DISCRETE WAVELET PACKET TRANSFORM FOR ELECTROENCEPHALOGRAM BASED VALENCE-AROUSAL EMOTION RECOGNITION

OYENUGA WASIU OLAKUNLE

MASTER OF SCIENCE
UNIVERSITI UTARA MALAYSIA
2015
Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely available for inspection. I further agree that permission for the copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dear [Name] of Awang Had Salleh Graduate School of Arts and Sciences
UUM College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Abstrak

Abstract

Electroencephalogram (EEG) based emotion recognition has received considerable attention as it is a non-invasive method of acquiring physiological signals from the brain and it could directly reflect emotional states. However, the challenging issues regarding EEG-based emotional state recognition is that it requires well-designed methods and algorithms to extract necessary features from the complex, chaotic, and multichannel EEG signal in order to achieve optimum classification performance. The aim of this study is to discover the feature extraction method and the combination of electrode channels that optimally implements EEG-based valence-arousal emotion recognition. Based on this, two emotion recognition experiments were performed to classify human emotional states into high/low valence or high/low arousal. The first experiment was aimed to evaluate the performance of Discrete Wavelet Packet Transform (DWPT) as a feature extraction method. The second experiment was aimed at identifying the combination of electrode channels that optimally recognize emotions based on the valence-arousal model in EEG emotion recognition. In order to evaluate the results of this study, a benchmark EEG dataset was used to implement the emotion classification. In the first experiment, the entropy features of the theta, alpha, beta, and gamma bands through the 10 EEG channels Fp1, Fp2, F3, F4, T7, T8, P3, P4, O1, and O2 were extracted using DWPT and Radial Basis Function-Support Vector Machine (RBF-SVM) was used as the classifier. In the second experiment, the classification experiments were repeated using the 4 EEG frontal channels Fp1, Fp2, F3, and F4. The result of the first experiment showed that entropy features extracted using DWPT are better than bandpower features. While the result of the second classification experiment shows that the combination of the 4 frontal channels is more significant than the combination of the 10 channels.

Keywords: Discrete wavelet packet transform, Electroencephalogram, Emotion recognition, Entropy, Radial basis function, Support vector machine.
Acknowledgement

All praise is due to Allah, who by His grace I completed this task. May His peace and blessing be upon His prophet, Muhammad (S.A.W.).

Special thanks to my Mother and Father for their love and guidance. I also thank my dear wife for her love, passion and understanding throughout my studies. I wish to also thank my brothers and sisters for caring about me during times of ease and hardship. I will like to show gratitude to my supervisor Dr. Farzana Kabir Ahmad for her guidance and patience during this research work. I will also like to extend my gratitude to Associate Professor Fadzilah Siraj, Dr. Nooraini Yusoff, Dr. Husniza Husni, and Dr. Azizi Bin Ab Aziz, I have gained a lot from them all that have contributed to the success of this work.

Thank you all may Allah help you too.
Table of Contents

Permission to Use .. i
Abstrak ... ii
Abstract ... iii
Acknowledgement .. iv
Table of Contents ... v
List of Tables .. viii
List of Figures .. ix
List of Abbreviations .. xi

CHAPTER ONE INTRODUCTION ... 12

1.1 Introduction ... 12

1.2 Background of the Study ... 13

 1.2.1 Emotion Recognition .. 13

 1.2.2 Brain Activities in Emotional States .. 14

 1.2.3 Methods of Acquiring Electrical Signals from the Brain 19

 1.2.4 Characteristics of EEG Signals .. 21

 1.2.5 Emotion Elicitation ... 22

 1.2.6 Modelling Emotional States .. 23

 1.2.7 EEG-Based Emotion Recognition ... 24

1.3 Problem Statements ... 25

1.4 Research Questions .. 28

1.5 Research Objectives ... 28

1.6 Significance of the Study ... 29

1.7 Scope of the Study .. 29

1.8 Organization of the Report .. 30

1.9 Chapter Summary .. 30

CHAPTER TWO LITERATURE REVIEW .. 31

2.1 Introduction ... 31

2.2 EEG-Based Emotion Recognition Process ... 31

 2.2.1 EEG Signal Acquisition Phase .. 32
2.2.2 Pre-Processing Phase ...35
2.2.3 Feature Extraction Phase ..35
2.2.4 Feature Selection Phase ..37
2.2.5 Classification Phase ...38
2.3 DEAP EEG Dataset Details ..39
 2.3.1 MATLAB Pre-Processed DEAP EEG Dataset Description39
 2.3.2 Previous Works on Emotion Recognition Using DEAP EEG Dataset43
2.4 DWPT Details ...46
2.5 RBF-SVM Details ..48
 2.5.1 SVM as A Linear Classifier ..48
 2.5.2 Soft Margin Extension ..51
 2.5.3 SVM as a Non-linear classifier ..52
 2.5.4 Prameter Selection ...52
2.6 Signal Processing Tool ...53
2.7 Chapter Summary ...54

CHAPTER THREE METHODOLOGY ...55
3.1 Introduction ..55
3.2 Phase 1 ...55
3.3 Phase 2 ...57
3.4 Phase 3 ...70
3.5 Chapter Summary ...81

CHAPTER FOUR RESULTS ...82
4.1 Phase 1 Results: Algorithm for DWPT and Entropy82
4.2 Phase 2 Results ...85
 4.2.1 Average Accuracy and F1-Score for 10 Channels85
 4.2.2 Results of DWPT Compared With Powerband87
4.3 Phase 3 Results ...89
 4.3.1 Average Accuracy and F1-Score for 4 Channels89
 4.3.2 Results of 4 Channels Compared With 10 Channels92
4.4 Chapter Summary ...94

CHAPTER FIVE CONCLUSION ..95
List of Tables

Table 1.1: Description of the Brain Waves ... 21
Table 2.1: EEG Public Databases .. 33
Table 2.2: DEAP EEG Dataset Description ... 41
Table 2.3: List of the 32 EEG Electrode Channels ... 41
Table 2.4: Common Kernels for SVM .. 52
Table 3.1: Frequency Bands and Correlated DWPT Packets 57
Table 3.2: Confusion Matrix for Phase 2 Classification Experiment 60
Table 3.3: Varying Sigma Values (Valence - Subject 1) .. 63
Table 3.4: Varying the C parameter Values (Valence – Subject 1) 65
Table 3.5: Varying Sigma Values (Arousal – Subject 1) ... 67
Table 3.6: Varying the C parameter Values (Arousal– Subject 1) 69
Table 3.7: Confusion Matrix for Phase 3 Classification Experiment 73
Table 3.8: Varying Sigma Values (Valence - Subject 1) .. 74
Table 3.9: Varying the C parameter Values (Valence – Subject 1) 76
Table 3.10: Varying Sigma Values (Arousal – Subject 1) .. 78
Table 3.11: Varying the C parameter Values (Arousal– Subject 1) 80
Table 4.1: Entropy Values from Fp1 for Subject 1’s 40 Trials 82
Table 4.2: Phase 2 Classification Experiment Result for all 32 Subjects 86
Table 4.3: The Result of DWPT Compared With Powerband 88
Table 4.4: Phase 3 Classification Experiment Result for all 32 Subjects 91
Table 4.5: The Results of 4 Channels Compared with 10 Channels 92
List of Figures

Figure 1.1. Information Flow within a Neuron (Source: www.uic.edu (Edited)) 15
Figure 1.2. Information Flow between Neurons .. 16
Figure 1.3. Parts of the Human Brain .. 16
Figure 1.4. Right and Left Hemispheres .. 17
Figure 1.5. The Sub-Cortical Structures (Source: tantrum911.com (Edited)) 18
Figure 1.6. The 10–20 Positioning for 21 Electrode Channels (Sanei and Chambers, 2008) 20
Figure 1.7. EEG Montage .. 20
Figure 1.8. An Instance of the Valence-Arousal Model .. 24
Figure 2.1. EEG-Based Emotion Recognition Process ... 32
Figure 2.2. Self-Assessment Manikins (SAM) Questionnaire .. 40
Figure 2.3. 32 Electrode Channels Location ... 42
Figure 2.4. Content of Subject 1’s 40 trials label .. 43
Figure 2.5. 3-level DWT decomposition .. 47
Figure 2.6. 3-level DWPT decomposition ... 47
Figure 2.7. SVM as A Linear Classifier with the Separating Hyperplane 49
Figure 2.8. SVM as A Linear Classifier with the Soft Margin Extension 51
Figure 3.1. General Process of the Study .. 55
Figure 3.2. 5-Level DWPT Decomposition Tree (Wali et al., 2013) 56
Figure 3.3. Phase 2 Framework ... 58
Figure 3.4. Phase 2 Flowchart ... 59
Figure 3.5. Phase 3 Framework ... 72
Figure 3.6. Phase 3 Flowchart .. 72
Figure 4.1. DWPT Decomposition Tree with Bands Index Numbers 84
Figure 4.2. Theta, Alpha, Beta, and Gamma Entropy Values via Fp1 for Trial 40 84
Figure 4.3. Classification Accuracy for 32 Subjects .. 85
Figure 4.4. F1-Score for 32 Subjects .. 86
Figure 4.5. Average Accuracy Compared ... 88
Figure 4.6. Average F1-Score Compared .. 89
Figure 4.7. Classification Accuracy for 32 Subjects .. 90
Figure 4.8. F1-Score for 32 Subjects .. 91
Figure 4.9. Average Accuracy of 4 Channels Compared with 10 Channels...................... 93
Figure 4.10. Average F1-Score of 4 Channels Compared with 10 Channels 94
List of Abbreviations

ANN- Artificial Neural Networks
ANS- Autonomic Nervous System
CNS- Central Nervous System
DEAP- A Database for Emotion Analysis Using Physiological Signals
DWT- Discrete Wavelet Transform
DWPT- Discrete Wavelet Packet Transform
EEG - Electroencephalogram
EOG - Electrooculogram
ERP- Event Related Potentials
FD- Fractal Dimension
fNIRS - Functional Near-Infrared Spectroscopy
GA- Genetic Algorithm
IADS- International Affective Digitized Sounds
IAPS- International Affective Picture System
KNN- K-Nearest Neighbour
LDA- Linear Discriminant Analysis
NB - Naïve Bayes
PCA- Principal Component Analysis
PSD- Power Spectral Density
RPA- Recurrence Plot Analysis
RBF- Radial Basis Function-Support Vector Machine
SAM- Self-Assessment Manikins
SVM- Support Vector Machine
CHAPTER ONE
INTRODUCTION

1.1 Introduction

Human beings express various emotions during daily activities and interactions with other people. In human daily interactions, these emotions are recognized through facial expression, voice, or body gesture. The task of recognizing emotions is simple for human, however computers capability of recognizing human emotions is still diminished (Amaral, Ferreira, Aquino, and Castro (2013).

In affective computing, facial expressions, body gestures, and vocal intonation have been used to recognize human emotions (Fu, Yang, and Hou, 2011). However, due to the fact that human can control the facial expressions, body gestures, and vocal intonation voluntarily, various studies have used physiological bio-signals from the peripherals of the human body to recognize emotions (Kim, Bang, and Kim, 2004; Kim and André, 2006; Kim and André, 2008; Picard, Vyzas, and Healey, 2001). The electrical signals from the brain itself acquired by Electroencephalograms (EEG) are recently used to recognize human emotions (Jatupaiboon, Pan-ngum, and Israsena, 2013; Lin, Wang, Jung, Wu, Jeng, Duann and Chen, 2010; Wang, Nie, and Lu, 2011).

The non-linearity, non-stationary, and chaotic properties of the EEG signals have created great problems that lead to thorough signal processing and analysis (Sanei and Chambers, 2008). In other words, to achieve optimal results, there is a need to systematically choose the methods and techniques that will be applied when
The contents of the thesis is for internal user only
REFERENCES

Technologies (ICCCNT), 2012 Third International Conference on (pp. 1-8). IEEE.

