

OPTIMAL QOS-AWARE MULTIPLE PATHS WEB SERVICE

COMPOSITION USING HEURISTIC ALGORITHMS AND

DATA MINING TECHNIQUES

OSAMA KAYED TAHER QTAISH

DOCTOR OF PHILOSOPHY

UNIVERSITI UTARA MALAYSIA

2014

i

1. Permission to Use

In presenting this thesis in fulfillment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the Universiti Library may make it

freely available for inspection. I further agree that permission for the copying of this

thesis in any manner, in whole or in part, for a scholarly purpose may be granted by

my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate

School of Arts and Sciences. It is understood that any copying or publication or use

of this thesis or parts thereof for financial gain is not allowed without my written

permission. It is also understood that due to recognition shall be given to me and to

Universiti Utara Malaysia for any scholarly use, which may be made of any material

from my thesis.

Requests for permission to copy or to make other uses of materials in this thesis, in

whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

ii

2. Abstrak

Matlamat penggubahan perkhidmatan sedar-QoS (kualiti perkhidmatan) adalah

untuk menjana perkhidmatan gabungan yang memenuhi keperluan QoS yang

ditetapkan oleh pelanggan. Walau bagaimanapun, adalah sukar untuk menjana satu

perkhidmatan gabungan yang dapat mengoptimakan semua laluan yang terlibat

dengan serentak apabila penggabungan tersebut mempunyai lebih daripada satu

laluan pelaksanaan. Pada masa yang sama juga penggabungan itu mesti memenuhi

keperluan QoS. Ini adalah masalah yang dikaji dalam penyelidikan ini, yang juga

dikenali dengan masalah pengoptimuman. Cabaran lain ialah untuk menetapkan ciri

QoS yang boleh dikelaskan sebagai kriteria pemilihan. Thesis ini mengusulkan

kaedah penggubahan perkhidmatan sedar-QoS. Matlamatnya adalah untuk

menyelesaikan masalah di atas melalui mekanisma pengoptimuman berdasarkan

kombinasi kaedah jangkaan laluan masa larian dan algoritma heuristik. Mekanisma

ini melibatkan dua langkah. Pertama, kaedah jangkaan laluan pelaksanaan yang

menjangka laluan pelaksanaan yang mempunyai potensi untuk dilaksanakan,

seketika sebelum pelaksanaan penggubahan sebenar dibuat. Kedua, prosedur

konstruktif (CP) dan prosidur pelengkap (CCP) dalam algorithma heuristik

digunakan untuk menghitung pengoptimuman dengan mengambil kira hanya laluan

pelaksanaan yang telah dijangka oleh kaedah jangkaan laluan masa larian. Untuk

kriteria pemilihan, lapan ciri QoS diusulkan selepas menganalisis hasil penyelidikan

terdahulu. Seterusnya, diusulkan juga supaya kriteria terpilih tersebut disusun

mengikut keutamaan bagi memudahkan pelanggan membuat pilihan. Ujikaji melalui

alatan WEKA dan prototaip digunakan untuk membuat simulasi bertujuan menilai

kedua-dua kaedah yang digunakan. Bagi kaedah jangkaan laluan masa larian,

keputusan menunjukkan kaedah ini dapat mencapai tahap ketepatan jangkaan yang

memberasangkan dan ketepatan tersebut pula tidak dipengaruhi oleh bilangan laluan

yang terlibat dalam jangkaan. Bagi mekanisma pengoptimuman, penilaian dijalankan

dengan membandingkan mekanisma ini dengan teknik pengotimuman yang relevan.

Hasil simulasi menujukkan bahawa mekanisma pengoptimuman yang dicadangkan

mengalahkan teknik lain kerana ia dapat (1) menjana penyelesaian nisbah QoS

tertinggi, (2) menggunakan masa pengkomputeran yang terendah, dan (3)

menghasilkan peratusan terkecil bagi bilangan kekakangan yang dicabuli.

Kata kunci: Penggubahan perkhidmatan web, QoS, Pemilihan perkhidmatan,

Algorithma heuristik, Perlombongan data.

iii

3. Abstract

The goal of QoS-aware service composition is to generate optimal composite

services that satisfy the QoS requirements defined by clients. However, when

compositions contain more than one execution path (i.e., multiple path's

compositions), it is difficult to generate a composite service that simultaneously

optimizes all the execution paths involved in the composite service at the same time

while meeting the QoS requirements. This issue brings us to the challenge of solving

the QoS-aware service composition problem, so called an optimization problem. A

further research challenge is the determination of the QoS characteristics that can be

considered as selection criteria. In this thesis, a smart QoS-aware service

composition approach is proposed. The aim is to solve the above-mentioned

problems via an optimization mechanism based upon the combination between

runtime path prediction method and heuristic algorithms. This mechanism is

performed in two steps. First, the runtime path prediction method predicts, at

runtime, and just before the actual composition, execution, the execution path that

will potentially be executed. Second, both the constructive procedure (CP) and the

complementary procedure (CCP) heuristic algorithms computed the optimization

considering only the execution path that has been predicted by the runtime path

prediction method for criteria selection, eight QoS characteristics are suggested after

investigating related works on the area of web service and web service composition.

Furthermore, prioritizing the selected QoS criteria is suggested in order to assist

clients when choosing the right criteria. Experiments via WEKA tool and simulation

prototype were conducted to evaluate the methods used. For the runtime path

prediction method, the results showed that the path prediction method achieved

promising prediction accuracy, and the number of paths involved in the prediction

did not affect the accuracy. For the optimization mechanism, the evaluation was

conducted by comparing the mechanism with relevant optimization techniques. The

simulation results showed that the proposed optimization mechanism outperforms

the relevant optimization techniques by (1) generating the highest overall QoS ratio

solutions, (2) consuming the smallest computation time, and (3) producing the

lowest percentage of constraints violated number.

Keywords: Web service composition, QoS, Service selection, Heuristic algorithm,

Data mining.

iv

4. Acknowledgement

All thanks to Allah who gave me the ability to finish this work. Without the mercy of

Allah, I could not achieve anything. I would like to gratefully acknowledge the

enthusiastic supervision of my thesis supervisor, Professor Dr. Zulikha Bt Jamaludin

and my Co-supervisor Dr. Massudi bin Mahmuddin. I could not have imagined

having a better adviser and mentor for my Ph.D. Without their inspiration,

stimulating suggestions, sound advice, guidance, and active participation throughout

the process of work, I would never have finished.

I am truly and deeply indebted to so many people that there is no way to

acknowledge them all or even any of them properly. I am grateful to my lovely wife,

Dua’a. I’ll forever be indebted to this great woman. Very special thanks to your

practical and emotional support. Without your endless patience, understanding,

support, and help, I would never have been able to finish this thesis. Your supreme

trust is always the most efficient motivation to accomplish my ultimate goal. No

word can describe what you have done for me. I love you. I would like to give

special thanks to my cute son Yamn, who came to this life while I was studying for

my PhD. His gorgeous smile blessed and encouraged me to continue my studies.

I would like to thank my Father, who passed away during my PhD study, for his

support and encouragement to continue my study. I know his soul is very happy

about my successful achievement. Then I would like to thank my beloved mother,

who is always supporting me and praying for me to obtain this degree. I respect her

deep faith, unconditional love, and support at each time of my life made me this man

whom I am today. Furthermore, I would like to thank my stepfather Dr. Abdul

Raheem Issa and stepmother for their support. Warm thanks go to my dearest

brothers Mohammed and Emad, sisters Suhad, Sahar, Raghda, Wafa’ and Abeer, and

friends, especially Dr. Yousif Faza, Dr. Ammar Yasser, Dr. Mossab Al Hunaity,

Wael Abo Rahma, Mohammed Eriqat, and Bashar Barakat for giving me their

unequivocal support throughout, as always, for which my mere expression of thanks,

likewise, does not suffice.

v

5. Table of Contents

Permission to Use .. i

Abstrak ... ii

Abstract .. iii

Acknowledgement... iv

Table of Contents ... v

List of Tables... ix

List of Figures ... xi

List of Appendices ... xiii

List of Abbreviations... xiv

CHAPTER ONE: INTRODUCTION .. 1

 Introduction ... 1 1.1

1.1.1 Web Service Composition Technology for Building Business Processes .. 4

1.1.2 QoS-Aware Service Composition ... 6

 Problem Background .. 9 1.2

 The Problem Statement ... 12 1.3

 The Motivation .. 15 1.4

 Research Questions ... 16 1.5

 Research Objectives .. 18 1.6

 Research Scope ... 19 1.7

 Research Design .. 20 1.8

 Thesis Layout .. 22 1.9

CHAPTER TWO: RELATED WORKS ... 24

 QoS for Web Service .. 24 2.1

 QoS for Web Service Composition ... 25 2.2

 Multiple Paths Composition ... 27 2.3

 Optimization Approaches for QoS-Aware Service Composition 28 2.4

2.4.1 Single Path Composition Approaches ... 29

2.4.2 Multiple Paths Composition Approaches .. 33

2.4.2.1 A Separate Path Optimization Technique 33

vi

2.4.2.2 All Paths Optimization Technique ... 38

 Solutions for Multi-dimensional Multi-choice Knapsack Problem (MMKP) 49 2.5

 The Path Prediction ... 51 2.6

 Chapter Summary ... 53 2.7

CHAPTER THREE: RESEARCH METHODOLOGY 56

 Introduction ... 56 3.1

 Analyzing the Research Problem .. 59 3.2

 Multiple Paths QoS-Aware Service Composition Approach 60 3.3

3.3.1 The Problem and Composition Structure Model 60

3.3.2 The Selection Criteria .. 61

3.3.3 QoS Computation for Web Service Composition 62

3.3.4 The Utility Function .. 62

3.3.5 New Optimization Mechanism .. 63

3.3.5.1 Prediction of Execution Path ... 63

3.3.5.2 The Computation of Optimization ... 65

 Evaluation of the Proposed Approach .. 71 3.4

3.4.1 Evaluation of Runtime Path Prediction Method .. 71

3.4.1.1 An Experiment Design .. 71

3.4.1.2 Data Preparation .. 72

3.4.1.3 The Data Mining Tool ... 77

3.4.1.4 Datasets Preparation for WEKA .. 77

3.4.1.5 Machine Learning Algorithms ... 79

3.4.1.6 The Performance Evaluation ... 80

3.4.1.7 Experiments ... 83

3.4.2 Evaluation of the Optimization Mechanism .. 83

3.4.2.1 An Experimental Design .. 83

3.4.2.2 Simulation Prototype ... 84

3.4.2.3 The Evaluation Measure .. 84

3.4.2.4 Evaluation Methods ... 85

3.4.2.5 Experiments ... 90

 Chapter Summary ... 92 3.5

vii

CHAPTER FOUR: QUALITY OF SERVICE FOR WEB SERVICE

COMPOSITION .. 94

 QoS Models and QoS Characteristics ... 94 4.1

 Analysis on QoS Selection Criteria .. 98 4.2

 Priority for QoS Criteria ... 103 4.3

 Chapter Summary ... 104 4.4

CHAPTER FIVE: A SMART QOS-AWARE SERVICE COMPOSITION

APPROACH ... 106

 The Proposed Approach for QoS-Aware Service Composition 106 5.1

 The Problem Model .. 109 5.2

 Modeling the Composition Structures .. 110 5.3

 Selection Criteria .. 111 5.4

 QoS Computation for Web Service Composition ... 112 5.5

 A Utility Function ... 113 5.6

 Multiple Paths Composite Service Scenarios ... 115 5.7

5.7.1 An Auto Insurance Composite Service ... 116

5.7.2 A Bank Loan Composite Service .. 117

 New Optimization Mechanism ... 119 5.8

5.8.1 Predicting the Execution Path ... 119

5.8.1.1 A Runtime Path Prediction Method ... 120

5.8.2 Computing the Optimization ... 128

5.8.2.1 Mapping the Selection Problem to Multi-dimensional Multi-choice

Knapsack Problem (MMKP) ... 128

5.8.2.2 Initial Feasible Solution of Constructive Procedure 132

5.8.2.3 Using CCP to Improve the Initial Feasible Solution 137

 Chapter Summary ... 139 5.9

CHAPTER SIX: PERFORMANCE EVALUATION OF THE PROPOSED

APPROACH ... 141

 Evaluation of Runtime Path Prediction Method ... 141 6.1

6.1.1 Datasets Description .. 141

6.1.2 Experiments and Results ... 145

6.1.2.1 The Accuracy of Path Prediction ... 146

6.1.2.2 Scalability of the Prediction Method ... 149

viii

 Evaluation of Optimization Mechanism ... 153 6.2

6.2.1 A Simulation Prototype ... 153

6.2.1.1 Parameters .. 156

6.2.1.2 Implementations .. 157

6.2.1.3 Software and Hardware Simulation ... 161

6.2.2 Experiments and Results ... 161

6.2.2.1 QoS Ratio ... 163

6.2.2.2 Constraints Violated Number .. 166

6.2.2.3 Computation Time ... 171

6.2.2.4 Practical Composite Service Scenario ... 175

 Conclusions ... 179 6.3

 Chapter Summary ... 182 6.4

CHAPTER SEVEN: CONCLUSION AND FUTURE RESEARCH WORK .. 183

 Conclusion of the Research... 183 7.1

 Contributions of the Research ... 187 7.2

 Research Limitation .. 190 7.3

 Future Works .. 191 7.4

REFERENCES ... 193

ix

6. List of Tables

Table 2.1 A Summary of the State of the Art Approaches Proposed to Handle the

Multiple Paths Composition Problem .. 48

Table 3.1 Research Methodology .. 57

Table 3.2 An Example of Extended Composition Log .. 64

Table 3.3 Value Ranges of Loan Type, Loan Amount, and Loan Year Attributes ... 75

Table 3.4 A Confusion Matrix of Two Classes ... 81

Table 3.5 A Comparison Between the Algorithms Used for the Preformance

Evaluation .. 90

Table 4.1 A Summary of the Considered QoS Characteristics in the Domain of Web

Services .. 99

Table 4.2 The Priority of QoS Criteria and Justifications .. 104

Table 5.1 System Notations ... 110

Table 5.2 QoS Aggregation Functions ... 112

Table 5.3 Training Dataset Structure for Auto Insurance Problem 123

Table 5.4 Example of Auto Insurance Training Dataset .. 123

Table 6.1 Datasets Description for Bank Loan Composite Service 144

Table 6.2 Path Description for Auto Insurance Composite Service 144

Table 6.3 Path Description for Bank Loan Composite Service 145

Table 6.4 Evaluation Criteria Results Achieved by Using the J48, NB, and SMO

Classifiers When Applied to Auto Insurance Dataset .. 147

Table 6.5 Average Accuracy and Number of Involved Paths for Dataset1, Dataset5,

Dataset4, and Dataset9 ... 151

Table 6.6 Precision and Recall Results for Dataset2 ... 152

Table 6.7 Precision and Recall Results for Dataset4 ... 152

Table 6.8 Parameter Value Ranges of the Simulation ... 157

x

Table 6.9 Cost and Response Time Intervals ... 158

Table 6.10 Setup for the Resulting QoS Ratio Test ... 163

Table 6.11 The Results of QoS Ratio Test ... 164

Table 6.12 Setup for the Constraints Violated Number Test 166

Table 6.13 The Average of the Aggregated QoS Characteristics in Each Run and the

Average of the Constraint Imposed for Each Considered QoS Characteristic 167

Table 6.14 The Results of the Constraints Violated Number Test 169

Table 6.15 A Setup for the Computation Time Test .. 172

Table 6.16 The Results of Computation Time Test ... 173

Table 6.17 Setup for Test Experiment ... 177

Table 6.18 Results for Test Experiment ... 177

Table 6.19 Average QoS ratio, Total Number of Considered Constraint, and

Constraints Violated Number ... 179

xi

7. List of Figures

Figure 1.1. SOA model (Source: Newcomer & Lomow, 2004) 2

Figure 1.2. Web service composition phases ... 8

Figure 1.3. An example of multiple paths composition ... 10

Figure 2.1. Illustration of competing web services .. 26

Figure 3.1. Flowchart for CP.. 68

Figure 3.2. Flowchart for CCP ... 70

Figure 3.3. The main steps for the experimental procedure used for evaluating the

runtime path prediction method ... 72

Figure 3.4. A fragment of the auto insurance data collected from First Insurance

Company .. 74

Figure 3.5. An illustration of dataset5 created by using a spreadsheet application ... 78

Figure 3.6. A fragment of dataset5 in ARFF format .. 79

Figure 3.7. A graphical illustration of 10-fold cross-validation method using a

dataset which consists of 1000 instances, test subsets (gray), train subsets (white) .. 82

Figure 3.8. The main steps for the experimental procedure used for evaluating the

optimization mechanism .. 84

Figure 4.1. Software product quality model... 95

Figure 4.2. Suggested QoS criteria for web service selection 101

Figure 5.1. The proposed approach .. 107

Figure 5.2. A multiple execution paths composition ... 111

Figure 5.3. A typical auto insurance composite service scenario 117

Figure 5.4. A typical bank loan composite service scenario 118

Figure 5.5. A typical online application form for requesting auto insurance 126

Figure 5.6. The runtime path prediction method ... 127

Figure 5.7. Representation for a solution ... 132

xii

Figure 5.8. The constructive procedure (CP) ... 136

Figure 5.9. The Complementary Constructive Procedure (CCP) 139

Figure 6.1. The prediction accuracy per each fold achieved using J48, NB, and SMO

classifiers when applied to auto insurance dataset ... 147

Figure 6.2. A number of correctly/incorrectly classified instances achieved by using

J48, NB, and SMO classifiers when applied to auto insurance dataset 149

Figure 6.3. An average prediction accuracy acheived by using NB, J48, and SMO

classifiers when applied to 9 different datasets .. 150

Figure 6.4. A screen capture of generation of 5 candidate services and their QoS

characteristics values and utility .. 160

Figure 6.5. Average QoS ratios of the different algorithms in each run 164

Figure 6.6. Constraints violated numbers of the different algorithms in each run... 169

Figure 6.7. Computation times of the different algorithms each run 173

Figure 6.8. A typical travel agency scenario .. 176

xiii

8. List of Appendices

Appendix A: Test Experiments for Evaluating the Optimization Mechanism….....208

Appendix B: Data Collection……………...………………………………………212

Appendix C: Validation and Verification…..……………………………………..215

Appendix D: Performance Evaluation Results……...……………………………..234

xiv

9. List of Abbreviations

ACO

ARFF

BPI

BPMS

CACO

CIAC

CCP

CP

CSV

DAG

ESGA

FN

FP

FS

GAELS

GA

GSA

HGA

HR

IDE

ILP

IP

ISO

IT

MCDM

MCOP

MILP

MMKP

NB

NP

OASIS

Ant Colony Optimization

Attribute Relation File Format

Business Process Intelligence

Business Process Management System

Continuous Ant Colony Optimization

Continuous Interacting Ant Colony

Complementary Constructive Procedure

Constructive Procedure

Comma Separated Value

Directed Acyclic Graph

Elitist Selection Genetic Algorithm

False Negative

False Positive

Feasible State

Genetic Algorithm Embedded Local Searching

Genetic Algorithm

Gravitational Search Algorithm

Hybrid Genetic Algorithm

Harmony Research

Integrated Development Environment

Integer Linear Programming

Integer Programming

International Organization for Standardization

Information Technology

Multiple Criteria Decision Making

Multi-Constraint Optimal Path

Mixed Integer Linear Programming

Multi-dimensional Multi-choice Knapsack Problem

Naïve Base

Non-deterministic Polynomial-time

Organization for the Advancement of Structured Information Standards

xv

PACA

PAIS

PSO

QoE

QoS

QP

QQDSGA

SA

SAW

SLA

SMO

SN

SOA

SOAP

SOC

SVM

TN

TP

TS

UDDI

URL

US

W3C

WEKA

WFMS

WS-BPEL

WSDL

WSQM

XML

Particle-Ant Colony Algorithm

Process-Aware Information System

Particle Swarm Optimization

Quality of Experience

Quality of Service

Quadratic Programming

Quality of Experience (QoE)/Quality of Service (QoS)

Driven Simulated Annealing-based Genetic Algorithm

Simulated Annealing

Simple Additive Weight

Service Level Agreement

Sequential Minimal Optimization

Solution

Service Oriented Architecture

Simple Object Access Protocol

Service Oriented Computing

Support Vector Machines

True Negative

True Positive

Tabu Search

Universal Description Discovery and Integration

Uniform Resource Locator

Unfeasible State

World Wide Web Consortium

Waikato Environment For Knowledge Analysis

Workflow Management System

Web Services Business Process Execution Language

Web Service Description Language

Web Service Quality Model

 Extensible Markup Language

1

1. CHAPTER ONE

INTRODUCTION

 Introduction 1.1

Service Oriented Computing (SOC) recently has gained a considerable momentum

from both industry and academia as a new emerging paradigm to develop rapid, low

cost, and loosely coupled software systems. This vision is captured by Service

Oriented Architecture (SOA) through the provision of an architectural style

(Michlmayr, Rosenberg, Platzer, Treiber & Dustdar, 2006). SOA is “a way of

designing a system so that it can provide services to end users and/or other

applications in the network” (Baryannis et al., 2008).

The SOA model illustrated in Figure 1.1 consists of three core entities: service

provider, service consumer (also called requester), and service registry. The service

provider implements the web service and describes it using a standard format. And

then it publishes the description in the service registry. The service consumer queries

the registry about a specific web service. The service registry checks, whether the

requested web service is available or not. If it is available, the registry returns

descriptions of the matched web services back to the service consumer. The service

consumer obtains the location of the selected web service from the returned

descriptions. Finally, the service consumer binds and invokes the web service.

2

Figure ‎1.1. SOA model (Source: Newcomer & Lomow, 2004)

Web services are published by service providers (i.e., organizations that provide

service descriptions and ensure service implementations), located, and invoked by

clients (requesters). Web services refer to a special type of services which are

provided by computer systems and are supposed to provide their functionality in

computer networks such as the Internet. Clients can utilize web services through the

Internet without the need to install it (Jaeger, 2007; Hilari, 2009). Many companies

have deployed web services recently in order to provide them for individual

customers or business which in turn can integrate these web services into their

systems. Google, for example, provides many web services for customers who can

simply integrate these web services into their applications. Google Maps API Web

Services are an example of such services

(https://developers.google.com/maps/documentation/webservices/).

The benefit gained from implementing SOA is the ability to compose new

functionality out of existing outsourced web services into the so-called composite

services. The process of creating such composite services is called a web service

https://developers.google.com/maps/documentation/webservices/

3

composition (Rosenberg, Leitner, Michlmayr, Celikovic & Dustdar, 2009). A travel

agency web service is an example of a composite service that consists of many web

services such as hotel reservation, airline booking, and car rental services.

Two applications are considered for web service composition technology; the first

case targets the development of service-oriented software systems. In this case,

complex software can be created by discovering and integrating individual web

services. For this aim, the World Wide Web Consortium (W3C) recommends

developing web services using a set of Extensible Markup Languages (XML) and

Internet protocols. Specifically, the W3C provides a set of specifications required to

develop web services which include the use of standard protocols such as Universal

Description Discovery and Integration (UDDI) (Clement, Hately, Riegen & Rogers,

2004) for publishing the web services, Web Service Description Language (WSDL)

(Booth & Liu, 2006) for descriptions of the services, and Simple Object Access

Protocol (SOAP) (Mitra & Lafon, 2006) to exchange messages between the services.

The W3C (Austin, Daniel, Ferris & Garg, 2004) defines the web service as:

A software system identified by a URI, whose public interfaces and

bindings are defined and described using XML. Its definition can be

discovered by other software systems. These systems may then interact with

the Web service in a manner prescribed by its definition, using XML based

messages conveyed by Internet protocols.

The second case targets the application of web service composition technology to

build business processes that entirely performing within computer systems. The next

subsection discussed this application of web service composition technology in

detail.

4

1.1.1 Web Service Composition Technology for Building Business Processes

Workflow Management Systems (WFMSs) are employed currently by organizations

to define, manage, and execute their business processes. These systems are often

called Process-Aware Information System (PAIS) since they need to be aware of the

processes in the context of their organizations (van der Aalst, 2009). Business

process is a set of related tasks or activities that are designed to realize a specific

organizational goal.

Nowadays, many existing organizations, that offer similar products and services, are

operating in markets. In such markets, to remain competitive, organizations are

required to perform their business processes effectively regarding cost and quality,

and to quickly adapt to business’s needs. In achieving this purpose, flexibility and

performance play major roles. However, this flexibility can be hardly achieved

within the current organization IT architectures, where programming languages,

heterogeneous legacy systems, operating systems, and middleware platforms are

predominating these architectures (Schuller, Eckert, Miede, Schulte & Steinmetz,

2010). SOA along with service composition technology has emerged as a solution

for organizations seeking to increase the flexibility. In fact, they changed the way of

building business processes. Rather than developing entirely new processes, SOA

processes are developed by composing network available web services (Dustdar &

Papazoglou, 2008). Each task (also referred to as an abstract web service) of such a

business process can be accomplished by a single outsourced web service hosted by

external partners. Under this scenario, complex applications are defined as business

processes (hereafter used interchangeably with terms “composite service” and

“composition”) composed of abstract web services (an abstract web service is a

5

description of a specific functionality in abstract fashion), and the service selection

can be performed dynamically at runtime by selecting the best outsourced services

that can accomplish the abstract services functionality (Ardagna & Pernici, 2006).

This vision enables agile collaborations between several business partners, and thus,

it decreases the cost of building business processes.

Creating business processes using web service composition can be performed

statically at design time. In this approach, composition developers choose a set of

available web services that is related to their business processes, and program the

interaction between them by any low level programming languages such as Web

Services Business Process Execution Language (WS-BPEL) (Jordan et al., 2007).

Commercial orchestration engines can be used to execute WS-BPEL coded business

processes (Ko, Kim & Kwon, 2008).

Although this ad hoc way of building business processes is supported by major IT

companies like IBM and Microsoft, such an approach is inappropriate due to the

dynamic and flexible nature of web services environments, where suddenly existing

web services may be removed or other new web services become available (Dustdar

& Schreiner, 2005). Therefore, outsourced web services should be automatically

discovered, selected, and bound at runtime. To achieve this purpose, several

approaches propose applying semantic web concepts to web services in order to

enable dynamic, runtime discovery, selection, composition, and invocation of web

services (Martin et al. 2005; Cardoso & Sheth, 2003; Burstein et al., 2005).

6

Several researches have been introduced to leverage network available web services

to build workflows (Bolcer & Kaiser, 1999; Ganesarajah & Lupu, 2002; Hull,

Benedikt, Christophides & Su, 2003; Patel, Supekar & Lee, 2004). These research

works indicate the consensus that software engineers can utilize web service

composition technology as technical foundations to implement workflows (Jaeger,

2007). The approach proposed can be associated and embedded to any workflow-

based web service composition systems that rely on web service composition

technology to build business processes such as the previously mentioned works.

1.1.2 QoS-Aware Service Composition

Recently, due to the continued proliferation of web services, hundreds of

functionality equivalent web services are expected to exist, creating an issue on

selection criteria, namely which service should be selected? And why? One of the

most substantial selection factors that are used to distinguish between those

equivalent services is the Quality of Service (QoS) criteria. QoS, which represents

web service’s non-functional characteristics such as cost, response time, availability,

reliability, reputation, throughput, security, and composability, can serve as selection

criteria. One may choose the lowest cost of web service, the fastest response time or

a compromise between the two. QoS denotes how well services provide their

functionality (Jaeger, 2007). Without QoS, no organizations want to rely on external

web services to perform their business processes (Berbner, Heckmann & Steinmetz,

2005). When developing their business processes, organizations have the opportunity

to select those outsourced web services that satisfy their QoS requirements. These

requirements include QoS global constraints and preferences. QoS global constraints

are constraints imposed by the clients in the whole business process. For example, a

7

client could specify that the total cost of the composite service execution must be

less than 2000 Dollars. At the same time, he/she could prefer the composite service

with high security and/or low response time.

Generally, the process of composing services based on clients QoS requirements as

illustrated in Figure 1.2 includes several phases: design, discover, select, bind, and

execute/monitor.

8

Figure ‎1.2. Web service composition phases

In the first phase, during the design time, a composition developer defines the

composition by identifying and arranging the abstract services (e.g. invoking a credit

card) that can be matched to the outsourced web services. Several flow languages are

used for defining such an arrangement, for example, WS-BPEL (Jordan et al., 2007).

In the second phase, based on the semantic descriptions of the abstract services,

many functionality equivalent web services (called candidates or concrete) with

different QoS characteristic values can be discovered for each abstract web service.

9

These candidate services are offered by different providers. Then the role of the

selection phase is to select one candidate web service for replacing each abstract web

service such that the entire QoS of the composition are optimized while client's QoS

requirements are satisfied. This process is referred to as QoS-aware web service

composition. After that, each selected outsourced service is assigned to its

corresponding abstract service. This assignment, in turn, is saved in a flow

description which is used by the system in order to execute the composition. Finally,

the system tracks the composition executions and monitors the quality (Jaeger, Muhl

& Golze, 2005; Jafarpour & Khayyambashi, 2010).

This thesis turns the attention to the selection phase and focuses mainly on the QoS-

aware service composition process on the basis of workflow composition

technology, and the proposed approach, as mentioned earlier, can be associated with

any workflow-based service composition systems.

 Problem Background 1.2

The goal of QoS-aware service composition process is to select one candidate web

service for each abstract web service from its corresponding list of candidates such

that the entire QoS of the composition is optimized while QoS requirements defined

by clients are satisfied (Yu, Zhang & Lin, 2007; Canfora, Penta, Esposito & Villani,

2005; Zeng, Benatallah, Dumas, Kalagnanam & Sheng, 2003; Zeng et al., 2004;

Alrifai, Risse, Dolog & Nejdl, 2009).

Composite services are defined using several composition structures such as

sequential, parallel, loop and conditional structures. These structures are used to

10

connect the abstract web services that constitute the compositions. Figure 1.3

illustrates a composition defined by using sequential and conditional structures. If a

composition contains a conditional structure, it has multiple execution paths. These

multiple paths are all represented by a single composition. The composite service

illustrated in the Figure 1.3 has three different paths: 1Path , path2, and 3Path . At the

execution time, three different possible execution scenarios may occur.

Figure ‎1.3. An example of multiple paths composition

On the other hand, an optimal composition solution is the solution that delivers the

desired extreme value of the objective function while meeting client’s QoS

requirements. The objective function is a QoS statement of the value of any given

composition solution (Ukor & Carpenter, 2008). Normally, the objective functions

are defined as an aggregation of the QoS characteristics for each of the selected

candidate services for all the abstract services participating in the composition. The

QoS statement is used in the comparison of different composition solutions. The

solution which has the maximum value of the objective functions is considered the

11

optimal solution. Consequently, QoS statements are critical to be as precise as

possible.

In the absence of conditional structure in a composition (i.e., there is only one path

involved in the composition), it is certain that the only single path will be taken by

all the composition instances during the execution (i.e., all web services involved in

the composition will be executed by all composition instances). This certainly makes

the QoS statements computed by the aggregation methods always precise. And then

an algorithm can efficiently compare the QoS statements of the solutions. As a

result, it is guaranteed that the generated solutions will be always optimal.

However, this is not the case in multiple paths compositions, where different paths

(i.e., Subset of web services) can be executed because the multiple paths

compositions are non-deterministic. For example, the composite service illustrated in

Figure 1.3 can be executed many times, and several executions of the composite

service can use different execution paths. It is impossible before the composition,

executed to determine which path will be executed. Therefore, two techniques are

proposed to handle this problem. The first technique considers all paths together for

optimization. However, it's difficult for the objective functions provide precise QoS

statements that represent only the subset of the services that will be executed. As a

result, there is a possibility to generate suboptimal solutions for some execution

paths.

In the second technique, the optimization is computed considering each execution

path separately. If there is a conflict in service selection in some abstract services

12

that are common to multiple execution paths, the system identifies the hot path for

the considered web service. The hot path is defined as the path that has been most

frequently used to execute the considered service. However, in the case that the

actual execution of the composition is not following the hot path, the executed path

may not have the best QoS ratio, worse than that, the executed path may violate QoS

requirements.

 The Problem Statement 1.3

The problem background section has explained the problem in detail. Based on this,

the problem statement of this thesis is formulated as the following:

In multiple paths compositions, it is difficult for the optimization algorithms to

generate a solution that simultaneously optimizes all the execution paths involved in

the composition at the same time while meeting clients QoS requirements. Hence,

the existing optimization techniques compute the optimization either by considering

all execution paths together (Yu, Zhang & Lin, 2007; Canfora, Penta, Esposito &

Villani, 2005; Jiang, Yang, Yin, Zhang & Cristoforo, 2011; Jaeger et al., 2004;

Jafarpour & Khayyambashi, 2010; Parejo, Fernandez & Cort´es, 2008; Schuller,

Polyvyanyy, García-Bañuelos & Schulte, 2011; Ko et al., 2008; Ukor & Carpenter,

2008, 2009; Singh, 2012) or by optimizing each path separately (Zeng et al., 2003,

2004; Zhang, Chang, Feng & Jiang, 2010; Liu, Wu & Liu, 2012). However, it is

difficult for the optimization algorithms to generate a solution that simultaneously

optimizes all the execution paths involved in the composition at the same time while

meeting clients QoS requirements. Consequently, the solutions generated using the

13

above-mentioned optimization techniques are suboptimal for some execution paths,

worse than that; the generated solutions have high constraints violated number.

From the main problem mentioned above, the following sub problems are derived:

 The Optimization Problem

As mentioned earlier, QoS-aware service composition process aims to select one

outsourced candidate web service for each abstract web service from its

corresponding list of candidates such that the entire QoS of the composition is

optimized while QoS requirements, defined by clients, are satisfied (Yu, Zhang &

Lin, 2007; Canfora et al., 2005; Zeng et al., 2003, 2004; Alrifai et al., 2009). During

this process, there is possibly a numerous number of composition plans (solutions)

that could be generated. The objective is to choose the best (in terms of QoS)

solution which leads to the best quality of the composition and meets clients' QoS

requirements (Alrifai et al., 2009). Finding exact optimal solutions required a

strategy based on evaluating all the possible combinations to find the optimal one.

Such a straightforward strategy takes a significant amount of time and effort to find

the optimal solution among a huge number of possible solutions. For example, for a

composition with 5 abstract services and 50 candidates, the number of possible

combinations to evaluate is 50
5
. Furthermore, any increase in the number of

candidates will dramatically increase the possible combinations to be evaluated

(Jaeger, 2007). It is impractical and time consuming to evaluate all these

combinations to find the optimal one. Such a straightforward strategy for finding

optimal solutions is inappropriate for real time decision-making applications. Due to

its high computational complexity, approaches that deliver exact optimal solutions

14

are inappropriate for real time decision-making applications. Thus, heuristic

represents a novel approach. Therefore, a new and powerful heuristic-based

optimization strategy is needed to be applied to solve the optimization problem.

 Prediction of Execution Paths

In multiple paths compositions, it is impossible before the composition, executed to

determine which path will be executed. Thus, there is a need to predict the path that

will potentially be executed in order to focus only on the predicted path during the

optimization process. If one can predict, just before the actual composition

executions, with a certain degree of confidence the path that will be potentially

executed, and then this useful information can be utilized by an optimization

algorithm in order to optimize only the predicted path. Then, the precision of the

QoS-statements can increase significantly. Consequently, it is guaranteed that the

generated composition solutions are having the best possible QoS ratio. In addition,

the constraints violated number will be significantly reduced.

 QoS Characteristics for Web Service Composition

Most of the existing research efforts in the area of web service composition are

considering a set of general QoS characteristics (Zeng, et al., 2003, 2004; Alrifai,

Skoutas & Risse, 2010; Canfora et al., 2005; Yu et al., 2007; Zhang et al., 2010;

Jiang et al., 2011; Schuller et al., 2011; Singh, 2012). There is a need to analyze the

QoS characteristics that were most commonly used by researchers' works in order to

determine the relevant set of QoS characteristics that can be considered selection

criteria when composing web services. The analysis should answer the following

question: what QoS characteristics are appropriate for a web service composition? In

15

this analysis, it is important to take into consideration, when determining the relevant

set of QoS characteristics for composing web services, the features of composite

services which are different from features of single web services. It is needed to

derive the QoS characteristics from the special features of composite services.

Another issue is to assist clients (i.e., organizations) in choosing between multiple

criteria. When multiple criteria are considered at once for optimization, clients might

have difficulties in choosing the right criteria. Therefore, prioritizing the selected

QoS criteria is needed to be suggested in order to assist clients when choosing the

right criteria.

 The Motivation 1.4

In global competitive markets, where organizations operate, the most important goal

for organizations is to increase their competitive ability. To achieve this purpose,

organizations rely on web service composition technology for developing their

processes. In this way, business processes are developed by composing network

available web services (Dustdar & Papazoglou, 2008). Each function of such

processes can be accomplished by a single outsourced web service hosted by

external partners. Web services can be automatically discovered and composed to

create a more complex business process. This vision enables agile collaborations

between several business partners.

However, the performance of business process is important due to the flexible and

dynamic nature of the web service. It is important for organizations to build their

business processes according to the QoS characteristics. For example, a bank loan

16

process may need a quick response to a loan requester. On the other hand, critical

business processes' functions may suffer from failures or loss without careful quality

management. Failure or delay of even one outsourced web service that participates in

the business process will result in failure or delay of the whole process, which

directly will impact the success of the organization. Therefore, without QoS

guarantee of the selected outsourced web services, no organizations want to rely on

external web services to achieve their goals (Berbner et al., 2005).

When building business processes, organizations have the opportunity to choose

those outsourced web services that satisfy their QoS requirements. In this case, it is

essential for organizations to receive what they have requested by meeting their QoS

requirements.

 Research Questions 1.5

With regards to the problems delineated above, the following questions need to be

probed further so that the objectives of the study can be achieved.

RQ1: How to derive an approach for multiple paths QoS-aware service

composition in order to solve the multiple paths composition problem and the

optimization problem?

RQ2: How an optimization mechanism be proposed to generate the best possible

QoS ratios solutions within small computation time while significantly reducing the

constraints violated of the generated solutions?

17

In specific, this research question comprises of two other sub questions that are

related to proposing an optimization mechanism.

a. Can a runtime path prediction method be proposed to predict, at runtime, and

just before the actual composition executions, the path that will be potentially

executed based on the information provided by composition requesters?

b. Can heuristic optimization algorithms to be applied to efficiently solve the

QoS-aware composition problem?

RQ3: Given 25 QoS characteristics highlighted in previous studies, which

characteristics are appropriate for a web service composition?

RQ4: How can the new proposed approach be evaluated?

For this, broad question, two particular evaluations will be focused, i.e. the

evaluation of the path prediction method and on the optimization mechanism. Thus,

the sub questions are as follows:

a. Can the runtime path prediction method be evaluated in order to determine its

accuracy and scalability?

b. Can the optimization mechanism be evaluated in terms of the QoS ratio, the

constraints violated number, and the computation time?

18

 Research Objectives 1.6

The main goal of this research is to develop an approach for QoS-aware service

composition that is designed to solve the multiple paths composition problem and

the optimization problem. This approach aims at generating a solution within a small

computation time (i.e., 0.0022 s on average, based on the test experiments performed

in this work) that delivers the best possible QoS ratio. Moreover, this approach aims

at significantly reducing the constraints violated a number resulted from the

generated solutions.

In order to achieve this, research goal, the following research objectives were

formulated:

1. To propose an approach for multiple paths QoS-aware service composition in

order to solve the multiple paths composition problem and the optimization

problem.

2. To propose a new optimization mechanism based on the runtime path

prediction method and heuristic optimization algorithms, in order to predict

the path that will be executed at runtime and then optimize the predicted path.

3. To identify the appropriate QoS characteristics that can be considered as

selection criteria for optimal service composition process.

4. To evaluate the proposed approach by evaluating (1) the path prediction

method in terms of its accuracy and scalability using data mining tools, and

19

(2) the optimization mechanism in terms of the QoS ratio, the constraints

violated number, and the computation time by conducting test experiments

using the simulation prototype developed in chapter six.

 Research Scope 1.7

This research focuses on the QoS-aware service composition process which is one of

several processes required to create business processes based on clients QoS

requirements (Jaeger et al., 2005; Jafarpour & Khayyambashi, 2010). More

specifically, this work discusses methods and algorithms to perform the selection

between the discovered candidate services based on QoS requirements imposed by

clients (Baryannis, et al., 2008). In the discovery phase, many candidate services

with different QoS characteristic values can be discovered for each abstract web

service. Then the QoS-aware service composition process aims at selecting one

candidate web service for replacing each abstract web service such that the entire

QoS of the composition are optimized while client's QoS requirements are satisfied

(Yu et al., 2007; Canfora et al., 2005; Zeng et al., 2003, 2004; Alrifai et al., 2009).

If more than one candidate service suites a particular abstract service, the selection

between these candidate services should be based on preference criteria. This work

considers the QoS characteristics as selection criteria to select between those

competing candidate services (Zeng, et al., 2003, 2004; Alrifai, Skoutas & Risse,

2010; Canfora et al., 2005; Yu et al., 2007; Zhang et al., 2010; Jiang et al., 2011;

Schuller et al., 2011; Singh, 2012).

20

Usually, business processes include the participation of human to perform tasks. This

work, however, covers only business processes that do not required for human

interferences, because web services represent primarily a technology that's aimed at

the interoperation between software systems (Jaeger, 2007).

 Research Design 1.8

Three main research steps had been conducted in doing this research, namely the

analysis phase, the development phase, and the evaluation phase.

In the analysis phase, in-depth study was performed on the QoS–aware service

composition approaches and the surrounding issues like the QoS characteristics

considered in these approaches, the optimization strategy used to solve the

optimization problem, and the techniques used to tackle multiple paths composition

problem. Moreover, a review was conducted on the state of the art approaches

proposed to solve the Multidimensional Multi-choice Knapsack Problem (MMKP)

problem, the techniques and the methods used for path prediction. As a result, the

drawbacks in the state of the art approaches were determined, the problems of the

research were clearly defined, the core components that should be considered to

develop an approach for QoS-aware service composition was identified, and the QoS

characteristics that can be considered for web service composition were determined

and prioritized. In addition, new optimization algorithms called Constructive

Procedure (CP) and Complementary Constructive Procedure (CCP) for solving the

optimization problem were identified. CP is applied to generate a feasible solution

while CPP is applied to improve the solution generated from CP. Finally, data

21

mining based techniques used for the runtime path prediction method were

identified.

In the development phase, the core components which should be considered to

develop the proposed approach were determined. The components include defining

the problem and structure model, determining the selection criteria, describing the

QoS computation for web service composition, defining the utility function, and

finally developing a new optimization mechanism to solve the research problems.

The development of the optimization mechanism includes proposing a runtime path

prediction method, mapping the QoS-aware service composition problem to MMKP,

and applying heuristic optimization algorithms to solve the selection problem. The

MMKP is similar to the selection problem (Yu, Zhang & Lin, 2007; Alrifai et al.,

2009). MMKP aims to pick exactly one item from each class in order to maximize

the total profit value of the pick that is subject to resource constraints (Hifi et al.,

2004) while the selection problem aims to select exactly one candidate from each

service class, where the entire QoS value of the composition is optimized while QoS

requirements defined by clients are satisfied.

In the evaluation phase, the evaluation process was divided into two parts. The first

part aimed at evaluating the runtime path prediction. For this purpose, the data used

for evaluation was collected and prepared. Beside the data, data mining tool,

machine learning algorithms, evaluation measures, and a performance estimation

method was identified. Finally, a set of test experiments was introduced. The second

part aims at evaluating the optimization mechanism. For this purpose, the measures

and the methods used for the evaluation were determined. A new simulation

22

prototype was developed and the optimization mechanism was implemented. Finally,

a set of test experiments was introduced.

 Thesis Layout 1.9

The remainder of this thesis is organized as the following:

Chapter 2 gives background information about QoS characteristics and explains the

need for QoS characteristics in the area of web service composition. It also provides

an overview about the multiple paths composition and the QoS-aware service

composition. A critical study and a survey of the relevant existing optimization

techniques, that are used to handle with the multiple paths composition problem, are

also given in this chapter. In addition, the chapter reviews the state of the art

approaches proposed to solve the Multidimensional Multi-choice Knapsack Problem

(MMKP) problem. Finally, the techniques and the approaches used in path mining

are discussed in this chapter.

Chapter 3 describes the methodology used in the investigation. A description of the

methods, algorithms, equations, and the simulators used in this research are given.

Chapter 4 reviews the QoS characteristics considered in the area of QoS for web

services and SOA. The chapter also gives analyses of the QoS characteristics and

suggests the QoS characteristics that can be considered as selection criteria for web

service composition. Finally, it provides a priority for the suggested QoS criteria.

Chapter 5 describes the proposed approach for multiple paths QoS-aware service

composition. The component used to develop the approach is discussed in detail in

this chapter. Moreover, the runtime path prediction method and heuristic

23

optimization algorithms are explained. Furthermore, this chapter covers the

implementation of the proposed approach.

Chapter 6 presents the different test experiments used for the evaluation of the

proposed approach. Results produced from the experiments are discussed and

compared with other existing optimization techniques.

Chapter 7 summarizes the research work, highlights research contributions, and

gives direction for future works related to this research.

24

2. CHAPTER TWO

RELATED WORKS

This chapter reviews the QoS-aware service composition approaches and the

optimization techniques used to handle with the multiple paths composition problem.

Section 2.1 begins by presenting background information about QoS characteristics.

Section 2.2 explains the need for QoS characteristics in the area of web service

composition. Section 2.3 provides an overview about the multiple paths composition

while Section 2.4 introduces the related works and discusses the optimization

strategies, the techniques used to handle multiple paths composition problem, the

limitations, and the QoS computation methods. Section 2.5 reviews the state of the

art approaches proposed to solve the MMKP. Section 2.6 reviews the techniques and

the approaches used in path mining.

 QoS for Web Service 2.1

Web services are designed to perform functionalities that describe what web services

can do. These functionalities represent the functional behaviors of the web services.

A flight booking service, for example, provides booking flight ticket functionality.

However, non-functional behaviors of web services can also be considered in the

description. These behaviors represent the way web services supply their

functionality. The time needed for the flight web service to book a ticket is an

example of non-functional property.

The International Organization for Standardization (ISO) provides a general

definition for quality. ISO defines quality as “the totality of features and

25

characteristics of a product or service that bears on its ability to satisfy stated or

implied needs” (ISO-9000:2005, 2005). Beside this definition, there are many

definitions for QoS in literature. These definitions, however, vary according to the

application scenarios. This research work uses the definition provided by Ran (2003)

in order to describe the QoS for web service. He describes QoS as “a set of non-

functional attributes that may impact the quality of the service offered by a web

service” (Ran, 2003). QoS can be classified according to the domain into (1)

domain-independent characteristics (i.e., A set of QoS characteristics that are

applicable to all web service domains), for example, cost and response time

characteristics, (2) domain-specific characteristics (i.e., A set of QoS characteristics

that can be applied in a specific domain), for example, a precision is domain-specific

characteristic of temperature web service.

In the past few years, QoS for web services has gained a considerable momentum.

This is because QoS plays an important role in service automation tasks, especially

in service discovery and selection. Imagine a scenario where many web services, that

fulfill a user request and provide the same functionality, are discovered at runtime,

and the selection among them is based on QoS characteristics like cost and response

time (Toma & Foxvog, 2006). QoS characteristics can serve as selection criteria for

selecting individual services. One may choose the lowest web service cost while the

others may choose the fastest response time.

 QoS for Web Service Composition 2.2

QoS characteristics become more crucial for web service composition because the

general QoS performance of the composite services is determined by the QoS

26

performance of its underlying web services. Choosing web services with poor quality

will degrade the overall performance of the compositions. Clients who build

composite services need objective QoS characteristics to distinguish between the

competing web services (Liu, Ngu & Zeng, 2004). In this context, QoS

characteristics play important roles to decide which web service must be selected to

participate in compositions. Furthermore, clients can use these QoS characteristics to

specify their QoS requirements. Thus, it guarantees that the clients’ visions

efficiently translate into composite services. Figure 2.1 illustrates an example of a

composition that consists of two web services which are airline booking and hotel

reservation. At runtime, two functionality equivalent web services, with different

QoS characteristics, are discovered (service 1 and 2). Normally, the selection

between them is based on clients' QoS requirements.

Service 2:

Airline Booking

Cost=4

Response

time=19

Service 1:

Hotel reservation

Cost= 19

Response

time=5

Service 1:

Airline Booking

Cost=15

Response

time=9

Service 2:

Hotel Reservation

Cost=7

Response

time=14

Airline

Booking

Hotel

Reservation

QoS

requirements
QoS

requirements

Figure ‎2.1. Illustration of competing web services

27

 Multiple Paths Composition 2.3

To define compositions, sequential structures are used to connect the web services

that constitute the compositions. These compositions are called single path

compositions.

Compositions, however, are operating in highly dynamic environments which allow

different possible scenarios to be occurring at runtime, making the real time

compositions facing unanticipated changes. In the case that the composition is

defined at design time, it is desirable to support the expectations that can be

anticipated by composition developers.

Flexibility by configuration or flexibility by design refers to the structural properties

of a composition which allows it to respond flexibly to different scenarios

anticipated by composition engineers at design time (Ukor & Carpenter, 2008). Such

flexibility can be achieved by the presence of a conditional structure in the

composition definitions. The presence of the conditional structure makes it possible

for multiple execution paths to be represented by a single composition, design

(Schonenberg, Mans, Russell, Mulyar & Van der Aalst, 2008). This work referred to

this kind of compositions as multiple paths compositions. The result is a distinctive

set of composition paths where each path represents a scenario that can be taken

during the execution of a composition instance (Ukor & Carpenter, 2008) (i.e., One

path is selected and taken from multiple alternative composition paths).

28

 Optimization Approaches for QoS-Aware Service Composition 2.4

Research community identified different approaches for a web service composition.

Generally, these approaches can be classified under three main categories: (1) an

automatic web service composition, (2) a model-driven web service composition,

and (3) a QoS-aware web service composition. This section focused on the research

works that are relevant to the approach proposed in this thesis. In particular, this

section reviews the works that are related to the third category (i.e., A QoS-aware

web service composition).

Although the QoS-aware web service composition approaches use different

optimization techniques, they almost share the same methodology which can be

summarized as the following (Baryannis, et al., 2008):

1. All approaches require defining an abstract composition (i.e., identifying and

arranging the abstract services or tasks) and provide a desired functionality

description for each abstract service.

2. For each abstract service in the composition, a QoS-aware service composition

method is required to select optimal candidates based on QoS criteria without

taking into account the entire QoS of the composition. This step, referred to as a

local optimization and it does not necessarily meet the QoS global constraints.

3. With the presence of global QoS constraints, a global optimization method is

required to generate an optimal composition plan that meets clients'

(organization’s) global QoS requirements.

29

Different approaches have been proposed for QoS-aware service composition. In the

following subsections, the most important and influenced approaches are discussed

in detail. The approaches are divided into two groups in respect to the structure used

to develop the composite services. The groups, namely, single path composition

approaches and multiple paths composition approach. The subsections highlight the

optimization strategies, the techniques used to handle multiple paths composition

problem, the limitations, and the QoS computational methods used in these

approaches.

2.4.1 Single Path Composition Approaches

This group of approaches optimizes compositions that accommodate only a single

execution path (i.e., The compositions are defined by using a set of abstract service

in a sequential order). Yu, Zhang, and Lin (2007) introduce several selection

algorithms with end-to-end constraints. Two models study for the selection problem:

a graph model that defines the problem as a Multi-Constraint Optimal Path (MCOP)

and a combinatorial model that defines the selection problem as MMKP. A utility

function is defined in both models. In the case of the graph model, the problem is

defined as MCOP, and the single-source shortest paths based algorithm (MCSP) is

proposed. However, the algorithm is very slow due to the huge number of the paths.

Therefore, a heuristic algorithm called MCSP-K is proposed by modifying the

MCSP algorithm. In the case of the combinatorial model, the problem is mapped as

MMKP and two algorithms are used, namely the branch-and-bound algorithm

(BBLP) that finds the optimal result, but with exponentially rising computational

time, and the heuristic algorithm (WS-HUS) that finds a near-optimal solution in

polynomial time. In order to improve the optimality of the WS-HUS algorithm, an

30

algorithm named LASA-HEU is proposed recently by Sasikaladevi and Arockiam

(2014).

An efficient approach to the problem of the QoS-aware composition is proposed by

Alrifai and Risse (2009), and Alrifai, Skoutas, and Risse (2010). In their approach,

the problem is solved by combining the local optimization approach with the global

optimization approach to benefit from the advantages of both strategies. Their

approach consists of two steps. First, the global QoS constraints are decomposed into

a set of local constraints, where the satisfaction of these constraints guarantees the

satisfaction of the global constraints. By doing so, the fulfillment of the global QoS

constraints is guaranteed without enumerating all possible combinations. To find the

optimal decomposition of global QoS constraints into local constraints, Mix Integer

Linear Programming (MILP) solving techniques is used. Second, the best web

services that satisfy the local constraints are selected by distributing the local

selection. The results show that their approach is significantly outperforming the

global optimization approach in terms of the computational time while computing

near-to-optimal solutions.

In Tao, LaiLi, Xu and Zhang (2013), the service selection problem is converted to a

graph searching problem to tackle the problem of finding an optimal composition in

a large scale. Their approach is divided into two stages, namely, the run-up stage that

deals with data preprocessing to parse service repository, and the composition stage

that generates optimal top-k solutions.

31

Some authors employ Ant Colony Optimization (ACO) techniques to solve the QoS-

aware service composition problem (Xia, Chen & Meng, 2008; Qiqing, Xiaoming,

Qinghua & Yahui, 2009). As stated by Xia et al. (2008), ACO compared to Genetic

Algorithm (GA) is simpler with fewer parameters. The Particle Swarm Optimization

(PSO) is another optimization algorithm that is applied to solve the QoS-aware

service composition problem with a lot of research work (Li & Yan-Xiang, 2010;

Liao, Liu, Zhu, Wang & Qi, 2013; Wang, Zhu & Yang, 2014). PSO compared to GA

is faster and easier to implement (Ming & Zhen-Wu, 2006). Zibanezhad, Zamanifar,

Nematbakhsh, and Mardukhi (2009) use the Gravitational Search Algorithm (GSA),

which is very much similar to PSO, to solve the problem. Apart from PSO, Berbner,

Spahn, Repp, Heckmann, and Steinmetz (2006) propose to use heuristics in order to

solve the QoS-aware service composition problem. Three heuristics are designed,

implemented and evaluated. The performance of the heuristics is evaluated by

comparing it with Integer Programming (IP). The results show that the three

heuristics outperform the integer programming approach.

In Gao, Chen, Qiu, and Meng (2009), an algorithm named Quality of Experience

(QoE) / Quality of Service (QoS) Driven Simulated Annealing-based Genetic

Algorithm (QQDSGA) is introduced by combining GA and Simulated Annealing

(SA). SA is used to avoid GA from falling into local optimal solution. The results

show that QQDSGA is better than SA and GA individually. In order to evaluate the

composite service, a model based on QoE and QoS is proposed. However, the model

evaluates the solutions relying on customer feedbacks which are unreliable and

vulnerable to malicious customers’ manipulation. In addition, the model evaluates

32

the solutions without taking into account the dependencies between the web services

that participate in the composite services.

A hybrid algorithm based on the combination between ACO and GA is introduced

by Lou, Tao, Wang, and Yue (2009). The idea is to avoid the limitations of the

standard GA and ACO algorithms by combining them together in order to benefit

from the advantages of both algorithms. The results show that the new algorithm is

efficient in terms of the speed and the computational time. Another GA and ACO

combination algorithm is introduced by Yang, Shang, Liu and Zhao (2010). The

authors aim to improve the low efficiency issue of the selection algorithms in large

size solution space. The selection problem is transformed into a problem of finding

an optimal path that meets users' QoS requirements in the weighted directed acyclic

graph. An ant colony algorithm is used to find the optimal path that has the

maximum sum of the QoS values from the start point (which represents the ant nest)

to the target point (which represents the food source) in the weighted directed acyclic

graph. Since the selection of the ant colony algorithm parameters has a great effect

on the performance of the algorithm, GA is employed to set the parameters.

Recently, an algorithm called Particle-Ant Colony Algorithm (PACA) is proposed

by Pei, Shi, and Hu (2014). The algorithm transforms the selection problem into

shortest path problem. In their approach, PSO is applied to (1) find suboptimal paths,

and (2) initialize the pheromones of these paths, then ACO is used to find the

optimal solution.

The aforementioned approaches simplify the problem of the QoS-aware service

composition by presuming that a composition can be represented by a single

33

execution path i.e., A sequential order of abstract web services. Nevertheless, a

composition can also contain multiple execution paths which allow it to respond

flexibly to different scenarios anticipated by composition engineers at design time.

2.4.2 Multiple Paths Composition Approaches

This group of approaches optimizes compositions that accommodate multiple

execution paths. In these approaches, it is difficult for the optimization algorithms to

generate a solution that simultaneously optimizes all the execution paths involved in

the composition at the same time while meeting clients' QoS requirements.

Consequently, different optimization techniques were proposed to solve this issue.

This research work divides these approaches into two categories with respect to the

optimization techniques used to handle the multiple paths composition problem

highlighted in this work. The categories are: (1) a separate path optimization

technique and (2) all paths optimization technique.

2.4.2.1 A Separate Path Optimization Technique

In this technique, a composite service is decomposed into execution paths in order to

optimize each path separately. Then after the completion of optimal solution

computation, the execution paths are aggregated into an overall composition that

consists of all paths. If there is a common abstract service that belongs to more than

one path, the system identifies the hot path for the considered web service. The hot

path is defined as the path that has been most frequently used to execute the

considered service.

34

Zeng et al. (2003, 2004), as one of the first, introduce the idea of composite service

decomposition. The authors introduce a framework that covers several aspects of

developing a web service composition taking into consideration QoS as criteria for

selection. In their work, they propose a simple QoS model which has been adopted

by a large number of subsequent approaches in this field. The model consists of five

general QoS characteristics that are applicable to all web service domains. These

characteristics are cost, duration (response time), the success rate (reliability),

availability, and reputation. In Zeng et al. (2003, 2004), a state chart is used to

represent a composition. It is assumed to be acyclic; if it is not, a technique is used

for unfolding it. The state chart is then divided into multiple execution paths. Each

path is represented as a Directed Acyclic Graph (DAG). Furthermore, execution

plans are defined for each execution path. An execution plan is a set of pairs, where

each pair consists of a task and a web service that implements the task operation.

Zeng et al. (2003, 2004) perform the selection by optimizing each path separately.

And then the optimized paths merge into an overall composition that consists of all

paths. If there is a common task that belongs to more than one path, the system

identifies the hot path for the considered task. The hot path is the path that has been

most frequently used to execute the considered task.

Zeng et al. (2003, 2004) have identified two strategies for optimizations: local

optimization strategies and global optimization ones. For local optimization, the

system selects the optimal candidate for each task that participates in a composition

without considering the overall QoS of a composition. To explain in detail, when

executing a task, the system collects the QoS information for all candidates of this

task. And then it computes quality vectors for these candidates. Based on these

35

vectors, the selection is done by applying Multiple Criteria Decision Making

(MCDM) technique that computes a quality score for each candidate and the system

selects the candidate with the maximum quality score to execute the task.

Beside Zeng et al. (2003, 2004) work, there are many existing approaches adopted

the locally optimization strategy (Dimitrios, Hans, Andrzej & Donald, 1999; Casati,

Ilnicki, Jin, Krishnamoorthy & Shan, 2000; Benatallah, Dumas, Sheng & Ngu,

2002). Although the local approach is very efficient in terms of computation time, it

does not guarantee satisfying the global QoS constraints; however, it can only satisfy

local QoS constraints (i.e., constraints on a task, part of a composition). An example

of local constraints is the response time of a single web service that must be less than

5 seconds. Therefore, Zeng et al. (2003, 2004) introduce a global optimization

strategy. They first introduce a naïve approach for global planning. In this approach,

for each execution path, all possible execution plans are generated. To select the

optimal plan, the system computes the global quality score for each plan and relies

again on MCDM to select the plan with the highest score. The time complexity is the

major disadvantage of this approach. Such a straightforward strategy results in a

combinatorial problem and the computational complexity to find a solution for this

problem NP-hard. Therefore, the authors propose an approach based on Integer

Programming (IP) that performs the optimization without generating all possible

plans. An IP has variables, constraints, and an objective functioning as inputs.

Constraints and an objective function must be linear. Given the three inputs, a

solution can be found using IP solver by adjusting the values of the variables

according to the constraints in order to maximize or minimize the objective

function’s value. Similar to this approach, Ardagna and Pernici (2006) provide an

36

approach based on Mixed Integer Linear Programming (MILP) that addresses both

local and global constraints. They introduce loops peeling which improves the

unfolding loop techniques introduced by Zeng et al. (2003, 2004).

Zhang et al. (2010) apply the divide and conquer strategy to decompose the general

flow structures into several sequential structures due to the general flow structures

that are hard to handle. In the approach of Zhang et al. (2010), the problem is

modeled as a multi-objective optimization problem and ACO techniques to solve the

QoS-aware service composition problem. Their experiments show that the ACO is

efficient and scalable. Nonetheless, global QoS constraints cannot be imposed in

their approach.

Liu, Wu, and Liu (2012) propose an approach based on path decomposition. The

entire plan is decomposed into fine-grained fragments and then stored in the Case

Library. The optimization process is performed in two steps: (1) adjusting the path

by retrieving and reusing the plans stored in the Case Library, and (2) applying GA

for the service selected. The QoS model defined in their approach consists of cost,

response time, reputation, and reliability.

The aforementioned approaches have several issues:

1. The optimization is computed considering each execution path separately. If

there is a conflict in service selection in some abstract services that are

common to multiple execution paths, the system identifies the hot path for

the considered web service. However, in the case that the actual execution of

37

the composition is not following the hot path, the executed path may not have

the best QoS ratio, worse than that, the executed path may violate the QoS

requirements.

2. Although IP approaches are very efficient when the problem size is small,

they are inappropriate for runtime selection. This is because the computation

time is rising exponentially with the increasing problem size (Alrifai & Risse,

2009). Moreover, IP approaches consider the linearity of the constraints and

the objective functions.

3. The QoS characteristics considered in their model are a small set of general

QoS characteristics.

The above issues are resolved by the proposed approach. In the proposed approach,

there is no conflict in service selection in some abstract services that are common to

multiple execution paths. This is because only one path will be considered in the

optimization i.e., the path that will be most likely taken by a composition instance.

By this strategy of optimization, it is expected that the resulted solutions deliver the

best possible QoS ratio and, at the same time, it meets the QoS requirements.

Moreover, instead of using IP for optimization, heuristic algorithms are applied to

solve the optimization problem. Heuristics are efficient in reducing the computation

time making the proposed approach be used in any problem size. In addition, the

proposed approach does not impose the linearization of the constraints. This permits

the use of the proposed approach for all possible QoS characteristics without the

need for linearization. Finally, the QoS characteristics considered in the proposed

approach are determined after investigating and analyzing the related works in the

area of web service and SOA. Furthermore, these QoS characteristics are derived

38

from the special features of composite services which differ from the features of

single web services.

2.4.2.2 All Paths Optimization Technique

In this technique, the optimization is computed assuming that a certain path will be

more likely executed than others according to the probability of path execution. The

assumptions are based on stochastic information indicating the probability of paths

being executed at runtime. Estimation of the paths probability of executions is

estimated either by inspecting the system logs or being specified by the composition

engineers. All the approaches that will be introduced in this subsection share the

above-mentioned technique for handling multiple paths composition problem.

In Yu, Zhang, and Lin (2007), the composition is decomposed into two kinds of

subgraphs: (1) the execution route that includes one branch in each conditional

structure and all branches are in parallel, (2) a sequential path that includes one

branch in both conditional and parallel structures. Each subgraph has a probability

indicating its probability to be executed. In the case of the combinatorial model,

similar to Zeng et al. (2003, 2004), the problem is mapped to 0-1 IP problem. Their

model, compared to Zeng et al. (2003, 2004), ensures that the generated solutions

always meet the QoS requirements. Two algorithms are presented, namely WS_IP

algorithm, to find an optimal solution, but with exponentially rising computational

time, and WFlow algorithm as a heuristic algorithm that finds a near-optimal

solution in polynomial time.

39

GA is applied first by Canfora et al. (2005) for solving the QoS-aware service

composition problem. The motivations behind the application of GA to solve the

selection problem are demonstrated in the following points. First, not like IP

approaches, GAs can handle the non-linear functions, making GA-based approaches

able to handle all possible QoS characteristics. Second, GAs, compared with IP

approaches, are able to scale up when the problem size is very big. Their approach

aims to quickly find a set of concrete (candidate) services to be bound to abstract

services that participate in the composition. Such a set needs to satisfy the global

QoS constraints imposed by Service Level Agreement (SLA), and at the same time,

it optimizes the overall QoS of composition.

In the approach of Canfora et al. (2005), the QoS-aware service composition

problem is encoded by a genome that is represented by an integer array with a

number of items equals to the number of distinct abstract services participating in the

composition. The crossover operator is the standard two-point crossover while the

mutation operator randomly selects an abstract service and randomly replaces the

corresponding concrete service with another one.

The QoS-aware composition problem is modeled by a fitness function that aims to

maximize some QoS attributes (e.g. availability) while minimizing others (e.g. cost).

In addition, the individuals who do not meet the global QoS constraints must be

penalized by the fitness function. The fitness function has a static penalty; if its

weight is high, there is a risk that individuals also violate the constraints, but being

“close" to a good solution could be discarded. Therefore, the authors define an

alternative dynamic function that may allow considering some individuals violating

40

the constraints. The authors evaluate the approach by comparing it with the well-

known IP methods. The results show that GA provides better scalability and

performance when the number of candidate services is large. However, IP is

preferable instead of GA when the number of candidate services is small.

There are some other GA-based proposed approaches varying either on the fitness

function, the encoding schema or on the genetic operators i.e., crossover operator,

mutation operator, and selection operator. In Zhang, Li, Chao, and Chang (2003),

binary strings of chromosomes are designed to represent a solution. In a

chromosome, each abstract web service is represented by a cluster and each cluster,

in turn, consists of genes representing the candidate services. There are two possible

values of a gene: 0 if the service is not selected and 1 if it is selected. However, when

the number of candidates is very big, it results in a very long chromosome. This kind

of manner results in poor readability. Moreover, any change in the number of

candidate services could influence the length of chromosome which results in poor

stability of a chromosome length. In comparison with the one dimensional coding

proposed by Canfora et al. (2005), one dimensional coding is shorter and shows

better stability since it is not influenced by the changing number of candidates. Du,

Wang, Ai, and Li (2012) propose a penalty-based genetic algorithm for selecting the

appropriate services under temporal constraints. In their approach, re-planed solution

process is performed at runtime to resolve the constraint violation.

In Jiang et al. (2011), the author proposed to use the variable length chromosome to

represent the different composition plan. Zhang, Su and Chen (2006a, 2006b, 2006)

design GA with a relational matrix coding scheme of chromosomes and a population

41

diversity, handling mechanism to solve the QoS-aware service composition problem.

The population diversity, handling mechanism is introduced to avoid the prematurity

convergence phenomenon of standard GA, but it is in contrast with the one

dimensional coding scheme designed by Canfora et al. (2005) which can represent

only one path of a composition, the introduced relational matrix coding scheme can

express all the composition paths at one time. Thus, the proposed GA is only needed

to run once in order to generate the optimal plan. The experiments show that GA

with relational matrix coding can generate an excellent composition plan more than

the standard GA can do. Furthermore, as the experiments show, the adopted initial

population policy and mutation policy improve the fitness of GA.

In Wu, Xiong, Ying, Jin and Yu (2011), the selection problem is modeled as an

Objective Multi-Constraints optimization problem and a new algorithm named

GAELS (Genetic Algorithm Embedded Local Searching) is proposed to solve the

optimization problem. The algorithm uses the strategies of enhanced initial

population and mutation with local searching, to speed up the convergence. Their

experiment results showed that the algorithm generates the non-inferior solution

more quickly than simple genetic algorithm in large-scale web service composition.

In Dong and Dong (2009), the authors use the Elitist Selection Genetic Algorithm

(ESGA) to solve the QoS-aware service composition problem. They consider only

the two QoS characteristics, cost and execution time, which should be minimized.

This represents a simplification that does not cover all web service composition

problems. This is because the solutions obtained from their approach could

negatively affect other QoS characteristics such as reliability and availability which

42

both should be maximized. In contrast to this, various QoS characteristics are

addressed. Some of them should be maximized while others should be minimized.

Lécué (2009) studied QoS-aware semantic web service composition in a context of

how to effectively compute optimal compositions of QoS-aware web services by

considering their semantic links. They address the optimization problem by using

GA-based approach. In general, the GA-based approaches are scalable and efficient

when the problem size is large. However, one well-known drawback of GA is that it

can easily fall in local optima.

In Jafarpour and Khayyambashi (2010), the recently developed Harmony Research

(HR) algorithm, which is inspired by the musical process for searching of the best

harmony, is applied to find a solution for the QoS-aware composition problem. The

HR algorithm is characterized as simple and easy to implement, and it needs a few

parameters. Also, it needs a few mathematical requirements. In their approach, users

can define both local and global QoS constraints and the algorithm must find the

solution that has the optimal QoS while meeting these constraints. To evaluate the

performance of the proposed approach, the execution time and the optimality results

of the HR approach are compared with GA-based approaches’ results. The results

show that their approach introduces lower execution time and best QoS solutions

compared to GA-based approaches.

Tabu Search (TS) is another meta-heuristic optimization technique used to solve the

problem of QoS-aware service composition. Parejo et al. (2008) used TS and Hybrid

Genetic Algorithm (HGA) to solve the problem. In order to apply TS technique,

neighborhood of solutions is defined by changing the selected web service for a

43

given task. After applying this simple movement, a fixed size tabu list is used as the

implementation of the recent memory strategy. Such a strategy is used to escape the

trap of the local optimality by preventing the heuristic from the reversal of the recent

moves. In addition, an aspiration condition is incorporated in the search algorithm

that allows the reverse move if the resulted value of the objective function is better

than the old one. The results show that TS performs better than both HGA and the

standard GA only if the problem size is small. However, if the problem size is

medium, TS performs badly due to the size of the neighborhood of solutions. In

Bahadori, Kafi, Far, and Khayyambashi (2009), a hybrid GA-Tabu Search approach

is proposed for the QoS-aware service composition problem. The encoding schema

of the chromosomes, the crossover, and the mutation operators are similar to that

proposed by Canfora et al. (2005), whereas the fitness function is adopted from

Zhang et al. (2006b). Integrating TS with GA leads to increase in the population

diversity and escapes the trap of local optimality.

In Zheng, Zhao, Yang, and Bouguettaya (2013), a systematic QoS computation

approach is presented. The approach is capable of providing comprehensive QoS

information for a composite service with complex structures include: sequential,

parallel, loop, and conditional structures. The approach processes the conditional

structures by transforming the service graph into a rooted tree, and computes the

QoS of the web service composition as the probability weighted sum of the QoS of

the paths.

Jaeger, Rojec-Goldmann, and Muhl (2004) propose a method to evaluate the

performance of the QoS-based selection algorithms; it checks whether a set of

44

selected services for composition satisfies the global QoS requirements or not. The

method drives the overall QoS of a composition by aggregating the QoS of

individual services. It is based on a well-known workflow pattern by Van der Aalst,

Hofstede, Kiepuszewski, and Barros (2003). The workflow patterns are analyzed and

seven patterns (called composition patterns) are chosen, namely sequence, loop,

XOR split followed by XOR join, AND split followed by AND join, AND split

followed by m-out-of-n join, OR spilt followed by OR join and OR spilt followed by

m-out-of-n join. Then a composition model that derived from these patterns is

defined. In addition, they define a QoS model as consisting of response time, cost,

encryption grade, throughput, reputation, availability, and reliability. For each

combination of composition patterns and QoS characteristics, a QoS formula is

defined. Building on these QoS formulas, the method calculates the overall QoS of a

composition by identifying a composition patterns in a graph that represents the

composition structure calculating the QoS for each pattern according to the QoS

formulas until one single node remains. This process is referred to as a stepwise

graph collapse. The QoS statements resulted from the method are used in the

comparison between the solutions, and the solution with the maximum QoS utility is

considered as the optimal one. For selecting the candidates to optimize the overall

QoS for a composition, Jaeger, Muhl and Golze (2005) propose four heuristic

algorithms, namely the greedy selection, the discarding subsets, the bottom-up

approximation, and the pattern-wise selection.

Schuller et al. (2011) address the problem of multiple paths composition in their

work. They propose to perform average-case analysis according to the probability of

execution paths. For solving the optimization problem, the problem is transformed as

45

a nonlinear optimization problem and transforms it into a linear one. Then applying

Integer Linear Programming (ILP) techniques are applied to solve it.

Ukor and Carpenter (2008) survey the literature approaches on the QoS-aware

service composition problem and review the effects of the presence of multiple

paths. These are involved in compositions on the ability of the optimization

algorithms to simultaneously generate exact optimal plans for all execution paths

contained in such compositions. In brief, within the context of multiple paths

composition, it is difficult for the optimization algorithms to generate a solution that

simultaneously optimizes all the execution paths in the composition at the same time.

Their work highlighted the main problem, where this thesis aims to solve. In a

subsequent paper, Ukor and Carpenter (2009) address this problem by presenting an

approach for QoS-aware service composition that enables users to bias the

optimizations using a set of meta-metrics. The approach aims to find an

approximation solution for each path involved in the composition. A trade-off

between the paths is made choosing a path to favor by using a set of meta-metrics.

These meta-metrics include execution probability of an activity, previous execution

history of each activity, and probability of occurrence. For each path, the meta-

metrics are computed as the weighted average of the aggregate values of the meta-

metrics. Then the problem is formulated as IP problem and both the constraints and

the objective function are defined.

Ko et al. (2008) modeled the QoS-aware service composition problem as a constraint

satisfaction problem. Based on the problem model, a hybrid algorithm that combines

TS and SA techniques is proposed. To implement the algorithm, the authors suggest

46

a QoS-oriented service composition planning architecture designed to support the

automatic generation of the QoS-aware service composition plan in an optimal way.

A comparison between the proposed service composition algorithm and the IP

approach proposed by Zeng et al. (2003, 2004) is performed to evaluate the

computation time of the proposed algorithm. The results show that the average

execution time for the proposed algorithm does not exceed 3.5 second in its worst

case, whereas the average execution time needed for the IP to find a solution is 12.04

minutes. This makes IP approach inappropriate in real-time application scenario. In a

case where a composition is connected with XOR parallel pattern (i.e., multiple

paths composition problem), a worse case strategy is used to evaluate such a pattern.

Worse case strategy is also used by Singh (2012) for estimating the conditional

structure. However, such a strategy for computing the entire QoS of composite

services may result in non-precise QoS statements.

The aforementioned approaches consider all execution paths together in computing

the optimal solution. However, the following drawbacks are identified in those

approaches:

1. Considering all paths together in computing the optimal solution may result

in a suboptimal solution for some execution paths.

2. If the composition execution follows the path with the less probability, global

QoS constraints may be violated.

3. Applying IP for solving the optimization problem results in high computation

time.

47

4. For Jaeger et al. (2004) works, in the case of conditional patterns, the

aggregation for the majority of QoS characteristics are given as the maximum

of the aggregation values of all paths contained in the pattern. Such a strategy

for computing the QoS may not provide a precise QoS statement that

represents the QoS of the entire composition, making it possible for the

optimization algorithm to generate a suboptimal composition plan.

5. For Ukor and Carpenter (2008, 2009) works, the meta-metrics are based on

assumptions assigned either by the composition developers or estimated from

the log trace records. These assumptions may be false. Consequently, the

optimal solutions obtained from this approach may prove to be suboptimal

for some execution paths. Even worse, the QoS requirements may violate.

6. For the works of Ko et al. (2008) and Singh (2012), similar to Jaeger et al.

(2004), the worst case strategy of evaluation may not result in a precise QoS

statement that represents the QoS of the entire composition.

Instead of considering all execution paths together in computing the optimal

solution, the proposed approach considers one single path in computing the optimal

solution i.e., the path that will be potentially executed. For QoS computation, this

work does not utilize any aggregation formulas for the conditional structures because

the QoS computation considers only one path. Thus, the resulted QoS statements are

expected to be always precise.

Table 2.1 summarizes the state of the art approaches proposed to solve the multiple

paths composition problem.

48

Table ‎2.1

A Summary of the State of the Art Approaches Proposed to Handle the Multiple

Paths Composition Problem

Research

groups

Optimization

strategy for

solving

optimization

problems

Optimization

techniques to handle

multiple paths

composition

problem

Considered

QoS

characteristics

Weaknesses

Zeng et al.

(2003,

2004)

IP  separate path

optimization

technique

 decompose/merge

 hot path

cost, response

time, reliability,

availability, and

reputation

 small set of general

QoS characteristics

 conflict in service

selection

 high computation

time

Yu et al.

(2007)

WS_IP and

WFlow

heuristic

algorithms

 all paths optimization

technique

 probability of

execution paths

cost, response

time, and

availability

 small set of general

QoS characteristics

 non-precise QoS

statements

Canfora et

al. (2005)/

Jiang et al.

(2011)

GA  all paths optimization

technique

 probability of

execution paths

cost, response

time, reliability,

and availability

 small set of general

QoS characteristics

 non-precise QoS

statements

Jaeger et

al.,(2004,

(2005)

greedy selection,

discarding

subsets, bottom-

up approximation,

and the pattern-

wise selection

 all paths optimization

technique

 maximum QoS value

of all execution paths

Throughput,

response time,

cost, reliability,

availability,

reputation, and

encryption

grade

 non-precise QoS

statements

Liu, Wu,

and Liu

(2012)

GA  separate path

optimization

technique

 path decomposition

/path adjustment

cost, response

time, reputation,

and availability

 small set of general

QoS characteristics

 conflict in service

selection

Schuller et

al. (2011)

ILP  all paths optimization

technique

 average-case analysis

 probability of

execution paths

response time,

reliability,

throughput, and

cost

 small set of general

QoS characteristics

 non-precise QoS

statements

 high computation

time

Ukor and

Carpenter

(2008,

2009)

IP  all paths optimization

technique

 meta-metrics to bias

the optimization

cost, response

time, reliability,

and availability

 small set of general

QoS characteristics.

 conflict in service

selection

 high computation

time

Singh

(2012)

combining the

local optimization

approach with the

global

optimization

approach

 all paths optimization

technique

 worse case strategy

cost, response

time,

availability, and

reliability

 small set of general

QoS characteristics

 non-precise QoS

statements

Zhang et al.

(2010)

ACO  separate path

optimization

cost, response

time, reliability,
 small set of general

QoS characteristics

49

 Solutions for Multidimensional Multi-choice Knapsack Problem (MMKP) 2.5

The MMKP is similar to the selection problem (Yu, Zhang & Lin, 2007; Alrifai et

al., 2009). MMKP aims to pick exactly one item from each class in order to

maximize the total profit value of the pick that is subject to resource constraints (Hifi

et al., 2004). On the other hand, the selection problem aims to select exactly one

candidate from each service class, where the entire QoS value of the composition is

optimized while QoS requirements defined by clients are satisfied. The following is

a review on the state of the art approaches proposed to solve the MMKP problem

with the purpose of identifying new optimization algorithms to be applied to solve

the optimization problem resulted from the QoS-aware service composition.

According to Mostofa Akbar, Sohel Rahman, Kaykobad, Mannin, and Shoja (2006),

solutions for MMKP problem are divided into two types: (1) exact optimal

algorithms that generate the optimal solutions within reasonable computational time,

and (2) heuristic algorithms that generate near-optimal solutions within small

computational time.

For exact optimal algorithms, some existing algorithms are based on the branch-and-

bound paradigm (Balas & Zemel, 1980; Martello & Toth, 1988; Sbihi, 2006; Razzazi

& Ghasemi, 2009). As mentioned earlier, the branch-and-bound paradigm is applied

technique

 divide and conquer

strategy for

decomposition

and availability  conflict in service

selection

 cannot impose global

QoS constraints

Ko et al.

(2008)

TS-SA  all paths optimization

technique

 worse case strategy

cost, response

time, reliability,

availability,

reputation, and

frequency

 small set of general

QoS characteristics

 non-precise QoS

statements

50

by Yu, Zhang, and Lin (2007) to solve the QoS-aware service composition problem.

Dynamic programming is another paradigm used to solve the MMKP problem

(Pisinger, 1996). Martello, Pisinger, and Toth (1999) proposed a hybrid approach

that combines dynamic programming and branch-and-bound paradigm.

However, MMKP is known as NP-hard (Martello & Toth, 1986). Due to its high

computational complexity, approaches that deliver exact optimal solutions are

inappropriate for real time decision-making applications. This can be explained,

especially in our scenario, where a quick response for a workflow instance is very

important. Thus, heuristic represents a novel approach.

On the other hand, several heuristic algorithms are proposed to solve the MMKP

problem. Moser, Jovanovich, and Shiratori (1996) propose a heuristic based on the

method of the Lagrange multiplier. It is started with computing an unfeasible

solution and iteratively replacing the items to reduce the unfeasibility of the solution.

Khan, Manning, and Akbar (2002) propose a heuristic called HEU that used the

iteratively improvement procedure based on the concept of aggregate resource by

Toyoda (1965). As it starts, an initial feasible solution is computed. Items are then

selected to be picked based on the concept of aggregate resource by Toyoda (1965).

Finally, exchanges of picked items are used in order to improve the initial solution.

A constructive and complementary search approach is developed by Hifi, Michrafy,

and Sbihi (2004) for solving the MMKP. In this approach, the constructive

procedure (CP) is applied to generate a feasible solution while the complementary

CP (CCP) is used to improve the quality of the solution generated from CP. A

51

comparison between their approach and the approaches of Moser et al. (1996) and

Khan et al. (2002) is conducted. The results showed that their approach led to better

results than those obtained by the approaches adopted by Moser et al. (1996) and

Khan et al. (2002). The experiment results show that the algorithms generate high-

quality solutions within small computing times. Based on these results, their

approach is applied here to solve the optimization problem resulted from the QoS-

aware service composition. The approach is chosen because of its ability to generate

quality solutions and reduce the computational efforts resulted from the problem.

Also, it can be easily applied to solve the selection problem.

 The Path Prediction 2.6

In order to determine the execution path that will potentially be executed at runtime,

stochastic analysis and data mining techniques can be used (Cardoso & Lenic, 2006).

In stochastic analysis, the process of determining that a particular path will be more

likely executed than another is according to the probability of path execution. The

assumptions are based on stochastic information indicating the probability of paths

being executed at runtime. Estimation of the paths probability of executions is

estimated either by inspecting the system logs or being specified by the business

engineers. When the business process has never been executed before, the process

engineer initially sets the values of probabilities. These values are re-estimated at

runtime based on executing instance's data. Relying on business engineers and past

instances executions are not enough to produce accurate results for composition

executions. There are high chances that global QoS constraints may violate when

performing optimization based on this technique. Constraint violation can occur if

the composition execution follows the path with less probability. Composition

52

scenarios require a dynamic strategy to identify the path for each composition

instance. One of the many possible ways is using data mining approach.

In data mining area, the majority of research works focuses on process mining

(Agrawal, Gunopulos, Leymann, 1998; van der Aalst, Weijters & Maruster, 2002;

Rozinat & van der Aalst, 2006; van der Werf, van Dongen, Hurkens & Serebrenik,

2008; van der Aalst et al., 2012). The idea of process mining is to extract information

about processes from logs. A set of real business process executions (i.e., Process

logs) can be taken by data mining techniques to discover, monitor, and improve the

process (van der Aalst et al., 2012). A little work has discussed path mining (Rozinat

& van der Aalst, 2006; Grigori et al., 2004; Cardoso, 2008). In Rozinat and van der

Aalst (2006), their work aims at analyzing the process logs in order to detect data

dependencies that affect choices made in the process. Their work focuses only on

extracting knowledge from logs about the rules controlling the path that follows at

runtime. Grigori et al. (2004) describe a set of integrated Business Process

Intelligence (BPI) tool suite to support business managers and IT. The work outlines

the use of data mining techniques for process behavior analysis in a broader scope

(Rozinat & van der Aalst, 2006). Cardoso (2005, 2008) and Cardoso and Lenic

(2006) work on business process quality and emphasizes on the importance of QoS

management for workflows and organizations. The authors propose a method, based

on data mining techniques, that allows predicting with high level of accuracy the

QoS of workflows. The method consists of three phases. First, data mining

algorithms are applied on a process log to mine the activities that will potentially be

executed at runtime. Second, for each predicted activity, a QoS activity model is

built, including information about the activity behavior at runtime. Finally, the QoS

53

of workflows estimation is computed. This approach will be extended and refined for

the purpose of runtime path prediction based on the information provided by

composition requesters.

 Chapter Summary 2.7

This chapter gives background information about the QoS characteristics and

explains the need for QoS characteristics in the area of web service composition.

Then the most important and influenced approaches, that are related to this research

work, have been discussed in detail. These approaches have been grouped into two

categories, namely single path composition approaches and multiple paths

composition approaches. Single path approaches optimize compositions that

accommodate only a single execution path. However, these approaches simplify the

problem by presuming that a composition can be represented by a single execution

path. Nevertheless, a composition can also contain multiple execution paths. For

multiple paths composition approaches, a composition can be represented by

multiple paths. This research work divided these approaches into two categories,

namely a separate path optimization technique and all paths optimization technique.

In the first technique, a composite service is divided into execution paths to optimize

each path separately. Then after the optimization is completed, the execution paths

are aggregated into an overall composition. The hot path is identified for the service

that belongs to more than one path. However, in the case that the actual execution of

the composition is not following the hot path, the executed path may not have the

best QoS ratio, worse than that, the executed path may violate the QoS requirements.

All paths optimization technique computes the optimization assuming that a certain

path will be more likely executed than another one according to the probability of

54

path execution. However, this technique may produce suboptimal solution for some

execution paths. In addition, global QoS constraints may violate if the composition

execution follows the path with less probability.

The second part reviewed the state of the art approaches proposed to solve the

MMKP problem. This in order to identify new optimization algorithms to be applied

to solve the optimization problem resulted from the QoS-aware service composition.

These solutions are divided into exact optimal algorithms that generate the optimal

solutions within reasonable computational time and heuristic algorithms that

generate near-optimal solutions within small computational time. Exact optimal

solutions are inappropriate for real time decision-making applications. For heuristics,

reviewing the near-optimal solutions result in applying the CP and CCP algorithms

to solve the optimization problem.

The final part presented the techniques used to determine the execution path that will

potentially be executed at runtime. There are two techniques: stochastic analysis and

data mining techniques. Determining the potential executed path in stochastic

analysis is according to path probability which is estimated either by inspecting the

system logs or being specified by the business engineers. However, using such a

strategy of estimation is not enough to produce accurate results. There are high

chances that global QoS constraints may violate. On the other hand, little work has

discussed path prediction in the data mining area. One approach proposed by

Cardoso (2005, 2008) and Cardoso and Lenic (2006) shows how to apply data

mining for path prediction process. This approach will be extended and refined for

55

the purpose of runtime path prediction based on the information provided by

composition requesters.

56

3. CHAPTER THREE

RESEARCH METHODOLOGY

In this chapter, the methodology that is used in doing this research work is presented

in detail. Section 3.1 presents the research phases. Then, each phase is discussed

separately in different sections. In Section 3.2, the analysis phase is discussed while

Section 3.3 presents the development phase with a description of the models,

methods, algorithms, tools, and equations that have been used to develop the

approach. The evaluation phase is discussed in Section 3.4 with a description of the

experimental procedure, data, tools, algorithms, evaluation measures, evaluation

methods, simulation prototype, and different experiments used for the purpose of

evaluating the proposed approach.

 Introduction 3.1

The core activities in the methodology used in conducting this research and fulfilling

the objectives of the thesis are shown in Table 3.1. As seen in the table, the core

activities are divided into three steps and discussed in detail throughout this chapter.

1. The first step aims at performing an in-depth study on QoS–aware service

composition approaches and the surrounding issues like the QoS

characteristics considered in these approaches, the optimization strategy used

to solve the optimization problem, and the techniques used to tackle multiple

paths composition problem. Also, a review on the state of the art approaches

proposed to solve the MMKP problem, the techniques and the methods used

for path prediction are conducted in this step.

57

Table ‎3.1

Research Methodology

 Aim Steps Deliverables

1 Analyzing the

research problem

 Reviewing the literature  Criticize the current works

 Determine the major drawbacks in

these works

 Define the problems of the research

 Determine the QoS characteristics

for web service composition

 Prioritize the selected QoS

characteristics

 Identify the components needed to

develop multiple paths QoS-aware

service composition approach

 Identify the techniques exist for

handling the multiple paths

composition problem

 Identify heuristic algorithms to solve

the optimization problem

 Identify the techniques and the

methods that can be used for the

runtime path prediction method

2 Developing

a QoS-aware

service

composition

approach

 Defining problem model

 Defining composition structure

model

 Describing the selection criteria

 Describing the QoS computation for

web service composition

 Defining the utility function

 Developing new optimization

mechanism:

 Predicting the execution path

 Mapping the QoS-aware service

composition problem to multi-

dimensional multi-choice knapsack

problem (MMKP)

 Computing the optimization

 Problem model

 Composition structure model

 Selection criteria

 Aggregation functions

 Utility function

New optimization mechanism:

 Runtime path prediction method

based on data mining techniques

 CP and CCP heuristic optimization

algorithms

3 Evaluating the

 approach

performance

Evaluation of runtime path

prediction method:

 Identifying a data mining tool

 Preparing datasets

 Identifying the machine learning

algorithms

 Identifying the evaluation measures

 Identifying the performance

estimation method

 Conducting a set of experiments

Evaluation of runtime path

prediction method:

 Identifying the evaluation measures

 Identifying the evaluation methods

 Developing a new prototype software

 Implementing the optimization

mechanism

 Conducting a set of experiments

 WEKA tool

 10 datasets

 J48, NB, and SMO algorithms

 Prediction accuracy, precision,

recall, and number of

correctly/incorrectly classified

instances.

 10-fold cross validation method

 Evaluate the accuracy and scalability

of the runtime path prediction

method

 The QoS ratio, the constraints

violated number, and the

computation time

 Separate path optimization technique

and all paths optimization technique

 New simulation prototype

 Finalize the algorithms

 Evaluate the optimization

mechanism

58

2. The second step aims at developing the multiple paths QoS-aware service

composition approach to solve the problems identified in the reviewed

approaches. The development includes defining the problem and the structure

model, determining the selection criteria, describing the QoS computation for

web service composition, defining the utility function, and developing a new

optimization mechanism to solve the research problems. The development of

optimization mechanisms includes proposing a runtime path prediction

method which is based on data mining techniques, mapping the QoS-aware

service composition problem to MMKP, and applying CP and CCP heuristic

optimization algorithms.

3. The third step aims at conducting performance evaluation of the approach.

The evaluation is divided into two parts. The first part aims at evaluating the

runtime path prediction method. For this purpose, the data used for

evaluation were collected and prepared. Beside the data, data mining tool,

machine learning algorithms, evaluation measures, and a performance

estimation method were identified. Finally, a set of test experiments was

introduced. The second part aims at evaluating the optimization mechanism.

For this purpose, the measures and the methods used for the evaluation were

determined. A new simulation prototype was developed and the optimization

mechanism was implemented. Finally, a set of test experiments was

introduced.

The details of each step of the research methodology are described in the next

sections.

59

 Analyzing the Research Problem 3.2

The first step was studying the different methods used to develop the composite

services. The focus was particularly on the QoS-aware service composition method.

This is due to the rapid growth of the number of the available functionality

equivalent web services over the Internet which results in the need for QoS as

selection criteria to differentiate between those competing services.

This step also involved understanding the QoS-aware service composition problem

and determining the state of the art approaches that were proposed to solve it. In

these approaches, special focus was given to study and analyze the QoS

characteristics considered in these works, the optimization algorithms adopted to

solve the optimization problem, and the strategies used to tackle multiple paths

compositions (i.e., the cases when conditional structures are accommodated in

compositions). In this step, the current works were criticized and the weaknesses

were determined in order to illustrate and frame the gaps. Based on the analysis, the

major drawbacks in the state of the art approaches were determined and the problems

of the research were clearly defined. In addition, the components needed to develop

the approach for multiple paths QoS-aware service composition were identified. The

QoS characteristics that can be considered for web service composition are

determined and prioritized.

Also, in this step a review was conducted on the state of the art approaches proposed

to solve the MMKP problem. This led to identify new algorithms which solved the

optimization problem. In addition, a review was conducted on the techniques and the

approaches used for path prediction. Based on this study, new optimization

60

algorithms called CP and CCP were identified to solve the optimization problem,

and data mining based technique was identified to develop the runtime path

prediction method. A detailed outcome of this process has been presented in chapter

two.

 Multiple Paths QoS-Aware Service Composition Approach 3.3

This section presents a description of the models, methods, algorithms, tools, and

equations used to develop the multiple paths QoS service composition approach.

3.3.1 The Problem and Composition Structure Model

The development of the approach was launched with formulating the problem model

of the QoS-aware service composition. The model allows for mapping the problem

for multi-dimensional, multi-choice knapsack problem (MMKP). In this model, it is

assumed that there is a set of abstract service classes. For each class, there is a set of

functionality equivalent candidate service that can execute the abstract service. For

each candidate, a QoS vector is assigned. Finally, a vector is used to represent the

global QoS constraints imposed by clients.

Also, the definition of the composition structure model includes the definition of the

execution path and predicted path concepts. The structural model is based on the

sequential and conditional structures. The model allows performing the path

prediction method.

61

A detailed explanation about the definition of the problem and the structure models

is given in Section 5.2 and Section 5.3 respectively.

3.3.2 The Selection Criteria

By reviewing the QoS characteristics that are considered in the field of web services

and SOA, it is seen that there is no standard or formal QoS model used for web

service composition. Therefore, the QoS characteristics that were most commonly

used in these approaches were investigated and analyzed in order to determine the

relevant set of QoS characteristics that can be considered as selection criteria when

composing web services. QoS characteristics for a web service composition should

be derived from the features of composite services which are different from a single

service. The selection is made by counting the frequency of the characteristics which

have been considered in the related works in the field of web services and SOA

putting into consideration their implicit importance despite of being scarcely

included in these studies. As a result, eight characteristics were suggested, namely

cost, response time, availability, reliability, throughput, security, reputation, and

composability.

Furthermore, when multiple criteria are considered at once for optimization, clients

might have difficulties in choosing the right criteria. In order to assist clients when

assigning weights, prioritizing the selected characteristics is suggested. A detailed

explanation is presented in chapter four.

62

3.3.3 QoS Computation for Web Service Composition

This step of the approach’s development includes the definition of the aggregation

functions that are used to compute the overall QoS of a composition. Aggregating

the overall QoS of a composition is needed to compute the optimization. The

aggregation functions which were used are similar to those proposed by Zeng et al.

(2004), Jaeger et al. (2004), and Guoping et al. (2009). The aggregation functions are

described in detail in Section 5.5.

3.3.4 The Utility Function

An aggregated goal function is required to consider the different QoS characteristics

that are subject to optimization. The function is used to compare between the

services when an optimization algorithm tries to solve the optimization problem. The

defined function based on a Simple Additive Weight (SAW) method which was

introduced in the context of Multiple Criteria Decision Making (MCDM) (Yoon &

Hwang, 1995). The method is performed in two phases, namely a scaling phase and

a weighing phase. In the scaling phase, the values of different QoS characteristics are

scaled to a range from 0 to 1, where the 0 value indicates a worse quality while 1

value indicates a better one. In the weighting phase, all QoS characteristics are

weighted by their importance. A detailed explanation about SAW method and utility

function is given is Section 5.6.

63

3.3.5 New Optimization Mechanism

In the proposed approach, the optimization mechanism consists of a runtime path

prediction method for the purpose of predicting the execution path and optimization

algorithms for optimizing the predicted path.

3.3.5.1 Prediction of Execution Path

The existing techniques used for predicting the execution path have been reviewed in

Section 2.6. The section suggested using data mining techniques for the purpose of

prediction.

In order to perform prediction using data mining, a composition log is needed. In

workflow-based web service composition systems, the data generated from the

execution of business processes are usually recorded in the so-called execution logs.

Logs store data that are rich with hidden information. One useful and important piece

of knowledge that can be extracted from these logs is the path that will potentially be

executed at runtime. During the execution of a business process (i.e., a composite

service), workflow-based web service composition systems store data in logs,

including real time information describing the execution and the behavior of the

composite service, web services, and instances.

However, such data are not enough to perform prediction. Cardoso (2005, 2008) and

Cardoso and Lenic (2006), who propose a method based on data mining that allows

predicting the QoS of workflows, suggest extending the log in order to record extra

data that are required to perform prediction. These data are runtime generated

information indicating the input (output) values parameters passed (received) to

64

(from) web services and their types. These values are generated at runtime during the

execution of composition instances. Each ‘parameter/value’ entry is a data type, a

name, and a value, (for example, int loannumber=12323). Furthermore, an extra field

needs to be added to the log in order to store execution path information which

describes the path that has been taken during the execution of a composite service

(i.e., the set of web services that has been executed). The path field is associated in

order to determine whether the paths that have been taken might be influenced by the

runtime information or not.

Table 3.2 illustrates an example of an extended composition log which includes the

parameter/value and path as extra fields. This work adopted the idea of extending the

logs in order to perform runtime path prediction based on the data provided by the

composite service requester as discussed later in chapter five.

Table ‎3.2

 An Example of Extended Composition Log

(Source: Cardoso, 2008)

… Instance Web

service

Instance Parameter/value Path

… LA112 RejectHome

Loan

RHL01 Int loannumber=

1232;

string email=’

ali@yahoo.com’

string loantype=

’home-loan’

FillLoanRequest,

CheckLoanType,

CheckHomeLoan,

RejectHomeLoan

… LA112 Archive

Application

NU22 string tel=

’1626354’;

string email=

’ali@hotmail.com

’

FillLoanRequest,

CheckLoanType,

CheckHomeLoan,

RejectHomeLoan,

NotifyHomeLoan

Client,

ArcheiveApplication

. …. …. …. …. ….

65

Using these data, datasets can be created and applied to machine learning algorithms

to perform prediction. The learning algorithms are described in detail in Section

3.4.15.

3.3.5.2 The Computation of Optimization

To solve the selection problem, the solution is to apply heuristic algorithms. To do

this, the approach maps the selection problem to MMKP due to the similarity

between these two problems (Yu, Zhang & Lin, 2007; Alrifai et al., 2009) as

explained in the next subsection. Then it selects algorithms that are known to be

efficient for solving MMKP and applies it to solve the selection problem.

Mapping to Multidimensional Multi-choice Knapsack Problem (MMKP)

Definition 1: (MMKP) (Hifi et al., 2004):

Suppose there are n classes Ji of items, each class Ji, i=1,…,n, has ri items. Each item

j, j=1,…,ri, of class Ji has the non-negative profit value vij, and requires resources

given by the weight vector)W,...,W,(WW
m

ij

2

ij

1

ijij  , where each weight component

k

ijW , k=1,…,m, also is a non-negative value. The amounts of available resources are

given by a vector)C,...,C,(CC m21 .

The aim of the MMKP is to select exactly one item from each class in order to put

them into a knapsack. Each item has a profit value, a weight, and the knapsack has a

limited amount of resources. The amount of resources for the knapsack does not

allow taking all items. Thus, it is required to perform a selection to identify the

optimal items which maximize the total profit value that is subject to resource

66

constraints. On the other hand, the selection problem aims to select exactly one

candidate from each service class, where the entire QoS value of the composition is

optimized while QoS requirements defined by clients are satisfied.

Building on the similarity between these two problems, the selection problem can be

mapped to MMKP as in the following 1-6 steps (Yu et al., 2006; Alrifai, Risse,

Dolog & Nejdl, 2009). A detailed explanation about mapping the selection problem

to MMKP is given in Section 5.8.2.1.

1. The knapsack is represented by the composition.

2. Each service class represents a class or an object group.

3. Each candidate in a service class represents one item in a class.

4. Each utility function uij represents a non-negative profit value vij and can be

calculated using Equation 5.3.

5. The QoS characteristics qij of a candidate sj represents the required resource Wij

of the item.

6. The QoS global constraints GS is considered the resources available in the

knapsack C.

Heuristic Algorithms for the Selection Problem

Section 2.5 discusses the solution types for MMKP problem. It concludes that

heuristic represents a novel solution. Section 2.5 also reviews and analyzes the

existing heuristic approaches proposed to solve the MMKP problem. In addition, it

67

suggests the constructive and complementary search approach by Hifi et al. (2004)

for solving the selection problem. In this approach, the constructive procedure (CP)

is applied to generate a feasible solution while the complementary CP (CCP) is used

to improve the quality of the solution generated from CP. The approach was selected

to be applied because of its ability in generating quality solutions and reducing the

computational efforts resulted from the problem. Also, it can be easily applied to

solve the selection problem. The followings are the two algorithms (Hifi et al.,

2004).

1. The Constructive Procedure (CP)

This algorithm is a greedy procedure used to generate an initial feasible solution for

the MMKP problem. Two phases are included in this algorithm, namely DROP

phase and ADD phase. Moreover, two states are distinguished, namely a feasible

state (FS), if the current solution does not violate the amount of available constraints,

and an unfeasible state (US), if the current solution violates at least one constraint.

Figure 3.1 shows the flow of the algorithm.

68

START

Calculate pseudo-utility ratio

for all items

Select an item from each class

that has the maximum pseudo-utility ratio

Select the class corresponding to the fixed item having the largest

weight and regarding the most violated constraint

Checking

the state.

Feasible?

Terminates CP

Replace the selected item with the

lightest item of the current class

 Exist items in the

class?
Constraint violation?

Yes

No

Yes

No

END

 (DROP phase)

 (ADD phase)

Swap the old selected item with

another new item from the same class

No

Select new item from the same class

Yes

Figure ‎3.1. Flowchart for CP

69

As seen in Figure 3.1, the algorithm starts by calculating for each item the pseudo-

utility ratio
ijijij WC,/vu  ; vij is the item profit, C the amounts of available

resources, Wij is the required resources, and .,. is the scalar product in mR . Then it

selects the item which has the maximum uij from each class as an initial solution.

After that, the state of the obtained solution is checked; if it is a feasible solution, CP

terminates. Else (DROP Phase) it determines the most violate constraint. With

respect to the most violated constraint, the algorithm selects the class corresponding

to the fixed item which has the largest weight all over the fixed items. (ADD Phase)

The selected item is swapped with another item from the same class. Then the

feasibility of the new obtained solution is checked; if is not feasible, it selects the

lightest item of the current class which in turn is considered the new selected item.

Finally, the algorithm iterates until a feasible solution or the smallest infeasibility

amount is obtained.

2. The Complementary CP (CCP)

CCP is used to iteratively improve the initial feasible solution obtained by CP. The

algorithm applies a local swap strategy for the selected item (called old item), and a

replacement stage, that replaced the old item with another new one, called a new

item, is selected from the same class. Each replacement between an old item and a

new one is authorized if, and only if, the solution newly obtained realizes a FS and

its value is better. Figure 3.2 shows the flow of the algorithm.

70

START

Set the best solution equal to the

solution obtained by CP

Initialize the first class

If

 profit of NI > profit of OI

and FS

If

value of the new obtained

solution with s>

value of the old solution

Not StopCondition?

END

Initialize the old item (OI) in the

current class and its value

Initialize the new item (NI) equal to the

first item in the current class

Set the best solution equal to

the solution with s

No class found?

Next class

No

Yes

No

Yes

Yes

No item found?

Next item

No

Set NI=current item

No

Yes

Set Item to swap

(s)=current item

Return s as the best

item to swap

Yes

No

Figure ‎3.2. Flowchart for CCP

71

As seen in Figure 3.2, the algorithm starts by initializing the best solution that is

equal to the solution obtained by CP. Then the loop starts by performing a local

swap search strategy procedure in order to improve the initial solution. If the

obtained solution realizes a better solution value compared to the initial one, then the

algorithm sets the best current solution that is equal to the obtained one. The loop is

repeated until no more classes remain. This process is iterated by using a stopping

condition.

 Evaluation of the Proposed Approach 3.4

In order to evaluate the performance of the proposed approach, the evaluation

process is divided into two parts. The first part aims at evaluating the runtime path

prediction method while the second one aims at evaluating the new optimization

mechanism.

3.4.1 Evaluation of Runtime Path Prediction Method

The following sections present the experimental procedure, data and dataset

preparation, data mining tool, machine learning algorithms, evaluation measures,

evaluation method, and different experiments used for the purpose of evaluating the

runtime path prediction method.

3.4.1.1 An Experiment Design

The experimental procedure for evaluating the runtime path prediction method is

presented in Figure 3.3. As seen in Figure 3.3, runtime data about instances for auto

insurance and bank loan processes were collected. Based on this data, 10 datasets

72

were created. Using WEKA, data preprocessing was conducted for data reduction

(i.e., “Select attributes” technique for identifying the most important attributes in a

dataset) and data transformation (i.e., covert from string to nominal) (Hall et al.,

2009). Then a 10-fold cross-validation method was used to train and test the machine

learning algorithms. Finally, the performance measures (i.e., accuracy, correctly

classified instances, etc.) were collected.

Figure ‎3.3. The main steps for the experimental procedure used for evaluating the

runtime path prediction method

3.4.1.2 Data Preparation

This work considers two processes for evaluating the accuracy and scalability of the

proposed method, namely auto insurance and bank loan. Furthermore, in order to

perform and evaluate the runtime path prediction method, it is required to have logs

73

which include data about the process instances. A process instance represents one

specific instance of a process that is currently executing. It contains all runtime data

related to that instance.

In auto insurance process, a set of 826 instances (i.e., all runtime data related to the

auto insurance requesters) was collected from the First Insurance Company. The

company was established in Jordan in 2006, with a paid up capital of JOD 24 million

(the second highest capitalized insurer in Jordan), as a General Insurance Company

providing Insurance Services that are based on Islamic principles (Takaful)

(http://www.firstinsurance.jo/index.html). The data include chassis ID, number of

passengers, insurance period (from/to), auto ID, an auto usage, a production year, an

auto model, a manufacture type, a policy type, and the decision that has been made

for each instance when evaluating the request for particular policy (i.e., reject or

approve). Figure 3.4 shows a fragment of the collected insurance data.

http://www.firstinsurance.jo/index.html

74

Figure ‎3.4. A fragment of the auto insurance data collected from First Insurance

Company

The prediction accuracy of the path prediction method is an important measure.

Therefore, it is important to evaluate the accuracy using a real data to be confident

about the results. Thus, the auto insurance data (i.e., real data) is used for evaluating

the accuracy of the path prediction method.

For bank loan data, the first choice was to contact different Jordanian banks

requesting for runtime data about instances for the loan processes. Unfortunately,

because the data is confidential, the request was rejected; therefore, the intention was

turned to generate the data. The data needed to be generated describes personal

information about the requesters and the loan being requested. In addition, the

75

decision that has been made by the bank i.e., either rejected or approved the loan

requests. Specifically, the data needed to be generated include income, loan type,

loan amount, loan year, and the decision that has been made by the bank. The

generated data are used for the purpose of studying how the prediction method will

scale with a rising number of involved execution paths.

The value range of income is generated based on a study by Bayt (2013), which is

the leading job site in the Gulf and Middle East. The study shows that the salary

range in Jordan is between 155 up to 15024 Dollars with an average of 1033 Dollars.

Regarding the loan type, loan amount, and loan year, these attributes can vary

between a bank and another and depend on the bank loan policy. The value ranges of

these attributes were obtained from Arab Bank (http://www.arabbank.jo/). Arab bank

is one of the largest financial institutions in the Middle East and is the largest global

Arab banking network with over 600 branches in 30 countries spanning five

continents. The value ranges are presented in Table 3.3. The value ranges of loan

amount were converted from Jordan Dinner to Dollars.

Table ‎3.3

Value Ranges of Loan Type, Loan Amount, and Loan Year Attributes

Loan type Loan amount Loan year

New car 1130<amount<141203 Dollars 1-6

Used car 3530<amount<98842 Dollars 1-5

Home 7060<amount<988421 Dollars 1-30

Education 1412<amount<1994 Dollars 1-4

Personal 1130<amount<98842 Dollars ½-8

Regarding the bank decision, every bank has their own loan policies used to

determine if a loan request is approved or rejected. The credit approval of Arab Bank

http://www.arabbank.jo/

76

policy is based on maintaining the (DBR), and minimum required salary at

manageable levels (Arab Bank, 2012). For simplicity, it is assumed that the decision

is preliminary, and based on the income, loan interest, a set of standard formulas, and

rules which were collected from Arab Bank. For example, the formulas used for

calculating the monthly payment and DBR are:

amount loan)
) 1)-rate)((1

rate
+(rate =paymentmonthly

month



 (3.1)

where,

12

rate interest
=rate (3.2)

2

income
=DBR (3.3)

The DBR should be equal or less than the monthly payment. Using the collected

value ranges and formulas, much data about instances for bank loan process was

generated.

The collected/generated data about auto insurance and bank loan processes was used

for creating several datasets for the purpose of evaluating the path prediction

method. Section 6.1.2 explains the process of creating the datasets based on the

collected data.

77

3.4.1.3 The Data Mining Tool

The experiments were conducted utilizing Waikato Environment for Knowledge

Analysis (WEKA) (http://www.cs.waikato.ac.nz/ml/weka/). WEKA is open source

software developed at the University of Waikato in New Zealand. The system is

written in Java Language to support several data mining tasks. WEKA includes a

collection of tools and the state of the art machine learning algorithms for data

analysis and predictive modeling (Witten & Frank, 2005).

 Academically, WEKA becomes a widely used tool for data mining research (Hall et

al., 2009). It provides implementations for J48, NB, and SMO as well as wide

varieties of learning algorithms (Witten & Frank, 2005). Thus, there is no need to

manually write the algorithms’ code. In a simple way, the algorithms are easily

applied to the datasets created from the log data. WEKA is also used for analyzing

and statistically evaluating the result obtained from applying the learning algorithms

to the datasets, making it easy to compare between the performances of the learning

algorithms (Witten & Frank, 2005).

3.4.1.4 Datasets Preparation for WEKA

As the WEKA data mining tool is used for experiments, an attribute-relation file

format (ARFF) is used in WEKA to represent datasets. An ARFF file consists of a

list of the independent instances, and the attribute values for each instance are

separated by commas.

In order to create datasets in ARFF format, a Microsoft Excel was used to generate

the instances and the attributes. Figure 3.5 shows a fragment of dataset5 which was

http://www.cs.waikato.ac.nz/ml/weka/
http://en.wikipedia.org/wiki/Data_analysis
http://en.wikipedia.org/wiki/Data_analysis
http://en.wikipedia.org/wiki/Predictive_modeling

78

created by using Microsoft and contained a number of instances. Then the files were

saved as a comma-separated value (CSV) format. Once datasets were saved into

CSV format, it can be easily converted into the ARFF format by loading the files

into a Microsoft Word; add the dataset name using the @relation tag, the attribute

information using @attribute, and a @data line, and save the file as raw text (Witten

& Frank, 2005). Figure 3.6 shows dataset5 after converting it to ARFF format.

Figure ‎3.5. An illustration of dataset5 created by using a spreadsheet application

79

Figure ‎3.6. A fragment of dataset5 in ARFF format

3.4.1.5 Machine Learning Algorithms

Different supervised learning algorithms can be used to carry out path prediction.

Among these algorithms, Naïve Base (NB), J48 which is Weka’s (2004)

implementation of the C4.5 (Quinlan, 1993) decision tree learner, and Sequential

Minimal Optimization (SMO) (i.e., an improved training algorithm for Support

Vector Machines (SVM)) methods were selected to be experimented. These

algorithms are among the most influential and the best-known algorithms in the data

mining community (Kotsiantis, 2006; Wu et al., 2008).

J48 algorithm is Weka’s (2004) implementation of the C4.5 (Quinlan, 1993) decision

tree learner. Instances to be classified, a decision tree sorts them on the basis of

feature values. In a decision tree, each node represents a feature in an instance to be

classified, and each branch represents a value that the node can assume. Instances are

classified starting at the root node and sorted based on their feature values

(Kotsiantis, 2006). It uses a heuristic approach to generate suboptimal decision trees

80

because finding an ‘optimal’ solution tree is a multi-objective problem. NB classifier

technique is based on the so-called Bayesian theorem. It is done by analyzing the

relationship between the dependent variable and the independent variable, and for

each relationship, a conditional probability is derived. SMO (Platt, 1999) is an

improved training algorithm for SVM (Cortes & Vapnik, 1995). A very large

quadratic programming (QP) problem of the solution is usually required to train

SVM. SMO breaks down a large QP problem into a series of smaller QP problems.

SMO improves its scaling and computation time significantly because the utilization

of the smallest possible QP problems is solved quickly.

3.4.1.6 The Performance Evaluation

The runtime path prediction method is considered successful if the prediction

accuracy is high. The prediction accuracy of classifiers is usually the most important

evaluation measure (Masseglia, Poncelet & Teisseire, 2008). It is established to

determine how accurate a classifier is in the prediction. In this work, the prediction

accuracy is the primary measure for evaluating the prediction method. Beside the

accuracy measure, the precision and recall criteria and the number of

correctly/incorrectly classified instances are also considered.

Classifiers' accuracy is defined as the probability of correctly classifying a randomly

selected instance. Precision is a measure of the accuracy provided that a specific

class has been predicted (Norinder, Lidén & Boström, 2006). Recall is a measure of

the ability of a prediction model to select instances of a certain class from a dataset

(Jacobsson, Lidén, Stjernschantz, Boström & Norinder, 2003).

81

These measures are derived from the confusion matrix. The results on a test datasets

are usually displayed as a confusion matrix of rows and columns (Witten & Frank,

2005). The rows correspond to the known class while the columns correspond to the

predictions made by the classifier. Table 3.4 shows a confusion matrix for a problem

of two classes.

Table ‎3.4

A Confusion Matrix of Two Classes

 Predicted Class

 Positive Negative

Known

Class

Positive True Positive (TP) False Negative (TN)

Negative False Positive (FP) True Negative (TN)

In relation to the confusion matrix, the accuracy, precision, and recall measures are

calculated as in the following:

 FN)FPTN(TP

TN)(TP
Accuracy




 (3.4)

FP)(TP

TP
Precision


 (3.5)

FN)(TP

TP
Recall


 (3.6)

Concerning accuracy’s estimation, a review of estimation methods was conducted by

Kohavi (1995). The author recommends a 10-fold cross-validation method for

accuracy’s estimation. The method proved to be statistically good enough to evaluate

the performance of the classifiers (Witten & Frank, 2005).

82

In this method, the dataset is split into 10 mutually executive subsets of

approximately equal size. A machine learning algorithm is trained and tested 10

times; at each time it is tested on 1 of the 10 subsets and trained using the 9

remaining subsets (i.e., each subsets being once the test set and reaming subsets

being the training set). The iteration is necessary to ensure that all instances in the

dataset are part of the test and train subsets. The 10 results are then averaged to give

the overall result (Prekopcsák et al., 2010). Figure 3.7 graphically illustrates the 10-

fold cross-validation using a dataset which consists of 1000 instances; each subset is

divided into equal size of instances i.e., 100.

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

100 Instances

Round 1

...

... Round 10Round 2

...

Figure ‎3.7. A graphical illustration of 10-fold cross-validation method using a

dataset which consists of 1000 instances, test subsets (gray), train subsets (white)

83

3.4.1.7 Experiments

Different test experiments were conducted in order to evaluate the runtime path

prediction method. The first test experiment aimed at validating the accuracy of path

prediction. The experiment has been conducted using three selected learning

algorithms, namely J48, NB, and SMO. These algorithms are applied to the auto

insurance dataset which contains 826 instances. The second experiment aimed at

studying how the prediction method will scale with a rising number of involved

execution paths. For this purpose, 9 datasets of the loan process were used. Each

dataset contained an equal number of instances i.e., 1000 representing a loan process

that involved execution paths ranging from 2 up to 10 paths. J48, NB, and SMO

algorithms are applied on these 9 datasets.

3.4.2 Evaluation of the Optimization Mechanism

The following sections present the experiment procedure, simulation prototype,

evaluation measures, evaluation methods, and different test experiments used to

evaluate the optimization mechanism.

3.4.2.1 An Experimental Design

Performing a simulation test experiment is divided into three main steps as outlined

in Figure 3.8:

1. Generate problem instances.

2. Let the implementations of the three algorithm versions solve these instances.

3. Evaluate the resulting aggregated QoS ratio, the calculated constraints

violated number, and the computation time.

84

Problem instance

generation

Results

evaluation

Running the CP and CPP

algorithm versions to

solve given instance

problem

instance

QoS ratio,

constraints

violated

number, and

computation

time

Figure ‎3.8. The main steps for the experimental procedure used for evaluating the

optimization mechanism

3.4.2.2 Simulation Prototype

For evaluating the performance of the proposed optimization mechanism, the goal

was to compare the proposed optimization mechanism, which combined a path

prediction method and heuristic algorithms, with the current existing optimization

techniques that has been proposed to solve the problem of multiple paths

composition. To do so, a new simulation prototype that simulates the proposed

approach for multiple paths QoS-aware service composition has been developed.

The simulation prototype provides the implementations for the proposed mechanism

and the current techniques. Section 6.2.1 discussed the simulation prototype in detail.

3.4.2.3 The Evaluation Measure

As explained in the section of the problem background, this work claims that the

current optimization techniques, that are proposed to handle the problem of multiple

85

execution paths composition, have several drawbacks. First, they generate solutions

that may not have the best possible QoS ratio. Second, the generated solutions which

use these techniques may have high constraints violated number. The work also

claims that by using the proposed optimization mechanism, it is expected to generate

solutions that deliver the best possible QoS ratio. At the same time, it minimizes the

constraints violated number. Based on the above mentioned, it was logic to verify

these claims by conducting a comparison between the current optimization

techniques, which will be introduced in the next section, and the proposed

optimization mechanism in terms of (1) the aggregated QoS resulting from a solution

and (2) the calculated constraint violations number.

On the other hand, one can claim that the proposed mechanism may have high

computation time compared to current optimization techniques. This is because of the

combination between the runtime path prediction method and the optimization

algorithms. Thus, one extra test experiment was required to compare all the

techniques in terms of the computation time consumed to generate solutions.

Briefly, for the purpose of comparison, the performance of the optimization

techniques covers three measures: (1) the QoS ratio, (2) the constraints violated

number, and (3) the computation time.

3.4.2.4 Evaluation Methods

Three different optimization techniques were selected for the performance of the

evaluation. The first technique represents the optimization mechanism proposed in

86

this thesis. The other two techniques are determined after reviewing the state of the

art approaches. These approaches were discussed in detail in Section 2.4.2. The

techniques are:

All Paths Optimization Technique: In this technique, the optimization is computed

assuming that a certain path will be more likely executed than others according to the

probability of path execution. The assumptions are based on stochastic information

indicating the probability of paths being executed at runtime. Estimation of the paths

probability of executions is estimated either by inspecting the system logs or by

being specified by the composition engineers.

A Separate Path Optimization Technique: In this technique, a composite service

is decomposed into execution paths in order to optimize each path separately. Then

after completing the optimization process, the execution paths are aggregated into an

overall composition that consists of all paths. If there is a common abstract service

that belongs to more than one path, the system identifies the hot path for the

considered web service. The hot path is defined as the path that has been most

frequently used to execute the considered service.

For fair comparisons, it is preferable to conduct the comparisons using the same

optimization approach; therefore, CP and CCP algorithms are used for this purpose.

The simulations implement three different versions of the CP and CCP algorithms.

Each version represents a particular optimization technique for handling multiple

paths composition problem. Based on these techniques, three different versions of

87

the CP and CCP algorithms are implemented, namely CP1 & CCP1, CP2 & CCP2,

and CP3 & CCP3.

CP1 & CCP1 algorithms: this version represents the optimization mechanism

proposed in this work. The main ideas of these algorithms are using the runtime path

prediction method to predict the execution path that will potentially be executed and

running the CP and CCP algorithms to optimize the predicted execution path.

CP2 & CCP2 algorithms: this version represents all paths optimization technique.

The main idea of these algorithms is to optimize all execution paths based on their

probability of executions.

CP2 & CCP2 have a similar structure as CP1 & CCP1 by finding a feasible solution

at first, and then trying to improve the solution by using a local swap strategy and a

replacement stage. However, CP2 & CCP2 are different from CP1 & CCP1 in the

following aspects:

 Solution feasibility check: CP2 checks the feasibility of all the execution

paths together while CP1 only checks the feasibility of the predicted path (

predEP).

 QoS computation: in CP1 & CCP1, the QoS value of a solution SN is

decided by aggregating the QoS value of the services that belong only to the

predicted path. It is computed by using the aggregation functions presented in

Table 5.2. However, in CP2 & CCP2, the QoS value of SN is computed by

aggregating the QoS value of all the services that belong to all paths. For the

88

computation, each path iPath has a probability Pi, where the sum of all Pi

must equal 1. The values of probability Pi are estimated using the

composition log as in the following (Canfora et al., 2005; Yu, Zhang & Lin,

2007; Jafarpour & Khayyambashi, 2010; Jiang et al., 2011):

 paths all for execution times of number total

path for execution times of number
P i

i  (3.7)

The QoS value of a SN is computed using these probabilities. For example,

for a composition containing two execution paths, with costs C1 and C2 and

probabilities P1 and P2, the overall cost is computed in this technique as in

the following way (Canfora et al., 2005; Yu, Zhang & Lin, 2007; Jafarpour &

Khayyambashi, 2010; Jiang et al., 2011):

2211

k CPCP)Q(SN 

 Solution improvement: CCP2 improves the SN obtained by CP1 by

applying a local swap strategy and a replacement stage for all the services

that belong to all paths while CCP1 improves the services that belong only to

the predicted path.

CP3 & CCP3 algorithms: This version represents a separate path optimization

technique. The main idea of these algorithms is to optimize each path separately by

decomposing the composition into execution paths.

89

CP3 & CCP3 have a similar structure as CP1 & CCP1 by finding a feasible solution

at first, and then trying to improve the solution using a local swap strategy and a

replacement stage; however, CP3 & CCP3 are different from CP1 & CCP1 in the

following aspects:

 Solution feasibility check: CP1 only checks the feasibility of the predicted

path (predEP) while CP3 checks the feasibility of each execution path

separately. If there is a common abstract service that belongs to more than

one path, the hot path is identified for the service and the feasibility of the hot

path is only checked. The hot path is identified using the composition log as

the path has been most frequently used to execute the common services in

past instances of composite services. For example, in the multiple paths

composite service illustrated in Figure 5.2, service 1S be,s,ex.on paths 1Path ,

2Path , and 3Path . Assume that the composite service has been executed 10

times. Also assume that in 6 times the execution follows the 1Path , and in 3

times the execution follows 2Path , and in 1 times the execution follows

3Path . This indicates that the execution path 1Path is the hot path for the

service 1S since it has been more frequently used to execute the service

(Zeng et al., 2003, 2004).

 QoS computation: In CP1 & CCP1, as it has been mentioned above, the

QoS value of a solution SN is computed considering only the predicted path.

On the other hand, in CP3 & CCP3, the QoS value is computed considering

each path separately using the aggregation functions presented in Table 5.2.

90

 Solution improvement: CCP3 improves all services that belong to all paths

separately while CCP1 improves the services that belong only to the

predicted path.

Table 3.5 shows a summary and a comparison between the three algorithms

implemented for performance evaluation.

Table ‎3.5

A Comparison Between the Algorithms Used for the Preformance Evaluation

Algorithm Optimization

technique

Solution

feasibility

check

QoS computation

for composition

Solution

improvement

CP1 & CCP1 optimize the

predicted path

by using runtime

path prediction

method

check the

feasibility of

the predicted

path

composition QoS

value is decided by

aggregating the QoS

value of the services

that belong only to the

predicted path

improve the

services that

belong only to

the predicted

path

CP2 & CCP2 optimize all

paths together

based on their

probability of

executions

check the

feasibility of

all paths

together

composition QoS

value is decided by

aggregating the QoS

value of all services

belonging to all paths

together by using a

probability of

execution value for

each path

improve the

services that

belong to all

paths

CP3 & CCP3 optimize each

path separately

by decomposing

the composition

into execution

paths

check the

feasibility of

each execution

path separately

composition QoS

value is decided by

aggregating the QoS

value of each path

separately

improve the

services that

belong to all

paths

separately

3.4.2.5 Experiments

Three different test experiments were conducted in order to evaluate the optimization

mechanism. The goal of the first test experiment was to evaluate the proposed

mechanism in terms of the resulting QoS ratio (i.e., the resulting utility of the

91

generated solution). Quantitative statements that represent the scores of the QoS

resulting from each technique can be achieved by using the SAW method that has

been introduced in Section 5.6. The different QoS characteristics are aggregated

considering equal weights. For the purpose of comparison, the total QoS ratio, the

total average of QoS ratio, and the standard deviation of all competing techniques

(i.e., three versions of CP and CCP algorithms) were captured.

The second test experiment aimed to evaluate the proposed mechanism in terms of

the constraints violated number (i.e., the total number of constraints that have been

violated for each optimization technique). Therefore, the constraint violated numbers

for all competing techniques were calculated in order to compare between them. For

the purpose of calculation, the aggregation functions presented in Table 5.2 were

used to aggregate the value of the considered constraint characteristic. After that, the

aggregated value and the imposed constraint value were compared to determine

whether the constraint was violated or not (i.e., if the aggregated value is greater than

the imposed constraint value, the constraint is violated. Otherwise, it is not violated).

Finally, count if there is a violation.

The third test experiment aimed to evaluate the proposed optimization mechanism in

terms of the computation time. Two different computation times were captured by

the simulation, namely:

1. Computation time for the proposed optimization mechanism (CP1 & CCP1)

which represents the time needed for computing the optimization plus the

time needed for path prediction.

92

2. Computation time for the rest optimization techniques (CP2 & CCP2 and

CP3 & CCP3) which represents only the time needed for computing the

optimization.

The computation time is calculated using the operation System.nanoTime() which is

a precise measurement of time provided by Java EE 5 platform.

The experiment environments as well as the technical details of the simulation

prototype were discussed in detail in Section 6.2.1 and Section 6.2.2.

 Chapter Summary 3.5

This chapter described the approach used in ensuring that the research objectives are

fulfilled, verified, and validated. Three main research steps had been explored in this

chapter, namely the analysis phase, the development phase, and the evaluation phase.

In the analysis phase, the problems of the research were clearly defined, and the core

components that should be considered to develop an approach for QoS-aware service

composition were identified. This step also reviewed the state of the art approaches

proposed to solve the MMKP problem as well as the techniques and the approaches

used for path prediction. In the development phase, the core components which

should be considered to develop the proposed approach were presented. In this

phase, the optimization mechanism was developed which includes proposing a

runtime path prediction method, mapping the QoS-aware service composition

problem to MMKP, and applying heuristic optimization algorithms to solve the

93

selection problem. In the evaluation phase, the evaluation process was divided into

two parts. The first part aimed at evaluating the runtime path prediction method

while the second part aimed at evaluating the new optimization mechanism.

94

4. CHAPTER FOUR

QUALITY OF SERVICE FOR WEB SERVICE

COMPOSITION

Section 4.1 reviews the QoS characteristics considered in the existing research work

in the area of QoS for web services and SOA. Based on this review, Section 4.2

analyzes these QoS characteristics and suggests the QoS characteristics that can be

considered as selection criteria in this work. The section also provides definitions for

the suggested characteristics. Section 4.3 provides prioritization for the suggested

QoS criteria.

 QoS Models and QoS Characteristics 4.1

The ISO QoS Framework (ISO/IEC, 1998) introduces the term of QoS

characteristics which represent the fundamental term to express QoS. A QoS

characteristic, as defined by the framework, is “a quantifiable aspect of QoS, which

is defined independently of the means by which it is represented or controlled”. The

ISO ISO/IEC 25012:2008 (ISO/IEC 25012:2008, 2008) defines a quality model for

evaluating software products. The goal of quality models in general is to define a set

of characteristics and their relationships. The ISO quality model is illustrated in

Figure 4.1.

95

Figure ‎4.1. Software product quality model (source: ISO/IEC 25012:2008, 2008)

Beside the ISO model, different quality models have been proposed (Parasuraman,

Zeithaml & Berry, 1988; Dromey, 1995; Fitzpatrick, 1996; Botella, Burgués,

Carvallo, Franch & Quer, 2002). However, a study by Behkamal, Kahani, and

Akbari (2009) shows that the ISO/IEC 9126 quality model is more complete and free

of shortcoming than these models.

Although the ISO/IEC 9126 quality model seems to be complete, it is not used in the

web service domain (Hilari, 2009). This is because web services show different

characteristics from traditional software (i.e., installation-based software) because of

their service-oriented nature, such as loosely coupled binding and platform

independent characteristics. Consequently, the quality of the traditional software is

different from the quality of web services (Kim et al., 2011). For example, the

quality of web services plays an important role in their usage. Clients could change

their services if the services do not satisfy the client requirements. Therefore, not all

the quality characteristics/sub-characteristics are applicable to web services.

96

Recently, the Organization for the Advancement of Structured Information Standards

(OASIS) develops a quality model for web service named Web Service Quality

Model (WSQM) (Kim, Kang, Lee & McRae, 2005). In the OASIS’s final draft

written in July 2011 (Kim et al., 2011), the web service quality factors are composed

of a business value quality, a service level measurement quality, an interoperability

quality, a business processing quality, a manageability quality, and a security quality.

Although the OASIS’s Quality Factor model is designed specifically for web

service, most of the research works regarding QoS for web services do not use this

model. The reason is because this model is still a working draft and has not been

widely known (Hilari, 2009). Instead, most of the existing research efforts in the area

of web service composition consider a small set of general QoS characteristics that

are applicable to all domains (i.e., domain-independent characteristics) (Menasce,

2002; Patel, Supekar & Lee, 2003; Zeng et al., 2003, 2004; Canfora et al., 2005; Yu

et al., 2007; Alrifai et al., 2010; Zheng et al., 2013; Leitner, Hummer & Dustdar,

2013; Rajeswari et al., 2014; Yu, Li & Yin, 2014).

Zeng et al. (2003, 2004) introduce a simple QoS model which consists of multiple

general QoS characteristics that include cost, duration (response time), the success

rate (reliability), availability, and reputation. This model is adopted by many

researches such as (Ukor & Carpenter, 2008, 2009; Zhang et al., 2010; Jiang et al.,

2011; Schuller et al., 2011; Singh, 2012).

The authors have justified their choice of these characteristics; they are general and

applicable to all web service domains. Menasce (2002, 2004) discusses QoS issues

97

in web services in different publications. The author considers response time, cost,

availability, and security as the relevant QoS characteristics for web service and web

service composition. Patel et al. (2003) propose a QoS oriented framework for

adaptive web service-based workflow. The goal of this framework is to enable

service selection, dynamic binding, and execution of web services for the underlying

workflow. In order to achieve this, a QoS model is designed with respect to web

service and workflow features. The model is divided into three categories. The first

category consists of latency, throughput, reliability, and cost. The second one

consists of availability, security, accessibility, and regularity. The last one defines

separate QoS characteristics named task-specific. Yu et al. (2005) present a broker-

based framework for dynamic and adaptive QoS-aware service composition with end

to end QoS constraints. In their work, they mention the relevant characteristic

response time, cost, availability, and reliability. Alrifai et al. (2010) propose an

approach for QoS-aware service selection that is based on the notion of skyline. In

their work, they consider quantitative general QoS characteristics which include cost,

response time, availability, reliability, reputation, and throughput. Some works

consider a few characteristics as the relevant QoS characteristics for web service and

web service composition. For example, Cardellini, Di Valerio, Grassi, Iannucci, and

Presti (2011) consider only cost, response time, and availability as selection criteria,

in Li and Chen (2010), cost and response time is considered, while cost is the only

characteristics considered in the work by Ivanovic, Carro, and Hermenegildo (2010).

In summary, there is no standard, formal or a complete QoS model for a web service.

Therefore, most of the aforementioned research efforts consider a set of general QoS

characteristics that are applicable to all domains (i.e., domain-independent

98

characteristics). However, there is no agreement between them about a specific

general set. Therefore, there is a need to analyze the QoS characteristics that were

most commonly used to evaluate the web services in order to determine the relevant

set of QoS characteristics which can be considered as selection criteria when

composing web services. In this analysis, it is important to take into consideration,

when determining the relevant set of QoS characteristics for composing web

services, the features of composite services which are different from features of

single web services. It is needed to derive the QoS characteristics from the special

features of composite services. The analysis should answer the following question:

what QoS characteristics are appropriate for a web service composition?

 Analysis of QoS Selection Criteria 4.2

The related works in the field of web services and SOA were reviewed and analyzed.

As a result, the characteristics, which have been addressed, can be grouped into 25

major items. Table 4.1 itemizes the QoS characteristics that were considered by

those researchers. Based on the percentage, there are seven QoS characteristics

which have the highest score. There was a sharp drop in the percentages after the

seventh characteristic (the security). The figures and trends give an indication about

the importance of those characteristics.

The highest seven QoS characteristics are cost (100%), response time (100%),

reliability (76%), availability (74%), reputation (44%), throughput (21%), and

security aspects (21%). Surprisingly, eighteen other characteristics (starting from

item 8 till item 25) are not really emphasized by those research groups.

99

Table ‎4.1

A Summary of the Considered QoS Characteristics in the Domain of Web Services

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

 C
o

st

 R
esp

o
n

se tim
e

 R
eliab

ility

 A
v

ailab
ility

 R
ep

u
tatio

n

 T
h

ro
u
g
h

p
u
t

 S
ecu

rity
 asp

ects

 L
aten

cy

 R
eg

u
lato

ry

 A
ccessib

ility

 G
u

aran
teed

 m
essag

in
g

 A
ccu

racy

 C
ap

acity

 C
o

m
p
en

satio
n

 rate

 C
o

m
p
leten

ess

 C
o

m
p
o

sab
ility

 R
eliab

le m
essag

in
g

 In
teg

rity

 P
en

alty
 rate

 S
calab

ility

 R
o

b
u

stn
ess/flex

ib
ility

 S
u
p

p
o

rted
 stan

d
ard

 S
tab

ility
/ch

an
g

e cy
cle

 T
ask

 sp
ecific

 T
ran

sactio
n

1 Menasce (2002, 2004) x x x x x

2 Ran (2003) x x x x x x x x x x x x x x x x x
3 Patel et al. (2003) x x x x x x x x x

4 Zeng et al. (2003, 2004) x x x x x

5 Cardoso et al. (2004) x x x
6 Degwekar et al. (2004) x x x

7 Liu et al. (2004) x x x x x x x x

8 Canfora et al. (2005) x x x x
9 Cardellini et al. (2006) x x x

10 Tong et al. (2006) x x x x x

11 Yang et al. (2006) x x x x x
12 Zhang et al. (2006) x x x

13 Yu et al. (2007) x x x x

14 Jin et al. (2008) x x x x
15 Wan et al. (2008) x x x x

16 Wang et al. (2008) x x x

17 Gao et al. (2009) x x x x
18 Guoping et al. (2009) x x x x x x

19 Huang et al. (2009) x x x x

20 Rosenberg et al. (2009) x x x x x x x
21 Shen et al. (2009) x x x x

22 Wang et al. (2009) x x x

23 Liu et al. (2009a) x x x
24 Liu et al. (2009b) x x x x x

25 Alrifai et al. (2010) x x x x x x

26 Ardagna et al. (2010) x x x

27 Luo et al. (2011) x x x x x x x

28 Missaoui et al. (2010) x x x x x x x

29 Tang et al. (2010) x x x x x
30 Wang et al. (2010) x x x

31 Zhang et al. (2010) x x x x x

32 Jiang et al. (2011) x x x x
33 Liu et al. (2012) x x x x

34 Singh (2012) x x x x

 PERCENTANGE 100 100 76 74 44 21 21 5.9 5.9 5.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9

 Relative importance 20 20 15 15 8.9 4.1 4.1 1.2 1.2 1.2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

100

A sharp drop is observed after security aspect characteristic. Obviously, major drops

happen at three points: after response time, after reputation, and after security

characteristics. Such drops clearly indicate that a few criteria can be grouped

together as having a similar weight.

The result indicates that cost and response time are critical and compulsory. These

two criteria are commonly used to evaluate web services and there is consensus

among the research works about the importance of these characteristics. As a result,

these characteristics can be considered mandatory for selection criteria.

Characteristics like reliability and availability are frequently used having rather a

high score. Reputation has its own class of importance, whereas throughput and

security fall in the same category of importance. These five characteristics, in spite

of having different scores, are still important to be considered due to their impact on

building an optimal web service composition.

It is strange enough when latency, regulatory, accessibility, guaranteed messaging,

accuracy, capacity, compensation rate, completeness, composability, reliable

messaging, integrity, penalty rate, scalability, robustness, flexibility, supported

standard, stability, task-specific, and transaction features are less studied and rarely

considered by the researchers. On average, these features score less than 4% in terms

of coverage in previous studies. Some of these ‘less important’ features are actually

crucial. For example, composability is significant for compositions because a high

composability score guarantees a well successfully composed web services that

contribute to a successful execution of compositions.

101

Based on the findings, it is valid to suggest these criteria as crucial: cost, response

time, reliability, availability, security aspects, throughput, reputation and

composability. Figure 4.2 illustrates the suggested QoS criteria. The first seven

criteria are taken from item 1-7 demonstrated in Table 4.1 above. An extra

characteristic, i.e., composability, is taken from criteria ranked 16 in the Table. It is

the only ‘out of range item’ considered crucial for selection criteria. This feature,

representing the probability that the service is executed as a member of the

composition service (Guoping, Huijuan & Zhibin, 2009), is suggested because every

day, new and more sophisticated web services are being programmed. With such

proliferation of web services, new and interesting applications can be developed by

composing several web services. Composability reflects the interoperable data

exchange between web services. Also, a good composability characteristic would

imply guarantee availability of services (because the web services have a better

degree of automating the matching algorithm) yielding better response time and

increasing throughput.

Cost Response time Reliability Availability ComposabilityReputation

Security

(Encryption

Level)

Throughput

QoS selection criteria

1 8765432

Figure ‎4.2. Suggested QoS criteria for web service selection

102

Cost or price represents the amount of money that a service requester has to pay for a

service provider as a result of using its service (Zeng et al., 2004). Response time is a

typical measure of performance that represents the total time required to complete a

service request which can be defined by the sum of the time a service needs to

process a request on the provider's side (processing time) and the time needed to

send a request and receive a response over a network (Lee, Jeon, Lee, Jeong & Park,

2003). Concerning reliability, it represents the degree that a service is able to

correctly respond to a request in a specified time interval. The number of service

failures in minutes, days or months describes its reliability (Mani & Nagarajan,

2002). Reliability may include another aspect, i.e., the reliability of the messages

sent and received between the web services and the applications (O’Brien, Bass &

Merson, 2005). Availability of a web service represents the probability that the

service is ready for access when required for immediate use (Zeng et al., 2004; Mani

& Nagarajan, 2002). Security for a web service can include numerous aspects. It

means providing confidentiality, authentication, authorization, encrypting data and

non-repudiation. These security aspects can be provided at a different level of policy

by service providers (Mani & Nagarajan, 2002; Lee et al., 2003). The only aspect

that can be described with numerical value is the encryption level, which determines

the encryption key length. Regarding throughput, it is a measure of service

productivity. It can be defined as the number of requests that the service provider can

process in a given time period (Mani & Nagarajan, 2002; Lee et al., 2003).

Reputation represents a ranking that is provided by service users based on their

experience of using a service. It measures the trustworthiness of a service (Zeng et

al., 2004). Finally, Composability represents the probability that the service is

executed as a member of the composition service (Guoping et al., 2009).

103

The suggested criteria, however, are not mutually exclusive, i.e., it is not a kind of if-

then-else selection. Services that fall into the intersection of the eight listed criteria

are the best candidate for composition. The considered QoS characteristics have the

following characteristics; (1) they are commonly used to evaluate web services, (2)

they have been emphasized in the research works, (3) they are applicable to all web

service domains, and (4) they are derived from the special features of composite

services.

 Priority for QoS Criteria 4.3

The web service selection criteria always depend on clients’ preferences which range

from functional to non-functional objectives. When multiple criteria are considered

for optimization at once, clients might have difficulties in choosing the right criteria.

It is suggested that they express their preferences among these criteria by assigning

particular weight values which represent the priority of importance. In order to assist

clients when assigning weights, prioritizing the selected criteria is suggested. The

prioritization is derived from the last row in Table 4.1, which indicates the relative

importance of the QoS characteristics being addressed, and also by considering the

significance of the QoS characteristics in building optimal web service compositions.

Table 4.2 suggests the priority and its justification for each criterion.

104

Table ‎4.2

The Priority of QoS Criteria and Justifications

Priority Criteria Justification
1

st
 Cost Clients can build compositions according to their budgets.

However, the cost usually depends on quality, i.e. cheapest web

services is often with a poor quality; therefore, clients should

find a counter balanced solution to this trade-off created from

cost versus any other QoS metrics (Jaeger, Muhl & Golze,

2005).

2
nd

 Response time A shorter composition execution time allows for a faster

response to customers’ needs, thus, ensuring their satisfaction

(Cardoso, Miller, Sheth & Arnold, 2004)

3
rd

 Reliability As web services operate in dynamic, flexible and unreliable

environments like the Internet, they are vulnerable to failure

during their executions. Failure of even one service involved in

a composition will result in a failure of the whole composition.

4
th
 Availability In a composition that consists of several web services, if at least

one service becomes unavailable, then the whole composition

will be unavailable. Services must be available to have

successful execution (Choi, Her & Kim, 2006).

5
th
 Security

aspects

Web services interoperate by sending and receiving messages

which may contain confidential information. Therefore, a secure

communication in such a scenario has to be ensured. Must

consider basic security aspects such as authentication,

authorization and non-repudiation.

6
th
 Throughput Some composite services, for example travel booking, received

intensive requests in a short period of time. It is critical to ensure

that the compositions can process the volume of expected

requests; this is done by considering throughput characteristic

when building the compositions.

7
th
 Reputation The internet is an open, dynamic and untrustworthy

environment. Web services are strange and unknown to each

other. Dealing with high reputation web services is needed to

avoid the trustworthiness problems that emerged in such an

environment. In compositions, where previously unknown web

services are discovered and bound automatically; reputation

plays an important role.

8
th
 Composability One of the factors that contribute to have successful execution of

compositions is composability. High composability web services

mean that these web services are capable to compose well as a

member of compositions. Moreover, high composability

increases the service reusability (Choi et al., 2006)

 Chapter Summary 4.4

A review of the QoS characteristics that are used in the area of web service

composition was given in this chapter. It concludes that there is no standard, formal

105

or a complete QoS model for a web service. Therefore, most of the aforementioned

research efforts consider a set of general QoS characteristics that are applicable to all

domains (i.e., domain-independent characteristics). However, there is no agreement

between them about a specific general set. Moreover, composite services have

features different from single web services. Consequently, there is a need to analyze

the QoS characteristics that were most commonly used to evaluate web services in

order to determine the relevant set of QoS characteristics. These can be considered as

selection criteria when composing web services. The analysis should answer the

following question: what QoS characteristics are appropriate for a web service

composition? As a result, eight QoS characteristics were suggested, namely cost,

response time, reliability, availability, security, throughput, reputation, and

composability. The considered QoS characteristics have the following

characteristics; (1) they are commonly used to evaluate web services, (2) they have

been emphasized in the research works, (3) they are applicable to all web service

domains, and (4) they are derived from the special features of composite services.

The selection is made with respect to web service composition features and by

counting the frequency of the characteristic been considered in the related works in

the field of web services and SOA as well as by considering their implicit

importance despite of being scarcely included in these studies.

In assisting clients when assigning weights, prioritizing the selected QoS criteria was

suggested. The prioritization is based on the relative importance of these criteria in

building optimal web service compositions.

106

5. CHAPTER FIVE

A SMART QOS-AWARE SERVICE COMPOSITION

APPROACH

In this chapter, the approach for QoS-aware service composition is presented in

detail. The components needed to develop the approach are presented. The

composite service scenarios that simulate multiple paths composite service are

introduced. The proposed optimization mechanism, which consists of runtime path

prediction methods and heuristic optimization algorithms, is explained. The

implementation of the proposed approach is also covered in this chapter.

 The Proposed Approach for QoS-Aware Service Composition 5.1

As it's explained in the introduction chapter, QoS-aware web service composition

phase is one of several phases required to create composite services. Prior to this

phase, there are two phases, namely design and discovery phases. In this work, it is

presumed that the design of the composition has already been done, and the

discovery phase has discovered a set of candidate services for each abstract web

service along with their QoS values.

As illustrated in Figure 5.1, QoS-aware composition approach has four inputs,

namely abstract composition i.e., a set of abstract services connected using

composition structures, a list of outsourced candidate web services discovered for

each abstract service and their QoS characteristic values, and a client’s

(organization’s) global QoS requirements. The desired output is optimal solutions.

107

Abstract

Composition

Discovery

QoS-Aware Service Composition

Optimal

composition

solution

D
e

s
i
g

n

S
e

l
e

c
t

D
i
s

c
o

v
e

r

Output

Abstract Service

Concrete Service

QoS

characteristics

QoS

Requirements

Abstract composition

(composition

structures)

Discovered candidate

web services

Path

Prediction

C
o

m
p

o
s

i
t
i
o

n

l
o

g

Machine

Learning

algorithms

Optimization

CP and CPP

Heuristic

Algorithms

Predicted

path

(EPpred)

Requester

Inputs

Aggregation

functions

Utility

function

Run timeDesign time

Figure ‎5.1. The proposed approach

108

In this work, the QoS-aware compositions process is performed dynamically on

instance by instance basis. It starts by predicting, at runtime, and just before the

actual execution of compositions, the path that will potentially be followed during

the execution of a composition. A runtime path prediction method is proposed for

this purpose. In this method, a machine learning algorithm is applied to the

composition log to learn how to classify the unknown classes. This step is carried out

offline; consequently, it does not affect the performance of the proposed approach.

After training the machine learning algorithm, it will be ready to predict the path

based on the data provided by the composite service requester. At runtime, a client

(i.e., a service requester) is required to fill online form for requesting a service. Then

the data needed for prediction is collected. After that, the data feed into the classifier

to classify into target classes, i.e., composition paths. The output of the runtime

prediction method is the prediction of a certain execution path (predEP) representing

the path that will potentially be followed during composition execution. predEP is

then utilized by two heuristic algorithms called CP and CCP to compute the

optimization by considering only the predicted path. In the optimization process, a

utility function is used to consider all the QoS characteristics that are subject to

optimization. This function is used by the heuristic algorithms in the comparisons of

the candidate services. In addition, aggregation functions are used to compute the

overall QoS of a composition. Finally, the output of the proposed approach is

solutions that are expected to deliver the best possible QoS ratios, and at the same

time, reduce the constraints violated number, while consuming small computation

time.

109

 The Problem Model 5.2

In this section, the problem model of the QoS aware-service composition is defined.

The model allows for mapping the problem to MMKP. The problem model is

formulated in the following way:

 Assume that there is a set of service classes }S,...,S,{SS a21 representing the

abstract services, where a1,...,i  , and a represents the total number of abstract

services involved in a composition.

 For each service class iS , there is a set of functionality equivalent candidate

service (also called concrete service) }s,...,s,{sS
ib21i  , that can execute the

abstract service iS , where ib1,...,j  , and the variable ib represents the number of

candidates found for abstract service iS .

 A number from 1 to n is used to identify the QoS characteristics that are

considered for optimization. The variable n denotes the total number of QoS

characteristics.

 A QoS vector ijq is assigned for each candidate js . The vector contains the

different QoS values represented by the index k ,]q,...,[qq
n

ij

1

ijji  , where

n1,...,k  .

 A vector of global QoS constraints imposed by clients]GS,...,[GSGS n1 , where

n1,...,k  .

A valid solution, i.e., a composition plan, can be obtained by assigning candidate

services js to each abstract service iS such that ij Ss 

for which the aggregated

110

QoS values meet the given global QoS constraints, and the overall QoS value of

the composite service is maximized. Table 5.1 represents the system model

notations.

Table ‎5.1

System Notations

Notation Meaning

Service class iS Is a collection of candidate services with a common

functionality but different QoS characteristics value.

Candidate service js Candidate service j from service class iS .

QoS vector

]q,...,[qq
n

ij

1

ijji 

QoS vector represents the different QoS values of

candidate service js , where ij Ss  .

QoS global constraints

]GS,...,[GSGS n1

Is a vector of all QoS global constrains imposed by

the client on the whole composition.

 Modeling the Composition Structures 5.3

To define a composition, different structures (such as sequential, loop) are used to

connect the services. In this work, we focus on compositions that were defined by

using sequential and conditional structures. Other structures such as loop, for

example, may be reduced to sequential as in Zeng et al. (2003, 2004).

The structure model allows the path prediction process to be performed. In the

following, two concepts used in this research work are defined.

Definition 2: Execution path (Path): If a composition contains conditional

structures, it has multiple sequential execution paths. Each execution path iPath

represents a sequence of services }S,...,S,...,{S ai1 . Each iPath takes only one path

in each conditional structure. For example, there are 3 execution paths in Figure 5.2:

111

Figure ‎5.2. A multiple execution paths composition

}S,S,S,S,{SPath 763211 

}S,S,S,S,{SPath 764212 

}S,S,S,S,{SPath 765213 

where: SPath,Path,Path 321  .

Definition 3: Predicted path (predEP): is the execution path that will potentially be

followed during the execution of a composition. It can be one of the sequential

execution paths defined above i.e., }Path,Path,{PathEP 321pred  . predEP is

identified using the runtime path prediction method which will be explained later.

 Selection Criteria 5.4

In the proposed approach, QoS characteristics can serve as selection criteria to

distinguish between candidate services. Eight QoS characteristics are considered as

selection criteria, namely cost, response time, reliability, availability, security

(encryption level), throughput, reputation and composability.

112

 QoS Computation for Web Service Composition 5.5

The aggregation of overall QoS of a composition is needed to compute the

optimization. The QoS value of a composite service is aggregated from its

constituent web services. The QoS value of a composite service SN is defined by the

vector Q . It contains the aggregated QoS values of a composite service (i.e., a

solution) represented by the index k ,)]Q(SN),...,[Q(SNQ n1 , where)Q(SN k is

the estimated
thk QoS characteristic of the composite service SN .

Table 5.2 presents the aggregation functions that are used to compute the overall

QoS of a composition. The aggregation functions are similar to those proposed by

Zeng et al. (2003, 2004), Jaeger et al. (2004), and Guoping, Huijuan, and Zhibinet

(2009).

Table ‎5.2

QoS Aggregation Functions

QoS characteristic Aggregation function

Cost





predEPi

ij

k

ij

k xq)Q(SN

Response time

Reliability





predEPi

ij

k

ij

k xq)Q(SN

Availability

Encryption level

113

Throughput predij

k

ij

k EPi),xqmin()Q(SN 

Reputation

a

xq

)Q(SN

ij

EPi

k

ij

k pred








Composability

In Table 5.2, the variable a represents the number inservices involved for the

computation. The variable ijx represents a selection variable. Note that the web

services that only belong to the predicted path are considered for computation i.e.

predEPi .

 A Utility Function 5.6

If more than one QoS characteristics are subject to optimization, an aggregated goal

function is required to consider all the QoS characteristics. The function is used for

comparisons between the candidate services when an algorithm tries to solve the

optimization problem. Each candidate service ij Ss 

is associated with a utility

function uij. Similar to Zeng et al. (2003, 2004), Jaeger, Muhl and Golze (2005), and

Alrifai and Risse (2009), the Simple Additive Weight (SAW) method, which was

introduced in the context of Multiple Criteria Decision Making (MCDM) (Yoon &

Hwang, 1995), is applied to compute the utility function. This method is carried out

in two phases:

Scaling phase: all the considered QoS characteristics have different units of

measurements. For example, reliability is a probability ratio and varies between 0

114

and 1 while response time is expressed in milliseconds by a positive number. In this

phase, the values of different QoS characteristics are scaled to a range from 0 to 1,

where the 0 value indicates a worse quality while 1 value indicates a better value.

For scaling, a QoS vector qij with individual QoS values
k

ijq is considered. Then

each value is replaced by the scale value
k

ijv . Some of the characteristics could be

negative. This means that the higher value denotes a worse quality such as cost and

response time. Other QoS characteristics are positive which means that the higher

value denotes a better quality such as availability and reliability. Based on SAW,

Equation 5.1 is used to scale the positive characteristics, i.e., reliability, availability,

throughput, security, reputation, and composability while Equations 5.2 is used for

negative, i.e., cost and response time.

 (5.1)

 (5.2)

The interval
k

ib

k

i1 i
q,...,q refers to all values from the considered QoS vectors

referring to the relevant QoS characteristic k.

)q,...,min(q)q,...,max(q If 1

)q,...,min(q)q,...,max(q If
)q,...,min(q)q,...,max(q

q)q,...,max(q

 v

)q,...,min(q)q,...,max(q If 1

)q,...,min(q)q,...,max(q If
)q,...,min(q)q,...,max(q

)q,...,min(qq

v

k

ib

k

i1

k

ib

k

i1

k

ib

k

i1

k

ib

k

i1k

ib

k

i1

k

ib

k

i1

k

ij

k

ib

k

i1

k

ij

k

ib

k

i1

k

ib

k

i1

k

ib

k

i1

k

ib

k

i1k

ib

k

i1

k

ib

k

i1

k

ib

k

i1

k

ij

k

ij

ii

ii

ii

i

ii

ii

ii

i















































115

Weighting phase: based on the scale values, a utility function iju can be applied to

each candidate and is defined as:





n

1k

k

ijkij vW
n

1
u (5.3)

Where n represents the amount of the considered QoS characteristics. In this

function, all QoS characteristics are weighted by their importance. kW is the weight

assigned for each QoS characteristics which are defined by clients such that

[0,1]Wk 
and 




n

1k

k 1W .

In order to assist clients when assigning weights, prioritizing the criteria is suggested

in Table 4.2.

 Multiple Paths Composite Service Scenarios 5.7

For the purpose of implementing and evaluating the proposed approach, a composite

service scenario that simulates multiple paths composite service is needed to be

considered. In this work, two different scenarios are used to show how generable is

the proposed approach. In the next subsections, these scenarios are introduced and

discussed in detail.

116

5.7.1 An Auto Insurance Composite Service

Auto insurance is one of several insurance types sold by insurance companies. A

typical auto insurance composite service which represents a multiple paths

composite service is illustrated in Figure 5.3. As seen in Figure 5.3, the service is

composed of 11 web services and represents a multiple paths composite service

scenario. It includes 4 different execution paths. The service sells two policies of

auto insurance, namely comprehensive and third party. Comprehensive is the most

complete protections for vehicles; it covers the client’s vehicle, other vehicles.

However, third party insurance covers only the damages that clients may cause for

other vehicles. The service requesters are required to fill and apply application forms

requesting for auto insurance. Then the information provided by clients is forwarded

to Check Policy to determine the requested insurance policy. Based on the policy,

the request is forwarded either to Evaluate Comprehensive or Evaluate Third Party

services. The request can be either approved or rejected. Approved Comprehensive

and Approved Third Party are the services responsible for approving

comprehensive/third party insurances. In contrast, Rejected Comprehensive and

Rejected Third Party are the web services responsible for rejecting

comprehensive/third party insurances. The result of the auto insurance request is then

e-mailed to the client. Finally, auto insurance application data is stored in a database

by the Archive Application web service.

117

Figure ‎5.3. A typical auto insurance composite service scenario

5.7.2 A Bank Loan Composite Service

The loan composite service is one of several services supplied by banks. A typical

bank loan service which represents a multiple paths composite service is illustrated

in Figure 5.4. It is composed of 22 web services and contains 10 different execution

paths. The service offers various types of loans that are most commonly used,

namely a new car loan, a used car loan, an education loan, a home loan, and a

personal loan.

In this composite service, a client (i.e., a bank loan requester) is required to fill the

application form for requesting a loan. The information provided by the client is

forwarded to Check Loan Type web service to determine the loan types. Based on its

type, the request is then forwarded to one of the five services: Check Home Loan,

Check Educational Loan, Check New Car Loan, Check Personal Loan, or Check

118

Used Car Loan. The request can be accepted, rejected or approved conditionally in

the case of a home loan. Approve /Reject Home Loan, Approve /Reject Educational

Loan, Approve/Reject New Car Loan, Approve/Reject Personal Loan, and

Approve/Reject Used Car Loan are the web services responsible for accepting

/rejecting a loan request. The result of the loan request is then e-mailed to the client.

Finally, the loan application data is stored in a database by the Archive Application

web service.

Figure ‎5.4. A typical bank loan composite service scenario

119

 New Optimization Mechanism 5.8

The new optimization mechanism is performed in two steps: (1) predict the

execution path that will potentially be executed; (2) compute the optimization for the

predicted path. The mechanism is started by predicting, at runtime, and just before

the actual execution of compositions, the path that will potentially be followed

during the execution of a composition. A runtime path prediction method is proposed

for this purpose. In this method, a machine learning algorithm is applied to the

composition log to learn how to classify the unknown classes. After building the

classifier, it will be ready to predict the path based on the data provided by the

composite service requester. At runtime, a client (i.e., a service requester) is required

to fill online form for requesting a service (for example, a loan or auto insurance

services). Then the data needed for prediction (i.e., personal data and the data

describes the condition of the service being requested) is collected. After that, the

data feed into the classifier to classify into target classes, i.e., execution paths. The

output of the runtime prediction method is the prediction of a certain execution path (

predEP) representing the path that will potentially be followed during composition

execution. predEP is then utilized by two heuristic algorithms called CP and CCP to

compute the optimization by considering only the predicted path (predEP).

5.8.1 Predicting the Execution Path

Workflow management systems store the data generated from the execution of

workflows in logs. The data stored in logs are rich with concealed information that

can be used for making intelligent business decisions (Sumathi & Esakkirajan,

2007). One possible way to reveal this valuable information is by applying data

120

mining algorithms on these logs. Based on historical data contained in logs, data

mining can be used to predict the value of a particular target class. If the class is

discrete, this process is referred to as a classification which includes assigning a class

label to a set of unclassified instances. If the set of possible classes is known in

advance, the process is referred to as supervised learning (Gutiérrez-Peña, 2004). An

application example includes predicting an insurance claim as fraudulent or not.

5.8.1.1 A Runtime Path Prediction Method

The path prediction process by Cardoso (2005, 2008) and Cardoso and Lenic (2006)

needed to be extended and refined for the purpose of runtime path prediction based

on the information provided by the service requesters. The following limitations are

identified to be addressed in this work:

1. The mentioned work performs the prediction at design time on information

indicating the input (output) values parameters passed (received) to (from)

activates. The prediction in this work is performed at runtime based on the

information provided by the composite service requester when filling an online

application.

2. In the mentioned work, it is not necessary that all attribute values are stored in

logs i.e., there may be some missing information. This is because some activities

may not have been invoked by the workflow management system when path

mining is started. Using datasets with missing values to train classifiers can

affect the prediction quality of classifiers (Acuna & Rodriguez, 2004; Liu, Lei &

Wu, 2005; Blomberg & Ruiz, 2013). In contrast to the mentioned work, in the

proposed prediction method, there are no missing attribute values in the datasets

121

because the stored value parameters are the kinds of must enter attributes. These

attributes represent personal information and information describing the

condition of the service being requested. For example, a policy-type and an auto-

model are examples of information that must be provided when requesting auto

insurance.

3. In the mentioned work, profiles for each process instance are needed to be

constructed for training the algorithms. In this work, the training dataset is

created in the form of a relational table.

4. In contrast to the mentioned work, detailed information about the implementation

of the path prediction method is given.

5. In the mentioned work, experiments were conducted using one dataset that

represents one process scenario. In this work, 10 datasets were used which

represent two process scenarios. The datasets represent different business process

domains, i.e., auto insurance and bank loan processes.

In the following discussions, the proposed runtime path prediction method is

discussed in detail. The auto insurance composite service scenario is used to explain

and illustrate the method. The method consists of four phases:

The Log Preparation Phase

This phase is adopted from Cardoso (2005, 2008) and Cardoso and Lenic (2006). It

includes extending the logs to store information indicating the input (output) value

parameters passed (received) to (from) web services and their types. These values

are generated at runtime during the execution of composition instances. Each

‘parameter/value’ entry as a data type, a name, and a value, (for example, int

122

production-year=3). In addition, the class path is an extra field needs to be added to

the log to store path information. It indicates the path that has been taken by a

particular composition instance when the parameters have been assigned to a specific

value set. The class path is associated in order to analyze the choices that have been

made (i.e., the paths that have been executed) in the past execution of a composition,

and to determine whether the paths that have been taken might be influenced by the

information provided by compositions instances.

Preparation of Training Dataset Phase

This phase aims at using the runtime data about instance contained in the logs as a

training dataset for machine learning algorithms. The training dataset is typically in

the form of a relational table in which each row represents one composition instance

extracted from logs. Each instance in the training dataset is characterized by the

value parameters of a composition requester. In addition, it is labeled with a class

indicating the path that has been taken when the parameters have been assigned to a

specific value set. In this way, a set of classified data is taken by a learning schema

to learn a way of classifying unseen instances. For example, Table 5.3 shows the

structures of training datasets for the auto insurance composite service scenario

presented in the previous section. As seen in Table 5.3, each instance consists of four

parameters, namely a policy-type, a manufacture-type, an auto-model, and a

production-year. These are associated with a class, namely path indicating the path

that has been executed when these parameters have been assigned to a specific value

set. A detailed description of datasets and attributes is given in Section 6.1.1. In

order to determine the attributes, WEKA’s “Select attributes” technique, which gives

access to a wide variety of algorithms and evaluation criteria for identifying the most

123

important attributes in a dataset, is used (Hall et al., 2009). Table 5.4 shows an

example of training datasets for the auto insurance composite service. As mentioned

earlier, there are no missing attribute values in the datasets because the stored value

parameters are the kinds of must enter attributes.

In a case that commercial workflow management systems are used, the process of

extracting the training dataset from logs can be performed manually. Another

solution is to use workflow management systems support tools. There are different

existing tools proposed to support workflow management systems. By using these

tools such as BPI tool suite proposed by (Grigori et al., 2004), the processes of

extracting training dataset can be performed automatically. For example, in PBI tool,

log data are periodically extracted and loaded into warehouses for analyzing

purposes.

Table ‎5.3

Training Dataset Structure for Auto Insurance Problem

Dataset structure Class

Policy-type Manufacture-type Auto-model Production-year Path

Table ‎5.4

Example of Auto Insurance Training Dataset

Policy-type Manufacture-type Auto-model Production-year Path

Comprehensive Kia Rio 2004
1Path

Third Party Volkswagen Golf 2000
3Path

Comprehensive Fiat Punto 1996
2Path

The Learning Phase

This phase aims at building classifiers. Path prediction is treated as a classification

problem. Since the class path of each instance is provided, supervised learning is

124

used (Sumathi & Esakkirajan, 2007). Once storing enough information in logs,

machine learning algorithms can be used to establish a relationship between the

value parameters and the paths taken at runtime.

It is recommended for a learning process to be iteratively refined when the process

execution proceeds and more information about composite service execution

becomes available. More data yields to build more accurate prediction classifiers.

The output of this phase is classifiers. A classifier is a function used to map

unlabeled instance to a labeled (Kohavi, 1995) by producing a set of classification

rules. For example, if the requested policy-type is comprehensive, the manufacture-

model is Fiat, and the production-year is less than 2004 then 2Path i.e., rejected

comprehensive insurance. In this approach, classifiers are built offline, so the

computation time consumed for building a classifier does not affect the overall

performance of the approach.

Again, in a case that commercial workflow management systems are used, the

process of executing the machine learning algorithms on the generated training

dataset can be performed manually. By using workflow management systems

support tools, it can be performed automatically using an engine to execute it.

The Runtime Path Prediction Phase

This phase aims at performing runtime path prediction based on the information

provided by a composition requester. The classifier is now ready for classifying

unknown classes, i.e., predict the path that is followed during the execution.

125

At runtime, a client (i.e., a service requester) for auto insurance is required to fill an

application form and apply it to request insurance. The form represents personal data

and the data describes the condition of the service being requested. For example, a

policy-type, a manufacture-type, an auto-model, and a production-year are examples

of such data. Figure 5.5 illustrates an example of a typical application form for auto

insurance request.

126

Figure ‎5.5. A typical online application form for requesting auto insurance

The data needed for prediction i.e., a policy-type, a manufacture-type, an auto-

model, and a production-year are then collected and fed to a classifier to be classified

into target classes, i.e., execution paths.

127

The output of this phase is the prediction of a certain execution path (predEP)

representing the path that will potentially be followed during the execution of the

bank loan composite service. This important information, i.e., predEP is utilized by

the optimization algorithms in order to optimize the predicted path. The runtime path

prediction method is illustrated in Figure 5.6.

Figure ‎5.6. The runtime path prediction method

128

5.8.2 Computing the Optimization

As mentioned earlier, QoS-aware service composition problem is known as NP-hard

(Martello & Toth, 1986). The computational complexity for solving such a problem

is high and exact optimal algorithms are inappropriate for scenarios where the quick

response to a composition instance is very important. This represents the motivation

to apply heuristic algorithms although they produce near-optimal solutions but with

small computational time. To do so, the selection problem is mapped to MMKP due

to the similarity between these two problems (Yu, Zhang & Lin, 2007; Alrifai et al.,

2009). Then the approach adapts heuristics that are known to be efficient for solving

MMKP, and applies it to solve the selection problem.

5.8.2.1 Mapping the Selection Problem to Multidimensional Multi-choice

Knapsack Problem (MMKP)

The aim of the MMKP is to select exactly one item from each class in order to put

them into a knapsack. As stated by Hifi et al. (2004), each item has a profit value, a

weight, and the knapsack has a limited amount of resources. The amount of

resources for the knapsack does not allow taking all items. Thus, it is needed to

perform a selection to identify the optimal items which maximize the total profit

value that is subject to resource constraints. The MMKP is formulated in the

following way:

129























 

 

selectednotisjif0,

Jclassforselectedisjif1,
x

 and },r{1,...,j n},{1,...,i {0,1},x :where

 n}{1,...,i 1,x :keeping while

m}{1,..,k,CxW:constraint resource to subject

xvmaximize

i

ij

iij

r

1j

ij

n

1i

r

1j

k

ij

k

ij

n

1i

r

1j

ijij

i

i

i

As explained in Section 3.3.5.2, ijv represents the non-negative profit value of the

item j in the class iJ . The variable ijx is either equal to 1, indicating that item j of

the iJ class is selected, or equal to 0, indicating that item j of the class iJ is not

selected.
k

ijW represents the requires resources for each item and
kC represents the

amounts of available resources.

On the other hand, the selection problem aims to select exactly one candidate from

each service class such that the entire QoS value of the composition is optimized

while QoS requirements defined by clients are satisfied.

Based on the problem model and the utility function, the selection problem is

modeled in the following way:

130

























 

selectednotissif0,

Sclassforselectedissif1,
x

 and },b{1,...,j a},{1,...,i {0,1},x :where

 a}{1,...,i ,1x :keeping while

 stics)characteri of (rest sticscharacteri QoS positive for ,GS)Q(SN

time) response and (cost sticscharacteri QoS negative for ,GS)Q(SN

:constraint global to subject

xumaximize

j

ij

ij

iij

b

1j

ij

kk

kk

a

1i

b

1j

ijij

i

i

Where iju represents the utility function calculated using Equation 5.3. The selection

variables xij is used to determine whether a candidate service is selected for optimal

composition or not. The value of xij is either equal to 0 or 1. The value of xij is equal

to 1, if the candidate service js is selected for the class iS , or equal to 0, if the

candidate service js is not selected for the class iS . There is exactly one candidate

service selected for each class iS i.e., 1x...xxa,ii,1
iibi2i1  .)Q(SN k is

the estimated
thk QoS characteristic of the composite service SN calculated by

using the aggregation function defined in Table 5.2, and
kGS is the

thk global QoS

constraints imposed by clients.

The MMKP requires that the total resources are less than the resource available.

However, in the selection problem, the total QoS characteristics are required to be

either less (for negative characteristics) or greater (for positive) than the global QoS

constraints. To map the selection problem into MMKP, positive characteristics are

needed to be transformed into negative. To do so, the values of positive

131

characteristics are multiplied by -1. Then the service selection problem is formulated

mathematically:























 

selectednotissif0,

Sclassforselectedissif1,
x

 and },b{1,...,j a},{1,...,i {0,1},x :where

 a}{1,...,i ,1x :keeping while

 n}{1,..,k ,GS)Q(SN

:constraint global to subject

xumaximize

j

ij

ij

iij

b

1j

ij

kk

a

1i

b

1j

ijij

i

i

On the basis of the similarity between these two problems, the selection problem is

mapped to MMKP as in the following (Yu, Zhang & Lin, 2007; Alrifai et al., 2009):

1. The knapsack is represented by the composition.

2. Each service class represents a class or an object group.

3. Each candidate in a service class represents one item in a class.

4. Each utility function iju represents a non-negative profit value ijv and can be

calculated using Equation 5.3.

5. The QoS characteristics ijq of a candidate js represent the required resource ijW

of the item.

132

6. The QoS global constraints GS are considered the resources available in the

knapsack C.

5.8.2.2 Initial Feasible Solution of Constructive Procedure

Mapping the selection problem to MMKP allows selecting heuristics that are known

to be efficient for solving MMKP, and applies it to solve the selection problem. As

mentioned earlier, the constructive and complementary search approach by Hifi et al.

(2004) is selected for solving the optimization problem. In this approach, the

constructive procedure (CP) is applied to generate a feasible solution while the

complementary CP (CCP) is used to improve the quality of the solution generated

from CP.

A solution (SN) for the selection problem is represented as it illustrated in Figure 5.7.

Figure ‎5.7. Representation for a solution

For each service class iS , one and only one candidate service js is selected, i.e.,

1xij  if the j
th

candidate service s of the i
th

service class iS has been selected;

otherwise 0xij  . A feasible solution is:

pred

a

1i

bi

1j

k

ij

k

ij EPi,GSxqn},{1,..,k  
 

Service class →

Service candidate →

Selection variable xij →



010010010

432121321

21

 ...

 aSSS

 ...

133

Note that the service selection is performed for all services contained in all execution

paths. However, the feasibility of the predicted execution path is only checked i.e.,

predEPi .

For the solution SN, there are two distinguished states: feasible state (FS); if the SN

does not violate the amount of available global QoS constraints, and unfeasible state

(US); if the SN violates at least one or more global QoS constraints.

The initial feasible solution is obtained using the CP. The CP is a greedy approach

with DROP and ADD phases to generate a feasible solution. Prior performing the CP

algorithm, a machine learning algorithm should be trained in order to be ready for

predicting the path that will potentially be executed (predEP). Then, the CP algorithm

starts by calling a classifier in order to predict the execution path (predEP). The data

needed for prediction are collected and fed to a classifier to be classified into

execution paths. The proposed runtime path prediction method is used to predict the

execution path (predEP). predEP is then utilized by the CP to compute the

optimization by considering only the predicted path. To the best of our knowledge,

this work is one of the first that combines machine learning algorithms with

optimization algorithms in order to optimize the multiple paths composition. The

steps involved in the CP are introduced in the following points:

1. Call a classifier and fed it with the attribute values provided by a service

requester. For example, a policy-type, a manufacture-type, an auto-model, and a

production-year.

134

2. Update predEP with the predicted path.

3. Calculate the utility function iju using the Equation 5.3.

4. Select the candidate s from each service class iS , a}{1,...,i which has the

maximum utility ratio iju . By this step, service selection is performed for all

execution paths.

5. Check the state of the obtained solution SN, only for the classes which belong to

the predicted execution path. If a state is feasible (FS), then CP terminates; else

(DROP phase), it determines the most violate constraint k
GS , with respect to

k
GS , it selects the service class

i
S corresponding to the fixed candidate service

i
S having the largest QoS value





k

ji i
q all over the fixed candidate services.

6. (ADD phase) Swap the selected candidate service with another candidate s from

the same service class
i

S .

7. Check the feasibility of new obtained SN, if the state is unfeasible (US), select

the lightest candidate
οi

s of the current service class
i

S which in turn is

considered the new selected candidate service.

8. Iterate until an FS or the smallest infeasibility amount is obtained.

9. Call the CCP algorithm.

Figure 5.8 describes the CP.

135

Input: an instance of the selection problem

Output: a feasible solution SN with value O(SN)

1. predEP = Call a classifier (policy-type, manufacture-type, auto-model,

production-year)

2. Calculate utility function for every candidate service s of service class iS as:





n

1k

k

ijkij vW
n

1
u

3. For every service class Si, a1,...,i 

4. }b1,...,j,max{uu iijiji 

5. ii sS 

6. isp[i]  /* p[i] represents the j
th

 position of the selected candidate */

7. 1xip[i] 

8. End For

9. Solution vector is)S,...,(SSN a1

10. For every predi EPS 

11. n}{1,...,k),Q(SNR kk  /* kR the total QoS characteristic values for the

constraint k,)Q(SN k
 is the aggregation function for the k

th
QoS

characteristics in Table 5.2 */

12. End for

13. While
kk GS(R  , for n)1,...,k  /*DROP Phase*/

14.
nk1

k

ο }argmax{Rk


 /* Determine the value of k for which kR attains its

largest value i.e., considers the most violate constraint*/

15. }q{argmaxi
ο

pred

k

ip[i]
EPi:iffa,i1

ο


 /* determine the service class that has the

maximum k
th

QoS values, for all classes that belong only to the predicted

path*/

16.
οiο s]p[i 

17. 0x]p[ii οο


136

Figure ‎5.8. The constructive procedure (CP)

18.)q,(RDropR
k

]p[ii

k

k

k

οο
 for n1,...,k  /*calculate the new kR value after

applying the Drop function */

19. For
ο

ib1,...,j  /*ADD phase*/

20. If (
οi

ss  and
k

k

ji

k

k GS)q,(RAdd
ο

 for n)1,...,k  then

21. 1x jiο


/* Swap the selected candidate with another from the same service

class
οi

S */

22. ss
οi


23.
οiο s]p[i 

24.)q,(RAddR
k

]p[ii

k

k

k

οο
 for n1,...,k 

25. a)1,...,i,iip[i],];(p[iSN ο0  /* is a feasible solution*/

26. Exit with SN vector

27. End if

28. End for

29. }q{argmins
ο

ο

οi

ο

k

ji
rj1

i


 /* if the obtained solution is not feasible */

30. ss
οi



31.
οiο s]p[i 

32. 1x]p[ii οο


33. End While

34. Call CCP(SN, O(SN)) /* the QoS value of SN (O(SN)) is the utility

summation of every class that belongs to predEP */

__

Return solution SN with QoS value O(SN), O(SN) only computes the QoS value for

every class in the predicted execution path (predEP) i.e., predi EPS 

137

5.8.2.3 Using CCP to Improve the Initial Feasible Solution

To improve the QoS values of the initial feasible solution SN obtained by CP, CCP

algorithm is applied. It tries to iteratively improve SN by applying:

1. A local swap strategy for selected candidate services that belongs to SN,

called old candidates.

2. A replacement stage that replaced the old candidate with another new one,

called a new candidate, is selected from the same service class. Each

replacement between an old candidate and a new one is authorized if, and

only if, SN realizes a FS, i.e., maintains the feasibility of SN.

The followings are the steps of the Local swap search procedure:

Step 1: Initialize the best candidate service to swap:

1.1
iiSuvalue , where

iiSu is the utility of the old selected candidate is in the i
th

service class iS to be swapped.

1.2 ii Sk  , where ik is a selected candidate service in iS service class to be

swapped.

Step 2: Perform the exchange if it is authorized:

 2.1 perform the exchange if there is a new candidate service that has larger QoS

value than the old candidate, and at the same time, it realizes a FS.

 2.2 return the best candidate service ik to be swapped.

138

The steps involved in the CCP are introduced as in the following:

1. Apply CP to obtain an initial feasible solution.

2. Initially, set the best solution equal to the solution obtained by CP.

3. Start the loop (i.e., all service classes which belong to the predicted execution

path) by performing a local swap search strategy procedure in order to

improve the initial solution.

4. If the obtained solution (obtained after performing the local swap strategy)

realizes a better solution value compared to the initial one, then set the best

current solution equal to the obtained one.

5. Repeat the loop until no more classes remain.

The CCP is described in Figure 5.9.

139

Figure ‎5.9. The Complementary Constructive Procedure (CCP)

 Chapter Summary 5.9

A smart QoS-aware service composition approach is proposed for multiple paths

compositions. In this approach, the new optimization mechanism is proposed which

computes the optimization by considering only the path that will potentially be

followed during the execution of a composition. The optimization mechanism is

performed in two steps: (1) predict the execution path that will potentially be

Input: a feasible solution SN with value O(SN)

Output: an improved SN
*
with value O(SN

*
)

1. CP())S,...,(SSN a1 

2. SNSN* 

3. For every predi EPS 

4.
iiSuvalue

5. ii Sk 

6. For (ib1,...,j  and iSs ) do

7. If (valueuij ) then

8.)q,(RDrop
k

iS

k

k i

9. If(n1,...,k,GS)q,Add(R kkk
ij ) then

10. ijuvalue

11. ski 

12. End if

13. End if

14. End for

15. ii ks 

16.
ii sSN 

17.)S,...,s,...,(SSN ai1


18. If()O(SN)S,...,s,...,O(S *

ai1 ) then

19.)S,...,s,...,(SSN ai1

* 

20. End if

21. End for
__

Return solution SN
*

with QoS value O(SN
*
), O(SN

*
) only computes the QoS value

for every class in the predicted execution path (predEP) i.e., predi EPSN 

140

executed and (2) compute the optimization for the predicted path. To do so, a

runtime path prediction method, which is based on data mining techniques, is

proposed. The method is composed of four phases, namely log preparation phase,

preparation of training dataset phase, learning phase, and runtime path prediction

phase. To compute the optimization; first, due to the similarity between the selection

problem and the MMKP problem, the QoS-aware service composition problem is

mapped to MMKP. Second, heuristic optimization algorithms called CP and CCP are

applied to solve the selection problem. CP is used to generate an initial solution.

Then CCP is used to iteratively improve the initial solution.

141

6. CHAPTER SIX

PERFORMANCE EVALUATION OF THE PROPOSED

APPROACH

In order to evaluate the proposed approach, the evaluation process is divided into

two parts. The first part aimed to evaluate the runtime path prediction method. With

the aim of validating and studying the accuracy and the scalability of the prediction

method, this chapter presents the datasets description and the different test

experiments with their results. The second part aimed to evaluate the optimization

mechanism. For this purpose, this chapter presents the simulation prototype and its

setup. Based on the simulation prototype, different test experiments are introduced

and their results are analyzed. These test experiments are designed to evaluate

particular aspects of the optimization mechanism.

 Evaluation of Runtime Path Prediction Method 6.1

In order to evaluate the runtime path prediction method, two different composite

service scenarios, namely auto insurance and bank loan, are used to create several

datasets. The scenarios are used to show how generable is the proposed approach.

The following sections present the datasets and the different experiments used for the

purpose of evaluating the runtime path prediction method.

6.1.1 Datasets Description

Section 3.4.1.2 has described the process of collecting data about auto insurance and

bank loan processes. The data were used to create 10 datasets representing the auto

142

insurance and bank loan process problems. The datasets were used for the purpose of

evaluating the path prediction method.

The first dataset represented an auto insurance problem and characterized by four

attributes, namely a policy-type, a manufacture-type, an auto-model, and a

production-year. The attributes policy-type, manufacture-type, and auto-model are

nominal while the production-year is numeric. For example, a policy-type attribute

can take comprehensive and third party values.

Beside the auto insurance dataset, several datasets were required for evaluating the

scalability of the path prediction method. Each dataset should include different

numbers of involved paths. For this purpose, a bank loan problem was used to create

9 datasets representing variable numbers of paths ranging from 2 up to 10 paths.

Paths are identified based on the bank loan composite service illustrated in Figure

5.4 which included 10 paths. To effectively compare between the learning

algorithms when evaluating the scalability, each dataset has an equal number of

service instances, i.e., 1000 instances; therefore, an equal size of subsets (i.e., 100

instances) can be obtained in each iteration of the 10-fold cross-validation method.

Table 6.1 lists the 9 datasets used for evaluating the scalability of the path prediction

method. The loan datasets are characterized by four attributes, namely income, loan-

amount, a loan-type, and a loan year. The attribute income, loan-amount, and loan-

years are numeric whereas the attribute loan-type is nominal. The attribute loan-type

can take the finite set of values: a home loan, an education loan, a new car loan, a

personal loan and a used car loan. These types are the most common loan types

(Choen, 2012).

143

For all created datasets i.e., 10 datasets, the most informative attributes were selected

for each dataset which was determined using WEKA’s “Select attributes” technique

(Hall et al., 2009). In addition, a class, namely path was added as an extra field for

each instance in the datasets for the purpose of path prediction. It indicates that the

path has been followed by each instance. The class path of the auto insurance dataset

can take a finite set of values: 1Path , 2Path , 3Path , and 4Path . These four paths are

contained in the auto insurance composite service as seen from Figure 5.3. A

detailed description of each path is presented in Table 6.2. On the other hand, the

class path in loan datasets can take a finite set of values: 1Path , 2Path … 10Path as

seen in Figure 5.4. A detailed description of each path is presented in Table 6.3.

The class path is labeled based on the instance data and the decision that has been

made when evaluating the instance (i.e., either approve or reject a process request).

For example, assume that third party insurance has been requested by the auto

insurance’s requester, and the request is rejected. Then, as seen in Table 6.2, the

class path is labeled as 4Path .

144

Table ‎6.1

 Datasets Description for Bank Loan Composite Service

Dataset No. of

paths

No. of

instances

Loan type Included classes(paths)

Dataset1 2

paths

1000 New Car
5Path , 6Path

Dataset2 3

paths

1000 New Car

Education
4Path , 5Path , 6Path

Dataset3 4

paths

1000 New Car

Personal
5Path , 6Path , 7Path , 8Path

Dataset4 5

paths

1000 New Car

Home
1Path , 2Path , 3Path , 5Path , 6Path

Dataset5 6

paths

1000 New Car

Home

Education

1Path , 2Path , 3Path , 4Path , 5Path , 6Path

Dataset6 7

paths

1000 New Car

Home

Personal

1Path , 2Path , 3Path , 5Path , 6Path , 7Path ,

8Path

Dataset6 8

paths

1000 New Car

Home

Education

Personal

1Path , 2Path , 3Path , 4Path , 5Path , 6Path ,

7Path , 8Path

Dataset8 9

paths

1000 New Car

Home

Personal

Used Car

1Path , 2Path , 3Path , 5Path , 6Path , 7Path ,

8Path , 9Path , 10Path

Dataset9 10

paths

1000 New Car

Home

Education

Personal

Used Car

1Path , 2Path , 3Path , 4Path , 5Path , 6Path ,

7Path , 8Path , 9Path , 10Path

Table ‎6.2

Path Description for Auto Insurance Composite Service

Path Policy Type

/Decision

Path description

1Path Comprehensive

Approved

CheckPolicy, EvaluateComprehensive, RejectComprehensive,

NotifyComprehensiveClient, ArchiveApplication

2Path Comprehensive

Rejected

CheckPolicy, EvaluateComprehensive, ApproveComprehensive,

NotifyComprehensiveClient, ArchiveApplication

3Path Third Party

Approved

CheckPolicy, EvaluateThirdParty, ApproveThirdParty,

NotifyThirdPartyClient, ArchiveApplication

4Path Third Party

Rejected

CheckPolicy, EvaluateThirdParty, RejectThirdParty,

NotifyThirdPartyClient, ArchiveApplication

145

Table ‎6.3

Path Description for Bank Loan Composite Service

Path Loan Type

/Decision

Description

1Path Home

Approved

CheckLoanType, CheckHomeLoan, ApproveHomeLoan,

NotifyHomeLoanClient, ArchiveApplication

2Path Home

Approved

Conditionally

CheckLoanType, CheckHomeLoan, RejectHomeLoan,

NotifyHomeLoanClient, ArchiveApplication

3Path Home

Rejected

CheckLoanType, CheckHomeLoan,

ApproveHomeLoanConditionaly, NotifyHomeLoanClient,

ArchiveApplication

4Path Education

Approved

CheckLoanType, CheckEducationLoan,

ApproveEducationLoan, NotifyEducationLoanClient,

ArchiveApplication

5Path New Car

Approved

CheckLoanType, CheckNewCarLoan,

ApproveNewCarLoan, NotifyNewCarLoanClient,

ArchiveApplication

6Path New Car

Rejected

CheckLoanType, CheckNewCarLoan, RejectNewCarLoan,

NotifyNewCarLoanClient, ArchiveApplication

7Path Personal

Approved

CheckLoanType, CheckPersonalLoan,

ApprovePersonalLoan, NotifyPersonalLoanClient,

ArchiveApplication

8Path Personal

Rejected

CheckLoanType, CheckPersonalLoan, RejectPersonalLoan,

NotifyPersonalLoanClient, ArchiveApplication

9Path Used Car

Approved

CheckLoanType, CheckUsedCarLoan,

ApproveUsedCarLoan, NotifyUsedCarLoanClient,

ArchiveApplication

10Path Used Car

Rejected

CheckLoanType, CheckUsedCarLoan, RejectUsedCarLoan,

NotifyUsedCarLoanClient, ArchiveApplication

6.1.2 Experiments and Results

In order to evaluate the runtime path prediction method, different test experiments

with their results were presented in this section. These experiments aimed to validate

and study the accuracy and the scalability of the prediction method.

146

6.1.2.1 The Accuracy of Path Prediction

In the proposed approach, it is crucial to have high prediction accuracy when

predicting the execution paths because the optimization process depends on the

predicted path. Any false prediction means that the optimization results in solutions

that may have a low QoS ratio or may violate the global constraints. Therefore, the

first experiment aimed at validating the accuracy of the path prediction.

The experiments were conducted using three selected learning algorithms, namely

J48, NB, and SMO. Details about these algorithms are presented in Section 3.4.1.5.

These algorithms are applied to the auto insurance dataset which contains 826

instances.

As mentioned in Section 3.4.1.6, by using the10-fold cross validation method to train

and test learning algorithms, the algorithms train and test 10 times, meaning that

there are 10 prediction accuracy results were produced by this procedure. These

results, as they are presented in Figure 6.1. Table 6.4 depicts the average results

obtained for the various measures used for evaluating the selected classifiers.

147

Figure ‎6.1. The prediction accuracy per each fold achieved using J48, NB, and SMO

classifiers when applied to the auto insurance dataset

Table ‎6.4

Evaluation Criteria Results Achieved by Using the J48, NB, and SMO Classifiers

When Applied to Auto Insurance Dataset

Evaluation Criteria Classifiers

J48 SMO NB

Prediction Accuracy 89.60 89.60 87.30

Precision 0.90 0.90 0.88

Recall 0.94 0.95 0.95

The results presented in Table 6.4 indicate that all the selected classifiers achieved

promising accuracy rates ranging from 87.30 % to 89.60 % compared with the path

prediction method by Cardoso (2005, 2008) and Cardoso and Lenic (2006), which is

the most comparable method to the proposed method in this work. This is expected

because learning algorithms in the proposed method are trained on the most

informative attributes of instances executions. This allows classifiers for better

learning and consequently improves the prediction quality. Furthermore, in the

proposed method, the attributes used for learning are a kind of must entered

1 2 3 4 5 6 7 8 9 10

J48 84.34 91.57 87.95 90.36 89.16 86.75 91.46 90.24 93.9 90.24

SMO 84.34 91.57 89.16 89.16 90.36 86.75 92.68 89.02 93.9 89.02

NB 85.4 83.13 85.54 89.16 85.54 85.54 89.02 86.59 92.68 90.24

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

P
a

th
 p

re
d

ic
ti

o
n

 a
cc

u
ra

cy

148

attributes that are provided by service requesters i.e., no missing attribute values.

Using datasets with missing values to train classifiers can affect the prediction

quality of classifiers (Acuna & Rodriguez, 2004; Liu, Lei & Wu, 2005; Blomberg &

Ruiz, 2013).

As presented in Table 6.4, both J48 and SMO classifiers achieve the highest

accuracy prediction, i.e. 89.60. The lowest accuracy is achieved by using NB

classifiers i.e., 87.30. It is observed from Figure 6.1 that both J48 and SMO produce

prediction models with the best accuracies in 9 out of 10 tests than NB. NB

outperforms both J48 and SMO in the first test only.

Comparing the precision and recall results of all classifiers, higher precision results

of J48 and SMO indicate that both have a high proportion of the true positives

against all the positive results. For recall results, the results indicate that SMO and

NB have a high proportion of actual positives which are correctly identified as such.

In the form of a bar diagram, Figure 6.2 illustrates the number of

correctly/incorrectly classified instances using all classifiers. It is seen that the total

number of instances, i.e., 826 is equal in the three cases since the same dataset is

used in the experiment. As seen in Figure 6.2, both J48 and SMO classifiers are able

to correctly classify 740 instances out of 826 instances. Only 86 instances are

incorrectly classified by these classifiers. However, 721 instances are correctly

classified by NB and 105 instances are incorrectly classified.

149

Figure ‎6.2. A number of correctly/incorrectly classified instances achieved by using

J48, NB, and SMO classifiers when applied to the auto insurance dataset

Having such encouraging results of prediction accuracy contributes to the generation

of high QoS ratio solutions and minimizes the constraints violated a number of the

generated solutions.

6.1.2.2 Scalability of the Prediction Method

The number of execution paths involved in compositions varies between one

composite service and another one making us wonder about the prediction method’s

ability to accurately predict the paths when having a growing number of involved

paths. Therefore, the second experiment aimed at studying how the prediction

method scaled with a rising number of involved execution paths. For this purpose, 9

datasets representing the bank loan process were used for this experiment. Table 6.1

shows the datasets. For fair comparison, each dataset contained 1000 instances. The

instances represented a bank loan process that involved execution paths ranging from

2 up to10 paths. The experiments were conducted using J48, NB, and SMO.

0

100

200

300

400

500

600

700

800

J48
NB

SMO

740
721 740

86
105

86

Correctly Classified Instances Incorrectly Classified Instances

150

The average of the prediction accuracy for the three classifiers when applied to the 9

datasets is illustrated in Figure 6.3.

Figure ‎6.3. An average prediction accuracy achieved by using NB, J48, and SMO

classifiers when applied to 9 different datasets

As illustrated in Figure 6.3, it can be observed that the accuracy results for all

classifiers are varied, which make us wonder about the reasons behind the variance

in the prediction accuracy results. Do the results of the prediction accuracy depend

on the number of paths involved in a dataset (i.e., composite service)? To answer this

question, take Dataset1, Dataset5, Dataset4, and Dataset9 as examples. Table 6.5

presents the average accuracy and the number of involved paths for these datasets.

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Dataset
5

Dataset
6

Dataset
7

Dataset
8

Dataset
9

NB 92.10 97.50 91.90 86.30 93.50 88.70 90.38 90.50 92.90

J48 93.70 95.70 92.60 89.40 93.60 88.20 91.45 90.40 90.70

SMO 93.20 98.10 95.10 90.60 91.90 89.50 88.14 87.50 87.30

82.00
83.00
84.00
85.00
86.00
87.00
88.00
89.00
90.00
91.00
92.00
93.00
94.00
95.00
96.00
97.00
98.00

 A
v
er

a
g
e

P
re

d
ic

ti
o
n

 A
cc

u
ra

cy

151

Table ‎6.5

Average Accuracy and Number of Involved Paths for Dataset1, Dataset5, Dataset4,

and Dataset9

Dataset Number of

involved paths

Average

 accuracy

Dataset1 2 paths 93

Dataset5 6 paths 93

Dataset4 5 paths 88.80

Dataset9 10 paths 90.30

As seen from Table 6.5, Dataset1 involves 2 paths while Dataset5 involves 6 paths.

The average prediction accuracy of all classifiers when applied to Dataset1 is 93

which is equal to the average prediction accuracies for all classifiers when applied to

Dataset5 which is 93. Furthermore, take Dataset4, which involves 5 paths, and

Dataset9 which involves 10 paths, the average prediction accuracy of all classifiers

when applied to Dataset4 i.e., 88.80 is less than Dataset9 i.e., 90.30. Even that

Dataset9 includes 10 paths; it has a higher average prediction accuracy than Dataset4

which includes 5 paths. Based on these findings, it is valid to conclude that the rising

number of classes involved in the prediction does not affect the prediction accuracy

of the classifiers. In other words, there is no relationship between the number of

classes involved in the classification process and the prediction accuracy of the

classifier.

What causes the variation in the accuracy results is a question that is still needed to

be answered? To answer this question, a comparison between the Dataset2, which

has the maximum average accuracy, i.e., 96.10, and the Dataset4, which has the

minimum i.e., 88.80, is needed to be conducted. An extra test experiment was

conducted and aimed at studying these datasets. SMO classifier was chosen to be

applied on these datasets since it had the maximum prediction accuracy when

152

applied to these datasets. Having got the experiment results, it was noticed that the

precision and the recall results for some classes (i.e., paths) were either very low or

very high in comparison with other classes in the same dataset. Table 6.6 presents

the precision and the recall results for Dataset2 while Table 6.7 presents the

precision and the recall results for Dataset4. As seen in Table 6.6, the precision and

the recall results for path4 are very high i.e., 1. It indicates that there are no

incorrectly classification for this class i.e., 4Path . In comparison with 2Path in the

Dataset4, the precision and the recall results for 2Path are low 0.67 and 0.69

respectively as presented in Table 6.7.

Table ‎6.6

Precision and Recall Results for Dataset2

Table ‎6.7

Precision and Recall Results for Dataset4

Class Precision Recall

Path1 0.93 0.97

Path2 0.67 0.69

Path3 0.95 0.92

Path5 0.92 0.91

Path6 0.85 0.86

As seen in Table 6.1, Dataset2 represents two loan types, namely a new car, which

involves 2 paths (i.e., 5Path and 6Path), and education, which involves 1 path (i.e.,

4Path). It is clear that the simple structure of education (i.e., only one class belongs

to the education loan type) is the reason behind the very high results of precision and

recall for this class. These high results contribute in achieving high accuracy results

Class Precision Recall

Path4 1 1

Path5 0.94 0.92

Path6 0.89 0.92

153

compared with the complex home loan structure, where 2Path , which consists of 3

paths, belongs to the home loan type. Investigating other datasets, which have a low

average prediction accuracy such as Dataset6 88.80, and Dataset8 89.50, showed that

the presence of home loan type (i.e., 2Path) is the reason behind the low average

accuracy results. Based on these findings, it can be concluded that the accuracy

highly depends on the structure of compositions.

Based on the results of the this test experiment, it is valid to say that the proposed

approach is suitable for any compositions regardless of the number of execution

paths involved in a composition. However, the structure of the business process

plays an important role in the results of prediction accuracy.

 Evaluation of Optimization Mechanism 6.2

Based on the model of the multiple paths QoS-aware service composition problem,

the algorithms, and the methods which were given in the previous chapters, the

proposed approach was implemented and evaluated by using simulation prototype.

In the following, the simulation prototype is described in detail. Based on the

simulation and its setup, different test experiments are introduced and their results

are analyzed. These test experiments are designed to evaluate particular aspects of

the optimization mechanism.

6.2.1 A Simulation Prototype

The lack of general simulation that can be used in the area of QoS in service

composition makes the researcher implement their own simulation. Therefore, a

154

simulation prototype is developed for the purpose of evaluating the new optimization

mechanism for handling multiple paths composition problem. The proposed

optimization mechanism was implemented and evaluated by using simulation

prototype.

In order to evaluate the new optimization mechanism, a comparative evaluation

experiment between the proposed optimization mechanism and the current

techniques existing in the state of the art approaches (Zeng et al., 2003; Zeng et al.,

2004; Yu, Zhang & Lin, 2007; Canfora, Penta, Esposito & Villani, 2005; Jaeger et

al., 2004; Zhang et al., 2010; Parejo, Fernandez & Cort´es, 2008; Ko et al., 2008;

Ukor & Carpenter, 2008, 2009) was conducted. For fair comparisons, it is preferable

to conduct the comparisons using the same optimization approach. Therefore, CP

and CCP algorithms were used for this purpose. The simulations implement three

different versions of the CP and CCP algorithms. Each version represents a

particular optimization technique for handling multiple paths composition problem.

Based on these techniques, three different versions of the CP and CCP algorithms

were implemented, namely CP1 & CCP1, CP2 & CCP2, and CP3 & CCP3. Section

3.4.2.4 has explained the versions of the CP and CPP algorithms in detail.

In order to compare the optimization techniques (i.e., three versions of CP and CCP

algorithms), the simulation was divided into three test experiments which were

designed to compare all the techniques from particular aspects. Different measures

are captured by the simulation, namely: the resulting aggregated QoS, the imposed

constraint values, the aggregated QoS value relative to the considered constraint

155

characteristic, and finally the computation time. Section 3.4.2.3 explains the

evaluation measures in detail.

The main idea of the simulation was to generate problem instances, and then let the

implementations of the three algorithm versions solve these instances. The

generations of the elements that constitute a problem instance are in the following

way:

Abstract and candidate services: the amount of abstract service depends on the

considered composite service scenario. For candidate services, the amount of

candidate is set to fix the value. The next subsection discussed these parameters in

detail.

QoS values of the candidates: the values were generated stochastically as explained

in the next subsection.

Optimization goal: in the entire simulation, the optimization goal remains the same;

the goal was to optimize four QoS characteristics. The next subsection discussed

these characteristics.

Constraints: the amount of the constraints is either increased or set to a fixed value.

The range of constraints amount is between 1 to 4 constraints.

Structures: the structure of a composition is generated as in a bank loan composite

service, illustrated in Figure 5.4, which consists of 10 execution paths.

156

6.2.1.1 Parameters

The first parameter that needs to set is the amount of abstract services i.e.,

composition size. This parameter depends on the considered composite service

scenario which is the bank loan composite service. The service illustrated in Figure

5.4 is composed of 22 abstract services. Thus, the parameter is set to 22.

Beside the composition size parameter, there are many parameters which need to be

set. These parameters are number of candidate services, cost, response time,

reputation, and availability parameters. For setting these parameters, this work

follows Jaeger (2007) who studied the QoS aware service composition problem, and

discusses different optimization algorithms as solutions. The author proposes

simulation software called SENECA to evaluate these algorithms. For the

simulation, Jaeger (2007) studied and analyzed different parameters in detail in order

to set these parameters. In this work, the value ranges of the parameters: number of

candidate services, response time, reputation, and availability parameter are based on

Jaeger (2007). Regarding the value range of cost parameter, the author mentioned

that this parameter is individually set based on the payment model and the

considered currency. This work sets this parameter based on the pay-per-use model

which is according to Weinhardt, Anandasivam, Blau, and Stosser (2009), is the

most commonly model used in Business Process Management System (BPMS). For

currency, any currency can be used for an amount of a particular currency could be

transferred into another currency. In this work, Dollar currency was used. Finally,

one more parameter needed to be set is the probability of path execution values. This

parameter was used only in all paths optimization technique to compute the

optimization. This work sets the parameter by counting the frequency of each path

157

being executed and divides the results on the total number of all instances (Canfora

et al., 2005; Yu, Zhang & Lin, 2007; Ukor & Carpenter, 2008, 2009; Jiang et al.,

2011; Singh, 2012). The following formula is used for the probability computation:

1000

 path of exeuction offrequency the
P i

i  (6.1)

Where iP is the probability execution of iPath such that [0,1]Pi  and 1


k

1i

iP ,

and k is the total number of paths. Table 6.8 summarizes the value ranges of the

parameters.

Table ‎6.8

Parameter Value Ranges of the Simulation

Parameter Value

Number of abstract services 22

Number of candidate services 50

Cost [0 … 10] Dollar

Response time [150 … 9999] milliseconds

Reputation [0 … 10]

Availability [0.9650 … 0.9999]

Probability [0 …1]

6.2.1.2 Implementations

The simulation applies each of the different optimization techniques to solve the

generated problem instances. The generation of the problem instances includes the

generation of composition structures, candidates QoS values, and constraint values.

As mentioned earlier, the composition structure is generated as in the bank loan

composite service which consists of sequential and conditional structures. For

158

candidates QoS values and constraints values, the generation is as Jaeger (2007):

 Four QoS characteristics are considered for the simulation: cost, response

time, availability, and reputation. The simulation generates candidate services

with random QoS values. To ensure realistic QoS variance, the simulation

randomly assigns for each abstract service optimal cost and response time

from the intervals given in Table 6.9.

Table ‎6.9

Cost and Response Time Intervals

QoS characteristics Value range

Cost [0 … 5]

Response time [150 … 2000]

The formula used to generate a QoS values for cost and response time is as

the following (Jaeger, 2007):

1 x 0 x), +(1 value optimal=Q  (6.2)

The variable x is a random determined percentage between 0 and 100. A

trade-off couple between cost and response time is needed to be formed. The

better the cost is, the worse response time and vice versa. To do so, the value

x added to the optimal cost is taken to calculate x1 the value added to the

optimal response time, with 1 = x+x 1 .

159

Regarding the availability and reputation, the simulation chooses, with

uniform distribution, a random value between their intervals as given in

Table 6.8. Figure 6.4 shows an example of four QoS characteristics values

generation of five candidate services. Figure 6.4 also shows the utility value

for each candidate. The utility value is computed using the Equation 5.3, and

considering equal weights.

 After determining the composition structure and the candidate QoS values,

the constraints needed to be determined. Cost is the considered constraint

characteristic for the resulting QoS ratio and the computation time test

experiments. Regarding the calculated constraints violated number test, it

aimed to compare the three techniques in terms of the constraint violation.

Thus, it was necessary to consider the four constraint characteristics, namely

cost, response time, availability, and reputation. The values of the constraints

were determined after running the following algorithm:

1. Considering the constraint QoS characteristic; calculate the average of the

candidates QoS values for each abstract service.

2. Calculate the total average of the candidates QoS values for all the

abstract services.

3. Increase the total average by a set of percentage (for example by 30%).

After the generation of the problem instances, the simulation runs the three test

experiments. For the first test, the simulation captures the resulting aggregated

QoS. In the second test, the simulation captures the considered constraint values

as well as the aggregated QoS value related to the constraint characteristic. While

160

in the third test, the simulation captures the computation time in a microsecond.

The computation time is the time taken by the algorithm to compute a solution.

Thus, the time needed for the generation of the problem instance is not captured

by the measurements.

Figure ‎6.4. A screen capture of generation of 5 candidate services and their QoS

characteristics values and utility

161

6.2.1.3 Software and Hardware Simulation

For computation time comparison, only the operating system and the software

environment were installed on the computer that hosted the simulation prototype.

Thus, no other processes running in parallel affect the measurements.

The simulation prototype is a web application implemented in Java language, so it

can be run on different platforms and operating systems. In addition, it can be

accessed from a wide range of researchers via web browsers.

One extra library, i.e., WEKA was added to the simulation prototype for the purpose

of performing path prediction using WEKA built in machine learning algorithms.

The software is developed using the Java Enterprise Edition (EE) 5 platform and the

NetBeans IDE (Integrated Development Environment) (V6.8). NetBeans IDE is an

open source IDE for developing an application. NetBeans IDE supports the Java EE

5 platform. Java EE 5 platform provides the operating System.nanoTime() which is a

precise measurement of time.

Concerning the host computer, a standard hardware with Windows 6 Professional

operating system was used. The processor is an AMD Turion (tm) X2 Dual-Core

Mobile RM-62 2.10 GHz. Memory 2.00 GB RAM.

6.2.2 Experiments and Results

In the following, three test experiments were discussed and their results were

analyzed. These test experiments have a goal to evaluate the proposed mechanism by

comparing it with the two previously mentioned techniques. The comparisons were

162

conducted using the CP1 & CCP1, CP2 & CCP2, CP3 & CCP3 algorithms which

were implemented based on these techniques. Regarding the number of runs, from a

preliminary test, a few rounds of testing show that the optimal results can be

obtained after 20 number of runs. It is shown that for this number of runs, a test

experiment results in almost similar statistical results when run again.

One general issue has been applied to the resulting QoS ratio and the constraints

violated number test experiments. This issue is related to the computation of the

resulting QoS ratio and the calculated constraints violated number when comparing

all techniques. The proposed mechanism computes the optimization considering one

path, i.e., the predicted path. Consequently, it is logic to compute the QoS ratio and

the constraints violated a number of the services that belong only to the predicted

path. On the other hand, the other techniques compute the optimization for all

services involved in a composition, and it is logic to compute the QoS ratio and the

constraints violated number for all services that belong to this composition. The

comparison between all techniques is not fair because the results obtained from the

proposed mechanism (represent only one path) are different from the results obtained

from the other techniques (represent all paths). Therefore, the comparisons are

conducted on the assumption that the predicted path is the path that is executed at

runtime, and for all the techniques involved in comparisons, the resulting QoS ratios

and the calculated constraints violated numbers are computed considering only the

services that belong only to the predicted path. This assumption is valid because the

accuracy of path prediction has been evaluated in Section 6.1.2.1, and the results are

promising.

163

However, one can argue that comparing one single path with another is not enough

to evaluate the existing techniques. Therefore, the comparisons between all 10 paths

involved in the considered composite service scenario were conducted to cover all of

them, i.e., each simulation run is repeated 10 times to cover all the 10 paths. In each

time, the simulation considers a particular path from the 10 paths as the predicted

path.

6.2.2.1 QoS Ratio

This test experiment has a goal to evaluate the proposed mechanism in terms of the

resulting QoS ratio. Quantitative statements that represent the scores of the QoS

resulting from each technique can be achieved by using the SAW method introduced

in Section 5.6. The different QoS characteristics are aggregated considering equal

weights. Then the 10 QoS ratio results for each run (i.e., 1 QoS ratio result for each

path) were averaged to give the overall result. The test that used the setup is listed in

Table 6.10.

Table ‎6.10

Setup for the Resulting QoS Ratio Test

Setup Value

Number of abstract services 22

Number of candidate service 50

QoS characteristics of the candidate As given in Table 6.8

Constraint Cost characteristic

Algorithms for comparison CP1 & CCP1, CP2 & CCP2, CP3 & CCP3

Simulation Results

The results of this test experiment are shown in Figure 6.5. Figure 6.5 shows the

resulting average QoS ratio comparison of the different algorithms in each run. In

164

addition, Table 6.11 lists the total QoS ratio, average of the total QoS ratio, and

standard deviation.

Figure ‎6.5. Average QoS ratios of the different algorithms in each run

Table ‎6.11

The Results of QoS Ratio Test

Algorithm Total

QoS ratio

Average of total

QoS ratio

Standard

Deviation

CP1 & CCP1 205.318 10.266 0.302

CP2 & CCP2 200.196 10.010 0.486

CP3 & CCP3 198.898 9.945 0.546

The best algorithm is the algorithm that has high overall QoS ratio and high average

of the total QoS ratio. As shown in Figure 6.5, CP1 & CCP1 algorithms, which

represent the proposed optimization mechanism, produce average QoS ratios that are

higher than the other algorithms in 16 out of 20 runs. Both CP2 & CCP2 and CP3 &

8.5
8.6
8.7
8.8
8.9

9
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Q
o

S
ra

ti
o

Run No.
CP1&CCP1 CP2&CCP2 CP3&CCP3

165

CCP3 outperform the CP1 & CCP1 only in 4 runs, i.e., run number 2, 4, 15, and 19.

In these runs, the values of the imposed constraints are lower than the values in the

rest of the runs. This means that there is a high possibility to violate such constraints.

The total QoS ratio of a solution that violates a constraint may be higher than a

solution that satisfies a constraint. For example, in run number 4, no constraints were

violated using CP1 & CCP1 algorithms, 5 constraints were violated using CP2 &

CCP2 algorithms, and 6 using CP3 & CCP3 algorithms. Such high numbers of

constraints violated are the reason that these algorithms produced high values of the

QoS ratio at considered runs. Compared to CP2 & CCP2 and CP3 & CCP3, no

constrains were violated using the CP1 & CCP1 in all conducted runs. However,

constraints were violated using CP2 & CCP2 and CP3 & CCP3 in all conducted runs

except for run number 7. As mentioned earlier, this test imposed only one constraint,

i.e., cost. The next test evaluated the constraints violated number when more than

one constraint was considered.

As the Table 6.11 shows, CP1 & CCP1 algorithms show results QoS performances

that outperform the existing algorithms by achieving the highest total QoS ratio and

average of the total QoS ratio 205.318, 10.266 respectively. CP1 & CCP1 algorithms

also show a small standard deviation 0.302. Regarding CP2 & CCP2 and CP3 &

CCP3 algorithms, both algorithms show close resulting QoS performances by

achieving total QoS ratios 200.196, 198.897 and the average total QoS ratio 10.010,

9.945 respectively.

These good results are expected because of the special behavior of CP1 & CCP1

algorithms which focus on optimizing only one execution path, i.e., the path will

166

potentially be executed at runtime. Therefore, solutions produced by the new

optimization mechanism have high QoS ratios compared with the solutions produced

by other techniques which focus on all execution paths when performing

optimization whereas only one path is executed at runtime.

6.2.2.2 Constraints Violated Number

This test experiment has a goal to evaluate the proposed mechanism in terms of the

calculated constraints violated number. The numbers of constraints violated for all

techniques were calculated in order to compare between them. For the calculation,

with respect to the considered constraint characteristic, the aggregation functions

presented in Table 5.2 were used to aggregate the value of constraint characteristics.

Then a comparison between the aggregated value and the imposed constraint value

was conducted to determine whether the constraint was violated or not (i.e., if the

aggregated value is greater than the imposed constraint value, then the constraint is

violated; otherwise, it is not violated). Finally, count if there is a violation. The test

that uses the setup is listed in Table 6.12.

Table ‎6.12

Setup for the Constraints Violated Number Test

Setup Value

Number of abstract services 22

Number of candidate service 50

QoS characteristics of the

candidate

As given in Table 6.8, randomly set, uniformly

distributed

Constraint Cost, response time, availability, and reputation

characteristics

Algorithms for comparison CP1 & CCP1, CP2 & CCP2, CP3 & CCP3

167

Simulation Results

The test results are shown in Table 6.13. The table lists the average of the aggregated

QoS characteristics produced by each technique in each run and the average of the

constraint imposed for each considered QoS characteristic.

Figure 6.6 shows the calculated constraints violated numbers of the different

considered algorithms in each run.

Table ‎6.13

The Average of the Aggregated QoS Characteristics in Each Run and the Average of

the Constraint Imposed for Each Considered QoS Characteristic

Run

no.

Technique Aggr.

cost

Cost

const.

Aggr.

Response T.

Response

 T. const.

Aggr.

avail.

Avail.

 const.

Aggr.

reput.

Reput.

const.

1 CP1 & CCP1 1.112 1.163 3502.760 3925.232 0.975 0.968 7 5

1 CP2 & CCP2 1.383 1.163 3219.350 3925.232 0.977 0.968 8 5

1 CP3 & CCP3 1.299 1.163 3424.987 3925.232 0.974 0.968 7 5

2 CP1 & CCP1 0.868 1.135 3442.893 4079.841 0.972 0.968 7 7

2 CP2 & CCP2 1.031 1.135 3539.047 4079.841 0.977 0.968 8 7

2 CP3 & CCP3 1.012 1.135 3649.915 4079.841 0.975 0.968 7 7

3 CP3 & CCP3 1.434 1.143 3058.102 3983.068 0.974 0.968 7 6

3 CP1 & CCP1 0.926 1.143 2693.539 3983.068 0.974 0.968 8 6

3 CP2 & CCP2 1.427 1.143 2763.231 3983.068 0.984 0.968 9 6

4 CP2 & CCP2 1.195 1.171 2554.920 4025.645 0.972 0.967 8 5

4 CP3 & CCP3 1.254 1.171 2666.321 4025.645 0.969 0.967 6 5

4 CP1 & CCP1 0.953 1.171 2977.520 4025.645 0.968 0.967 7 5

5 CP1 & CCP1 1.103 1.193 2699.259 3992.783 0.975 0.967 5 4

5 CP2 & CCP2 1.212 1.193 2369.185 3992.783 0.977 0.967 8 4

5 CP3 & CCP3 1.251 1.193 2372.292 3992.783 0.972 0.967 6 4

6 CP3 & CCP3 1.239 1.146 2616.797 4073.224 0.968 0.968 7 6

6 CP1 & CCP1 1.161 1.146 2655.725 4073.224 0.967 0.968 8 6

6 CP2 & CCP2 1.229 1.146 2565.839 4073.224 0.973 0.968 8 6

7 CP2 & CCP2 1.17 1.166 2578.629 4018.266 0.974 0.968 8 6

7 CP3 & CCP3 1.156 1.166 2603.173 4018.266 0.973 0.968 7 6

7 CP1 & CCP1 1.018 1.166 2619.112 4018.266 0.974 0.968 7 6

8 CP1 & CCP1 1.16 1.169 3322.541 3999.051 0.974 0.968 6 5

8 CP2 & CCP2 1.621 1.169 3607.647 3999.051 0.982 0.968 8 5

8 CP3 & CCP3 1.424 1.169 4198.726 3999.051 0.967 0.968 6 5

9 CP3 & CCP3 1.129 1.162 3224.782 4129.261 0.981 0.968 7 6

168

9 CP1 & CCP1 1.129 1.162 2935.226 4129.261 0.978 0.968 7 6

9 CP2 & CCP2 1.152 1.162 2959.911 4129.261 0.988 0.968 8 6

10 CP2 & CCP2 2.087 1.157 2837.357 3985.524 0.984 0.968 9 6

10 CP3 & CCP3 1.661 1.157 2972.175 3985.524 0.978 0.968 7 6

10 CP1 & CCP1 1.1 1.157 2868.605 3985.524 0.969 0.968 7 6

11 CP1 & CCP1 1.173 1.196 3154.710 4057.039 0.978 0.968 5 5

11 CP2 & CCP2 1.325 1.196 3025.303 4057.039 0.987 0.968 9 5

11 CP3 & CCP3 1.563 1.196 2767.655 4057.039 0.981 0.968 5 5

12 CP3 & CCP3 1.286 1.198 2651.360 3982.601 0.969 0.968 7 5

12 CP1 & CCP1 1.151 1.198 2412.339 3982.601 0.969 0.968 7 5

12 CP2 & CCP2 1.213 1.198 2734.947 3982.601 0.972 0.968 9 5

13 CP2 & CCP2 1.783 1.204 2973.581 4007.617 0.98 0.968 8 8

13 CP3 & CCP3 1.22 1.204 2875.877 4007.617 0.973 0.968 6 8

13 CP1 & CCP1 1.093 1.204 2996.492 4007.617 0.969 0.968 7 8

14 CP2 & CCP2 1.18 1.134 2695.256 3946.578 0.984 0.968 8 5

14 CP2 & CCP2 1.18 1.134 2695.256 3946.578 0.984 0.968 8 5

14 CP3 & CCP3 1.253 1.134 3025.148 3946.578 0.976 0.968 6 5

15 CP1 & CCP1 0.979 1.19 2601.090 3899.377 0.973 0.968 7 6

15 CP1 & CCP1 0.979 1.19 2601.090 3899.377 0.973 0.968 7 6

15 CP2 & CCP2 1.312 1.19 2307.166 3899.377 0.979 0.968 9 6

16 CP3 & CCP3 0.996 1.213 2863.730 3962.515 0.974 0.968 6 4

16 CP3 & CCP3 0.996 1.213 2863.730 3962.515 0.974 0.968 6 4

16 CP1 & CCP1 0.951 1.213 2857.301 3962.515 0.974 0.968 6 4

17 CP2 & CCP2 1.436 1.149 3424.056 3998.478 0.987 0.968 8 5

17 CP2 & CCP2 1.436 1.149 3424.056 3998.478 0.987 0.968 8 5

17 CP3 & CCP3 1.34 1.149 3609.378 3998.478 0.98 0.968 6 5

18 CP1 & CCP1 1.006 1.204 2380.563 4066.163 0.967 0.968 7 7

18 CP2 & CCP2 1.097 1.204 2384.762 4066.163 0.967 0.968 8 7

18 CP2 & CCP2 1.097 1.204 2384.762 4066.163 0.967 0.968 8 7

19 CP3 & CCP3 1.364 1.173 2760.271 4014.478 0.973 0.968 7 5

19 CP1 & CCP1 0.915 1.173 2437.098 4014.478 0.968 0.968 7 5

19 CP1 & CCP1 0.915 1.173 2437.098 4014.478 0.968 0.968 7 5

20 CP2 & CCP2 0.896 1.174 3886.594 3997.709 0.982 0.968 8 5

20 CP3 & CCP3 0.918 1.174 3635.701 3997.709 0.979 0.968 6 5

20 CP3 & CCP3 0.918 1.174 3635.701 3997.709 0.979 0.968 6 5

169

Figure ‎6.6. Constraints violated numbers of the different algorithms in each run

In order to show the percentage of the constraints violated number, the percentage

values are computed by using the following equation:

100
sconstraint considerd of number total

number violated sconstraint
=Percentage  (6.3)

Table 6.14 lists the total number of the considered constraints in all runs, the

constraints violated number, and the percentage values of constraint violation for all

existing algorithms.

Table ‎6.14

The Results of the Constraints Violated Number Test

Algorithm Total number

of considered constraints

Constraints

violated number

Percent of

constraints violation

CP1 & CCP1 2000 357 17.850

CP2 & CCP2 2000 687 34.350

CP3 & CCP3 2000 631 31.550

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CP1&CCP1 26 13 15 19 9 26 12 19 12 23 16 26 22 13 13 7 18 26 18 24

CP2&CCP2 39 30 37 36 25 31 29 43 30 44 32 44 37 35 40 14 40 36 35 30

CP3&CCP3 38 28 23 40 33 37 26 54 30 29 38 22 25 19 21 23 43 38 33 31

0

10

20

30

40

50

60

C
o

n
st

ra
in

ts
 v

io
la

te
d

 n
u

m
b

e
r

170

The best algorithm is the algorithm that has less number of constraints violated. As

shown in Figure 6.6, CP1 & CCP1 algorithms perform the best among the existing

algorithms. In all runs, CP1 & CCP1 algorithms show the lowest constraints violated

number compared with other algorithms. As Table 6.14 shows, the lowest percentage

of the constraints violated number 17.850 is achieved when executing CP1 & CCP1

algorithms. Out of a total of 2000 considered constraints, only 357 constraints are

violated when executing CP1 & CCP1 algorithms.

Compared with CP2 & CCP2, CP3 & CCP3 algorithms performed better by

achieving a percentage of the constraints violated number 31.550, compared with

34.350 achieved by CP2 & CCP2. These results are expected because CP3 & CCP3

check the feasibility for each path separately by decomposing the composition into

execution paths. Such a technique for optimization leads to reduce the constraint

violation. On the other hand, CP2 & CCP2 check the feasibility of all paths together

using probability of paths. As mentioned earlier, the paths probability is estimated

either by inspecting the system logs or being specified by the composition engineers.

If the composition execution follows the path with the less probability, there are high

chances of constraint violation.

The simulation results indicate that by using the proposed optimization mechanism,

the constraints violated number is significantly reduced while achieving the highest

overall QoS ratio. It is expected to have such excellent results because CP1 & CCP1

algorithms check only the feasibility of the path that will potentially be executed

regardless of other paths (i.e., focus on one path). On the other hand, the solutions

171

resulted from checking the feasibility of all paths are not necessarily satisfy the

imposed constraints for all paths at the same time.

6.2.2.3 Computation Time

This test has a goal to evaluate the proposed optimization mechanism in terms of the

computation time. Two different computation times are captured by the simulation:

1. Computation time for the proposed optimization mechanism (CP1 & CCP1). As

mentioned earlier, the proposed mechanism is a combination between the

runtime path prediction method and the optimization algorithms. The data

mining algorithm in the proposed mechanism is trained offline. Thus, the overall

computation time for executing the mechanism is not affected by the

computation time needed for training the algorithm. Therefore, the time needed

for training the algorithm is not taken into account when calculating the overall

computation time for this mechanism. However, the time needed for the path

prediction is taken into account when calculating the overall computation time

because the path prediction phase is carried out at runtime. In summary, the

overall computation time captured by the simulation prototype is calculated as in

the following:

time onoptimizati+time prediction

= CPP1 & CP1 for time ncomputatio Overall

(6.4)

172

2. Computation time for the rest techniques (CP2 & CCP2, and CP3CCP3): the

computation time represents only the time needed for computing the

optimization. It is calculated as:

time onoptimizati

 = CPP3 & CP3 and CPP2 & CP2 for time ncomputatio Overall

 (6.5)

In this test, CP1 & CCP1 algorithm calls the path prediction process to determine the

path that will potentially be executed at runtime. The time needed for path prediction

is captured to calculate the total computation time using Equation 6.4. The

computation time for CP2 & CCP2 and CP3 & CCP3 is calculated using Equation

6.5. The test using the setup is listed in Table 6.15.

Table ‎6.15

A Setup for the Computation Time Test

Setup Value

Number of abstract services 22

Number of candidate service 50

QoS characteristics of the candidate As given in Table 6.8

Constraint Cost characteristic

Algorithms for comparison CP1 & CCP1, CP2 & CCP2, CP3 & CCP3

Simulation Results

The results of this test experiment are shown in Figure 6.7. Figure 6.7 shows the

computation times (in microseconds) of the different algorithms each run. In

addition, Table 6.16 lists the average computation times and the standard deviation

of the different algorithms.

173

Figure ‎6.7. Computation times of the different algorithms each run

Table ‎6.16

The Results of Computation Time Test

Algorithm Average of

computation time

Standard

Deviation

CP1 & CCP1 2186.200 μs 1449.891

CP2 & CCP2 31078.700 μs 1448.166

CP3 & CCP3 6720.350 μs 1446.417

The best algorithm is the algorithm that has less computation time. As shown in

Figure 6.7, the computation times consumed by the different algorithms vary

between runs. For example, in run number 1, 2, and 3, the algorithms consumed

longer computation times than in 4, 10, and 16. The variance in computation times

between the algorithms is because of the initial solution computed by the algorithm.

In the case that the initial solution is feasible, the algorithms consume less

computation time than the opposite case. It is also the reason that lies behind the

large standard deviation showed by the algorithms.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
o

m
p

u
ta

ti
o

n
 t

im
e

 in
 m

ic
ro

se
co

n
d

Run No. CP1&CCP1 CP2&CCP2

CP3&CCP3

174

As seen in Figure 6.7, by comparing it with CP2 & CCP2 and CP3 & CCP3, CP1 &

CCP1 show computation times that are less than in 13 out of 20 runs. Table 6.16

shows that CP1 & CCP1 produced low average computation time, i.e., 2186.200 μs.

Although CP1 & CCP1 perform path prediction process for predicting the path, it

produced the lowest average computation time compared with other algorithms. Two

reasons lie behind that. First, optimizing one path consumed less computation time

than optimizing all paths either separately or altogether. Second, the computation

time consumed by the path prediction process is very low, i.e., 96.520 μs on average.

The results of CP3 & CCP3 show that the algorithms have good average

computation time, i.e., 6720.350 μs compared with CP2 & CCP2 which have the

highest average of computation time 31078.700 μs compared with other algorithms.

As seen in Figure 6.7, in the case that the initial solution computed by CP2 is

feasible, the CP2 & CCP2 consumes very close computation time compared with

other algorithms. In run number 4, 9, and 10 is an example. However, in the case of

infeasibility, the algorithms consumed higher than the both algorithms because of the

optimization strategy of the algorithms which consider all paths together when

computing the optimization. Such a strategy of optimization leads to consume more

computation time searching for feasible solutions compared to a strategy like CP1 &

CCP1 which considers one path when computing the optimization.

As seen in Table 6.16, all algorithms showed large standard deviation. This is

because the algorithms consume less time (i.e., 1178.736 μs on average) if the initial

solution is feasible whereas it consume long time (i.e., 6618.852 μs on average) if it

is not feasible.

175

The simulation results indicate that the computation time needed for executing the

proposed optimization mechanism is small. This is due to the nature of the CP1 &

CCP1 algorithms which check only the feasibility of the path that will potentially be

executed regardless of other paths (i.e., focus on one path). These excellent results

make the proposed approach suitable for real time decision-making applications,

especially in a scenario like ours, where a quick response for a composition instance

is very important.

6.2.2.4 Practical Composite Service Scenario

An extra experiment is required to demonstrate the need for organizations, which

intend to increase their business processes performances as well as reduce the

developments cost and time, to outsource web services. To do so, a travel agency

business process is introduced as the practical scenario that represents a group of

web services, such as hotel and airline reservation web services, that can be

integrated into a travel agency business process. A typical travel agency composite

service is illustrated in Figure 6.8.

176

Figure ‎6.8. A typical travel agency scenario

In this scenario, customers have the opportunity to plan and reserve travel

arrangements using the travel agency composite service. A customer submits travel

eternity and payment information using an online form. According to the customer's

itinerary, the travel agency composite service reserves either a hotel or an airline or

both. After completing the reservation operation, either payment or compensation

operations are performed. In the case of an itinerary failure, the composite service

performs compensation operation for canceling itinerary. The service automatically

notifies the customer of either confirmation or failure of reservation. Finally, the

service stores the travel eternity data in a database.

As seen in Figure 6.8, the service is composed of 14 web services and represents a

multiple paths composite service scenario. It includes 6 different execution paths.

This test experiment has a goal to evaluate the proposed mechanism by comparing it

with the two previously mentioned techniques, the comparisons were conducted

using the CP1 & CCP1, CP2 & CCP2, CP3 & CCP3 algorithms which were

implemented based on these techniques. These techniques are evaluated in terms of

177

the resulting QoS ratio as well as the calculated constraints violated number. The test

that used the setup is listed in Table 6.17.

Table ‎6.17

Setup for Test Experiment

Setup Value

Number of abstract services 14

Number of candidate service 50

QoS characteristics of the candidate As given in Table 6.8

Constraint Cost characteristic

Algorithms for comparison CP1 & CCP1, CP2 & CCP2, CP3 & CCP3

The results of this test experiment are shown in Table 6.18. Table 6.18 shows the

resulting QoS ratio, i.e., total utility, the total cost value aggregated from the

generated solutions, and the value of the specified cost constraint.

Table ‎6.18

Results for Test Experiment

Technique Path Path(Abstract Service name - Selected Candidate Name -

Selected Candidate)

Total

Utility

Total

Cost

Cost

Constraint

CP1&CCP1 Path1 C1_42 - 0.2179494921040104, C2_39 - 0.1688407841273432,
C6_30 - 0.19698753455987147, C7_41 - 0.1463123664451505,

C9_15 - 0.2128389756901315, C13_18 - 0.2344213934257782,

C14_37 - 0.20120580065087834

1.379 0.724 0.733

CP2&CCP2 Path1 C1_42 - 0.2179494921040104, C2_39 - 0.1688407841273432,

C6_29 - 0.1037053358968876, C7_41 - 0.1463123664451505,

C9_15 - 0.2128389756901315, C13_18 - 0.2344213934257782,
C14_37 - 0.20120580065087834

1.285 0.897 0.733

CP3&CCP3 Path1 C1_42 - 0.2179494921040104, C2_27 - 0.2081498089173867,

C6_31 - 0.14908644475757019, C7_41 - 0.1463123664451505,
C9_15 - 0.2128389756901315, C13_18 - 0.2344213934257782,

C14_34 - 0.13173786918068925

1.300 0.801 0.733

CP1&CCP1 Path2 C1_42 - 0.2179494921040104, C2_39 - 0.1688407841273432,

C6_31 - 0.14908644475757019, C8_32 - 0.2172718205473536,
C13_18 - 0.2344213934257782, C14_37 -

0.20120580065087834,

1.189 0.717 0.733

CP2&CCP2 Path2 C1_42 - 0.2179494921040104, C2_39 - 0.1688407841273432,
C6_29 - 0.1037053358968876, C8_32 - 0.2172718205473536,

C13_18 - 0.2344213934257782, C14_37 -

0.20120580065087834,

1.143 0.975 0.733

CP3&CCP3 Path2 C1_42 - 0.2179494921040104, C2_27 - 0.2081498089173867,
C6_31 - 0.14908644475757019, C8_32 - 0.2172718205473536,

C13_18 - 0.2344213934257782, C14_1 -

0.15919030478608132,

1.186 0.930 0.733

CP1&CCP1 Path3 C1_42 - 0.2179494921040104, C3_1 - 0.23048148109032998,

C6_31 - 0.14908644475757019, C7_34 -

0.17909229909159627, C10_21 - 0.19970691438136834,
C13_18 - 0.2344213934257782, C14_23 -

0.18489977292121432

1.396 0.687 0.733

CP2&CCP2 Path3 C1_42 - 0.2179494921040104, C3_1 - 0.23048148109032998, 1.351 1.328 0.733

178

C6_13 - 0.12138347308782538, C7_41 - 0.1463123664451505,

C10_21 - 0.19970691438136834, C13_18 -

0.2344213934257782, C14_37 - 0.20120580065087834

CP3&CCP3 Path3 C1_42 - 0.2179494921040104, C3_1 - 0.23048148109032998,

C6_31 - 0.14908644475757019, C7_41 - 0.1463123664451505,

C10_21 - 0.19970691438136834, C13_18 -
0.2344213934257782, C14_1 - 0.15919030478608132

1.337 0.689 0.733

CP1&CCP1 Path4 C1_42 - 0.2179494921040104, C3_1 - 0.23048148109032998,

C6_30 - 0.19698753455987147, C8_32 - 0.2172718205473536,
C13_18 - 0.2344213934257782, C14_23 -

0.18489977292121432

1.065 0.466 0.733

CP2&CCP2 Path4 C1_42 - 0.2179494921040104, C3_1 - 0.23048148109032998,

C6_31 - 0.14908644475757019, C8_32 - 0.2172718205473536,
C13_18 - 0.2344213934257782, C14_37 -

0.20120580065087834

1.033 0.751 0.733

CP3&CCP3 Path4 C1_42 - 0.2179494921040104, C3_1 - 0.23048148109032998,
C6_31 - 0.14908644475757019, C8_32 - 0.2172718205473536,

C13_18 - 0.2344213934257782, C14_23 -

0.18489977292121432

1.017 0.380 0.733

CP1&CCP1 Path5 C1_42 - 0.2179494921040104, C4_7 - 0.12497517831801178,
C5_12 - 0.20337401261661384, C6_31 -

0.14908644475757019, C7_41 - 0.1463123664451505, C11_41

- 0.13150274936823553, C12_26 - 0.16816058978351534,
C13_18 - 0.2344213934257782, C14_37 -

0.20120580065087834

1.577 0.728 0.733

CP2&CCP2 Path5 C1_42 - 0.2179494921040104, C4_7 - 0.12497517831801178,
C5_12 - 0.20337401261661384, C6_26 -

0.16837895241208095, C7_41 - 0.1463123664451505, C11_44

- 0.21963708909923335, C12_26 - 0.16816058978351534,
C13_18 - 0.2344213934257782, C14_37 -

0.20120580065087834

1.684 1.233 0.733

CP3&CCP3 Path5 C1_42 - 0.2179494921040104, C4_7 - 0.12497517831801178,
C5_12 - 0.20337401261661384, C6_31 -

0.14908644475757019, C7_41 - 0.1463123664451505, C11_44

- 0.21963708909923335, C12_44 - 0.16631762759196728,
C13_18 - 0.2344213934257782, C14_20 -

0.16743334904654786

1.630 0.831 0.733

CP1&CCP1 Path6 C1_42 - 0.2179494921040104, C4_7 - 0.12497517831801178,

C5_12 - 0.20337401261661384, C6_50 - 0.2174268637195497,
C8_32 - 0.2172718205473536, C13_18 - 0.2344213934257782,

C14_37 - 0.20120580065087834

1.120 0.700 0.733

CP2&CCP2 Path6 C1_42 - 0.2179494921040104, C4_7 - 0.12497517831801178,

C5_12 - 0.20337401261661384, C6_29 - 0.1037053358968876,

C8_32 - 0.2172718205473536, C13_18 - 0.2344213934257782,

C14_37 - 0.20120580065087834

1.120 0.700 0.733

CP3&CCP3 Path6 C1_42 - 0.2179494921040104, C4_7 - 0.12497517831801178,
C5_12 - 0.20337401261661384, C6_31 -

0.14908644475757019, C8_32 - 0.2172718205473536, C13_18

- 0.2344213934257782, C14_18 - 0.08712708692762687

1.085 0.557 0.733

Table 6.19 shows the average QoS ratios, the total number of considered constraints,

and the total constraints violated numbers for the three algorithms.

179

Table ‎6.19

Average QoS ratio, Total Number of Considered Constraint, and Constraints

Violated Number

Algorithm Average QoS ratio Total number

of considered constraints

Constraints

violated number

CP1 & CCP1 0.390 6 0

CP2 & CCP2 0.384 6 5

CP3 & CCP3 0.378 6 3

As seen from Table 6.19, the proposed optimization mechanism, i.e., the CP1 &

CCP1 algorithms, shows resulting QoS performances that outperform the existing

algorithms by achieving the highest average QoS ratio 0.390 with 0 constraints

violated number. These results are matched with the results obtained from the QoS

ratio and constraints violated number test experiments.

The proposed approach has been implemented and evaluated using three different

business processes, namely, auto insurance, bank loan, and travel agency business

processes, and the results were promising. This makes the proposed approach

suitable for any multiple paths business processes.

 Conclusions 6.3

The approach evaluation has been divided into two parts. The first part evaluated the

runtime path prediction method while the second one evaluated the optimization

mechanism.

For evaluation of runtime path prediction method, two test experiments have been

conducted by utilizing the WEKA data mining tool. The first test experiment aimed

at validating the accuracy of the path prediction using three different learning

180

algorithms, including J48, NB, and SMO. These algorithms are applied to the auto

insurance dataset. The results indicate that all the selected classifiers achieved

promising accuracy prediction when predicting the execution paths. Having got such

encouraging results of prediction accuracy contributes to the generation of high QoS

ratio solutions and minimizes the constraints violated a number of the generated

solutions. The second experiment aimed at studying how the prediction method

scales with a rising number of involved execution paths. For this purpose, J48, SMO,

and NB algorithms are applied to 9 different datasets representing bank loan process.

Each dataset contains 1000 instances representing a loan process that involves

execution paths ranging from 2 up to10 paths. The results showed that the rising

number of classes involved in the prediction process does not affect the prediction

accuracy of the classifier. The structure of the business process plays an important

role in the prediction accuracy results. These results make the proposed approach

suitable for any compositions regardless of the number of involved execution paths.

For the evaluation of the optimization mechanism, three test experiments have been

conducted using new simulation prototype developed for this purpose. The

evaluation was conducted by comparing the performance of the CP1 & CCP1

algorithms, which represented the proposed optimization mechanism, with the

performance of the CP2 & CCP2 and the CP3 & CCP3 algorithms, which

represented the relevant optimization techniques.

The first test experiment has evaluated the optimization techniques in terms of the

resulting QoS ratio. The results showed that the CP1 & CCP1 algorithms achieved

the highest total QoS ratio and average of total QoS ratio 205.318, 10.266

181

respectively. The CP1 & CCP1 algorithms also show a small standard deviation.

Regarding CP2 & CCP2 and CP3 & CCP3 algorithms, both algorithms show close

resulting QoS performances by achieving total QoS ratios 200.196, 198.897 and the

average total QoS ratio 10.010, 9.945 respectively.

The second test has evaluated the optimization techniques in terms of the calculated

constraints violated number. The results showed that the lowest percentage of the

constraints violated number is 17.850 achieved when executing CP1 & CCP1

algorithms. Out of a total of 2000 considered constraints, only 357 constraints are

violated when executing CP1 & CCP1 algorithms. Compared with CP2 & CCP2,

CP3 & CCP3 algorithms performed better by achieving a percentage of the

constraints violated number 31.550, compared to 34.350 achieved by CP2 & CCP2.

The third test has evaluated the optimization techniques in terms of the computation

time. The results showed that CP1 & CCP1 produced the lowest average

computation time 2186.200 μs. The results of CP3 & CCP3 showed that the

algorithms have reasonable average computation time, i.e., 6720.350 μs compared to

CP2 & CCP2 which have the highest average of computation time 31078.700 μs.

This is because the algorithms consume more computation time searching for

feasible solutions since it considers all paths together when checking the feasibility.

All algorithms showed large standard deviation. This is because the algorithms

consume less time if the initial solution is feasible whereas it consume long time if it

is not feasible.

182

 Chapter Summary 6.4

The evaluation results of the path prediction method indicated that the prediction

method achieved promising prediction accuracy which is not affected by the number

of paths involved in the prediction process. However, the structure of the business

process plays an important role in the prediction accuracy results. These results make

the proposed approach suitable for any compositions regardless of the number of

involved execution paths. The evaluation results of the proposed optimization

mechanism showed that the proposed optimization mechanism outperforms the

relevant optimization techniques in terms of the resulting QoS ratio, the calculated

constraint violation number, and the computation time. These promising results

make the optimization mechanism able to generate high overall QoS ratio solutions,

and significantly reduce the constraints violated number, while consuming small

computation time.

183

7. CHAPTER SEVEN

CONCLUSION AND FUTURE RESEARCH WORK

In this chapter, the achievements of the research work are summarized, research

contributions are highlighted, research limitations are introduced, and directions for

future works related to this research are given.

 Conclusion of the Research 7.1

QoS-aware service composition process aims to select one outsourced candidate web

service for each abstract web service from its corresponding list of candidates such

that the entire QoS of the composition is optimized while QoS requirements, defined

by clients, are satisfied. Finding exact optimal solutions required a strategy based on

evaluating all the possible combinations to find the optimal one. It is impractical and

time consuming to evaluate all these combinations to find the optimal one. Thus,

solutions based on heuristic algorithms, although they deliver near-to-optimal

solutions, represent a novel approach (Jaeger, 2007). Furthermore, in multiple

execution paths composition, generating solutions that simultaneously optimize all

the execution paths while meeting global QoS constraints imposed by the clients is

very difficult.

A QoS aware service composition approach has been designed and developed to

solve the optimization problem and the multiple paths composition problem

mentioned above. The idea for solving the optimization problem was to apply

heuristic algorithms. For multiple paths composition problem, the strategy of the

proposed work was, rather than considered all execution paths in optimization; the

184

path that will potentially be executed at runtime is the only path that is optimized.

Therefore, in the proposed approach, the new optimization mechanism has been

proposed based on the combination between CP and CPP heuristic algorithms and

runtime path prediction method. The runtime path prediction method has been

proposed for the purpose of predicting at runtime the execution path that will

potentially be executed based on the information provided by a composition

requester. CP and CPP algorithms have been applied to solve the optimization

problem by considering only the path that has been predicted by the prediction

method. CP has been applied to generate a feasible solution while CCP to improve

the quality of the solution generated from CP.

The approach influenced the direction of the research on the QoS in web service

composition. The question needed to be answered was what QoS characteristics are

appropriate for service selection. A review of the QoS characteristics that were used

in the area of web service composition has been given. It has been concluded that

there is no standard, formal or a complete QoS model for a web service and most of

the research effort considers a set of general QoS characteristics that are applicable

to all domains. Therefore, it was needed to analyze the QoS characteristics that are

most commonly used to evaluate web services in order to determine the relevant set

of QoS characteristics. These can be considered as selection criteria when composing

web services. As a result, eight QoS characteristics have been suggested and

identified after investigating and analyzing the related works in the area of web

service and SOA. The suggested criteria were cost, response time, reliability,

availability, security, throughput, reputation, and composability. The mandatory

obtained criteria were cost and response time. In assisting clients when assigning

185

weights, prioritizing the selected QoS criteria has been suggested. The prioritization

was based on the relative importance of these criteria in building optimal web

service compositions. The suggested priority were: (1) cost, (2) response time, (3)

reliability, (4) availability, (5) security, (6) throughput, (6) reputation, and (8)

composability.

Finally, the proposed approach has been evaluated. The evaluation was divided into

two parts. The first part has been evaluated the runtime path prediction method. The

evaluation has been performed by utilizing WEKA data mining tools and using three

different learning algorithms, including J48, NB, and SMO. The goal of the

evaluation was to validate the accuracy of the path prediction and to study how the

prediction method scales with a rising number of involved execution paths. In

summary, the evaluation has been revealed the following points:

 All the selected classifiers achieved promising accuracy prediction when

predicting the execution paths. The promising results yield the generation of

high QoS ratio solutions, and minimizing the constraint violation of the

generated solutions.

 The rising number of classes involved in the prediction process did not affect

the prediction accuracy of the classifier. The structure of the business process

plays an important role in the prediction accuracy results. The results make

the proposed approach suitable for any compositions regardless of the number

of involved execution paths.

186

The second part has been evaluating the performance of the optimization

mechanism. The new simulation prototype has been developed for this aim. The

evaluation was conducted by comparing the performance of the CP1 & CCP1

algorithms, which represented the proposed optimization mechanism, with the

performance of the CP2 & CCP2 and the CP3 & CCP3 algorithms, which

represented the relevant optimization techniques.

The evaluation goal was to evaluate three aspects of the performance of the

optimization techniques: the resulting QoS ratio, the constraints violated number,

and the computation time. In summary, the evaluation has been revealed the

following points:

 The CP1 & CCP1 algorithms achieved the highest total QoS ratio and

average of the total QoS ratio 205.318, 10.266 respectively with a small

standard deviation. They produced the lowest percentage of constraint

violated number 17.850. Moreover, the algorithms consumed small

computational time by achieving the lowest total average computation time

2186.200 μs.

 The CP2 & CCP2 and CP3 & CCP3 algorithms showed close resulting QoS

performances by achieving total QoS ratios 200.196, 198.897 and the average

total QoS ratio 10.010, 9.945 respectively. Compared with CP2 & CCP2,

CP3 & CCP3 algorithms performed better by achieving a percentage of the

constraints violated number 31.550, compared to 34.350 achieved by CP2 &

CCP2. The results of CP3 & CCP3 show that the algorithms have reasonable

187

average computation time, i.e., 6720.350 μs compared to CP2 & CCP2 which

have the highest average of the computation time 31078.700 μs.

 Contributions of the Research 7.2

The major contribution of this research work is proposing a smart approach for QoS-

aware service composition. The approach is designed to efficiently solve the multiple

paths composition problem. Rather than computing the optimization for all execution

paths, the proposed approach computes the optimization for any composition

instance based only on its corresponding execution path.

The proposed approach enhances the performance of the optimization process by

generating high overall QoS ratio solutions, and significantly reducing the

constraints violated number, while consuming small computation time. These

excellent results make the approach efficient for the real-time application scenarios.

The proposed approach can be used by clients (organizations) to build their business

processes. There are many advantages that organizations can gain when relying on

the proposed approach:

 Allow organizations to increase the QoS performance of their business

processes.

 Allow organizations to efficiently select the outsourced web services that

guarantee satisfying their QoS requirements as much as possible.

 Allow organizations to quickly respond to their business process requester.

188

The research work makes several important contributions which are:

1. A New Optimization Mechanism

This research work has proposed a new optimization mechanism which computes the

optimization considering the execution path that will potentially be executed by a

composition instance. The mechanism is a combination between runtime path

prediction method and heuristic algorithms. The runtime path prediction method

predicts, at runtime, and just before the actual composition execution, the execution

path that will potentially be executed. Then the heuristic algorithms compute the

optimization considering only the execution path that is predicted by the runtime

path prediction method. Thus, the proposed optimization mechanism generates,

within small computation time, a set of web services that delivers the best possible

overall QoS ratio and meets the clients’ requirements.

2. A Runtime Path Prediction Method

A runtime path prediction method is proposed for the purpose of predicting at

runtime the execution path that will potentially be executed based on the information

provided by a composition requester. This method is composed of four phases. The

first phase is adopted from Cardoso (2005, 2008) and Cardoso and Lenic (2006) and

aimed at extending the composition logs to store information that indicates the input

(output) value parameters passed (received) to/ or from web services and their types.

A class path is an extra field needs to be added to the log to store path information.

The second phase aimed at using the instances data contained in the logs as a

training dataset for machine learning algorithms. The third phase aimed at building

189

classifiers using the training dataset. The fourth phase aimed at performing runtime

path prediction based on the information provided by a composition requester.

To the best of our knowledge, this work is one of the first that has employed

machine learning algorithms (include NB, SMO, and J48) in the area of QoS-aware

web service composition in order to learn and then predict at runtime the path that

will potentially be executed, and has used the predicted path to be optimized.

3. Heuristic Optimization Algorithms

The QoS-aware service composition problem was mapped to MMKP, due to the

similarity between both problems, which allows to select heuristic algorithms,

namely CP and CCP algorithms to be applied to solve the QoS-aware service

composition problem. The first algorithm is a constructive approach called

constructive procedure (CP) that is applied to generate a feasible solution while the

second one is a complementary approach called a complementary procedure (CCP)

that is used to improve the quality of the solution generated from CP. A machine

learning algorithm is combined with a CP algorithm in order to optimize only the

predicted path. CP and CPP algorithms have been selected because of their ability to

generate quality solutions within small computation efforts. This makes this

approach efficient in real-time scenarios. Moreover, the algorithms can be easily

applied to solve the selection problem.

4. QoS Characteristics for a Web Service Composition

This research work has suggested eight QoS characteristics that can be considered as

selection criteria when composing web services. These criteria were suggested with

190

respect to web service composition features and were identified after investigating

and analyzing the related works in the area of web service and SOA. These

characteristics can be used to evaluate the QoS of composite services. Furthermore,

clients can use the characteristics to specify their QoS requirements. To assist clients

when assigning weights, prioritizing the selected QoS criteria was suggested.

 Research Limitation 7.3

The following are the constraints and limitations in this approach to making further

study necessary in order to improve its performance.

 The QoS characteristics considered in this approach are a set of fixed

characteristics that can be applied to all domains. QoS characteristics should

differ depending on the domain. For example, it is important for the E-

Learning domain to consider QoS characteristics like accuracy and reputation

while E-Publishing service should consider the security (Sathya,

Swarnamugi, Dhavachelvan, & Sureshkumar, 2010).

 The proposed approach is not capable to deal with structures such as loop or

parallel structures. It is designed to suit the multiple paths in business

processes, i.e., business processes that defined using sequential and

conditional structure. Knowing that loop structure, for example, may be

reduced to sequential as in Zeng et al. (2004).

 The evaluation results of the proposed optimization mechanism have shown

that the mechanism is capable to generate the best possible overall QoS ratio

191

solutions while consuming small computation time. However, the mechanism

is not capable to generate exact optimal solutions. This is because the

optimization is based on heuristic algorithms.

 Future Works 7.4

The work reported in this research has opened up several areas for further research

work. Based on this work, possible areas are:

Designing QoS model: It is unlikely that a fixed set of QoS characteristics can be

considered for all domains. Instead, the dynamic QoS model is required to be

designed in a way that QoS characteristics should differ depending on the services’

domains.

Other optimization strategy: The proposed approach is based on data mining

techniques and heuristic algorithms. Beside this approach, another research

opportunity would be investigating a new approach that can be used for stochastic

analysis techniques and algorithms that guarantee to find optimal solutions.

Developing other heuristic algorithms: Along with the presented heuristic

algorithms, new heuristic and powerful algorithms are still needed to be investigated.

The goal is to investigate algorithms that are able to reduce the computation efforts,

and at the same time generate better quality solutions.

Developing simulation software: Simulation software is required to evaluate the

performance of the optimization algorithms. The lack of general simulation software

192

that can be used in the area of QoS in service composition makes the researcher

implement their own simulation.

193

8. REFERENCES

Acuna, E., & Rodriguez, C. (2004). The treatment of missing values and its effect on

classifier accuracy. In D. Banks, F.R. McMorris, P. Arabie, & W. Gaul

(Eds.), Classification, Clustering, and Data Mining Applications (pp. 639-

647). Springer Berlin Heidelberg.

Agrawal, R., Gunopulos, D., & Leymann, F. (1998). Mining process models from

workflow logs. Springer Berlin Heidelberg.

Alrifai, M., & Risse, T. (2009). Combining global optimization with local selection

for efficient QoS-aware service composition. Proceedings of the 18th

international conference on World wide web, 881-890.

Alrifai, M., Risse, T., Dolog, P., & Nejdl, W. (2009). A scalable approach for qos-

based web service selection. In G. Feuerlicht, & W. Lamersdorf (Eds.),

Service-Oriented Computing – ICSOC 2008 Workshops (pp. 190-199).

Springer Berlin Heidelberg.

Alrifai, M., Skoutas, D., & Risse, T. (2010). Selecting skyline services for qos-based

web service composition. Proceedings of the 19th international conference

on World wide web, 11-20.

Arab Bank. (2012). Sustainability Report 2012. Arab Bank. Retrieved 25, May, 2013

from

www.arabbank.com/uploads/File/SustainabilityReport2012_English.pdf?CS

RT=8982756408031428478

Ardagna, D., & Mirandola, R. (2010). Per-flow optimal service selection for Web

services based processes. Journal of Systems and Software, 83(8), 1512-1523.

Ardagna, D., & Pernici, B. (2006). Global and local qos guarantee in web service

selection. In C.J. Bussler, & A. Haller (Eds.), Business Process Management

Workshops (pp. 32-46). Springer Berlin Heidelberg.

Ardagna, D., & Pernici, B. (2006). Adaptive service composition in flexible

processes. Software Engineering, IEEE Transactions on, 33(6), 369-384.

Austin, D., Daniel, A., Ferris, C., & Garg, S. (2004). Web services architecture

requirements. W3C Working Group Note. Retrieved 5, April, 2012, from

http://www.w3.org/TR/wsa-reqs/

Bahadori, S., Kafi, S., Far, K. Z., & Khayyambashi, M. R. (2009). Optimal web

service composition using hybrid GA-TABU search. Journal of Theoretical

and Applied Information Technology, 9(1), 10-15.

Balas, E., & Zemel, E. (1980). An algorithm for large zero-one knapsack problems.

Operations Research, 28(5), 1130-1154.

http://www.arabbank.com/uploads/File/SustainabilityReport2012_English.pdf?CSRT=8982756408031428478
http://www.arabbank.com/uploads/File/SustainabilityReport2012_English.pdf?CSRT=8982756408031428478
http://www.w3.org/TR/wsa-reqs/

194

Baryannis, G., Carro, M., Danylevych, O., Dustdar, S., Karastoyanova, D., Kritikos,

K., ... & Wetzstein, B. (2008). Overview of the state of the art in composition

and coordination of services. S-CUBE Software Services and Systems

Network Consortium. Retrieved 11, July, 2012 from

http://www.s-cube-network.eu/results/deliverables/wp-jra-2.2/PO-JRA-2.2.1-

Overview-of-the-state-of-the-art-in-composition-and-coordination-

of%20services.pdf.

Bayt. (2013). Average Monthly Salary in Jordan. Bayt.com. Retrieved 3, April, 2013

from http://www.bayt.com/en/jordan/jobs/

Behkamal, B., Kahani, M., & Akbari, M. K. (2009). Customizing ISO 9126 quality

model for evaluation of B2B applications. Information and Software

Technology, 51(3), 599-609.

Benatallah, B., Dumas, M., Sheng, Q. Z., & Ngu, A. H. H. (2002). Declarative

composition and peer-to-peer provisioning of dynamic web services.

Proceedings of the 18th International Conference on Data Engineering, 296-

308.

Berbner, R., Heckmann, O., & Steinmetz, R. (2005). An Architecture for a qos

driven composition of web service based workflows. Networking and

Electronic Commerce Research Conference (NAEC 2005).

Berbner, R., Spahn, M., Repp, N., Heckmann, O., & Steinmetz, R. (2006). Heuristics

for qos-aware web service composition. Proceedings of the IEEE

International Conference on Web Services, 72-82.

Bilchev, G., & Parmee, I. (1995).The ant colony metaphor for searching continuous

design spaces. In T.C. Fogarty (Ed.), Selected Papers from AISB Workshop

on Evolutionary Computing (pp. 25-39). Springer Berlin Heidelberg.

Blomberg, L. C., & Ruiz, D. D. A. (2013). Evaluating the influence of missing data

on classification algorithms in data mining applications. SBSI 2013: Simpósio

Brasileiro de Sistemas de Informação.

Bolcer, G. A., & Kaiser, G. (1999). SWAP: Leveraging the web to manage

workflow. Internet Computing, IEEE, 3(1), 85-88.

Booth, D., & Liu, C. K. (2006). Web services description language (WSDL) version

2.0 Part 0: Primer. W3C Working Draft. Retrieved 16, June, 2010, from

http://www.w3.org/TR/wsdl20-primer/

Botella, P., Burgués, X., Carvallo, J. P., Franch, X., & Quer, C. (2002). Using

quality models for assessing COTS selection. Proceedings of WER 2002,

263-277.

Burstein, M., Bussler, C., Zaremba, M., Finn, T., Huhns, M. N., Paolucci, M., ... &

Williams, S. (2005). A semantic web services architecture. IEEE Internet

Computing, 9(5), 72.

http://www.s-cube-network.eu/results/deliverables/wp-jra-2.2/PO-JRA-2.2.1-Overview-of-the-state-of-the-art-in-composition-and-coordination-of%20services.pdf
http://www.s-cube-network.eu/results/deliverables/wp-jra-2.2/PO-JRA-2.2.1-Overview-of-the-state-of-the-art-in-composition-and-coordination-of%20services.pdf
http://www.s-cube-network.eu/results/deliverables/wp-jra-2.2/PO-JRA-2.2.1-Overview-of-the-state-of-the-art-in-composition-and-coordination-of%20services.pdf
http://www.bayt.com/en/jordan/jobs/
http://www.w3.org/TR/wsdl20-primer/

195

Canfora, G., Penta, M. D., Esposito, R., & Villani, M. L. (2005). An approach for

qos-aware service composition based on genetic algorithms. Proceedings of

the 2005 conference on Genetic and evolutionary computation, 1069-1075.

Cardellini, V., Casalicchio, E., Grassi, V., & Mirandola, R. (2006). A Framework for

optimal service selection in broker-based architectures with multiple qos

classes. Proceedings of the IEEE Services Computing Workshops, 105-112.

Cardellini, V., Di Valerio, V., Grassi, V., Iannucci, S., & Presti, F. L. (2011). A

performance comparison of QoS-driven service selection approaches. In

Towards a Service-Based Internet (pp. 167-178). Springer Berlin Heidelberg.

Cardoso, J. (2005). Path mining in web processes using profiles. Encyclopedia of

data warehousing and mining, 896-901.

Cardoso, J. (2008). Applying data mining algorithms to calculate the quality of

service of workflow processes. In P. Chountas, L. Petrounias, & J. Kacprzyk

(Eds.), Intelligent Techniques and Tools for Novel System Architectures.

Springer Berlin Heidelberg.

Cardoso, J., & Lenic, M. (2006).Web process and workflow path mining using the

multi-method approach. International Journal of Business Intelligence and

Data Mining, 1(3), 304-328.

Cardoso, J., Miller, J., Sheth, A., & Arnold, J. (2004).Modeling quality of service for

workflows and web service processes. Web Semantics: Science, Services and

Agents on the World Wide Web Journal, 1(3), 281–308.

Cardoso, J., & Sheth, A. (2003). Semantic e-workflow composition. Journal of

Intelligent Information Systems (JIIS), 21(3), 191-225.

Casati, F., Ilnicki, S., Jin, L. J., Krishnamoorthy, V., & Shan, M. C. (2000). E-flow:

A platform for developing and managing composite e-services. Proceedings

Academia/Industry Working Conference on Research Challenges, 341-348.

Choen, D. (2012). Bank loans and how to qualify for one. Loan Article. Retrieved

14, July, 2013 , from http://www.bills.com/bank-loans/

Choi, S., Her, J., & Kim, S. (2006). Modeling qos attributes and metrics for

evaluating services in SOA considering consumers' perspective as the first

class requirement. Proceedings of the 2nd IEEE Asia-Pacific Service

Computing Conference, 398-405.

Clement, U., Hately, A., Riegen, C. v., & Rogers, T. (2004). UDDI version 3.0.2.

DDI Spec Technical Committee Draft. Retrieved 16, June, 2011, from

http://www.uddi.org/pubs/uddi_v3.htm

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3),

263-296.

http://www.bills.com/bank-loans/
http://www.uddi.org/pubs/uddi_v3.htm

196

Degwekar, S., Su, S. Y. W., & Lam, H. (2004). Constraint specification and

processing in web services publication and discovery. Proceedings of the

IEEE International Conference on Web Services, 210-217.

Dimitrios, G., Hans, S., Andrzej, C., & Donald, B. (1999). Managing process and

service fusion in virtual enterprises. Information Systems - Special issue on

information systems support for electronic commerce, 24(6), 429-456.

Dong, S., & Dong, W. (2009). A qos driven web service composition method based

on ESGA (Elitist Selection Genetic Algorithm) with an improved initial

population selection strategy. International Journal of Distributed Sensor

Networks, 5(1), 54-54.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a

colony of cooperating agents. Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, 26(1), 29-41.

Dromey, R. G. (1995). A model for software product quality. IEEE Transactions on

Software Engineering, 21(2), 146-162.

Du, Y., Wang, X., Ai, L., & Li, X. (2012). Dynamic Selection of Services under

Temporal Constraints in Cloud Computing. In e-Business Engineering

(ICEBE), 2012 IEEE Ninth International Conference on, 252-259.

Dustdar, S., & Papazoglou, M. P. (2008). Services and service composition - an

introduction. it - Information Technology, 50, 086 - 092.

Dustdar, S., & Schreiner, W. (2005). A survey on web services composition.

International Journal on Web and Grid Services, 1(1), 1-30.

Fitzpatrick, R. (1996). Software quality: Definitions and strategic issues. Reports.

Retrieved 19, May, 2010, from

http://www.comp.dit.ie/rfitzpatrick/papers/quality01.pdf

Freund, Y., & Schapire, R. E. (1999). A short introduction to boosting. Journal of

Japanese Society for Artificial Intelligence, 14(5), 661-680.

Ganesarajah, D., & Lupu, E. (2002). Workflow-based composition of web-services:

A business model or a programming paradigm?. Proceedings of the Sixth

International Enterprise Distributed Object Computing Conference

(EDOC’02), 273-284.

Gao, Z.-p., Chen, J., Qiu, X.-s., & Meng, L.-m. (2009). QoE/QoS driven simulated

annealing-based genetic algorithm for web services selection. The Journal of

China Universities of Posts and Telecommunications, 16(1), 102-106.

Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., & Shan, M. C. (2004).

Business process intelligence. Computers in Industry, 53(3), 321-343.

http://www.comp.dit.ie/rfitzpatrick/papers/quality01.pdf

197

Guoping, Z., Huijuan, Z., & Zhibin, W. (2009). A qos-based web services selection

method for dynamic web service composition. Proceedings of the 2009 First

International Workshop on Education Technology and Computer Science,

832-835.

Gutiérrez-Peña, E. (2004). Bayesian classification methods. Psychology Science,

46(1), 52-64.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H.

(2009). The WEKA data mining software: An update. ACM SIGKDD

explorations newsletter, 11(1), 10-18.

Hifi, M., Michrafy, M., & Sbihi, A. (2004). Heuristic algorithms for the multiple-

choice multidimensional knapsack problem. Journal of the Operational

Research Society, 55(12), 1323–1332.

Hilari, M. O. (2009). Quality of service (QoS) in SOA systems. A Systematic Review.

(Master’s thesis, UniversitatPolitècnica de Catalunya, 2009). Retrieved 7,

May, 2013 from http://upcommons.upc.edu/pfc/handle/2099.1/7714

Huang, A. F. M., Lan, C.-W., & Yang, S. J. H. (2009). An optimal qos-based Web

service selection scheme. Information Sciences: An International Journal,

169(19), 3309-3322.

Hull, R., Benedikt, M., Christophides, V., & Su, J. (2003). E-services: A look behind

the curtain. Proceedings of the twenty-second ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, 1-14.

ISO-9000:2005. (2005). Quality management systems fundamentals and vocabulary.

International Organization for Standardization. Retrieved 24, August, 2010,

from http://www.iso.org/iso/watermarksample.pdf

ISO/IEC 25012:2008. (2008), Software engineering -- Software product Quality

Requirements and Evaluation (SQuaRE) -- Data quality model. Retrieved 24,

June, 2014, from

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnum

ber=35736

ISO/IEC. (1998). Information technology – quality of service: Framework (ISO/IEC

13236). International Organization for Standardization. Retrieved 15, April,

2010, from

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnu

mber=26993

Ivanovic, D., Carro, M., & Hermenegildo, M. (2010). Towards data-aware qos-

driven adaptation for service orchestrations. In Web Services (ICWS), 2010

IEEE International Conference on, 107-114).

http://upcommons.upc.edu/pfc/handle/2099.1/7714
http://www.iso.org/iso/watermarksample.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=35736
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=35736
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=27993
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=27993

198

Jacobsson, M., Lidén, P., Stjernschantz, E., Boström, H., & Norinder, U. (2003).

Improving structure-based virtual screening by multivariate analysis of

scoring data. Journal of medicinal chemistry, 46(26), 5681-5689.

Jaeger, M., Muhl, G., & Golze, S. (2005). QoS-aware composition of web services:

An evaluation of selection algorithms. In R. Meersman, & Z. Tari (Eds.), On

the Move to Meaningful Internet Systems 2005 (Vol. 3660, pp. 646-661).

Springer Berlin Heidelberg.

Jaeger, M. C. (2007). Optimising quality-of-service for the composition of electronic

services (Doctoral dissertation, Berlin University of Technology). Retrieved

from

http://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/1413

Jaeger, M. C., Rojec-Goldmann, G., & Muhl, G. (2004). QoS aggregation for web

service composition using workflow patterns. Proceedings of the Enterprise

Distributed Object Computing Conference, Eighth IEEE International, 149-

159.

Jafarpour, N., & Khayyambashi, M. R. (2010). QoS-aware selection of web service

composition based on Harmony Search algorithm. Proceedings of the 12th

international conference on Advanced communication technology, 1345-

1350.

Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., ... & Yiu, A.

(2007). Web services business process execution language version 2.0.

OASIS standard, 11, 11.

Jiang, H., Yang, X., Yin, K., Zhang, S., & Cristoforo, J. A. (2011). Multi-path qos-

aware web service composition using variable length chromosome genetic

algorithm. Information Technology Journal, 10(1), 113-119.

Jin, C., Wu, M., Jiang, T., & Ying, J. (2008). Combine automatic and manual

process on web service selection and composition to support qos. 12th

International Conference on Computer Supported Cooperative Work in

Design, 2008 (CSCWD 2008), 459-464.

Kim, E., Kang, G., Lee, Y., & McRae, M. (2005). OASIS web services quality model

TC. Advanced Open Standards for the Information Society (OASIS).

Retrieved July 13, 2010, from

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsqm

Kim, E., Lee, Y., Kim, Y., Park, H., Yun, J., & Kang, G. (2011). OASIS web services

Quality factors version 1.0. Advanced Open Standards for the Information

Society (OASIS). Retrieved July 13, 2012, from

http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/cs01/WS-Quality-

Factors-v1.0-cs01.html

http://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/1413
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsqm
http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/cs01/WS-Quality-Factors-v1.0-cs01.html
http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/cs01/WS-Quality-Factors-v1.0-cs01.html

199

Khan, S., Li, K. F., Manning, E. G., & Akbar, M. M. (2002). Solving the knapsack

problem for adaptive multimedia systems. Studia Informatica Universalis.,

2(1), 156-168.

Ko, J. M., Kim, C. O., & Kwon, I.-H. (2008). Quality-of-service oriented web

service composition algorithm and planning architecture. Journal of Systems

and Software, 81(11), 2069-2090.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation

and model selection. Proceedings of the International Joint Conference on

Artificial Intelligence IJCAI, 1136-1145.

Kotsiantis, S. B. (2006). Supervised machine learning: A review of classification

techniques. Informatica, 31(3), 249–268.

Lécué, F. (2009). Optimizing qos-aware semantic web service composition. In A.

Bernstein, D. R. Karger, T. Heath, & K. Thirunarayan (Eds.), Proceedings of

the 8th International Semantic Web Conference (pp. 375-391). Springer

Berlin Heidelberg

Lee, J. (2003). Matching algorithms for composing business process solutions with

web services. In K. Bauknecht, A. Tjoa, & G. Quirchmayr (Eds.), E-

Commerce and Web Technologies (Vol. 2638, pp. 393-402). Springer Berlin

Heidelberg.

Lee, K., Jeon, J., Lee, W., Jeong, S.-H., & Park, S.-W. (2003). Qos for web services:

requirements and possible approaches. W3C Working Group Note.

Retrieved 9, August, 2010, from

http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/

Leitner, P., Hummer, W., & Dustdar, S. (2013). Cost-based optimization of service

compositions. Services Computing, IEEE Transactions on, 6(2), 239-251.

Li, S., & Chen, M. (2010). An adaptive-GA based QoS driven service selection for

Web services composition. In Computer Application and System Modeling

(ICCASM), 2010 International Conference on. IEEE.

Li, W., & Yan-xiang, H. (2010). Web service composition based on qos with chaos

particle swarm optimization. 6th International Conference on Wireless

Communications Networking and Mobile Computing (WiCOM), 2010, 1-4.

Liao, J., Liu, Y., Zhu, X., Wang, J., & Qi, Q. (2013). Accurate QoS-based service

selection algorithm for service composition. In Local Computer Networks

(LCN), 2013 IEEE 38th Conference on, 344-347.

Liu, D., Shao, Z., & Yu, C. (2009a). Optimizing service selection by user's qos

expectation. Proceedings of the International Multi Conference of Engineers

and Computer Scientists.

http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/

200

Liu, D., Shao, Z., Yu, C., & Fan, G. (2009b). A heuristic qos-aware service selection

approach to web service composition. Proceedings of the 2009 Eigth

IEEE/ACIS International Conference on Computer and Information Science.

Liu, P., Lei, L., & Wu, N. (2005). A quantitative study of the effect of missing data

in classifiers. The Fifth International Conference on Computer and

Information Technology, 2005 (CIT 2005), 28-33.

Liu, Y., Ngu, A. H., & Zeng, L. Z. (2004). Qos computation and policing in dynamic

web service selection. Proceedings of the 13th international World Wide Web

conference on Alternate track papers & posters, 66-73.

Liu, Y.,Wu, W., & Liu, S. (2012). A novel qos-aware service composition approach

based on path decomposition. 2012 IEEE Asia-Pacific Services Computing

Conference, 76-82.

Lou, Y.-s., Tao, Z.-h., Wang, Z.-j., & Yue, L.-l. (2009). Research on a global

optimization method for qos of web service composite. Proceedings of the

2009 First IEEE International Conference on Information Science and

Engineering, 352-355.

Luo, Y. S., Qi, Y., Hou, D., Shen, L. F., Chen, Y., & Zhong, X. (2011). A novel

heuristic algorithm for qos-aware end-to-end service composition. Computer

Communications, 34(9), 1137-1144.

Mani, A., & Nagarajan, A. (2002). Understanding quality of service for web

services. IBM. Retrieved 9 August, 20011, from

https://www.ibm.com/developerworks/java/library/ws-quality/

Martello, S., Pisinger, D., & Toth, P. (1999). Dynamic programming and strong

bounds for the 0-1 knapsack problem. Management Science, 45(3), 414-424.

Martello, S., & Toth, P. (1988).A new algorithm for the 0-1 knapsack problem.

Management Science, 34(5), 633-644.

Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness,

D., ... & Sycara, K. (2005). Bringing semantics to web services: The OWL-S

approach. In J. Cardoso, & A. Sheth (Eds.), Semantic Web Services and Web

Process Composition (pp. 26-42). Springer Berlin Heidelberg.

Martello, S. & Toth, P.(1986). Algorithms for knapsack problems. In S. Martello,

G. Laporte, M. Minoux, & C. Ribeiro (Eds.), Surveys in Combinatorial

Optimization, (Vol. 31, pp. 213–258). Amsterdam: Annals of Discrete

Mathematics.

Masseglia, F., Poncelet, P., & Teisseire, M. (2008). Successes and new directions in

data mining. IGI Global.

Menasce, D. A. (2002). QoS issues in web services. Internet Computing, IEEE, 6(6),

62-65.

https://www.ibm.com/developerworks/java/library/ws-quality/

201

Menasce, D. A. (2004).Composing web services: A qos view. Internet Computing,

IEEE, 8(6), 88-90.

Michlmayr, A., Rosenberg, F., Platzer, C., Treiber, M., & Dustdar, S. (2006).

Towards recovering the broken SOA triangle: A software engineering

perspective. 2nd international workshop on Service oriented software

engineering: in conjunction with the 6th ESEC/FSE joint meeting, 22-28.

Ming, C., & Zhen-wu, W. (2006). An Approach for web services composition based

on qos and discrete particle swarm optimization. Eighth ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing, 2006 (SNPD 2006), 37-41.

Missaoui, A., & Barkaoui, K. (2010). A neuro-fuzzy model for qos based selection

of web service. Journal of Software Engineering and Applications, 3(6), 588-

592.

Mitra, N., & Lafon, E. Y. (2006). SOAP version 1.2 Part 0: Primer (second edition).

W3C Recommendation. Retrieved 12, June, 2010, from

http://www.w3.org/TR/2006/REC-soap12-part0-20060426/

Monmarch, N., Venturini, G., & Slimane, M. (2000). On how pachycondyla apicalis

ants suggest a new search algorithm. Future Generation Computer Systems,

16(9), 936-946.

Moser, M., Jokanovic, D. P., & Shiratori, N. (1996). An algorithm for the

multidimensional multiple-choice knapsack problem. IEICE transactions on

fundamentals of electronics, communications and computer sciences, 80(3),

582-589.

Mostofa Akbar, M., Sohel Rahman, M., Kaykobad, M., Manning, E. G., & Shoja, G.

C. (2006). Solving the multidimensional multiple-choice knapsack problem

by constructing convex hulls. Computers & operations research, 33(5),

1259-1263.

Neelavathi, S., & Vivekanandan, K. (2011). An innovative quality of service (QOS)

based service selection for service orchrestration in SOA. International

Journal of Scientific & Engineering Research, 2(4).

Newcomer, E., & Lomow, G. (2004). Understanding SOA with web services

(independent technology guides). Addison-Wesley Professional.

Norinder, U., Lidén, P., & Boström, H. (2006). Discrimination between modes of

toxic action of phenols using rule based methods. Molecular diversity, 10(2),

206-212.

O’Brien, L., Bass, L., & Merson, P. (2005). Quality attributes and service-oriented

architectures. Software Engineering Institute. Retrieved 12, July, 2012, from

http://www.sei.cmu.edu/library/abstracts/reports/05tn014.cfm

http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.sei.cmu.edu/library/abstracts/reports/05tn014.cfm

202

Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). SERVQUAL: A multi-

item scale measuring consumer perceptions of service quality. Journal of

Retailing, 64, 12-36.

Parejo, J. A., Fernandez, P., & Cortes, A. R. (2008). Qos-aware services composition

using tabu search and hybrid genetic algorithms. Actas de los Talleres de las

Jornadas de Ingeniería del Software y Bases de Datos, 2(1), 55-66.

Patel, C., Supekar, K., & Lee, Y. (2003). A qos oriented framework for adaptive

management of web service based workflows. In V. Marík, W.

Retschitzegger, & O. Štepánková (Eds.), Database and Expert Systems

Applications (Vol. 2636, pp. 826-835). Springer Berlin Heidelberg.

Patel, C., Supekar, K., & Lee, Y. (2004). Provisioning resilient, adaptive web

services-based workflow: A semantic modeling approach. IEEE International

Conference onWeb Services, 2004, 480-487.

Pei, S., Shi, X., & Hu, D. (2014). Research on the Particle-Ant Colony Algorithm in

Web Services Composition Problem. Journal of Applied Sciences, 14(8).

Pisinger, D. (1996). A minimal algorithm for the 0-1 knapsack problem. Operations

Research, 45(5), 658-666.

Platt, J. C. (1999). Fast training of support vector machines using sequential minimal

optimization. In B. Scholkopf, C. J. C. Burges, & A. J. Smola (Eds.),

Advances in kernel methods (pp. 185-208). MIT Press.

Prekopcsák, Z., Henk, T., & Gáspár-Papanek, C. (2010). Cross-validation: The

illusion of reliable performance estimation. RCOMM 2010: RapidMiner

Community Meeting and Conference.

Qiqing, F., Xiaoming, P., Qinghua, L., & Yahui, H. (2009). A global qos optimizing

web services selection algorithm based on moaco for dynamic web service

composition. International Forum on Information Technology and

Applications, 2009 (IFITA'09), 37-42.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Francisco: Morgan

Kaufmann Publishers Inc.

Ran, S. (2003). A model for web services discovery with QoS. ACM SIGecom

Exchanges, 4(1), 1-10.

Rajeswari, M., Sambasivam, G., Balaji, N., Saleem Basha, M. S., Vengattaraman, T.,

& Dhavachelvan, P. (2014). Appraisal and analysis on various web service

composition approaches based on QoS factors. Journal of King Saud

University-Computer and Information Sciences, 26(1), 143-152.

Razzazi, M. R., & Ghasemi, T. (2009). An exact algorithm for the multiple-choice

multidimensional knapsack based on the core. In H. Sarbazi, B. Parhami, S.G

203

Miremadi, & S. Hessabi (Eds.), Advances in Computer Science and

Engineering (pp. 265-282). Springer Berlin Heidelberg.

Rosenberg, F., Leitner, P., Michlmayr, A., Celikovic, P., & Dustdar, S. (2009).

Towards composition as a service - a quality of service driven approach.

Proceedings of the 2009 IEEE International Conference on Data

Engineering.

Rozinat, A., & van der Aalst, W. M. (2006). Decision mining in ProM. In S.

Dustdar, J. L. Amit, & P. Sheth (Eds.), Business Process Management (pp.

420-425). Springer Berlin Heidelberg.

Sasikaladevi, N., & Arockiam, L. (2014). LASA-HEU: Heuristic Approach for

Service Selection in Composite Web Services. In Computing and

Communication Technologies (WCCCT), 2014 World Congress on, 256-259.

Sathya, M., Swarnamugi, M., Dhavachelvan, P., & Sureshkumar, G. (2010).

Evaluation of qos based web-service selection techniques for service

composition. International Journal of Software Engineering, 1(5), 73-90.

Sbihi, A. (2006). A best first search exact algorithm for the multiple-choice

multidimensional knapsack problem. Journal of Combinatorial Optimization,

13(4), 336-351.

Schonenberg, H., Mans, R., Russell, N., Mulyar, N., & Van der Aalst, W. (2008).

Process flexibility: A survey of contemporary approaches. In W. Van der

Aalst, J. Mylopoulos, N. M. Sadeh, M. J. Shaw, & C. Szyperski (Eds.),

Advances in Enterprise Engineering I (Vol. 10, pp. 16-30). Springer Berlin

Heidelberg.

Schuller, D., Eckert, J., Miede, A., Schulte, S., & Steinmetz, R. (2010). QoS-aware

service composition for complex workflows. Proceedings of the 2010 Fifth

International Conference on Internet and Web Applications and Services,

333-338.

Schuller, D., Polyvyanyy, A., García-Bañuelos, L., & Schulte, S. (2011).

Optimization of complex qos-aware service compositions. In G. Kappel, Z.

Maamar, & H.R. Motahari-Nezhad (Eds.), Service-Oriented Computing (pp.

452-466). Springer Berlin Heidelberg.

Shen, J., & Yuan, S. (2009). QoS-aware peer services selection using ant colony

optimization. In W. Van der Aalst, J. Mylopoulos, N. M. Sadeh, M. J. Shaw,

& C. Szyperski (Eds.), Business Information Systems Workshops (Vol. 36,

pp. 362-364). Springer Berlin Heidelberg.

Singh, A. K. (2012). Global optimization and integer programming networks.

International Journal of Information, 2(8).

Sumathi, S., & Esakkirajan. S. (2007). Fundamentals of relational database

management systems. Springer Berlin Heidelberg.

204

Tang, M., & Ai, L. (2010). A hybrid genetic algorithm for the optimal constrained

web service selection problem in web service composition. In M. Tang (Ed.),

Proceeding of the 2010 World Congress on Computational Intelligence.

Barcelona.

Tao, F., LaiLi, Y., Xu, L., & Zhang, L. (2013). FC-PACO-RM: a parallel method for

service composition optimal-selection in cloud manufacturing system.

Industrial Informatics, IEEE Transactions on, 9(4), 2023-2033.

Toma, I., & Foxvog, D. (2006). Non-functional properties in web services. Web

Service Modeling Ontology (WSMO) Working Draft. Retrieved 13, June,

2010, from http://www.wsmo.org/TR/d28/d28.4/v0.1/

Todorovski, L., & Džeroski, S. (2000). Combining multiple models with meta

decision trees. In D. Zighed, J. Komorowski, & J. Zytkow (Eds.), Principles

of Data Mining and Knowledge Discovery (Vol. 1910, pp. 69-84). Springer

Berlin Heidelberg.

Tong, H., Cao, J., & Zhang, S. (2006). A distributed genetic algorithm for

optimizing the quality of grid workflow. In K. Chang, W. Wang, L. Chen, C.

Ellis, C.-H. Hsu, A. Tsoi, & H. Wang (Eds.), Advances in Web and Network

Technologies, and Information Management (Vol. 4536, pp. 408-419).

Springer Berlin Heidelberg.

Toyoda, Y. (1965). A simplified algorithm for obtaining approximate solutions to

zero-one programming problems. Management Science, 21(12), 1416-1426.

Ukor, R., & Carpenter, A. (2009). Flexible service selection optimization using

meta-metrics. Proceedings of the 2009 Congress on Services – I, 593-598.

Ukor, R., & Carpenter, A. (2008.). On modeled flexibility and service selection

optimisation. 9th Workshop on Business Process Modeling, Development and

Support.

van der Aalst, W. M., Adriansyah, A., de Medeiros, A. K., Arcieri, F., Baier, T.,

Blickle, T., ... & Pontieri, L. (2012). Process mining manifesto. In F. Daniel,

K. Barkaoui, & S. Dustdar (Eds.), Business process management workshops

(pp. 169-194). Springer Berlin Heidelberg.

van der Aalst, W. M., Hofstede, A. H., Kiepuszewski, B., & Barros, A. P. (2003).

Workflow patterns. Distributed and Parallel Databases, 14(1), 5-51.

van der Aalst, W., M. (2009). Process-aware information systems: Lessons to be

learned from process mining. Transactions on Petri Nets and Other Models

of Concurrency II, 1-26.

van der Aalst, W., M., Dongen, B. F. v., Herbst, J., Maruster, L., Schimm, G., &

Weijters, A. J. M. M. (2003). Workflow mining: A survey of issues and

approaches. Data & Knowledge Engineering, 46(2), 236-266.

http://www.wsmo.org/TR/d28/d28.4/v0.1/

205

van der Aalst, W. M., Weijters, A. J., & Maruster, L. (2002). Workflow mining:

Which processes can be rediscovered. BETA Working Paper Series, WP 64,

Eindhoven University of Technology, Eindhoven.

van der Aalst, W. M., Ter Hofstede, A. H., Kiepuszewski, B., & Barros, A. P.

(2003). Workflow patterns. Distributed and parallel databases, 14(1), 5-51.

van der Werf, J. M., van Dongen, B. F., Hurkens, C. A., & Serebrenik, A. (2008).

Process discovery using integer linear programming. In K.M. van Hee, & R.

Valk (Eds.), Applications and Theory of Petri Nets (pp. 368-386). Springer

Berlin Heidelberg.

Wan, C., C., U., Chen, L., Huang, R., Luo, J., & Shi, Z. (2008). On solving qos-

aware service selection problem with service composition. Seventh

International Conference on Grid and Cooperative Computing, 2008 (GCC

'08), 467-474.

Wang, J., & Hou, Y. (2008). Optimal web service selection based on multi-objective

genetic algorithm. Proceedings of the 2008 International Symposium on

Computational Intelligence and Design, 553-556.

Wang, L., & He, Y.-x.(2010). A web service composition aalgorithm based on

global qos optimizing with MOCACO. In C.-H.Hsu, L. Yang, J. Park, & S.-

S.Yeo (Eds.), Algorithms and Architectures for Parallel Processing (Vol.

6082, pp. 218-224). Springer Berlin Heidelberg.

Wang, R., Chi, C.-H., & Deng, J. (2009). A fast heuristic algorithm for the

composite web service selection. In Q. Li, L. Feng, J. Pei, S. Wang, X. Zhou,

& Q.-M. Zhu (Eds.), Advances in Data and Web Management (Vol. 5446,

pp. 506-518). Springer Berlin Heidelberg.

Wang, S., Zhu, X., & Yang, F. (2014). Efficient QoS management for QoS–aware

web service composition. International Journal of Web and Grid Services,

10(1), 1-23.

Weinhardt, C., Anandasivam, A., Blau, B., & Stosser, J. (2009). Business models in

the service World. IT Professional, 11, 28-33.

Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools

and techniques. Morgan Kaufmann.

Wu, M., Xiong, X., Ying, J., Jin, C., & Yu, C. (2011). QoS-driven global

optimization approach for large-scale web services composition. Journal of

Computers, 6(7), 1452-1460.

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., ... & Steinberg,

D. (2008). Top 10 algorithms in data mining. Knowledge and Information

Systems, 14(1), 1-37.

206

Xia, Y.-m., Chen, J.-l., & Meng, X.-w. (2008). On the dynamic ant colony algorithm

optimization based on multi-pheromones. Proceedings of the Seventh

IEEE/ACIS International Conference on Computer and Information Science

(icis 2008).

Yang, L., Dai, Y., Zhang, B., & Gao, Y. (2006). A dynamic web service composite

platform based on qos of services. In H. Shen, J. Li, M. Li, J. Ni, & W. Wang

(Eds.), Advanced Web and Network Technologies, and Applications (Vol.

3842, pp. 609-616). Springer Berlin Heidelberg.

Yang, Z., Shang, C., Liu, Q., & Zhao, C. (2010). A dynamic web services

composition algorithm based on the combination of ant colony algorithm and

genetic algorithm. Journal of Computational Information Systems, 6(8),

2616- 2622.

Yoon, K. P., & Hwang, C. L. (1995). Multiple attribute decision making. Thousand

Oaks, CA: Sage Publication.

Yu, D., Li, C., & Yin, Y. (2014). Optimizing Web Service Composition for Data-

intensive Applications. International Journal of Database Theory &

Application, 7(2).

Yu, T., & Lin, K.-J.(2005). A broker-based framework for qos-aware web service

composition. Proceedings of the 2005 IEEE International Conference on e-

Technology, e-Commerce and e-Service (EEE'05), 22-29.

Yu, T., Zhang, Y., & Lin, K. J. (2007). Efficient algorithms for web services

selection with end-to-end qos constraints. ACM Transactions on the Web

(TWEB), 1(1), 6.

Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., & Sheng, Q. Z. (2003).

Quality driven web services composition. Proceedings of the 12th

international conference on World Wide Web, 411-421.

Zeng, L., Benatallah, B., Ngu, A. H. H., Dumas, M., Kalagnanam, J., & Chang, H.

(2004). QoS-aware middleware for web services composition. IEEE

Transactions on Software Engineering, 30(5), 311-326.

Zhang, C., Su, S., & Chen, J. (2006). DiGA: Population diversity handling genetic

algorithm for qos-aware web services selection. Computer Communications,

30(5), 1082-1090.

Zhang, C., Su, S., & Chen, J. (2006a). A novel genetic algorithm for qos-aware web

services selection. In J. Lee, J. Shim, S.-g. Lee, C. Bussler, & S. Shim (Eds.),

Data Engineering Issues in E-Commerce and Services (Vol. 4055, pp. 224-

235). Springer Berlin Heidelberg.

Zhang, C., Su, S., & Chen, J. (2006b). Efficient population diversity handling

genetic algorithm for qos-aware web services selection. In V. Alexandrov, G.

207

van Albada, P. Sloot, & J. Dongarra (Eds.), Computational Science – ICCS

2006 (Vol. 3994, pp. 104-111). Springer Berlin Heidelberg.

Zhang, L.-J., Li, B., Chao, T., & Chang, H. (2003). On demand web services-based

business process composition. International Conference on Systems, Man

and Cybernetics, 2003, 4056-4064.

Zhang, W., Chang, C. K., Feng, T., & Jiang, H.-y. (2010). QoS-based dynamic web

service composition with ant colony optimization. 34th Annual Computer

Software and Applications Conference (COMPSAC), 2010, 493-502.

Zhang, W., Yang, Y., Tang, S., & Fang, L. (2006). QoS-driven service selection

optimization model and algorithms for composite web services. Proceedings

of the 31st Annual International Computer Software and Applications

Conference, 425-431.

Zheng, H., Zhao, W., Yang, J., & Bouguettaya, A. (2013). Qos analysis for web

service compositions with complex structures. Services Computing, IEEE

Transactions on, 6(3), 373-386.

Zibanezhad, B., Zamanifar, K., Nematbakhsh, N., & Mardukhi, F. (2009). An

approach for web services composition based on qos and gravitational search

algorithm. Proceedings of the 6th international conference on Innovations in

information technology, 340-344.

