
ALEXANDER-GOVERN TEST USING WINSORIZED MEANS 

FARIDZAH BINTI JAMALUDDIN 

MASTER OF SCIENCE (STATISTICS) 

UNIVERSITI UTARA MALAYSIA 

2015 



Awang Had Salleh 
Graduate School 
of Arts And Sciences 

Universiti Utara Malaysia 

PERAKUAN MERJA TESlS / DISERTASI 
(Certification of thesis /dissertation) 

Karni, yang bertandatangan, memperakukan bahawa 
(we, the undersigned, certify that) 

FARlDZAH JAMALUDDIN % I % Y ~  

calon untuk ljazah MASTER 
(candidate for the degree of) 

telah mengemukakan tesis I disertasi yang bertajuk: 
(has presented hidher thesis /dissertation of the following tifle): 

"ALEXANDER-GOVERN TEST USING WlNSORlZED MEANS" 

seperti yang tercatat di muka surat tajuk dan kulit tesis 1 disertasi. 
(as it appears on the title page and front cover of the thesis /dissertation). 

Bahawa tesisldisertasi tersebut boleh diterima dari segi bentuk serta kandungan dan rneliputi bidang 
ilrnu dengan memuaskan, sebagaimana yang ditunjukkan oleh calon dalam ujian lisan yang diadakan 
pada : 23 September 2014. 
That the said thesiddissertafion is acceptable in form and content and displays a satisfactory knowledge 
of the field ofsfudy as demonstrated by the candidate through an oral examination held on: 
September 23, 2014. 

Pengerusi Viva: Assoc. Prof. Dr. Maznah Mat Kasirn Tandatangan &?, -2 ,[ 
(Chairman for VIVA) (Signature) L. 

Perneriksa Luar: Dr. Nora Muda Tandatangan 
(Exfernal Examiner) (Signature) QG5 

Perneriksa Dalarn: Dr. Nor Aishah Ahad Tandatangan 
(Internal Examiner) (Signature) 

Narna PenyelialPenyelia-penyelia: Dr. Suhaida Abdullah Tandatangan 
(Name of Supewisor/Supewisors) (Signature) 

Tarikh: 
(Date) September 23, 20.14 

9 - 



ii 

 

Permission to Use 

In presenting this thesis in fulfilment of the requirements for a postgraduate degree from 

Universiti Utara Malaysia, I agree that the Universiti Library may make it freely 

available for inspection. I further agree that permission for the copying of this thesis in 

any manner, in whole or in part, for scholarly purpose may be granted by my 

supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of 

Arts and Sciences. It is understood that any copying or publication or use of this thesis 

or parts thereof for financial gain shall not be allowed without my written permission. It 

is also understood that due recognition shall be given to me and to Universiti Utara 

Malaysia for any scholarly use which may be made of any material from my thesis. 

 

Requests for permission to copy or to make other use of materials in this thesis, in whole 

or in part, should be addressed to: 

 

Dean of Awang Had Salleh Graduate School of Arts and Sciences 

UUM College of Arts and Sciences 

Universiti Utara Malaysia 

06010 UUM Sintok 

  



iii 

 

Abstrak 
 

Ujian klasik bagi menguji kesamaan kumpulan bebas yang berasaskan min aritmetik 

boleh menghasilkan keputusan yang tidak sah terutama apabila berurusan dengan data 

yang tidak normal dan varians heterogen (heteroskedastisiti). Bagi mengurangkan 

masalah ini, para penyelidik mengusahakan kaedah yang lebih sesuai dengan kondisi 

yang telah dinyatakan termasuk prosedur yang dikenali sebagai ujian Alexander- 

Govern. Prosedur ini adalah tidak sensitif terhadap kehadiran heteroskedastisiti di bawah 

taburan normal. Walau bagaimanapun, ujian yang menggunakan min aritmetik sebagai 

ukuran kecenderungan memusat adalah sensitif kepada data yang tidak normal. Ini 

adalah disebabkan oleh hakikat bahawa min aritmetik mudah dipengaruhi oleh bentuk 

taburan. Dalam kajian ini, min aritmetik digantikan dengan penganggar teguh, iaitu min 

Winsor atau min Winsor suai. Ujian Alexander-Govern yang dicadangkan dengan min 

Winsor dan dengan min Winsor suai masing-masing ditandakan sebagai AGW dan 

AGAW. Bagi tujuan perbandingan, peratusan peWinsoran yang berbeza iaitu 5%, 10%, 

15% dan 20% dipertimbangkan. Satu kajian simulasi telah dijalankan untuk mengkaji 

mengenai prestasi ujian berdasarkan kadar Ralat Jenis I dan kuasa. Empat 

pembolehubah; bentuk taburan, saiz sampel, tahap keheterogenan varians dan sifat 

pasangan dimanipulasi untuk mewujudkan keadaan yang boleh menyerlahkan kekuatan 

dan kelemahan setiap ujian. Prestasi ujian yang dicadangkan ini dibandingkan dengan 

kaedah parametrik lain yang setaraf iaitu, ujian-t dan ANOVA. Ujian yang dicadangkan 

menunjukkan peningkatan dari segi kawalan Ralat Jenis I dan kuasa yang semakin tinggi 

di bawah pengaruh heteroskedastisiti dan ketidaknormalan. Ujian AGAW menunjukkan 

prestasi terbaik dengan 10% peWinsoran manakala ujian AGW menunjukkan prestasi 

terbaik dengan 5% peWinsoran. Di bawah kebanyakan keadaan (74%), ujian AGAW 

mengatasi ujian AGW. Oleh yang demikian, min Winsor dan min Winsor suai berupaya 

meningkatkan prestasi asal ujian Alexander-Govern dengan berkesan. Prosedur yang 

dicadangkan ini memberi manfaat kepada pengamal statistik dalam menguji kesamaan 

kumpulan bebas walaupun di bawah pengaruh ketidaknormalan dan varians heterogen. 
 

Kata Kunci: Min Winsor, Min Winsor suai, Ketaknormalan, Varians tak homogen 
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Abstract 

Classical tests for testing the equality of independent groups which are based on 

arithmetic mean can produce invalid results especially when dealing with non-normal 

data and heterogeneous variances (heteroscedasticity). In alleviating the problem, 

researchers are working on methods that are more adapt to the aforementioned 

conditions which include a procedure known as Alexander-Govern test. This procedure 

is insensitive in the presence of heteroscedasticity under normal distribution. However, 

the test which employs the arithmetic mean as the central tendency measure is sensitive 

to non-normal data. This is due to the fact that the arithmetic mean is easily influenced 

by the shape of distribution. In this study, the arithmetic mean is replaced by robust 

estimators, namely the Winsorized mean or adaptive Winsorized mean. The proposed 

Alexander-Govern test with Winsorized mean and with adaptive Winsorized mean are 

denoted as AGW and AGAW, respectively. For the purpose of comparison, different 

Winsorization percentages of 5%, 10%, 15% and 20% are considered. A simulation 

study was conducted to investigate on the performance of the tests which is based on 

rate of Type I error and power. Four variables; shape of distribution, sample size, level 

of variance heterogeneity and nature of pairings are manipulated to create the conditions 

which could highlight the strengths and weaknesses of each test. The performance of the 

proposed tests is compared with their parametric counterparts, the t-test and ANOVA. 

The proposed tests show improvement in terms of controlling Type I Error and 

increasing power under the influence of heteroscedasticity and non-normality. The 

AGAW test performed best with 10% Winsorization while AGW test performed best with 

5% Winsorization. Under most conditions (74%), AGAW tests outperform AGW tests. 

Therefore, the Winsorized mean and the adaptive Winsorized mean can significantly 

improve the performance of the original Alexander-Govern test. These proposed 

procedures are beneficial to statistical practitioners in testing the equality of independent 

groups even under the influence of non-normality and variance heterogeneity. 

   

Keywords: Winsorized mean, Adaptive Winsorized mean, Non-normality, 

Heteroscedasticity 
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CHAPTER ONE 

INTRODUCTION 

 

Classical parametric tests, such as t-test and analysis of variance (ANOVA) F test are 

widely used by researchers in many disciplines. These tests are useful in comparing the 

equality of two or more treatment groups. A review conducted by Farcomeni and 

Ventura (2010) found that most of the studies in health sciences such as medicine and 

genetics, used classical test in comparing treatment groups. In addition, Erceg-Hurn and 

Mirosevich (2008) also mentioned the extensive usage of classical test in psychology 

studies. 

 

The classical parametric tests are based on assumptions of normality and 

homoscedasticity. However, in dealing with real data, these assumptions are rarely met. 

For example, Micceri (1989) found that the majority of real data from the psychological 

and education literatures are skewed and heavy-tailed. Studies by Wilcox (1990) also 

found that most real data are often non-normal with the tendency to be either non-

smooth, multi-modal, highly skewed or heavy-tailed. Besides that, comprehensive 

journal review conducted by Keselman et al. (1998) demonstrated that it is very hard to 

find homogeneous variances when dealing with education data as well as with data of 

child, clinical and experimental psychology. Another study by Erceg-Hurn and 

Marosevich (2008) claimed that it is usual for the homogeneous variances assumption to 

be violated when dealing with real data. The classical tests have been shown to have 

lack of robustness under the violation of the assumptions of normality and 
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homoscedasticity (Glass, Peckham & Sanders, 1972; Wilcox, 2002). Furthermore, the 

violation of both or either assumptions can reduce the power of test and can fail to 

control the Type I error rates (Keselman, Wilcox, Othman & Fradette, 2002; Wilcox, 

2002).  

 

There are numerous alternative methods that have been introduced to overcome the 

problems faced by the classical parametric tests such as nonparametric approach.  For 

example, the Wilcoxon test serves as an alternative for t-test and the Kruskal-Wallis test 

for ANOVA. According to Zimmerman and Zumbo (1993), the Wilcoxon test is more 

powerful than t-test for several non-normal distributions but it exhibits a substantial 

power loss when faced with heterogeneous variances. The disadvantage of Kruskal-

Wallis test is that it is very sensitive to the presence of heterogeneous variances (Oshima 

& Algina, 1992).  Some researchers have developed approximate parametric tests as 

alternatives to the classical tests without the assumption of homogeneous variances. 

James test (James, 1951) and Welch test (Welch, 1951) are the parametric alternative 

tests under the violation of this assumption. Their ability to control Type I error rates 

and produce reasonable power under heterogeneous variances are the advantages of 

these tests. However, the results of these alternative tests could be seriously affected by 

non-normal data situation (Myers, 1998; Reed, 2005; Schneider & Penfield, 1997). The 

violation of normality assumption increased the probability of committing Type I error 

(Wilcox, 2002, Wilcox, 2005). 

 

Alexander and Govern (1994) have proposed another approach in comparing treatment 

groups in dealing with heterogeneous variances called the Alexander-Govern test (A- 
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test). This method is identified as a good alternative to ANOVA compared to other 

alternative methods such are James test and Welch test (Fan & Hancock, 2012; 

Schneider & Penfield, 1997). This A-test is superior to the James test in terms of the 

simplicity of the computation of the test statistic (Myers, 1998; Schneider & Penfield, 

1997).  The test also has relative superiority in terms of both statistical power and Type I 

error rates under most of the experimental conditions considered in a study whose aim is 

to provide an alternative to ANOVA (Schneider & Penfield, 1997).  

 

1.1 Problem Statement 

The A-test has been recommended as a relatively good alternative method to the ANOVA 

under heterogeneous variances. No one can argue the robustness of the A-test under 

heterogeneous variances; however, this test has a limitation due to its sensitivity to the 

non-normal data (Myers, 1998; Schneider & Penfield, 1997). In addition, it produces the 

Type I error rates more toward the conservative value, 0.025 when distribution is heavy-

tailed (Wilcox, 1997).  

 

Studies have been done on the A-test focusing on how to improve this test so that it is 

robust under non-normal distribution. One research involves the modification of A-test 

with bootstrap procedure (Wilcox, 1997). However, the modification failed to improve 

the performance of the A-test under heavy-tailed distribution. Moreover, the modified 

test produces more conservative Type I error rates compared to the original test. Other 

studies adopted robust central tendency measure such as trimmed mean to the A-test (Lix 

& Keselman, 1998; Luh & Guo, 2005). The replacement of the arithmetic mean with 

trimmed mean is able to improve the A-test under skewed distribution but it failed to 
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control Type I error rates for extremely skewed distribution (Lix & Keselman, 1998). 

Since this modification has some limitations under certain experimental conditions, Luh 

and Guo (2005) proposed another approach by adopting the trimmed mean in 

conjunction with Hall’s transformation into the A-test. In comparison to the A-test, the 

proposed approach only slightly improved the control of Type I error rates. 

Nevertheless, this improvement is considered too small. A further disadvantage is that 

the modification also renders the A-test to be no longer a simple method. Furthermore, 

this combination technique produces slightly lower power when dealing with normal 

data as compared with the original A-test.  

 

Two modifications of the A-test by Abdullah (2011) adopted more flexible robust central 

tendency measures into the test which are the adaptive trimmed mean and the modified 

one-step-M-estimator (MOM). Both modified A-tests provide good control of Type I 

error rates under skewed distribution. However, both methods produce low power under 

heavy-tailed distribution. Besides that, the modification of A-test with modified one-

step-M-estimator (MOM) failed to control Type I error rates when dealing with heavy-

tailed distribution. Therefore, this modification still has limitation under heavy-tailed 

distribution.  

 

Wilcox (2002) noted that the outliers tend to exist under heavy-tailed distribution. Thus, 

the use of arithmetic mean as a central tendency measure in A-test is seriously 

influenced by the existence of outliers. There are two common approaches that can be 

used when dealing with outliers which are trimming and Winsorization (Lusk, Halperin 

& Heiling, 2011; Moir, 1998). The existing studies on modifying A-test are using 
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trimming approach in dealing with outliers (Lix & Keselman, 1998; Luh & Guo, 2005; 

Abdullah 2011). Unfortunately, trimming is not always a feasible approach when 

dealing with outliers. According to Farrell-Singleton (2010), the outliers should not be 

trimmed or removed simply because they are extreme relative to the remaining of data 

values. Orr, Sackett and DuBois (1991) also agreed that no value should be removed 

simply because its magnitude is extreme in comparison to the other data values, instead 

it should be allowed to contribute to the results. Hawkins (1980) suggested using 

Winsorization instead of trimming when dealing with heavy-tailed distribution as 

mentioned in Lance (2011):  

 

If the observations are generated by the heavy-tailed distribution, and one wishes 

to estimate the parameters of this distribution, then the outliers represent valid 

observations. Thus one should be reluctant to discard them entirely, and hence 

prefer to use Winsorization, which is robust, but does make partial use of the 

outliers. (p. 5) 

 

Farrell-Singleton (2010) has also proposed the Winsorization approach as a solution for 

treatment of data when outliers exist. In addition, the approach is also recommended as 

the preferred ways of treating outliers (Dhiren & Andrew, 2012; Thomas & Ward, 

2006). The study conducted by Etzel et al. (2003) reveals that this approach works best 

when the distributions are leptokurtic, that is, distributions that are more peaked or taller 

than the normal distribution. The robust mean estimator based on Winsorization is 

recommended when dealing with heavy-tailed distribution (Fung & Rahman, 1980) and 

skewed distribution (Rivest, 1994). Therefore, instead of using the trimming approach, 

the Winsorization is a better alternative since it can deal with skewed and heavy-tailed 

situations as well as with the existence of outliers. 
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1.2 Objectives of the Study 

The goal of this study is to modify the Alexander-Govern test to be robust under 

departure from normal distribution and homogeneous variances. The modified 

Alexander-Govern test should be able to control the Type I error rates and improve the 

power of a test. In achieving this goal, the following objectives need to be accomplished: 

1. To modify the A-test using a central tendency measure based on 

Winsorization: 

i. Winsorized Mean 

ii. Adaptive Winsorized Mean 

2. To compare the performance of modified A-test with A-test and classical tests 

in terms of Type I error rates and the power of a test. 

3. To determine the best method under the violation of normality and 

homogeneous variances assumptions. 

4. To evaluate the performance of the modified tests using real data. 

 

1.3 Significance of the Study 

This study is beneficial for statistical practitioners and also for applied researchers. The 

proposed central tendency measures and the robust modified tests would contribute to 

the area of statistics as well as for the application of statistical method. For statistical 

practitioners, the study serves as their reference or guide in analyzing the comparison of 

treatment groups. For applied researchers, the study provides them with a robust 

alternative method in comparing treatment groups under the violation of normality and 

homogeneous variances assumptions. 
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1.4 Organization of the Thesis 

In Chapter 1, we have briefly introduced the alternative tests to the classical tests under 

the violation of normality and homoscedasticity assumptions. We also discussed the 

limitations of the modification of A-test done by previous researchers for the purpose of 

improving the A-test under non-normal distribution leading to the objectives of this 

research.  The reviews of A-test and the proposed robust central tendency measure based 

on Winsorization are reported in Chapter 2.  The definition of the Type I error and 

power of a test are also explained in the chapter. Chapter 3 describes how the empirical 

investigations are conducted. The discussion in this chapter includes the selection of the 

conditions being investigated for five different manipulated variables: number of groups, 

group sizes, group variances, nature of pairing and types of distributions, followed by 

data generation, the setting of central tendency measure for power analysis and we end 

the Chapter 3 with the procedure of proposed modified A-test using central tendency 

measures based on Winsorized mean and adaptive Winsorized mean. Chapter 4 

discusses the analysis of results of Type I error rates, overall results and power of a test 

as well the performance of the proposed modified test on protoporphyrin dataset. 

Finally, the summary on the performance of the test, implication and limitation of the 

study as well as suggestion for future research are presented in Chapter 5.
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CHAPTER TWO 

LITERATURE REVIEW 

 

This chapter provides reviews on the testing of the equality of means of independent 

groups, the classical tests and the Alexander-Govern test. The central tendency 

measures, trimming approach, Winsorization approach, Type I error rates and power of a 

test are also discussed in this chapter.  

 

2.1 Testing the Equality of Means of Independent Groups 

The classical tests that are commonly used for the purpose of testing the equality of 

means of independent groups are t-test and ANOVA. These tests are widely used in 

various fields. For example, Choi and Zhao (2014) use t-test to study whether there are 

any differences in degree of concerns about the ingredients in the food between the 

groups who cared about health issues and those who cared little about health issues 

when they eat out at restaurants.  

 

Another study conducted by Ulusoy (2008) in manufacturing, used ANOVA to determine 

whether the image parameters of the three different mill products (ball, rod and 

autogenous) of talc mineral are statistically different from each other or not. The 

controlling and manipulated of particle shapes is essential since this particles shape 

affects the physical characteristics and behavior of talc mineral. The study by Bukat et 

al. (2008) on the influence of a particular element (Bi and Sb) added to Sn-Ag-Cu and 

Sn-Zn alloys on their surface and interfacial tension and wetting properties also uses 
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ANOVA. The additional of these two particular Bi and Sb are expected to decrease of the 

surface and interfacial tension and in turn improve the wettability of alloys. 

 

Furthermore, Murari and Tater (2014) use ANOVA to measure the attitude of employees 

toward the adoption of information-technology-based (IT-based) banking service among 

four different Indian private banks namely the ICICI Bank, HDFC Bank, AXIS Bank 

and INDUSINS Bank. They have tested on the attitude of employees towards the IT-

based banking services on the basis of relative advantage, complexities, potential risk, 

decision making process and innovation techniques used by the four different private 

banks employees in providing services to the customer. 

 

These classical tests are powerful and valid for identifying treatment effects when 

certain assumptions are fulfilled. One of the important assumptions that underlie the 

classical tests is that the distribution of each population is normal. However, the 

normality assumption is difficult to achieve when dealing with real data. For example, 

analysis of real data of monthly index return stock market of Middle East and North 

African (MENA) region from a research done by Yu and Kabir Hassan (2010) are 

depicted in Figure 2.1.   
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It shows the normal QQ plot for stock market of MENA region and it can be observed 

that the monthly index returns for the MENA stock markets are far from being normally 

distributed for all countries except Morocco, Israel and Saudi Arabia. 

 

Another important assumption underlying the classical tests is that the variances are 

homogeneous. In spite of that, it is well known that heterogeneous variances instead are 

more common in real data such as behavioral science data (Erceg-Hurn & Mirosevich, 

2008) and clinical data (Grissom, 2000). This assumption can be explained in terms of 

variance ratio (VR). The VR is a ratio of the largest variance to the smallest variance. 

The ratios of VR greater than ten occur frequently (Grissom, 2000). Erceg-Hurn and 

Mirosevich (2008) have identified 28 studies from two recent issues of Journal of 

Experimental Psychology: General and Journal of Experimental Psychology: Human 

Perception and Performance in which data were analyzed using ANOVA with the 

presence of heterogeneous variances. The sample VRs between 2:1 and 4:1 were the 

common values in these studies. Not only that, the ratios values of 39:1, 59:1, 69:1 and 

 

Figure 2.1. Normal QQ Plot of Middle East and North African (MENA) Stock 

Markets 
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121:1 were also found. The presence of heterogeneous variances can have drastic effects 

on the reliability and validity of the test, especially when the group sample sizes are also 

unequal (Glass et al., 1972; Zimmerman, 2004). Moreover, such presence can jeopardize 

the validity of the result, by increasing the Type I error rates that can lead to invalid 

inferences (Nordstokke, Zumbo, Cairns & Saklofske, 2011). The test remains affected in 

the case of equal sample sizes with heterogeneous variances (Alexander & Govern, 

1994) 

 

The classical tests are valid and powerful tests. However, when the underlying 

assumptions are violated, their results are typically unreliable and invalid. The existence 

of non-normality and heterogeneous variances situation can produce unsatisfactory 

results in terms of both the Type I error rates and power (Wilcox, 1997).  

 

Therefore, when the underlying assumptions of the classical test are violated, alternative 

methods such as nonparametric test, transforming data and heteroscedasticity parametric 

tests should be considered. Non parametric tests are well-known alternative procedures 

under non-normal data. These tests do not require parametric assumption since the 

interval/ratio data are transformed to rank-order data. According to Syed Yahaya (2005), 

this procedure possesses less power when compared with parametric test and requires 

large sample size to reject a false hypothesis. Furthermore, it is sensitive to the presence 

of heterogeneous variances either in balanced or unbalanced sample sizes (Lix, 

Keselman & Keselman, 1996). 
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Data could also be transformed to achieve normality and also to reduce 

heteroscedasticity. With regard to transformation of data, the main problem is that the 

interpretation of results of transformed data can be problematic and unclear (Grissom, 

2000; Keselman, Wilcox, Lix, Algina & Fradette, 2007). In addition, means of the 

original data tend to be underestimated when both the assumptions are violated (Grissom 

2000). Furthermore, data transformation may reduce the power when the distribution is 

heavy-tailed and outliers exist. Besides, it is hard to find a suitable transformation that 

will simultaneously deal with non-normality and heteroscedasticity (Wilcox & 

Keselman, 2003). 

 

Other alternative method that researchers might consider is to use the heteroscedasticity 

parametric test. These approximate parametric tests are insensitive to heterogeneous 

variances. Alexander-Govern test, James test and Welch test are among the well-known 

heteroscedasticity parametric tests. They are able to control the Type I error rates and 

produce high power when group variances are heterogeneous and distributions are 

normal (Lix & Keselman, 1998; Schneider & Penfield, 1997). However, the literatures 

also point out that these tests fail to control the Type I error rates and are also less 

powerful when the data are both heterogeneous and non-normal especially when the 

sample sizes is unbalanced (Myers, 1998; Schneider & Penfield, 1997). Thus, these 

approximate parametric tests have limitations with regard to their sensitivity to the 

nature of the population distribution. The James test appears to be generally most 

accurate method under various conditions (Alexander & Govern, 1994; Myers, 1998). 

However, the major drawback of this test is the complexity of the computation (Myers, 

1998). Previous researchers recommended using Alexander-Govern test instead of 
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James test under heterogeneous variances and normal data (Myers, 1998; Schneider & 

Penfield, 1997). The recommendation is due to the advantages of Alexander-Govern test 

in terms of controlling the Type I error rates and power (Schneider & Penfield, 1997). 

Besides that, another advantage is the simplicity of the computation of Alexander-

Govern test statistic (Alexander & Govern, 1994; Myers, 1998; Schneider & Penfield, 

1997; Wilcox, 1997). However, the Type I error rates become more conservative as the 

tails of distribution get heavier either with homogeneous or heterogeneous variances 

(Wilcox, 1997). The Pareto distribution, log-normal distribution, Weibull distribution 

and Cauchy distribution are the example of heavy-tailed distribution. 

 

2.2 Classical Parametric test 

The t-test and ANOVA are the most widely used statistical test in testing the equality of 

means. The t-test is developed by William Sealy Gosset in year 1908 and it is useful in 

testing the equality of two means. While, the ANOVA is useful in comparing three or 

more means and it was developed by Ronald A. Fisher in year 1930.  

 

The classical tests are the most efficient tests and produce accurate result when both the 

assumption of normality and homogenous variances are satisfied (Erceg-Hurn & 

Mirosevich, 2008; Farcomeni & Ventura, 2010). However, the violation of normality 

and homoscedasticity assumptions contribute to the lack of robustness of the tests 

(Wilcox, 2002).  

 

Therefore, the normality and homogenous variances assumptions need to be verified 

first before conducting any statistical test on the equality of independent groups. 
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Examining normality is done through graphical methods, numerical methods and formal 

testing.  

 

One graphical method through which the researchers can gain an adequate perspective 

of the variable is using a histogram. This is the simplest diagnostic test for normality by 

comparing the observed data values to a distribution approximating the normal 

distribution. Although the histogram is the simplest diagnostic test for normality, this 

graphical method is problematic for smaller samples (Hair, Black, Babin, Anderson & 

Tatham, 2006).  

 

Another reliable graphical method for assessing normality is the normal probability plot 

(Hair et al., 2006). This approach compares the cumulative distribution of actual data 

values with cumulative distribution of a normal distribution. The plotted data values are 

compared to the diagonal line which is the straight diagonal line representing the normal 

distribution. The distribution is assumed normal if the line representing the actual data 

distribution closely follows the diagonal line as shows in Figure 2.2.  

 

Figure 2.2. Normal Probability Plot of Normal Distribution 
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By using the normal probability plot, the distribution that departs from normal can be 

easily seen in terms of kurtosis and skewness. When the line falls below the diagonal, 

the distribution is flatter than expected. When it goes above the diagonal, the distribution 

is more peaked than normal curve. For example, in the normal probability plot of a 

peaked distribution as demonstrate in Figure 2.3. 

 

 

Figure 2.3. Normal Probability Plot of a Peaked Distribution 

 

Initially the distribution is flatter and the plotted line falls below the diagonal. Then the 

peaked part of the distribution rapidly moves the plotted line above the diagonal, and 

eventually the line shifts to below the diagonal again as the distribution flattens (Hair et 

al., 2006).  

 

While the skewed is most often represents as by a simple curve line, either below or 

above the diagonal. A negative skewed is indicated by curve line below the diagonal line 

as depicted in Figure 2.4.  
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Figure 2.4. Normal Probability Plot of a Negative Skewed Distribution 

 

Whereas, Figure 2.5 represent a positive skewness distribution where the curve line 

above the diagonal line. 

 

 

Figure 2.5. Normal Probability Plot of a Positive Skewed Distribution 

 

Even though the normal probability plot can serve as a useful tool in checking normality, 

it is still not sufficient to provide conclusive evidence that the normal assumption holds. 

The more formal methods which are numerical methods such as skewness and kurtosis 

and formal testing test such as Shapiro-Wilks should be performed before making any 

conclusion about the normality of the data as an alternative to support the normal 

probability plot. The distribution is assumed normal when the kurtosis and skewness 
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values are zero. Therefore, the values above and below zero reflects departure from 

normal distribution.  

 

A negative skewness indicates a distribution that is shifted to the right, whereas the 

positive skewness denotes a distribution shift to the left. While the positive kurtosis 

values reflect that the distributions are leptokurtic (peaked), the platykurtic (flatter) 

distributions are represented by the negative kurtosis values.  

 

Later, using the values of skewness and kurtosis, the statistic value (z score) for both 

skewness and kurtosis can be calculated. If z score exceeds the critical value (± 1.96) 

which corresponds to the 0.05 significance level, then the distribution is consider non-

normal with respect to that significance level. A Shapiro-Wilks is the preferred test 

because of its good power properties (Mendes & Pala, 2003). Moreover, this test is the 

most powerful normality test in comparison with Anderson-Darling test, Lilliefors test 

and Kolmogorov-Smirnov test (Razali & Wah, 2011).  In this test, the distribution is 

considered non-normal when the p-value is less than the specified significance level.  

 

In order to verify the second assumption, the homogeneity of variances, Levene’s test is 

the most widely used test for testing the equality of variances. This test is widely used 

because of the availability of this test in most statistical software packages such as 

MINITAB and SPSS (Keyes & Levy, 1997).  However, the violation of symmetry 

increases the Type I error rates of the Levene’s test (Shoemaker, 2003; Zimmerman, 

2004). Nordstokke et al. (2011) in their studies has found that the nonparametric 

Levene’s test performs well in terms of maintenance of its nominal Type I error rates 
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and power when data are sampled from non-normal distribution. As described by 

Nordstokke and Zumbo (2010), the nonparametric Levene’s test involves three steps:  

i. pooling the data from each groups and ranking the score  

ii. replacing the original values with rank values  

iii. applying the Levene’s test on the ranks 

 

This test can be defined as in equation 2.1. 

 

)( jij XRANOVA                    (2.1) 

where Rij are the pooled values from each of the j
th

 groups, and 
jX is the mean of the 

ranks for each group.  

 

2.3 The Alexander-Govern Test 

Ralph A. Alexander and Diane M. Govern have proposed an approximation test in 

testing the equality of independent groups under heterogeneous variances and it is 

known as Alexander-Govern test (A-test). This test is based on normalizing 

transformation (Hill transformation) of one-sample t statistic. It is a test proposed for 

testing the equality of J independent mean with null hypothesis of:  

 

JH   ...: 210
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where 1=2=…=J are the mean of J independent groups.  Every J groups with size   , 

has sample mean ( ̅ ) and each of the means will have a standard error (  ). The    is 

derived as: 
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such that ∑   = 1 

 

Then the weighted mean (  ) is computed as: 
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One-sample t statistic    is then calculated using weighted mean as follows: 
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where each of the    will be distributed as t distribution with          degrees of 

freedom. 

 

The procedure proceeds to obtain the z statistic from normalizing transformation (Hill 

transformation) for each of the t statistic value: 
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where c =     (    
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  ⁄
; b = 48   and a =     0.5. 

 

Finally the A- test statistic is obtained by the summation of the   
  values: 
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(2.7) 

where A-test is approximately distributed as    distribution with (J-1) degrees of 

freedom. The null hypothesis is rejected when the value of A-test is larger than     
 .  

 

2.4 Central Tendency Measures 

Arithmetic mean is a well-known central tendency measure; however, it is very sensitive 

to the shape of data distribution. The performance of this estimator is only good under 

normal distribution but not for the case of non-normal distribution. As a result, any 

statistical method based on this estimator is unable to control Type I error rates and 

would produce low power when it comes to non-normal data (Keselman et al., 2007). 

 

2.5 Robust Central Tendency Measure 

The use of robust central tendency measure is encouraged in order to minimize the effect 

of non-normality (Wilcox, 1997). A robust central tendency measure is an estimator that 

is insensitive to small deviations from the assumptions. Thus, for over than 30 years, 

researchers have been considering different ways of estimating a value which represents 

the bulk of the observations (Keselman et al., 2007).  Trimmed mean, adaptive trimmed 

mean and Winsorized mean are examples of robust central tendency measures. These 
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robust central tendency measures can be said as better than the commonly used mean, 

having the bounded influence function and higher breakdown point. In contrast, 

arithmetic mean has unbounded influence function and its breakdown point is 0 (Wilcox, 

2005). 

  

Influence function allows us to assess the relative influence of individual observations 

towards the value of an estimate (Huber, 2004). It can be either bounded or unbounded 

influence function. Estimator with bounded influence function is less affected by the 

changes in dataset. In contrast, estimators with unbounded influence function will 

greatly be affected by any slight occurrence in dataset and this might cause misleading 

of results interpretation.  The breakdown point describes quantitatively how greatly 

small changes in the underlying distribution would change the distribution of an 

estimator (Huber, 2004). It can be defined as the minimum number of observations for 

which a functional goes to infinity (Wilcox, 2005) and unable to represent a true value. 

A good estimator should have bounded influence function and a high breakdown point 

(Huber, 2004).  

 

2.5.1 Trimmed Mean and Adaptive trimmed mean 

The trimmed mean and adaptive trimmed mean have a bounded influence function and 

their breakdown points are based on the percentage of trimming. Trimmed mean is a 

mean obtained after trim the data symmetrically on both tails of the distribution. This 

estimator is widely used by researchers in order to counter the effects of non-normality 

(Keselman, Wilcox, Algina, Fradette, & Othman, 2004). A research by Ozdemir, Wilcox 

and Yildiztepe (2013) compares two independent groups such as Yuen’s test with 
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trimmed mean and percentile bootstrap method with trimmed mean as an alternative 

under the violation of normality and homogeneity of variances assumptions. 

 

Although the previous studies found the advantages of using trimmed mean in 

improving the test under skewed distribution, it suffer from a practical concerns which is 

when the distribution is highly skewed to the right, it seems practical to trim more 

observations from the right tail instead of symmetrically trim on both sides of 

distribution (Wilcox, 2002). To overcome the problem faced by trimmed mean, Hogg 

(1974) has proposed an adaptive trimmed mean. This estimator utilizes the characteristic 

of the data to determine whether data should be trimmed symmetrically or 

asymmetrically. Asymmetrically trim means that the data is trim by different percentage 

of trimming on each tail of distribution.   

 

2.5.2 Winsorized Mean 

The Winsorized mean has a bounded influence function and its breakdown point is equal 

to the percentage of Winsorization. This mean is obtains by symmetrically winsorized 

the tail of distribution.  The percentage of Winsorization (α %) is fixed in advance and 

mean is calculated based on the winsorized sample.  

 

Let x1< x2<…< xn-1< xn represent the ordered observations in a sample. Let m be the 

number of observations to be winsorized and define m = [  ], where   represents the 

Winsorization percentage. Yuen (1971) defined  -Winsorized mean for sample as:  
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The sample Winsorized variance is given by   
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And the standard error of the Winsorized mean is 
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(2.10) 

 

2.6 Trimming Approach 

Trimming is originally an approach for reducing the effects of the outliers in a sample 

(Wilcox, 2005). This approach removes the smallest and the largest observations in a 

given dataset. Trimming are done using symmetric or asymmetric trimming approach. 

For symmetric trimming, data are trimmed with equal percentage in both tails of 

distribution. However, when the data are asymmetric, trimming symmetrically is no 

longer appropriate. In such case, the data need to be trimmed in different amount of 

percentage on each tail. Unlike symmetric trimming, the percentage of data to be 

trimmed in asymmetric trimming need to be determined for each tail before the 

trimming approach is performed which is based on the characteristic of the data.  

 

2.7 Winsorization Approach 

Winsorization is an approach that gives less weight to values in the tails of distribution 

and pays more attention to those near the center (Wilcox, 2005). Basically this approach 
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replaces outlier in each tail of distribution with the closest values. This approach has 

been used for many years and still has important application in some areas.  

 

For example, Dixon and Yuen (1974), indicated that the estimator based on 

Winsorization namely the Winsorized mean is more efficient than the trimmed mean for 

distributions with shapes close to Gaussian; however, the trimmed mean is more 

efficient for distributions that are far different from Gaussian. Furthermore, Fuller 

(1991) continues exploring the effects of the Winsorized mean in Weibull distribution 

which represents the right skewed distribution and discovers that this estimator is more 

efficient than the mean under this distribution. Recently, Mirtagioglu, Yigit, 

Mollaogullari, Genc and Mendes (2014) study on the influence of using Winsorized 

mean on Type I error rates in the comparison of the independent groups when the 

assumptions of ANOVA are violated. 

 

Other researchers modified the regression analysis with Winsorization approach. Yale 

and Forsythe (1976) introduced and discussed on the winsorized regression as an 

alternative to linear regression models. The new approach proposed by Chen and Dixon 

(1972) in stratified and pooled procedure for linear regression analysis with 

Winsorization showed increased efficiency over the standard method. In a two-variable 

regression model setup, the Lien and Balakrishnan (2005) examined the effect of 

Winsorization on the regression estimates and the efficiency of the regression 

estimation.  
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Besides that, Fried (2004) has developed and testing a robust regression functional for 

local approximation of the trend in a moving time window and further investigate the 

outlier replacement by Winsorization based on robust scale estimator. The outlier 

replacement used for the purpose of improving the robustness of the procedure 

investigated. Scholze et al. (2001) improved the generalized least-squares method with 

Winsorization for the purpose of protecting the estimates against outliers. This modified 

approach was used for estimation of effect concentrations for continuous toxicity data.  

 

A study on the comparison of the performance between the usual bootstrap and 

Winsorized bootstrap has argued on the performance of some resample (usual bootstrap) 

that may have a higher contamination level than the initial samples (Amado & Pires, 

2004). In addition, Srivastava, Pan, Sarkar and Mudholkar (2009) have developed two 

variations of co-ordinatewise Winsorized-bootstrapped approach. These new methods 

are seen to provide significant improvement when the data are in the neighborhood of 

multivariate normal population without significant loss in performance. 

 

The modification of Hotelling’s T
2
 with estimators of location and scale based on 

Winsorizing approach is proposed by Lix, Keselman and Hinds (2005). This modified 

test serves as an alternative test in testing the equality of means in two-group 

multivariate design under the violation of covariance homogeneity and normality 

assumptions.  Furthermore, this approach is also suggested as the preferred outlier 

processing strategy and as a standard way of treating outliers (Dhiren & Andrew, 2012; 

Thomas & Ward, 2006). Besides that, Etzel et al. (2003) found that this approach work 

best for the non-normal leptokurtic distribution. This distribution has a more acute peak 
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around the mean and fatter tails. In addition, Singh, Dev and Mandelbaum (2014) also 

mention that this approach is a common approach employed in accounting research for 

handling outliers. Choi, Yoo, Kim and Kim (2014) use this approach to remove the 

extreme values present in financial data.  

 

Many recent researches utilize this approach to ensure the statistical results are not 

heavily influenced by the presence of outliers. Ouyang and Wan (2014) have winsorized 

the differential timeliness ratio to mitigate the influence of outliers. A study conducted 

by Locorotondo, Dewaelheyns and Van Hulle (2014), for the purpose of examining the 

differences amount of cash holdings among business group affiliates and non-affiliates 

used the Winsorization approach in reducing the potential impact of outliers in amount 

of cash before continuing with the t-test.  

 

Ferrara, Marsilli and Ortega (2014) extended Mixed Data Sampling (MIDAS) model in 

assessing the impact of financial volatility on output growth in three advanced 

economies namely US, UK and France. They evaluated the role of commodity and stock 

prices, two major financial variables, in their ability to anticipate the growth. The AR 

(1)-GARCH (1,1) is used to estimate the volatility of both financial variables. The 

GARCH process is not robust because it uses a standard maximum likelihood estimator 

and the researchers have smoothed out outliers from all daily returns of commodity and 

stock prices through Winsorization. 

 

Another study by Lievenbruck and Schmid (2014) on national hedging volume, cost of 

goods sold, total debt, market capitalization and annualized inflation employs the 
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Winsorization approach to restrict the impact of outliers. The study on the cultural 

differences between countries helps in explaining firms’ hedging decision. The cultural 

differences are measured in terms of the long-term versus short-term orientation, 

uncertainty avoidance, power distance and masculinity.  Chen, Wang and Lin (2014) 

investigate on the governance role and network centrality of independent director in 

China. They have winsorized all observations in the top and bottom 1% for continuous 

variables such as controlling shareholders’ tunneling, concentration of ownership, 

equality restriction, and performance. The use of this approach is to reduce the impact of 

outlier before continue with correlation and regression analysis. 

 

The utilization of Winsorization approach to minimize the influence of extreme salivary 

cortisol values has been studied by Wong, Mailick, Greenberg, Hong and Coe (2014). 

They investigate on the impact of work stress on the awakening cortisol level in mothers 

of adolescent and adults with and without development disability. Cheng, Cullian and 

Zhang (2014) apply this approach to reduce the effect of outliers before continuing with 

correlation and regression analysis. The cash dividends, market to book ratio of equity, 

percentages of shares and earning divided by book value of equity are all winsorized by 

1% in each tail. Nilsen et al. (2012) used Winsorization approach for reducing the effect 

of outlier in genomic copy number analysis. Very short segments of DNA with deviant 

copy numbers, technical aberrations or a combination are example of outliers in genomic 

copy number.  
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2.8 Type I Error 

Rejecting a null hypothesis when in fact there is no difference between treatments can be 

referred as Type I error and denoted by alpha (α). The alpha value or nominal level 

should be small since it represents the chances of making an error in the decision. 

Statisticians generally agree on using these three nominal levels, 0.1, 0.05 and 0.01.  The 

nominal level, 0.05 are widely used by robust statistics researchers (Ahad, Othman & 

Syed Yahaya, 2011; Keselman et al., 2007; Syed Yahaya, Othman & Keselman, 2006).  

 

A robust test should able to control the Type I error rates near nominal level. In 

determining the robustness of the test, Bradley (1978) introduced liberal criterion of 

robustness. According to this criterion, a test is considered robust if its empirical Type I 

error rates falls within 0.5α to 1.5α, where α is a nominal level. The nominal level used 

in this study is 0.05. Therefore, the empirical Type I error rates that fall within 0.025 to 

0.075 is considered robust. The test is known as not robust with conservative value when 

the Type I error rates fall below 0.025 and considered not robust with liberal value when 

the Type I error rates are above the 0.075. The closer the Type I error rates to nominal 

level, the more robust the procedure is (Syed Yahaya, 2005).  

 

2.9 Power of a Test 

The robustness of the test can also be assessed in terms of power.  Power of a test is the 

probability of rejecting a false null hypothesis or the probability that will result in a 

conclusion that a phenomenon exists. It is denoted by 1- β, where β is the probability of 

making a Type II error. The Type II error occurs when it is concluded that there is no 
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treatment effect in the population, when in fact there is a real effect (fail to reject a false 

null hypothesis). The higher the power, the more sensitive the test is in detecting any 

difference between treatments. Since power measures the probability, the closer the 

value to 1, the better the test is in detecting that the phenomenon exists.  There are three 

determinants of power: significance criterion, sample size and effect size (Aberson, 

2010; Cohen, 1988). 

 

2.9.1 Significance Criterion 

Cohen (1988) defined significance criterion as the standard of proof that a phenomenon 

exists or a risk of mistakenly rejecting the null hypothesis. This risk is known as Type I 

error and denoted as alpha (α).  The smaller the value of alpha, the more difficult it is to 

reject the null hypothesis and the harder it is to detect that the phenomenon exist. Setting 

the higher alpha level makes it easier to reject the null hypothesis as well as to increase 

the power (Cohen, 1988; Murphy & Myors, 1998).  It is easier to reject null hypothesis 

when the significance level is 0.05 compare with 0.01. Thus, power of a statistical test 

will increase as the significance criterion increases.  

 

2.9.2 Sample Size 

Increase in sample size will increase the sensitivity of the test. Large sample size makes 

tests highly sensitive and at almost any specific point, the hypothesis can be rejected if 

test is sufficiently sensitive. In contrast, in small sample sizes, the test may not have 

enough power to reliably detect the effects (Murphy & Myors, 1998). Thus, increasing 

the sample size is an effective way to increase the power of the test. 
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2.9.3 Effect Size 

Effect size is another determinant of power and can be defined as the degree to which 

the phenomenon under study is present in the population (Cohen, 1988).  The presence 

of phenomenon in the population means that the null hypothesis is false. Furthermore, it 

serves as an index of degree of departure from the null hypothesis. Effect size index can 

be categorized into small, medium and large (Cohen, 1988). It is easier to detect the 

effect of a treatment if that effect is large. In contrast the treatments effects can be 

difficult to be reliably detected when treatments have very small effect.  

 

2.9.3.1 Effect Size Index for Two-Group 

For two-group, the effect size index, d, is the difference between two central tendency 

measures divided by the common within-population standard deviation (Cohen, 1988). 

Therefore, effect size index is defined as:  

 

              (2.11) 

where 

d = effect size index for two-group 

θ1 and θ2 = the mean of group 1 and group 2, respectively, and 

σ0 = standard deviation of the either population (for condition of equal variances and 

pool variance for condition of unequal variances). 

 

The pooled standard deviation is derived as in equation 2.12: 

 

0
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d
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          (2.12) 

 

where n1 and n2 are the first and second sample size while the σ1
2
 and σ2

2
 are the 

variance for each first and second groups. The effect size index is considered small when 

d = 0.2, medium when d = 0.5 and large when d = 0.8 (Cohen, 1988). 

 

2.9.3.2 Effect Size Index for Four-Group 

As the number of means increase beyond two (J > 2), the relationship between the effect 

size and the range of standardized means depends upon exactly how the means are 

dispersed over their range. The spread of the means is represented by the division of a 

standard deviation by the common standard deviation of the populations, as shown in 

equation 2.13. 

  0

f
                              (2.13) 

 

where 

σθ = the standard deviation of the population means expressed in original scale units, and 

σ0 = the standard deviation within the population. 

 

Therefore, in the case of J = 4, d is no longer an effect size index, but it is referred to as 

the range of standardized means. With four means, the largest and the smallest of the 

means are used to define the range of standardized means. The range of standardized 

means, d, is defined as: 
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0

minmax



 
d

                (2.14) 

  

θmax = the largest mean 

θmin = the smallest mean, and 

σ0 = the (common) standard deviation within the population. 

 

The spread of the means, f, is not uniquely determined but it depends on the 

specification of the pattern of the specification of the means. Cohen (1988) has 

identified three patterns of variability: minimum variability, intermediate variability and 

maximum variability. Below are the three patterns described by Cohen (1988) and the 

relationship between f and d for each pattern. 

 

Pattern 1: 

The minimum variability is defined as: 

J
df

2

1


                    (2.15) 

Pattern 2: 

The intermediate variability is defined as: 

)1(3

1

2 




J

Jd
f

                   (2.16) 

 

Pattern 3:  

The maximum variability is defined as: 
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df

2

1


  when J is even and 

  J

J
df

2

12 


 when J is odd. 

 

The effect size index is considered small, medium, and large when f = 0.1, 0.25, and 0.4, 

respectively.  Table 2.1 shows the standard pattern variability set by Cohen (1988) for 

four-group when f = 0.1, 0.25 and 0.4. 

 

Table 2.1 

 

The Standard Pattern Variability for Four-Groups by Cohen (1988) 

Effect Size Pattern Variability 

Small -½ d, 0, 0, ½ d 

Medium -½ d, -¼ d, ¼ d, ½ d  

Large - ½ d,- ½ d, ½ d, ½ d 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

 

This study focuses on modifying the Alexander-Govern test with robust central tendency 

measure based on Winsorization. The Winsorized mean and adaptive Winsorized mean 

are two robust central tendency measures used in modifying the Alexander-Govern test 

as replacements of the arithmetic mean. 

 

There were five variables manipulated in this study in order to create the conditions 

which are capable to highlight the strength and the weaknesses of all the tests compared. 

The variables are number of groups, group sizes, group variances, nature of pairings and 

types of distributions.  The robustness of the compared tests is evaluated in terms of 

their ability in controlling Type I error rates and power of a test.   

 

3.1 Proposed Procedures 

The aim of this study is to produce a robust A-test which able to be used not only under 

the violation of homogeneous variances, but also under non-normality. Therefore, in this 

study, some modification on the test has been done by replacing arithmetic mean with 

Winsorized mean and adaptive Winsorized mean.  

 

One issue that is always discussed when it comes to Winsorization process is the 

percentage of Winsorization (α %). This study considers different percentage of 
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Winsorization (α %) due to recommendations of previous researchers. For example, Hill 

and Dixon (1982) have considered 10% and 5% for the percentages of trimming (as 

cited in Keselman et al., 2007), while the other researchers suggested the use of 20% 

trimming (Lix and Keselman, 1998; Wilcox, 1997). In addition, Abdullah (2011) found 

that 10% and 15% can be considered as sufficient percentages of trimming capable of 

producing good control of the Type I error rates under almost all the investigated 

conditions.  

 

Based on the previous research on the percentage of trimming, this study employs 5%, 

10%, 15% and 20% as the percentages of Winsorization resulting in eight modified tests. 

All the eight modified tests are showed in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. The Modified A-test with Winsorized mean and adaptive Winsorized mean 
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The corresponding modified A-tests with their total amount of percentages are denoted 

as AGW_5, AGW_10, AGW_15, AGW_20, AGAW_5, AGAW_10, AGAW_15 and 

AGAW_20 respectively.  

 

The original Alexander-Govern test statistic is testing the equality of mean and assumes 

it distribution approximately the chi-square distribution. However, the distribution of the 

test statistic might differ from chi-square as the replacement of central tendency 

measures with Winsorized mean and adaptive Winsorized mean. Therefore, this study 

attempts to approximate the distribution of both test statistics; AGW and AGAW. 

 

For that purpose, a total of 50 z-statistics of AGW and AGAW are generated using 

simulated data for two-group case and four-group case. Then, the distribution of the z-

statistics is compared with normal distribution where the null and alternative hypotheses 

as follow:     

H0: The z-statistic of test is follow a normal distribution 

H1: The z-statistic of test is not follow a normal distribution 

 

If the z-statistics are independent standard normal variables, then if we create a new 

variable as the sum of J number of squared z-statistics, then a new variable will follow a 

chi-square distribution with J-1 degree of freedom. 

 

The result of the p-values of the z-statistics for both the AGW test and AGAW test for 

two-group case and four-group case are reported in Table 3.1.  
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Table 3.1 

The p-value of the z-statistic  

Test Case Group Kolmogorov-Smirnow (Sig.) 

AGW Two-group case (J=2) 1 0.200 

  

2 0.200 

 

Four-group case (J=4) 1 0.200 

  

2 0.200 

  

3 0.200 

    4 0.200 

AGAW Two-group case (J=2) 1 0.200 

 

  2 0.200 

 

Four-group case (J=4) 1 0.200 

  

2 0.200 

  

3 0.200 

    4 0.200 

 

It is demonstrate that all the p-values are greater than nominal level, 0.1 which indicate 

that the distribution of all z-statistics is follow normal distribution. Since the z-statistic 

of AGW and AGAW are standard normal variables, therefore we can said that the 

distribution of AGW and AGAW test statistic are follow chi-square distribution with J -1 

degree of freedom.  

  

3.2 Manipulations of Variables 

There are five variables manipulated: number of groups, group sizes, group variances, 

nature of pairings and types of distributions. 

 

3.2.1 Number of Groups 

Wilcox, Charlin and Thompson (1986) has found that the ANOVA seems to become 

increasingly sensitive to unequal variances as the number of treatment groups increased 

and thus it become less robust (as cited in Abdullah, 2011). It is apparent that the 
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number of groups affected the robustness of the test.  Therefore, the current study 

investigates the two-group and four-group case which has also been studied by previous 

researchers on the Alexander-Govern test (Abdullah, 2011; Lix & Keselman, 1998; Luh 

& Guo, 2005).  

 

3.2.2 Group Sizes 

The Type I error rates produced by ANOVA are inflated for the group with balanced 

sample sizes and heterogeneous variances. However, it becomes more serious when the 

group sizes are unbalanced (Lix et al., 1996). Therefore, the present study is considering 

both the balance and unbalanced sample sizes in examining the robustness of the test.  

 

A studied by Othman, Keselman, Padmanabhan, Wilcox and Fradette (2004) using 

group sizes of 70 and 90 and the Type I error rates produced are close to nominal level, 

α = 0.05. Furthermore, it can be inferred that the group sizes of any value within the 70 

and 90 should produce reasonably good type I error rates (Syed Yahaya, 2005). 

Therefore, the total group sizes for the case of two-group and four-group used in this 

study are N = 40 and 80 respectively.  The same number of total sample sizes also has 

been used by previous researchers (Abdullah, 2011; Syed Yahaya et al., 2006). For 

balanced sample size, the number of observation for each group is pegged at 20 which 

considers   =   = 20 for each of two-group case and   =   =   =  = 20 for four-group 

case.  

 

Meanwhile, for unbalanced sample sizes, each of the group is assigned different sample 

size. The smallest sample size is 10 while the largest is 30.  The sample size is assigned 
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based on proportion 3:5 for two-group case which produced n1 = 15 and n2 = 25. For 

four-group case, it follows the proportion of 2:3:5:6 where the sample size considered 

are n1 = 10, n2 =15, n3 =25 and n4 = 30. This proportion for the two-group and four-

group has been used by Abdullah (2011) and Syed Yahaya et al. (2006). 

 

3.2.3 Group Variances 

The homogeneity of variance is one of the assumptions that need to be satisfied in order 

to use the classical test for comparing treatment groups. The ANOVA has been known to 

be lack of robustness under the violation of homogeneity of variance (Myers, 1998). 

Since the heterogeneity of variance might influence the control of Type I error rates and 

power of a test, it is important to examine the effect of this variable in terms of the Type 

I error rates and power.  

 

The degree of variance heterogeneity is divided into two categories which are of equal 

and unequal variances. For equal variances, any value can be used as long as it is equal. 

In this study, the value of 1 is chosen so that for equal variances for two-group case, the 

values are 1:1 and for four-group case, the variances are 1:1:1:1. For the case of unequal 

variances, this study only considers an extreme degree of unequal variances with values 

of 1:36 for two-group case and 1:1:1:36 for four-group case. Although the ratio of 1:36 

and 1:1:1:36 appears extreme, it is actually reasonable in order to see how well the tests 

perform under extreme condition (Keselman et al., 2007).   The underlying idea is that if 

the test is able to work under an extreme degree of heterogeneity, then it would also be 

likely to work under most conditions of heterogeneity to be encountered by researchers 

(Syed Yahaya, 2005). 
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3.2.4 Nature of Pairings 

The nature of pairings is another variable considered in this study which considers 

positive and negative pairings. Positive pairing is the situation when the larger variance 

is associated with the larger sample size or the smaller variance is associated with the 

smaller sample size. Meanwhile the negative pairing is the situation of the larger 

variance being associated with the smaller sample size or the smaller variance associated 

with the larger sample size.  

 

Previous researchers has indicated that the Type I error rates declined below the nominal 

level when the nature of pairing is positive and in contrast, the Type I error rates 

increased above the nominal level when the nature of pairing is negative (Zimmerman, 

2004). Since the nature of pairing has an effect on the Type I error rates, this study 

considers examining the compared tests with respect to the nature of pairings. 

 

3.2.5 Types of Distributions 

The original A-test is found to be not robust under several non-normal distributions 

(Myers, 1998; Schneider & Penfield, 1997). Therefore, the type of distribution is one of 

the important factors that need to be investigated in evaluating the performance of the 

test. For that reason, the family of the g and h distribution are generated to represent four 

types of distribution.  

 

The four types of distributions are standard normal, symmetric heavy-tailed, skewed 

normal-tailed and skewed heavy-tailed.  In the g-and-h distribution, parameter g controls 

the degree of skewness while parameter h controls the kurtosis. As parameter g is 
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incremented, the degree of skewness will also increase. Meanwhile, for the h value, the 

larger the value, the heavier are the tails of the distribution. Therefore, the types of 

distributions are generated by controlling the g and h values where for standard normal, 

g = h = 0, for symmetric heavy-tailed, g = 0 and h = 0.5, for skewed normal-tailed, g = 

0.5 and h = 0 and for skewed heavy-tailed: g = 0.5 and h = 0.5.  

 

In addition to these four types of g-and-h distributions, the log normal distribution is also 

used.  Wilcox (2005) has made criticism of the four g-and-h distributions that does not 

represent a large enough departure from normality in term of the skewness of the 

distribution and suggested to consider the log normal distribution. According to Lix and 

Keselman (1998), the g = 1 and h = 0 represents the extremely skewed distribution. 

Therefore, log normal distribution used in this study is represented by g =1and h = 0. 

 

The corresponding skewness and kurtosis of five types of g-and-h distributions are 

summarized in Table 3.2.   

Table 3.2 

 

Some Properties of the g-and-h Distribution 

 

g h Skewness Kurtosis Distribution shapes 

 

0 

 

0 

 

0 

 

3 

 

Normal 

     

0 0.5 0 Undefined Symmetric heavy-tailed 

     

0.5 0 1.75 8.9 Skewed normal-tailed 

     

0.5 0.5 Undefined Undefined Skewed heavy-tailed 

     

1 0 6.2 114 Extremely skewed normal tailed 

(Source: Wilcox (2005)) 
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3.3 Design Specification 

To examine the robustness of the proposed tests, the following conditions are created 

and showed in Table 3.3 and Table 3.4 for two-group case and four-group case, 

respectively. 

Table 3.3 

 

Design Specification for J = 2 

 

Distribution Group size Group variance Nature of 

pairing 

g = 0, h = 0 20, 20 1: 1 

 

 

20, 20 1: 36 

 

 

15, 25 1: 1 

 

 

15, 25 1: 36 Positive 

  15, 25 36:1 Negative 

g = 0, h = 0.5 20, 20 1: 1 

 

 

20, 20 1: 36 

 

 

15, 25 1: 1 

 

 

15, 25 1: 36 Positive 

  15, 25 36:1 Negative 

g = 0.5, h = 0  20, 20 1: 1 

 

 

 20, 20 1: 36 

 

 

15, 25 1: 1 

 

 

15, 25 1: 36 Positive 

  15, 25 36:1 Negative 

g = 0.5, h = 0.5 20, 20 1: 1 

 

 

20, 20 1: 36 

 

 

15, 25 1: 1 

 

 

15, 25 1: 36 Positive 

  15, 25 36:1 Negative 

g = 1, h = 0 20, 20 1: 1 

 

 

20, 20 1: 36 

 

 

15, 25 1: 1 

 

 

15, 25 1: 36 Positive 

  15, 25 36:1 Negative 
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Table 3.4 

 

Design Specification for J = 4 

 

Distribution Group size Group variance Nature of 

pairing 

g = 0, h = 0 20, 20, 20, 20 1: 1: 1: 1 

 

 

20, 20, 20, 20 1: 1: 1: 36 

 

 

10, 15, 25, 30 1: 1: 1: 1 

 

 

10, 15, 25, 30 1: 1: 1: 36 Positive 

  10, 15, 25, 30 36:1: 1: 1 Negative 

g = 0, h = 0.5 20, 20, 20, 20 1: 1: 1: 1 

 

 

20, 20, 20, 20 1: 1: 1: 36 

 

 

10, 15, 25, 30 1: 1: 1: 1 

 

 

10, 15, 25, 30 1: 1: 1: 36 Positive 

  10, 15, 25, 30 36:1: 1: 1 Negative 

g = 0.5, h = 0 20, 20, 20, 20 1: 1: 1: 1 

 

 

20, 20, 20, 20 1: 1: 1: 36 

 

 

10, 15, 25, 30 1: 1: 1: 1 

 

 

10, 15, 25, 30 1: 1: 1: 36 Positive 

  10, 15, 25, 30 36:1: 1: 1 Negative 

g = 0.5, h = 0.5 20, 20, 20, 20 1: 1: 1: 1 

 

 

20, 20, 20, 20 1: 1: 1: 36 

 

 

10, 15, 25, 30 1: 1: 1: 1 

 

 

10, 15, 25, 30 1: 1: 1: 36 Positive 

  10, 15, 25, 30 36:1: 1: 1 Negative 

g = 1, h = 0 20, 20, 20, 20 1: 1: 1: 1 

 

 

20, 20, 20, 20 1: 1: 1: 36 

 

 

10, 15, 25, 30 1: 1: 1: 1 

 

 

10, 15, 25, 30 1: 1: 1: 36 Positive 

  10, 15, 25, 30 36:1: 1: 1 Negative 

 

 

3.4 Data Generation 

This study requires simulation process to perform the evaluation on the robustness of the 

tests. The simulation is run using SAS generator RANNOR function (SAS Institute, 

2009). Data from g-and-h distribution are generated by transforming the standard normal 

variates, Zij, using the following equations 3.1 and 3.2. 
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      for g  0                         (3.1) 

 

     for g = 0                 (3.2) 

 

 

Generally, when dealing with skewed distribution, the central tendency measures such as 

the Winsorized mean and adaptive Winsorized mean have values unequal to zero. To 

make certain that the null hypothesis remains true, the observations, ijY , from each 

simulated skewed distributions are shifted by subtracting the population central tendency 

parameter, θ  from the observations such that, 

    ijij YX                  (3.3) 

where θ is the Winsorized mean or adaptive Winsorized mean. 

 

The values of θ are determined by computing ̂ from one million observations 

generated from the studied distribution. Therefore, when working with Winsorized mean 

or adaptive Winsorized mean, the population Winsorized mean or adaptive Winsorized 

mean should be subtracted from Yij to ensure that the null hypothesis for equal 

population Winsorized mean or adaptive Winsorized mean remains true. 

 

Based on one million observations generated, the population Winsorized mean and 

population adaptive Winsorized mean corresponding to the percentage of Winsorization 

for each of the distributions are listed in Table 3.5. 
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Table 3.5 

 

Location Parameters with Respect to Distributions 

 

        Location Parameter, θ     

 

Winsorized mean   Adaptive Winsorized mean   

Type of distributions 5% 10% 15% 20% 5% 10% 15% 20% 

g = 0, h = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

g = 0, h = 0.5 0.01 0.01 0.01 0.00 0.00 0.00 0.30 0.30 

g = 0.5, h = 0 0.27 0.18 0.18 0.12 0.27 0.27 0.28 0.30 

g = 0.5, h = 0.5 0.80 0.31 0.31 0.16 0.80 0.80 0.96 0.96 

g = 1, h = 0 0.65 0.41 0.41 0.25 0.65 0.65 0.66 0.67 

 

The shifted variates are then transformed to suit the experimental conditions. For the 

case of heterogeneous variances, each of Xij from equation (3.3) is multiplied by the 

square root j  in order to obtain a distribution with a standard deviation, j  as follows,  

 
  2)( jijij YX  

                 (3.4)

  

For example, in the case of heterogeneous variances for four-group case, if 2

1  = 36, 2

2  

= 1, 
2

3 = 1 and 2

4 = 1, first, every observation need to be standardized by subtracting 

each of them with the population’s parameter being investigated. Then the standardized 

observation is multiplied by the standard deviation. For this example, multiplication by 6 

is applied to the first group and multiplication by 1 is applied to the remaining three 

groups. The example of a SAS programming of the modified tests with 5% Winsorized 

mean and adaptive Winsorized mean under specific condition examined are presented in 

Appendix B and Appendix C respectively. 
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In the analysis of the Type I error rates, the groups central tendency measures are set to 

zero. In contrast, for the power analysis, the group central tendency measure values 

depend on the setting of the central tendency measures as discussed in Section 3.5. Both 

Type I error and power rates are obtained by adding the values of central tendency 

measure to equation (3.4) such that,  

jjijij YX   2)(                  (3.5) 

 

For each of the design investigated, 5000 dataset are simulated to obtain the Type I error 

rates and power. The nominal level used is α = 0.05.  

 

3.5 The Setting of Central Tendency Measures for Power Analysis 

To analyze the power of a test, the group’s central tendency measures cannot be set to 

zero. The values of the alternative hypotheses are determined based on calculation 

provided by Cohen (1988).  

 

3.5.1 Two-Group Case 

According to Cohen (1988), the effect size index, d, for two-group case was calculated 

using the equation (2.11). For this study, the values of θ1 and θ2 in equation (2.11) are 

replaced by the central tendency measure of Winsorized mean or adaptive Winsorized 

mean.  

 

The effect sizes index are categorized into small for d = 0.2, medium for d = 0.5 and 

large for d = 0.8. Effect size index is considered small when d = 0.2, medium when d = 
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0.5 and large when d = 0.8. Therefore, the values of θ2 can be determined by equation 

(2.11) by setting the value of θ1 = 1 as follows: 

 

         (3.6) 

 

The standard deviation (σ0) depends on whether the population variances are 

homogeneous or heterogeneous. The calculation of the setting of the central tendency 

measures are explained as follows: 

 

3.5.1.1 For the case of σ1 = σ2, n1= n2 

Under this condition, the homogeneous variances are set as σ
2

1 = σ
2

2 = 1 and the sample 

sizes are set as n1 = n2 = 20 as shown in Table 3.3. Since the variances are 

homogeneous, then the value of σ0 in equation (3.6) is equal to 1. The values of θ2 are 

calculated using the equation (3.6) for each of effect size index: 

 

d = 0.2: θ2 = 0.2 (1) + 1 = 1.2 

d = 0.5: θ2 = 0.5 (1) + 1 = 1.5 

d = 0.8: θ2 = 0.8 (1) + 1 = 1.8 

 

The setting of the central tendency measures for this condition is displayed in Table 3.6. 

 

 

 

 

1)( 02   d
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Table 3.6 

 

The Setting of the Central Tendency Measures for Case of σ1 = σ2, n1 = n2 

 

 

 

 

 

 

 

 

3.5.1.2 For the case of σ1 ≠ σ2, n1 = n2 

Under this condition, the variances are set as σ
2

1 = 1, σ
2

2 = 36 and the sample sizes are 

set as n1 = n2 = 20. For the case of heterogeneous variances with balanced sample size, 

the value of σ0 is obtained by taking the square root of the sum of means of two 

variances, σ
2

1 and σ
2

2 (Cohen, 1988) as follows: 

 

 

 

 

 

By inserting σ0 = 4.3 and θ1 = 1, the values of θ2 are obtained for each effect size index 

as follows: 

d = 0.2: θ2 = 0.2 (4.3) + 1 = 1.86 

d = 0.5: θ2 = 0.5 (4.3) + 1 = 2.15 

d = 0.8: θ2 = 0.8 (4.3) + 1 = 3.44 

Effect size index, d (θ1, θ2) 

0.2 (1,1.2) 

0.5 (1,1.5) 

0.8 (1,1.8) 

3.4

2

361

2

0

0

2

2

2

1
0
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Table 3.7 displays the setting of central tendency measure for the case of heterogeneous 

variances with balanced sample size. 

 

Table 3.7 

 

The Setting of the Central Tendency Measures for Case of σ1 ≠ σ2, n1 = n2 

 

 

 

 

 

 

 

3.5.1.3 For the case of σ1 = σ2, n1≠n2 

Under this condition, the homogeneous variances are set as σ
2

1 = σ
2

2 = 1 and unbalanced 

sample sizes are set to be n1 = 15 and n2 = 25. The values of θ1 and θ2 are the same as in 

Table 3.6 since the calculation of σ0 is similar as the case in Section 3.5.1.1.  

 

3.5.1.4 For the case of σ1≠σ2, n1 = n2 

As mentioned in section (3.2.4) in the case of heterogeneous variances, there are two 

types of nature pairings (positive and negative). For positive pairing, the variances and 

sample sizes are paired such that σ1
2
 = 1 is paired with n1 = 15 and σ2

2
 = 36 is paired 

with n2 = 25.  

 

Effect size index, d (θ1, θ2) 

0.2 (1,1.86) 

0.5 (1,2.15) 

0.8 (1,3.44) 
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Meanwhile for negative pairing the values of variances and sample sizes are set such 

that σ1
2
 = 36 is paired with n1 = 15 and σ2

2
 = 1 is paired with n2 = 25.  In this situation, 

variance is needed as the value of σ0 and it is calculated as in equation (2.12).  

 

Therefore, for the situation of positive pairing, the σ0 is obtained as: 

 

 

 

 

The value of σ0 for negative pairing is obtained as follows: 

 

 

 

The values of θ2 for positive and negative pairing are calculated using equation (3.6) for 

each of effect size index: 

 

i. Positive pairing 

d = 0.2: θ2 = 0.2 (4.78) + 1 = 1.96 

d = 0.5: θ2 = 0.5 (4.78) + 1 = 3.39 

d = 0.8: θ2 = 0.8 (4.78) + 1 = 4.82 

 

ii. Negative pairing 

d = 0.2: θ2 = 0.2 (3.76) + 1 = 1.75 

d = 0.5: θ2 = 0.5 (3.76) + 1 = 2.88 

78.4

2515

)3625()115(

0

0












76.3

2515

)125()3615(

0

0














 

51 

 

d = 0.8: θ2 = 0.8 (3.76) + 1 = 3.00 

 

The setting of the central tendency measures for the positive and negative pairings 

condition is displayed in Table 3.8. 

 

Table 3.8 

 

The Setting of the Central Tendency Measures for Case of σ1≠ σ2, n1≠ n2 

 

Effect size index, d                             (θ1, θ2)   

Positive pairing             Negative pairing 

0.2 (1,1.96) (1, 1.75) 

0.5 (1,3.39) (1, 2.88) 

0.8 (1,4.82) (1, 3.00) 

 

 

3.5.2 Four-Group Case 

The setting of central tendency measure for more than two-group case is different from 

the case of two-group.  In this case, d is no longer as a difference of standardized mean, 

but it refers to the range of standardized means as in equation (2.14). 

 

In this study, the values of central tendency measure are replaced by the Winsorized 

mean and adaptive Winsorized mean instead of the mean. The effect size index for the 

case of more than two groups, f, is obtained based on the pattern of variability. Cohen 

(1988) has identified three patterns of variability: minimum variability, intermediate 

variability and maximum variability. The relationship between f and d depend on these 

three patterns of variability as discussed in detail in Section 2.9.3.2.  
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The values of f can be categorized as small, medium and large with regard to the values 

of 0.1, 0.25 and 0.4 respectively (Cohen, 1988). Maximum pattern of variability is 

considered in determining the values of central tendency measures. Thus, for this pattern 

of variability, the setting of the central tendency measure is displayed in Table 3.9. 

 

Table 3.9 

 

The Setting of the Central Tendency Measures for Four-Group Case. 

 

f d (θ1, θ2, θ3, θ4) 

0.10 0.2 (-0.1, -0.1, 0.1, 0.1) 

0.25 0.5 (-0.25, -0.25, 0.25, 0.25) 

0.40 0.8 (-0.4, -0.4, 0.4, 0.4) 

 

 

3.6 Modified Alexander-Govern Test with Winsorized Mean 

The modification of Alexander-Govern test using Winsorized mean, testing the equality 

of Winsorized mean instead of the mean. The following is the null hypothesis used in 

this study: 

JwwwH )(...)()(: 210    

where Jwww )(...)()( 21   are the Winsorized mean of J independent groups. 

For each J
th

 group, with size   , and the sample Winsorized mean  ̅      is calculated 

using equation (2.8).  

 

Using standard error,       
 as defined in equation (2.10), a weight,    is calculated as: 
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such that ∑   = 1  

 

Then the weighted Winsorized mean (  
 ) is estimated as: 

j
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(3.8) 

 

One-sample t statistic is calculated using weighted Winsorized mean as follows: 
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(3.9) 

where each of the     will be distributed as t distribution with          degrees of 

freedom. 

 

The procedure proceeds to obtain the z statistic from normalizing transformation for 

each of the     statistic value by using equation (2.6). 

 

Finally, the value of AGW test statistic is obtained by total up the   
  values: 





J

j

jzAGW
1

2

                  

(3.10)

  

where AGW is approximately distributed as    with (J-1) degrees of freedom. The null 

hypothesis is rejected when the value of AGW is larger than     
 . 
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3.7 Adaptive Winsorized Mean 

The non-normal data situation appears quite often in real data. Therefore, there is a need 

to have a central tendency measure which is able to consider the characteristic of the 

distribution first before winsorized it. For example, if the distribution is skewed to the 

right, instead of Winsorizing both tails equally, it makes sense to have more 

observations from the right tail to be winsorized than the left tail of the distribution.  

 

Thus, in this study, the adaptive Winsorized mean is proposed which is based on the 

adaptive Winsorization approach. This approach gives different percentage of 

Winsorization for each tail of distribution by examining the shape of the distribution. 

The HQ1 hinge estimator is used in order to determine the lower and upper percentage of 

Winsorization. The lower and upper percentages of Winsorization are representing the 

percentage of Winsorization for left and right tail of distribution respectively. The 

adaptive Winsorized mean is obtained by following these five steps:  

 

1. Set the total percentage of Winsorization. 

2. Determined the lower and upper Winsorization based on the HQ1 hinge 

estimator. 

3. Calculate the number of observations to be winsorized from each tail. 

4. Winsorized the sample. 

5. Calculate the mean on the winsorized sample. 

 

In the first step, we set the different values of Winsorization percentage α = 5%, 10%, 

15% and 20%. For the second step, the HQ1 hinge estimator is used in determining the 
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lower and upper Winsorization of distribution since this hinge estimator is the best 

controlled of Type I errors and highly recommended by Keselman et al. (2007). This 

hinge estimator is based on the measure of tail-length for a given set of n observations. 

Reed and Stark (1996) in their study adopt the notation of Hogg (1974) to define this 

HQ1. Based on the sample with the ordered value, let      be the mean of the smallest 

[    observations, where [    is rounded down into the nearest integer and      be the 

largest [    observations. For example when   = 0.2 where   is the proportion of the 

observation and therefore,       is the mean of the smallest 0.2n observations. 

5.5.

2.2.
1

LU

LU
Q




                 (3.11) 

 

The value of   can classified into three categories of tail-length distribution where the 

value of     1.81 implies a light-tailed, 1.81     1.87 a medium-tailed distribution 

and     1.87 as heavy-tailed distribution. Then, the lower Winsorization percentage is 

calculated by:   

 1HQl                   (3.12) 

 

where    is defined as in Equation 3.13: 

11
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                   (3.13) 

 

The     and     are the numerator and denominator portions of x statistic, in this case 

the x can be refer to the Q1. While the      and      can be given by: 

2.02.01
LUUWQ 
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5.05.01
LULWQ     

Thus, the upper Winsorization percentage is given by:

 

 =
 

lu                        (3.14)

    

where    and    would be    and    respectively. 

 

Then, we calculate the mean based on the sample values that have been winsorized. The 

adaptive Winsorized mean is defined by:  
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where   = [    ] and   = [    ] while    and    are the lower and upper percentages 

of Winsorization, respectively.  

 

The standard error of  ̅        ) can be estimated by 
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where    
         can be estimated as: 
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(3.17) 

A manual calculation for adaptive Winsorized mean is presented in Appendix A. 
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3.8 Modified Alexander-Govern Test with Adaptive Winsorized Mean 

The modified A-test using adaptive Winsorized mean is tested for the equality of 

adaptive Winsorized mean instead the mean. The following is the null hypothesis used 

in this study: 

JawawawH ),(...),(),(: 212211210    

where
Jawawaw ),(...),(),( 21221121   are the adaptive Winsorized mean of 

J independent groups. For each J
th

 groups with size    and the sample adaptive 

Winsorized mean,  ̅           is calculated using equation (3.15):  

 

Using standard error,            
 as defined in equation (3.16), a weight    is calculated 

as: 





J

j

aw

aw

j

j

j

S

S
w

1

2

),(

2

),(

21

21

/1

/1





                  

(3.18) 

such that ∑   = 1 

Then, the weighted adaptive Winsorized mean (  
 ) is computed as: 
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(3.19) 

 

One-sample t statistic calculated using weighted adaptive Winsorized mean is estimated 

as: 
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where each of the      will be distributed as t distribution with          degrees of 

freedom. 

 

The procedure proceeds to obtain the z statistic from normalizing transformation for 

each of the     statistic value by using equation (2.6). 

 

Finally, the AGAW test statistic is obtained by totalling the   
  values: 

 





J

j

jzAGAW
1

2                 (3.21)

     

where AGAW is approximately distributed as    with (J-1) degrees of freedom. The 

null hypothesis is rejected when the value of AGAW is larger than     
 . 

 

3.9 Application on Real Data 

The purpose of analysis on real data is to validate the performance of the modified tests 

in testing the equality of means of three independent groups. The secondary data used 

for this study is obtained from the study by Ali and Sweeney (1974). The groups of 

subjects are Group 1, the group of normal healthy laboratory workers, Group II, the 

group of patients admitted with acute alcoholism with ring sideroblast in bone marrow 

and Group III, the group of patients admitted with acute alcoholism without ring 

sideroblast in bone marrow. Using the levels of protoporphyrin in 15 subjects in Group 

I, 11 subjects in Group II, and 15 subjects in Group III, the question is whether it can be 
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concluded that there exist differences among the three groups with respect to the 

protoporphyrin levels.  
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CHAPTER FOUR 

FINDINGS AND DISCUSSIONS 

  

This study emphasizes on the modified A-test since this test is not robust under small 

departure from normal distribution. The modification is done by adopting the existing 

robust central tendency measures, namely, the Winsorized mean and a proposed central 

tendency measure called the adaptive Winsorized mean. The performance of all 

modified tests are evaluated in terms of Type I error rates and power of the tests. To 

accentuate the strengths and weaknesses of these modified tests, each of them is 

examined under various experimental conditions such as the number of groups, sample 

sizes, degree of variance heterogeneity, nature of pairings and types of distributions. 

 

4.1 Type I Error Rates 

Performances of the proposed tests in terms of Type I error rates are evaluated using 

Bradley’s liberal criterion of robustness where a test is considered robust if its empirical 

Type I error rates falls within 0.5α to 1.5α, where α is a nominal level. Since the 

nominal level used in this study is 0.05, the test is robust if the empirical Type I error 

rates fall within 0.025 to 0.075. When the Type I error rate is below 0.025, the test is 

considered not robust with conservative value and when the error rate is above 0.075, it 

is considered not robust with liberal value. In comparing robustness between tests, the 

test with a smaller difference between the error rates and the nominal level is considered 

to be more robust.  
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Tables 4.1 to 4.8 present the results of all compared tests in terms of Type I error rates 

according to the types of distribution used and the nature of pairings. The modified A-

tests with Winsorized mean and adaptive Winsorized mean employ four different 

percentages of Winsorizing which are 5%, 10%, 15% and 20%. With respect to these 

Winsorizing percentages, the modified A-tests with Winsorized means are denoted as 

AGW_5, AGW_10, AGW_15 and AGW_20, while the modified A-tests with adaptive 

Winsorized means are represented as AGAW_5, AGAW_10, AGAW_15 and AGAW_20. 

In each table, the Type I error rate values that lie within the liberal criterion of 

robustness (from 0.025 to 0.075) are written in bold.  

 

4.1.1 Balanced Sample Sizes and Homogeneous Variances 

For the condition of balanced sample sizes and homogeneous variances, the results of 

the analysis on the Type I error rates for J = 2 and J = 4 are presented in Tables 4.1 and 

4.2, respectively. 

 

4.1.1.1 Two-Group Case 

In J = 2, it is clear that the AGAW_5 test, AGAW_10 test, A-test and t-test are robust 

regardless of the types of distributions. The A-test and AGAW_5 test performed well 

under normal distribution producing 0.0008, the smallest difference value from nominal 

level. The AGAW_10 test outperformed the other tests with the Type I error rates nearest 

to nominal level under three distributions: skewed normal-tailed, skewed heavy-tailed 

and symmetric heavy-tailed while for the extremely skewed normal-tailed, the t-test 

produced the Type I error rate closest to the nominal level.  
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4.1.1.2 Four-Group Case 

The empirical Type I error rates for J = 4 under the condition of balanced sample sizes 

and homogeneous variances are reported in Table 4.2. As demonstrated, only AGAW_5 

test, AGAW_10 test, A-test and ANOVA produced the Type I error rates within robust 

interval across all five distributions. For normal and skewed normal-tailed distributions, 

the Type I error rates produced by AGAW_5 test and A-test are the nearest to the 

nominal level compared to the others. The AGAW_10 test performs better than the other 

tests under heavy-tailed of either symmetric or skewed distribution. As for the extremely 

skewed normal-tailed, the ANOVA produces the smallest difference of Type I error rate 

to nominal level of about 0.007. 
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Table 4.1 

 

The Empirical Type I Error Rates for J = 2 under Balanced Sample Sizes and Homogeneous Variances. 

 

 

Sample sizes = (20,20), Variances = (1:1)  

   Distributions AGW_5 AGW_10 AGW_15 AGW_20 AGAW_5 AGAW_10 AGAW_15 AGAW_20 A-test t-test 

g = 0, h = 0 0.0798 0.1132 0.1662 0.2388 0.0508 0.0638 0.0910 0.0954 0.0508 0.0528 

g = 0, h = 0.5 0.1028 0.1640 0.2166 0.2892 0.0336 0.0578 0.1284 0.1296 0.0336 0.0356 

g = 0.5, h = 0 0.0810 0.1246 0.1724 0.2456 0.0450 0.0500 0.0874 0.0908 0.0450 0.0474 

g = 0.5, h = 0.5 0.0960 0.1610 0.2238 0.2968 0.0264 0.0356 0.1040 0.1056 0.0264 0.0288 

g = 1, h = 0 0.0844 0.1406 0.2006 0.2720 0.0332 0.0340 0.0874 0.0880 0.0332 0.0358 

Note: Bold value indicates the Type I error rates within [0.025, 0.075] 

 

Table 4.2 

 

The Empirical Type I Error Rates for J = 4 under Balanced Sample Sizes and Homogeneous Variances. 

 

  
Sample sizes = (20, 20, 20, 20), Variances = (1:1:1:1)   

      

Distributions AGW_5 AGW_10 AGW_15 AGW_20 AGAW_5 AGAW_10 AGAW_15 AGAW_20 A-test ANOVA 

g = 0, h = 0 0.0962 0.1742 0.2794 0.4142 0.0518 0.0728 0.1214 0.1342 0.0518 0.0518 

g = 0, h = 0.5 0.1246 0.2402 0.3614 0.4956 0.0280 0.0602 0.1720 0.1724 0.0280 0.0336 

g = 0.5, h = 0 0.1112 0.1942 0.2972 0.4336 0.0522 0.0604 0.1250 0.1300 0.0522 0.0550 

g = 0.5, h = 0.5 0.1336 0.2593 0.3798 0.5082 0.0322 0.0508 0.1672 0.1706 0.0322 0.0290 

g = 1, h = 0 0.1440 0.2462 0.3580 0.4860 0.0578 0.0610 0.1534 0.1536 0.0578 0.0430 

Note: Bold value indicates the Type I error rates within [0.025, 0.075]. 
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4.1.2 Balanced Sample Sizes and Heterogeneous Variances 

Table 4.3 and Table 4.4 reported the Type I error rates for J = 2 and J = 4 respectively 

under balanced sample sizes and heterogeneous variances. 

 

4.1.2.1 Two-Group Case 

The robustness of all the compared tests decreases with the presence of heterogeneous 

variances. The AGAW_5 test, AGAW_10 test, A-test and t-test are robust under normal 

and symmetric heavy-tailed distributions while for skewed normal-tailed, the AGAW_5 

test, AGAW_10 test and A-test maintain their robustness. It is noted that the AGAW_5 

test and A-test produce the Type I error rates closest to nominal level compared to others 

under normal and skewed normal-tailed distributions while the AGAW_10 test is the best 

test when distribution is symmetric heavy-tailed. None of the tests are robust when data 

are of skewed heavy-tailed and extremely skewed normal-tailed distributions. 

 

4.1.2.2 Four-Group Case 

Similar with J = 2, the robustness of the tests in J = 4 decreases as variances becomes 

heterogeneous as displayed in Table 4.4. The tests that are robust under normal 

distribution are the AGAW_5 test and A-test. For symmetric heavy-tailed and skewed 

normal-tailed distributions, the AGAW_5 test, AGAW_10 test and A-test produce the 

Type I error rates within the robust interval. Under symmetric heavy-tailed distribution, 

the Type I error rates of both AGAW_5 test and A-test are close to the conservative 

value, while the error rate of AGAW_10 test is closer to the nominal level. Unfortunately 

none of the tests are robust for skewed heavy-tailed and extremely skewed normal-tailed 

distributions. 
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Table 4.3 

 

The Empirical Type I Error Rates for J = 2 under Balanced Sample Sizes and Heterogeneous Variances. 

 

  
                                 Sample sizes = (20,20), Variances = (1:36)   

      

Distributions AGW_5 AGW_10 AGW_15 AGW_20 AGAW_5 AGAW_10 AGAW_15 AGAW_20 A-test t-test 

g = 0, h = 0 0.0840 0.1202 0.1704 0.2412 0.0562 0.0704 0.0990 0.1046 0.0562 0.0618 

g = 0, h = 0.5 0.0946 0.1512 0.2144 0.2888 0.0340 0.0560 0.1912 0.1922 0.0348 0.0412 

g = 0.5, h = 0 0.1206 0.1416 0.2064 0.2642 0.0710 0.0732 0.1272 0.1396 0.0710 0.0788 

g = 0.5, h = 0.5 0.3390 0.2116 0.2910 0.3146 0.1764 0.1948 0.4108 0.4164 0.1812 0.1916 

g = 1, h = 0 0.2280 0.1988 0.2910 0.3046 0.1222 0.1224 0.2282 0.2332 0.1222 0.1292 

Note: Bold value indicates the Type I error rates within [0.025, 0.075]. 

 

 

 

Table 4.4 

 

The Empirical Type I Error Rates for J = 4 under Balanced Sample Sizes and Heterogeneous Variances. 

 

  Sample sizes = (20, 20, 20, 20), Variances = (1:1:1:36)         

Distributions AGW_5 AGW_10 AGW_15 AGW_20 AGAW_5 AGAW_10 AGAW_15 AGAW_20 A-test ANOVA 

g = 0, h = 0 0.1000 0.1746 0.2736 0.4136 0.0522 0.0756 0.1240 0.1390 0.0522 0.1096 

g = 0, h = 0.5 0.1260 0.2394 0.3630 0.4944 0.0282 0.0596 0.2152 0.2164 0.0280 0.0784 

g = 0.5, h = 0 0.1302 0.1952 0.3074 0.4308 0.0642 0.0704 0.1396 0.1490 0.0642 0.1276 

g = 0.5, h = 0.5 0.3200 0.2820 0.4248 0.5172 0.1266 0.1564 0.4056 0.4110 0.1318 0.2400 

g = 1, h = 0 0.2316 0.2636 0.4036 0.5014 0.1050 0.1056 0.2398 0.2436 0.1050 0.1760 

Note: Bold value indicates the Type I error rates within [0.025, 0.075].
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4.1.3 Unbalanced Sample Sizes and Homogeneous Variances 

In the case of unbalanced sample sizes with homogeneous variances, the Type I error 

rates are displayed in Table 4.5 for J = 2 and Table 4.6 for J = 4. 

 

4.1.3.1 Two-Group Case 

Under the conditions of unbalanced sample sizes with homogeneous variances, the 

number of tests which are considered robust increases in comparison with the test under 

the conditions of balanced sample sizes. This is shown by the Type I error rates as listed 

in Table 4.5 which is slightly different from Table 4.1. Under balanced condition, there 

are four tests: AGAW_5 test, AGAW_10 test, A-test and t-test found to be robust under all 

distributions. However, under unbalanced condition, the number is six with the 

additional of two more tests, AGW_5 and AGAW_15, to the four tests mentioned earlier.  

 

The classical t-test produces the Type I error rates nearest to nominal level compared to 

the other tests under normal distribution. For symmetric heavy-tailed and skewed 

normal-tailed distributions, the AGAW_10 test produces the Type I error rates closest to 

the nominal level and followed by the AGW_5 test.  Under skewed heavy-tailed as well 

as under extremely skewed normal-tailed distributions, the AGW_5 test produces error 

rates closest to the nominal level and followed by the AGAW_15 test and AGAW_10 test. 

 

4.1.3.2 Four-Group Case 

The performance of the tests under unbalanced sample sizes and homogeneous variances 

is depicted in Table 4.6. The AGW_5 test, AGAW_5 test, AGAW_10 test and A-test are 

robust for all distributions except under extremely skewed distribution. However, 
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ANOVA performed well with all the Type I error rates within the robust interval. In 

addition, this test also produces Type I error rates nearest to the nominal level with 

values of 0.0504, 0.0512 and 0.0442 under normal, skewed normal-tailed and extremely 

skewed normal-tailed distributions, respectively. Meanwhile, for heavy-tailed 

distribution of either symmetric or skewed, the AGAW_10 test produces the Type I error 

rates closest to nominal level. 
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Table 4.5 

 

The Empirical Type I Error Rates for J = 2 under Unbalanced Sample Sizes and Homogeneous Variances. 

 

                                Sample sizes = (15,25), Variances = (1:1) 
  

      

Distributions AGW_5 AGW_10 AGW_15 AGW_20 AGAW_5 AGAW_10 AGAW_15 AGAW_20 A-test t-test 

g = 0, h = 0 0.0538 0.0864 0.1392 0.2316 0.0468 0.0546 0.0692 0.0932 0.0468 0.0490 

g = 0, h = 0.5 0.0462 0.1172 0.1828 0.2744 0.0284 0.0510 0.0738 0.1080 0.0284 0.0374 

g = 0.5, h = 0 0.0518 0.0938 0.1468 0.2376 0.0476 0.0512 0.0612 0.0954 0.0476 0.0468 

g = 0.5, h = 0.5 0.0490 0.1204 0.1916 0.2828 0.0286 0.0380 0.0580 0.0870 0.0286 0.0324 

g = 1, h = 0 0.0520 0.1080 0.1720 0.2646 0.0396 0.0458 0.0546 0.1010 0.0396 0.0382 

Note: Bold value indicates the Type I error rates within [0.025, 0.075]. 

 

 

Table 4.6 

 

The Empirical Type I Error Rates for J = 4 under Unbalanced Sample Sizes and Homogeneous Variances. 

 

  
Sample sizes = (10, 15, 25, 30), Variances = (1:1:1:1)   

      

Distributions AGW_5 AGW_10 AGW_15 AGW_20 AGAW_5 AGAW_10 AGAW_15 AGAW_20 A-test ANOVA 

g = 0, h = 0 0.0692 0.1558 0.2184 0.4338 0.0526 0.0692 0.1002 0.1304 0.0526 0.0504 

g = 0, h = 0.5 0.0614 0.2008 0.2830 0.4966 0.0254 0.0512 0.1092 0.1448 0.0254 0.0404 

g = 0.5, h = 0 0.0746 0.1750 0.2412 0.4562 0.0580 0.0722 0.0892 0.1272 0.0580 0.0512 

g = 0.5, h = 0.5 0.0696 0.2176 0.3070 0.5122 0.0302 0.0520 0.1070 0.1374 0.0302 0.0416 

g = 1, h = 0 0.1002 0.2314 0.3066 0.5002 0.0796 0.0882 0.1070 0.1530 0.0796 0.0442 

Note: Bold value indicates the Type I error rates within [0.025, 0.075].
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4.1.4 Unbalanced Sample Sizes and Heterogeneous Variances 

Table 4.7 and Table 4.8 depict the empirical Type I error rates for the condition of 

unbalanced sample sizes and heterogeneous variances. 

 

4.1.4.1 Two-Group Case 

As shown in Table 4.7, under normal distribution, the Type I error rates produced by 

AGW_5 test, AGAW_5 test, AGAW_10 test and A-test are robust for both pairings while 

the AGAW_15 test is robust only for negative pairing. The Type I error rates closest to 

nominal level are produced by the AGAW_5 test and A-test for positive pairing and by 

the AGW_5 test for negative pairing. Under symmetric heavy-tailed distribution, the 

AGAW_5 test, AGAW_10 test and A-test produce the Type I error rates within the robust 

interval for both nature of pairings with AGAW_10 test having the closest value to the 

nominal level.  

 

Under skewed normal-tailed distribution, the AGAW_5 test and A-test are the only tests 

that are robust for both natures of pairings while the AGW_5 test and AGAW_10 test are 

found to be robust in negative pairing and t-test is robust for positive pairing. There are 

no tests that can be considered robust under skewed heavy tailed distribution for both 

pairings. The t-test is the only test that produces robust Type I error rate for positive 

pairing under extremely skewed normal-tailed.  

 

4.1.4.2 Four-Group Case 

As observed in Table 4.8, when distributions are normal and symmetric heavy-tailed, the 

AGW_5 test, AGAW_5 test, AGAW_10 test and A-test are robust for both natures of 
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pairing. The ANOVA test produces robust Type I error rates only for positive pairing 

under normal distribution. The AGAW_5 test and A-test produce the Type I error rates 

closest to nominal level regardless of the type of pairings under normal distribution.  

 

Meanwhile for symmetric heavy-tailed distribution, the AGAW_10 test produces the 

Type I error rate nearest to nominal level compared to the AGAW_5 test and A-test. The 

AGAW_5 test and A-test are the only tests that are robust under skewed normal-tailed 

distribution in both natures of pairing while the ANOVA is only robust in positive pairing 

with the Type I error rate closest to the nominal level. None of the tests can be 

considered robust under both skewed heavy-tailed and extremely skewed normal tailed 

distributions. 
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Table 4.7 

 

The Empirical Type I Error Rates for J = 2 under Unbalanced Sample Sizes and Heterogeneous Variances. 

 

 

                            Sample sizes = (15,25), Variances = (1:36)         

Distributions Nature of pairing 

 

AGW_5 

 

AGW_10 

 

AGW_15 

 

AGW_20 

 

AGAW_5 

 

AGAW_10 

 

AGAW_15 

 

AGAW_20 

 

A-test t-test 

g = 0, h = 0 Positive 0.0744 0.1026 0.1396 0.2382 0.0560 0.0734 0.0898 0.1126 0.0560 0.0198 

  Negative 0.0486 0.0852 0.1440 0.2396 0.0478 0.0532 0.0674 0.0856 0.0478 0.1268 

g = 0, h = 0.5 Positive 0.0838 0.1374 0.1814 0.2832 0.0394 0.0590 0.1790 0.1674 0.0380 0.0110 

  Negative 0.0322 0.0904 0.1712 0.2716 0.0296 0.0504 0.0976 0.1626 0.0298 0.0998 

g = 0.5, h = 0 Positive 0.1058 0.1188 0.1616 0.2574 0.0712 0.0952 0.1126 0.1220 0.0712 0.0324 

  Negative 0.0732 0.1022 0.1718 0.2490 0.0744 0.0738 0.0804 0.1452 0.0744 0.1486 

g = 0.5, h = 0.5 Positive 0.3000 0.1754 0.2350 0.3038 0.1644 0.1864 0.3848 0.3750 0.1714 0.1142 

  Negative 0.1806 0.1374 0.2400 0.2864 0.1780 0.1990 0.2558 0.3542 0.1848 0.2698 

g = 1, h = 0 Positive 0.1934 0.1634 0.2236 0.2926 0.1108 0.1416 0.1980 0.1954 0.1108 0.0722 

  Negative 0.1278 0.1436 0.2488 0.2934 0.1328 0.1300 0.1306 0.2480 0.1328 0.2054 

Note: Bold value indicates the Type I error rates within [0.025, 0.075]. 
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Table 4.8 

 

The Empirical Type I Error Rates for J = 4 under Unbalanced Sample Sizes and Heterogeneous Variances. 

 

 

             Sample sizes = (10,15,25,30), Variances = (1:1:1:36)         

Distribution 
Nature of 

pairing 

 

AGW_5 

 

AGW_10 

 

AGW_15 

 

AGW_20 

 

AGAW_5 

 

AGAW_10 

 

AGAW_15 

 

AGAW_20 

 

A-test 

 

ANOVA 

g = 0, h = 0 Positive 0.0682 0.1600 0.2212 0.4250 0.0534 0.0682 0.0998 0.1322 0.0534 0.0336 

  Negative 0.0674 0.1538 0.2128 0.4362 0.0510 0.0676 0.0976 0.1290 0.0510 0.2850 

g = 0, h = 0.5 Positive 0.0630 0.2096 0.2886 0.4888 0.0252 0.0570 0.1636 0.2198 0.0256 0.0202 

  Negative 0.0616 0.2002 0.2780 0.4986 0.0264 0.0538 0.1260 0.1600 0.0264 0.2410 

g = 0.5, h = 0 Positive 0.0862 0.1838 0.2530 0.4444 0.0602 0.0816 0.1016 0.1598 0.0602 0.0446 

  Negative 0.0824 0.1830 0.2458 0.4602 0.0694 0.0796 0.0970 0.1362 0.0694 0.3092 

g = 0.5, h = 0.5 Positive 0.2480 0.2584 0.3470 0.5166 0.1192 0.1384 0.3428 0.4164 0.1258 0.1550 

  Negative 0.1556 0.2476 0.3278 0.5186 0.1208 0.1376 0.2518 0.2764 0.1252 0.3582 

g = 1, h = 0 Positive 0.1580 0.2492 0.3366 0.4992 0.0934 0.1142 0.1638 0.2650 0.0934 0.0888 

  Negative 0.1506 0.2694 0.3364 0.5188 0.1314 0.1406 0.1578 0.1994 0.1314 0.3422 

Note: Bold value indicates the Type I error rates within [0.025, 0.075]. 
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4.2 Discussion on Type I Error Rates 

The discussion on the comparing the capability among two proposed tests, AGW test and 

AGAW test with the A-test and classical test is discuss in Section 4.2.1. For the AGW test 

and AGAW test, they are said as capable to control the Type I error rate under condition 

examined if at least one of their modified tests is robust either using 5%, 10%, 15% or 

20% of Winsorization. This section also discussed on the capability of the proposed test 

with respect to different types of distributions, group variances and percentages of 

Winsorization.  

 

4.2.1 Comparison of AGW test, AGAW test, A-test and Classical test. 

In this study, the combination of the five variables manipulated: number of groups, 

group sizes, group variances, nature of pairings and types of distributions, produces a 

total of 50 conditions as shown in Table 4.1 to Table 4.8.  For example, as displayed in 

Table 4.1, the AGW test is incapable to control the Type I error rates under all five 

conditions examined. In contrast the AGAW test, A-test and t-test are capable to control 

the Type I error rates under all five conditions examined. Table 4.9 compared the 

capability of the proposed tests, AGW test and AGAW test, as well as the A-test and 

classical test under 50 conditions examined.  It is shown that the AGAW test and A-test 

outperforms the AGW test and classical test with their ability to cater a higher number of 

conditions. Both the AGAW test and A-test are more capable of controlling the error than 

the AGW test and classical test where they are capable to cater 37 out of 50 conditions or 

74% of the conditions are robust, whereas the AGW test and classical test can only cater 

34% and 52% of the conditions respectively.  
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Table 4.9 

 

Capability of the Compared Tests 

 

Procedure Number of conditions Percentage of capability 

AGW 17 34% 

AGAW 37 74% 

A-test 37 74% 

Classical test 26 52% 

Note: Total number of conditions is 50 

 

The percentage of capability of the AGW test and AGAW test with the A-test and 

classical test under various types of distributions is depicted in Table 4.10. Under these 

three of the different distributions examined: normal, symmetric heavy-tailed and 

skewed normal-tailed, the AGAW test and A-test are more capable in controlling the 

error than the AGW test and classical test. Moreover, the AGAW test and A-test are able 

to cater all conditions presented under normal and skewed normal-tailed distributions.  

 

It can be observed that under symmetric heavy-tailed, the performance of the AGAW test 

is better than the A-test. However the robustness of the all test decreases as distribution 

become skewed heavy-tailed and extremely skewed normal-tailed distribution, with 

decreasing percentages of capabilities except for the classical test. The classical test 

performs well under extremely skewed normal-tailed distribution, where it is capable to 

cater 50% of the conditions investigated. 
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Table 4.10 

 

Capability of Compared Tests under Distribution Condition 

 

Type of distributions        Procedure   
  AGW 

(number of 

conditions 

/percentage of 

capability) 

AGAW 

(number of 

conditions 

/percentage of 

capability) 

A-test 

(number of 

conditions 

/percentage of 

capability) 

Classical test 

(number of 

conditions 

/percentage  

of capability) 

Normal  6 10 10 6 

  60% 100% 100% 60% 

Symmetric heavy-tailed 5 10 9 5 

  50% 100% 90% 50% 

Skewed normal-tailed 3 10 10 6 

  30% 100% 100% 60% 

Skewed heavy-tailed 2 4 4 4 

  20% 40% 40% 40% 

Extremely skewed 

normal-tailed 1 3 3 5 

  10% 30% 30% 50% 

Note: Total number of conditions is 10 for each of distribution 

 

While the AGW test performs quite well under normal and symmetric heavy-tailed 

distribution compared to the remaining skewed distributions, it performs rather well 

under normal and symmetric heavy-tailed distribution where the AGW test is capable of 

controlling the Type I error rates catering for 60% and 50% of the conditions, 

respectively. However, the robustness of the AGW test decreases as distribution becomes 

skewed and worst when distribution is extremely skewed where it can cater only 10% of 

the conditions. 

 

It is demonstrated that the classical test outperforms the remaining tests: AGW test, 

AGAW test and A-test with the ability to cater more conditions when variances are 

homogeneous as shown in Table 4.11. The classical test is more capable of controlling 
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Type I error rates where it is capable to cater all conditions investigated when variances 

are homogeneous.   This is followed by the AGAW test and A-test where they are each 

capable to cater 95% of the conditions. Meanwhile, the AGW test produces the lowest 

percentage of capability when variances are homogeneous with the capability to cater 

only 45% of the conditions.  

 

Table 4.11 

 

Capability of Compared Tests under Different Group Variances 

 

Group Variances Test Number of conditions Percentage of capability 

Homogeneous AGW 9 45% 

 

AGAW 19 95% 

 

A-test 19 95% 

 

Classical test 20 100% 

Heterogeneous AGW 8 27% 

 

AGAW 18 60% 

 
A-test 18 60% 

  Classical test 6 20% 

Note: Total number of conditions with homogeneous variances is 20 

Note: Total number of conditions with heterogeneous variances is 30 

 

On the other hand, the robustness of the classical test decreases when variances are 

heterogeneous where the percentage of capability drastically drops from 100% to 20% 

as stated in Table 4.11. This shows that the violation of assumption of homogeneous 

variances jeopardized the robustness of the classical test. The AGAW test and A-test are 

more capable of controlling the error than the AGW test and classical test where they are 

capable to cater 60% of the conditions when variances are heterogeneous.  
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In term of the percentage of Winsorization used, the 5% Winsorization is capable of 

catering 34% of the conditions. Among these four percentages of Winsorization used in 

AGW test, the 5% Winsorization is the only percentage which is able to control the Type 

I error rates.  The remaining percentages of Winsorization: 10%, 15% and 20% of AGW 

test fail to control the Type I error rates under all conditions examined. From the results 

in Table 4.12, we can conclude that the proposed AGW test works well under the small 

percentage of 5% of Winsorization. 

 

Table 4.12 

 

Capability of Proposed Tests with respect to Different Percentages of Winsorization 

 

Winsorization 

Percentage 

 AGW 

Number  

of conditions 

Percentages 

of capability 

(%) 

AGAW 

Number  

of conditions 

Percentages 

of capability 

(%) 

5 17 34 37 74 

10 0 0 33 66 

15 0 0 6 12 

20 0 0 0 0 

Note: Total number of conditions is 50 

 

The percentages of the capability for AGAW test under various percentage of 

Winsorization are presented in the fifth column of Table 4.12. It is observed that the 

AGAW test performed better under the small percentages of Winsorization, which are 

5% and 10%. For the AGAW test, the 5% Winsorization is the best amount of 

Winsorization, capable of catering 37 out of 50 conditions which equivalent to 74%. 

 

Besides 5% Winsorization, the 10% Winsorization in AGAW test is also good in 

controlling the error rates, capable of catering 66% of the conditions. The 5% and 10% 



 

78 

 

are adequate in order to produce the AGAW test with good control of Type I error rates. 

On the other hand, when the percentage of Winsorization is incremented to 20%, both 

the AGAW test and AGW test become not robust.  

 

4.3 Power of a Test 

Power of a test refers to the probability that it will lead researchers to reject the null 

hypothesis, when that hypothesis is in fact false. According to Murphy and Myors 

(1998), the amount of 50% in power is judged to be an adequate and it is considered 

high when its value is above 80%. The power of test are assessed only for those tests 

which are robust as suggested in robust procedures for testing a directional alternative 

hypothesis of comparing treatment and control groups on multiple outcomes (Lix, 

Deering, Fouladi & Manivong, 2009).  In this study, the assessment of power of test 

refers to the results written in bold in Tables 4.1- 4.8. The results of the analysis on 

power for J = 2 and J = 4 are illustrated in Figure 4.1 until Figure 4.8.   

 

4.3.1 Balanced Sample Sizes and Homogeneous Variances 

The results for power of test for J = 2 and J = 4 are displayed in Figures 4.1 and 4.2, 

respectively.  

 

4.3.1.1 Two-Group Case 

It is obvious that the tests produce adequate power of 50% under normal and skewed 

normal-tailed distributions when the effect size is greater than 0.5. As demonstrated, the 

AGAW_10 test produces the highest power under three types of distributions: normal, 

symmetric heavy-tailed and skewed heavy-tailed. Under skewed or extremely skewed 
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normal-tailed distributions, the power values produced by the robust tests are quite 

similar to each other. 

 

4.3.1.2 Four-Group Case 

The power produced by all the investigated tests is high under normal distribution with 

values above 80% when the effect size is 0.8.  Under skewed normal-tailed distribution, 

the power values are considered adequate with values of more than 50% when the effect 

size is above 0.5. It is clear that the AGAW_10 test produces the highest power value 

regardless of the types of distributions with the exception of the extremely skewed 

normal-tailed distribution.  Under extremely skewed normal-tailed distribution, the 

power produced by the AGAW_5 test, AGAW_10 test and A-test are comparable to each 

other.  
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Figure 4.1. Power of Test for J = 2 under Balanced Sample Sizes and Homogeneous 

Variances 
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Figure 4.2. Power of Test for J = 4 under Balanced Sample Sizes and Homogeneous 

Variances 
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4.3.2 Balanced Sample Sizes and Heterogeneous Variances 

Figures 4.3 and 4.4 present the resulting power of test for J = 2 and J = 4 respectively 

for the condition of balanced sample sizes and heterogeneous variances.  

 

4.3.2.1 Two-Group Case 

As can be observed in Figure 4.3, none of the tests produce adequate power.  However, 

the AGAW_10 test performs the best where it produces the highest power value under 

these three types of distributions: normal, symmetric heavy-tailed and skewed normal-

tailed.  

 

4.3.2.2 Four-Group Case 

All the robust tests produce adequate power value for normal distribution where they 

reached more than 60% when the effect size is 0.8. Meanwhile, under skewed normal-

tailed distribution, an adequate power value is obtained when the effect size is 0.8.  The 

AGAW_10 test produces the highest power values for symmetric heavy-tailed and 

skewed normal-tailed distributions.   
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Figure 4.3. Power of Test for J = 2 under Balanced Sample Sizes and Heterogeneous  

Variances 
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4.3.3 Unbalanced Sample Sizes and Homogeneous Variances 

The resulting power of test for J = 2 and J = 4 are displayed in Figures 4.5 and 4.6, 

respectively.  

 

4.3.3.1 Two-Group Case 

As displayed in Figure 4.5, all the robust tests produce adequate power values for both 

normal and skewed normal-tailed distributions. The power of the tests under normal 

distribution is higher than skewed normal-tailed distribution with value of more than 

60% when effect size is 0.8. Apparently, the AGAW_15 test produces the highest power 

values under three types of distributions: normal, symmetric heavy-tailed and skewed 

heavy-tailed. Under skewed normal-tailed distribution, the powers produced by the 

robust tests are quite similar to each other. Meanwhile, under extremely skewed normal-

tailed distribution, all tests produce low power values but the t-test produces the lowest 

power.  

 

4.3.3.2 Four-Group Case 

The power of the robust tests under this condition is displayed in Figure 4.6. All the 

robust tests produce adequate power values under normal and skewed normal-tailed 

distributions. Under both distributions, the tests produce power of more than 50% when 

the effect size is above 0.5.  The AGAW_10 test and AGW_5 test produce the highest 

power values under symmetric heavy-tailed and skewed heavy-tailed distributions, 

respectively. Under skewed normal-tailed distribution, the power values produced by the 

tests are comparable to each other except for ANOVA test which produces the lowest.  
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Figure 4.5. Power of Test for J = 2 under Unbalanced Sample Sizes and Homogeneous 

Variances 



 

87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

0.2 0.5 0.8

P
o
w

e
r
 o

f 
te

st
 (

%
)

f

Normal distribution

AGW_5 AGAW_5 AGAW_10
A-test ANOVA  

0

10

20

30

40

0.2 0.5 0.8

P
o
w

e
r
 o

f 
te

st
 (

%
)

f

Symmetric heavy-tailed distribution 

AGW_5 AGAW_5 AGAW_10
A-test ANOVA

 

0

10

20

30

40

0.2 0.5 0.8

P
o
w

e
r
 o

f 
te

st
 (

%
)

f

Skewed heavy-tailed distribution 

AGW_5 AGAW_5 AGAW_10

A-test ANOVA 

0

10

20

30

40

50

60

70

0.2 0.5 0.8

P
o
w

e
r
 o

f 
te

st
 (

%
)

f

Skewed normal-tailed distribution 

AGW_5 AGAW_5 AGAW_10

A-test ANOVA

Figure 4.6. Power of Test for J = 4 under Unbalanced Sample Sizes and Homogeneous 

Variances 



 

88 

 

4.3.4 Unbalanced Sample Sizes and Heterogeneous Variances 

The results on the power rates under unbalanced sample sizes and heterogeneous are 

shown in Figure 4.7 for J = 2 and Figure 4.8 for J = 4. 

 

4.3.4.1 Two-Group Case 

The power produced by the robust tests for both positive and negative pairings are 

shown in Figure 4.7. Generally, for the two-group case, the performance of the robust 

tests for positive pairing is better than the negative pairing. 

 

For the case of positive pairing, the robust tests produce high power under normal 

distribution with the achieved value of 50% when the effect size is greater than 0.5 and 

above 80% when effect size is 0.8. The power produced by AGAW_10 test is the highest 

under both normal and symmetric heavy-tailed distributions. Under skewed normal-

tailed distribution, the power of AGAW_5 test and A-test are considered high reaching 

80% when the effect size is 0.8.  

 

In contrast, none of the robust tests produce adequate power for the case of negative 

pairing under all three types of distributions presented. The AGAW_15 test and 

AGAW_10 test produce the highest power values under normal and symmetric heavy-

tailed distributions, respectively, whereas for skewed normal-tailed distribution, the 

power values produced by the robust tests are comparable to each other. 
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Figure 4.7. Power of Test for J = 2 under Unbalanced Sample Sizes and Heterogeneous 

Variances 
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4.3.4.2 Four-Group Case 

Figure 4.8 displays the power produced by the robust tests for both positive and negative 

pairing for the four-group case. 

 

For positive pairing, all the robust tests produce adequate power values under normal 

and skewed normal-tailed distributions except for ANOVA test. The tests produce power 

values of 50% when the effect size is greater than 0.5 for both types of distributions. The 

power values produced by the AGW_5 test and AGAW_10 test are the highest under 

normal and symmetric heavy-tailed distributions.  

 

On the other hand, for the negative pairing, the robust tests produce adequate power 

values under normal distribution only. The power values are more than 50% when the 

effect size is greater than 0.5.  The AGW_5 test and AGAW_10 test improve the 

performance of the A-test under normal and symmetric heavy-tailed distributions. 
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Figure 4.8. Power of Test for J = 4 under Unbalanced Sample Sizes and Heterogeneous 

Variances 
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4.4 Discussion on Power of Test 

The Type I error rates are used to determine robustness of tests.  The robust tests are 

then evaluated in terms of power of test. As observed in Figures 4.1 to 4.8, the 

performances of the robust tests are considered good under normal and skewed normal-

tailed distributions producing adequate power values. However, for heavy-tailed 

distribution and extremely skewed normal-tailed distribution, the power values 

drastically drop below the adequate power value. 

 

The presence of homogeneous variances and heterogeneous variances generally 

influence the performance of the tests. All tests produce adequate power values under 

normal and skewed normal-tailed distribution when variances are homogeneous. 

However, when variances are heterogeneous, the power values are sometimes below 

than the adequate power value.   

 

The sample size does not give much effect to the power value of the tests. Between 

balanced and unbalanced sample size, the performance of the tests are comparable. In 

terms of the nature of pairings, the tests produce good power under positive pairing than 

negative pairing regardless of the distribution. 

 

Overall, the original A-test produces lower power compared to the modified AGAW_10 

test which produces the highest power values under most conditions.  In contrast, the 

classical tests (t-test and ANOVA) produce the lowest power in all the investigated 

conditions.  
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4.5 Analysis on Real Data 

The performance of the modified Alexander-Govern test namely AGW test and AGAW 

test were demonstrated on real data. The following sections discuss the data source, data 

characteristic and also the performance of all the compared tests. 

 

4.5.1 Data Source 

A protoporphyrin dataset is used for performance validation where the dataset consists 

of the protoporphyrin levels, in milligrams/100 ml RBC, of three groups of subjects. The 

three groups of subjects are Group I, Group II and Group III where Group I consists of 

normal healthy laboratory workers, Group II, the group of patients admitted with acute 

alcoholism with ring sideroblasts in bone marrow and Group III, the group of patients 

admitted with acute alcoholism without ring sideroblasts in bone marrow. Full details of 

the protoporphyrin levels in 15 healthy workers and 26 patients are displayed in Table 1 

of Appendix D. Testing are done to answer the question of whether it can be concluded 

that the three groups differ with respect to the protoporphyrin levels. 

 

4.5.2 Data Characteristics 

As shown in Figure 4.9 to Figure 4.11 the plotted data values for all three sample groups 

are not closely following the straight diagonal line which indicates that the distribution 

are non-normal. From the normal probability plot, we may assume that the distributions 

are either flatter or peaked since the plotted data are sometimes below and above the 

diagonal line.  
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Figure 4.9. Normal Probability Plot for Group I 

Figure 4.10. Normal Probability Plot for Group II 
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As shown in Table 4.13, the values of skewness and kurtosis are different than zero. The 

skewness and kurtosis values for healthy worker are somewhat close to zero, beside the z 

score for both values are within the range of -1.96 to +1.96. This indicates that the 

distribution of protoporphyrin level for Group I is normal.  For Group II and Group III, 

the values of skewness, kurtosis and z score reflect that the distributions are non-normal. 

The kurtosis value for Group II is positive and very high and possibility of peaked 

distribution present in this group.  

 

A further testing on the normality assumption of protoporphyrin level is using Shapiro-

Wilks test, where the null hypothesis and alternative hypothesis are stated as follow:  

H0: Sample drawn from a population that follows a normal distribution 

 

Figure 4.11. Normal Probability Plot for Group III 



 

96 

 

H1: Sample drawn from a population that does not follow a normal 

distribution 

 

The results of the Shapiro-Wilks test for all three groups (Group I, Group II, and Group 

III) are reported in Table 4.13 (7
th 

column). The Shapiro-Wilks test resulting in rejected 

the null hypothesis for both groups, Group II and Group III since the p-values obtained 

are less than nominal level, 0.05, which are confirm that both groups are not normally 

distributed. In contrast, the sample drawn from a population of the Group I follow a 

normal population since the p-value obtained is greater than the nominal level, resulted 

in fail to reject the null hypothesis.  

 

Table 4.13 

 

Descriptive Statistic for Protoporphyrin Dataset 

 

Groups Sample size Skewness Kurtosis         z-score Shapiro-Wilks(Sig) 

        Skewness Kurtosis   

Group I 15 0.653 -0.399 1.134 -0.356 0.339 

Group II 15 2.141 5.742 3.586 4.976 0.002 

Group III 11 1.092 -0.011 1.652 -0.009 0.027 

 

Since the data are not normal, then the nonparametric Levene’s test (refer Equation 2.1) 

is used in testing the equality of variances. The null and alternative hypotheses are as 

follow:  

H0: The population variances are equal 

H1: The population variances are not equal 

 



 

97 

 

A nonparametric Levene’s test resulting in rejecting the null hypothesis since the p-

value is less than 0.05 and verifies the inequality of variances in the samples as can be 

seen in Table 4.14. 

 

Table 4.14 

 

Nonparametric Levene’s Test for Protoporphyrin Dataset 

 

 

  

ANOVA 

   

        Sum of Square df Mean Square F Sig. 

Between Groups 160.479 2 80.24 4.611 0.016 

Within Groups  661.291 38 17.402 

  Total 821.771 40       

 

Therefore, we can conclude that both the normality and homogeneity of variances 

assumptions are violated for this protoporphyrin dataset.  

 

4.5.3 Testing on Protoporphyrin Dataset 

For comparison, the protoporphyrin dataset were tested using all the eight modified A-

test namely AGW_5, AGW_10, AGW_15, AGW_20, AGAW_5, AGAW_10, AGAW_15 

and AGAW_20 with A-test and ANOVA. As can be observed in Table 4.15, all tests 

produce significant p-values implying that there exist differences among the three 

groups with respect to the protoporphyrin level. 
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Table 4.15 

 

The p-value of Protoporphyrin Dataset 

 

Tests p-value 

AGW_5 0.006624 

AGW_10 0.013347 

AGW_15 0.014053 

AGW_20 0.000576 

AGAW_5 0.029533 

AGAW_10 0.029533 

AGAW_15 0.028761 

AGAW_20 0.019035 

A-test 0.029533 

ANOVA 0.000000 

 

Among these tests, the ANOVA shows the strongest significance (p-value = 0.000000) 

followed by AGW_20 (p-value = 0.000576). Although all tests produce significant p-

values, however the interpretation of the result obtain from AGW_10, AGW_15, 

AGW_20, AGAW_15, AGAW_20 and ANOVA should be done with caution due to these 

tests fail to control their Type I error rates as shown in the simulation result (refer Table 

4.8) for the case of unbalanced sample sizes, heterogeneous variances and non-normal 

distribution. 
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CHAPTER FIVE 

CONCLUSION 

 

There has been a lot of discussion about the limitation of the Alexander-Govern test, 

denoted by A-test, under non-normal data situations. Thus, previous studies aim to 

improve the performance of the A-test under this limitation (Abdullah, 2011; Lix & 

Keselman, 1998; Luh & Guo, 2005). They have considered several robust estimators 

based on trimming approach, namely, trimmed mean, adaptive trimmed mean and 

modified one-step-M estimator (MOM) as the central tendency measure in the A-test. 

Their modification enhanced the performance of the A-test under skewed distribution. 

Yet the problem remains under heavy-tailed distribution, producing a robust 

conservative Type I error rate values with low power.  

 

Hence, this study takes the research into the next step by modifying the A-test with a 

robust central tendency measure based on Winsorization approach. It is believed that this 

approach is able to improve the performance of the A-test generally under non-normal 

distribution and specifically under heavy-tailed distribution, based on the suggestions in 

previous research work and the findings on Winsorization approach as reviewed in depth 

in Section 1.1 and Section 2.7. 

 

This study considers two central tendency measures, namely, Winsorized mean and the 

adaptive Winsorized mean as replacement to the usual mean in the A-test. The 

Winsorized mean is obtained from symmetrical Winsorization of each tail of the 
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distribution. While, the adaptive Winsorized mean is obtain by symmetrical 

Winsorization or asymmetrical Winsorization depending on the characteristic of the 

distribution. 

 

This study considers using 5%, 10%, 15% and 20% as the percentage of Winsorization. 

Taking into account these four percentages, there are altogether eight modified A-tests 

proposed in this study. Performances of the modified tests are compared to original A-

test and the two classical tests which are the t-test for the two-group case and ANOVA 

for the four-group case. All tests are evaluated under varying conditions to demonstrate 

the strengths and the weaknesses of the tests. These conditions are created by 

manipulating five variables that can significantly affect the performance of statistical 

tests. The five variables are the type of distributions, number of groups, sample size, 

variance heterogeneity and nature of pairing. 

 

The performance of all the compared tests are measured by the rates of Type I error and 

power of a test. A test is considered robust if its empirical Type I error rate is between 

the ranges of 0.025 to 0.075 for 0.05 nominal level (Bradley, 1978). The power of tests 

is usually judged to be adequate when its value is more than 50% and considered high 

when it is above 80% (Murphy & Myors, 1998). 

 

5.1 Summary  

It is no doubt that the modification in A-test capable to enhance the performance of the 

test when dealing with non-normal data. From using the trimming approach, this study 
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tries to bring forward the use of Winsorization approach in estimating the central 

tendency measure used in A-test.  

 

We have compared the performance of the two A-test modifications: the AGW test and 

AGAW test, and found out that the AGAW test is superior to AGW test with the ability to 

cater more conditions compared to AGW test under various experimental conditions 

investigated. This finding shows that the utilization of the proposed adaptive Winsorized 

mean as central tendency measure in AGAW test produces a more robust test than the 

utilization of Winsorized mean in AGW test.  

  

The proposed modification of the A-test has enhanced the performance of the test where 

the AGAW_10 test has succeeded not only in producing a Type I error rate values but 

also produce the highest power under symmetric heavy-tailed distribution. Regardless of 

the sample sizes, the number of groups or the variance condition, the AGAW_10 test 

performed remarkably well under symmetric heavy-tailed distribution. This test 

produces Type I error rates nearest to the nominal value as well as the highest power 

values compared to other tests investigated. This AGAW_10 test has successfully 

overcome the limitations of the original A-test under this distribution. Besides, for the 

two-group case under skewed heavy-tailed distribution and extremely skewed 

distributions with unbalanced sample sizes and homogeneous variances, the AGW5 is 

superior to the other tests.  

 

The findings showed that the proposed procedures performed best in terms of 

controlling the Type I error rates with different Winsorization percentages where the 
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AGW test performs best with 5% of Winsorizing, while 10% is the best for the AGAW 

test.  The amounts of percentages: 5% and 10% are similar to the previous research on 

trimming approach (Abdullah, 2011; Md Yusof, Abdullah, Syed Yahaya & Othman, 

2011). On the other hand, both the AGW test and AGAW test are not robust for 20% 

Winsorization. However, this finding is not in line with the finding in the trimming 

approach where 20% of trimming still suggested as a one of the good trimming 

percentage (Cribbie, Fisksenbaum, Keselman, & Wilcox, 2012; Keselman et al., 2003; 

Keselman et al., 2007). 

 

The performance comparison of the AGW test and AGAW test with the A-test and 

classical test demonstrates that the AGAW test and A-test are more capable in controlling 

the Type I error rates than the AGW test and classical test. The AGAW test and A-test are 

able to cater all conditions considered under normal and skewed normal-tailed 

distributions. Surprisingly, the AGAW test is able to improve the performance of the A-

test under symmetric heavy-tailed distributions.  

 

Overall the modified tests are capable to achieve the goal of the study in which they 

produce the tests that are robust under departure from normal and homogeneous 

variances assumption.  They are robust under two types of non-normal distributions 

namely symmetric heavy-tailed and skewed normal-tailed distribution with the presence 

of variances heterogeneous.  However, none of the modified tests are able to control the 

Type I error rates under skewed heavy-tailed and extremely skewed normal-tailed 

distribution when variances are heterogeneous. 
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The t-test and ANOVA have performed well under departure from normality as long as 

the variances remain homogenous. However, when variances are heterogeneous, these 

classical tests fail to control the Type I error rates even under balanced sample sizes and 

the results become worse when the sample sizes are unbalanced. This signifies that other 

than the normality and homoscedasticity assumptions, other factors such as sample size 

are also necessary to be considered before using the classical tests. 

 

In this study, we also evaluate the performance of the robust tests in producing the 

power. Observation shows that the power of a test increases as the number of groups 

increases.  In terms of the nature of pairings, positive pairing produce good power values 

compared to negative pairing regardless of the distribution. In addition, the powers 

obtained by the tests are adequate under normal and skewed normal tailed distribution. 

The modified tests produce the highest power in almost all investigated conditions 

compared to the A-test and classical tests. However, the classical tests produce the 

lowest power in all the investigated conditions. Unfortunately, all tests produce low 

power when the distribution is heavy-tailed.  

 

This study further validates the performance of the proposed modified test with real data 

under the violation of both normality and homogeneous variances assumptions. For this 

purpose, the protoporphyrin dataset consisting of protoporphyrin levels, in 

milligrams/100 ml RBC, of three groups of subjects are used. The results presented in 

Section 4.5.3, demonstrate that the proposed modified tests are workable on real data 

application. 
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5.2 Implication 

The proposed modified the A-test is robust under non-normal distribution and 

heterogeneity of variances. Two proposed modified A-test, the AGW and the AGAW tests 

are proven more robust compared to the A-test and classical tests under certain 

experimental conditions especially under non-normal data distribution.  

 

Therefore, the proposed tests can also serve as an alternative to the classical tests in 

testing the equality of means of independent groups. Under normal and skewed normal-

tailed distribution, the utilization of A-test is recommended. However, the AGAW_10 

test is suggested when data comes from symmetric heavy-tailed distribution.  With these 

two alternative tests, the researchers can make use of the original data without having to 

worry about the shape of distribution or about variance heterogeneity. 

 

5.3 Limitation of the Study 

None of the modified tests are robust under all the experimental conditions. Although 

the modified tests are able to improve the control of Type I error rates especially under 

symmetric heavy-tailed distribution, they still produce low power. Despite the 

production of low power, they have improved the performance of the original A-test to a 

certain extent. Another limitation is that they also fail to control Type I error rates under 

extremely skewed normal-tailed distribution when the variance are heterogeneous. 

 

This study assumes that the type of distribution of each population is the same. For 

example, in the two-group case under symmetric heavy-tailed distribution, the 

distributions of both population groups are assumed to be symmetric heavy-tailed 
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distributions. However, in reality there could be cases where the groups may not have 

the same type of distribution.  

 

5.4 Suggestion for Future Research 

The future research could be undertaken to improve the robustness of the modified tests 

since none of the modified tests are robust under all the experimental conditions. 

Researchers may consider using the automatic Winsorization approach in estimating the 

central tendency measure. This approach is based on the outlier detection method, for 

example, the modified adjusted box plot as proposed by Hubert and Vandervieren 

(2008). This box plot is appropriate for skewed and heavy-tailed distribution (Dovoedo, 

2011). Therefore, researchers may consider the utilization of the modified adjusted box 

plot instead of the traditional box plot.  

 

Besides that, Reed and Stark (1996) have defined and introduced seven hinge estimators 

based on measures of tail-length and skewness for a dataset (i.e. HQ, HQ1, HH3, HQ2, 

HH1, HSK2, and HSK5). This study only considers the HQ1 as a hinge estimator in 

determining the percentage of observation to be winsorized from each tail. The use of 

other hinge estimators could be put into consideration in future research because there is 

still a need to improve the performance of the proposed tests under skewed heavy-tailed 

and extremely skewed distributions. 

 

Finally, since in reality there could be cases where the groups studied may not have the 

same type of distribution, future research might also consider the condition where 

different types of distributions exist among the compared groups. 
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