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Abstrak 

Gabungan pengelas berganda dianggap sebagai satu arah baru dalam bidang 

pengecaman corak untuk meningkatkan prestasi pengelasan. Ketiadaan garis 

panduan piawai  untuk membangunankan pengelas gabung yang tepat dan pelbagai 

merupakan masalah utama dalam  gabungan pengelas berganda. Ini adalah kerana 

kesukaran untuk mengenal pasti jumlah pengelas homogen dan bagaimana 

menggabungkan hasil pengelas. Kaedah gabung yang paling biasa digunakan ialah 

strategi rawak manakala teknik pengundian terbanyak digunakan sebagai 

penggabung pengelas. Walau bagaimanapun, strategi rawak tidak dapat menentukan 

bilangan pengelas dan pengundian terbanyak tidak mempertimbangkan kekuatan 

setiap pengelas, sehingga menyebabkan ketepatan pengelasan yang rendah. Dalam 

kajian ini, satu skim gabungan pengelas berganda yang lebih baik dicadangkan. 

Algoritma ant system (AS) digunakan untuk melakukan sesekat set ciri dalam 

pembentukan subset ciri yang mewakili pengelas. Satu  ukuran kekompakan 

diperkenalkan sebagai satu parameter dalam membina pengelas gabung yang tepat 

dan beragam. Satu kaedah mengundi pemberat  digunakan untuk menggabungkan 

hasil pengelas dengan mempertimbangkan kekuatan pengelas sebelum pengundian 

dilakukan. Eksperimen telah dijalankan menggunakan empat pengelas asas iaitu 

nearest mean classifier (NMC), naive bayes classifier (NBC), k-nearest neighbour 

(k-NN ) dan linear discrimimant analisis (LDA) ke atas set data penanda aras, untuk 

menguji kredibiliti skim gabungan pengelas berganda yang dicadangkan. Purata 

ketepatan  pengelas gabung homogen NMC, NBC, k- NN dan LDA  adalah 97,91 %, 

98,06 %, 98.09 % dan 98,12 %. Ketepatan adalah lebih tinggi daripada yang 

diperolehi melalui penggunaan kaedah lain dalam membangunkan  gabungan 

pengelas berganda. Skim gabungan pengelas berganda yang dicadangkan dapat 

membantu dalam membangunkan gabungan pengelas berganda untuk  pengecaman 

dan pengelasan corak yang lain.  

 

 

Kata Kunci: Gabungan pengelas berganda, Ukuran keragaman, Pengecaman dan 

pengelasan corak, Algoritma ant system, Pengundian berberat.  
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Abstract 

Combining multiple classifiers are considered as a new direction in the pattern 

recognition to improve classification performance. The main problem of multiple 

classifier combination is that there is no standard guideline for constructing an 

accurate and diverse classifier ensemble. This is due to the difficulty in identifying 

the number of homogeneous classifiers and how to combine the classifier outputs. 

The most commonly used ensemble method is the random strategy while the 

majority voting technique is used as the combiner. However, the random strategy 

cannot determine the number of classifiers and the majority voting technique does 

not consider the strength of each classifier, thus resulting in low classification 

accuracy. In this study, an improved multiple classifier combination scheme is 

proposed. The ant system (AS) algorithm is used to partition feature set in 

developing feature subsets which represent the number of classifiers. A compactness 

measure is introduced as a parameter in constructing an accurate and diverse 

classifier ensemble. A weighted voting technique is used to combine the classifier 

outputs by considering the strength of the classifiers prior to voting. Experiments 

were performed using four base classifiers, which are Nearest Mean Classifier 

(NMC), Naive Bayes Classifier (NBC), k-Nearest Neighbour (k-NN) and Linear 

Discriminant Analysis (LDA) on benchmark datasets, to test the credibility of the 

proposed multiple classifier combination scheme. The average classification 

accuracy of the homogeneous NMC, NBC, k-NN and LDA ensembles are 97.91%, 

98.06%, 98.09% and 98.12% respectively. The accuracies are higher than those 

obtained through the use of other approaches in developing multiple classifier 

combination. The proposed multiple classifier combination scheme will help to 

develop other multiple classifier combination for pattern recognition and 

classification. 

 

 

Keywords:  Multiple classifier combination, Diversity measure, Pattern recognition 

and classification, Ant system algorithm, Weighted voting. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

Pattern classification is the process of classifying patterns  into predefined category 

(or class label) based on their feature set (or attribute set) (Dougherty, 2013). Pattern 

classification aims to determine pattern categories based on characteristics of the 

patterns, where the categories have been priorly defined.  Classification process is 

divided into two phases, namely training and testing phases. In the training phase, 

the pattern sample whose class is known (training object) is used to establish a 

model. In the testing phase, a model that has been established is tested with the other 

patterns to determine the model’s accuracy (Neelamegam & Ramaraj, 2013). If the 

accuracy is good, then the model can be used to predict the class of unknown 

patterns. Figure 1.1 depicts the general framework of classification task. 

 

Figure 1.1  Classification task general framework 

Pattern classification is an important area in machine learning and artificial 

intelligence. The impact of poor classification will put the object into the wrong class 

which may lead to wrong decisions being made, hence causing losses to the recipient 

or the decision makers. 

Classification task is widely used in the decision-making process, for example on 

pattern recognition (Kaur & Kaur, 2013). Pattern recognition is a discipline in which 

Feature set Classification Model 
Category or 

Classs 
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the goal is to classify object  into categories (Theodoris & Koutroumbas, 2009). 

Depending on the application, the object can be a text, image, audio or other types of 

data that need to be classified. Pattern recognition has been applied in many fields 

such as face recognition, forensic analysis, handwriting recognition, image 

classification, signature verification, speech recognition, and a few others (Liu et al., 

2006; Verma & Blumenstein, 2008). This research field has become an integral part 

in most machine intelligence systems or automatic machine built for decision 

making. Automatic pattern recognition and classification are important issues in the 

various disciplines of engineering and science (Wang, 2011).  

A classifier or classifier model is any function   that maps a set of objects 

represented as feature vector   in a real  -dimensional space    to a class label   

from a set of predefined class labels    {          }. In other words, a given 

pattern   is to be assigned to one of the   categories based on the   feature vector 

values. A classifier is the algorithm used to perform the classification task. Selection 

of an appropriate classifier significantly influences the pattern classification (Lu & 

Weng, 2007). Figure 1.2 shows the taxonomy of classifiers as cited by Jain et al. 

(2000) which are: (1) based on similarity; (2) based on probabilistic approach; (3) 

constructing decision boundaries; and (4) combined classifiers. There are many 

classifiers that have been developed such as: neural network (NN), support vector 

machine (SVM), decision tree (DT), nearest mean classifier (NMC), naïve bayes 

classifier (NBC), k-nearest neighbour (k-NN) and linier discriminant analysis (LDA) 

(or fisher discriminant). 
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Figure 1.2 Taxonomy of classifiers (Jain, et al., 2000) 

Even after nearly fifty years of research and development in the field of pattern 

recognition and classification, the common problems of recognising and classifying 

complex patterns remain unsolved. Selection of the appropriate classification 

algorithm is still the main issue (Basu et al., 2010). Although there are a number of 

available classifiers, the question of which classifier is suitable to use for a particular 

pattern classification task is not an easy decision to make. Previous researches 

indicate that each classifier has its strengths and weaknesses. Each classifier can 

achieve different levels of success for specific classification problems, but none of 

them are perfect. Not single classifier can solve all problems; each classifier has a 

different domain competency (Ponti, 2011). There is no one classifier that achieves 

the best accuracy for all situations, in other words, no classifier is always the most 

accurate on every dataset (Ulas et al., 2012). 
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The combination of several classification algorithms is considered as a new direction 

to solve classification problems. It aims to exploit the complementary information 

from other classifiers to obtain comprehensive results by combining the outputs of a 

number individual classification algorithm. This area is known by different terms, 

such as: multiple classifier combination, committees of learner, multiple classifier 

system, mixtures of experts, combining classifiers, ensemble classifier, ensemble 

learning, hybrid methods, the consensus theory, sensor fusion, multiple experts, 

opinion pool, decision combination and cooperative agents (Parvin et al., 2009a). 

Regardless of the different names, basically several classifiers are combined to 

obtain final classification results (Rokach, 2010). Multiple classifier combination 

(MCC) has been widely used in several application domains such as: character 

recognition (He & Suen, 2007), handwriting recognition (Frinken et al., 2010), 

human emotion recognition (Wu & Liang, 2011), video classification (Sigari et al., 

2011), face recognition (Zhang, 2012), medical diagnosis (Srimani & Koti, 2012), 

email classification (Chharia & Gupta, 2013), biomedical pattern recognition 

(Koyuncu & Ceylan, 2013) and cancer classification (Margoosian & Abouei, 2013). 

A set of classifiers which builds up multiple classifier combination is also called 

classifier ensemble (Kuncheva, 2004). A classifier ensemble includes a number of 

classifiers which is usually called the base classifier. Let   {          } be a set 

of    classifiers, and    {          } be a set of   class labels. Each classifier    

          gets as input a feature vector   [          ]
 ,       and assigns 

it to one of the   class label from  , i.e.,    :   
 
  . The final decision of classifier 

ensemble is taken by a combiner (Ponti, 2011).  
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Most of the methods used in the multiple feature classification focused on feature 

selection methods, i.e. choosing a single feature subset, while ignoring the rest. The 

selection can be done by identifying the subset of irrelevant features using feature 

selection algorithm. According to Maimon and Rokach (2005) there are several 

drawbacks of using feature selection methods, which are: (1) the assumption that the 

input feature set can be removed to a small subset of relevant features is not always 

correct. In several cases a small subset of these features are actually influenced by 

most of the input features and to remove features will lead to a significant loss of 

valuable information. (2) The subset is formed depending on the size of the training 

set. If the size of training set is small, the size of a feature subset will be small too. 

The result is that a relevant feature may be lost. Thus, the classifier may obtain a 

lower level of accuracy than the classifiers that access all the relevant features. (3) In 

several cases, even after removing a set of irrelevant features, there remains a quite 

large number of features. 

1.2 Problem Statement 

Experimental research have demonstrated that the combination of several classifiers 

has been very helpful in improving the prediction and reduces the generalisation 

error (Du et al., 2009; Rokach, 2010; Zaamout & Zhang, 2012; Turhal et al., 2013). 

A set of accurate and diverse classifiers is an important factor when combining 

multiple classifiers (Parvin et al., 2009b; Ko & Sabourin, 2013). A good ensemble 

consist of individual classifiers that have both accuracy and diversity. However, 

multiple classifier combination problems have not been fully resolved. For example, 

there is no standard resolution for constructing a set of accurate and diverse 
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classifier, how many classifiers are combined and how to combine classifiers 

(Hernandez-Lobato & Martinez-Munoz, 2013).  A good strategy is needed for 

combining multiple classifiers, because according to their observations, the addition 

of classifier members does not automatically improve the ensemble accuracy. 

Several approaches have been proposed to construct a classifier ensemble. All of 

these approaches attempt to generate diversity in classifier ensemble. The ensemble 

construction aims to establish a set of "diverse" classifiers that complement each 

other, by creating classifiers that make errors on different patterns, so that they can 

be combined effectively. For this purpose, ensembles should be built as diverse as 

possible. One of the approaches for creating the diversity in ensemble members is 

the feature manipulation approach (Roli, 2009). In this approach, a feature set 

partition is performed in order to build an ensemble classifier. Training an ensemble 

classifier on different feature subsets will reduce correlation among the classifiers, 

does not suffer the curse of dimensionality and suitable for high dimensionality 

datasets without the feature selection drawback (Rokach, 2010). However, it is 

difficult to determine how the partition of the feature set to several subsets may lead 

diversity and better classification accuracy. 

A number of diversity measures have been proposed but diversity is not clearly 

defined, no consensus on diversity measure, and difficulty of measuring diversity  

(Zhou, 2012). Therefore, there is no diversity measure that is satisfying although it is 

known that diversity is important in constructing classifier ensemble. The main 

problem in determining diversity measure is diversity-accuracy dilemma (Li & Gao, 

2010). When the diversity approaches the highest level, the base classifier accuracy 
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should decrease and vice versa. Furthermore, theoretically there is no formal 

evidence that increased diversity leads to better accuracy in multiple classifier 

(Wozniak et al., 2014). Consequently, there is difficulty on how to use a diversity 

measure to construct the classifier ensemble.   

The multiple classifier combination involves two main steps: the classifier ensemble 

construction, and combiner construction. Effective combinations should address both 

steps, unfortunately most of the design methods described in the literature focus only 

on one phase. For example, design methods that focus only on the construction of 

classifier ensemble that aims to build a set of mutually complementary classifiers (or 

error-independent classifiers) and assume that simple fixed combiner can provide 

optimum accuracy (Du, et al., 2012). 

This problem is significant because there is no standard guidelines in constructing a 

classifier ensemble (Hernandez-Lobato & Martinez-Munoz, 2013). Thus it is 

difficult to develop multiple classifier combination for pattern classification. 

Generating diversity and individual classifier accuracy are the main concern 

developing a multiple classifier combination scheme that gives compactness between 

the ensemble classifier and the combiner to produce a set of diverse and accurate 

classifier ensemble. Solving this problem will provide a significant contribution to 

establish general design of multiple classifier combination scheme that can be used 

to build strong multiple classifier combination.  
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1.3 Research Objectives 

The main objective of this research is to develop an improved multiple classifier 

combination scheme for pattern classification. To achieve the main objective, the 

following specific objectives are to be fulfilled: 

i. To propose an algorithm for classifier ensemble construction.  

ii. To propose a parameter to measure the compactness in a set of classifier. 

iii. To formulate the multiple classifier combination scheme by integrating the 

ensemble construction algorithm and weighted voting combiner. 

iv. To evaluate the improved multiple classifier combination scheme. 

1.4 Scope of the Research 

Although there are several well-known topologies, this study only uses the parallel 

topology in the experiments to construct multiple classifier combination. Figure 1.3 

shows a comprehensive categorisation proposed by Chen (2007). In parallel 

topology, the results of each classifier are integrated into a single decision. If either 

the diverse or accurate classifier is formed, and a combination rule is appropriately 

selected, then the system can achieve the best performance. 

 

Figure 1.3 The Scope of the research in topology part 
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Parallel topology is the most commonly implemented topology in the combination of 

classifiers (Ranawana & Palade, 2005b; Zhang et al., 2006; Wozniak & Crawczyk, 

2012). In this topology, several classifiers operate in parallel on the classification 

task. The output of each classifier is combined to produce the final decision. The 

advantage is that it is possible to exploit the ability of each classifier. Most of the 

combinations of classifiers are based on this topology, where each classifier is 

independent and classified as an unknown pattern. Therefore, parallel topology is 

chosen in this study. 

There are several approaches to construct ensemble of classifiers as cited by (Roli, 

2009). Figure 1.4 depicts the approaches to construct classifier ensemble. In this 

study, the input feature manipulation approach is used to induce diversity. Input 

feature manipulation approach is used with consideration: (1) training a set of 

classifiers on different input feature will reduce correlation among the classifiers 

(Rokach, 2010); (2) the dimensional feature reduction will avoid the impact of the 

dimensionality problem (Yang et al., 2010); (3) feature decomposition will improve 

the classification performance for small sample size problems (Yang et al., 2010), 

and (4) feature decomposition can be applied to the stable and unstable classifiers, 

and the training process is faster because a set of classifier models is trained 

simultaneously using a substantially smaller feature set instead of training a classifier 

model using the whole feature set (Ting et al., 2011). Feature set partitioning is a 

specific strategy in input feature manipulation approach to construct classifier 

ensemble. Every single classifier in the classifier ensemble is trained on a different 

projection of the original training set (or disjoint feature subsets). 



 

 10 

 

 

Figure 1.4 The Scope of the research in ensemble construction part 

There are many combiners that have been developed. Figure 1.5 shows the various 

combiners that have been proposed. In this study, only the most commonly used 

majority voting techniques (Hansen & Salamon, 1990; Kim et al., 2003; Li & Sun, 

2009; Bolon-Canedo et al., 2012; Hajdu et al., 2013) in fixed fusion combiner is 

chosen, where in the experiment, it combines the output of classifiers. 

 

Figure 1.5 The Scope of the research in combiner part 
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1.5 Significance of the Research 

The proposed multiple classifier combination scheme will help to develop a multiple 

classifier combination for pattern recognition and classification due to: 

i. Classifier ensemble construction algorithm builds the classifier ensemble as 

accurate and diverse as possible. Furthermore, this algorithm can 

automatically determine the number of classifiers in the ensemble (or 

ensemble size). 

ii. This method makes it possible to divide the high dimensional feature vector 

space into a number of feature vector space with lower dimension, which will 

allow to process low-dimensional feature vectors simultaneously. Therefore, 

this method is expected to overcome the curse of dimensionality. 

iii. This method makes it possible to create a classifier for high dimensionality 

datasets without the feature selection drawback. 

iv.  Each of these classifiers is combined using different set of features that can 

provide additional information on each feature set (or comprehensive results). 

As we know in pattern recognition, classifiers which are suitable for a set of 

features may not be suitable for other feature sets. Therefore, the combination 

of several classifiers on different feature sets in this method can be helpful in 

pattern recognition. 

v. This method can be useful to produce various combinations of classifiers for 

pattern classification problems. 
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1.6 Thesis Organisation 

The structure of this thesis is organised as follows. Chapter 1 describes the need to 

develop a multiple classifier combination scheme for pattern classification. Chapter 

2 reviews the literature that describes several approaches that have been used for 

diverse classifier ensemble construction, several existing diversity measures that 

have been used in classifier ensemble, a brief description of several combiners that 

have been developed. Chapter 3 describes the research methodology which is used in 

this study. Chapter 4 describes the performance of proposed classifier ensemble 

construction algorithm and generating diversity. Chapter 5 describes the use of 

weigted voting combiner in proposed combination scheme and performance of 

improved multiple classifier combination. Last but not least, Chapter 6 contains the 

conclusions of this study. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

There are several important things to consider in designing multiple classifier 

combination. According to Roli and Giancito (2002) and Yang et al., 2004, there are 

three main steps in designing multiple classifier combination. The three steps are: 

classifier ensemble construction, combiner construction and performance evaluation. 

According to Ko et al., (2007), there are two problems in designing a multiple 

classifier combination. Firstly, classifier ensemble construction algorithm; secondly, 

combination algorithm (or combination function). According to Wozniak and 

Zmyslony (2010), there are three problems in designing a multiple classifier 

combination which are: determining the topology, constructing classifier ensemble 

and constructing combiner. According to Khakabimamaghani et al. (2010), there are 

two key factors that influence the performance of an ensemble directly: accuracy of 

each single member and diversity between the members. In order to design a 

multiple classifier combination, several important things in ensemble classifier 

process that have been mentioned above, need to be reviewed such as the multiple 

classifier combination topology, diversity in a set of classifier, classifier ensemble 

construction and combiner construction. The literature review roadmap of this study 

is given in Figure 2.1. 
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Figure 2.1 Literature review roadmap 

The rest of this chapter is organised as follows. Section 2.2 presents several 

topologies in designing multiple classifier combination. Section 2.3 presents several 

diversity measures that have been proposed in the literature. Section 2.4 presents 

several approaches and techniques that have been proposed in constructing classifier 

ensemble. Section 2.5 presents several schemes of combination strategy of multiple 

classifier combination and a summary of this chapter is given in section 2.6. 

2.2 Multiple Classifier Combination Topology 

Ranawana and Palade (2005b) classified the multiple classifier combination 

topology into three kinds: cascading, hierarchical and parallel. In cascading 

topology, the output classifier is used as an input for the next classifier. Errors 

resulted from previous classifiers are not able to be deleted by the next classifier. In 

parallel topology, the output of each classifier is integrated into a single decision. In 

hierarchical topology, both parallel and cascading topologies are combined. A more 

complete explanation of the multiple classifier combination topology is summarised 

by Dara (2007). The topology of multiple classifier combination is summarised by 

her as follows: (1) conditional topology where a series of sequential classifiers are 
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applied to the dataset. In the first strategy, one of the main classifiers is chosen to 

form the classification task. The advantage of this topology is computational 

efficiency when the classification is started by a good main classifier in pattern 

recognition. This topology may complicated when there is a large increase in the 

number of classifiers. (2) Hierarchical topology, where each classifier is applied in a 

subset of the dataset and will generate a class in each pattern. In conditional 

topology, classifiers will be completed upon satisfactory classification results 

obtained, while in the hierarchical topology, all classifiers should be applied to a set 

of datasets. (3) Sequential topology, where the classifiers are applied in sequence. 

Each classifier produces a modified set of possible category for each dataset. (4) 

Parallel (Multiple) topology, where multiple classifiers operatie in parallel on the 

input to produce several decisions, then decisions are combined to produce the final 

decision.  

The selection of an appropriate topology is crucial in enhancing the performance of 

multiple classifier combination (Wozniak & Zmyslony, 2010). The extra cost of 

computing is the weakness of this topology. However the possibility to donate 

strengths of each classifier is the advantage of this topology. Therefore, most of the 

combinations of classifiers are based on this topology. In other words, the parallel 

topology is the most common implementation (Ranawana & Palade, 2005b; Zhang et 

al., 2006; Wozniak & Crawczyk, 2012). In this topology each classifier can be 

independent and complement each other to form diverse classifier ensembles. 
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2.3 Diversity Measure 

A set of accurate and diverse classifiers is an important factor when constracting 

classifier ensemble (Parvin et al., 2009b; Ko & Sabourin, 2013).  There exist a 

number of diversity measures in a set of classifier that have been proposed. 

Basically, the measure of diversity can be categorised into two groups: pairwise (the 

Q statistic, the correlation, the disagreement and the double fault) and non-pairwise 

(the entropy of the votes, the difficulty index, the Kohavi-Wolpert variance, the 

interrater agreement, the generalised diversity, and the coincident failure diversity). 

Table 2.1 shows several measures of diversity (Kuncheva & Whitaker, 2003). 

Diversity can be large if the diversity value is large or vice versa, depending on the 

measure used. The arrow (↓) indicates that the diversity is greater if the diversity 

measure value is lower, and the arrow (↑) indicates that the diversity is greater if the 

diversity measure value is greater. The attribute 'P' means Pair-wise (pairs) where the 

types are Y (yes) or N (no). In the pair-wise diversity, the value of diversity is 

calculated for each pair of classifier in the ensemble and then averaged, while in the 

non-pair-wise it is attempted to measure the diversity of a set of classifiers directly. 

 

 

 

 

 



 

 17 

Table 2.1 

Summary of Ten Measures of Diversity (Kuncheva & Whitaker, 2003) 

Name 
 

Symbol 
↑/↓ P Formula Eq. 

Q-Statistic Q ↓ Y 
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Coincident failure 

diversity 
CFD ↑ N     {
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The Q statistic was proposed as a diversity measure between two classifiers    and    

where            is defined by Equation 2.1, where     is the number of patterns 
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classified correctly by both    and   ,  
   is the number of patterns classified 

correctly by    and    misclassifies,     is the number of patterns classified 

correctly by    and    misclassifies,    is the number of patterns misclassified by 

both    and Cj and                =N.     value varies between -1 to 1. 

Furthermore, the average Q statistics of all pairs of classification algorithm is 

formulated in Equation 2.2, where L is the total number of classification algorithms. 

The correlation coefficient was proposed to measure diversity between two classifiers 

  dan    by statistical functions (Eq. 2.3). For each of the two classifiers, Both ρ and 

Q have the same sign, then have proved that | ρ | ≤ | Q |.  

The disagreement was proposed to measure diversity in a set of classifier by using 

the proportion  between the number of experiments in which a classifier is right and 

the other is wrong with the total number of experiments (Eq. 2.4). The double fault 

(DF) was proposed to measure diversity which is defined as the ratio of objects 

incorrectly classified by the both classifier to the total number of observations (Eq. 

2.5). Table 2.3 below lists the proportion of cases for each pair of base classifier. The 

value of 1 indicates double fault occurs between pairs of base classifier and value of 

0 indicates no double fault occurs. 

The Kohavi-Wolpert (KW) was proposed to measure diversity which is defined in 

Eq. 2.6. The value of KW can be measured by multiplying the average measurement 

disagreement with a coefficient (Eq. 2.7). The measure of interrater agreement was 

proposed to measure diversity which measures the degree of agreement in classifier 

ensemble. If p is the average of the individual classifier accuracy, then the K value 



 

 19 

can be formulated using Eq. 2.8. K value may also be derived by the K value or 

average of disagreement measurements (Eq. 2.9). 

The entropy was proposed to measure the diversity in classifier ensemble, where the 

value of entropy is given in Eq. 2.10, where l(Cj) indicates the number of classifiers 

member in ensemble which correctly classifies xj, L indicates the number of 

decisions  in ensemble with the same value (1 or 0). The value of 0 indicates the 

lowest diversity and the value of 1 denotes the greatest probable diversity. The 

measure of difficulty was propsed to measure diversity which is defined as the 

variance of a random variable (Eq. 2.11). A number of classifiers L in ensemble runs 

on the dataset X to obtain the probability of the variable random. The set value 

{
 

 
 
 

 
    } indicates the proportion of correctly classifying in ensemble which x is 

randomly selected from the dataset. 

A generalised diversity was proposed using a random variable B
2
 to denote the 

proportion of classifiers is wrong on a randomly selected input pattern, pi is denoted 

as the probability that B = i / L. Then, p (i) is defined as the probability that i 

randomly selected classifiers which failed on the randomly selected input pattern x. 

Then, using Eq. 2.12 and Eq. 2.13, the generalised diversity GD is formulated (Eq. 

2.14). The coincidence failure diversity in ensemble was also proposed which is 

defined in Eq. 2.15 where pi denote the probability that exactly i number of the base 

classifiers that make error predictions. This measure gives the highest value of 1 

when all the base classifiers make unique mistakes, and give the lowest value of 0 

when all the base classifiers make the same predictions.  
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The diversity in classifier ensemble is an important factor in combining classifiers. 

The accuracy of an individual classifier is also crucial in classifier combination. 

Although, there are several diversity measures that have been proposed, but none has 

focus in determining diversity-accuracy problem. When the diversity approaches the 

highest level, the base classifier accuracy should decrease and vice versa (Li & Gao, 

2010). Therefore, the problem of using diversity measure as a guideline in 

determining accurate and diverse classifier ensemble construction is still an open 

research area. There is a need to propose a new parameter in constructing an accurate 

and diverse classifier ensemble. 

2.4 Classifier Ensemble Construction  

Several approaches have been proposed to construct a set of diverse classifiers. Roli 

(2009) generally summarised several approaches to construct a classifier ensemble as 

follows: (1) using different base classifiers; (2) injecting randomness; (3) 

manipulating output labels; (4) manipulating training data; and (5) manipulating 

input features. All these approaches try to induce classifier diversity, i.e. to create 

classifiers that make errors on different patterns. One approach for constructing 

classifier ensemble is by using different types of base classifiers (based on different 

models of classifiers). This approach may work well for applications where 

complementary information sources are available (e.g., multi-sensor applications) or 

distinct representations of patterns are possible (Roli, 2009). In ensemble 

construction technique via injecting randomness approach, several identical 

classifiers were trained for several times with different random values of initial 

weight (Ranawana & Palade, 2005a). The output label manipulation approach is 
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typically valuable when the output class number is big. Dietterich and Bakiri (1995) 

have proposed a general method, called error correcting output codes (ECOC), for 

constructing classifier by this approach. The training data manipulation approach 

constructs a classifier ensemble by training the base classifier using different training 

sets. A small change in the training set will produce different predictions. This 

approach is more effective for learning problems where the prediction samples have 

different levels of difficulty. Further more this approach is efficient when data is 

limited in the training process, because it uses random sampling with replacement. 

Several methods for constructing diverse classifiers using different training sets have 

been presented such as boosting (Schapire, 1990), adaboost (Freund & Schapire, 

1996), bagging (Breiman, 1996), random forest (Breiman, 2001) and diverse 

ensemble creation by oppositional relabeling of artificial training examples 

(DECORATE) (Melville & Mooney, 2005). As the focus of this study, in the following 

section, the input feature manipulation approach in constructing classifier ensemble 

is reviewed.  

2.4.1 Input Feature Manipulation Approach 

Another approach to construct classifier ensemble is to manipulate the input feature 

set. The idea of input feature manipulation approach is to simply give each classifier 

a different projection of the training set. Feature decomposition method (also called 

feature subset-based ensemble method) are those that manipulate the input feature in 

constructing a set of classifier. In this method, vertical partitioning on the training 

sets is performed in order to build an ensemble.   
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The simplest technique for feature decomposition is by assigning a projection of the 

sample training set on random feature subsets as training sets to ensemble members. 

Random feature subsets are created by random feature selections of original feature 

set. The sampling method in order to determine the training set can be done by 

sampling with and without replacement. The main method of this approach is the 

Random subspace (RS) method (Ho, 1998). Other methods that have similar idea 

with this method is the multiple feature subsets (Bay, 1998) and attribute bagging 

(Bryll et al., 2003). In all the approaches features are randomly assign to each 

ensemble member. Differences exist only in the parameter determination of feature 

subset size and the size of the ensemble. 

In random subspace, the ensemble classifier is constructed using the following 

algorithm: (1) Let the number of training objects be N and the number of features in 

the training data be D. (2) Choose L to be the number of individual classifiers in the 

ensemble. (3) For each individual classifier, I, choose d_l (d_l <D) to be the number 

of input variables for I. It is common to have only one value of d_l for all the 

individual classifiers. (3) For each individual classifier, I, create a training set by 

choosing d_l features from D without replacement and train the classifier (4) For 

classifying a new object, combine the outputs of the L individual classifiers by 

majority voting.  

According to Skurichina and Duin (2002), the random subspace is suitable for high 

dimensional data. Based on their experiments, if the size of training set is relatively 

small compared to the dimension of the data, random subspace gives good results. 

The evaluation has been performed by comparing this method with bagging and 
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boosting in constructing NMC ensembles. Random subspace showed good accuracy 

compared to the other two methods. Furthermore, random subspace is also able to 

overcome the instability and overfitting problems (Tao & Tang, 2004). Random 

subspace method is widely used in experimental studies on constructing classifier 

ensembles (Ahn, et al., 2007; Serpen & Pathical, 2009; Li et al., 2013). However, 

there is no control over the accuracy of each member classifier and diversity in the 

ensemble classifier with random feature decomposition. 

2.4.2 Feature Set Partitioning 

Feature set partitioning is a particular condition of feature decomposition. Feature set 

partitioning does not only search for single useful subsets. In this strategy, the 

original training set is decomposed into several subsets and each subset constructs 

classifiers. Thus, a classifier ensemble is trained in such a way that each classifier 

works on a different feature subset. This methodology is appropriate for the 

classification task with a large number of features (Rokach, 2006). Figure 2.2 

presents a Venn diagram of the search space of feature subset-based ensemble which 

loads the feature set partitioning seach space, and the second loads the search space 

of feature selection (Rokach, 2008). 
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Figure 2.2 Venn diagram of the search space of feature orientation (Rokach, 2008) 

Liao and Moody (2000) proposed feature set partitioning by pair-wise mutual 

information feature grouping. Statistically, correspond  features are assigned in to the 

same feature subset. For this aim, a hierarchical clustering algorithm is used. 

Furthermore, artificial neural networks are constructed for each group and run to get 

the final decision. Rokach and Maimon (2005) proposed decomposed oblivious gain 

(DOG). This partition searches by applying the incremental oblivious decision trees 

algorithm. One disadvantage is that the DOG method has no backtracking abilities. 

Furthermore, DOG starts the search beginning an empty partition, which can lead to 

a quite small subset of features. 

Ahn, et al. (2007) showed that the randomly partitioned input features to several 

subsets, thus each classification algorithm is assigned with different subsets, which is 

specially helpful for high-dimensional data and unbalanced data. Rokach et al. 

(2007) proposed to combine the results of different feature selection. The 

experimental studies show that integrating different feature selection algorithms may 

significantly enhance the accuracy of classification tasks. Earlier, Rokach and 

Maimon (2005) developed a general framework for disjointing feature set partitions. 
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Two were empirically tested using more than one dataset. This framework shows 

that feature set decomposition can improve the accuracy of decision tree. Rokach 

(2008) applied genetic algorithm (GA) for feature set partitioning. This algorithm 

has been tested with different datasets and the results show advantages compared to 

other methods and this algorithm accelerates the execution.  

According to studies that have been reported, feature set may be partitioned by 

random selection, statistical approaches and genetic algorithm. Ant colony 

optimisation has showed better performance than other popular heuristics are 

indicated in some references, for instance in comparison with the simulated 

annealing algorithm (Su et al., 2005; Carpaneto & Chicco, 2008; Chang, 2008) and 

with genetic algorithm (Su et al., 2005; Chang, 2008) as cited by Chicco (2011). 

Therefore, the use of ACO for  feature set partitioning is considered in this study. 

2.4.3 Ant Colony Optimisation for Set Partitioning Problem 

Ant colony optimisation (ACO) algorithm was introduced by Marco Dorigo in the 

early 1990s. This algorithm is inspired by the behavior of ants in finding the shortest 

path from the colony to the food. The ability of ants finding the shortest route is that 

they leave a pheromone on their tour paths. Pheromones are chemicals used to 

recognise other individuals or groups, and to assist the process of reproduction. In 

contrast to hormones, pheromones spread outside the body and can only be affected 

and recognised by other similar individuals of the same species. This process is 

known as pheromones relics stigmergy, the process of modifying an environment 

that not only aims to remember the way back to the nest, but also allows the ants to 

communicate with its colonies. However, the pheromone trail will evaporate and will 
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reduce the strength of its appeal. The longer ants commute through these pathways, 

the more likely the pheromones will evaporate. 

In order to get the optimal path, the ants take several processes: 

(1) At first, the ants walk around randomly, to find food. (2) When they find food, 

they will bring them back to their colony while providing a sign with the pheromone 

trail. (3) If other ants find the path, they will not need to travel randomly again, but 

will follow the trail. (4) Returning and reinforcing it if they eventually find food. (5) 

An ant which accidentally finds the optimal path will take this path faster than his 

colleagues, conduct more frequent round-trips, and consequently leave more 

pheromones on the paths taken slower. (6) Pheromones are highly concentrated and 

will attract other ant to change lanes to the most optimal path, while the other lines 

will be abandoned. (7) In the end, all of the ants that had sought different paths will 

switch to a single lane that turns toward the most optimal lane from the nest to the 

food (refer Figure 2.3) (Blum, 2005). 

 

Figure 2.3 The Shortest path finding capability of ant colonies demonstration (Blum, 

2005) 
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Ant colony optimisation algorithm has been developed over two decades. Ant-based 

algorithm is a group of algorithms that use the ant colony optimisation metaheuristic 

to handle the optimisation problem. Several variants of the ant colony optimisation 

algorithm have been developed as listed in Table 2.2.  

Table 2.2  

The Ant Colony Optimisation Variants 

ACO variant Main reference 

Ant System (AS) Dorigo (1992) 

Elitist AS (EAS) Dorigo, et al. (1996)  

Ant-Q Dorigo & Gambardella (1996)  

Ant Colony System (ACS) Dorigo & Gambardella1997)  

Max-Min Ant System (MMAS) Stützle & Hoos (2000)  

Rank-based (RAS) Bullnheimer et al. (1999) 

ANTS Maniezzo & Carbonaro (2000)  

Hyper-Cube Framework (HCF) Blum & Dorigo (2004) 

Omicron ACO G´omez & Bar´an (2005) 

 

Although many ACO variants have been developed, they are all covered by the ACO 

metaheuristic approach for solving combinatorial optimisation problems. The ACO 

metaheuristic is a framework for applying ant-based algorithm for the solution of 

optimisation problems.  A general description of the framework of the ACO 

metaheuristic (Blum, 2005) is depicted in Figure. 2.4. 
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Figure 2.4 The Working of the ACO metaheristic (Blum, 2005) 

There are various problem types that can be solved by ACO algorithm. Several 

examples of common problems are routing, assignment and scheduling (Dorigo & 

Stützle, 2004). Routing problem is a problem in sending a particular object through 

the right route. Some applied ACO to routing problems such as travelling salesman 

(Lizárraga et al., 2013), vehicle routing (Bell & McMullen, 2004) and network 

routing (Zhao et al.,2010). The Travelling Salesman Problem (TSP) is the problem to 

find the shortest possible route that will take him to every city exactly once. Vehicle 

routing problem is a problem to determine the fleet of vehicles in order to serve the 

customers, where each vehicle should visit the customers. Network routing is the 

problem of finding the minimum cost path in order to process the transfer of data 

packets from a source node to a destination node. 

Assignment problem is the problem of placing an appropriate resource for a specific 

activity such that it minimises the cost. Assignment problem is one of the problems 

often encountered by managers as a resource allocator. Here, the manager must 

assign a number of resources that have different capabilities in a number of different 
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tasks. Managers will face the prospect of working on a number of assignments for a 

number of tasks. Managers will assign the various possible assignments to a number 

of resources. Each assignment will have different advantages. Some examples that 

include the assignment problem are graph colouring (Bui & Nguyen, 2008), 

quadratic assignment (Hong, 2013), generalised assignment (Guo & Shi, 2012), 

channel assignment (Parshapoor & Bilstrup, 2013), course timetabling problem 

(Ayob & Jaradat, 2009). 

Scheduling problem is the problem of determining a set of activities that share the 

resources of limited capacity and need to be processed such that various constraints, 

primarily temporal, are satisfied. Scheduling problems arise in a variety of activities. 

Examples of the application of ACO in scheduling problem are job shop (Xing et al., 

2010), flow shop (Yagmahan & Yenisey, 2010), total tardiness (Berrichi & Yalaoui, 

2013), project scheduling (Chen & Zhang, 2013) and the total weighted tardiness 

(Aljanaby & Ku-Mahamud, 2011). 

The ant system (AS) algorithm is an example of an ant based-algorithm. Ant system 

was the original term used to refer to a range of ant-based algorithms, where the 

specific algorithm implementation was referred to as ant cycle. The so-called ant 

cycle algorithm is now referred to as ant system. This is an original and most famous 

in the ant-based algorithm that has been used and is proven to solve various 

optimisation problems (Zhao & Yan, 2009; Shang & Wang, 2010; Jevtic et al., 2010; 

Rebeiro & Enembreck, 2013).  

The ant system algorithm is the baseline of ant-based algorithms such as elite ant 

system, rank-based ant system, max-min ant system, and ant colony system. The ant 
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system algorithm consists of two main stages: the ant’s solution construction and the 

pheromone update. Pheromone values ij associated with edges, are initially set to a 

given value 0 , and the heuristic information     
 

   
  inversely proportional to the 

distance between the node i and node j. At each tour iteration, every ant in the colony 

build its solution according to the probability of moving from node i to node j as 

formulated in equation 2.16 
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where α and β are two parameters that weigh the relative importance of the 

pheromone trail and the heuristic information, and   
  is the feasible neighbourhood 

of ant k in node i. When all m ants have built a solution, the pheromone trail is 

evaporated according to 

                                                                                                                         

where 0 < ρ   1 is the pheromone evaporation rate. After the evaporation process, 

the ants increment the pheromone table 

        ∑     
                                                                                                 

 

   
 

with 

    
  {

 
                                                           ⁄

           
                  

where     
 
 is the amount of pheromone deposit by ant k, on the edge it has visited, 

which is proportional to the solution    (tour length) built by the ant. When the 

stopping criterion is achieved, the algorithm returns only one solution, which 

contains the best tour. 
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Set partitioning problems (SPP), deal with distributing the elements of a set (S) to a 

specific number of subsets according to a given purpose. The issue is how the 

elements in a set (S) can be partitioned into smaller subsets such that all elements in 

S is contained in one and only one partition. Let   {        } be a non-empty 

and finite set and   {             } be the set of feasible subsets of  . Let a set 

  {         }    defines a partition of   if and only if all of the following 

conditions hold: (1)      , (2) ⋃         and (3)      =            . Figure 2.5 

shows an example of a set partition.  

 

Figure 2.5 An Example of  a set partition 

Each element is included in exactly one of the subsets    that are part of the partition 

 .Let    be the cost associated with     Then ∑       is the cost of partition    In the 

Set Partitioning Problem (SPP) the objective is given   find the minimal cost 

partition    of  .  

Many real life problems can be formulated as SPP such as workforce planning, 

vehicle routing, truck delivery management, vehicle scheduling, bus driver 

scheduling, identification of subgroups in football leagues and team scheduling 
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(Peker et al., 2012). The well known application of set partitioning is airline crew 

scheduling (Mesquita & Paias, 2008), In flight scheduling, crew scheduling subtask 

takes as input a set of data pairs crew, where the selection of a crewmate is done that 

causes minimal cost and ensure that each flight is covered exactly once. 

Set partitioning problems are the most difficult (NP-Hard) problems among 

combinatorial problems to solve due to their complexities (Cetin et al., 2008).  Set 

partitioning is also a very constrained combinatorial optimisation problem (Crawford 

et al., 2009). The SPP has been studied extensively in modeling optimisation 

problems in the real world. In the literature, there have been several studies that have 

applied ACO for set partitioning. The following are some studies that applied ACO 

to SPP. 

Maniezzo and Milandri (2002) presented a paper to solve set partitioning using ACO 

algorithm in a paper entitled “An Ant-based Framework for Very Strongly 

Constrained Problems”. This paper presented an extended ant framework improving 

the effectiveness of ACO algorithm in to such problems. A new algorithm, named 

BE-ANT, is designed for solving any combinatorial optimisation problem in general, 

and very hard, tightly constrained in particular instances. The resulting framework 

can also be applied to problems in which the standard ACO framework is ineffective. 

Computational results are presented both on standard set partitioning problem 

instances and on vertical fragmentation problem instances. BE-ANT has a 

performance comparable with other solution methods. The computational results are 

still preliminary and need to be improved. 
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A set partitioning problem study named “ACO with Lookahead Procedures for 

Solving Set Partitioning and Covering Problems” was conducted by Crawford and 

Castro (2005). This study proposed on how to describe the SPP by a matrix 

representation. A vector (column) was used to represent a subset   . The vector 

contains only 0 and 1. The size of the vector is equal to m. The   element in the 

vector is 1 if    is in    and 0 otherwise. In this case, given a set of columns and rows, 

the objective is to choose a subset of columns covering all rows while minimising 

costs. The solution is represented by a subset of columns. The solution components 

are represented by nodes and not by arcs. Each ant starts with an empty set of 

columns. Then, the ant adds columns one at the time, based on pheromone values, 

until all rows are covered. Figure 2.6 describe the ACO algorithm to solve SPP. 

 

Figure 2.6 ACO algorithm for set partitioning problem (Crawford & Castro, 2005) 

Crawford and Castro (2006) undertook a study to solve set partitioning using ACO 

algorithm in a paper entitled “Ant Colonies using Arc Consistency Techniques for 

the Set Partitioning Problem”. The authors solved some benchmarks of Set 
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Partitioning Problem. The techniques used to solve them were hybridisations of ant 

colony optimisation with constraint programming techniques based on arc 

consistency. In the proposed hybrid algorithms, the authors explored the addition of 

this mechanism in the construction phase of the ants so they can generate only 

feasible partial solutions. Computational results are presented showing the 

advantages to use this kind of additional mechanism to ant colony optimisation.  

A study conducted by Randall and Lewis (2010) on set partitioning problem has 

implementaed  the ant colony optimisation-based algorithm. The effiectiveness of 

the algorithm was enhanced by adding feasibility restoration, solution improvement 

algorithms and candidate set strategies. These algorithms can be applied to complete 

solution vectors and as such can be used by any solver. Moreover, the principles of 

the support algorithms may be applied to other constrained problems. The 

experimental results provide that the ant colony optimisation algorithm can 

efficiently solve small to medium sized problems. Crawford et al. (2013) further 

presented a hybrid solver based on ant colony optimisation combined with arc 

consistency for solving the set covering problem (SCP) and set partitioning problem 

(SPP). The hybrid approach was tested with set covering and set partitioning dataset 

benchmarks. It was observed that the performance of ACO had been improved by 

embedding this filtering technique in its constructive phase. 

The ACO has been successfully applied in solving the set partitioning problem. Ant 

system is the most popular variant of ACO and is proven to solve various 

optimisation problems. It is expected that the ant system can be used for feature set 

paritioning in constructing classifier ensemble. Furthermore, to form a multiple 
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classifier combination scheme, an appropriate combiner is required to combine the 

classifier outputs. Therefore, several combiners that have been reported in the 

literature are reviewed in the next section. 

2.5 Combiner Construction 

The multiple classifier combination scheme involves two main steps: the classifier 

ensemble construction, and combiner construction. This section discusses the 

literature which is related to combiner construction. The  combiner (or fuser)  aims  

to create  a  fusion  mechanism  that  can  exploit  the diversity of  classifiers  and  

optimally combine them. Kuncheva (2004) categorised the operating level of 

classifier combination based on the output which is produced by the classifier, into 

three levels namely the abstract level, rank level and measurement level. At the 

abstract level (abstract-level combination methods) each classifier    produces a 

class label. Thus, for any object       to be classified, the L classifier outputs 

define a class label vector   [             ]
   The top candidate which is 

produced by each classifier is used. At the ranked-level combination methods, the 

output of each classifier    is a subset of the class label set, the ranking list of 

candidates which is produced by each classifier is used. At the measurement-level 

combination method, both ranked-level and similarity measurement or confidence 

value of each candidate are used. The combination method that works at abstract-

level can be applied to any classifier. In contrast, the ranked-level and the 

measurement-level can cause other difficulties when they are used in which each 

classifier individually gives the top candidate, or when combined classifier provides 
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a value of similarity measurements (probability, scores, similarity or dissimilarity 

etc.). 

Woods et al. (1997) separated combination scheme into two major types which are 

classifier fusion and classifier selection. This scheme has been further extended by 

Kuncheva (2001), in which the differences between static selection and dynamic 

selection are distinguished. This categorisation is further expanded into the selection-

fusion scheme (Kuncheva, 2002a). 

2.5.1 Classifier-fusion Scheme 

The classifier fusion scheme assumes that all of the classification algorithms are 

equally qualified and the outputs of all the classification algorithm are considered. 

Sharkey (2002) further separated the fusion scheme into fixed classifier fusion and 

trained classifier fusion. In the fixed classifier fusion scheme, the weight of each 

classifier in the classifier ensemble is fixed. There is no training process to determne 

the weight of each classifier. The most simple fixed classifier fusion is to implement 

simple operators such as sum-rule and product-rule to the outputs of all individual 

classifiers. Result will follow the max or min value of the final classification 

decision. In general, the benefit  of the fixed classifier fusion approach is its 

simplicity and lower computational cost. However the drawback is the lack of 

adaptability in the integration procedure (Chen & Kamel, 2007). 

Lincoln and Skrzypek (1989) proposed fixed classifier fusion namely simple 

averaging. In this combination rule, the final output of classifier combination is the 

average of each classifier output value. Some experiments have shown that the 

simple average is an effective approach (Hansen & Salamon, 1990; Xu et al, 1992; 
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Breiman, 1996). But the weakness of this technique is equal treatment to each 

member of classifiers, there is no emphasis on the performance of classifiers. 

Shilen (1990) proposed one combiner at the abstract level namely Dempster-Shafer 

method. This rule used a priori knowledge of information about the performance of 

each individual classifier. The Dempster-Shafer combines several different 

classifiers using a level of recognition and substitution rates as a priori knowledge 

(Lu & Yamaoka, 1994). Generally, if given an input pattern x, all the classifiers that 

have the same output is collected into a group of Ek where k is the number of 

different outputs. Thus, after this combination, each group Ek is equivalent to a new 

classifier with the recognition rate and substitution rate that is new. The next step is 

to combine the recognition and substitution rates Ek to calculate the confidence true 

output and confidence through the equivalent output of one classifier. However, this 

integration method requires heavy computation and gives low generalisation 

performance. 

Xu et al. (1992) proposed Bayesian method which is based on applying Bayes 

theorem by error consideration of each classifier. In this method, probabilistic 

summary for each class is defined earlier. However, one of the significant 

disadvantages of this method is that the mutual independencies between classifiers 

are ignored, but this does not always happen in the real application (Kim et al., 

2002). 

Ho et al. (1992) presented the Borda Count as a vote method on the rank level. In 

this method, each class which is produced by individual classifiers is ranked. The 

first rank is given the highest value and last rank is given the lowest value.  The 
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output is the class with the highest number of rank overall. The advantages of borda 

count method are its simplicity, lower computational cost and no training required. 

Particularly on classification problems with more than two classes, this method 

provides better results than majority voting, because more information is used. 

However the weakness of this method is the equal treatment for each classifier, so 

there is no emphasis on the classifier that gives more contribution to the output. 

In the trained classifier fusion, the weight of each individual classifier is considered 

in the decision. Generally, there is a training process to learn the weights of each 

classifier. The advantages of trained classifier fusion approach are its flexibility and 

potentially better performances than fixed classifier fusion; however the 

disadvantages are high memory and time requirements.  

Huang et al. (1994) proposed a combination method using the data transformation 

and Neural Network. The output value of each classifier is first converted into a 

likelihood measurement. The measurement value that has been transformed is 

inputted into the neural network layer, and then the neural network produces the final 

classification decision.  

Lee and Srihari (1995) showed the neural network that consists of multi-layer 

perceptrons trained continuously until the required accuracy is achieved for the 

combination classifier. Breve et al. (2006) combined classifiers by neural network 

for noisy data classification. However, one weakness of using the artificial neural 

network is expensive computational cost (Bishop, 1995; Lera & Pinzolas, 2002). 

Jacobs (1995) proposed the weighted averaging as another variant of simple 

averaging. This technique gives weight to each classifier before calculating the 
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average amount of each output from the classifier. In this technique, a weight is 

attached to each individual classifier. The final classification result is calculated 

based on the performance of each member of classifiers. The total weight is 1 and 

each classifier member gets a part of the total weight according to their performance. 

Therefore, the strength of each classifier is considered, but the weakness of this 

technique is sensitive to biased classifiers. 

Huang and Suen (1995) proposed a combination scheme known as behavior 

knowledge space (BKS) which can aggregate the decisions obtained from individual 

classifiers. BKS is the combination technique on the abstract level that combines the 

decisions which is generated by each classifier. BKS is followed by two phases 

namely learning phase and decision phase. During the learning phase, the training set 

is given to the K classifier to gather a priori knowledge information that is required 

on the decision phase. BKS combines the decision of the multiple classifiers by 

creating a lookup table for each nominee. The lookup table consists of all probable 

combinations of the class categories and each cell in the table is one probable 

combination. The final classification result is achieved by running a maximum 

operator on the set of class labels in each cell. Experiments on unconstrained 

handwritten numerals have shown that this method achieves promising performances 

and outperforms simple voting, Bayesian, and Dempster-Shafer technique. However, 

in order to provide good performance, BKS method needs to be trained with a large 

training dataset.  

Kuncheva and Jain (2000) presented two simple ways to use genetic algorithm on 

multiple classifier combination. The genetic algorithm is used as a combination 
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scheme to optimise the weights connection. The starting process is randomising the 

weight values gradually. The weight reflects the importance of each classifier. The 

classifiers used were linear discriminant classifier, quadratic discriminant classifier, 

and logistic classifier.  Kim et al. (2002) proposed a method for combining multiple 

classifiers based on genetic algorithm. The classifier used was the neural network. 

The method shows better performance than majority voting, bayesian, behavior 

knowledge space, borda count, weighted borda count, sum and neural network.  

Aslam and Montague (2001) proposed weighted borda count as a variant of the 

Borda Count which gives weight to the individual classifier. Weights are intended to 

address the performance of each individual classifier. An advantage of weighted 

borda count is that it does not require training. Although the weighted borda count 

considers individual classifier performance, but this technique still requires 

classifiers that are able to give ratings on the potential class. 

2.5.2 Classifier-selection Scheme 

In the classifier selection scheme, only one classifier is needed to correctly classify 

the input pattern. Select a single “best” classifier from base classifiers for the final 

decision. In order to do this, it is important to define a procedure to choose a member 

of the ensemble to make the decision. Kuncheva (2002a) further categorised the 

selection scheme into the static classifier selection and dynamic classifier selection. 

The subdivision depends on whether the selection is created dynamically or 

statically. In static classifier selection, the selection of the best classifier is specified 

during a training phase. In dynamic classifier selection, the choice of a classifier is 

made during the classification phase. One individual classifier among ensemble 
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classifiers is chosen. It is called “dynamic” because the classifier used critically 

depends on the test pattern itself.  

Woods et al. (1997) proposed the dynamic classifier selection by local accuracy. 

Other dynamic classifier selection approaches are the prior selection method, 

posterior selection method and dynamic classifier selection which are based on 

multiple classifier behavior (Giancito & Roli, 2000). The superiority of the dynamic 

selection method is that the error-dependency can be omitted (Chen & Kamel, 2007). 

A critical point in the dynamic classifier selection is that the choice of one individual 

classifier must exceed any other classifier, so it depends on the ability of the 

estimated generalisation from the classifier (Kuncheva, 2002a). Dynamic ensemble 

selection’s advantage is the ability to estimate distribution to a group of classifiers 

rather than a single individual classifier. So far, this scheme seems to work fine (Ko 

et al., 2008). 

2.5.3 Selection-fusion Scheme 

In the selection-fusion scheme, the selection and fusion actions are conducted in 

order to decide the best choice in classifying unknown input pattern. Normally, there 

is a certain criterion in establishing either the selection or fusion strategy. The basic 

idea is to choice the selection strategy if there is a best classifier which is really 

powerful in classifying the testing pattern. Otherwise, the combination strategy is 

used. Giancito & Roli (2001) developed a hybrid dynamic classifier selection 

method which is based on multiple classifier behavior and Kuncheva (2002b) 

developed a hybrid dynamic classifier selection by using decision templates.  Yang 

et al. (2009) proposed a combination algorithm which implemented classifiers’ 
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selection and combination simultaneously with particle swarm optimisation (PSO). 

The experiment shows that the proposed method gives the best performance of 5 out 

of 9 datasets and averagely outperforms majority voting rule, max rule, min rule, 

mean rule, median rule and product rule. 

2.5.4 Voting Approach for Classifier Combiner 

The most popular, fundamental and straightforward classifier combiner for class 

label output is the majority voting (Hansen & Salamon, 1990; Brown, 2010). 

Majority voting is based on Condorcet jury theorem, proposed in the context of 

social sciences since the end of 18
th

 century. The theorem proves that the judgment 

of a committee is superior to those of individuals, provided the individuals have 

reasonable competence. The application of majority voting for classifier combiner 

was first proposed by Hansen and Salamon (1990). The majority voting is often used 

to combine multiple classifiers in order to solve the problems of classification 

(Wanas & Kamel, 2002; Bryll et al., 2003; Li & Sun, 2009; Bolon-Canedo et al., 

2012; Hajdu et al., 2013).  

The majority voting is one of the fixed classifier fusion scheme. Several popular 

ensemble methods used the majority voting as a combiner as cited by  Yang et al. 

(2010). Figure 2.7 shows three popular ensemble methods, namely bagging 

(Breiman,  1996), boosting (Freund & Schapire, 1996) and random forest (Breiman, 

2001) using voting in combining classifiers outputs. 
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Figure 2.7 Three popular ensemble methods (Yang et al., 2010) 

This technique considers only the most likely class provided by each classifier and 

chooses the most frequent class label among the classifier outputs. In order to 

alleviate the problem of ties, the number of classifiers used for voting is usually odd. 

Here, every individual classifier votes for one class label. The class label that most 

frequently appears in the output of individual classifiers is the final output. The 

ensemble decision for the majority voting can be described as follows:  class label k 

is assigned to x if and only if 

∑          ∑                             {   }
 

   

 

   

                                   

One of the advantages of majority voting is the ability to combine the output of each 

classifier regardless of what classifier is used. The weakness of this combiner is that 

it does not consider the strength of classifier, in other words, the strength of each 

classifier is considered equal in vote.  

The weighted voting is a trainable version of majority voting proposed by Littlestone 

and Warmuth (1994). Unlike majority voting, this technique gives weight to each 

classifier before voting. The weight for each classifier is obtained through the 
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training process. To make an overall prediction, a weighted vote of the classifier 

predictions is performed to predict the most weighted class. Although this technique 

considers the strength of each classifier, but the lack of this technique is it only 

considers the first rank class or classes that most probably found in each classifier. 

Wanas and Kamel (2002) presented a feature based approach as well as training 

algorithm. In the feature based approach, each classifier is trained independently. 

This algorithm is based on the adaptive training algorithm for training neural 

network ensembles. This training approach helps optimise the weights to achieve 

better overall classification. Based on the experiment, the results on two benchmark 

problems and comparison to a single classifier show that the approach improved on 

classification accuracy. 

A novel multiple classifier combination that incorporates global optimisation based 

on a genetic algorithms to develop multiple classifiers was introduced by Stefano et 

al. (2002). The multiple classifier combination adopts the weighted voting approach 

to combine the output of the classifiers. The weights are obtained by maximising the 

performance of the ensemble. This multiple classifier combination has been tested on 

a handwritten digit recognition problem. Based on the results of an experiment 

conducted on 30,000 digits from the NIST database, it shows good performance. 

Gangardiwala and Polikar (2005) presented a modified approach in determining the 

weight for majority voting. The classifiers are weighted dynamically for each 

instance, depending on the estimated likelihood to correctly classify the instance. 

The idea of this approach is that the classifier, whose training dataset is closest to the 

given instance, has more information about the instance. Therefore it is more likely 
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to classify the instance correctly. The proposed algorithm provides improved 

performance compared to Adaboost based experiments over benchmark dataset. 

Zhang et al. (2006) proposed a new parallel multiple classifier combination method 

namely the maximum of posterior probability average with self-adaptive weight 

based on output vectors and decision template (MASWOD). This method aims to 

build a robust classifier combination and enhance the traditional weight calculated 

by the confusion matrix, using decision templates and error punishment factor. Each 

individual classifier outputs are treated as inputs to the second level classifier which 

combines the results of each first level classifier using a self-adaptive weight. This 

algorithm requires a training phase to train second level classifiers. Experiments 

were performed on the University of California, Irvine (UCI) machine learning 

repository datasets (Frank & Asuncion, 2010) to compare MASWOD with the 

classical Bayesian algorithm in order to combine several classifier outputs. 

Experimental results showed MASWOD algorithm can efficiently improve the 

performance of classification, where the classical Bayesian cannot always improve 

classification performance. This proves that the algorithm is efficiently and better 

because the self-adaptive weight can improve individual classifier’s influence on the 

decision making. 

The weighted majority voting has also been used as a combiner in predicting 

financial distress (Sun & Li, 2008). The voting weight was specified by a priori 

performance measure which was calculated from confusion matrix. In the 

experiment, 135 pairs of Chinese listed companies and 35 financial ratios were 

initially used. The stepwise discriminant analysis method was used in feature 
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selection. After voting weight determination, the performance of financial distress 

prediction was compared with single classifier approach. It was concluded that the 

use of weighted majority voting for financial distress prediction give higher accuracy 

and lower variance than any single classifiers. 

Mu et al. (2009) conducted an experiment for analysing the performance of a 

weighted voting technique to combine the output of multiple classifiers. The 

weighted voting technique is applied to face and voice recognition problem. The 

effectiveness of this technique was tested on images and voice benchmark dataset. 

The results show the benefit of developing weighted voting based multiple classifier 

combination. The weighted voting successfully achieved high identification rates and 

outperforms the majority voting. It can be concluded that the weighted voting 

technique can be used in combining any independent classifiers. 

A multi-weighted majority voting strategy to improve the performance of 

classification task for complex facial security application was proposed by Huang 

and Wang (2009). Support vector machine was used as the classification  algorithm. 

The hierarchical classification method and the multi-weighted majority voting 

strategy are two important parts in this strategy. Exerimental results indicate that the 

proposed algorithm improves the performance of face authentication when tested 

with a massive number of training and testing data. 

Wozniak (2009) presented an evolutionary approach to produce classifier ensemble 

based on weighted voting. Several classifier fusion methods were evaluated through 

experiments on seven (7) datasets from UCI. The goal of the experiment is to 

evaluate the ability of weight-based fuser. Experimental results justified the use of 
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weighted voting for classifier combination. Unfortunately, it is difficult to determine 

the weights in an analytic way. Hence the use of heuristic optimisation method  

seems a promising patterrn classification research direction. 

Kim et al. (2011) proposed a weight adjusted voting algorithm where a weight vector 

of classifiers and a weight vector of instances are used. Higher weihgt assigned by 

the instance weight vector to observations that are hard to classify. Larger weight 

assigned by the classifier weight vector to classifiers which provide better accuracy 

to classify instances. The final output of the classifier ensemble is determined by 

voting according to weight vector. The proposed weighted voting have been applied 

to bootstrap aggregation (Bagging). The performance has evaluated on twenty eight 

datasets. In general, the proposed weighted voting exceed the majority voting. 

Various combination schemes have been proposed in the literature. Majority voting 

is the most popular and commonly used as a combiner. This is because the generality 

of this combiner that can combine any type of classifier. The disadvantage of this 

combiner, is that, it has no consideration of the strength of each classifier. Therefore, 

a weighted voting that considers the performance of each classifier should be 

considered. 

2.6 Summary 

The parallel topology is the most commonly used in combining classifier. In this 

topology each classifier can be independent and complement each other to form a 

diverse ensemble classifier. The input feature manipulation approach also generates 

a set of diverse classifier. One of these approaches is known as feature set 

partitioning technique. Each classifier in a set of classifier is trained on different 
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projections of the original feature set.  The advantages of this method are: (1) All of 

the information available in the original training set is used. There is no irrelevant 

feature was removed in the original training set. Irrelevant features do not need to be 

removed in combining classifiers, since these features may possibly contain 

important information, furthermore to provide additional information and 

comprehensive results. (2) Disjoint feature set partitioning reduces the search space, 

which is important and useful compared to a non-disjoint, thus disjoint feature set 

partitioning approach gives greater possibility for reducing the execution time. Since 

the learning algorithm on disjoint approach lowers the computational complexity. (3) 

This way can be used to overcome the dimensionality problem by partitioning the 

original set of features into several disjoint feature subsets.  Thus, it requires a 

feature set partitioning algorithm for ensemble construction to determine the 

appropriate feature subsets and the ensemble size. The ant system algorithm is 

considered to partition feature subset because the ant system has been proven to 

solve SPP problems. Finally, in order to provide better results, it is necessary to 

combine this ant system with an appropriate combiner. The weighted voting is 

considered to combine the classifier outputs because the generality of this combiner 

that can combine any type of classifier and considers the performance of each 

classifier in combining classifier outputs. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter presents the framework and methodology of this reseach to develop an 

improved multiple classifier combination scheme. Furthermore base classifier as a 

forming homogeneous classifier ensemble, the dataset description and evaluation 

measure are also presented in this chapter. The rest of this chapter is organised as 

follows: Section 3.2 discusses the research framework. Section 3.3 presents the base 

classifier that is used to construct classifier ensemble. Section 3.4 gives datasets’ 

description which is used in experiments. Section 3.5 provides evaluation measures 

that are used in this study. Finally, section 3.6 summaries this chapter. 

3.2 The Research Framework 

The research framework is the roadmap of the research that aims to provide guidance 

to researchers for conducting research (Forrester, 2006). In accordance with the 

purpose of this research which is to develop an improved multiple classifier 

combination scheme, thus to achieve this goal, there are four phases  of the research 

work. For every phase, there is an objective that will be achieved in this study. The 

research framework phases from the first to the end as depicted in Figure 3.1. 
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Figure 3.1 Research framework phases 
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The four main phases of the research work are: (1) develope an algorithm for 

classifier ensemble construction; (2) formulate compactness measure for a set of 

classifier; (3) construct a  technique for combining classifier outputs; and (4) 

evaluate the improved multiple classifier combination scheme. Each phase of the 

framework has its own research method. The methods are described in the following 

section.  For the evaluation experiments were conducted using benchmark datasets. 

Multiple classifier combination consists of a set of classifiers (or classifier ensemble) 

and a combiner for combining classifier outputs (Wozniak et al., 2014). Figure 3.2 

depicts the standard structure of the multiple classifier combination.  

 

 

Figure 3.2 Standard structure of multiple classifier combination (Wozniak et al., 

2014) 

Design of a multiple classifier combination is to combine a set of classifier with a 

combiner. Standard multiple classifier combination design process includes three 

phases which are classifier ensemble construction, combiner construction and 

performance evaluation (Yang et al., 2004; Wozniak & Zmyslony, 2010). In this 
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study, enhancements have been performed on the classifier ensemble construction 

and the combiner. In addition, a formulation to calculate the compactness is 

proposed. Furthermore the relationship of compactness in a set of classifier with the 

ensemble accuracy is tested.  

3.2.1 Classifier Ensemble Construction 

This section explains the research method to develop an algorithm in constructing 

classifier ensemble. The research method is conducted as follows: (1) The proposed 

ant system-based feature set partitioning algorithm was developed; (2) 

Homogeneous classifier ensemble with different features was constructed by 

proposed algorithm and majority voting technique is used as combiner; (3) 

Classification experiments on constructed classifier ensemble was carried out on 

several benchmark datasets; (4) The cross validation method was applied for 

prediction accuracy calculation; (5) Finally the experiment results were evaluated 

and compared to random partitioning method. The steps of the research method on 

classifier ensemble construction are depicted in Figure 3.3. 
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Figure 3.3 Steps of classifier ensemble construction 

3.2.2 Compactness Measurement 

This section explains the research method on compatnness measurement. The 

research method is conducted as follows: (1) The proposed compactness measure 

was formulated to measure diversity-accuracy in a set of classifier; (2) Classification 

experiments on benchmark dataset were performed by using constructed classifier 

ensemble, where standard majority voting is used as combiner; (3) The compactness 

value versus ensemble accuracy were calculated where cross validation was used for 

validation;  (4) Finally, the relationship between proposed compactness measure and 

ensemble accuracy was evaluated by regression test. Figure 3.4 shows the 

experimental research method for compactness measurement.  
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Figure 3.4 Steps of compactness measurement 

3.2.3 Combiner Construction 

This section explains the research method on combiner construction. The steps of 

research method are as follows: (1) A weighted voting technique was created as a 

combiner which will be suitable to combine several outputs of individual classifiers; 

(2) The proposed technique was applied to combine constructed classifier outputs; 

(3) Classification experiments were performed on benchmark datasets;  (4) The 

accuracy of multiple classifier combination was calculated to test this proposed 

combiner and (5) Finally the experiment results were evaluated and compared to 

majority voting combiner. Figure 3.5 shows the experimental research method to 

create combiner.  
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Figure 3.5 Steps of classifier combiner construction 

3.2.4 Evaluation of the Proposed Multiple Classifier Combination Scheme 

This section explains, the steps of research method to develop an improved multiple 

classifier combination scheme are described. The steps of research method are as 

follows: (1) The ant system-based feature set partitioning algorithm at ensemble 

construction part was used to build diverse and accurate ensemble; (2) The weigted 

voting technique at combiner part was used for dynamically combining multiple 

classifier outputs; (3)  Classification experiments were performed on several 

benchmark datasets;  (4) The accuracy of constructed multiple classifier combination 

was calculated to test the suitability of ant system-based feature set partitioning 

algorithm and weighted voting in the combination scheme and (5) Finally the 

performance of constructed multiple classifier combination by proposed combination 
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scheme were evaluated and compared to the original single classifier and other 

multiple classifier combination on the same base classifier and dataset in terms of 

accuracy. Figure 3.6 shows the experimental research method for multiple classifier 

combination scheme development.  

 

Figure 3.6 Steps of multiple classifier combination scheme development 

In order to evaluate the proposed multiple classifier combination scheme, hence 

several experiments were performed to test their ability. For the simplicity of 

experiments without affecting the focus of research on developing multiple classifier 

combination scheme thus the homogeneous approach i.e., classifier combination 

formed using a single model type (or identical classifier models) (Kuncheva, 2001) 

was used. Four homogeneous ensembles is constructed by four single classifier 
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which are nearest mean classifier (NMC), naïve bayes classifier (NBC), k-nearest 

neihbour (k-NN) and linear discriminant analysis (LDA) . Four single classifiers are 

not combined to form a better ensemble, but each classifier is used as base classifier 

to form homogenous ensemble with different feature subset. Therefore there are four 

homogeneous ensemble classifiers (e.g. multiple NMC combination, multiple NBC 

combination, multiple k-NN and multiple LDA combination). Figure 3.7 shows the 

four homogeneous ensembles were constructed to evaluate the proposed multiple 

classifier combination scheme. 

 

Figure 3.7 The four homogeneous ensembles for combination scheme evaluation 
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3.3 Base Classifier Description 

This section presents a brief description of base classifier that are used in the 

experiments. Four kinds of single classifiers are selected as base classfier. These 

classifiers are used in several previous experimental studies to construct  a 

homogeneous ensemble classifier. 

The Nearest Mean Classifier is a famous fast and simple classifier. The Nearest 

Mean Classifier has been effectively applied to various classification tasks and 

showed robust and powerful (Shin & Kim, 2009). Several experimental studies on 

ensemble diversity and accuracy used the NMC (Skurichina et al., 2002; Kuncheva 

et al., 2002; Talha & Solung, 2013).  

Naïve bayes classifier (NBC) is useful, efficient for solving classification problems 

(Farid et al., 2013). Naive Bayes classifier is frequently used in studying classifier 

ensemble (Hongbo & Yali, 2008; Zanda, 2010; Bolon-Canedo et al., 2012). 

Simulation results show that the ensemble of naive bayes has considerably better 

accuracy than several classification algorithms such as the Support Vector Machine 

and artificial neural networks based on cancer dataset (Margoosian & Abouei, 2013).  

The k-nearest neighbour classifier (k-NN) is one of the most commonly used in 

constructing classifier ensemble and it is easy to find in the literature (Tahir & 

Smith, 2010; Hamzeloo et al., 2012; Parvin & Parvin, 2012; Ko & Sabourin, 2013). 

Thus the performance of the proposed ensemble construction method can be 

evaluated by comparing it with other ensemble methods.   
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Linear discriminant analysis is a strong and stable classifier, which means that small 

changes in the training set could not cause large changes in the classifier output. 

However, it is necessary to test the ability of the method to induce diversity for the 

improvement of LDA performance. LDA is one of widely-used techniques in pattern 

classification. Several experimental studies on ensemble diversity and accuracy used 

the LDA (Kong et al., 2005; Wang et al., 2012; Fook et al., 2013).  

3.4 Dataset Description 

This section presents a brief description of several benchmark datasets that are used 

in the experiments. A collection of 9 (nine) datasets taken from UCI repository are 

used in the experiment to test and evaluate the performance of the improved multiple 

classifier combination (MCC). The datasets involved are haberman, iris, lenses, 

liver, ecoli, pima indians diabetes, tic-tac-toe, glass, breast cancer (Wisconsin). A 

summary of  datasets used are presented in Table 3.1. 

Table 3.1 

Summary of Datasets Used in the Experiments 

No. Datasets 
Number of  

Instances 

Number  of 

Classes 

Number  of 

Features 
Features Types 

1 Haberman 306 2 3 Integer 

2 Iris 150 3 4 Real 

3 Lenses 24 3 4 Categorical 

4 Liver 345 2 6 Categorical, Integer, Real 

5 Ecoli 336 8 7 Real 

6 
Pima Indians 

Diabetes 
768 2 8 Integer, Real 

7 Tic-Tac-Toe 958 2 9 Categorical 

8 Glass 214 6 9 Real 

9 
Breast Cancer 

(Wisconsin) 
699 (683) 2 9 Categorical 
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The haberman dataset contains the survival status of the patients who had undergone 

breast cancer surgery. This dataset has 306 instances (or samples) each of which has 

3 input features and 2 output classes.  The values of feature 1 ranges from 30 to 83, 

feature 2 from 58 to 69, and feature 3 from 0 to 52. This is associated with the age of 

the patient at the time of operation, patient's year of operation and the number of 

positive axillary nodes detected. The output is in categorical form, which is either 0 

or 1. This is indicated to survival status (1 = the patient survived 5 years or longer 

and 2 = the patient died within 5 years). For this data, 225 patients survived more 

than 5 years and 81 patients died within 5 years.  In other words, 74.5 % of instances 

are 0 whereas 26.5 % of instances are 1.  

The iris dataset or Fisher's iris data consists of 50 instances from each of three 

classes of iris plant (setosa, virginica and versicolor). There are no missing values. 

Four features were measured from each instance. These features are the sepal length 

in cm, sepal width in cm, petal length in cm and petal width in cm. Based on the 

combination of the four features, most ensemble methods can distinguish among the 

irises. All four features for this dataset are continuous (real).  

The lenses dataset contains 24 instances of ophthalmic data analysis, to predict an 

appropriate lens by determining relevant features of the patient. The dataset has 4 

input features which are: Age of the patient: (1) young, (2) pre-presbyopic, (3) 

presbyopic; Spectacle prescription: (1) myope, (2) hypermetrope; Notion on 

astigmatic: (1) no, (2) yes; Tear production rate: (1) reduced, (2) normal. There are 3 

kinds of classes that give the appropriate lens prescription for patient which are: (1) 

the patient should be fitted with hard contact lenses, (2) the patient should be fitted 
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with soft contact lenses; (3) the patient should not be fitted with contact lenses. The 

class distribution of this dataset: 4 patients with hard contact lenses, 5 patients with 

soft contact lenses and 15 patients who do not need lenses.  

The liver dataset was originally created by BUPA Medical Research Ltd. This 

dataset has 345 instances and 6 features which are taken from blood tests. The 

features are: mean corpuscular volume, alkaline phosphotase, alamine 

aminotransferase, aspartate amino transferase, gamma glutamyl transpeptidase, 

number of half-pint equivalents of alcoholic beverages. The selector field is used to 

split data into two sets. This dataset was separated into two classes which are 

whether liver disorder exists or not.  

The ecoli dataset are characterised by features calculated from the amino acid 

sequences. This dataset consists of 768 instances. The class distribution of this 

dataset: 143 patterns of cytoplasm (cp), 77 of inner membrane without signal 

sequence (im), 52 of periplasm (pp), 35 of inner membrane without uncleavable 

signal sequence (imU), 20 of outer membrane without lipoprotein (omL), 5 of outer 

membrane with lipoprotein (omL), 2 of inner membrane without lipoprotein (imL) 

and 2 patterns of inner membrane with cleavage signal sequence (imS). All 7 

features for this dataset are the numerical (continuous) type.  

The pima indian diabetes dataset is a collection of medical diagnostic reports of 768 

examples from a population living near Phoenix, Arizona, USA. The patients in the 

dataset are females aged at least twenty-one (21) years old. The problem is to predict 

whether a patient would test positive for diabetes given a number of physiological 

measurements and medical test results according to World Health Organisation 
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criteria. The original dataset consists of 768 instances and divided into two classes: 

tested positive for diabetes (268 examples) and not tested positive for diabetes (500 

examples). All 8 features for this dataset are the numerical type. 

The tic-tac-toe dataset encodes the complete set of possible board configurations at 

the end of tic-tac-toe games. There are 958 instances divided into 2 classes: negative 

(332 instances) and positive (626 instances). All 9 features for this dataset are 

nominal or categorical type.  

The glass dataset is used to differentiate seven kinds of glasses by the basic materials 

such as iron, silicon, calcium and aluminum. The categories include vehicle windows 

non float processed, vehicle windows float processed, building windows non float 

processed, building windows float processed, tableware, headlamps and containers. 

All nine features for this dataset are of numerical type.  

The breast cancer (Wisconsin) dataset is one of the breast cancer databases at UCI, 

collected at the University of Wisconsin. Breast cancer wisconsin (Original) 

Dataset: This is the breast cancer dataset. The objective is to predict the class using 9 

input features. This dataset has 699 instances each of which has 9 categorical 

features. There are two classes: benign (458 examples) and malignant (241 

examples). This dataset has 16 instances with missing values which should be 

removed from the dataset. Finally, this dataset has 444 benign instances and 239 

malignant instances, thus in total there are 683 instances. 
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3.5 Evaluation Measures 

Any classification prediction results obtained must be evaluated for determining the 

classification performance. There are several standard methods for evaluation. Only 

the measures used in this study will be presented as follows. 

3.5.1 Cross Validation 

The k-fold cross validation (Kohavi, 1995) was used to estimate the classification 

accuracies. A set of labeled samples from dataset randomly partitioned into k disjoint 

folds of equal size. Then, one of the k folds is randomly selected as the testing set 

and (k - 1) the remaining folds as the training set with the assumption that there is at 

least one sample per class.  

3.5.2 Classification Accuracy Measurement 

The classification accuracy (ac) is the ratio of numbers of all correctly classified 

instances and the total number of instance using the following formula: 

    
                                        

                        
                                            

 

Finally, the procedure calculates the estimation of classification accuracy, by 

dividing the total of all classification accuracies by the total number of folds or 

rounds. Now the accuracy of cross validation estimation is defined as follows:  

      
 

 
∑    

 

   

                                                                                                  

where iacc  is the classification accuracy of round i and k is the number of folds. A 

common choice for k-fold cross validation is k=10. Extensive experiments have 



 

 64 

shown that ten (10) is the best choice to get an accurate estimate (Yang & Browne, 

2004; Wozniak, 2008; Wozniak, 2009) Therefore in this research, the experiments 

are conducted on the 10 fold cross-validation method.  Figure 3.6 illustrates the use 

of 10 fold cross-validation method.  

 

Figure 3.8 The 10-fold cross validation method 

Figure 3.8 shows that each round a certain accuracy was obtained for example 93%, 

96%, 94%, 95% and onwards until the tenth round. However final accuracy was 

obtained by averaging the accuracy of the whole round. 

3.6 Summary 

The main objective of this research is to develop an improved multiple classifier 

combination scheme for pattern classification. To achieve the main objective, a 

framework has been proposed to guide the study. Experimental research method has 

been adopted in conducting this study. Four selected single classifiers were used as 

base classifier to construct homogeneous ensemble classifier. The experiments are 

conducted on several UCI benchmark datasets. The cross validation method is used 

to test and evaluate the performance of the improved multiple classifier combination 
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scheme. Finally the performance of developed multiple classifier combination 

scheme were evaluated and compared to the original single classifier and other 

multiple classifier combination on the same base classifier and dataset in terms of 

accuracy. 
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CHAPTER FOUR 

ANT SYSTEM-BASED FEATURE SET PARTITIONING FOR 

CLASSIFIER ENSEMBLE CONSTRUCTION 

4.1 Introduction 

One of the approaches that have been used to create a set of diverse classifier is the 

input feature manipulation. The characteristic of input feature manipulation approach 

is to train each classifier on different feature subsets (usually, the same classifier is 

used). Feature set partitioning is a technique that manipulates the input feature set in 

creating the ensemble. Figure 4.1 depicts the general framework of feature set 

partitioning. However, it is difficult to determine how to partition the feature set to 

several subsets which may lead to a better classifier ensemble.  

 

Figure 4.1 General framework of feature set partitioning (Maimon & Rokach, 2005) 

This chapter presents ant system-based feature set partitioning algorithm in 

constructing classifier ensemble. In this algorithm, feature partition on the training 

sets is performed in order to build a classifier ensemble. Each classifier is trained on 

different partitions of features. All available features in the training set are utilized. 

There are no irrelevant features in the training set that are removed. The irrelevant 

features do not need to be removed in combining classification algorithm, since this 

removed feature may contain important information (Wang et al., 2005). 
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4.2 Proposed Ant System-based Feature Set Partitioning Algorithm 

An improved algorithm is developed to train each classifier on different feature set 

partition using ant colony optimisation which leads to a better classifier ensemble. In 

this proposed algorithm namely Ant System-based Feature Set Partitioning (ASFSP), 

classifier ensemble is constructed based on feature set partitioning technique. Feature 

set on the training set is partitioned into different feature subset. There is no feature 

in the training set is eliminated.  Furthermore each classifier in the ensemble is 

trained on a different projection of the original training set to induce diversity.  The 

flowchart of the generic ant system-based feature set partitioning for classifier 

ensemble construction is provided in Figure 4.2.  

 

Figure 4.2 Flowchart of the generic ant system-based feature set partitioning algorithm 
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In the implementation process of ACO, the required inputs are features in dataset. 

The pheromone table is initialized followed by the generation of the ants. Each ant 

then builds a tour in the form of a feature partition which is considered as a possible 

solution. The tour is evaluated if it contains all the features and no overlap features. 

Otherwise the next feature subset is selected until the feature partitions have been 

collected. This will be done repeatedly until a possible solution is built. Furthermore 

partitioned feature is used to construct classifier ensemble. The class assignment is 

performed using constructed classifier ensemble by using majority voting combiner. 

The best partition will be formed if classification accuracy reaches 100% or the 

maximum iteration limit has been reached. The pheromone is then updated and 

another ant is generated if any criterion is not fulfilled. The whole process is 

repeated until the best partition is formed. The number of classifiers is determined by 

the number of feature set partitions are formed. Figure 4.3 presents the generic 

pseudocode of proposed algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Generic pseudocode for ant system-based feature set partitioning 

%Input  : Features in Dataset 
%Output : Best Feature Partition, classification accuracy 

Begin 

[b,a]=loaddata('dataset.xxx');%load features in dataset 
[n nod d h]=generate_problem(a) % generate graph problem 

[t,iter,alpha,beta,rho,m,el]=initialization(n); %initialization 

for i=1:iter 
       [app]=generate_ants(m,n) %generate ants 

       [tabu]=build_tour(app,m,n,nod,h,t,alpha,beta)%build tour 

       [clust]=konversi(tabu)%build tour 
       [jalur]=subtitutes(nod,clust)%collect partition 

       [jalur error accuracy]=ensemble_accuracy(b,a,jalur) % class assignment using ensemble classifier 

       [maxaccuracy(i),number]=max(accuracy) 
       besttour(i,:)=jalur(number,:)  

       if max(accuracy)==100 

           break 
       end 

       [t]=ants_traceupdating1(t,clust,accuracy,rho);%update pheromone 

 end 
[k,l]=max(maxaccuracy) 

accuracy=k 

best_partition=[{besttour{l,:}}]%return best partition 
End 
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Kuncheva and Whitaker (2001) showed the ability of feature subspace method to 

improve performance in multiple classifier combination. In their study the set of 

features is partitioned and each subset is used by classifier in the team. Breast Cancer 

dataset from UCI repository was used in their experiments. All partitions of a set of 

10 features are enumerated randomly into 3 subsets containing (4, 4, 2) features and 

(4, 3, 3) features. The chances of the ensemble classifier outperforms the single best 

classifier if the feature space is partitioned randomly has been showed. In this study, 

the improvement of the ensemble classifier performance is obtained by using non-

randomly feature space partitioning. Ant colony optimisation was used in the 

proposed combination scheme for determining feature subsets to produce the best 

performance. 

Santana et al. (2010) have applied and compared ACO and GA in constructing 

classifier ensemble. Experiments conducted by constructing heterogeneous 

ensembles that used three classifier which are k-nearest neighbour (k-NN), decision 

tree (DT) and neural network (NN). Based on its structure, the ensemble can be 

divided into two approaches i.e: heterogeneous and homogeneous. In the first 

approach, different types of classifiers are combined as an ensemble. On the other 

hand, for the second approach, same types of classifiers are trained by different 

feature subsets to construct an ensemble (Kuncheva, 2001). In their experiments, 

heterogeneous ensemble structure is constructed using different training datasets 

(feature selection technique) and the ensemble size is predetermined. In this study, 

homogeneous ensemble structure is constructed by training the classifiers with 

different feature subsets (feature partitioning technique) and the ensemble size is not 

specified. Although both of these studies used the ACO-based algorithm, ACO-
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based algorithm is used to perform feature selection technique, where several 

features may be removed. In this study ACO-based algorithm is used to perform 

feature partitioning technique where no features are removed. 

ACO  in the context of ensemble and partitioning has been introduced by Parvin and 

Bidgoli, (2011) and also by Parvin and Beigi, (2011).  Both research used of ACO-

based algorithm and ensemble approach to partition data. The purpose of this 

research is different from those studies. This study aims to propose a classifier 

ensemble construction where ACO-based partitioning technique is used to form 

different feature subsets. Different feature subset is used to train several single 

classification algorithms to generate diversity (Kuncheva, 2001). Their research aims 

to propose a consensus function to aggregate a set of partitions to partition data. 

Different partitions were produced by several single clustering algorithms which is 

also called the cluster ensemble (Strehl and Ghosh, 2002). The approach used in this 

study is vertical partitioning of dataset while their study used horizontal partitioning 

of dataset. In vertical partitioning, the dataset is partitioned into a number of datasets 

that have the same number of instances samples as the original dataset, each 

containing a subset of the original feature set.  In horizontal partitioning the dataset 

is partitioned into several datasets that have the same features as the original dataset, 

each containing a subset of the instances in the original dataset (Rokach, 2010). 

However, The ACO can automatically determine the number of partitions generated. 

So it can determine the number of clusters and number of classifier accordingly. 

Table 4.1 below shows the comparison of both studies. 
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Table 4.1  

The Comparison of Both Studies 

This study Parvin et al., 

Classifier ensemble approach Clustering ensemble approach 

Vertical partitioning approach Horizontal partition approach 

To construct a set of classifier  To aggregate a set of partitions 

Automatically determine the number of classifier  Automatically determine the number of cluster 

 

4.3 Experiments on Classifier Ensemble Construction 

Four sets of experiments were conducted to apply the proposed ant system-based 

feature set partitioning algorithm in constructing classifier ensemble by using 

MATLAB. The homogeneous classifier ensemble approach (Kuncheva, 2001) is 

constructed to simplify the experiments without affecting the objective of the study. 

Four homogeneous classifier ensembles with different feature subsets which were 

constructed are homogeneous NMC ensembles, homogeneous NBC ensembles, 

homogeneous k-NN ensembles and homogeneous LDA ensembles. For purposes of 

comparison, the standard majority voting combiner (Hansen & Salamon, 1990) is 

used in the experiments. The majority voting is the most commonly used combiner 

to combine classifier outputs (Bay, 1998; Bryll et al., 2003; Li & Sun, 2009; Bolon-

Canedo et al., 2012; Hajdu et al., 2013). Ant system as a particular version of ant 

system-based algorithm is used as a case study in the experiments. This original and 

most famous algorithm in the family of ACO has been used and proven to solve SPP 

problems (Crawford et al., 2009; Lizárraga et al., 2013) and various optimisation 

problems (Dorigo & Gambardella, 1997; Shang & Wang, 2010; Jevtic et al., 2010). 

The experiments are performed on nine (9) benchmark datasets from UCI machine 

learning repository to test the performance of constructed classifier ensembles.  
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To obtain powerful performance estimation and comparisons, a large number of 

estimates are always preferred. In k-fold cross-validation, only k estimates are 

obtained. A commonly used method to increase the number of estimates is to run k-

fold cross-validation multiple times. Repeating 10 (Ten) times of the 10-fold cross-

validation approach is used in testing classification accuracy. Several recent studies 

used ten runs of 10-fold cross validation to obtain performance estimation (Burton et 

al., 2012; Medrano-Gracia, et al., 2013; Zhao et al., 2013; Fook et al., 2013). The 

following subsections present the experimental results.  

The goal was to empirically evaluate the performance of proposed ant system-based 

feature set partitioning algorithm in terms of classification accuracy. For this 

purpose, the four sets of experiments proceed in two treatments. In the first 

treatment, random subspace (Ho, 1998; Skurichina & Duin, 2002; Tao & Tang, 

2004; Serpen & Pathical, 2009; Li et al., 2013) applied to construct classifier 

ensemble. The random subspace assigns a random subset of features to train 

individual classifiers and also using the majoriting voting combiner. In random 

subset approach each classifier is trained with random subsets of the original feature 

set. This process is repeated to produce an ensemble with a number of classifiers. In 

this study, a number of classifier is set with the aim to see its influence on the 

accuracy of the ensemble. In the second treatment, the proposed algorithm applied to 

construct classifier ensemble. During the experiments, the average of the 

classification accuracy of ensemble classifier which is constructed by the ant system-

based feature set partitioning is compared to the average of the classification 

accuracy of ensemble classifier which is constructed by the random subspace.   
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4.3.1 Experimental Results on NMC Ensembles 

Experiments were conducted to test the ant system-based feature set partitioning in 

constructing homogneous NMC ensembles. Tables 4.2 and 4.3 depict the average 

and standard deviation of the classification accuracies of constructed homogeneous 

ensembles based on RS and ASFSP respectively.  

Table 4.2 

Classification Accuracy of  NMC Ensembles by RS 

Experiment # Haberman Iris Lenses Liver Ecoli Pima Tic-Tac-Toe Glass Breast Cancer 

1 67.97 90.00 70.83 55.36 80.95 67.58 66.08 44.39 96.34 

2 73.86 92.67 62.50 60.87 82.74 69.53 63.67 43.93 96.34 

3 69.93 92.00 75.00 54.78 80.36 65.89 62.42 43.93 96.63 

4 73.53 92.67 66.67 55.94 82.74 64.32 63.36 46.73 96.63 

5 58.82 90.67 66.67 57.68 80.36 70.31 65.76 42.99 96.34 

6 71.90 93.33 70.83 57.10 80.36 63.02 63.57 44.39 96.63 

7 71.90 92.67 66.67 55.65 82.74 69.92 66.49 44.86 96.49 

8 69.61 92.00 70.83 55.94 81.85 72.27 64.41 44.39 96.49 

9 70.92 90.67 54.17 55.07 81.85 68.75 64.93 44.39 96.34 

10 74.84 94.00 58.33 55.94 82.74 67.19 64.20 44.39 96.78 

Average 70.33 92.07 66.25 56.43 81.67 67.88 64.49 44.44 96.50 

Standard deviation 4.56 1.27 6.35 1.79 1.07 2.86 1.31 0.95 0.16 

 

Table 4.3 

Classification Accuracy of NMC Ensembles by ASFSP 

Experiment # Haberman Iris Lenses Liver Ecoli Pima Tic-Tac-Toe Glass Breast Cancer 

1 69.93 94.67 70.83 64.06 81.25 73.05 73.17 52.80 97.22 

2 71.57 94.67 66.67 62.61 82.14 72.79 72.76 53.27 97.22 

3 71.24 94.67 62.50 64.35 81.25 72.53 72.65 55.14 97.22 

4 73.86 94.67 70.83 65.51 82.74 72.92 74.01 52.80 97.22 

5 67.97 95.33 70.83 64.64 81.25 73.70 72.86 52.34 97.22 

6 68.63 94.67 62.50 64.35 82.74 73.18 72.86 52.34 97.36 

7 69.93 94.67 70.83 63.77 82.14 72.53 72.86 52.80 97.22 

8 70.92 94.67 58.33 64.35 82.14 73.96 72.65 53.27 97.22 

9 69.28 92.00 66.67 64.64 81.25 72.79 73.28 54.21 97.22 

10 70.59 94.67 66.67 64.64 81.25 72.79 72.96 53.27 97.22 

Average 70.39 94.47 66.67 64.29 81.82 73.02 73.01 53.22 97.23 

Standard deviation 1.67 0.89 4.39 0.75 0.63 0.47 0.41 0.87 0.04 
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Based on the experimental results, it can be seen that a small deviation of the 

classification accuracies was obtained which showed that the experiments were 

accurate and good. The average of accuracy of the newly constructed homogeneous 

NMC ensemble by the proposed algorithm is compared with the average of accuracy 

of constructed homogeneous NMC ensembles by the random subset approach. The 

comparison between ant system-based feature set partitioning and random subspace 

to construct homogeneous NMC ensembles is shown in Table 4.4 and in Figure 4.5.  

Table 4.4  

Comparison of RS and ASFSP in Constructing NMC Ensembles 

Dataset 

Classifier Ensemble Construction 

Random Subspace Ant System-based Feature Set Partitioning 

Average of 

Accuracy  

(%) 

Feature Subset 
# of 

classifier 

Average of  

Accuracy  

(%) 

Feature Partition 
# of 

classifier 

Haberman 70.33 [1 3][1 2 3][[1 2][3] 4 70.39 [1][2 3] 2 

Iris 92.07 [1 2 3 4][1 2 3][1 3 4][3] 4 94.47 [1][2 3][4] 3 

Lenses 66.25 [2 3 4][1 3][1 3 4][2] 4 66.67 [1 2 3 4] 1 

Liver 56.43 [1 4 5][5 6][1 2 3 4 5 6][2 3 4 5] 4 64.29 [1 2 4 6][3][5] 3 

Ecoli 81.67 [2 5 7][1 2 4 5 7][1 3 7][2] 4 81.82 [1 2 3 4 5 6 7] 1 

Pima 67.88 [1 2 3 6 7 8][3 4 5][3 6 7][2 3 5 6] 4 73.02 [3 4 5 7][1 6][8][2] 4 

Tic-Tac-Toe 64.49 [1 4 5 9][1 2 5 6][2 3 5 6][1 2 3 4 5 7 8 9] 4 73.01 [2 4 5 8][7][3 6 9][1] 4 

Glass 44.44 [2 3 5 6 9][3 7 8 9][1 2 3 4 8 9][1 3 5 6 8] 4 53.22 [2 3 5 7][1 4 8 9][6] 3 

Breast Cancer 96.50 [6 7 8 9][3 4 6 8][1 2 3 4 6 7 8][1 4 5 8] 4 97.23 [1 2 3 4 5 7 9][6 8] 2 

 

Investigation of  these combination methods in building ensemble has been 

performed. Table 4.4 shows the representation of  feature subset using both method. 

The two combination methods are different in forming partitions. It can be seen from 

the results obtained. In random subset, the features are randomly selected with 

replacement thus feature subsets can be overlap. Several features are also possible 



 

 75 

not selected. While on ant system-based feature set partitioning all the features are 

used and no features that overlap. In both methods, partitions or feature subsets 

formed are used in building ensemble. The number of feature subset or partition  

indicates the number of classifier in the ensemble. The number of classifier on a 

random subset method specified beforehand, while the number of ant system-based 

classifier algorithm automatically determined. In random subspace experiments, the 

number of  classifier in homogenous ensemble sets of four (4). This number 

represents the maximum number of  partition formed by ant system-based feature set 

partitioning. This number is chosen to indicate whether a greater number of classifier 

gives good results. 

The Comparison of  both method can also be seen in Table 4.4. It is intended to 

determine which is better between these methods. Both of these methods adapted the 

input feature manipulation approach (Roli, 2009). Random subspace is chosen 

because it is a standard technique in this approach. Nevertheless random subspace 

ensemble method is popular and widely used by previous studies to build an 

ensemble classifier (Serpen & Pathical, 2009; Li et al., 2013). Based on the results, 

the usage of random feature subsets provide lower accuracy, although the classifier 

set number large. Ant system-based feature set partitioning algorithm successfully 

deliver better results despite a smaller number of classifier. In some datasets it can 

seen that ant system-based feature set partitioning algorithm does not partition the 

feature. This means that this algorithm will choose the single best classifier, instead 

of an ensemble classifier. Unlike the random subset that the decision to build the 

ensemble has been defined  previously and predetermined number of classifier 
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ensemble is built. This is the advantages of the proposed algorithm. Accuracy 

obtained always exceed or at least equal to the best single classifier accuracy. 

 

 

Figure 4.4 Comparison of RS and ASFSP in constructing NMC ensembles 

Based on the experimental results, it can be seen that classification accuracy 

improvement can be obtained on all datasets. The ant system-based feature set 

partitioning successfully partitioned feature sets on several datasets. Obvious 

improvement accuracy is obtained for the feature sets that are successfully 

partitioned. While on the feature set is not partitioned tends accuracy is the same. 

Most of the datasets used successfully partitioned, which are haberman, iris, liver, 

pima, tic-tac-toe, glass and breast cancer. The use of ant system-based feature set 

partitioning can easily determine the optimal number of classifiers. Furthermore, 

although the number of classifiers is smaller, it can give better classification results. 
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4.3.2 Experimental Results on NBC Ensembles 

Experiments were carried out to test the ant system-based feature set partitioning in 

building homogeneous NBC ensembles. Table 4.5 describes the average and 

standard deviation of the classification accuracies of constructed homogeneous NBC 

ensembles using random subspace. Table 4.6 shows the average and standard 

deviation of the classification accuracies of the constructed homogeneous NBC 

ensembles using ant system-based feature set partitioning. 

Table 4.5 

Classification Accuracy of NBC Ensembles by RS 

Experiment # Haberman Iris Lenses Liver Ecoli Pima Tic-Tac-Toe Glass Breast Cancer 

1 75.16 94.67 62.50 58.26 75.25 75.91 66.91 73.89 96.19 

2 74.84 92.00 62.50 58.55 75.25 75.91 72.03 73.35 96.19 

3 74.84 93.33 62.50 61.16 75.25 73.83 67.01 73.89 95.61 

4 74.51 96.00 62.50 62.03 75.25 75.91 66.70 73.35 96.49 

5 73.53 95.33 62.50 64.64 75.25 76.30 66.60 72.35 96.63 

6 74.84 96.00 62.50 58.55 75.25 75.91 68.48 73.35 95.90 

7 75.16 95.33 62.50 59.13 75.25 75.78 68.89 72.35 96.05 

8 73.86 96.00 62.50 57.39 75.25 75.91 68.89 73.35 96.34 

9 74.51 93.33 62.50 60.58 75.25 75.65 66.81 72.35 95.61 

10 74.84 96.00 62.50 60.87 75.25 75.91 71.09 73.89 96.34 

Average 74.61 94.80 62.50 60.12 75.25 75.70 68.34 73.21 96.14 

Standard deviation 0.53 1.43 0.00 2.18 0.00 0.68 1.93 0.64 0.35 
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Table 4.6 

Classification Accuracy of NBC Ensembles by ASFSP 

Experiment # Haberman Iris Lenses Liver Ecoli Pima Tic-Tac-Toe Glass Breast Cancer 

1 75.49 96.00 62.50 64.93 75.45 75.39 72.34 72.55 97.66 

2 74.18 95.33 62.50 63.77 75.46 75.65 72.86 73.15 97.51 

3 74.84 95.33 62.50 63.77 74.45 75.13 72.03 72.55 97.51 

4 74.84 95.33 62.50 62.32 74.65 75.00 72.96 72.55 97.66 

5 74.84 96.00 62.50 63.77 75.85 75.65 71.71 71.85 97.66 

6 75.16 95.33 62.50 63.48 75.45 75.52 72.96 72.55 97.51 

7 74.84 95.33 62.50 63.19 76.15 75.65 72.76 79.65 97.80 

8 74.51 95.33 62.50 62.61 75.45 75.39 73.28 72.55 97.51 

9 74.51 95.33 62.50 62.90 76.95 75.52 72.44 72.55 97.80 

10 74.84 95.33 62.50 64.35 75.45 75.52 72.76 72.55 97.66 

Average 74.81 95.46 62.50 63.51 75.53 75.44 72.61 73.25 97.63 

Standard deviation 0.36 0.28 0.00 0.79 0.71 0.22 0.48 2.27 0.11 

 

Furthermore, a comparison is also performed between the random subspace and ant 

system-based feature set partitioning in building homogeneous NBC ensembles. The 

comparison results are shown in Table 4.7 and in Figure 4.5. 

Table 4.7  

Comparison of RS and ASFSP in Constructing NBC Ensembles 

Dataset 

Classifier Ensemble Construction 

Random Subspace Ant System-based Feature Set Partitioning 

Average of 

Accuracy  

(%) 

Feature Subset 
# of 

classifier 

Average of  

Accuracy  

(%) 

Feature Partition 
# of 

classifier 

Haberman 74.61 [1 2 3][1 2][2][3] 4 74.81 [1 2 3] 1 

Iris 94.80 [1 3 4][2 4][1 2 4][2] 4 95.46 [1 2 3 4] 1 

Lenses 62.50 [2 3 4][3 4][1 2 3][1 2 3 4] 4 62.50 [1 2 4][3] 2 

Liver 60.12 [2 3][2 4 5 6][1 2 3 4 6][2 5] 4 63.51 [1 2 3 4][5][6] 3 

Ecoli 75.25 [2 3 4 7][2 4 5 6][4 5][1 2 3 5] 4 75.53 [1 2 3 4 5 6 7] 1 

Pima 75.70 [1 2 3 5 7 8][2 4 7 8][1 2 3 4][1 2 3 7] 4 75.44 [1 2 3 4 5 6 7 8] 1 

Tic-Tac-Toe 68.34 [2 3 5 7 8 9][1 3 4 5 6 7][1 3 5 8 9][1 2 3 4 6] 4 72.61 [1 2 3 4 5 6 7 8 9] 1 

Glass 73.21 [1 3 6][1 3 4 6 9][[3 8][2 4 5 7 8 9] 4 73.25 [1 2 3 4 5 6 7 8 9] 1 

Breast Cancer 96.14 [1 3 4 7 8][5 6][2 3 4 6 8][2 6 9] 4 97.63 [4 5 8 9][1 2 7 ][6][3] 4 
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Figure 4.5 Comparison of RS and ASFSP in constructing NBC ensembles 

Only a little improvement of classification accuracy is achieved when NBC is used 

as base classifier. The increase is only clearly seen in two datasets: liver and breast 

cancer. This is because the two datasets successfully performed partition on the 

feature sets. The lenses dataset successfully partitioned, with comparable 

classification accuracy, but at least does not reduce the level of accuracy. Particularly 

there is a significant increment in the liver dataset when the number of partition is 3. 

As in previous experiments, although with a smaller number of classifiers, this 

algorithm can compensate the random subspace which requires uncertain number of 

classifiers. 

4.3.3 Experimental Results on k-NN Ensembles 

Experiments were carried out to test the ant system-based feature set partitioning in 

constructing k-NN ensembles. Table 4.8 and Table 4.9 present the mean and 

standard deviation of the classification accuracies of constructed k-NN ensembles 

using random subspace and ant system-based feature set partitioning respectively. 

60,00

65,00

70,00

75,00

80,00

85,00

90,00

95,00

100,00

A
cc

u
ra

cy
 

Dataset 

Random Subspace

Technique

Ant-based Feature

Partitioning



 

 80 

Table 4.8  

Classification Accuracy of k-NN Ensembles by RS 

Experiment # Haberman Iris Lenses Liver Ecoli Pima Tic-Tac-Toe Glass Breast Cancer 

1 67.32 93.33 70.83 55.07 80.36 69.79 72.13 73.83 97.36 

2 65.03 94.00 58.33 60.00 81.25 71.09 76.10 71.96 97.36 

3 69.28 92.67 62.50 58.84 78.87 68.10 77.56 74.77 96.93 

4 69.28 94.00 66.67 66.09 84.23 72.66 77.56 71.50 97.80 

5 67.32 93.33 58.33 57.97 80.95 69.53 72.13 73.36 96.93 

6 68.30 92.67 62.50 56.81 79.46 70.83 76.10 73.36 97.22 

7 64.38 93.33 58.33 57.10 81.25 69.92 74.53 75.70 96.78 

8 70.26 93.33 58.33 60.29 82.44 70.96 78.18 71.96 97.07 

9 70.59 93.33 62.50 64.35 83.63 70.31 78.18 68.69 97.66 

10 67.32 94.00 66.67 64.06 79.46 72.66 74.53 71.96 97.22 

Average 67.91 93.40 62.50 60.06 81.19 70.59 75.70 72.71 97.23 

Standard deviation 1.96 0.47 4.17 3.48 1.70 1.32 2.19 1.86 0.31 

 

Table 4.9 

Classification Accuracy of k-NN Ensembles by ASFSP 

Experiment # Haberman Iris Lenses Liver Ecoli Pima Tic-Tac-Toe Glass Breast Cancer 

1 72.22 96.00 79.17 65.80 80.95 71.48 74.74 73.36 97.95 

2 72.88 96.00 79.17 62.61 81.25 71.74 74.32 72.43 97.51 

3 72.22 96.00 79.17 65.51 81.25 70.18 76.83 72.90 97.80 

4 72.55 96.00 79.17 64.06 80.65 70.44 75.78 72.90 97.51 

5 72.22 96.00 79.17 62.61 82.14 71.48 76.10 72.90 97.51 

6 73.20 96.00 79.17 62.61 81.25 70.18 75.47 74.30 97.51 

7 72.88 96.00 79.17 64.06 80.36 71.22 76.10 73.83 97.36 

8 72.22 96.00 79.17 65.51 80.95 70.44 76.83 71.03 97.36 

9 74.51 95.33 79.17 66.25 81.55 72.14 75.05 72.90 97.80 

10 72.55 96.00 79.17 62.61 81.55 70.83 76.10 72.43 97.66 

Average 72.75 95.93 79.17 64.16 81.19 71.01 75.73 72.90 97.60 

Standard deviation 0.71 0.21 0.00 1.50 0.50 0.70 0.84 0.88 0.20 

 

The ant system-based feature set partitioning successfully partitioned feature sets on 

liver, pima and breast cancer datasets. During the experiment, a comparison is also 

performed between the random subspace and ant system-based feature set 
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partitioning in constructing homogeneous k-NN ensembles. The comparison result is 

shown in Table 4.10 and in Figure 4.6. 

 Table 4.10 

Comparison of RS and ASFSP in Constructing k-NN Ensembles 

Dataset 

Classifier Ensemble Construction 

Random Subspace Ant System-based Feature Set Partitioning 

Average of 

Accuracy  

(%) 

Feature Subset 
# of 

classifier 

Average of  

Accuracy  

(%) 

Feature Partition 
# of 

classifier 

Haberman 67.91 [1 2][3][1 3][2 3] 4 72.75 [1 3][2] 2 

Iris 93.40 [3 4][2 4][1 4][1 2] 4 95.93 [1 2 3 4] 1 

Lenses 62.50 [1][2 4][1 2 4][3 4] 4 79.17 [1 2 3 4] 1 

Liver 60.06 [3][1 3 5 6][5 6][2 3 4 5] 4 64.16 [1 4 6][3 5][2] 3 

Ecoli 81.19 [1 2 3 4 5 6 7][1 5][4 5 6][1 6] 4 81.19 [1 2 3 4 5 6 7] 1 

Pima 70.59 [1 2 3 4 5 7][3][2 3 4 5 6 7 8][2 6 8] 4 71.01 [1 3 4 7][5 6 8][2] 3 

Tic-Tac-Toe 75.70 [1 2 3 5 6 7][2 6 7 9][1 2 3 4 6 7 8 9][5 6] 4 75.73 [1 2 3 4 5 6 7 8 9] 1 

Glass 72.71 [4 5 6 7][1 2 3 5 7 8 9][1 6 9][1 2 4 5 6 7] 4 72.90 [1 2 3 4 5 6 7 8 9] 1 

Breast Cancer 97.23 [1 2 3 6][1 3 6][5 8 9][1 3 8 9] 4 97.60 [1 2 4 7 9][3 5][6][8] 4 

 

 

Figure 4.6 Comparison of RS and ASFSP in constructing k-NN ensembles 
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Improvement classification accuracy frequently appears when k-NN classifier is used 

as base classifier. It can be seen clearly in haberman, liver, pima and breast cancer 

datasets. Especially on the liver dataset, a significant classification accuracy 

improvement is obtained when the number of partition is 3 (three). On the other 

datasets, the accuracy of constructed homogeneous k-NN ensembles is at least not 

less than the accuracy of the random subspace. It is clearly that the use of ant 

system-based feature set partitioning effectively used to determine the number of 

classifiers. 

4.3.4 Experimental Results on LDA Ensembles 

Experiments were conducted to determine the ability of both random subspace and 

ant system-based feature set partitioning to construct homogeneous LDA ensembles. 

Table 4.11 and Table 4.12 present the mean and standard deviation of the 

classification accuracies of constructed homogeneous LDA ensembles respectively. 

Table 4.11 

Classification Accuracy of LDA Ensembles by RS 

Experiment # Haberman Iris Lenses Liver Ecoli Pima Tic-Tac-Toe Glass Breast Cancer 

1 74.84 96.00 79.17 62.03 73.23 75.00 65.66 57.48 96.19 

2 72.88 95.33 79.17 62.03 73.23 74.87 65.66 57.94 96.49 

3 72.88 94.67 83.33 63.77 73.03 75.00 65.66 59.35 96.19 

4 74.84 95.33 87.50 62.03 73.23 74.61 66.18 60.28 96.49 

5 73.20 94.67 79.17 63.48 73.23 74.87 65.66 56.54 95.90 

6 73.20 97.33 79.17 62.61 74.41 75.39 64.72 59.81 96.19 

7 72.88 96.00 79.17 60.58 73.23 73.44 65.66 59.81 96.49 

8 74.84 96.67 79.17 63.48 73.00 75.13 64.72 60.75 95.90 

9 74.84 95.33 83.33 60.58 73.23 75.13 66.18 59.81 96.05 

10 73.20 96.00 75.00 63.77 72.99 75.91 66.18 60.28 96.19 

Average 73.76 95.73 80.42 62.44 73.28 74.94 65.63 59.21 96.21 

Standard deviation 0.94 0.84 3.43 1.21 0.41 0.63 0.53 1.39 0.22 
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Table 4.12 

Classification Accuracy of LDA Ensembles by ASFSP 

Experiment # Haberman Iris Lenses Liver Ecoli Pima Tic-Tac-Toe Glass Breast Cancer 

1 74.84 98.00 87.50 63.48 75.96 75.52 73.05 62.66 97.07 

2 75.16 98.00 87.50 63.77 75.90 75.91 72.79 62.66 97.07 

3 74.51 98.00 83.33 63.77 75.96 76.17 72.53 62.76 97.22 

4 74.51 98.00 87.50 63.77 76.00 75.78 72.92 62.66 97.22 

5 74.51 98.00 87.50 64.06 75.89 75.65 73.70 61.79 97.51 

6 74.51 98.00 87.50 64.06 75.96 76.04 73.18 62.66 97.22 

7 75.16 98.00 87.50 64.06 75.96 76.17 72.53 62.66 97.22 

8 74.84 98.00 83.33 63.48 75.79 76.17 73.96 62.03 97.22 

9 75.16 98.00 87.50 64.06 75.96 76.04 72.79 62.66 97.22 

10 75.16 98.00 87.50 64.06 75.96 76.82 72.79 62.66 97.07 

Average 74.84 98.00 86.67 63.86 75.93 76.03 73.02 62.52 97.20 

Standard deviation 0.31 0.00 1.76 0.24 0.06 0.36 0.47 0.33 0.13 

Based on experimental results presented above, there is a performance comparison of 

both techniques performed. The comparison between proposed technique and 

random paritioning to construct homogeneous LDA ensembles can be seen in Table 

4.13 and in Figure 4.7. 

 Table 4.13 

Comparison of RS  and ASFSP in Constructing LDA Ensembles  

Dataset 

Classifier Ensemble Construction 

Random Subspace Ant System-based Feature Set Partitioning 

Average of 

Accuracy  

(%) 

Feature Subset 
# of 

classifier 

Average of  

Accuracy  

(%) 

Feature Partition 
# of 

classifier 

Haberman 73.76 [3][2 3][2][1 3] 4 74.84 [1][2 3] 2 

Iris 95.73 [1 3 4][4][1 4][3] 4 98.00 [1 2 3 4] 1 

Lenses 80.42 [1 4][1][1 2 3 4][1 3 4] 4 86.67 [1 2 3 4] 1 

Liver 62.44 [1 2 6][3 4 5 6][1 2 3 5 6][2 3] 4 63.86 [1 3 4 6][2][5] 3 

Ecoli 73.28 [1 4 5 7][2 4 6][1 2 3 4][2 5 6] 4 75.93 [1 3 5][4 6][2 7] 3 

Pima 74.94 [1 2 7][2 3 8][1 2 3 7][4 7 8] 4 76.03 [1 2 3 4 5 6 7 8] 1 

Tic-Tac-Toe 65.63 [1 3 6 7][4 6 7 9][3 4 5 8][1 2 7 8 9] 4 73.02 [2 4 5 6 8 ][1][3][7][9] 5 

Glass 59.21 [1 2 3 4 7 9][1 2 3 5 6 7][[7 9][3 5 9] 4 62.52 [2 3 5 7][4 8 9][1 6] 3 

Breast Cancer 96.21 [4 5 7 8][2 3 4 6 7][6 7 8][3 4 5 6 7] 4 97.20 [2 4 8][7 9][3][1 5 6] 4 
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Figure 4.7 Comparison of RS and ASFSP in constructing LDA ensembles 

Most of the datasets used on the experiment are successfully partitioned. It generates 
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improve the classification accuracy with the use of optimal number of classifiers. 
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4.14 shows the comparison of four constructed classifier ensembles on the whole 

dataset. 

Table 4.14  

Comparison of Constructed Classifier Ensembles 

Dataset 
Base Classifier of 

Homogeneous Ensembles 

Average of Accuracy (%) 

Random Subspace Ant System-based Feature Set Partitioning 

Haberman 

NMC  70.33 70.39 

NBC 74.61 74.81 

 k-NN 67.91 68.53 

LDA 73.76 74.35 

Iris 

NMC 92.07 94.47 

NBC 94.80 95.46 

 k-NN 93.40 95.93 

LDA 95.73 98.00 

Lenses 

NMC  66.25 66.67 

NBC 62.50 62.50 

 k-NN 62.50 79.17 

LDA 80.42 86.67 

Liver 

NMC  56.43 64.29 

NBC 60.12 63.51 

 k-NN 60.06 64.16 

LDA 62.44 63.86 

Ecoli 

NMC  81.67 81.82 

NBC 75.25 75.53 

 k-NN 81.19 81.19 

LDA 73.28 75.93 

Pima 

NMC  67.88 73.02 

NBC 75.70 75.44 

 k-NN 70.59 71.01 

LDA 74.94 76.03 

Tic-Tac-Toe 

NMC  64.49 73.01 

NBC 68.34 72.61 

 k-NN 75.70 75.73 

LDA 65.63 73.02 

Glass 

NMC  44.44 53.22 

NBC 73.21 73.25 

 k-NN 72.71 72.90 

LDA 59.21 62.52 

Breast Cancer 

NMC  96.50 97.23 

NBC 96.14 97.63 

 k-NN 97.23 97.60 

LDA 96.21 97.20 
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Furthermore, for easy comparison between random subspace and ant system-based 

feature set partitioning on constructing four classifier ensembles, the average of 

combined classifier accuracies are again presented in Figure 4.8. 

 

 

Figure 4.8 Comparison of four homogeneous classifier ensembles for whole datasets 
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Based on the comparison results between constructed classifier ensembles using 

random subspace and ant system-based feature set partitioning, it can be seen that 

generally there is an improvement of classification accuracy on all datasets. Despite 

this improvement, accuracy varies from large to small increments. Only the k-NN 

performance is significantly improved on haberman and lenses datasets, in contrast, 

the k-NN performance tends to not increase on the tic-tac-toe dataset. The 

performance of NMC is significantly improved on the pima dataset. Performance 

enhancement occurs in all type of classifiers on liver and breast cancer datasets. On 

the other hand, performance improvement does not occur in all type of classifiers on 

ecoli and glass datasets. 

4.4 Proposed Compactness Measure 

A parameter is introduced in this study to measure compactness in a set of classifier. 

This measurement is called compactness measure which reflects the overall support 

of all the classifiers regardless of their diverse or similar situations. This parameter is 

introduced with the aim of answering diversity-accuracy dilemma. 

Diversity in classifier ensemble is an important thing in classifier combination 

(Kuncheva & Whitaker, 2003). However there is no consensus on diversity, and 

hence no diversity measure has satisfy all researchers (Zhou, 2012). Furthermore, the 

“good” and “bad” diversity phenomenon occurs when the majority voting is used as 

combiner in the ensemble (Brown & Kuncheva, 2010). It is intuitive that increasing 

diversity among the member of ensemble should lead to better accuracy of the 

ensemble, but there is no formal proof of this dependency and theoritical results have 

not been proven yet (Wozniak, et al., 2014). The main problem in determining 
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diversity is the diversity-accuracy dilemma. When diversity in classifier ensemble 

increases, the base classifier accuracy decreases and vice versa (Li & Gao, 2010). 

Therefore, the problem of using diversity measure in combining clissifier is also a 

focus of this study.  

The compactness can be measured simultaneously in a set of classifier. Therefore, 

the non-pairwise approach is considered in this study. This proposed parameter value 

can be measured and tested through usage of several methods which are ant system-

based feature set partitioning, majority voting combiner, homogeneous ensemble, the 

10 fold cross validation method and regression analysis. In constructing the support 

formulation for compactness measurement, several notations and definitions are 

adopted from previous study of Kuncheva (2001) as follows: let D = {D1,…,DL } be 

a set of classification algorithm (pool, committee, mixture, team, ensemble). In 

addition, let Ω = {ω1,…,ωc }   be a set of class labels and 

  {                         } be a training set where        be a vector 

with n features and       is the class label of i-th data instance. The output of the 

classifiers    on samples    is        for       and       can be 

represented as N-dimensional vector   [                      ] , the output 

of ensemble defined as follows: let the output of classifier        = 1 if    correctly 

recognise    and otherwise        =0. This type of output is also called oracle output 

(Pasti & de Castro, 2007). The oracle output simply says if the classifier presented a 

correct classification or not (1 or 0). This study focused on the oracle output for two 

(2) reasons. (1) Most of the researches on diversity measures are based on output 

oracle. Ten kinds of diversity measures have been reported by Kuncheva and 
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Whitaker (2003) based on the oracle output. (2) In oracle output, no prior knowledge 

of the data is needed and the type of output can be produced by any classifier. The 

output is on whether the samples are classified correctly or not. Therefore, the oracle 

output is a common model for analysing classifier ensemble, and the conclusions 

which are obtained from this model can be easily generalised to the classifier 

ensemble construction method.  

The support     is defined as the proportion of input pattern correctly classified by 

all   classifiers and the number of observations. This is also the ratio between the 

numbers of observations on which all classifiers are correct to the total number of 

observations. Therefore, the value of this parameter is expressed in a percentage, 

thus the range of values of this parameter value is from 0 to 100. A small value 

indicates a less compactness of classifier ensemble in supporting the right decision. 

High value indicates a more compactness of classifier ensemble in supporting the 

right decision. In this way, the compactness in a set of classifiers is measured by 

support formulation and can be written as follows: 

  
 

 
∑  

 

   

                                                                                                      

where 

   {
                                 

 
                                                                  

 

 

where 

L: total number of classifiers 

N: total number of samples 

      : the output of classifier    on sample    
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  : the class label of sample    

The idea of this formulaion was adopted and adapted from the “support” formulation 

of market basket analysis (Han et al., 2011). Market basket analysis is a method for 

recognition of dependencies in data. “Support” is the ratio of number of times two or 

more items occur together to the total number of transactions. The proportion of 

items occur together can be analogized as compactness classifier to support the same 

decision.  

There are several diversity measures that have been proposed in the literature 

(Kuncheva & Whitaker, 2003). However, no clear relationship has been found so far 

between each diversity measure and all other diversity measures as cited by Canuto 

et al. (2007). The correlation between each of the methods of combination and each 

existing diversity measures are not in the scope of this study, but the correlation 

between of proposed compactness measure and ensemble accuracy is focus in this 

study.      

Several diversity measures have been proposed but none can be used to strongly 

correlate with ensemble accuracy (Shipp & Kuncheva, 2002; Banfield et al., 2005; 

Lofstrom et al., 2007; Musehane et al., (2008); Bi, 2012). Shipp and Kuncheva 

(2002) studied the relationships between different methods of classifier combination 

methods and 10 diversity measures. Two (2) datasets from UCI repository of 

machine learning namely breast cancer (Wisconsin) and pima indians diabetes were 

used in their experiments. Summary of the datasets is provided in Table 4.15. 
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Table 4.15 

Summary of Datasets Used in the Experiments (Shipp & Kuncheva, 2002) 

 

Datasets Instances Classes 
Feature 

partition 
Training/ Testing 

Breast Cancer (Wisconsin) 569 2 
4,4,2 

4,3,3 
Hold out 

Pima Indians Diabetes 768 2 3,3,2 
10-fold cross validation 

method 

 

    

The results of their experiments showed low correlation between the combination 

methods and diversity measure as shown in the Table 4.16 where p is the range of 

significant value. This result is discouraging because diversity measure should be 

able to give a prediction of the performance of the classifier combination.  

Table 4.16 

Correlation Diversity Measure and Ensemble Accuracy with p Value. 

Diversity Measure p value 

Q 0.7-0.9 

P 0.7-0.9 

DF 0.7-0.9 

K 0.7-0.9 

0 0.7-0.9 

D 0.7-0.9 

kw 0.7-0.9 

Ent 0.7-0.9 

GD 0.7-0.9 

CFD 0.7-0.9 
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The correlations between diversity measure and combination methods are low and 

not consistent. The ambiguous relationship between diversity and accuracy is 

difficult to optimize diversity measure.  

The relationships between four (4) different methods of classifier combination 

methods i.e. bagging, random forest, random trees, and random forest and three (3) 

diversity measure i.e. PCDM, Q and K have been evaluated by Banfield et al., 

(2005). Several datasets from UCI machine learning repository were used for 

evaluation as presented in Table 4. 17. 

Table 4.17 

Summary of  Datasets Used in the Experiments (Banfield et al., 2005) 

Datasets Instances Classes Features 

Iris 150 3 4 

glass 214 6 9 

breast cancer (Wisconsin) 683 2 9 

 

The results of their experiments are as shown in Table 4.18. The determination 

coefficient (R
2
), is a measure to determine how well the linear regression fits to the 

measured data. Table 4.18 shows the R
2
 value of the correlation test. 

Table 4.18 

The R
2 

Values for Each of the Ensemble Construction Methods and Diversity 

Measures (Banfield et al., 2005). 

Ensemble methods 
R

2 

PCDM Q K 

Bagging 0.6353 0.5046 0.1775 

Random forest 0.6905 0.6105 0.2602 

Random tree 0.5765 0.5614 0.2106 

Random subspace 0.6096 0.5071 0.3512 
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The results indicated a weak correlation between them. The concept of diversity is 

interesting because its effects can easily be seen. However, its quantification and 

manipulation are not quite well defined.  

Experiments to evaluate the diversity measure have also been carried out by 

Lofstrom et al. (2007). Neural network was used as base classifier to build neural 

network classifier ensembles. The homogeneous neural network ensembles were 

trained by varying the network architecture to induce diversity. Eight (8) datasets 

from the UCI machine learning repository were used in their experiments (refer 

Table 4.19). 

 

Table 4.19 

Summary of  Datasets Used in the Experiments (Lofstrom et al., 2007). 

Datasets Instances Classes Continue Category 

Cleve 303 2 6 7 

Cmc 1473 3 5 4 

Crx 690 2 6 9 

Ecoli 336 8 5 3 

Hypo 3163 2 7 18 

Pima 768 2 8 0 

Sat 6435 7 36 0 

Vehicle 846 4 18 0 

 

The goal of the experiments is to evaluate the ten (10) diversity measures that have 

been summarized by Kucheva and Whitaker (2003). According to them, the 

difficulty (Θ) and double faults (DF) are good to measure diversity. However, the 

use of these diversity measures was not successful in building a better classifier 

combination.  
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The study on relationship between diversity and accuracy of the ensemble has also 

been carried out by Musehane et al., (2008). Neural network has been been used as 

the base classifier. The parameters of the neural network within the committee were 

varied to induce diversity and the proposed parameter for the measure of diversity 

are Shannon measure (Shannon, 1948) and Simpson measure (Simpson, 1949). The 

demographic dataset used is derived from antenatal clinic in South Africa and it was 

collected by the Department of Health in 2001 as shown in Table 4.20. 

Table 4.20 

The Demographic Dataset Used in the Experiments (Musehane et al., 2008) 

Variable Type Range 

Age Integer 13-50 

Education Integer 0-13 

Parity Integer 0-9 

Gravidity Integer 1-12 

Province Integer 1-9 

Age of father Integer 14-60 

HIV status Binary 0-1 

 

The results showed that an increased in the diversity of the ensemble also resulted in the 

increased of the ensemble accuracy. However the used of this method is computational 

expensive because of the used of GA.  

A study by Bi (2012) focused on the impact of diversity on the accuracy of the 

ensemble. Twelve (12) datasets from the UCI repository machine have been used. 

The general description of datasets can be seen in Table 4.21.  
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Table 4.21 

The General Description of Datasets Used in the Experiments (Bi, 2012). 

Datasets Instance Classes Features 

Anneal 798 6 38 

Audiology 200 23 69 

Balance 625 3 4 

Car 1728 4 6 

Glass 214 7 9 

Autor 205 6 25 

Iris 150 3 4 

Letter 20000 26 16 

Segment 1500 7 19 

Soybean 683 19 35 

Wine 178 3 13 

Zoo 101 7 17 

 

Thirteen (13) classifiers have been used as base classifier and experiments were 

performed by using ten-fold cross-validation. After calculating the correlation 

between diversity and ensemble accuracy, empirical results indicate that the 

increased diversity makes the ensemble accuracy decreases and vice versa. The 

increased in diversity is not consistent with the increased accuracy of the ensemble. 

Therefore, it reinforces that there is a conflict between them. Table 4.22 shows the 

summary of correlation between accuracy and diversity (↑: positive correlation; ↑: 

strongly positive correlation; ↓: negative correlation; ↓: strongly negative 

correlation; ↕: neutral correlation). 
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Table 4.22 

Summary Correlation Between Diversity and Ensemble Accuracy (Bi, 2012) 

 

Ensemble Method 
Ensemble accuracy Improved accuracy 

kw qs dis K kw qs dis k 

Dempster’s rule ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ 

Smets’ rule ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↓ 

Proportion rule ↑ ↑ ↑ ↑ ↕ ↕ ↕ ↕ 

Yager’s rule ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

 

Based on the demonstrated empirical results, the effectiveness of the scheme needs 

to be optimized. In general, there is a need to design better mechanisms that will be 

used to successfully construct a classifier ensemble without sacrificing accuracy and 

diversity. 

4.5 Experimental Results on Compactness Measurement 

This section presents the experiment conducted in calculating compactness value. 

Compactness value was calculated based on four classifier ensembles which have 

been constructed in the previous experiments. The four classifier ensembles are  

homogeneous NMC ensembles, homogeneous NBC ensembles,  homogeneous k-NN 

ensembles and homogeneous LDA ensembles. Nine (9) datasets from UCI repository 

were used in the experiment. Ten (10) experiments were performed only on datasets 

that form classifier ensembles. During the experiment, the compactness value in 

classifier ensembles was calculated using the support formulation. The ensemble 

accuracy was calculated by compactness value. The most commonly used combiner, 

majority voting, is used to combine classifier outputs. 10-fold cross-validation 

approach is used to validate performance of ensemble.  
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4.5.1 Calculating Compactness in NMC Ensembles 

Experiments were conducted to calculate the compactness value versus NMC 

ensembles accuracy on created partition. Table 4.23 – Table 4.29 and Figure 4.9 – 

Figure 4.15 show compactness value versus NMC ensembles accuracy on related 

dataset and also the formed partition based on ACO. Eeach partition results will 

provide compactness value and the ensemble accuracy regardless of how the 

partitioning performed. Thus the relationship between proposed parameter and 

ensemble accuracy can be tested empirically. 

 

Table 4.23 

Compactness  vs NMC Ensembles Accuracy on Haberman Dataset 

Experiment # 

Partition 

Based on  

ACO 

Compactness  (s)        (%) Ensemble Accuracy (%) 

1 [1][2,3]  29.27 69.93 

2 [1][2,3] 29.18 71.57 

3 [1][2,3] 31.98 71.24 

4 [1,2][3] 32.16 73.86 

5 [1][2,3] 30.38 67.97 

6 [1,2][3] 31.42 68.63 

7 [1][2,3] 30.57 69.93 

8 [1][2,3] 31.88 70.92 

9 [1,2][3] 33.33 69.28 

10 [1][2,3]  31.22 70.59 

  
Average 

31.14 70.39 
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Figure 4.9 Compactness vs NMC ensembles accuracy on haberman dataset 

Table 4.24 

 Compactness vs NMC Ensembles Accuracy on Iris Dataset 

Experiment # 
Partition 

Based on ACO 
Compactness (s)        (%) Ensemble Accuracy (%) 

1 [23][4][1]  71.33 94.67 

2 [4][3][12]  77.33 94.67 

3 [24][1][3] 69.78 94.67 

4 [4][23][1]  71.11 94.67 

5 [3][12][4]  78.00 95.33 

6 [4][3][12]  77.33 94.67 

7 [4][23][1]  71.33 94.67 

8 [4][23][1] 71.11 94.67 

9 [3][124]  79.67 92.00 

10 [23][1][4]  70.89 94.67 

  Average 73.79 94.47 
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Figure 4.10 Compactness vs NMC ensembles accuracy on iris dataset 

Table 4.25 

Compactness vs NMC Ensembles Accuracy on Liver Dataset 

Experiment # 
Partition  

Based on ACO 
Compactness (s)        (%) Ensemble Accuracy (%) 

1 [1,2,4,6][3][5] 8.86 64.06 

2 [1,2,4,6] [3] [5] 9.38 62.61 

3 [2,4,6] [1,5] [3] 7.92 64.35 

4 [1,2,4] [3,6] [5] 9.30 65.51 

5 [1,2,4,6][3][5] 9.26 64.64 

6 [1,2,4,6][3][5] 8.86 64.35 

7 [2,4,6][1,5][3] 8.33 63.77 

8 [2,4,6] [1,5] [3] 7.92 64.35 

9 [1,2,4,6][3][5] 9.26 64.64 

10 [1,2,4,6][3][5] 9.26 64.64 

  Average 8.84 64.29 
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Figure 4.11 Compactness vs NMC ensembles accuracy on liver dataset 

Table 4.26 

Compactness vs NMC Ensembles Accuracy on Pima Dataset 

Experiment # 
Partition 

Based on ACO 
Compactness (s)        (%) Ensemble  accuracy (%) 

1 [3,4,5,7] [1,6] [8] [2]   24.71 73.05 

2 [3,7,8] [5]  [2,4]  [1,6]   24.45 72.79 

3 [3,8] [1,6] [5,7] [2,4]   24.77 72.53 

4 [3,7,8] [5]  [2,4]  [1,6]   24.45 72.92 

5 [3,4,5,7] [1,6] [8] [2]   24.71 73.70 

6 [3,4,5,7] [1,6] [8] [2]   24.71 73.18 

7 [3,8] [1,6] [5,7] [2,4]   24.77 72.53 

8 [3,4,5,7] [1,6] [8] [2]   24.71 73.96 

9 [3,7,8] [5]  [2,4]  [1,6]   24.45 72.79 

10 [3,7,8] [5]  [2,4]  [1,6]   24.45 72.79 

         Average   24.62 73.02 
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Figure 4.12 Compactness vs NMC ensembles accuracy on pima dataset 

 

Table 4.27 

Compactness vs NMC Ensembles Accuracy on Tic-Tac-Toe Dataset 

Experiment # 
Partition 

Based on ACO 

Compactness (s)        

(%) 

Ensemble Accuracy 

(%) 

1 [2,5,6,8] [1] [4,9] [3] [7] 24.32 73.17 

2 [1,4,6,7] [2,5,8] [9] [3]   24.54 72.76 

3 [7] [4,5,8] [2,6,9] [3] [1] 24.78 72.65 

4 [4,7] [1,2] [5,6,8] [9] [3] 24.71 74.01 

5 [2,5,6,8] [1,4,7] [3] [9]   24.45 72.86 

6 [2,3,6,8,9] [4,5] [1] ][7]   24.51 72.86 

7 [3,6,8,9] [2,4,5] [1] [7]   23.98 72.86 

8 [2,4,5,8] [7] [3,6,9] [1]   24.71 72.65 

9 [2,4,5,8] [6,9] [3] [1] [7] 24.54 73.28 

10 [1,2,3,4,6,8] [7] [5]    [9] 
 

24.45 72.96 

           Average 24.50 73.01 
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Figure 4.13 Compactness vs NMC ensembles accuracy on tic-tac-toe dataset 

 

Table 4.28 

Compactness vs NMC Ensembles Accuracy on Glass Dataset 

Experiment # 
Partition 

Based on ACO 
Compactness (s)        (%) Ensemble Accuracy (%) 

1 [5,7] [2,3,9] [6,8] [1,4]   2.76 52.80 

2 [2,3,5,7] [1,4,8,9] [6]     2.53 53.27 

3 [1,2,3] [6,8,9] [5,7] [4]   2.06 55.14 

4 [5,7] [2,3,9] [6,8] [1,4]   2.76 52.80 

5 [1,4,8] [5,7,9] [2,3] [6]   2.79 52.34 

6 [1,2,3] [6,8,9] [5,7] [6]   2.06 52.34 

7 [2,3,5,7] [4,8,9] [1,6]     2.18 52.80 

8 [2,3,5,7] [1,4,8,9] [6]     2.53 53.27 

9 [4,8] [2,3,5,7,9] [1,6]     2.67 54.21 

10 [2,3,5,7] [1,4,8,9] [6]     2.53 53.27 

         Average   2.49 53.22 
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Figure 4.14 Compactness vs NMC ensembles accuracy on glass dataset 

 

Table 4.29  

Compactness vs NMC Ensemble Accuracy on Breast Cancer Dataset 

Experiment # 
Partition 

Based on ACO 
Compactness (s)        (%) Ensemble Accuracy (%) 

1 [2,3,4,5,8,9] [1,6,7]       92.40 97.22 

2 [2,4,5,6,7,8,9] [1,3]       92.39 97.22 

3 [1,2,3,4,5,7,9] [6,8]       92.30 97.22 

4 [1,2,3,4,5,7,9] [6,8]       92.30 97.22 

5 [1,3,5,6,7,9] [2,4,8]       92.35 97.22 

6 [1,5,6,7,8] [2,3,4,9]     92.80 97.36 

7 [2,4,6,7,8] [1,3,5,9]     92.54 97.22 

8 [1,3,5,6,7,9] [2,4,8]       92.29 97.22 

9 [2,4,6,7,8] [1,3,5,9]     92.18 97.22 

10 [2,4,5,6,7,8] [1,3,9]       92.18 97.22 

   Average 92.37 97.23 
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Figure 4.15 Compactness vs NMC ensembles accuracy on breast cancer dataset 

Based on the experimental results, it can be seen that the compactness in the NMC 

ensemble is directly proportional to the accuracy of the ensemble. The larger value 

of compactness will provide higher accuracy and vice versa. 

4.5.2 Calculating Compactness in NBC ensembles 

Experiments were conducted to calculate the compactness value versus NBC 

ensembles accuracy on created partition. Table 4.30 – Table 4.32 and Figure 4.16 – 

Figure 4.18 show the partition, compactness value and NBC ensembles accuracy on 

related datasets.  
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Table 4.30 

Compactness vs NBC Ensembles Accuracy on Lenses Dataset 

Experiment # 
Partition 

Based on ACO 
Compactness (s)        (%) Ensemble Accuracy (%) 

1 [3] [1,2,4]       7.50 62.50 

2 [2] [1,3,4]       8.83 62.50 

3 [3] [1,2,4]       7.50 62.50 

4 [1,2] [3] [4]     6.00 62.50 

5 [2] [1,3,4]       8.83 62.50 

6 [4] [3] [1,2]     5.56 62.50 

7 [3] [1,2,4]       7.50 62.50 

8 [2] [1,3,4]       8.83 62.50 

9 [1,2,4] [3]       6.25 62.50 

10 [1,2] [4] [3]     5.56 62.50 

   Average 7.24 62.50 

 

 

Figure 4.16 Compactness vs NBC ensembles accuracy on lenses dataset 
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Table 4.31 

Compactness vs NBC Ensembles Accuracy on Liver Dataset 

Experiment # 
Partition 

Based on ACO 
Compactness (s)        (%) Ensemble Accuracy (%) 

1 [4,5,6] [1,2] [3]     10.41 64.93 

2 [1,2,3,4] [6] [5]     9.37 63.77 

3 [1,2,3,4] [6] [5]     9.37 63.77 

4 [3,5,6] [2] [1,4]     10.29 62.32 

5 [1,2,3,4] [6] [5]     9.37 63.77 

6 [3,5,6] [4] [1] [2]   7.60 63.48 

7 [2,5] [3,4] [1] [6]   7.65 63.19 

8 [3,5,6] [1,4] [2]     9.88 62.61 

9 [4,5,6] [3] [1,2]     10.15 62.90 

10 [4,5,6] [1,2] [3]     10.25 64.35 

   Average 9.43 63.51 

 

 

Figure 4.17 Compactness vs NBC ensembles accuracy on liver dataset 
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Table 4.32 

Compactness vs NBC Ensembles Accuracy on Breast Cancer Dataset 

Experiment # 
Partition 

Based on ACO 
Compactness (s)        (%) Ensemble Accuracy (%) 

1 [2,4,6,9] [1,5,8] [3,7]     87.21 97.66 

2 [1,3,5,9] [2,6,7] [4,8]     85.11 97.51 

3 [2,6,7,9] [1,4,5,8] [3]     86.19 97.51 

4 [6] [4,5,8,9] [1,2,7] [3]   78.62 97.66 

5 [6] [4,5,8,9] [1,2,7] [3]   78.62 97.66 

6 [1,4,5,8] [2,9] [3,7] [6]   80.39 97.51 

7 [4,5,8,9] [1,2,7] [3] [6]   78.69 97.80 

8 [6] [4,5,8,9] [1,2,7] [3]   78.62 97.51 

9 [4,5,8,9] [1,2,7] [3] [6]   78.50 97.80 

10 [6] [4,5,8,9] [1,2,7] [3]   78.62 97.66 

         Average   81.06 97.63 

 

 

Figure 4.18 Compactness vs NBC ensembles accuracy on breast cancer dataset 

Based on the experimental results, it can be seen that the ensemble accuracy follow 

compactness in NBC ensembles. In other words, the greater value of compactness in 

the NBC ensembles will provide higher accuracy. 
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4.5.3 Calculating Compactness in k-NN ensembles 

Experiments were conducted to calculate the compactness value versus k-NN 

ensembles accuracy on created partition. Table 4.33 – Table 4.36 and Figure 4.19 – 

Figure 4.22 shows the partition, compactness value and k-NN ensemble accuracy on 

related datasets.  

Table 4.33 

Compactness vs k-NN Ensembles Accuracy on Haberman Dataset 

Experiment # 
Partition 

Based on ACO 
Compactness (s)        (%) Ensemble Accuracy (%) 

1 [1,3][2]         33.34 67,65 

2 [1,3][2]         34.86 68,95 

3 [1][2,3]         36.38 67,97 

4 [1,3][2]         32.85 68,30 

5 [1][2,3]         35.32 69,61 

6 [13][2]         31.88 68,63 

7 [1,3][2]         33.96 67,65 

8 [1,3][2]         29.92 69,93 

9 [13][2]         32.97 67,97 

10 [1,3][2]         29.01 68,63 

   Average         33.05 68.53 

 

 

Figure 4.19 Compactness vs k-NN ensembles accuracy on haberman dataset 
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Table 4.34 

Compactness vs k-NN Ensembles Accuracy on Liver Dataset 

Experiment # 
Partition 

Based on ACO 
Compactness (s)        (%) Ensemble Accuracy (%) 

1 [1,4,6] [3,5] [2]     15.19 65.80 

2 [1,2,3,4,5,6]         15.11 62.61 

3 [1,4,6] [3,5] [2]     15.25 65.51 

4 [1,3] [4,5,6] [2]     15.67 64.06 

5 [1,2,3,4,5,6]         15.11 62.61 

6 [1,2,6] [3,5] [4]     15.17 62.61 

7 [1,2,3,4,5,6]         15.67 64.06 

8 [1,4,6] [3,5] [2]     15.25 65.51 

9 [3,5] [1,4,6] [2]     14.87 66.25 

10 [1,3] [2,4] [5,6]     15.11 62.61 

         Average   15.24 64.16 

 

 

Figure 4.20 Compactness vs k-NN ensembles accuracy on liver dataset 
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Table 4.35 

Compactness vs k-NN Ensembles Accuracy on Pima Dataset 

Experiment # 
Partition 

Based on ACO 
Compactness (s)        (%) Ensemble Accuracy (%) 

1 [6,7,8] [1,3,4] [5] [2]   28.77 71.48 

2 [1,3,4] [2,6] [5,7,8]     31.26 71.74 

3 [1,3,4,7] [5,6,8] [2]     31.77 70.18 

4 [5,6,7,8] [1,3,4] [2]     31.78 70.44 

5 [6,7,8] [1,3,4] [5] [2]   28.77 71.48 

6 [1,3,4,7] [5,6,8] [2]     31.77 70.18 

7 [1,3,4,5] [6,7,8] [2]     32.94 71.22 

8 [4,5,7] [1,2,3] [6,8]     32.85 70.44 

9 [1,6,7] [2,3] [5,8] [4]   29.40 72.14 

10 [1,4,6,7] [2,3,5,8]       32.00 70.83 

         Average   31.13 71.01 

 

 

Figure 4.21 Compactness vs k-NN ensembles accuracy on pima dataset 
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Table 4.36 

Compactness vs k-NN Ensembles Accuracy on Breast Cancer Dataset 

Experiment # 
Partition 

Based on ACO 
Compactness (s)        (%) Ensemble Accuracy (%) 

1 [1,4,7,9] [2,3,5,8] [6]     81.96 97.95 

2 [2,3,5,9] [1,4,7] [6] [8]   76.14 97.51 

3 [1,2,4,7,9] [3,5] [6] [8]   75.69 97.80 

4 [3,4,8,9] [2,5] [1,7] [6]   78.22 97.51 

5 [3,5,9] [1,2,8] [4,6] [7]   78.77 97.51 

6 [2,3,9] [1,4,5,7] [6] [8]   76.32 97.51 

7 [1,3,5,9] [2,7,8] [4] [6]   76.53 97.36 

8 [1,3,4,6] [2,5,9] [7,8]     81.80 97.36 

9 [1,2,4,7,9] [3,5] [6] [8]   75.69 97.80 

10 [1,3,4,5] [2,7,8,9] [6]     82.19 97.66 

   Average 78.33 97.60 

 

 

Figure 4.22 Compactness vs k-NN ensembles accuracy on breast cancer dataset 

Based on the experimental results it can be seen that the compactness in k-NN 

ensembles is directly proportional to the accuracy of the ensemble. The larger value 

of compactness will provide high accuracy and vice versa. 
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4.5.4 Calculating Compactness in LDA ensembles 

Experiments were conducted to calculate the compactness value versus LDA 

ensembles accuracy on created partition. Table 4.37 – Table 4.42 and Figure 4.23 – 

Figure 4.28 show the partition, compactness value and LDA ensembles accuracy on 

related datasets.  

Table 4.37 

Compactness vs LDA Ensembles Accuracy on Haberman Dataset 

Experiment # 
Partition 

Based on ACO 
Compactness (s) (%) Ensemble Accuracy (%) 

1 [1][2,3]         38.21 74,84 

2 [1][2,3]         38.36 74,51 

3 [1][2,3]         38.08 74,51 

4 [1,2][3]         37.93 74,18 

5 [1][2,3]         38.44 74,51 

6 [1][2,3]         38.94 74,51 

7 [1][2,3]         38.25 73,53 

8 [1,2][3]         38.20 74,18 

9 [1][2,3]         38.56 74,51 

10 [1][2,3]         38.35 74,18 

   Average 38.33 74.35 

 

 

Figure 4.23 Compactness vs LDA ensembles accuracy on haberman dataset 
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Table 4.38 

Compactness vs LDA Ensembles Accuracy on Liver Dataset 

Experiment # 
Partition  

Based on ACO 
Compactness (s) (%) Ensemble Accuracy (%) 

1 [1] [3,4,6] [2,5] 
  

14.59 63.48 

2 [2,3,4,6] [1] [5] 
  

12.37 63.77 

3 [1,2,6] [3,4] [5] 
  

13.81 63.77 

4 [1,3,4,6] [2] [5] 
  

14.28 63.77 

5 [2,5] [3,4,6] [1] 
  

14.50 64.06 

6 [1,3,4] [2,6] [5] 
  

12.95 64.06 

7 [2,3,4] [1,6] [5] 
  

12.64 64.06 

8 [1,3,4,6] [2] [5] 
  

13.63 63.48 

9 [5,6] [2] [1,3,4] 
  

12.67 64.06 

10 [2,5,6] [3,4] [1] 
  

14.66 64.06 

 
Average 13.61 63.86 

 

 

Figure 4.24 Compactness vs LDA ensembles accuracy on liver dataset 
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Table 4.39 

Compactness vs LDA Ensembles Accuracy on Ecoli Dataset 

Experiment # 
Partition 

Based on ACO 
Compactness (s) (%) Ensemble Accuracy (%) 

1 [1 3 5] [4 6] [7]     25.31 75.96 

2 [1 2] [3 7] [4 5 6]     25.00 75.90 

3 [1 3 5] [4 6] [7]     25.17 75.96 

4 [1 2 6 7] [5] [3 4]     25.05 76.00 

5 [1 3 5] [4 6] [7]     25.21 75.89 

6 [1 2 6 7] [5] [3 4]     25.11 75.96 

7 [1 2] [3 7] [4 5 6]     25.17 75.96 

8 [1 3 5] [4 6] [7]     25.19 75.79 

9 [1 2] [3 7] [4 5 6]     25.14 75.96 

10 [1 3 5] [4 6] [7]     25.12 75.96 

    Average 25.15 75.93 

 

 

Figure 4.25 Compactness vs LDA ensembles accuracy on ecoli dataset 
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Table 4.40 

Compactness vs LDA Ensembles Accuracy on Tic-Tac-Toe Dataset 

Experiment # 
Partition  

Based on ACO 
Compactness (s) (%) Ensemble Accuracy (%) 

1 [2,4,5,6] 7 [3,8] 9 1 25.01 73.05 

2 [6,7] [2,8,9] 1 3 [4,5] 25.09 72.79 

3 [2,6,7,8] [3,4] 5 9 1 25.17 72.53 

4 [2,4,8,9] [3,6] 5 1 7 24.98 72.92 

5 [2,4,5,8] [1,6] 3 9 7 25.71 73.70 

6 [3,8] 7 [2,5] [4,9] [1,6] 24.71 73.18 

7 [2,4,5,6,8] 1 3 7 9 24.77 72.53 

8 [2,4,5,6,8] 9 7 1 3 25.71 73.96 

9 [4,5] 9 [1,2,6] [7,8] 3 24.98 72.79 

10 [2,4,5,8] 9 [1,6] 3 7 24.98 72.79 

          Average  25.11 73.02 

 

 

Figure 4.26 Compactness vs LDA ensembles accuracy on tic-tac-toe dataset 
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Table 4.41 

Compactness vs LDA Ensembles Accuracy on Glass Dataset 

 

Experiment # 
Partition  

Based on ACO 
Compactness (s) (%) Ensemble Accuracy (%) 

1 [2,3,5,7] [4,8,9] [1,6] 
  

15,34 62,66 

2 [2,3,5,7] [4,8,9] [1,6] 
  

15,67 62,66 

3 [1 3 4] [2 5 9] [7 8] 
  

15,54 62,76 

4 [2,3,5,7] [4,8,9] [1,6] 
  

15,77 62,66 

5 [1 3 4] [2 5 9] [7 8] 
  

14,91 61,79 

6 [2,3,5,7] [4,8,9] [1,6] 
  

15,17 62,66 

7 [2,3,5,7] [4,8,9] [1,6] 
  

15,76 62,66 

8 [1 3 4] [2 5 9] [7 8] 
  

15,30 62,03 

9 [2,3,5,7] [4,8,9] [1,6] 
  

14,88 62,66 

10 [2,3,5,7] [4,8,9] [1,6] 
  

15,09 62,66 

   Average 15.34 62.52 

 

 

 

Figure 4.27 Compactness vs LDA ensembles accuracy on glass dataset 
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Table 4.42 

Compactness vs LDA Ensembles Accuracy on Breast Cancer Dataset 

Experiment # 
Partition  

Based on ACO 
Compactness (s) (%) Ensemble Accuracy (%) 

1 [2,4,6] [5,7,9] [1,8] 3   80.60 97.07 

2 [2,4,6] [5,7,9] [1,8] 3   80.60 97.07 

3 [1,3,5,9] [2,6,8] 7 4   77.32 97.22 

4 [2,4,8] [7,9] 3 [1,5,6]   79.65 97.22 

5 [1,3,5,9] [2,6,8] 7 4   77.32 97.51 

6 [1,3,5,9] [2,6,8] 7 4   77.32 97.22 

7 [2,4,8] [7,9] 3 [1,5,6]   79.65 97.22 

8 [1,3,5,9] [2,6,8] 7 4   77.32 97.22 

9 [2,4,8] [7,9] 3 [1,5,6]   79.65 97.22 

10 [3,5,7,9] [2,6,8] 4 1   76.24 97.07 

   Average 78.57 97.20 

 

 

Figure 4.28 Compactness vs LDA ensembles accuracy on breast cancer dataset 

Based on the experimental results, it can be seen that the compactness in LDA 

ensembles is directly proportional to the accuracy of the ensemble. The larger value 

of compactness will provide higher accuracy of ensemble. 
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4.5.5 The Relationship between Compactness and Ensemble Accuracy 

In this section, testing the relationship between compactness measure and ensemble 

accuracy is conducted. Testing is conducted using four constructed classifier 

ensembles on datasets which form partition. The regression test is conducted using 

SPSS. Simple linear regression test was performed to determine the relationship 

between them. Summaries of simple linear regression results of SPSS are shown in 

Table 4.43 – Table 4.45. Here R is the correlation coefficient,    is the determination 

coefficient and   is the significance value (sig). Based on the results of linear 

regression, hence a significant relationship between this proposed compactness 

measure with the ensemble accuracy was identified. There was a positive linear 

relationship between them.  

Tabel 4.43 

Model Summary 

R R
2
 Adjusted R Square Std. Error of the Estimate 

.971 .943 .943 3.28430 

Tabel 4.44 

ANOVA 

 
Sum of  

Squares 
df Mean Square F Sig (p) 

Regression 35506.280 1 35506.280 3291.689 .000 

Residual 2135.756 198 10.787   

Total 37642.036 198    
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Tabel 4.45 

Coefficients 

    

 

 

Model 

 

Unstandardized 

Coefficient 

Stdandardized 

Coefficient t Sig (p) 

B Std. Error Beta 

1. (Constant) 57.949 .375  154.355 .000 

  Compactness .477 .008 .971 57.373 .000 

 

The scatter plot and regression of proposed parameter and ensemble accuracy 

depicted in Figure 4.29. 

 

Figure 4.29 Scatter plot  of proposed parameter and ensemble accuracy 
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4.6 Summary 

Ant system-based feature set partitioning algorithm for classifier ensembles 

construction has been presented. Each classifier is trained on different partitions of 

features where the feature partition is performed through ant colony optimisation.  

The proposed ant system-based feature set partitioning has been evaluated and 

compared to the random subspace. The classification results were validated by the 

10-fold cross-validation approach. Based on experiment results of classification 

using 4 (four) homogeneous classifier ensembles and nine (9)  UCI datasets, where 

the individual classifier outputs were combined by majority voting, it can be 

concluded that the use of the proposed technique can produce better classification 

results than the random subspace. However, there is a need to formulate an 

appropriate combination technique which considers the accuracy of each classifier. 

A support formulation for compactness measurement in classifier ensemble has also 

been introduced. Compactness in classifier ensemble is measured simultaneously. 

The category of the support formulation was non-pairwise, in which the compactness 

in classifier ensemble is measured directly. The compactness measure has been 

shown to be the factor that significantly influences the ensemble accuracy. This 

support formulation has been shown to be able to predict ensemble accuracy and 

there is a positive relationship between the support formulation and the ensemble 

accuracy. 
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CHAPTER FIVE 

WEIGHTED VOTING-BASED COMBINER 

5.1 Introduction 

This chapter presents the weighted voting-based technique to combine the classifier 

outputs. The weighted voting technique is proposed to be integrated and synergized 

with classifier ensemble through feedback for ACO. Figure 5.1 shows the block 

diagram of the proposed multiple classifier combination scheme which shows the 

position of the proposed weighted voting-based technique.  

 

Figure 5.1 Block diagram of proposed multiple classifier combination scheme  

There are   different feature partitions,        obtained as the results of ant system-

based feature set partitioning algorithm. There will be   classifiers,         

constructed as classifier ensemble. The number of classifiers in the ensemble is 

determined by the number of partitions  obtained by the ant system-based feature 

partitioning algorithm. Each feature set partition is used to train classifiers to induce 
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diversity. Therefore,    outputs will be produced to combine classifiers using the 

weighted voting. This proposed multiple classifier combination scheme can be used 

for any classifier, in other words, not limited for a particular classifier. 

Experiments were conducted for the decomposition of features and weights 

simultaneously instead of each one separately. The output of the combiner is the 

feedback for ACO based on ant system algorithm, while the weighted voting 

technique is based on the majority voting technique.  

The feedback for ACO in the proposed combination scheme will make each single 

classifier trained on a different subset of features. This leads to the different 

performance of each classifier in each iteration. Weighted voting technique considers  

the performance of each classifier (Kim et al., 2011). For this justification the 

weigted voting technique is proposed to be included as combiner in this combination 

scheme. Furthermore, this approach has the potential to make the multiple classifier 

combination more robust to the choice of the number of individual classifiers 

(Valdovinos & Sánchez, 2009). Moreover, several combination strategy studies 

concentrated on the weighted voting approach (Wozniak, 2009; Huang & Wang, 

2009; Zarafshan et al., 2010; Nabatchian et al., 2010). Moreover, the weighted 

voting approach has been used to combine classifiers in order to solve real world 

problems such as face and voice recognitions (Mu et al., 2009) and listed companies’ 

financial distress prediction (Sun & Li, 2008).  
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The rest of this chapter is organised as follows. In section 5.2, the weighted voting 

technique for classifier combiner is proposed. In section 5.3, several experiments are 

performed to test the weighted voting approach on several standard datasets. In 

section 5.4, the constructed multiple classifier combination by this proposed 

combination scheme is evaluated.  In section 5.5, some conclusions are outlined. 

5.2 The Proposed Weighted Voting-based Technique 

There are many approaches that have been developed for combination classifier as 

those described in chapter two. One of the approaches uses the classifier fusion 

approach scheme. The classifier fusion scheme assumes all of the classification 

algorithm are equally experienced, and the output of classifiers are considered. In  

the fixed classifier fusion scheme, the weight of each classifier for combining 

classifiers is fixed.  There is no training process to determine the weight of each 

classifier. In general, the gain of the fixed classifier fusion scheme is its simplicity 

and reduce computational cost (Chen, 2007). One of the most famous and frequently 

used combination techniques in fixed classifier fusion scheme is majority voting. In 

several methods for constructing classifier ensemble, the majority voting is the 

optimal combiner (Ponti, 2011). The weakness of this combiner is it only considers 

the first rank class and does not consider the strength of the classifier, thus the 

strength of each classifier is considered equal in vote.  If the accuracies of the 

classifiers can be reliably estimated, then the weighted voting approach may be 

considered (Polikar, 2006). Therefore, the weighted voting technique is proposed to 

be included in proposed combination scheme which considers the performance of 

each classifier.  
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The focus of this study is on how to effectively combine the output of classifiers at 

the abstract level. At the abstract-level, each classifier produces a class label (crisp 

output). Although the classifier provides the least amount of information on this 

level, the output of any classifier can be tranformed to abstract-level (Ahmadzadeh 

& Petrou, 2003; Kuncheva, 2004). Integrating ant system-based and the weighted 

voting will also be able to operate at this level to combine the output of ensemble 

member regardless of what classifier is used. It is expected that the proposed 

combination scheme can be used as a guideline in combining multiple classifier for 

pattern classification task. This is the reason on why the abstract level is focused in 

this study.  

The goal to propose the weighted voting in this cobination sceme is not to compete 

with the best combiner that has been reported in the literature. Instead, the goal is to 

demonstrate that an effective classifier combination approach must address two main 

phases, which are the ensemble construction and the selection of appropriate 

combiner. Therefore, classifier combination scheme which involves two steps 

simultaneously is needed. The use of weighted voting in the proposed combination 

scheme is compared to the use of standard majority voting in the same combination 

scheme.  

The problem of combining multiple classifiers can be defined as follows: Let 

D {       }  be a set of individual classifier (or ensemble) where   is the number 

of individual classifiers. Let  ={             } be a set of class labels where c is 

the number of classes. Let   = {     }  be a training set (a labeled dataset) where 

     ,   is the number of instances,         is the   dimensional feature 
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vector of i-th instance and    {       } is the class label of the i-th instance. 

Each classifier    assigns an input feature vector to one of the class label i.e. 

     
   . The outputs of a classifier ensemble is an   dimensional class label 

vector [             ]
 . The task is to combine   of individual classifier outputs 

to predict the class label from a set of possible class labels that make the best 

classification of the unknown pattern. 

Let us assume that only the class labels are available from the classifier outputs, and 

define the decision of the j-th classifier as      {   }                     

where   is the number of classifiers and   is the number of classes. If j-th classifier 

   chooses class   , then         and 0 otherwise. 

The classifier outputs combination by the weighted voting can be described as 

follows: choose class     if 

∑         

 

   

         ∑        

 

   

                                                                

where       is the accuracy (or weight) of classifier   . The votes are multiplied by a 

weight before the actual voting. The weight is obtained by estimating the 

classification accuracy on a validation set. 

5.3 Experimental Results in Combiner Construction 

This section presents the experiment conducted in evaluating the performance of the 

weighted voting to combine classifier outputs. For a fair analysis, the performance of 

multiple classifier combination that is generated by the proposed combination 

schema is compared with the performance of several previous multiple classifier 
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combination. Four homogeneous ensembles which are NMC ensembles, NBC 

ensembles, k-NN ensembles and LDA ensembles, were constructed in the 

experiment. The goal is to empirically evaluate the suitability of weighted voting to 

combine their classifier outputs. For this pupose, the four sets of experiments 

proceed in two treatments. In the first treatment, the standard majority voting 

technique  was applied to combine classifier outputs while in the second treatment, 

the weighted voting was applied to combine classifier outputs. The majority voting 

and weighted voting respectively were tested to combine the output of ensemble 

classifiers which is constructed by the ant system-based feature set partitioning 

algorithm. Ten (10) experiments were performed on nine (9) datasets from UCI 

machine learning repository to test the performance of combined classifier outputs. 

During the experiment, the performance of multiple classifiers which is combined by 

the weighted voting is compared to the performance of multiple classifier which is 

combined by the majority voting. The experimental code was written in MATLAB. 

The 10-fold cross validation method was used on both treatments for prediction 

performance assessment. The following subsections present the experimental results.  

5.3.1 Experiments in Combining NMC Ensembles 

Experiments were conducted to test the weighted voting in combining homogeneous 

NMC ensembles outputs. Tables 5.1 and 5.2 present the average and standard 

deviations of the classification accuracies of combined NMC outputs using majority 

voting and weighted voting respectively. Based on the experimental results, it can be 

seen that a small deviation of the classification accuracies was obtained which 

showed that the experiments were accurate and good. 
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Table 5.1 

Accuracy of Combining NMC using Majority Voting 

Experiment # Haberman Iris Lenses Liver Ecoli Pima Tic-Tac-Toe Glass Breast Cancer 

1 69.93 94.67 70.83 64.06 81.25 73.05 73.17 52.80 97.22 

2 71.57 94.67 66.67 62.61 82.14 72.79 72.76 53.27 97.22 

3 71.24 94.67 62.50 64.35 81.25 72.53 72.65 55.14 97.22 

4 73.86 94.67 70.83 65.51 82.74 72.92 74.01 52.80 97.22 

5 67.97 95.33 70.83 64.64 81.25 73.70 72.86 52.34 97.22 

6 68.63 94.67 62.50 64.35 82.74 73.18 72.86 52.34 97.36 

7 69.93 94.67 70.83 63.77 82.14 72.53 72.86 52.80 97.22 

8 70.92 94.67 58.33 64.35 82.14 73.96 72.65 53.27 97.22 

9 69.28 92.00 66.67 64.64 81.25 72.79 73.28 54.21 97.22 

10 70.59 94.67 66.67 64.64 81.25 72.79 72.96 53.27 97.22 

Average 70.39 94.47 66.67 64.29 81.82 73.02 73.01 53.22 97.23 

Standard deviation 1.67 0.89 4.39 0.75 0.63 0.47 0.41 0.87 0.04 

 

 

Table 5.2 

Accuracy of Combining NMC using Weighted Voting 

Experiment # Haberman Iris Lenses Liver Ecoli Pima Tic-Tac-Toe Glass Breast Cancer 

1 69.93 96.00 87.50 64.64 82.44 75.13 74.22 54.00 96.78 

2 69.93 96.67 87.50 64.06 82.14 75.39 74.88 54.34 98.03 

3 70.26 96.00 87.50 64.64 81.55 75.39 74.23 54.34 98.03 

4 69.61 96.00 87.50 63.77 82.44 75.26 74.45 54.34 98.03 

5 70.92 96.00 87.50 65.22 82.07 75.13 74.77 54.67 98.03 

6 70.59 96.00 87.50 64.35 82.51 75.26 74.23 54.34 98.03 

7 71.57 96.00 87.50 65.22 82.44 74.61 74.20 54.34 98.03 

8 71.90 96.00 87.50 64.06 82.07 74.48 74.23 54.67 98.03 

9 68.95 96.00 87.50 64.64 82.22 75.13 74.45 54.34 98.03 

10 72.88 96.00 87.50 64.64 82.34 75.13 74.77 54.00 98.03 

Average 70.65 96.07 87.50 64.52 82.22 75.09 74.44 54.34 97.91 

Standard deviation 1.18 0.21 0.00 0.48 0.29 0.31 0.27 0.22 0.40 
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The comparison between the majority voting and weighted voting in combining 

NMC outputs are shown in Table 5.3 and in Figure 5.2.  Based on the results of this 

comparison, it can be seen that the weighted voting method provides better results 

than majority voting on all datasets. 

Table 5.3 

Comparison of Majority Voting and Weighted Voting in Combining NMC 

Dataset Single Majority Voting Weighted Voting 

Haberman 69.97 70.39 70.65 

Iris 92.07 94.47 96.07 

Lenses 65.83 66.67 87.50 

Liver 55.19 64.29 64.52 

Ecoli 81.55 81.82 82.22 

Pima 63.29 73.02 75.09 

Tic-Tac-Toe 63.19 73.01 74.44 

Glass 44.16 53.22 54.34 

Breast Cancer 96.49 97.23 97.91 

  

The average accuracy of both combiner in integrating NMC is again depicted in 

Figure 5.2. 

 

Figure 5.2 Comparison of majority voting and weighted voting in combining NMC 
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Based on the experimental results, it can be seen that the use of weighted voting to 

combine the NMC outputs exceeds the majority voting technique on whole datasets. 

However, a significant increase occurs in lenses, pima and tic-tac-toe datasets.  

5.3.2 Experiments in Combining NBC Ensembles 

Experiments were carried out to test the weighted voting in combining NBC outputs. 

Table 5.4 describes the average and standard deviations of the classification 

accuracies of combined NBC outputs using majority voting. Table 5.5 shows the 

average and standard deviation of the classification accuracies of the combined NBC 

outputs using weighted voting.  

 

Table 5.4 

Accuracy of Combining NBC  using Majority Voting 

Experiment # Haberman Iris Lenses Liver Ecoli Pima Tic-Tac-Toe Glass Breast Cancer 

1 75.49 96.00 62.50 64.93 75.45 75.39 72.34 72.55 97.66 

2 74.18 95.33 62.50 63.77 75.46 75.65 72.86 73.15 97.51 

3 74.84 95.33 62.50 63.77 74.45 75.13 72.03 72.55 97.51 

4 74.84 95.33 62.50 62.32 74.65 75.00 72.96 72.55 97.66 

5 74.84 96.00 62.50 63.77 75.85 75.65 71.71 71.85 97.66 

6 75.16 95.33 62.50 63.48 75.45 75.52 72.96 72.55 97.51 

7 74.84 95.33 62.50 63.19 76.15 75.65 72.76 79.65 97.80 

8 74.51 95.33 62.50 62.61 75.45 75.39 73.28 72.55 97.51 

9 74.51 95.33 62.50 62.90 76.95 75.52 72.44 72.55 97.80 

10 74.84 95.33 62.50 64.35 75.45 75.52 72.76 72.55 97.66 

Average 74.81 95.46 62.50 63.51 75.53 75.44 72.61 73.25 97.63 

Standard deviation 0.36 0.28 0.00 0.79 0.71 0.22 0.48 2.27 0.11 
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Table 5.5 

Accuracy of Combining NBC  using Weighted Voting 

Experiment # Haberman Iris Lenses Liver Ecoli Pima Tic-Tac-Toe Glass Breast Cancer 

1 75.49 96.67 62.50 63.48 76.76 75.77 73.07 73.40 98.06 

2 75.49 96.00 62.50 66.09 76.33 75.99 72.96 73.28 98.06 

3 74.51 96.00 62.50 63.77 76.76 75.77 72.66 73.57 98.06 

4 74.84 96.00 62.50 62.61 76.33 75.77 72.88 73.28 98.06 

5 74.84 96.00 62.50 62.61 76.76 75.32 72.88 73.57 98.06 

6 74.84 96.00 62.50 63.77 76.76 75.77 72.66 73.40 98.06 

7 74.84 96.67 62.50 63.19 76.89 75.99 72.88 73.66 98.06 

8 75.16 96.00 62.50 63.19 76.76 75.77 72.88 73.57 98.06 

9 74.84 96.00 62.50 64.93 76.89 75.77 72.66 73.40 98.06 

10 75.49 96.00 62.50 63.19 76.76 75.77 72.66 73.57 98.06 

Average 75.03 96.13 62.50 63.68 76.70 75.77 72.82 73.47 98.06 

Standard deviation 0.35 0.28 0.00 1.08 0.20 0.18 0.15 0.13 0.00 

 

Table 5.6 and Figure 5.3 present comparison between the majority voting and 

weighted voting techniques in combining NBC outputs respectively. It can be seen 

that the weighted voting method provides better results than majority voting on all 

datasets. 

Table 5.6 

Comparison of Majority Voting and Weighted Voting in Combining NBC 

Dataset Single Majority Voting Weighted Voting 

Haberman 74.51 74.81 75.03 

Iris 95.47 95.46 96.13 

Lenses 62.50 62.50 62.50 

Liver 55.42 63.51 63.68 

Ecoli 74.69 75.53 76.70 

Pima 75.77 75.44 75.77 

Tic-Tac-Toe 72.54 72.61 72.82 

Glass 73.02 73.25 73.47 

Breast Cancer 96.13 97.63 98.06 
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The average accuracy of both combiner in combining NBC outputs is again depicted 

in Figure 5.3. 

 

Figure 5.3 Comparison of majority voting and weighted voting in combining NBC 

There is no significant improvement when the weighted voting method is used in 

combining NBC outputs. This proposed technique comparable with the majority 

voting technique on the entire dataset. 

5.3.3 Experiments in Combining k-NN Ensembles 

Experiments were conducted to test the weighted voting in combining k-NN outputs. 

Table 5.7 and Table 5.8 present the average and standard deviations of the 

classification accuracies of combining k-NN outputs using majority voting and 

weighted voting respectively. A small standard deviation value shows that the 

experimental results obtained are close to the average, so the experiment results are 

accurate and good. 
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Table 5.7 

Accuracy of Combining k-NN using Majority Voting 

Experiment # Haberman Iris Lenses Liver Ecoli Pima Tic-Tac-Toe Glass Breast Cancer 

1 67.65 96.00 79.17 65.80 80.95 71.48 74.74 73.36 97.95 

2 68.95 96.00 79.17 62.61 81.25 71.74 74.32 72.43 97.51 

3 67.97 96.00 79.17 65.51 81.25 70.18 76.83 72.90 97.80 

4 68.30 96.00 79.17 64.06 80.65 70.44 75.78 72.90 97.51 

5 69.61 96.00 79.17 62.61 82.14 71.48 76.10 72.90 97.51 

6 68.63 96.00 79.17 62.61 81.25 70.18 75.47 74.30 97.51 

7 67.65 96.00 79.17 64.06 80.36 71.22 76.10 73.83 97.36 

8 69.93 96.00 79.17 65.51 80.95 70.44 76.83 71.03 97.36 

9 67.97 95.33 79.17 66.25 81.55 72.14 75.05 72.90 97.80 

10 68.63 96.00 79.17 62.61 81.55 70.83 76.10 72.43 97.66 

Average 68.53 95.93 79.17 64.16 81.19 71.01 75.73 72.90 97.60 

Standard deviation 0.79 0.21 79.17 1.50 0.50 0.70 0.84 0.88 0.20 

 

Table 5.8  

Accuracy of Combining k-NN using Weighted Voting 

Experiment # Haberman Iris Lenses Liver Ecoli Pima Tic-Tac-Toe Glass Breast Cancer 

1 72.22 96.67 87.50 64.35 81.85 71.22 79.00 73.66 98.09 

2 72.88 96.00 83.33 64.06 81.85 71.22 78.81 73.90 98.09 

3 72.22 96.00 87.50 66.67 81.25 71.22 79.12 73.59 98.09 

4 72.55 96.00 83.33 64.35 82.14 71.22 78.71 73.98 98.09 

5 72.22 96.67 87.50 64.93 81.55 71.22 78.91 72.88 98.09 

6 73.20 96.67 87.50 67.83 82.09 71.22 79.44 73.00 98.09 

7 72.88 96.67 87.50 65.51 81.85 71.22 78.81 73.98 98.09 

8 72.22 96.00 87.50 66.09 82.09 71.22 78.18 73.05 98.09 

9 74.51 96.67 87.50 66.96 82.30 71.22 78.18 73.44 98.09 

10 72.55 96.00 87.50 64.06 82.09 71.22 78.91 73.90 98.09 

Average 72.75 96.34 86.67 65.48 81.91 71.22 78.81 73.54 98.09 

Standard deviation 0.71 0.35 1.76 1.35 0.31 0.00 0.39 0.43 0.00 

 

The comparison between the majority voting and weighted voting techniques in 

combining k-NN outputs are shown in Table 5.9 and Figure 5.4. Although the 

weighted voting method is not always better than majority voting, it provides good 

results on various datasets. 
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Table 5.9 

Comparison of Majority Voting and Weighted Voting in Combining k-NN 

Dataset Single Majority Voting Weighted Voting 

Haberman 66.83 68.53 72.75 

Iris 95.67 95.93 96.34 

Lenses 77.92 79.17 86.67 

Liver 62.32 64.16 65.48 

Ecoli 81.19 81.19 81.91 

Pima 67.37 71.01 71.22 

Tic-Tac-Toe 75.51 75.73 78.81 

Glass 72.71 72.90 73.54 

Breast Cancer 95.78 97.60 98.09 

 

The average accuracy of both combiners is again depicted in Figure 5.4. 

 

Figure 5.4 Comparison of majority voting and weighted voting in combining k-NN 

There is a significant increase in classification accuracy when weighted voting is 

used to combine k-NN outputs. Therefore, the weighted voting method is better than 

the majority voting method in combining k-NN outputs. 
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5.3.4 Experiments in Combining LDA Ensembles 

Experiments were performed to determine the performance of both majority voting 

techniques plus ant system-based feature set partitioning to combine LDA outputs. 

Table 5.10 and Table 5.11 present the average and standard deviations of the 

classification accuracies of combined LDA outputs respectively. As with previous 

experiments, in these experiments, a small value of standard deviation is obtained. 

Table 5.10 

Accuracy of Combining LDA using Majority Voting 

Experiment # Haberman Iris Lenses Liver Ecoli Pima Tic-Tac-Toe Glass Breast Cancer 

1 74.84 98.00 87.50 63.48 75.96 75.52 73.05 62.66 97.07 

2 74.51 98.00 87.50 63.77 75.90 75.91 72.79 62.66 97.07 

3 74.51 98.00 83.33 63.77 75.96 76.17 72.53 62.76 97.22 

4 74.18 98.00 87.50 63.77 76.00 75.78 72.92 62.66 97.22 

5 74.51 98.00 87.50 64.06 75.89 75.65 73.70 61.79 97.51 

6 74.51 98.00 87.50 64.06 75.96 76.04 73.18 62.66 97.22 

7 73.53 98.00 87.50 64.06 75.96 76.17 72.53 62.66 97.22 

8 74.18 98.00 83.33 63.48 75.79 76.17 73.96 62.03 97.22 

9 74.51 98.00 87.50 64.06 75.96 76.04 72.79 62.66 97.22 

10 74.18 98.00 87.50 64.06 75.96 76.82 72.79 62.66 97.07 

Average 74.35 98.00 86.67 63.86 75.93 76.03 73.02 62.52 97.20 

Standard deviation 0.35 0.00 1.76 0.24 0.06 0.36 0.47 0.33 0.13 
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Table 5.11 

Accuracy of Combining LDA using Weighted Voting 

# experiment Haberman Iris Lenses Liver Ecoli Pima Tic-Tac-Toe Glass Breast Cancer 

1 74.84 98.00 87.50 67.54 76.56 76.82 74.01 62.67 98.12 

2 75.16 98.00 87.50 66.09 76.99 76.82 74.33 62.66 98.12 

3 74.51 98.00 87.50 65.22 76.88 76.82 74.00 62.33 98.12 

4 74.51 98.00 87.50 64.93 76.55 76.82 74.66 62.33 98.12 

5 74.51 98.67 87.50 65.22 76.00 76.82 74.66 62.87 98.12 

6 74.51 98.00 87.50 64.93 76.56 76.82 74.33 62.66 98.12 

7 75.16 98.00 87.50 65.22 76.56 76.82 74.66 62.67 98.12 

8 74.84 98.00 87.50 64.93 76.99 76.82 74.00 62.77 98.12 

9 75.16 98.00 87.50 65.22 76.88 76.82 74.33 62.77 98.12 

10 75.16 98.00 87.50 65.80 76.33 76.82 74.66 62.67 98.12 

Average 74.84 98.07 87.50 65.51 76.63 76.82 74.36 62.64 98.12 

Standard deviation 0.31 0.21 0.00 0.81 0.31 0.00 0.29 0.18 0.00 

 

Table 5.12 and Figure 5.5 show comparison between majority voting and weighted 

voting on combining LDA outputs. It can be seen that the weighted voting method 

provides better results than majority voting in most datasets. 

Table 5.12  

Comparison of Majority Voting and Weighted Voting in Combining LDA 

Dataset Single Majority Voting Weighted Voting 

Haberman 73.73 74.35 74.84 

Iris 97.33 98.00 98.07 

Lenses 86.25 86.67 87.50 

Liver 62.35 63.86 65.61 

Ecoli 72.91 75.93 76.63 

Pima 75.34 76.03 76.82 

Tic-Tac-Toe 65.62 73.02 74.36 

Glass 58.83 62.52 62.64 

Breast Cancer 96.18 97.20 98.12 
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The average accuracy of both techniques is again showed in Figure 5.5. 

 

Figure 5.5 Comparison of majority voting and weighted voting in combining LDA 

There is no significant improvement when the weighted voting technique is used in 

combining LDA outputs. This proposed technique is comparable with the majority 

voting technique on the entire dataset. 

5.4 Summary of  Results 

The experimental results on applying weighted voting to combine the individual 

classifier outputs has been given in the previous section. In this section, a 

comparison of four combined classifiers for the whole datasets is given as well. It is 

intended to easily perform a comprehensive comparison. Table 5.13 shows a 

comparison of four combined classifiers on the whole dataset. 
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Table 5.13 

Comparison of Four Constructed Homogeneous Classifier Ensembles 

Dataset 
Base Classifier of 

Homogeneous Ensembles 

Average of Accuracy (%) 

Majority Voting Weighted Voting 

Haberman 

NMC 70.39 70.65 

NBC 74.81 75.03 

k-NN 68.53 72.75 

LDA 74.35 74.84 

Iris 

NMC 94.47 96.07 

NBC 95.46 96.13 

k-NN 95.93 96.34 

LDA 98.00 98.07 

Lenses 

NMC 66.67 87.50 

NBC 62.50 62.50 

k-NN 79.17 86.67 

LDA 86.67 87.50 

Liver 

NMC 64.29 64.52 

NBC  63.51 63.68 

k-NN  64.16 65.48 

LDA  63.86 65.51 

Ecoli 

NMC  81.82 82.22 

NBC  75.53 76.70 

k-NN  81.19 81.91 

LDA 75.93 76.63 

Pima 

NMC 73.02 75.09 

NBC 75.44 75.77 

k-NN 71.01 71.22 

LDA 76.03 76.82 

Tic-Tac-Toe 

NMC 73.01 74.44 

NBC 72.61 72.82 

k-NN 75.73 78.81 

LDA 73.02 74.36 

Glass 

NMC 53.22 54.34 

NBC 73.25 73.47 

k-NN 72.90 73.54 

LDA 62.52 62.64 

Breast Cancer 

NMC 97.23 97.91 

NBC 97.63 98.06 

k-NN 97.60 98.09 

LDA 97.20 98.12 
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The summary of results is again presented in a graph form as depicted in Figure 5.6. 

 

Figure 5.6 Comparison of four constucted homogeneous ensemble classifiers 

Based on a comparison of the combined classifier using majority voting and 

weighted voting, it can be seen that in general, there is an increase in classification 

accuracy on almost all datasets; even though the accuracy of these improvements 

vary from large to small depending on the classifiers used. The performance of NMC 

and k-NN increased significantly on most datasets; meanwhile NBC and LDA’s 

performance are not significantly increased in most of the datasets. 
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5.5 Comparison with other Methods 

Evaluation is important to know the strengths and weaknesses of the proposed 

method. For evaluation purpose, an ensemble classifier is developed using the 

proposed multiple classifier combination scheme. The developed ensemble classifier 

is compared to other method. Comparing the developed ensemble classifier with 

single classifier and other methods is conducted in this section. 

Many methods on combining multiple classifiers have been proposed. A common 

approach or main method on combining classifier is to use the random subspace 

method, such that each classifier is trained on a different feature subset of the 

training data. Random subspace creates ensemble diversity, by training a classifier 

using different random feature subsets.  

A weighted voting-based technique on combining multiple classifiers which 

corresponds to the average distance weight has been introduced by Valdovinos and 

Sánchez (2009). The goal of this weighting technique was to reward (by assigning 

the highest weight) the individual classifier with the k-nearest neighbour to the input 

pattern.  The effectiveness of this approach was empirically tested over a number of 

data sets. Experimental results with several real-problem datasets from the UCI 

machine learning database repository demonstrated the advantages of this weighted 

voting technique over the simple majority voting. 
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A novel method using Genetic Algorithm has been proposed by Suguna and 

Thanushkodi (2010). Genetic Algorithm was combined with k-NN to overcome the 

limitations of k-NN and enhance its classification performance called Genetic k-NN 

(GKNN). Instead of considering all the training samples and taking k-neighbours, 

the GA was employed to take k-neighbours straightaway and then calculate the 

distance to classify the test samples. Before classification, the reduced feature set 

was received from a novel method based on Rough set theory hybrid with Bee 

Colony Optimization. In the proposed method, by using GA, k-number of samples 

was chosen for all iterations and the classification accuracy was calculated as fitness. 

The highest accuracy was recorded each time. Thus, it was not required to calculate 

the similarities between all samples, and there was no need to consider the weight of 

the samples. Thus the calculation complexity of k-NN was reduced. The 

performance was compared with traditional k-NN, CART and SVM classifiers. 

Experimental results showed that the proposed method not only reduces the 

complexity of the k-NN, but also enhances the classification performance. 

An ensemble method to improve the performance of k-NN which combines multiple 

k-NN classifiers, where each classifier uses a different distance metrics, and a 

different feature vectors has been proposed by Tahir and Smith (2010). These feature 

vectors were determined for each distance metric simultaneously by using a 

combination of Tabu search and simple local neighbourhood search to minimize the 

ensemble error rate. This approach selects a diverse set of classifiers, such that 

achieves higher performance enhancements. A simple voting scheme was adopted to 

obtain the final output of the ensemble. The proposed ensemble method (DF-TS3) 

was evaluated using several benchmark datasets from UCI machine learning 
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repository. Experimental results have shown a significant improvement in the 

accuracy when compared with different well-known classifiers. Furthermore, the 

proposed ensemble method was also compared with ensemble classifier using 

different distance metrics but with same feature vector.  

A novel nearest neighbour ensemble method based on weighted voting technique in 

classifier fusion called weighted nearest neighbour ensemble (WNNE) has been 

introduced by Hamzeloo et al. (2012) to enhance the accuracy of nearest neighbour 

classifier. WNNE is a combination of several nearest neighbour classifiers, which 

have different subsets of input feature set. The algorithm assigns a weight to each 

classifier, and uses a weighted voting technique among these classifiers to obtain the 

final decision. The proposed method has been evaluated on several UCI benchmark 

datasets. This method was compared to single nearest neighbour classifier and 

random subspace. The results showed that WNNE outperforms these two 

approaches. 

A direct boosting algorithm which is an ensemble method, has been proposed by 

Neo and Ventura (2012) for the k-NN classifier that creates ensemble of classifiers 

with locally modified distance weighting. The weights were trained by iterating 

through the training set and classifying each sample against the rest of the training 

set. Incorrectly classified samples will update the weights of their neighbours so that 

they were more likely to correctly classify the instance during the following 

iteration. To save computation time, a modification called throttling was considered, 

in which the set of possible neighbours for each instance was limited. The proposed 

ensemble method was tested on several standard databases from the UCI machine 
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learning repository benchmark datasets. The 10-fold cross validation approach was 

used to test the accuracy of algorithm. A weighted voting-based mechanism was 

adopted to obtain the final output of the ensemble. Tests results showed better 

classification accuracy and generalization ability in the majority of the datasets and 

never performs worse than standard k-NN. 

In this section the performance of the proposed method has been compared to the 

aforementioned methods. The same base classifier and same dataset which have been 

used in previous experiments have also been used for comparison purposes. k-NN 

classifier is used as a base classifier for ensemble method comparison. Haberman, iris, 

ecoli, glass, pima and breast cancer from the UCI repository are chosen because of the 

availability of results from previous studies in which k-NN was also used as base classifier. 

The performance of the proposed method is evaluated by comparing the reults to: (1) 

Single classifier approach, (2) Dynamic weighted voting (Valdovinos & Sánchez, 

2009), (3) An improved k-NN classification using Genetic Algorithm (Suguna & 

Thanushkodi, 2010), (4) Simultaneous metaheuristic feature selection (Tahir and 

Smith, 2010), (5) Weighted k-NN ensemble method (Hamzeloo et al., 2012) and (6) 

Direct boosting algorithm (Neo and Ventura, 2012).  Table 5.14 presents the 

comparison of results of these methods and again depicted in Figure 5.7. 
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Table 5.14 

Result of proposed methods compared with previous methods 

 

Dataset 

 

Single 

Classifier 

 

 

(1) 

 

Dynamic 

Weighted 

Voting 

 

(2) 

 

Genetic   

k-NN 

(GKNN) 

 

(3) 

 

Simultaneous 

Metaheuristic 

Feature 

Selection 

(4) 

 

 Weighted   

k-NN 

Ensemble 

 

 (5) 

 

Direct 

Boosting 

Algorithm 

 

 (6) 

 

Proposed 

 Ant System 

+ Weighted 

Voting 

(7) 

Haberman 66.83 - - - 71.89 - 72.75 

Iris 95.67 97.33 - - 95.20 96.70 96.34 

Ecoli 81.19 - - - 82.79 - 81.91 

Glass 72.71 - - - 74.23 72.50 73.54 

Pima 67.37 72.68 - 71.90 - 75.70 71.22 

Breast 

Cancer 
95.78 96.35 97.92 97.50 - - 98.09 

 

 

1. Single Classifier   2. Dynamic Weighted Voting  

3. Genetic k-NN    4. Simultaneous Metaheuristic Feature Selection  

5. Weighted k-NN Ensemble  6. Direct Boosting Algorithm for k-NN  

7. Proposed Ant System + Weighted Voting 

 

 

The obtained results is again depicted in Figure 5.7. 

 

Figure 5.7 Comparison of proposed method and other previous methods 

Based on the results, it can be seen that the proposed method gives the best 

classification accuracies as compared to the other methods on habermann and breast 
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cancer dataset. The performance of weighted k-NN ensemble method exceeds the 

proposed method on the ecoli and glass datasets. The performances of dynamic 

weighted voting method and direct boosting algorithm for k-NN exceed the proposed 

method on iris and pima dataset. In general, the proposed method gives good 

classification results and is comparable with the previous methods. 

5.6 Summary 

A weighted voting combination technique was proposed to integrate the output of 

classifiers. This combination technique used the performance of classifiers based on 

the feature set partition. The weights were obtained through the feedback from the 

combiner. The weight is determined according to the performance of each classifier. 

The performance of the weighted voting technique has been evaluated to combine 

homogeneous classifier ensembles and compared them to majority voting on nine 

datasets. Based on the experimental results, it is concluded that weighted majority 

voting technique can produce better classification results for various datasets 

compared to majority voting. It can also be concluded that the performance of a 

multiple classifier combination scheme which combines ant system-based feature set 

partitioning and weighted voting method exceeds the performance of single 

classifiers as well as provides good classification results and is comparable to other 

state-of-the-art ensemble methods. 
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CHAPTER SIX 

CONCLUSION 

The main objective of this research is to develop a method in combining multiple 

classifier combination. This study was able to achieved the main objective and the 

specific objectives. Section 6.1 highlights the research contribution and Section 6.2 

describes future research that can be pursued as the result of this study.  

6.1 Research Contribution 

There are three contributions of the research. The first two contributions can be used 

separately in dealing with multiple classifier combination.  

The first contribution is an algorithm for classifier ensemble construction. The 

algorithm was developed based on ant system which is a variant of ACO algorithm. 

Ant system-based feature set partitioning (vertical decomposition) algorithm has 

been developed for the input training process. A set of classifiers are trained by using 

different feature partitions to induce diversity and combined them to achieve optimal 

ensemble accuracy. Although there are several methods to construct a classifier 

ensemble, this algorithm can determine the number of classifiers which are 

combined to produce a diverse and accurate classifier ensemble. The number of 

classifiers that can be combined is determined by the number of feature partitions 

that are obtained. Based on the experimental results, it can be concluded that the use 

of the proposed algorithm can produce better classifier ensemble. 

The second contribution is a compactness measure in a set of classifiers. The 

compactness measure is intended to address the diversity-accuracy dilemma. 
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Compactness is a condition in which classifiers support each other for true decision 

regardless of the classifiers diverse or similar conditions. The compactness in a set of 

classifiers is measured simultaneously. Based on the experimental results, it can be 

concluded that there is a positive relationship between compactness and ensemble 

accuracy. This means that this proposed compactness measure can be used as a guide 

for constructing diverse and accurate classifier ensemble. 

The third contribution is an improved multiple classifier combination scheme. The 

first contribution and weighted voting combiner are integrated in the general 

multiple classifier combination cheme. Based on the evaluation results, it is 

concluded that application of this proposed combination scheme in combining 

multiple classifier, exceeds single and other multiple classifiers, gives good 

classification results and is comparable to other state-of-the-art ensemble methods. 

This proposed combination scheme can be applied to develop various multiple 

classifier combination.  

6.2 Future Work 

Future research can conducted in applying the proposed ant system-based feature 

partitioning algorithm on other classifiers like Support Vector Machine, Neural 

Network and Decision Tree. This study has only focused on the use of the same 

algorithm over diversified datasets (homogeneous or one type of classifier). Future 

work can be used on different algorithms for the same data (or heterogeneous 

classifier). Feature partitioning does not always outperform the single classifier (or 

comparable). The experimental results have demonstrated that feature partitioning is 

superior for certain datasets. Thus, to enhance the performance of feature 
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partitioning, feature partition-selection approach can be considered. As a 

consequence of the high dimensional feature vector space, it would require a large 

number of training samples in the training process. Ant system-based feature 

partitioning makes it possible to partition the feature set into several lower-

dimensional feature sets, which would allow a set of classifiers to process low 

dimensional feature vectors simultaneously. Therefore, testing the ability of this 

method to overcome the high dimensional data and small training sample problems 

can also be considered for future work. 
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