
WEB DEVELOPMENT PRODUCTIVITY IMPROVEMENT THROUGH
OBJECT-ORIENTED APPLICATION FRAMEWORK

MOHAMMAD NURUZZAMAN

MASTER OF SCIENCE
UNIVERSITI UTARA MALAYSIA

2014

<

Awang Had Salleh
Graduate School
of Arts And Sciences

U n i v e r s i t i Utara M a l a y s i a

PERAKUAN KERJA TESlS / DlSERTASl
(Certification of thesis /dissertat ion)

Kami, yang bertandatangan, memperakukan bahawa
(we, theundersigned, cerfify that)

MOHAMMAD NURUZZAMAN

calon untuk ljazah MASTER
(candidafe for the degree of)

telah mengemukakan tesis I disertasi yang bertajuk:
(has presented hidher thesis / dissettafion of the following tifle):

"WEB DEVELOPMENT PRODUCTIVITY IMPROVEMENT THROUGH OBJECT-ORIENTED
APPLICATION FRAMEWORK"

seperti yang tercatat di muka surat tajuk dan kulit tesis I disertasi.
(as if appears on the fifle page and front cover of the thesis /dissertation).

Bahawa tesisldisertasi tersebut boleh diterima dari segi bentuk serta kandungan dan meliputi bidang
ilmu dengan memuaskan, sebagaimana yang ditunjukkan oleh calon dalam ujian lisan yang diadakan
pada : 10 Mac 2014.
That the said thesis/dissertation is acceptable in form and contenf and displays a satisfactory knowledge
of the field of study as demonstrafed by the candidate through an oral examination held on:
March 10,2014,

I

Pengerusi Viva: Asroc. Prof. Dr. Wan Rozaini Sheik Osrnan Tandatangan
(Chairman for VIVA) (Signature)

Perneriksa Luar: Dr. Nazean Jornhari Tandatangan e ,,

(Exfernal Examiner) (Signature) 7
ci/'

-
Perneriksa Dalam: Dr. Azida Zainol Tandatangan
(Internal Examiner) (Signature)

*

Narna PenyelialPenyelia-penyelia: Dr. Azharn Hussain
(Name of Supervisor/Supervisors) Tandatangan& (Signature)

Narna PenyelialPenyelia-penyelia: Assoc. Prof. Hatirn Mohamad Tahir
(Name of Supervisor/Supen/isors)

Tarikh:
(Date) March 70,2074

PERMISSION TO USE

In presenting this thesis in fulfilment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the Universiti Library may make it

freely available for inspection. I further agree that permission for the copying of this

thesis in any manner, in whole or in part, for scholarly purpose may be granted by

my supemisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate

School of Arts and Sciences. It is understood that any copying or publication or use

of this thesis or parts thereof for financial gain shall not be allowed without my

written permission. It is also understood that due recognition shall be given to me

and to Universiti Utara Malaysia for any scholarly use which may be made of any

material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to :

Dean of Awang Had Salleh Graduate School of Arts and Sciences

WMCollege of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

ABSTRAK

Kebanyakan aplikasi web yang digunakan untuk komersial dan industri adalah
kompleks, sukar untuk dilaksanakan, berisiko untuk diselanggara dan memerlukan
pemaharnan yang mendalam tentang keperluan untuk penyesuaian. Pasaran perisian
pada masa ini lebih berdaya saing, maka produktiviti telah menjadi perhatian utama
dalam industri pembangunan perisian. Tujuan kajian ini adalah untuk mereka bentuk
dan membangunkan satu kerangka aplikasi untuk mempercepatkan produktiviti
pembangunan web melalui teknologi berorientasikan objek. Ini akan membenarkan
penyesuaian, mengguna semula rekabentuk dan menjana kod secara automatik untuk
membantu meningkatkan produktiviti sebagai kejayaan meyelesaikan masalah yang
diberi. Kajian ini menggunakan Systematic Literature Review (SLR) untuk
mengenalpasti sumber kerumitan dan faktor pengeluaran. Metodologi pembangunan
tangkas (Agile) telah digunakan untuk mereka bentuk kerangka dan ianya telah
disahkan dengan data empirikal dari dua projek komersial. Penemuan kajian
mendapati bahawa Kerangka Aplikasi Berasaskan Objek (OOAF) mempunyai faktor
ketara yang mempengaruhi produktiviti dan secara dramatik meningkatkan
produktiviti yang lebih tinggi berbanding pendekatan tradisional. Ia telah memenuhi
keperluan semasa dengan mengurangkan kerumitan, usaha-usaha pembangunan dan
mempercepatkan produktiviti pembangunan web. Kajian ini menyumbang dalam
bidang kejuruteraan perisian, khususnya dalam bidang peningkatan produktiviti
perisian dan penyesuaian perisian. Ini akan membawa kepada masa pembangunan
yang lebih cepat kepada industri perisian.

Katakunci: Kerangka Aplikasi Berasaskan Objek, Pembangunan Web, Produktiviti
Perisian, Metrik Perisian, Pengukuran Produktiviti.

ABSTRACT

Most of the commercial and industrial web applications are complex, difficult to
implement, risky to maintain and requires deep understanding of the requirements
for customization. As today's software market is more competitive, productivity has
become a major concern in software development industry. The aim of this research
is to design and develop an application framework for accelerating web development
productivity through object-oriented technology. It allows customization, design
reuse and automatic code generation to support productivity improvement as a
breakthrough solution for the given problem. This research employed systematic
literature review (SLR) to identify the source of complexity and productivity factors.
Agile development methodology was used to design the framework and it was
validated by empirical data from two commercial projects. Results showed that
object-oriented application framework (OOAF) has significant factors that affect
productivity and dramatically improve higher productivity over traditional approach.
It has fulfilled the current needs by reducing complexities, development efforts and
accelerates web development productivity. This research contributes in the area of
software engineering, specifically in the field of software productivity improvement
and software customization. These will lead to faster development time for software
industries.

Keywords: Object-oriented Application Framework, Web Development, Software
Productivity, Software Metrics, Measuring Productivity.

ACKNOWLEDGEMENT

I would like to express my gratefulness to everyone contributed in completing this

dissertation. This dissertation would not been possible without the guidance and

encouragement from academic, industry and personal supporters.

It was my pleasure to study under Dr. Azham Bin Hussain's supervision. It is not

enough to say him that thank you very much for his guidance to help me to achieve

my goal. Without his valuable support, my thesis would not have been possible. I

would like to express my thanks to my co-supervisor Assoc. Professor Hatim Mohd

Tahir for his comments which help improving my work. This dissertation could not

been completed without the intellectual; challenges, resources, departmental data and

professional support provided by ENT Broadband Sdn Bhd, SK United Packaging

Sdn Bhd and Accenture Malaysia.

Most importantly, I would like to thank my family, who provided me with love and

patience during this journey. To my mom and dad, friends and colleagues for their

invaluable life lessons and encouragement to accept the next challenge. To my wife,

Fatin Nurul Aini Binti Ghazali for her unconditional patience and constant support.

Finally, I would like to thank all my friends, university staffs, the direct and indirect

supports helped me completing my dissertation in time.

TABLE OF CONTENTS

. . PERMISSION TO USE ... 11

...
ABSTRAK , 111

ABSTRACT .. iv

ACKNOWLEDGEMENT v

TABLE OF CONTENTS .. vi

LIST OF TABLES .. ix

LIST OF FIGURES ... x

LIST OF APPENDICES ... xi
. .

LIST OF ABBREVIATIONS .. xi1

CHAPTER ONE INTRODUCTION ... 1

1.1 Background ... 1

.. 1.2 Research Motivation 3

... 1.3 Problem Statement 3

1.4 Research Questions .. 4

1.5 Research Objectives ... 5

1.6 Significance of the Study ... 5

1.7 Research Scopes and Delimitations ... 6

1.8 Research Outcome ... 6

.. 1.9 Thesis Outline 7

1.10 Summary .. 7

.. CHAPTER TWO LITERATURE REVIEW 8

2.1 Framework Concept ... 8

2.1.1 Application Framework .. 8

2.1.2 Object-Oriented Application Framework .. 9

2.2 Factors Effecting Productivity .. 11

2.3 Productivity Development Concept ... 12

2.3.1 Input Variables .. 1 3

2.3.2 Output Variables .. 1 3

2.4 Related Works .. 14

2.5 Summary .. 17

vi

.. CHAPTER THRlEE RESEARCH APPROACH 18

.. 3.1 Research Approach 18

... 3.1.1 Theoretical Study 19

.. 3.1.1.1 Identify Source of Complexity 20

3.1.1.2 Identify Productivity Factors ... 21

3.1.2 Establish Requirements .. 22

3.1.3 Design OOAF .. 23

............... 3.1.3.1 Design Proposed Productivity Improvement Technique 24

.. 3.1.4 Development 28

.. 3.1.5 Evaluation 28

3.2 Productivity Measurement Concept ... 29

.. 3.2.1 Measurement Procedure ... 30

3.3 Summary .. 32

CHAPTER FOUR APPLICATION DESIGN .. 33

4.1 Introduction .. 33

4.2 Design 00 Application Framework .. 33

4.3 MVC Layers Design .. 34

... 4.3.1 Presentation Layer 34

... 4.3.2 Resources Layer 36

4.3.3 Business Logic Layer ... 37

... 4.3 -4 Controller Layer 38

4.3.5 Database Layer ... 39

4.4 Detail Architectural Design .. 40

.. 4.4.1 Conceptual Architecture Design 41

.. 4.4.2 Module Architecture Design 42

4.4.3 Class Architecture Design .. 43

4.4.4 Presentation Architecture Design .. 44

... 4.5 Interface Design 46

4.6 Summary .. 47

CHAPTER FIVE DATA ANALYSIS & RESULT .. 48

5.1 Factors Effecting Case Study ... 48

vii

5.2 Data Collection ... 49

.. 5.3 Measuring Productivity through Software Metrics 51

.. 5.3.1 Adjusting Software Size 52

.. 5.3.2 Backfiring 52
. .

5.3.3 Calculate Productivity 53

.. 5.4 Descriptive Analysis 54

5.5 Correlation Test .. 56

.. 5.5.1 Correlation Coefficient 56

5.5.2 P Values ... 57

5.6 Summary .. 58

CHAPTER SIX CONCLUSION .. 59

6.1 Discussion .. 59

... 6.2 Summary of Key Contributions 60

.. 6.3 Future Research 61

6.4 Conclusion ... 63

REFERENCES ... 64

...
Vlll

LIST OF TABLES

Table 2.1 : Existing Web Application Framework Comparison ... 11

Table 3.1 : Software Productivity factors analysis ... 21

Table 3.2. Requirements Analysis .. 22

... Table 5.1 : Code Reuse Classification 4 9

Table 5.2. Actual Project Size Data ... 50

Table 5.3 : Actual Efforts Data ... 50

.. Table 5.4. Language Conversion Ratio 53

.. Table 5.5. Total Project's Productivity 53

Table 5.6. Correlation Coefficient ... 56

... Table 5.7. Correlation of P Values 57

LIST OF FIGURES

Figure 3.1 : Research Approach ... 18

Figure 3.2.. Process of Theoretical Framework ... 19

Figure 4.1 : Presentation Layer Architecture .. 35

Figure 4.2. Resources Layer Architecture ... 36

Figure 4.9. Class Diagram of a Visual Object ... 43

... Figure 4.1 1 : Binding XML-based JSP Page Rendering 45

Figure 4.13. A Complete UI Design form ... 47

Figure 5.3. Productivity Comparison by Output versus Input .. 55

LIST OF APPENDICES

Appendix A Research Activity .. 7 1

Appendix B OOAF Design Work Flow .. 72

Appendix C Questionnaire ... 75

Appendix D Rating Scale for Productivity Drivers ... 79

LIST OF ABBREVIATIONS

3GL

4GL

AAF

A JAX

API

B2B

BPM

C2C

CBSE

CBD

CM

COTS

COCOMO

DM

D&D

D2D

ESLOC

FP

GUI

HTML

IDE

IEEE

JSF

JSP

J2EE

JDHTML

KSLOC

LOC

MD

MVC

Third Generation Language

Fourth Generation Language

Adaption Adjustment Factor

Asynchronous JavaScript and XML

Application Programming Interface

Business to Business

Business Process Management

Customer to Customer

Component-Based Software Engineering

Component-Based Development

Code Modified

Component of the Shelf

Component Cost Model

Design Modified

Design and Development

Domain to Domain

Equivalent Source Line of Code

Function Point

Graphical User Interface

Hyper Text Markup Language

Integrated Development Environment

Institute of Electrical and Electronics Engineers

Java Server Face

Java Server Page

Java 2 Enterprise Edition

Java Dynamic Hyper Text Markup Language

Kilo (Thousand) Source Line of Code

Line of Code

Man Days

Model View Controller
xii

MFC

MSC

MSLOC

NSLOC

00

OOP

OOM

OOT

OOAF

OOSAD

Q A

RDBMS

RSLOC

SDLC

SLR

SLOC

UML

W P

VOS

WM

XSLT

XML

Microsoft Foundation Class

Multi-media Super Corridor

Modified Source Line of Code

New Source Line of Code

Object Oriented

Object Oriented Programming

Object Oriented Method

Object Oriented Technology

Object Oriented Application Framework

Object Oriented System Analysis and Design

Quality Assurance

Rational Database Management System

Reuse Source Line of Code

Software Development Life Cycle

Systematic Literature Review

Source Line of Code

Unified Modeling Language

Unadjusted Function Point

Visual Object Sharing

Work Modified

Extensible Stylesheet Language Transformations

Extended Markup Language

CHAPTER ONE

INTRODUCTION

This chapter presented an overview of the thesis. It described the problem statement

and continues with research questions, objectives, scope and contribution. At the

end, it presents the organization of the thesis.

1.1 Background

Object-Oriented (0 0) based web application development is not easy, mapping user

requirements into a function is complex, customization requires deep understanding

and risky to maintain. Technology for completely integrated user interface, reuse

design, customization environment and implementation is still immature in the area

of web engineering. It is different from traditional web development as it focuses on

visual elements (Kaur & Singh, 2008). 00 software development method includes

requirements analysis, system design, development, testing and documentation that

enable web engineers to repeat Software Development Life Cycle (SDLC) phases

and avoid possible failure of current ubiquitous web. This revolution makes easier

for web engineers to develop software packages and also made a significant impact

to working on it.

Previously, most of the developed web applications were procedure-oriented. It is an

ever-growing complexity due to an exponential increase in software size. It also

make it unsuitable to reuse and customize based on user preferences. Considering

this effort has pushed legacy applications into the new 00-based web application

development. There are numerous recurring efforts, particularly in the user interface

design and coding phase (Pardo Leite, Yu & Liu, 2005; David, 2012). An approach

1

is needed to accomplish web application customization and reuse design for

improving development productivity. The necessity of an 00 framework designer

become obvious due to complexity, difficulties to implement, hard to reuse and

requires deep understanding of requirements for customization. The idea behind this

approach is just reuse it, do not need to develop anything that already exists. It

increases greater consistency of operation, reduced development time, reduce

complexity, easier maintenance, smaller resulting code size, increase productivity

and reliability of the web applications (Frakes & Kyo Kang, 2005). Reuse has a

computable and significant impact on reducing development efforts and improving

software quality (Kung-Kui Lau & Zheng Wang, 2007).

Web engineers often proclaim "Do not reinvent, the inverse of reinvention is reuse ".

It is said that easier to proclaim than it is to achieve. The projects which were fail

due to quality of application framework, poor design, lack of clarification of

requirements, developer's skill and administration issues. Therefore, it will be

significantly important to examine current problems in Object-Oriented Application

Framework (OOAF) development and looking for alternate solutions. There are

several factors need to take into consideration when designing OOAF such as

requirements simplicity, complexity in object relationship, classes collaboration and

complication in using an application framework. To escalate web application

development productivity, this research proposed OOAF as an alternate solution for

web application development to overcome the above mentioned problems in OOAF.

1.2 Research Motivation

I was motivated into this research after I started working at Daifuku, a global

industrial material handling company. My role was as a Development Team Leader

since 201 0-201 2. Experiences and knowledge I have gathered from Daifuku can be

accumulated into a strong research problem. I found that web developers/ engineers

faces three intractable problems-lack of clarification in requirements, complexity of

the domain and increased development efforts. This work compliments ongoing

research problem in the area of software engineering. In particularly, I am also

interested in analyzing and developing new methods and tools for guiding software

development decisions for finding better way to incorporate these concepts into

education.

1.3 Problem Statement

My research addressed that complexity is an ever-present obstacles in web

application (software) development and three intractable problems in-requirements

clarification, domain complexity and development efforts. This is due to

customization techniques, complex relationships among the objects, collaboration,

size of classes and the buildup of low-level in detail. The predictable result is that

run-time errors found in developed web applications. This is crucial and significantly

more expensive to correct software defects once they have reached the end user

compared with earlier in the development process (Hevner et al, 2005). Because of

this increasing cost of correcting defects and the need for software development

productivity and quality become main concern.

Complexity destroys modularity, reduce productivity and software quality (Orrdrej,

Jiri & Jan, 2012; Clarke & Walker, 2001). As a result, web engineering team

requires great efforts to developing today's web applications. A new OOAF is

essential to support more effective and rapid development of applications with lower

efforts. According to Alvaro, Santana de Almeida & Romero de Lemos (2010);

Sudhakar, Farooq & Patnaik (2012) application framework development by

integrating component-based software engineering (CBSE) and object-oriented

technology (OOT) could achieve web application customization and increase web

development productivity.

This research proposed visual object sharing technique to support customizable and

reusable OOAF architecture. A big picture behind the approach to reduce

development efforts, complexities and increase productivity through visual object

sharing technique in OOAF has been demonstrated.

1.4 Research Questions

i. What are the complexities and productivity factors to achieve reuse design

and easier custornization in 00-based web application development?

. .
11. How to design and develop OOAF that could support design reuse and

existing web applications customization?

...
111. How to evaluate the proposed OOAF, can it increase development

productivity for web engineers and developers?

1.5 Research Objectives

This research achieved the following objectives:-

i. To identify sources of software complexity and productivity factors in the

area of web application customization, reusability and productivity

improvement.

. .
11. To design and develop a new OOAF to produce customizable and reusable

software components that accelerate web application development

productivity.

iii. To evaluate web application development productivity through sofhvare

metrics.

1.6 Significance of the Study

This research has led to develop a 00 application framework (OOAF) for

developing web applications. This research is significant due to-Firstly, it can

expose whether OOAF is applicable to develop web application. Secondly, explore

new strategies for development productivity. Finally, data that were collected can be

used for further studies for measuring software productivity through software

metrics.

At the end, this research has fulfilled the current needs by reducing complexities,

development efforts and improving productivity through OOAF. These attributes are

extremely valuable and required for an optimized business process to satisfy

customer and business.

1.7 Research Scopes and Delimitations

To solve the problems of this research, the scope of the research need to be defined

so that this research becomes not too wide, more focus and go to right direction. This

research limited to OOAF and it will not evaluate whether suggested OOAF is

suitable or not in economical point of view. However, it has provided a complete

development procedure for web engineers to implement 00-based web application

as well as detail description of how to apply customization and reuse it using the

proposed application toolkit.

At the end of the research, a complete evaluation has been conducted on the

proposed OOAF and it emphasized on reuse design, coding and customization to

discover pros and cons of the OOAF.

1.8 Research Outcome

This research involves multiple-disciplinary research including object-oriented

framework, component-based software engineering (CBSE), web engineering,

software productivity and customization. The contribution of this research covered

as follows:

i. Design and develop an OOAF to produce customizable and reusable software

components that accelerate web application development.

. .
11. Increase web development productivity and minimize development efforts by

reusability and easier customization.

1.9 Thesis Outline

The content of the thesis is organized into six chapters. Chapter 1 has briefly drawn

the overview of the research background, motivation, problem statement, objectives,

research contribution, limitation and outcome. Chapter 2 covered literature review on

the area of the research. It gave theoretical analysis on existing work and 00

application framework that have been carried out. Chapter 3 explained the research

approach used in this study. It described how this research was conducted, and

systematic steps to guide readers in the process of completing the research. Chapter 4

showed analysis and design of the OOAF. Chapter 5 showed data collection and the

result of productivity measurement. Chapter 6 summarized the research and provided

recommendations for future research on productivity improvement.

1.10 Summary

There has significant progress been made on software reuse and customization. One

of the most important issues is how to make best use of reusable and easily

customizable web application system. Another is better representation technique for

software artifacts. This chapter addresses background of the application framework,

relevant problems and proposed a solution. There is a clear need for much more

empirical work on reuse and customization. Research is needed to be explored more

on identifl and validate measures of reusability and customization.

CHAPTER TWO

LITERATURE REVIEW

Object-Oriented Technology (OOT) becomes more important due to it is a key for

developing 00 application. It promises greater productivity, lower development

efforts, easier customization and higher reusability. However, researchers report that

this promise is difficult to accomplish. This chapter described framework concept,

key problems on why framework promises failed, productivity factors, previous

related works and productivity development strategy through OOAF.

2.1 Framework Concept

In an 00 software environment, a framework is a "reusable sojibare component,

including reuse of analysis and design" (Stoev & Dimov, 2008). According to

Wallace and Bruce (201 1); Fayad, Hamza and Yi Chen (2005) - "afiamework is

more than a class hierarchy". It depends on Hollywood Principle: - "Don 't call us,

we'll call you". It says that web developers handle it by applying inheritance,

polymorphism or generalization methods so that developers spend fewer efforts in

coding and spend more efforts on the business specific problems. An application

could be implemented flexibly and within shortest time-frame through framework.

2.1.1 Application Framework

An application framework also known as "Toolkit" that allows for the creation of

application. It consists of framework used by software engineers that provides a

fundamental structure to support development of an application for a specific

environment. An application framework or toolkit acts as a tool to supply the

8

structure and templates for constructing an application. It becomes popular with the

rise of GUI. Web engineers and developers found that to create a user interface (UI)

with less effort application framework proved to be a good solution (Liang &

Shimomura, 2009). It provides a standard framework with underlying pre-defined

code structure. The intention of designing application framework is to lessen the

issues faced entire software development life cycle (SDLC). Web engineers usually

use OOP techniques to implement framework, whereby unique parts of application

framework can simply inherit from pre-existing classes in the framework. The

advantages of using application framework includes extensibility, simplicity, easier

customization, code and design reuse. These advantages lead to lower cost of

development, reduction of errors, reduce web development effort, increase quality

and rapid application development.

2.1.2 Object-Oriented Application Framework

Object-Oriented Application Framework (OOAF) is set of libraries. It is designed to

help web engineers to solve problems and build applications. The aim is to improve

the overhead related with common activities in SDLC. According to Williams,

Szyperski, and Wittenberg (2012), 00 application framework organize and

interconnect software components, generates runtime structure and manages

execution of the application.

Object-oriented application framework or 00 toolkit acts as a tool to supply the

structure and templates for constructing an application. By using 00 techniques

while implementing the framework, pre-existing classes can be used to build the

application easily. The primary benefits of OOAF are componentization,

extensibility for customization, reusability, modularity and inversion of control.

According to Carlos and Pedro (2002) - "00 applicationfiamework is a reusable,

semi-complete application, which produces custom applications and collaborates to

carry out a set of responsibilities". OOAF provides reusability technique by utilizing

the domain knowledge and experiences. It supports to avoid recreating common

solutions to the application, decrease development time, cost and improve web

application quality such as design pattern. Design pattern recurring solution for

design and development problems.

Object-oriented application framework typically provides core functionality and

underlying pre-define code structure to most of the application like session

management, security, caching, interface template and data persistence. By using an

appropriate framework, web engineers can save countless of hours. This is achieved

through reuse design and code that share across different modules of an application

(Riehle & Thomas, 2005).

Table 2.1 shows comparison between existing frameworks for developing web

applications. From the current literature, numerous research works has done in the

area of software customization, reusability and productivity improvement of web

application development. Every single of them is dealing with dissimilar concern,

concept and point of view (Malavolta, 2010). It is agreed that universal framework

cannot exist due to different domains.

Table 2.1: Existing Web Application Framework Comparison

Design Customize Form DB
Project Lang. Ajax Toolkit Security

Reuse Module Validation Migration

Struts Java Yes No No Hard Yes

Spring Java Yes No Acegi No Hard Bean Validation

JSF Java Yes Yes Yes No Moderate integration

GWT JScript Yes Yes Yes No Hard Bean via Java

Validation

ZK Java, jQuery No Spring No Hard Client, Hibernate,

Zuml Server Spring

ASP. NET ASP Yes Yes ASP No Moderate plug-ins Entity

Catalyst Per1 REST, No External Html Hard Html

JSON Template Handler

CakePHP PHP jQuery No ACL No Moderate Yes Yes

Joomla PHP Mootool No Yes No Moderate Yes No

Zend PHP Yes No ACL No Moderate Yes Yes

(Source: http://www. wikipedia.org/web-application - toolkit. htm)

2.2 Factors Effecting Productivity

Software productivity measure or define is a complex process. Most of the software

productivity studies are inadequate and misleading. Productivity development should

focus not only on the efficient development but also should emphasize the quality

and value of application developed (Trendowicz & Munch, 2009). There are several

factors that impact the clarification of productivity. For example, if the product

output has defects and need to rework or bugs fix, it will decrease the productivity.

Most of the researchers related to web application development productivity focused

on the study of an individual developer's efficiency. In addition, for large project

development team often works with new tools, client participation, requirements and

faced developer turnover, unclear goals, complexity, communication between team

members that affect software productivity (Prernraj, Kitchenham, Shepperd &

Forselius, 2005; Sudhakar, Farooq & Patnaik, 2012). Thus, team size and team

activities also important factor for project success. Research shows those strong

skills team has higher productivity whereby weak skills team has lower productivity

overall assigned tasks (Nwelih & Arnadin, 2008). Additionally, complexity raises the

team size and it reduces the productivity (Hernindez-L6pez et al., 201 1). Their

research also showed that productivity varies from C2C, B2B, working environment

and software development process. A company with different business sector could

accomplish different level of productivity.

2.3 Productivity Development Concept

Software productivity improvement is a critical part of the software engineering

process. It is not hypothetical. In economical point of view, productivity defines as

the ratio of produced goods for labor consumed to producing it (Nwelih & Amadin,

2008; Jones, 1996; Erne, 2011). From this assumption, software development

productivity is the ratio between amount of the effort and expenditures of producing

the software product. Productivity in its simplest form is product output divided by

the efforts input (Wagner & Ruhe, 2008; Maxwell, 2001; Boehm, 1999).

output
Development Productivity = -

input

The output variable can be function point (FP) or lines of code (LOC) and the input

variable can be person days. For example, lines of code per unit time (SLOCh) or

some variant of function points per unit time (FPh). In that sense, the IEEE defines

the productivity as the relationship of an output and its corresponding input

primitive. Moreover, it is sometimes also known as efficiency.

According to Nwelih and Amadin (2008); and Erne (201 1) explained the definition

as software productivity consist of people and complexities of both software. It can

be measured by dividing cost of software development efforts with software size.

size (output)
Development Productivity =

e f f o r t s (input)

2.3.1 Input Variables

It is desirable to differentiate the developer according to their skills. To avoid simple

effort calculation, it is necessary to include other input factors such as management

effort, materials used, tangiblelintangible variables.

2.3.2 Output Variables

Traditionally, the outputs of software development are measured by function points

(FP) or lines of source code (LOC). These two measures are highly correlated, but

FP approach takes the complexity into account. To incorporate both the quantity and

quality aspects, we proposed considering code reuse, complexity, functionality and

length. Reuse is measured by the estimated percentage of reused object points;

complexity is measured using the big-0 notation, functionality by the function points

count and length by taking into consideration then density of comments (Nwelih &

Amadin, 2008; Erne, 201 1).

2.4 Related Works

It became clear that a number of different peoples and groups have performed

similar research. Their findings, argument, conclusions, considerations and

recommendation have been study in this research.

Object-oriented application framework designing and developing is complex.

Presented work in this chapter can be considered only a portion of the overall work.

There are quite a number of application frameworks such as Microsoft Foundation

Classes (MFC), IBM Small Talk, End Point, Fox Toolkit, Java Dynamic Hyper Text

Markup Language (JDHTML), Spring, Qt and Java Server Face (JSF).

According to Hneif and Lee (2011) introduced challenging problems in 00

application development by showing a framework study on manufacturing

application. Their research intended to provide evidence to support reuse. The

research revealed that this domain is complex, dynamic and large. They

implemented OOAF with OOT but evalution was not discuss. Several limitations

must be considered in interpreting in Hneif and Lee study findings. We agree that-

"Jtamework-based software engineering is the idea of constructing software system

based on the integration of resuable components rater than developing sopaware

@om scratch".

Riehle and Thomas (2005) publication on framework design is more clear and

complete. He introduced role modeling for OOAF design that indicates a substantial

enhancement over current practices. Three case studies used to validate how role

modeling performs in real-life environment. Each case study compares with

traditional framework and role modeling framework design. However, each of the

cases works from a different perspective. Their study combined the strengths of

class-based modeling with role modeling while leaving out their weaknesses. Thus,

it is an evolutionary of current methods that preserves existing investments. Finally,

it is first comprehensive method for framework design.

Weiss and Heidenbluth (2012) introduced demand-driven software customization.

This customization only focuses on customer's needs. It required empirically

analyzes the benefit of the various adoptions from customer's point of view. They

have conducted few surveys and presented a large study that deals with general

questions of customization and analyzed the starting point of software customization.

The survey points out that especially customization options, which adapt the

hnctionality, increase the usability and enable controls are great importance for

fbture software implementation. Hence, their results enable competitive advantages

by implementing customization options that meet customer needs.

One interesting finding in our study contradicts one of the literatures. According to

Lapouchnian (2011) presented requirements-driven approach for applying

customizable and adaptive technique to the application. Requirement models used to

capture the problems unpredictability, leading to application design that support

similar functionality. This can be customized on the basis of user preferences at
15

application deployment time. It can also be used at runtime to support customization

if the running application is considered to be unacceptable. The contributions of

Lapouchnian7s study included systematical design of a framework. Three

corresponding design views are: configurationally, behavioral and architectural view.

The framework is also applied to business process management (BPM)

customization.

There are wide ranges of literatures about software productivity trying to concentrate

on market demands within shorter time and at the same time maintain higher quality

products. However, there are still lots of unsolved issues. Indeed, there is no ultimate

solution that can solve all of these issues related with development productivity. Eme

(201 1) presented how tools can be useful and when to use in software process.

According to Boehm et al., (2009) contributed strategies on quality management by

organizing development team. Another study demonstrated a model for motivation

that is really worthy to read (Chiang & Mookerjee, 2004); others suggested incentive

and reward strategy (Furtado, Aquido & Meira, 2009; Zhuge, 2008).

With respect to productivity measurement and modeling Premraj, Twala, Forselius

and Mair (2004) pointed that reuse components should not be included. Their study

mentioned that to construct a good productivity measure, size must be related to

effort. In addition, COTS software projects come from four dissimilar facts. First, it

needs to be considered alternative approach of measuring productivity. It is emphasis

on problem of defining productivity measures. Secondly, it builds simple effort

estimation techniques to improve productivity. Sentas, Angelis, Stamelos and Bleris

(2005) have given more complex approach, which uses ordinal regression to access
16

productivity and reliability of the given software products. Thirdly, it analyzes

development practices and software productivity by benchmarking or making

international comparison. Finally, it discovers the most important factors that

improve software development productivity.

Paiva, Barbosa, Lima and Albuquerque (2010) conducted a study on same data set to

construct productivity benchmark. The study found that, the most important

variables are company and business sector. They investigated dataset in more depth.

They divide the dataset into distinct business sector and analyzed it. Each business

sector was identified into a variable, which manipulating productivity. Finally, the

variable used to build productivity benchmark equations. It is agreed that

productivity level differs between company-to-company and domain-to-domain.

In summary, it has to be self-proclaimed that the current application framework

research and development is still so far from being conclusive. Further studies must

be anticipated for better web application customization must be implemented and

improve web application development productivity.

2.5 Summary

Web application development productivity can be enhanced by reuse design, code,

minimizing rework through adopting comprehensive development standards and

practices. This chapter described overview of 00 framework, productivity and

customization concepts. Finally, this chapter described factors effecting productivity

and related works.

CHAPTER THREE

RESEARCH APPROACH

Object-oriented framework based web engineering is the idea of constructing

applications based on reusable components rather than developing from scratch. The

primary purpose of this research is to reduce web application development efforts in

order to improve productivity by introducing OOAF. Therefore, this chapter

identified the necessary steps, theoretical study and evaluates benchmarks that

support the proposed OOAF.

3.1 Research Approach

The research approach of this research is divided into five steps as shown in Figure

3.1 and detail research activities shown in Appendix A. Figure 3.1 also shows which

research approach has been taken to accomplish research objectives.

Phase Approach Outcome

Sources of complexity and
Theoretical Study

Review (SLR) productivity factors.

Derived from SLR Requirements for OOAF

MVC layer design, Detail
~ e s i g n architectural design.

Agile Development XP

@ [D ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ [M e t h o c l o l o g y
Develop prototype of
OOAF.

Software Metrics + Result of measuring
software productivity.

Figure 3.1: Research Approach

18

3.1.1 Theoretical Study

In the initial stage, board range of study was required in many different aspects of

current application frameworks and architectures. This includes of identifying new

features of web development, past and current trends. To get good foundation of

knowledge and understanding of the requirements, development tools, strength and

weaknesses of the web application this research review previous literature, collect

ideas, issues and articles related to OOAF.

f
Formulate \ / \ / \ Define Evaluate the Identify
Existing requirements and + Gaps Solutions , Framework Gap, entities 1 t J \ 1

Figure 3.2: Process of Theoretical Framework

Figure 3.2 shows the process of theoretical framework. This phase adopted from

systematic literature review (SLR) by Kitchenham (2004) and divided into two

subsections-theoretical study and empirical study. The theoretical study focused on

the current problems in OOAF, processes and techniques to design extensible,

customizable, reusable components and barriers in productivity improvement. The

empirical study focused on case study to examine OOAF in the actual working

environment. Finally, estimated the development productivity and software metrics.

This research analyzed concepts of web application design, common practices and

assessment benchmarks. In addition, thoughtful study on the existing OOAF, issues

interrelated to application framework design strategies; customization and reusability

techniques that simplify to implement an OOAF has carried out. This research found

that the current OOAF do not provide design reuse with underlying structure

generation. Hence, it is vital to realize obstacles and current practices by web

developers. Thus, the aim is to undertake all of the mentioned complications by

presenting visual object sharing technique in OOAF. This research showed that the

proposed technique reduced domain complexity, provide design reuse, easier

customization and increase productivity of web application development.

3.1.1.1 Identify Source of Complexity

Some of the problems related to 00 framework have been described in Chapter 1.

Research showed that, complexity arises due to unclear, complex and instability

requirements. These led to increase number of classes, complex object collaboration

between objects, complex relationship among objects and classes. The predictable

result is crucial and fielded with unexpected errors.

Most of the projects failed due to complex requirements, poor design, difficult to

learn tools used, hard to develop and inadequate documentation (Muller et al., 2009).

Thus, it is worthy to discover the problems in OOAF and search for new solutions.

Previous 00 frameworks are developed by traditional object-oriented programming

(OOP) which do not share design reuse and easier customization techniques.

Current OOP are good at describing of an object, but it is static interface. It is

difficult for developers to learn the two-way pattern of a framework by reading it. As

a replacement, developers discuss with experts and read other documents. Design

pattern is one of the approaches to improve design (Christiaans & Almendra, 2010).

20

Another approach is to elaborate the interactions between objects and its constraints.

This research presented better way to express and develop OOAF.

3.1.1.2 Identify Productivity Factors

There is various factor impacted web application development productivity. Table

3.1 identified the most important factors manipulating productivity. We analyzed the

factors that have minimum five citations and list down under three categories.

Whether study become not ambiguous we have taken most cited factors from Table

3.1. To narrow down the research scope we skipped one factor named as "Process"

and selected important factors which have minimum 20 citations in product category.

Table 3.1 : Software Productivity factors analysis

Number of Citations
Category Factors

1990-1999 2000-2009 2010-Jul'13 Total

Reuse, Customization 7 8 6 2 1

Product Software Size 8 6 6 20

Software Complexity 6 9 6 2 1

Team's Skills 4 11 3 18

Turnover 0 5 3 8

People Team Communication 1 5 3 9

Motivation 1 5 2 8

Management Quality 2 4 2 8

Process
Project

Team Size

Client Participation 1 3 2 6

Tools, Methods used 6 11 8 25

Dev. Environment 3 5 3 11

Programming Language 4 8 5 17

Requirement Stability 6 8 4 18

We have chosen 4 factors that effects software productivity improvement-reuse/

customization technique, software size, complexity and tools1 methods used.

3.1.2 Establish Requirements

It is not small undertaking to design and develop an 00 application framework.

There are many considerations to be addressed. Effective requirements gathering and

design can mean the difference between success and failure. Few questions needed

to answer to identify requirements as shown in Table 3.2.

Table 3.2: Requirements Analysis

No Question Answer

1 What kind of OOAF needs to build? For building web applications

2 What kind of data source required? File-based and Rational Database

.NET used for design User
What languages are suitable to design and

3 Interface and Java 7 used in
develop OOAF?

framework level.

4 What kind of user interface required? JSP user interface with HTML5

3.1.3 Design OOAF

Web application design is hard. The design of reusable, customizable and extensible

00AF is even harder. The proposed application framework design is Model-View-

Controller (MVC) pattern as shown in Figure 3.3. Design stage divided into two

sections: MVC layer-based design and detail architectural design. Layer-based

design outlined high-level strategy and road map for the solution of the problem.

MVC Layer-based design proposed for modularity, reusability and extensibility.

I I " Page D~spatcher

Presentation Layer ----- . - - -
I

i
:, , - ;- -,

Bus Resources Layer Jness tlass

nrfet API

Busmess Logic Layer

Figure 3.3: Layer-based (MVC) Conceptual Architectural Design

." - - - - - - - - - - - *- -" " " -
I ' ' OB Handler Event Controller Tag tontfofler 1 Web layer rothers

Mechanism Mechanism Mechanism Mechanism 1 Utility

Detail architectural design identified objects, models it and described in the target

A -- --

Controller Layer -+ "- --
& Database I

- - - - -1

implementation language as shown in Chapter 4. It also constructed core

functionalities of the OOAF as shown in Figure 4.7 and Appendix B. It identified

problems; solutions of the given problem and solutions suitable to the problem.

23

This study applied design pattern to solve design problems and blueprint of the

proposed application framework for developing web applications. Design of user

interface, object interaction, relationship and visual object sharing technique applied

to produce robust structure or desire behavior. In design phase, effort directed to

visual object sharing technique which generates underlying structure, event handler,

and codes so that web engineers will able to focus on implementing value-added

services.

3.1.3.1 Design Proposed Productivity Improvement Technique

There are number of ways to improve reusability such as inheritance, polymorphism

and delegation. There have been few efforts to develop web applications through

visual objects. Therefore, this research aim 'is to enhance web application

customization and reusability via visual object sharing technique. In our proposed

technique, "visual object" is the core element which plays the key role of

customization and reusability of web application design. In this sense, the proposed

OOAF (sometimes refer as a toolkit) is object-centric rather than application-centric.

This research presented visual object sharing technique for customization and design

reuse to accelerate software development productivity as shown Figure 3.4. Visual

object sharing (VOS) technique plays as a fundamental role. It facilitates

customization, extensibility and reusability. The problem comes up when developed

application become large in size. It is very difficult to work with such fiamework

due to many classes, line of codes and complex relationship between objects.

"Hierarchical representation is one of the most eflective techniques". It enables the

complex and large classes divided into multiple and smaller classes. It leads to grow

number of classes as a result web application become complex. Therefore, visual

object sharing technique used to minimize the current mentioned problems. The

proposed visual object sharing technique defines how a visual object shares same

behavior by changing relationship between them and how object collaborates with

other objects in a class. By visual object sharing, each class has instance of an object

and a single class cannot provide this technique. Thus, proposed visual object

sharing technique can deliver an endless flexibility to decrease web application

development complexity as well as software crisis. By integrating hierarchical

representation with visual object sharing technique, customizable and extensible 00

application framework can be achieved.

JSP

JSP DE bsign Page

I---.. L ...-.-.. - .-
Database Entity / -.-..*--..-...--........, /ic-....-....
Business Class -" ---. .̂̂ ̂ -----.-- ..--,.,

I".."'..*...""-..........- " ,, ,*Mt Mapping *
B Scheduler Class

81 Report Extend ..-.-.." .-..:

J a s ~

r Classes

Figure 3.4: Visual Object Sharing Technique

25

The concept of visual object is based on GUI elements to construct web applications.

Each visual object has its own features, template key that handle directly and

separately. It is visualize using tag library, AJAX and set of functionality defined in

meta-data and XSLT schema. It generates all underlying data and application codes

by meta-data based on the conditions and parameters selected by the web engineer.

In visual object sharing technique, a number of modules share one visual object by

calling template key id. Template key establish relationships between JSPIServlet

and other java classes. Without visual object sharing, a module own independent

components that appear as the same code or elements in different modules in the

application. Additionally, each visual object has its own inversion of control and it

can be invoked outside of the class. It is also responsible for instantiating and

disposing method invocations from the caller. Web engineers can create, customize,

reuse and organize visual objects according to users/customers specific need.

The technique for customization of a visual object or its feature requires some

necessary steps. Firstly, each visual object to be customized initially requires

defining its behavior and events followed by parameterization and objecting

delegation. It does not require any naming convention. The technique allows this

task to be performed using a graphical user interface. Secondly, template key used to

search visual object from resource repository and visualize or wrap it with existing

visual object so that reuse can be built over the same set of object resources. Thirdly,

it automatically generates all underlying data, application code and XML mapping

based on the changes made by the web developer. The application code generates

against the data stored in objects defined by meta-data. These features reduce coding

complexity, development time and increases reusability as well as productivity and

software quality.

The proposed OOAF adequately addresses layered-based presentation technique

needed for flexible customization and integrates existing tools or application

modules into a single environment. This technique provides separation of business

logic from presentation layer and database layer. Furthermore, this technique also

has the ability to extract visual object and related resources from existing application

modules without source code modification. This leads to extensibility, flexible

integration and a customization environment.

To develop a web module using proposed OOAF web developer should drag and

drop objects into working window only. Rest of the jobs such as HTML coding,

parameters, business class, controller class, database connectivity, and event

handlers will be created by proposed framework itself. Each object has its own

properties with an identification key. New object behavior could define by web

developers or they can customize object properties. This could be applied in the

similar way to other web elements or objects. Figure 3.4 shows visual object sharing

technique on how it interacts with other elements such as Java classes, JSP file,

XML and other objects. In addition, each module will abstract its objects. Once an

instance of a module creates then it generates instance of object. In addition, if an

instance of a module destroys, object instance will destroy instantly.

3.1.4 Development

Development of 00 application framework is even harder than design. New

software components, objects, classes followed the architectural strategy of the

OOAF. This stage prepared inventive OOAF interface design concept as shown in

Figure 3.5.

Figure 3.5: Preliminary Interface Design of OOAF

This research adopted agile development methodology (Extreme Programming) for

faster requirements gathering, design and development. The combination of Java and

.NET used to develop the proposed OOAF. VS2010 as .NET IDE, "Eclipse" as Java

IDE, JDK-1.7, and .NET 4.0 as GUI designer used in development environment. We

focused on using OOP because it has essential features for developing OOAF.

3.1.5 Evaluation

The aim of this stage was to estimate productivity of the OOAF toolkit in the actual

working environment. A key element for any estimation or measurement is to know
28

what is needed to be measured because without this element it is impossible to

establish a measurement (Hernindez-Lbpez, Colomo-Palacios, Garcia-Crespo &

Cabezas-Isla, 2011; Tangen, 2005). We considered software size, function

complexity, effort required and process to build the software.

Knowledge gained from the development phase merged into a case study and

requested web engineers to develop modules and observed its performance on

individual. In this stage, study focused on novice and professional web engineers

who asked to design and develop "Automatic Jobsheet Processing and Invoice

Management System" through the proposed OOAF and traditional method. Then

questionnaire was provided to collect data from two different projects. The

questionnaire attached in Appendix C. One project was developed by proposed

OOAF, and another project developed by structure method. Both of the projects were

similar in terms of domain, product size, programming language, development

environment and system requirements. Chapter 5 will discussed more on data

collection and data analysis.

3.2 Productivity Measurement Concept

Software products are intangible. Thus, measuring productivity is one of the great

challenges. In software engineering, productivity is usually measured using a product

size ratio between the efforts required to produce the product (Andreou &

Tziakouris, 2007). For example, lines of code per unit time (SLOCIt) or some variant

of function points per unit time (FPIt).

According to Kitchenham and Mendes (2004) certain measures of productivity are

imperfect; they are still used because of the ease to take them. Parallel to its

definition, there are factors (Wagner & Ruhe, 2008) that affect the measurement

result and dependent on the environment and organization so we analyzed it case-by-

case basis (Paiva, Barbosa, Lima & Albuquerque, 2010). At the developer's level,

some of these factors are: motivation, commitment, experience, skills and work

environment. However, the literature focuses primarily on other factors such as

experience, programming language, requirements stability, complexity, reuse and

size (Gummesson, 1992). In addition, before any attempt to measure web

developer's productivity, it was necessary to identified what should be captured in

this measure. So with a defmition of productivity is possible to determine this need.

In this research, we have selected as most relevant factors which have minimum of

20 citations from product category as shown in Table 3.1.

3.2.1 Measurement Procedure

Productivity improvement is major concern in software industry. Software

development teams gradually reduce their production costs and increase

productivity. To improve productivity, it is necessary to understand how to measure

it.

There are numerous works from different perspectives on how to measure software

productivity. Few of them introduce new metrics and few present basic concepts

(Bandi, Vaishnavi & Turk, 2003). Therefore, in order to have a systematic and

effective analysis, it is necessary to setup our own assumptions in clear fashion. This

30

research made an assumption as shown in Eq. (1-4) in defining the relationship of

size, productivity and effort. Chapter 5 will discussed more about it.

This research showed the actual man days used as a multiplicative function of the

primary production correspondence. The software development productivity is

generally measured as shown in Eq. (1)-

size (output)
Productivity = ortr (input)

Where, size is considered in total LOC and efforts are considered in man-days. In the

COCOMO model, the complexity as a driver during the assessment of human effort,

rating value from 0.70 to 1.65 (Boehm & Ricardo, 2008). This rating represents the

complexity degree from "very low" to "very high". The relationship between

productivity and complexity is shown in Eq. (2)-

size productivity = -
a xsizeE

In Eq. (2), productivity is a function of size with adjustment from exponent factor E,

where E is complexity and a is coefficient of regression, which collects the cost

driver (Jorgensen, Indahl & Sjoberg, 2003). Based on regression analysis, many

factor prediction models have a format as shown in Eq. (3) where, K is the

coefficient product of some other factors and a is the regression coefficient.

e f f o r t = K x (~ o m p l e x i t y) ~

Taking Eq. (3) into Eq. (I), the following equation Eq. (4) is obtained-

productivity = Size/(K x complexitya)

3 1

Equation (2) and (4) indicate that productivity declines exponential when complexity

increases. On the other hand, Gill and Kemerer (2001) proposed a significant

negative linear relationship between productivity and cyclical complexity. All of

these results verified the statement that "reducing complexity creates greater

efficiency and results in higher productivity".

3.3 Summary

A board range of study is required to get good foundation of knowledge, research

approach, strength and weakness of the web application development. This chapter

described the research approach adopted from various methodologies for necessary

steps, processes and evaluation criteria that support this research. This chapter also

identifies productivity factors, elaborated proposed productivity improvement

technique and productivity measurement procedure.

CHAPTER FOUR

APPLICATION DESIGN

4.1 Introduction

The process of building interactive software system is difficult task, subtle and

complex. Generally, it comprises tens of thousands of lines and hard to ensure that it

could provide effective solution. It is agreed that design of an 00 application

framework could meet this challenge. Many approaches exist that try to deal with the

arising issues. Some address what kind of software is to be developed and how it

looks like which includes human factors, user interface issues. Other approaches

address how system can be built which includes advance techniques, visual

composition and component ware. Only few approaches try to integrate and bridge

gaps between analysis, design and implementation techniques. This is the best

approach that involves reusable software artifacts in each SDLC phases. Thus, this

research design and implemented such an OOAF to speed-up commercial web

applications development and customization.

In this chapter, we have presented layer-based architecture to describe proposed

OOAF. This research also indicates that layer-based architecture and separation of

concerns approach reduces application design complexity to develop domain-

oriented 00 system.

4.2 Design 00 Application Framework

In a simplest term, design is creative activity to solving problems. This required

planning, novelty, rigor, decision-making and it cannot be solved in a single stroke

3 3

(Cross, Christiaans & Dorst, 2007; Baker & Van der Hoke, 2009). Our proposed and

developed OOAF named as- "Zaman Toolkit (Z)" for creating extensible and

reusable modules for building web applications. The design stage divided into two

sections: architectural design and detail application design. Architectural design

outlined high-level strategy and road map for the solution of the problem. Detail

design identified objects, described in the target implementation language and

constructed core functionalities of the OOAF. Application design which prepared

inventive 00 toolkit design concept has discussed in this section.

4.3 MVC Layers Design

The design goal of the OOAF is layer-based (MVC) with reusable, interactive and

robust UI elements. The architecture of the OOAF divided into five (5) layers as

presentation layer, resources layer, business logic layer, controller layer, database

layer as shown in Figure 3.3. Each layer has a specific function and set of modeling

activities. The following section presented high-level design of the each of the

layers.

4.3.1 Presentation Layer

Proposed OOAF provides a set of UI elements and design templates that

encapsulated visual presentation, event handling, code generation. Visual objects

define in presentation layer with associate component model, server-site events and

object stateful data. They form the foundation of custom web application

development.

Validate
DataValidation ()

I I

Contain

Taq Library
Descriptor Servlet Engine 1

Servlet Class Ail '
JSP Page

HTML Tags

JSP Tags

Custom Extended Tags

Java Script

Field Validation

Figure 4.1: Presentation Layer Architecture

Figure 4.1 shows presentation layer architecture that used Java Server Pages (JSP)

API from Sun Microsystems. In general, OOAF write web pages using a mixture of

HTML, JSP tags, Java classes, java script and own custom markup tags. These pages

are served, rendered from a servlet engine or JSP-compatible web application server.

In addition, if an invalid input is given, presentation layer has data validation

technique before it sent to the controller.

The presentation layer displays the visual objects or UI elements in JSP pages. The

presentation layer calls an object instance and renders its attributes to the JSP pages.

When object instance changes, presentation layer automatically redraws the visual

object and transforms the object state. When a page forwarding request comes from

servlet engine it's destroy all object instances for current page. Page forward

mapping should be either in RDBMS or a XML format. It provides "loose coupling"

between visual objects and presentation layer that provides faster web development

in 00 environment.

4.3.2 Resources Layer

On top of the presentation layer, resources layer is responsible for both sharing of

resources and the enforcement of visual object access based on the available

resources. Since access to resources is most often highly security-critical, the

resources layer has to provide important visual object properties.

.message Create --..-, . .

Obtain data
Resources

-I UI Template 1 1 JSP Interface

Figure 4.2: Resources Layer Architecture

The resources layer also contains template engine or service agent which is liable for

communicating other services to retrieve resources as shown in Figure 4.2. The

resources layer should encapsulate all the code that deals with external resources

(such as databases or other services), without leaking any implementation detail to

higher layers.

4.3.3 Business Logic Layer

Model-View-Controller (MVC) based system develops and implement only in

JavaIServlet. If UI change, then OOAF generates relevant HTML code, meta-data,

XML files, event handling and underlying structure.

JSP UI

Data Provider
Module

C

I Java APl 1

XL5 Module

Business Class

Figure 4.3: Business Logic Layer Architecture

A
y XLS Template

Similarly, if the business logic changes, then only visual object's event codes need to

change. An application develops with MYC methodology should easier to customize

web application. Figure 4.3 shows business logic layer of proposed OOAF. Logic

layer concerns with business logic only. A web designer who knows nothing about

Java can concentrate on the look and feel of the UI layout. Whereby, web developers

can focus on the core logic and Java Beans. A change to the user interface only

concern changes to the relevant JSP only.

I

4.3.4 Controller Layer

In OOAF architectural design, system flow is intermediated by controller layer. It

delegates the request to the controller technique or handler. A controller receives

input from presentation layer, initiate visual object's instance and executes action as

shown in Figure 4.4. If an invalid input is sent to the handler, the object instance

notifies to handler to forward an error and notifies to re-input.

The controller layer consists of java classes and interfaces that provide the runtime

environment for the components used within an OOAF. It is responsible for handling

application level events such as switching, dispatching events to UI modules,

authentication, state management, error processing, log on and log off.

Proposed OOAF controller technique has a specialized view since it is integrated

with visual object sharing technique. It is actually one or more visual UI elements in

JSP and therefore model can inject what it should display. The controller could add

necessary parameterization so that the JSP event controller can observe the input.

+...?A,

p........ _ + Client Browser - f 1 1 request , - s.,,P t 5 i response - -* *-.
%.....' _ z - - C C - -

a *
.4 - - - -b ,

rJSP Page i i--v~. [2
; 3 .,;forward ", ' ---- - - - - - - - - - - - - - - --"-- - - - - - - --- - - - - - - I- J

*
-(.,I.,

4 *'l *-.-... f 2 'it dispatch ,, ' * '-. getdatai4 i --...... , -- ..
.,.d2 < -. Y #'

7- r I

J- ontroller

U - ent - + ~analer

Figure 4.4: Controller Layer Architecture

As shown in Figure 4.4, controller adopts the request from client browser or

presentation layer and dispatches UI elements or event handlers. UI element

represents object state or business logic. It notifies any observer when data changes.

Every request passes via controller who retrieves visual object values. The visual

object sends the result back to the controller. The controller will take the result and

forward to JSP.

4.3.5 Database Layer

The database layer provides and stores information. It is very crucial and internal

layer that is protected from user's view. There are no directly accesses to database

from the upper layers. Its access is routed through the database layer as shown in

Figure 4.5.

JSP UI Ent i i

Instances

4 Hibernate h

Figure 4.5: Database Layer Architecture

All query subjects in this layer are imported from the data source. Because these

query subjects point directly to the database, actions such as join, relationship, or

renaming of query items cannot be done. Future model changes caused by schema

changes are made in this layer. All other layers are unaffected by the schema

changes. The ability to leverage code generation tools is one of the keys to a flexible

architecture. Proposed OOAF comes with this feature. It produced Java sources,

object-relational mapping and configuration XML files.

4.4 Detail Architectural Design

After high-level design we focused on detail design which is the process of defining

the lower-level components, modules and interfaces. We verified detailed designs in

design reviews and level-by-level. We used 00 design method to define module

processing and divided into four (4) categories- conceptual architecture, module

architecture, class architecture and presentation architecture. Figure 4.6 shows the

relationships among these architectural layers.

I
I

Conceptual Architecture I
I
I
I
1

I

Module Architecture < rn - 7 s ;
\ 1 2 ; I I

I I
I I
I I

Class Architect1)re I
I

Figure 4.6: Relationship among the Architecture Layers

4.4.1 Conceptual Architecture Design

The conceptual architecture is very high-level structure of an application. It describes

the major design elements and relationships among them. Figure 4.7 demonstrated

what developed OOAF can generate, how the data acquisition is connected,

underlying structure and java classes and mapping files.

OOAF

............ .,- -. . -. . ..
i Parameter Class

? -...--..--..-..-....--...---. :-....-....-...
f Business Class i EntityClass

extend "".-... -.-- -...--. " ..-.;
j Scheduler Class f*. --.--.+>I Database Handler !

?

I

Figure 4.7: Conceptual Architecture Design

i
! L ~ _ _ _ _ _ _

Servlet API

Figure 4.7 showed that developed OOAF contains UI elements, visual objects,

template design and object customization technique. Upon interface design

completion, OOAF automatically generates JSP file, java classes with event

handlers, business class, entity class, database handler, relevant data elements and

XML mapping files.

XML-based Mapping
,.-.-...- --..x........-... -..-. -,.-... .-.. ..-...........-...........
i ~oduwclass Mapper r Template ~ e y i

! i ..-..-...........,.. " ..--.-...-........- ".A -- ... :

Utility Engine 1 Web Controller Mechanism Engine

4.4.2 Module Architecture Design

The OOAF's module architecture encompasses into two structures- functional

decomposition and UI layer. Functional decomposition captures the way system is

logically decomposed into subsystem, modules, file management, handler,

controller, parameter, resources and abstract program units as shown in Figure 4.8. It

captures visual object interrelationships in terms of exported and imported interface.

13 $$ ewallet

&@ . . WEB-INFlsrc

1 B-@, my .co.ZamanToolkjt
0 .

i j %@ common
/

f i
i ; @@ database

i . . i . . I$.,.@ emanager
I I @...,r@ w,,
I i--.B DispResource,properties , . : :

i : : j.....H MessageResource,properties
; :

i i :....m hibernate.cfg.xrr~l

I hibernate.reveng,xml

I$.-& IRE System Library [jdk1.7.0-021

a-& Referenced Libraries
q-E? css

[EI-.@ img

@,@Y jscript

I$..@ jsp

I$.& . . WEB-INF

I . . h-.B . control . .
I . f . g - . ~ template
! ! ,
[i @B xsl
i /
j j '.-..m Hatim .tld
! '
; @ . - e l i b

/ &...@ tool

! . i..... . 0 application-config,xml
! ! 1 . !.....>j . buildmxm]
! !

f j.....m datasource.xml
! !

I . . I..... . , 0 log4j-config.xml
I :..,.a lveb,xml

[..... ewallet System

@...a common . .
f @-,&i controller
? :

i . i . El--- ~ialogueBoxController. java
! !

t . i . m.-5 PullDownController . java

i $ ' - .~ handler
! : ' 1 . j . a...&j db
: : : .
i . i . i . @...m AbstractSCH.java . ,

1 i l%,..D HibernateUtil.java . . .
! ! I ' @..@ file
! ! : ' 1 f @-D AbstractFileHandler. java
. . .
! ! ! ' . i . i . i @..,@J FileHandler.java
. . .
? ! . i . . &-.& print . .
; o...@ p-
. . ! _ . ~rameter

I . I . Domainconstants, java
: : :
I . I . W,.. 0 DomainInParameter. java
! ! . . .
i . i . @- 0 DornainOutParameter. java
! ! . .
j . i . &..- 0 DomainScheduler. java
! !

I . i . 6.- ProcessParameter. lava
! ! '

; . 1 . &I-.@ SearchListDeFine, java
! a

i util

El...D database

/ @...,@I entity
I B-.-& field

El.--@ emanager

&I--@ authentication

' display.web
j 15.5 util

I a EmConstants.java

i El... JspConstants, java

[33...& wms

;..... ToolktVersion. txt.

Figure 4.8: Module Architecture of OOAF Application

4.4.3 Class Architecture Design

The class architecture is used to organize the source code into packages, directories

and libraries. This facilitates system building, installation, configuration

management and minimizes dependencies among sub-projects to enforce

importlexport constraints specified in the module architecture. Figure 4.9 shows the

sample class diagram of visual element (FreeTextBox) and JSP Page.

Serializable Ea .

I Page I

Variableclass

0lblMessage
4FreeTextBox

BusinessClass

QActionEwnt (e)
@kingUtil
gDialogueBoxConb-oller
.+PuIIDownConboller
&DornainScheduler

Figure 4.9: Class Diagram of a Visual Object

 final String

As we can see that "Page" class is superclass which extends Serializable class and

implements ActionEvent class. Page class is parent and controls HttpRequest,

HttpResponse, HttpSession, viewstate, forward, redirect, alert and many more.

Visual object initialize "Factory" class to display the object into JSP through XML.

4.4.4 Presentation Architecture Design

The presentation architecture is responsible for binding object behaviors to page

elements, display visual objects into JSP and destroys object binding. This allows a

dynamic and loose association of bindings on a particular page. This approach

enables resource reusability.

7 Page Initialize

= false

object attributes

Create objects
binding definition

API- Tom cat

JSP Page

& End

Page Loading Start

Web Browser

and target type

@add to global list

& Page Loading End

Figure 4.10: Visual Object Presentation Architecture

Figure 4.10 shows steps which occur when a JSP page request and loaded. Initially

OOAF will define page header <h:Head>, body of the page to create object binding

definition and servlet execution to load the JSP page. When page loaded into

browser, object binds with OOAF where binding declaration used XML and create

binding instance. Bindings can be declared as a group or individually. Jnitial

bindings on a page typically established using binding element. In this instance, the

CSS, JavaScript class, events bound to the HTML element on the web page and

display visual objects. This is application level bindings that are managing the

relationship and communication for other sub-bindings on the JSP page. A binding is

implemented by a JavaScript class. Standard 00 design concepts of inheritance,

public, private, function and constructor are supported by binding definition. Figure

4.1 1 shows how object binds into JSP page.

HeaderModule

Figure 4.11: Binding XML-based JSP Page Rendering
45

4.5 Interface Design

Figure 4.12 shows the proposed OOAF toolkit prototype. The prototype divided into

five parts-(1) Menu and Toolbar- where contains execution command and other

features, (2) Project explorer- where shows project's JSP files, (3) Working area-

where visual object can be drug to design user interface/ create JSP, (4) Toolbox-

visual objects or user interface elements and view object properties (5) Console area-

where shows relevant error and guided message.

- . -
?)c*rk.an: a d ? : f

w Cl+n

Figure 4.12: Interface Design of OOAF

Web developers require to drag visual elements from no. (4) to working area at no.

(3). OOAF will visualize the drag object and developer need to named it. Upon

completion UI design, developers require to click "Generate" button from toolbar

46

which will produce all related codes and JSP file. Figure 4.13 shows complete and

final user interface of a module generated from proposed OOAF.

:
Tenntnal ID " Search j

Merchant Code : 11 Search <
-

s Display 1: . Clear
" -

1 Tel.n?lnaI Information

Figure 4.13: A Complete UI Design form

4.6 Summary

Object-oriented approach is core function to increase web application development

productivity. In this chapter, we have presented layer-based architecture of the

proposed OOAF, high-level and low-level design. We used visual object sharing

technique to design UI, customize and reuse it. This approach reduces web

application design complexity to develop domain-oriented 00 system and improve

developer productivity.

CHAPTER FIVE

DATA ANALYSIS & RESULT

Measuring the software development productivity is a complex process. Different

organization or researcher has different opinion on software productivity about the

concept of what is produced. Thus, proper method or process is required for

measuring productivity for each of the organization. This research used software

metrics to measure productivity from two projects. This chapter described data

collection, software size, productivity calculation and result of the statistical

analysis. It is state that the result in this case study cannot be generalized as it is only

be implemented at two projects, but the result are promising.

5.1 Factors Effecting Case Study

There are several factors effect case study. Most of them are-management issues,

personal capabilities, experiences, level of skills and communication. Research

shows that these variables take affect about 80% of total variance in productivity

improvement. In order to estimate accurate software productivity we considered that

both of the projects were supervised by similar set of skills, experiences and

personnel capability.

Both of the projects were also non-embedded, similar domain, requirements, level of

complexity, design, functionality, development environment, programming

language, team size and similar capabilities in team members.

5.2 Data Collection

The data presented in this research were collected from Opensources Technology

Sdn Bhd, Selangor, Malaysia. The company is "MSC Status" certified and hires

about 50 staffs, where nearly 85% directly involved in software development.

Data were collected from company's metrics database on two software projects. The

data was documented by member of each development team leader and used to

controlling and managing projects. The type of application has developed is

"Automatic Jobsheet Processing and Invoice Management System" using 3GL. The

core programming language was Java. Project 1 (SWT-PI) was developed by

proposed OOAF, while project 2 (ENT-P2) was developed in traditional method.

Measuring productivity in OOAF is not as simple as it sounds due to OOAF use

code reuse techniques. Sometimes developers reuse whole program without

modification and often modify a module to some extent. However, we accounted

reused code, distinguished a module with one modified line from a module with 100

modified lines. Thus, this research considered the notion of reuse on an ordinal scale

as shown Table 5.1.

Table 5.1 : Code Reuse Classification

TY pe Description

New Code None of the code comes from previously constructed class.

Reuse Code reused without any changes or less than 25% of lines

of code in a class were modified.

Modified More than 30% of lines of code in a class were modified.

The total software size comprised of all new, reuse and modified codes added

together as shown in Table 5.2. It is required to measure the modification on existing

classes. The change size metrics used to count effective SLOC modified or adapted

from existing class.

Table 5.2: Actual Project Size Data

P 1 OOAF 7 5 275 15 365

P2 Traditional 107 202 20 329

Project Method

Table 5.3: Actual Efforts Data

Code Size [KSLOC]

Total
New Reuse Modified

KSLOC

I Effort [MD]

The duration of the development was documented in man-day (MD) from project

started date to deployment date. The total efforts are consist of the sum of the man

days comprising analysis, design, development, test and all others days as shown in

Table 5.3. All others days comprises time spent in discover defects, configuration,

learning new tools and supervision of the project.

Project
Design Develop Test Rework ~ 1 1 Others Total

Effort

Both of the projects SWT-P1 and ENT-P2 were both non-embedded, partial real-

time with same functionalities. They were implemented on commercial servers. The

complexity was medium on their formal QA level. The teams were formed based on

experiences and level of skills; The team that developed using OOAF was well-

trained in this discipline and tools used.

Data was collected through questionnaire and it was distributed among the

participants and used software metrics to measure development productivity. The

participants were top level executive management, project managers and system

analysts.

The following section provides the results of the data analysis conducted on two

software projects namely-SWT-P1 and ENT-P2. Firstly, data analysis was

performed to establish the software productivity metrics. Secondly, a descriptive

analysis of the dataset was reported. Thirdly, correlation coefficient was tested to

validate the result.

5.3 Measuring Productivity through Software Metrics

Basically, Productivity is calculated as size of the software product divided by cost

spent to develop it. As we classified codes into reuse, new and modified so our

productivity formula as shown Eq. (5).

1 ri + ni i e n i + ci
Total Productivity =

Where, r, is reuse codes, ni is new codes, in, is modified codes, c, is complexity and

C e is total efforts required. According to the "IEEE Standard for Sofiare

Productivity Metrics", defined steps of productivity improvement consist-adjusting

software, backfiring and measuring. The following section will elaborate it.

5.3.1 Adjusting Software Size

Total size of software consists of new, reuse and modified SLOC. Reuse codes

(RSLOC) are adapted or pre-existing code without any changes, modified codes

(MSLOC) are 30% of lines of code in a class were changed and new codes (NSLOC)

are code newly developed. MSLOC were transformed to equivalent source lines of

code (ESLOC) using "Adaption Adjustment Factor (AAF)". The factor captures

other effort required to design, develop and test the previous version of code. The

ESLOC measurement equation is shown in Eq. (6).

ESLOC = N S L O C + RSLOC + MSLOC x AAF

AAF = (0 . 4 x D M) + (0 . 3 x C M) + (0 . 3 x W M)

Where, DM is design modified, CM is source code modified and WM is work

modified (after discover defects and test).

5.3.2 Backfiring

According to "IEEE Standard for SofhYare Productivity Metrics" defined- "the

productivity computed for a structured design project developed in a third-

generation language (3GL) shall not be directly compared with the productivity of

an OOSAD project developed in fourth-generation language (4GL)". Therefore,

52

ESLOC transformed into "Unadjusted Function Point (UFP)" using Backfiring

approach. Table 5.4 shows the conversion ratios used in this research.

Table 5.4: Language Conversion Ratio

Language ESLOC per UFP

Assembly 320

Java

Visual Basic

HTML 15

Unadjusted function point (UFP) equation as-

n

UFP = NO. of items of variety x weight)
i = l

(7)

5.3.3 Calculate Productivity

After ESLOC transformed into UFP, the final step is to calculate software

productivity based on Eq. (5). Table 5.5 is shown productivity achieved by projects.

Table 5.5 : Total Project 's Productivity

P 1 OOAF 768 55 13.96

P2 Traditional 428 7 1 6.03

Project Method
Productivity

ESLOCIMD Backfiring tlFP/RIID

5.4 Descriptive Analysis

Descriptive analysis compared and differentiated the metrics of the two developed

software products to answer specific questions related to software productivity. JMP

Statistical Discovery Software, version 10.0.2 was used to assist in performing the

analysis. The result showed that OOAF productivity is higher than traditional

productivity as shown in Figure 5.1.

OOAF

Tradi t ional

ESLOC/MD

Figure 5. I: Productivity Comparison by ESLOC/ MD

Figure 5.2 shows the differences of adjusted productivity by OOAF versus

traditional method, where adjusted productivity means ESLOC has converted into

FP. Again, from the result we can say that the OOAF productivity is higher than

traditional productivity.

OOAF

Traditional

UFP/MD

Figure 5.2: Productivity Comparison by Unadjusted Function Points1 Man-days

Figure 5.3 compares that total efforts spend to produce total source codes. The result

shows that OOAF used less effort to produce more SLOC compare to traditional

method. Again, we can say that OOAF productivity is higher than traditional

productivity.

0 ! I I I I I

0 0.5 1 1.5 2 2.5

Input (Eflorts)

Figure 5.3: Productivity Comparison by Output versus Input

5.5 Correlation Test

Correlation test determined, whether there is validity issue with the study given that

there may exist relationship between independent and control variables. This step

divided into two sub-sections. Firstly, sub-section used correlation coefficient to

measure the extent where OOAF method and control variables are related. Secondly,

sub-section used P value to test whether there are relationships between OOAF and

control variables.

5.5.1 Correlation Coefficient

The correlation coefficient ranges from negative (2 -1) to positive (I +1) values. The

larger absolute value is the stronger correlation. Table 5.6 shows the correlation

coefficient between OOAF, control variables and productivity.

Table 5.6: Correlation Coefficient

RELY 1 0.00i 0.47 -0-251 0.011 0.051 0.43; 1.00'

1-4 0.01 0 2 3 0-08 0.03 0-75 0-16 1.001

"PP= Product Productivity, SIZE= Product Size, AD= Application Domain, OOM= Object-

oriented Method, CPLX= Complexity, PERC= Personal Capability, RELY= Reliability, PVOL=

Plal$orm Volalility".

The criterion for acceptance is > 0.45. The results shown in Table 5.6 indicated that

correlation coefficient for the relationship between OOM and PP is strong (0.50).

That's means productivity gradually increases when OOAF is chosen over traditional

method. In contrast, the correlation between AD is -0.62 and CPLX is -0.67. Both of

them are s.trong and negative. This means that when application complexity increase,

productivity tends to decrease.

5.5.2 P Values

The P values showed whether the correlation coefficient is different from 0.

Coefficient of 0 indicates no linear relationship between independent and control

variables. If the P value is < a level, then a strong correlation exist between OOAF

and any of the control variables. Table 5.7 shows the linear relationship between

OOM, control variables and productivity.

Table 5.7: Correlation of P Values

"PP= Product Productivity, SIZE= Product Size, AD= Application Domain, OOM= Object-

oriented Method, CPLX= Complexity, PERC= Personal Capability, RELY= Reliability, PVOL=

Platform Volatility".

Table 5.7 used a level of 0.05. The result showed that linear correlation between

OOM and PP is 0.020. The value is > 0.05, thus, there is a relation between object-

oriented method and productivity. In contrast, correlation between reliability

(RELY) and PP is 0.986 and > 0.05. This means there is a relation between

57

reliability and productivity. Result also showed that linear correlation between

personnel capability (PERC) and productivity (PP) is 0.986. Meaning that there is

also a relation between personnel capability and productivity.

5.6 Summary

This chapter presented software productivity measure and analysis that can be used

when there are several size measures related to different aspects of a software

product that are significantly related to effort. This research used JMP Statistical tool

to analyze and validate whether OOAF can be productive. The result showed that

OOAF method has a significant factor affecting productivity. OOAF can

dramatically improve higher productivity over traditional methods. It is state that the

result in this case study cannot be generalized as it is only be implemented at two

projects, but the result are promising.

CHAPTER SIX

CONCLUSION

An object-oriented application framework (OOAF) was successfully designed and

developed. The purpose of this research was to reduce development effort and

increase productivity. As markets more competitive, continues productivity

improvement become major concern in software industry. OOAF and reuse is an

important aspect of software productivity when size is provided as input to effort and

productivity model. This research demonstrated that it provides a breakthrough

solution to software customization, design reuse and productivity improvement. It is

fair to claim that this goal is achieved. This chapter summarized the key

contributions, recommended and suggested some research directions to be pursued in

the future.

6.1 Discussion

In this section we have answered the research questions. The research question I

was-"What are the complexities and productivity factors to achieve reuse design

and easier customization in 00-based web application development?". To answer

this question, sources of software complexities have been identified in the section

3.1.1.1. Research showed that poor design, static interface, lack of clarification in

requirements, complexity of the domain, complex relationship among objects, size of

classes and proper documentation are root cause of software complexity.

Software productivity factors discussed in section 2.2 and section 3.1 .I .2. It said that

productivity varies on individual developer's efficiency, understanding requirements,

59

complexity, communication between team members, team size, working

environment, process, development tools, and methods. This research overcomes

mentioned problems using proposed OOAF.

The research question I1 was-"How to design and develop OOAF that could

support design reuse and existing web applications custornization??". The answer

provided in Chapter 4. To validate the research question data collection has been

discussed in section 5.2 and descriptive analysis in section 5.4. This research showed

that it is easier to customize, reuse design and develop web application from OOAF

than traditional tools.

The research question I11 was-"How to evaluate the proposed OOAF, can it

increase development productivity for web engineers and developers?'. In Chapter 3

section 3.2.1 elaborated how software productivity assessment gone through this

study. In Chapter 5 section 5.3 showed measuring software productivity through

metrics. The results indicated that the project used OOAF is higher than the project

used traditional tools. At the end, the result also validated using correlation test as

shown in section 5.5.1.

6.2 Summary of Key Contributions

In this research, we have presented a novel OOAF which generally increased web

development productivity and decrease development efforts for web engineers. It

supports developer easier customize, reuse and flexible module integration without

any code modification. There are number of contributions in this research. The key

contributions of this research summarized as:-

60

Firstly, identify the main factors to improve development productivity. This research

identified software complexity, size, reuse (code and design) and process as biggest

obstacles in software productivity development.

Secondly, design and develop OOAF. This research successfully developed ample

and comprehensive OOAF. Its simplicity enables to create new modules, easier

customization and reuse design without source code modification.

Thirdly, OOAF provided "separation of concerns" among software architecture

layers, extends reusability and customization. It supports underlying code generation,

interaction between objects provided by OOAF. Our successful experience for

"Automatic Jobsheet Processing and Invoice Management System" showed that

OOAF provides a feasible solution to software industry.

Finally, there are difficulties to apply new tools in an organization where traditional

tools, methods and processes are dominated. This research proved that OOAF and

agile approaches are inherently better than traditional tools, methods and processes.

Evidence about OOAF over traditional method in terms of productivity development

was presented. The result indicated that software industry should consider OOAF

method than traditional method if software productivity is a concern.

6.3 Future Research

There are number of ways for future research that are worth exploring. In the future,

a similar but more focused study could be done. Several suggested areas of future

work could be included as:-

This research does not cover more detail design of OOAF. A more detail design is

necessary to make the concept of framework widely accepted. Also, more detail

analysis is required in different domain to explore for better requirements, reusable

and customization technique.

Tool support availability is an important part of any application framework.

Effective tool integration with OOAF can increase more productivity and high

quality products. In order to add existing plug-ins and tools further research works

required. Some of them may include-mapping tools, better component selection

tools or tools to evaluate models.

This research used visual object sharing technique to visualize an object. It could be

great through if model done from Unified Modeling Language (UML) diagrams.

Determining the feasibility of using requirements to generate business logic code

remains a future research topic.

Economic view point is not directed to this research. It is suggested that future

researchers should investigate the impact of IT from other perspectives such as

intangible outputs, financial perspective, system performance, reliability and quality.

OOAF API is complex. Additional time is required to learn framework API which

decrease overall development productivity or encountered many obstacles during

development process. Once framework API is learned, following projects can be

easier and faster to complete.

Finally, the quality improving technology such as design reuse, code generation and

input validation check has been provided with OOAF. However, defect closure

metrics, inspection checklists and module test plan need to be added

6.4 Conclusion

We believe that this research on O O M begins to fulfill an important gap in

web application development. Best practices for designing, developing, deploying

and maintaining highly customizable systems need to be researched, discovered and

documented. Our proposed OOAF offered the research community a vocabulary to

discuss and describe software customization and reuse design to improve software

development productivity.

We do believe that the need for customization that is feasible to build, possible to

deploy and successful in meeting the needs of software industry to grow as

time progresses. Finally, we hope that we have inspired others to research this topic

and contribute to the knowledge of how to cope, manage and tackle these

difficult challenges.

REFERENCES

Alvaro, A., Santana de Almeida, & Romero de Lemos (2010). "A Software

Component Quality Framework", ACM SIGSOFT, Software Engineering

Notes, vol. 35, no. 1, pp. 1-17.

Andreou, A. S. & Tziakouris, M., (2007).A quality framework for developing and

evaluating original software components In the Information & Software

Technology. vol. 49, no. 2, pp. 122-14 1.

Bandi, R., Vaishnavi, V. & Turk, D. (2003). "Predicting maintenance Performance

using Object-Oriented Design Complexity Metrics", IEEE Transactions on

Software Engineering, 29(1), pp. 77-78.

Baker, A., & van der Hoek, A. (2009). An Experience Repot on the Design and

Delivery of Two New Software Design Courses, Fortieth ACM Technical

Symposium on Computer Science Education, pp. 3 19-323.

Boehm, B.W, Supannika Koolmanojwong, Jo Ann Lane, Richard Turner: Principles

for Successhl Systems Engineering Procedia CS 8: 297-302 (2012)

Boehm, B.W, Sunita Chulani, June M. Verner, Bernard Wong: Seventh workshop on

Software Quality ICSE Companion 2009: 449-450

Boehm, B.W, Ricardo Valerdi: Achievements and Challenges in Cocomo-Based

Software Resource Estimation IEEE Software 25(5): 74-83 (2008).

Boehrn, B.W. (1999). "Managing Software Productivity and Reuse," IEEE

Computer, Vol. 32, No. 9, pp. 1 1 1-1 13, Sept. 1999.

Blackburn, J. D., Lapre, M. A., & Van Wassenhove, L. N. (2002) Brooks' Law

Revisited: Improving Software Productivity by Managing Complexity.

Vanderbilt University Working paper 2002-85.

Cross, N., Christiaans, H., & Dorst, K. (2007). Design expertise amongst student

designers, Journal of Art & Design Education Vol. 13, No. 1, pp. 39-56.

Chiang, R.I. and Mookerjee, V.S. (2004). "Improving software team productivity,"

Commun. ACM, pp. 89-93.

Cusumano, M., MacCormack, M.A., Kemerer, C.F. and Crandall, B. (2003).

"Software development worldwide: The state of the practice," IEEE Software,

vol. 20, pp. 28-34.

Carlos, J. & A. Pedro (2002). "Domain Analysis of Object-oriented Frameworks in

FrameDoc". SEKE'02, Ischia, Italy. Journal of ACM, 1-58-113-556-

4/02/0700, vol. 4, no. 2, pp. 27-33.

Clarke, S. & Walker, R.J. (2001). "Composition patterns: An approach to designing

reusable aspects in ICSE 2001", International Conference on Software

Engineering, IEEE Computer Society Press, pp. 5-14.

Christiaans, H., & Almendra, R. A. (2010). Accessing decision-making in software

design. Design Studies, Vol. 3 1 (6), pp. 64 1-662.

David, O., Ascough, J. C., Lloyda, W., Green, T. R., Rojas, K. W., Leavesleya, G.

H., & Ahujac, L. R. (2012). A sofhvare engineering perspective on

environmental modeling framework design: The Object Modeling

System.ScienceDirect, Environmental Modelling & Software (20 12), pp. 1 - 13.

Erne, R. (201 1). "What is Productivity in Knowledge Work? - A Cross-industrial

View", Journal of Universal Computer Science, vol. 17, no. 10, pp. 1367- 1389.

Fayad, M.E., Harnza, S.H. & Yi Chen, (2005). "A Framework for Developing

Design Models with Analysis and Design Patterns ", Communication of IEEE,

0-7803-9093-8105.

Frakes, W.B. & Kyo Kang (2005). "Sofhyare Reuse Research: Status and Future",

IEEE Transactions on Software Engineering, vol. 3 1, no. 7, pp. 529-536.

Furtado, F., Aquino, G. and Meira, S. (2009). "Incentive Systems in Software

Organizations," Software Engineering Advances International Conference, pp.

Gummesson, E. (1992). "Quality dimensions: what to measure in service

organizations", Advances in services marketing and management, T. A.

Swartz, et al., eds., JAI Press, 1992, pp. 64-78.

Gill, G. and Kemerer, C. (2001). "Cyclomatic complexity density and software

maintenance productivity", IEEE Trans. Software Engineering, vol. 17(12), pp.

1284-1288.

Hazem, M.H., Wassim, E.H., Dana, M., Manvan, D. & Faysal, F. (2010). "An

Extensible Sofiare Framework for Building Vehicle to Vehicle Applications",

IWCMC'2010, ACM Press, 978-1-4503-0062-9/10/06.

Hernindez-Ldpez, A., Colomo-Palacios, R., Garcia-Crespo, A. (2012). "Software

Engineering Job Productivity: a systematic review", International Journal of

S o h a r e Engineering and Knowledge Engineering.

Hevner, A.R., Linger, R.C., Collins, R.W. & Prowell, S.T. (2005). "Next Generation

Software Engineering", Software Engineering Institute (SEI), Carnegie

Mellon, Pittsurgh, PA, CMUISEI-2005-TR-0 15.

Hneif, M. and Sai Peck, Lee (201 1). "Using Guidelines to Improve Quality in

Software Nonfunctional Attributes," Software, IEEE , vo1.28, no.6, pp.72-77.

Hernindez-Ldpez, A., Colomo-Palacios, R., Garcia-Crespo, A. and Cabezas-Isla, F.

(2011). "Software Engineering Productivity: Concepts, Issues and

Challenges", International Journal of Information Technology Project

Management, vol. 2, no. 1, pp. 37-47.

Jones, C. (1996). Applied Software Measurement: Assuring Productivity and

Quality. 2 ed. McGraw-Hill.

Muller, J., Kriiger, J., Enderlein, S., Helmich, M. Zeier, A. (2009). Customizing

Enterprise Software as a Service Applications: Back-End Extension in a Multi-

tenancy Environment, 1 la International Conference, ICEIS Proceedings, Italy,

Vol. 24, pp. 66-77.

Jerrgensen, M., Indahl, U. and Sjarberg, D.I.K. (2003). "Software effort estimation by

analogy and 'regression toward the mean'," J. of Systems & Software, vol. 68,

pp. 253-262,2003.

Jovan PopoviCl and Dragan BojiC1. 2012. A Comparative Evaluation of Effort

Estimation Methods in the Software Life Cycle. ComSIS Vol. 9, No. 1.

Kaur, P. & Singh, H. (2008). "Certification of S o p a r e Components", ACM

SIGSOFT Software Engineering Notes, DOI: 10.1 14511 384 139.1384.142, vol.

33, no. 4, pp. 1-6.

Krishnan, M.S. et al., (2000). "An Empirical Analysis of Productivity and Quality in

Sokware Products", Management Science, vol. 46, no. 6, pp. 745-759.

Kung-Kui Lau & Zheng Wang (2007). "Software Component Models", IEEE

Transactions on Software Engineering, IEEE Computer Society, vol. 33, no.

10.

Kitchenham, B. and Mendes, E. (2004). "Software Productivity Measurement Using

Multiple Size Measures", IEEE Transactions on Software Engineering, vol. 30,

no. 12, pp. 1023-1035.

Laakso, T. & Niemi, J. (2008). "An Evaluation of AJAX-enable Java-based Web

Application Frameworks". Preceedings of MoMM 2008, Linz, Austria, ACM

978-1 -60558-269-6108100 1 1, pp. 43 1-437.

Lee, S.P., Thin, S.K. & Liu, H.S. (2000). "Object-Oriented Application Framework

on Manufacturing Domain". Malaysian Journal of Computer Science, vol. 13,

no. 1, pp. 56-64.

Lapouchnian., A. (2011), "Exploiting Requirements Variability for Software

Customization and Adaption", Department of Computer Science, University of

Toronto.

Malavolta, I. (2010). "Providing support for creating next generation sofiware

architecture languages", International Conference of Software Engineering
67

(ICSE' lo), Cape Town, South Afiica, Journal of ACM, 2010, 978-1 -60558-

7196/10/05, pp. 517-518.

Michaela Weiss and Norbert Heidenbluth (2012). "Future Chances of Software

Customization: An Empirical Evaluation", 7~ International Conference on

Software Engineering Advances (ICSEA), IARIA 2012, Vol. 2, pp. 479-485.

Maxwell, K. D. (2001). Collecting Datafor Comparability: Benchmarking sofhvare

Development Productivity. IEEE Software, September/October 2001.

Maxwell, K.D. and Forselius, P. (2000), "Benchmarking Software Development

Productivity", IEEE Software, Vol. 17, pp. 80-88.

Nwelih, E., & Amadin, I.F. (2008) Modeling Software Reuse in Traditional

Productivity Model. Asian Journal of Information Technology, 7(11):484-488

Nunamaker, F.J. & Minder Chen, Purdin, T. (2001)."Systems Development in

Information Systems Research ", Journal of Management Information Systems,

Proceedings of the Twenty-Third Haiwaii International Conference on System

Sciences (IEEE Computer Society Press), vol. 7, no.3, pp. 89-106.

Oscar, C. & Angel, L. (2006). "The ODESew 2.0 Semantic Web Application

Framework". Journal of ACM 1-59593-323-9/06/005, WWW 2006,

Edingurgh, Scotland, pp. 1049-1050.

PardoLeite, J., Yu, Y., & Liu L. (2005)."Quality-Based SofhYare Reuse",

Department of Computer Science, University of Toronto, Canada.

Premraj, R., Kitchenham, B., Shepperd, M. & Forselius, P. (2005). An Empirical

Analysis of Software Productivity over Time. 1 lth IEEE International

Symposium on Software Metrics, 2005.

Paiva, E., Barbosa, D., Lima, R. and Albuquerque, A. (2010). "Factors that Influence

the Productivity of Software Developers in a Developer View", Innovations in

Computing Sciences and Software Engineering, T. Sobh and K. Elleithy, eds.,

Springer Netherlands, pp. 99- 104.
68

Prernraj, R., Twala, B., Forselius, P. and Mair, C. (2004). "Productiv-ity of Software

Projects by Business Sector: An Empirical Analysis of Trends," Late Breaking

Paper presented at loth IEEE Intl. Softw. Metrics Syrnp., Chicago, USA.

Riehle, D. & Thomas, G. (2005). "Role Model based Framework Design and

Integration", In proceedings of the 2005 Conference on object-oriented

programming systems, languages and applications (OOPSLA),' ACM Press,

pp.117-133.

Rajesh Bhatia, M. Dave, and Joshi, R. C. (2010), Ant Colony Based Rule Generation

for Reusable Software Component Retrieval, ACM SIGSoft Software

Engineering Notes, vol. 35, no. 2, pp.1-4.

Ramirez, Y. W. and Nembhard, D. A. (2004). "Measuring knowledge worker

productivity: A taxonomy", Journal of Intellectual Capital, vol. 5, no. 4, pp.

602-628.

Schmidt, D.C. & Hu (20 10). "Applying design patterns and ji-ameworks to develop

object-oriented communications sofhuare". In Handbook of Programming

Languages, vol. 10, P. Salus, Ed. Macmillan Publishing Co., Inc., Indianapolis,

IN.

Schwabe, D., Esmeraldo, L., Rossi, G. & Lyardet, F. (2001). "Engineering Web

applications for reuse " IEEE Multimedia, vol. 8, no. 1, pp. 20-3 1.

Stein Grimstad*, Magne Jlargensen, Kjetil Mollakken-Ostvold. 13 June 2005.

Software effort estimation terminology: The tower of Babel. Information and

Software Technology 48 (2006) 302-3 10

Stoev, A. & Dimov, A. (2008). "Architectural framework for Dynamic web-

applications", International Conference on Computer Systems and

Technologies- CompSysTech'08, vol. 2, no. 10, pp. 1-6.

Stoev, A. & Dimov, A. (2008). "Architectural framework for Dynamic web-

applications", International Conference on Computer Systems and

Technologies- CompSysTech'08, vol. 2, no. 10, pp. 1-6.

Sharp, H., Baddoo, N., Sarah, B., Hall, T. and Robinson, H. (2008). "Models of

motivation in software engineering," Lnf. Sokware Technology.

Sentas, P., Angelis, L., Stamelos, I. and Bleris, G. (2005). "Software Productivity

and Effort Prediction with Ordinal Regression", Information & software

Technology, Vol. 47, pp. 17-29.

Tangen, S. (2005). "Demystifying productivity and performance", International

Journal of Productivity and Performance Management, vol. 54, no. 1, pp. 34-

46.

Yamamoto, H., Washizaki, H., & Fukazawa, Y. (2004). "A Metrics Suite for

Measuring Resuabiluty of Sofhr,)are Components ", Matsushita Electric

Industrial Co., Ltd., Waseda University, Osaka, Japan.

Williams, A.S, Szyperski, C.A., and Wittenberg, C. (2012), "XML Application

Framework", Patent No. US 8 132 148B2, pp. 37, Date of Patent- Mar 6,20 12.

Wagner, S. and Ruhe, M. (2008). "A Systematic Review of Productivity Factors in

Software Development", Proc. 2nd Lnternational Workshop on Software

Productivity Analysis and Cost Estimation (SPACE 2008), IEEE Computer

Society.

Wallace & Bruce (201 1). "A Hole for every Component and every Component in its

Hole", Existential Programming-201 1, Retrieved on qh April, 201 1 @om

http://existentialprogramming.blogspot.com/2O 10/05/hole-for-every-

component-and-every-html

Zhuge, J. (2008). "Reward Systems for Implementing Knowledge Sharing in

Knowledge - Intensive Corporation," Proc. of the 2008 ISECS International

Colloquium on Computing, Com., Control, and Management, pp. 5 14-51 8.

70

