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Abstrak 

 
Kenormalan dan homoskedastisiti merupakan dua andaian utama yang perlu 

dipenuhi apabila berurusan dengan ujian-ujian parameter klasik untuk perbandingan 

kumpulan. Pelanggaran mana-mana andaian tersebut akan menyebabkan keputusan 

ujian menjadi tidak sah. Walau bagaimanapun, pada realitinya, kedua-dua andaian 

tersebut sukar dicapai. Untuk mengatasi masalah tersebut, kajian ini mencadangkan 

pengubahsuaian satu kaedah yang dikenali sebagai ujian Bootstrap Berparameter 

dengan menggantikan min sebenar,  ̅ dengan ukuran lokasi yang sangat teguh iaitu 

penganggar-M satu-langkah terubahsuai (MOM). (MOM) merupakan min terpangkas 

tidak simetri. Penggantian ini akan menjadikan ujian Bootstrap Berparameter lebih 

teguh untuk perbandingan kumpulan. Dalam kajian ini, kriteria pemangkasan untuk 

MOM menggunakan dua pengganggar skala yang amat teguh iaitu MADn dan Tn. 

Satu kajian simulasi telah dijalankan untuk mengkaji prestasi kaedah yang 

dicadangkan berdasarkan kadar Ralat Jenis I. Untuk mengenal pasti kekuatan dan 

kelemahan kaedah, lima pembolehubah iaitu: bilangan kumpulan, saiz sampel 

seimbang dan tak seimbang, jenis taburan, keheterogenan varians, dan sifat pasangan 

bagi saiz sampel dan varians kumpulan dimanipulasi untuk menghasilkan pelbagai 

keadaan yang biasanya wujud dalam kehidupan sebenar. Prestasi kaedah yang 

dicadangkan kemudiannya dibandingkan dengan ujian parameter klasik dan ujian 

tidak berparameter yang paling kerap digunakan untuk dua (ujian-t tidak bersandar 

dan ujian Mann Whitney masing-masing) dan lebih daripada dua kumpulan tidak 

bersandar (ANOVA dan ujian Kruskal Wallis masing-masing). Dapatan kajian 

menunjukkan bahawa, untuk dua kumpulan, ujian Bootstrap Berparameter yang 

teguh menunjukkan prestasi yang baik di bawah keadaan varians heterogen dengan 

taburan normal atau taburan terpencong. Manakala untuk lebih daripada dua 

kumpulan, ujian tersebut menjana pengawalan Ralat Jenis I yang baik di bawah 

varians heterogen dan taburan terpencong. Dalam perbandingan dengan kaedah 

parameter klasik dan keadah tidak berparameter, ujian yang dicadangkan 

menunjukkan prestasi yang lebih baik di bawah taburan terpencong dan varians 

heterogen. Prestasi setiap prosedur juga ditunjukkan dengan menggunakan data 

sebenar. Secara umumnya, prestasi Ralat Jenis I bagi ujian yang dicadangkan adalah 

sangat menyakinkan walaupun andaian kenormalan dan homoskedastisiti dilanggar. 

Kata kunci: Titik kegagalan, Heterogen, Taburan terpencong, Ralat Jenis I. 
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Abstract 

 
Normality and homoscedasticity are two main assumptions that must be fulfilled 

when dealing with classical parametric tests for comparing groups. Any violation of 

the assumptions will cause the results to be invalid. However, in reality, these 

assumptions are hardly achieved. To overcome such problem, this study proposed to 

modify a method known as Parametric Bootstrap test by substituting the usual mean, 

 ̅ with a highly robust location measure, modified one step M-estimator (MOM). 

MOM is an asymmetric trimmed mean. The substitution will make the Parametric 

Bootstrap test more robust for comparing groups. For this study, the trimming 

criteria for MOM employed two highly robust scale estimators namely MADn and Tn. 

A simulation study was conducted to investigate on the performance of the proposed 

method based on Type I error rates. To highlight the strength and weakness of the 

method, five variables: number of groups, balanced and unbalanced sample sizes, 

types of distributions, variances heterogeneity and nature of pairings of sample sizes 

and group variances were manipulated to create various conditions which are 

common to real life situations.The performance of the proposed method was then 

compared with the most frequently used parametric and non parametric tests for two 

(independent sample t-test and Mann Whitney respectively) and more than two 

independent groups (ANOVA and Kruskal Wallis respectively). The finding of this 

study indicated that, for two groups, the robust Parametric Bootstrap test performed 

reasonably well under the conditions of heterogeneous variances with normal or 

skewed distributions. While for more than two groups, the test generate good Type I 

error control under heterogeneous variances and skewed distributions. In comparison 

with the parametric and non parametric methods, the proposed test outperforms its 

counterparts under non-normal distribution and heterogeneous variances. The 

performance of each procedure was also demonstrated using real data. In general, the 

performance of Type I error for the proposed test is very convincing even when the 

assumptions of normality and homoscedasticity are violated.  

Keywords: Breakdown point, Heterogeneity, Skewed distributions, Type I error.  
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CHAPTER ONE 

BACKGROUND 

1.1 Introduction 

Statistics encompasses a wide variety of activities, ideas and results that can handle 

the situations involving uncertainties. Statistics consists of two basic statistical 

analysis namely descriptive statistics and inferential statistics. Recording and 

summarizing a data set is the main purpose of descriptive statistics whereas 

inferential statistics involves drawing conclusion and making decisions. There are 

extensive studies in testing equality of central tendency measures in inferential 

statistics using statistical method in order to make inferences based on obtained 

results. Basically, classical parametric tests such as analysis of variance (ANOVA) 

and independent sample t-test are often used in testing the central tendency measure 

by researchers rather than other methods since the aforementioned methods provide a 

good control of Type I error and generally more powerful than other methods when 

all the assumptions are fulfilled (Wilcox & Keselman, 2010).  

ANOVA is used to determine the mean equality for more than two groups while 

independent samples t-test is used to determine the mean equality for two 

independent groups. However, a characteristic of these procedures is the fact that 

making inference depends on certain assumptions that need to be fulfilled. There are 

three main assumptions that need to be fulfilled before making inference on the 

classical parametric test such as: (a) collecting data from independents groups, (b) 

normally distributed data and (c) variances in the groups are equal 

(homoscedasticity). However, the specific interest of this study is to focus only for 
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the assumptions of normality and equality of variances in the groups since these 

assumptions are rarely met in real data.  

Normal distribution can be defined as a symmetrical distribution that describes the 

expected probability distribution of many chance occurrences. It forms a bell shape 

curve. Zikmund, Babin, Carr & Griffin (2010) reported it as one of the most common 

probability distribution of statistics. However, normality assumption can easily be 

violated if the distribution is skewed and in the presence of outliers in single data set. 

Outliers can be defined as unusually large or small value in a data set. Wilcox (2002) 

stated in his study that the hypotheses testing method based on the equality of central 

tendency such as mean can have poor properties (e.g. reduce statistical power and 

reduce the ability in controlling the Type I error) if skewness or outliers or both tend 

to appear in data set. 

Another problem with classical parametric procedures occurs when the groups have 

unequal variances (heteroscedasticity). According to Wilcox and Keselman (2010), 

unequal variances can cause classical parametric test results to be biased even though 

all groups have normal distribution. Moreover, Kohr & Games (1974) pointed out 

that unequal variances in the groups can affect the validity and reliability of the 

classical parametric test especially for unbalanced sample sizes.  

According to Erceg-Hurn and Mirosevich (2008), violation in the assumptions of 

normality and homogeneity of variances can have drastic effect on the result of 

classical parametric test especially on the Type I error and the Type II error. Type I 

error occur when the null hypothesis is rejected even though it is true while Type II 

error occur when the false null hypothesis is failed to reject.  
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Failure to meet the assumptions of normality and equality of variances can distort the 

Type I error rates. For example, the probability of Type I error must be within the 

level of significant bound when the null hypothesis is assumed to be true. However, 

violation in any of these assumptions can lead to inflated the Type I error rates and 

consequently will make the Type I error contained outside the level of significant 

bound when the null hypothesis is assumed to be true (Wilcox & Keselman, 2010). 

Therefore, the results produced by the test that is used may become invalid.  

As mentioned earlier, both of classical test (e.g. ANOVA and independent sample t-

test) are based on certain assumptions such as normality distribution and equality of 

variances. In real situation, data that fulfilled both assumptions is hard to find. Thus, 

a common recommendation is to use non-parametric test or simple transformation.  

A distribution-free procedure (non-parametric) frequently used as an alternative since 

they are valid under very general assumptions. Mann Whitney test and Kruskal 

Wallis test can be alternative procedure to ANOVA and independent sample t-test, 

respectively. Non-parametric test is known as a quick procedure, simple and can be 

calculated by hand for small sample sizes.  

However, non-parametric test is not without disadvantages. Although non-parametric 

statistics is currently one of the most important branches of statistics but they are 

criticized because of some reasons. Daniel (1990) stated that the arithmetic in many 

instances is tedious and laborious when sample sizes are large and a computer is not 

handy even though non-parametric test have a reputation for requiring only simple 

calculations. Apart from that, non-parametric procedures are not as powerful as 
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classical parametric test and require larger sample sizes to reject a false hypothesis 

(Syed Yahaya, Othman & Keselman, 2006). 

Another alternative when dealing with non-normal distribution and unequal 

variances is transforming the data into another scale in the same manner by using 

simple transformations. Simple transformations methods that often use are 

logarithms, square roots or inverse transformation. However, simple transformations 

also have made some issue. Transformations data are failed to deal effectively with 

outliers even though they can alter distribution to make the data more symmetrical 

(Wilcox & Keselman, 2003). Sometimes, when using simple transformation, outliers 

still remain and this condition can reduce the statistical power. This is because 

simple transformations do not eliminate the effect of outliers. Besides, the value 

produced by simple transformations had made some issues in the interpretation of the 

data since it involves placing the data on another scale (Lix, Keselman & Keselman, 

1996).  

Hence, developing a test statistics which is appropriate under non-normal distribution 

and unequal variances became goal for researchers. Thus, robust statistical 

procedures have been identified as alternative procedures which have good control of 

Type I error rates even under non-normal distribution and heterogeneous variances. 

Robust estimator is stable and insensitive to all of these violations, which it can deal 

effectively with outliers and skewed distribution. In other words, robust test can 

provide a good control on Type I error even if there are skewness or outliers in a data 

set (Wilcox & Keselman, 2010; Othman, Keselman, Wilcox, Fradette & 

Padmanabhan, 2002; Lix & Keselman, 1998).  
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1.2 Robust Statistics  

The term “robustness” was first used by Box (1953). His study introduced the need 

for robust method and at the same time can be seen as a breakthrough in robust 

statistics field. Among the earlier procedures used by researchers are Welch test 

(1951), James test (1951) and Box (1953). Then, Huber (1964) and Hampel (1974) 

did an extensive research regarding robust statistics. Since then, a lot of finding 

showed that robust test can be advantages compared to classical parametric test and 

non-parametric test when the assumptions of classical parametric test are violated 

(Md Yusof, Abdullah & Syed Yahaya, 2012a; Md Yusof, Harun, Syed Yahaya & 

Abdullah, 2013). 

Many researchers tried to define robust statistics properly. According to Huber 

(1981), robustness signifies insensitivity to small deviations from the assumptions. 

He also stated that a model is considered robust if it is reasonably efficient, small 

deviations from the model assumptions will not drastically impair the performance of 

the model and somewhat large deviations from the model will not invalidate the 

model. Apart from that, according to Scheffe (1959), a statistical method is 

considered robust if the inferences are not seriously invalidated by the violation of 

normality distribution and equality of variances. 

Classical parametric test is a powerful test that can give an accurate result. However, 

with the advances and insights achieved by researchers nowadays showed that 

violation in the assumptions of classical parametric test can lead to bias and distort 

the results. Hence, robust test uses the advantages of classical parametric models but 

allows violation in the assumptions of classical parametric test to maintain a good 

control of Type I error rates and the statistical power. 
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Robust procedures involve replacing the original mean and variances with robust 

measures of location and scale. For example, some researchers proposed using 

trimmed mean and Winsorized variances when applying alternatives approaches such 

as James test and Welch test since these robust procedures can improve robustness 

(Lix & Keselman, 1998: Keselman, Wilcox, Othman & Fradette, 2002). The 

applying test intended to provide better Type I error control when computed with 

trimmed means and Winsorized variances (Lix & Keselman, 1998).  

Among the latest procedures in robust statistics is Parametric Bootstrap test with 

trimmed mean and Winsorized variances proposed by Cribbie, Fiksenbaum, 

Keselman and Wilcox (2012). The findings from their study indicated that 

Parametric Bootstrap test with trimmed means and Winsorized variances produced 

Type I error rates close to the nominal value of α = 0.05 under the conditions of non-

normal distribution and unequal variances. Therefore, the Parametric Bootstrap test 

will be the main focus in this study in order to investigate the performances of the 

proposed procedure in testing the equality of central tendency. 

1.3 Parametric Bootstrap Test 

Parametric Bootstrap test was originally introduced by Krishnamoorthy, Lu, and 

Mathew (2007) as a new statistical test for comparing the equality of central 

tendency measures such as means of independent groups under the presences of 

variances heterogeneity. The objective of Krishnamoorthy et al. (2007) study was to 

compare the performances of proposed Parametric Bootstrap test with Welch Test, 

James test and the generalized F (FG) test under unequal variances in the groups. The 

result showed that Parametric Bootstrap test has a good control of Type I error even 

for small sample sizes and the number of groups was large.  
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However, Krishnamoorthy et al. (2007) did not explore the performance of 

Parametric Bootstrap under the condition of non-normal distribution. As mentioned 

earlier, there are two assumptions that need to be considered by researchers and one 

of the assumptions is normality of the distribution. Unfortunately, the distributions of 

data in a real world are rarely normal. So, it is important to study the performance of 

the Parametric Bootstrap test in terms of the ability to control the Type I error where 

distribution is not normal.  

Thus, in 2012, Parametric Bootstrap procedure with robust estimator namely 

trimmed mean and Winsorized variances was proposed by Cribbie et al. (2012). This 

procedure used Parametric Bootstrap test that recommended by Krishnamoorthy et 

al. (2007) as test statistic except that the means and variances were replaced by 

trimmed mean and Winsorized variances. They compared the modified Parametric 

Bootstrap test with the original Parametric Bootstrap test, original Welch test, Welch 

test with trimmed mean and James’s second-order test. The results showed that 

Parametric Bootstrap test with trimmed mean and Winsorized variances provided a 

good control of Type I error and produced more powerful test than the original 

Parametric Bootstrap test when comparing the equality of means under the condition 

of non-normal distribution and unequal variances.  

The study done by Cribbie et al. (2012) only focused on symmetric trimming where 

the proportion of data to be trimmed for each tail is the same which is 20%.  There 

are some issues that need careful consideration when using symmetric trimming. 

First, symmetric trimming method used by Cribbie et al. (2012) becomes less 

efficient when the proportion of outliers in one tail of the distributions exceeds 20% 

especially for the extremely skewed distributions. It is because, firstly, the researcher 
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already fixed the amount of symmetric trimming percentage which is 20% for both 

of the tails of the distribution without looking at the shape of those distributions. 

Secondly, if the distribution is highly skewed to the right, it seems more reasonable 

to trim more observations from the right tail than trim equally from both tails of the 

distribution. In addition, how well Parametric Bootstrap test with symmetric trimmed 

mean can be performed in terms of Type I error compared to classical parametric test 

and non-parametric test were not explored by Cribbie et al. (2012).    

Unlike the symmetric trimming, asymmetric trimming allows different number of 

observations that should be trimmed from each tail based on the characteristic of the 

data. However, the total number of trimmed data from the right and left tail must be 

equal to the total amount of trimming that is determined earlier. Asymmetric 

trimming strategy is similar with symmetric trimming where the number of 

observations that need to be trimmed for both methods still used predetermined 

trimming percentages. Thus, this method also cannot handle a situation where the 

outlier happens to exceed the predetermined amount of trimming.  

Currently, there is new procedure that was developed to deal with the problem of 

predetermined amount of trimming which is modified one-step M-estimator (MOM) 

that was introduced by Wilcox and Keselman in 2003. This method was proved to be 

able to control of Type I error rates when testing the equality of central tendency 

under asymmetric distribution and variances heterogeneity (Syed Yahaya et al., 

2006).  
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Therefore, this study proposed a modification of Parametric Bootstrap test introduced 

by Krishnamoorthy et al. (2007) with MOM which does not need a priori set the 

amount of trimming. 

1.4 Modified One-Step M-estimator (MOM) 

MOM approach is a technique to check the outliers in the data set, remove if outliers 

exist and average the remaining data. MOM allows for symmetric or asymmetric 

trimming, and has reputation for no trimming at all. Hence, MOM is flexible in 

handling outliers in a data with empirically determines the amount of trimming 

percentage regarding the shape of distribution.  

1.5 Scale Estimators 

The amount of trimming percentages for MOM estimator is empirically determined 

using robust scale estimator. In choosing the best scale estimator, the main factor to 

be considered is the value of a breakdown point. Several scale estimators such as 

MADn, Sn, Qn, Tn and LMSn have been introduced by Rousseeuw and Croux (1993). 

According to Rousseeuw and Croux (1993), MADn and Tn have the best possible 

breakdown value of 50%, and bounded influence function, with sharpest possible 

bound among all scale estimators. 

Based on the study conducted by Syed Yahaya (2005), MADn and Tn were shown to 

have the ability in controlling the Type I error rates in testing the central tendency 

measure by using these scale estimators with S1 statistics. Apart from that, the results 

from Md Yusof (2009) also indicated that by using MADn and Tn as robust scale 

estimators, the Type I error rates can be controlled insample with non-normal 

distribution and heterogeneous variances. 



 

10 
 

Motivated by the good performance of these procedures, a modification of the 

Parametric Bootstrap test statistic introduced by Krishnamoorthy et al. (2007) is 

proposed with MOM estimators, MADn and Tn as trimming criteria.  

1.6 Problem Statement 

The study done by Krishnamoorthy et al. (2007) did not explore the performance of 

the Parametric Bootstrap test under condition of non-normal distribution. Hence, in 

2012, Cribbie et al. (2012) in their study proposed the Parametric Bootstrap test with 

20% symmetric trimmed mean under non-normal distribution and variance 

heterogeneity. However, symmetric trimmed mean become less efficient when the 

proportion of outliers exceeded 20% and if the distribution is highly skewed to the 

right, it seems more reasonable to trim more observations from the right tail than trim 

equally from both tails of the distribution. In contrast to symmetric trimmed mean, 

asymmetric trimmed mean allows different number of observations that should be 

trimmed from each tail based on the characteristic of the data. However, asymmetric 

trimmed mean also cannot handle situation where the outliers happen to exceed the 

predetermined amount of trimming. Therefore, this study proposed a modification of 

Parametric Bootstrap test with MOM which does not need a priori set the amount of 

trimming and trimming based on the shape of distribution. 

1.7 Objectives 

The main objective for this research is to construct a robust test for independent 

groups as an alternative to the classical parametric test. In order to obtain this main 

objective, four sub-objectives are used. These four sub-objectives are as: 
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I. to modify the Parametric Bootstrap test by substituting the existing location 

estimator with MOM and the scale estimator with robust scale estimator, 

MADn or Tn. 

II. to evaluate the performance of the modified Parametric Bootstrap test based 

on the Type I error rates by using simulated data. 

III. to compare the performance of the modified Parametric Bootstrap test with 

the most frequently used classical parametric test (i.e. ANOVA and 

independent sample t-test) and non-parametric test (i.e. Mann Whitney test 

and Kruskal Wallis test) in terms of the Type I error rates. 

IV. to investigate the performance of the modified Parametric Bootstrap test 

using real data. 

1.8      Significance of the Study 

This study can significantly contribute in experimental design. Normality and 

variance homogeneity are two main assumptions that need to be fulfilled when using 

classical parametric test such as independent sample t-test and ANOVA test. 

Experimental design methodology largely depends on it and not all real data is really 

encompassed with these two assumptions. In order to solve the problem, this study 

proposed a procedure that will not be constrained with all the assumptions. They can 

be used without the concern of normality of distribution and equality of variances. 

Apart from that, with the modified procedure, researchers can increase accuracy in 

data analysis. While using classical parametric test, violation in any assumptions can 

falsely drawing conclusion based on the result obtained. Besides, violation in any 

assumptions can reduce the level of statistical power. Thus, the modified test 
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statistics are robust and can tolerate with all the assumptions and at the same time 

maintaining the accuracy of data analysis.  

1.9 Organization of the Thesis 

Chapter One gives the introduction of the study. This chapter briefly explained the 

importance of the study regarding the use of robust statistical analysis under the 

presence of non-normality and variances heterogeneity. This chapter also presents 

introduction on the proposed method namely Parametric Bootstrap test. In Chapter 

Two, a depth explanation on the proposed method is discussed. Chapter Two 

discusses about trimming and scale estimators used in this study. All the conditions 

that have been manipulated such as number of groups, balanced and unbalanced 

sample sizes, and type of distribution, variances heterogeneity and the nature of 

pairings are found in Chapter Three. Chapter Three presents the design 

specifications, explanation on the data generation and the proposed bootstrapping 

method used in this study. The Type I error rates for each procedures was presented 

in Chapter Four. Analysis on real data is recorded in Chapter Four. Lastly, we 

concluded our findings and proposed some recommendations for further studies in 

the last chapter which is Chapter Five.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Classical parametric test such as independent sample t-test and ANOVA test are 

frequently used statistical method to test the equality of central tendency measures 

for two groups or more than two groups. However, the data obtained by researchers 

sometimes can be non-normal distribution and unequal variances (heterogeneous). 

Consequently, invalid results will be produced by the classical parametric test. It is 

because, violation in the assumption of normality and variances heterogeneity can 

distort the Type I error rates and will reduce the statistical power. The Type I error 

rates will be inflated from the nominal value when dealing with non-normal 

distribution and unequal variances and hence will falsely drawing conclusion. A lot 

of published articles have proved that violation in the assumption of classical 

parametric test can give biased results (Muhammad Di, Syed Yahaya & Abdullah, 

2014; Md Yusof et al., 2012a; Wilcox, 2002; Lix & Keselman, 1998; Micceri, 1989). 

2.1.1 Non-normality 

Skewness and outliers are two major problems that can make the distribution become 

non-normal. Wilcox and Keselman (2003) stated in their study that skewness can 

cause problems in controlling the Type I error. Skewed data will produce highly 

inaccurate Type I error rates and the confidence intervals. Skewness value for normal 

distribution and any symmetric distribution are zero. For asymmetric distribution, the 

value of skewness can be positive or negative. The value of skewness will be 

negative or less than zero when the data are skewed to the left. It means that the left 

tail is longer than the right tail. While positive value of skewness or more than zero 



 

14 
 

indicated that the data are skewed to the right meaning that the right tail for this 

distribution is longer than the left tail. Thus, when the data set are skewed, the rate of 

the Type I error and the statistical power will be affected. It is because the sample 

mean used in most statistical analysis is sensitive to the presence of outliers and 

skewness. Therefore, under non-normal distribution and heterogeneous variances, the 

test that used sample mean as estimator can become seriously inflated and will 

produce distorted Type I error rates with low statistical power. 

The probability of the Type I error will be less than significant level when outliers 

exist on a data set and at the same time will reduce the power of the test statistic. 

According to Lix and Keselman (1998), the existence of extreme observations 

known as outliers on a distribution scores will influence the usual population 

standard deviation and hence will reduce the statistical power in detecting the 

differences between groups. Besides, the presence of outliers will lead to the 

observed scores being skewed. Wilcox and Keselman (2003) stated that simple 

transformation such as logarithm and square root failed to deal directly with outliers 

even though simple transformation can alter skewed distributions to become more 

symmetrical. Thus, they recommend using trimming method when dealing with 

outliers. It is well known that classical parametric test largely dependent on 

normality assumptions. The rate of the Type I error and power of the statistical test 

will be affected when this assumption is violated.  

2.1.2 Heteroscedasticity 

Another problem with classical parametric testoften encountered by researchers is 

heteroscedasticity. Heteroscedasticity can cause the classical parametric test to be 

biased even when the groups have a normal distribution (Wilcox & Keselman, 2003). 
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Box (1954) was found to be able to provide a good Type I error control while dealing 

with unequal variances. Unfortunately, this test is not suitable for extreme variances 

heterogeneity. It is because Box’s numerical results were based on the situations 

where the ratio of the largest standard deviation of the groups that being compared 

with the smallest variances did not exceed √ . This method has difficulty in 

controlling the Type I error rates when the ratio increase more than √  and the group 

distributions are non-normal. Some researcher proposed to use non-parametric test as 

alternative such as Mann Whitney and Kruskal Wallis. However, these methods have 

low statistical power (Syed Yahaya, 2005). Apart from that, a lot of published 

articles showed that non-parametric test are not robust when dealing with 

heteroscedasticity data (Lix et al., 1996 and Zimmerman, 2000).  

For this reason, many researchers had contributed in the development of alternative 

approach with robust procedures to deal with the problems of non-normality and 

heteroscedasticity. According to Hampel (2001), robust statistics is the stability 

theory of statistical procedures. It means that the statistical procedures insensitive to 

the violation of non-normality and unequal variances and hence will provide a good 

Type I error control. Wilcox (2005) in their study stated that the term robust statistics 

refers to procedures that are able to maintain the Type I error at its nominal level and 

at the same able to maintain the statistical power even under the condition of non-

normal distribution and variances heterogeneity.  

In this study, Parametric Bootstrap procedure is proposed as a test statistic to handle 

the problem of non-normality and variances heterogeneity. Krishnamoorthy et al. 

(2007) proposed Parametric Bootstrap test as a new test statistic to test the equality 

of central tendency measures that is mean under heterogeneous variances in the 
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groups. Based on the results obtained, Parametric Bootstrap test intended to provide 

a good control of the Type I error rates and more powerful than the other tests 

namely original Welch test, James test and the generalized F (FG) test.  

2.2 Trimming 

Regarding the weaknesses of non-parametric test and simple transformation 

explained earlier in CHAPTER 1, trimming is an alternative to reduce the impact of 

outliers. This trimming method can eliminate outliers or extreme observations in a 

data set. The correct choices of the amount of trimming can be very beneficial in 

terms of efficiency (Keselman, Kowalchuk, Algina, Lix & Wilcox, 2000). By 

efficiency, it means achieving a relatively small standard error. Keselman et al. 

(2000) concluded that efficiency can be poor when sampling from a heavy-tailed 

distribution with too small trimming percentages. However, if trimming percentages 

is too large, the efficiency will go down when sampling from a normal distribution. 

More trimming is beneficial if there are large number of outliers tend to appear 

(Wilcox, 2010). Hence, the problem of non-normality can be reduced when more 

trimming is applied. However, Cribbie et al. (2012) has expressed concern that too 

much trimming will reduce power while too little trimming would not provide a good 

control of Type I error.  

There are two approaches in trimming which are symmetric trimming and 

asymmetric trimming. Symmetric trimming trims the same amount of observations 

from the right tail and the left tail of the distribution. The amount of symmetric 

trimming percentage was determined earlier by researchers. This method was simple 

and very convenience for data analyzing. Symmetric trimming is quite efficient for 

symmetric distribution because it trims the same amount of observations at both ends 



 

17 
 

of data. Wilcox (2003) stated that, when sampling from symmetric distribution, it is 

intuitively appealing to use symmetric trimming.  

There are different trimming percentages suggested by different researchers. For 

example, Babu, Padmanabhan and Puri (1999) suggested 15% trimmed mean in 

order to obtain a good control of the Type I error. However, Wilcox (2003) and 

Rosenberger and Gasko (1983) in their study found that 20% trimmed mean can 

show a good Type I error control and statistical power under the conditions of non-

normal distributions and unequal variances. Rocke, Downs and Rocke (1982) 

recommended the used of 20% - 25% symmetric trimming. Based on the literature, 

there are many trimming percentages that can be adopted by researcher and not 

constrained to only one percentage of trimming. 

However, symmetric trimming become less efficient when there is even just a slight 

departure from symmetric such as only containing one outlier value (Wu & Zuo, 

2009). In addition, according to Keselman et al. (2002), there are two practical 

concerns that need to be considered when using symmetric trimming as detailed 

below; 

i. the proportion of outliers can exceeds the percentage of symmetric trimmed 

mean and hence will require more than the amount of trimming that 

determined earlier. For example, when the trimming percentage is set at 20%, 

more amount of trimming percentage is needed if the outliers exceeded 20% 

from both tail of distribution. 

ii. the distribution can either be negatively or positively skewed. When the 

distribution is negatively skewed, more amounts of observations should be 

trimmed from the left tail compared to the right tail of the distribution. On the 
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other hand, more amounts of observations should be trimmed from the right 

tail compared to the left tail if the distribution is skewed to the right.  

Another approach in trimming is asymmetric trimming. Unlike symmetric trimming, 

asymmetric trimming allows for different amount of trimming percentage for each 

tail of distribution. Thus, asymmetric trimming has been theorized to be potentially 

advantageous when the distributions are known to be skewed since not all of the data 

are symmetric (Micceri, 1989). That means extremely skewed distribution needs to 

be trimmed more than normal distributions because extremely skewed distribution 

contains more outliers or extreme values compared to normal distribution.  

Previous researchers have identified asymmetric trimming as trimming method that 

may provide a successful solution in controlling the Type I error under the presence 

of non-normal distributions and unequal variance in the groups (Babu et al., 1999).  

However the amount of trimming is predetermined for each tail of distribution before 

the trimming process is performed. In other words, the total number of trimming 

from the left and right tail of the distribution must be equal to the amount of 

trimming that was determined earlier. This method cannot handle the situation where 

the outlier happens to exceed the predetermined amount of trimming for both tail of 

distributions.  

Therefore, modified one-step M-estimator (MOM) can be used to avoid the problem 

of predetermined amount of trimming. MOM was recommended by Wilcox and 

Keselman (2003) as new trimming strategy that does not need a priori set of 

trimming percentage. Thus, MOM can give more advantages compared to 

predetermined trimming. Besides, MOM is a trimming strategy that trimming based 
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on the shape of the distributions. Therefore, in this study we will use the Parametric 

Bootstrap test with several MOM estimators namely MADn and Tn as trimming 

criteria proposed by Rousseeuw and Croux (1993). Then, the Type I error rates for 

these procedures are examined and compared to the classical parametric test and 

non-parametric test.  

Before going deeply into the discussion of the proposed test statistic with the selected 

robust scale estimators, few terminologies of this study is briefly discussed in the 

next section. 

2.3 Type I Error 

Type I error can be defined as the probability of rejecting null hypothesis even 

though it is true. The Type I error occurs when the decision to reject the null 

hypothesis is incorrect. Null hypothesis is a statement about population parameter 

that always assumed to be true. The population parameter that always been used is 

mean, median and variances.  The Type I error rate is designed by the Greek letter 

alpha (α). 

Conventionally, if the Type I error rates produced by a procedure fall between 0.5α 

and 1.5α, the procedure can be considered robust (Bradley, 1978). In this study, the 

significance level is set at α = 0.05. Therefore, the Type I error rate should be in 

between 0.025 and 0.075. Mehta and Srinivasan (1970) in their study stated that a 

procedures still could be considered robust if the true Type I error rate is equal or 

less than the significance level. In addition, according to Guo and Luh (2000), a 

procedure with the empirical Type I error below the 0.075 level can be considered 

robust if the significant level is 0.05.  
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2.4 Breakdown Point 

One of the most popular measures of robustness of a statistical procedure is the 

breakdown point. Wilcox (1997) stated that the breakdown point refers to the 

smallest proportion of observations, that when altered sufficiently, can render the 

estimator meaningless. The sample value that uncharacteristically large or 

uncharacteristically small will make the estimator break down.  

The breakdown point of the sample mean   is only 1/n because only one data point 

from n observations needed to be replaced to force the sample mean arbitrarily 

further from the true mean. As the ith observation among the observations X1,…,Xn 

increases to infinity, the sample mean increases to infinity as well and the breakdown 

point of the sample mean equal to zero, because 1/n tends to 0. It means that even 

single outlier can break it down hence the usual sample mean is not robust. In 

contrast to sample mean, the breakdown point of the γ trimmed mean is γ. For 

example, the breakdown point for 10% trimmed mean is 0.10. Thus, the trimmed 

mean will be moved away from the true mean when more than 10% data points are 

altered. 

The estimators can withstand large proportions of very bad observations without 

breaking down completely when the value of breakdown point is high. The sample 

median has a breakdown point of 0.5, which is the highest possible value. It means 

that more than 50% data points have to be replaced with values arbitrarily far from 

zero in order to move the sample median arbitrarily further from the true median. 
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2.5 Influence Function 

Another property for judging robustness is the influence function. Influence function 

is the derivative of a functional T(F) introduced by Hampel (1974). The influence 

function measures the relative extent a small perturbation in F has on T(F) (Staudte 

& Sheather, 1990). The influence function measures the change in the functional due 

to a small amount of contamination at the point x. Attention might be restricted to 

those measure having a bounded influence function if the goal is to minimize the 

influence of a relatively small number of observations on a measure of central 

tendency. Thus, a T(F) with an influence function that is bounded in x is more robust 

to extreme value. A robust estimator means that the influence of any single 

observation is insufficient to yield any significant offset.  

2.6 Central Tendency Measures 

Measures of central tendency are measures of central location of a distribution. A 

measure of central tendency refers to a single value or middle value of a data set. 

This value used to describe the data set. The most commonly used measures of 

central tendency are mean, mode and median. Different calculation is needed for 

different measure of central tendency. Under certain situation, some measures of 

central tendency can perform better than others.  

The mean is the most familiar and well known compared to others measures of 

central tendency because the fact that it makes use of all the values in a distribution 

(Miller & Brewer, 2003). The mean can be calculated by dividing the sum of all the 

values in the data set divided with the n value in that set of data. However, this 

measure of central tendency is very sensitive to extreme values. Based on its 

breakdown point which is zero, only one single outlier is needed in order to move the 
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sample mean far from the actual mean. In addition, this estimator has unbounded 

influence function meaning that a single contaminated observations may have a 

considerable effect on the estimate. Therefore, any methods that based on the sample 

mean will produce low power and the rates of the Type I error can be distorted. For 

this reason, Erceg-Hurn and Mirosevich (2008) recommended to the use of modern 

robust statistical method instead of classical parametric test by using a wide range of 

software. For example, Cribbie et al. (2012) suggested a robust approach such as 

trimmed mean as central tendency measure to hypothesis testing. 

The central tendency measure used in this study is MOM. By replacing the usual 

mean with MOM, tests that are insensitive to both non-normality and variances  

heterogeneity can be obtained. 

2.6.1 Modified one step M-estimator (MOM) 

MOM is a strategy to check the outliers in a data set. Later remove the outlier 

whether to trim symmetrically or asymmetrically and average the remaining values. 

MOM was introduced by Wilcox and Keselman (2003) by modifying one-step M-

estimator. The one-step M-estimator can be defined as 

 ̅    

          
           ∑      

     

       

          
 

Wilcox and Keselman (2003) in their study found that the one-step M-estimator 

perform reasonable well in terms of Type I error only when the sample sizes more 

than 20 (n > 20). This method failed to perform well for the sample sizes less than 

20. Thus, they modified the one-step M-estimator by dropping the term containing 
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MADn. MOM showed a good control on Type I error and statistical power even with 

small sample sizes.  

The MOM estimator recommended by Wilcox and Keselman (2003) can be defined 

as: 

 ̅    
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] 

where 

X(i)j is the i
th

 ordered observations in group j 

 ̂  is median of group j 

nj  is the number of observation for group j 

i1 is the number of extreme observations on the left tail such that 

(         ̂ ) < -K(scale estimator), 

i2 is the number of extreme observations on the right tail such that  

(         ̂ ) >K(scale estimator) 

In the case of one-step M-estimator, the K value is 1.28 which is the 0.9 quantile of 

the standard normal distribution (Wilcox, 1997). Then, Wilcox and Keselman (2003) 

adjusted the K value so that efficiency is good under normality especially for small 

sample sizes. Using simulations with 10,000 replications, they found that the 

standard error of the sample mean divided by the standard error of  ̅   is 

approximately 0.9 for n1 = n2 = n3 = n4 = n5 = 20 with K = 2.24. Therefore, they 

suggested the scale estimator multiply with the value of 2.24 for trimming criteria. 

For MOM, K = 2.24 is constant in order for having a reasonably small standard error 
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when sampling from a normal distribution (Othman, Keselman, Padmanabhan, 

Wilcox & Fradette, 2004). For a sample with no extreme value, i1 and i2 is equal to 

zero where MOM is equal to the mean for the group. 

2.7 Scale Measures 

Measures of central tendency do not describe the whole picture of distribution. It is 

because data which have the same average could have very different spreads. A scale 

measure is the measures that acknowledge the spread of the data. The term 

dispersion indicates the spread or variation in the values of a variable (Miller & 

Brewer, 2003). The range, the variance and the standard deviation are commonly 

used as measure of dispersion. However, like the range, the variance and standard 

deviation can be affected by the presence of outliers or extreme values in data set. 

Therefore, these scale measures are not robust. In this study, the Winsorized 

variances is adopted in order to get tests that are insensitive to the effects of non-

normality and variance heterogeneity.  

2.7.1 Winsorized Variances 

Trimming and winsorization are methods for reducing the effect of outliers in sample 

data. For example, Cribbie et al. (2012) found that under non-normal distribution and 

heterogeneous variances, a statistic with trimmed mean and Winsorized variances 

could perform better in controlling the Type I error rates and the statistical power 

compared to statistics based on the usual mean and variance.  

The trimmed mean must be calculated first in order to get Winsorized variances. The 

Winsorized variances is computed after the smallest non-trimmed score replaced the 

removed scores from lower tail of distribution, and the highest non-trimmed score 
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replaced the removed scores from the upper tail of distribution. The non-trimmed and 

replaced scores from both tails of distribution are called Winsorized score. Then, in 

order to calculate the Winsorized mean, the Winsorized scores will be divided by nj. 

Lastly, the the sum of squared deviations of Winsorized scores from the Winsorized 

mean will be divided by nj – 1. This value is called Winsorized variance. The value 

of Winsorized variances can be computed by  
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2.8 Robust Scale Estimators 

To choose a robust scale estimator, there are two factors that should be considered. 

First is the value of a breakdown point (Wilcox, 2005). Several robust scale 

estimators with highest breakdown point have been introduced by Rousseeuw and 

Croux (1993) such as, MADn, Sn,Qn, Tn and LMSn. By referring to breakdown point, 

MADn and Tn have the best possible breakdown point that is 50%, twice as much as 

interquartile range. Second factor that need to be considered while choosing these 

scale estimators are their bounded influence function. MADn and Tn also exhibit 

bounded influence function. Based on these two factors and their good performance 

in Syed Yahaya (2005), MADn and Tn are chosen for this study. 

2.8.1 MADn 

MADn is the median absolute deviation about the median which is a very popular 

robust scale estimator. This scale estimator demonstrated the best possible 

breakdown point (0.5) and its influence function is bounded with the sharpest bound 

among all scale estimators. According to Huber (1981), MADn is a single most useful 

ancillary estimate of scale. Furthermore, MADn is simple, easy to compute and very 
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useful. Their extreme sturdiness makes MADn ideal for screening the data for outliers 

in a quick way by computing 

|         |

    
   

where this robust scale estimator is given by 

MADn= b medi| xi – medjxj| 

The constant b = 1.4826 is needed to make the estimator consistent for the parameter 

of interest, xi= x1, x2,…,xn and i> j. However, MADn is not without disadvantage. Its 

efficiency at Gaussian distribution is very low with only 37% efficient.  

2.8.2 Tn 

Tn is another promising scale estimator proposed by Rousseeuw and Croux (1993). 

With 52% efficiency at Gaussion, Tn can be considered more efficient than MADn.  

Given as 

Tn = 13800 
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Apart from that Tn is a scale estimator that demonstrated highest breakdown point 

like MADn and a bounded influence function. Compared to other scale estimators, the 

calculation of Tn is much easier and it is suitable for asymmetric distributions. 

j≠ 1 
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2.9  Statistical Methods 

This study focuses on the Parametric Bootstrap statistic introduced by 

Krishnamoorthy et al. (2007). Krishnamoorthy et al. (2007) found that this test 

statistic was able to control Type I error rates when conducting test on the effect of 

variances heterogeneity. For this study, the Type I error rates of this test are 

examined under conditions of homogeneous and heterogeneous variances across 

three types of distribution (i.e. normal, moderately skewed and extremely skewed). 

Thereafter, this test was compared with parametric and non-parametric test in terms 

of Type I error rates in order to determine the best procedure. The TN0 statistics 

proposed by Krishnamoorthy et al. (2007) is given by 

TN0 = ∑
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In this study, the bootstrap method which is percentile bootstrap is used to obtain the 

p-values which is represented by (number of     
     ) / B (discussed briefly in 

CHAPTER THREE).  

2.10 Bootstrapping  

Efron (1979) introduced the bootstrap method that can be used as a computer-based 

method for estimating the standard error of   ̂. This method spread widely in 

empirical research. According to Staudte and Sheather (1990), the word bootstrap is 

used to indicate that the observed data are used to obtain an estimate of the parameter 

and to generate new samples.  

A pseudo sampling distribution of the estimator can be estimated using bootstrap 

when the sampling distribution of the estimator is unknown. Variability of an 
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estimator, bias of an estimator and significance of a test involving the estimator can 

be assessed with the establishment of the pseudo sampling distribution. 

Apart from that, according to Babu et al. (1999), the bootstrap method is known to 

give a better approximation than one based on the normal approximation theory. 

Bootstrap method can improve the ability of the test in controlling the Type I error 

compared to non-bootstrap methods (Othman, Keselman, Padmanabhan, Wilcox & 

Fradette, 2003). Results of Westfall and Young (1993) suggested that the 

combination of bootstrap methods with methods based on trimmed means could 

improves the Type I error control. Further improvement in Type I error control is 

often possible by obtaining critical values for test statistic through bootstrap 

(Keselman, Wilcox & Lix, 2003). The bootstrap procedures on Parametric Bootstrap 

test are discussed briefly in CHAPTER THREE.  

 

  

 

 

 

 

 

 

 

 

 

 



 

29 
 

CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

Classical parametric test such as independent sample t-test and ANOVA test often 

used to test the equality of central tendency measures for independent groups. 

However, violation in the assumptions of normality and equality of variances can 

distort the Type I error rates. Therefore, our main focus for this study is to use robust 

Parametric Bootstrap test to test the equality of means for independent groups that 

can tolerate the violation of these assumptions. Parametric Bootstrap test was used 

with robust scale estimators namely MADn and Tn as trimming criteria to trim data 

empirically. This test statistics use group trimmed means as the central tendency 

measures. 

3.2 Procedures Employed 

This study modified Parametric Bootstrap test using MOM estimator. This trimming 

strategy involved robust scale estimator namely MADn and Tn. The modified 

Parametric Bootstrap test with its corresponding scale estimators is shown in Figure 

3.1. 

 

 

 

 

 

 

 

Figure 3.1. Statistical test with the corresponding scale estimators 
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The performance of the combination of the Parametric Bootstrap test with the 

aforementioned scale estimators namely MADn and Tn were investigated and 

compared with classical parametric and non-parametric tests in terms of Type I error 

rates.  

3.2.1 Parametric Bootstrap Test with MADn 

The Parametric Bootstrap test is an alternative test that was shown to provide a good 

Type I error control even for small sample sizes and large number of groups under 

the condition of unequal variances (Krishnamoorthy et al., 2007). In order to make 

Parametric Bootstrap test robust to the conditions of non-normal distribution and 

unequal variances, the usual means will be replaced by MOM estimators and the 

usual variances will be replaced by the modified Winsorized variances. Let X(1)j, 

X(2)j,…, X(nj)j represent the ordered sample of group j with size nj. 

The first step in the modified Parametric Bootstrap procedure with MADn is the 

calculation of MOM of group j by using: 

  ̅    
 

          
[∑      

     
       

]           [3.1] 

where 

i1 is the number of observations      such that 

(         ̂ ) < -2.24(MADn), 

i2 is the number of observations      such that  

(         ̂ ) > 2.24(MADn) 

 ̂  is median of group j 

nj  is group sample sizes  

(MADn)j  is median absolute deviation about the median of group j 
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The median absolute deviation (MADn) is simple and easy to compute given by: 

MADn= b medi| xi – medjxj|                                        [3.2] 

The constant b in the equation above is needed to make the estimator consistent with 

the parameter of interest. 

Then, the usual variances will be replaced by the modified Winsorized variances 

where the equation is given by: 

   
   

   
     

    
       [3.3] 

where the sample Winsorized variance is 

    

   
∑       ̅    

     
 

and 

 ̅   
 

 
∑                   [3.4] 

Lastly, compute TN0 statistics (Krishnamoorthyet al., 2007) of group j by using 

TN0 = ∑
  

   
  ̅ 

  - 
(∑     ̅     

   ) 

∑        
 

 
                     [3.5] 

3.2.2 Parametric Bootstrap Test with Tn 

The first step in the modified Parametric Bootstrap procedure with Tn is the 

calculation of MOM of group j by using: 
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         ̅    
 

          
[∑      

     
       

]                                               [3.6]

        

where  

i1 is the number of observations      such that 

(         ̂ ) < -2.24(Tn), 

i2 is the number of observations     such that  

(         ̂ ) > 2.24(Tn) 

 ̂  is median of group j 

nj  is group sample sizes  

(Tn)j  is robust scale estimator of group j 

The calculation of Tn is given by  

Tn = 13800 
 

 
∑ {   |     }   

 
        [3.7] 

where 

   [
 

 
]    

After the calculation of MOM of group j, we proceed with the computation of TNO 

given in the equation [3.5]. 

3.3 Variable Manipulated 

Each procedure has been investigated based on the conditions resulted from 

manipulation of five variables such as number of groups, group sample sizes (i.e. 

balance and unbalanced), type of distribution (i.e. normal and non-normal), variances 

(i.e. homogeneity and heterogeneity) and nature of pairings (i.e. positive and 

negative) in order to highlight the strengths and weaknesses of the test in testing the 

j≠ 1 
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equality of central tendency measures. This manipulation helps to identify the 

robustness of the proposed test when dealing with the problems of non-normality and 

heterogeneity. All of the outcomes from these different conditions were compared in 

terms of the Type I error rates. Table 3.1 represents the summary of all the conditions 

used in this study. 

 

Table 3.1 

Description of Variable Manipulated 

 

Conditions Descriptions 

Number of Groups 
J = 2 

J = 3 

Sample Sizes 
Balanced 

Unbalanced 

Type of Population Distributions 

Normal 

Moderately skewed 

Extremely skewed 

Variances 

Equal 

Moderate 

Large 

Nature of pairings 
Positive 

Negative 

 

3.3.1 Numbers of Groups 

The number of groups containing randomized design of two groups (J = 2) and three 

groups (J = 3). The difference in number of groups is to represent study with the 

procedure of two groups and more than two groups. Investigation on two groups (J = 

2) is chosen because there are a lot of previous work related to this study such as by 

Md Yusof, Othman and Syed Yahaya (2010), Lix and Keselman (1998), Md Yusof 
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et al. (2012a) and Md Yusof, Abdullah and Syed Yahaya (2012b) had also utilized 

similar design.  

Apart from that, investigation on three groups (J = 3) is chosen since the previous 

research done by Cribbie et al. (2012) showed that Parametric Bootstrap test with 

trimmed mean able to produce Type I error rates close to nominal value of α = 0.05 

by using this number of groups. By analyzing on the different number of groups, we 

are able to examine the effect of the number of groups on the Type I error rates for 

each procedure.  

3.3.2 Balanced and Unbalanced Sample Sizes 

Group sample sizes were set balanced and unbalanced for the purpose of examining 

the effect of sample sizes on the Type I error rates for the case of (J = 2) and (J = 3). 

For balanced sample sizes, total sample sizes for J = 2 was set at 40. The number of 

observation for each group for the case of (J = 2) is the same which is n1 = n2 = 20. 

A study done by Syed Yahaya (2005) showed that this number of sample sizes 

provided a good control of Type I errors. For the case of three groups (J = 3), the 

total sample sizes was set at 60 where the number of observation for each group was 

set to be equal to 20 (n1 = 20, n2 = 20, n3 = 20). The number for each group for the 

case of (J = 3) was set to be the same with (J = 2) case.  

In contrast to balanced sample sizes, the number of observation or unbalanced 

sample sizes was set at different sample sizes for each group which is n1 = 15 and n2 

= 25 for the case of two group (J = 2). While for three groups (J = 3), the number of 

observation for each group was set at n1 = 15, n2 = 20, n3 = 25 with subsequent 
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increment of 5 for each group. Table 3.2 summarizes the design of each number of 

groups for balanced and unbalanced sample sizes. 

Table 3.2 

Balanced and Unbalanced Sample Sizes 

J = 2 J = 3 

Balanced Unbalanced Balanced Unbalanced 

n1= 20 n1= 15 n1= 20 n1= 15 

n2= 20 n2= 25 n2= 20 n2= 20 

  n3= 20 n3= 25 

Total = 40 Total = 40 Total = 60 Total = 60 

 

3.3.3 Types of Distributions 

Another condition that is considered in this study is types of distributions. As 

mentioned earlier in CHAPTER ONE, normal distribution is one of the two major 

assumptions that need to be satisfied before proceeding with the ANOVA test and 

independent sample t-test. However, the assumption of normal distribution in a data 

set is rarely met. A slight departure from normal distribution can distort the Type I 

error rates and hence can lead to wrong conclusions. Thus, this study investigates the 

performance of the proposed procedure in terms of the ability to control the Type I 

error rates under various types of distribution. Three types of distribution were 

considered to represent different levels of skewness. The three types of distribution 

are: 

i. Normal distribution 

ii. Moderately skewed distribution 

iii. Extremely skewed distribution  
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Introduced by Hoaglin (1985), the g- and h- distribution was used to represent the 

types of distributions. Cribbie et al. (2012), Md Yusof (2009) and Othman et al. 

(2004) used data generated from the g- and h- distribution in order to examine the 

effect of distributional shapes on Type I error. The parameter g- controls the value of 

skewness while h- controls the value of kurtosis or the amount of elongation. That is 

as g- increases, the distribution becomes increasingly positively skewed and the tails 

of distribution will become heavier as h- increases.  

In this study, g = 0.0 and h = 0.0 for normal distribution. The zero value for g and h 

give the meaning that the distribution is symmetric and the tails are normally 

distributed. For the second distribution, g = 0.5 and h = 0.0 which represents 

moderately skewed distribution. It is because the tails of distribution become 

positively skewed as g increase. The skewness and kurtosis values for this 

distribution are γ1 = 1.74 and γ2 = 8.9; respectively (Othman et al., 2004). For 

extremely skewed distribution, Cribbie et al. (2012) used g = 1.0 and h = 0.0 to 

represent the extremely skewed distribution with skewness of γ1 = 6.18 and kurtosis 

of γ2 = 113.94. Table 3.3 summarizes the information on g- and h-distribution which 

is used in this study. 
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Table 3.3 

Summary of g- and h- Distribution 

Groups Distribution Shapes 

J = 2 

g = 0.0, h = 0.0 

g = 0.5, h = 0.0 

g = 1.0, h = 0.0 

J = 3 

g = 0.0, h = 0.0 

g = 0.5, h = 0.0 

g = 1.0, h = 0.0 

3.3.4 Variances Heterogeneity 

Variances heterogeneity is one of the two major assumptions that often violated 

when testing the equality of central tendency. The classical parametric test has been 

known to yield misleading results when the population variances differ. Hence, to 

investigate the effect of variances heterogeneity on Type I error rates, three natures 

of variances (i.e. equal variances, moderately unequal variances and largely unequal 

variances) were assigned to the groups.  

In this study, variance with a ratio 1:36 (1:1:36) is used to represent largely unequal 

variances. According to Keselman, Wilcox, Algina, Fradette and Othman (2004), 

although the selected ratio may large, ratios similar to this case and larger have been 

reported in the literature. Keselman et al. (1998) also found a ratio of 24:1 and 29:1 

after reviewing articles published in prominent education and psychology journals. 

Apart from that, Wilcox (2003) cited data sets where the ratio as high as 17,977:1. 

Therefore, it seems reasonable to investigate the robustness of each procedure under 

a potentially extreme condition even though the ratio of 1:36 (1:1:36) may be large. 

A procedure is likely to work under most conditions of heterogeneity which are 
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likely to be encountered by researchers if it works under an extreme degree of 

heterogeneity. 

For moderately unequal variances, a ratio of 1:8 (1:8:16) was assigned to this study. 

Keselman, Wilcox, Lix, Algina, Fradette (2007) categorized 8:1 ratio as less extreme 

condition of heterogeneity. It is important for the comparative study to check 

performance of all procedures under any degree of heterogeneity which are likely to 

be encountered by researchers.  

3.3.5 Nature of Pairings  

Sample sizes with unequal variances can have two types of pairing, such as, positive 

pairing and negative pairing. For the case of balanced sample sizes, positive pairing 

resulted from the association of the balanced observations with the lowest and the 

highest variances while negative pairing resulted when the group having the balanced 

observations associated with the highest and the lowest variances. For the case of 

unbalanced sample sizes, for positive pairing, the group having the smallest 

observation will associate with the smallest variance and the largest observation will 

associate with the largest variance. In contrast, for negative pairing, the group having 

the smallest observation will associate with the largest variances while the largest 

observation will associated with the smallest variances. The nature of pairings does 

have potential to produce conservative and liberal results, respectively (Lix & 

Keselman, 1998; Othman et al, 2004). Therefore, in this study, we analyzed the 

robustness of each investigated procedure under the two types of pairings. Table 3.4 - 

Table 3.7 represent the pairing of variances and sample sizes that will be used in this 

study. 
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Table 3.4 

Balanced Sample Sizes and Pairing of Variances for J = 2 

Pairing Group Sizes 

Variance 

Equal 
Moderately 

Unequal 

Largely 

Unequal 

 1 2 1 2 1 2 1 2 

Positive 20 20 1 1 1 8 1 36 

Negative 20 20 1 1 8 1 36 1 

 

Table 3.5 

Unbalanced Sample Sizes and Pairing of Variances for J =2 

Pairing Group Sizes 

Variance 

Equal 
Moderately 

Unequal 

Largely 

Unequal 

 1 2 1 2 1 2 1 2 

Positive 15 25 1 1 1 8 1 36 

Negative 15 25 1 1 8 1 36 1 

 

Table 3.6 

Balanced Sample Sizes and Pairing of Variances for J =3 

Pairing Group Sizes 

Variance 

Equal 
Moderately 

Unequal 

Largely 

Unequal 

 1 2 3 1 2 3 1 2 3 1 2 3 

Positive 20 20 20 1 1 1 1 8 16 1 1 36 

Negative 20 20 20 1 1 1 16 8 1 36 1 1 
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Table 3.7 

Unbalanced Sample Sizes and Pairing of Variances for J = 3 

Pairing Group Sizes 

Variance 

Equal 
Moderately 

Unequal 

Largely 

Unequal 

 1 2 3 1 2 3 1 2 3 1 2 3 

Positive 15 20 25 1 1 1 1 8 16 1 1 36 

Negative 15 20 25 1 1 1 16 8 1 36 1 1 

 

For both balanced and unbalanced sample sizes, in the case of J = 2, the variances for 

positive pairing were set at 1:8 ratio (moderately unequal) and 1:36 ratio (largely 

unequal). For negative pairing, the variances were set at 8:1 ratio (moderately 

unequal) and 36:1 ratio (largely unequal).  For the case of J = 3, the variances for 

positive pairing were set at 1:8:16 ratio (moderately unequal) and 1:1:36 ratio 

(largely unequal) while for negative pairing, the variances were set at 16:8:1 ratio 

(moderately unequal) and 36:1:1 ratio (largely unequal).  

3.4 Design Specification 

Table 3.8 

Design specification for balanced sample sizes and homogeneous variances for J = 2 

N = 40 

Group sizes Group Variances 

Group 1 Group 2 Group 1 Group 2 

20 20 1 1 
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Table 3.9 

Design specification for balanced sample sizes and heterogeneous variances forJ = 2 

N = 40 

Pairing 
Group sizes Group Variances 

Group 1 Group 2 Group 1 Group 2 

P 20 20 1 8 

N 20 20 8 1 

P 20 20 1 36 

N 20 20 36 1 

 

Table 3.10 

Design specification for unbalanced sample sizes and homogeneous variances for  

J = 2 

N = 40 

Group sizes Group Variances 

Group 1 Group 2 Group 1 Group 2 

15 25 1 1 

 

Table 3.11 

Design specification for unbalanced sample sizes and heterogeneous variances for  

J = 2 

N = 40 

Pairing 
Group sizes Group Variances 

Group 1 Group 2 Group 1 Group 2 

P 15 25 1 8 

N 15 25 8 1 

P 15 25 1 36 

N 15 25 36 1 

 

 



 

42 
 

Table 3.12 

Design specification for balanced sample sizes and homogeneous variances for J = 3 

N = 60 

Group sizes Group Variances 

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 

20 20 20 1 1 1 

 

Table 3.13 

Design specification for balanced sample sizes and heterogeneous variances for  

J = 3 

N = 60 

Pairing 
Group sizes Group Variances 

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 

P 20 20 20 1 8 16 

N 20 20 20 16 8 1 

P 20 20 20 1 1 36 

N 20 20 20 36 1 1 

 

Table 3.14 

Design specification for unbalanced sample sizes and homogeneous variances for  

J = 3 

N = 60 

Group sizes Group Variances 

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 

15 20 25 1 1 1 
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Table 3.15 

Design specification for unbalanced sample sizes and heterogeneous variances for  

J = 3 

N = 60 

Pairing 
Group sizes Group Variances 

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 

P 15 20 25 1 8 16 

N 15 20 25 16 8 1 

P 15 20 25 1 1 36 

N 15 20 25 36 1 1 

 

3.5 Data Generation 

This study will be based on simulation of the data that follow the conditions 

mentioned earlier. For data generation, this study will use SAS/IML version 9.3. 

According to Wilcox and Keselman (2010), skewness in a data can cause problem 

when trying to control the Type I error rates. Thus, to examine the effect of 

distributional shape on Type I error rates, the simulation data will follow the type of 

distributions chosen. In order to represent all types of distributions, g- and h- 

distribution is considered.   

The following steps are used to generate the pseudo-random variates for the g- and h- 

distribution: 

i. Generate standard normal variates (Zij) using SAS generator RANNOR (SAS 

Institute, 1999). 

ii. Convert the standard normal variates to random variables via equation 
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Xij = {

   (    )  

 
   (

    
 

 
)             

      (
    

 

 
)                            

    [3.8] 

For the conditions of g ≠ 0, the central tendency measure such as trimmed mean 

produced by MOM estimator is unequal to zero. Thus, the observations Yij, from each 

simulated distributions were standardized by subtracting the population central 

tendency parameter (   from each observation in order to make certain that the null 

hypothesis remains true such that, 

Yij = Xij –      [3.9] 

For robust scale estimator MADn, the values of the population trimmed mean were 

based on 1,000,000 observations. However, due to time constraint and the limited 

power of computer, the values of the population trimmed mean for robust scale 

estimator Tn, were generated from 100,000 observations only. A summary of the 

population trimmed mean corresponding to scale estimators for each type of 

distribution is presented in Table 3.16. 

Table 3.16 

Population trimmed mean for g- and h- distributions 

Distributions 
Robust scale estimators 

MADn Tn 

g = 0.0 and h = 0.0 0.0021 0.0040 

g = 0.5 and h = 0.0 0.0327 0.0286 

g = 1.0 and h = 0.0 0.0255 -0.0035 
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The Type I error rates for each investigated test was determined using 5000 

simulated datasets for 0.05 statistical significance level (α =0.05).This 5000 dataset is 

chosen due to Manly’s (1997) observation. He found 5000 datasets has better 

sampling limits within which estimated significance levels will fall 99% of the time 

were obtained when compared to the use of 1000 data sets. Furthermore, any value 

more than 5000 data sets will not produce large difference on the Type I error rates. 

To verify this claim, a few additional simulations with 8000 and 10,000 data sets are 

tested and the results did not differ from 5000 data sets. For example, the Type I 

error for 5000, 8000 and 10,000 data sets using Parametric Bootstrap test with MADn 

are 0.0366, 0.0366 and 0.0359. The differences between this Type I error rates are 

significantly low (less than 0.001). After that, each of these simulated datasets will 

be bootstrapped 599 times with the group means were (0, 0) (refer to Section 3.6). 

3.6 Bootstrap Method 

Percentile bootstrap method is used in this study to test the hypothesis in proposed 

procedure. Wilcox & Keselman (2010) stated in their study that percentile bootstrap 

method generally has a practical advantage when using measures of location that are 

relatively insensitive to outliers. One type of robust measures of location is trimming 

that based on the shape of distribution using MOM estimator.  

Thus, the percentile bootstrap was chosen to obtain the p-values of the TN0 statistics. 

Md Yusof et al. (2010) referred to some steps to obtain the p-value of the T1 statistics 

by using the percentile bootstrap method. Hence, this study had used those steps as a 

guideline to obtain the p-value for the procedures under TN0 statistics. The steps are 

as following: 
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Step 1:    Based on the available data, calculate the modified Parametric 

Bootstrap test statistics (TN0). 

Step 2:  Generate bootstrap samples by randomly sampling with replacement 

nj observations from the j
th 

group yielding X
*

(1)j, X
*
(2)j,...,X

*
(nj)j. 

Step 3:  Each of the sample points in the bootstrapped groups must be centered 

  at their respective estimated trimmed mean so that the sample 

trimmed   mean is zero, such that    
      

   ̅  , i= 1,2,…,nj.  

Step 4:  Let   
   be the value of     when applied to th     

  values. 

Step 5:  Repeat step 1 to step 4 B times yielding  
     ,  

     , …,  
     .  

Step 6:  Calculate the p-value as (number of     
     ) / B. 

The calculated p-values represents the estimates rates of Type I error for the 

procedures investigated under the Parametric Bootstrap statistic.  

In order to make the variability of the estimated percentile acceptably low, Efron and 

Tibshirani (1993) in their study recommended that B should be at least 500 or 1000. 

Hence, to save the running time, we set B= 599 with the reason that the lowest value 

that can make α a multiple of              is 599. To support our decision, trials on 

various number of bootstrap from B = 599 to 999 found that there was little 

differences on the values of the Type I error. For example, for Parametric Bootstrap 

test with robust scale estimator MADn, the Type I error for 599, 699, 799, 899 and 

999 bootstrap samples were 0.0306, 0.0312, 0.0298, 0.0310 and 0.0310, respectively. 

The differences between these Type I error rates are small. Thus, using B = 599 is the 

most suitable to use in this study. 



 

47 
 

3.7 Analysis on Real Data 

Next, the performance of the modified Parametric Bootstrap test with MADn and Tn 

as trimming criteria were demonstrated on real data. Two groups from normal data 

and two groups from non-normal data were chosen.  Then, the p-values produced by 

the proposed procedures were compared with the classical parametric methods and 

non-parametric methods.  
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CHAPTER FOUR 

RESULTS AND ANALYSIS 

4.1 Introduction 

This chapter is focused on the proposed test statistics which is Parametric Bootstrap 

test to test the equality of central tendency of independent groups. This statistic was 

modified by replacing the usual mean and variances with trimmed mean and 

Winsorized variances, respectively. Parametric Bootstrap test is used with MOM as 

the location measure and MADn or Tn as the scale measure. In addition, MADn and Tn 

also used as the scale estimator in the trimming criteria, suggested by Rousseeuw and 

Croux (1993). These procedures are to be compared with classical parametric test 

(i.e. independent sample t-test and ANOVA test) and non-parametric test (i.e. Mann 

Whitney test and Kruskal Wallis test) in terms of Type I error rates for their 

robustness. In order to highlight the strength and weaknesses of each of the 

procedures, various conditions were considered in this study such as balanced or 

unbalanced sample sizes, the shapes of distribution, group variances and nature of 

pairings. For the number of groups, the procedures were tested under two cases 

namely two (J = 2) and three (J = 3) groups. The total sample sizes for J = 2 is 40 

while for J = 3, the total sample sizes is 60. The results produced by each procedure 

in form of Type I error rates are presented in Tables 4.1 – Tables 4.12. Then, 

performance of all procedures is tested by original data. 

In the first column of all tables are the types of distribution. g- and h- distribution  

were considered to represent three different level of skewness. They are g = 0.0 and h 

= 0.0 for normal distribution, g = 0.5 and h = 0.0 for moderately skewed distribution, 

and g = 1.0 and h = 0.0 for extremely skewed distribution. The second column for 
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homogeneous variances cases represents the group variances. On the other hand, for 

heterogeneous variances cases, the second column represents the nature of pairings 

of the sample sizes and group variances namely positive pairings (P) and negative 

pairings (N). The rest of the columns show the Type I error rates produced by the 

Parametric Bootstrap test with MADn and Tn, the classical parametric test and the 

non-parametric test. The rows represent the “Average” Type I error rate of each 

procedure corresponding to each distributional shape. The last row of every table 

displays the “Grand Average” values which represented the overall performance of 

each procedure by averaging all of Type I error rates produced by each investigated 

procedure. 

Bradley’s liberal criterion is adopted to determine the robustness of the test under 

different conditions especially a test that insensitive to non-normal distribution and 

heterogeneous variances. Based on this criterion, a test is considered to be robust 

with respect to Type I error if the empirical rate of Type I error (α) contained in the 

interval from 0.5α to 1.5α. On the other hand, a test is considered to be non-robust if 

the empirical Type I error rate straying outside this interval. In this study, the 

criterion of significant will be set at α=0.05. Thus, a test that produced the empirical 

rates within the interval of 0.025 to 0.075 can be considered robust. That is, in the 

conditions of non-normality and unequal variances, if the empirical rate of Type I 

error is contain in this interval, a test can be considered insensitive to the violation of 

the assumptions. Empirical Type I error rate below than 0.025 level is considered 

conservative while those above the 0.075 level is considered liberal. 

Apart from that, according to Guo and Luh (2000), the investigated procedure is 

considered robust if the empirical Type I error rates straying below 0.075 levels. 
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However, in this study Bradley’s liberal criterion is chosen since this robust criterion 

was widely used by most recent robust statistics researchers in judging robustness 

(e.g. Cribbie et al., 2012; Md Yusof et al., 2012a; Othman et al., 2004; Wilcox & 

Keselman, 2003; Keselman, et al., 2002; Guo & Luh, 2000). A procedure that able to 

produce the Type I error rates closest the significant level of 0.05 is considered the 

best procedure.  

4.2 New Parametric Bootstrap Procedure 

Parametric Bootstrap test was introduced by Krishnamoorthy et al. (2007) in their 

study. Then, Cribbie et al.(2012) adopted this test using trimmed mean as the central 

tendency measures. In this study, Parametric Bootstrap test were modified by using 

new trimming strategy which use popular robust scale estimators namely MADn and 

Tn as trimming criteria. 

The analysis on the Type I error is organized into two cases of groups (J = 2 and J = 

3). For each case, the analysis on the Type I error covers the two types of sample 

sizes (balanced and unbalanced). Then, the Type I error is obtain by combining the 

Parametric Bootstrap test with percentile bootstrap method. 

4.2.1 Type I Error (J = 2) 

The results of the analysis on the Type I error rates for J = 2 using Parametric 

Bootstrap test, independent sample t-test and Mann Whitney test are shown in Table 

4.1 to Table 4.6. The empirical Type I error rates are displayed for balanced and 

unbalanced design. For each table, the values which satisfy the Bradley’s liberal 

criterion are highlighted in bold. The “Average” and “Grand Average” values that 

satisfied the criterion are also highlighted in bold.  
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4.2.1.1 Balanced sample sizes and homogeneous variances 

The first condition used in this study is balanced sample sizes and homogeneous 

variances. The empirical Type I error rates for this condition is displayed in Table 

4.1. Here, the aim is to identify those procedures that are able to control the Type I 

error rates within the 0.025 to 0.075 interval. 

By referring to Bradley’s robust criterion, all the Type I error rates under PB test 

with MADn and Tn as trimming criteria across three types of distributions are 

conservative, ranging from 0.0192 to 0.0240. Therefore, the results for both new 

trimming strategies are generally not robust with regard to Bradley’s liberal criterion.  

In contrast to PB test, the results for both independent sample t-test and Mann 

Whitney test fall within the 0.025 to 0.075 interval. The “Average” values in the last 

row of the table shows that Mann Whitney test (0.0539) produces the best Type I 

error rates followed by independent sample t-test (0.0453).  

Next, the Type I error rates are evaluated with respect to distributional shape. For the 

normal distribution, independent sample t-test generates the best result while Mann 

Whitney test performs better when the distribution is extremely skewed. Based on 

this table, all the procedures showed an inverse relationship between the Type I error 

rates and the level of skewness. Therefore, the rates of the Type I error decreased as 

the level of skewness increased.  
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Table 4.1 

Type I error rates for balanced sample sizes and homogeneous variances 

n = (20, 20) 

Distribution 

Shape 

Variances 

(Equal)  

Test statistics 

PB test 

with MADn 

PB test 

with Tn 
t-test 

Mann 

Whitney 

test 

g= 0.0 h=0.0 1, 1 0.0214 0.0240 0.0528 0.0566 

g= 0.5 h=0.0 1, 1 0.0212 0.0224 0.0474 0.0526 

g= 1.0 h=0.0 1, 1 0.0192 0.0206 0.0358 0.0526 

Average  0.0206 0.0223 0.0453 0.0539 

 

4.2.1.2 Balanced sample sizes and heterogeneous variances (moderate) 

The empirical Type I error rates were obtained from the tests conducted on groups 

having equal number of observations and two types of variance heterogeneity namely 

moderately unequal variances and largely unequal variances. Table 4.2 displays the 

empirical Type I error rates for balanced sample sizes and moderately unequal 

variances.  

For case of heterogeneous variances, the second column represents the nature of 

pairing. For case of balanced sample sizes, positive pairing (P) resulted from the 

association of the balanced observations with the lowest and the highest variances. In 

contrast to positive pairing, negative pairing (N) resulted when the group having the 

balanced observations associated with the highest and the lowest variances. Then the 

Type I error rates for both pairings were averaged and recorded under “Average” for 

each type of distribution.  
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Table 4.2 

Type I error rates for balanced sample sizes and heterogeneous variances 

(moderate) 

n = (20, 20) 

Distribution 

Shape 

Variances 

(1,8)  

Test statistics 

PB test 

with MADn 

PB test 

with Tn 
t-test 

Mann 

Whitney 

test 

g= 0.0 h=0.0 
P 0.0286 0.0296 0.0586 0.0840 

N 0.0254 0.0264 0.0522 0.0786 

Average 0.0270 0.0280 0.0554 0.0813 

g= 0.5 h=0.0 
P 0.0362 0.0398 0.0670 0.0720 

N 0.0358 0.0326 0.0590 0.0646 

Average  0.0360 0.0362 0.0630 0.0683 

g= 1.0 h=0.0 
P 0.0508 0.0496 0.1030 0.0792 

N 0.0472 0.0444 0.0932 0.0726 

Average  0.0490 0.0470 0.0981 0.0759 

Grand Average 0.0373 0.0371 0.0722 0.0752 

  

All the Type I error rates for PB test with MADn and Tn satisfied the Bradley’s liberal 

criterion of robustness (0.025 to 0.075). For independent sample t-test, all the values 

fall within the interval except for the extremely skewed distribution where the Type I 

error rates becomes liberal with rates ranging from 0.0932 to 0.1030. For Mann 

Whitney test all their values straying above 0.075 except for moderately skewed 

distribution and for extremely skewed distribution with negative pairing (N).  

The overall result of all the procedures across the three types of distribution which 

represented by “Grand Average” shows that PB test with MADn and Tn and 

independent sample t-test were found to be robust. In fact, the average Type I error 
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rates for the PB test with MADn (0.0373) is the closest to the significant level (0.05) 

followed by the Tn procedure (0.0371). 

All these procedures are robust in distributional shape when tested under normal 

distribution except for Mann Whitney test. For the moderately skewed distribution, 

all procedures are robust with their average Type I error ranging from 0.0360 to 

0.0683. The average Type I error for the extremely skewed distribution showed that 

PB test with new trimming criteria are considered robust in accordance with 

Bradley’s robustness criterion. The results from MADn and Tn procedures indicated 

that it functions effectively under extremely skewed distribution with moderate 

unequal variances. 

4.2.1.3 Balanced sample sizes and heterogeneous variances (large)  

The empirical Type I error rates obtained from the test performed on the condition of 

balanced sample sizes and largely unequal variances are showed in Table 4.3. 

The results from the table indicate that all the empirical Type I error rates for PB test 

with new trimming criteria namely MADn and Tn were acceptable with respect to 

Bradley’s robustness criterion across the three types of distributions except for the 

negative pairing (N) under normal distribution. However, the “Average” Type I error 

rates under normal distribution for these procedures fall within the interval. For 

independent sample t-test, the Type I error rates under extremely skewed distribution 

becomes very liberal exceeded 0.1 levels. Apart from that, none of the Type I error 

rates from Mann Whitney test falls within the 0.025 to 0.075 interval. The values 

ranging from 0.0794 to 0.0938 meaning that this test should be considered not 

robust.   
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Table 4.3 

Type I error rates for balanced sample sizes and heterogeneous variances (large) 

  

The “Grand Average” which represents the overall performance of all the procedure 

across the three types of distributions displayed on the last row of the table. Among 

all of these procedures, PB test with MADn and Tn were found to be robust. Yet 

again, PB test with MADn (0.0406) establish itself as the best procedure with its Type 

I error rate is closest to the significant level followed by Tn procedure (0.0399).  

Across distributional shapes, independent sample t-test performs better when the 

distribution is normal while for the moderately skewed distribution, PB test with Tn 

generate the best result. For the extremely skewed distribution, MADn (0.0570) and 

n = ( 20, 20) 

Distribution 

Shape 

Variances 

(1,36)  

Test statistics 

PB test 

with MADn 

PB test 

with Tn 
t-test 

Mann 

Whitney 

test 

g= 0.0 h=0.0 
P 0.0294 0.0294 0.0618 0.0938 

N 0.0232 0.0224 0.0554 0.0926 

Average  0.0263 0.0259 0.0586 0.0932 

g= 0.5 h=0.0 
P 0.0412 0.0436 0.0788 0.0862 

N 0.0358 0.0344 0.0700 0.0794 

Average  0.0385 0.0390 0.0744 0.0828 

g= 1.0 h=0.0 
P 0.0568 0.0572 0.1292 0.0854 

N 0.0572 0.0524 0.1194 0.0804 

Average  0.0570 0.0548 0.1243 0.0829 

Grand Average 0.0406 0.0399 0.0858 0.0863 
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Tn (0.0548) procedures show robust average value with Tn procedure generates the 

best result.  

4.2.1.4 Unbalanced sample sizes and homogeneous variances 

Next, the empirical Type I error rates produced by each procedure for the condition 

of unbalanced sample sizes and homogeneous variances was examined and shown in 

Table 4.4. 

Table 4.4 

Type I error rates for unbalanced sample sizes and homogeneous variances 

n = (15, 25) 

Distribution 

Shape 

Variances 

(Equal)  

Test statistics 

PB test 

with MADn 

PB test 

with Tn 
t-test 

Mann 

Whitney 

test 
g= 0.0 h=0.0 1, 1 0.0244 0.0236 0.0490 0.0510 

g= 0.5 h=0.0 1, 1 0.0234 0.0262 0.0468 0.0502 

g= 1.0 h=0.0 1, 1 0.0196 0.0208 0.0382 0.0502 

Average 0.0225 0.0235 0.0447 0.0505 

 

The ‘Average’ values on the last row of the table represent the overall performance 

of the investigated procedures. Based on these values, PB test with MADn and Tn as 

trimming criteria produced conservative Type I error rates, ranging from 0.0225 to 

0.0235. In fact, it was observed that none of the Type I error rates recorded by PB 

test with MADn fall within the interval. All their values become conservative, 

straying below the level of 0.025. Therefore, PB test with MADn was not robust 

under this condition. For Tn procedure, all the Type I error rates fall outside the 

Bradley’s interval except for the value under moderately skewed distribution. On the 
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other hand, independent sample t-test and Mann Whitney test provided an excellent 

Type I error control where the “Average” values produced by these procedures fulfill 

the Bradley’s liberal criterion. In fact, the best procedure for this condition is Mann 

Whitney test (0.0505) with its Type I error rate is closest to the significant level 

followed by the independent sample t-test (0.0447). 

Across distributional shapes, independent sample t-test and Mann Whitney test is 

robust under symmetric distribution and Mann Whitney test perform better under the 

skewed distributions. There is also an inverse relationship between the Type I error 

rates and the level of skewness except for the PB test with Tn procedure. The Type I 

error rates for Tn procedure suddenly increase from 0.0236 to 0.0262 when the 

distribution is moderately skewed.  

4.2.1.5 Unbalanced sample sizes and heterogeneous variances (moderate) 

Table 4.5 displays the empirical Type I error rates obtained from the test perform on 

the unbalanced sample sizes and moderately unequal variances.  

For case of heterogeneous variances with unbalanced sample sizes, the second 

column represents the nature of pairing where the positive pairing (P) resulted from 

the association of the lowest variances with the smallest observation and the 

association of the highest variance with the largest observation. In contrast to 

positive pairing, negative pairing (N) resulted when the group having the smallest 

observation associated with the highest variances and the largest observation 

associated with the lowest variances. Then the Type I error rates for both pairings 

were averaged and recorded under “Average” for each type of distribution.  
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Table 4.5 

Type I error rates for unbalanced sample sizes and heterogeneous variances  

(moderate) 

n = (15, 25) 

Distribution 

Shape 

Variances 

(1,8)  

Test statistics 

PB test 

with MADn 

PB test 

with Tn 
t-test 

Mann 

Whitney 

test 

g= 0.0 h=0.0 
P 0.0278 0.0308 0.0246 0.0500 

N 0.0274 0.0264 0.1052 0.1064 

Average  0.0276 0.0286 0.0649 0.0782 

g= 0.5 h=0.0 
P 0.0316 0.0344 0.0346 0.0426 

N 0.0382 0.0396 0.1222 0.0874 

Average  0.0349 0.0367 0.0784 0.0650 

g= 1.0 h=0.0 
P 0.0366 0.0422 0.0606 0.0472 

N 0.0612 0.0606 0.1498 0.0980 

Average  0.0489 0.0514 0.1052 0.0726 

Grand Average 0.0371 0.0389 0.0828 0.0719 

  

The overall result of all the procedures across all the three different level of skewness 

which represented by the “Grand Average” on the last row of the table was 

examined. It was observed that with the exception of the independent sample t-test, 

all the other procedures were found to be robust as their values fulfill the Bradley’s 

liberal criterion of robustness. Moreover, all the results for PB test with new 

trimming strategies namely MADn and Tn never strayed outside the Bradley’s robust 

criterion. Based on the ‘Grand Average’ values, PB test with Tn (0.0389) is the best 

procedure where the Type I error rates for this test is the closest to the significant 

level, followed by PB test with MADn (0.0371) and Mann Whitney test (0.0719).  
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For the case of independent sample t- test, the “Average” value under normal 

distribution falls within the interval. However, the “Average” value for this test 

becomes liberal with the rates straying above 0.075 when the distribution is skewed. 

In contrast to the independent sample t-test, although Mann Whitney test showed a 

good control of Type I error rates under skewed distribution, but this test failed to 

perform well under normal distribution with its Type I error rates fall outside the 

interval. 

With regard to distributional shape, all the procedures show robust “Average” values 

ranging from 0.0276 to 0.0646 except the Mann Whitney test for symmetric 

distribution. For the skewed distributions, all the procedures show robust “Average” 

values ranging from 0.0349 to 0.0719 except the independent sample t-test. 

From this table, empirically the positive and negative pairings for the independent 

sample t-test and Mann Whitney test typically produce conservative and liberal 

results, respectively. The negative pairings, which refer to the association of the 

smallest observations with the largest variances and the association of the largest 

observations with the smallest variances, generates higher Type I error rates 

exceeding 0.075 levels compared to the positive pairings.  

4.2.1.6 Unbalanced sample sizes and heterogeneous variances (large) 

Empirical Type I error rates for unbalanced sample sizes and largely unequal 

variances is presented in Table 4.6.  
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Table 4.6 

Type I error rates for unbalanced sample sizes and heterogeneous variances (large) 

 

n = (15, 25) 

Distribution 

Shape 

Variances 

(1,36)  

Test statistics 

PB test 

with MADn 

PB test 

with Tn 
t-test 

Mann 

Whitney 

test 

g= 0.0 h=0.0 
P 0.0284 0.0312 0.0198 0.0508 

N 0.0232 0.0252 0.1268 0.1244 

Average  0.0258 0.0282 0.0733 0.0876 

g= 0.5 h=0.0 
P 0.0370 0.0418 0.0324 0.0440 

N 0.0358 0.0402 0.1486 0.1068 

Average  0.0364 0.0410 0.0905 0.0754 

g= 1.0 h=0.0 
P 0.0500 0.0566 0.0722 0.0446 

N 0.0632 0.0646 0.2054 0.1072 

Average  0.0566 0.0606 0.1388 0.0759 

Grand Average 0.0396 0.0433 0.1009 0.0796 

 

As shown in the table, all the “Average” values for PB test with new trimming 

criteria namely MADn and Tn across the three types of distribution fulfill the 

Bradley’s liberal criterion. For normal distribution, the “Average” value for 

independent sample t-test falls within the interval. The “Average” value for 

independent sample t-test worsens when the distribution becomes skewed. Apart 

from that, none of the “Average” values for Mann Whitney test acceptable with 

regard to Bradley’s robust criterion.  

Based on the “Grand Average” values that represent the overall performance of all 

procedures, PB test competes well with MADn and Tn because the Type I error rates 
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recorded for these procedures are within 0.025 to 0.075. Therefore, both of these 

procedures are robust under Bradley’s robust criterion. PB test with Tn generated 

“Grand Average” closest to the 0.05 significant level with a value of 0.0433 followed 

by PB test with MADn with a value of 0.0396. 

All the procedures except Mann Whitney test showed robust average Type I error 

rates with Tn procedure (0.0282) emerging as the best procedure for normal 

distribution in distributional shape. The average values for the skewed distribution 

showed that PB test with MADn and Tn as trimming criteria are considered robust in 

accordance with Bradley’s liberal criterion. These new trimming strategies perform 

better than independent sample t-test and Mann Whitney test under extremely 

skewed distribution with unequal variances and unbalanced sample sizes. From this 

table, it could be comprehended that empirically the positive and negative pairings 

for the independent sample t-test and Mann Whitney test typically produce 

conservative and liberal results respectively, which the negative pairings generate 

higher Type I error rates exceeded 0.075 level compared to the positive pairings.  

4.2.2 Type I Error (J = 3) 

Apart from the case of J = 2, this study also covered the analysis of the Type I error 

rates for the case of J = 3 using Parametric Bootstrap test, ANOVA test and Kruskal 

Wallis test. The previous section already discussed on the results of J = 2 case in 

terms of Type I error rates.  The condition for the case of J = 3 are the same except 

for changes in the total of sample sizes to N = 60. Throughout this section, the results 

for the J = 3 case are presented in Table 4.7 to Table 4.12. As mentioned earlier, the 

values that fulfilled the Bradley’s liberal criterion of robustness were highlighted in 

bold.  
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4.2.2.1 Balanced sample sizes and homogeneous variances 

Table 4.7 shows the empirical Type I error rates produced by each procedure for the 

condition of balanced sample sizes and homogeneous variances under three groups 

case.   

Table 4.7 

Type I error rates for balanced sample sizes and homogeneous variances 

n = (20, 20, 20) 

Distribution 
Variances 

(Equal)  

Test statistics 

Shape 
PB test 

with MADn 

PB test 

with Tn 

ANOVA 

test 

Kruskal 

wallis test 

g= 0.0 h=0.0 1,1,1 0.0154 0.0172 0.0532 0.0486 

g= 0.5 h=0.0 1,1,1 0.0140 0.0154 0.0510 0.0532 

g= 1.0 h=0.0 1,1,1 0.0110 0.0148 0.0412 0.0532 

Average 0.0135 0.0158 0.0485 0.0517 

 

First, the new trimming strategies using PB test produce conservative Type I error 

rates. Thus, these procedures can be considered not robust for this condition.  On the 

other hand, all the Type I error rates for ANOVA test and Kruskal Wallis test are 

satisfy the Bradley’s robust criterion with their values fall within the 0.025 to 0.075 

interval. Therefore, these procedures were found to be robust.  

The last row of the table showed the “Average” values that represent the overall 

performances of all the procedures. It was observed that the Type I error rates 

produced by ANOVA test (0.0485) is closest to the 0.05 level followed by Kruskal 

Wallis test (0.0517) while PB test with MADn (0.0135) recorded the lowest value. 
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Thereafter, the Type I error rates are evaluated with respect to distributional shape. 

Kruskal Wallis test generate the best result for symmetric distribution and extremely 

skewed distribution while ANOVA test performs better when the distribution is 

moderately skewed. There is also an inverse relationship between the Type I error 

rates and the level of skewness except for Kruskal Wallis procedure. The Type I 

error rates for this procedure suddenly increases from 0.0486 to 0.0532 when the 

distribution is skewed. In general, from this analysis, ANOVA test and Kruskal 

Wallis test perform better than the new trimming criteria under homogeneous 

variances with balanced sample sizes.  

4.2.2.2 Balanced sample sizes and heterogeneous variances (moderate) 

Next, the empirical Type I error rates of the test conducted under the condition of 

balanced sample sizes and unequal variances are examined. As in the previous 

section, the Type I error rates is observed under two types of variance heterogeneity 

that is moderately unequal variances and largely unequal variances. Table 4.8 

displays the results for all procedures for balanced sample sizes and moderately 

unequal variances.   

The “Grand Average” which represents the overall performance of the procedures 

across the distributions shows that all the procedures were found to be robust where 

the corresponding Type I error rates fulfill the Bradley’s robust criterion. Based on 

these values, PB test with MADn (0.0290) is the best procedure since its Type I error 

rate is nearest to the significant level of 0.05 followed by PB test with Tn (0.0288), 

Kruskal Wallis test (0.0740) and lastly, ANOVA test (0.0742).   
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Table 4.8 

Type I error rates for balanced sample sizes and heterogeneous variances 

(moderate) 

n = (20, 20, 20) 

Distribution 

Shape 

Variances  

(1,8,16)  

Test statistics 

PB test 

with MADn 

PB test 

with Tn 

ANOVA 

test 

Kruskal 

wallis test 

g= 0.0 h=0.0 
P 0.0168 0.0162 0.0664 0.0734 

N 0.0210 0.0212 0.0684 0.0748 

Average  0.0189 0.0187 0.0674 0.0741 

g= 0.5 h=0.0 
P 0.0252 0.0258 0.0678 0.0678 

N 0.0294 0.0306 0.0698 0.0708 

Average  0.0273 0.0282 0.0688 0.0693 

g= 1.0 h=0.0 
P 0.0414 0.0392 0.0864 0.0764 

N 0.0402 0.0396 0.0862 0.0810 

Average  0.0408 0.0394 0.0863 0.0787 

Grand Average  0.0290 0.0288 0.0742 0.0740 

 

Under normal distribution, the new trimming strategies namely Parametric Bootstrap 

test with MADn and Tn produce the conservative Type I error rates ranging from 

0.0162 to 0.0212 while ANOVA test and Kruskal Wallis test successfully control the 

Type I error rates within the 0.025 to 0.075 interval. However, as the level of 

skewness increases to the extreme level, the Type I error rates for MADn and Tn 

procedures increases and fall within the interval. In contrast to PB test, ANOVA test 

and Kruskal Wallis test failed to control the Type I error rates under extremely 

skewed distribution with its value straying above 0.075. In general, the new trimming 

strategies perform better than ANOVA test and Kruskal Wallis test under extremely 
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skewed distribution with unequal variances and MADn procedure (0.0408) generate 

the best result for this type of distribution.  

4.2.2.3 Balanced sample sizes and heterogeneous variances (large) 

The results of all procedures in terms of Type I error rates for balanced sample sizes 

and largely unequal variances are shown in Table 4.9.  

Table 4.9 

 

Type I error rates for balanced sample sizes and heterogeneous variances (large) 

 

n = (20, 20, 20) 

Distribution 

Shape 

Variances  

( 1,1,36)  

Test statistics 

PB test 

with 

MADn 

PB test 

with Tn 

ANOVA 

test 

Kruskalwallis 

test 

g= 0.0 h=0.0 
P 0.0166 0.0174 0.0858 0.0838 

N 0.0154 0.0150 0.0874 0.0892 

Average  0.0160 0.0162 0.0866 0.0865 

g= 0.5 h=0.0 
P 0.0230 0.0238 0.1054 0.0786 

N 0.0230 0.0224 0.1026 0.0818 

Average  0.0230 0.0231 0.1040 0.0802 

g= 1.0 h=0.0 
P 0.0306 0.0308 0.1600 0.0826 

N 0.0358 0.0336 0.1502 0.0894 

Average  0.0332 0.0322 0.1551 0.0860 

Grand Average 0.0241 0.0233 0.1152 0.0842 

 

By referring to the “Grand Average” values that represent the overall performance of 

all procedures, none of the Type I error rates falls within the 0.025 to 0.075 interval. 

Therefore, none of the procedures can be considered robust under Bradley’s liberal 
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criterion. However, the “Grand Average” values for PB test with MADn (0.0241) and 

Tn (0.0233) are slightly conservative with regard to Bradley’s robustness criterion. 

Among the non-robust procedures, the PB test with MADn produce the best Type I 

error rates followed by Tn procedure.  

PB test with MADn and Tn provide a good control of the Type I error rates under 

extremely skewed distribution with their values fall within the 0.025 to 0.075 

interval. In contrast, all the Type I error rates for ANOVA test and Kruskal Wallis 

test became liberal exceeding 0.075 levels.  

With respect to distributional shape, none of the Type I error rates for all procedures 

fall within the interval under symmetric distribution. This situation is same for 

moderately skewed distribution where all the average values produced by the 

investigated procedures straying outside the bound of robustness. For extremely 

skewed distribution, only PB test with MADn and Tn showed some improvement 

where its Type I error rates slightly increase and satisfy the Bradley’s robust 

criterion. Therefore, the new trimming strategies using PB test showed better Type I 

error control under extremely skewed distribution with unequal variances compared 

to ANOVA test and Kruskal Wallis test. In fact, the PB test with MADn produced 

‘Grand Average’ value slightly below the lowest limit of the Bradley’s interval with 

the difference of 0.0009.  

4.2.2.4 Unbalanced sample sizes and homogeneous variances 

The performance of the investigated procedures for the condition of unbalanced 

sample sizes and homogeneous variances are displayed in Table 4.10.  



 

67 
 

Based on the ‘Grand Average” values displayed on the last row of the table which 

represents the overall performance of all the procedures shows that ANOVA test and 

Kruskal Wallis test provided an excellent control of Type I error rates where their 

values are consistent and close to the significant level of 0.05. In contrast, PB test 

with MADn and Tn failed to perform well under this condition with none of their Type 

I error rates fulfill the Bradley’s liberal criterion.   

Table 4.10 

Type I error rates for unbalanced sample sizes and homogeneous variances 

n = (15, 20, 25) 

Distribution 

Shape 

Variances 

(Equal)  

Test statistics 

PB test 

with MADn 

PB test 

with Tn 

ANOVA 

test 

Kruskal 

wallis test 

g= 0.0 h=0.0 1,1,1 0.0164 0.0176 0.0510 0.0500 

g= 0.5 h=0.0 1,1,1 0.0144 0.0174 0.0486 0.0510 

g= 1.0 h=0.0 1,1,1 0.0114 0.0138 0.0402 0.0510 

Average 0.0141 0.0163 0.0466 0.0507 

  

Across distributional shapes, Kruskal Wallis test generate the best result for 

symmetric distribution and skewed distributions. There is also an inverse relationship 

between the Type I error rates and the level of skewness except for Kruskal Wallis 

procedure. The Type I error rates for this procedure suddenly increases from 0.0500 

to 0.0510 when the distribution is skewed. In general, from this analysis, ANOVA 

test and Kruskal Wallis test perform better than the new trimming criteria under 

homogeneous variances and unbalanced sample sizes. 
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4.2.2.5 Unbalanced sample sizes and heterogeneous variances (moderate) 

Table 4.11 displays the empirical Type I error rates for unbalanced sample sizes and 

moderately unequal variances. For this case, this study also encompassed the 

investigation on the positive pairings (P) and negative pairing (N). For each 

distribution, the Type I error rates for both pairing were averaged and recorded as 

“Average”.   

Table 4.11 

Type I error rates for unbalanced sample sizes and heterogeneous variances  

(moderate) 

n = (15, 20, 25) 

Distribution 

Shape 

Variances  

(1, 8, 16)  

Test statistics 

PB test 

with MADn 

PB test 

with Tn 

Anova 

test 

Kruskal 

wallis test 

g= 0.0 h=0.0 
P 0.0164 0.0180 0.0378 0.0468 

N 0.0184 0.0182 0.1044 0.1008 

Average  0.0174 0.0181 0.0711 0.0738 

g= 0.5 h=0.0 
P 0.0226 0.0262 0.0402 0.0466 

N 0.0274 0.0290 0.1082 0.0904 

Average  0.0250 0.0276 0.0742 0.0685 

g= 1.0 h=0.0 
P 0.0330 0.0338 0.0546 0.0560 

N 0.0412 0.0406 0.1194 0.1012 

Average  0.0371 0.0372 0.0870 0.0786 

Grand Average  0.0265 0.0276 0.0774 0.0736 

  

The “Grand Average” values across three types of distributions which represent the 

overall results displayed on the last row of the table. Based on these values, it was 

shown that with the exception of the ANOVA test, all the other procedures are robust 
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with their Type I error rates straying within the 0.025 to 0.075 interval. PB test with 

Tn (0.0276) can be considered as the best procedure with its Type I error rate being 

closest to the significant level followed by PB test with MADn (0.0265) and Kruskal 

Wallis test (0.0736).  

With regard to distributional shape, ANOVA test and Kruskal Wallis test showed a 

good control of Type I error rates under normal distribution and moderately skewed 

distribution. The “Average” values produced by these procedures fall within the 

interval. Under extremely skewed distribution, the modified procedures using new 

trimming criteria seems to have a better control of Type I error rates compared to 

ANOVA test and Kruskal Wallis test with the “Average” values for MADn and Tn fall 

within the interval even though all their Type I error rates under symmetric 

distribution becomes conservative. Apart from that, the negative pairings for 

ANOVA test and Kruskal Wallis test generates higher Type I error rates (above 

0.075) compared to that of positive pairings.  

4.2.2.6 Unbalanced sample sizes and heterogeneous variances (large) 

Lastly, the performance of all investigated procedures was examined under the 

condition of unbalanced sample sizes and largely unequal variances. Table 4.12 

displays the empirical Type I error rates produced by new trimming strategies using 

PB test, ANOVA test and Kruskal Wallis test.  

It was observed that only PB test with Tn (0.0257) is robust with its “Grand Average” 

value on the last row of the table satisfied the Bradley’s robust criterion. All the other 

procedures were not robust with their Type I error rates fall outside the interval. The 
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“Grand Average” value represents the overall performance of the investigated 

procedures across the three types of distributions. 

Table 4.12 

Type I error rates for unbalanced sample sizes and heterogeneous variances (large) 

n = ( 15, 20, 25) 

Distribution 

Shape 

Variances 

( 1,1,36) 

Test statistics 

PB test 

with MADn 

PB test 

with Tn 

ANOVA 

test 

Kruskal 

wallis test 

g= 0.0 h=0.0 
P 0.0148 0.0146 0.0414 0.0614 

N 0.0158 0.0178 0.1514 0.1106 

Average 0.0153 0.0162 0.0964 0.0860 

g= 0.5 h=0.0 
P 0.0194 0.0226 0.0620 0.0568 

N 0.0262 0.0280 0.1696 0.1012 

Average 0.0228 0.0253 0.1158 0.0790 

g= 1.0 h=0.0 
P 0.0226 0.0276 0.1094 0.0614 

N 0.0416 0.0436 0.2172 0.1048 

Average 0.0321 0.0356 0.1633 0.0831 

Grand Average 0.0234 0.0257 0.1252 0.0827 

 

With respect to distributional shape, the average Type I error rates for PB test with 

MADn and Tn as trimming criteria becomes highly conservative, ranging from 0.0146 

to 0.0178 under the symmetric distribution. For both ANOVA test and Kruskal 

Wallis test, none of their “Average” values fulfill the Bradley robust criterion for all 

three types of distributions. Some of their Type I error rates become very liberal 

exceeded 0.1 levels. Apart from that, only PB test with Tn showed a good control of 

Type I error rates under moderately skewed distribution with its “Average” value is 
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0.0253. For extremely skewed distribution, PB test with MADn and Tn produced a 

better Type I error control with their “Average” values fall within the Bradley’s 

interval (0.025-0.075). Thus, these new trimming criteria were proven to provide a 

better result compared to ANOVA test and Kruskal Wallis test for extremely skewed 

distribution with unequal variances and unbalanced sample sizes.  

With regard to the design types, the Type I error rates for the J = 2 case seems higher 

and better than for the case of J = 3 indicating that J = 2 procedures are better in 

controlling the Type I error rates.  

4.3 Analysis on Real Data 

The performance of the Parametric Bootstrap test with MADn and Tn as trimming 

criteria were demonstrated on real data. These procedures were compared with the 

classical parametric method and non-parametric method. Two classes (groups) of 

standard 6 for subject ‘Pendidikan Kesihatan’ and ‘Pendidikan Seni’ were chosen. 

For subject ‘Pendidikan Kesihatan’, the sample sizes for Class 1 and Class 2 were 29 

and 16, respectively. While for subject ‘Pendidikan Seni’, the sample sizes for Class 

1 and Class 2 were 29 and 19, respectively. The marks and descriptive statistic for 

each subject are given in Table 4.13, Table 4.14 and Table 4.15.  
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Table 4.13 

Marks for each subject 

Subject Class Data 

‘Pendidikan 

Kesihatan’ 

Class 1 

64   66   62   68   60   58   58   56   56   60   48   60 70   

72   60   74   72   58   72   64   56   44   50   50 54   54   

50   52   44 

Class 2 

80   60   60   60   65   60   60   50   52   55   45   55 50   

45   42   40 

‘Pendidikan 

Seni’ 

Class 1 

65   40   65   40   40   60   40   40   65   75   85   40 45   

50   75   75   85   80   50   50   65   85   85   85 50   55   

60   80   45 

Class 2 

65   70   80   60   65   70   65   55   65   55   60   60 60   

45   70   50   50   60   50 

 

Table 4.14 

Descriptive Statistic for ‘Pendidikan Kesihatan’ 

Class 
Sample 

Size (N) 
Mean  Variance 

Std. 

Deviation 
Minimum Maximum 

1 29 59.03 71.034 8.428 44 74 

2 16 54.94 100.196 10.010 40 80 

Total 45 113.97 171.23 18.438 40 80 
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Table 4.15 

Descriptive Statistic for ‘Pendidikan Seni’ 

Class 
Sample 

Size (N) 
Mean  Variance 

Std. 

Deviation 
Minimum Maximum 

1 29 61.21 283.313 16.832 40 85 

2 19 60.79 75.731 8.702 45 80 

Total 48 61 179.522 12.767 40 85 

 

The Shapiro-Wilk test is employed with a view to determine the normality of the 

data. Shapiro and Wilk (1965) in their study stated that this test is comparatively 

quite sensitive to a wide range of non-normality and suitable for small sample sizes 

even for (n<20). Table 4.16 presents the results of normality for each Class. Based on 

this table, for subject ‘Pendidikan Kesihatan’ the p-values for Class 1 and Class 2 are 

greater than critical value (0.05) meaning that the data for both Classes comes from a 

normal distribution. On the other hand, for subject ‘Pendidikan Seni’, the p-value for 

Class 1 is 0.005, less than 0.05. Thus, the null hypothesis is rejected and it could be 

concluded that the data for Class 1 comes from a non-normal distribution.  

Table 4.16 

Shapiro-Wilk test for normality assumption 

Shapiro –Wilk 

Subject Class Statistic Df Sig. 

‘Pendidikan 

Kesihatan’ 

1 0.965 29 0.442 

2 0.931 16 0.255 

‘Pendidikan 

Seni’ 

1 0.886 29 0.005 

2 0.962 19 0.609 
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Then, the Levene’s test (1960) is conducted to test the assumption of 

homoscedasticity for Class 1 and Class 2. Based on Table 4.17, the p-value for 

subject ‘Pendidikan Kesihatan’ is greater than 0.05. This result is taken as evidence 

that the assumption has not been violated (i.e. the data for ‘Pendidikan Kesihatan’ 

comes from equal variance). In contrast, the data for ‘Pendidikan Seni’ comes from 

unequal variance since its p-value is less than 0.05.  

Table 4.17 

Levene’s test for homoscedasticity assumption 

Levene's Test 

Subject F Sig. 

‘Pendidikan Kesihatan’ 0.251 0.619 

‘Pendidikan Seni’ 15.488 0.000 

 

Based on the results from Shapiro-Wilk test and Levene’s test, the data for Class 1 

and Class 2 (Pendidikan Kesihatan) were found to be normally distributed and equal 

variances while the data for Class 1 and Class 2 (Pendidikan Seni) were found to be 

non-normally distributed with unequal variances. To evaluate the performance of the 

Parametric Bootstrap test with MADn and Tn as trimming criteria, the p-values of the 

procedure was recorded. The results for the proposed procedure, independent sample 

t-test and Mann Whitney test for subject ‘Pendidikan Kesihatan’ and ‘Pendidikan 

Seni’ are showed in Table 4.18 and Table 4.19.  

 

 



 

75 
 

Table 4.18 

p-values for ‘Pendidikan Kesihatan’ (normal data and equal variances) 

Methods p-value 

PB test with MADn 0.1276 

PB test with Tn 0.0944 

t-test 0.1516 

Mann Whitney test 0.1632 

For ‘Pendidikan Kesihatan’subject, all procedures failed to reject the null hypothesis 

indicated that there was no significant difference in terms of marks between Class 1 

and Class 1. However, Parametric Bootstrap test with Tn showed the lowest p-value 

that less than 0.1 level which is 0.0944. Others procedures produced results where p-

value exceeded 0.1 level. This finding denoted that the proposed procedure 

performed better than independent sample t-test and Mann Whitney test for normal 

data and equal variances.  

Table 4.19 

p-values for ‘Pendidikan Seni’ (non-normal and unequal variances) 

Methods p-value 

PB test with MADn 0.6951 

PB test with Tn 0.7172 

t-test 0.9110 

Mann Whitney test 0.9240 

Based on the Table 4.19, the p-values for all the procedures used in this study are 

greater than significant level (0.05) indicated that all the procedures failed to reject 

null hypothesis. It means that there was no significant difference between Class 1 

and Class 2 in terms of their marks. However, the Parametric Bootstrap test with 
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MADn and Tn showed better detection compared to independent sample t-test and 

Mann Whitney test with their p-values are 0.6951 and 0.7172. This result indicated 

that the proposed test is also suitable for non-normal data and unequal variances.  
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CHAPTER FIVE 

CONCLUSIONS 

5.1 Introduction 

Non-normality and variance heterogeneity are two major problems that researchers 

most commonly encounter in testing the equality of central tendency. Classical 

parametric test such as ANOVA test and independent sample t-test are known to be 

sensitive to these assumptions. Violation in these assumptions can distort the Type I 

error rates and consequently the classical parametric test that is used typically 

provides invalid results. A common recommendation due to non-normality and 

variance heterogeneity is to use non-parametric procedures and simple 

transformation. However, non-parametric procedures are known to be less powerful 

and simple transformation failed to deal directly with outliers. Hence, this study 

proposed a robust test statistics which is insensitive to these assumptions. By 

replacing the usual mean and variances using robust measures of location and scale 

such as trimmed mean and Winsorized variances, respectively, the proposed test 

offers the best Type I error control under non-normal distribution and unequal 

variances.  

This study focuses on Parametric Bootstrap test for testing the central tendency 

measures. Parametric Bootstrap test is originally introduced by Krishnamoorthy et al. 

(2007). However, their study only investigated the robustness of each procedure 

under variances heterogeneity. Therefore, for this study, a modification of a test 

statistic is proposed, termed as Parametric Bootstrap test, which used trimmed mean 

obtained by using MOM estimator to make this test robust in dealing with non-

normality and variances heterogeneity. MOM is flexible in handling outliers in a data 
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with empirically determines the amount of trimming percentages regarding the shape 

of distributions. For this new trimming strategy, two robust scale estimators namely 

MADn and Tn were used as trimming criteria. These scale estimators were chosen due 

to their highest possible value of breakdown point (0.5) and bounded influence 

function (Rousseeuw and Croux, 1993). These two procedures were compared to the 

most frequently used classical parametric test (i.e. independent sample t-test and 

ANOVA test) and non-parametric test (i.e. Mann Whitney test and Kruskal Wallis 

test) in terms of the ability to control Type I error rates under non-normal data and 

unequal variances. 

Under the effect of non-normality and variances heterogeneity, the Type I error rates 

were calculated for each investigated procedure to determine its robustness. The 

strength and weaknesses of each procedure in testing the equality of central tendency 

were based on several manipulated variables. For testing the normality effect, three 

types of distributional shapes representing different level of skewness and kurtosis 

were used by using g- and h- distribution. The distribution of g = 0.0 and h = 0.0 

represents normal distribution, g = 0.5 and h = 0.0 distribution represents moderately 

skewed distribution while the extremely skewed distribution is represented by the 

distribution of g = 1.0 and h = 0.0. Apart from that, moderately unequal variances 

with 1:8 (1:8:16) ratio and largely unequal variances with 1:36 ratio (1:1:36) were 

assigned to this study for the heteroscedasticity effect. Also included in this study is 

the number of groups (J = 2 and J = 3) with balanced and unbalanced sample sizes. 

The other variable such as the nature of pairings (positive and negative) was also 

considered in this study. All the procedures were simulated 5000 times for significant 

level of 0.05. This study used Percentile Bootstrap method for the Parametric 
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Bootstrap statistic in order to test the central tendency measures. As for bootstrap 

method, 599 bootstrap samples were generated for each simulation.  

In this study, Bradley’s (1978) liberal criterion is adopted to determine the robustness 

of all the investigated procedures. Based on this criterion, a procedure that produced 

its empirical Type I error rates within the 0.025 to 0.075 interval for significant level, 

α = 0.05 is considered robust. Then, the Type I error rates for each procedure were 

examined and compared with the chosen classical parametric test and non-parametric 

test in order to determine the best procedure. The best procedure will produce the 

empirical Type I error rates closest to the significant value of 0.05. 

5.2 The new Parametric Bootstrap procedures 

Two different procedures were proposed and tested for the Type I error rates under 

Parametric Bootstrap statistic. Then, these procedures were compared with classical 

parametric test and non-parametric test that were chosen. First, we concluded the 

results of the empirical Type I error rates under homogeneous and heterogeneous 

variances as shown in Table 5.1 to Table 5.4. The values for homogeneous variances 

were computed by taking the mean of the ‘Average’ values under the condition of 

equal variances for balanced and unbalanced sample sizes. While for the 

heterogeneous variances, the values were computed by taking the mean of the ‘Grand 

Average’ values under the condition of unequal variances for balanced and 

unbalanced sample sizes.  

According to these tables, the classical parametric method represented by 

independent sample t-test for J = 2 and ANOVA test for J = 3, while non-parametric 
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method is represented by Mann Whitney test for J = 2 and Kruskal Wallis test for J = 

3.  

Table 5.1 

 

Average empirical Type I error rates for homogeneous variances(J = 2) 

 

Test statistics Average Type I error rates 

PB  test with MADn 0.0216 

PB test with Tn 0.0229 

t-test 0.0450 

Mann Whitney test 0.0522 

 

Table 5.2 

Average empirical Type I error rates for homogeneous variances(J = 3) 

 

Test statistics Average Type I error rates 

PB  test with MADn 0.0138 

PB test with Tn 0.0161 

ANOVA test 0.0476 

Kruskal Wallis test 0.0512 

 

From the average empirical Type I error rates shown in Table 5.1 and Table 5.2, 

Parametric Bootstrap test with MADn and Tn as trimming criteria were found to be 

not robust under homogeneous variances. In contrast to Parametric Bootstrap test, the 

classical parametric method and non-parametric method showed a good control of 

the Type I error for J = 2 and J = 3 under homogeneous variances across the three 

types of distribution with their empirical Type I error rates satisfied the Bradley’s 

robustness criterion. 
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Table 5.3 

 

Average empirical Type I error rates for heterogeneous variances (J = 2) 

 

Test statistics Average Type I error rates 

PB  test with MADn 0.0387 

PB test with Tn 0.0398 

t-test 0.0854 

Mann Whitney test 0.0783 

 

Table 5.4 

Average empirical Type I error rates for heterogeneous variances (J = 3) 

 

Test statistics Average Type I error rates 

PB  test with MADn 0.0258 

PB test with Tn 0.0307 

ANOVA test 0.0980 

Kruskal Wallis test 0.0786 

 

In contrast to homogeneous variances, the Parametric Bootstrap test with new 

trimming strategy, MADn and Tn provides the best Type I error control for J = 2 and J 

= 3 under heterogeneous variances as shown in Table 5.3 and Table 5.4. These two 

procedures were considered robust with their empirical Type I error rates fulfilled the 

Bradley’s robustness criterion when the assumption of homogeneity is violated. The 

classical parametric method and non-parametric method for J = 2 and J = 3 are not 

robust under heterogeneous variances with their empirical Type I error rates 

contained outside the interval of 0.025 to 0.075. 

Therefore, it can be comprehended that the Parametric Bootstrap test with MADn and 

Tn as robust scale estimators showed a good Type I error control under the effect of 
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variances heterogeneity even though it produced conservative Type I error rates 

under homogeneous variances.  

Finally, the effects of distributional shapes under heterogeneous variances are 

summarized, as the Parametric Bootstrap test performed well when dealing with 

heterogeneous variances. Table 5.5 and Table 5.6 represents the average empirical 

Type I error rates for J = 2 and J = 3; respectively under the condition of 

heterogeneous variances across the three types of distribution.  

Table 5.5 

Average empirical Type I error rates for J = 2 heterogeneous variances across 

distributional shapes 

Distribution 

Test statistics 

PB  test with 

MADn 

PB test with 

Tn 
t-test 

Mann Whitney 

test 

Normal 0.0267 0.0277 0.0631 0.0851 

Moderately skewed 0.0365 0.0383 0.0766 0.0729 

Extremely skewed 0.0529 0.0535 0.1166 0.0768 

 

Based on the Table 5.5, the empirical Type I error rates for the two proposed 

procedures were acceptable with regard to the Bradley’s liberal criterion across the 

three types of distribution. It could be generalized that, Parametric Bootstrap statistic 

with MADn and Tn as trimming criteria are robust under the conditions of 

heterogeneous variances with normal distribution, moderately skewed distribution 

and extremely skewed distribution for the two groups case. However, poor results 

were observed for independent sample t-test and Mann Whitney test under extremely 

skewed distribution with their Type I error rates straying above the 0.075 level. 

These results indicated that the performance of the proposed procedure with MADn 
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and Tn as new trimming strategy were better than independent sample t-test and 

Mann Whitney test in terms of the ability to control the Type I error for J = 2 under 

extreme condition. 

Table 5.6 

Average empirical Type I error rates for J = 3 heterogeneous variances across 

distributional shapes 

Distribution 

Test statistics 

PB  test with 

MADn 

PB test with 

Tn 
ANOVA test 

Kruskal Wallis 

test 

Normal 0.0169 0.0187 0.0804 0.0801 

Moderately skewed 0.0245 0.0261 0.0907 0.0743 

Extremely skewed 0.0358 0.0441 0.1229 0.0816 

 

As for the three groups case, the Parametric Bootstrap statistic with MADn and Tn as 

trimming criteria shown in Table 5.6 lose their Type I error control when these 

procedures were tested on normal distribution under the condition of heterogeneous 

variances. Tn procedure was found to be robust under moderately skewed distribution 

and extremely skewed distribution while MADn procedure only showed a good 

control of Type I error rates under extremely skewed distribution. However, the 

value of the MADn procedure was just slightly below the lower interval (0.025) with 

the average empirical Type I error rates of 0.0245 under moderately skewed 

distribution. The results from Table 5.6 indicated that only the proposed procedures 

were proven to be able to control the Type I error under extreme condition while 

ANOVA test and Kruskal Wallis test were considered not robust with their average 

empirical Type I error rates for J = 3 exceeded the 0.075 level.  
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Overall, the procedure using the proposed trimming strategy is best used for the 

condition of skewed distribution and heterogeneous variances compared to classical 

parametric test (i.e. independent sample t-test and ANOVA test) and non-parametric 

test (i.e. Mann Whitney test and Kruskal Wallis test). It is because Parametric 

Bootstrap statistic with MADn and Tn as trimming criteria were able to produce Type 

I error rates within the Bradley’s liberal criterion of robustness.  

Therefore, for J = 2, the Parametric Bootstrap statistic is strongly recommended with 

MADn and Tn as new trimming strategy to test the equality of central tendency when 

dealing with heterogeneous variances with normal distribution and skewed 

distribution. For the three groups case (J = 3), Parametric Bootstrap statistic with 

automatic trimming criteria, MADn and Tn is recommended in testing the central 

tendency measures under the condition of non-normal distribution and variances 

heterogeneity.  

5.3 Analysis on Real Data 

The performance of the Parametric Bootstrap test with MADn and Tn was then 

demonstrated on real data. Two groups were chosen represented normal distribution 

and equal variances while two groups were chosen represented non-normal 

distribution and unequal variances. The finding from Table 5.7indicates that the 

Parametric Bootstrap test with MADn and Tn as trimming criteria performed better 

than the independent sample t-test and Mann Whitney test for the case of two groups 

even for the condition of non-normal distribution and unequal variances. 
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Table 5.7 

p-values for each test  

Test statistic 

p-values 

Normal data and equal 

variances 

Nonnormal data and unequal 

variances 

PB test with MADn 0.1276 0.6951 

PB test with Tn 0.0944 0.7172 

t-test 0.1516 0.9110 

Mann Whitney test 0.1632 0.9240 

 

5.4 Suggestions for Future Research 

As stated in the CHAPTER ONE, classical parametric test that are used in this study 

generally provides a good control of the Type I error only if both assumptions of 

normality and homogeneity are true. Hence, our main concern is to construct a robust 

test statistic known as modified Parametric Bootstrap that robust to the violation of 

these assumptions. This study proved that proposed test statistic performed well 

under extreme condition which is non-normal distribution and heterogeneous 

variances even if the sample sizes are unequal by substituting the robust scale 

estimators, MADn and Tn as trimming criteria. However, these two procedures failed 

to show robustness under homogeneous variances except for Tn procedure when it 

was tested under the condition of unbalanced sample sizes for the case of two groups.  

Therefore, this study should be continued with some other robust scale estimators 

with a view to find solutions to the conservative Type I error rates since we only 

focused on two robust scale estimators namely MADn and Tn as trimming criteria. 

Rousseeuw and Croux (1993) in their study suggested plenty of other robust scale 

estimators that are worth to consider such as Qn, Sn, and LMSn. The combination of 

the Parametric Bootstrap test with MADn and Tn showed a good control of the Type I 
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error rate under extreme conditions. Thus, the Parametric Bootstrap test will compete 

well with other robust scale estimators.  

As for the bootstrap method, Parametric Bootstrap statistic with percentile bootstrap 

method seems to provide a good control of the Type I error rates in heterogeneous 

variances cases under skewed distribution. Therefore, percentile Bootstrap test 

should be adopted with another test statistic.  
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