APPLICATION OF VR TECHNOLOGY

FOR HISTORICAL ARCHITECTURE AT PATTANI, THAILAND

A project submitted to the Graduate School in partial
Fulfillment of the requirements for the degree
Master of Science (Information Technology),
Universiti Utara Malaysia

by:

Ekkapak Meechai

© Ekkapak Meechai, 2002. All rights reserved.
PERMISSION TO USE

In presenting this project in partial fulfillment of the requirements for a post-graduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this project in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor or, in their absence, by the Dean of the Graduate School. It is understood that any copying or publication or use of this project or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my project paper.

Requests for permission to copy or to make other use of materials in this project, in whole or in part, should be addressed to:

Dean of Graduate School
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman
TUJUAN

ABSTRACT

The purpose of this research is to develop a home page for Kruse mosque, Pattani, Thailand using Virtual Reality (VR) approach. The development of the application involves two VR technologies. The first is the development of home page using Panorama VR technology. The research uses QuickTime Virtual Reality (QTVR), a photography-based VR that enables a user to explore panoramic spaces and examine objects by rotating them to any viewpoint using a computer mouse. The authoring software like VR Worx 2.0 was used to stitch the images. The second phase, which is the development of home page using 3D VRML technology. The AutoCAD 2000 was used to create 2D model, and 3D Studio VIZ 3.0 was used to transform 2D model to 3D object and also to compile 3D object to 3D VRML. The last this research composed each section by Macromedia Dreamweaver 4.0 and created animations by Macromedia Flash 4.0. The result of this research has shown that in the world of VR technology could be almost developed and applied our environments at a lower cost desktop computer system.
ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful. Thank you for making things possible.

I would like to thank:
My supervisor, Associate Professor Dr. Adul Razak Yaakub for his valuable ideas, assistance and support.

And special thank: Mr. Rachit Raden-Ahmad for his aid to introduce about architecture.

May Allah bless us all.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERMISSION TO USE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 The Context of the Research</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Objectives of the Research</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Statement of Problem</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Significance of the Project</td>
<td>3</td>
</tr>
<tr>
<td>CHAPTER 2: LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Definition of Virtual Reality (VR)</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Panoramic virtual reality</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Object virtual reality</td>
<td>7</td>
</tr>
<tr>
<td>2.4 Scene virtual reality</td>
<td>8</td>
</tr>
<tr>
<td>2.5 VRML (Virtual Reality Modeling Language)</td>
<td>9</td>
</tr>
<tr>
<td>2.5.1 History of VRML</td>
<td>10</td>
</tr>
<tr>
<td>2.5.2 Browsers and Plug-ins</td>
<td>11</td>
</tr>
<tr>
<td>2.5.3 Creating VRML</td>
<td>11</td>
</tr>
<tr>
<td>2.5.3.1 Text Editor</td>
<td>11</td>
</tr>
<tr>
<td>2.5.3.2 Authoring tools</td>
<td>12</td>
</tr>
</tbody>
</table>
CHAPTER 3: METHODOLOGIES

3.1 The Development of the Applications of VR Technology for Historical Architecture at Kruse mosque, Pattani, Thailand

3.1.1 The Development of Kruse mosque Panorama VR

3.1.2 The Development of Kruse mosque 3D VRML

3.1.2.1 Steps of creating 3D model

3.1.2.2 Applying 3D model to 3D VRML

CHAPTER 4: FINDINGS AND DISCUSSIONS

CHAPTER 5: CONCLUSION AND FURTHER WORKS

REFERENCES

BIBLIOGRAPHY

APPENDICES
LIST OF TABLES

Table 2-1. History of VRML 10
LIST OF FIGURES

Figure 1-1. Vietnam war simulation at the Atlanta Veterans Administration Hospital 1

Figure 2-1. The camera is rotated and an image taken at predetermined increments using a wide-angle lens. 6

Figure 2-2. The object is placed on a rotating base. A single picture is taken and the object is rotated. This process is repeated until the object has been photographed an entire rotation of 360°. 8

Figure 2-3. For large objects, the camera is rotated around the stationary object in predetermined increments. 8

Figure 2-4. Example of VRML 10

Figure 3-1 Home page of Kruse mosque 14

Figure 3-2. Major Steps in Developing Panorama VR 15

Figure 3-3. Examples of each side of capturing by digital camera 16

Figure 3-4. Firstly, we have to set up the parameters of movies 17

Figure 3-5. Second, put sequentially the photos 17

Figure 3-6. Third, stitched the photos 18

Figure 3-7. Finally, compressed the photos to JPEG or MOV files 18

Figure 3-8. Example of VR movies 19

Figure 3-9. Select “Create a Scene” when we want to make a QTVR Scene 20

Figure 3-10. “Set up” menu for a QTVR Scene 20

Figure 3-11. “Node” menu for creating and setting Hot Spots of each point 21

Figure 3-12. “Compose” menu 22

Figure 3-13. “Playback” menu for testing and export file 22
Figure 3-14. Top view of Kruse mosque that created by AutoCAD 2000

Figure 3-15. Left view of Kruse mosque that created by AutoCAD 2000

Figure 3-16. Right view of Kruse mosque that created by AutoCAD 2000

Figure 3-17. We imported file of AutoCAD by using Insert menu in 3D studio VIZ

Figure 3-18. We used command in Modify menu for transforming 2D framework to 3D object

Figure 3-19. We composed each side of 3D object to 3D model and filled the environment such as tree, light, camera, background and texture

Figure 3-20. The example of material editor

Figure 3-21. Open Export menu in File menu

Figure 3-22. Select file type and fill file name

Figure 3-23. Change the configuration of file

Figure 3-24. Test file in web browser
CHAPTER 1: INTRODUCTION

Virtual Reality (VR), a technology that began in military and university laboratories more than 20 years ago, may be called Artificial Reality, Cyberspace, or Synthetic Reality. VR is a computer-created sensory experience that allows a participant to believe and barely distinguish a "virtual" experience from a real one. VR uses computer graphics, sounds, and images to reproduce electronic versions of real-life situations.

Virtual Reality is not a computer, but a technology that uses computerized clothing to synthesize reality. Most current VR systems provide only visual experiences created by computer-assisted design (CAD) or other graphics/animation systems, but researchers are working on interface devices that add sound and touch. Eventually, VR may be delivered through direct computer-to-brain connections.

Figure 1-1. Vietnam war simulation at the Atlanta Veterans Administration Hospital.
The contents of the thesis is for internal user only
REFERENCES

LOUKA. (1996). What is VR?
[http://home.enitel.no/mlouka/vr/vrhiof98/whatisvr/What1.html]

[http://www.ericit.org/digests/virtual.shtml]

[http://www.cs.unc.edu/Research/Graphics-Image/vr/Intro_VR.html#applications]

SWITCH. (1999). Switch An Introduction to VR.
[http://switch.sjsu.edu/switch/SwitchV1N2/Intro_VR.html]

Ogleby C. (2000), The Ancient City of Ayutthaya - Explorations in Virtual Reality and Multi Media

http://www.vrtoolbox.com/Vrtoolbox.html

Jeff B. Pelz, Mary M. Hayhoe, Dana H. Ballard, Anurag Shrivastava, Jessica D. Bayliss, and Markus von der Heyde, Development of a virtual laboratory for the study of complex human behavior, Rochester Institute of Technology, Rochester, NY

Woon-Sung Lee, Jung-Ha Kim, and Jun-Hee Cho, A Driving Simulator as a Virtual Reality Tool, Kookmin University, KOREA

BIBLIOGRAPHY

Crispen, B. (1997), Virtual Reality Modeling Language (VRML)
http://hiway.net/~crispen/vrml

Peachpit Press.

cosponsored by the Royal Academy of Engineering and the British
Computer Society, London, 30 Nov.

New York,

“The Virtual Reality Gorilla Exhibit,” IEEE Computer Graphics and

Virtual Environments: Design, Evaluation, and Application,” Doctoral
dissertation, Georgia Institute of Technology.

Geometric Modeling System,” presented at ACM Solid Modeling.

on User Interface Management Systems, Seeheim, FRG.

New Haven. 351p.

Kuala Lumpur. 302p.
