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Abstrak

Gabungan pengelas berganda dianggap sebagai satu arah baru dalam bidang
pengecaman corak untuk meningkatkan prestasi pengelasan. Ketiadaan garis
panduan piawai untuk membangunankan pengelas gabung yang tepat dan pelbagai
merupakan masalah utama dalam gabungan pengelas berganda. Ini adalah kerana
kesukaran untuk mengenal pasti jumlah pengelas homogen dan bagaimana
menggabungkan hasil pengelas. Kaedah gabung yang paling biasa digunakan ialah
strategi rawak manakala teknik pengundian terbanyak digunakan sebagai
penggabung pengelas. Walau bagaimanapun, strategi rawak tidak dapat menentukan
bilangan pengelas dan pengundian terbanyak tidak mempertimbangkan kekuatan
setiap pengelas, sehingga menyebabkan ketepatan pengelasan yang rendah. Dalam
kajian ini, satu skim gabungan pengelas berganda yang lebih baik dicadangkan.
Algoritma ant system (AS) digunakan untuk melakukan sesekat set ciri dalam
pembentukan subset ciri yang mewakili pengelas. Satu ukuran kekompakan
diperkenalkan sebagai satu parameter dalam membina pengelas gabung yang tepat
dan beragam. Satu kaedah mengundi pemberat digunakan untuk menggabungkan
hasil pengelas dengan mempertimbangkan kekuatan pengelas sebelum pengundian
dilakukan. Eksperimen telah dijalankan menggunakan empat pengelas asas iaitu
nearest mean classifier (NMC), naive bayes classifier (NBC), k-nearest neighbour
(k-NN ) dan linear discrimimant analisis (LDA) ke atas set data penanda aras, untuk
menguji kredibiliti skim gabungan pengelas berganda yang dicadangkan. Purata
ketepatan pengelas gabung homogen NMC, NBC, k- NN dan LDA adalah 97,91 %,
98,06 %, 98.09 % dan 98,12 %. Ketepatan adalah lebih tinggi daripada yang
diperolehi melalui penggunaan kaedah lain dalam membangunkan gabungan
pengelas berganda. Skim gabungan pengelas berganda yang dicadangkan dapat
membantu dalam membangunkan gabungan pengelas berganda untuk pengecaman
dan pengelasan corak yang lain.

Kata Kunci: Gabungan pengelas berganda, Ukuran keragaman, Pengecaman dan
pengelasan corak, Algoritma ant system, Pengundian berberat.



Abstract

Combining multiple classifiers are considered as a new direction in the pattern
recognition to improve classification performance. The main problem of multiple
classifier combination is that there is no standard guideline for constructing an
accurate and diverse classifier ensemble. This is due to the difficulty in identifying
the number of homogeneous classifiers and how to combine the classifier outputs.
The most commonly used ensemble method is the random strategy while the
majority voting technique is used as the combiner. However, the random strategy
cannot determine the number of classifiers and the majority voting technique does
not consider the strength of each classifier, thus resulting in low classification
accuracy. In this study, an improved multiple classifier combination scheme is
proposed. The ant system (AS) algorithm is used to partition feature set in
developing feature subsets which represent the number of classifiers. A compactness
measure is introduced as a parameter in constructing an accurate and diverse
classifier ensemble. A weighted voting technique is used to combine the classifier
outputs by considering the strength of the classifiers prior to voting. Experiments
were performed using four base classifiers, which are Nearest Mean Classifier
(NMC), Naive Bayes Classifier (NBC), k-Nearest Neighbour (k-NN) and Linear
Discriminant Analysis (LDA) on benchmark datasets, to test the credibility of the
proposed multiple classifier combination scheme. The average classification
accuracy of the homogeneous NMC, NBC, k-NN and LDA ensembles are 97.91%,
98.06%, 98.09% and 98.12% respectively. The accuracies are higher than those
obtained through the use of other approaches in developing multiple classifier
combination. The proposed multiple classifier combination scheme will help to
develop other multiple classifier combination for pattern recognition and
classification.

Keywords: Multiple classifier combination, Diversity measure, Pattern recognition
and classification, Ant system algorithm, Weighted voting.
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CHAPTER ONE
INTRODUCTION

1.1 Background

Pattern classification is the process of classifying patterns into predefined category
(or class label) based on their feature set (or attribute set) (Dougherty, 2013). Pattern
classification aims to determine pattern categories based on characteristics of the
patterns, where the categories have been priorly defined. Classification process is
divided into two phases, namely training and testing phases. In the training phase,
the pattern sample whose class is known (training object) is used to establish a
model. In the testing phase, a model that has been established is tested with the other
patterns to determine the model’s accuracy (Neelamegam & Ramaraj, 2013). If the
accuracy is good, then the model can be used to predict the class of unknown

patterns. Figure 1.1 depicts the general framework of classification task.

Category or
Classs

Feature set Classification Model

Figure 1.1 Classification task general framework

Pattern classification is an important area in machine learning and artificial
intelligence. The impact of poor classification will put the object into the wrong class
which may lead to wrong decisions being made, hence causing losses to the recipient

or the decision makers.

Classification task is widely used in the decision-making process, for example on

pattern recognition (Kaur & Kaur, 2013). Pattern recognition is a discipline in which
1
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