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ABSTARK

Kemajuan dalam teknologi digital dan World Wide Web telah membawa kepada
peningkatan document digital yang digunakan untuk pelbagai tujuan seperti
penerbitan dan Perpustakaan digital. Fenomena ini telah menimbulkan kesedaran
untuk mewujudkan teknik-teknik yang lebih berkesan untuk membantu dalam
pencarian dan pencapaian teks. Salah satu tugas yang paling diperlukan ialah
pengkelompokkan yang boleh mengkategorikan dokumen secara automatik kepada
kumpulan yang bermakna. Pengkelompokkan adalah satu tugas yang penting dalam
perlombongan data dan pembelajaran mesin. Ketepatan kelompok bergantung erat
pada pemilihan kaedah perwakilan teks. Kaedah tradisional memodelkan perwakilan
dokumen teks dalam bentuk bag perkataan yang menggunakan teknik frekuensi
istilah frekuensi dokumen indeks ( TFIDF ). Kaedah ini mengabaikan hubungan dan
makna perkataan di dalam dokumen. Akibatnya masalah sparsity dan semantik yang
lazim dalam dokumen teks tersebut tidak dapat diselesaikan . Dalam kajian ini ,
masalah sparsity dan semantik dikurangkan dengan mengusulkan kaedah perwakilan
teks berdasarkan graf iaitu graf ketergantungan dengan tujuan untuk meningkatkan
ketepatan pengkelompokkan dokumen. Skim perwakilan graf ketergantungan
dihasilkan menerusi pengumpulan analisis sintaks dan semantik. Sampel daripada
dataset 20 kumpulan berita telah digunakan dalam kajian ini. Dokumen-dokumen
teks mengalami pra- pemprosesan dan parsing sintaks untuk mengenal pasti struktur
ayat. Kemudian semantik perkataan dimodelkan menggunakan graf ketergantungan.
Graf ketergantungan yang dihasilkan kemudian digunakan dalam proses analisis
kelompok. Teknik K-means telah digunakan dalam kajian ini. Hasil kelompok
berdasarkan graf ketergantungan dibandingkan dengan kaedah popular perwakilan
teks iaitu TFIDF dan teks perwakilan berasaskan Ontologi. Hasil kajian
menunjukkan bahawa graf ketergantungan menghasilkan keputusan baik yang
melebihi kedua-dua TFIDF dan teks perwakilan berasaskan Ontologi. Ini
membuktikan bahawa kaedah perwakilan teks yang dicadangkan mampu memberi
hasil pengkelompokan dokumen yang lebih tepat.



ABSTRACT

Advances in digital technology and the World Wide Web has led to the increase of
digital documents that are used for various purposes such as publishing and digital
library. This phenomenon raises awareness for the requirement of effective
techniques that can help during the search and retrieval of text. One of the most
needed tasks is clustering, which categorizes documents automatically into
meaningful groups. Clustering is an important task in data mining and machine
learning. The accuracy of clustering depends tightly on the selection of the text
representation method. Traditional methods of text representation model documents
as bags of words using term-frequency index document frequency (TFIDF). This
method ignores the relationship and meanings of words in the document. As a result
the sparsity and semantic problem that is prevalent in textual document are not
resolved. In this study, the problem of sparsity and semantic is reduced by
proposing a graph based text representation method, namely dependency graph with
the aim of improving the accuracy of document clustering. The dependency graph
representation scheme is created through an accumulation of syntactic and semantic
analysis. A sample of 20 news group, dataset was used in this study. The text
documents undergo pre-processing and syntactic parsing in order to identify the
sentence structure. Then the semantic of words are modeled using dependency
graph. The produced dependency graph is then used in the process of cluster
analysis. K-means clustering technique was used in this study. The dependency
graph based clustering result were compared with the popular text representation
method, i.e. TFIDF and Ontology based text representation. The result shows that
the dependency graph outperforms both TFIDF and Ontology based text
representation. The findings proved that the proposed text representation method
leads to more accurate document clustering results.

KEYWORDS
Text Representation scheme, Dependency Graph, Document Clustering
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CHAPTER ONE

INTRODUCTION

11 DOCUMENT CLUSTERING

Document clustering is considered a vital technology in the era of internet. It’s an
essential technique in mining underlying structures in text document data sets.
Furthermore, this is a very interesting research topic that has influenced a number of
researchers and practitioners from a number of fields, including data mining,
machine learning, and information retrieval due to its fundamental role in many of
real-world applications (Andrews & Fox, 2007). Text clustering means finding the
groups that are related to each other. These groups are collected together in an
unstructured formal document. In fact, clustering becomes very famous for its ability
to offer an exceptional way of digesting in addition to generalize a good quantity of
information. The extracting appropriate feature is considered the basis of clustering.
Clustering text documents into category groups is a necessary step in the mining of
abundance text data on the Web, indexed and retrieval or incorporate information
systems and extract proper feature (concept) of a problem area. Text documents are
often represented as high-dimensional, sparse vectors and complex semantics

(Dhillon, et al., 2001& Jing, et al., 2005).

In existing clustering methods, a document is often represented as “bag of words” (in
BOW model), N-grams (in suffix tree document model), or TF-IDF without

considering the natural language relationships between the words (Wang et al.,2011).
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