
A NEW AUDITING MECHANISM FOR OPEN SOURCE

NOSQL DATABASE – A CASE STUDY ON OPEN

SOURCE MONGODB DATABASE

 HANY HEIDAR HUSSEIN MOHAMED

MASTER OF SCIENCE (INFORMATION TECHNOLOGY)

SCHOOL OF COMPUTING

COLLEGE OF ARTS AND SCIENCES

UNIVERSITI UTARA MALAYSIA

2015

i

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely

available for inspection. I further agree that permission for the copying of this thesis

in any manner, in whole or in part, for scholarly purpose may be granted by my

supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School

of Arts and Sciences. It is understood that any copying or publication or use of this

thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to

Universiti Utara Malaysia for any scholarly use which may be made of any material

from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to :

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

ii

Abstrak

MongoDB adalah satu contoh sistem pengurusan pangkalan data NoSQL yang agak

baru di pasaran pangkalan data dan ia digunakan dalam banyak projek penting dan

produk. Analisis Keselamatan untuk MongoDB mendedahkan bahawa ia tidak

memberikan apa-apa kemudahan untuk tindakan audit dilakukan dalam pangkalan

data. Baru-baru ini, syarikat MongoDB cuba untuk membetulkan jurang pengauditan

dengan menyediakan MongoDB perusahaan baru versi 2.6 (8 April 2014). Sistem

pengauditan boleh merakam operasi berikut: skema (DDL), set replika, pengesahan

dan kebenaran, dan operasi umum. Tetapi malangnya ia masih tidak boleh merakam

Data Manipulasi Bahasa (DML). Oleh itu, kajian ini bertujuan untuk meningkatkan

fungsi pengauditan di MongoDB dengan membentangkan satu mekanisme baru bagi

pengauditan pangkalan data NoSQL MongoDB untuk memasukkan Data Manipulasi

Bahasa (DML) / CRUD (Membuat, Baca, Kemaskini dan memadam) operasi.

Kata Kunci: data big, NoSQL, MongoDB, MongoDB pengauditan

iii

Abstract

 MongoDB as a NoSQL database management system is relatively new on the

database market and it is used in many important projects and products. Security

analysis for MongoDB revealed that it doesn’t provide any facilities for auditing

actions performed in the database. Recently, MongoDB company tried to rectify the

auditing gap by providing MongoDB new enterprise version 2.6 (8th of April 2014).

The auditing system logs operations information including; schema data definition

language operations and operations related to replica set in addition to operations of

authentication and authorization, and eventually general operations. But unfortunately

still cannot record Data Manipulation Language (DML). Thus, this study aims to

improve the auditing functionality in MongoDB by presenting a new mechanism for

auditing NoSQL MongoDB database to include Data Manipulation Language (DML)/

CRUD (Create, Read, Update and delete) operations.

Keywords: Big data, NoSQL, MongoDB, MongoDB auditing

iv

Acknowledgement

All praises and thanks due to Almighty Allah, the most gracious and the most merciful

for lightening my way throughout the completion of this valuable thesis. I adore His

benevolence and mercy, without his kindness, I will not be able to complete this study

especially as I was thousand miles away from my beloved country (Egypt). Also I

would like to thanks to my Supervisor Dr. Massudi Mahmuddin. Without his patient

support, enlightened guidance, it is impossible for me to complete and enhance the

quality of my work.

My deepest and heartfelt gratitude, loves, thanks and appreciation for my dearest

parents and my beloved siblings who are a part of my happiness, success, and the

inspiration that led me for the quest for knowledge and self-empowerment through

night and day. I hope I can put a smile on their faces for giving back their remendous

support and encouragement, patience, unconditional love, and prayers for me. Thank

you for giving me the strength to chase and reach my dreams.

Thank You All.

 “This Thesis is only the beginning of my journey.”

 HANY HEIDAR HUSSEIN MOHAMED

 UUM University, Kedah, Malaysia

Monday, January 12, 2015

v

Table of Contents

Permission to Use ... i

Abstrak ... ii

Abstract ... iii

Acknowledgement ... iiv

Table of Contents ... v

List of Tables ... vii

List of Figures .. viii

List of Abbreviations .. ix

CHAPTER ONE : INTRODUCTION ... 1

1.1 Background ... 1

1.2 Problem Statement .. 3

1.3 Research Questions ... 5

1.4 Research Objectives .. 5

1.5 Rsearch Scope ... 6

1.6 Contributions ... 6

1.7 Report Organization .. 6

CHAPTER TWO: LITERATURE REVIEW ... 7

2.1 NoSQL Database ... 7

2.1.1 Overview..7

2.1.2 NoSQL Data Model……...7

2.1.2.1 Key-value Data Model………………………………………………………11

2.1.2.2 Column Data Model…………………………………………………………11

2.1.2.3 Document Data Model………………………………………………………12

2.1.2.4 Graph Data Model…………………………………………………………...13

2.2 Importance of NoSQL in Big Data Applications .. 13

2.3 NoSQL Database Security Issues .. 14

2.3.1 Threats Posed By Distributed Environments...15

2.3.2 Safeguarding Integrity……………………...15

2.3.3 Communication between Nodes…………..15

2.3.4 Sharded Data/Fragmented Data……………...16

2.3.5 Compromised Clients………………………..16

2.3.6 Protection of Data at Rest…………………..17

2.3.7 Challenges in Enforcing Access Control……...17

2.3.8 Administrative Data Access………………...17

2.3.9 Configuration and Patch Management……...18

vi

2.3.10 Firewalls…………………………………...18

2.3.11 Authentication Clients……………………...18

2.3.12 Audit and Logging…………………………...19

2.3.13 Monitoring, Filtering, and Blocking………..19

2.3.14 API security………………………………...19

2.4 NoSQL MongoDB Database ... 20

2.4.1 Overview………………………….……………………………………………...20

2.5 NoSQL Database Auditing .. 25

2.5.1 Database Auditing Definition…….……………………………………………...25

2.5.2 Importance of NoSQL Database Auditing…….……….………………………...26

2.5.3 NoSQL DBMS Auditing………………..…….…….……………………….…...27

2.5.4 MongoDB Database Auditing………………….………………………………...29

2.6 Related Work ... 31

2.7 Conclusion ... 34

CHAPTER THREE: RESEARCH MOTHODOLOGY ... 37

3.1 Introduction ... 37

3.2 Research Methodology .. 37

3.2.1 Stage 1: Identifying MongoDB auditing features.….……………………….…...38

3.2.1.1 Analysis of Logging Techniques in MongoDB..……………………………39

3.2.1.2 MongoDB Auditing Features…………………..……………………………41

3.2.1.3 Auditing Events and Filters…………………....……………………………41

3.2.2 Stage 2: Develop Auditing Mechanism………....….……………………….…...44

3.2.3 Stage 3: Evaluation……………………………...….……………………….…...51

3.3 Conclusion ... 53

CHAPTER FOUR: RESULTS AND EVALUATION ... 54

4.1 Introduction ... 54

4.2 Auditing Mechanism Prototype ... 54

4.3 The Experiment Results .. 56

4.3.1 Results of Auditing the CRUD/DML Operations..……………………….…......61

4.4 Performance Evaluation .. 62

4.5 Summary ... 75

CHAPTER FIVE: CONCLUSION AND FUTURE WORK... 77

5.1 Introduction ... 77

5.2 Conclusion ... 77

5.3 Limitations... 78

4.4 Future Work .. 79

REFERENCES ... 80

APPEDIX A .. 87

vii

 List of Tables

Table 2.1: List of companies using NoSQL database with its categories ….. 8

Table 2.2: NoSQL data stores ….. ... 9

Table2.3: MongoDB vs SQL terms ….. .. 23

Table 2.4: Auditing types and descriptions ….. ... 26

Table 2.5: Auditing in NoSQL databases ….. .. 28

Table 2.6: Examples of DML/CRUD operations ….. .. 30

Table 2.7: Sample of MongoDB related work ….. .. 33

Table 3.1: Description of event message fields ….. .. 40

Table 3.2: MongoDB auditing system records the following actions….. 41

Table 3.3: DML/CRUD operations: compare MongoDB vs MySQL ….. 51

Table 3.4: Description of data sets used in the evaluation stage …….. 52

Table 4.1: Time of the select operations in both data sets (ms)…….. 63

Table 4.2: Time of the insert operations in both data sets (ms).…….. 66

Table 4.3: Time of the remove/delete operations in both data sets (ms).…….. 69

Table 4.4: Time of the update operations in both data sets (ms)…….. 64

viii

List of Figures

Figure 2.1: MongoDB architecture .. 24

Figure 3.1: Stages of research methodology .. 35

Figure 3.2: MongoDB security architecture .. 38

Figure 3.3: Sample of MongoDB auditing system messages .. 39

Figure 3.4: The architecture of auditing mechanism ... 42

Figure 3.5: MongoDB Database .. 43

Figure 3.6: Sample of audit trail records .. 44

Figure 3.7: Sample of data recorded in MongoDB database. ... 47

Figure 3.8: MongoDB auditing algorithm flowchart ... 49

Figure 3.9: Libraries used in the C# code .. 50

Figure 4.1: Auditing mechanism prototype ... 55

Figure 4.2: Fields of prototype records .. 55

Figure 4.3: Details field of the prototype output .. 55

Figure 4.4: Data Set 1 “AuditData” .. 56

Figure 4.5: Sample of data in “Department” collection in data set one “AuditData” . 57

Figure 4.6: Sample of data in “Employee” collection in data set one “AuditData”57

Figure 4.7: Sample of data in “Department” collection in data set one “AuditData”.. 57

Figure 4.8: Dataset 2 “AuditData2” description ... 57

Figure 4.9: Sample of data in “Course” collection in data set two “AuditData2” 58

Figure 4.10: Sample of data in “Lecturer” collection in data set two “AuditData2” ... 58

Figure 4.11: Sample of data in “Student” collection in data set two “AuditData2” 58

Figure 4.12: Auditing of the query (select) operation for data set 1 59

Figure 4.13: Auditing of the update operation for data set 1 .. 59

Figure 4.14: Auditing of the insert operation for data set 1 .. 60

Figure 4.15: Auditing of the remove (delete) operation for data set 1 62

ix

Figure 4.16: Auditing of the query (select) operation for data set 2. 61

Figure 4.17: Auditing of the update operation for data set 2. .. 61

Figure 4.18: Auditing of the insert operation for data set 2. .. 61

Figure 4.19: Auditing of the remove operation for data set 2. ... 62

Figure 4.20: Time of the select operation for Data Set 1 before and after applying the

proposed auditing mechanism……………………………………………………………….64

Figure 4.21: Time of the select operation for Data Set 2 before and after applying the

proposed auditing mechanism .. 65

Figure 4.22: Time of the insert operation for Data Set 1 before and after applying the

proposed auditing mechanism .. 67

Figure 4.23: Time of the insert operation for Data Set 2 before and after applying the

proposed auditing mechanism .. 68

Figure 4.24: Time of the remove/delete operation for Data Set 1 before and after applying

the proposed auditing mechanism .. 70

Figure 4.25: Time of the remove/delete operation for Data Set 2 before and after applying

the proposed auditing mechanism .. 71

Figure 4.26: Time of the update operation for Data Set 1 before and after applying the

proposed auditing mechanism .. 73

Figure 4.27: S Time of the update operation for Data Set 2 before and after applying the

proposed auditing mechanism .. 74

x

List of Abbreviations

ACID Atomicity, Consistency, Isolation, Durability

BSON Binary JavaScript Object Notation

CRUD Create Read Update Delete

DDL Data Definition Language

DML Data Manipulation Language

DBA Database Administrators

JSON JavaScript Object Notation

NoSQL Not Only SQL

RBAC Role Based Access Control

RDMS Relational Database Management System

RFID Radio Frequency Identification

RPC Remote Procedure Call

OS Operating System

xi

SQL Structured Query Language

TCP/IP Transmission Control Protocol /Internet Protocol

1

CHAPTER ONE

INTRODUCTION

1.1 Background

The term NoSQL is used first time by Mr. Carlo Strozzi (1998) to name his lightweight

open source relational database. The system did not expose the standard SQL

(Structure Query Language) interface. There is a series of database following NoSQL

(Not Only SQL) standards. The term “Not Only SQL” is also used for these databases

that provide storage and retrieval mechanism with less constrained consistency models

than traditional relational databases (Mohamed, Altrafi, & Ismail, 2014).

The last three decades were ruled by the traditional relational database management

systems such as DB2, MS SQL Server and Oracle (Bonnet, Laurent, Sala, Laurent, &

Sicard, 2011). They have the standard SQL. Due to the growing web scale applications

such as Facebook, mobile applications and RFID (Radio Frequency Identification) the

Internet has become an essential part of the world today.

Everyday zettabytes of data are being generated due to these applications. Due to

changing need of applications and databases, the traditional relational databases are

proved to be weak in distributed environment. This made NoSQL databases to get

importance and preference. Being schema free, elastic and scalable, NoSQL databases

appeared to be effective(Kanade, Gopal, & Kanade, 2013).

2

 Simple design, horizontal scalability and availability NoSQL databases have led to

gain the popularity worldwide. Recently they are widely used in big data and real time

web applications like Facebook, Yahoo, Google, and Amazon. With the advent of the

Web 2.0 NoSQL has entered the database market (Kanade et al., 2014).

 Mainly there are five categories of NoSQL databases like Key-Value Store,

Document-Store, Column-Oriented, Graph Database, and data structure store.

Cassandra, MongoDB, BigTable, neo4j and Redis are the examples of these databases

respectively. The databases like XML and Object Oriented Databases come under the

NoSQL category.

With the venture funding and open-source movement provided by the smaller IT

companies databases like Couchbase, MongoDB and Riak have come up. Oracle also

has enhanced its old Berkeley DB with some NoSQL features which is called as Oracle

NoSQL. A product HBase by IBM has been targeted by the big data now (Kanade et

al., 2013).

Many organizations used NoSQL databases, however studies on NoSQL databases

security features found that auditing in addition to other security aspects are

overlooked. Auditing for NoSQL implementations as database management systems

is very important for an enterprise to protect its sensitive information. Auditing as

database security feature is needed as a shield against a potential risk from trusted

users who own or can obtain the correct credentials.

3

If an enterprise or an organization that uses NoSQL database products has not

implemented such measures as database monitoring or auditing, then their invaluable

assets reside in database are at high risk. Meanwhile, auditing helps enterprises in

forensic analysis in addition, to protect sensitive information. The only solution to this

problem is to implement database auditing. Database auditing involves observing a

database so as to be aware of the actions of database users (Liu & Huang, 2009).

One of the leading and widespread of NoSQL databases is MongoDB. MongoDB is

an open-source document database, and the leading NoSQL database developed by

the software company 10gen (now MongoDB Inc.) in October 2007 and written in

C++. The objects are stored serialized as BSON (Binary JavaScript Object Notation).

The objects do not share the similar structure or same fields as well the similar fields

do not need to have the same type, thus allowing a flexible schema storage (Li &

Manoharan, 2013).

1.2 Problem statement

MongoDB as a NoSQL database management system is relatively new on the database

market and it is used in many important projects and products, such as: MTV

Networks, Craiglist, Disney Interactive Media Group, Sourceforge, Wordnik, Yabblr,

SecondMarket, The Guardian, Forbes, The New York Times, bit.ly, GitHub,

FourSquare, Disqus and PiCloud (Boicea, Radulescu, & Agapin, 2012).

4

In MongoDB, there are no database schemas or tables. MongoDB instead uses a

“collection” which is similar to a table and “documents” which are similar to rows, to

store the data and schema information. MongoDB automatically generates a primary

key (id) to uniquely identify each document. The id and document are conceptually

similar to a key-value pair (need other sentence for coherence).

Okman, Gonen and Abramoy (2011) analysed MongoDB Security features and they

found that MongoDB doesn’t provide any facilities for auditing actions performed in

the database. When a new namespace (database) is created, Mongo will write a line in

the log about data file creation, but after the data files are allocated, nothing new

appears in the log for any subsequent insertions, updates or queries.

Grolinger, Higashino, Tiwari and Capretz (2013) identified challenges and

opportunities in NoSQL databases. Referring to MongoDB auditing, they stated that

MongoDB doesn’t present auditing functionalities for events on database. Moreover,

they referred to that auditing functionalities are usually related to the creation of an

audit trail that logs records of events that occurred in a data stores. This is especially

important in forensic analysis of security events.

Recently, MongoDB company tried to rectify the auditing gap by providing MongoDB

new enterprise version 2.6 (8th of April 2014). The auditing system logs operations

information including; schema data definition language operations and operations

related to replica set in addition to operations of authentication and authorization, and

eventually general operations. But unfortunately still cannot record Data Manipulation

Language (DML) (MongoDB, 2014).

5

Most organizations require that all user-based Data Manipulation Language (DML)

and/or CRUD (Create, Read, Update and Delete) operations performed against

production databases be logged (MongoDB, 2014). This request extends the

MongoDB auditing framework, introduced in version 2.6, to include logging of all

user queries and DML/CRUD operations including:

◾query/read - any operation that returns data.

◾insert – any operation that adds data to a database.

◾update – any operation that changes data on a database.

◾delete – any operation that removes data from a database.

Upon the above studies and literature review, it is clear that there is a need to enhance

the auditing functionality in MongoDB.

1.3 Research Questions

There are two main questions for this study as follows:

1. What are MongoDB auditing features?

2. How to improve auditing in MongoDB?

1.4 Research Objectives

Thus, our research aims to improve auditing in MongoDB to include Data

Manipulation Language (DML)/ CRUD (Create, Read, Update and delete) operations.

This study follows the research objectives given below:

1. To identify MongoDB auditing features.

2. To improve auditing in MongoDB by developing a new auditing mechanism.

3. To evaluate the proposed mechanism.

6

1.5 Research Scope

The research concentrates on NoSQL database document data model. The study is

limited to MongoDB as document oriented data model implementation. Precisely,

this research focuses on auditing DML/CRUD operations in MongoDB.

1.6 Contributions

1. Identifying auditing features that assisting MongoDB users and vendors to

enhance what already exist beside develop new other ones.

2. Improving auditing in MongoDB that is helping in monitoring and protecting

the sensitive data stored in MongoDB database.

1.7 Organization of Report

This study is organized in five chapters. An outline of the essential contents of the

following chapters is expressed as follow:

Chapter 2: reviews related studies on NoSQL Database and MongoDB.

Chapter 3: discusses the research methodology that was used to construct an auditing

mechanism.

Chapter 4: presents the results and evaluation.

Chapter 5: concludes the findings of the study.

7

CHAPTER TWO

LITERATURE REVIEW

2.1 NoSQL Database

2.1.1 Overview

NoSQL stands for Not Only SQL and also means No Relational or No RDBMS.

NoSQL is a term for all data stores that do not follow the traditional RDBMS rules

(Pozzani, 2013). NoSQL databases are different from the relational databases by not

possessing a fixed predefined schema to follow by data architects and engineers. But,

NoSQL data models include, key-value, graph based, column and document oriented.

Various architectures are qualified for different requirements of data management

(Narde, 2013).

The architecture of NoSQL database uses a cluster of servers. Most of the servers in

the cluster play the role of data nodes, the node which maintains data sets. And there

are few nodes in the cluster which plays role of monitoring and balancing the cluster,

these nodes are called in different names in different databases. In HBase these nodes

are called zookeepers, in MongoDB those are called config servers. And there will be

metadata node which plays the role of master node assigning data partition/shards to

data nodes or acts as a router to the requests.

2.1.2 NoSQL Data Models

The NoSQL database consists of several data models. Various distinct interpretations

have been proposed for NoSQL data models that have guided to various sub-

classifications (Tudorica, & Bucur, 2011). Furthermore, these sub- classifications

8

divide the different NoSQL data stores into four principal data models: key-value data

model, Column data model, document data model, and graph data model (Hecht &

Jablonski, 2011).

Table 2.1

List of companies using NoSQL database with its categories

Organization NoSQL Database Data Model

Adobe HBase Column

Amazon Dynamo – SimpleDB Key-value - Document

Facebook Cassandra – Neo4j Column - Graph

eBay MongoDB - Cassandra Document - Column

Linkedin Voldmort Key-value

Twitter Cassandra Column

Google BigTable Column

Table 2.1 shows a list of International companies using NoSQL databases upon its

categories.

9

Table 2.2

NoSQL data stores (Grolinger, Higashino,Tiwari & Capretz, 2013)

NoSQL Data Stores Name & Source Querying Licence

Key-value stores

Redis http://redis.io

Does not

provide

SQL-like

querying

Open source: BSD

(Berkeley

Software Distribution)

Memcached

http://memcached.org

Does not

provide

SQL-like

querying

Open source: BSD 3-

clause

License

BerkeleyDB

http://www.oracle.com/

us/products/database/be

rkeleydb/

overview/index.html

SQLite

Closed source: Oracle

Sleepycat license

Voldemort

http://www.projectvold

emort.

com/voldemort

No

Open source: Apache

2.0

License

Riak

http://basho.com/riak

Riak search,

secondary

indices

Open source: Apache

2.0

License

10

Column family

stores

Cassandra

http://cassandra.apache.

org

Cassandra

query

language

Open source: Apache

2.0

License

HBase

http://hbase.apache.org

No, could be

used with

Hive

Open source: Apache

2.0

License

DynamoDB (Amazon

service)

http://aws.amazon.com/

dynamodb

Proprietary

Closed source: Pricing

as pay per-use basis

Amazon SimpleDB

(Amazon service)

http://aws.amazon.com/

simpledb

Amazon

proprietary

Closed source: Pricing

as pay per-use basis

Document stores

MongoDB

http://www.mongodb.or

g

Proprietary

Open source: Free

GNU AGPL

v3.0 license

CouchDB

http://couchdb.apache.o

rg

SQL like

UnQL, under

development

Open source: Apache

2.0

License

Couchbase Server

http://www.couchbase.c

om

No

Open source: Free

Community

Edition. Paid

Enterprise Edition

http://aws.amazon.com/simpledb
http://aws.amazon.com/simpledb

11

Graph databases

Neo4J

http://www.neo4j.org

Cypher,

Gremlin and

SparQL

Open source license:

NTCL +

(A)GPLv3

HyperGraphDB

www.hypergraphdb.org

/

SQL like

querying

Open source license:

GNU

LGPLv3

Allegro Graph

http://www.franz.com/a

graph/allegrograph

SparQL and

Prolog

Closed source: free,

developer

and enterprise

versions

2.1.2.1 Key-value Data Model

Key-value data model consists of key-value pairs that like a dictionary or an

associative map (Hecht & Jablonski, 2011). One of drawbacks for this data model that

it is not convenient for structures or relations cases. Therefore, if there is a need to this

functionality it should be performed on application level (Grolinger, Higashino,Tiwari

& Capretz, 2013).

2.1.2.2 Column Data Model

Most of column oriented stores are based on Bigtable of Google (Chang, Dean,

Ghemawat, Hsieh, Wallach, Burrows, & Gruber, 2008). The data in Bigtable are saved

in a column as a data model. Furthermore, the dataset of Bigtable has a row key also

named as a primary key for each set of rows. Each row is consists of a group of

columns, and various rows can have diverse columns.

12

Identically to key-value stores, the row key is similar to the key in key-value data

model and further the set of column is like the of the row key. But, each column used

as a key for a column or more within. Meanwhile each column includes a name-value

pair and also introduced what is called super-columns through grouping various

columns.

Generally, indexing and querying are more powerful in Column stores data model. As

same as previously mention about key-value data model relating to structures and

relations, also here with column data model any requesting relations should be done

in the application (Grolinger, Higashino,Tiwari & Capretz, 2013).

2.1.2.3 Document Data Model

Document stores use keys to find documents within the data store. Mostly document

data model includes documents that are written with JSON (JavaScript Object

Notation) or other related format. For instance, both of CouchDB use the format of

JSON for data storage, however MongoDB stores data in Binary JSON. Document

data model are convenient in cases that application’s input data can be stored in a

document-oriented form.

A document has various data structures and cannot follow a pre-defined constant

schema. Additionally, MongoDB provides the ability of collecting the documents into

what is called collections. Furthermore, in every collection, a document and each

document should include a unique key. Indexing and querying functionalities are

supported in document stores data model.

13

2.1.2.4 Graph Data Model

Graph data model is built on the basis of graph theory. A graph as a mathematical

terminology used to define a group of objects, named as nodes or vertices, and

interconnect between them. Graph database model can store the relationships between

various data nodes. Graph data model is designed for dealing with interconnected data

and crossing relationships between various entities. They are convenient in many cases

including social networking, dependency analysis, recommendation system and,

pattern recognition. Certain graph databases like Neo4J are completely ACID

(Atomicity, Consistency, Isolation, Durability) compliant (Hecht & Jablonski, 2011;

Buerli, & Obispo, 2012).

2.2 Importance of NoSQL in Big Data Applications

Recently, numerous NoSQL (“Not Only SQL”) systems have been released and

widely adopted in many domains. NoSQL systems have been developed to support

applications not well served by relational systems, often involving Big Data

processing (Lawrence, 2014).

 NoSQL systems can be categorized as key-value stores, document stores, and graph

databases. Importantly, there are no common standard APIs for accessing the different

NoSQL systems or standard query languages such as SQL. This reduces portability

and requires system-specific code. Although most NoSQL systems do not support

SQL, there is no fundamental reason why they could not. The “NoSQL” label is a

misnomer. The value of these systems has nothing to do with SQL support, but rather

on their different architectural design decisions in order to achieve scalability and

performance (Lawrence, 2014).

14

SQL is valuable as it is a standard that allows portability, expressiveness, and has a

massive installed base of trained users. As NoSQL systems evolve, there has been

recognition of the value of SQL, and several commercial systems are hybrids

combining a SQL relational processor with a Big Data (MapReduce) query processor

(Lawrence, 2014).

2.3 NoSQL Database Security Issues

In this section security built-into the NoSQL databases environment is reviewed which

are entrusted in handling Big Data, further measuring the drawbacks of these systems.

Likewise, security gap inherent in the NoSQL database system environments is

revealed and exploring best methods to secure these systems. The volume, variety and

ratio of generated data for processing and storage results in huge amounts of data that

need to be safely and correctly secured and saved.

A survey of the top big data vendors as well as deployments for services extending

from server and storage hardware, database software, analytics applications and other

associated services have revealed that vast amounts of valuable and sensitive data are

being handled through the various applications across many platforms all over the

world generated by humans or by machines that routinely access and use Web and

mobile applications. These data, owned by its organizations is highly worthy,

beneficial, and a matter of and follows privacy laws and compliance regulations which

have to be protected.

15

2.3.1 Threats Posed By Distributed Environments

NoSQL database environment related Nodes are distributed subsequently resulting in

vast simultaneous processing. Accordingly, this environment is ready and vulnerable

for attacks and threats that is very difficult to secure particularly in case of NoSQL

database system across multiple distributed nodes. In addition, deciding the place from

where you access database system, which may be at the Clients side locations or at

another remote location which raises the potential of unauthorized access (Kadebu,

Mapanga, 2014).

2.3.2 Safeguarding Integrity

The process of protecting and securing integrity issues is more difficult and complex

in NoSQL database system due to its nature as heterogeneous in comparing with

homogeneous systems. Moreover, there is no central control and its schema-less

nature makes it much harder to impose integrity restrictions (Mapanga & Kadebu,

2013; Kadebu & Mapanga, 2014).

2.3.3 Communication between Nodes

All communication protocols such as nodes of data connect to what is called Name

Nodes and all are layered on top of the TCP/IP mainly relying on RPC over TCP/IP.

A Remote Procedure Call (RPC) abstraction wraps both the Client Protocol and the

DataNode Protocol in the NoSQL distributed environment. NoSQL database Systems

with RPC ports exposed to the Distributed environment are especially vulnerable.

Security concerns emanate as nodes interact through message passing, because

communication is not secure (Mapanga & Kadebu, 2013; Kadebu & Mapanga, 2014).

16

 2.3.4 Sharded Data/Fragmented Data

NoSQL databases horizontally divides data into slices, shares and combines them over

several servers. Data from a variety of nodes move to and from in the NoSQL database

environment which is distributed across multiple servers. Furthermore, here an

example is that at one organisation which has clusters with up to 4000 nodes, and

about 65 million files and 80 million blocks.

Accordingly, this data automatically moves to different locations for large inter/intra-

clustering using parallel copying mechanism of MapReduce in order to copy parts of

the source data into file system as a destination. The process of maintaining replicated

shards of data which combines security passwords is complicated and needs expensive

computation. Besides, this process is more vulnerable to failure and raises the risk of

theft. This model causes difficulties in protecting data as it becomes replicated and

moves in different locations as needed since it is not centralised (Mapanga & Kadebu,

2013; Kadebu & Mapanga, 2014).

2.3.5 Compromised Clients

Clients connecting to NoSQL databases are able to see and access resource managers

and several nodes in direct. In cases that combines malicious data which has been

propagated from a compromised location, the whole system is compromised. Securing

nodes, name servers and those clients is considered difficult particularly when there is

no central management security point (Mapanga & Kadebu, 2013; Kadebu &

Mapanga, 2014).

17

2.3.6 Protection of Data at Rest

Most NoSQL databases are demanded upon the protection provided specially in data

storage, just a slight NoSQL database categories that present protecting mechanisms

for data at rest over using techniques of encryption. Encryption is widely regarded as

the de-facto standard for safeguarding data in storage. Malicious intruders who intend

to then steal from archives or with intention to read directly from the disk will find the

data unintelligible. Encrypted data will be accessed by users with decryption keys, but

however most industry solutions offering encryption services lack horizontal scaling

and transparency required in the NoSQL environment (Kadebu & Mapanga, 2014).

2.3.7 Challenges in Enforcing Access Control

Clearly, it is difficult to enforce role-based access control in the NoSQL database’s

schema-less structure. For example, the Key-Value store that store data by means of a

distributed index for object storage. In this type of database different data are stored

in one huge database. This becomes a challenge as heterogeneous data is stored

together in one database as opposed to relational models which conform to defined

schemas and tables that store only related data.

2.3.8 Administrative Data Access

NoSQL database systems lack in-built facilities, documentation, and third-party tools

to address issues of administrative rights with for instance full access to data and

enabling creation of administrative boundaries for the purposes of encryption. Tasking

administrators to choose the right security controls that would tighten all the screws

on the four corners of our database systems like the proper access controls and the best

encryption technologies can cause unwanted direct access to data files or data node

18

processes. It will be better if this is left to the system designer to select controls to

close this gap (Mapanga & Kadebu, 2013; Kadebu & Mapanga, 2014).

2.3.9 Configuration and Patch Management

Existing configuration management tools work for underlying platforms. Different

nodes or clusters of servers may have different patch revisions. Added nodes may have

newer patches than existing nodes. This may create challenges in enforcing security

uniformly across the NoSQL database environment.

2.3.10 Firewalls

Firewalls cannot protect data at rest or in-transit within the NoSQL database

environment. If a firewall gets breached, the database is immediately exposed to

attacks. Firewall breaches emanating from the firewall perimeter cannot be avoided

like attackers who get into data centres physically or electronically can get access to

data (Mapanga & Kadebu, 2013; Kadebu & Mapanga, 2014).

2.3.11 Authentication Clients

Kerberos can be used to authenticate clients, DataNode, NameNode in the NoSQL

database environment. Malicious Clients and Nodes can gain unauthorised access to

the NoSQL database system upon stealing or duplicating the Kerberos ticket. These

credentials can be obtained from system snapshots as well as virtual images. The

situation has worsened in this Big Data environment where exact copies, clones and

imposter nodes can be used to generate malicious services into the databases

environment (Kadebu & Mapanga, 2014).

19

2.3.12 Audit and Logging

Audits and logs are performed to aid in discovery of malicious activities in the

database system. However without actually looking at the data and developing policies

to detect malicious activities, logging is not useful (Kadebu & Mapanga, 2014).

Also the frequency at which the Audits are carried out can have impact on their

effectiveness. If audits are performed say quarterly that means malicious activities can

occur which can result in serious problems for the organisation. This may be

discovered too late when the damage has already occurred (Mapanga & Kadebu, 2013;

Kadebu & Mapanga, 2014).

2.3.13 Monitoring, Filtering, and Blocking

Existing NoSQL database monitoring tools lack the capability to identify malicious

queries, misuse activities and subsequently block them. Monitoring undertaken by

several tools in the NoSQL database environment mostly perform their task at the API.

There is an assumption that all access by client connections will pass through the same

path that authenticate clients through Kerberos, which results in a performance

constrains. Also advanced threats may bypass the central Kerberos authentication

(Mapanga & Kadebu, 2013; Kadebu & Mapanga, 2014).

2.3.14 API security

APIs can be subjected to several attacks such as Code injection, buffer over flows,

command injection as they access the NoSQL databases.

20

The APIs for big data clusters need to be protected from code and command injection,

buffer overflow attacks, and every other web services attack. This responsibility often

left to the application that uses the cluster (Kadebu & Mapanga, 2014).

2.4 NoSQL MongoDB Database

MongoDB is an open source NoSQL database schema-free product using a document-

oriented data model and written in the C++ programming language. MongoDB was

developed by MongoDB Inc. Software Company (formerly 10gen).

2.4.1 Overview

Mongod2 is the name of daemon process in NoSQL MongoDB. It deals with data

requests, treats data formats, and manages background management operations. The

main features are explained below:

1. Document-Oriented Storage

 MongoDB supports flexible schemas and its collections do not enforce document

structure like SQL databases – schemas do not have to be defined before inserting the

data. This flexible schema nature makes accessing documents easy for adding an entity

or an object.

Practically, the documents which exist in the same a collection has a common

structure. MongoDB database saves its data in the format of documents, written in

pairs of JSON-like field and value. Documents’ structures in the form of key and value

are similar to languages of software programming that links keys with values, whereas

keys may have different of keys and values pairs (Murugesan, & Ray, 2014).

21

A JSON document might, for example, take all the data stored in a row that spans 20

tables in a relational database and aggregate it into a single document/object.

Aggregating this information may lead to duplication of information, but this is not an

issue as storage is no longer expensive.

The cost in storage is offset by the flexibility in the resulting model, ease of efficiently

distributing the resulting documents, and read and write performance improvements,

all of which are needed for web-based applications.

2. Full Index Support

 In MongoDB where indexes are doing the same job as in other database systems such

as improving the performance of repeatedly requested queries. Further, indexes are

defined in MongoDB in the level of the collection and also MongoDB provides

indexes in the level of the field as well the sub-field level in the documents under the

collections. The objective of using the index in MongoDB is decreasing the documents

number it must inspect in case of an appropriate index is used in a query, more on the

above, MongoDB in some cases uses the data from the index to answer a query

(Murugesan, Ray, 2014).

3. Replication and High Availability

A replica set in MongoDB is a group of mongod processes that maintain the same data

set. Replica sets provide redundancy and high availability, and are the basis for all

production deployments. Replication process improves data availability and presents

redundancy. By providing several database servers that have multiple copies of data,

replication contributes in protecting a database in case of losing a single server.

22

 In addition, replication provides the advantage of recovery in service interruptions or

hardware failure. As well, other advantages such as additional copies of the data,

disaster recovery, reporting, and backup are all facilitated (Murugesan & Ray, 2014).

4. Auto-Sharding

 Sharding is useful in the situation where is the volume of data is huge and an

individual machine cloud not be enough to save the data as well it could not be capable

of presenting a sufficient read and write throughput. Accordingly, sharding provides

the answer for this question.

 Sharding process is implemented by storing data across more than one machines.

With sharding, problem can be solved horizontally by adding additional machines to

face the challenge of growing data and the demands of read and write processes.

MongoDB achieves scaling by auto-sharding. MongoDB sharding provides: (1)

automatic balancing for changes in load and data distribution, (2) easy addition of new

machines without down time, (3) no single points of failure, and (4) automatic failover

(Liu, Wang & Jin, 2012; Murugesan & Ray, 2014).

5. Querying Mode Data

Querying Mode Data is manipulated through CRUD (create, read, update, and delete)

operations. MongoDB provides rich semantic querying options for reading data. For

example, the method of MongoDB “db.collection.find()” returns documents of a

certain a collection. Moreover, The method db.collection.find() retrieves a cursor to

the returned documents (Liu, Wang & Jin, 2012; Murugesan & Ray, 2014).

23

 6. Fast In-Place Updates

MongoDB allows speedy update operations through atomic modifiers. Database

updates are fast in spite of the data being spread across hundreds of servers. In

MongoDB, methods; db.collection.update() and db.collection.save() update actual

documents existing in a collection. The db.collection.update() presents more control

over the updating process (Murugesan & Ray, 2014).

Below are the essential features of MongoDB:

1. MongoDB data model:

regarding to the data model, MongoDB consists of collections. A collection which is

schema-free. This collection matches a table in relational databases as it shows in

Table 2.3. Moreover, a collection has documents which is as a row in a collection and

each document has an id (MongoDB, 2014).

 Table 2.3

 MongoDB vs SQL terms

MongoDB Database Term SQL database Term

Database Database

Collection Table

Document Row

Field Column

Index Index

Id Primary Key

Embedding and linking Join

24

2. MongoDB API:

 Mongo Query Language is a query language for MongoDB. To deal with documents

and collection, a query is built including the certain document or collection that the

needed by the query. Also, RESTful as an API in MonogDB, REST stands for

(Representational State Transfer) is designed architecture for building networked

applications.

3. MongoDB Architecture:

 MongoDB as cluster is based on sharding technique. A shard automatically saves a

part of the data. Input/Output processes are automatically leaded to the appropriate

shard(s). Every shard has a replica set which can a server or more having copies of the

same data. At any certain time

4. MongoDB replication:

Replica-set and Master-Slave are two types of replication for MongoDB. Both types

common in writing operation which is implemented on one server (Master or Primary).

5. Sharding:

 MongoDB provide the functionality of sharding based on automated architecture for

sharding/partitioning (MongoDB, 2014).

25

 

 

One is primary server and the remaining are secondary. If the primary goes down one

of the secondary servers works automatically as primary.

2.5 NoSQL Database Auditing

2.5.1 Database Auditing Definition

Database auditing is the process of monitoring access to and modification of selected

database objects and resources within operational databases and retaining a detailed

record of the access where said record can be used to proactively trigger actions and

can be retrieved and analysed as needed (Mullins, 2014).

Figure 2.1 MongoDB Architecture (Okman, Gal-Oz, Gonen, Gudes, & Abramov,

2011)

mongod

mongod

mongod
mongos mongos

client

mongod

mongod mongod

mongod

mongod

mongod

mongod mongod mongod

mongod

mongod

mongod

config servers

Shared2 Shared1 Shared3
Shared4

replica set

26

2.5.2 Importance of NoSQL Database Auditing

NoSQL auditing is a crucial aspect in NoSQL database security. Actually,

organizations should provide measures of database monitoring or auditing in order to

avoid putting their valuable assets exist in database under high risk. Also,

organizations are under pressure to protect sensitive information and implementing

database auditing is considered the only solution to this problem (Liu & Huang, 2009).

Table 2.4

 Auditing Types and Descriptions

Type of Auditing Meaning/Description

Statement Auditing Enables user to audit SQL statements by type of statement,

not by the specific schema objects on which they operate.

Typically broad, statement auditing audits the use of several

types of related actions for each option. For

example, AUDIT TABLE tracks several DDL statements

regardless of the table on which they are issued. You can

also set statement auditing to audit selected users or every

user in the database.

Privilege Auditing Enables user to audit the use of powerful system privileges

that enable corresponding actions, such

as AUDITCREATE TABLE. Privilege auditing is more

focused than statement auditing, which audits only a

particular type of action. You can set privilege auditing to

audit a selected user or every user in the database.

27

Schema Object

Auditing

Enables user to audit specific statements on a particular

schema object, such as AUDIT SELECT ON employees.

Schema object auditing is much focused, auditing only a

single specified type of statement (such as SELECT) on a

specified schema object. Schema object auditing always

applies to all users of the database.

Fine-Grained

Auditing

Enables user to audit at the most granular level, data access

and actions based on content, using any Boolean measure,

such as value > 1,000,000. Enables auditing based on access

to or changes in a column.

The important phase of NoSQL database auditing is logging. The logging process aims

to record database activities and other database information such as system

performance and use on administrator’s demand. Then, the logs can be utilized in audit

trail analysis and database usage report generation, so as to (Liu & Huang, 2009):

1. Discover any violations of database security policies.

2. Determine if there are attacks to the database.

3. Asset in database recovery.

2.5.3 NoSQL DBMS Auditing

Auditing is an instrument of the NoSQL DBMS that facilitate the process of tracking

the usage of database resources and authority enables by DBAs (Geer, 2005). In

situations where auditing is available and provided the DBMS will generate an audit

trail recording target database operations. Each audited database operation has records

in an audit trail with information such as; name of database object, operation

http://docs.oracle.com/cd/B19306_01/network.102/b14266/auditing.htm#i1009205
http://docs.oracle.com/cd/B19306_01/network.102/b14266/auditing.htm#i1009205

28

performed when and by who, based on the level of auditing available in the DBMS,

logs of changes happened on an actual record of data also may be recorded. But it has

some limited functionality to predict the attacks.

It is very useful to find that what type of operation has been made (Ezumalai & Aghila,

2009).The most common technique for audit storage is to record all the DBMS audit

data in a single audit trail. This audit trail can be inside an audit database or a stand-

alone file managed by the OS. This technique helps also in the audit analysis task since

all the audit data is sequentially saved in a one place, which enable any analysis tool

to search easily correlate related events. The selection of audit analysis tools (range

between primitive and sophisticated) determines the ease of analysis which can range

from the (Wisseman, Wilson, & Wichers, 1996).

Table 2.5

Auditing in NoSQL Databases

NoSQL Database Auditing Status

MongoDB Not available except for DDL and replica data

Cassandra Enterprise Edition only

HBase Not available

CouchDB Not available

Couchbase Server Not available

Neo4J Not available

Amazon SimpleDB Not available

29

Table 2.5 is exploring the auditing as a security aspect in NoSQL databases. The data

explained that some of them do not have auditing feature at all such as CouchDB,

Couchbase Server, Neo4J and Amazon SimpleDB. Moreover, the table also shows

that some NoSQL databases provide auditing but with limited capabilities (Grolinger,

Higashino,Tiwari & Capretz, 2013).

2.5.4 MongoDB Database Auditing

Currently, MongoDB Enterprise new version 2.6 includes an auditing capability. The

auditing facility allows administrators and users to track system activity for

deployments with multiple users and applications. The auditing facility can write audit

events to the console, the syslog, a JSON file, or a BSON file. The current auditing

system in MongoDB can only record DDL in addition to replica set, authentication

and authorization, and general operations.

MongoDB auditing system records the following actions that are related to DDL

operations:

createCollection, createDatabase, createIndex, renameCollection, dropCollection,

dropDatabase, dropIndex, createUser, dropUser, dropAllUsersFromDatabase,

updateUser, grantRolesToUser, revokeRolesFromUser, createRole, updateRole,

dropRole, dropAllRolesFromDatabase, grantRolesToRole, revokeRolesFromRole,

shutdown, grantPrivilegesToRole, revokePrivilegesFromRole and shardCollection

(MongoDB, 2014).

30

Table 2.6

Examples of DML/CRUD operations (Truică, Boicea, & Trifan, 2013)

Operation SQL-Like (MYSQL) MongoDB

Insert INSERT INTO USERS(

id, first_name, last_name

) VALUES (1, "Ciprian",

"Truica")

db.articles.insert({ _id: "1", age:

45, status: "A" })

Select SELECT * FROM

USERS

db.articles.find()

Select fields SELECT frist_name,

last_name STATUS

FROM USERS

db.articles.find({ }, { first_name:

1, last_name: 1 })

Select with where SELECT

u.first_nameFROM

`BlogDB`.`users` AS

uWHERE u.id = 1;

db.articles.find({user_id:"1

Ordered Select

ASC

SELECT * FROM

USERS ORDER BY

USER_ID ASC

db.articles.find({}).sort({user_id

: 1})

Ordered Select

DESC

SELECT * FROM

USERS ORDER BY

USER_IDDESC

db.articles.find({}).sort({user_id:

-1 })

Select with count SELECT COUNT(*)

FROM USERS

db.articles.count()

31

2.6 Related Work

As NoSQL trend is relatively new, there are various opportunities for research and

development. Many researchers are attracted to this category of databases. Apart from

other NoSQL databases we discuss here the work done in MongoDB as follows. The

security features and main functionality of the most two popular NoSQL databases:

Cassandra and MongoDB are reviewed by Okman, Gonen and Abramoy (2011). The

study found that the common problem to both NoSQL databases is lack of data files

encryption, simple authentication among servers and between them and the client,

authorization doesn’t support fine-grained authorization or Role Based Access Control

(RBAC), and lack of auditing. This gives the opportunity to implement the security

aspects in MongoDB like NoSQL databases.

The basic map-reduce algorithm is studied and it is claimed that the NoSQL databases

such as MongoDB and its key-value stores provide an efficient framework to

aggregate large volumes of data (Bonnet, Laurent, Sala, Laurent, & Sicard, 2011). The

comparison between Oracle and MongoDB is done by considering various issues such

Update UPDATE

`BlogDB`.`articles` SET

title="MongoDB"

WHERE id = 1;

db.articles.update({_id: "1"},

$set : { "article.title":

"MongoDB" }}, {upsert: true});

Delete DELETE FROM USERS db.articles.remove()

Delete using

where

DELETE FROM USERS

WHERE id=”1”

db.articles.remove({ _id: "1" })

32

as theoretical, differences, features, restrictions, integrity, distribution, system

requirements and architecture, query and insertion times.

 They stated that MongoDB provides flexibility, horizontal scalability. Also it can

store complex data like array, object or reference into one field. Mapping of objects is

also very easy in MongoDB. The features of MongoDB like map-reduce and

replications of data make the development faster than the Oracle. Being open source,

plug-ins for MongoDB can be developed for easy work (Boicea, Radulescu, & Agapin,

2012).

Van der Veen, Van der Waaij, and Meijer (2012) studied the performance difference

among SQL, NoSQL databases such as one open source SQL database (PostgreSQL)

and two open source NoSQL databases (Cassandra and MongoDB) with regard to the

sensor data storage. It is shown that MongoDB is the best choice for a small or medium

sized non-critical sensor application, especially when write performance is important.

In the research conducted by Liang and Mizuno (2011), it is stated that it is necessary

to detect defects in the code at early stage to assure the quality of the software which

can be achieved by using code review activity. The researchers have analysed the code

review repository of open source software, Chromium with MongoDB as the back

end. Before that they addressed seven research questions for which they found

interesting answers.

33

The principles and implementation mechanism of Auto-Sharding in MongoDB along

with the improved algorithm based on the frequency of data operation is considered

by Liu, Wang and Jin (2012). They claimed that this algorithm improves the

concurrent read and write performance of cluster by effectively balancing the data

among shards.

The study was performed by Rutishauser (2012) in which TPC-H queries were

implemented in MongoDB to see the performance difference with the open source

RDBMS PostgreSQL. In his paper he found that the performance of the MongoDB

was very poor as compared to the PostgreSQL. The effort is carried out to improve the

performance of web services interactions (Zagarese, Canfora, Zimeo & Baude, 2012).

They determined the execution contexts quantitatively, that make dynamic offloading

effective.

In summary, sample of MongoDB related work has been shown in Table 2.7. The table

presents a brief information about authors, year of publication, title and findings of the

researches column in the table depicts the names of the researchers. This related work

sorted by the year of publication.

34

Table 2.7

 Sample of MongoDB Related Work

Author Year Title Brief/Findings

Okman, Gonen and

Abramoy

2011

Security Issues in

NoSQL Databases

The main functionality

and security features of

two of the most popular

NoSQL databases:

Cassandra and MongoDB

Bonnet, Laurent, Sala,

Laurent and Sicard

2011

Reduce, you say:

What NoSQL can

do for data

aggregation and bi

in large

repositories

The basic map-reduce

algorithm and it is

claimed that the NoSQL

databases such as

MongoDB and its key-

value stores provide an

efficient framework

Liang and Mizuno 2011

Analyzing

Involvements of

Reviewers

Through Mining A

Code Review

Repositor

Chromium with

MongoDB as the back

end. Before that they

addressed seven research

questions for which they

found interesting answers.

Boicea, Radulescu and

Agapin

2012

MongoDB vs

Oracle-Database

Comparison

The features of MongoDB

like map-reduce and

replications of data make

35

the development faster

than the Oracle

Van der Veen, Van der

Waaij, and Meijer

2012

Sensor data storage

performance: Sql

or nosql, physical

or virtual. In Cloud

Computing

(CLOUD)

It is shown that

MongoDB is the best

choice for a small or

medium sized non-critical

sensor application,

especially when write

performance is important.

Kadebu and Mapanga 2014

A Security

Requirements

Perspective

towards a Secured

NOSQL Database

Environment

Identified NoSQL major

security issues including

audit and logging,

monitoring, filtering,

blocking and API

security.

2.7 Conclusion

The chapter reviewed NoSQL database and its data models. In addition, NoSQL

database auditing, its definition and importance have been discussed. Moreover,

NoSQL DBMS auditing was explored. Lastly, it described in details MongoDB

auditing and MongoDB related works were presented.

36

Accordingly and upon this literature review, it is clear that MongoDB database

company tries to mitigate the auditing gap by providing MongoDB new enterprise

version 2.6 (8th of April 2014). This version included an auditing system which can

record DDL operations as it was cleared from the above.

 But unfortunately, it still unable to record Data Manipulation Language (DML) and

most organizations require that all user-based Data Manipulation Language (DML)

and/or CRUD (Create, Read, Update and Delete) operations performed against

production databases be logged. This request extends the MongoDB auditing

framework, introduced in version 2.6, to include logging of all user queries and

DML/CRUD operations.

37

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

This chapter describes the research methodology used for this study. It defines the

research methods and how they will help to answer the posed research questions.

3.2 Research Methodology

This research aims to improve the auditing functionality in MongoDB. In order to

achieve that a new auditing mechanism was proposed using a research methodology

with three stages and each stage has sub-category phases as it is explained in Figure

3.1.

Figure 3.1 shows the study methodology which consists of three stages. Firstly, stage

one has one phase focus on usage of literature review in order to achieve the first

objective. Secondly, stage two contains three phases; building the mechanism

architecture, creating the extracting algorithm and developing a prototype. Eventually,

stage three consists of also three phases; conducting experiment, obtaining results and

discussing these results. The stages of the methodology elaborated in details in the

following sections.

38

Figure 3.1 Stages of research methodology

3.2.1 Stage 1: Identifying MongoDB auditing features

Phase 1:

This phase depends on literature review to identify MongoDB auditing features. The

main focus is determining current auditing functionalities. Initially, this phase starts

with collecting literatures, analysing it and eventually determining the existing

MongoDB auditing features. The main resources for this phase including researches

in addition to MongoDB official website.

Stage 1

Identify
MongoDB
auditing
Features

•Phase 1:
Using Literature
review

Stage 2

Develop Auditing
Mechanism

•Phase 1:
Build the mechanism
architecture

•Phase 2:
Create the extracting
algorithm

•Phase 3:
Develop a prototype

Stage 3

Evaluation

•Phase 1:
Conduct the
Experiment

•Phase 2:
Obtain Results

•Phase 3:
Discuss Results

39

3.2.1.1 Analysis of Logging Techniques in MongoDB

Mongodb gives various options for storing logs that are discussed below.

1. Oplog (operations log) is used mostly to propagate updates in a distributed setting.

Oplog is a dedicated capped collection responsible for keeping a log of all operations

that change the existed data. It represents the base of replication process in MongoDB.

Oplog contains a log of all the write operations occurring in MongoDB. Database

operations are applied on the primary first in MongoDB and sequentially logs them on

the oplog. Then secondaries listen to primarys oplog and then duplicate and implement

these operations in an asynchronous manner. Moreover, a copy of the oplog is

available in all replica set members, enabling them to manage the existing case of the

database.

Each replica set member can extract oplog entries from any other member. Each

operation in the oplog is idempotent, so applying an operation multiple times creates

no problems. Oplog can be queried like any other collection, but works only in the

presence of replication (Murugesan, Ray, 2014).

2. Diaglog provides a verbose diagnostic log that records database transactions and

operations. It does not record read and insert operations, although update and

authentication information are recorded. Diaglog generates a more detailed log that is

very helpful in the problem solving and logs records for certain errors. MongoDB’s

dbpath directory is place where it keeps these log files in. the naming convention for

these files is diaglog dot time in hexadecimal (Murugesan, Ray, 2014).

40

3. Verbose logging allows logs to be stored in user specified path by choosing –logpath

option when running it in the background. Verbose logging will make logs quite large

and may affect server performance. To append to an existing log rather than

overwriting it, mongod process can be started with the –logappend option. Finally, if

a MongoDB process is long-running, logrotate command can be used to move logs to

new file. Verbose logging helps in recording every update operation, but not insert and

read operations. It records authentication information as well.

4. Profiler Audit logs can be extracted using Profiler which records complete set of all

database queries executed by different users. They record read, update and other user

control operations but their insert recording is unclear and also access control

information are not properly stored (Murugesan, Ray, 2014).

5. Mongosniff provides a low-level operation tracing/sniffing view into database

activity in real time. This is a MongoDB specific analogue of tcpdump for TCP/IP

network traffic. It helps in recording only write operation including insert and update

operations. It is very evident that each technique individually does not record all the

operations. Profiler does most of the required job for log management by recording

read, update, and authentication information (Murugesan, Ray, 2014).

41

3.2.1.2 MongoDB Auditing Features:

The auditing facility in MongoDB Enterprise new version 2.6 allows administrators

and users to track system activity for deployments with multiple users and

applications. The auditing facility can write audit events to the console, the syslog, a

JSON file, or a BSON file. The current auditing system in MongoDB can only log

DDL operations in addition to information related to replica set. Likewise, the current

auditing system also can record authentication and authorization processes, and

general operations (MongoDB, 2014).

3.2.1.3 Auditing Events and Filters

The auditing system can record the following operations:

• Data Definition Language (DDL).

• Replication.

• Authentication and authorization processes, and general operations.

Figure 3.2 MongoDB Security Architecture (MongoDB, 2014)

42

Table 3.1

Description of event message fields

Field Type Description

atype String Action type

ts Document Document that contains the date and UTC time of

the event, in ISO 8601 format.

local Document Document that contains the local IP address and

the port number of the running instance.

remote document Document that contains the remote IP address and

the port number of the incoming connection

associated with the event.

users array Array of user identification documents. Because

MongoDB allows a session to log in with

different user per database, this array can have

more than one user. Each document contains

a user field for the username and a database field

for the authentication database for that user.

params document Specific details for the event

result integer Error code.

Table 3.1 describe description of event message fields with details (MongoDB, 2014).

As it is cleared the message includes fields with certain data type such as atype which

represents the action type with string as a data type and users’ field with array as a

data type that refer to the array of user identification documents.

43

Table 3.2

MongoDB auditing system records the following Operations

Operations Type

Authenticate createUser

authCheck dropUser

createCollection dropAllUsersFromDatabase

createDatabase updateUser

createIndex grantRolesToUser

renameCollection revokeRolesFromUser

dropCollection createRole

dropDatabase updateRole

dropIndex dropRole

revokeRolesFromRole dropAllRolesFromDatabase

grantPrivilegesToRole grantRolesToRole

shardCollection revokePrivilegesFromRole

addShard replSetReconfig

removeShard enableSharding

shutdown applicationMessage

MongoDB auditing system records the operations that are related to DDL operations.

Table 3.2 contains the DDL operation types that can be recorded by MongoDB. These

types focus on the actions happen to users, database, collection and role in addition to

replica set, authentication and authorization. For example, “createUser” operation

records information about creating new user. As well, “createCollection”,

http://docs.mongodb.org/manual/reference/privilege-actions/#authr.createUser
http://docs.mongodb.org/manual/reference/privilege-actions/#authr.dropUser
http://docs.mongodb.org/manual/reference/privilege-actions/#authr.createCollection
http://docs.mongodb.org/manual/reference/privilege-actions/#authr.createIndex
http://docs.mongodb.org/manual/reference/privilege-actions/#authr.dropCollection
http://docs.mongodb.org/manual/reference/privilege-actions/#authr.createRole
http://docs.mongodb.org/manual/reference/privilege-actions/#authr.dropDatabase
http://docs.mongodb.org/manual/reference/privilege-actions/#authr.dropIndex
http://docs.mongodb.org/manual/reference/privilege-actions/#authr.dropRole
http://docs.mongodb.org/manual/reference/privilege-actions/#authr.addShard
http://docs.mongodb.org/manual/reference/privilege-actions/#authr.removeShard
http://docs.mongodb.org/manual/reference/privilege-actions/#authr.enableSharding
http://docs.mongodb.org/manual/reference/privilege-actions/#authr.shutdown
http://docs.mongodb.org/manual/reference/privilege-actions/#authr.applicationMessage

44

“renameCollection” and “dropCollection” record information about creating new

collection, renaming a collection and dropping a collection respectively.

3.2.2 Stage 2: Develop Auditing Mechanism

The target of stage two to establish an auditing mechanism for MongoDB. This stage

consists of three sub-phases; Designing the auditing architecture, creating the

algorithm and prototype for the architecture and evaluating the mechanism

respectively.

Phase 1: Build the architecture for the mechanism to extract DML/CRUD operations

from MongoDB.

Figure 3.3 The architecture of auditing mechanism

Figure 3.3 above describes the components of the proposed auditing mechanism. The

mechanism consists of four components MongoDB, auditing tool, auditing records

and auditing trail which will be explained in details in next section.

Extract
MongoDB

Auditing Tool

Audit trail

Auditing

records

Store

Display

45

1. MongoDB:

The essential part and represents the auditing database in the proposed mechanism.

Figure 3.4 MongoDB Database

Figure 3.4 shows MongoDB after it is installed and run. As it cleared from the figure

MongoDB has a shell version. So, with dedicated shell script MongoDB can be opened

and accessed easily.

2. Auditing Tool:

Auditing tool denotes a software program written in C# using Visual Studio under the

.Net 4.0 framework and responsible for extracting DML/CRUD operations from

MongoDB, storing them in an audit trail and display them. The Auditing tool

programming code depends on the auditing algorithm. Furthermore, the main

function for this tool is extracting the DML/CRUD operations from MongoDB by

accessing the logging files exist in MongoDB. Logging techniques and files has been

determined in stage one upon the research methodology as mentioned above.

46

Figure 3.5 Sample of C# code

Figure 3.5 above shows part of the implementation C# code of the proposed algorithm.

The first line is the name of the class which is called “Program” and includes two

public methods; first one is called “main” and the second is called “read”. The first

method “main” call the second method “read” and the second method includes code

for creating MongoDB client and connect to the database then retrieve the target data.

3. Audit Trail:

Audit trail denotes a log contains DML/CRUD records that are extracted from

MongoDB by the audit tool. This trail actually exists in the same audited MongoDB

database. The audit trail contains recorded data about DML/CRUD operations needed

to be auditing.

47

Figure 3.6 Sample of audit trail records

The data appeared in Figure 3.6 shows the record id, time, operation type, name space

and details respectively. These details are available for each DML/CRUD recorded

operation.

4. Displaying Auditing Records:

Auditing records stored in audit trail is displayed by the auditing tool. The Auditing

tool access the audit trail existed in MongoDB and display the recorded DML/CRUD

operations.

Figure 3.7 Sample of data recorded in MongoDB database.

48

Figure 3.7 represents a sample of data recorded in MongoDB. Data structure in

MongoDB is different from traditional RDBMS such as MySQL. In the figure there

are three documents (a document matches a record in relational databases), each of

them has six fields (field matches column in Relational database).

Phase 2: Create the algorithm for extracting DML/CRUD operations

The phase of creating an algorithm for extracting DML/CRUD operations from

MongoDB is crucial due to establishing the auditing mechanism. The main function

for this algorithm is getting the target DML/CRUD operations.

 Accordingly, getting the required operations come through certain steps comprise

accessing the MongoDB logs, extracting the DML/CRUD operations for assigned data

and then storing them in the audit trail which is existed in the same MongoDB.

The Auditing Algorithm:

1-Connecting to MongoDB

2-Accessing the MongoDB log files

 2.1-While there are DML operations for the auditing data do the following:

 2.1.1- Extracting DML operations,

 2.1.2 - Transform their format to be more readable

 2.1.3 - Save them in the Audit Trail collection

 2.1.4 - Repeating the above steps until exit.

49

Figure 3.8 MongoDB auditing algorithm flowchart

The flowchart in Figure 3.8 above shows the sequence of the algorithm starting from

connecting to MongoDB, accessing log files, checking for existence of DML/CURD

operations, extracting the targeted operations, transforming to readable format and

eventually save in the audit trail.

Phase 3: Develop a prototype for the mechanism

The phase three of stage two denotes building the prototype for the auditing algorithm.

The prototype written in C sharp under Microsoft Visual Studio 2013 Desktop on a

machine running an Intel i5 quad core 2.6GHz processor with 8GB of DDR3 Ram

with Windows8 64bit operating system. In order to connect to MongoDB, the suitable

Yes

Save

No

Start

Connect to MongoDB

Access log files

DML

exists
Extract DML Operations

Audit trail

Transform into readable

format

End

50

C sharp driver has been used. Developing process includes writing programming code

to implement the auditing algorithm and achieve the research objective. Furthermore,

appropriate libraries has been used as it is showed in Figure 3.9 to connect with

MongoDB and accessing log files.

Figure 3.9 Libraries used in the C# code

Extracting DML/CRUD operations, transforming them into readable format and lastly

storing them in the audit trail. As it is cleared from the prototype programming code

in C# the code starts by calling the appropriate libraries due to access MongoDB

database correctly. Figure 3.10 shows that after the libraries the code begins to create

a MongoDB client to connect.

Figure 3.10 MongoDB client to access data

Sequentially, the code accesses the target data and then the profile log file and audit

trail. After extracting DML records and transforming the data is saved in the audit trail

as it is showed in Figure 3.11.

Figure 3.11 Extracting and transforming C# code

51

3.2.3 Stage 3: Evaluation

To evaluate the proposed mechanism an experiment was conducted on two data sets

to display the auditing of CRUD operations with the new auditing mechanism in

MongoDB and measure the time taken when using it.

The experiment objectives:

 Examine the types of operations that can be audited (Insert – Select – Update

– Delete).

 Evaluate the performance before and after applying the proposed auditing

mechanism by calculating the time taken for executing CRUD/DML

operations (Li & Manoharan, 2013).

1. Phase 1: Conduct the Experiment:

Table 3.3 shows the DML/CRUD operations that have been involved in the

experiment involve. These operations are create/insert, query/select, update and

remove/delete.

 Table 3.3

DML/CRUD operations in MongoDB

Operation MongoDB

Insert db.articles.insert({ _id: "1", age: 45, status: "A" })

Select db.articles.find({ }, { first_name: 1, last_name: 1 })

Update

db.articles.update({_id: "1"}, $set : { "article.title":

"MongoDB" }}, {upsert: true});

Delete db.articles.remove({ _id: "1" })

52

Experiment Setup:

Hardware and software: For the initial setup MongoDB was installed on a machine

running an Intel i5 quad core 2.6GHz processor with 8GB of DDR3 RAM with

Windows8 64bit operating system. On the MongoDB we use the latest version 2.6.

Data Sets:

Two data sets were used to conduct the experiment “Auditdata” and “Auditdata2”.

Auditdata includes three collection Department, Employee and Project. Likewise,

AuditData2 includes three collections Lecturer, Course and Student. Table 3.4 shows

these data sets in details.

Table 3.4

Description of data sets used in the evaluation stage

Data Set Collection # of Documents Data Type

AuditData

Department 100000 Text and numbers

Employee 100000 Text and numbers

Project 100000 Text and numbers

AuditData2

Lecturer 100000 Text and numbers

Course 100000 Text and numbers

Student 100000 Text and numbers

Phase 2: Obtain the Results

The phase aims to getting and recording results of the experiment in terms of analysing

them easily. More details and explanation can be seen in Chapter Four.

53

Phase 3: Discuss the Results

In this phase, results of the experiment will be discussed. More details and explanation

can be seen in Chapter Four.

3.3 Conclusion

This chapter presents the research methodology stages which involved three stages

and each stage has sub-phases. The main stages are; identification of MongoDB

auditing features, developing auditing mechanism and evaluation of auditing

mechaism and all of these stages have been achieved. Moreover, the outcome of the

first stage was related to MongoDB auditing features and shows that MongoDB

auditing system logs operations information including; schema data definition

language operations and operations related to replica set in addition to operations of

authentication and authorization, and eventually general operations.

 After that, in the phase one of stage two a new mechanism architecture was presented.

The auditing mechanism has four components one of them was the auditing tool.

Algorithm was developed for this auditing tool in phase two of stage two. In order to

validate this algorithm a prototype was built. Morover, last stage used in evaluation

process and more discussion is made in upcoming chapter.

54

CHAPTER FOUR

RESULTS AND EVALUATION

4.1 Introduction

In the way to evaluate the proposed auditing mechanism prototype, the experiment has

been conducted. This experiment has been applied on two different data sets to test

the auditing process of the four CRUD/DML operations in MongoDB.

 Sequentially, The experiment objectives are; examine the types of operations that can

be audited (Insert – Select – Update – Delete) as well as, evaluate the performance

before and after applying the proposed auditing mechanism by calculating the time

taken for executing CRUD/DML operations (Li & Manoharan, 2013). This chapter

explores the auditing mechanism prototype, the experiment results and evaluation.

4.2 Auditing Mechanism Prototype

The auditing prototype was built depended on the algorithm that has been created in

section 3.2.2 at the stage two of the research methodology. This prototype has been

developed by using C# programming language and Microsoft Visual Studio

Framework 2013. The experiment has been executed on Windows 8.1 operating

system, Pentium processors Core i5, and 8GB RAM. Figure 4.1 bellow shows the

auditing mechanism prototype output.

55

Figure 4.1: Auditing Mechanism Prototype

In addition, the output of the proposed mechanism prototype includes the following

fields; “ts” which means time stamp that includes date and time. Also, “op” which

means DML operations (query for select – remove for delete – update - insert). As

well as, “ns” which means name space and denotes the target data set. All these fields

are illustrated below in Figure 4.2.

Figure 4.2 Fields of prototype records

Likewise, Figure 4.3 presents details field in the output of the proposed mechanism

prototype. This field has detailed information about the recorded CRUD/DML

operations such as number of documents retrieved and time consumed in millisecond.

Figure 4.3 Details field of the prototype output

56

4.3 The Experiment Results

The experiment has been conducted using two different datasets which named

AuditData and AuditData2. Each dataset has three data collections (tables). The first

data set is “AuditData” which contains three collections; Department, Employee and

Project. Figure 4.4 demonstrates the description of the first dataset “ AuditData”.

Figure 4.4 Data Set 1 “AuditData”

As a consequence, the Department collection has three fields for each document;

which are ID, DeptID; which refers to the unique code of every department, and

DName, which refers to the name of department. Figure 4.5 shows sample of data

from “Department”.

Figure 4.5 Sample of data in “Department” collection in data set one “AuditData”

57

As well, Employee collection has five fields for each document; which are EmpID,

FName, LName, DeptID and ProjID. Figure 4.6 provides sample of data from

“Employee” collection.

Figure 4.6 Sample of data in “Employee” collection in data set one “AuditData”

Lastly, the Project collection which has the project details. Each document in this

collection has three fields which are; id, ProjID and PName. Figure 4.7 displays

sample data from “Project” collection.

Figure 4.7 Sample of data in “Project” collection in data set one “AuditData”

On other hand, the second dataset which is AuditData2. It consists from three

collections which are; Lecturer, Course and Student. Figure 4.8 presents the

description of the second dataset “AuditData2”.

Figure 4.8 Dataset 2 “AuditData2” description.

58

Firstly, the Course collection has four fields for each document; which are _id,

CourseID, CourseName, and LecID. Figure 4.9 explains sample data from “Course”

collection in data set two “AuditData2”.

Figure 4.9 Sample of data in “Course” collection in data set two “AuditData2”

Secondly, the Lecturer collection which has the details of lecturers, consists of four

fields for each document which are; _id, LecID, LecFName and LecLName. Figure

4.10 displays sample data from “Lecturer” collection.

Figure 4.10 Sample of data in “Lecturer” collection in data set two “AuditData2”

Finally, the Student collection in second dataset “AuditData2”. Each document in

“Student” collection has five fields which are; _id, StudentID, StudentFName,

StudentLName, CourseID. Figure 4.11 provides sample data of Student collection.

Figure 4.11 Sample of data in “Student” collection in data set two “AuditData2”

59

4.3.1 Results of Auditing the CRUD/DML Operations

The results of the experiment has shown that the proposed auditing mechanism

prototype succeeded in auditing the four DML/CRUD operations for both of used

datasets.

1. Results of First Dataset “AuditData”

The value of “operation-type” field in Figure 4.12 illustrates the type of DML/CRUD

operation is a query or select operation. Similarly, the value of “time” field provides

the auditing time and “nspace” field means the auditing collection.

Figure 4.12 Auditing of the query (select) operation for data set 1.

Likewise, Figure 4.13 demonstrates the update operation for Employee collection.

In the figure below the value of “operation-type” field is “update”.

Figure 4.13 Auditing of the update operation for data set 1.

60

Besides the operation type, also the field “time” field provides the auditing time and

“nspace” field means the auditing collection.

Figure 4.14 Auditing of the insert operation for data set 1.

The value of “operation-type” field in Figure 4.14 describes the type of DML/CRUD

operation is an insert operation. Similarly, the value of “time” field provides the

auditing time and “nspace” field means the auditing collection.

Figure 4.15 Auditing of the remove (delete) operation for data set 1.

Similarly, as Figure 4.15 demonstrates the operation type is “remove” and “nspace” is

Employee collection.

61

2. Results of Second Data Set “AuditData2”

Figure 4.16 Auditing of the query (select) operation for data set 2.

The field “operation-type” in Figure 4.16 has “query” value which means that the type

of DML/CRUD operation that has been audited is the query or select operation.

Likewise, Figure 4.17 demonstrates the update operation for Course collection.

In the figure below the value of “operation-type” field is “update”.

Figure 4.17 Auditing of the update operation for data set 2.

Besides the operation type, also the field “time” field provides the auditing time and

“nspace” field means the auditing collection.

Figure 4.18 Auditing of the insert operation for data set 2.

62

The field “operation-type” in Figure 4.18 depicts the type of DML/CRUD operation

that has been audited and the operation here is the insert operation.

Figure 4.19 Auditing of the remove operation for data set 2.

The field “operation-type” in Figure 4.19 depicts the type of DML/CRUD operation

that has been audited and the operation here is the remove operation.

In summary, the aforementioned results explicated that the proposed auditing

mechanism succeeded in auditing the four CRUD/DML operations. It has been

achieved by implementing the auditing mechanism on two data sets AuditData and

AuditData2. Accordingly, the auditing mechanism recorded the information of audited

CRUD/DML operation in an audit trail. These information provide the time, operation

type, name of document and the details. As well, the auditing mechanism stored these

information in an audit trail in the same MongoDB database.

4.4 Performance Evaluation

The second objective of the experiment measures the impact of the proposed auditing

mechanism on the performance of MongoDB database. In order to measure and

evaluate the performance, the technique conducted by Boicea et al. (2012) and also Li

and Manoharan (2013) has been followed. Continually, measuring the performance

63

has achieved by calculating the time taken for executing CRUD/DML operations

before and after applying the proposed mechanism.

Details of experiment results and evaluation are demonstrated in the following

sections with tables and charts. Furthermore, in the incoming tables, the number of

operations refers to the number of execution times for a certain operation. As well, the

tables illustrate the time taken in millisecond. By the same way, the charts explicate

the time taken in millisecond on the vertical axis and number of execution times for

an operation on the horizontal axis.

.

Table 4.1

Time of the select operations in both data sets MS)

Data Set

Number of Operations

10 50 100 1000 10000

Before

Data Set 1 156 162 165 203 441

Data Set 2 142 145 148 178 375

After

Data Set 1 413 737 1099 7254 18132

Data Set 2 1838 7901 15393 150460 1529703

Table 4.1 has presented the execution time in millisecond of the select operation in

both data sets AuditData and AuditData2. The time has been calculated before and

after implementing the proposed auditing mechanism. Also, the number of operations

refers to the number of execution times for the select operation.

64

The comparison in Table 4.1 above showed a difference between before and after

applying the auditing mechanism in the both datasets. This difference increasing

gradually and it reached the maximum in case of 10000 number of operations.

Accordingly, this difference is considered inadequate because the increase in time

taken means that the proposed auditing mechanism negatively impacted MongoDB

performance by decreasing the performance of database.

Figure 4.20 Time of the select operation for Data Set 1 before and after applying the

proposed auditing mechanism

The chart in Figure 4.20 showed the time taken in millisecond on the vertical axis and

number of times the select operation is executed on the horizontal axis in case of data

set 1. Furthermore, Figure 4.20 depicted a small difference in time taken in case of the

number of operations was 10, 50 or 100 which is considered good because the impact

on the performance of database is very limited. Moreover, the difference in time

significantly increased in case of the number of operations was 1000 and 10000.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

10 50 100 1000 10000

Ti
m

e
(m

s)

Number of Operations

Select Operations in Data Set 1

Before - Data Set 1 After - Data Set 1

65

Accordingly, this significant difference is considered incompetent because it means

that the proposed auditing mechanism decreased the performance of MongoDB

database.

Figure 4.21 Time of the select operation for Data Set 2 before and after applying the

proposed auditing mechanism.

The line chart in Figure 4.21 presents the time taken in millisecond on the vertical axis

and number of times the select operation is executed on the horizontal axis in case of

data set 2. Furthermore, the chat illustrates almost a little unseen difference in time

taken in case the number of operations was 10, 50 or 100 which is considered good

because the performance of database is almost similar in the both cases before and

after applying the mechanism. Moreover, the difference in time increased in case of

the number of operations was 1000 and 10000. Accordingly, this difference is

considered inadequate because that the proposed auditing mechanism reduced the

performance of MongoDB database.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

10 50 100 1000 10000

Ti
m

e
(m

s)

Number of Operations

Select Operations in Data Set 2

Before - Data Set 2 After- Data Set 2

66

Table 4.2

Time of the insert operations in both data sets (MS)

Data Set

Number of Operations

10 50 100 1000 10000

Before

Data Set 1 439 482 520 1272 8126

Data Set 2 402 427 483 1178 7991

After

Data Set 1 563 660 952 6210 25382

Data Set 2 544 788 861 5264 19760

Table 4.2 presented the execution time in millisecond of the insert operation in both

datasets AuditData and AuditData2 before and after applying the proposed auditing

mechanism. As it is cleared from the comparison that the difference between the two

cases increased in a gradual way until it arrived the maximum in case of 10000 number

of operations. The increase in time taken demonstrates the negative impact of the

proposed auditing mechanism on the performance of MongoDB database.

67

Figure 4.22 Time of the insert operation for Data Set 1 before and after applying the

proposed Auditing mechanism.

The chart in Figure 4.22 showed the time taken in millisecond on the vertical axis and

number of insert operations on the horizontal axis in case of data set 1. Furthermore,

Figure 4.22 depicted there is almost no difference in time taken in case of the number

of operations was 10, 50 or 100 which is considered good because the performance of

database is very close in the both cases before and after applying the mechanism.

Moreover, the difference in time increased in case of the number of operations was

1000 and 10000. Accordingly, this difference means that the proposed auditing

mechanism declined the performance of MongoDB database.

0

5000

10000

15000

20000

25000

30000

35000

40000

10 50 100 1000 10000

Ti
m

e
(m

s)

Number of Operations

Insert Operations in Data Set 1

Before Data Set 1 After Data Set 1

68

Figure 4.23 Time of the insert operation for Data Set 2 before and after applying the

proposed Auditing mechanism.

The chart in Figure 4.23 showed the time taken in millisecond on the vertical axis and

number of times the insert operation is executed on the horizontal axis in case of data

set 2. Furthermore, the chart depicted a little difference in time taken in case of the

number of operations was 10, 50 or 100 which means that the impact on the

performance of database is very limited and this is considered good. Furthermore, the

difference in time significantly increased in case of the number of operations was 1000

and 10000. Accordingly, this significant difference is considered inadequate because

it means that the proposed auditing mechanism reduced the performance of MongoDB

database.

0

5000

10000

15000

20000

25000

30000

10 50 100 1000 10000

Ti
m

e
(m

s)

Number of Operations

Insert Operations In Data Set 2

Before Data Set 2 After Data Set 2

69

Table 4.3

Time of the remove/delete operations in both data sets (MS)

Data Set

Number of Operations

10 50 100 1000 10000

Before

Data Set 1 1157 4023 7702 72138 758629

Data Set 2 1168 4129 7588 77064 754924

After

Data Set 1 1833 7100 14322 123240 1088074

Data Set 2 1844 7205 13638 130231 1078074

Table 4.3 presented the average time in millisecond of the remove/delete operation in

both data sets AuditData and AuditData2 before and after implementing the proposed

auditing mechanism. In the table, the number of operations refers to the number of

times the remove/delete operation is executed in the test.

As the data showed from the comparison that the difference between the two cases

increased gradually until it arrived at the maximum in case of 10000 number of

operations. The increase in time taken generally is considered incompetent because it

means that the proposed auditing mechanism negatively impacted MongoDB

performance by decreasing the performance of database.

70

Figure 4.24 Time of the remove/delete operation for Data Set 1 before and after

applying the proposed auditing mechanism.

The chart in Figure 4.24 presented the time taken in millisecond on the vertical axis

and number of times the remove/delete operation is executed on the horizontal axis in

case of data set 1. Furthermore, Figure 4.24 depicted a small difference in time taken

in case of the number of operations was 10, 50, 100 or 1000 which is considered good

to some extent because the impact on the performance of database is very limited. On

the other hand, the difference in time significantly increased in the case of the number

of operations was 10000 which is considered incompetent because it means that the

proposed auditing mechanism decreased the performance of MongoDB database.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

10 50 100 1000 10000

Ti
m

e
(m

s)

Number of Operations

Remove/Delete Operations in Data Set 1

Before Data Set 1 After Data Set 2

71

Figure 4.25 Time of the remove/delete operation for Data Set 2 before and after

applying the proposed Auditing mechanism.

The chart in Figure 4.25 showed the time taken in millisecond on the vertical axis and

number of times the remove/delete operation is executed on the horizontal axis in case

of data set 2. Furthermore, Figure 4.25 depicted a small difference in time taken in

case of the number of operations was 10, 50, 100 or 1000. This difference could be

good since its impact on the performance of database is limited. Nevertheless, the

difference in time significantly increased in the case of the number of operations was

10000 which is considered inadequate because it means that the proposed auditing

mechanism reduced the performance of MongoDB database.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

10 50 100 1000 10000

Ti
m

e
(m

s)

Number of Operations

Remove/Delete Operations in Data Set 2

Before Data Set 2 After Data Set 2

72

Table 4.4

Time of the update operations in both data sets (MS)

Data Set

Number of Operations

10 50 100 1000 10000

Before

Data Set 1 438 466 507 1207 8054

Data Set 2 1111 3943 7396 70775 704924

After

Data Set 1 473 693 1027 6745 26067

Data Set 2 1270 4274 7975 74470 758343

Table 4.4 presented the average time in millisecond of the update operation in both

datasets (AuditData and AuditData2) before and after implementing the proposed

auditing mechanism. In the table, the number of operations refers to the number of

times the update operation is executed in the test. As the data showed from the

comparison, the difference in execution time calculated is increasing gradually and it

reached the peak where number of operations was 10000. The increase in time taken

means that the proposed auditing mechanism negatively impacted MongoDB

performance by decreasing the performance of database.

73

Figure 4.26 Time of the update operation in data set 1 before and after applying the

proposed Auditing mechanism.

The chart in Figure 4.26 showed the time taken in millisecond on the vertical axis and

number of times the update operation is executed on the horizontal axis in case of data

set 1. Furthermore, the chart depicted a very small difference in time taken in case of

the number of operations was 10, 50 or 100 which means that the impact on the

performance of database is very limited and this is considered good. Furthermore, the

difference in time significantly increased in case of the number of operations was 1000

and 10000. Sequentially, this significant difference is considered inadequate because

it means that the proposed auditing mechanism decreased the performance of

MongoDB database.

0

5000

10000

15000

20000

25000

30000

35000

40000

10 50 100 1000 10000

Ti
m

e
(m

s)

Number of Operations

Update Operations in Data set 1

Before Data Set 1 After Data Set 1

74

Figure 4.27 Time of the update operation in data set 2 before and after applying the

proposed auditing mechanism.

The chart in Figure 4.27 showed the time taken in millisecond on the vertical axis and

number of times the update operation is executed on the horizontal axis in case of data

set 2. Furthermore, the chat depicted almost little unseen difference in time taken in

case the number of operations was 10, 50 or 100 which is considered good because

the performance of database is almost similar in the both cases before and after

applying the mechanism. Moreover, the difference in time increased in case of the

number of operations was 1000 and 10000. Accordingly, this difference is considered

incompetent because that the proposed auditing mechanism reduced the performance

of MongoDB database.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

10 50 100 1000 10000

Ti
m

e
(m

s)

Number of Operations

Update operations in Data Set 2

Before Data Set 2 After Data Set 2

75

4.5 Summary

This chapter explained the auditing mechanism prototype, the experiment results and

evaluation. Firstly, section 4.2 explored the prototype and programing language and

the tools used to develop it in addition to the output of this prototype. Secondly, section

4.3 described the experiment results and how the new auditing mechanism

successfully achieved the auditing for CRUD/DML operations. It has been

accomplished by implementing the auditing mechanism on two datasets AuditData

and AuditData2.

Moreover, section 4.3.1 explained the types of audited CRUD/DML operations in first

and second datasets. Furthermore, this section illustrated how that the auditing

mechanism recorded the information of audited CRUD/DML operation in an audit

trail. These information provide the time, operation type and name of document in

beside of more details. In addition, the audit trail that has the auditing information is

existed in the same MongoDB database.

Eventually, section 4.4 demonstrated the impact of the new auditing mechanism on

the performance of MongoDB database. In order to measure and evaluate the

performance, this study followed Boicea et al. (2012) and Li and Manoharan (2013).

For the sake of measuring the performance the time taken for executing CRUD/DML

operations has been calculated before and after applying the proposed mechanism.

76

After applying this technique on two datasets AuditData and AuditData2. Generally,

it is noticed that the auditing mechanism is considered competent in the case of number

of CRUD/DML operations are small such as 10 and 50. On contrary, the performance

of MongoDB affected negatively when the number of CRUD/DML operations were

big such as 1000 and 10000 operations.

77

CHAPTER FIVE

CONCLUSION AND FUTURE WORK

5.1 Introduction

This study has demonstrated important issues related to the auditing functionality in

MongoDB, and according to what have achieved, this chapter concludes the outcomes

of this study and presents limitation and future work.

5.2 Conclusion

In this study, the auditing gap in NoSQL Databases and MongoDB database were

explained carefully. As stated in Chapter One, there three main objectives were

formulated; 1) identifying the auditing features of MongoDB, 2) improving the

auditing features in MongoDB by developing a new auditing mechanism, and finally,

3) evaluating the proposed mechanism.

In order to identify MongoDB auditing features as the first objective, the study

depended on the literatures and related researches which depicted that MongoDB

provides auditing features for DDL operations but unfortunately does not present

auditing for CRUD/DML operations.

Based on the lack of auditing determined in the first objective, the study moved to the

second objective; improving the auditing features in MongoDB by developing a new

mechanism. The architecture of mechanism consists of four components MongoDB

database as a target database for auditing, audit tool and its function is extracting

CRUD/DML operations from target database, interface for displaying audited record

78

audit trail as a log to store the extracted CRUD/DML operations. In order to

implement the proposed mechanism, it was needed to create algorithm and prototype

for this algorithm. Accordingly, to evaluate the proposed mechanism after creating the

algorithm which is the third objective an experiment was conducted.

Sequentially, the experiment results shows that the proposed auditing mechanism

succeeded in auditing the four CRUD/DML operations (query/select – insert – update-

remove/delete). In addition, it is noticed that the proposed auditing mechanism affect

the performance of MongoDB by increasing the time of executions and this increase

has a positive correlation with the number of CRUD/DML operations.

In conclusion, this study tried to fill the gap represented in the lack of CRUD/DML

auditing feature existing in an open source NoSQL database MongoDB. The research

reached this goal through achieving the three of the study.

5.3 Limitations

First limitation was the unavailability of real data to use in this study as it was

explained in section 3.2.3 in Chapter Three that experimental data sets were used to

test the proposed mechanism. Second limitation was the limited resources as it was

mentioned that the testing is conducted on single node but it is supposed to be

conducted on multiple nodes.

79

5.4 Future Work

It is suggested to implement the proposed auditing mechanism in real environment to

achieve real evaluation. Also conducting the evaluation in multiple nodes and multi-

client environments may lead to better assessment and evaluation for the proposed

mechanism. Furthermore, a friendly user interface could be built for the mechanism’s

prototype.

80

REFERENCES

Apache CouchDB. (2014).Retrieved 12 March, 2014 from Apache CouchDB: http:

//couchdb. apache.org/

Apache HBase. (2014). HBase - Apache HBase™ Home. Retrieved 12 March, 2014

from http://hbase.apache.org

Boicea, A., Radulescu, F., & Agapin, L. I. (2012). MongoDB vs Oracle-Database

Comparison. 2012 Third International Conference on Emerging Intelligent

Data and Web Technologies (EIDWT) (pp. 330-335).

Bonnet, L., Laurent, A., Sala, M., Laurent, B., & Sicard, N. (2011). Reduce, you say:

What nosql can do for data aggregation and bi in large repositories. In

Database and Expert Systems Applications (DEXA), 2011 22nd International

Workshop on (pp. 483-488). IEEE.

Buerli, M., & Obispo, C. P. S. L. (2012). The Current State of Graph Databases.

Retrieved 7 May, 2014 from http://www.cs.utexas.edu:

http://www.cs.utexas.edu~cannata/dbms/Class%20Notes/09%20Graph_Data

bases_Survey.pdf

Couchbase Server the NoSQL document database. (2014). Couchbase Server

Distributed, Non-Relational Database Couchbase. Retrieved from

http://www.couchbase.com/couchbase-server/overview

Dean, J., & Ghemawat, S. (2010). MapReduce: a flexible data processing tool.

Communications of the ACM, 53(1), 72-77.

81

Ezumalai, R., & Aghila, G. (2009). Combinatorial approach for preventing SQL

Injection attacks. In Advance Computing Conference, 2009. IACC 2009.

IEEE International (pp. 1212-1217). IEEE.

Geer, D. (2005). Malicious bots threaten network security. Computer, 38(1), 18-20.

Dijcks, J. P. (2012). Oracle: Big data for the enterprise. Oracle White Paper.

Gantz, J., & Reinsel, D. (2012). The digital universe in 2020: Big data, bigger digital

shadows, and biggest growth in the Far East. IDC iView: IDC Analyze the

Future. Retrieved 12 March, 2014 from www.emc.com:

http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-

2020.pdf

Ghemawat, S., Gobioff, H., & Leung, S. T. (2003). The Google file system. In ACM

SIGOPS Operating Systems Review (Vol. 37, No. 5, pp. 29-43). ACM.

Grolinger, K., Higashino, W. A., Tiwari, A., & Capretz, M. A. (2013). Data

management in cloud environments: NoSQL and NewSQL data stores.

Journal of Cloud Computing: Advances, Systems and Applications, (2), 2-22.

Hecht, R., & Jablonski, S. (2011). NoSQL Evaluation. International Conference on

Cloud and Service Computing, (pp. 337-341).

Hsu, W. C., Huang, J. Y., Chen, C. H., Su, C. Y., Shih, H. C., Liao, T. Y., & Liao, I.

E. (2013). A cloud service for the evaluation of company's financial health

using XBRL-based financial statements. In Big Data, 2013 IEEE International

Conference on (pp. 10-14). IEEE.

82

Kadebu, P., & Mapanga, I. (2014). A Security Requirements Perspective towards a

Secured NOSQL Database Environment. International Conference of Advance

Research and Innovation (ICARI-2014), (3), 472-480.

Kanade, A., Gopal, A., & Kanade, S. (2014, February). A study of normalization and

embedding in MongoDB. In Advance Computing Conference (IACC), 2014

IEEE International (pp. 416-421). IEEE.

Kanade, A. S., Gopal, A., & Kanade, S. (2013). Cloud Based Databases-A Changing

Trend. International Journal of Management, IT and Engineering, 3(7), 273-

287.

Lawrence, R. (2014). Integration and Virtualization of Relational SQL and NoSQL

Systems Including MySQL and MongoDB. In Computational Science and

Computational Intelligence (CSCI), 2014 International Conference on (Vol. 1,

pp. 285-290). IEEE.

Li, Y., & Manoharan, S. (2013). A performance comparison of SQL and NoSQL

databases. In Communications, Computers and Signal Processing (PACRIM),

2013 IEEE Pacific Rim Conference on (pp. 15-19). IEEE.

Liang, J., & Mizuno, O. (2011). Analyzing Involvements of Reviewers Through

Mining A Code Review Repository. In Software Measurement, 2011 Joint

Conference of the 21st Int'l Workshop on and 6th Int'l Conference on Software

Process and Product Measurement (IWSM-MENSURA) (pp. 126-132). IEEE.

Liu, L., & Huang, Q. (2009). A framework for database auditing. In Computer

Sciences and Convergence Information Technology, 2009. ICCIT'09. Fourth

International Conference on (pp. 982-986). IEEE.

83

Liu, Y., Wang, Y., & Jin, Y. (2012). Research on the improvement of MongoDB Auto-

Sharding in cloud environment. In Computer Science & Education (ICCSE),

2012 7th International Conference on (pp. 851-854). IEEE.

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A.

H. (2011). Big data: The next frontier for innovation, competition, and

productivity. Retrieved from

http://www.mckinsey.com/insights/business_technology/big_data_the_next_f

rontier_for_innovation.

Mapanga, I., & Kadebu, P. (2013). Database Management Systems: A NoSQL

Analysis. International journal of Modern Communication Technologies and

Research, 1(7), 12-18.

Mohamed, M.A., Altrafi, O.G., & Ismail, M. O. (2014). Realtional vs. NoSQL A

survey. International Journal of Computer and Information Technology, 3(3),

589-601

MongoDB. (2014). Retrieved 1 March, 2014 from http://www.mongodb.org/

Mullins, C. S. Retrieved 9 May, 2014 from www.oowidgets.com:

 http://www.oowidgets.com/Database%20Auditing%20Essentials.pdf

Murugesan, P., & Ray, I. (2014). Audit Log Management in MongoDB. In Services

(SERVICES), 2014 IEEE World Congress on (pp. 53-57). IEEE.

Narde, R. (2013). A Comparison of NoSQL systems (Doctoral dissertation, Rochester

Institute of Technology).

Neo4j. (2014). Neo4j - The World's Leading Graph Database. Retrieved 12 March,

2014 from http://www.neo4j.org/

84

Ohlhorst, F. J. (2012). Big data analytics: turning big data into big money. John Wiley

& Sons.

Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E., & Abramov, J. (2011). Security issues

in nosql databases. In Trust, Security and Privacy in Computing and

Communications (TrustCom), 2011 IEEE 10th International Conference on

(pp. 541-547). IEEE.

Pavlenko, D. (2014). MongoDB Audit Logging or How to Log Data Changes Using

MongoDB. Retrieved 12 March, 2014 from sysgears.com:

http://sysgears.com/articles/mongodb-audit-logging-or-how-log-data-

changes-using-mongodb/

PCI Security Standards Council. (2010). Payment card industry (pci) data security

standard – requirements and security assessment pro-cedures version 2. 0.

Wakefield, MA, USA: Author. Retrieved 17 March, 2014

from:https://www.pcisecuritystandards.org/documents/pcidss v2.pdf

Pozzani, G. (2013). Introduction to NoSQL. Retrieved 21 March, 2014 from

profs.sci.univr.it:http://profs.sci.univr.it/~pozzani/Materiale/nosql/01%20-

%20introduction.pdf

Stonebraker, M., Madden, S., Abadi, D. J., Harizopoulos, S., Hachem, N., & Helland,

P. (2007). The end of an architectural era :(it’s time for a complete rewrite).

In Proceedings of the 33rd international conference on Very large data bases

(pp. 1150-1160). VLDB Endowment.

Rutishauser, N. (2012). TPC-H applied to MongoDB: How a NoSQL database

performs . Retreived 21 March,2014 from www.ifi.uzh.ch:

http://www.ifi.uzh.ch/dbtg/teaching/thesesarch/VertiefungRutishauser.pdf

85

Truică, C. O., Boicea, A., & Trifan, I. (2013). CRUD Operations in MongoDB. Paper

presented at the International Conference on Advanced Computer Science and

Electronics Information (ICACSEI 2013). (pp. 347-250).

White, T. (2009). Hadoop: The Definitive Guide. O’Reilly Media, Inc.

Tudorica, B. G., & Bucur, C. (2011). A comparison between several NoSQL databases

with comments and notes. In Roedunet International Conference (RoEduNet),

2011 10th (pp. 1-5). IEEE.

US Department of Health and Human Services. (2013). The Health Insurance

Portability and Accountability Act of 1996: health information privacy. US

Department of Health and Human Services website. Retrieved 30 July,

2013.from:http://www.hhs.gov/ocr/privacy/.

Valley Programming. (2014). Big data datasets (large dataset examples) Boulder,

Colorado. Retrieved 21 March, 2014, from www.valleyprogramming.com:

http://www.valleyprogramming.com/blog/big-data-datasets-large-examples-

boulder-colorado-hadoop-mongodb

Van der Veen, J. S., Van der Waaij, B., & Meijer, R. J. (2012). Sensor data storage

performance: Sql or nosql, physical or virtual. In Cloud Computing (CLOUD),

2012 IEEE 5th International Conference on (pp. 431-438). IEEE.

Venable, J. & Kuechler B, (2006), The Role of Theory and Theorising in Design

Science Research, First International Conference on Design Science Research

in Information Systems and Technology, Claremont, California, pp. 1-18.

86

Wisseman, S., Wilson, B., & Wichers, D. (1996). Trusted Database Management

System Interpretation of the Trusted Computer System Evaluation Criteria.

Diane Publishing Co.

Zagarese, Q., Canfora, G., Zimeo, E., & Baude, F. (2012). Enabling advanced

loading strategies for data intensive web services. In Web Services (ICWS),

2012 IEEE 19th International Conference on (pp. 480-487). IEEE.

