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Abstrak 

Set data adalah tidak seimbang apabila sampel data yang terdapat pada satu kelas 

(kelas majoriti) melebihi kelas selain daripadanya (kelas minoriti). Masalah utama 

berkaitan dengan data binari tidak seimbang ialah kecenderungan pengelas untuk 

mengabaikan kelas minoriti. Beberapa teknik persampelan semula seperti 

pensampelan bawah, pensampelan atas dan gabungan kedua-duanya telah banyak 

digunakan. Walau bagaimanapun, teknik pensampelan bawah dan pensampelan atas 

tersebut masih mempunyai kekurangan seperti pembuangan dan penambahan data 

yang berguna yang menyebabkan masalah ketepatan pengelasan data. Oleh itu, kajian 

ini bertujuan untuk meningkatkan metrik klasifikasi dengan menambah baik teknik 

pensampelan bawah dan menggabungkannya dengan teknik pensampelan atas yang 

telah wujud. Untuk mencapai objektif tersebut, teknik Pensampelan Bawah 

Berdasarkan Jarak Kabur (FDUS) dicadangkan. Anggaran entropi digunakan untuk 

menghasilkan ambang kabur untuk mengelaskan sampel di dalam kelas minoriti 

dengan kelas majoriti kepada fungsi keahlian. FDUS kemudian digabungkan dengan 

Teknik Pensampelan Atas Minoriti Sintetik (SMOTE) dikenali sebagai 

FDUS+SMOTE, dilakukan di dalam urutan sehingga data yang seimbang dihasilkan. 

Kedua-dua teknik, FDUS and FDUS+SMOTE dibandingkan dengan empat teknik 

yang lain berdasarkan ketepatan klasifikasi, F-ukuran dan G-purata. Berdasarkan 

keputusan, FDUS mencapai ketepatan klasifikasi F-ukuran dan G-purata yang lebih 

bagus apabila dibandingkan dengan teknik lain dengan purata masing-masing 80.57%, 

0.85 dan 0.78. Ini menunjukkan logik kabur apabila digabungkan dengan teknik 

Pensampelan Bawah Berdasarkan Jarak mampu mengurangkan penyingkiran data 

yang berguna. Tambahan, penemuan menunjukkan FDUS+SMOTE menghasilkan 

prestasi yang lebih baik berbanding gabungan teknik SMOTE dan Pautan Tomek, dan 

SMOTE dan Penyuntingan Jiran Terdekat pada data penanda aras. FDUS+SMOTE 

telah mengurangkan pembuangan data yang berguna dari kelas majoriti dan 

mengelakkan terlebih-padanan. Secara purata, FDUS dan FDUS+SMOTE mampu 

mengimbangkan data kategorik, integer dan nyata serta membaiki prestasi klasifikasi 

binari. Selain itu, teknik tersebut menghasilkan prestasi yang baik pada data yang 

mempunyai saiz rekod kecil yang mempunyai sampel di dalam lingkungan kira-kira 

100 ke 800. 
 

 

Kata kunci: Data tidak seimbang, Teknik persampelan semula, Teknik pensampelan 

bawah, Teknik pensampelan atas, Logik kabur 
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Abstract 

A data set is considered imbalanced if the distribution of instances in one class 

(majority class) outnumbers the other class (minority class). The main problem related 

to binary imbalanced data sets is classifiers tend to ignore the minority class. 

Numerous resampling techniques such as undersampling, oversampling, and a 

combination of both techniques have been widely used. However, the undersampling 

and oversampling techniques suffer from elimination and addition of relevant data 

which may lead to poor classification results. Hence, this study aims to increase 

classification metrics by enhancing the undersampling technique and combining it 

with an existing oversampling technique. To achieve this objective, a Fuzzy Distance-

based Undersampling (FDUS) is proposed. Entropy estimation is used to produce 

fuzzy thresholds to categorise the instances in majority and minority class into 

membership functions. FDUS is then combined with the Synthetic Minority 

Oversampling TEchnique (SMOTE) known as FDUS+SMOTE, which is executed in 

sequence until a balanced data set is achieved. FDUS and FDUS+SMOTE are 

compared with four techniques based on classification accuracy, F-measure and G-

mean. From the results, FDUS achieved better classification accuracy, F-measure and 

G-mean, compared to the other techniques with an average of 80.57%, 0.85 and 0.78, 

respectively. This showed that fuzzy logic when incorporated with Distance-based 

Undersampling technique was able to reduce the elimination of relevant data. Further, 

the findings showed that FDUS+SMOTE performed better than combination of 

SMOTE and Tomek Links, and SMOTE and Edited Nearest Neighbour on benchmark 

data sets. FDUS+SMOTE has minimised the removal of relevant data from the 

majority class and avoid overfitting. On average, FDUS and FDUS+SMOTE were 

able to balance categorical, integer and real data sets and enhanced the performance 

of binary classification. Furthermore, the techniques performed well on small record 

size data sets that have of instances in the range of approximately 100 to 800. 

 

 

Keywords: Imbalanced data, Resampling technique, Undersampling technique, 

Oversampling technique, Fuzzy logic 
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INTRODUCTION 

Data is a set of values of qualitative and quantitative variables in order to deliver 

information. Often, the distribution of the data sets are imbalanced. This chapter 

provides some background about imbalanced data sets and the problem related to 

them. The research objectives, research scope and significance of study are also stated 

in this chapter. 

1.1 Background 

Imbalanced data sets occur when the number of samples in one class is low as 

compared to other classes (Barua, Islam, Yao, & Murase, 2014). In binary 

classification, the class that contain less instances is known as minority class, and the 

other class is known as majority class. Examples of imbalanced data sets are flood 

events (Wang, Chen, & Small, 2013), medical data sets (Dubey, Zhou, Wang, 

Thompson & Ye, 2014), intrusion detection data sets (Chairi, Alaoui, & Lyhyaoui, 

2012), credit card fraud detection (Padmaja, Dhulipalla, Krishna, Bapi, & Laha, 2007), 

and oil spill identification (Brekke & Solberg, 2005). The issue that is commonly 

related to imbalanced data is poor classification performance due to the tendency of 

classifiers to ignore data samples that belong to the minority class (Lin & Chen, 2012; 

Mangai, Samanta, Das, & Chowdhury, 2010; Mi, 2013). For example, when 

imbalanced data is classified using Support Vector Machine (SVM), the decision 

boundary obtained is biased towards the minority class resulting to misclassification 

(Liu, Yu, Huang, & An, 2011; Bennett & Bredensteiner, 2000). This bias will reduce 

the performance of SVM with respect to the minority class (Batuwita & Palade, 2013). 
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Hence, to overcome the problem, several methods have been proposed in algorithm-

based and data-based approaches (Chawla, Japkowicz, & Kotcz, 2004; Ganganwar, 

2012). 

In algorithm-based approach, two possible processes can take place. Either a new 

algorithm is created or the existing classification algorithm is improved so that it can 

recognise the minority class (Yang, Fong, Wong, & Sun, 2013). Adjusting the costs 

of classes to counter the class imbalance, modifying the probabilistic estimation at the 

tree leaf of decision trees, and altering the decision threshold are some solutions in 

algorithm-based approach as stated by Ganganwar (2012). However, algorithm-based 

approach has some disadvantages. For example, it depends on the classifier and is 

difficult to handle because of the need to correspond the classifier learning algorithm 

with the application domain (Fitkov-Norris & Folorunso, 2013; Sun, Wong, & Kamel, 

2009). In contrast with algorithm-based approach, data-based approach is easier to 

handle because data sets are modified to produce balanced data sets before the 

classifier is trained (Chawla, 2010). In addition, the techniques in data-based approach 

are more versatile because of the independency towards classifiers as compared to the 

algorithm-based approach (Fitkov-Norris & Folorunso, 2013).  

The aim of data-based approach is to modify the ratio of imbalanced data before the 

data is trained (Chairi et al., 2012; Diamantini & Potena, 2009). The advantage of this 

approach is its independence towards the classifier (Lopez, Fernandez, Garcia, Palade, 

& Herrera, 2013). Resampling technique is categorised as a data-based approach and 

it is divided into undersampling and oversampling techniques. Undersampling 

technique can be defined as a technique of removing samples from a majority class, 
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while oversampling technique adds samples to the minority class (Luengo, Fernandez, 

Garcia, & Herrera, 2011). However, these two techniques may lead to a loss of 

potential data and create overfitting (Chawla, 2010).  

Findings showed that undersampling technique provides better classification accuracy 

than oversampling technique (Bekkar & Alitouche, 2013). However, there is still a 

lack of approaches of making decisions to remove the instances from the majority 

class. The implementation of k-Nearest Neighbour (k-NN) and mean in 

undersampling algorithm may cause ambiguity and bias (Napierala & Stefanowski, 

2012; Whitley & Ball, 2001). These factors will cause classification inaccuracy.  

The issue with existing techniques in handling with imbalanced data sets is the degree 

of ambiguity. Fuzzy logic and rough set theory are known as approaches in handling 

ambiguity (Kanagavalli & Raja, 2011; Verbiest, Ramentol, Cornelis & Herrera, 2012). 

Fuzzy logic allows to build up membership function to conserve important data and 

avoid removal of data randomly, while rough set creates lower and upper 

approximations of a set (Hu, Lin, & Han, 2004; Li, Liu & Hu, 2010). In rough set 

theory, the concept of ambiguity is based on boundary (Shen & Jiang, 2010).  

In order to develop a resampling technique that produce better classification 

performance, undersampling and oversampling technique are combined (Bekkar & 

Alitouche, 2013). According to several studies, the combination of the resampling 

techniques produce better classification accuracy result as compared to standalone 

techniques because undersampling and oversampling complement each own’s 
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advantage and disadvantage (Chawla, Bowyer, Hall, & Kegelmeyer, 2002; Jeatrakul, 

Wong, & Fung, 2010; Li, Zou, Wang, & Xia, 2013).  

In conclusion, imbalanced data sets can cause misclassification accuracy. Many real 

data sets are presented in imbalanced data forms. Data-based and algorithm-based are 

two approaches that are implied in handling imbalanced data sets. Among these two 

approaches, data-based approach is found easier to be implemented. However, there 

are some lacking in existing resampling techniques that is categorised under data-

based approach.  Therefore, a research on improving the existing resampling technique 

for imbalanced data sets is needed to be conducted. 

1.2 Problem Statement 

In data-based approach, resampling technique is used to adjust the ratio of imbalanced 

data sets distribution (Naganjaneyulu & Kuppa, 2012). Among the drawbacks of 

resampling techniques are the undersampling technique may lead to the loss of 

potential data, while oversampling creates overfitting (Ganganwar, 2012; Liu, Wu, & 

Zhou, 2009). These problems can lead to classification inaccuracy (Lee & Lee, 2012). 

In one of the existing undersampling techniques, the decision of discarding data from 

the majority class is based on an average (mean) of distance between samples in the 

minority and majority classes (Li et al. , 2013). Mean is not suitable for imbalanced 

data because it is sensitive towards skewed data as stated by Whitley and Ball (2001), 

where it has the tendency to be biased towards the majority class in imbalanced data 

sets. Besides that, k-NN has been used in making decision of data discarding process 

(Hart, 1968; Gates, 1971; Wilson, 1972; Kubat & Matwin, 1997). However, the 
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problem in k-NN is the likeliness to have several equal distances between the data 

samples in minority and majority classes where they can cause ambiguity in choosing 

the samples that need to be removed (Napierala & Stefanowski, 2012).  

Rough set theory and fuzzy logic are two approaches used in dealing with ambiguity 

problems. However, in rough set theory, the concept of ambiguity is based on 

boundary, where boundary samples are difficult to deal with classifiers and more likely 

to be wrongly classified (Anand, Pugalenthi, Fogel, & Suganthan, 2010; Shen & Jiang, 

2010). In addition, rough set is not flexible to be used for large data sets (Hu et al., 

2004; Shivalkar & Tripathy, 2015).  

The combination of undersampling and oversampling techniques produces better 

classification accuracy than standalone techniques (Jeatrakul et al., 2010).  However, 

the size of samples in the majority class that need to be discarded and the number of 

new samples that have to be created for the minority class are defined before the data 

are resampled (Li et al., 2013). The drawback of this approach is the possibility of 

wrongly choosing the suitable amount of samples that need to be removed or added 

(Dubey et al., 2014). It will lead to the decrement of accuracy of both majority and 

minority classes (Li et al., 2013). 

Therefore, this study aims to enhance the undersampling technique using fuzzy logic 

to overcome bias and ambiguity problems. Then, the enhanced undersampling 

technique is combined with oversampling technique to produce better classification 

accuracy. 
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1.3 Research Objectives 

The objectives of this study are as follows: 

1. To enhance the undersampling technique using fuzzy logic. 

2. To integrate the enhanced undersampling with oversampling technique. 

3. To evaluate the enhanced resampling techniques. 

1.4 Research Scope 

Flood disaster causes tremendous damages that affect the society, economy and 

environment. Flood is caused by excessive amount of rainfall and river water for a 

certain period of time. However, the rainfall and river water level data are imbalanced. 

Therefore, this research is focusing on developing the technique to improve the 

accuracy of classifying a binary class of imbalanced data sets. At the end of this study, 

an enhanced resampling technique is produced in order to balance the data sets. 

Support Vector Machine (SVM) is used as a classifier. The data sets for this study are 

rainfall and river water levels of Perlis from the year 2005 until 2013 that are collected 

from the Department of Irrigation and Drainage (DID). Some data sets from UCI 

Machine Learning Repository are chosen as benchmark data. 

1.5 Significance of Study  

The significance of this study is the enhancement of resampling technique to handle 

imbalanced data sets. This study aims to produce an enhanced undersampling 

technique that is able to minimise the loss of potential data in the majority class. By 
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minimising the removal of instances from the majority class, the classification results 

have become more accurate. Furthermore, the enhancement of resampling technique 

that involves a combination of the enhanced undersampling and oversampling 

techniques could improve the classification performance for imbalanced data sets. 

Moreover, this study is related to the classification of flood data sets. Hence, it is 

beneficial to the flood disaster management and the local community in order to 

predict the occurrence of floods.   

1.6 Summary 

Imbalanced data sets may affect the performance of classifiers because they tend to 

misclassify the samples in the minority class. Several techniques have been proposed 

to solve the problem of classifying the imbalanced data. However, there are some 

issues from the existing techniques that need to be improved. Therefore, this study is 

focusing on the enhancement of resampling technique to handle imbalanced data sets. 
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LITERATURE REVIEW 

This chapter provides reviews about imbalanced data sets, techniques to balance the 

data sets and performance metrics to evaluate the techniques. Data-based and 

algorithm-based are the approaches that are being used to solve the problems of 

imbalanced data sets classification. Resampling techniques which consist of 

undersampling, oversampling and a combination of undersampling and oversampling 

lie under the data-based approach.  

2.1 Imbalanced Data Sets 

Imbalanced data sets can be defined as a number of instances in a class (majority class) 

which outnumbers the other class (minority class), where it can be presented in the 

ratio of 100 to 1, 1000 to 1 or more (Chawla et al., 2004; Sun, Kamel, Wong & Wang, 

2007; Yang & Gao, 2013; Zhang & Wang, 2013). Ding (2011) stated that for binary 

classification, if the ratio of two classes is not less than 19:1, the data set is defined as 

imbalanced. Imbalanced data sets exist when rare cases happen and the ignorance 

towards these cases can affect the society, economy and environment (Sang, Gao & 

Liu, 2013). Examples for such cases are stroke diagnosis (Ou-Yang, Rieza, Wang, 

Juan & Huang, 2013), flood prediction (Segretier, Clergue, Collard & Izquierdo, 

2012), credit card fraud detection (Padmaja et al., 2007) and oil spill identification 

(Brekke & Solberg, 2005). Hence, it is important not to overlook the infrequently 

occurred cases.  
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Imbalanced data sets can reduce the performance of classifiers because they tend to 

ignore the instances in minority class and this problem will lead to inaccurate 

classification accuracy (Chairi et al., 2012; Del Gaudio, Batista & Branco, 2014; 

Phung, Bouzerdoum & Nguyen, 2009). For example, in classification, flood 

occurrence is represented as positive instances in minority class and the non-flood 

occurrence is represented as negative instances in majority class. Therefore, if flood 

cases are misclassified, the impact is higher than the misclassification of non-flood 

cases. It can be concluded that more attention should be paid to minority class than 

majority class. 

To overcome imbalanced data sets problem in classification, the proposed solutions 

can be divided into data-based approach and algorithm-based approach (Sun, 

Robinson, Adams, Boekhorst, Rust & Davey, 2006; Wang & Yao, 2013). 

2.2 Data-based Approach 

Data-based approach aims to balance the distribution of instances in both minority and 

majority classes before a classifier is trained (Jeatrakul & Wong, 2012). The advantage 

of data-based approach is the independency towards classifiers, hence it is easy to be 

modified (Fernandez, Lopez, Galar, Del Jesus, & Herrera, 2013; Folorunso & 

Adeyemo, 2012). The commonly used data-based approach is resampling technique, 

such as undersampling, oversampling and a combination of both techniques (Li et al., 

2013; Sun et al., 2009). 
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2.2.1 Undersampling Technique 

Undersampling technique can be defined when a few samples of the majority class are 

removed (Mirza, Lin, & Toh, 2013). Undersampling is an efficient technique in 

balancing the data because it decreases the time of training process due to the removal 

of instances from the majority class (Liu et al., 2009; Ganganwar, 2012). However, it 

may reduce the information accuracy since the potential information may be discarded 

(Gu, Cai, & Zhu, 2009; He, Han, & Wang, 2005). Random Under-Sampling (RUS) is 

one of the undersampling techniques. RUS removes random instances from the 

majority class in order to balance the data sets. Although the technique is simple, the 

data removal may cause a loss of potential data (Chairi et al., 2012).  

Condensed Nearest Neighbour (CNN) follows the basic approach of nearest neighbour 

rule to identify the borderline instances (Hart, 1968). The learning process time is less, 

but it includes a big portion of noisy instances (Fitkov-Norris & Folorunso, 2013). 

Tomek Links (TL) is an improvement of CNN (Tomek, 1976). Instead of removing 

the samples from the majority class randomly, TL only chooses samples that are closer 

to the boundary points. One-Sided Selection (OSS) (Kubat & Matwin, 1997) is a 

combination of two undersampling techniques; CNN and TL. Removal of examples 

from the majority class using CNN and TL is implied to remove the noise in order to 

create a new training set. The drawback of OSS is it requires high learning time 

(Bekkar & Alitouche, 2013; Jo & Japkowicz, 2004). 

Reduced Nearest Neighbour (RNN) (Gates, 1971) removes noisy instances while 

keeping the instances at the border points. The drawback of RNN is it requires higher 

learning time to compute the learning set. Wilson’s Edited Nearest Neighbor Rule 
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(ENN) (Wilson, 1972) is an edited k-NN to improve one nearest neighbour. Wilson 

classified the samples using three nearest neighbour rules and formed a reference set. 

Then, the misclassified samples are removed. Neighbourhood Cleaning Rule (NCL) 

(Laurikkala, 2001) uses ENN rule to identify and remove instances in the majority 

class. First, three nearest neighbours for each instances in the training set is identified. 

If the instance belongs to the majority class and it is misclassified by its three nearest 

neighbour, then the instances are removed. If the instance belongs to the minority class 

and it is misclassified by three nearest neighbour of the majority class, then it is also 

removed.  

Distance-based Under-Sampling (DUS) (Li et al., 2013) uses Euclidean distance to 

find the distance between samples before making decisions of discarding the instances 

in the majority class. Unlike other undersampling techniques, DUS does not consider 

the boundary samples because classifiers have difficulty in dealing with them (Anand 

et al., 2010). Hence, DUS is easier to be used for imbalanced data classification. Figure 

2.1 shows the algorithm of DUS. 

DUS uses mean and includes all samples in order to identify and ignore the sample in 

the majority class. Since mean is very sensitive to skewed data sets (Mann, 2012; 

Whitley & Ball, 2001), it is not suitable for imbalanced data sets because the result 

will be biased towards the majority class instances.  
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Figure 2.1. Algorithm of Distance-based Under-Sampling (Li et al., 2013) 

Overall, the undersampling techniques mainly utilises k-NN to identify the 

removability of samples in the majority class (Zhang, Liu, Gong, & Jin, 2011). The 

advantage of k-NN is that k-NN reduces the bias towards the domination of majority 

class because the instances in majority class are discarded based on the farthest 

distance to the nearest neighbour instances in minority class (Zhang & Mani, 2003; 

Garcia, Mollineda, & Sanchez, 2008). However, according to Napierala and 

Stefanowski (2012), there are cases when the k-NN has equal distance from the 

classified instances that may cause ambiguity.  

According to Zadeh (1980), in ambiguity cases, fuzzy logic is suitable to be used. This 

statement is aligned with other researchers that claimed fuzzy logic has an advantage 

in solving ambiguity problems (Ganesh, 2006; Jiang, Deng, Chen, Wu & Li, 2009; 

Mahdizadeh & Eftekhari, 2013; Sivanandam, Sumathi & Deepa, 2007; Wang, Zhao 
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& Hao, 2011; Verbiest et al., 2012). Besides fuzzy logic, rough set theory is another 

approach in handling ambiguity (Kanagavalli & Raja, 2011). In rough set theory, the 

concept of ambiguity is based on boundary (Shen & Jiang, 2010). The disadvantage is 

boundary samples is difficult to deal with any classifiers (Anand et al., 2010; Shen & 

Jiang, 2010). In addition, the drawback of rough set is it is not suitable for large data 

sets (Hu et al., 2004; Shivalkar & Tripathy, 2015).  

Fuzzy set approach has been implemented to solve learning problems for imbalanced 

data. Fuzzy logic is derived from fuzzy set theory that allows the development of 

membership function. The aim of fuzzy set is to reduce complexity without 

simplifying the information excessively (Singpurwalla & Booker, 2004). Membership 

function is presented in triangular, trapezoidal and Gaussian (Sivanandam et al., 

2007), where the choice of optimal membership functions needs to be considered 

(Aziz, 2009). Membership functions are derived to classify the contribution of 

instances in both minority and majority classes that is correctly reflected by the 

prediction error (Visa & Ralescu, 2003).  

The derivation of membership functions can be divided into intuition, inference, rank 

ordering, neural networks, genetic algorithms and inductive seasoning (Ross, 2010). 

Intuition is based on human’s intelligence and one need to be expert in the field of the 

problem. Inference has similarity with intuition where membership function is formed 

from facts known. The difference is, this method involves knowledge to perform 

deductive reasoning. Rank ordering uses polling concept to assign membership values 

where the preferences are determined by pairwise comparisons. Fuzzy membership 

functions also can be created by training input data set using neural network.  The 
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output of the data points in the trained data sets are membership functions.  In genetic 

algorithm, the membership functions are coded as bit strings. Both neural networks 

and genetic algorithms are computationally very expensive (Ross, 2010). In 

developing membership function where the data set has input-output relationships, 

inductive reasoning is suitable to be used (Sivanandam et al, 2007). Inductive 

reasoning is performed by entropy minimisation where fuzzy threshold is established. 

The concept of fuzzy logic has been introduced by Li et al. (2010) in order to estimate 

class distribution between samples in minority and majority classes. This technique 

uses Gaussian function as a majority class membership function and α-cut to remove 

the instances. In Wong, Leung and Ling (2014), undersampling based on fuzzy logic 

is used for large data sets. The fuzzy logic is applied to cluster the samples in the 

majority class to make a selection of which samples are important. However, the 

settings of the membership functions are based from the calculation of mean value 

where mean is very sensitive to skewed data sets (Mann, 2012; Whitley & Ball, 2001). 

2.2.2 Oversampling Technique 

Oversampling techniques can be defined as an addition of artificial minority class 

samples, which is done to balance the size of two classes (Chawla et al., 2002). In 

contrast to undersampling technique, oversampling technique increases the samples in 

minority class that lead to increment in training time (Hu, Liang, Ma, & He, 2009). 

Furthermore, duplicating the samples will cause overfitting that can worsen the 

prediction (Kim, Baek, & Kim, 2013; Sang et al., 2013). Random Over-Sampling 

(ROS) is one of the oversampling techniques. ROS randomly duplicates the instances 
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from the minority class to balance the data sets. However, the data replication leads to 

overfitting (Chairi et al., 2012).  

To overcome the overfitting problem, Synthetic Minority Over-sampling TEchnique 

(SMOTE) (Chawla et al., 2002) has been introduced. SMOTE creates new synthetic 

instances from the minority class along the line segments that join any or all minority 

class nearest neighbours. SMOTE has shown as one of the most effective 

oversampling techniques when it is applied to several applications (Ding, 2011). 

Besides that, Modified SMOTE (MSMOTE) (Hu et al., 2009) uses a different way 

from SMOTE in choosing near neighbours. MSMOTE calculates the distance of 

instances in the minority class and all instances of training data. From the calculation, 

the decision of creating new instances is based on noise identification. However, 

MSMOTE does not consider the important feature. Other than MSMOTE, Improved 

SMOTE (ISMOTE) (Li et al., 2013) is introduced to assign weight vector to the 

instances in the minority class. A higher weight is assigned to create neighbour 

instances of the minority class, and a lower weight for neighbour instances of the 

majority class.  

Results of several experiments showed that undersampling techniques produced better 

classification accuracy as compared to oversampling techniques (Bekkar & Alitouche, 

2013; Ganganwar, 2012; He & Garcia, 2009; Liu et al., 2009). However, the 

combination of oversampling the minority class and undersampling the majority class 

gave better classification accuracy than standalone techniques as claimed by Chawla 

et al. (2002) and Li et al. (2013). 
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2.2.3 Combination of Undersampling and Oversampling Techniques 

The combination of undersampling technique and oversampling technique is 

introduced to overcome the drawback of each technique. The advantage of this 

approach is it can increase the performance of classifiers (Batista, Bazzan & Monard, 

2003; Chawla et al., 2002; Li et al., 2013). There are a few existing works on the 

combination of undersampling and oversampling techniques such as SMOTE and TL 

(SMOTE+TL) (Batista et al., 2003). The combination is proposed to oversample the 

minority class using SMOTE. Then, TL are used to the oversampled class to create 

better-defined class clusters and to remove borderline and noise instances in the 

majority class. In this case, instances from both classes are removed to produce a 

balanced data set with well-defined class. 

The combination of SMOTE and ENN (SMOTE+ENN) is quite similar with 

SMOTE+TL (Batista, Prati, & Monard, 2004). But, ENN removes more instances as 

compared to TL. So, the data cleaning process is more in-depth. SMOTE+TL and 

SMOTE+ENN are useful when the data sets have very few instances in the minority 

class (Batista et al., 2004; Chawla et al., 2004). In Chawla et al. (2002), SMOTE is 

combined with undersampling technique. The samples in the majority class are 

randomly removed until the minority class becomes some specified percentage of the 

majority class. Then, synthetic minority samples are created. The results showed that 

the combination of SMOTE and undersampling techniques performed better than 

undersampling alone.  

On the other hand, ISMOTE and DUS (ISMOTE+DUS) (Li et al., 2013) work 

simultaneously to balance the data sets. During the data resampling, the number of 
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instances in the minority class created is the same as the number of instances in the -

majority class deleted. ISMOTE+DUS may decrease the classification accuracy 

because the decision of discarding and adding the samples might be wrong (Dubey et 

al., 2014). However, the classification accuracy of the combination between ISMOTE 

and DUS is better than standalone undersampling and oversampling techniques (Li et 

al., 2013).  

Fuzzy set theory has been introduced to both undersampling and oversampling 

techniques in order to reduce the data in the majority class and generate virtual samples 

in the minority class (Li et al., 2010). The aim of this technique is to estimate the class 

distribution to generate balanced data sets. Then, to enhance the classification ability 

of classifiers, they extend the data attributes by adding corresponding fuzzy class 

possible values. Figure 2.2 illustrates the flowchart of the combination between 

undersampling and oversampling techniques where imbalanced data set is balanced 

by both techniques simultaneously. 

Imbalanced 

data

Undersampling Oversampling

Balanced 

data

 

Figure 2.2. Flowchart of Combination of Undersampling and Oversampling 

Technique (Batista et al., 2003, Batista et al., 2004, Chawla et al., 2002; Li et al., 

2010; Li et al., 2013). 
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2.3 Algorithm-based Approach 

Algorithm-based approach aims to create a new algorithm or to improve the existing 

classification algorithms so it can recognize the positive class (Mahdizadeh & 

Eftekhari, 2013). The idea of this approach is to discriminate bias in imbalanced class 

cases, and the advantage of this approach is no modification towards the data sets is 

done (Garcia, Sanchez, Mollineda, Alejo & Sotoca, 2007; Fernandez et al., 2013). 

Single classifiers and ensemble of classifiers belong to algorithm-based approach. 

2.3.1 Single Classifier 

Classification is a task that estimate the correct classes of instances and classifier is an 

instance to construct algorithm for a specific training set (Rokach, 2009). Support 

Vector Machine (SVM), Decision Tree and Artificial Neural Network are among the 

most used classifiers (Ding, 2011). However, due to imbalanced data sets, these 

classifiers have difficulty in classifying the instances. Classifiers tend to be biased 

towards the majority class instances.  

Decision tree is build when the class label is associated with a leaf which is found by 

examining the training sets covered by the leaf. Then, the most frequent class label is 

chosen. In class imbalance problem, the parameters of pruning factor were set to obtain 

a balance classification (Lee, Yang, Chang & Lee, 2010). The pruning is based on the 

predicting error. Due to that, there is high probability that new leaf node is labelled as 

dominant class and some branches predict small (Sun et al., 2007).  Furthermore, to 

avoid overfitting, the decision trees use pruning. However, the pruning technique did 

not perform well on imbalanced data sets (Liu, Chawla, Cieslak & Chawla, 2010). 
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Artificial Neural Network increased the weight of the minority class and cost function 

was introduced while handling with the imbalanced class in the training process (Fu, 

Wang, Chua & Chu, 2002; Alejo, Garcia, Sotoca, Mollineda & Sanchez, 2007). 

Artificial Neural Network performed ineffectively because the minority class is not 

weighted in the networks (Chawla et al., 2002; Carvajal, Chacon, Mery & Acuna, 

2004).  

SVM is binary classifier that classify based on data points at the minimal distances 

from the separating hyperplane to the closest points. SVM has successfully applied to 

classification problems in different domains (Batuwita & Palade, 2013). In imbalanced 

data sets case, the hyperplane tends to be pushed closer to the positive class. So, SVM 

creates boundaries to distance the hyperplane from the positive class (Tang, Zhang, 

Chawla & Krasser, 2009). However, SVM is found to be more effective classifier in 

dealing with imbalanced data sets than other classifiers (Sun et al., 2007; Tang et al., 

2009). 

Fuzzy system has been extracted to classify imbalanced data sets where membership 

functions are created to differentiate the class of minority or majority class (Soler & 

Prim, 2009). However, Soler and Prim (2009) found that the drawback of this 

technique is that it is time consuming as it requires many rules because the ideal 

number of rules needed for the data sets is not defined before the classification.  

Fuzzy rule-based classification has been used to distinguish the areas between 

minority and majority classes (Fernandez, Del Jesus & Herrera, 2009). Nevertheless, 

fuzzy classifier achieves its optimum classification performance when the training 
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data sets have been balanced at the pre-processing level because it is less sensitive to 

the learning of imbalanced class distribution (Fernandez et al., 2009). 

 The finding is similar with Visa and Ralescu (2005) where fuzzy classifier is less 

sensitive towards imbalanced data. As stated in Visa and Ralescu (2003) and Li et al. 

(2010), fuzzy logic is suitable to be used in dealing with imbalanced cases. However, 

problems occur when fuzzy logic is applied in algorithm-based approach because the 

modification is dependent to the classification algorithm (Dubey et al., 2014). 

2.3.2 Ensemble of Classifiers 

Ensemble of classifiers is a set of individual trained classifiers and the decisions of 

classifications are combined to choose the best classifier (Tan, Steinbach & Kumar, 

2006). The idea of ensemble-based classifiers is to combine the votes of several 

classifiers to produce an accurate prediction. Bagging and boosting are the methods of 

ensemble classifiers. To deal with imbalanced data sets, ensemble classifiers are 

combined with data-based approach to process the data before learning each classifier 

(Galar, Fernandez, Barrenechea, & Herrera, 2013).  

SMOTEBagging (Wang & Yao, 2009) is an integration of SMOTE and bagging. 

Synthetic samples in the minority class are created before bagging. Then, bagging is 

applied to the samples in the majority class. However, the drawbacks of bagging 

includes the tendency to bootstrap sample for both majority and minority classes, thus, 

the imbalanced distribution will occur at every iteration (Bekkar & Alitouche, 2013). 

SMOTEBoost (Chawla, Lazarevic, Hall & Bowyer, 2003) is an integration of SMOTE 

with boosting. This method creates synthetic instances and indirectly enables weight 
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updating for each iteration. However, SMOTEBoost will worsen the overfitting 

problem because it will increase the inductive bias due to the increased similarity 

among the groups of data samples (Kim, 2013).  

MSMOTEBoost (Hu et al., 2009) is a modified SMOTE algorithm that integrates with 

boosting. This method considers the imbalanced data and noise samples but does not 

consider the differences of important features (Hu et al., 2009). RUSBoost (Seiffert, 

Khoshgoftaar, Van Hulse, & Napolitano, 2010) is a result of integration between 

Random Under-Sampling (RUS) with boosting. This method requires less training 

time as compared to SMOTEBoost, yet sampling with majority class is still time 

consuming (Ou-Yang et al. 2013). EUSBoost (Galar et al., 2013) is an integration of 

Evolutionary Undersampling (EUS) with boosting. This method resamples the 

imbalanced data sets in a supervised manner. However, boosting algorithms may 

increase generalisation error because new validated data sets might not be trained by 

the classifiers (Kim, 2013). 

To conclude, from the reviewed methods, the disadvantages of algorithm-based 

approach are its dependency to the classifier, i.e. the modification of algorithms is 

fully depends on the classifier, not the data set. So, it is difficult to handle because the 

algorithm might be only suitable for certain domain. For these reasons, data-based 

approach is more preferable (Fernandez et al., 2013; Bekkar & Alitouche, 2013; 

Zhong, Raahemi & Liu, 2009). 
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2.4 Performance Evaluation 

In imbalanced data sets cases, only a few performance metrics are suitable to evaluate 

classification performance. Traditionally, confusion matrix as described in Table 2.1, 

is used to evaluate classification performance (Chawla et al., 2002). Minority class is 

represented as positive class and majority class is represented as negative class. 

Table 2.1 

Confusion Matrix 

 Positive prediction Negative prediction 

Positive class True positive (TP) False Negative (FN) 

Negative class False Positive (FP) True Negative (TN) 

 

From Table 2.1, TP represents the number of positive instances that are correctly 

classified, TN corresponds to the number of negative instances that are correctly 

classified, FP denotes the number of positive instances that are misclassified and FN 

refers to the number of negative instances that are misclassified. However, in 

imbalanced data sets cases, predictive accuracy is not suitable to be used because of 

its tendency to be biased towards the majority class (He & Garcia, 2009; Goel, 

Maguire, Li, & McLoone, 2013). There are other alternative performance metrics that 

are suitable to evaluate classification performance for imbalanced data sets such as 

Receiver Operating Characteristics (ROC), Area Under ROC Curve (AUC), F-

measure and G-mean. 

ROC curve is a graph of TP on x-axis versus FP on y-axis that evaluates the classifier 

performance (Chawla, 2010). Perfect classification is represented as point (0, 1) and 
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the line y=x defines the strategy of randomly guessing classes (Garcia et al., 2007). 

However, it is difficult to describe the result because it is not in a numerical metric 

(Seiffert et al., 2010).  From the ROC curve, the overall performance of a classifier 

can be measured numerically by computing AUC (Galar et al., 2013). The comparison 

of which model is better can be described when it has a larger AUC (Tan et al., 2006).  

F-measure shows the effectiveness of a classifier (He & Garcia, 2009). It is a 

combination of recall and precision. Recall measures the instances of positive class 

that are labelled correctly, while precision describes the number of positive instances 

that are actually correctly labelled (Goel et al., 2013). Therefore, it is suitable to 

measure the performance of imbalanced data sets classification. 

Geometric mean (G-mean) considers the accuracy of both positive and negative 

instances (Nguyen, Bouzerdoum & Phung, 2009). Hence, it is suitable for evaluating 

imbalanced data set classification performance because G-mean maximises and 

balances the classifier performance (Li et al., 2013). Furthermore, it is independent 

towards imbalanced distribution (Jeatrakul et al., 2010). 

2.5 Summary 

Several techniques have been proposed at data-based and algorithm-based approaches 

to overcome the matter regarding the classification of imbalanced data sets. Data-

based approach is easier to be modified as compared to algorithm-based approach 

because of its independency towards classifiers. Therefore, this study focuses on the 

resampling techniques that are categorised under data-based approach. Improvement 
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of the resampling techniques need to be done to increase the classification 

performance.  
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RESEARCH FRAMEWORK AND METHODOLOGY 

This chapter details out the research framework and methodological approach for this 

study. The first section in this chapter focuses on the research framework. The second 

section explains on the methods to run the experiment for each phase. The content of 

this chapter is summarised in the final section. 

3.1 Research Framework 

In this section, the phases that need to be fulfilled to achieve the objectives for this 

study are described. Figure 3.1 summarises the framework for this research that 

consists of four phases. The phases are divided into data pre-processing, enhancement 

of undersampling technique, enhancement of resampling technique and performance 

evaluation. The output of the second, third and fourth phases will accomplish the first, 

second and third research objectives, respectively. The first objective is to enhance 

undersampling technique using fuzzy logic, and the second objective is to enhance 

resampling technique by combining undersampling and oversampling techniques. The 

final objective is to evaluate the proposed enhanced resampling techniques.   
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Phase Methods and/or Techniques Output

1) Data pre-

processing

4) Performance 

evaluation

2) Enhancement of 

undersampling 

technique

3) Enhancement of 

resampling 

technique

· Use close approximation 

points to remove outliers

· Use interpolation technique 

to fill missing values

Integrate Fuzzy Distance-based 

Undersampling (FDUS) 

technique with Synthetic 

Minority Oversampling 

Technique (SMOTE)

Enhance Distance-based 

Undersampling technique 

using fuzzy logic

Fuzzy Distance-based 

Undersampling 

technique

FDUS+SMOTE

Evaluated FDUS and 

FDUS+SMOTE 

Cleaned data

· Data sets: Real flood data 

sets and UCI Machine 

Learning

· Performance metrics: 

Accuracy, F-measure and 

G-mean

· Techniques for 

comparison: DUS, 

SMOTE, FDUS, 

SMOTE+TL, 

SMOTE+ENN

(First objective)

(Second objective)

(Third objective)

 

Figure 3.1.  Research Framework 

3.2 Research Methodology 

The details of the four phases that are required to achieve the research objectives are 

described in this section. At the end of the first phase, the imbalanced data sets are 

cleaned from any outliers and missing values. Then, in the second phase, an enhanced 

Distance-based Undersampling (DUS) technique is produced, named Fuzzy Distance-

based Undersampling (FDUS) technique. FDUS is combined with oversampling 
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technique in the third phase. The output for the third phase is an enhanced resampling 

technique.  

3.2.1 Data Pre-processing for Flood Data Sets 

Rainfall and water level are two of the factors that contribute to flood events. For the 

purpose of this study, rainfall and river water level data of Perlis are collected from 

year 2005 until 2013 from the DID. Tables 3.1 and 3.2 are the samples of rainfall and 

water level data. Rainfall is measured in milimeter (mm), while water level is 

measured in meter (m) unit. Both rainfall and water level are presented in hourly 

forms.  

Table 3.1 

Hourly Rainfall Data (mm) for Sungai Pelarit 

Date 0100 0200 0300 0400 0500 0600 0700 0800 … 2400 

1/12/13 0 0 0 0 0 0 0 0 … 0 

2/12/13 0 0 0 0 0 2 1 0 … 0 

3/12/13 0 0 0 0 0 0 0 0 … 0 

Table 3.2 

Hourly Water Level Data (m) for Wang Kelian 

Date 0100 0200 0300 0400 0500 0600 0700 0800 … 2400 

1/12/13 10.21 10.24 10.24 10.25 10.25 10.27 10.25 10.25 … 10.27 

2/12/13 10.25 10.25 10.24 10.25 10.25 10.25 10.25 10.27 … 10.30 

3/12/13 10.24 10.25 10.25 10.34 10.36 10.36 10.32 10.29 … 10.29 

 

After all the data sets are collected, the rainfall and water level data sets are cleaned 

up from outliers. Outliers may exist due to the interruption of data transmission. For 

this case, any point that is separated far from other points are considered as outliers. 
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To deal with outliers, the points are corrected by replacing a close approximation point 

of the remaining values. In order to fill the missing value, interpolation technique is 

used as described in Equation 3.1. Table 3.3 shows the sample of data sets before and 

after removing the outliers and filling the missing values.  

𝑓(𝑥) = 𝑓(𝑥0) + (𝑥 − 𝑥0)
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
 

(3.1) 

where f(x) = missing value, f(x0) = value before missing value, x = point of missing 

value, x0 = point of value before missing value, f(a) = constant value before missing 

value, f(b) = constant value after missing value, a = constant point before missing 

value, b = constant point after missing value 

Table 3.3 

Sample of Rainfall Data (mm) for Genting Kabu 

Number 

of point 
Date 

Time 

(hour) 

Rainfall (mm) 

before data 

cleaning 

Rainfall (mm) 

after data 

cleaning 

1 30/12/2012 0100 0 0 

2  0200 0 0 

3  0300 8 8 

4  0400 14 14 

5  0500  19 

6  0600 -4 4 

7  0700 0 0 

8  0800 0 0 

9  0900  0.5 

10  1000 -1 1 
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After the data cleaning, rainfall and water level data sets are combined. These two 

attributes will determine the flood occurrence for each catchment area. Tables 3.4 and 

3.5 show the rainfall intensity and water level stages, respectively. Note that each 

water level station has different water level stages. Table 3.6 shows the relations of 

rainfall and water level stage that cause floods (Bedient, Huber & Vieux, 2008). 

Continuous heavy rainfall in two to four hours can cause flash floods. In addition, 

during the monsoon period, the amount of rain can exceed to hundreds per day. This 

information is provided by DID.  

Table 3.4 

Rainfall Intensity 

Rainfall (mm) Category of storm 

1-10 Light 

11-30 Moderate 

30-60 Heavy 

More than 60 Very heavy 

Table 3.5 

Water Level Stages of Ulu Pauh  

Water level (m) Stages Explanation 

26.50 Normal 
River level is at normal level. 

 

28.20 Alert 
River level is significantly above normal level. DID 

Flood Operation Room is activated 

28.60 Warning 
River level is almost to flood level. DID Flood 

Operation Room is activated. 

29.00 Danger 
River level can cause flood. Evacuation may be 

initiated 
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Table 3.6 

Causes of Flood (Bedient, Huber & Vieux, 2008) 

 Rainfall Water level stage Class 

 

Stage 

Heavy or very heavy Warning or danger Flood 

Heavy or very heavy     Alert Flood 

Light or moderate Warning or danger Flood 

Light or moderate Alert No flood 

 

In this study, data sets from Kaki Bukit, Lubok Sireh, Wang Kelian, Ladang Perlis 

Selatan and Ulu Pauh from year 2005 until 2013 are chosen based on the catchment 

areas in Perlis. Table 3.7 presents the sample of flood data set after rainfall and water 

level data are combined. The division of no flood and flood classes are done based on 

Table 3.6. 

Table 3.7 

Sample of Ulu Pauh Data Set 

Date Time Rainfall (mm) Water level (m)  Class 

29/3/2009 12.00pm 0  25.67  No flood 

29/3/2009 1.00pm 0  25.67  No flood 

29/3/2009 2.00pm 0  25.67  No flood 

29/3/2009 3.00pm 0  25.67  No flood 

29/3/2009 4.00pm 67.30  25.72  Flood 

29/3/2009 5.00pm 51.10  27.95  Flood 

29/3/2009 6.00pm 0.10  28.12  No flood 

29/3/2009 7.00pm 0  28.19  No flood 

29/3/2009 8.00pm 0  28.15  No flood 
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Overall, Table 3.8 provides the details of the flood data sets that include size of the 

data sets, number of instances in flood class (#Flood), number of instances in no flood 

class (#No flood), and ratio of majority class to minority class. The imbalanced ratio 

is defined as the ratio of number of instances in majority class to the number of 

instances in minority class (Mahdizadeh & Eftekhari, 2013). Minority and majority 

classes represent flood and no flood occurrence, respectively.  

Table 3.8 

Characteristics of Flood Data Sets 

Data sets Record size #Flood #No flood Ratio 

(maj:min) 

Kaki Bukit 157,775 75 157,700 2102:1 

Lubok Sireh 157,775 75 157,700 2102:1 

Wang Kelian 157,775 76 157,699 2074:1 

Ladang Perlis Selatan 157,775 163 157,612 966:1 

Ulu Pauh 157,775 128 157,617 1231:1 

 

3.2.2 Data Pre-processing for Benchmark Data Sets 

Besides rainfall and river water level data sets, five imbalanced data sets which are 

adult, haberman, breast cancer, pima, and bupa are selected as benchmark data from 

UCI Machine Learning Repository (Bache & Lichman, 2013). Each of the data sets 

has different characteristics as described in Table 3.9. 

The characteristics of the data sets are type of attribute, size of the data sets, number 

of instances in minority class (#Minority), number of instances in majority class 

(#Majority), and ratio of majority to minority class. Table 3.9 is ordered based on the 
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descending order of the ratio. A larger ratio means the difference between the number 

of instances in minority class and the number of instances in majority class is big. 

Table 3.9 

Characteristics of Benchmark Data Sets 

Data sets Attribute 

Type 

Record 

Size 

#Minority  #Majority  Ratio  

(maj:min) 

Adult Categorical, 

Integer 

152 37 115 3.11:1 

Haberman Integer 306 81 225 2.78:1 

Breast cancer Integer 700 242 458 1.89:1 

Pima Integer, Real 768 268 500 1.87:1 

Bupa Categorical, 

Integer, Real 

345 145 200 1.38:1 

 

A significant portion of the processed flood and benchmark data sets is presented in 

Appendix. 

3.2.3 Enhancement of Distance-based Undersampling Technique 

The Distance-based Undersampling (DUS) technique has been used in this phase for 

undersampling technique enhancement. Figure 3.2 demonstrates the flowchart of DUS 

technique. 
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Figure 3.2. Flowchart of Distance-based Undersampling (Li et al, 2013) 

This technique starts by taking the imbalanced data sets that are divided into two 

classes, and they are denoted as 𝑥𝑖 = {𝑥1, 𝑥2, … , 𝑥𝑛} for samples in majority class and 

𝑦𝑗 = {𝑦1, 𝑦2, … , 𝑦𝑛} as samples in minority class. Then, the distance, 𝑑𝑖𝑗 between 

samples in majority class and minority class are calculated using Euclidean distance. 

The flow continues by computing the mean for the distance and denoted as 𝐴𝑖 . Samples 

that need to be removed are based on predefined threshold. The process is repeated for 

all samples and balanced data sets are produced. From Figure 3.2, the enhancement of 

this technique is done at the dotted bordered box. Instead of calculating the mean 
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distance, fuzzy logic is introduced. Hence, Fuzzy Distance-based Undersampling 

technique is produced. 

3.2.4 Enhancement of Resampling Technique  

In this phase, resampling technique is enhanced by combining the Fuzzy Distance-

based Undersampling (FDUS) technique with Synthetic Minority Oversampling 

TEchnique (SMOTE). The idea of this combination is adapted from several works as 

discussed in Chapter 2. Imbalanced data set is balanced by both techniques 

simultaneously. Undersampling technique removes samples from the majority class, 

while oversampling technique creates new samples in the minority class. Finally, a 

balanced data set is produced.  

However, in this study, the proposed FDUS and SMOTE are performed in sequence 

with certain conditions that need to be fulfilled. Firstly, imbalanced data set is divided 

into majority and minority classes. Then, the ratio between the two classes is adjusted 

with FDUS.  However, if the amount of instances in the majority class has become 

lesser than the minority class, then SMOTE is used. The resampling process works 

repetitively until the data set is balanced. 

3.2.5 Performance Evaluation 

The balanced data sets that are produced after applying the proposed techniques to the 

imbalanced data sets are classified using Support Vector Machine (SVM). Each 

imbalanced data set is divided into five partitions using 5-fold cross validation to avoid 

bias. Testing was performed on FDUS and the enhanced resampling technique. Those 
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techniques will produce balanced data sets. In order to evaluate the performance, SVM 

has been applied to classify the balanced data sets, and the accuracy obtained from 

SVM for each test is presented in percentage. A high percentage accuracy reflects the 

good technique.  

Besides classification accuracy, the performance of the proposed techniques are 

evaluated using F-measure and G-mean as described by Equation 3.2 and Equation 

3.3 respectively.  

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

(3.2) 

𝐺 − 𝑚𝑒𝑎𝑛 = √
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
×

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Where TP=True Positive, TN=True Negative, FP=False Positive and 

FN=False Negative 

(3.3) 

The classification accuracy, F-measure and G-mean of the proposed techniques are 

compared with other techniques. FDUS is compared with DUS and SMOTE. Then, 

the enhanced resampling technique is compared with other combination techniques 

(SMOTE+TL and SMOTE+ENN) and standalone techniques (FDUS, DUS and 

SMOTE).  
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3.3 Summary 

The proposed enhancement of Distance-based Undersampling (DUS) and resampling 

techniques are presented in this chapter. The enhanced DUS is named as Fuzzy 

Distance-based Undersampling (FDUS) technique. FDUS technique uses the 

advantage of fuzzy logic which can reduce bias problems. As a result, FDUS technique 

can minimise the removal of useful data from the majority class. The main 

contribution for this study is the enhancement of resampling technique where FDUS 

technique integrated with SMOTE (FDUS+SMOTE). The proposed resampling 

technique will be performed in sequence with certain conditions that need to be 

accomplished.  
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 FUZZY DISTANCE-BASED UNDERSAMPLING TECHNIQUE 

Chapter Four is divided into three sections. Section 4.1 discusses on the steps to 

enhance Distance-based Undersampling technique, Section 4.2 describes the 

experiments and the results of the evaluated enhanced undersampling technique. At 

the end of this chapter, a summary is provided in Section 4.3. 

4.1 Proposed Enhancement of Distance-based Undersampling Technique 

Distance-based Undersampling (DUS) technique is enhanced by implementing fuzzy 

logic to the algorithm. The enhanced technique is named as Fuzzy Distance-based 

Undersampling (FDUS) technique. Figure 4.1 illustrates the flowchart of the proposed 

FDUS algorithm. 

Imbalanced 

data

Distance 

calculation

Fuzzy logic 

computation

Instances removal

Balanced 

data
 

Figure 4.1. Flowchart of Fuzzy Distance-based Undersampling 
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From Figure 4.1, the flow starts with the division of imbalanced data set into majority 

and minority classes. Distance between all instances in the majority class, m and 

instances in the minority class, n is calculated using Euclidean distance, dmn as shown 

in Equation 4.1. 

𝑑𝑚𝑛 = √(𝑥𝑚 − 𝑥𝑛)2 + (𝑦𝑚 − 𝑦𝑛)2 (4.1) 

where (𝑥𝑚, 𝑦𝑚) is point in majority class and (𝑥𝑛, 𝑦𝑛) is point in minority class.  

Then, fuzzy logic is computed based on the distance to categorise the instances into 

several sets. In order to categorise the instances into triangular and trapezoidal 

membership functions, fuzzy thresholds are produced using entropy estimation.  

 

Equations 4.2, 4.3, 4.4 and 4.5 describe the entropy estimation of pk(x), qk(x), p(x) and 

q(x) (Chiang, Shih, Lin & Shih, 2014; Christensen, 1980). Assume thresholds are in 

the range between x1 and x2. 

𝑝𝑘(𝑥) =
𝑛𝑘(𝑥) + 1

𝑛(𝑥) + 1
 

(4.2) 

𝑞𝑘(𝑥) =
𝑁𝑘(𝑥) + 1

𝑁(𝑥) + 1
 

(4.3) 

𝑝(𝑥) =
𝑛(𝑥)

𝑛
 

(4.4) 

𝑞(𝑥) = 1 − 𝑝(𝑥) (4.5) 

where 

pk(x) = conditional probabilities that class k sample is in the region [x1, x1+x], 

qk(x) = conditional probabilities that class k sample is in the region [x1+x,x2], 
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p(x) = probabilities that all samples are in the region [x1, x1+x], 

q(x) = probabilities that all samples are in the region [x1+x,x2], 

 nk(x) = number of class k samples located in [x1, x1+x],  

n(x) = total number of samples located in [x1, x1+x],  

Nk(x) = number of class k samples located in [x1+x, x2],  

N(x) = total number of samples located in [x1+x, x2],  

n = total number of samples in [x1, x2]. 

From Equations 4.2, 4.3, 4.4 and 4.5, the estimation of entropy is found. Equation 4.6 

shows the equation to find minimum entropy.  

𝑆(𝑥) = 𝑝(𝑥)𝑆𝑝(𝑥) + 𝑞(𝑥)𝑆𝑞(𝑥) (4.6) 

where  

𝑆𝑝(𝑥) = −[𝑝1(𝑥)𝑙𝑛𝑝1(𝑥) + 𝑝2(𝑥)𝑙𝑛𝑝2(𝑥)], (4.7) 

𝑆𝑞(𝑥) = −[𝑞1(𝑥)𝑙𝑛𝑞1(𝑥) + 𝑞2(𝑥)𝑙𝑛𝑞2(𝑥)] (4.8) 

A value of x that gives minimum entropy is the optimum threshold value. Table 4.1 

shows the sample of minimum entropy calculation where x is the value of the 

calculated distance. 
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Table 4.1 

Sample of Minimum Entropy Calculations 

x 3.5 7 10.2 19.02 

p1 1 1 0.85 0.75 

p2 0.2 0.167 0.28 0.37 

q1 0.33 0.25 0.28 0.33 

q2 0.78 0.87 0.85 0.83 

p(x) 0.33 0.41 0.50 0.58 

q(x) 0.67 0.58 0.50 0.41 

Sp(x) 0.32 0.29 0.49 0.58 

Sq(x) 0.56 0.46 0.49 0.51 

S 0.48 0.39 0.49 0.55 

 

Based on the Table 4.1, the minimum S is 0.39. Therefore, the selected x is 7, and 

Figure 4.2 shows its location for membership function. The calculations are repeated 

to determine the other two thresholds to form trapezoidal and triangular membership 

function. 
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Figure 4.2. Example of Membership Function 

The trapezoidal and triangular membership function in Figure 4.3 represents three sets 

of instances whether the instances need to be kept, removed temporarily or removed 

permanently. Fuzzy logic thresholds are represented as a, b and c. For instances that 

belong to the ‘keep’ set, the instances will remain in the majority class. The ‘remove 

permanently’ set represents the instances that will be removed immediately. At this 

stage, a new majority class is created. For instances that is categorised in ‘remove 

temporarily’, the decision of removing the instances will be based on two conditions. 

These conditions are applicable after considering the size of the new majority class. 

The first condition is when the number of instances in the new majority class is more 

than the instances in the minority class. In this case, the instances in the ‘remove 

temporarily’ set will be removed immediately. For the second condition, if the number 

of instances in the new majority class is lesser than the minority class, then the 

instances will be kept. Finally, new data set with minimal loss of potential data is 

generated. Balanced data set is produced based on fuzzy thresholds. 
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Figure 4.3. Membership Function of Instances 

4.2 Experiment and Result 

The experiments conducted are designed to minimise the removal of potential data 

from the majority class by computing the fuzzy logic. The pre-processed imbalanced 

flood and benchmark data sets are divided into majority and minority classes. Then, 

5-fold cross validation is used to partition the data sets into 4:1 train to test ratio. After 

the training and testing sets are applied by the proposed FDUS, SVM is used for 

classification. The classification is evaluated by accuracy, F-measure and G-mean. 

The results of the five experiments of each data set will be averaged. 

For comparison purposes, the whole process is repeated using different techniques 

such as DUS and SMOTE. Testing is also made to the data sets without applying any 

undersampling or oversampling technique to analyse whether the use of those 

techniques are beneficial.  

Table 4.2 and Table 4.3 show the ratio of majority to minority class before and after 

the techniques have been applied to the flood and benchmark data sets, respectively. 

From Table 4.2, the ratio after FDUS has been applied to the imbalanced data sets are 
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larger than DUS and SMOTE. Larger ratio indicated the gap between instances in two 

classes is large. Hence, it shows that FDUS has minimise the removal of potential data. 

Table 4.2 

Ratio of Majority to Minority Class for Flood Data Sets  

Resampling 

technique 

No 

resampling 

FDUS DUS SMOTE 

Data sets 

Kaki Bukit 2102:1 1865:1 751:1 1043:1 

Lubok Sireh 2102:1 1173: 1 757:1 1058:1 

Wang Kelian 2074:1 1187:1 781:1 1058:1 

Ladang Perlis Selatan 966:1 576:1 341:1 485:1 

Ulu Pauh 1231:1 1201:1 434:1 617:1 

 

In Table 4.3, FDUS produced the smallest ratio when it is applied to bupa data set. For 

adult and pima data sets, FDUS gave the second smallest ratio when compared to DUS 

and SMOTE. FDUS produced the largest ratio on haberman and breast cancer. The 

results showed that FDUS has minimised the loss of potential data by removing the 

instances in majority class based on fuzzy threshold. 

Table 4.3 

Ratio of Majority to Minority Class for Benchmark Data Sets  

Resampling 

technique 

No resampling FDUS DUS SMOTE 

Data set     

Adult 3.11:1 2.75:1 2.86:1 1.48:1 

Haberman 2.78:1 2.75:1 2.16:1 2.16:1 

Breast cancer 1.89:1 1.86:1 1.76:1 1.18:1 

Pima 1.87:1 1.22:1 1.13:1 1.39:1 

Bupa 1.38:1 1.04:1 1.12:1 3.17:1 
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Some of the results from previous studies that have been tested on the benchmark data 

sets are presented in Table 4.4. FDUS is the proposed technique for this research.  DUS 

and combination of Fuzzy Undersampling and Fuzzy Oversampling are techniques 

categorised as data-based approach while SVM-based Active Learning and Bottom-

up induction of Rules and Cases for Imbalanced Data (BRACID) are techniques to 

solve imbalanced data categorised as algorithm-based approach (Ertekin, Huang, 

Bottou & Giles, 2007; Li et al., 2010; Li et al., 2013; Napierala & Stefanowski, 2012).  

Table 4.4 

Benchmark Data Sets Comparison Based On G-Mean 

Resampling 

technique 

FDUS DUS 

 

Fuzzy 

Undersampling 

and Fuzzy 

Oversampling 

SVM-based 

Active Learning 

 

BRACID 

 

Data set 

Adult 0.86 - - 0.73 - 

Haberman 0.69 0.72 - - 0.58 

Breast cancer 0.91 - - - 0.56 

Pima 0.65 0.77 0.77 - 0.71 

Bupa 0.79 - 0.65 - - 

 

Results of the experiments are presented in Table 4.5 to Table 4.10 and Figure 4.4 to 

Figure 4.9. 

The results of classification accuracy of no resampling technique, FDUS, DUS and 

SMOTE are presented in Table 4.5 and Figure 4.4. FDUS produced the best mean 

classification accuracy on Kaki Bukit and Ulu Pauh. FDUS performed the second best 

mean classification accuracy on Ladang Perlis. The average result of mean 

classification accuracy for FDUS is the highest as compared to no resampling, DUS 

and SMOTE. However, standard deviation of FDUS is the highest. Although the 
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standard deviation is ranked as the highest, the value is considered low as stated in 

Orriols-Puig and Bernado-Mansilla (2009).  

Table 4.5 

Classification Accuracy (%) of Standalone Techniques for Flood Data Sets  

Resampling 

technique 

No resampling FDUS DUS SMOTE 

Data set Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Kaki Bukit 99.90 1.87 99.94 0.61 99.67 0.06 99.88 0.19 

Lubok Sireh 99.89 0.22 99.80 1.96 99.94 0.56 99.97 0.19 

Wang Kelian 99.70 0.34 99.82 1.98 99.96 0.49 99.84 0.20 

Ladang 

Perlis 99.89 0.22 99.94 0.61 99.95 0.63 99.89 0.39 

Ulu Pauh 99.60 0.23 99.99 1.22 99.95 0.64 99.89 0.22 

Average 99.80 0.58 99.90 1.28 99.89 0.48 99.89 0.24 

 

 

 

Figure 4.4. Mean Classification Accuracy of Standalone Techniques for Flood Data 

Sets 

Table 4.6 and Figure 4.5 illustrate the F-measure for the proposed FDUS and other 

resampling techniques. FDUS performed the best when it is applied to Wang Kelian 
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and Ulu Pauh data sets as compared to the other techniques. For Wang Kelian data set, 

FDUS showed increment of 0.36 than no resampling, 0.32 than SMOTE and 0.10 than 

DUS. For Ulu Pauh data set, FDUS produced 0.34 better F-measure than no 

resampling, 0.12 better than DUS and 0.24 better than SMOTE. For the rest of the data 

sets, FDUS performed as the second best technique. In average, FDUS gave the best 

F-measure.  

Table 4.6 

F-measure of Standalone Techniques for Flood Data Sets  

Resampling 

technique 

No 

resampling 

FDUS  DUS SMOTE 

Data set 

Kaki Bukit 0.49 0.81 0.85 0.81 

Lubok Sireh 0.48 0.84 0.74 0.87 

Wang Kelian 0.49 0.85 0.84 0.53 

Ladang Perlis 0.65 0.81 0.92 0.79 

Ulu Pauh 0.65 0.99 0.87 0.75 

Average 0.55 0.86 0.84 0.75 

 

 

Figure 4.5. F-measure of Standalone Techniques for Flood Data Sets 

0

0.2

0.4

0.6

0.8

1

1.2

Kaki Bukit Lubok Sireh Wang Kelian Ladang Perlis Ulu Pauh

F-measure

No resampling FDUS DUS SMOTE



 

 47 

The results of G-mean for flood data sets are summarised in Table 4.7 and Figure 4.6. 

The results show that FDUS worked better than DUS and SMOTE for Kaki Bukit, 

Lubok Sireh, Wang Kelian and Ulu Pauh. For Ladang Perlis, FDUS produced less 0.7 

than no resampling and 0.11 than DUS. However, FDUS performed better than 

SMOTE for 0.09 for Ladang Perlis data set. In average, FDUS performed the second 

best technique after no resampling. 

Table 4.7 

G-mean of Standalone Techniques for Flood Data Sets  

Resampling 

technique 

No 

resampling 

FDUS  DUS SMOTE 

Data set 

Kaki Bukit 0.99 0.93 0.87 0.90 

Lubok Sireh 1.00 0.97 0.82 0.96 

Wang Kelian 0.99 0.99 0.96 0.90 

Ladang Perlis 1.00 0.93 0.98 0.90 

Ulu Pauh 0.99 0.99 0.88 0.90 

Average 0.99 0.96 0.90 0.91 

 

 

Figure 4.6. G-mean of Standalone Techniques for Flood Data Sets 
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Table 4.8 and Figure 4.7 describe the classification accuracy of FDUS for benchmark 

data sets. For three out of five data sets, FDUS gave the best mean classification 

accuracy as compared to no resampling, DUS and SMOTE. For breast cancer and 

pima, FDUS performed as the third best technique. The average results show that 

FDUS has the highest mean classification accuracy and the lowest standard deviation. 

Table 4.8 

Classification Accuracy (%) of Standalone Techniques for Benchmark Data Sets  

Resampling 

technique 

No resampling 

 

FDUS DUS SMOTE 

Data set Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Adult 61.33 0.05 82.61 0.03 75.00 0.03 72.73 0.02 

Haberman 75.66 0.10 83.33 0.04 78.90 0.06 75.32 0.14 

Breast cancer 93.98 0.04 90.22 0.06 83.15 0.08 94.26 0.04 

Pima 67.19 0.04 64.26 0.03 64.91 0.02 59.53 0.02 

Bupa 51.16 0.05 82.42 0.05 57.35 0.08 77.10 0.03 

Average 69.86 0.06 80.57 0.04 71.86 0.05 75.79 0.05 

 

 

Figure 4.7. Mean Classification Accuracy of Standalone Techniques for Benchmark 

Data Sets 
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F-measure for benchmark data sets is presented in Table 4.9 and Figure 4.8. FDUS 

worked the adult, haberman, pima and bupa data sets. FDUS is positioned as the 

second best technique for breast cancer data set. Overall, FDUS produce the best F-

measure.  

Table 4.9 

F-measure of Standalone Techniques for Benchmark Data Sets  

Resampling 

technique 
No 

resampling 

  

FDUS  

  

DUS 

  

SMOTE 

  

Data set 

Adult 0.12 0.91 0.42 0.24 

Haberman 0.35 0.90 0.65 0.66 

Breast cancer 0.91 0.92 0.86 0.94 

Pima 0.54 0.64 0.55 0.58 

Bupa 0.45 0.88 0.61 0.40 

Average 0.47 0.85 0.62 0.57 

 

 

Figure 4.8. F-measure of Standalone Techniques for Benchmark Data Sets 
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data sets. FDUS is ranked as the third best technique for haberman and breast cancer 

data sets. In average, FDUS produced the best G-mean as compared to no resampling, 

DUS and SMOTE. 

Table 4.10 

G-mean of Standalone Techniques for Benchmark Data Sets  

Resampling 

technique 
No 

resampling 

  

FDUS  

  

DUS 

  

SMOTE 

  

Data set 

Adult 0.29 0.86 0.52 0.38 

Haberman 0.48 0.69 0.70 0.74 

Breast cancer 0.93 0.91 0.84 0.94 

Pima 0.64 0.65 0.61 0.63 

Bupa 0.51 0.79 0.57 0.53 

Average 0.57 0.78 0.65 0.64 

 

 

 

Figure 4.9. G-mean of Standalone Techniques for Benchmark Data Sets 
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Overall, it is apparent that FDUS achieved higher classification accuracy and F-

measure for both flood and benchmark data sets. FDUS achieved the highest G-mean 

for benchmark data sets and the second best G-mean for flood data sets. 

The results of classification accuracy indicated that FDUS allows SVM to classify 

correctly the data sets specifically on the Kaki Bukit and Ulu Pauh data sets. The 

classification accuracy is higher on Kaki Bukit and Ulu Pauh data sets because after 

applying FDUS on the data sets, the ratio between majority and minority classes has 

become smaller. However, for the other flood data sets, FDUS has lower classification 

accuracy than no resampling, DUS and SMOTE. This might happened due to other 

factors such as size, complexity, overlap and small disjuncts (Visa & Ralescu, 2005; 

Sun et al., 2009; Barua et al., 2014). For benchmark data sets, FDUS performed the 

best on most of the benchmark data. The classification accuracy of no resampling 

technique is higher than the accuracy after the data sets are resampled due to the 

tendency of classifier to ignore the instances in the minority class. 

F-measure determined the exactness of the correctly labelled minority class. FDUS 

performed the best for the maximum number of time for benchmark data sets. For 

flood data sets, FDUS appeared as the best technique for two times and second best 

techniques for three times. FDUS is able to adjust the ratio between instances in 

minority class to instances in majority class to maximize the value of F-measure.  

High G-mean signifies the accuracy of majority and minority classes is high and the 

gap between both classes is small. FDUS performed better than DUS and SMOTE for 

all flood data sets. However, FDUS is outperformed by no resampling because 
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sensitivity and specificity are high. For benchmark data sets, FDUS has succesfully 

reduced the number of instances in the majority class and narrowed the difference 

between both classes.  FDUS uses the advantage of fuzzy logic to avoid biasness in 

choosing the instances that need to be removed from the majority class. 

4.3 Summary 

This chapter provided detailed descriptions of the enhancement of Distance-based 

Undersampling technique to produce Fuzzy Distance-based Undersampling 

technique. Overall, the experimental results from several imbalanced data sets 

indicated that the proposed Fuzzy Distance-based Undersampling technique provided 

better classification accuracy, F-measure and G-mean, as compared to Distance-based 

Undersampling and SMOTE for benchmark data sets. For flood data sets, FDUS 

outperformed the other techniques based on classification accuracy and F-measure. In 

term of G-mean, FDUS is ranked as the second best technique. The Fuzzy Distance-

based Undersampling technique has utilised the benefit of fuzzy logic, which is to 

reduce bias. 
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INTEGRATION OF FUZZY DISTANCE-BASED 

UNDERSAMPLING AND SMOTE 

This chapter outlines the enhancement of resampling technique. The chapter begins 

with the explanation of the steps to enhance the proposed resampling technique in 

Section 5.1. The experiments and results of the proposed technique is discussed in 

Section 5.2. Finally, Section 5.3 presents the summary of the chapter.  

5.1 Proposed Enhanced Resampling Technique  

The proposed enhanced resampling technique is a integration of Fuzzy Distance-based 

Undersampling (FDUS) and Synthetic Minority Oversampling TEchnique (SMOTE) 

that work in sequence. Figure 5.1 illustrates the proposed combination of FDUS and 

SMOTE.  

The flow starts by taking the imbalanced data set as input data. The imbalanced data 

set is divided into two classes. Class that has less instances is known as the minority 

class, while the other class is known as the majority class. Initially, let 𝐴𝑖 be the 

majority class and 𝐵𝑗 be the minority class. An imbalanced data set is resampled using 

FDUS technique to produce a balanced data set.  But if the number of instances in the 

majority class, |𝐴𝑖|, is still greater than the number of instances in the minority class, 

|𝐵𝑗 |, then the FDUS process is repeated. However, if |𝐴𝑖| has become lesser than |𝐵𝑗 |, 

at this stage, 𝐴𝑖 be the minority class, and 𝐵𝑗 be the majority class. Then, the data set 

is resampled using SMOTE. The SMOTE algorithm is shown in Figure 5.2. The 

process is repeated until a balanced data set is produced. Note that, a data set with ratio 
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of 1:1 is perfectly balanced such that |𝐴𝑖| = |𝐵𝑗 |. However, since the data sets used in 

this research have ratio of as high as 2000:1, it is impossible to achieve the ratio of 

perfectly balanced. The iteration of this process stopped when the ratio achieve the 

most balanced ratio after several iterations. The idea is adapted from Garcia et al. 

(2007) and Weiss and Provost (2003). 
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Figure 5.1. Integration of Fuzzy Distance-based Undersampling and Synthetic 

Minority Oversampling TEchnique 

SMOTE is an oversampling technique which randomly creates new synthetic samples 

to the minority class. Let M be the minority class, and x be the instances in M. For 

each instance x in M, k-nearest neighbour is found. Samples are randomly selected 

from k-nearest neighbour instances, denoted as y. Synthetic instances known as q are 
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created using Equation 5.1. Then, q is added to M. Finally, a new minority data set is 

created. SMOTE algorithm is depicted in Figure 5.2 

𝑞 = 𝑥 + (𝑥 − 𝑦) × 𝑔𝑎𝑝 

where q = Synthetic instances, gap is random number from 0 to 1. 

(5.1) 
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Figure 5.2. Synthetic Minority Oversampling TEchnique (Chawla et al., 2002) 

5.2 Experiment and Result 

The experiments are carried out to combine the undersampling and oversampling 

techniques to improve the result produced by the standalone techniques. The flood and 

benchmark data sets are used for this experiment. The imbalanced data sets are divided 

into majority and minority classes. Then, these data sets are partitioned using 5-fold 

cross validation. The data sets are trained and tested on the enhanced resampling 

technique named as FDUS+SMOTE to produce balanced data sets. SVM is used to 
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classify the data sets, and the classification performance of the proposed enhanced 

resampling technique is evaluated by accuracy, F-measure and G-mean. 

For comparison purposes, the whole process is repeated and replaced by different 

techniques which are the combination of SMOTE+TL and SMOTE+ENN.  The results 

of the enhanced resampling technique are also compared with no resampling 

technique, FDUS, DUS and SMOTE.  

Table 5.1 and Table 5.2 show the ratio before and after the techniques are applied to 

the flood and benchmark data sets. From Table 5.1, the smallest ratio produced by 

FDUS+SMOTE as compared to SMOTE+TL and SMOTE+ENN is after it has been 

applied on Kaki Bukit. The second smallest ratio produced by FDUS+SMOTE is when 

it is applied to the other four data sets. Based on conducted experiments, Lubok Sireh, 

Wang Kelian, Ladang Perlis Selatan and Ulu Pauh data sets fulfilled only the first 

condition of FDUS+SMOTE which is |Ai|>|Bj| where |Ai| is number of instances in 

majority class and |Bj| is number of instances in minority class. The final ratio is the 

best ratio produced after several iteration. For Wang Kelian data set, SMOTE is 

applied after the data set is processed using FDUS where |Ai|<|Bj|. It may happened 

to Wang Kelian data set due to the distribution of the instances might be overlapping 

that cause to high number of removal of instances in the majority class. 
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Table 5.1 

Ratio of Majority to Minority Class for Flood Data Sets  

Resampling 

technique 

No 

resampling 

FDUS+SMOTE SMOTE+TL SMOTE+ENN 

Data sets 

Kaki Bukit 2102:1 321:1 568:1 1043:1 

Lubok Sireh 2102:1 45:1 30:1 215:1 

Wang Kelian 2074:1 39:1 30:1 334:1 

Ladang Perlis Selatan 966:1 60:1 20:1 348:1 

Ulu Pauh 1231:1 35:1 10:1 128:1 

 

From Table 5.2, FDUS+SMOTE produced the smallest ratio as compared to 

SMOTE+TL and SMOTE+ENN on bupa data sets. All benchmark data sets fulfilled 

the second condition of FDUS+SMOTE which is |Ai|<|Bj|. After the data sets are 

processed by FDUS, |Ai| has become smaller than |Bj|. SMOTE is used increase the 

number of instances in the new Ai  to produce the best ratio. Table 5.2 show the best 

ratio produced by FDUS+SMOTE after several iteration. 

Table 5.2 

Ratio of Majority to Minority Class for Benchmark Data Sets  

Resampling 

technique 

No 

resampling 

FDUS+SMOTE SMOTE+TL SMOTE+ENN 

Data set     

Adult 3.11:1 2.33:1 2.80:1 1.35:1 

Haberman 2.78:1 2.75:1 2.18:1 2.06:1 

Breast cancer 1.89:1 1.66:1 1.12:1 1.06:1 

Pima 1.87:1 1.99:1 1.39:1 1.36:1 

Bupa 1.38:1 1.19:1 2.61:1 2.05:1 

 

The results of the FDUS+SMOTE, no resampling technique, SMOTE+TL and 

SMOTE+ENN are presented in Table 5.3 to Table 5.8 and Figure 5.3 to Figure 5.8. 

The results of the enhanced resampling technique, no resampling technique, FDUS, 
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DUS and SMOTE are depicted in Table 5.9 to Table 5.14 and Figure 5.9 to Figure 

5.14. 

Table 5.3 and Figure 5.3 show the results of the classification performance for flood 

data sets. FDUS+SMOTE gave the best mean classification accuracy when it is used 

on Ulu Pauh. FDUS+SMOTE performed the second best mean classification accuracy 

on Lubok Sireh and Wang Kelian and the third best on Kaki Bukit and Ladang Perlis. 

The average result of mean classification accuracy for FDUS+SMOTE is higher than 

SMOTE+TL and SMOTE+ENN. The average standard deviation of FDUS+SMOTE 

is higher than SMOTE+ENN and similar to SMOTE+TL.  

Table 5.3 

Classification Accuracy (%) of Combination Techniques for Flood Data Sets  

Resampling 

technique 

No resampling 

 

FDUS+SMOTE 

 

SMOTE+TL SMOTE+ENN 

Data set Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Kaki Bukit 99.90 1.87 99.92 0.02 96.81 0.02 99.97 0.00 

Lubok Sireh 99.89 0.22 99.80 0.04 93.31 0.04 88.33 0.04 

Wang Kelian 99.70 0.34 99.64 0.03 93.24 0.03 92.96 0.02 

Ladang 

Perlis 99.89 0.22 99.74 0.03 95.53 0.03 99.99 0.00 

Ulu Pauh 99.60 0.23 99.77 0.03 96.43 0.03 087.53 0.05 

Average 99.80 0.58 99.77 0.03 95.06 0.03 93.76 0.02 
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Figure 5.3. Mean Classification Accuracy of Combination Techniques for Flood 

Data Sets 

Table 5.4 and Figure 5.4 show that FDUS+SMOTE produced the best F-measure for 

all flood data sets. The highest performance is produced on Ladang Perlis data set. 

FDUS+SMOTE increased the highest F-measure up to 0.47 as compared to no 

sampling when applied on Lubok Sireh data set. The results show that the biggest gap 

between FDUS+SMOTE with SMOTE+TL is 0.6 on Wang Kelian data set and 

FDUS+SMOTE with SMOTE+ENN is 0.62 on Ulu Pauh data set.  In average, F-

measure of FDUS+SMOTE is the best. 

Table 5.4 

F-measure of Combination Techniques for Flood Data Sets  

Resampling 

technique 
No 

resampling 

  

FDUS+ SMOTE 

  

SMOTE+TL 

  

SMOTE+ENN 

  

Data set 

Kaki Bukit 0.49 0.87 0.86 0.80 

Lubok Sireh 0.48 0.95 0.89 0.29 

Wang Kelian 0.49 0.93 0.89 0.70 

Ladang Perlis 0.65 0.99 0.95 0.88 

Ulu Pauh 0.65 0.96 0.95 0.34 

Average 0.55 0.94 0.91 0.60 
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Figure 5.4. F-measure of Combination Techniques for Flood Data Sets 

The results of G-mean for flood data sets are shown in Table 5.5 and Figure 5.5. The 

proposed FDUS+SMOTE performed better than SMOTE+TL and SMOTE+ENN on 

all data sets.  No resampling outperformed all techniques. In average, G-mean of 

FDUS+SMOTE is the second best.  

Table 5.5 

G-mean of Combination Techniques for Flood Data Sets 

Resampling 

technique 
No 

resampling 

  

FDUS+ SMOTE 

  

SMOTE+TL 

  

SMOTE+ENN 

  

Data set 

Kaki Bukit 0.99 0.95 0.87 0.84 

Lubok Sireh 1.00 0.97 0.95 0.78 

Wang Kelian 0.99 0.99 0.95 0.93 

Ladang Perlis 1.00 0.99 0.96 0.90 

Ulu Pauh 0.99 0.99 0.97 0.90 

Average 0.99 0.98 0.94 0.87 
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Figure 5.5. G-mean of Combination Techniques for Flood Data Sets 

The classification accuracy for benchmark data sets are depicted in Table 5.6 and 

Figure 5.6. FDUS+SMOTE produced the best mean classification accuracy on adult 

and bupa data sets. For breast cancer and pima data sets, FDUS+SMOTE performed 

as the best second technique. Overall, FDUS+SMOTE is ranked as the best 

techniques. However, the standard deviation is the highest which is 0.13. Although the 

standard deviation is high, 0.13 is considered low (Orriols-Puig & Bernado-Mansilla, 

2009). 
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Table 5.6 

Classification Accuracy (%) of Combination Techniques for Benchmark Data Sets 

Resampling 

technique 

 

No resampling 

 

FDUS+SMOTE 

 

SMOTE+TL SMOTE+ENN 

Data set Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Adult 61.33 0.05 93.10 0.09 75.00 0.02 39.06 0.05 

Haberman 75.66 0.10 62.96 0.12 77.22 0.06 91.19 0.07 

Breast cancer 93.98 0.04 94.38 0.06 94.30 0.05 94.87 0.05 

Pima 67.19 0.04 63.25 0.15 60.89 0.04 63.44 0.04 

Bupa 51.16 0.05 82.42 0.25 69.64 0.03 72.22 0.04 

Average 69.86 0.06 79.22 0.13 75.41 0.04 72.16 0.05 

 

 

Figure 5.6. Mean Classification Accuracy of Combination Techniques for 

Benchmark Data Sets 

Table 5.7 and Figure 5.7 present the results of F-measure for benchmark data sets. 

FDUS+SMOTE gave the best performance on all data sets. The highest gap between 

FDUS+SMOTE and other techniques is shown on adult data set, where 

FDUS+SMOTE performed 0.8 better than no resampling, 0.58 than SMOTE+TL and 

0.66 than SMOTE+ENN. In average, F-measure of FDUS+SMOTE is the best. 
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Table 5.7 

F-measure of Combination Techniques for Benchmark Data Sets 

Resampling 

technique 
No 

resampling 

  

FDUS+ SMOTE 

  

SMOTE+TL 

  

SMOTE+ENN 

  
Data set 

Adult 0.12 0.92 0.34 0.26 

Haberman 0.35 0.86 0.63 0.79 

Breast cancer 0.91 0.96 0.95 0.95 

Pima 0.54 0.82 0.59 0.66 

Bupa 0.45 0.80 0.61 0.71 

Average 0.47 0.87 0.63 0.68 

  

 

Figure 5.7. F-measure of Combination Techniques for Benchmark Data Sets 

The results of G-mean for benchmark data sets are illustrated in Table 5.8 and Figure 

5.8. Out of five data sets, FDUS+SMOTE worked the best on four data sets. The 

highest gap between FDUS+SMOTE and no resampling is 0.37, which can be seen on 

haberman data set. On adult data set, FDUS+SMOTE showed a significant 

improvement of 0.46 as compared to SMOTE+TL, and 0.58 as compared to 

SMOTE+ENN. Generally, FDUS+SMOTE produced the best G-mean. 
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Table 5.8 

G-mean of Combination Techniques for Benchmark Data Sets  

Resampling 

technique 
No 

resampling 

  

FDUS+SMOTE 

  

SMOTE+TL 

  

SMOTE+ENN 

  
Data set 

Adult 0.29 0.94 0.48 0.36 

Haberman 0.48 0.85 0.72 0.73 

Breast cancer 0.94 0.96 0.94 0.95 

Pima 0.64 0.65 0.62 0.70 

Bupa 0.51 0.81 0.71 0.73 

Average 0.57 0.84 0.70 0.69 

 

 

 

Figure 5.8. G-mean of Combination Techniques for Benchmark Data Sets 

Analysing the results, FDUS+SMOTE showed better classification accuracy than 

SMOTE+TL and SMOTE+ENN on benchmark data sets. FDUS+SMOTE has 

modified the imbalanced data sets so that SVM can classify the data sets without 

misclassification However, the results of no resampling technique gave better 

classification accuracy than FDUS+SMOTE on flood data sets. Even though the 

classification accuracy of no resampling were better, the results were biased towards 
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the majority class as the classifier tends to minimise the misclassification by 

classifying all the samples in the majority class.  

The results of F-measure of FDUS+SMOTE is higher than the other techniques on 

both flood and benchmark data sets. The high percentage of F-measure indicated that 

the percentage of the instances in the minority class that are correctly labelled is high. 

G-mean of FDUS+SMOTE is also better than SMOTE+TL and SMOTE+ENN. For 

flood data sets, although the value of F-measure is the highest, the value of G-mean is 

lower than no resampling. This indicates that FDUS+SMOTE may introduce other 

complexities or may create new small disjuncts in the instances. However, 

FDUS+SMOTE has increased the G-mean for benchmark data sets.  

The results showed that FDUS+SMOTE has modified the imbalanced data sets to 

become more balanced than using the other techniques. FDUS+SMOTE used both 

FDUS and SMOTE’s advantages, which are minimising the loss of potential data from 

the majority class and creating synthetic samples for the minority class to avoid 

overfitting.  

The results of comparisons between the proposed enhanced resampling technique and 

standalone techniques are presented in Table 5.9 to Table 5.14 and Figure 5.9 to Figure 

5.14. 

Table 5.9 and Figure 5.9 show the comparison of classification accuracy between 

FDUS+SMOTE and standalone techniques for flood data sets. The results showed that 

FDUS+SMOTE has the same mean classification with FDUS when performed on 
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Lubok Sireh, and performed better than DUS and SMOTE on Kaki Bukit data set. In 

average, the mean classification of FDUS+SMOTE is lowest as compared to the other 

techniques. However, FDUS+SMOTE shows the lowest standard deviation.  

Table 5.9 

Classification Accuracy (%) of FDUS+SMOTE and Standalone Techniques for 

Flood Data Sets  

Resampling 

technique 

No resampling FDUS+SMOTE FDUS DUS SMOTE 

Data set Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Kaki Bukit 99.90 1.87 99.92 0.01 99.94 0.61 99.67 0.06 99.88 0.19 

Lubok Sireh 99.89 0.22 99.80 0.03 99.80 1.96 99.94 0.56 99.97 0.19 

Wang Kelian 99.70 0.34 99.64 0.03 99.82 1.98 99.96 0.49 99.84 0.20 

Ladang 

Perlis 99.89 0.22 99.74 0.02 99.94 0.61 99.95 0.63 99.89 0.39 

Ulu Pauh 99.60 0.23 99.77 0.02 99.99 1.22 99.95 0.64 99.89 0.22 

Average 99.80 0.58 99.77 0.02 99.90 1.28 99.89 0.48 99.89 0.24 

 

 

Figure 5.9. Mean Classification Accuracy of FDUS+SMOTE and Standalone 

Techniques for Flood Data Sets 
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However, as presented in Table 5.10 and Figure 5.10, FDUS+SMOTE gave better F-

measure than the standalone techniques for all flood data sets except for Ulu Pauh. 

FDUS+SMOTE produced slightly 0.03 less than FDUS for Ulu Pauh data set. 

FDUS+SMOTE is found to performed better than DUS and SMOTE. In average, 

FDUS+SMOTE is better than the other techniques. 

Table 5.10 

F-measure of FDUS+SMOTE and Standalone Techniques for Flood Data Sets  

Resampling 

technique 

No 

resampling 

FDUS+ SMOTE FDUS  DUS SMOTE 

Data set 

Kaki Bukit 0.49 0.87 0.81 0.85 0.81 

Lubok Sireh 0.48 0.95 0.84 0.74 0.87 

Wang Kelian 0.49 0.93 0.85 0.84 0.53 

Ladang Perlis 0.65 0.99 0.81 0.92 0.79 

Ulu Pauh 0.65 0.96 0.99 0.87 0.75 

Average 0.55 0.94 0.86 0.84 0.75 

 

 

Figure 5.10. F-measure of FDUS+SMOTE and Standalone Techniques for Flood 

Data Sets 
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Table 5.11 and Figure 5.11 show that FDUS+SMOTE performed better than 

standalone techniques in terms of G-mean for four flood data sets. The only exception 

is on Lubok Sireh data set where FDUS+SMOTE performed similar with FDUS but 

performed better 0.15 than DUS and 0.01 than SMOTE. Overall, FDUS+SMOTE 

made the second best G-mean. 

Table 5.11 

G-mean of FDUS+SMOTE and Standalone Techniques for Flood Data Sets  

Resampling 

technique 

No 

resampling 

FDUS+ SMOTE FDUS  DUS SMOTE 

Data set 

Kaki Bukit 0.99 0.95 0.93 0.87 0.90 

Lubok Sireh 1.00 0.97 0.97 0.82 0.96 

Wang Kelian 0.99 0.99 0.99 0.96 0.90 

Ladang Perlis 1.00 0.99 0.93 0.98 0.90 

Ulu Pauh 0.99 0.99 0.99 0.88 0.90 

Average 0.99 0.98 0.96 0.90 0.91 

 

 

Figure 5.11. G-mean of FDUS+SMOTE and Standalone Techniques for Flood Data 

Sets 
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Table 5.12 and Figure 5.12 present the classification accuracy for benchmark data sets 

of the FDUS+SMOTE and the standalone techniques. Out of five data sets, 

FDUS+SMOTE outperformed the standalone techniques on two data sets namely 

adult and breast cancer. FDUS+SMOTE is equivalent to FDUS when it is applied to 

bupa data set. Overall, FDUS+SMOTE performed better than DUS and SMOTE but 

not FDUS. 

Table 5.12 

Classification Accuracy (%) of FDUS+SMOTE and Standalone Techniques for 

Benchmark Data Sets  

Resampling 

technique 

No resampling FDUS+SMOTE FDUS DUS SMOTE 

Data set Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Adult 61.33 0.05 93.10 0.09 82.61 0.03 75.00 0.03 72.73 0.02 

Haberman 75.66 0.10 62.96 0.12 83.33 0.04 78.90 0.06 75.32 0.14 

Breast 

cancer 93.98 0.04 94.38 0.06 90.22 0.06 83.15 0.08 75.32 0.14 

Pima 67.19 0.04 63.25 0.15 64.26 0.03 64.91 0.02 59.53 0.02 

Bupa 51.16 0.05 82.42 0.25 82.42 0.25 57.35 0.08 77.10 0.03 

Average 69.86 0.06 79.22 0.13 80.57 0.08 71.86 0.05 75.79 0.05 

 

 

Figure 5.12. Mean Classification Accuracy of FDUS+SMOTE and Standalone 

Techniques for Benchmark Data Sets 
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In terms of F-measure, FDUS+SMOTE gave the best performance on three data sets 

as presented on Table 5.13 and Figure 5.13. For the other two data sets, 

FDUS+SMOTE performed as the second best technique; outperformed by FDUS by 

0.04 on haberman data set and 0.11 on bupa data set. FDUS+SMOTE produced the 

best F-measure in general. 

Table 5.13 

F-measure of FDUS+SMOTE and Standalone Techniques for Benchmark Data Sets  

Resampling 

technique 

No 

resampling 
FDUS+SMOTE FDUS  DUS SMOTE 

Data set           

Adult 0.12 0.92 0.90 0.41 0.24 

Haberman 0.35 0.85 0.89 0.64 0.66 

Breast cancer 0.91 0.96 0.92 0.8 0.94 

Pima 0.54 0.81 0.64 0.54 0.58 

Bupa 0.44 0.79 0.88 0.60 0.40 

Average 0.47 0.87 0.85 0.61 0.56 

 

 

Figure 5.13. F-measure of FDUS+SMOTE and Standalone Techniques for 

Benchmark Data Sets 
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Table 5.14 and Figure 5.14 present the comparison between FDUS+SMOTE with 

FDUS, DUS and SMOTE in terms of G-mean. The results showed that 

FDUS+SMOTE outperformed the standalone techniques on four data sets. 

FDUS+SMOTE performed similarly with FDUS on pima data set. Overall, 

FDUS+SMOTE show the best G-mean. 

Table 5.14 

G-mean of FDUS+SMOTE and Standalone Techniques for Benchmark Data Sets  

Resampling 

technique 

No 

resampling 
FDUS+ SMOTE FDUS  DUS SMOTE 

Data set           

Adult 0.29 0.94 0.85 0.52 0.38 

Haberman 0.48 0.85 0.69 0.70 0.74 

Breast cancer 0.94 0.96 0.91 0.84 0.94 

Pima 0.64 0.65 0.65 0.60 0.62 

Bupa 0.51 0.81 0.79 0.56 0.52 

Average 0.57 0.84 0.78 0.65 0.64 

 

 

Figure 5.14. G-mean of FDUS+SMOTE and Standalone Techniques for Benchmark 

Data Sets 
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From the results of the comparison between FDUS+SMOTE and the standalone 

techniques, the classification accuracy of FDUS, DUS and SMOTE are better than 

FDUS+SMOTE for flood data sets. FDUS performed as the best technique for flood 

data sets. Since the size of the flood data sets is big, which is greater than 10,000 

instances, FDUS alone is more suitable to balance the data sets without the need to 

repeat the process for several times to find the best ratio. It might be the problem 

related to flood data sets is not related to imbalanced ratio but size, complexity, overlap 

or small disjuncts (Visa & Ralescu, 2005; Sun et al., 2009; Baru et al., 2014). For 

benchmark data sets, FDUS+SMOTE performed better than DUS and SMOTE. 

However, FDUS+SMOTE is outperformed by FDUS on haberman and pima because 

the ratio after FDUS is applied to the data sets are smaller than FDUS+SMOTE.  

Based on F-measure, FDUS+SMOTE performed better than standalone techniques. 

The results proved that FDUS+SMOTE is able to modify the imbalanced data sets so 

that the minority class is correctly labelled as compared to standalone techniques. 

FDUS+SMOTE performed better than standalone techniques when FDUS+SMOTE 

is applied on imbalanced data sets that have smaller gaps between minority and 

majority classes. FDUS+SMOTE fully used the advantages of both FDUS and 

SMOTE to balance the data sets and reduce the ratio of instances in majority and 

minority classes as presented based on G-mean.  

5.3 Summary 

The details regarding the proposed enhancement of resampling technique named as 

FDUS+SMOTE is presented in this chapter. Fuzzy Distance-based Undersampling 
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(FDUS) is combined with SMOTE to balance the data sets with certain conditions that 

need to be fulfilled. While FDUS minimises the removal of potential data from the 

majority class, SMOTE algorithm creates synthetic data in the minority class. Overall, 

the proposed FDUS+SMOTE provided better results as compared to SMOTE+TL and 

SMOTE+ENN only for benchmark data sets in terms of classification accuracy, F-

measure and G-mean. For flood data sets, classification accuracy and G-mean of 

FDUS+SMOTE is outperformed by no resampling. However, FDUS+SMOTE 

produced the best F-measure.  The classification accuracy of standalone techniques 

namely FDUS, DUS and SMOTE is better than FDUS+SMOTE for flood data sets. 

FDUS+SMOTE outperformed DUS and SMOTE for benchmark data sets but not 

FDUS. In term of F-measure and G-mean, FDUS+SMOTE is better than FDUS, DUS 

and SMOTE for both flood and benchmark data sets. 
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CONCLUSION 

This chapter summarises the study by highlighting the research contribution. This 

research mainly focuses on the enhancement of resampling technique in order to 

overcome the problems faced in classifying imbalanced data sets. Section 6.1 

describes the contributions of the proposed techniques, and Section 6.2 suggests 

several future works to improve the proposed techniques. 

6.1 Research Contribution 

The enhancement of resampling technique is the main contribution for this research. 

The proposed technique is developed based on two objectives, which are the 

enhancement of undersampling technique, and the combination of the enhanced 

undersampling technique with oversampling technique. 

Undersampling technique is chosen to solve the problem of imbalanced data sets, 

because based on previous research works, the technique performed better than 

oversampling technique. In this study, the enhancement of undersampling technique 

is made on Distance-based Undersampling (DUS) technique. The DUS algorithm is 

modified by introducing fuzzy logic where triangular and trapezoidal membership 

functions are constructed. The enhanced DUS named as Fuzzy Distance-based 

Undersampling (FDUS) technique used the advantage of fuzzy logic which is to avoid 

bias in removing instances in the majority class, and hence minimise the loss of useful 

data. Based on the experimental results, FDUS performed better in terms of 

classification accuracy, F-measure and G-mean when compared with no resampling, 
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DUS and SMOTE for benchmark data sets. FDUS produced the best classification 

accuracy and F-measure for flood data sets. Based on G-mean value, FDUS is better 

than DUS and SMOTE but performed lesser than no resampling.  

The enhancement of resampling technique is made by combining FDUS with SMOTE 

in sequence with conditions that need to be fulfilled. The first condition is where the 

instances in the majority class is more than the instances in the minority class. Then, 

the process of resampling using FDUS+SMOTE starts with applying FDUS to the 

imbalanced data set. The process of undersampling is repeated until a balanced data 

set is produced. However, after several alterations are made by undersampling and if 

the amount of instances in the majority class has become lesser than the minority class, 

only then SMOTE is used to balance the data set. A new balanced data set is produced 

with the best ratio is produced.  

A comparison has been made with other combination and standalone techniques. From 

the analysis of the results, for benchmark data sets, FDUS+SMOTE has increased the 

classification accuracy, F-measure and G-mean when compared to other combination 

techniques. For flood data sets, FDUS+SMOTE is ranked as the best technique in term 

of F-measure and second best technique in term of classification accuracy and G-

mean. Comparison made between FDUS+SMOTE with FDUS, DUS and SMOTE 

showed that, for benchmark data sets, the F-measure and G-mean is better. In term of 

classification accuracy, FDUS+SMOTE is ranked as the second best technique 

outperformed by FDUS. For flood data sets, FDUS+SMOTE produced better F-

measure and G-mean than FDUS, DUS and SMOTE. However, FDUS+SMOTE gave 

less classification accuracy than FDUS, DUS and SMOTE.   
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From the experiments analysis, the proposed FDUS and FDUS+SMOTE did not 

improved the results for flood data sets as compared to the other techniques might be 

due to other factors than imbalanced ratio such as size, complexity, overlap or small 

disjuncts as has been discussed in Chapter 4 and Chapter 5. Therefore, future work 

need to be conducted to overcome these problems.  

6.2 Future Work 

There are two possible works that can be conducted that for future research. First, the 

analysis of the experiments found out that the performance of the classifier is better 

when the ratio of the balanced data set is small. However, the optimal balanced ratio 

could be different for each data set. Hence, further research can be done to find out 

what is the best ratio of balanced data set for different types of data set.  Furthermore, 

further experiments need to be conducted to analyse other factors than imbalance ratio 

that affect the performance of classification. 

Second, this research only focuses on the problem of imbalanced data that is related 

to binary class classification. Future research can be conducted on imbalanced data 

sets which involve multi class classification. FDUS and the enhanced resampling 

technique (FDUS+SMOTE) should be tested to determine whether these techniques 

are suitable in handling imbalanced data for multi class classification.  
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