,

after further consideration, two attributes (‘long opening hour’ and ‘distance from

home’) were dropped out from the final list due to following reasons. The attribute
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‘distance from home’ was discarded as the distance of the three stores from the estate

Is more or less same and the attribute ‘long opening hour’ was excluded as the three

stores operate almost in a same time frame. The final list of store attributes used for

this analysis was as presented in Table 5.2.

Table 5.2: Finalized Store Attributes

No. Attributes Description

1 Quality products (c;) The products sold at the store are in good quality, durable, function as
expected and fresh (for foodstuffs)

2 Assortment (c;) The store carries different kinds or brands of products

3 Price(cs) The price of the products are reasonable and cheaper in comparison to
other stores

4 Staff(c,) Store staff is neatly uniformed and always welcome the customers with
friendly attitudes.

5 Fast checkouts(cs) I don’t have wait for so long in the queue at payment counters

6 Cleanliness(cg) The store is clean, neat, and tidy

7 Internal The internal atmosphere of the store always creates a pleasurable mood

environment(c,) during purchasing activities

8 Store layout(cg) The design of store is spacious and makes shopping is easier and
comfortable

9 Product display(c) The products are displayed and arranged according to their usage and
in an easy-to-find manner

10  Storefront(cy,) The store has attractive storefront with eye-catching decors, banners, or
posters

11  In-store The store has satisfying level of necessary facilities within the stores

facilities(cy1) such as such baskets, carriers, and fitting rooms
12 Parking facility(c,,)  Itis easy to get parking space around the store
13 Promotion(c;3) Good sales are offered timely

5.4 Constructing Linguistic Scale for Expressing Perception

A linguistic scale was then developed for the respondents to express their perception

on each item or attribute with respect to each store. To achieve this, firstly, the

decision makers determined nine linguistic terms or preferences, s; = {absolutely

disagree (sg), very disagree (s;), disagree (s;), somewhat disagree (s3), neutral

(s4), somewhat agree (ss), agree (sg), Very agree (s;), absolutely agree (sg)} to

provide better distinction for the respondents while expressing their agreement on
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each attribute. In this case, the rank of last linguistic preference, T = 8. Using

equation (4.1), the TFN corresponding to each linguistic preference was then

identified as demonstrated in Table 5.3.

Table 5.3: Linguistic Preferences and Corresponding TFNs for Expressing

Agreement
Linguistic preferences  TFNs
so = Absoutely disagree ~ < { 0-1 } 0 ) { 0+1 }) B
Ay = (max (9_1),0 ,(9_1),m1n (9_1),1 = (0,0,0.125)

s, = Very disagree

s, = Disagree

s3 = Somewhat disagree
s, = Neutral

ss; = Somewhat agree
S¢ = Agree

s; = Very agree
sg = Absoutely agree

A, = (0,0.125,0.25)

A, = (0.125,0.25,0.375)
A; = (0.25,0.375,0.5)
A, = (0.375,0.5,0.625)
As = (0.5,0.625,0.75)
A = (0.625,0.75,0.875)
A, = (0.75,0.875,1)

Ag = (0.875,1,1)

With the determined linguistic preferences and their corresponding TFNs, a

9- point linguistic scale

portrayed in Figure 5.1.

for expressing agreement on each item was developed as

1z (x)
A
bsolutely Disagree Neutral Agree Absolutely
disagree agree
1
A, A, i, i i, A i, i, XA
0.5
>x
0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Figure 5.1: 9-point Linguistic Scale (Expressing Agreement on Each Item)
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5.5 Designing Store Image Questionnaire and Reliability Test

A questionnaire was then designed based on the developed 9-point linguistic scale as
an instrument to capture the perception on each store. The questionnaire was mainly
prepared in Malay and Tamil versions since it was understood that most of targeted
respondents are only excel in their mother tongue. The English version of the
questionnaire is presented in Appendix A. The questionnaire was organized into two
major sections (A and B). Section A was dedicated to obtain some profiles of
respondents such as age, race, period of residing in the estate, and total household
income. Meanwhile, in Section B, the respondents were requested to linguistically
express their agreement on the identified attributes with respect to each of the store
based on the 9-point linguistic scale, ranging from ‘absolutely disagree’ to
‘absolutely agree’.

However, before conducting the actual survey, the questionnaire was pre-
tested with a group of selected respondents in order to validate the reliability of the
questionnaire and to assure the intended meaning of items in the questionnaire is
understandable.

The pilot study was implemented as follows. A house-to-house survey was
conducted in an old housing area where 45 homemakers who had the purchasing
experience at the designated stores were identified. They were given three days to
respond on the given questionnaire and also recommended to comment on the clarity
of the questionnaire, puzzling terms, simplicity in answering the questionnaire, and
overall format of the questionnaire. The collected raw data set from section B were
then transformed into appropriate form (the transformation procedure was exactly

the same as preparing data for factor analysis as enlightened in section 5.8) and
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analyzed using SPSS software to compute the Cronbach’s alpha value. The
reliability test showed that the Cronbach’s alpha value was 0.891 which implied the
questionnaire was internally consistency. Meanwhile, based on the respondents’
feedback, some alterations were made on the questionnaire especially some rare

terms were replaced with simpler and straightforward words.

5.6 Data Collection: Perception on the Stores
Before embarking the actual survey, an approval from the estate management was
obtained as shown in Appendix B. The overall data collection procedure for this

study can be summarized as follows.

5.6.1 Target Population

As mentioned in section 5.1, this study was intended to understand the image of the
stores from the view of female homemakers who are dwelling in Sabak Bernam
Estate. By interviewing the head of workers’ union, it was discovered that around 51
houses in the area were occupied by Malaysian families (the remaining were
occupied by few male bachelors and some foreign labors who were beyond of the
study’s focus). Therefore, the finalized population of this analysis was the 51

homemakers from each of these families.

5.6.2 Sampling Procedure

Using the online calculator available at http://www.surveysystem.com/sscalc.htm, as
suggested by Connaway and Powell (2010), it was understood that the minimum
sample size required to correctly represent the population of this study is 45 (in the
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case of 5% of confidence interval). However, in this analysis, no specific sampling
procedure was applied as we believed that the overall population was small and thus,

the perception from all the homemakers can be obtained without any difficulties.

5.6.3 Data Collection via the Questionnaire

With the help of two primary school teachers who are familiar with the local people,
a house-to-house survey was conducted. For sake of caution, prior to offering the
questionnaire, a screening question was asked to the respondents to ensure they had
the purchasing experience at all the three stores. As expected, all of them had
purchased at the three stores for at least once. In addition, in order avoid biased
evaluation from the loyal customers, it was clearly explained to them that the
intention of the survey is not to compare the performance of the stores. They were
simply informed that the survey is being conducted to enhance the existing services
and facilities within each store.

Each of these 51 homemakers was requested to express their perception on
each item in the questionnaire with respect to each store. We assisted them
throughout the answering process and assured that the questionnaires were fulfilled
completely. The survey was scheduled and conducted after 5pm as most of the
working women would be only available after this point of time. Therefore, it took
almost a week to accomplish the survey.

At the end of survey, a large data set comprising a total of 153 observations
[number of observations on each store (51) x number of stores (3)] were obtained.
Since the store image evaluation system constructed by 13 attributes, as per the rule

of ‘10 observations per attribute’, the total observation, N for this problem should be
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at least 130 to perform a meaningful factor analysis. This indicated that the total
observation (N = 153) gathered via this survey was enough to guarantee a
trustworthy factor analysis result. The collected raw data set from section B were

recorded in EXCEL spreadsheet.

5.7 Developing Decision Matrix of the Stores
The following steps were adopted in order to derive the decision matrix of the
existing evaluation problem. Firstly, the linguistic scores in the raw data set were
quantified into their corresponding TFNs based on Table 5.3. The fuzzified data set
of the evaluation problem was recorded in EXCEL spreadsheet.

Later, the average fuzzy scores of each store were computed using equation
(4.2) to generate fuzzy decision matrix as depicted in Appendix C. Then, the final
decision matrix for the further analysis was derived by defuzzifying the fuzzy scores
in Appendix C into their respective crisp scores via COA technique (4.3). The
defuzzification process was accomplished with the aid of “defuzz (x, mf, ‘centroid’)”
function in MATLAB software. The final decision matrix which was used for further

analysis on stores’ image is as presented in Table 5.4.

Table 5.4: Decision Matrix of Store Image Problem

C1 C2 C3 Cy Cs Ce C7 Cg Co C10 C11 C12 C13

B 0.7271  0.7753 0.6291 0.5547 0.7418 0.7435 0.7288 0.6855 0.6462 0.6871 0.7263 0.7663  0.7132
S 0.8374 0.7247 0.7770  0.8521 0.7582 0.8685 0.8268 0.7549 0.8358 0.7255 0.7631 0.3374  0.4592

BS 0.6438 0.8137 0.6977 0.7541 0.7574 0.7002 0.6087 0.8080 0.8145 0.8113 0.8015 0.8668 0.8121

*B=Billion, S=Speedmart, and BS= Big Shop
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5.8 Modifying the Available Raw Data Set for Factor Analysis

Since the raw data set obtained by means of questionnaire encompassed scores in the
form of linguistic terms then, it was not applicable for performing factor analysis.
Therefore, the raw data set needs to be transformed into a valid form for it to be
factor analyzed.

As the first step of carrying out this transformation, the gathered raw data set
should be converted into fuzzified data set. However, this step was omitted since the
fuzzified data set was already attained during the decision matrix formation process.
The fuzzy scores (in fuzzified data set) were then converted into crisp scores using
COA equation (4.3). Finally, these crisp values were translated into their equivalent
in 9-point Likert scale using equation (4.4) where at this phase the data was ready to

be factor analyzed.

5.9 Factor Analyzing the Store Image Data

Prior to conducting factor analysis, the factor ability of the transformed data was
investigated. For this purpose, the correlation matrix, KMO measure of sampling
adequacy value and Bartlett’s Test of Sphericity of the data were derived with the aid
of SPSS software. The assessment on the correlation matrix, presented in Table 5.5,

disclosed the presence of several coefficients of 0.3 and above.
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Table 5.5: Correlation between Store Attributes

€1 C2 C3 Cy Cs Co C7 Cg Cq Cio €11 Ci12 C13
¢ 1 .027 .33 261 .151 .391 433 .100 .206 .003 .123 -270 -.191
cy .027 1 206 .059 .186 .042 .023 247 .060 .178 .045 .216 .147
c3 336 .206 1 378 -.005 447 484 260 .237 .135 .340 -.127 .069
Cy .261 .059 .378 1 .000 .182 114 221 399 .189 .094 -235 -.104
Cs 151 .186 -.005 .000 1 273 .009 .117 .007 .136 .173 .034 .083
Ce 391 042 447 182 273 1 58 .204 .180 .221 .316 -255 -.143
c;, 433 .023 484 114 009 588 1 130 115 .115 .072 -.205 -.162
cg 100 247 260 221 117 204 130 1 .327 281 .263 122 -.021
cy 206 .060 .237 399 007 .180 .115 .327 1 .376 .214 -083 .040
C1o0 .003 .178 .135 189 136 .221 .115 .281 .376 1 224 223 .188
c11 123 045 340 094 173 316 .072 263 .214 224 1 .056 .315
C12 -270 216 -127 -235 .034 -255 -205 122 -083 .223 .056 1 .565
Ci3 -191 147 069 -104 .083 -143 -162 -021 .040 .188 .315 .565 1

KMO value was 0.662, surpassing the recommended 0.6 and Bartlett’s Test of
Sphericity reached statistical significance as the p-value, 0 is less than 0.05. These
three circumstances clearly justified that the data was appropriate to be factor

analyzed.

thirteen attributes was reduced into five independent factors. However, it has to be
understood that the attributes within each extracted factor were still inter-correlated

to each other. The result of factor analysis for this study can be further detailed as

Meanwhile, by referring to SPSS output as in Table 5.6, it was noted that the

After factor analyzing the modified data via SPSS software, the large set of

follows.

Table 5.6: KMO and Bartlett's Test for Store Image Data

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.
Bartlett's Test of Sphericity ~ Approx. Chi-Square

df
Sig.

.662

496.844

78

.000
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Extraction through principal component analysis revealed the presence of
five common factors with eigenvalues exceeding one, explaining 24.386 %, 16.679
%, 10.071 %, 8.269 %, and 7.705 % of the variance respectively as shown in Table
5.7 and Table 5.8. The total variance explained reached 67.110 %. To aid in the
interpretation of these five common factors, varimax rotation was performed and the
result as in Table 5.9 was obtained.

Four attributes c;, c¢, c3 , and ¢, had higher loading at factor 1 (refer Table
5.8) and had been renamed as ‘in-store experience’ factor (f;) as it is believed
pleasing internal environment, cleanliness level, price and quality of products could
play significant roles in determining assenting in-store purchasing experience.

Another four attributes co, c4, c1o , and cg had higher loading at factor 2 and
was labeled as ‘first impression’ factor (f,) as the way the products are displayed
and arranged, the appearance and attitude of staff, the exterior and layout of store are
the first features which can be noticed by the customers even before purchasing the
products.

Meanwhile, attributes c,3, ¢;,, and c¢;; formed a new common factor which
was then identified as ‘customer care’ factor (f3) because usually, with a good sales
promotion, sufficient facilities provided within the stores, and satisfactory parking
facility, the customers believe the retailers are reflecting their appreciation and
concern towards them.

Both ¢, and cg did not show any relationships with other attributes and
independently had higher loading at factor 4 and factor 5 respectively. Therefore, the

name of these two factors were retained as ‘assortment’ (f;) and ‘checkout’ (fs).
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Table 5.7: Total Variance Explained

Component Initial Eigenvalues
Total 9% of Variance Cumulative %
1 3.170 24.386 24.386
2 2.168 16.679 41.066
3 1.309 10.071 51.137
4 1.075 8.269 59.405
5 1.002 7.705 67.110
6 .868 6.676 73.786
7 .783 6.022 79.809
8 .658 5.062 84.871
9 .563 4.333 89.204
10 476 3.665 92.869
11 .346 2.658 95.527
12 .302 2.321 97.848
13 .280 2.152 100.000
*Extraction method: Principal component analysis
Table 5.8: Component Matrix
Component
1 2 3 4 5

Environment(c;) .739 374

Clean(cg) 723 -.308 .336

Price(cs) .636 .329

Quality(c,) .594 -.329

Display(cy) 486 .344

Staff(c,) 455 .399 -.358 -.387

Storefront(cy,) .761

Layout(cg) 749 -.396

Promotion(c,;) .400 .507

Parking(c;,) .530 -.567

Facility(c;4) 532 -.554

Assortment(c,) 453 582 -.454

Checkout(cs) 425 484 557

*Extraction Method: Principal Component Analysis
*5 components extracted.
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Table 5.9: Rotated Component Matrix

Component
1 2 3 4 5
Environment(c;) .835
Clean(cg) .760 357
Price(cs) 750
Quality(c,) .616
Display(c,) .818
Staff(c,) .694
Storefront(cy,) 566 .314
Layout(cg) .549 .389
Promotion(c; 3) .865
Parking(c;5) .690 .386
Facility(cy1) 335 574
Assortment(c,) .863
Checkout(cs) 911
*Extraction Method: Principal Component Analysis
*Rotation Method: Varimax with Kaiser Normalization.
*Rotation converged in 25 iterations.

5.10 Decomposing Store Image Problem into Hierarchy System

By adhering to the result of factor analysis, the complex evaluation system of store
image was decomposed into simpler and interpretable system which comprised of
four levels namely goal level, factors level, attributes level, and alternatives level as
illustrated in Figure 5.2. The decomposed hierarchy enabled the decision makers to
have clearer picture on the main determinants (factors) and sub-determinants
(attributes) of the stores’ image. Besides, it was helpful in conducting further
analysis gradually from one level to the others.

Based on Figure 5.2, the first level presents all the three stores under
evaluation and the second level comprises of attributes that influence each of the
main factors with their respective scores captured from the decision matrix.
Meanwhile, the third level discloses the main determinants or factors that influence
the stores’ image. Finally, the fourth level reflects the goal of the existing MADM

problem which was to assess the stores’ image from the homemakers’ viewpoint.
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Evaluating the Image of Three Stores at Sabak Town
From the Homemakers” Standpoint

- In-store First Customer Assortment Checkout
§_ Experience Impression care 0.7733 0.7418

=) 0.7247 0.7382

= 0.8137 0.7574

---------------- 1\---------------.f'x-------------.1‘-.--—---—------------------------------
]

= C c c c c c c C c c
= 7 & 3 1 g 4 10 g 13 1z 11
=. 0.7288 07435 06201 07271 6462 03347 06871 06833 07132 07663 (7263
E' 0.8268 08683 07770 08374 0.8358 08321 07235 07349 04392 03374 07631
é" 0.6087 07002 06977 06438 08145 07341 0.8113  0.8080 0.83121 0.8668 0(.8015

NOATJELLID)[ Y

Speedmart
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Figure 5.2: Hierarchy System of Store Image Evaluation Problem

5.11 Monotone Measure within Each Store Image Factor

As the store attributes within each factor interacted to each other, the local scores

within each factor were then aggregated using Choquet integral operator. Prior to

applying Choquet integral, the weights of monotone measure or combinations of

attributes within each factor were estimated. The estimation process was carried out

as follows.

Firstly, the decision makers determined nine linguistic terms to assess the

individual contribution or importance of attributes towards their respective factor

where s, denotes ‘least important’ and sg denotes ‘extremely important’. Then, the

TFN associated to each linguistic term was identified via Zhu’s equation (4.1) as
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presented in Table 5.10. As a result, a 9-point linguistic scale for assessing the

individual importance of attributes was constructed as displayed in Figure 5.3.

Table 5.10: Linguistic Terms and Corresponding TFNs for Expressing Individual
Importance of Attributes

Linguistic variables TFNs
i 0-1 0} 0 _{0+1 1})
S, = Least important 0= (max{@ — S e-y ™M e-1
= (0,0,0.125)

S; = Somewhat important

S, = Important

S; = Somewhat strongly important

S, = Strongly important

Ss = Somewhat very stongly important
Se = Very strongly important

S, = Somewhat extremely important
Sg = Extremely important

I, = (0,0.125,0.25)

i, = (0.125,0.25,0.375)
i, = (0.25,0.375,0.5)
I, = (0.375,0.5,0.625)
I, = (0.5,0.625,0.75)

I, = (0.625,0.75,0.875)
I, = (0.75,0.875,1)

I, = (0.875,1,1)

ﬂg(x)
4 Least Strongly Very strongly Extremely
important Important important important important
1
I, I, 1, I3 1, Is Ig 1, Ig
0.5
>x
0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Figure 5.3: 9-point Linguistic Scale for Expressing Individual Importance of

Attributes

Based on the developed scale, each decision maker linguistically expressed

their own perception on the importance of each attribute towards its factor. These

linguistic judgments were then converted into corresponding TFNs. Subsequently,

the average fuzzy importance of each attribute was determined using equation (4.5).

The average fuzzy importance were then defuzzified into crisp importance via COA

141



technique (4.3). The importance in crisp values actually represented the individual
weights of attributes which were required to identify the weights of monotone
measure within each factor. The assessments on the importance of attributes and

identification of individual weights within each factor are summarized in Table 5.11.

Table 5.11: Identification of Individual Weights within Each Store Image Factor

Factor Attributes Importance Fuzzy importance Average Final
(Linguistic fuzzy individual
tlesfms) PCEREETY SO importance weights
DM DM

In-store Environment | Sl (0.125,0.25,0.375) (0,0.125,0.25) (0.0625,0.1875,0.3125)  0.1875

experience  cyean [ Sl (0.125,0.25,0.375)  (0,0.125,0.25) (0.25,0.375,0.5) 0.3750

Price SISl (0,0.125,0.25) (0,0.125,0.25) (0.1875,0.3125,0.4375)  0.3125
Quality STI VSl (0.375050625)  (0.6250.75,0.875) (0.5,0.625,0.75) 0.625
First Display [ Sl (0.125,0.25,0.375) (0,0.1250.25) (0.0625,0.1875,0.3125)  0.1875
Impression gy ¢ sSl | (0.25037505)  (0.1250.250.375) (0.1875,0.312504375) 0.3125
Storefront  SSI | (0.250.37505)  (0.1250.25,0.375) (0.1875,0.3125,0.4375) 0.3125
Layout SISl (0,0.125,0.25) (0,0.125,0.25) (0,0.125, 0.25) 0125
Customer  Promotion STl SSI  (0.3750.5,0.625)  (0.250.37505)  (0.31250.43750.5625) 0.4375
care Parking [ | (0.125,0.25,0.375)  (0.125,0.25,0.375)  (0.125,0.25,0.375) 0.25
Facility st (0,0.125,0.25) (0.125,0.25,0.375)  (0.0625,0.1875,0.3125)  0.1875

*DM= decision maker, SI= somewhat important, I= important, SSI= somewhat strongly important, SI= strongly
important, VSI= very strongly important

The identified individual weights were then replaced into equation (4.6) in
order to estimate the interaction parameter, A of each factor. Finally, with the
available individual weights and interaction parameters, A, equation (4.7) was
utilized to estimate the weights of monotone measure within each factor. The
identified interaction parameter, A and monotone measure weights of each store

image factor were as presented in Table 5.12, Table 5.13, and Table 5.14.
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Table 5.12: Interaction Parameter and Monotone Measure of In-store Experience
Factor

In-store experience (A= -0.7470)

Subsets Weights
{3 0.0000
{Environment} 0.1875
{Clean } 0.3750
{Environment, Clean} 0.5100
{Price } 0.3125
{Environment, Price} 0.4562
{Clean, Price} 0.6000
{Environment, Clean , Price } 0.7034
{Quality} 0.6250
{Environment, Quality} 0.7250
{Clean ,Quality} 0.8249
{Environment, Clean ,Quality} 0.8969
{Price, Quality} 0.7916
{Environment, Price ,Quality} 0.8682
{Clean, Price, Quality} 0.9449

{Environment, Clean , Price ,Quality}  1.0000

Based on Table 5.12, A= -0.7470 indicated that the attributes within the in-
store experience factor shared sub-additive effect. Therefore, in order to improve a
customer’s in-store experience, it would be sufficient to simultaneously enhance
some of the attributes which have higher individual weights (quality of product and

cleanliness).
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Table 5.13: Interaction Parameter and Monotone Measure of First Impression
Factor

First impression (A= 0.1922)

Subsets Weights
{3 0.0000
{Display } 0.1875
{Staff} 0.3125
{Display, Staff} 0.5113
{Storefront} 0.3125
{Display ,Storefront} 0.5113
{Staff, Storefront} 0.6438
{Display , Staff, Storefront} 0.8545
{Layout } 0.1250
{Display ,Layout } 0.3170
{Staff, Layout } 0.4450
{Display, Staff, Layout } 0.6485
{Storefront, Layout } 0.4450
{Display, Storefront, Layout } 0.6485
{Staff, Storefront, Layout } 0.7842

{Display ,Staff, Storefront, Layout }  1.0000

Based on Table 5.13, A= 0.1922 implied that the attributes within first
impression factor shared super-additive effect. Therefore, in order to enhance the
customers’ first impression on a store, all the attribute (display, staff, storefront, and

layout) have to be improved simultaneously regardless of their individual weights.

Table 5.14: Interaction Parameter and Monotone Measure of Customer Care Factor

Customer-care attitude (A= 0.5029)

Subsets Weights
s 0

{Promotions } 0.4375
{Parking} 0.2500
{Promotions, Parking} 0.7425
{Facility} 0.1875
{Promotions, Facility} 0.6663
{Parking, Facility} 0.4611

{Promotions, Parking, Facility}  1.0000

Based on Table 5.14, A= 0.5029 implied that the attributes within customer

care factor shared super-additive effect. Therefore, in order for the stores to improve
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the customer care aspect, all the attributes (promotions, parking, and facility) need to
be enhanced concurrently regardless of their individual weights.

As the proposed procedure consists of factor analysis, it is able to decrease
the actual number of monotone measure weights which need to be identified by the
decision makers prior to applying Choquet integral from 8192 (213) weights to 40
(2*+2%+23) weights. Therefore, there was about 99.5% computational saving
achieved when determining the weights of monotone measure for this specific
problem. The percentage of computational saving relies on the result of factor

analysis. In general, through the proposed procedure, the actual number of monotone
measure weights can be reduced from 2" to Zg=12|fp| where f, = (f1, f1, -, fg)set
of extracted factors, g denotes the total number of factors, and |f, | represents the

number of attributes within factor, p.

5.12 Using Choquet integral to Aggregate Interactive Local Scores

After identifying weights of monotone measure, Choquet integral model (4.8) was
then applied to aggregate the interacted local scores within each factor to obtain
factor scores. The local scores within each factor and their aggregated factor scores
via Choquet integral were as presented in Table 5.15, Table 5.16, and Table 5.17

respectively.

Table 5.15: In-store Experience Score of the Stores

Environment Cleanliness Price Quality In-store experience score

Billion 0.7288 0.7435 0.6291 0.7271 0.7234
Speedmart 0.8268 0.8685 0.7770  0.8374 0.8421
Big 0.6087 0.7002 0.6977 0.6438 0.6751
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Table 5.16: First Impression Score of the Stores

Display  Staff Storefront Layout Firstimpression score

Billion 0.6462 0.5547 0.6871 0.6855 0.6320
Speedmart  0.8358  0.8521 0.7255 0.7549 0.7910
Big 0.8145 0.7541 0.8113 0.8080 0.7913

Table 5.17: Customer Care Score of the Stores

Promotions Parking Facility Customer care score

Billion 0.7132 0.7663  0.7263 0.7292
Speedmart 0.4592 0.3374  0.7631 0.4755
Big 0.8121 0.8668  0.8015 0.8230

5.13 Construction of New Decision Matrix (Stores vs. Factors)

Then, a new decision matrix (stores versus factors) was constructed based on the
computed factor scores as portrayed in Table 5.18. Note that the stores’ scores with
respect to assortment and checkout factor were elicited from the previous decision

matrix (Table 5.4). Further evaluation on stores’ image was based on this newly

constructed decision matrix.

Table 5.18: New Decision Matrix (Stores vs. Factors)

In-store experience Firstimpression Customer care Assortment Checkout

Billion 0.7234 0.6320 0.7292 0.7753 0.7418
Speedmart 0.8421 0.7910 0.4755 0.7247 0.7582
Big 0.6751 0.7913 0.8230 0.8137 0.7574

5.14 Estimating the Weights of Independent Store Image Factors
Mikhailov’s Fuzzy AHP technique was then utilized in order to estimate the weights
of independent factors. As the first step to employ Mikhailov’s Fuzzy AHP, the two

decision makers had a detailed discussion on the relative importance between the
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store image factors. After achieving a consensus, a single pair-wise matrix was
assessed linguistically based on Saaty’s fuzzy AHP scale (refer Table 4.7) as shown
in Table 5.19. It can be noticed that since the ‘first impression’ and ‘customer care’
were found to be less important than ‘assortment’ factor, then the evaluation was

done vice versa to avoid using reciprocal values as mentioned in section 4.5.12.

Table 5.19: Linguistic Pair-wise Comparison between Store Image Factors

In-store First Customer Assortment Checkout
experience impression care

In-store Slightly ~ Somewhat  Somewhat  Somewhat
experience (1.1.1) important strongly slightly strongly
" important ~ important  important
First Somewhat Somewhat

impression (1.11) _sllghtly _sllghtly
important important

Customer Equally
care 111) Important

Assortment Somewhat Slightly Slightly
slightly important (1,1,1) important

important
Checkout (1,11

The linguistic terms in the evaluated pair-wise comparison matrix were then
quantified into their corresponding TFNs by adhering to the same Saaty’s fuzzy AHP
scale. The fuzzy pair-wise comparison matrix between store image factors was as

presented in Table 5.20.
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Table 5.20: Fuzzy Pair-wise Comparison between Store Image Factors

In-store First Customer Assortment Checkout
experience impression care
In-store experience (1,1,1) (2,3,4) (3:4,5) (1,2,3) (3,4,5)
First impression (1,1,2) (1,2,3) (1,2,3)
Customer care (1,1,1) 1,1,2)
Assortment (1,2,3) (2,3,4) 1,1,1) (2,3,4)
Checkout (1,1,2)

Based on the evaluated fuzzy pair-wise comparison, Mikhailov’s nonlinear
optimization model (4.9) was constructed as follows to derive the consistency value

of pair-wise comparison and the crisp weights of residential factors simultaneously.

Max

Subject to

uwy, —wy + 2w, <0
uws —wq + 3wz <0
Wy —wy; +w, <0
uws —wq + 3ws < 0
w3 —wy + w3 <0
UWws —w, +ws <0
w3 +ws <0

Wy, —wy +wy, < 0
uws —wy + 2wz < 0
uws —wy + 2wy < 0
uw, + wy — 4w, <0
uws +w; —5w3 < 0
uwy +wy — 3w, <0
uws +w; — 5w < 0
uwsz +w, — 3wz < 0
uws + w, — 3wg < 0
uws +wz — 2ws < 0
uwy, +wy — 3w, <0
uws +wy —4w; <0
uws + wy — 4ws < 0
wy+w, +wz+w,+wg =1
W1, Wa, W3, Wy, Ws = 0
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where wj,w,,w3,w,, and ws denoted the weight of in-store experience, first
impression, customer care, assortment, and checkout factor respectively whereas p
represented the consistency value of the pair-wise comparison matrix. By solving the
constructed nonlinear optimization model using EXCEL SOLVER, the following
result was obtained. The weight of in-store experience factor (w;) was 0.4091,
weight of first impression factor (w,) was 0.1532, weight of customer care factor
(ws) was 0.0937, weight of assortment factor (w,) was 0.2503, and finally, the
weight of checkout factor (ws) was 0.0937. Meanwhile, the pair-wise comparison
value, p =0.6340, implied that the consistency of pair-wise comparison was

satisfactory.

5.15 Computing Global Image Score of Each Store
Finally, based on estimated weights of factors and available factor scores, the overall
image of each store was computed via simple weighted average (SWA) operator

(4.10). The image score of each store and its corresponding ranking are summarized

in Table 5.21.
Table 5.21: Image Scores and Ranking of Stores
In-store im Frier:stion Customer Assortment Checkout

experience (wp care (W, = w Global Ranking

(wy e (ws Lo s score

Z0.4001) =01532) G o000 0.2503) =0.0937)
Billion 0.7234 0.6320 0.7292 0.7753 0.7418 0.7247 3
Speedmart 0.8421 0.7910 0.4755 0.7247 0.7582 0.7627 1
Big 0.6751 0.7913 0.8230 0.8137 0.7574 0.7492 2
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5.16 Additional Analysis on the Proposed Procedure

Some further analysis were conducted on proposed procedure using the same case
study presented in this chapter in order to provide some extra information on the

performance of the MADM procedure.

5.16.1 Proposed Procedure versus Classical MAUT

In this section, the same stores’ image problem was solved through a classical
MAUT approach (to be specific, using the common SWA operator) and the obtained
result was compared with the result from the proposed procedure. The reason of
choosing classical SWA was to demonstrate on the consequence of disregarding the
elements of uncertainty in human’s data and interaction between attributes in
analyzing MADM problems. As usual, the analysis was conducted by employing the

basic three phases of MAUT as follows.

a) Phase 1: Identifying the alternatives and attributes of problem
The same three stores and thirteen attributes were used to carry out the
analysis. The problem was then decomposed into hierarchy structure
comprising of ‘alternatives’ (three stores), ‘attributes’ (store attributes),

‘goal’ (evaluating the stores based on their image score) levels.

b) Phase 2: Identifying local scores of alternatives and weights of attributes
To make sensible comparison on the results (outputs) from two different

MADM tools, same data (inputs) should be used. Therefore, in this case, the
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existing store image data was utilized to derive the local scores and weights
required for the application of SWA.

To obtain the performance or decision matrix of problem, firstly the
linguistic scores in raw data were converted or represented with their
equivalent crisp numbers as in 9- point Likert scale (instead of quantifying
into fuzzy numbers as required in the proposed procedure). Then, by
averaging the crisp scores corresponding to each store, the local scores were

computed. As a result, a decision matrix as shown in Table 5.22 was

constructed.
Table 5.22: Decision Matrix for SWA
C1 C2 C3 Cy Cs Ce C7 Cs Co C10 C11 C12 C13
Billion 6.8431 7.2353 6.0392 5.4510 6.9608 7.0000 6.8824 6.5098 6.1961 6.5294 6.8431 7.1961 6.7451

Speedmart  7.8039  6.8235  7.2745  7.9412 7.1176 8.0588  7.7255 7.0980  7.7843  6.8431  7.1569  3.6667  4.6863

Big 6.1961 7.6078 6.6471 7.0980 7.1176 6.6471 58824 7.5686 7.6078 7.5686  7.4902 8.0784  7.6078

On the other hand, since SWA assumes interdependency between attributes
then, it is essential to ensure the sum of weights of the 13 attributes is being additive
or equal to one. To derive the weights for SWA, firstly, the individual weights of
attributes within each factor were normalized to assure the sum of the weights is
equal to one. These normalized weights were just implied the contribution or
importance of attributes towards their respective factor. Therefore, the final weight
of each attribute (contribution of attributes towards overall image of the stores) was
then estimated by multiplying its normalized weight with the weight of respective

factor. It has to be reminded that the weights of factors do not demand normalization
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as they were already in the additive state. Table 5.23 recaps the computational

process of determining the additive weights of attributes for SWA.

Table 5.23: Final Additive Weights for SWA

Factors Attributes Individual Normalized Final weights
weights weights

In-store experience  Environment 0.1875 0.1250 0.0511

(0.4091) Clean 03750  0.2500 0.1023
Price 0.3125 0.2083 0.0852
Quality 0.625 0.4167 0.1705
SUM 1.5000 1

First impression Display 0.1875 0.2000 0.0306

(0.1532) Staff 03125  0.3333 0.0511
Storefront 0.3125 0.3333 0.0511
Layout 0.125 0.1333 0.0204
SUM 0.9375 1

Customer care Promotion 0.4375 0.5000 0.0469

(0.0937) Parking 0.25 0.2857 0.0268
Facility 0.1875 0.2143 0.0201
SUM 0.875 1

Assortment (0.2503) - 0.2503

Checkout (0.0937) - 0.0937

SUM 1

c) I5hase 3: Aggregation
In this phase, the local scores of each store were composed into a global
score using SWA operator. Based on these global scores which represented
the overall image, the stores were ranked up. Table 5.24 portrays the
variation on the global scores and ranking of the stores derived from the

proposed procedure and classical SWA.
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Table 5.24: Comparing the Result from Proposed Procedure and SWA Operator

Stores Proposed procedure Classical AHP

Global scores Ranking Global scores Ranking
Billion 0.7247 3 6.6247 3
Speedmart  0.7627 1 6.2881 2
Big Shop  0.7492 2 7.3283 1

Based on Table 5.24, it can be concluded that there was a significant
disparity between the result generated through the proposed procedure and classical
SWA. For example, the proposed procedure assigned Speedmart as the store with the
finest image but, based on classical SWA, Big Shop appeared as the most preferred
store.

However, based on the data collected on the frequency of purchasing at each
of the store (through section A of the questionnaire) which is summarized into Table
5.25, it was discovered that 82.85 % of the respondents purchase at Speedmart for at
least twice in a month. Meanwhile, 72.55% of the same group of homemakers would
purchase at Billion for at least twice in a month. Only 52.94% of the homemakers

would purchase at Billion for at least twice a month.

Table 5.25: Frequency of Purchasing at Each of the Store

Stores Frequency of purchasing at each of the store  Percentage (%) of respondents
Billion Once in a month 47.06
Twice in a month 25.49
More than twice in a month 27.45
SUM 100
Speedmart  Once in a month 17.65
Twice in a month 23.53
More than twice in a month 58.82
SUM 100
Big Shop  Once in a month 27.45
Twice in a month 21.57
More than twice in a month 50.98
SUM 100
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Obviously, in actual scenario, Speedmart appeared as their first choice store
then followed by Big Shop and Billion. By using this order as the benchmark
ranking, it can be concluded that the proposed procedure manage to yield a ranking
which is closer to the actual ranking in comparison to the classical SWA for this
specific case study.

It depends on the decision makers either to choice the proposed procedure or
to simply adhere to the common SWA before conducting a MADM analysis.
Nevertheless, if the decision makers believe that they are unable to precisely offer
the necessary information for the analysis and also consider that the attributes are

interrelated to each other then, the proposed procedure is recommended.

5.16.2 Cautions on the Proposed Procedure
It is transparent that the successful and total application of the proposed procedure
mainly relies on the result of factor analysis. It was found if an observed attribute
had similar scores then, it is invalid to perform factor analysis. This is because the
correlation coefficients between the specific attribute and other attributes cannot be
computed. A complete correlation matrix cannot be obtained. Therefore, factor
analysis which works based on the correlation between attributes cannot be
implemented. To test the explained scenario, it was assumed that the 51 homemakers
expressed that they are ‘extremely disagree’ towards the ‘quality’ attribute with
respect to the three stores. By altering the existing the data as per the presumption,
SPSS was failed to perform factor analysis.

If the decision makers facing this issue after the data collection stage, it is

advisable for them to utilize the collected data to construct the decision matrix of the
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problem as explained in section 4.5.5 and carry out the further analysis with any
other preferred MAUT models.

Besides, if the factor analysis yields only one component to represent the
whole attributes then, the proposed procedure cannot be fully utilized. The decision
makers are then need to skip to the step of estimating monotone measure weights and
directly apply Choquet Integral as the attributes within the only factor are still
considered to be interacted with each other. But then, the decision makers may need
to estimate huge number of weights. For example, if all the thirteen store attributes in
the presented case study were grouped into one factor then, the decision makers
would have to identify 8192 (213) weights instead of 40 (2*+2%+23) weights prior

to employing Choquet integral.

5.17 Discussion on the Result

In this empirical study, the proposed procedure was applied in order to assess the
image of three chain stores located in Pekan Sabak from the viewpoints of all the
homemakers who are residing at Sabak Bernam Plantation Estate. The result of the
analysis can be summarized as follows.

Through the proposed procedure, the thirteen attributes which were finalized
to characterize the image of the stores, were then clustered into five main factors
namely in-store experience, first impression, customer care, assortment, and
checkout factors. The prioritization on these five store image factors based on the
proposed procedure was as follows. In-store experience (0.4091) > assortment
(0.2503) > first impression (0.1532) > customer care (0.0937) > checkout (0.0937). It

was understood that both in-store experience and assortment factors played major
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role in forming positive image on the stores from the homemakers’ perception. This
showed that the retailer of each store should concentrate more on preserving
satisfactory in-store experience and assortment aspects.

In addition, the interaction parameter of service factor, A = -0.7470 indicated
that in order to improve the image of a store in term of in-store experience, it is
sufficient to simultaneously enhance some of the attributes which had higher
individual weights such as quality of product (0.6250) and cleanliness (0.3750). In
general, if the customers know that the products are being in good quality, the
customer would consider the prices are reasonable and acceptable where they should
be willing to pay the prices (Rao and Sieben, 1992). Besides, a clean store always
plays a role in creating pleasing internal atmosphere for purchasing (Akinyele, 2010
and Bé&ckstrom and Johanssan, 2006) and encourages the customers to purchase
longer or revisit the store (Carpenter and Moore, 2006). In addition, the acceptance on
the pricing could be high during purchasing if the internal environment of the
specific store is clean and pleasurable as claimed by Grewal and Baker (1994).

Meanwhile, the interaction parameter, A= 0.1922 implied that in order to
significantly improve the customers’ first impression on a store, all the attributes
such as products display (0.1875), staff (0.3125), storefront (0.3125), and layout
(0.1250) have to be enhanced simultaneously regardless of their individual weights.
The similar approach can be applied in order to augment the customer care factor as
it had a positively valued interaction parameter, A = 0.5029.

According to the proposed procedure, the ranking of the stores based on

image scores was as follows. Speedmart > Big Shop > Billion.
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Speedmart ruled the top position as it had satisfactory scores on in-store
experience factor, which was the main determinant of the stores’ image. However, to
retain the position and to form a greater image among the customers, the retailer
could broaden the assortment of products (the second main determinant) in the store.
From our observation, Speedmart does not carry much variety in food stuffs and
there is no clothing section in the store in contrary to Billion and Big Shop.

Big Shop has the potential to be in top position in future if the retailer puts
major efforts on creating a satisfactory in-store experience by simultaneously
assuring the quality of products are in high standard and ensure the store is always
clean.

Meanwhile, Billion was identified as the store with most unfavorable image
due to its unsatisfactory performance with respect to in-store experience and first
impression aspects. Thus, appropriate strategies should be planned to achieve
perfection in those aspects. With an average score in in-store experience factor, the
retailer should focus on bringing in more quality products and assure the store is
being cleaned timely and flawlessly. Besides, to improve the customers’ first
impression on the store, the retailer should simultaneously enhance all the attributes
that influence the factor (display, staff, storefront, and layout), regardless of their
individual weights.

The same problem was analyzed using a classical MAUT approach to
demonstrate the consequence of ignoring the element of uncertainty in human’s data
and interaction between attributes. As a result, dissimilar ranking as follows was
obtained. Big Shop > Speedmart > Billion. However, it was discovered that the

ranking generated by the proposed procedure was matched with the benchmark
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ranking. Yet, the choice of decision makers between these two approaches depends
on their interest whether to deal with the previously-mentioned two elements.

It has notified here that presented study was only interested to investigate the
image of the stores from the viewpoints of homemakers who are dwelling at Sabak
Bernam Estate. The derived result was solely based on the perception of
homemakers staying in the estate. Therefore, the result is not a total representative of

all the homemakers living in Sabak.

5.18 Summary of Chapter Five

In this chapter, an evaluation on three stores’ image based on the perception of
homemakers living in Sabak Bernam Estate was carried out via the proposed
procedure in order to validate the feasibility of the procedure in solving the real-
world MADM problems.

With the help of the proposed procedure, which considers the aspect of
uncertainty in human’s data and interaction among attributes simultaneously, the
image on each store was quantitatively measured. The evaluation from the proposed
procedure could be helpful for each retailer to comprehend their actual relative
position with others in term of the store’s image. Besides, some possible strategies
were suggested based on the result in forming a favorable store image among the
homemakers.

To further understand the performance of the proposed procedure, the same
evaluation problem was carried out using classical SWA operator and a different
result was obtained. However, it was found the ranking yielded by the proposed

procedure matched with the benchmark ranking.
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CHAPTER SIX
CONCLUSION

6.1 Conclusion of the Research

Conclusively, this research has successfully actualized its primary goal. It has finally
introduced a feasible MADM procedure which capable in reducing the number of
computational steps and amount of information required from decision makers when
dealing with aspect of uncertainty in human’s data and interaction among attributes
simultaneously.

In the path of achieving the main goal, several specific objectives were
accomplished gradually as follows. To achieve the first specific objective, a review
was carried out in order to identify the basic elements in fuzzy set theory which are
being supportive in capturing the usual uncertainty embedded in human’s data. It
was learnt that by applying fuzzy sets in MADM environment, the decision makers
are permitted to express their preference linguistically, which can be later quantified
into fuzzy numbers. Fuzzy numbers mathematically represent or capture the usual
uncertainty entrenched in linguistic preferences. Then, based on these fuzzy
preferences, the MADM problem can be analyzed quantitatively by retaining the
element of uncertainty.

Meanwhile, in fulfilling the second specific objective, a pros and cons
analysis on the available fuzzy AHP approaches was conducted. It was discovered
that each of these approaches demands different computational procedures.

Mikhailov’s fuzzy AHP was identified as a method which requires lesser
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computational effort from decision makers as it derives the weights of attributes and
consistency value of pair-wise comparison concurrently.

The third specific objective of the study was achieved by analyzing several
aggregation operators which are applicable in the field of MADM. It was understood
that these operators can be classified into additive and non-additive operators where
the former operators presume independency between attributes whereas later
operators capture the interactions between attributes. The appraisal was then
narrowed on Choquet integral operator (one of the non-additive operators) and its
associated monotone measure which are able to model the interaction among
interaction during aggregation.

To attain the fourth specific objective, the study has explored several
approaches which were proposed with the intention to reduce the complexity of
estimating monotone measure weights.

With the aid of the information gathered through the process of
accomplishing the formerly-mentioned four specific objectives, the proposed
procedure was then developed by congregating five main components namely factor
analysis, revised fuzzy-linguistic estimator , Choquet integral, Mikhailov’s fuzzy
AHP, and SWA operator.

After developing the proposed procedure, to achieve the final specific
objective, the feasibility of the proposed procedure was verified by solving a real
MADM problem. In this study, the image of three stores located at Pekan Sabak was
assessed from the viewpoint of homemakers using the proposed procedure. The same

analysis was conducted via a classical MAUT approach and a dissimilar result was
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attained. However, it was discovered that the ranking yielded by the proposed

procedure was parallel to the benchmark ranking.

6.2 Contributions of the Research

By accomplishing all its objectives, the research has made some notable
contributions to the field of MADM.

First and foremost, by the end of the research, a different MADM procedure
was introduced where it has the ability to reduce the number of computational steps
and amount of information required from decision makers when considering the
aspect of uncertainty in human’s data and interaction among attributes

simultaneously. The merits of the proposed procedure are as follows.

a) Deals with uncertainty in human’s data
The proposed procedure requires data from human at 3 stages. During the
process of acquiring alternatives’ performance via survey, identification of
monotone measure weights, and identification of weights of independent
factors. Therefore, in order to mathematically deal with the common
uncertainty embedded in data provided by human, the proposed procedure
allows them to express their preference in linguistic terms which are then
converted or quantified into appropriate fuzzy numbers.

b) Deals with interaction among attributes
The proposed procedure takes into account the interaction element among
attributes within each factor during aggregation as it utilizes Choquet integral

operator.
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c) The proposed procedure reduces the amount of information and number of

computational steps required from decision makers when handling the aspect

of uncertainty in human’s data and interaction among attributes concurrently.

Further clarifications on how these features are achieved are as follows.

Through the proposed procedure, the decision makers are only
required to provide the individual importance of attributes and
relative importance between factors which usually can be expressed
by the decision makers in linguistic terms. Meanwhile, the
performance scores of alternatives can be simply derived from the
data collected from the respondents. In nutshell, the total amount of
information required from the decision makers in utilizing the
proposed procedure can be denoted as follows; 8 =n+q(q —1)/2
where n denotes the number of attributes and g implies the number of
factors.

The proposed procedure only applies triangular type of fuzzy
numbers (TFNs) as the arithmetic operations involving TFNs are
naturally simpler than other types of fuzzy numbers.

For the construction of linguistic scale, the procedure uses Zhu’s
fuzzification approach which is less complicated and helpful for
decision makers who are unable to clearly define the fuzzy number
corresponding to each linguistic term, due to scarce of information or

experience.
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Vi.

Vil.

viii.

The procedure utilizes COA defuzzification approach in determining
the ordinal ranking of attributes and alternatives as it is a simple yet
accurate technique which does not demand any prior information
from decision makers.

To estimate the weights of independent factors, the procedure uses
Mikhailov’s fuzzy AHP which simultaneously derives the crisp
weights of factors and consistency value of pair-wise matrix by
simply solving the recommended non-linear optimization model via
EXCEL Solver.

The proposed procedure employs a slightly amended fuzzy-linguistic
estimator to identify the weights of monotone measure. This approach
requires simple execution and most importantly, it models the
uncertainty that exists in the provided data. The type of data required
by the approach (individual importance of attributes) can be easily
offered by the decision makers especially to express them in the form
of linguistic terms.

With the inclusion of factor analysis, the actual number of monotone
measure weights is reduced from 2" to Zg=12|fp| where f, =

(f1, f2, -, fq) set of extracted factors, g denotes the total number of
factors, and |, | represent number of attributes within factor, p.

In the proposed procedure, with the aid of factor analysis, a complex
MADM problem is decomposed into a simpler and interpretable
hierarchy that would be helpful for decision makers in carrying out

further analysis in more systematic and understandable manner.
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d) Identifies the main determinants of a MADM problem
The usage of factor analysis in proposed procedure is being helpful in
extracting an understanding the main determinants (or factors) that influence

a goal of a MADM problem.

Secondly, this research has emerged as one of the attempts to encourage or
motivate more real-world decision makers such as managers from an organization to
simultaneously deal with the aspect of uncertainty in human’s data and interaction
between attributes, as the proposed procedure minimalize the number of
computational steps and amount of information that usually required from the
decision makers when dealing with the these two aspects.

Meanwhile, the third contribution of the research can be recapped as follows.
The thesis of this research provides some details on the aggregation phase in MADM
which comprised of the properties of a good aggregation operator, types of
aggregation operators, and their corresponding mathematical models. Thus, the
thesis can be a reference for the researchers in selecting the suitable aggregation
operators for their respective problems or in formulating new aggregation operators.

Furthermore, the thesis has offered an analysis on the attempts that have been
carried out to this date, in solving the complexity of identifying monotone measure
weights. Therefore, it has the potential to stimulate some new ideas for continuously
or gradually simplifying the complicated identification process.

Finally, in order to attest the viability of the proposed procedure, an
assessment on the image of three stores located at Pekan Sabak based on the

perception of homemakers, was solved via the proposed procedure. Several
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promising strategies were also suggested by referring to the yielded output in order

to augment each of the store’s image.

6.3 Limitations of the Research

This research is allied with some limitations as follows.

a)

b)

d)

The proposed procedure only applies symmetric type of triangular fuzzy
numbers (TFN) with the intention to offer simple-to-execute procedure.

The successful application of the proposed procedure relies on the result of
factor analysis. If the data is invalid for performing factor analysis or if the
analysis yields only one component to represent the whole attributes then, the
proposed procedure cannot be completely utilized as explained in section
5.16.2.

The case study presented in chapter five was only interested to investigate
image of stores among the homemakers residing at Sabak Bernam Estate. In
other words, the result obtained in the analysis was solely based on the
perception of homemakers of the specific estate.

The proposed procedure requires data collection by means of questionnaire
which will be then processed to derive decision matrix of the problem and to
perform factor analysis. However, the data collection through the

questionnaires could be costly relying on the type of the problems.
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6.4 Recommendations

It is believed that the completion of this research has instigated some potential

pathways for conducting several interesting studies in near future as follows.

a) In future studies, the proposed procedure can be employed in surmounting

b)

d)

other real MADM problems that occur in different domains.

The target population in the case study presented in chapter five can be

extended where in future, the stores’ image can be investigated based on the

viewpoints of all homemakers dwelling in Sabak division. The same list of

attributes can be adhered.

Besides, the researchers could apply the proposed MADM procedure with

different types of fuzzy numbers such as non-symmetric triangular fuzzy

number and trapezoidal fuzzy number.

Further enhancing the proposed procedure is a commendable direction for

future work.

As the proposed procedure sometimes demands costly data
collection process to perform factor analysis, future research can
focus on substituting factor analysis with some other simpler but
effective approach which can function as factor analysis (grouping
large set of attributes into fewer set of independent factors).

Besides, the future researches could concentrate on formulating
further easy-to-implement monotone measure identification
approach which can be then swapped with the suggested fuzzy-

linguistic estimator.
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In addition, the practitioners of MADM could carry out more
studies on developing further less-complicated fuzzy MADM tools
which can be then replaced into the proposed procedure to estimate

the weights of independent factors.
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