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Abstrak 

Gabungan pengelas berganda dianggap sebagai satu arah baru dalam bidang 

pengecaman corak untuk meningkatkan prestasi pengelasan. Ketiadaan garis 

panduan piawai  untuk membangunankan pengelas gabung yang tepat dan pelbagai 

merupakan masalah utama dalam  gabungan pengelas berganda. Ini adalah kerana 

kesukaran untuk mengenal pasti jumlah pengelas homogen dan bagaimana 

menggabungkan hasil pengelas. Kaedah gabung yang paling biasa digunakan ialah 

strategi rawak manakala teknik pengundian terbanyak digunakan sebagai 

penggabung pengelas. Walau bagaimanapun, strategi rawak tidak dapat menentukan 

bilangan pengelas dan pengundian terbanyak tidak mempertimbangkan kekuatan 

setiap pengelas, sehingga menyebabkan ketepatan pengelasan yang rendah. Dalam 

kajian ini, satu skim gabungan pengelas berganda yang lebih baik dicadangkan. 

Algoritma ant system (AS) digunakan untuk melakukan sesekat set ciri dalam 

pembentukan subset ciri yang mewakili pengelas. Satu  ukuran kekompakan 

diperkenalkan sebagai satu parameter dalam membina pengelas gabung yang tepat 

dan beragam. Satu kaedah mengundi pemberat  digunakan untuk menggabungkan 

hasil pengelas dengan mempertimbangkan kekuatan pengelas sebelum pengundian 

dilakukan. Eksperimen telah dijalankan menggunakan empat pengelas asas iaitu 

nearest mean classifier (NMC), naive bayes classifier (NBC), k-nearest neighbour 

(k-NN ) dan linear discrimimant analisis (LDA) ke atas set data penanda aras, untuk 

menguji kredibiliti skim gabungan pengelas berganda yang dicadangkan. Purata 

ketepatan  pengelas gabung homogen NMC, NBC, k- NN dan LDA  adalah 97,91 %, 

98,06 %, 98.09 % dan 98,12 %. Ketepatan adalah lebih tinggi daripada yang 

diperolehi melalui penggunaan kaedah lain dalam membangunkan  gabungan 

pengelas berganda. Skim gabungan pengelas berganda yang dicadangkan dapat 

membantu dalam membangunkan gabungan pengelas berganda untuk  pengecaman 

dan pengelasan corak yang lain.  

 

 

Kata Kunci: Gabungan pengelas berganda, Ukuran keragaman, Pengecaman dan 

pengelasan corak, Algoritma ant system, Pengundian berberat.  
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Abstract 

Combining multiple classifiers are considered as a new direction in the pattern 

recognition to improve classification performance. The main problem of multiple 

classifier combination is that there is no standard guideline for constructing an 

accurate and diverse classifier ensemble. This is due to the difficulty in identifying 

the number of homogeneous classifiers and how to combine the classifier outputs. 

The most commonly used ensemble method is the random strategy while the 

majority voting technique is used as the combiner. However, the random strategy 

cannot determine the number of classifiers and the majority voting technique does 

not consider the strength of each classifier, thus resulting in low classification 

accuracy. In this study, an improved multiple classifier combination scheme is 

proposed. The ant system (AS) algorithm is used to partition feature set in 

developing feature subsets which represent the number of classifiers. A compactness 

measure is introduced as a parameter in constructing an accurate and diverse 

classifier ensemble. A weighted voting technique is used to combine the classifier 

outputs by considering the strength of the classifiers prior to voting. Experiments 

were performed using four base classifiers, which are Nearest Mean Classifier 

(NMC), Naive Bayes Classifier (NBC), k-Nearest Neighbour (k-NN) and Linear 

Discriminant Analysis (LDA) on benchmark datasets, to test the credibility of the 

proposed multiple classifier combination scheme. The average classification 

accuracy of the homogeneous NMC, NBC, k-NN and LDA ensembles are 97.91%, 

98.06%, 98.09% and 98.12% respectively. The accuracies are higher than those 

obtained through the use of other approaches in developing multiple classifier 

combination. The proposed multiple classifier combination scheme will help to 

develop other multiple classifier combination for pattern recognition and 

classification. 

 

 

Keywords:  Multiple classifier combination, Diversity measure, Pattern recognition 

and classification, Ant system algorithm, Weighted voting. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

Pattern classification is the process of classifying patterns  into predefined category 

(or class label) based on their feature set (or attribute set) (Dougherty, 2013). Pattern 

classification aims to determine pattern categories based on characteristics of the 

patterns, where the categories have been priorly defined.  Classification process is 

divided into two phases, namely training and testing phases. In the training phase, 

the pattern sample whose class is known (training object) is used to establish a 

model. In the testing phase, a model that has been established is tested with the other 

patterns to determine the model’s accuracy (Neelamegam & Ramaraj, 2013). If the 

accuracy is good, then the model can be used to predict the class of unknown 

patterns. Figure 1.1 depicts the general framework of classification task. 

 

Figure 1.1  Classification task general framework 

Pattern classification is an important area in machine learning and artificial 

intelligence. The impact of poor classification will put the object into the wrong class 

which may lead to wrong decisions being made, hence causing losses to the recipient 

or the decision makers. 

Classification task is widely used in the decision-making process, for example on 

pattern recognition (Kaur & Kaur, 2013). Pattern recognition is a discipline in which 

Feature set Classification Model 
Category or 

Classs 
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