A REUSABLE APPLICATION FRAMEWORK
FOR CONTEXT-AWARE MOBILE PATIENT
MONITORING SYSTEMS

MAHMOOD GHALEB MAHMOOD AL-BASHAYREH

DOCTOR OF PHILOSOPHY
UNIVERSITI UTARA MALAYSIA
2014
Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely available for inspection. I further agree that permission for the copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences
UUM College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Abstrak

Pembangunan Sistem Pemantauan Konteks Sedar Pesakit Mudah Alih (CaMPaMS) menggunakan sensor tanpa wayar adalah sangat kompleks. Untuk mengatasi masalah ini, Rangka Kerja Pemantauan Konteks Sedar Pesakit Mudah Alih (CaMPaMF) telah diperkenalkan sebagai satu teknik yang sesuai untuk meningkatkan kualiti keseluruhan pembangunan dan mengatasi kerumitan pembangunan CaMPaMS. Walaupun terdapat beberapa kajian yang mereka bentuk CaMPaMF yang boleh digunakan semula, masih belum ada lagi kajian yang memfokus kepada bagaimana mereka bentuk dan menilai rangka kerja aplikasi berdasarkan aspek kebolehgunaan semula berganda dan menggunakan pendekatan penilaian kebolehgunaan semula berganda. Tambahan pula, tiada kajian yang mengintegrasikan kesemua keperluan domain CaMPaMS. Oleh itu, tujuan kajian ini adalah untuk mereka bentuk CaMPaMF yang boleh digunakan semula untuk CaMPaMS. Untuk mencapai matlamat ini, dua belas kaedah telah digunakan: kajian literatur, analisis kandungan, matriks konsep, pemodelan ciri, penggunaan pelbagai kes, kajian pakar domain, model yang berasaskan pendekatan senibina, analisis kod statik, pendekatan model kebolehgunaan semula dan prototaip, pengiraan jumlah nilai penggunaan semula, dan kajian pakar perisian. Hasil utama kajian ini adalah CaMPaMF boleh digunakan semula yang direka bentuk dan dinilai agar ia mengandungi pelbagai aspek keboleh gunaan semula. CaMPaMF terdiri daripada model domain yang disahkan oleh doktor pakar runding sebagai pakar domain, model seni bina, model platform bebas, model platform khusus yang disahkan oleh pakar perisian, dan tiga prototaip CaMPaMS untuk memantau pesakit tekanan darah tinggi, sawan, atau penyakit kencing manis, dan pelbagai pendekatan penilaian kebolehguna semula. Kajian ini menyumbang kepada badan pengetahuan kejuruteraan perisian, terutamanya dalam bidang mereka bentuk dan menilai rangka kerja aplikasi yang boleh digunakan semula. Penyelidik boleh menggunakan model domain untuk meningkatkan kefahaman tentang kehendak domain CaMPaMS, sekali gus diperluaskan dengan keperluan baharu. Pembangun juga boleh menggunakan semula dan memperluaskan CaMPaMF untuk membangunkan pelbagai CaMPaMS untuk penyakit yang berbeza. Industri perisian juga boleh menggunakan semula CaMPaMF untuk mengurangkan keperluan untuk berunding dengan pakar domain dan mengurangkan masa pembangunan CaMPaMS.

Kata kunci: Rangka kerja aplikasi guna semula, Penilaian rangka kerja aplikasi kebolehgunaan semula berganda, Aspek kebolehgunaan semula berganda, Sistem pemantauan pesakit mudah alih
Abstract

The development of Context-aware Mobile Patient Monitoring Systems (CaMPaMS) using wireless sensors is very complex. To overcome this problem, the Context-aware Mobile Patient Monitoring Framework (CaMPaMF) was introduced as an ideal reuse technique to enhance the overall development quality and overcome the development complexity of CaMPaMS. While a few studies have designed reusable CaMPaMFs, there has not been enough study looking at how to design and evaluate application frameworks based on multiple reusability aspects and multiple reusability evaluation approaches. Furthermore, there also has not been enough study that integrates the identified domain requirements of CaMPaMS. Therefore, the aim of this research is to design a reusable CaMPaMF for CaMPaMS. To achieve this aim, twelve methods were used: literature search, content analysis, concept matrix, feature modelling, use case assortment, domain expert review, model-driven architecture approach, static code analysis, reusability model approach, prototyping, amount of reuse calculation, and software expert review. The primary outcome of this research is a reusable CaMPaMF designed and evaluated to capture reusability from different aspects. CaMPaMF includes a domain model validated by consultant physicians as domain experts, an architectural model, a platform-independent model, a platform-specific model validated by software expert review, and three CaMPaMS prototypes for monitoring patients with hypertension, epilepsy, or diabetes, and multiple reusability evaluation approaches. This research contributes to the body of software engineering knowledge, particularly in the area of design and evaluation of reusable application frameworks. Researchers can use the domain model to enhance the understanding of CaMPaMS domain requirements, thus extend it with new requirements. Developers can also reuse and extend CaMPaMF to develop various CaMPaMS for different diseases. Software industries can also reuse CaMPaMF to reduce the need to consult domain experts and the time required to build CaMPaMS from scratch, thus reducing the development cost and time.

Keywords: Reusable application framework, Multiple reusability evaluation approaches, Multiple reusability aspects, Mobile patient monitoring systems
Acknowledgement

All thanks and praises are due to Allah, who provides me with the substance, time, health, strength of mind, and patience to engage in this journey to acquire knowledge.

I would like to express my deepest appreciation and gratitude to my supervisor Dr Nor Laily Hashim for her continuous guidance and support from start to finish. I offer a special thank you for her motivation and support in helping me to publish my work. It has been a great pleasure to work under her supervision.

I would like to record special thanks to my father Galeb and my mother Sabah. Words fail to express my appreciation to them and without their unconditional prayers, support, and love I could not have completed, or even started, my study. My Lord, have mercy upon them as they have taught me a lot and to be whom I am today.

Praise be to Allah again, who blessed me with my wife Ola and my son Abdul Rahman. Thank you Ola for your patience, understanding, and for your real trust in my capabilities. Thank you for your continuous motivation, support, and love. Thank you Abdul Rahman for your smile that gave me the strength to keep going no matter what I faced during my study.

I would like also to thank my brothers Malek and Fares as well as my sisters Ala’ and Eman. Thank you for your love, support, prayers, and for everything you did for me.

Finally, thank you for all of you for being the reasons to realize this dream. I am indebted to all of you more than you know.

Mahmood Ghaleb Al-Bashayreh
August 2013
Dedication

To my mother Sabah and my father Gheleb

To my dear wife Ola

To my dear son AbdulRahman

To my brothers, Malek & Fares and my sisters Ala’ and Eman
Table of Contents

Permission to Use... 3
Abstrak .. 4
Abstract .. 5
Acknowledgement .. 6
Dedication ... 7
Table of Contents ... 8
List of Tables ... 13
List of Figures .. 15
List of Abbreviations ... 16

CHAPTER ONE INTRODUCTION ... 1
1.1. Overview .. 1
1.2. Research Background and Motivation ... 1
1.3. Research Problem .. 8
 1.3.1. Statement of Problem .. 10
1.4. Research Questions .. 10
1.5. Research Objectives ... 11
1.6. Research Scope .. 11
1.7. Research Framework ... 12
1.8. Research Significance ... 16
1.9. Thesis Outline ... 18

CHAPTER TWO SOFTWARE REUSE AND APPLICATION FRAMEWORKS
FOR CAMPAMS .. 20
2.1. Overview .. 20
2.2. Reuse-Based Software Engineering .. 20
 2.2.1. Benefits of Software Reuse .. 21
 2.2.2. Approaches of Software Reuse .. 22
 2.2.3. Application Framework versus Other Reuse Approaches 24
 2.2.4. Evaluation of Software Reuse .. 27
2.3. What Is Software Frameworks? ... 32
2.4. Development of Software Frameworks ... 33
5.7.10. IThresholdValueFactory Default Implementation ... 182
5.7.11. IUnaryEvaluationOperator Default Implementation 182
5.7.12. IUnaryEvaluationOperatorFactory Default Implementation 183
5.7.13. IBinaryEvaluationOperator Default Implementation 183
5.7.14. IBinaryEvaluationOperatorFactory Default Implementation 183
5.7.15. ISetEvaluationOperator Default Implementation .. 183
5.7.16. ISetEvaluationOperatorFactory Default Implementation 184
5.7.17. IUnaryQueryElement Default Implementation ... 184
5.7.18. IBinaryQueryElement Default Implementation ... 184
5.7.19. ISetQueryElement Default Implementation ... 184
5.7.20. IContextMonitoringQueryEvaluator Default Implementation 184
5.7.21. IContextMonitoringQuery Default Implementation 184
5.7.22. IMonitoringQueryRepository Default Implementation 185

5.8. Summary .. 185

CHAPTER SIX FRAMEWORK TESTING AND DOCUMENTATION 187

6.1. Overview .. 187

6.2. Framework Design Guidelines Application .. 187

6.3. Framework Reusability Evaluation Using Reusability Model 188
 6.3.1. Calculate Values of Metrics .. 188
 6.3.2. Identify Thresholds of Metrics ... 191
 6.3.3. Identify Outliers .. 191
 6.3.4. Design Review ... 191

6.4. Prototyping and Documentation ... 192
 6.4.1. Framework Initialization .. 193
 6.4.2. Hypertension CaMPaMS ... 195

6.5. Amount of Reuse Calculation .. 206
 6.5.1. Reuse Level (RL) ... 207
 6.5.2. Reuse Frequency (RF) ... 207
 6.5.3. Reuse Size and Frequency (RSF) ... 208

 6.6.1. Demographic Profiles of Software Experts ... 209
 6.6.2. Frequency of Responses from Software Expert Review Instrument 212
6.7. Summary .. 215

CHAPTER SEVEN CONCLUSION AND FUTURE WORK .. 216
7.1. Overview .. 216
7.2. Research Summary ... 216
 7.2.1. Domain Model of CaMPaMS ... 217
 7.2.2. Design of Reusable Application Framework for CaMPaMS 217
 7.2.3. Application Framework Reusability Evaluation .. 219
7.3. Research Contributions ... 220
 7.3.1. CaMPaMF .. 221
 7.3.2. Application Framework Reusability Evaluation Approach 225
7.4. Research Limitations ... 228
7.5. Future Research ... 228
References .. 230
Vita ... 403
List of Tables

Table 2.1 Benefits of Software Reuse ... 22
Table 2.2 Software Reuse Approaches .. 23
Table 2.3 The Primary Differences between Application Frameworks and Design Patterns .. 25
Table 2.4 The Primary Differences between Application Frameworks and Components .. 26
Table 2.5 The Primary Differences between Application Frameworks and Libraries .. 26
Table 2.6 Summary of Previous Studies that Support Context-Aware Monitoring ... 61
Table 2.7 Percentages and Proportions of Domain Requirements in Previous Studies that Designed Application Frameworks for PMS ... 69
Table 2.8 Percentages and Proportions of Sub-Domain Requirements Related to Context Awareness Computing Domain Requirement in Previous Studies that Designed Application Frameworks for PMS ... 70
Table 3.9 Concept Matrix ... 81
Table 3.10 Native Mobile Platform Languages .. 90
Table 4.11 Common Features of CaMPaMF ... 98
Table 4.12 Common Features of Context-Aware Monitoring Query Feature 99
Table 4.13 Variable Features of Query Alarm Feature ... 100
Table 4.14 Two Common Dimensions of Alternative Variable Features of the Query Element Feature ... 100
Table 4.15 Demographic Profiles of Experts .. 121
Table 4.16 Further Comments from the Experts .. 127
Table 6.17 Multi-Metric Approach Applied to CaMPaMF 189
Table 6.18 Thresholds of Metrics ... 191
Table 6.19 Outlier Values of Metrics ... 192
Table 6.20 Outlier Value Percentage .. 192
Table 6.21 Reuse Level of CaMPaMS Prototypes .. 207
Table 6.22 Reuse Frequency of CaMPaMS Prototypes 208
Table 6.23 Reuse Size and Frequency of CaMPaMS Prototypes 209
Table 6.24 *Demographic Profiles of Experts* .. 209
Table 6.25 *Further Comments from the Software Experts* 215
List of Figures

Figure 1.1. Research framework ... 15
Figure 2.2. Application framework reusability model 30
Figure 2.3. Diabetes context monitoring queries ... 68
Figure 3.4. Research methodology ... 76
Figure 4.5. A feature model to design CaMPaMF 101
Figure 4.6. High BP monitoring query .. 104
Figure 4.7. Abstract use case model .. 111
Figure 4.8. Experts’ specialisation ... 122
Figure 4.9. Diseases monitored by experts .. 123
Figure 4.10. Experts’ ages ... 124
Figure 4.11. Experts’ experience ... 124
Figure 4.12. Experts’ genders .. 125
Figure 5.13. The proposed architecture of the CaMPaMF 130
Figure 5.14. Platform independent model ... 137
Figure 5.15. Platform specific model ... 179
Figure 6.16. CaMPaMF initialization process .. 193
Figure 6.17. CaMPaMF dependency graph ... 194
Figure 6.18. Hypertension context monitoring queries 196
Figure 6.19. Software experts’ specialisation .. 210
Figure 6.20. Software experts’ ages ... 210
Figure 6.21. Software experts’ experience ... 211
Figure 6.22. Software experts’ genders .. 211
Figure 7.23. Contributions to the software engineering body of knowledge related to software design ... 221
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>Blood Pressure</td>
</tr>
<tr>
<td>BT</td>
<td>Body Temperature</td>
</tr>
<tr>
<td>CaMPaMF</td>
<td>Context-aware Mobile Patient Monitoring Framework</td>
</tr>
<tr>
<td>CCL</td>
<td>Context Characterization Layer</td>
</tr>
<tr>
<td>CIM</td>
<td>Computation Independent Model</td>
</tr>
<tr>
<td>CML</td>
<td>Context Monitoring Layer</td>
</tr>
<tr>
<td>CaMPaMS</td>
<td>Context-aware Mobile Patient Monitoring Systems</td>
</tr>
<tr>
<td>DIP</td>
<td>Dependency Inversion Principle</td>
</tr>
<tr>
<td>DRM</td>
<td>Design Research Methodology</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>FODA</td>
<td>Feature-Oriented Domain Analysis</td>
</tr>
<tr>
<td>HR</td>
<td>Heart Rate</td>
</tr>
<tr>
<td>ISP</td>
<td>Interface-Segregation Principle</td>
</tr>
<tr>
<td>JMA</td>
<td>Jordan Medical Association</td>
</tr>
<tr>
<td>LSP</td>
<td>Liskov Substitution Principle</td>
</tr>
<tr>
<td>MDA</td>
<td>Model Driven Architecture</td>
</tr>
<tr>
<td>MDD</td>
<td>Model Driven Development</td>
</tr>
<tr>
<td>MDRE</td>
<td>Model Driven Requirement Engineering</td>
</tr>
<tr>
<td>MPMS</td>
<td>Mobile Patient Monitoring Systems</td>
</tr>
<tr>
<td>OCP</td>
<td>Open-Closed Principle</td>
</tr>
<tr>
<td>PIM</td>
<td>Platform Independent Model</td>
</tr>
<tr>
<td>PMS</td>
<td>Patient Monitoring Systems</td>
</tr>
<tr>
<td>PSM</td>
<td>Platform Specific Model</td>
</tr>
<tr>
<td>RR</td>
<td>Respiration Rate</td>
</tr>
<tr>
<td>SRP</td>
<td>Single Responsibility Principle</td>
</tr>
<tr>
<td>UML</td>
<td>Unified Modelling Language</td>
</tr>
<tr>
<td>WBS</td>
<td>Wireless Body Sensors</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
CHAPTER ONE
INTRODUCTION

1.1. Overview

This chapter introduces the research that is presented in this thesis. The research background and motivation is described, followed by a presentation of the research problem, the research questions, and the objectives, scope and framework of the research, along with its significance. Finally, this chapter presents an outline of the whole thesis.

1.2. Research Background and Motivation

Reuse-based software engineering is a development approach that increases the reuse of existing software [1]. Software reuse is one of the fundamental software engineering concepts [2] and one of the most commonly used principles to simplify application development and overcome development complexities. Reusing software reduces the number of software assets that need to be developed and reuses well-tested assets that have been used in many systems with minimal errors. Moreover, software reuse encapsulates the knowledge of specialists [3-5].

According to [6], identifying the aspects that affect software reusability can enhance the knowledge required to build a reusable software components and identify the potential of reusing existing software modules in new a software development. Therefore, it is important to identify the aspects that can affect software reusability.
The contents of the thesis is for internal user only
REFERENCES

233

[99] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

in *15th International Conference on Intelligent User Interfaces*, Hong Kong, China, 2010, pp. 269-272.

