MATHEMATICS LEARNING STRATEGY AND MATHEMATICS ACHIVEMENT AMONG MIDDLE SCHOOL STUDENTS IN THE NORTH OF JORDAN

BELAL SADIQ HAMED RABAB’H

DOCTOR OF PHILOSOPHY
UNIVERSITI UTARA MALAYSIA
2015
Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely available for inspection. I further agree that permission for the copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences
UUM College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Abstrak

Kata kunci: Nombor, Algebra, Geometri, visualisasi spatial, Strategi Pembelajaran Matematik.
Abstract

The results of 1999, 2003, 2007 and 2011 Trends in International Mathematics and Science Study (TIMSS) showed that Jordanian 8th grade students’ achievement in mathematics is low. Mathematics Learning Strategy (MLS) has been identified as one of the attributing factors. To date, there is little study on MLS and mathematics achievement among Jordanian 8th grade students. The study aimed to identify the level of differences between genders based on number, algebra, geometry, mathematics achievement and spatial visualization, and to what extent would the student’s MLS factors such as attitude, motivation, self-regulation, self-efficacy and mathematics anxiety contribute to mathematics achievement. Additionally, the study aimed to determine whether spatial visualization mediates between the MLS factors and mathematics achievement. The respondents in this study, who comprised of 360 students, were selected through stratified random sampling, from eight public middle schools in Alkoura District in the North of Jordan. The study used 65 items to assess the MLS. The mathematics test contains 30 items (number, algebra & geometry) while the spatial visualization test contains 32 items. The findings showed that female students scored higher than male students in numbers, algebra, and mathematics test but there are no gender differences in geometry scores. Male students performed better than their female counterparts in spatial visualization. The results also showed that mathematics attitude, motivation, self-regulation and self-efficacy contributed to mathematics achievement except mathematics anxiety. Spatial visualization plays a mediating effect between mathematics achievement and attitude, motivation, and mathematics anxiety. This study contributes to knowledge and social cognitive theory about the students’ affective domain base on MLS factors and spatial visualization which is important as prerequisite knowledge for learning mathematics. Mathematics educators in Jordan need to consider the MLS factors when teaching mathematics to 8th grade students to help improve their mathematics achievement.

Keywords: Numbers, Algebra, Geometry, Spatial visualization, Mathematics Learning Strategy.
Acknowledgement

In the name of Allah SWT, the Most Gracious and the Most Merciful, I would like to thank the Almighty Allah for His blessings and help in completing this research.

In addition, my gratitude goes to my supervisor, Professor Dr. Arsaythamby Veloo for his valuable guidance and comments which help to improve my work throughout the dissertation process. I would like to express my thanks to my co-supervisor Dr Arumugam Raman.

I am also grateful to my father, to whom this work is dedicated to – may Allah place him in heaven. I wish he could have lived longer to see me holding the Ph.D. degree as he had invested so much in me so that I can accomplish this dissertation. My father, Sadig Rababah, left me with amazing memories that will last me for a lifetime.

I would also like to whole-heartedly thank my beloved mother whose unending encouragement, support and prayers helped through the hard times and kept me going on what seemed like an unreachable achievement. She has always been my anchor and my guide both in good and bad times.

My heartfelt gratitude also goes to my siblings, Louzeh, Mohammed, Ahmed, Aisha, Khawla, Hamed, Dherar and Ayoob for always providing their support, motivation, and best wishes. Moreover, I would like to express my never-ending appreciation and thanks to my beloved wife “Shaima” and my wonderful children, Laryn, Amro and Mohammad for their patience, care, support and love as without them, this dissertation would not have materialized.

Finally, I would also like to thank my friends and colleagues who have contributed in one way or another to help me complete this thesis successfully and for their help and encouragement.
Table of Contents

Permission to Use ... i
Abstrak .. ii
Abstract .. iii
Acknowledgement ... iv
Table of Contents ... v
List of Tables .. ix
List of Figures ... xi
List of Appendices ... xii
List of Abbreviations .. xiii

CHAPTER ONE INTRODUCTION .. 1
1.1 Background of the Study ... 1
1.2 Problem Statement ... 8
1.3 Objectives of the Study ... 14
1.4 Research Questions ... 15
1.5 Hypotheses of the Study ... 16
1.6 Significance of the Study .. 17
1.7 Study Limitations ... 20
1.8 Operational Definitions ... 21
 Summary ... 23

CHAPTER TWO LITERATURE REVIEW 24
2.1 Introduction .. 24
2.2 Education System in Jordan ... 24
2.3 Mathematics Curriculum of 8th Grade in Jordan 25
 2.3.1 The Importance of Mathematics in 8th Grade 28
2.4 Difficulty Index ... 30
2.5 Social Cognitive Theory .. 31
2.6 Gender and Mathematics Achievement 34
 2.6.1 Gender and Number achievement 39
 2.6.2 Gender and Algebra achievement 41
 2.6.3 Gender and Geometry achievement 42
2.7 Gender and Spatial Visualization..44
2.8 MLS and Mathematics Achievement...47
 2.8.1 Mathematics Attitude and Mathematics Achievement47
 2.8.2 Mathematics Motivation and Mathematics Achievement53
 2.8.3 Self-regulation and Mathematics Achievement63
 2.8.4 Self-efficacy and Mathematics Achievement69
 2.8.5 Mathematics anxiety and Mathematics Achievement76
2.9 The Relationship between MLS Factors ...82
2.10 MLS Factors and Spatial Visualization ...83
2.11 Relationship between Mathematics Achievement and Spatial Visualization ..87
2.12 Relationship between Spatial Visualization, Numbers, Algebra and Geometry ..93
Summary ..96

CHAPTER THREE RESEARCH METHODOLOGY ..97
3.1 Introduction ..97
3.2 Research Design ..97
3.3 Research Population ...98
3.4 Sample Size ..98
3.5 Instrumentation ...99
3.6 Questionnaire Translation ...100
3.7 Questionnaire Items and Structure ...100
3.8 MLS Factor ..101
3.9 Cognitive Factors Instruments ...104
3.10 Content Validity ...105
3.11 Pilot Study ..106
3.12 Reliability Analysis ...107
3.13 Data Collection Procedure ..111
3.14 Data Analysis Procedure ..112
 3.14.1 Data Screening ..113
 3.14.2 Missing Data ...113
 3.14.3 Normality ...113
5.3.2 Research Question Two ... 167
5.3.3 Research Question Three .. 172
5.3.4 Research Question Four ... 176
5.4 Implication ... 181
5.5 Recommendations for Future Study ... 187
Summary ... 188
REFERENCES ... 190
List of Tables

Table 3.1 The Measured MLS Factors and Their Related Elements in the Questionnaire ... 101
Table 3.2 Cognitive Factor Instrument ... 105
Table 3.3 Test Specification Table ... 106
Table 3.4 Reliability Analysis for Mathematics Attitude ... 108
Table 3.5 Reliability Analyses for Motivation towards Mathematics 109
Table 3.6 Reliability Analyses for Mathematics Self-regulation......................... 110
Table 3.7 Reliability analyses for Mathematics Self-efficacy 110
Table 3.8 Reliability Analyses for Mathematics anxiety 111
Table 3.9 The Data Analysis Techniques Used in the Research 120
Table 4.1 Means and standard deviations for all Variables 126
Table 4.2 Summary of the Total Questionnaire and the Response Rate 127
Table 4.3 Statistic Values of Skewness and Kurtosis (Descriptive Statistics) (n = 331) .. 129
Table 4.4 Tolerance Value and the Variance Inflation Factor (VIF) test 131
Table 4.5 Factor loading for the Mathematics Attitude variable 133
Table 4.6 Factor loading for Mathematics Motivation ... 134
Table 4.7 Factor loading for the Mathematics Self-regulation variable 135
Table 4.8 Factor loading for Mathematics Self-efficacy 137
Table 4.9 Factor loading for Mathematics anxiety .. 138
Table 4.10 Reliability analyses for attitude towards mathematics 140
Table 4.11 Reliability analyses for motivation towards mathematics 141
Table 4.12 Reliability analyses for Mathematics Self-regulation 142
Table 4.13 Reliability analyses for Mathematics Self-efficacy 143
Table 4.14 Reliability analyses for Mathematics anxiety 143
Table 4.15 Gender differences based on Numbers, Algebra, Geometry, Mathematics achievement and Spatial visualization .. 151
Table 4.16 Multiple Regression Result between MLS Factors and Mathematics achievement ... 152
Table 4.17 The result of hierarchical regression analysis using spatial visualization as a mediator in the relationship between mathematics attitude and mathematics achievement...155

Table 4.18 The result of hierarchical regression analysis using spatial visualization as a mediator in the relationship between mathematics motivation and mathematics achievement...157

Table 4.19 The result of hierarchical regression analysis using spatial visualization as a mediator in the relationship between mathematics self-regulation and mathematics achievement...158

Table 4.20 The result of hierarchical regression analysis using spatial visualization as a mediator in the relationship between mathematics self-efficacy and mathematics achievement...159

Table 4.21 The result of hierarchical regression analysis using spatial visualization as a mediator in the relationship between mathematics anxiety and mathematics achievement...160
List of Figures

Figure 1.1. Average of Mathematics Achievement Score of Jordanian Student Eight Graders ... 10
Figure 1.2. Differences between average mathematics score of Jordanian male and female students among 8th graders in TIMSS study. .. 10
Figure 3.1. Research Framework for Spatial visualization mediating between MLS and Mathematics achievement ... 124
Figure 4.1. Normality Test Histogram of Standardized residuals 128
Figure 4.2. Normal Probability P-Plot Regression of Standardized residuals 130
Figure 4.3. Homoscedasticity test for mathematics achievement 131
Figure 4.4. Students results with numbers, algebra and geometry 144
Figure 4.5. Items difficulty for numbers in mathematics for male students 145
Figure 4.6. Items difficulty for numbers in mathematics for female students 146
Figure 4.7. Items difficulty for algebra in mathematics for male students 147
Figure 4.8. Items difficulty for algebra in mathematics for female students 147
Figure 4.9. Items difficulty for geometry in mathematics for male students 148
Figure 4.10. Items difficulty for geometry in mathematics for female students 149
Figure 4.11 Mediation Model: Baron & Kenny (1986) 154
List of Appendices

Appendix A : Permission Latter from Ministry of Education in Al-Koura District 224
Appendix B : Research Questionnaire (English Version)..225
Appendix C : Research Questionnaire (Arabic Version)..228
Appendix D : Mathematics Test (Arabic Version)..233
Appendix E : Spatial Visualization Test...237
Appendix F : SPSS Output of the Research Pilot Test: Reliability243
Appendix G : SPSS Output of Instruments Factor Analysis248
Appendix H : The Reliability Analysis of the Main Research Factors......................251
Appendix I : Correlation Analysis of the Research Factors.....................................256
Appendix J : The Regression Analysis Outputs of Examind Factor..........................257
Appendix K : SPSS Output of the Hierarchical Regression Analysis258
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoE</td>
<td>Ministry of Education</td>
</tr>
<tr>
<td>NCTM</td>
<td>National Council of Teacher of Mathematics</td>
</tr>
<tr>
<td>TIMSS</td>
<td>Trends in International Mathematics and Science Study</td>
</tr>
<tr>
<td>UNRWA</td>
<td>United Nation Relief and Work Agency</td>
</tr>
<tr>
<td>CTT</td>
<td>Classical Test Theory</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Sciences</td>
</tr>
</tbody>
</table>
CHAPTER ONE
INTRODUCTION

1.1 Background of the Study
The educational system is primarily viewed as a significant factor forming the basis of an individual’s development and progress, which forms the core of countries’ development. As such, more and more focus is being emphasized on the educational systems promotion on a global scale. In the context of Jordan, the government has made considerable efforts in developing its educational system. Such system has experienced tremendous development and increasing progress that date back to the 1920s (Al-Jaraideh, 2009). In addition, Jordan undertook the responsibility of the development of an extensive and high-quality system for its citizens’ development. As a result, citizens residing in poor and remote areas have had access to schools and education (Al-Jaraideh, 2009). The country’s position in favoring basic education over higher education has improved the literacy levels and facilitated the achievement of higher degrees of enrollment. Primary education in Jordan, while freely provided, is not compulsory and it comprises of ten classes from first to tenth class.

Study curricula all over the world, including Jordan, have witnessed a radical change – changes in curricula and courses of all education levels. Specifically, in the last two decades, mathematics curriculum has undergone a lot of development on both the international and local level. On the international arena, more developed countries have begun a comprehensive review of the mathematical teaching program to develop and make them up-to-date to keep abreast of the needs of the 21st century.
The contents of the thesis is for internal user only
REFERENCES

