SIMULATION MODELING FOR OPERATIONS IMPROVEMENT

AT A LEADING BANKING HUB

A thesis submitted to the Graduate School in partial fulfillment of the requirements for the degree Master of Science (Decision Sciences)

School of Quantitative Sciences

Universiti Utara Malaysia

By

Jamin Kong

© Jamin Kong, 2005. All rights reserved.
Kami, yang bertandatangan, memperakukan bahawa
(I, the undersigned, certify that)

SIMULATION MODELING FOR OPERATIONS IMPROVEMENT
AT A LEADING BANKING HUB

seperti yang tercatat di muka surat tajuk dan kulit tesis/disertasi
(as it appears on the title page and front cover of project paper)

bahasa tesis/disertasi tersebut boleh diterima dari segi bentuk serta
kandungan, dan liputan bidang ilmu yang memuaskan, sebagaimana yang
ditunjukkan oleh calon dalam ujian lisan yang diadakan pada:
(that the thesis/dissertation is acceptable in form and content, and that a
satisfactory knowledge of the field covered by the thesis was demonstrated by
the candidate through an oral examination held on 28 AUGUST 2005

Pengerusi Viva
(Chairman for Viva) : Dr. Haslinda Ibrahim
Penilai Dalam
(Internal Assessor) : Prof. Madya Dr. Shaharuddin Tahir
Penyelia Utama
(Principal Supervisor) : Prof. Madya Dr. Razman Mat Tahar
Penyelia Kedua
(Second Supervisor) :
Dekan Fakulti Sains Kuantitatif:
(Dean Faculty of Quantitative Sciences) : Prof. Madya Dr. Engku
Muhammad Nazri Engku Abu Bakar

Tandatangan: [Signature]

Date: [Date]
ACKNOWLEDGEMENT

I wish to thank my project supervisor, Prof Madya Dr. Razman bin Mat Tahar for his invaluable guidance and support, and all other lecturers that had guided me through this course. Also, to the bank and its staff whom due to the company policies could not be named here - you know who you are. Not forgetting my family, friends and of course my fellow classmate cum drivers, Chin Keat, Phaik Sim, May Li, and Wan Chin.

You had all made this possible!
PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a post graduate degree from Universiti Utara Malaysia, I agree that the university library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor(s) or, in their absence, by the Dean of Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made from any material form my thesis.

Request for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Graduate School
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman
ABSTRACT

This study focuses on the utilization of simulation software to model the process flow of a banking hub. It is aimed at analyzing whether the management’s goal towards a better delivery standard is feasible, and if so, how it could be achieved.

Statistical analysis is carried out to ensure that the model built could represent the actual scenario. Having proved such, an analysis of the current situation is done and weakness identified - enabling determination of whether that the management’s goal bound by their defined constraints is feasible or not.

Having proven that the goals are not achievable, further studies are carried out using What-If analysis and recommendations on other available options will be presented. Finally, future studies and recommendations on how the study could be better improved shall also be discussed.

Keywords: Simulation, Modeling.
ABSTRAK

Kajian in akan mengfokuskan kepada penggunaan perisian simulasi untuk membina sebuah model yang merupakan proses di sebuah pusat perbankan. Tujuannya ialah untuk membuat analisis samada matlamat pihak pengurusan boleh dicapai, dan jikalau boleh, bagaimana.

Analisis secara statistik juga digunakan untuk membuktikan model tersebut berupaya mewakili situasi sebenar. Selepas pembuktian, analisis secara mendalam terhadap situasi semasa akan dijalankan supaya kelemahannya dapat ditentukan, seterusnya untuk mengenalpasti samada matlamat pihak pengurusan boleh dicapai.

Setelah membuktikan bahawa matlamat pengurusan tidak boleh dicapai, penyelidikan selanjutnya pula akan dijalankan dengan “What-If Analysis” supaya alternatif yang lain dapat dikenalpastikan. Akhirnya, kajian lanjutan serta cadangan untuk meningkatkan keberkesanan kajian ini juga akan dibincang.

Kata kunci: Simulasi, Model.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PERMISSION TO USE</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURE</td>
<td>viii</td>
</tr>
<tr>
<td>Chapter 1:</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 SeaHub Operations and the Need for Efficiency</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.3 Objectives of Study</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.4 Method of Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.5 Significance of Study</td>
<td>5</td>
</tr>
<tr>
<td>Chapter 2:</td>
<td>MODELING AND SIMULATION</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.1 Introduction</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.2 Why Simulate?</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.3 Benefits of Simulation</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.4 Successful Application</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.5 Drawbacks of Simulation</td>
<td>16</td>
</tr>
</tbody>
</table>
Chapter 3: METHODOLOGY

3.1 Introduction
3.2 Data Collection
 3.2.1 Intra-day Transaction Count
 3.2.2 Unit Processing Time
 3.2.3 Process Flow
3.3 Model Conceptualization
3.4 Model Development
 3.4.1 Modules in ARENA
3.5 Model Verification and Validation

Chapter 4: MODEL ANALYSIS

4.1 Analysis of Data
4.2 What-If Analysis
 4.2.1 Scenario 1 (No incremental cost, 10 working hours)
 4.2.2 Scenario 2 (10 working hours, 3 hours turnaround)
 4.3.2 Scenario 3 (No incremental cost, 3 hours turnaround)
4.3 Recommendation

Chapter 5: CONCLUSION

5.1 Summary of Findings
5.2 Recommendation
5.3 Recommendation for Further Studies
REFERENCES

APPENDICES

Appendix 1: Transaction count by hour throughout year 2004
Appendix 2: Output from Arena’s Input Analyzer
Appendix 3: Output – Arena (based on current)
Appendix 4: Data of Actual vs Simulation (maximum cycle time)
Appendix 5: Output – Arena (based on targeted 10 working hour)
Appendix 6: Output – Arena (based on 1 additional authorizer)
Appendix 7: Output – Arena (Scenario 1)
Appendix 8: Output – Arena (Scenario 2)
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transaction count by hour within the day (52 weeks’ data)</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Transaction count by hour within the day (average of 52 weeks’ data)</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Time taken to process a transaction by processor and authorizer</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>Basic Operation Flow – from Seabank to SeaHub to SeaBank</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>Concept model of SeaHub’s operation flow</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Model developed in Arena representing SeaHub’s operation flow</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>Scheduled entities arrival</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>Processor’s work schedule</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>Authorizer’s work schedule</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>Resource Clerk and Officer (Processor and Authorizer) schedule</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>Arrival rate of entity into system</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>Process Module of Processor</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>Process Module of Authorizer</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>Output summary for 5 replications</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>Output value of Entity1.TotalTime for all 5 replications</td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>Comparison of actual vs. simulated data</td>
<td>36</td>
</tr>
<tr>
<td>17</td>
<td>Output value of Queue.WaitingTime for all 5 replications</td>
<td>37</td>
</tr>
<tr>
<td>18</td>
<td>Output value of Entity1.TotalTime and Queue.WaitingTime for all 5 replications based on 10 hours schedule</td>
<td>38</td>
</tr>
<tr>
<td>19</td>
<td>Comparison output value of resource utilization for all 5 replications based on 12 hours schedule and 10 hours schedule</td>
<td>39</td>
</tr>
<tr>
<td>20</td>
<td>Output value of Entity1.TotalTime and Queue.WaitingTime for all 5 replications based on 10 hours schedule plus a additional authorizer</td>
<td>40</td>
</tr>
</tbody>
</table>
Chapter 1

INTRODUCTION

1.1 Introduction

SeaBank, one of the leading financial institutions in the world today has a global reach of more than 100 countries around the globe since 1997. Among its long list of world first, is the successful setup of their regional processing centers in various parts of the world. SeaHub is one such center in Malaysia that handles all transactions from all SeaBank branches in Asia Pacific. It was set up in the early 1990s to reap from the advantage of economic of scale via centralized resources of highly skilled staffs. It had been a major success in the industry term, where a lot of other banks had tried to follow suit since it does make a lot of sense coming from cost control point of view.

The last few years had many other banks doing the same thing, though not all were successful. With the many of them reaching the same level of competitiveness, SeaHub now has to embark on new initiatives that will help boost their “superiority” that they had long enjoyed. In this highly saturated market, SeaHub has to ensure that their initiative will far differentiate them from competitors and more importantly, will not incur additional cost as SeaBank does not anticipate any growth in business for the next coming year. And they have to act fast.

1.2 SeaHub Operations and The Need for Efficiency

SeaHub operation could be likened as a back-office of SeaBank. That said, it means that all customers going to SeaBank only sees the person at the counter (front office)
The contents of the thesis is for internal user only
References

