

HYBRID ANT COLONY SYSTEM ALGORITHM FOR STATIC

AND DYNAMIC JOB SCHEDULING IN GRID COMPUTING

MUSTAFA MUWAFAK THEAB ALOBAEDY

DOCTOR OF PHILOSOPHY

UNIVERSITI UTARA MALAYSIA

2015

 ii

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely

available for inspection. I further agree that permission for the copying of this thesis

in any manner, in whole or in part, for scholarly purpose may be granted by my

supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School

of Arts and Sciences. It is understood that any copying or publication or use of this

thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to

Universiti Utara Malaysia for any scholarly use which may be made of any material

from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

 iii

Abstrak

Pengkomputeran grid adalah sistem teragih dengan infrastruktur heterogen. Sistem

pengurusan sumber (RMS) adalah salah satu komponen terpenting yang mempunyai

pengaruh besar ke atas prestasi pengkomputeran grid. Bahagian utama RMS adalah

algoritma penjadual yang bertanggungjawab untuk memeta tugas kepada sumber

sedia ada. Kerumitan masalah penjadualan dianggap sebagai satu masalah lengkap

polinomial tidak berketentuan (NP-lengkap) dan oleh itu, satu algoritma pintar

diperlukan untuk mencapai penyelesaian penjadualan yang lebih baik. Salah satu

algoritma pintar yang menonjol adalah ant colony system (ACS) yang digunakan

secara meluas untuk menyelesaikan pelbagai jenis masalah penjadualan. Walau

bagaimanapun, ACS mengalami masalah genangan dalam pengkomputeran grid

bersaiz sederhana dan besar. ACS berasaskan mekanisma eksploitasi dan penerokaan

di mana eksploitasi adalah mencukupi tetapi berkurangan pada penerokaan.

Penerokaan dalam ACS adalah berasaskan kepada pendekatan rawak tanpa sebarang

strategi. Kajian ini mencadangkan empat algoritma hibrid di antara ACS, Genetic

Algorithm (GA), dan Tabu Search (TS) untuk meningkatkan prestasi ACS. Algoritma

tersebut adalah ACS(GA), ACS+GA, ACS(TS), dan ACS+TS. Algoritma hibrid yang

dicadangkan ini akan meningkatkan ACS dari segi mekanisma penerokaan dan

penghalusan penyelesaian dengan melaksanakan penghibridan tahap rendah dan

tinggi algoritma ACS, GA, dan TS. Semua algoritma yang dicadangkan telah dinilai

dan dibandingkan dengan dua belas metaheuristic algoritma dalam persekitaran

pengkomputeran grid statik (masa jangkaan kepada model pengiraan) dan dinamik

(corak taburan). Satu simulator yang dinamakan ExSim telah dibangunkan untuk

meniru sifat statik dan dinamik pengkomputeran grid. Keputusan eksperimen

menunjukkan algoritma yang dicadangkan mengatasi ACS dari segi nilai makespan

terbaik. Prestasi ACS(GA), ACS+GA, ACS(TS) dan ACS+TS adalah lebih baik

daripada ACS dengan masing-masing meningkat sebanyak 0.35%, 2.03%, 4.65% dan

6.99% untuk persekitaran statik. Untuk persekitaran dinamik, prestasi ACS(GA),

ACS+GA, ACS+TS dan ACS(TS) adalah lebih baik daripada ACS iaitu masing-

masing meningkat sebanyak 0.01%, 0.56%, 1.16%, dan 1.26%. Algoritma yang

dicadangkan boleh digunakan untuk penjadualan tugas dalam pengkomputeran grid

dengan prestasi yang lebih baik dari segi makespan.

Kata Kunci: Algoritma metaheuristik, Ant colony system, Genetic algorithm, Tabu

search, Penjadualan kerja dalam pengkomputeran grid.

 iv

Abstract

Grid computing is a distributed system with heterogeneous infrastructures. Resource

management system (RMS) is one of the most important components which has great

influence on the grid computing performance. The main part of RMS is the scheduler

algorithm which has the responsibility to map submitted tasks to available resources.

The complexity of scheduling problem is considered as a nondeterministic polynomial

complete (NP-complete) problem and therefore, an intelligent algorithm is required to

achieve better scheduling solution. One of the prominent intelligent algorithms is ant

colony system (ACS) which is implemented widely to solve various types of

scheduling problems. However, ACS suffers from stagnation problem in medium and

large size grid computing system. ACS is based on exploitation and exploration

mechanisms where the exploitation is sufficient but the exploration has a deficiency.

The exploration in ACS is based on a random approach without any strategy. This

study proposed four hybrid algorithms between ACS, Genetic Algorithm (GA), and

Tabu Search (TS) algorithms to enhance the ACS performance. The algorithms are

ACS(GA), ACS+GA, ACS(TS), and ACS+TS. These proposed hybrid algorithms

will enhance ACS in terms of exploration mechanism and solution refinement by

implementing low and high levels hybridization of ACS, GA, and TS algorithms. The

proposed algorithms were evaluated against twelve metaheuristic algorithms in static

(expected time to compute model) and dynamic (distribution pattern) grid computing

environments. A simulator called ExSim was developed to mimic the static and

dynamic nature of the grid computing. Experimental results show that the proposed

algorithms outperform ACS in terms of best makespan values. Performance of

ACS(GA), ACS+GA, ACS(TS), and ACS+TS are better than ACS by 0.35%, 2.03%,

4.65% and 6.99% respectively for static environment. For dynamic environment,

performance of ACS(GA), ACS+GA, ACS+TS, and ACS(TS) are better than ACS by

0.01%, 0.56%, 1.16%, and 1.26% respectively. The proposed algorithms can be used

to schedule tasks in grid computing with better performance in terms of makespan.

Keywords: Metaheuristic algorithms, Ant colony system, Genetic algorithm, Tabu

search, Job scheduling in grid computing.

 v

Acknowledgement

Each part of this study is guided, inspired, and supported by many people. The most

important support and guidance were from my research supervisor Prof. Dr. Hjh. Ku

Ruhana Ku Mahamud. Thank you very much for your great help and support. It is an

honour for me to do a research under your supervision.

I would like to thank all the academic and technical staff in Utara Universiti Malaysia

for their help in the study process and providing all the excellent facilities.

Furthermore, I would like to thank all the members of my family for their

unconditional support. My goal would not be achieved without them.

Finally, I would like to thank all my friends for their support.

 vi

Table of Contents

Permission to Use .. ii

Abstrak .. iii

Abstract ... iv

Acknowledgement ... v

Table of Contents .. vi

List of Tables ... x

List of Figures ... xi

List of Appendices .. xiii

List of Abbreviations .. xiv

CHAPTER ONE INTRODUCTION.. 1

1.1 Problem Statement ... 8

1.2 Objective of the Study ... 10

1.3 Significance of the Study ... 11

1.4 Scope and Assumption of the Study .. 12

1.5 Thesis Organization ... 12

CHAPTER TWO LITERATURE REVIEW ... 14

2.1 Job Scheduling Algorithms in Computational Grid System 14

2.1.1 Heuristic Algorithms .. 15

2.1.2 Evolutionary Algorithms .. 19

2.1.3 Local Search ... 35

2.1.4 Swarm Intelligence Algorithms ... 44

2.2 Hybrid Approaches in Job Scheduling .. 67

2.3 Grid Simulator ... 77

2.4 Conceptual Framework .. 79

2.5 Summary .. 81

CHAPTER THREE RESEARCH METHODOLOGY 83

3.1 Research Framework ... 83

3.2 Research Methodology .. 85

3.2.1 Problem Formulation .. 85

 vii

3.2.2 Dynamic Expected Time to Compute .. 87

3.2.3 Solution Encoding .. 87

3.2.4 Objective Function ... 89

3.2.5 Ant Colony System Algorithm Implementation .. 90

3.4.6 Genetic Algorithm Implementation ... 91

3.4.7 Tabu Search Algorithm Implementation .. 94

3.2.8 Enhance ACS exploration .. 96

3.2.9 Refine the ACS solution ... 104

3.2.10 Grid Simulator Development ... 111

3.2.11 Proposed Algorithm Evaluation ... 111

3.3 Summary .. 113

CHAPTER FOUR SIMULATOR DEVELOPMENT... 114

4.1 Identifying the Measurement Criteria .. 114

4.2 Implementing the Benchmark Problems Model .. 115

4.3 Simulation Verification and Validation ... 125

4.3.1 Verification Techniques ... 126

4.3.2 Validation Techniques .. 127

4.3.3 Testing the Proposed Hybrid Algorithms ... 127

4.4 Summary .. 130

CHAPTER FIVE JOB SCHEDULING IN STATIC GRID COMPUTING ... 131

5.1 Static Environment... 131

5.2 Algorithms Parameters... 132

5.2.1 Genetic Algorithm Parameters ... 132

5.2.2 Ant System Parameters .. 133

5.2.3 Ant Colony System Parameters .. 134

5.2.4 Tabu Search Parameters ... 135

5.2.5 BABC, EBABC1, and EBABC2 Parameters ... 136

5.2.6 PSO-GELS Parameters .. 137

5.2.7 AS(TS), AS+TS, ACS(TS), and ACS+TS Parameters 137

5.2.8 AS(GA), AS+GA, ACS(GA), and ACS+GA Parameters 138

5.3 Experimental Result and Analysis ... 139

5.3.1 Best Makespan Results ... 140

 viii

5.3.2 Average Makespan Results .. 141

5.3.3 Best Flowtime Results .. 143

5.3.4 Average Flowtime Results ... 145

5.3.5 Best Utilization Results .. 147

5.3.6 Average Utilization Results ... 149

5.3.7 Discussion .. 150

5.4 Summary .. 151

CHAPTER SIX JOB SCHEDULING IN DYNAMIC GRID COMPUTING .. 152

6.1 Dynamic Environment ... 152

6.2 Algorithm Parameters .. 154

6.2.1 Genetic Algorithm Parameters ... 154

6.2.2 Ant System Parameters .. 156

6.2.3 Ant Colony System Parameters .. 157

6.2.4 Tabu Search Parameters ... 157

6.2.5 BABC, EBABC1, and EBABC2 Parameters ... 158

6.2.6 PSO-GELS Parameters .. 159

6.2.7 AS(TS), AS+TS, ACS(TS), and ACS+TS Parameters 160

6.2.8 AS(GA), AS+GA, ACS(GA), and ACS+GA Parameters 160

6.3 Experimental Result and Analysis ... 162

6.3.1 Best Makespan Results ... 162

6.3.2 Average Makespan Results .. 164

6.3.3 Best Flowtime Results .. 166

6.3.4 Average Flowtime Results ... 167

6.3.5 Best Utilization Results .. 169

6.3.6 Average Utilization Results ... 171

6.3.7 Discussion .. 172

6.4 Summary .. 173

CHAPTER SEVEN CONCLUSION AND FUTURE WORK 174

7.1 Research Contribution ... 174

7.2 Limitation of the Study .. 176

7.3 Recommendation for Future Work .. 176

 ix

REFERENCES ... 178

 x

List of Tables

Table 2.1 Difference between each variant algorithm in ACO 49
Table 2.2 Various research on different Domains and problems................................ 50
Table 3.1 The implemented algorithms source ... 112
Table 4.1 Algorithms evaluated with ETC model. ... 115
Table 4.2 Experimental parameters .. 122

Table 4.3 ETC matrix for 3 resources and 13 jobs ... 128
Table 5.1 Algorithms resource for parameter values .. 132
Table 5.2 GA parameter values .. 132
Table 5.3 AS parameter value ... 133
Table 5.4 ACS parameter values .. 134

Table 5.5 TS parameter values .. 135
Table 5.6 BABC, EBABC1, EBABC2 parameter values ... 136
Table 5.7 PSO-GELS Algorithm Parameters Values ... 137

Table 5.8 AS, ACS, and TS Algorithms Parameter Values 138
Table 5.9 AS(GA) and AS+GA Algorithms Parameter Values 138
Table 5.10 ACS(GA) and ACS+GA Algorithms Parameter Values 139

Table 6.1 Datasets descriptions ... 153
Table 6.2 Parameters for Generating Dynamic Benchmark 153

Table 6.3 Algorithms resource for parameter values .. 154
Table 6.4 GA parameter values .. 155
Table 6.5 AS parameter value ... 156

Table 6.6 ACS parameter values .. 157
Table 6.7 TS parameter values .. 157

Table 6.8 BABC, EBABC1, EBABC2 parameter values ... 158
Table 6.9 PSO-GELS Algorithm Parameters Values ... 159
Table 6.10 AS, ACS, and TS Algorithms Parameter Values 160

Table 6.11 AS(GA) and AS+GA Algorithms Parameter Values 161

Table 6.12 ACS(GA) and ACS+GA Algorithms Parameter Values 161

 xi

List of Figures

Figure 2.1: Basic Genetic Algorithm (Zapfel et al., 2010) .. 26
Figure 2.2: Visualization of GA population (Zapfel et al., 2010) 26
Figure 2.3: Examples of crossover operators (Zapfel et al., 2010) 28
Figure 2.4: Process of Genetic Algorithm (Zapfel et al., 2010) 29
Figure 2.5: Process of Tabu Search algorithm (Zapfel et al., 2010) 39

Figure 2.6: Tabu Search algorithm pseudocode (Zapfel et al., 2010) 41
Figure 2.7: Research conceptual framework ... 80
Figure 3.1: The Research Framework .. 84
Figure 3.2: The solution vector used by the ants ... 88
Figure 3.3: Solution vectors used by genetic algorithm .. 89

Figure 3.4: The new solution vectors produced by crossover operator 89
Figure 3.5: Chromosomes for five tasks and three machines 92
Figure 3.6: ACS(GA) (low level) algorithm pseudocode .. 98

Figure 3.7: ACS(TS) (low level) algorithm pseudocode ... 101
Figure 3.8: ACS+GA (high level) pseudocode .. 105
Figure 3.9: ACS+TS (high level) algorithm pseudocode .. 108

Figure 4.1: Workload modelling (Feitelson, 2013) ... 119
Figure 4.2: DETC simulator interface ... 122

Figure 4.3: Benchmark for dynamic grid computing... 123
Figure 4.4: Grid computing simulator interface .. 124
Figure 4.5: Simulator charts ... 125

Figure 4.6: ACS(TS) Schedule table ... 129
Figure 4.7: ACS+TS Schedule table .. 129

Figure 4.8: ACS(GA) Schedule table .. 130
Figure 4.9: ACS+GA Schedule table ... 130
Figure 5.1: Geometric mean for the best makespan values 140

Figure 5.2: The percentage enhancement of each hybrid algorithm in terms of the best

makespan values .. 141
Figure 5.3: Geometric mean for the average makespan values 142
Figure 5.4: The percentage enhancement of each algorithm in terms of the average

makespan values .. 143
Figure 5.5: Geometric mean for best flowtime values ... 144
Figure 5.6: The percentage enhancement of each algorithm in terms of the best

flowtime values .. 145
Figure 5.7: Geometric mean for average flowtime values ... 146

Figure 5.8: The percentage enhancement of each algorithm in terms of the average

flowtime values .. 147
Figure 5.9: Geometric mean for best utilization value .. 148

Figure 5.10: The percentage enhancement of each algorithm in terms of the best

utilization values .. 149

Figure 5.11: Geometric mean for average utilization values 149
Figure 5.12: The percentage enhancement of each algorithm in terms of the average

utilization values .. 150
Figure 6.1: Geometric mean for the best makespan values 163
Figure 6.2: The percentage enhancement of each hybrid algorithm in terms of the best

makespan values .. 164
Figure 6.3: Geometric mean for the average makespan values 165

 xii

Figure 6.4: The percentage enhancement of each hybrid algorithm in terms of the

average makespan values ... 165
Figure 6.5: Geometric mean for the best flowtime values ... 166
Figure 6.6: The percentage enhancement of each algorithm in terms of the best

flowtime values .. 167

Figure 6.7: Geometric mean for the average flowtime values 168
Figure 6.8: The percentage enhancement of each hybrid algorithm in terms of the

average flowtime values .. 169
Figure 6.9: Geometric mean for the best utilization value... 170
Figure 6.10: The percentage enhancement of each hybrid algorithm in terms of the

best utilization values ... 170
Figure 6.11: Geometric mean for the average utilization value................................. 171
Figure 6.12: The percentage enhancement of each hybrid algorithm in terms of the

average utilization values ... 172

 xiii

List of Appendices

Appendix A Ant Colony System (C# Code).. 201

Appendix B Genetic Algorithm (C# Code) ... 204

Appendix C Tabu Search Algorithm (C# Code).. 213

Appendix D DETC Simulator .. 220

 xiv

List of Abbreviations

ABC Artificial Bee Colony

ACO Ant Colony Optimization

ACS Ant Colony System

ACS(GA) Low level hybridization between ACS and GA algorithms

ACS(TS) Low level hybridization between ACS and TS algorithms

ACS+GA High level hybridization between ACS and GA algorithms

ACS+TS High level hybridization between ACS and TS algorithms

AS Ant System

AS(GA) Low level hybridization between AS and GA algorithms

AS(TS) Low level hybridization between AS and TS algorithms

AS+GA High level hybridization between AS and GA algorithms

AS+TS High level hybridization between AS and TS algorithms

ASrank Rank-Based Ant System

BABC Binary Artificial Bee Colony

BACO Balanced Ant Colony Optimization

BFO Bacterial Foraging Optimization

BWAS Best-Worst Ant System

cMA Cellular Memetic Algorithm

CV Coefficient of Variation

DE Differential Evolution

DETC Dynamic Expected Time to Compute

EA Evolutionary Algorithms

 xv

EAS Elitist strategy for Ant System

EBABC1 Efficient Binary Artificial Bee Colony

EBABC2 Efficient Binary Artificial Bee Colony with flexible ranking

ET Execution Time

ETC Expected Time to Compute

FANT Fast Ant System

FCFS First Come First Served

FPLTF Fastest Processor to Largest Task First

GA Genetic Algorithm

GA(TS) Low level hybridization between GA and TS algorithms

GA+TS High level hybridization between GA and TS algorithms

GBF Genetic Bacterial Foraging

GSA Genetic and Simulated Annealing

GTSP Generalized Traveling Salesman Problem

HACO Hybrid Ant Colony Optimization

HC Hill Climbing

HCACO Hybrid Converse Ant Colony Optimization

HGS Hierarchic Genetic Strategy

HPDSs High Performance Distributed Systems

IACO Improved Ant Algorithm

JSP Job Scheduling Problem

KPB K-Parents Best

LJFR-SJFR Longest Job to Fastest Resource-Shortest Job to Fastest Resource

LM Local Move

LMCTS Local Minimum Completion Time Swap

 xvi

MA Memetic Algorithms

MA+TS High level hybridization between Memetic and Tabu Search

MACO Multiple Ant Colonies Optimization

MCT Minimum Completion Time

MDS Metacomputing Directory Service

MET Minimum Execution Time

MI Million Instructions

MIPS Million Instructions Per Second

MMAS Max-Min Ant System

MTEDD Minimum Time Earliest Due Date

MTERD Minimum Time Earliest Release Date

OLB Optimization Load Balancing

PGA1 Player’s Genetic Algorithm

PGA2 Parallel Genetic Algorithm

PMCT Player’s Minimum Completion Time

PSO Particle Swarm Optimization

PSO-GELS Particle Swarm Optimization and Gravitational Emulation Local

Search

QoS Quality of Service

RGA Risky Genetic Algorithm

SA Simulated Annealing

SGA Struggle Genetic Algorithm

SLM Steepest Local Move

SS Scatter Search

SSGA Steady-State Genetic Algorithm

 xvii

SwA Switching Algorithm

TS Tabu Search

TSP Traveling Salesman Problem

1

 CHAPTER ONE

INTRODUCTION

The concept of grid systems goes back to 1969 when Leonard Kleinrock wrote, “We

will probably see the spread of computer utilities, which, like present electric and

telephone utilities, will service individual homes and offices across the country”

(Wankar, 2008). From that time, many researchers presented various works and

contributed in grid systems fields. The popularity of grid systems started by the late

1990s when Foster developed a grid system called Globus Toolkit (Foster &

Kesselman, 1997; 2004).

Grid systems evolves from existing technology such as distributed computing, web

service, and Internet (Magoules, Pan, Tan, & Kumar, 2009). According to Xhafa and

Abraham (2010), grid computing is defined as “Geographically distributed computers,

linked through the internet in a Grid-like manner, which are used to create virtual

supercomputers of vast amount of computing capacity able to solve complex problem

from e-Science in less time than known before”.

Magoules, Nguyen, and Yu (2009) presented an extensive definition for grid systems

as “A hardware and software infrastructure that provides transparent, dependable,

pervasive and consistent access to large-scale distributed resources owned and shared

by multiple administrative organizations in order to deliver support for a wide range

of applications with the desired qualities of service. These applications can perform

either: high throughput computing, on-demand computing, data intensive computing,

or collaborative computing”.

2

From previous definitions, it can be concluded that grid computing is a collection of

geographically distributed and heterogeneous resources. They are connected like a

grid using internet technology to form a virtual supercomputer that has the capacity to

solve very complex problems. Grid can be used by different fields such as science,

commerce, and education.

Grid systems could be distributed geographically through different organizations

using different platforms (Kolodziej, 2012). Two services offered by grid systems are

computing-intensive services and data-intensive services (Xhafa & Abraham, 2008b).

In computing services, the grid process tasks are not possible or very difficult to be

processed in traditional computer resource, while data storage services provide a

storage which is available through many mirrors and servers. Grid computing

provides powerful computation resources for complex tasks such as scientific

research, stock markets, and business requirements for organizations. However,

according to Xhafa and Abraham (2008), grid computing is still in the developmental

stage, and there are many challenges to be addressed in the future.

Grid systems are classified as a modern High Performance Distributed Systems

(HPDSs) along with the clusters and cloud systems (Kolodziej, 2012). However, there

are crucial characteristics which are different between them such as scale, network

type, administrative domain, and resources structure (AL-Fawair, 2009; Montes,

Sanchez, & Perez, 2012). Grid systems are extended to many other types of grids such

as enterprise grid, sensor grid, campus grid, global grid, pc grid, and utility grid

(Babafemi, Sanjay, & Adigun, 2013; Conejero, Caminero, Carrion, & Tomas, 2014;

Fulop, 2008; Kolodziej, 2012).

3

Grid computing requirements, usage, and definitions have changed with time.

Berman, Fox, and Hey (2003) categorized the evolution of grid into three different

generations. The first generation is called meta-computing environment, namely

FAFNER and I-WAY projects. In the second generation, the grid technology is

developed such as grid resource management, resource brokers and schedulers, grid

portal, and complete integrated systems. Some projects developed at this era are

Globus, Legion, and UNICORE. The third generation represents the integration

between grid computing and web services technologies such as OGSI and WSRF.

According to Magoules, Pan, et al. (2009), grid architecture consists of four layers.

The first layer is the user application level (APIs). The second layer is the middleware

layer which includes management software and packages. The third layer deals with

resources available to the grid such as data storage, processing capabilities and other

application-specific hardware. The fourth layer deals with network components such

as routers, switches, and the protocols used for communication between sources in the

grid. In addition, the main characteristics of grid systems are distributed, non-

dedicated, service-oriented heterogeneous, and non-centralized (Montes et al., 2012).

Magoules, Pan, et al. (2009) classified the usage of grid applications into five major

groups: The first group is distributed computing which is the grid computing

application to solve problems that cannot be solved on a single system, such as

simulation of complex physical process, which needs many resources like CPU and

memory. The second group is called high-throughput computing where the grid

utilizes the unused processor cycles in order to perform independent tasks. Using this

method, a complex task can be divided into multiple tasks and the grid will schedule

and manage the process. Problems such as bio-statistical, molecular simulations of

4

liquid crystal and Monte Carlo simulations are very suited for high-throughput

computing. The third group is on-demand computing. For this type, some resources

cannot be cost-effectively or not locally located. Therefore, grid can provide an access

to such a resource. Yet, there are many issues to be addressed, such as security,

scheduling, code management, configuration, fault tolerance, and payments process.

A typical example of an application requiring on-demand computing is the use of

dynamically acquired supercomputer to perform cloud detection algorithm.

The fourth group is data intensive computing, which is a grid that can be used to

manage data from distributed data repositories, digital library and database. A field

such as High Energy Physics (HEP) is an example of application that requires data

intensive computing support. The fifth group is called collaborative computing,

whereby some applications require strict real time capabilities and different types of

interactions that can take place. A typical example of such application that could use a

collaborative computing is multi-conferencing.

One of the most important components in grid computing is resource management

system (Hussain et al., 2013). Resource management system has the responsibility to

map the submitted tasks to the available resources (Sim, 2009). Resource

management system is implemented with scheduling algorithm to map tasks to the

resources in an efficient way (Espling, 2013; Ma, Yan, Liu, Guan, & Lee, 2011). In

grid computing, job scheduling algorithm is the main issue for grid computing

performance (Kolodziej, 2012; Kousalya & Balasubramanie, 2009; Mathiyalagan,

Suriya, & Sivanandam, 2010; Visalakshi & Sivanandam, 2009). Scheduling can be

done in a simple way by assigning the incoming task to the available resource.

However, by using a more advanced and sophisticated scheduler algorithm, the grid

5

can obtain better computing performance (Kolodziej, 2012). The scheduler should

take into account many aspects, such as dynamic tasks environment, joining and

dropping of resources from grid and evaluating the current load of the resources. The

scheduler can be in hierarchical or distributed organization to deal with large scale of

the grid.

In order to solve the grid computing scheduling problem, it is very important to define

the problem first. The scheduling problem is defined as an NP-complete problem

(Maheshbhai, 2011; Mao, 2011; Wei, Zhang, Li, & Li, 2012). The NP-complete

problem needs heuristic or metaheuristics algorithms which have the ability to solve

combinatorial optimization problems in a reasonable time (Aleti, 2012).

Metaheuristics algorithms, such as Simulated Annealing (SA) algorithm, are

implemented for job scheduling in grid computing (Cai, Ning, Li, & Zhong, 2007;

Guo & Wang, 2010). However, SA needs a long running time to reach a good quality

solution which is very restricted in grid computing environment (Xhafa, Barolli, &

Durresi, 2007a). Genetic Algorithm (GA) is also implemented successfully in grid

computing scheduling problems (Carretero, Xhafa, & Abraham, 2007). GA is able to

find a good solution in consistent and semi-consistent environments. However, in

inconsistent environment, GA suffers from premature convergence (Kolodziej, Xhafa,

& Kolanko, 2009). Another important metaheuristics approach is Tabu Search (TS)

algorithm which is implemented for job scheduling on computational grid system

(Xhafa, Carretero, Dorronsoro, & Alba, 2009). TS algorithm has the benefit of

systematic search which makes the algorithm avoid random solution. However, TS

also suffers from stagnation due to the use of local neighbourhood search technique.

One more important family of metaheuristics algorithms are ACO algorithms which

are implemented widely on scheduling problems (Bandieramonte, Stefano, & Morana,

6

2008; Chang, Chang, & Lin, 2009; Cyril Daisy Christina & Miriam, 2012; Kant,

Sharma, Agarwal, & Chandra, 2010; Zhu, Zhao, & He, 2010a).

ACO algorithms which are inspired by biological ants present many solutions for

different types of NP-complete problems (Dorigo & Stutzle, 2004).

Biological ants have the ability to discover the shortest route from the nest to the

source of food (Dorigo & Stutzle, 2004). Although they do not have an advanced

vision system (Camazine et al., 2003), they have the ability to communicate with the

environment. Ants use a chemical substance called “pheromone” to communicate

with the environment and between each other (Dorigo & Gambardella, 1997a).

Pheromone substance has evaporation property which is a powerful mechanism to

update the route information. While an ant moves looking for food, it deposits a

pheromone along the path. The following ant will more likely select the route with

richer pheromone. This mechanism will make the ant choose the shortest path.

There are several enhanced ACO algorithms implemented in grid computing

scheduling problems such as balanced job scheduling using Ant Colony Optimization

(BACO) for grid environment by Chang, Chang, and Lin (2007). A study proposed by

Chang, Chang, and Lin (2009) implemented ant algorithm for balanced job

scheduling in computational grid. Kousalya and Balasubramanie (2009) presented a

study on improving ant colony optimization algorithm with local search for job

scheduling in computational grid systems. Liusuqin, Shuojun, Menglingfen, and

Lixingsheng (2009) published a study to improve ant colony optimization for Job

Scheduling Problem (JSP). A multiple ant colony model called “Cooperative multi-

ant Colony Pseudo-parallel Optimization Algorithm” was proposed by Liu, Song, and

7

Dai (2010). Another study regarding ACO algorithm for job scheduling on

computation grid was proposed by Kant, Sharma, Agarwal, and Chandra (2010). A

research on task scheduling with load balancing using Multiple Ant Colonies

Optimization (MACO) in grid computing was conducted by Bai et al. (2010).

Enhanced ant colony algorithm for job scheduling in computational grid was

proposed by Maruthanayagam and UmaRani (2010). Mou (2011) presented a new

approach using double Pheromones technique for ant colony system. An improved

ACO algorithm for job scheduling in computational grid systems proposed by

MadadyarAdeh and Bagherzadeh (2011). Kokilavani and Amalarethinam (2013)

published a study on implementing ant colony optimization based load sharing for job

scheduling in computational grid systems.

The first version of ACO known as ant system algorithm was presented by Dorigo,

Maniezzo, and Colorni (1991). Ant system is utilized to solve job scheduling on grid

computing (Kousalya & Balasubramanie, 2008). Another version of ACO is elitist ant

system algorithm which has better performance than ant system (Dorigo, Maniezzo,

& Colorni, 1996). However, the performances of ant system and elitist ant system

algorithms drop dramatically once the size of the problem instance increase (Dorigo

& Stutzle, 2004). Another important version of ACO algorithms is Ant Colony

System (ACS) presented by Dorigo and Gambardella (1997b). ACS algorithm mimics

the behaviour of real ant colony to solve optimization problems such as Traveling

Salesman Problem (TSP) and network routing. ACS algorithm is considered as one of

the best algorithms for solving NP-complete problems (Gendreau & Potvin, 2010).

Therefore, this study selected ACS as the main algorithm to hybridize with GA and

TS algorithms.

8

In ACS algorithm, ants apply exploitation and exploration mechanism when they

select the next node to move. In addition, ACS applies local pheromone update and

global pheromone update to direct the search for the next iteration. The global update

is calculated based on the quality of the best solution so far, while the local update

applies the evaporation concept. In ACS algorithm, the exploration mechanism is

based on a stochastic process. Such a random process will affect the whole solution if

the ant selects a bad choice in any cycle of the solution construction process.

Therefore, a more deterministic and systematic exploration mechanism is required to

enhance ACS algorithm performance.

Hybridizing ACS algorithm with local search approaches such as genetic algorithm or

tabu search algorithms will enhance the solutions produced by ACS. In spite of

several enhanced ACS algorithms used for job scheduling problem, more studies are

required to enhance the algorithm performance.

1.1 Problem Statement

In grid computing systems, many criteria depend on scheduling algorithm efficiency

such as grid performance, utilization, Quality of Service (QoS), and load balancing

(Nithya & Shanmugam, 2011; Zhu & Wei, 2010).

Xhafa & Abraham (2010) stated that “Rather than a problem, scheduling in grid

systems is a family of problems. This is due to the many parameters that intervene

scheduling as well as due to the different needs of grid-enabled applications”.

In scheduling algorithm, there are many factors and parameters that should be taken

into account, such as job size, resource capacity, network speed, current load, and

9

expected time to complete (AL-Fawair, 2009; Bai et al., 2010). In addition, the

dynamic and heterogeneous nature of grid environment makes the scheduling process

more critical such as joining and dropping resources to the gird (Maheshbhai, 2011;

Malarvizhi & Uthariaraj, 2009; Qureshi et al., 2014). If the scheduling algorithm is

not efficient, the grid system user will experience a delay in response time, especially

when the number of tasks is increased (Ku-Mahamud & Nasir, 2010). Therefore,

scheduling algorithm is a very important part in grid computing systems and it needs

to be improved to answer the dynamic requirements. Hence, a sufficient algorithm for

dynamic grid scheduling problem is demanded to enhance the grid computing system

performance (Ku-Mahamud & Nasir, 2010; Maruthanayagam & UmaRani, 2010).

The traditional ACS is not efficient in large-scale computation problems due to the

stagnation nature of pheromone in ACS (Mathiyalagan et al., 2010). ACS suffers

from deficiency in the exploration mechanism. Experiments such as those in Dorigo

and Stutzle (2004) used 0.1 for exploration and 0.9 for exploitation which indicate

that the exploration mechanism is not sufficient, while the exploitation mechanism is

efficient. However, because of the high ratio in exploitation, ACS algorithm has

behaved like greedy algorithm more than metaheuristics algorithm. After observing

the algorithm iteration step by step, it is found that the exploration is a stochastic

process and not guided. As the ACS algorithm uses construction approach, any wrong

selection for one or more node will affect the whole solution quality and that is what

happens when the stochastic exploration has selected a wrong node. According to

Glover and Laguna (1997), “bad strategic choice can yield more information than a

good random choice”. Therefore, ACS algorithm needs to be enhanced in terms of

exploration mechanism. In addition, ACS algorithm needs a mechanism to correct the

construction phase after each cycle. Genetic algorithm and tabu search methods are

10

very good candidates to be hybridized with ACS as both algorithms complement

ACS. In other words, ACS algorithm works based on constructive approach, while

GA and TS algorithms work based on a local search which is suitable to be hybridized

with ACS algorithm. Moreover, GA and TS algorithms could be hybridized as a low

level as well as a high level with ACS.

The research questions answered in this study are as follows:

i. How to improve the job scheduling in static and dynamic grid computing.

ii. How to hybridize ant colony system algorithm with genetic algorithm to

enhance the exploration and exploitation mechanisms?

iii. How to hybridize ant colony system algorithm with tabu search algorithm to

enhance the exploration and exploitation mechanisms?

iv. How the hybridized algorithms will avoid the local optimum trap?

v. Can a simulator produce benchmark environment of the grid computing?

1.2 Objective of the Study

The main objective of the study is to develop a hybrid ant colony system algorithm in

order to improve the job scheduling in static and dynamic grid computing

environment.

Specific objectives of the study are:

i. To propose a hybrid low level algorithm to enhance the exploration

mechanism in ACS algorithm.

ii. To propose a hybrid high level algorithm in refining the final solution found

by ACS algorithm.

11

iii. To design and develop a simulator that can be used to simulate the static and

dynamic grid environment.

iv. To evaluate the performance of the proposed hybrid ant colony system

algorithm.

1.3 Significance of the Study

The developed hybrid algorithm can be considered as a new member in the family of

ant colony optimization algorithms. The hybrid ACS algorithm is a new contribution

to the body of knowledge in the area of swarm intelligence and job scheduling in grid

computing.

The hybridization between ant colony system algorithm, genetic algorithm, and tabu

search algorithm to enhance the exploration part inside ACS guided the ants’

exploration in a better way. This hybridized algorithm concept can be used to solve

other optimization problems with minimal customization. In addition, this study has

implemented, compared and analysed sixteen algorithms for job scheduling in

computational grid. The analyses provide a deep understanding regarding the

behaviour of these algorithms.

The developed gird computing environment simulator has the ability to generate static

and dynamic benchmark problems which are very useful and highly demanded in the

field of job scheduling in grid computing. The simulator can be extended easily for

other scheduling algorithms.

12

1.4 Scope and Assumption of the Study

This study has focused on a single ant colony system algorithm which is a variant of

the ant colony optimization algorithms. The algorithm enhancement focused on low

and high level hybridizations between ACS and local search algorithm to improve the

exploration mechanism and enhance the final solution.

The implemented algorithm is applied on static and dynamic environments using

batch mode scheduling and independent task approach. For static environment, the

experiments were conducted using benchmarks presented by Ali, Siegel,

Maheswaran, Hensgen, and Ali (2000). This benchmark is frequently used because of

its effectiveness in simulating job scheduling problems in grid systems (Xhafa, Alba,

Dorronsoro, Duran, & Abraham, 2008). For dynamic environment, a simulator was

developed to mimic the real grid computing environment using the same pattern of

distribution (Feitelson, 2013).

This study has investigated GA and TS algorithms to enhance the exploration

mechanism and refine the final solution in ACS algorithms. In addition, this study

used three performance metrics to measure the grid computing performance, namely

makespan, flowtime, and utilization.

1.5 Thesis Organization

This thesis is organized as follows: Chapter 2 presents a review on various scheduling

algorithms in computational grid, hybrid approaches in metaheuristics algorithms,

grid simulator, and conceptual framework. The research framework, methods, and

techniques are discussed in Chapter 3. Chapter 4 presents the simulator development

steps with verification and validation. Details regarding the problem formulation,

13

parameters, performance criteria, and static experiments are provided in Chapter 5.

Chapter 6 presents the experiments on dynamic environment. Chapter 7 discusses the

contributions, limitations, and concludes the study with suggestion for future research.

14

CHAPTER TWO

LITERATURE REVIEW

This chapter presents the review of previous studies that have been done in the areas

of job scheduling in computational grid systems, swarm intelligence, scheduling

algorithms based on hybrid approaches, and grid computing simulator.

Job scheduling is the heart of grid computing processes. One of the main issues in job

scheduling for grid computing is the dynamic environment. Many studies try to solve

this problem using different techniques and algorithms. This chapter reviews some of

these studies and points out how they evolved and developed. In addition, their limits

and gaps will be highlighted.

This chapter organized as follows: Section 2.1 discusses several algorithms

implemented in job scheduling on computational grid. Hybrid approaches for job

scheduling in grid computing are presented in Section 2.2. Studies on grid computing

simulator are discussed in Section 2.3. Section 3.4 presents the conceptual framework.

Finally, the chapter summary is presented in Section 2.5.

2.1 Job Scheduling Algorithms in Computational Grid System

Grid computing system can be categorized into two types, namely static and dynamic

environments (Kolodziej, 2012). In static environment, resources are assumed to be

available at all time. In addition, the resource capacity, number of tasks and load are

also fixed. For dynamic environment, resources may join and leave the grid at any

time. In addition, the resource capacity and load changes dynamically. Other

characteristics of the dynamic environment are variation of network speed and

15

availability. The performance of the static and dynamic grid computing depends upon

the efficiency of scheduler algorithm. The scheduler is considered as one of the most

important parts of resource management system in grid computing system. The

scheduler is implemented with heuristic or metaheuristics algorithms. The following

reviews discuss several types of algorithms which are implemented successfully to

solve job scheduling problems in computational grid.

2.1.1 Heuristic Algorithms

In general, a scheduling problem is considered as a complex decision making problem

which needs to be solved optimally (Zapfel, Braune, & Bogl, 2010). This type of

problem is known as optimization problem which is also categorized as NP-complete

problem (Abraham, Grosan, & Ishibuchi, 2007; Talbi, 2013b). Due to the complexity

of NP-complete problems, using exact approaches are not feasible (Framinan, Leisten,

& García, 2014). Therefore, the optimal solution could be sacrificed for the sake of

finding good solution in significantly reduced time using approximate algorithms

(Blum & Roli, 2003). Heuristics and metaheuristics algorithms have been

implemented to solve various optimization problems, such as routing, scheduling, and

planning (Agnetis, Billaut, Gawiejnowicz, Pacciarelli, & Soukhal, 2014; Burke &

Kendall, 2014). A simple approach could be used for job scheduling in grid

computing based on greedy approach (Boussaid, Lepagnot, & Siarry, 2013; Ma, Lu,

Zhang, & Sun, 2012). These types of algorithms provide fast solution which is

suitable for extremely small and time restricted grid computing systems (Xhafa &

Abraham, 2009).

A study on batch mode scheduling for job scheduling in computational grid systems

published by Xhafa, Barolli, and Durresi (2007b). The study aims to optimize four

16

criteria, namely makespan, flowtime, resource utilization, and matching proximity.

The algorithms proposed in their study are: Min-Min, Max-Min, Sufferage, Relative

Cost, and Longest Job to Fastest Resource-Shortest Job to Fastest Resource

algorithms. These algorithms evaluated using static benchmark problems based on

expected time to compute model defined by Braun et al. (2001). The experiment

results show that Min-Min algorithm outperforms other algorithms in term of

makespan and flowtime. In terms of average resource utilization, Max-Min algorithm

achieved the best results among all other algorithms. However, the results show that

Min-Min algorithm achieved the worst performance in terms of average resource

utilization. For matching proximity criterion, Min-Min algorithm achieved the best

performance closely followed by Relative Cost algorithm. The authors recommended

that the proposed algorithms are useful to be utilized to generate an initial solution for

other heuristics algorithms.

An immediate mode scheduling of independent job in grid computing proposed by

Xhafa, Barolli, and Durresi (2007c). Several heuristic algorithms were implemented

and four criteria were used to measure the grid system performance, namely

makespan, flowtime, resource utilization, and matching proximity. The study

implemented and evaluated five algorithms, which are, Optimization Load Balancing

(OLB), Minimum Completion Time (MCT), Minimum Execution Time (MET),

Switching Algorithm (SwA), and K-Parents Best (KPB). These methods were tested

using benchmark problems based on the expected time to compute model proposed

by Braun et al. (2001). The experiments show that MCT algorithm performs the best

in terms of makespan. Regarding flowtime criterion, SwA algorithm performs good,

followed by MCT. In terms of resource utilization, OLB algorithm outperforms other

algorithms. MET algorithm was able to achieve the best matching proximity values

17

with perfect results. It is clear from the results that the objectives of optimizing job

scheduling in computational grid system have some contradictions. Therefore, for

very heterogeneous systems, not all criteria are considered as a good indicator for grid

system performance.

A study on job scheduling algorithm in computational grid environment conducted by

Malarvizhi and Uthariaraj (2009) for grid job scheduling using minimum Time To

Release algorithm (TTR). They proposed architecture for grid scheduling; some of the

main architecture components are dispatcher, grid scheduler and load balancer. The

idea behind their approach is to predict the performance of each resource by

estimating the total time to release, and then map with each resource. Based on TTR,

each combination of job and resource are stored in an increasing order of TTR to

assign to a resource. They also calculate other parameters, such as transfer input time

and transfer output time which makes the module more realistic and accurate for real

life applications. The experiments were conducted using GridSim simulator and the

environment consists of scheduler, five users with different time requirements and

rates of task creating, and 30 nodes with different computer power. They compared

TTR algorithm with first come first serve algorithm and Min-Min algorithm. The

results show that the proposed algorithm performs better than the others in terms of

computation time. However, according to Xhafa and Abraham (2010), metaheuristics

algorithms such as ant colony optimization and genetic algorithm are much better than

the other types of algorithm.

A study presented by Izakian, Abraham, and Snsel (2009) proposed a heuristic

method called Min-Max to generate a solution for job scheduling in grid environment.

Min-Max algorithm could be used to produce a good initial solution for other

18

metaheuristics algorithms. In addition, Min-Max algorithm could be used in real-

world situations where applying metaheuristics algorithm is not applicable. The study

focused on static environment which is based on expected time to compute model

presented by Braun et al. (2001). The proposed algorithm was compared with five

heuristic algorithms, namely Work Queue, Max-Min, LJFR-SJFR, Suffrage, and Min-

Min. The experiment results show that the proposed algorithm can minimize the

makespan and flowtime better than other algorithms. The study also conducted

experiment using the proposed algorithm to generate initial solution for simulated

annealing algorithm. The results show that simulated annealing algorithm could not

improve the solution that generated using the proposed algorithm. In addition,

reducing the makespan leads to increasing in the flowtime and vice versa. However,

such contradiction behaviour is common in the problem of job scheduling in grid

computing.

Bardsiri and Hashemi (2012) published a study on comparing seven static mapping

heuristics algorithms for job scheduling on computational grid. The study compared

seven popular heuristics algorithm, namely Opportunistic Load Balancing (OLB),

Minimum Completion Time (MCT), Min-Min, Max-Min, Sufferage, Maxstd, and

Longest Job to Fastest Resource-Shortest Job to Fastest Resource (LJFR-SJFR)

algorithms. The proposed approaches were tested using the benchmark problems

based on expected time to compute model developed by Braun et al. (2001). The

study aims to optimize makespan, resource utilization, and matching proximity

criteria for independent job scheduling in static grid computing environment. The

experiment results show that Min-Min and Sufferage algorithms achieved good

performance compared with other algorithms in terms of makespan. In terms of

resource utilization, all algorithms have similar performance with little favour to Max-

19

Min algorithm. For matching proximity criterion, Min-Min algorithm outperforms the

other algorithms followed by Sufferage algorithm. However, the experiments were

conducted using static environment which is not enough to explore the algorithm

behaviour. Nevertheless, these algorithms are useful to generate an initial solution for

other metaheuristics algorithms such as tabu search and genetic algorithm.

2.1.2 Evolutionary Algorithms

In spite of the fast solutions produced by schedulers based on greedy approach, the

quality of these solutions will drop down dramatically once the grid size increase

(Anousha, Anousha, & Ahmadi, 2014; Braun et al., 2001). In order to overcome the

obstacle of size increasing, metaheuristics algorithms emerged as a practical solution

for job scheduling with reasonable time and resources (Qureshi et al., 2014). One

important category of metaheuristics algorithms is Evolutionary Algorithms (EA) (Yu

& Gen, 2010). The process in EA algorithms is similar to natural process in living

organic such as crossover, mutation, and selection (Stoean & Stoean, 2014). Several

algorithms are developed under the EA category such as genetic algorithm (Holland,

1992), evolution strategies (Schwefel, 1995), evolutionary programming (Fogel,

Owens, & Walsh, 1996), and genetic programming (Koza et al., 2003). Evolutionary

algorithms have been implemented successfully for job scheduling in computational

grid systems with good results. Some of the EA works are discussed such as memetic

algorithms, differential evolution algorithms, and genetic algorithms.

I. Memetic Algorithms

Memetic Algorithms (MA) is an optimization technique which combines different

search methods such as population based search and local search algorithm (Moscato

20

& Cotta, 2010). The idea behind MA is that individuals are not simply doing

crossover and mutation, but also doing some enhancement to their solution elements.

This enhancement is accomplished by incorporating heuristic, approximation

algorithms, or local search technique (Gendreau & Potvin, 2010). Due to the

combination of different techniques, MA is sometimes called hybrid evolutionary

algorithms (Davis, 1991). Memetic algorithms are applied to job scheduling in grid

computing by several studies.

Cellular Memetic Algorithm (cMA) proposed to optimize the makespan and flowtime

for job scheduling in grid computing by Xhafa, Alba, and Dorronsoro (2007). As a

component of cMA algorithm, the study implemented three types of local search

algorithms: Local Move (LM), Steepest Local Move (SLM), and Local Minimum

Completion Time Swap (LMCTS). The experiments conducted using static

environment based on expected time to compute model presented by Braun et al.

(2001). In addition, the proposed algorithm were evaluated with three other versions

of GA as presented in Braun et al. (2001), Carretero and Xhafa (2006), and Xhafa

(2006). The first experiment shows that the local search algorithm LMCTS is the best

among the three considered algorithms. Experiment on makespan criterion shows that

the proposed cMA performs better than other algorithms in some instances. However,

the experiments were not organized properly for example, the flowtime results were

obtained only from comparing cMA with LJFR-SJFR and GA from Xhafa (2006) and

nothing was reported about the other two GA algorithms. Moreover, the study focused

only on static grid computing environment. Therefore, more study and experiments

using dynamic grid computing environment are required to explore the algorithm

behaviour.

21

Xhafa, Alba, Dorronsoro, Duran, and Abraham (2008) published a study using

Cellular Memetic Algorithm (cMA) for job scheduling in grid system. The study

aimed to optimize makespan and flowtime simultaneously as a bi-objective. The

authors implemented two different local moves: Local Minimum Completion Time

Swap (LMCTS), and Local Tabu Hop (LTH) based on Tabu Search (Glover &

Laguna, 1997). Therefore, the study proposed two different cMA algorithms, namely:

cMA+LMCTS and cMA+LTH. The proposed approaches were evaluated with static

and dynamic grid computing environments. The static environment benchmark

problems were generated using expected time to compute model presented in Braun et

al. (2001). On the other hand, the dynamic environment benchmark problems

generated using a simulator developed by Xhafa, Carretero, Barolli, and Durresi

(2007). The proposed algorithms were evaluated first with TS as presented by Xhafa,

Carretero, Alba, and Dorronsoro (2008) in order to select the best move using static

scenario. The first experiment shows that cMA+LTH algorithm was able to achieve

good makespan reduction on five instances while cMA+LMCTS algorithm could not

achieve any good results. On the other hand, TS achieved the best results on seven

instances. Nevertheless, cMA+LMCTS performs better than cMA+LTH with

flowtime reduction. The second experiment compared cMA+LTH performance with

three other versions of GA approaches as presented by Braun et al. (2001), Carretero

and Xhafa (2006), and Xhafa (2007). The empirical results show that cMA+LTH

outperforms other algorithms in static and dynamic environments. It is clear from the

results that some reduction in makespan value will lead to increase in flowtime

values. Although the study was conducted using static and dynamic grid computing

environments, the comparison is not sufficient, for example, the authors did not

22

compare with TS in dynamic scenario. However, the concept of utilizing local search

algorithm inside other metaheuristics algorithm is quite useful.

Zhong, Long, Zhang, and Song (2011) published a study on efficient memetic

algorithm for scheduling job in grid computing. The authors incorporated hill-

climbing and tabu search algorithms as solution enhancement mechanisms. The

experiments were conducted using benchmark problems based on expected time to

compute model as introduced by Braun et al. (2001) and the fitness function to

minimize makespan and flowtime values as proposed in Xhafa, Alba, et al. (2008).

The proposed algorithms evaluated against genetic algorithm described in Braun et al.

(2001). The experiment results show that MA with hill-climbing and tabu search

algorithms outperforms genetic algorithm for consistent and semi-consistent grid

scenarios. Comparing between MA-Tabu search and MA-hill-climbing, MA-tabu

search showed faster performance. However, the flowtime results are not reported

which is supposed to be part of the optimization function. In addition, an experiment

conducted only on static environment is not enough to conclude the algorithm

behaviour on dynamic scenario. Moreover, the proposed algorithm did not compare

with other recent metaheuristics algorithms such as artificial bee colony and ant

colony optimization. Nevertheless, the idea of using tabu search algorithm as a

mechanism to enhance the individual solution could be integrated with other

metaheuristics algorithms such as ant colony optimization.

A comparison study on the performance of genetic algorithm, memetic algorithm,

cellular memetic algorithm, and hybrid algorithms with tabu search has been proposed

by Xhafa, Koodziej, Duran, Bogdanski, and Barolli (2011). The study illustrated the

advantages and limitations of different population based methods for job scheduling

23

in computational grid systems. In addition, the study tried to investigate the benefits

of hybridizing population algorithm with local search algorithms such as tabu search.

The authors considered a bi-objective scheduling problem in grid computing to

measure the scheduling effectiveness, namely makespan and flowtime which

optimized simultaneously. The study considered the tasks to be processed in a batch

mode as described in Xhafa and Abraham (2010). In addition, the problem was

formulized based on expected time to computed matrix model as proposed by Ali et

al. (2000b). The experimental analysis was performed using HyperSim-G simulator as

developed by Xhafa et al. (2007). These experiments were conducted on static and

dynamic instances. The experiment results for static instances show that memetic

algorithm achieved the best makespan value for large instances, while cellular

memetic algorithm hybridized with tabu search achieved the best results for small

instances. The dynamic experiments results show that the hybrid cellular memetic

algorithm with tabu search outperforms the other algorithms for small, medium, and

large instances, while memetic algorithm hybridized with tabu search achieved the

best makespan values for very large instances. The study concluded that hybridizing

memetic and cellular memetic algorithms with tabu search will enhance the algorithm

performance. However, the study did not show the result of the flowtime values

which is considered as a part of the bi-objective function. Nevertheless, the proposed

comparison provides good foundation regarding the performance of memetic and

cellular memetic algorithm when they hybridize with tabu search algorithm.

II. Differential Evolution Algorithm

Differential Evolution (DE) is an optimization algorithm developed by Kenneth Price

in 1995 (Price, Storn, & Lampinen, 2005). DE is a population-based algorithm that

24

has the operators: crossover, mutation, and selection to evolve a population of

candidate solutions toward an optimal solution. Differential evolution algorithm for

job scheduling in heterogeneous distributed environment has been proposed by

Kromer, Snasel, Platos, Abraham, and Izakian (2009). The study aimed to optimize

the job scheduling in terms of makespan and flowtime with priority to makespan as

suggested by Carretero et al. (2007). The proposed algorithm was implemented with

classic version adopted from Price et al. (2005). The experiments were conducted

using the expected time to compute model as proposed by Braun et al. (2001). In

addition, the experiments compared the proposed algorithm with max-min, suffrage,

min-min, and min-max algorithms. The experiment results show that the proposed

algorithm did not achieve a good result when it started with random initial solution.

However, with initial solution generated using the heuristic algorithm, the proposed

algorithm outperforms all other algorithms in terms of makespan. Nevertheless, in

terms of flowtime optimization, the proposed algorithm did not perform well.

Selvi and Manimegalai (2010) conducted a study on job scheduling for grid

computing based on differential evolution algorithm. The objective of the study is to

minimize the makespan value as an optimization objective. The experiments were

conducted using static benchmark problems used by Liu, Abraham, and Hassanien

(2010). The proposed algorithm was implemented using MATLAB application. The

performance of the implemented algorithm is compared with fuzzy discrete particle

swarm optimization algorithm as proposed in H. Liu et al. (2010). The experiment

results show that the proposed algorithm achieved good standard deviation and

completion time. However, in terms of makespan values, the proposed approach did

not achieve good results compared to other algorithms. In addition, the experiments

25

were conducted using static benchmark problems. Therefore, the proposed algorithm

needs to be tested on dynamic environment in order to draw the final conclusion.

III. Genetic Algorithm

Genetic Algorithm (GA) is a well-known algorithm to solve various types of

combinatorial optimization problems developed in 1975 by John Holland (Blum &

Roli, 2003). Genetic algorithm is applied in various types of scheduling problems,

such as manufacturing scheduling (Gen, Zhang, Lin, & Jo, 2014), scheduling of

production and transport systems (Hartmann, Makuschewitz, Frazzon, & Scholz-

Reiter, 2014), and scheduling workflow applications in cloud environment (Singh &

Singh, 2014).

GA has three prime operators, namely crossover, mutation, and selection (Yang,

2014). However, In terms of mathematics, there are no explicit mathematical

equations for general genetic algorithm (Yang, 2014). GA procedure’s details, such as

steps on how to generate a new generation from a population and how to process the

operators are provided in many literatures (Reeves & Rowe, 2003; Sivanandam &

Deepa, 2008). Figure 2.1 shows the pseudocode of basic genetic algorithm.

26

Figure 2.1. Basic Genetic Algorithm (Zapfel et al., 2010)

In Figure 2.1, the first step is initializing the population (P) which is generated

randomly or using some heuristic algorithm (Carretero & Xhafa, 2006). Figure 2.2

visualizing the GA population (Zapfel et al., 2010).

Figure 2.2. Visualization of GA population (Zapfel et al., 2010)

Procedure Genetic Algorithm

Step 1- 𝑃 ← initial population;

Step 2- Evaluate (𝑃);

Step 3- While termination criterion not satisfied do

Step 4- 𝑃′ ← Select(𝑃);

Step 5- Crossover(𝑃′);

Step 6- Mutate(𝑃′);

Step 7- Evaluate(𝑃′);

Step 8- 𝑃 ← 𝑅𝑒𝑝𝑙𝑎𝑐𝑒(𝑃′ ∪ 𝑃);

Step 9- End

End Procedure

Population

Individual / Chromosome
1, 1, 0, 0, 0, 0, 1, 0, 0, 0

0, 0, 0, 1, 0, 0, 1, 0, 1, 0

1, 1, 0, 0, 0, 0, 1, 0, 0, 0

1, 0, 0, 1, 0, 0, 1, 1, 0, 0

0, 0 0, 0, 0, 0, 1, 1, 1, 1

1, 1, 0, 1, 0, 0, 1, 0, 1, 0

0, 1, 0, 1, 1, 0, 1, 0, 0, 1

0, 1, 1, 0, 0, 1, 1, 0, 1, 0 1, 0, 1, 0, 0, 0, 1, 0, 0, 0

1, 1, 0, 0, 0, 0, 1, 0, 0, 0

1, 1, 0, 0, 0, 0, 1, 0, 0, 0

Gene at locus 1

27

The second step in GA is the evaluation process. Evaluation is an operator to calculate

the solution quality which is called fitness in terms of genetic algorithm. The solution

fitness is required for selection and replacement operators. In other words, solutions

with better fitness value are preferred in the selection process (Zapfel et al., 2010). In

order to calculate the fitness value in job scheduling problem in grid computing, the

following equation is used:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 1 / 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (2.1)

where 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 is the completion time of the last task by the system (Xhafa &

Abraham, 2010).

The third step in GA algorithm is the loop using while and termination condition. The

execution could be stopped using one or more conditions, such as, specific number of

iteration, specific time of execution, and maximum number of iteration without any

enhancement in the solution quality (Zapfel et al., 2010).

The fourth step in GA algorithm is the selection process which is responsible to select

part of the population for crossover and mutation operators. There several selection

methods, such as Roulette-Wheel-Selection, Linear-Rank-Selection, and Tournament

Selection (Zapfel et al., 2010).

The fifth step in GA is the recombination or crossover operators. Crossover operator

is the process of combining genes from the selected solutions in order to produce a

new solution. There are several types of crossover operator, such as one-point, two-

point, N-point, and uniform crossover (Zapfel et al., 2010). Figure 2.3 shows

examples of one-point, two-point, and uniform crossover.

28

Figure 2.3. Examples of crossover operators (Zapfel et al., 2010)

The sixth step in GA algorithm is the mutation operator. Mutation is the process of

perturbation of the solution with small probability. Mutation operator will help the

algorithm to prevent from premature convergence. In binary solution representation,

the mutation process could be done by changing the value from 1 to 0 or vice versa.

This method is known as bit-flip mutation. In job scheduling problem for grid

computing, mutation could be implemented using re-balance method (Xhafa, Duran,

Abraham, & Dahal, 2008).

The seventh step in GA is the evaluation of the new solutions. This step is similar to

step 2 using the new solutions instead of the whole population.

The last step in GA is the replace operator which replaces the new generated solution

with other solutions from the population. There are several replacement methods,

such as generational replacement and steady state replacement. In generational

method, the new generated solutions supersede the old solutions. In steady state

method, multiple solutions or only one solution is replaced. Figure 2.4 illustrates the

process of genetic algorithm.

29

Figure 2.4. Process of Genetic Algorithm (Zapfel et al., 2010)

An experimental study regarding job scheduler based genetic algorithm for large grid

environment has been proposed by Carretero and Xhafa (2006). The proposed

algorithm aims to minimize the makespan and flowtime values of job scheduling on

30

grid computing. The study considered two versions of optimization. First is

hierarchical structure where makespan is optimized first, then followed by flowtime.

Second is simultaneous structure where both objectives are optimized simultaneously.

The proposed algorithm was implemented using a skeleton as defined in Alba et al.

(2002). The study conducted static and dynamic experiments. The static benchmark

problems were generated using expected time to compute model from Braun et al.

(2001), while dynamic benchmark problems were generated using dynamic simulator

developed by Alba et al. (2002). For static experiments, the proposed algorithm

compared with Min-Min, MCT, and GA algorithms from Braun et al. (2001). The

results show that the proposed genetic algorithm with hierarchic optimization

structure outperforms other algorithms in terms of makespan. However, flowtime

results for static experiments are not reported in the study. For dynamic experiments,

the results show that the proposed algorithm with hierarchical structure achieved the

best makespan values for three instances, while simultaneous structure achieved the

best results for one instance in terms of makespan. Flowtime results were not reported

as well. The study provided the implementation details for genetic algorithm.

However, the proposed algorithm was compared only with heuristic algorithms and

other genetic algorithm implementation. Therefore, it is unknown how is the

performance of the proposed algorithm compared with other metaheuristics

algorithms such as ant colony optimization and artificial bee colony.

Job scheduling for grid computing based on genetic algorithm has been proposed by

Carretero et al. (2007). The study aimed to minimize makespan and flowtime values

either in a hierarchical mode with makespan as primary objective or in a simultaneous

mode. In addition, two types of encoding schemes have been presented in the study

with several operators implementation. The proposed algorithm was implemented

31

based on a generic skeleton as developed by Alba et al. (2006). The benchmark

problems were generated using expected time to compute model presented in Braun et

al. (2001) which consists of twelve static instances. The implemented algorithm was

evaluated against genetic algorithm results as presented in Braun et al. (2001). The

experiment results show that the proposed algorithm outperforms other algorithms in

terms of makespan with simultaneous mode. However, flowtime values are not

provided in Braun et al. (2001). The study compared the proposed algorithm in terms

of flowtime values between hierarchical and simultaneous modes which show favour

results to simultaneous approach. The authors also noticed that makespan and

flowtime are contradictory objectives. Therefore, trying to optimize one objective

may not suit the other objective, especially when the scheduling plan is close to

optimal solution. In spite of the good results achieved by the proposed algorithm,

more investigations are required especially under dynamic job scheduling

environment in order to conclude the algorithm performance in all circumstances.

Another experimental study on genetic algorithm for job scheduling on grid

computing has been proposed by Xhafa, Barolli, and Durresi (2007a). The authors

presented two algorithms for scheduling independent jobs to grid resources based on

two replacement mechanisms, namely Steady-State Genetic Algorithm (SSGA) and

Struggle Genetic Algorithm (SGA). The study experiments were conducted using

benchmark problems generated using expected time to compute model as presented in

Braun et al. (2001). The proposed algorithm was compared with genetic algorithm

developed by Braun et al. (2001). The experiment results show that SGA performs

better than SSGA for moderate grid size problems in terms of makespan. However,

for larger grid size problems, SGA did not achieve good results as SSGA. In terms of

flowtime, SGA also achieved better performance than SSGA. The study

32

recommended implementing SGA for small and medium grid size and SSGA for large

and very large grid size. However, the study only considered static grid computing

environment which is not enough to observe the algorithm behaviour. Therefore,

these two algorithms need to be tested on dynamic grid computing environment in

order to conclude the algorithm robustness.

Xhafa, Duran, Abraham, and Dahal (2008) published a study on Straggle strategy in

Genetic Algorithm (SGA) for job scheduling in computational grid. The study

implemented hash function for computing the similarity of solutions in order to

enhance the standard similarity measures. The aim of the proposed approach is to

minimize the makespan value as an optimization objective. The proposed algorithm

was evaluated with static benchmark problems generated using the expected time to

compute model as presented in Braun et al. (2001). The evaluation is done between

SGA and SGA with hash function. The experiment results show that using the hash

function with SGA, it improves the algorithm performance in terms of makespan

value for several types of instances. The idea of using hash function is useful in order

to avoid evaluating a similar solution for each cycle in the algorithm process which is

time consuming. This idea could be implemented with other metaheuristics

algorithms such as tabu search and ant colony optimization. However, more studies

and experiments are required to observe the algorithm behaviour in terms of flowtime

and resource utilization. In addition, more experiments on job scheduling in dynamic

grid computing environment will provide more information regarding the use of hash

function.

A hierarchic genetic algorithm scheduler of jobs in grid computing environment has

been published by Kolodziej, Xhafa, and Kolanko (2009). The authors proposed an

33

algorithm called Hierarchic Genetic Strategy (HGS) for job scheduling on grid

computing systems. The study aimed to optimize the makespan and flowtime values

simultaneously. In addition, the study objective is to investigate several variations of

HGS operators and parameters to identify the best configuration for job scheduling

problem. The experiments were conducted using static benchmark instances for job

scheduling on grid computing which is based on the expected time to compute model

as developed by Ali et al. (2000b). The proposed algorithm was compared with

classic genetic algorithms as presented by Braun et al. (2001) and Carretero et al.

(2007). The experiment results show that the proposed algorithm performs better than

the other two algorithms in terms of makespan and flowtime as well. The study also

revealed that rebalancing method is the best mutation operator for HGS. However, the

experiments were conducted on static grid computing environment; therefore, more

experiments are required to test the proposed algorithm on dynamic environment to

examine the algorithm robustness.

A study conducted by Kumar, Kumar, and Kumar (2011) for job scheduling used

genetic algorithm. In their study, they considered the network transmission time when

making scheduling decisions. They argue that the scheduler who does not take into

account the network load when making the scheduling decisions might not produce

optimal scheduling. In their work, they implemented multi-objective genetic

algorithm for job scheduling in grid computing using GridSim simulator as developed

by Buyya and Murshed (2002). The algorithm focused on minimizing the jobs’

finalization time and makespan by minimizing the jobs’ data transfer time between

data storage location and computing resource site over the network. The job size was

presented in Million Instructions (MI) and the resource capacity was presented in

Million Instructions Per Second (MIPS). To calculate the network load in the

34

scheduling algorithm, they used four arrays. The proposed algorithm was compared

with non-network-aware scheduling algorithm for grid computing. The results show

that the proposed scheduling algorithm performs better than the non-network-aware

scheduling algorithm. However, the experiments scenario is very limited (using only

50 jobs) which did not give a clear robustness picture about the algorithm.

Nevertheless, the idea of calculating the network transmission time is very important

when scheduling jobs in grid systems and needs more investigation to concrete the

concept.

Enhanced Genetic-based scheduling for grid computing has been developed by

Kolodziej and Xhafa (2011). The authors presented an implementation of hierarchic

genetic strategy for job scheduling in dynamic computational grid environment. HGS

has the ability to search the solution space concurrently using various evolutionary

processes. The study focused on bi-objective optimization, specifically, makespan and

flowtime to be simultaneously optimized. The experiments were conducted under

heterogeneous, large scale, and dynamic environments using grid simulator. The

algorithm was tested with static and dynamic grid computing environments. The

experiment with static environment is based on expected time to compute matrix

model as presented in Ali et al. (2000b). For dynamic environment, the authors used a

simulator developed by Xhafa and Carretero (2009). The proposed algorithm was

compared with two other GA-based schedulers presented in Braun et al.(2001), and

Carretero et al. (2007). The results show that the proposed algorithm outperforms the

other GA-based scheduler algorithms. However, the proposed algorithm results were

compared only with GA. Therefore, it is unknown how the proposed algorithm will

perform against other metaheuristics algorithms.

35

2.1.3 Local Search

The basic idea of local search is that solution is successively modified by performing

moves that change solution locally (Vob, 2001). The solutions that can be reached by

moves are called neighbourhood solutions. Various techniques have been developed

to search the solution’s neighbourhood, such as random, iterated, greedy, variable

neighbourhood search, and steepest descent algorithms (Aarts & Lenstra, 2003;

Gendreau & Potvin, 2010; Zapfel et al., 2010). However, using metaheuristics

algorithms for local search, such as simulated annealing and tabu search, showed

promising performance in grid computing.

I. Simulated Annealing

Simulated Annealing (SA) is known as an optimization algorithm inspired by nature.

SA mimics the physical process in the annealing of materials when a metal cools and

freezes into a crystalline state (Yang, 2014). SA algorithm was developed in 1980s by

Kirkpatrick, Gelatt, and Vecchi (1983). Simulated annealing algorithm has been

implemented in almost every field of combinatorial optimization problems (Yang,

2014). The main advantages using SA is the ability to skip from local minima by

controlling the threshold value for the maximum allowed decrease in solution quality

(Vidal, 1993; Zapfel et al., 2010). SA algorithm has been proved to converge to the

global optimality if enough time and randomness are given with very slow cooling

(Aarts, Korst, & Michiels, 2014; Yang, 2014). SA algorithm has been implemented

for job scheduling in computational grid environment successfully.

YarKhan and Dongarra (2002) conducted an experimental study on using Simulated

Annealing (SA) algorithm for job scheduling in grid environment. The study used

dynamic machine status and connectivity information from the Globus

36

Metacomputing Directory Service (MDS) defined in YarKhan and Dongarra (2002)

and Network Weather System (NWS) proposed by Wolski, Spring, and Hayes (1999).

The proposed algorithm was compared with Ad-hoc greedy approach presented in

Ullman (1975). The experiments were conducted using real grid computing system

provided from the University of Tennessee and University of Illinois. The experiment

results show that the proposed simulated annealing algorithm outperforms Ad-hoc

greedy algorithm in terms of estimated execution time. In spite of the practical

experiments using real grid environment, the experiments were very limited in terms

of benchmark problems size. In addition, the proposed approach needs to be

compared with other metaheuristics algorithms in order to observe the algorithm

performance. However, using simulated annealing algorithm will help to avoid the

local minima and search near optimal solution.

A study on implementing simulated annealing algorithm for job scheduling in

computational grid has been proposed by Fidanova (2006). The authors claimed that

simulated annealing has two important features, which are: First, SA algorithm is

proved to converge to the optimal solution. Second, AS algorithm is easy to be

implemented to solve job scheduling problems in grid computing. The implemented

scheduler utilizes the expected time to compute model which is developed by

Maheswaran, Ali, Siegel, Hensgen, and Freund (1999). The objective of the study is

to minimize the makespan value for job scheduling as an optimization function in

batch mode. The proposed algorithm starts with generating initial solution using

greedy heuristic approach. The performance of the proposed AS algorithm compared

with online (queue) algorithm and ant colony optimization provided by Fidanova and

Durchova (2006). The experiments were conducted using a scenario developed by the

authors which consists of 5 resources and 20 jobs. In terms of makespan, the results

37

show that the proposed algorithm outperforms other algorithms followed by ant

colony optimization algorithm. However, the experiment scenario is very small in

terms of the number of resources and jobs. In addition, the study only focused on

static grid computing environment. Therefore, designing and conducting a bigger

scenario in static and dynamic environments will reveal the real performance of

simulated annealing algorithm for job scheduling in grid computing.

Cai, Ning, Li, and Zhong (2007) published a study on using simulated annealing

algorithm for independent task assignments in heterogeneous computing system. The

authors proposed two neighbourhood structures to search the best neighbour of the

current solution in the search space. The study aimed to minimize the makespan value

as an optimization objective. The experiments were conducted using benchmark

problems based on expected time to compute model defined in Braun et al. (1999).

The proposed algorithm was compared with Min-Min algorithm and simulated

annealing approach proposed by Braun et al. (1999). The empirical results show that

the proposed simulated annealing algorithm with random and swapping

neighbourhood structures outperforms the other algorithms in terms of makespan.

However, the proposed approach needs to be compared with other metaheuristics

algorithm. In addition, more experiments using dynamic grid computing environment

are required to test the algorithm robustness. Nonetheless, the idea of using various

neighbourhood structures is very important for local search algorithms such as

simulated annealing.

An implementation of simulated annealing algorithm for job scheduling in

computational grid has been proposed by Guo and Wang (2010). The proposed

approach tried to overcome two problems in implementing SA algorithm in grid

38

computing, namely the algorithm overhead and the best tuning parameters. The

authors developed a simulator called Ana-GridSim which is an extension of GridSim

simulator developed by Buyya and Murshed (2002). The experiment results show that

the proposed approach achieved good performance in terms of average error.

However, the experiment design was very poor in terms of benchmark problems (only

7 resources were used). In addition, optimization function was not defined, such as

makespan values have not been optimized. Moreover, the proposed algorithm was not

compared with other metaheuristics algorithms. Therefore, a more comprehensive

investigation on implementing simulated annealing algorithm for job scheduling on

grid computing systems is required.

II. Tabu Search

Tabu search is a metaheuristics algorithm based on a guided local search developed

by Glover (1986). TS algorithm has been successfully implemented to solve many

optimization problems, such as job shop scheduling, travelling salesman problem, and

vehicle routing problem (Gendreau & Potvin, 2014). According to Burke and Kendall

(2014), over the last 25 years, hundreds of papers presenting applications of tabu

search proposed to solve various combinatorial problems. TS is classified as a local

search that has the ability to skip from the local minimum by applying many

mechanisms such as memory and diversification (Rothlauf, 2011). Specifically, TS

applies the concept of adaptive memory and responsive exploration that make the

algorithm more flexible. TS algorithm operates using four types of memory, namely:

recency (short-term memory), frequency (long-term memory), quality, and influence

(Glover & Laguna, 1997). However, many successful applications use only one or

two of these memories. Figure 2.5 shows the tabu search algorithm process.

39

Figure 2.5. Process of Tabu Search algorithm (Zapfel et al., 2010)

The memory in tabu search could be explicit or attributive. Explicit memory records

the complete solution, while attributive memory records the information about the

solution attribute that changes when moving from one solution to another. For

example, in job scheduling scenario, moving a task 𝑡𝑖 from machine 𝑚𝑝 to machine

𝑚𝑞 will create a new solution vector. Hence, TS memory could be implemented based

on recording the complete old solution or recording only the attribute that changed the

solution that is the history of assigning task 𝑡𝑖 to machine 𝑚𝑝. Recording the

attributes will prevent the algorithm (tabu) to reverse to the old assignment for 𝑘

number of iterations with the same task and machine. However, this tabu attribute

could be override if the move will produce a solution better than the best-so-far

solution (could be any other criteria); this mechanism is called aspiration level. The

duration parameter for a move to be considered as a tabu is called tabu tenures

(Glover & Laguna, 1997). Effective tabu tenures depend on the size of a problem

instance.

40

Tabu search starts with initial solution which could be created randomly or by using

any ad-hoc algorithm such as Max-min, Min-min algorithm for scheduling (Xhafa,

Carretero, et al., 2008). From the initial solution, TS will start searching the

neighbourhood in order to find the local optima. If the move to the neighbour solution

is not tabu, then the neighbour solution is saved as the current solution. If the

neighbour solution is better than the best-so-far solution, then it saved as the best-so-

far solution. In the case that the move is tabu, the inspire level will be checked in

order to override the tabu if the neighbour solution is better than best-so-far solution.

After moving to the neighbourhood solution, TS will update its memory and start a

new iteration if the termination condition is not met. The mechanism of searching the

neighbourhood repeatedly seems to guide the search towards an interesting area in the

search space quickly (Costa, 1994). However, there are many issues which need to be

addressed when implementing tabu search, such as what information to be saved in

the memory, the size of the tabu lists, how to move to the neighbourhoods, and how to

implement diversification (Thesen, 1998). Tabu search algorithm is applied for

scheduling problems in grid computing successfully. Figure 2.6 shows tabu search

algorithm pseudocode.

41

Figure 2.6. Tabu Search algorithm pseudocode (Zapfel et al., 2010)

In Figure 2.6, the first step in TS algorithm is creating the initial solution using

random approach or ad hog algorithm. The second step is initializing the global

solution from the initial solution. Third step is creating the tabu list to store the

movement history. The forth step in initializing the aspiration function to be used to

override the tabu movement.

Fifth step is the starting of the algorithm iteration which is terminated using stop

condition, such as the algorithm reached the maximum number of iterations, reach the

maximum time allowed, or no enhancement achieved for specific number of

iterations.

Procedure Tabu Search Algorithm

Step 1- Create initial solution 𝑠;

Step 2- Create global solution 𝑠∗ ← 𝑠;

Step 3- Create tabu list 𝑇𝐿;

Step 4- Initialize the aspiration function 𝐴;

Step 5- While (termination condition not satisfied) Do

Step 6- Search the neighbourhood 𝑁 of current solution 𝑠: {�̂� ∈ 𝑁(𝑠)};

Step 7- If (move from 𝑠 to �̂� is not in 𝑇𝐿) Then

Step 8- 𝑠 ← �̂�;

Step 9- End If;

Step 10- Else If (𝑓(�̂�) < 𝐴(𝑓(𝑠)) Then

Step 11- 𝑠 ← �̂�;

Step 12- End If;

Step 13- Update 𝑇𝐿 memories;

Step 14- If (𝑓(𝑠) < 𝑓(𝑠∗)) Then

Step 15- 𝑠∗ = 𝑠;

Step 16- End If;

Step 17- End While;

Step 18- Return Global solution 𝑠∗;

End Procedure;

42

Sixth step is searching the neighbourhood in order to generate different solution

which is based on current solution (Glover & Laguna, 1997). Step seven will check if

the movement to the new neighbourhood solution is not tabu (not visited before) then

the solution will be accepted even if it is worse than the current solution. This

technique makes TS algorithm skips from local optima trap. Step eight will save the

new accepted solution as the current solution and the condition ends at step nine. If

the solution is tabu, step ten will check the aspiration function to determine whether to

override the tabu if the solution quality better than the current solution or discard the

new solution. Step eleven will save the new solution as the current solution if the

aspiration condition satisfied and the step will end in step twelve.

Step thirteen will update the tabu list memory, such as the short and long memories.

Step fourteen will check if the current new solution is better than the global solution,

then the current solution will be saved as the globe best solution in step fifteen and

ends in step sixteen. In job scheduling problem, the solution quality is measured using

makespan metric. Step seventeen will end the while and the best global solution return

in step eighteen.

Tabu search design and evaluation for job scheduling in grid computing has been

proposed by Xhafa, Carretero, et al. (2008). The aim of the study is to minimize the

makespan and flowtime values as a bi-objective optimization problem. The bi-

objective function is implemented with a hierarchic approach in which makespan is

considered as a primary objective and flowtime as a secondary objective. The

proposed algorithm starts with the initial solution generated using Min-Min algorithm.

To search the neighbourhood of the initial solution, two types of movements were

implemented, namely transfer and swap which are adopted from Thesen (1998). The

43

proposed study used the expected time to compute model as developed by Braun et al.

(2001). The implemented algorithm was compared versus tabu search and ant colony

optimization algorithm hybridized with tabu search as proposed in Ritchie and Levine

(2004). The experiment results show that the proposed design and implementation

outperforms the approach proposed by Ritchie and Levine (2004). Another

experiment was conducted using the benchmark problem as defined by Carretero and

Xhafa (2006) which represent a large instance problem in dynamic environment. The

proposed algorithm was compared against steady-state genetic algorithm developed

by Carretero and Xhafa (2006). Again, the results show that the proposed algorithm

achieved better makespan values than steady-state genetic algorithm. The authors

concluded that the proposed design and implementation for tabu search algorithm are

more efficient than other implementation. In addition, the authors noticed that

makespan and flowtime are contradictory objectives; this observation is very

important to understand the complexity of job scheduling in grid computing.

Tabu search algorithm has been implemented for job scheduling in grid computing by

Xhafa, Carretero, Dorronsoro, and Alba (2009). The authors defined a bi-objective

optimization problem consisting of makespan and flowtime. Their proposed algorithm

adapted two types of neighbourhood movement namely transfer and swap. In

addition, the algorithm implanted intensification and diversification strategies to

achieve better results. Their study dealt with static and dynamic environments for

algorithm evaluation. For static environment, the benchmarks were generated based

on expected time to compute model as presented by Ali, Siegel, Maheswaran,

Hensgen, and Ali (2000a). While for dynamic environment, the benchmarks were

generated using extended HyperSim simulator as presented in Phatanapherom,

Uthayopas, and Kachitvichyanukul (2003). The proposed algorithm was compared

44

with three metaheuristics algorithms, namely TS, ACO+TS, and cMA (Ritchie &

Levine, 2004; Xhafa, Alba, et al., 2008) for static experiment. For dynamic

experiment, the proposed algorithm was compared with GA as presented by Carretero

and Xhafa (2006). The experiment results show that the proposed algorithm

outperforms the other algorithms in static and dynamic environment. The study

provides all the implementation details and the pseudo-code as well which makes the

study repeatable and easy to re-implement. However, there are many neighbourhood

movements other than transfer and swap, which has the ability to find better local

optima, such as insert and load balance moves.

2.1.4 Swarm Intelligence Algorithms

According to Gazi and Passino (2011), the terminology of “swarms” has come to

mean as “a set of agents possessing independent individual dynamics but exhibiting

intimately coupled behaviours and collectively performing some task”. Swarm

Intelligence (SI) algorithms are these algorithms which are nature-inspired such as ant

colony optimization, artificial bee colony, particle swarm optimization, cuckoo

search, and firefly algorithms (Yang, 2014). SI algorithms try to mimic the biological

behaviour of some creatures such as colonies of ants or bees, flocks of birds, and

schools of fish (Gazi & Passino, 2011). Swarm intelligence algorithms are inspired

the field of computing study, specifically the optimization field (Pintea, 2014). In

terms of computational model, swarm intelligence models are considered as

computing algorithms that are useful for solving distributed optimization problems

(Lim & Jain, 2009). The principles of swarm intelligence algorithm are proximity,

quality, diverse response, stability, and adaptability (Lim & Jain, 2009). Swarm

intelligence methods have shown very successful performance in the area of

45

scheduling which is of great importance for the industry and science (Blum & Li,

2008). The following subsections discuss the studies of swarm intelligence algorithms

for job scheduling in grid computing.

I. Ant Colony Optimization

In 1992, Marco Dorigo presented the first ACO algorithm in his PhD thesis to search

for an optimal solution in graph (Dorigo & Stutzle, 2004).The variants of ACO are:

(i) Ant System (AS), ant system is the first algorithm introduced in ant colony

optimization algorithms and the prototype of a number of ant algorithms extension. It

was initially proposed by Colorni, Dorigo, and Maniezzo (1991), and Dorigo et al.

(1991) aimed to search for an optimal path in a graph based on the behaviour of ants

seeking a path between their colony and food source. AS is also the first ACO

algorithm which has been applied to the travelling salesman problem (Dorigo et al.,

1996). Three different versions of ant system were proposed, which are ant-density,

ant-quantity, and ant-cycle. In ant-density and ant-quantity, the ants update the

pheromone directly after a move from a city to another city. But in ant–cycle, the

pheromone update was only done after all the ants had constructed the tours. The two

main phases of the ant system algorithm constitute the ants’ solution construction and

the pheromone update. The performance of ant system when compared to other

algorithms tends to decrease dramatically as the size of the test-instances increases.

For AS tour construction, an ant applies probabilistic action choice rule, called

random proportional rule, to decide which node to visit next. The probability of the

ant to move from node to node depends on pheromone and heuristic values. AS

updates the pheromone trails after all ants have constructed their tours. The first step

in pheromone updating is lowering the pheromone values (evaporation) on all arcs by

46

a constant factor. This step will enable the algorithm to forget the bad decision

previously taken, at the same time if the arc is not chosen by the ants, its associated

pheromone value decreases exponentially in the number of iterations. After

evaporation, all ants deposit pheromone on the arcs they have visited in their tour.

(ii) The first improvement on ant system, called the Elitist strategy for Ant System

(EAS), was introduced by Dorigo et al. (1991, 1996). This algorithm provides strong

additional reinforcement to the arcs belonging to the best tours found since the start of

the algorithms. In EAS, the global best solution deposits pheromone on all iterations

along with all the other ants and the pheromone evaporation is implemented as in the

ant system. The use of the elitist strategy allows the ant system to both find the better

tours and find them in a lower number of iterations. The additional reinforcement of

best tour is achieved by adding an extra quantity of pheromone to its arcs based on the

tour length and a new parameter defined as weight is given to the best-so-far tour.

(iii) Rank-Based Ant System (ASrank), another improvement over the ant system is the

rank-based version of ant system introduced by Bullnheimer, Hart, and Straub (1999).

In ASrank, each ant deposits an amount of pheromone that decreases with its rank. In

addition, as in EAS, the best-so-far ant always deposits the largest amount of

pheromone with during iteration. In ASrank, the first step for updating the pheromone

trails is sorting the ants by increasing the tour length. The quantity of pheromone an

ant will deposit is weighted according to the rank of the ant. During iterations, only

the best ranked ants and the ant that produced the best-so-far tour are allowed to

deposit pheromone. Among the AS-based algorithms, both, ASrank and EAS

performed significantly better than AS, with ASrank giving a slightly better result than

EAS.

47

(iv) Another variant of ACO algorithm is Max-Min Ant System (MMAS). This

algorithm has direct improvement over AS (Stutzle & Hoos, 1997, 2000). MMAS

differs from the basic approaches of AS in the following aspects. Firstly, it uses a

greedier search mechanism that allows a good exploitation of the accumulated

experiences. Secondly, MMAS uses a range of pheromone trail values to the interval

that help to avoid the premature stagnation (all ants converge early to one suboptimal

solution) of the search process. Thirdly, the initial value of pheromone trails is set to

the upper pheromone trail limit with a small pheromone evaporation rate to increase

the exploration of tours at the start of the search. Finally, in MMAS, pheromone trails

are reinitialized each time when the system does not produce an improved tour for a

certain number of consecutive iterations. To update pheromone trails, in MMAS, after

all ants have constructed a tour, pheromones are updated by applying evaporation as

in AS. After that, the deposit of a new pheromone is applied based on the best-so-far

tour. Only one of the two ants is allowed to add pheromone, either the best-so-far ant

or the iteration-best ant. In MMAS, lower and upper limits [𝜏min and 𝜏max] of

pheromone on any arc are used to avoid the search stagnation.

(v) Ant Colony System (ACS), this improvement has been introduced by Dorigo and

Gambardella (1997a, 1997b) to improve the performance of AS. ACS differs in three

main aspects from ant system. First, ACS uses a more aggressive action choice rule

than AS. Second, the pheromone is added only to moves belonging to the global-best

solution. Third, each time an ant moves on a path, it removes some pheromone from

that path. The three main phases of the ACS algorithm constitute the ants’ solution

construction, global pheromone trail update, and local pheromone trail update. ACS

algorithm starts solution construction when the ant moves from node to node. The ant

will choose the node using one of the two rules. The first rule is called pseudorandom

48

proportional rule which is based on exploitation mechanism. The second rule uses

exploration mechanism which is based on the probability distribution used in AS. The

tuning between exploitation and exploration is controlled by a parameter fixed by the

user. ACS algorithm applies the global pheromone trail update. In this update, only

one ant (the best-so-far ant) is allowed to add pheromone after all ants have finished

constructing their tours. In addition, ACS algorithm applies the local pheromone trail

update. In this update, all the ants apply a local pheromone update rule immediately

after moving on arcs during the tour construction using the evaporation concept.

In ACS algorithm, when ant k wants to move from node i to node j, it will choose the

node using a rule called pseudorandom proportional rule, calculated as:

𝑃𝑖𝑗
𝐴𝑛𝑡𝑘 = {

𝑎𝑟𝑔𝑚𝑎𝑥
𝑙∈𝑁𝑖

𝑘
{𝜏𝑖𝑙[𝜂𝑖𝑙]𝛽}, if 𝑞 ≤ 𝑞0;

𝐽, otherwise

(2.2)

where q is a random variable uniformly distributed in [0, 1], q0 (0 ≤ q0 ≤ 1) is a

parameter, and J is a random variable selected according to the probability

distribution calculated as:

𝐽 =
[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗]𝛽

∑ [𝜏𝑖𝑙]𝛼[𝜂𝑖𝑙]𝛽
𝑙∈𝑁𝑖

𝑘

, 𝑖𝑓 𝑗 ∈ 𝑁𝑖
𝑘

(2.3)

with α = 1. The tuning between exploitation and exploration is controlled by the

parameter q0.

In ACS only one ant (the best-so-far ant) is allowed to add pheromone after each

cycle. The Update is implemented using the following equation:

49

𝜏𝑖𝑗 ← (1 − 𝑃)τ𝑖𝑗 + 𝑝∆𝜏𝑖𝑗
𝑏𝑠, ∀(𝑖, 𝑗) ∈ 𝑇𝑏𝑠, (2.4)

Where P is the pheromone evaporation rate, and ∆𝜏𝑖𝑗
𝑏𝑠 = 1/ C

bs
.

For local pheromone update, a rule immediately applied after moving on arc (i, j)

during the solution construction using the following equation:

𝜏𝑖𝑗 ← (1 − ξ)τij + ξτ0, (2.5)

Where ξ, 0 < ξ < 1, and τ0 are two parameters. The value of τ0 is equal to the initial

value for the pheromone trail.

Each variant of ACO algorithms implemented construction and pheromone update

methods. However, there are several differences between them. Table 2.1 shows the

differences between each variant in ACO algorithms.

Table 2.1

Difference between each variant algorithm in ACO

Algorithm

name
Differences and work mechanisms

AS 1. All ants deposit pheromone on the arcs they have crossed in their

tour.

EAS 1. Provides strong additional reinforcement to the arcs belonging to the

best tour by adding a quantity e/C
bs

.

ASrank 1. Ant deposits an amount of pheromone that decrease with its rank.

2. In each cycle, only the best-so-far ant always deposits the largest

amount of pheromone.

MMAS 1. It strongly exploits the best tour found.

2. Limits the possible range of pheromone trail values to the interval

[𝜏min, 𝜏max].

3. The pheromone trails are initialized to the upper pheromone trail

limit.

4. Pheromone trails are reinitialized each time the system approaches

stagnation.

ACS 1. It exploits the search experience accumulated by the ant more

strongly than AS.

50

2. Pheromone evaporation and pheromone deposit take place only on

the arcs belonging to the best-so-far tour.

3. Each time an ant uses the arc (i, j) to move from node i to node j, it

removes some pheromone from the arc to increase the exploration.

ACO algorithm has been applied on several domains such as optimization,

classification, bioinformatics, and network.

Some domains contain more than one problem that needs to be solved using ant

colony optimization. Table 2.2 presents several types of researches conducted on

different domains.

Table 2.2

Various research on different Domains and problems

Domain Problem Name ACO type References

Routing Travelling Salesman

Problem

Novel

ACO

(Zhu, Zhao, & He, 2010b)

Vehicle Routing

Problem

ACS (Calvete, Gale, & Oliveros,

2012)

Vehicle Scheduling

Problem

Hybrid AS (Zhang, Ning, & Zhang,

2012)

Grid Computing Task Scheduling AS (Wei et al., 2012)

Resource Discovery AS (Devi & Pethalakshmi,

2012)

Grid Resource

Scheduling

Improved

AS

(Liu, Ma, Guo, & Wang,

2012)

Image

Processing

Image Edge Detection AS (Tian, Yu, Chen, & Ma,

2011)

Image Classification AS (Seo, 2012)

Optic Disc Detection AS (Pereira, Goncalves, &

Ferreira, 2013)

Operational

Research

Sequential Ordering

Problem

Enhanced

ACS

(Gambardella,

Montemanni, & Weyland,

2012)

Surgery Scheduling

Problem

AS (Yin & Xiang, 2012)

Process Planning

Optimization

AS (Liu, Yi, & Ni, 2013)

Manufacturing Assembly Sequence

Planning

MMAS (Yu & Wang, 2013)

Assembly Sequence AS (Youhui, Xinhua, & Qi,

51

Planning 2012)

Assembly Line

Balancing Problem

AS (Zheng, Li, Li, & Tang,

2013)

Database Distributed Join Query

Optimization

MMAS (Golshanara, Rankoohi, &

Shah-Hosseini, 2013)

Optimization For RDF

Chain Queries

AS (Hogenboom, Frasincar, &

Kaymak, 2013)

Optimization Of

Distributed Database

Queries

Hybrid AS (Dokeroglu & Cosar, 2012)

Electrical

Engineering

Control Of Ocean

Wave Energy

AS (See, Tai, & Molinas,

2012)

Bus Priority In Power

System

AS (Hamid, Musirin, Rahim,

& Kamari, 2012)

Power Signal Pattern

Classification

Hybrid AS (Biswal, Dash, & Mishra,

2011)

Data Mining Classification Rule

Discovery

AS (Hodnefjell & Junior,

2012)

Data Classification ACS (Michelakos, Mallios,

Papageorgiou, &

Vassilakopoulos, 2011)

Classification And Rule

Generation

AS (Tiwari & Verma, 2012)

Bioinformatics Epistasis Detection AS (Shang, Zhang, Lei, Zhang,

& Chen, 2012)

Finding Optimal

Spaced Seeds

AS Duc, Dinh, Dang, Laukens,

& Hoang, 2012)

Classifying Imbalanced

DNA

AS (Yu, Ni, & Zhao, 2013)

Robotics Robot Path Planning AS (Chen, Kong, Fang, & Wu,

2011)

Robot Path Planning AS (Bai, Chen, Jin, Chen, &

Mao, 2012)

Multi-Tasks

Distribution In

Heterogeneous Robot

AS (Lope, Maravall, &

Quinonez, 2012)

Networks Energy-Saving Routing

For Wireless Sensor

Networks

AS (Chen, Yu, Hong, & Dong,

2012)

Routing For

Hierarchical Wireless

Sensor Networks

AS (Wang, Jing, & Wang,

2012)

Routing And Spectrum

Allocation

AS (Wang, Zhang, Zhao,

Wang, & Gu, 2013)

Assignment Timetabling Problem AS (Nothegger, Mayer,

Chwatal, & Raidl, 2012)

Graph Colouring

Problem

AS (Douiri & Elbernoussi,

2012)

Aircraft Assigning ACS (Zhang, Lin, Qiu, & Fu,

52

Problem 2011)

Various AS algorithms have been derived and extended to exploit the search history

without losing the chance of exploring new areas of the search space. Among them,

ACS algorithm appears to be promising to extend the framework of ACO. It provides

a good opportunity to explore a wide area of the search space in reasonable time. All

variants of ACO algorithm have some similarity in their foundation, such as utilizing

the heuristic information, pheromone value, and the solution is based on constructing.

All ACO algorithms apply pheromone evaporation.

Cordon, Viana, and Herrer (2002) and Cordon, Viana, Herrera, and Moreno (2000)

proposed the Best-Worst Ant System (BWAS) as another extension of the basic idea

of AS by including some concepts from evolutionary computation algorithms. BWAS

uses the same transition rule as in AS algorithm to construct ants’ solutions. Then,

BWAS enhances the ants’ solution by using a local optimizer to bring each solution to

its local optimum. Like AS, ASrank and MMAS, all pheromone updates are performed

by daemon actions.

Lorpunmanee, Sap, Abdullah, and Chompoo-inwai (2007) presented a study called

“An Ant Colony Optimization for Dynamic Job Scheduling in grid Environment”. In

their study, they developed a general framework of grid scheduling using dynamic

information and an ant colony optimization algorithm to improve the decision of

scheduling. The experiment was conducted using GridSim simulator toolkit version

4.0 with an extension. They presented a comparison between ant colony optimization

and other various algorithms for job scheduling and dispatching rules for grid

environment, such as First Come First Served (FCFS), Minimum Time Earliest Due

53

Date (MTEDD), and Minimum Time Earliest Release Date (MTERD). Their

experiment results stated that ACO is able to perform the optimal scheduling job.

Besides that, the ACO accounts for less than 17% of the total tardiness time in the

average when it is compared with the other scheduler algorithms. However, in their

approach, ACO algorithm performs much slower than the other scheduler algorithms.

A research was conducted on Balanced job scheduling using Ant Colony

Optimization (BACO) for grid environment by Chang, Chang, and Lin (2007). The

main issue they tried to solve is how to schedule jobs efficiently in a grid

environment. In their approach, they used four main components: portal, information

server, jobs scheduler, and grid resource. BACO algorithm applied inside jobs

scheduler in order to select the most appropriate resource to execute the job. The

experiment was implemented using Taiwan UniGrid platform which consists of 26

campuses. BACO performance was compared with other two algorithms: Improved

Ant Algorithm (IACO) and Fastest Processor to Largest Task First Algorithm

(FPLTF). The results show that BACO has the ability to balance the job scheduling

load in the entire system. However, according to Bai et al. (2010) and Liu, Song, and

Dai (2010), using the single ant colony system leads to local optima because of the

stagnation that occurs due to the positive pheromone feedback mechanism.

A study proposed by Chang, Chang, and Lin (2009) implemented ant algorithm for

balanced job scheduling in computational grid. The study aimed to balance the entire

system load, at the same time tried to minimize the makespan of the set of jobs. In

addition, the study considered the bandwidth speed between the scheduler and

resources as well. The proposed algorithm is based on ant system algorithm. The

study was implemented in the Taiwan UniGrid platform which consists of more than

54

20 campuses in Taiwan. The experiments also simulated two problems, matrix

multiplication and linear programming. The evaluation was done by comparing it with

the improved ACO algorithm as proposed by Yan, Shen, Li, and Wu (2005), the

fastest processor to the largest task first algorithm (Menasce, Saha, Porto, Almeida, &

Tripathi, 1995), suffrage algorithm (Silva, Cirne, & Brasileiro, 2003), and random

method. In terms of makespan and balance, the experiment results show that the

proposed algorithm outperforms the other algorithms. However, the experiments are

very limited and unrepeatable due to the using of real grid computing environment.

Moreover, the comparison did not include other metaheuristics algorithms such as

genetic algorithm and artificial bee colony. Nevertheless, the study provides a

practical implementation guide which is useful to illustrate how job scheduling in

computational grid is working.

Kousalya and Balasubramanie (2009) presented a study on improving ant colony

optimization algorithm with local search for job scheduling in computational grid

systems. The proposed approach aims to minimize the makespan value as the main

objective. The study adopted local search technique from Ritchie and Levine (2003)

which is based on several neighbourhood searches such as Swap, Move, and Move

Top methods. The experiments were conducted using static benchmark problems

generated using Execution Time (ET) model presented by Fidanova (2006). The

proposed algorithm was evaluated versus Min-Min, ACO, Swap, Move, and Move

Top algorithms. The experiment results show that using ant colony optimization

algorithm with Move Top local search method outperforms other algorithms in terms

of makespan. However, the proposed algorithm was not compared with other

metaheuristics and hybrid algorithms in order to prove the algorithms performance. In

55

addition, more experiments using dynamic grid computing environment are required

which could provide more understanding to the behaviour of the proposed algorithm.

Liusuqin, Shuojun, Menglingfen, and Lixingsheng (2009) proposed a study to

improve ant colony optimization for Job Scheduling Problem (JSP). In their approach,

they address the problem of “misusing the great resources for minor purpose” which

makes some resources always idle and some resources are busy processing jobs. They

solved the problem by introducing improved ACO algorithm called “making

concessions in order to gain advantages” based on ACO. The experiment was

conducted using grid pheromone model simulation developed by the authors. The

proposed algorithm was compared with ant colony optimization using static

benchmark problems. The results show that the improved ACO algorithm could

perform better than the conventional ACO. The new algorithm could make better use

of the resources and solve the “misusing the great resources for minor purpose”

problem. However, the experiment size is very limited and did not contain

heterogeneous resources and tasks. In addition, the proposed algorithm was not

compared with other types of metaheuristics algorithms such as genetic algorithm and

tabu search algorithm.

A multiple ant colony model called “Cooperative multi-ant Colony Pseudo-parallel

Optimization Algorithm” was proposed by Liu et al. (2010). In their approach, three

subcolonies were used for optimization. Each subcolony respectively uses ant system

algorithm, ant colony system algorithm, and max-min ant system algorithm

independently. Each subcolony has its own pheromone matrix. By using three

different colonies, the pheromone matrix will have different distributions and

characteristics of change. After going through a certain number of iterations and

56

fulfilling the condition of pheromone interaction, the matrices of pheromone of the

three subcolonies will interact. The interaction will be according to their weight value

to gain new pheromone matrix. After the interaction process, the algorithm re-

initializes the three pheromone matrices. They conducted experiments to solve the

travelling salesman problem. The experiment results show that their algorithm

performance is better than the classic algorithms (AS, ACS, and MMAS). The

researchers of the model claim the ability to prevent the system from stagnation

because of different distribution of different ant algorithm used. However, their

algorithm performs slightly better than classical MMAS, while MMAS has less

complexity in implementation and processing time.

Another study regarding ACO algorithm for job scheduling on computation grid has

been proposed by Kant, Sharma, Agarwal, and Chandra (2010). The authors proposed

two types of ant, namely red ants and black ants. The red ants’ responsibility is

system resource estimation, while the black ants’ responsibility is decision of resource

allocation. The study objective is to minimize the maximal total tardiness time of all

jobs within the machines in grid environment. The proposed approach was simulated

in real grid environment using 49 different resources. The comparative study was

done using Min-Min and FCFS algorithms (Fidanova & Durchova, 2006; K. Liu,

Chen, Jin, & Yang, 2009). The experiment results show that the proposed algorithm

outperforms other algorithms. However, the experiments are very limited and the

comparison did not include other metaheuristics algorithms. Therefore, more

investigations are required to test the algorithm robustness.

Load balancing is one of the important criteria in grid computing. A research on task

scheduling with load balancing using Multiple Ant Colonies Optimization (MACO) in

57

grid computing was conducted by Bai et al. (2010). In their work, they used multiple

ant colony optimizations to avoid the local optima from single colony behave. In their

framework, they considered both positive and negative feedbacks in searching for

solutions by sharing the search information and exploring a wider area of search space

with the cooperation between the ant colonies. They defined the degree of imbalance

by calculating the heuristic value using the load computing of each node. The

experiments were conducted to evaluate the proposed algorithm with benchmark

problems generated using GridSim simulator developed by Buyya and Murshed

(2002). They compared MACO with ant colony systems (Dorigo & Gambardella,

1997b) and first-come-first-served (Harchol-Balter, Crovella, & Murta, 1999). The

results showed that their algorithm outperforms other algorithms in terms of

makespan and load balancing. However, the solution for intractability between

performance and load balancing is not illustrated.

Enhanced ant colony algorithm for job scheduling in computational grid has been

proposed by Maruthanayagam and UmaRani (2010). The proposed approach is based

on Fast Ant System (FANT) algorithm which is a version of ACO algorithm. The

study focused on makespan optimization using the independent task model as defined

in Kousalya ad Balasubramanie (2009). The authors compared between two formulas

proposed to calculate the probability of selecting a resource for processing a task. The

experiment results show that using local search algorithm will improve the algorithm

performance significantly. However, the study lacks a proper experiment design such

as using known benchmark problems and comparing the proposed algorithm with

other metaheuristics algorithms. Nonetheless, using fast ant system could be suitable

for job scheduling in grid computing due to the time restriction imposed by

computational grid systems.

58

Mou (2011) proposed a new approach using double Pheromones techniques for ant

colony system. The study model was designed to solve Generalized Travelling

Salesman Problem (GTSP) which is an extension of the classical traveling salesman

problem. In GTSP, the nodes were partitioned into groups called clusters. The

solution to GTSP is to find the shortest closed tour visiting exactly one node from

each cluster. For such a problem, there are two pheromones, namely pheromone

between the groups and pheromone on the edges. The researcher tried to differentiate

between those pheromones by applying the double pheromones concept. In addition, a

mutation idea inspired from genetic algorithm was introduced in this study. According

to the experiment results conducted by the author, applying double pheromones

produced better performance. However, the instances used in the experiment were

small. According to Li, Liao, and Cai (2011), they stated about ant colony system that

“it is difficult to realize the overall optimum and it takes a long time when being

applied to large-scale TSP”. In addition, the implementation and influence of the

mutation idea was not illustrated in the study.

An improved ACO algorithm for job scheduling in computational grid systems has

been proposed by MadadyarAdeh and Bagherzadeh (2011). The main objective of the

study is to minimize the makespan value as an optimization objective in a batch

mode. The authors improved the ACO algorithm for job scheduling provided in

Kousalya and Balasubramanie (2008). The improvement is based on giving higher

probability to tasks that have higher standard deviation. For evaluation purpose, the

study adopted static benchmark problems based on expected time to compute model

using Range-Based method as proposed by Ali et al. (2000b). The proposed algorithm

was compared with ACO and P.ACO presented in Bagherzadeh and MadadyarAdeh

(2009). The experiment results show that the proposed algorithm achieved the best

59

makespan values among other algorithms. However, the experiments were conducted

using a very small scenario (32 tasks and 4 machines) which is not sufficient to test a

metaheuristics algorithm. In addition, only static environment were considered in the

experiment without any dynamic features to reflect the real job scheduling problem in

grid computing. Moreover, the proposed algorithm was only compared with ACO

approaches. Therefore, more comprehensive experiments and comparisons are

required in order to discover the efficiency of the proposed algorithm.

Kokilavani and Amalarethinam (2013) published a study on implementing ant colony

optimization based load sharing for job scheduling in computational grid systems. The

study aims to enhance the quality of service and share the load among the resources in

order to optimize the resource usage in the computational grid environment. The

proposed algorithm was implemented in MATLAB application simulating grid

computing with 2 resources and 5 tasks. The proposed ant colony optimization based

load sharing was compared with Min-Min and Max-Min algorithms. The experiment

results show that the proposed approach outperforms other algorithms in terms of total

wait time criterion. However, the experiments are very limited in terms of the

benchmark problem size. In addition, the study is based on static environment and

used unknown scenario. Moreover, the proposed algorithm was only compared with

simple heuristic approaches. Therefore, the proposed algorithm should be evaluated

on dynamic environment and compared with other metaheuristics algorithms.

II. Artificial Bee Colony

Bee algorithms are inspired by biological honeybee behavioural specifically the

foraging and exploration (Yang, 2014). There are several types of bee algorithms,

such as honeybee algorithm, virtual bee algorithm, artificial bee colony, and

60

honeybee-mating algorithm. Artificial Bee Colony (ABC) is an optimization

algorithm developed by Karaboga and Basturk (2008) and Karaboga (2005). The bees

in ABC algorithm are divided into three groups, namely: employed bees, onlooker

bees, and scout bees. The idea behind ABC is that for each food source, there is only

one employed bee. In other words, the total number of employed bees is equal to the

total number of food sources. When the food source is discarded, the employed bee of

that food source is forced to be a scout bee. The scout bee will search for new food

source randomly. The onlooker bees wait in the hive to obtain the information from

the employed bees. Based on that information, the onlooker bees will choose the best

food source probabilistically and start foraging (Yang, 2014). ABC algorithm is

applied to solve job scheduling problem in computational grid.

A recent study published by Kim, Byeon, Liu, Abraham, and McLoone (2013)

applied Artificial Bee Colony (ABC) for job scheduling in computational grid. The

authors proposed Binary ABC (BABC), Efficient Binary Artificial Bee Colony

(EBABC1), and flexible ranking strategy (EBABC2) algorithms. The study aimed to

minimize the makespan criterion for job scheduling in grid computing. The

experiments were conducted using a series of benchmark problems defined by Liu et

al. (2010). The proposed algorithms were compared with genetic algorithm, simulated

algorithm, and particle swarm optimization algorithm. In terms of makespan criterion,

EBABC1 and EBABC2 algorithms achieved the best results among all other

algorithms with superior performance for EBABC2. However, the experiments were

conducted using static environment which is not enough to conclude the algorithm

robustness in dynamic environment. Therefore, conducting more experiments is

required. In addition, hybridizing artificial bee colony with local search seems a

promising research area as well.

61

III. Bacterial Foraging Optimization Algorithm

Bacterial algorithms mimic the behaviour of bacteria in the nature such as foraging,

reproduction, and movement (Xing & Gao, 2014). There are several types of bacterial

algorithms, such as bacterial foraging algorithm, bacterial colony chemotaxis,

superbug algorithm, bacterial colony optimization, and viral system (Xing & Gao,

2014). Bacterial algorithms have been implemented successfully in various

scheduling problems such as job shop scheduling problems (Ge & Tan, 2012; Wu,

Zhang, Jiang, Yang, & Liang, 2007), flow shop scheduling problems (Botzheim,

Toda, & Kubota, 2012), and assembly line balancing (Atasagun & Kara, 2014).

Bacterial algorithms have been utilized to solve job scheduling problems in grid

computing systems.

Nayak, Padhy, and Panigrahi (2012) proposed an algorithm which combined the

merits of genetic algorithm and bacterial foraging optimization algorithm called

Genetic Bacterial Foraging (GBF). The proposed algorithm implemented a dynamic

mutation as presented in Michalewicz (1999) and crossover operator developed by

Michalewicz (1992). The aim of the study is to reduce the execution time as a cost

function. The experiment was conducted using dynamic environment generated with a

simulator developed by the authors. The proposed algorithm was compared with

Bacterial Foraging Optimization (BFO) algorithm. The experiment results show that

the proposed GBF algorithm outperforms BFO algorithm. However, the experiment

scenario was very small, using only four resources and five tasks. Therefore, more

studies are required to understand the behaviour of bacterial foraging optimization

algorithm.

62

A study has been conducted by Rajni and Chana (2013) on Bacterial Foraging

optimization (BFO) algorithm for resource scheduling on computational grid systems.

The study aimed to optimize makespan and cost values by considering Resource

Provisioning (RP) unit adopted from Aron and Chana (2012). The proposed approach

was implemented using GridSim simulator developed by Buyya and Murshed (2002).

The experiments were conducted by generating a workload using a model defined in

Lublin and Feitelson (2003) and expected time to compute model presented in Ali et

al. (2000a). The authors compared the proposed algorithm with genetic algorithm,

simulated annealing, and GA-TS algorithms. The experiment results show that the

proposed BFO algorithm outperforms other algorithms in terms of makespan and cost

values for both low and high machine heterogeneity benchmark problems. In addition,

the results show that the Coefficient of Variation (CV) of the proposed algorithm is in

the range 0%-2% which confirms the stability of the proposed algorithm. However,

the experiments are very limited and did not include some dynamic grid attributes

such as resource failure which is considered very important in dynamic grid

computing system (Feitelson, 2013).

IV. Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) algorithm was initially developed by Eberhart

and Kennedy (1995) and Kennedy and Eberhart (1995). PSO is considered as a

population-based optimization algorithm based on biological swarm intelligence

(Noghanian, Sabouni, Desell, & Ashtari, 2014). PSO has been implemented to solve

many real time problems such as face recognition (Kothari, Anuradha, Shah, &

Mittal, 2012), assembly scheduling problem (Tian, Liu, Yuan, & Wang, 2012),

Resource-Constrained Project Scheduling Problem (Jia & Seo, 2013), and job shop

63

scheduling problem (Li & Pan, 2012). PSO is applied successfully to solve job

scheduling problems in computational grid system.

In job scheduling problems for grid computing environment, a fuzzy PSO approach

was published by Abraham, Liu, Zhang, and Chang (2006). The proposed algorithm

extends the position and velocity of the particles from real vectors to fuzzy matrices.

The study aimed to optimize the scheduler performance in terms of makespan and

flowtime as a bi-objective. The performance of the proposed algorithm was evaluated

with genetic algorithm and simulated annealing approaches. The experiments were

conducted using three static instances generated by the authors. The evaluation results

show that the proposed fuzzy PSO algorithm was able to achieve better makespan

values than other algorithms. However, the results did not include flowtime values

which are supposed to be the second objective of the study. Thus, no conclusion could

be provided regarding the performance of the proposed algorithm. Moreover, the

experiments were conducted using only static scenario which is not enough to explore

the proposed algorithm behaviour.

Izakian, Abraham, and Snasel (2009a) proposed a particle swarm optimization

algorithm for meta-tasks scheduling in distributed heterogeneous computing systems.

The proposed approach aims to minimize makespan as an objective function. The

implemented PSO algorithm was compared with genetic algorithm as presented in

Braun et al. (2001), and continuous PSO developed by Salman, Ahmad, and Al-

Madani (2002). For the evaluation purpose, the authors generated benchmark

problems using expected time to compute model proposed in Braun et al. (2001). The

experiment results show that the proposed algorithm achieved the best makespan

values in all instances. Moreover, the proposed algorithm has the lowest standard

64

deviation. It is clear from the results that the proposed PSO algorithm was able to

achieve good results. However, the experiments were conducted on a static job

scheduling scenario which is not enough to make a conclusion about the algorithm

efficiency. Hence, more studies and experiments required using dynamic job

scheduling scenario in order to understand the algorithm behaviour.

Another study which implemented PSO approach has been proposed by Izakian,

Ladani, Zamanifar, and Abraham (2009). The study objectives are to minimize the

makespan as well as flowtime simultaneously. The approach’s implementation was

based on static environment using expected time to compute model to estimate the

required time for processing task in a machine. The proposed algorithm was

compared with Fuzzy PSO presented in Abraham et al. (2006). The experiment results

show that the proposed PSO approach performs better than Fuzzy PSO. However, no

details were provided regarding the benchmark problem and the flowtime results were

not reported in the study. In addition, the proposed PSO algorithm has not been

implemented with dynamic environment. Therefore, the proposed approach requires

more experiments with dynamic environment and compared with other metaheuristics

algorithms as well.

Another study using PSO to schedule jobs in heterogeneous computing systems has

been proposed by Izakian, Abraham, and Snasel (2009b). The proposed algorithm

aims to minimize the makespan value as a performance criterion. The study compared

the proposed algorithm with GA presented in Braun et al. (2001) and PSO presented

in Salman et al. (2002). The conducted experiment is based on static environment

using expected time to compute model proposed in Braun et al. (2001). The empirical

results show that the proposed PSO algorithm achieved the best makespan in all

65

instances. In addition, the algorithm convergence time was the lowest in most

instances. In spite of these good results achieved using the proposed PSO algorithm,

more experiments are required using dynamic environment in order to evaluate the

algorithm robustness.

A comparison of four metaheuristics algorithms for task scheduling in computational

grid system was presented by Meihong and Wenhua (2010). The algorithms used in

their study for comparison are genetic algorithm, ant colony optimization algorithm,

particle swarm optimization algorithm, and simulated annealing algorithms. The

evaluation criteria are makespan and the mean response time. The authors conducted

experiments using static environment. The results show that PSO algorithm has the

best performance among the other algorithms. However, the experiments were

conducted in static environment and very small scenario (5 users and 3 resources).

Therefore, the robustness of the compared algorithms is not proven. In addition, only

classical versions of the algorithms are used while enhanced versions are better in

terms of performance. In order to obtain a clear picture about which metaheuristics is

better, more investigations and experiments are required using a known benchmark

such as the one presented in Braun et al. (2001).

Izakian, Ladani, Abraham, and Snasel (2010) proposed a discrete particle swarm

optimization for job scheduling in grid computing. Their approach aims to minimize

the makespan and flowtime simultaneously in grid computing. In their study, they

provide two representations for mapping between problem solution and PSO particle.

The first representation used a direct encoding that is a vector with size equal to the

number of tasks. Each element in the vector represents the machine number. The

second representation used a binary matrix size of (jobs number * machines number).

66

The matrix was represented with values either 0 or 1. The benchmark problem used to

evaluate the proposed algorithm is based on expected time to compute model

presented by Braun et al. (2001). The proposed algorithm was compared with GA,

ACO, PSO, and Fuzzy PSO algorithms. The experiment results show that the

proposed algorithm achieved good results in makespan reduction, while for flowtime,

the algorithm performed the worst. Although the study aims to minimize makespan

and flowtime, the contradiction is clear between them such that the algorithm could

not reduce both of them simultaneously. This contradiction is mentioned by Xhafa

and Abraham (2010) in grid computing as well. In general, the proposed algorithm

performs better than other algorithms. However, the experiments were conducted

using only static environment. Therefore, more experiments on dynamic environment

are required to conclude the performance of the proposed algorithm.

Another study using fuzzy particle swarm optimization for job scheduling in grid

computing has been proposed in H. Liu et al. (2010). In their algorithm, they extended

the velocity and position of particles from the real vectors to fuzzy matrices. The

advantages of using fuzzy matrices in PSO are the speed of convergence and the

increase of the ability to find a faster and feasible solution. The study used the

makespan criterion to measure the algorithm performance. The performance of the

proposed algorithm was compared with genetic algorithm and simulated annealing

algorithm. The experiment results show that the proposed algorithm outperforms the

other algorithm especially in terms of execution time. However, the study did not use

a common benchmark in order to evaluate the proposed algorithm with other

approaches. In addition, only genetic algorithm and simulated annealing algorithms

were used for comparison which is also not enough to give a complete picture.

67

Moreover, the experiments were conducted with static environment only. Therefore, it

is not clear how the proposed algorithm will behave in dynamic environment.

2.2 Hybrid Approaches in Job Scheduling

The term hybrid refers to the concept of combining two or more algorithms in order to

complement each other hoping to achieve a better performance. Hybridization could

be between any types of algorithms such as heuristic and metaheuristics algorithms

(Talbi, 2013a). There are two levels of hybridization, namely low and high levels

(Xhafa, Kolodziej, Barolli, & Fundo, 2011). In low level (also called strong coupled)

hybridization, the algorithms interchange their inner procedures. One of the hybrid

algorithms is considered as the main while the others are subordinate algorithms. The

low level hybridization could be presented as 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1(𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2), where

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1 is the main algorithm and 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2 is the subordinate algorithm. On

the other hand, high level hybridization could be represented as 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1 +

 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2 + ⋯ + 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑛 where 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1 will start first, then it will call

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2 after it finishes its process and so on. The sequences could be repeated

any number of times (depending on the algorithm design). Hybrid approach achieved

very good performance in many fields compared with stand-alone approaches

(Kolodziej, 2012). Hybridizing algorithms show promising results in job scheduling

for grid computing.

Ritchie and Levine (2004) published a hybrid approach between ant colony

optimization and tabu search algorithm for job scheduling in heterogeneous

computing environment. The idea behind this hybridization is that the tabu search

algorithm executed to the best-so-far solution found by the ants after some iteration

which is controlled by a parameter. In other words, tabu search algorithm is not

68

applied to every ant solution due to the longer processing time of tabu search

algorithm. The proposed algorithm adopted ACO implementation from Dorigo and

Stutzle (2003) and tabu search implementation from Ritchie and Levine (2003) which

is based on the approach described in Thesen (1998). The experiments were

conducted using static benchmark problems based on expected time to compute

model presented by Braun et al. (2001). The implemented algorithm was compared

with Min-Min, GA, Min-Min+LS, Min-Min+Tabu developed by Braun et al. (2001).

The experiment results show that the proposed approach outperforms other algorithms

for all instances in terms of makespan. However, the study reported that the proposed

algorithm took 3.5 hours to finish the execution of 1000 iterations of ACO which is

considered a very long time compared to 90 seconds according to Xhafa, Duran, et al.

(2008). In addition, the experiments were conducted using only static environment

and makespan criterion which is not enough to conclude the algorithm performance.

Nevertheless, the study provides practical hybridization details which could be re-

implemented with enhancement.

A hybrid approach for job scheduling in computational grid systems proposed by

Xhafa (2007). The proposed algorithm is based on memetic algorithms and several

local search algorithms. The idea of the hybridization is that MA can use any of the

16 local search algorithms during the search process. In addition, MA algorithm

hybridized with TS algorithm as a high level hybridization (MA+TS). The proposed

algorithm aims to minimize the makespan and flowtime as a multi-objective

optimization. The study investigated the proposed algorithms on static and dynamic

grid computing environment. For static environment, the evaluation is based on ETC

model proposed in Braun et al. (2001) and the proposed algorithms MA and MA+TS

compared with two versions of GA implemented in Braun et al. (2001) and Carretero

69

and Xhafa (2006). Furthermore, the study conducted experiments on dynamic grid

computing environment using HyperSim simulator developed by Phatanapherom et

al. (2003). The experiment results show that for static environment, MA+TS

outperforms all other algorithms in terms of makespan, while MA outperforms all

other algorithms in terms of flowtime. Similar results were also obtained for dynamic

environment experiments. However, the experiments on dynamic environment did not

evaluate the proposed algorithms with other algorithms (only comparing MA with

MA+TS). Therefore, more evaluation is needed with other algorithms especially in

dynamic environment. Nevertheless, the study provides a good foundation regarding

the performance of local search with metaheuristics.

Another study called “An Improved Ant Colony Algorithm for Grid Scheduling

Problem” was conducted by Bagherzadeh and MadadyarAdeh (2009) to improve AS

algorithm. They argued that using the traditional AS (task, machine) will not achieve

the optimal solution. In their approach, they hybridized between MaxStd and AS

methods. The idea behind that is to give a higher probability to tasks that have higher

standard deviation. They conducted experiments with twelve different types of

problems. The results show an improvement in makespan and utilization vary from

3% to 29% depending on the problem type. However, the proposed algorithm was

compared with ant system algorithm, and not ant colony system, which is considered

the newest version in ant colony optimization algorithms.

A study on low level hybridization between Genetic Algorithm and Tabu Search

GA(TS) for job scheduling in grid computing has been published by Xhafa, Gonzalez,

Dahal, and Abraham (2009). The idea behind this hybridization is to enforce more

exploitation of solution space using the smart process of tabu search algorithm. The

70

proposed approach starts with genetic algorithm as the main algorithm and calls tabu

search algorithm to improve the population individuals. The hybrid algorithm

considers the scheduling problem as a bi-objective optimization problem. The study

aims to minimize makespan as a primary objective and then minimize flowtime as a

secondary objective. The implementation and comparison of genetic algorithm and

tabu search is adopted from Carretero et al. (2007) and Xhafa, Carretero, et al. (2009)

respectively. For evaluation purpose, the experiments were conducted using a grid

computing simulator developed by Xhafa et al. (2007). A three static scenario was

generated using expected time to compute model as a benchmark problem for

experiments. In terms of makespan, the experiment results show that the proposed

hybrid algorithm performs better than GA and TS for small and medium size

instances. However, GA(TS) achieved the worst value for large size problems. In

term of flowtime, GA(TS) achieved the best result for large size instances and the

worse values for other instances. The authors concluded that the proposed hybrid

algorithm outperforms other algorithms in terms of makespan for small and medium

size grid scenarios which is the prime objective of the study. In addition, the

experiment results show that the bi-objective optimization problem in grid computing

is a contradictive problem. However, the experiments are very limited in terms of

static instances and the algorithms compared with. In addition, it is very important to

test any hybrid approach on dynamic grid computing simulator in order to observe

how the algorithm can cope with dynamic change.

A hybrid genetic algorithm based scheduler with secure and task abortion features has

been proposed by Kolodziej, Xhafa, and Bogdanski (2010). The study proposed four

hybrid genetic algorithms, namely Secure Genetic Algorithm (SGA), Risky Genetic

Algorithm (RGA), Player’s Genetic Algorithm (PGA1), and Player’s Minimum

71

Completion Time (PMCT). Besides the proposed algorithm for scheduling jobs in

grid computing, the authors added security and task abortion mechanisms which are

considered as crucial issues in grid systems. The performance of the proposed

algorithm was measured through the makespan and flowtime metrics as bi-level

optimization problem. The study focused on independent job scheduling problem in

batch mode as described in Xhafa and Abraham (2010). In addition, the problem was

formulated using expected time to compute matrix model presented by Ali et al.

(2000b). The implementation of the proposed genetic algorithm for independent batch

scheduling was adopted from Carretero et al. (2007). The experiments were

conducted using discrete event-based grid simulator called HyperSim-G developed by

Xhafa and Carretero (2009). Using HyperSim-G, static and dynamic sets of instances

were generated as benchmark problems in order to evaluate the proposed algorithm.

The experiment results show that PMCT algorithm outperforms other algorithms for

static and dynamic instances in terms of makespan. For the case of flowtime, all

results are similar except for very large grid size where PMCT did not perform well as

other algorithms. Despite the fact that security and task abortion are very important

features in grid computing, security could be separated from the scheduler layer to

improve the algorithm performance. Regarding task abortion, more studies are

required to define a sufficient mechanism for such a complex process.

Song, Sun, and Cao (2010) presented a study on the convergence of converse ant

colony algorithm for job shop scheduling problem. In their study, they addressed two

problems with traditional ACO algorithm, slow and easy to fall into the local optimal

solution. To solve these problems, they proposed an algorithm called “Hybrid

Converse Ant Colony Optimization (HCACO)” with global convergence. HCACO

algorithm uses ACO algorithm with simulated annealing algorithm. The hybrid

72

algorithm can quickly rule out the poor solutions, so that the pheromone of optimal

path will be updated immediately, and the search time will be reduced. Because of

using SA algorithm which has the probability of escaping from the local optimization,

it is sure that ants will not fall into local optimal solution. The experiment was

conducted using a simulator with 13 hard benchmark problems. The results presented

a comparison between HCACO, Parallel Genetic Algorithm (PGA2), and ACO. From

the results, HCACO shows the best result in terms of average relative error percentage

which is smaller than PGA and ACO. The calculation time of HCACO and PGA was

equal.

A paper written by Wang, Duan, Jiang, and Zhu (2010) presented a new algorithm for

grid task scheduling using Genetic and Simulated Annealing algorithms (GSA). The

algorithm combined genetic algorithm with simulated annealing algorithm. They

pointed out that in spite of GA being fast in searching rate at the beginning; it suffers

from trapping in local minimum, while SA takes a long time to get the global

minimum. Based on those reasons, the authors combined GA with SA to inherent the

convergence property of simulated annealing and parallelism capability of genetic

algorithm. The hybrid algorithm GSA will start with GA which is stopped

prematurely after satisfying the termination condition. After that, each node visited at

the last generation with the best node found overall are taken as starting input for the

simulated annealing algorithm. The experiment results show that GSA performs better

than GA and SA. GSA has the ability to converge to a global minimum because of SA

property. However, the experiment was conducted using only 15 tasks and 3 resources

which are not enough to prove the robustness of the algorithm and the feasibility of

calculation time for big problem space such as 100 tasks and more than 10 resources.

Therefore, more investigation is needed to evaluate the hybrid algorithm GSA.

73

A hybrid approach between population and local search algorithms has been

developed by Xhafa, Kolodziej, Barolli, and Fundo (2011). The study represents a

high level hybridization between GA and TS, named GA+TS algorithm for

scheduling in grid computing. The algorithm starts with GA for a specific time, and

then passes the results to TS algorithm as an initial solution. TS algorithm will search

the neighbourhood of the initial solution until the termination condition is met. The

authors expected that GA will explore the solution space widely, while TS will make

in-depth exploration of the best solution found by GA. The objective of the proposed

algorithm is to enhance the makespan as a primary objective and flowtime as a

complement objective. This type of optimization scheme is referred as a hierarchic

optimization with priority to makespan criterion. Both algorithms, GA and TS, have

been implemented and evaluated for job scheduling in computational grid in Carretero

et al. (2007) and Xhafa, Carretero, et al. (2009). The experiments were conducted

using a HyperSim-G simulator developed by Xhafa et al. (2007). The study

considered static and dynamic grid computing environment. The proposed algorithm

evaluated with GA, TS and GA(TS) algorithms proposed in Carretero et al. (2007),

Xhafa, Carretero, et al. (2009), and Xhafa, Gonzalez, et al. (2009). The experiment

results show that the proposed algorithm outperforms other algorithms only in one

instance for static environment in terms of makespan and flowtime. While for

dynamic environment, the proposed algorithm achieved good results only in one small

size grid instance in terms of makespan. However, the GA+TS did not perform good

compared to other algorithms in terms of flowtime. In spite of these results, the

concept of using local search with population algorithm needs more investigation

specifically, the hybridization of different level and different population algorithms.

74

A study conducted by Xhafa, Kolodziej, Barolli, Kolici, et al. (2011) proposed a

hybrid approach between GA and TS for independent batch job scheduling in grid

computing. The hybrid algorithm aims to optimize the makespan and flowtime as a

bio-objectives scheduling problem. In addition, the authors proposed hierarchic and

simultaneous approaches for optimizing makespan and flowtime as well. Two types

of hybridization provided are low and high level hybridizations, which in turn result

in GA(TS) and GA+TS algorithms. The experiments were conducted considering

static and dynamic grid computing environment using HyperSim-G simulator

developed by Xhafa et al. (2007). The proposed algorithms were compared with GA

proposed in Carretero et al. (2007) and TS represented in Xhafa, Carretero, et al.

(2009). The experiment results show that the proposed hybrid algorithms outperform

the other stand-alone algorithms in makespan criterion. However, in terms of

flowtime criterion, GA and TS stand-alone algorithms outperform the proposed

hybrid algorithm; such a contradiction is normal for job scheduling in grid computing.

In spite of the limitation on the experiments and benchmark problem, the study

illustrated the implementation of the hybrid algorithms clearly.

A study has been proposed by Xhafa, Duran, and Kolodziej (2011) on exploitation

and exploration of solution space for job scheduling in computational grid systems.

The study aimed to utilize the population-based algorithm as an exploration

mechanism for search space and hybridize it with local search as an exploitation

mechanism. The authors proposed Memetic Algorithms (MAs) as a population-based

exploration method and Hill Climbing (HC) and Tabu Search (TS) algorithms as

exploitations methods. The proposed algorithm was evaluated using static benchmark

problem adopted from Braun et al. (2001) and dynamic benchmark problem generated

using HyperSim simulator developed by Phatanapherom et al. (2003). The proposed

75

hybrid MA+TS was compared with GA results implemented in Braun et al. (2001).

The experiment results show that the proposed algorithm achieved the best makespan

values for all instances. However, for flowtime results, the non-hybrid approach, that

is MA approach, achieved the best flowtime values. Similar results were obtained for

dynamic experiments where MA+TS achieved the best results for makespan, but

worst for flowtime. It is clear from the results that the proposed algorithm faced

contradictory optimization problem which is not possible to improve both objectives

of makespan and flowtime.

Nithya and Shanmugam (2011) proposed new Hybrid Ant Colony Optimization

(HACO) algorithm for job scheduling in grid computing. In their research, they

focused on high performance computing criteria to decrease the execution time in grid

computing. The proposed algorithm is based on ant colony optimization for dynamic

batch mode heuristic mapping. The new approach considers each job as an ant in the

colony and the pheromone details are provided to help in finding the optimal solution.

The proposed algorithm uses a new rule for updating the pheromone, and probability

matrix calculation formula in order to increase the efficiency of the existing ant

colony algorithm. Different types of experiments were conducted. The results show

that the proposed algorithm reduces the makespan in reasonable time. However, the

load balancing criterion is neglected in their research which is a very important factor

in grid computing performance and throughput.

Another study presented by Wei, Zhang, Li, and Li (2012) aimed to improve the ant

colony algorithm for grid task scheduling. They introduced a new type of pheromone

and a new node redistribution rule, at the same time, the algorithm can track the

performance of resources and tag it. The proposed algorithm considers the load

76

balance, task execution time, and resource fault. The approach replaces the path

pheromone into node pheromone to describe the handling capacity of current

resource. The meaning of pheromone in this algorithm is resource processing

capacity. The proposed system model consists of task receiver, task scheduler, and

resource information service collector. The new pheromone is called resource

suitability. By using this formula, the algorithm can evaluate the resource stability and

increase its pheromone. Another important improvement in this algorithm is the

resource redistribution rule which handles the unsuccessful task processing. The

results are compared with traditional ant algorithm. They claimed that their algorithm

performs better than the basic ant algorithm. The idea of a second type of pheromone

is interesting, but the experiment is very limited. In order to prove this concept, more

experiments are needed and more comparison with other algorithms such as ant

colony systems, and ant systems are required.

A recent study on hybrid approach between ant colony optimization and cuckoo

search algorithm for job scheduling in grid computing has been presented by Raju,

Babukarthik, and Dhavachelvan (2013). The authors tried to combine the advantages

of pheromone in ant colony optimization with local search feature of cuckoo search

algorithm. The study aimed to minimize the makespan value for job scheduling in

computational grid systems. The experiments were simulated using parallel

computing toolbox in MATLAB. The proposed algorithm performance was compared

with ant colony optimization algorithm using static scenario developed by the authors.

The experiment results show that the proposed algorithm executes faster than ACO

algorithm. However, the makespan values which is supposed to be the study objective

is not reported. In addition, the paper did not specify which ant colony optimization

member was used in the hybridization. Moreover, the experiments were very limited

77

in terms of tasks and resources used and the benchmarks were unknown. Therefore,

more studies are required to investigate the algorithm performance, especially in

dynamic environment. Nevertheless, the idea of hybridizing new metaheuristics

algorithms such as cuckoo search algorithm with ant colony optimization is a useful

idea.

2.3 Grid Simulator

One of the main factors that affect the performance of a grid computing is the

workload to which the system is subjected (Feitelson, 2013). Evaluating the job

scheduling algorithm with wrong workloads will lead to erroneous results which

cannot be relied upon (Smith, 2007). The workload could be classified into static and

dynamic workload. The author also stated that the differences between static and

dynamic workloads may have subtle implications for performance evaluation.

Therefore, an experiment that utilizes static workloads is incapable to evaluate the

performance of job scheduling algorithm. Feitelson (2013) has also stated that static

workload cannot be considered as valid samples of real dynamic workloads.

Organizations such as System Performance Evaluation Consortium, Grid Workloads

Archive and Transaction Processing Performance Council provide several

benchmarks on CPU, network file system, web servers, cluster, grid, database and

parallel distributed systems for evaluation of computer systems (Feitelson, 2013).

These benchmarks are useful to be analyzed and modelled.

One of the successful models for heterogeneous static computing system is Expected

Time to Compute (ETC) proposed by Ali et al. (2000). The model arranges the

information in a two dimension matrix called ETC matrix. Each entry in the matrix,

ETC [i, j], represents the expected execution time of task i on machine j. In ETC

78

matrix, the elements along a row represent the estimates of the expected execution

times of a given task on different machines, while the elements along a column give

the estimates of the expected times of different tasks on a given machine. Two

methods are used in ETC model, namely Range Based ETC Matrix Generation and

Coefficient-of-Variation Based ETC Matrix Generation. The first method used normal

distribution while the second method used gamma distribution. However, there is a

limitation with the ETC model. Its computing capacity of resources remains

unchanged (static) during tasks execution. Thus, ETC model does not reflect the real

dynamic environment in grid computing (Xhafa & Abraham, 2008a).

GridSim is one of the popular simulators for static job scheduling in grid computing

(Hao, Liu, & Wen, 2012). GridSim is a java-based discrete-event simulation toolkit

which can simulate heterogeneous resources, users, applications, brokers and

schedulers in grid computing. However, GridSim suffers when simulating more than

2,000 grid sites concurrently due to the memory consumption. In addition, GridSim

does not simulate the failure of resources which is one of the dynamic natures in real

grid computing environment. A simulator for mapping jobs to resources in grid

environment was also proposed by Chaturvedi and Sahu (2011). They developed their

simulator using C++ language for ten metaheuristics algorithms. However, their

simulator is based on ETC model which can simulate only static environment.

Caron, Garonne, and Tsaregorodtsev (2007) developed a simulator for many clusters

of heterogeneous nodes belonging to a local network. Their simulator was developed

based on Simgrid toolkit proposed by Grosan and Abraham (2007). They used the

improved Simgrid simulator in their experiments for batch system. Probability

distributions such as Gamma, Gaussian and Poisson were available to simulate the

79

pattern of arrival of jobs. However, the simulator lacks the attribute of resource

failure.

For large distributed grid systems and complex job scheduling, a simulator called

GangSim was developed by Dumitrescu and Foster (2005). The simulator focuses on

the interactions between local and community reservation allocation policies.

GangSim allows parallel execution running on real resources which make scheduling

process faster. GangSim includes components such as external scheduler, local

scheduler, data scheduler, monitoring distribution points, and virtual organization. In

spite of all these components in GangSim, the authors stated that GangSim is still far

from an accurate simulation of the grid environment, primarily due to various

idiosyncratic features.

Grid World Archive (GWA) provides archives of operational data that can be used in

evaluating job scheduling algorithms. However, GWA archives lack details and

systematic description of the grid or cluster resources and from where the data were

collected (Klusacek & Rudova, 2010). In addition, information on the background of

the load, resource failures or specific user’s requests were not provided. It can be seen

that present models cannot fully simulate the dynamic nature of jobs and resources in

the grid environment.

2.4 Conceptual Framework

This study focused on metaheuristics algorithms domain specifically on the

hybridization between ant colony system, genetic algorithm, and tabu search

algorithms. Figure 2.7 illustrates the research conceptual framework.

80

Figure 2.7. Research conceptual framework

In Figure 2.7, the framework starts with metaheuristics algorithms components. There

are several categorise of metaheuristics which could be classified as population or

individual based, swarm intelligence, local search, nature inspired algorithm.

However, there is no standard classification for metaheuristics algorithms (Blum &

Roli, 2003). This study selects ant colony system algorithm from swarm intelligence

branch, genetic algorithm from evolutionary branch, and tabu search from local

search branch. From these three algorithms, four hybridized algorithms are proposed

in this study, namely ACS(GA), ACS+GA, ACS(TS), and ACS+TS. These hybrid

algorithms are based on low and high level of hybridization between ACS, GA, and

TS algorithms. The low level hybridization will enhance the exploration mechanism

of ACS algorithm, while the high level hybridization will refine the final solution

found by ACS algorithm. For evaluation purpose, the proposed hybrid algorithms are

implemented and evaluated on job scheduling problem in static and dynamic grid

computing system.

Metaheuristics Algorithm

Local Search Algorithm Evolutionary Algorithm Swarm Algorithm

Tabu Search Algorithm Genetic Algorithm Ant Colony System

ACS(GA)

ACS+GA

ACS(TS)

ACS+TS

81

2.5 Summary

It is clear from the previous studies that scheduling problem is NP-complete problem.

So far, there is no exact algorithm for solving NP-complete problems. Therefore,

approximate algorithms were used for solving such a problem. All the approximate

algorithms do not guarantee to find the optimum solution but they try to reach a near

optimum solution within reasonable time and resources. ACS is one of these

algorithms which have shown a good performance in solving different types of

optimization problems. However, in huge instances problem, ACS suffers from

stagnation problem which makes it insufficient in terms of computation time and

solution quality. The huge instance means the search space is very big. In order to

search a wide area of that search space, ants in ACS algorithm need to explore more

nodes and arcs. In addition, the number of ants needs to be increased. As the

mechanism of exploration in ACS influenced by random selection, any wrong path

selection in terms of cost will affect the whole solution quality. Therefore, by

increasing the exploration rate, the rate of wrong selection will also be increased and

the final solution definitely will be out of quality (it was clear in most of the literature

review that the rate of exploration is 0.1). On the other hand, increasing the number of

ants will make the search process very slow because each ant will construct its own

solution. Therefore, increasing any parameter value related to those issues will not

give a better result, instead of that; it will give a worse result. Hence, ACS needs

better exploration mechanism which is not based on random selection. Tabu search

algorithm shows very fast convergence with reasonable processing time. Genetic

algorithm and tabu search are considered as good candidates to do the enhancement

process for the solution found by ACS algorithm. Therefore, this study proposes

82

hybrid ACS with GA and TS algorithms. The hybrid approaches are implemented in

low and high level of hybridization.

83

CHAPTER THREE

RESEARCH METHODOLOGY

This chapter presents the framework and methodology of this study to implement the

hybrid ACS with GA and TS algorithms. In addition, the level of hybridization for

each approach is discussed in this chapter as well. Moreover, this chapter provides the

evaluation details.

The rest of this chapter is organised as follows. Section 3.1 discusses the research

framework and Section 3.2 describes the methodology, techniques and the proposed

algorithms. The summary is presented in Section 3.3.

3.1 Research Framework

The research framework started with enhancing the exploration mechanism in ACS

algorithm by implementing low level hybridization with GA and TS algorithms as

shows in Figure 3.1. Then, the GA and TS algorithms are hybridized with ACS

algorithm in a high level order to refine the solution found by ACS algorithm. The

design and development of the grid computing simulator is undertaken in the third

phase. Finally, phase four focuses on the evaluation of the proposed algorithms. The

following sections describe the methods and techniques used in each phase of the

research framework.

84

Figure 3.1. The Research Framework

Enhance ACS exploration

Phase 1:

Low level hybrid

algorithm.

1- ACS(GA)

2- ACS(TS)

(1
st
 objective)

Refine the ACS solution Phase 2:

High level hybrid

algorithm.

1- ACS+GA

2- ACS+TS

(2
nd

 objective)

Develop static and

dynamic grid computing

simulator
Phase 3:

Simulator for

grid computing

system

(3
rd

 objective)

Evaluation of the

proposed algorithm
Phase 4:

The best hybrid

algorithm for

grid computing

system

(4
th
 objective)

Phase Activity Outcomes

85

3.2 Research Methodology

The methods that have been used in conducting the research are explained in the

following sections.

3.2.1 Problem Formulation

Job scheduling problem consists of complex job involving the execution of multiple

tasks. Each job contains one or more tasks (Kolodziej, 2012). This study considered a

static and dynamic grid computing system based on batch mode. In batch mode, the

tasks are grouped into a batches and each batch assigned to the resources via the

scheduler. In addition, this study deals with independent tasks that are tasks with no

relation between each other. The task size is expressed using Million of Instruction

(MI) and the resource capacity expressed using Million of Instruction Per Second

(MIPS) (Kolodziej, 2012). The time required to process a task on a resource is

calculated using Expected Time to Compute (ETC) model proposed by Braun et al.

(2001) as follows:

𝐸𝑇𝐶[𝑖, 𝑗] =
𝑡𝑎𝑠𝑘𝑖

𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑗

 (3.1)

𝐸𝑇𝐶𝑛×𝑚 is a matrix with two dimensions 𝑛 × 𝑚 where 𝑛 is the number of tasks and

𝑚 is the number of machines. In addition, each machine has a load to process before

processing the new tasks. The previous load expressed using ready time vector

(Kolodziej, 2012). The ready time vector of all machines is defined as:

𝑟𝑒𝑎𝑑𝑦_𝑡𝑖𝑚𝑒 = [𝑟𝑒𝑎𝑑𝑦1, 𝑟𝑒𝑎𝑑𝑦2, … , 𝑟𝑒𝑎𝑑𝑦𝑚]

86

The completion time of 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑗 is calculated using:

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛[𝑗] = 𝑟𝑒𝑎𝑑𝑦𝑗 + ∑ 𝐸𝑇𝐶[𝑖, 𝑗],

𝑖∈𝑇𝑎𝑠𝑘(𝑗)

 (3.2)

Where 𝑇𝑎𝑠𝑘(𝑗) is the set of tasks assigned to the 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗 (Kolodziej, 2012).

The 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛[𝑗] parameters are the coordinates of the following completion

vector:

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 = [𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛[1], 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛[2], … , 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛[𝑚]]
𝑇
 (3.3)

Using completion vector, the makespan calculated using the following equation:

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max
j ∈ M

 (completion[j]) (3.4)

where M is the number of machines (Kolodziej, 2012).

The workflow of the sequence of tasks on a given 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 is calculated using the

following equation:

𝑊𝐹[𝑗] = 𝑟𝑒𝑎𝑑𝑦𝑗 + ∑ 𝐸𝑇𝐶[𝑖, 𝑗]

𝑖∈𝑆𝑜𝑟𝑡𝑒𝑑[𝑗]

 (3.5)

Where 𝑊𝐹[𝑗] is the workflow of the 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗, 𝑆𝑜𝑟𝑡𝑒𝑑[𝑗] is a set of tasks assigned

to the 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗 sorted in ascending order by the corresponding ETC values

(Kolodziej, 2012).

 The flowtime value is the sum of 𝑊𝐹[𝑗] parameters using the following equation:

87

𝐹𝑙𝑜𝑤𝑡𝑖𝑚𝑒 = ∑ 𝑊𝐹[𝑗]

𝑗∈𝑀

 (3.6)

The utilization metric is calculated using the following equation (Kolodziej, 2012):

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
∑ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛[𝑗]{𝑗∈𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠}

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ∙ 𝑛𝑢𝑚𝑛𝑒𝑟 𝑜𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠

 (3.7)

3.2.2 Dynamic Expected Time to Compute

For ACS implementation, the heuristic information needs to be defined. For static

environment, heuristic value is calculated from the Expected Time to Complete (ETC)

matrix using {1 / (ETC𝑖𝑗 + Load𝑗)} where ETC𝑖𝑗 represents the expected time to

compute task 𝑖 on machine 𝑗 Equation (3.1), and Load𝑗 is the previous load assigned

to machine 𝑗 (Ku-Mahamud & Alobaedy, 2012). For dynamic environment, this study

will calculate the heuristic value from the Dynamic Expected Time to Complete

(DETC) matrix using {1 / (DETC𝑖𝑗 + Load𝑗)} where DETC𝑖𝑗 represents the dynamic

expected time to compute task 𝑖 on machine 𝑗, and Load𝑗 is the previous load assigned

to machine 𝑗. Longer computing time and more loads will produce a smaller heuristic

value, which will make the probability of selecting this machine smaller and vice

versa.

3.2.3 Solution Encoding

One of the most important parts of any metaheuristics algorithms is how to encode the

solution which is related to the algorithm data structure (Michalewicz, 1999). This

study implemented the solution encoding using a vector (Kołodziej & Khan, 2012).

The size of the vector is equal to the number of tasks. The vector value indicates the

88

machine number; therefore, the vector values are in the range of (1 – number of

machines) (Xhafa et al., 2011). For example:

Solution_Vector [1] = 2, means task 1 is assigned to machine number 2.

This representation implemented for ant colony system, tabu search, and genetic

algorithm. For ant colony system, each ant holds an empty vector which represents

the schedule solution. During construction phase, each ant will assign a value to the

vector which is a machine number. Once the construction phase is finished, the ant

has the complete vector which is a complete schedule solution. Figure 3.2 shows the

solution vector used by the ants.

Figure 3.2. The solution vector used by the ants

For tabu search algorithm, same representation implemented as a solution trajectory.

TS algorithm searched the vector neighbourhood using methods, such as swapping the

adjacent machine. The vector will always represent a valid schedule solution as long

as the vector values in the range of (1- number of machines).

For genetic algorithm, the solution vector considered as a chromosome. The following

scenario is used in demonstrating the practicality of the proposed representation. A

89

scheduler has to assign five tasks (t) to four resources (r). Figure 3.3 shows the

solution vectors contain the resource number.

Figure 3.3. Solution vectors used by genetic algorithm

Note that the tasks sequences are fixed in ascending order (𝑡1, 𝑡2, … , 𝑡𝑛). This type of

solution vector contains less information (only resource number) and easier to

manipulate with operations such as crossover in genetic algorithm. For example,

applying crossover after the third gene in Figure 3.3 will produce new solutions as

shows in Figure 3.4.

Figure 3.4. The new solution vectors produced by crossover operator

In validating the solution, changing the resource order will always produce valid

solution even if there are resources that are assigned more than once or not utilized at

all. In other words, validation of the solution can be omitted. Thus applying this type

of representation will reduce the calculation process and time.

3.2.4 Objective Function

There are many criteria in job scheduling to measure the solution quality, such as

makespan, flowtime, utilization, matching, and balance. Due to the importance of

90

makespan metric, this is study considered the makespan value as the main objective to

minimize using the following fitness function for GA and ACS (Braun et al., 2001):

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

 (3.8)

Makespan value calculated using equation (3.4). Solution with smaller makespan

value means it has higher fitness value. For TS algorithm, the makespan value is the

fitness value itself, that is: 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑚𝑎𝑘𝑒𝑝𝑠𝑎𝑛.

3.2.5 Ant Colony System Algorithm Implementation

ACS algorithm starts with initializing the parameters and pheromone trails. The initial

pheromone is calculated as (Dorigo & Stutzle, 2004):

1/((𝑛𝑒𝑎𝑟𝑒𝑠𝑡 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 − 𝑠𝑜𝑙𝑢𝑡𝑖𝑛) ∙ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ∙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠))

 (3.9)

Once the initializing process is done, each ant in ACS starts solution construction

process using the following equations:

𝑃𝑖𝑗
𝐴𝑛𝑡𝑘 = {

𝑎𝑟𝑔𝑚𝑎𝑥 {[𝑡𝑖𝑗] . [1 / (𝐷𝐸𝑇𝐶𝑖𝑗 + 𝐿𝑜𝑎𝑑𝑗)]
𝛽

} , 𝑖𝑓 𝑞 ≤ 𝑞0;

𝐽 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

 (3.10)

where [𝑡𝑖𝑗] is the pheromone value between the task 𝑖 and machine 𝑗, 𝐷𝐸𝑇𝐶𝑖𝑗 is the

dynamic expected time to compute task 𝑖 on machine 𝑗 (𝐸𝑇𝐶𝑖𝑗 is used for static),

Load𝑗 is the previous load on machine 𝑗, 𝛽 is the parameter to control the influence of

the heuristic information, 𝑞 is a random variable uniformly distributed in [0, 1], 𝑞0 (0

91

≤ 𝑞0 ≤ 1) is a parameter, and 𝐽 is a random variable selected according to the

probability distribution using the following equation:

𝑃𝑖𝑗
𝐴𝑛𝑡𝑘 =

[𝑡𝑖𝑗] . [1 / (𝐷𝐸𝑇𝐶𝑖𝑗 + 𝐿𝑜𝑎𝑑𝑗)]𝛽

∑ [𝑡𝑖𝑗] . [1 / (𝐷𝐸𝑇𝐶𝑖𝑗 + 𝐿𝑜𝑎𝑑𝑗)]𝛽𝑀
𝑗=1

 (3.11)

During the construction process, each ant will apply a local pheromone update using

the following equation (Dorigo & Stutzle, 2004):

𝑡𝑖𝑗 = (1 − 𝜌) ∙ 𝑡𝑖𝑗 + 𝜌 ∙ 𝑡0 (3.12)

Where 𝜌 (0 < 𝜌 < 1) is the evaporation rate and 𝑡0 is the initial pheromone calculated

using equation (3.9).

Once all the ants finished their construction phase, the global pheromone update starts

using the following equation (Dorigo & Stutzle, 2004):

𝑡𝑖𝑗 ← (1 − 𝜌) ∙ 𝑡𝑖𝑗 + (𝜌 ∙ ∆𝑡𝑖𝑗
𝑏𝑖𝑗

), ∀(𝑖, 𝑗) ∈ 𝑇𝑏𝑠, (3.13)

Where ∆𝑡𝑖𝑗
𝑏𝑖𝑗

 is the fitness value found be the best-so-far ant using equation (3.8) and

𝑇𝑏𝑠 are the arcs of the best solution (Dorigo & Stutzle, 2004).

Appendix A provides the C# code for ant colony system algorithm.

3.4.6 Genetic Algorithm Implementation

Genetic algorithm consists of several methods, namely generate population,

evaluation, selection, crossover, mutation, and combination operators. In this study,

92

each operator is implemented according to Xhafa et al. (2007a). The following are the

implementation details.

I. Population

A genetic algorithm is based on a population approach which is using many

chromosomes in order to apply operators, such as crossover and mutation operators.

Each chromosome is representing a complete solution. For job scheduling problem in

grid computing, the chromosome is a vector of integer numbers [1 - machines

numbers]. The size of the vector is equal to the number of tasks and the vector index

represents the task number (Xhafa et al., 2007a). For example Figure 3.5 shows two

chromosomes for 5 tasks and three machines.

Chromosome[1] = 1 2 2 1 2

Chromosome[2] = 2 2 2 1 1

Figure 3.5. Chromosomes for five tasks and three machines

Each chromosome in the population is created randomly. However, for the proposed

hybrid approach ACS(GA) and ACS+GA, one of the population chromosome is the

best solution passed from ACS to GA.

II. Evaluation

Every chromosome’s fitness value in the population is evaluated using the objective

function based on makespan value as defined in equation (3.8).

93

III. Selection

This study implemented the K-tournament method as a selection operator. In K-

tournament operator, K chromosomes are randomly selected from the population.

From these K chromosomes, two chromosomes are selected with the highest fitness

values. This type of selection will give chance to all individual to compete fairly

(Xhafa et al., 2007a).

IV. Crossover

There are many types of crossover operators, such as one-point, two-points, multi-

points, and uniform crossover. This study implemented a crossover operator knows as

Fitness-Based crossover (Xhafa et al., 2007a). In Fitness-Based crossover, the

crossing is made based on the fitness of the parents chromosomes (solutions). Let 𝑓1

be the fitness of the first chromosome and 𝑓2 is the fitness of the second chromosome.

Then the probability of interchanging for each gene (machine) is calculated using:

𝑝 = 𝑓1 / (𝑓1 + 𝑓2) (3.14)

In this method, if there is a large difference in the fitness values between two parent

chromosomes, then it is quite probable that a chromosome of new structure will be

obtained (Xhafa et al., 2007a).

V. Mutation

In this study, the mutation operator implemented based one the Re-balance mutation

method (Xhafa et al., 2007a). Re-balance mutation tries to reduce the lode of the most

overloaded machine by swapping jobs from the overloaded machine. The Re-balance

mutation is done in two steps:

94

a. Choose a machine 𝑚 from most overloaded machines.

b. Identify job 𝑡 assigned to 𝑚 and 𝑡′ assigned to another machine 𝑚′ such

that 𝐸𝑇𝐶[𝑡′][𝑚′] < 𝐸𝑇𝐶[𝑡][𝑚]. Jobs 𝑡 and 𝑡′ are swapped.

VI. Replacement

The study implemented the replacement operator based on Steady-State Genetic

Algorithm (SSGA) strategy (Xhafa et al., 2007a). In SSGA, the worse portion of the

population will be replaced with the new generated chromosomes. The size of the

population is maintained constantly. In spite of the risk of stagnation, using SSGA

operator performs very well if a good solution is required to be find very quickly

such as the case of job scheduling problem in grid computing where the time to find

the solution is very restricted (Xhafa et al., 2007a).

Appendix B provides the C# code for genetic algorithm.

3.4.7 Tabu Search Algorithm Implementation

The major parts of the tabu search algorithm implementation in this study are adopted

from the studies proposed by (Xhafa et al., 2009; Xhafa et al., 2011). The

implemented tabu search algorithm consists of six parts as described in the following

points:

I. Initial Solution

In this study, the initial solution is passed from the best solution found by the ants in

ACS algorithm. Therefore, TS algorithm starts with good quality solution in order to

enhance it.

95

II. Movements

The implemented TS algorithm applies two types of movements in order to generate

new solution from the current solution’s neighbourhood, namely transfer and swap.

Transfer is the process of moving a job from one machine to another, while swap is

the process of exchanging two jobs assigned to different machines (Xhafa et al.,

2009).

III. Memory

This study implemented the recency memory that is, a tabu list with the last time each

job was assigned to every machine machines (Xhafa et al., 2009). The recency

memory is based on a matrix 𝑇𝐿𝑛×𝑚where 𝑛 is the number of tasks and 𝑚 is the

number of machines (Xhafa et al., 2011).

IV. Aspiration Criteria

Two criteria are implemented to accept the tabu movements: First, if the movement to

the new solution produce better makespan value, then accept the movement. Second,

if the movement to the new solution produce equal makespan to the best found

solution with better flowtime value, then accept the movement.

V. Soft Diversification

Soft diversification implemented using swap load method in order to move to new

search space area near to the current solution. This method starts by identifying the

highest load machine and tries to swap it with the lowest load machine.

96

VI. Strong Diversification

During the algorithm execution, if the algorithm is not able to find better quality

solution within 50 iterations, then the strong diversification is triggered. The strong

diversification is based on a large perturbation of the current solution by changing the

assignments of 1% of the number of jobs to the random machines (Xhafa et al., 2009).

Appendix C provides the C# code for tabu search algorithm.

3.2.8 Enhance ACS exploration

Hybridization is a term which refers to the approach that combines two or more

algorithms in order to achieve a result which is not achievable using a stand-alone

approach (Xhafa, Gonzalez, et al., 2009). Algorithms could be hybridized fully or

partially to be able to get the best features of the combined algorithms. According to

Xhafa, Kolodziej, Barolli, and Fundo (2011), there are two levels of hybridization

between algorithms, namely, high level and low level which refers to the degree of

coupling between the metaheuristics algorithms.

In low level hybridization, also called strongly coupled, the algorithms inter-change

their inner procedures. The level of hybridization reflects the degree of inner

exchange among the hybridized algorithms. In low level hybridization, one of the

algorithms is the main algorithm, which calls other algorithms at any time of

execution (depending on the hybridization design). The low level hybridization

algorithm could be presented as 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1(𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2) (Xhafa, Gonzalez, et al.,

2009). In this representation, 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1 is the main algorithm and 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2 is

the subordinated algorithm (Jourdan, Basseur, & Talbi, 2009; Xhafa, Kolodziej,

Barolli, & Fundo, 2011).

97

This study has implemented both levels in order to determine the best hybridization.

In low level hybridization, the combined algorithms ACS with GA “ACS(GA)” and

ACS with TS “ACS(TS)” will interchange their inner procedures. ACS is the main

algorithm which during its flow will call the GA and TS for enhancement. The

algorithm notation ACS(GA) and ACS(TS) for low level means ACS is the main

algorithm and GA or TS is the subordinated algorithm. Low level hybridization

between ACS and GA will refine the solution produced by each ant in ACS. On the

other hand, TS will enhance the exploration mechanism in ACS algorithm. Tabu

search algorithm is based on systematic process (Glover & Laguna, 1997). Therefore,

tabu search algorithm is a very suitable approach to be combined with ACS algorithm

to enhance the exploration mechanism. In low level hybridization, the best solution

produced by the ants is sent to the local search algorithm for enhancement. The

enhanced solution is returned to the ant for pheromone update. Therefore, the ant will

update the pheromone using the enhanced solution which makes the ants deposits

more pheromone value. The pheromone value will influence the movements of the

ants in the next iteration. Figures 3.6 and 3.7 represent the pseudocode for ACS(GA),

and ACS(TS) algorithms respectively.

98

Figure 3.6. ACS(GA) (low level) algorithm pseudocode

In ACS(GA) Figure 3.6, the first step is initializing the ants and distribute them

randomly (Dorigo & Stutzle, 2004). Second step is initializing the parameters and

pheromone trails. The initial pheromone is calculated using equation (3.9).

The third step is the while loop which is terminated when the condition is met, in this

study the termination condition is satisfied after 90 seconds of the algorithm

execution. The fourth step is the loop for each ant. The fifth step is the construction

using the equation (3.10).

Procedure ACS(GA)

Step 1- Initialize the number of ants 𝑛;

Step 2- Initialize parameters and pheromone trails; Equation (3.9)

Step 3- While (Termination condition not met) Do;

Step 4- For i = 1 to 𝑛 Do;

Step 5- Construct new solution; Equation (3.10)

Step 6- Apply local pheromone update; Equation (3.12)

Step 7- End For;

 // Genetic algorithm starts here;

Step 8- Initialize population (P);

Step 9- Add (best ant solution from ACS to P);

Step 10- Evaluate (P); Equation (3.8)

Step 11- While (termination condition not met);

Step 12- Ṕ← Select (P);

Step 13 - Crossover (Ṕ);

Step 14- Mutate (Ṕ);

Step 15- Evaluate (Ṕ); Equation (3.8)

Step 16- P ← Replace (Ṕ ∪ P);

Step 17- End While;

 // Genetic algorithm ends here;

Step 18- Apply Global pheromone update; Equation (3.13)

Step 19- Update best found solution 𝑠∗;

Step 20- End while;

Step 21- Return the best solution;

End Procedure;

99

The sixth step is the local pheromone update using the equation (3.12). Step seven is

the end of the ants loop. Step eight is the start of genetic algorithm which is start by

initializing the population using random method. Step nine will add the best solution

found by the ants to the population of genetic algorithm. Step ten will evaluate the

population using the makespan fitness objective by equation (3.8). Step eleven is the

main genetic algorithm loop using (while) with termination condition of two seconds.

Step twelve is the selection process using tournament operator. Step thirteen is the

crossover operator using fitness based crossover. Step fourteen is the mutation process

using re-balance operator. Step fifteen will evaluate the new solution using the

makespan objective function by equation (3.8). Step sixteen is the replication operator

which replaces the old solution with the new generated solution using SSGA strategy.

Step seventeen ends the genetic algorithm execution. The best solution found by

genetic algorithm is passed back to the ant colony system algorithm.

Step eighteen is the global pheromone update using the equation (3.13). Step nineteen

will update the best so far solution found by the algorithm. Step twenty ends the ant

colony system algorithm and the best solution is returned by step twenty one.

Appendices A and B provides the C# code for ant colony system and genetic

algorithm respectively.

The proposed ACS(GA) algorithm is different than other proposed algorithm such as

the one presented by Liu, Chen, Dun, Liu, and Dong (2008) which is based on using

genetic algorithm to choose, cross, and mutate the parameters of ant colony algorithm.

In the proposed ACS(GA) algorithm, the genetic algorithm is used to select, cross,

and mutate the best-so-far solution found by ants in every cycle as illustrated in

Figure 3.6 with the step “Add (best ant solution from ACS to P)”. Therefore, GA

100

works as an exploration mechanism to explore the search space based on the solution

found by the ants in ACS algorithm.

Another low level hybridization between ant colony system and tabu search algorithm

is shown in Figure 3.7.

101

Figure 3.7. ACS(TS) (low level) algorithm pseudocode

In Figure 3.7, the first step is initializing the ants and distribute them randomly

(Dorigo & Stutzle, 2004). Second step is initializing the parameters and pheromone

trails. The initial pheromone is calculated using equation (3.9).

Procedure ACS(TS)

Step 1- Initialize the number of ants 𝑛;

Step 2- Initialize parameters and pheromone trails; Equation (3.9)

Step 3- While (Termination condition not met) Do;

Step 4- For i = 1 to 𝑛 Do;

Step 5- Construct new solution; Equation (3.10)

Step 6- Apply local pheromone update; Equation (3.12)

Step 7- End For;

 // Tabu search algorithm starts here;

Step 8- Create solution 𝒔 from best ant 𝑨𝑪𝑺_𝒔∗;

Step 9- Create global solution 𝑠∗ ← 𝑠;

Step 10- Create tabu list 𝑇𝐿;

Step 11- Initialize the aspiration function 𝐴;

Step 12- While (termination condition not satisfied) Do;

Step 13- Search the neighbourhood 𝑁 of current solution 𝑠: {�̂� ∈ 𝑁(𝑠)};

Step 14- If (move from 𝑠 to �̂� is not in 𝑇𝐿) Then;

Step 15- 𝑠 ← �̂�;

Step 16- Update 𝑇𝐿 memories;

Step 17- End If;

Step 18- Else If (𝑓(�̂�) < 𝐴(𝑓(𝑠)) Then;

Step 19- 𝑠 ← �̂�;

Step 20- Update 𝑇𝐿 memories;

Step 21- End If;

Step 22- If (𝑓(𝑠) < 𝑓(𝑠∗)) Then;

Step 23- 𝑠∗ = 𝑠;

Step 24- End If;

Step 25- End While;

Step 26- 𝐴𝐶𝑆_𝑠∗ ← Global solution 𝑠∗;

 // Tabu search algorithm ends here;

Step 27- Apply Global pheromone update; Equation (3.13)

Step 28- End while;

Step 29- Return Global solution 𝐴𝐶𝑆_𝑠∗;

End Procedure;

102

The third step is the while loop which is terminated when the condition is met, in this

study the termination condition is satisfied after 90 seconds of the algorithm

execution. The fourth step is the loop for each ant. The fifth step is the construction

using the equation (3.10). The sixth step is the local pheromone update using the

equation (3.12). Step seven is the end of the ants loop.

Step eight is the starting of tabu search algorithm. TS algorithm starts by creating

initial solution using the best-so-far solution found by ACS algorithm. Step nine

makes a global solution which is a copy of the initial solution. Step ten initializes the

tabu list to store the movement attributes. Step eleven initializes the aspiration

function. Step twelve is the (while) loop which is terminated after two seconds. Step

thirteen searches the neighbourhood of the current solution.

Step fourteen checks if the moving from the current solution to the neighbourhood

solution is not tabu. If so, the neighbourhood solution will be saved in the current

solution in step fifteen. Step sixteen will update the tabu list with old position to

prevent visiting the same location. Step seventeen ends the moving condition. In case

the movement to the new neighbourhood solution is tabu, the aspiration function at

step eighteen will check. If the aspiration function returns true, then the

neighbourhood solution will be saved in the current solution in step nineteen. Step

twenty will update the tabu list with old position to prevent visiting the same location.

Step twenty one ends the aspiration function. Step twenty two will check if the current

solution’s makespan is better than the global solution’s makespan. Step twenty three

saves the current solution as the global solution and ends with step twenty four.

103

Step twenty five ends the (while) loop and the best solution passed back to ACS

algorithm in step twenty six. Ant colony system will apply global pheromone update

in step twenty seven using equation (3.13). Step twenty eight ends the ACS (while)

loop and the best global solution found by ACS(TS) is returned in step twenty nine.

TS algorithm works as an enhancing exploration mechanism to explore the search

space based on the solution found by the ants in ACS algorithm.

Appendices A and C provides the C# code for ant colony system and tabu search

algorithms respectively.

Tabu search algorithm has been implemented in several hybrid algorithms as a local

search technique. A study proposed by Nagariya, Mishra, and Shrivastava (2014)

implemented ACO and TS algorithms for job scheduling in computational grid. In

their study, they apply TS algorithm to identify the local solution and keep the ants

searching for global solution. In contrast, the proposed ACS(TS) algorithm applies TS

algorithm to search globally using the best so-far-solution found by the ants at every

cycle as illustrated in Figure 3.7. The task is handled by “Create solution 𝒔 from best

ant 𝑨𝑪𝑺_𝒔∗.

The proposed approaches ACS(GA) and ACS(TS) show that ACS algorithm calls the

local search algorithm before applying global pheromone update. The local search

algorithm enhances the best-so-far solution found by the ants. After the enhancement

process, ACS algorithm will apply the global pheromone update based on the solution

enhanced by the local search. These hybrid approaches enhance the exploration

mechanism of ACS algorithm by correcting any wrong decision taken in the previous

step.

104

3.2.9 Refine the ACS solution

In order to enhance the solution produced by ACS algorithm, a high level

hybridization is implemented in this phase. High level hybridization is also called

loosely coupled hybridization, whereby each algorithm preserves its identity, in other

words; each algorithm operates fully in the hybridized approach. This type of

hybridization can be seen as a chain of algorithm execution (𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1 →

 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2 → ⋯ → 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑛) (Xhafa, Kolodziej, Barolli, & Fundo, 2011).

This execution can further loop certain numbers of iterations until the termination

condition is satisfied. Through the algorithms execution, the output solution is passed

from 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1 to 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2 and so on.

ACS will start first to generate an initial solution for GA (in ACS+GA) and TS (in

ACS+TS) algorithms. The initial solution will be passed to GA and TS for

enhancement. The algorithm notation is: ACS+GA and ACS+TS for high level which

means ACS starts first followed by GA or TS. In high level hybridization, each

algorithm preserves its identity without any influence on each other execution. In

other words, ACS algorithm execution and pheromone are total independent of GA or

TS and vice versa. Figures 3.8 and 3.9 represent the high level pseudocode

hybridization of ACS+GA and ACS+TS respectively.

105

Figure 3.8. ACS+GA (high level) pseudocode

In ACS+GA Figure 3.8, the first step is initializing the ants and distribute them

randomly (Dorigo & Stutzle, 2004). Second step is initializing the parameters and

pheromone trails. The initial pheromone is calculated using equation (3.9).

The third step is the while loop which is terminated when the condition is met, in this

study the termination condition is satisfied after 45 seconds of the algorithm

Procedure ACS+GA

// ACS algorithm starts here;

Step 1- Initialize the number of ants 𝑛;

Step 2- Initialize parameters and pheromone trails; Equation (3.9)

Step 3- While (Termination condition not met) Do;

Step 4- For i = 1 to 𝑛 Do;

Step 5- Construct new solution; Equation (3.10)

Step 6- Apply local pheromone update; Equation (3.12)

Step 7- End For;

Step 8- Apply Global pheromone update; Equation (3.13)

Step 9- Update best found solution 𝑠∗;

Step 10- End while;

 // ACS algorithm ends here;

 // Genetic algorithm starts here;

Step 11- Initialize population (P);

Step 12- Add (best ant solution from ACS to P);

Step 13- Evaluate (P); Equation (3.8)

Step 14- While (termination condition not met);

Step 15- Ṕ← Select (P);

Step 16 - Crossover (Ṕ);

Step 17- Mutate (Ṕ);

Step 18- Evaluate (Ṕ); Equation (3.8)

Step 19- P ← Replace (Ṕ ∪ P);

Step 20- End While;

 // Genetic algorithm ends here;

Step 21- Return Global solution from Genetic algorithm;

End Procedure;

106

execution. The fourth step is the loop for each ant. The fifth step is the construction

using the equation (3.10).

The sixth step is the local pheromone update using the equation (3.12). Step seven is

the end of the ants loop. Step eight is the global pheromone update using the equation

(3.13). Step nine will update the best-so-far solution found by the ants. Step ten ends

the (while) loop of ACS algorithm and passes the best solution to genetic algorithm

for refinement.

Step eleven is the start of genetic algorithm which is start by initializing the

population using random method. Step twelve will add the best solution found by

ACS algorithm to the population of genetic algorithm. Step thirteen will evaluate the

population using the makespan fitness objective by equation (3.8). Step fourteen is the

main genetic algorithm loop using (while) with termination condition of 45 seconds.

Step fifteen is the selection process using tournament operator. Step sixteen is the

crossover operator using fitness based crossover. Step seventeen is the mutation

process using re-balance operator. Step eighteen will evaluate the new solution using

the makespan objective function by equation (3.8). Step nineteen is the replication

operator which replaces the old solution with the new generated solution. Step twenty

ends the genetic algorithm execution. The best solution found by genetic algorithm

returned by the algorithm in step twenty one.

GA algorithm works as a refinement mechanism to enhance the solution found by the

ACS algorithm. Appendices A and B provides the C# code for ant colony system and

genetic algorithms respectively.

107

High level hybridization between ACO and GA has been proposed by Kolasa and

Krol (2010) for the assignment problem. In each cycle of their algorithm, the best

solution of the two algorithms is selected and the search is continued by both of them.

In contrast, the proposed ACS+GA algorithm applies the GA algorithm to refine the

solution found by ACS algorithm. In other words, the ACS algorithm starts with a

specific number of iterations or a period of time. Then the solution found by ACS

algorithm is passed to GA as one of the initial chromosome population. GA will

refine the solution received from ACS algorithm by applying selection, crossover, and

mutation operators. The final solution will be produced by genetic algorithm as

illustrated in Figure 3.8.

Another high level hybridization between ant colony system and tabu search

algorithm is shown in Figure 3.9.

108

Figure 3.9. ACS+TS (high level) algorithm pseudocode

Procedure ACS+TS

// ACS algorithm starts here;

Step 1- Initialize the number of ants 𝑛;

Step 2- Initialize parameters and pheromone trails; Equation (3.9)

Step 3- While (Termination condition not met) Do;

Step 4- For i = 1 to 𝑛 Do;

Step 5- Construct new solution; Equation (3.10)

Step 6- Apply local pheromone update; Equation (3.12)

Step 7- End For;

Step 8- Apply Global pheromone update; Equation (3.13)

Step 9- Update best found solution 𝑠∗;

Step 10- End while;

// ACS algorithm ends here;

// Tabu search algorithm starts here;

Step 11- Create solution 𝒔 from best ant 𝑨𝑪𝑺_𝒔∗;

Step 12- Create global solution 𝑠∗ ← 𝑠;

Step 13- Create tabu list 𝑇𝐿;

Step 14- Initialize the aspiration function 𝐴;

Step 15- While (termination condition not satisfied) Do;

Step 16- Search the neighbourhood 𝑁 of current solution 𝑠: {�̂� ∈ 𝑁(𝑠)};

Step 17- If (move from 𝑠 to �̂� is not in 𝑇𝐿) Then;

Step 18- 𝑠 ← �̂�;

Step 19- Update 𝑇𝐿 memories;

Step 20- End If;

Step 21- Else If (𝑓(�̂�) < 𝐴(𝑓(𝑠)) Then;

Step 22- 𝑠 ← �̂�;

Step 23- Update 𝑇𝐿 memories;

Step 24- End If;

Step 25- If (𝑓(𝑠) < 𝑓(𝑠∗)) Then;

Step 26- 𝑠∗ = 𝑠;

Step 27- End If;

Step 28- End While;

Step 29- Return Global solution 𝑠∗;

End Procedure;

109

In ACS+TS Figure 3.9, the first step is initializing the ants and distribute them

randomly (Dorigo & Stutzle, 2004). Second step is initializing the parameters and

pheromone trails. The initial pheromone is calculated using equation (3.9).

The third step is the while loop which is terminated when the condition is met, in this

study the termination condition is satisfied after 45 seconds of the algorithm

execution. The fourth step is the loop for each ant. The fifth step is the construction

using the equation (3.10).

The sixth step is the local pheromone update using the equation (3.12). Step seven is

the end of the ants loop. Step eight is the global pheromone update using the equation

(3.13). Step nine will update the best-so-far solution found by the ants. Step ten ends

the (while) loop of ACS algorithm and passes the best solution to genetic algorithm

for refinement.

Step eleven is the starting of tabu search algorithm. TS algorithm starts by creating

initial solution using the best-so-far solution found by ACS algorithm. Step twelve

makes a global solution which is a copy of the initial solution. Step thirteen initializes

the tabu list to store the movement attributes. Step fourteen initializes the aspiration.

Step fifteen is the (while) loop which is terminated after 54 seconds. Step sixteen

searches the neighbourhood of the current solution.

Step seventeen checks if the moving from the current solution to the neighbourhood

solution is not tabu. If so, the neighbourhood solution will be saved in the current

solution in step eighteen. Step nineteen will update the tabu list with old position to

prevent visiting the same location. Step twenty ends the moving condition. In case the

movement to the new neighbourhood solution is tabu, the aspiration function at step

110

twenty one will be checked. If the aspiration function returns true, then the

neighbourhood solution will be saved in the current solution in step twenty two. Step

twenty three will update the tabu list with old position to prevent visiting the same

location. The aspiration function ends at step twenty four. Step twenty five will check

if the current solution better than the global solution. Step twenty six saves the current

solution as the global solution and ends with step twenty seven. Step twenty eight

ends the (while) loop and the best solution is returned in step twenty nine.

TS algorithm works as a refinement mechanism to enhance the solution found by the

ACS algorithm.

Appendices A and C provides the C# code for ant colony system and tabu search

algorithms respectively.

Tsutsui ad Fujimoto (2013) proposed ACO with TS algorithm for quadratic

assignment problem. In their study, ACO and TS algorithms are run in parallel

without aspiration function. While in the proposed ACS+TS algorithm, ACS executes

first to find the best solution on specific number of iterations or period of time. Then,

the best solution is passed from ACS to TS algorithm. The TS algorithm will refine

the solution by searching the neighbourhoods of that solution as shown in Figure 3.9.

The high level hybrid approaches provide different improvement than low level

hybrid approaches. The proposed ACS+GA and ACS+TS approaches show that ACS

algorithm calls the local search algorithm after the algorithm execution. The solution

produced by ACS algorithm pass to the local search algorithm. The local search

algorithm will improve the solution as a final solution.

111

3.2.10 Grid Simulator Development

The simulator was developed using C# language under the windows platform. Sixteen

algorithms are implemented in this simulator, namely AS, ACS, TS, GA, PSO-GELS,

BABC, EBABC1, EBABC2, AS(TS), AS+TS, AS(GA), AS+GA, ACS(TS),

ACS+TS, ACS(GA), and ACS+GA.

The developed simulator generates two types of grid computing environment, namely

static and dynamic environments. The static environment is generated based on

expected time to compute model developed by Braun et al. (2001). For dynamic

environment, the developed simulator implemented dynamic expected time to

compute model as proposed by this study.

The grid computing is evaluated using three metrics, namely makespan, flowtime, and

utilization (Xhafa & Abraham, 2010). The simulator reports the scheduling results

graphically with all experiment details.

3.2.11 Proposed Algorithm Evaluation

In order to evaluate the proposed hybrid algorithms, several experiments are

conducted based on static and dynamic environments. The proposed hybrid

algorithms are compared with its own stand-alone algorithm and other metaheuristics

algorithms to explore the performance robustness. Some algorithms are implemented

using codes adopted from literatures, while others are implemented by this study.

Table 3.1 shows the algorithms that have been the implemented and the source of the

algorithms.

112

Table 3.1

The implemented algorithms source

No Algorithms Sources

1 GA (Passos, 2009) with some modifications.

2 TS This study using pseudocode from Xhafa, Carretero, et al. (2008)

3 AS (Wiener & Of, 2009) with some modifications.

4 AS(TS) (Wiener & Of, 2009) + (Xhafa, Carretero, et al., 2008)

5 AS+TS (Wiener & Of, 2009) + (Xhafa, Carretero, et al., 2008)

6 AS(GA) (Wiener & Of, 2009) + (Passos, 2009)

7 AS+GA (Wiener & Of, 2009) + (Passos, 2009)

8 ACS (Wiener & Of, 2009) with some modifications.

9 ACS(TS) (Wiener & Of, 2009) + (Xhafa, Carretero, et al., 2008)

10 ACS+TS (Wiener & Of, 2009) + (Xhafa, Carretero, et al., 2008)

11 ACS(GA) (Wiener & Of, 2009) + (Passos, 2009).

12 ACS+GA (Wiener & Of, 2009) + (Passos, 2009).

13 PSO-GELS (Pooranian, Shojafar, Abawajy, & Abraham, 2013)

14 BABC This study implemented the pseudocode in Kim et al. (2013)

15 EBABC1 This study implemented the pseudocode in Kim et al. (2013)

16 EBABC2 This study implemented the pseudocode in Kim et al. (2013)

Each algorithm has executed 10 times on each benchmark problem in order to

calculate the best, average and geometric mean values. As an objective function, the

proposed algorithms aimed to enhance the prime criterion that is makespan value

(Xhafa & Abraham, 2010). Minimizing the makespan value is considered as the most

important objective which indicates the general productivity of the computational grid

system (Xhafa & Abraham, 2008a). A small value of makespan indicates that the

scheduler is performing well and the planning of tasks to resources is efficient. Other

important performance metrics are flowtime and utilization. Flowtime metric is

important to measure the response time to the user submissions of task executions,

while utilization metric measures the resource utilization. Maximizing the resource

utilization of the computational grid system is gaining importance due to the

economic aspects of computational grid systems (Xhafa & Abraham, 2010).

113

3.3 Summary

To achieve the main objective, a framework has been proposed in this study.

Experimental research method has been adopted in conducting this research. GA and

TS have been employed to solving the stagnation problem in ACS. A simulator has

been proposed to simulate the job scheduling algorithm in the dynamic and static grid

computing system. A comprehensive evaluation has been proposed to evaluate the

performance of the proposed hybrid ACS algorithm using the standard performance

metrics.

114

CHAPTER FOUR

SIMULATOR DEVELOPMENT

This chapter presents the development step for grid computing environment

simulator. All the proposed algorithms plus the algorithms used for evaluations are

implemented in this simulator.

This chapter is organized as follows: Section 4.1 presents the measurement criteria.

The implementation of benchmark problems is discussed in Section 4.2. Simulator

verification and validation is provided in Section 4.3. Finally, the chapter is

summarized in Section 4.4.

4.1 Identifying the Measurement Criteria

The problem in job scheduling for grid computing is known as multi-objective

problem due to the various criteria in computational grid, such as makespan,

flowtime, load balancing, utilization, matching proximity, turnaround time, total

weighted completion time, and average weighted response time (Xhafa & Abraham,

2008a). In this study, three metrics were implemented with priority to makespan as

the main optimization objective. Makespan metric measures the general productivity

of the grid computing. The best scheduling algorithm is the one that can produce a

small value of makespan, which means that the algorithm is able to map tasks to

machines in a good and efficient way. Therefore, the main objective in this study is to

minimize the makespan.

115

4.2 Implementing the Benchmark Problems Model

One of the main factors that affect the performance of a grid computing is the

workload to which the system is subjected (Feitelson, 2013). Evaluating the job

scheduling algorithm with wrong workloads will lead to erroneous results which

cannot be relied upon (Smith, 2007). One of the successful models for heterogeneous

static computing system is expected time to compute proposed in Braun et al. (1999).

According to Xhafa (2007), ETC model, proposed by Braun et al. (2001), is the most

known model to be the most difficult benchmark for static instances of the problem.

Table 4.1 shows the studies which have implemented ETC model.

Table 4.1

Algorithms evaluated with ETC model.

Authors Algorithms evaluated using ETC model

(Maheswaran et al., 1999) MCT, MET, (switching algorithm, k-percent best,

Min-min, Sufferage.

(Braun et al., 2001) OLB, MET, MCT, Min-Min, Max-Min, Duplex,

GA, SA, GSA, TS, and 𝐴∗.

(Ritchie & Levine, 2003) Local Search.

(Ritchie & Levine, 2004) Hybrid ACO.

(Xhafa, 2006) Genetic algorithm.

(J.-K. Kim et al., 2007) Max–Min, Min–Min, Max–Max, Relative Cost,

Slack Sufferage, Switching Algorithm, Genetic

algorithm,

(Xhafa, Duran, et al., 2008) Genetic algorithm.

(Xhafa, Carretero, et al., 2009) Tabu Search.

(Izakian et al., 2010) Discrete Particle Swarm Optimization

(Kromer et al., 2009) Differential Evolution.

(Kołodziej et al., 2011) Enhanced Genetic algorithm.

(Kromer, Platos, & Snasel,

2012)

Artificial Immune Systems, Differential Evolution,

and Genetic Algorithms.

(Rajni & Chana, 2013) Bacterial Foraging algorithm.

(S.-S. Kim et al., 2013) Artificial Bee Colony.

The model arranges the information in a two dimension matrix called ETC matrix.

Each entry in the matrix 𝐸𝑇𝐶[𝑖, 𝑗] represents the expected execution time of task[𝑖] on

116

machine[𝑗]. In ETC matrix, the elements along a row represent the estimates of the

expected execution times of a given task on different machines, while the elements

along a column give the estimates of the expected times of different tasks on a given

machine.

In order to compare the implemented algorithms with other algorithms, a grid

computing simulator is developed. The simulator has the ability to generate

benchmark problems for static and dynamic environments. In both environments, the

size of the tasks is presented in millions of instructions format. The resources capacity

is presented in terms of millions of instructions per second.

For static environment, the benchmark problems are generated using ETC model

proposed by Braun et al. (2001). The calculation of the matrix will be based on

expected time to compute of each task with every processor element in the grid

resources. The ETC matrix values are generated using range-based technique (Braun

et al., 2001). The ETC matrix will be categorized into four categories as follows:

a) High task heterogeneity and high machine heterogeneity.

b) High task heterogeneity and low machine heterogeneity.

c) Low task heterogeneity and high machine heterogeneity.

d) Low task heterogeneity and Low machine heterogeneity.

Each category will be classified further into three classes: consistent, inconsistent, and

semi-consistent ETC matrices. These classes are orthogonal to the previous

categories. This combination produced twelve ETC matrices.

117

The benchmark problems based on ETC model provide a good static environment to

conduct the experiments. However, in ETC matrix, the computing capacity of

resources remains unchanged (static) during tasks execution. In addition, the number

of available resources, resource load, and task size are fixed. Thus, ETC model does

not reflect the real dynamic environment in grid computing (Xhafa & Abraham,

2008a).

According to Smith (2007), the differences between static and dynamic workloads

may have subtle implications for performance evaluation. Therefore, the experiment

that utilizes static workloads is incapable to evaluate the performance of job

scheduling algorithm. Feitelson (2013) has also stated that static workload cannot be

considered as valid samples of real dynamic workloads. Organizations such as System

Performance Evaluation Consortium, Grid Workloads Archive and Transaction

Processing Performance Council provide several benchmarks on CPU, network file

system, web servers, cluster, grid, database and parallel distributed systems for

evaluation of computer systems (Feitelson, 2013). These benchmarks are useful to be

analysed and modelled.

For dynamic environment, the developed simulator has the ability to generate

benchmark problems with dynamic attributes based on benchmark modelling.

Benchmark modelling is the attempt to create a simple and general model which can

be used to generate synthetic workload. A good benchmark model is the one which

has the ability to capture the statistical pattern of the real workloads. In addition, any

benchmark model should contain a tunable parameter that allows for the generation of

different load conditions. Such a model should reflect the real environment which is

known as trace-driven simulations (Feitelson, 2013). Therefore, the most important

118

factor in any model is the underlying patterns, typically in the form of probability

distributions. Figure 4.1 illustrates how to model a workload from a real system

(Feitelson, 2013). Users submit their tasks to the grid computing and the grid will

identify the task requirements and assign them to suitable resources. After

successfully processing the task, the output will be sent back to the user based on the

required output type. Every transaction inside the grid will be registered in the log file

(Feitelson, 2013; Gainaru, Cappello, Trausan-matu, & Kramer, 2011). However, the

degree of log details is different in each grid based on its implementation (Krakov &

Feitelson, 2013). From the log file, a trace data will be created for analysis and by

applying statistical methods on these trace data, the histogram and distribution pattern

will be discovered (Javadi, Kondo, Vincent, & Anderson, 2009; Sonmez, Yigitbasi,

Abrishami, Iosup, & Epema, 2010). These patterns will be used to model the

workload which reflects the real environment plus the flexible characteristics, such as

the workload size and format required by the user (Feitelson, 2013; Li, Groep,

Wolters, & Templon, 2006).

119

Figure 4.1. Workload modelling (Feitelson, 2013)

ETC model assumes that all machines are stable and available at all times, which is

far from the real environment where machine failures are very common and inevitable

(Javadi, Kondo, Iosup, & Epema, 2013). In addition, the option to add current

machine load, specifying task size and machine speed are not provided in the ETC

model. These features or attributes are crucial in job scheduling experiments using

heuristic and metaheuristics approaches (Xhafa & Abraham, 2008a).

This study enhanced the ETC model with dynamic attributes. The enhancement to the

ETC model is named Dynamic Expected Time to Compute (DETC). Statistical

analyses on the jobs and resources have been performed. The proposed model uses

three probability distributions, namely Normal, Gamma and Weibull to describe the

nature of the resources and the jobs submitted to the grid (Carvalho & Brasileiro,

120

2012; A. A. Iosup, Epema, Maassen, & Nieuwpoort, 2007). The join and drop of

resources implies the availability of the network connection.

Probability distributions were also used to describe the characteristics of resources in

the grid (Heien et al., 2011). This will enable users with the ability to conduct a test

on different types of arrival patterns for the jobs and availability patterns of the

resources in validating the robustness of the scheduling algorithm. DETC model

consists of three vectors and three matrices. The vectors represent the present machine

load, task size and machine speed. The load is measured in second and this reflects

the total time required by a machine to be ready to process the next task. The task size

is measured in Millions of Instructions (MI) and the machine speed is measured in

Millions of Instructions Per Second (MIPS) (Xhafa & Abraham, 2010). In static

environment, 𝐸𝑇𝐶[𝑖, 𝑗] could be calculated simply by dividing the workload of task 𝑖

by the computing capacity of resource 𝑗 (Xhafa & Abraham, 2008a). However, for

dynamic environment, it is proposed that the entry [𝑖, 𝑗] in DETC is calculated as

follows:

𝐷𝐸𝑇𝐶[𝑖, 𝑗] = 𝐿𝑜𝑎𝑑[𝑗] +
𝑡𝑎𝑠𝑘[𝑖]

𝑚𝑎𝑐ℎ𝑖𝑛𝑒[𝑗]

(4.1)

The model also provides machine failure probability which follows the Weibull

distribution to mimic the real environment (Iosup, Jan, Sonmez, & Epema, 2007). A

sequence of benchmark with time (t) specified by the user is provided. For example, if

the user specifies t =10, then the model will generate ten datasets with different

machine load, different DETC and dynamic machine status. This indicates that the

number of available machines is dynamic. In order to generate dynamic ETC

benchmarks, the users are required to enter inputs for the parameters. These

121

parameters play a very important role to shape the distribution pattern that mimic the

real-world grid computing environment. The proposed model generates the following

attributes:

i. Load: the current load that each machine has to process before starting to process a

new task. Normal distribution and Gamma distribution could be used to generate

the load vector. The Gamma distribution is suitable to be used to model workload

parameters (Feitelson, 2013).

ii. Task: correct distribution should be used to present task heterogeneity in the grid

computing. Normal or Gamma distributions could generate various types of

heterogeneity (Kolodziej, 2012).

iii. CPU speed: this is the capacity of each processor in the grid environment. Normal

or Gamma distributions could be used to generate CPU capacity (Kolodziej,

2012).

iv. CPU Failure: for failure distribution, Weibull distribution is found to best

represent the real-world failure in grid computing (Klusacek & Rudova, 2010).

DETC has adopted ETC matrix and integrates it with the new dynamic attributes such

as machine load and machine failure. The DETC model will be very practical in

testing different scheduling algorithms in an environment similar to the real grid

computing system. A simulator that incorporates the DETC model has been

developed using C# language in Microsoft visual studio for desktop. Figure 4.2

depicts the simulator interface which includes load, task and CPU failure settings.

Appendix D provides the C# code for DETC simulator.

122

Figure 4.2. DETC simulator interface

The benchmark for tasks and resources could be created using auto seed for random

benchmark or fixed seed to generate repeatable benchmark. Table 4.2 represents the

parameters used to generate the benchmark in Figure 4.2.

Table 4.2

Experimental parameters

Parameter Value

Time sequence 10

Random seed 3

Load distribution Gamma

Load shape 20

Load scale 0.01

Task distribution Normal

Task mean 1000000

Task standard deviation 10000

CPU distribution Normal

CPU mean 2000

CPU standard deviation 380

CPU failure distribution Weibull

Failure shape 0.8

123

Failure scale 0.15

The benchmark on tasks and resources generated using DETC could be saved in CSV

file. Figure 4.3 shows parts of the generated benchmark with real values. An option is

also provided to generate a benchmark with integer values.

Figure 4.3. Benchmark for dynamic grid computing

The file contains information of the values for all the parameters that have been used

in generating the benchmark for jobs and resources. These include:

i. Load vector that represents the load value of each resource.

ii. Tasks vector that represents the size of each task.

iii. Machines vector that represents the capacity of each resource.

iv. Machines failure vector which represents the probability of failure for each

resource.

124

v. DETC matrix which represents the expected time to compute with current load

of the resources.

In addition, the simulator has the facilities to: generate reports, visualize the

scheduling solution, and plot charts as depicted in Figures 4.4 and 4.5.

Figure 4.4. Grid computing simulator interface

125

Figure 4.5. Simulator charts

4.3 Simulation Verification and Validation

A successful simulator is defined to be the one which has the ability to produce a

credible and acceptable solution for the prescribed problem. However, according to

Farina, Graziano, Panzieri, Pascucci, and Setola (2013), one of the biggest challenge

in developing a simulator is to answer the question, “Are the results provided by the

simulator believable, and, if yes, with which degree of credibility?” The authors also

stated that there are several principles and techniques which have been proposed to

assess the accuracy of modelling and simulation, known under the label of

Verification and Validation (V&V).

126

Verification is defined as the process of ensuring that the simulation is implemented

correctly (Garrido, 2001; Herd, Miles, McBurney, & Luck, 2014). Verification

activities are generally performed concurrently with software development (Farina et

al., 2013).

On the other hand, validation is defined as the process of ensuring that the simulation

closely represents the real system (Garrido, 2001; Herd et al., 2014).

Verification and validation start with the initial step in this study. According to Brade

and Lehmann (2002), “V&V should be associated to all phases of model development

and model use”. Moreover, a framework which connects all research elements

substantial for V&V will help to get an overview over V&V requirements.

4.3.1 Verification Techniques

There are many tools and techniques for simulation verification. In this study, the

following techniques are used to verify the simulator (Garrido, 2001):

a. Using trace: Each implemented algorithm is traced line by line with

documentation.

b. Graphical Outputs: All the simulator outputs such as benchmark problems,

schedule tables, and statistics are represented graphically in the simulator

interface.

c. Testing with similar and different seed: Each algorithm using random variables is

tested with fixed seed and random seed in order to observe the algorithm

behaviours.

127

d. Consistency tests: The simulator is tested to generate similar results for the same

parameter values.

4.3.2 Validation Techniques

Validation is another important criterion to measure the simulator quality. Validation

is the answer regarding whether the assumptions taken about the real system are

correct (Garrido, 2001; Herd et al., 2014). In other words, validation focuses on how

much close is the behaviour of the developed simulator to the behaviour of the real

system (in this study, it is the grid computing). The following techniques are adopted

to validate the grid computing environment simulator (Garrido, 2001):

a. Understanding the workflow of the grid computing from literature.

b. Implementing the distribution pattern of the real grid computing log file.

c. Matching the simulation results with the required output.

4.3.3 Testing the Proposed Hybrid Algorithms

Another technique known as dynamic methods has been proposed by David (2013)

for simulation verification. The proposed methods are based on exercising the

implemented model with a predefined problem scenario. The solutions obtained are

compared to determine whether the computerized model has been implemented

appropriately. A dynamic method is applied in this study as well. In order to test the

simulator calculation accuracy, a scenario consists of three resources and thirteen jobs

are designed with known expected time to compute matrix (Kim et al., 2013). Table

4.3 shows the expected time to compute the jobs on different machines. Each row

represents the expected time to compute job on different machines. The first column

128

represents the job numbers while other columns represent the expected time to

compute different jobs on a machine.

Table 4.3

ETC matrix for 3 resources and 13 jobs

Jobs / Machines 𝑴𝟏 𝑴𝟐 𝑴𝟑

𝑱𝟏 1.5 2 3

𝑱𝟐 3 4 6

𝑱𝟑 4 5.33 8

𝑱𝟒 5 6.66 10

𝑱𝟓 6 8 12

𝑱𝟔 7 9.33 14

𝑱𝟕 7.5 10 15

𝑱𝟖 9 12 18

𝑱𝟗 10 13.33 20

𝑱𝟏𝟎 10.5 14 21

𝑱𝟏𝟏 12 16 24

𝑱𝟏𝟐 13 18 27

𝑱𝟏𝟑 15 20 30

The exercising experiments are conducted on all implemented algorithms. Each

algorithm has executed one time with 10 seconds and random seed value is set to 58.

The output of each algorithm is in the form of a schedule table which represents the

final scheduling map. Each schedule table is calculated manually to determine the

simulator calculation accuracy. Figure 4.6 shows the scheduling solution of the

proposed ACS(TS) algorithm using the scenario presented in Table 4.3. Figure 4.6

shows three machines with different number of jobs and the grid makespan is 46.

129

Figure 4.6. ACS(TS) Schedule table

Figure 4.7 shows the scheduling solution of the proposed ACS+TS algorithm using

the scenario presented in Table 4.3. Figure 4.7 shows three machines with different

number of jobs and the grid makespan is 46.

Figure 4.7. ACS+TS Schedule table

Figure 4.8 shows the scheduling solution of the proposed ACS(GA) algorithm using

the scenario presented in Table 4.3. Figure 4.8 shows three machines with different

number of jobs and the grid makespan is 46.67.

130

Figure 4.8. ACS(GA) Schedule table

Figure 4.9 shows the scheduling solution of the proposed ACS+GA algorithm using

the scenario presented in Table 4.3. Figure 4.9 shows three machines with different

number of jobs and the grid makespan is 46.67.

Figure 4.9. ACS+GA Schedule table

4.4 Summary

According to Pace (2003), it is impossible to check for every possible fault and bugs

in a sizeable simulation; simply because there is not enough time (not even

theoretically). Therefore, it is important to use a good software engineering process

consistently throughout the simulator development. These processes employ

simulation development environments that facilitate formal methods, and conduct

thorough V&V throughout the simulation life cycle starting from the beginning.

Therefore, this chapter presented the simulator development steps as well as

verification and validation techniques.

131

CHAPTER FIVE

JOB SCHEDULING IN STATIC GRID COMPUTING

This chapter presents the evaluation and the proposed algorithm in the static grid

computing environment. Section 5.1 discusses the static environment and ETC model

for benchmark problems. The parameters of the proposed algorithms with the

algorithms used for comparison are presented in Section 5.2. The experiment results

of the proposed hybrid algorithms are provided in Section 5.3. Finally, Section 5.4

summarizes the chapter.

5.1 Static Environment

For static environment, the benchmark problems are generated using ETC model

proposed by Braun et al. (2001). The calculation of the matrix will be based on

expected time to compute of each task with every processor element in the grid

resources. The ETC matrix has been categorized into four categories as follows:

 High task heterogeneity and high machine heterogeneity.

 High task heterogeneity and low machine heterogeneity.

 Low task heterogeneity and high machine heterogeneity.

 Low task heterogeneity and Low machine heterogeneity.

Each category has been classified further into three classes: consistent, inconsistent,

and semi-consistent ETC matrices. These classes are orthogonal to the previous

categories. This combination has produced twelve ETC matrices.

132

5.2 Algorithms Parameters

Tuning metaheuristics parameters to find the best possible configuration of the

algorithm is a very critical task (Aleti, 2012). In fact, the parameters in metaheuristics

algorithms have the characteristics of a machine learning problem (Birattari, 2009). In

this study, the parameter values for the algorithms which are implemented for

comparison are adopted from Dorigo and Stutzle (2004); Kim et al. (2013); Xhafa,

Carretero, et al. (2009); and Xhafa, Duran, et al. (2008) in order to perform a fair

comparison. Table 5.1 summarizes the adopted algorithms and their parameter

resources.

Table 5.1

Algorithms resource for parameter values

Algorithm name Resource

GA (Xhafa, Duran, et al., 2008)

AS, ACS (Dorigo & Stutzle, 2004)

TS (Xhafa, Carretero, et al., 2009)

BABC, EBABC1, EBABS2 (Kim et al., 2013)

PSO-GELS (Pooranian et al., 2013)

5.2.1 Genetic Algorithm Parameters

In this study, the algorithm implementation and parameter values are adopted from

Xhafa, Duran, et al. (2008). Table 5.2 reports the parameter values.

Table 5.2

GA parameter values

Parameter Value

Iteration No 3000

Time limit 90 seconds

Population size 10

Intermediate size 6

Crossover rate 0.9

Mutation rate 0.4

Selection operator Tournament 3

133

In Table 5.2, the parameter iteration number is the algorithm termination condition. In

addition, time limit will terminate the algorithm if the specified time elapses before it

reaches the total number of iterations. The population size parameter represents the

total number of solutions generated as a population for crossover and mutation

operators. Part of the population is selected for crossover and mutation which is

determined by the intermediate size parameter. The probability that crossover and

mutation operators will be applied to the selected solution is controlled by crossover

and mutation rate parameters respectively. Selection operator is very important to

keep the diversity between solutions in genetic algorithm. The solutions selected

using an operator is known as tournament operator which uses three candidates. This

selection mechanism will ensure that each solution has a chance to compete with the

other two solutions fairly. After the selection process, each pair of solutions applies

crossover using fitness based operator. Finally, the mutation operator is applied using

re-balanced operator in order to keep the scheduling balanced.

5.2.2 Ant System Parameters

The parameter values for AS algorithm in this study are adopted from Dorigo and

Stutzle (2004). Table 5.3 provides the parameter values for AS algorithm.

Table 5.3

AS parameter value

Parameter Value

Iteration No 3000

Alpha 1

Beta 8

Crossover operator Fitness based

Mutation operator Re-balance

134

Evaporation rate 0.5

No of ants No of machines

Time limit 90 seconds

In Table 5.3, the parameter iteration number is the algorithm termination condition. In

addition, time limit will terminate the algorithm if the specified time elapses before it

reaches the total number of iterations. The alpha parameter represents the pheromone

influence, increasing the alpha value which will influence the ants to rely more on

pheromone instead of heuristic value and vice versa. Beta parameter has the influence

on heuristic value. Increasing the beta value will force the ants to follow the heuristic

values strongly, while reducing its value will influence the ants more towards

pheromone value. The duration of pheromone value is determined by the evaporation

rate parameter. If the evaporation value is one, means all the pheromones will be

evaporated after each cycle. In opposite, if the evaporation value is zero, then no

evaporation will occur at all. In AS algorithm, each ant constructs its own solution,

whereby the total number of ants is specified by the number of ant parameter.

5.2.3 Ant Colony System Parameters

ACS algorithm parameters values are adopted from Dorigo and Stutzle (2004). Table

5.4 shows the parameter values.

Table 5.4

ACS parameter values

Parameter Value

Iteration No 3000

Beta 8

Evaporation rate 0.6

No of ants 10

Exploitation 0.9

Time limit 90 seconds

135

In Table 5.4, the parameters iteration number, beta, evaporation rate, number of ants,

and time limit are defined the same as in ant system algorithm. The extra parameter in

ACS algorithm is the exploitation rate parameter. This parameter controls the

algorithm exploitation/exploration behaviour. The value one means that the algorithm

will do exploitation search in a greedy way, while the value 0 means the ants will

search the space randomly.

5.2.4 Tabu Search Parameters

This study adopts the values for tabu search algorithm parameters from Xhafa,

Carretero, et al. (2009). Table 5.5 shows the parameter values for TS algorithm.

Table 5.5

TS parameter values

Parameter Value

Iteration No 3000

Search neighbour by Transfer, Swap adjacent, and Swap by load

Tabu size 40

Idle iteration 2

Time limit 90 seconds

In Table 5.5, the parameter iteration number is the algorithm termination condition. In

addition, time limit will terminate the algorithm if the specified time elapses before it

reaches the total number of iterations. One of the most important parameters in tabu

search is searching the neighbourhood of the current solution. There are many

techniques to perform this search. Three methods are used in this study to search the

neighbourhood. First, transfer method works based on transferring between different

jobs and machines. Second, swap adjacent works based on interchanging the adjacent

jobs in the solution vector. Third, swap by load will interchange between high and

136

low load machines. The tabu size parameter will specify how many moves to keep in

the list as a tabu move. TS algorithm will change from soft diversification into strong

diversification based on the idle iteration parameter.

5.2.5 BABC, EBABC1, and EBABC2 Parameters

These algorithm implementation and parameter values are adopted from Kim et al.

(2013). Table 5.6 reports the parameter value for each algorithm.

Table 5.6

BABC, EBABC1, EBABC2 parameter values

Parameter name BABC EBABC1 EBABC2

Iteration No 3000 3000 3000

Number of food source 20 20 20

Limit 800 800 800

Time limit (seconds) 90 90 90

No of FRS NA 3 NA

Alpha NA NA 0.999

NA: Not applicable for specific algorithm.

In Table 5.6, the parameter iteration number is the algorithm termination condition. In

addition, time limit will terminate the algorithm if the specified time elapses before it

reaches the total number of iterations. The number of food source parameter specifies

the number of solutions which is equal to the number of employed bees. The

parameter limit controls the number of trials to improve the solution. After reaching

the limit, the source food is abandoned and the employed bee for that food source

becomes a scout. The extra parameters are number of FRS and alpha as proposed by

Kim et al. (2013). FRS value is used to incorporate a Flexible Ranking Strategy (FRS)

to improve the balance between exploration and exploitation. Alpha is a real number

parameter greater than 0 and less than 1.

137

5.2.6 PSO-GELS Parameters

The parameters values for Particle Swarm Optimization and Gravitational Emulation

Local Search (GELS-PSO) are adopted from the study proposed by Pooranian et al.

(2013) as shown in Table 5.7.

Table 5.7

PSO-GELS Algorithm Parameters Values

Parameter Value

Iteration No 3000

Particle No 50

V_max 40

C1 2

C2 2

GC 6.672

Radius 10

In Table 5.7, the parameter iteration number is the algorithm termination condition. In

addition, time limit will terminate the algorithm if the specified time elapses before it

reaches the total number of iterations. One of the most important parameters in PSO-

GELS is the particle number which represents the number of solutions. The velocity

values are initialized with maximum value determined by V-max parameters. C1 and

C2 are positive acceleration constants which control the influence of the best and

neighbour solutions on the search process (Izakian et al., 2010). GC is a constant with

the value 6.672 and Radius is the neighbour radius between the two responses in the

search space.

5.2.7 AS(TS), AS+TS, ACS(TS), and ACS+TS Parameters

Based on the stand-alone version of these algorithms, the hybrid approaches utilized

the same parameter values as shown in Table 5.8.

138

Table 5.8

AS, ACS, and TS Algorithms Parameter Values

Parameter name AS ACS TS

Iteration No 3000 3000 3000

Alpha 1 1 NA

Beta 8 8 NA

Evaporation 0.5 0.6 NA

No of ants No of machines 10 NA

Exploitation NA 0.9 NA

Time limit (seconds) 45 45 45

Search neighbour NA NA Transfer, Swap adjacent,

and Swap by load

Tabu size NA NA 40

Idle iteration NA NA 2

NA: Not applicable for specific algorithm.

5.2.8 AS(GA), AS+GA, ACS(GA), and ACS+GA Parameters

These hybrid approaches adopted their parameter values from the stand-alone

versions of them. Tables 5.9 and 5.10 summarize the parameter values.

Table 5.9

AS(GA) and AS+GA Algorithms Parameter Values

AS GA

Parameter name Value Parameter name Value

Iteration No 3000 Iteration No 3000

Alpha 1 Time limit 45 seconds

Beta 8 Population size 10

Evaporation 0.5 Intermediate size 6

No of ants Number of machines Selection operator Tournament 3

Time limit 45 seconds Crossover rate 0.9

 Mutation rate 0.4

 Crossover operator Fitness based

 Mutation operator Re-balance

139

Table 5.10

ACS(GA) and ACS+GA Algorithms Parameter Values

ACS GA

Parameter name Value Parameter name Value

Iteration No 3000 Iteration No 3000

Alpha 1 Time limit 45 seconds

Beta 8 Population size 10

Evaporation 0.7 Intermediate size 6

No of ants 10 Selection operator Tournament 3

Exploration rate 0.9 Crossover rate 0.9

Time limit 45 seconds Mutation rate 0.4

 Crossover operator Fitness based

 Mutation operator Re-balance

The execution time for GA, AS, ACS, TS, BABC, EBABC1, EBABC2 was set to 90

seconds which is commonly used as a reasonable amount of time for scheduling jobs

in a computational grid environment (Xhafa, Barolli, et al., 2007a; Xhafa & Duran,

2008). To keep this restriction time in the hybrid approaches, each algorithm is

limited to 45 seconds in order to conduct fair experiments. However, each algorithm

is also terminated with an iteration number which also works as a termination

criterion besides the limited time. In other words, each algorithm is terminated either

by reaching the allowed run time or reaching the allowed iteration number.

5.3 Experimental Result and Analysis

The experiments are conducted using Intel® Core (TM) i7-3612QM CPU @ 2.10

GHz and 8G RAM. The grid computing simulator is developed using visual C#. The

time given for each experiment is 90 seconds (45 seconds for each algorithm in the

hybrid approach). Each algorithm is executed 10 times in order to calculate the best

and average values. The proposed algorithms are evaluated based on makespan,

flowtime, and utilization metrics.

140

5.3.1 Best Makespan Results

In order to compare and represent the performance of the proposed algorithms

visually, a geometric mean is calculated to normalize the makespan, flowtime, and

utilization values of the twelve instances (Izakian, Abraham, & Snsel, 2009). In

addition, the difference between the ACS algorithm and the proposed hybrid

algorithms are calculated to provide the enhancement of each hybrid algorithm in

terms of percentage.

Figure 5.1 displays the results of the sixteen algorithms in terms of the best makespan

value. The Figure 5.1 shows that the worse performance produced by BABC and

PSO-GELS algorithms. The algorithms EBABC2, GA, ACS, AS, and ACS(GA)

show similar performance to each other which is better than BABC and PSO-GELS

algorithms. The performance enhanced slightly by TS, AS(TS), ACS+GA, AS(GA),

EBABC1, AS+GA, ACS(TS), and AS+TS algorithms. The proposed hybrid

algorithm ACS+TS achieved the best performance in terms of best makespan value as

shown in Figure 5.1. This is due to the refinement process achieved by TS algorithm

to the best solution produced by ACS algorithm.

Figure 5.1. Geometric mean for the best makespan values

141

Figure 5.2 represents the enhancement of each hybrid algorithm which is expressed in

terms of percentage. Each hybrid algorithm is compared with the ACS algorithm in

terms of best makespan value enhancement. The Figure 5.2 shows that ACS+TS

algorithm enhanced 6.99% followed by ACS(TS) 4.65%, ACS+GA 2.03%, and

ACS(GA) 0.35%. This enhancement indicates that GA and TS algorithms increased

the performance of ant colony system algorithm in both low and high levels.

However, the best performance achieved when ACS algorithm hybridized with TS

algorithm in high level order. Clearly in high level order, the TS algorithm starts with

initial solution passed from ACS algorithm which is very high quality produced by

the best ant. Therefore, TS starts from good location in the search space which leads

to further enhancement to the solution found by ACS algorithm.

Figure 5.2. The percentage enhancement of each hybrid algorithm in terms of the best

makespan values

5.3.2 Average Makespan Results

Figure 5.3 displays the results of the sixteen algorithms in terms of the average

makespan value. The Figure 5.3 shows that the worse performance produced by

BABC followed by EBABC2 and PSO-GELS algorithms. The algorithms ACS,

142

EBABC1, ACS(GA), AS, GA, ACS+GA, AS(TS), and AS(GA) show similar

performance to each other which is better than BABC, EBABC2 and PSO-GELS

algorithms. The performance enhanced slightly by AS+GA, TS, ACS(TS), and

AS+TS algorithms. The proposed hybrid algorithm ACS+TS achieved the best

performance in terms of average makespan value as shown in Figure 5.3. This is due

to the refinement process achieved by TS algorithm to the best solution produced by

ACS algorithm.

Figure 5.3. Geometric mean for the average makespan values

Figure 5.4 represents the enhancement of each hybrid algorithm which is expressed in

terms of percentage. Each hybrid algorithm is compared with the ACS algorithm in

terms of average makespan value enhancement. The Figure 5.4 shows that ACS+TS

algorithm enhanced 7.46% followed by ACS(TS) 4.66%, ACS+GA 1.7%, and

ACS(GA) 0.47%. This enhancement indicates that GA and TS algorithms increased

the performance of ant colony system algorithm in both low and high levels.

However, the best performance achieved when ACS algorithm hybridized with TS

algorithm in high level order. Clearly in high level order, the TS algorithm starts with

initial solution passed from ACS algorithm which is very high quality produced by

143

the best ant. Therefore, TS starts from good location in the search space which leads

to further enhancement to the solution found by ACS algorithm.

Figure 5.4. The percentage enhancement of each algorithm in terms of the average

makespan values

5.3.3 Best Flowtime Results

The second metric to measure the scheduling algorithm performance is the flowtime.

Figure 5.5 displays the results of the sixteen algorithms in terms of the best flowtime

value. The Figure 5.5 shows that the worse performance produced by BABC followed

by PSO-GELS, GA, and ACS(GA) algorithms. The algorithms ACS, TS, ACS+GA,

and EBABC2 show similar performance to each other which is better than BABC and

PSO-GELS algorithms. The performance enhanced slightly with AS(GA), AS(TS),

AS+GA, AS, ACS(TS), AS+TS, and EBABC1 algorithms. The proposed hybrid

algorithm ACS+TS achieved the best performance in terms of best flowtime value as

shown in Figure 5.5. This is due to the refinement process achieved by TS algorithm

to the best solution produced by ACS algorithm.

144

Figure 5.5. Geometric mean for best flowtime values

Figure 5.6 represents the enhancement of each hybrid algorithm which is expressed in

terms of percentage. Each hybrid algorithm is compared with the ACS algorithm in

terms of best flowtime value enhancement. The Figure 5.6 shows that ACS+TS

algorithm enhanced 5.61% followed by ACS(TS) 3.15%, and ACS+GA 0.75%. The

proposed hybrid algorithm ACS(GA) perform worse than ACS algorithm (not

included in the graph). This enhancement indicates that TS algorithm increased the

performance of ant colony system algorithm in both low and high levels while GA

algorithm only increases the ACS algorithm performance in high level order.

However, the best performance achieved when ACS algorithm hybridized with TS

algorithm in high level order.

145

Figure 5.6. The percentage enhancement of each algorithm in terms of the best

flowtime values

5.3.4 Average Flowtime Results

Figure 5.7 displays the results of the sixteen algorithms in terms of the average

flowtime values. The Figure 5.7 shows that the worse performance achieved by

BABC followed by EBABC2, and ACS(GA) algorithms. The algorithms ACS,

ACS+GA, GA, PSO-GELS, and EBABC1 show similar performance to each other

which is better than BABC algorithm. The performance enhanced little with AS(TS),

TS, AS+GA, AS, ACS(TS), and AS+TS algorithms. The proposed hybrid algorithm

(ACS+TS) achieved the best value in terms of average flowtime values as shown in

Figure 5.7.

146

Figure 5.7. Geometric mean for average flowtime values

Figure 5.8 represents the enhancement of each hybrid algorithm which is expressed in

terms of percentage. Each hybrid algorithm is compared with the ACS algorithm in

terms of the average flowtime enhancement. The Figure 8.5 shows that ACS+TS

algorithm enhanced 6.22% followed by ACS(TS) 3.37%, and ACS+GA 0.65%. The

proposed hybrid algorithm ACS(GA) perform worse than ACS algorithm (not

included in the graph). This enhancement indicates that TS algorithm increased the

performance of ant colony system algorithm in both low and high levels while GA

algorithm only increases the ACS algorithm performance in high level order.

However, the best performance achieved when ACS algorithm hybridized with TS

algorithm in high level order.

147

Figure 5.8. The percentage enhancement of each algorithm in terms of the average

flowtime values

5.3.5 Best Utilization Results

The last metric implemented in this study to measure the algorithms performance is

the utilization of resources in the computational grid.

Figure 5.9 displays the results of the sixteen algorithms in terms of the best utilization

value. The Figure 5.9 shows that the worse performance achieved by BABC and AS

algorithms. The algorithms PSO-GELS, EBABC2, EBABC1, AS(TS), and ACS show

similar performance to each other which is better than BABC and AS algorithms. The

performance enhanced little with AS(GA), GA, ACS(GA), AS+GA, ACS+GA, TS,

ACS+TS, and AS+TS algorithms. The proposed hybrid algorithm ACS(TS) achieved

the best value in terms of best utilization as shown in Figure 5.9. This is due to the

refinement process achieved by TS algorithm to the solution produced by ACS

algorithm. However, the algorithms ACS+TS, AS+TS, and ACS(TS) show similar

performance in terms of best utilization value.

148

Figure 5.9. Geometric mean for best utilization value

Figure 5.10 represents the enhancement of each hybrid algorithm which is expressed

in terms of percentage. Each hybrid algorithm is compared with the ACS algorithm in

terms of best utilization value enhancement. The Figure 5.10 shows that ACS(TS)

algorithm enhanced 0.88% and ACS+TS 0.88% followed by ACS+GA 0.47%, and

ACS(GA) 0.61%. This enhancement indicates that GA and TS algorithms increased

the performance of ant colony system algorithm in both low and high levels.

However, the best performance achieved when ACS algorithm hybridized with TS

algorithm in both level order. Clearly in high level order, the TS algorithm starts with

initial solution passed from ACS algorithm which is very high quality produced by

the best ant. Therefore, TS starts from good location in the search space which leads

to further enhancement to the solution found by ACS algorithm. While for low level

hybridization between ACS and TS, the TS algorithm enhance the best solution at the

end of each cycle which makes the ants update the pheromone based on the enhanced

solution produced from TS algorithm. Therefore, the low level hybridization

algorithm was able to achieve good results.

149

Figure 5.10. The percentage enhancement of each algorithm in terms of the best

utilization values

5.3.6 Average Utilization Results

Figure 5.11 displays the results of the sixteen algorithms in terms of the average

utilization value. The Figure 5.11 shows that the best performance achieved by the

proposed hybrid ACS(TS) algorithm. Similar performance also achieved by

ACS(TS), TS, AS(TS), ACS(GA), AS+GA, and ACS(GA) algorithms. Slightly less

performance achieved by GA, AS(GA), ACS, and AS(TS) algorithms. The worse

performance achieved by EBABC1, PSO-GELS, EBABC2, AS, and BABC

algorithms.

Figure 5.11. Geometric mean for average utilization values

150

Figure 5.12 represents the enhancement of each hybrid algorithm which is expressed

in terms of percentage. Each hybrid algorithm is compared with the ACS algorithm in

terms of average utilization value enhancement. The Figure 5.12 shows that ACS(TS)

algorithm enhanced 1.36% followed by ACS+TS 1.33%, ACS+GA 1.07%, and

ACS(GA) 0.87%. This enhancement indicates that GA and TS algorithms increased

the performance of ant colony system algorithm in both low and high levels.

However, the best performance achieved when ACS algorithm hybridized with TS

algorithm in low level order.

Figure 5.12. The percentage enhancement of each algorithm in terms of the average

utilization values

5.3.7 Discussion

In terms of best makespan value, the proposed algorithm ACS+TS outperform the

other algorithms. The best makespan value is the main objective of this study which

reflects the productivity of grid computing system. ACS+TS achieved good results

due to the ability of TS algorithm to refine the best solution found by ACS algorithm.

The worse performances in terms of best makespan value were achieved by BABC

and PSO-GELS algorithms. BABC is the binary version of ABC algorithm and PSO-

151

GELS is the discrete version of PSO algorithm hybridized with GELS algorithm.

These type of algorithms were originally developed to solve continues problems. In

spite of several studies proposed methods to apply these algorithm into discrete

problems, the difficulty there is that the notions of velocity and direction have no

natural extensions for combinatorial problems, such as travelling salesman problem

and scheduled problems (Poli, Kennedy, & Blackwell, 2007). Moreover, hybridizing

PSO with GELS did not enhance PSO algorithm, according to Gauci, Dodd, and Groß

(2012) “gravitational search algorithm' is not genuinely based on the law of gravity”,

therefore, it could not enhance PSO algorithm.

5.4 Summary

The benchmark problems were generated using expected time to compute model

consists of twelve datasets. Experimented results show that the proposed hybrid

ACS+TS algorithm outperforms other algorithms in terms of makespan and flowtime

criteria. However, for utilization criterion, two hybrid algorithms show good

performance, namely ACS(TS) and ACS+TS.

The results confirm that hybridizing ant colony system with tabu search algorithm is

very useful and efficient, specifically the high level hybridization. Tabu search

algorithm was able to enhance the solution found by ant colony system algorithm. In

addition, ant system also benefited from tabu search and genetic algorithm in some

instances.

152

CHAPTER SIX

JOB SCHEDULING IN DYNAMIC GRID COMPUTING

This chapter presents the evaluation and the proposed algorithm in the dynamic grid

computing environment. Section 6.1 discusses the dynamic environment and DETC

model for benchmark problems. The parameters of the proposed algorithms with the

algorithms used for comparison are presented in Section 6.2. The experiment results

of the proposed hybrid algorithms are provided in Section 6.3. Finally, Section 6.4

summarizes the chapter.

6.1 Dynamic Environment

In spite of the effectiveness of using static environment for testing the algorithm

performance, there are some attributes which are not presented in the static scenario.

Attributes such as availability and varying in resource speed are presented in the

dynamic scenario. In order to investigate the proposed algorithms performance,

twelve algorithms are implemented for comparison. For dynamic experiment, five

datasets are generated using the DETC simulator in order to mimic the real grid

computing situations. Each algorithm is executed ten times on each dataset to

calculate the best, average, and standard deviation values. Three metrics are

implemented to measure the performance, namely makespan, flowtime, and

utilization with priority to makespan as the main objective. Table 6.1 shows the

dataset description (Xhafa, Koodziej, et al., 2011).

153

Table 6.1

Datasets descriptions

 Mini Small Medium Large Very large

Tasks 256 512 1024 2048 4096

Machines 16 32 64 128 256

In the Table 6.1, the columns represent the size of the benchmarks dataset problem.

The first row represents the number of tasks in each dataset while the second row

represents the number of machines in each dataset.

For benchmark problems, the simulator started by generating tasks and machines

using the parameters given in Table 6.2.

Table 6.2

Parameters for Generating Dynamic Benchmark

Parameter name Value

Time Sequence 1

Round to integer True

Failure distribution Weibull(0.8, 0.4)

No of machines 16, 32, 64, 128, 256

Machine distribution Normal(1000, 175)

No of tasks 256, 512, 1024, 2048, 4096

Load distribution Normal(625000, 93750)

In Table 6.2, the parameter time sequence is the number of batches to be sent to the

grid computing system. The parameter round to integer makes all generated values

integer if the parameter set to true. The parameter failure distribution controls the

shape of the Weibull distribution method. The number of machines specifies the

resources in the grid system. Machine distribution controls the shape of the Normal

distribution method. The number of tasks specifies the number of tasks submitted to

154

the grid system. Load distribution controls the shape of the Normal distribution

method.

6.2 Algorithm Parameters

Tuning metaheuristics parameters to find the best possible configuration of the

algorithm is a very critical task (Aleti, 2012). In fact, the parameters in metaheuristics

algorithms have the characteristics of a machine learning problem (Birattari, 2009). In

this study, the parameter values for the algorithms which are implemented for

comparison are adopted from Dorigo ad Stutzle (2004); Kim et al. (2013); Pooranian

et al.(2013) Xhafa, Carretero, et al. (2009); and Xhafa, Duran, et al. (2008) in order

to perform a fair comparison. Table 6.3 summarizes the adopted algorithms and their

parameter resources.

Table 6.3

Algorithms resource for parameter values

Algorithm name Resource

GA (Xhafa, Duran, et al., 2008)

AS, ACS (Dorigo & Stutzle, 2004)

TS (Xhafa, Carretero, et al., 2009)

BABC, EBABC1, EBABS2 (Kim et al., 2013)

PSO-GELS (Pooranian et al., 2013)

6.2.1 Genetic Algorithm Parameters

In this study, the algorithm implementation and parameter values are adopted from

Xhafa, Duran, et al. (2008). Table 6.4 reports the parameter values.

155

Table 6.4

GA parameter values

In Table 6.4, the parameter iteration number is the algorithm termination condition. In

addition, time limit will terminate the algorithm if the specified time elapses before it

reaches the total number of iterations. The population size parameter represents the

total number of solutions generated as a population for crossover and mutation

operators. Part of the population is selected for crossover and mutation which is

determined by the intermediate size parameter. The probability that crossover and

mutation operators will be applied to the selected solution is controlled by crossover

and mutation rate parameters respectively. Selection operator is very important to

keep the diversity between solutions in genetic algorithm. The solutions are selected

using an operator known as tournament operator using three candidates. This selection

mechanism will ensure that each solution has a chance to compete with the other two

solutions fairly. After the selection process, each pair of solutions apply crossover

using fitness based operator. Finally, the mutation operator is applied using re-

balanced operator in order to keep the scheduling balanced.

Parameter Value

Iteration No 3000

Time limit 90 seconds

Population size 10

Intermediate size 6

Crossover rate 0.9

Mutation rate 0.4

Selection operator Tournament 3

Crossover operator Fitness based

Mutation operator Re-balance

156

6.2.2 Ant System Parameters

The parameter values for AS algorithm in this study are adopted from Dorigo and

Stutzle (2004). Table 6.5 provides the parameter values for AS algorithm.

Table 6.5

AS parameter value

Parameter Value

Iteration No 3000

Alpha 1

Beta 8

Evaporation rate 0.5

No of ants No of machines

Time limit 90 seconds

In Table 6.5, the parameter iteration number is the algorithm termination condition. In

addition, the time limit will terminate the algorithm if the specified time elapses

before it reaches the total number of iterations. The alpha parameter represents the

pheromone influence, increasing the alpha value which will influence the ants to rely

more on pheromones instead of heuristic value and vice versa. Beta parameter has the

influence on heuristic value. Increasing the beta value will force the ants to follow the

heuristic values strongly, while reducing its value will influence the ants more

towards pheromone value. The duration of pheromone value is determined by the

evaporation rate parameter. Evaporation value of one refers to all the pheromone will

be evaporated after each cycle. In opposite, if the evaporation value is zero, then no

evaporation will occur at all. In AS algorithm, each ant constructs its own solution,

whereby the total number of ants is specified by the number of ants’ parameter.

157

6.2.3 Ant Colony System Parameters

ACS algorithm parameter values are adopted from Dorigo and Stutzle (2004). Table

6.6 shows the parameter values.

Table 6.6

ACS parameter values

Parameter Value

Iteration No 3000

Beta 8

Evaporation rate 0.6

No of ants 10

Exploitation 0.9

Time limit 90 seconds

In Table 6.6, the parameter iteration number, beta, evaporation rate, number of ants,

and time limit are defined the same as in ant system algorithm. The extra parameter in

ACS algorithm is the exploitation rate parameter. This parameter controls the

algorithm exploitation/exploration behaviour. The value one means that the algorithm

will do exploitation search in a greedy way, while the value 0 means the ants will

search the space randomly.

6.2.4 Tabu Search Parameters

This study adopted the values for tabu search algorithm parameters from Xhafa,

Carretero, et al. (2009). Table 6.7 shows the parameter values for TS algorithm.

Table 6.7

TS parameter values

Parameter Value

Iteration No 3000

Search neighbour by Transfer, Swap adjacent, and Swap by load

158

Tabu size 40

Idle iteration 2

Time limit 90 seconds

In Table 6.7, the parameter iteration number is the algorithm termination condition. In

addition, time limit will terminate the algorithm if the specified time elapses before it

reaches the total number of iterations. One of the most important parameters in tabu

search is searching the neighbourhood of the current solution. There are many

techniques to perform this search. Three methods are used in this study to search the

neighbourhood. First, transfer method works based on transferring between different

jobs and machines. Second, swap adjacent works based on interchanging the adjacent

jobs in the solution vector. Third, swap by load will interchange between high and

low load machines. The tabu size parameter will specify how many moves to keep in

the list as a tabu move. TS algorithm will change from soft diversification into strong

diversification based on the idle iteration parameter.

6.2.5 BABC, EBABC1, and EBABC2 Parameters

These algorithm implementations and parameter values are adopted from Kim et al.

(2013). Table 6.8 reports the parameter value for each algorithm.

Table 6.8

BABC, EBABC1, EBABC2 parameter values

Parameter name BABC EBABC1 EBABC2

Iteration No 3000 3000 3000

Number of food source 20 20 20

Limit 800 800 800

Time limit (seconds) 90 90 90

No of FRS NA 3 NA

Alpha NA NA 0.999

NA: Not applicable for specific algorithm(s).

159

In Table 6.8, the parameter iteration number is the algorithm termination condition. In

addition, time limit will terminate the algorithm if the specified time elapses before it

reaches the total number of iterations. The number of food source parameter specifies

the number of solutions which is equal to the number of employed bees. The

parameter limit controls the number of trials to improve the solution. After reaching

the limit, the source food is abandoned and the employed bee for that food source

becomes a scout. The extra parameters are number of FRS and alpha as proposed by

Kim et al. (2013). FRS value is used to incorporate a Flexible Ranking Strategy (FRS)

to improve the balance between exploration and exploitation. Alpha is a real number

parameter greater than 0 and less than 1.

6.2.6 PSO-GELS Parameters

The parameters values for GELS-PSO are adopted from the study proposed by

Pooranian et al. (2013) as shown in Table 6.9.

Table 6.9

PSO-GELS Algorithm Parameters Values

Parameter Value

Iteration No 3000

Particle No 50

V_max 40

C1 2

C2 2

GC 6.672

Radius 10

In Table 6.9, the parameter iteration number is the algorithm termination condition. In

addition, time limit will terminate the algorithm if the specified time elapses before it

reaches the total number of iterations. One of the most important parameters in PSO-

160

GELS is the particle number which represents the number of solutions. The velocity

values are initialized with maximum value determined by V-max parameters. C1 and

C2 are positive acceleration constants which control the influence of the best and

neighbour solutions on the search process (Izakian et al., 2010). GC is a constant with

the value 6.672 and Radius is the neighbour radius between the two responses in the

search space.

6.2.7 AS(TS), AS+TS, ACS(TS), and ACS+TS Parameters

Based on the stand-alone version of these algorithms, the hybrid approaches utilized

the same parameter values as shown in Table 6.10.

Table 6.10

AS, ACS, and TS Algorithms Parameter Values

Parameter name AS ACS TS

Iteration No 3000 3000 3000

Alpha 1 1 NA

Beta 8 8 NA

Evaporation 0.5 0.6 NA

No of ants No of machines 10 NA

Exploitation NA 0.9 NA

Time limit (seconds) 45 45 45

Search neighbour NA NA Transfer, Swap adjacent,

and Swap by load

Tabu size NA NA 40

Idle iteration NA NA 2

NA: Not applicable for specific algorithm.

6.2.8 AS(GA), AS+GA, ACS(GA), and ACS+GA Parameters

These hybrid approaches adopted their parameters values from the stand-alone

versions of them. Table 6.11 and 6.12 summarize the parameter values.

161

Table 6.11

AS(GA) and AS+GA Algorithms Parameter Values

AS GA

Parameter name Value Parameter name Value

Iteration No 3000 Iteration No 3000

Alpha 1 Time limit 45 seconds

Beta 8 Population size 10

Evaporation 0.5 Intermediate size 6

No of ants Number of machines Selection operator Tournament 3

Time limit 45 seconds Crossover rate 0.9

 Mutation rate 0.4

 Crossover operator Fitness based

 Mutation operator Re-balance

Table 6.12

ACS(GA) and ACS+GA Algorithms Parameter Values

ACS GA

Parameter name Value Parameter name Value

Iteration No 3000 Iteration No 3000

Alpha 1 Time limit 45 seconds

Beta 8 Population size 10

Evaporation 0.7 Intermediate size 6

No of ants 10 Selection operator Tournament 3

Exploration rate 0.9 Crossover rate 0.9

Time limit 45 seconds Mutation rate 0.4

 Crossover operator Fitness based

 Mutation operator Re-balance

The execution time for GA, AS, ACS, TS, BABC, EBABC1, EBABC2 is set to 90

seconds which is commonly used as a reasonable amount of time for scheduling jobs

in a computational grid environment (Xhafa, Barolli, et al., 2007a; Xhafa & Duran,

2008). To keep this restriction time in the hybrid approaches, each algorithm is

limited to 45 seconds in order to conduct fair experiments. However, each algorithm

is also terminated with an iteration number which also works as a termination

162

criterion besides the limited time. In other words, each algorithm is terminated either

by reaching the allowed run time or reaching the allowed iteration number.

6.3 Experimental Result and Analysis

The experiments are conducted using Intel® Core (TM) i7-3612QM CPU @ 2.10

GHz and 8G RAM. The grid computing simulator is developed using visual C#. The

time given for each experiment is 90 seconds (45 seconds for each algorithm in the

hybrid approach). Each algorithm is executed 10 times in order to calculate the best

and average values. The proposed algorithms are evaluated based on makespan,

flowtime, and utilization metrics.

6.3.1 Best Makespan Results

In order to compare and represent the performance of the proposed algorithms

visually, a geometric mean is calculated to normalize the makespan, flowtime, and

utilization values of five instances (Izakian, Abraham, & Snsel, 2009). In addition, the

difference between ACS algorithm and the proposed hybrid algorithm is calculated to

provide the enhancement of each algorithm in terms of percentage.

Figure 6.1 displays the results of the sixteen algorithms in terms of the best makespan

value. The Figure 6.1 shows that the worse performance produced by BABC,

EBABC2 and EBABC1algorithms. The algorithms, AS, AS(GA), and AS(TS) show

similar performance to each other which is better than BABC, EBABC2 and

EBABC1 algorithms. The performance enhanced slightly by AS+TS, AS+GA, PSO-

GELS, GA, ACS, ACS(GA), ACS+GA, TS, and ACS+TS algorithms. The proposed

hybrid algorithm ACS(TS) achieved the best performance in terms of best makespan

163

value as shown in Figure 6.1. This is due to the enhancement process achieved by TS

algorithm to the solution produced by each cycle in ACS algorithm.

Figure 6.1. Geometric mean for the best makespan values

Figure 6.2 represents the enhancement of each hybrid algorithm which is expressed in

terms of percentage. Each hybrid algorithm is compared with the ACS algorithm in

terms of best makespan value enhancement. The Figure 6.2 shows that ACS(TS)

algorithm enhanced 1.26% followed by ACS+TS 1.16%, ACS+GA 0.56%, and

ACS(GA) 0.01%. This enhancement indicates that GA and TS algorithms increased

the performance of ant colony system algorithm in both low and high levels.

However, the best performance achieved when ACS algorithm hybridized with TS

algorithm in low level order. Clearly in low level hybridization between ACS and TS,

the TS algorithm enhances the best solution at the end of each cycle of ACS

algorithm. This makes the ants update the pheromone based on the enhanced solution

produced from TS algorithm. Therefore, the low level hybridization algorithm was

able to achieve good results.

164

Figure 6.2. The percentage enhancement of each hybrid algorithm in terms of the best

makespan values

6.3.2 Average Makespan Results

Figure 6.3 displays the results of the sixteen algorithms in terms of the average

makespan value. The Figure 6.3 shows that the worse performance produced by

BABC followed by EBABC2 and EBABC1 algorithms. The algorithms AS, AS(GA),

and AS(TS) show similar performance to each other which is better than BABC,

EBABC2 and EBABC1 algorithms. The performance enhanced slightly by AS+TS,

AS+GA, ACS, PSO-GELS, ACS(GA), GA, ACS+GA, TS, and ACS+TS algorithms.

The proposed hybrid algorithm ACS(TS) achieved the best performance in terms of

average makespan value as shown in Figure 6.3. This is due to the enhancement

process achieved by TS algorithm to the solution produced by each cycle in ACS

algorithm.

165

Figure 6.3. Geometric mean for the average makespan values

Figure 6.4 shows that ACS(TS) algorithm enhanced 1.96% followed by ACS+TS

1.85%, ACS+GA 1.01%, and ACS(GA) 0.43%. This enhancement indicates that GA

and TS algorithms increased the performance of ant colony system algorithm in both

low and high levels. However, the best performance achieved when ACS algorithm

hybridized with TS algorithm in low level order.

Figure 6.4. The percentage enhancement of each hybrid algorithm in terms of the

average makespan values

166

6.3.3 Best Flowtime Results

The second metric to measure the scheduling algorithm performance is the flowtime.

Figure 6.5 displays the results of the sixteen algorithms in terms of the best flowtime

value. The Figure 6.5 shows that the worse performance produced by BABC followed

by EBABC1 algorithms. The algorithms AS(GA), AS(TS), AS+GA, EBABC2,

AS+TS, and AS show similar performance to each other which is better than BABC

and EBABC1 algorithms. The performance enhanced slightly with ACS(GA), ACS,

PSO-GELS, GA, ACS+GA, TS, and ACS(TS) algorithms. The proposed hybrid

algorithm ACS+TS achieved the best performance in terms of best flowtime value as

shown in Figure 6.5. This is due to the refinement process achieved by TS algorithm

to the best solution produced by ACS algorithm.

Figure 6.5. Geometric mean for the best flowtime values

Figure 6.6 shows that ACS+TS algorithm enhanced 0.07% followed by ACS(TS)

0.06%, and ACS+GA 0.01%. The proposed hybrid algorithm ACS(GA) perform

worse than ACS algorithm (not included in the graph).

167

This enhancement indicates that TS algorithm increased the performance of ant

colony system algorithm in both low and high levels while GA algorithm only

increases the ACS algorithm performance in high level order. However, the best

performance achieved when ACS algorithm hybridized with TS algorithm in high

level order. Clearly in high level order, the TS algorithm starts with initial solution

passed from ACS algorithm which is very high quality produced by the best ant.

Therefore, TS starts from good location in the search space which leads to further

enhancement to the solution found by ACS algorithm.

Figure 6.6. The percentage enhancement of each algorithm in terms of the best

flowtime values

6.3.4 Average Flowtime Results

Figure 6.7 displays the results of the sixteen algorithms in terms of the average

flowtime value. The Figure 6.7 shows that the worse performance achieved by BABC

followed by EBABC1, and EBABC2 algorithms. The algorithms AS(GA), AS(TS),

AS+TS, AS+GA, and AS show similar performance to each other which is better than

BABC, EBABC1, and EBABC2 algorithms. The performance enhanced little with

ACS(GA), ACS, ACS+GA, PSO-GELS, GA, TS, and ACS+TS algorithms. The

168

proposed hybrid algorithm ACS(TS) achieved the best value in terms of the average

flowtime values as shown in Figure 6.7. This is due to the enhancement process

achieved by TS algorithm to the solution produced by each cycle in ACS algorithm.

Figure 6.7. Geometric mean for the average flowtime values

Figure 6.8 shows that ACS(TS) algorithm enhanced 0.093% followed by ACS+TS

0.076%, and ACS+GA 0.001%. The proposed hybrid algorithm ACS(GA) perform

worse than ACS algorithm (not included in the graph).

This enhancement indicates that TS algorithm increased the performance of ant

colony system algorithm in both low and high levels while GA algorithm only

increases the ACS algorithm performance in high level order. However, the best

performance achieved when ACS algorithm hybridized with TS algorithm in low

level order.

169

Figure 6.8. The percentage enhancement of each hybrid algorithm in terms of the

average flowtime values

6.3.5 Best Utilization Results

The last metric implemented in this study to measure the algorithms performance is

the utilization of resources in the computational grid. Figure 6.9 displays the results of

the sixteen algorithms in terms of the best utilization value. The Figure 6.9 shows that

the worse performance achieved by BABC, EBABC2, and EBABC1 algorithms. The

algorithms AS, AS(TS), AS+TS, AS+GA, AS(GA), PSO-GELS, GA, and ACS(GA)

show similar performance to each other which is better than BABC, EBABC2, and

EBABC1 algorithms. The performance enhanced little with ACS, ACS+GA, TS, and

ACS+TS algorithms. The proposed hybrid algorithm ACS(TS) achieved the best

value in terms of best utilization as shown in Figure 6.9. However, the algorithms

ACS+GA, TS, and ACS+TS show good performance in terms of best utilization

value.

170

Figure 6.9. Geometric mean for the best utilization value

Figure 6.10 shows that ACS(TS) algorithm enhanced over ACS algorithm by 1.19%

followed by ACS+TS enhanced by 1.09% and finally ACS+GA algorithm enhanced

over ACS algorithm by 0.52%. The low level hybridization between ACS and GA did

not enhance the ACS algorithm.

Figure 6.10. The percentage enhancement of each hybrid algorithm in terms of the

best utilization values

171

6.3.6 Average Utilization Results

Figure 6.11 displays the results of the sixteen algorithms in terms of the average

utilization value. The Figure 6.11 shows that the best performance achieved by the

proposed hybrid ACS(TS) algorithm. Similar performance also achieved by ACS+TS,

TS, ACS+GA, GA, PSO-GELS, ACS(GA), and ACS algorithms. Slightly less

performance achieved by AS+GA, AS(GA), AS+TS, AS(TS), and AS algorithms.

The worse performance achieved by EBABC1, EBABC2, and BABC algorithms.

Figure 6.11. Geometric mean for the average utilization value

Figure 6.12 shows that in terms of the average utilization value, ACS(TS) algorithm

enhanced over ACS algorithm by 1.9% and ACS+TS enhanced over ACS algorithm

by 1.8%. In addition, ACS+GA algorithm enhanced over ACS algorithm by 1.01%

and ACS(GA) algorithm enhanced over ACS algorithm by 0.17%.

172

Figure 6.12. The percentage enhancement of each hybrid algorithm in terms of the

average utilization values

6.3.7 Discussion

In terms of best makespan value, the proposed algorithm ACS(TS) outperform the

other algorithms. The best makespan value is the main objective of this study which

reflects the productivity of grid computing system. ACS(TS) achieved good results

due to the ability of TS algorithm to enhance the solution produced by the ants at the

end of the each iteration in ACS algorithm. In low level hybridization ACS(TS), ACS

algorithm uses the solution produced by TS for global pheromone update. Therefore,

the ants in the nest iteration will be influenced by the solution enhanced by TS

algorithm.

The worse performance produced by BABC algorithm. BABC is the binary version of

ABC algorithm which originally developed to solve continues problems. In spite of

several studies proposed methods to apply ABC algorithm into discrete problems, the

difficulty there is no natural extensions for combinatorial problems, such as travelling

salesman problem and scheduled problems (Poli et al., 2007).

173

6.4 Summary

From these findings, it is clear that ACS algorithm did not produce good solutions

when it is executed alone. On the other hand, the local search algorithms GA and TS

performances depend on the initial solution. Hence, GA and TS algorithm

performances are enhanced when they are hybridized with ACS. Therefore, the

solution produced by ACS needs to be refined using local search which is done

successfully using the proposed algorithms in this study, specifically ACS(TS)

algorithm. It is important to mention that the execution time given is 90 seconds in

order to provide the real requirements in grid computing environment. Such a strong

time concentration makes the algorithm terminate before it finishes its iteration

number.

174

CHAPTER SEVEN

CONCLUSION AND FUTURE WORK

Similar to any other NP-complete problems, job scheduling in grid computing is a real

challenging problem which is very hard to tackle. These types of problems required

metaheuristics algorithms to achieve near optimal solution. Each metaheuristics

algorithm shows good performance in specific problem. Therefore, no algorithm

could be said is good for all NP-complete problems. Moreover, some algorithms are

able to achieve good results only in specific instances of the specific problem. Due to

this restriction, this study has been focused on enhancing ant colony system for job

scheduling problem in grid computing. This study has been implemented a hybrid

approach between ACS, GA, and TS algorithms. Section 7.1 discusses the research

contribution while the research limitations are presented in Section 7.2. Suggested

future work is provided in Section 7.3.

7.1 Research Contribution

One way to enhance ant colony system is by hybridizing it with other algorithms. In

this study, it is found that genetic algorithm and tabu search algorithm are very useful

to enhance ACS algorithm for job scheduling in grid computing. This study has five

contributions specifically, four hybrid algorithms and one simulator.

The first contribution is the low level hybridization between ant colony system and

genetic algorithm which is called ACS(GA) algorithm. This hybrid algorithm has the

ability to enhance the exploration mechanism in ACS algorithm. In terms of best

makespan value for the static environment, ACS(GA) enhanced over ACS algorithm

175

by 0.35%. For dynamic environment, ACS(GA) enhanced over ACS algorithm by

0.01%.

The second contribution is the low level hybridization between ant colony system and

tabu search algorithm which is called ACS(TS) algorithm. This hybrid algorithm has

the ability to also enhance the exploration mechanism in ACS algorithm. In terms of

best makespan value for the static environment, ACS(TS) enhanced over ACS

algorithm by 4.65%. For dynamic environment, ACS(TS) enhanced over ACS

algorithm by 1.26%.

The third contribution is the high level hybridization between ant colony system and

genetic algorithm which is called ACS+GA algorithm. This hybrid algorithm has the

ability to refine the solution produced by ACS algorithm. In terms of best makespan

value for the static environment, ACS+GA enhanced over ACS algorithm by 2.03%.

For dynamic environment, ACS+GA enhanced over ACS algorithm by 0.56%.

The fourth contribution is the high level hybridization between ant colony system and

tabu search algorithm which is called ACS+TS algorithm. This hybrid algorithm has

the ability to refine the solution produced by ACS algorithm. In terms of best

makespan value for the static environment, ACS+TS enhanced over ACS algorithm

by 6.99%. For dynamic environment, ACS+TS enhanced over ACS algorithm by

1.16%.

The fifth contribution is the grid computing simulator called ExSim simulator which

has the ability to simulate static and dynamic environments for job scheduling. A trial

version of ExSim simulator could be requested from http://exsim.webs.com/.

http://exsim.webs.com/

176

The experimental results found that the hybridization between ACS and TS,

specifically the high level hybridization ACS+TS achieved the best performance

compared to other algorithms in static grid computing environment. Therefore, this

study recommends applying ACS+TS algorithm for a grid computing system which

has the characteristics similar to static environment. In addition, the study

recommends applying ACS(TS) algorithm for dynamic computational grid system.

7.2 Limitation of the Study

Limitations are unavoidable events in any study and this study has no exceptions. The

followings are the limitations of this study:

i. For algorithm evaluation purpose, there is no standard simulator that could be

used, especially when the required algorithms are hybridized like the proposed

algorithms in this study. Therefore, a simulator is developed from scratch in

order to conduct the evaluation experiments.

ii. Due to the random variables used in the distribution methods to generate the

benchmark problems, it is not possible to compare results reported in the

literature. Hence, all the algorithms which were selected for comparison were

implemented in this study.

iii. This study did not consider the variation of the network connection speed.

7.3 Recommendation for Future Work

During the process of this study, several directions arose which are considered as

good seeds for future research. The following points highlight the promising

directions found by this study:

177

i. There are many other components in grid computing systems which need to be

investigated, such as security, task immigration between resources, and the

resource fault predicting.

ii. Grid computing field needs standardization in terms of infrastructure and

implementation in order to unify the grid architecture.

iii. The enhanced scheduling algorithm could be investigated with other

scheduling problems, such as job shop scheduling problem and Flow shop

scheduling problem.

iv. Other local search algorithms could be hybridized with ACS algorithms, such

as simulated annealing and artificial bee colony.

v. One of the most important components in tabu search algorithm is the

neighbourhood search techniques. There are several techniques which could be

investigated in order to find the best combination for tabu search algorithm.

vi. During the iterations of ant colony system algorithm, after each cycle, each ant

will calculate the fitness of its solution and compare it with the best-so-far

solution. The process of calculating the solution fitness is time consuming. On

the other hand, these solutions could already be found and calculated in some

previous loops or by other ants which will waste time in calculating the same

solution again. Therefore, introducing a hash function to convert the solution

into hash code and save it in a hash table will reduce the calculation time. Each

ant will use the hash function to convert its solution into a hash code and

compare it with the codes saved in the table. If the code already exists in the

table, then there is no need to calculate its fitness value and simply discard the

solution. Otherwise, save the new code in the hash table and calculate the

fitness value. This enhancement will save a lot of time in ACS run time.

178

REFERENCES

Aarts, E., Korst, J., & Michiels, W. (2014). Simulated Annealing. In E. K. Burke & G.

Kendall (Eds.), Search Methodologies: Introductory Tutorials in Optimization

and Decision Support Techniques (pp. 265–285). Boston: Springer.

Aarts, E., & Lenstra, J. K. (2003). Local Search in Combinatorial Optimization.

Princetonn: Princeton University Press.

Abraham, A., Grosan, C., & Ishibuchi, H. (2007). Hybrid Evolutionary Algorithms.

Heidelberg: Springer.

Abraham, A., Liu, H., Zhang, W., & Chang, T. (2006). Scheduling Jobs on

Computational Grids Using Fuzzy Particle Swarm Algorithm. In Proceedings of

the 10th International Conference on Knowledge-Based Intelligent Information

and Engineering Systems (pp. 500–507). Bournemouth.

Agnetis, A., Billaut, J.-C., Gawiejnowicz, S., Pacciarelli, D., & Soukhal, A. (2014).

Multiagent Scheduling Models and Algorithms. Heidelberg: Springe.

Alba, E., Almeida, F., Blesa, M., Cabeza, J., Cotta, C., Díaz, M., … Xhafa, F. (2002).

MALLBA: A Library of Skeletons for Combinatorial Optimisation. In

Proceedings of the 8th International Euro-Par Conference on Parallel

Processing (pp. 927–932). Paderborn.

Alba, E., Almeida, F., Blesa, M., Cotta, C., Diaz, M., Dorta, I., … Xhava, F. (2006).

Efficient Parallel LAN / WAN Algorithms for Optimization . The MALLBA

Project. Journal of Parallel Computing, 32(5-6), 415–440.

Aleti, A. (2012). An Adaptive Approach to Controlling Parameters of Evolutionary

Algorithms. (Doctoral dissertation). Retrieved from

http://researchbank.swinburne.edu.au/vital/access/manager/Index

AL-Fawair, M. A. (2009). A Framework for Evolving Grid Computing Systems.

(Doctoral dissertation). Retrieved from http://www.diva-

portal.org/smash/search.jsf

Ali, S. S., Siegel, H. J., Maheswaran, M., Hensgen, D., & Lafayette, W. (2000). Task

Execution Time Modeling for Heterogeneous Computing Systems. In

Proceedings of the 9th Heterogeneous Computing Workshop (pp. 185–199).

Cancun. doi:10.1109/HCW.2000.843743

Ali, S., Siegel, H. J., Maheswaran, M., Hensgen, D., & Ali, S. (2000). Representing

Task and Machine Heterogeneities for Heterogeneous Computing Systems.

Tamkang Journal of Science and Engineering, 3(3), 195–207.

Anousha, S., Anousha, S., & Ahmadi, M. (2014). A New Heuristic Algorithm for

Improving Total Completion Time in Grid Computing. In James J. Park, S.-C.

179

Chen, J.-M. Gil, & N. Y. Yen (Eds.), Multimedia and Ubiquitous Engineering

(pp. 17–26). Heidelberg: Springe.

Aron, R., & Chana, I. (2012). Formal QoS Policy Based Grid Resource Provisioning

Framework. Journal of Grid Computing, 10(2), 249–264. doi:10.1007/s10723-

012-9202-y

Atasagun, Y., & Kara, Y. (2014). Bacterial Foraging Optimization Algorithm for

Assembly Line Balancing. Journal of Neural Computing and Applications,

25(1), 237–250.

Babafemi, O., Sanjay, M., & Adigun, M. (2013). Towards Developing Grid-Based

Portals for E-Commerce on-Demand Services on a Utility Computing Platform.

Journal of Procedia, 4(1), 81–87. doi:10.1016/j.ieri.2013.11.013

Bagherzadeh, J., & MadadyarAdeh, M. (2009). An Improved Ant Algorithm for Grid

Scheduling Problem. In Proceedings of the 14th International Conference on

CSI Computer (pp. 323–328). Tehran.

Bai, J., Chen, L., Jin, H., Chen, R., & Mao, H. (2012). Robot Path Planning Based on

Random Expansion of Ant Colony Optimization. In Z. C. Qian, W. Su, T. Wang,

& H. Yang (Eds.), Recent Advances in Computer Science and Information

Engineering (pp. 141–146). Heidelberg: Springer.

Bai, L., Hu, Y., Lao, S., & Zhang, W. (2010). Task scheduling with load balancing

using multiple ant colonies optimization in grid computing. 2010 Sixth

International Conference on Natural Computation, (Icnc), 2715–2719.

doi:10.1109/ICNC.2010.5582599

Bandieramonte, M., Stefano, A. Di, & Morana, G. (2008). An ACO Inspired Strategy

to Improve Jobs Scheduling in a Grid Environment. In Proceedings of the 8th

International Conference on Algorithms and Architectures for Parallel

Processing (pp. 30–41). Cyprus.

Bardsiri, A. K., & Hashemi, S. M. (2012). A Comparative Study on Seven Static

Mapping Heuristics for Grid Scheduling Problem. International Journal of

Software Engineering and Its Applications, 6(4), 247–256.

Berman, F., Fox, G., & Hey, A. J. G. (2003). Grid Computing: Making the Global

Infrastructure a Reality. Chichester, England: Wiley.

Birattari, M. (2009). Tuning Metaheuristics A Machine Learning Perspective. Berlin:

Springer.

Biswal, B., Dash, P. K., & Mishra, S. (2011). A Hybrid Ant Colony Optimization

Technique for Power Signal Pattern Classification. Journal of Expert Systems

with Applications, 38(5), 6368–6375.

Blum, C., & Li, X. (2008). Swarm Intelligence in Optimization. In C. Blum & D.

Merkle (Eds.), Swarm Intelligence. Heidelberg: Springer.

180

Blum, C., & Roli, A. (2003). Metaheuristics in Combinatorial Optimization:

Overview and Conceptual Comparison. Journal of ACM Computing Surveys,

35(3), 268–308. doi:10.1145/937503.937505

Botzheim, J., Toda, Y., & Kubota, N. (2012). Bacterial Memetic Algorithm for

Simultaneous Optimization of Path Planning and Flow Shop Scheduling

Problems. Journal of Artificial Life and Robotics, 17(1), 107–112.

Boussaid, I., Lepagnot, J., & Siarry, P. (2013). A Survey on Optimization

Metaheuristics. Journal of Information Sciences, 237(1), 82–117.

Brade, D., & Lehmann, A. (2002). Model Verification and Validation. In A. N. Ince

(Ed.), Modeling and Simulation Environment for Satellite and Terrestrial

Communications Networks. Boston: Springer. doi:10.1007/978-1-4615-0863-

2_17

Braun, T. D., Siegel, H. J., Beck, N., Boloni, L. L., Maheswaran, M., Reuther, A. I.,

… Freund, R. F. (1999). A Comparison Study of Static Mapping Heuristics for a

Class of Meta-tasks on Heterogeneous Computing Systems. In Proceedings of

the 8th Heterogeneous Computing Workshop (pp. 15–29). San Juan.

Braun, T. D., Siegel, H. J., Beck, N., Boloni, L. L., Maheswaran, M., Reuther, A. I.,

… Freund, R. F. (2001). A Comparison of Eleven Static Heuristics for Mapping

a Class of Independent Tasks onto Heterogeneous Distributed Computing

Systems. Journal of Parallel and Distributed Computing, 61(6), 810–837.

doi:10.1006/jpdc.2000.1714

Bullnheimer, B., Hart, R. F., & Straub, C. (1999). A New Rank-Based Version of the

Ant System: A Computational Study. Central European Journal of Operations

Research and Economics, 7(1), 25 – 38.

Burke, E. K., & Kendall, G. (2014). Search Methodologies: Introductory Tutorials in

Optimization and Decision Support Techniques. New York: Springer.

Buyya, R., & Murshed, M. (2002). GridSim: a Toolkit for the Modeling and

Simulation of Distributed Resource Management and Scheduling for Grid

Computing. Journal of Concurrency and Computation: Practice and Experience,

14(13), 1175–1220. doi:10.1002/cpe.710

Cai, R., Ning, Z., Li, L., & Zhong, Y. (2007). Simulated Annealing Algorithm for

Independent Tasks Assignment in Heterogeneous Computing Systems. In

Proceedings of the 3rd International Conference on Natural Computation (pp.

105–109). Haikou.

Calvete, H. I., Gale, C., & Oliveros, M. (2012). Ant Colony Optimization for Solving

the Vehicle Routing Problem with Delivery Preferences. In Proceedings of the

International Conference on Modeling and Simulation in Engineering,

Economics and Management (pp. 230–239). New Rochelle.

181

Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraula, G., & Bonabeau,

E. (2003). Self-Organization in Biological Systems. Princeton, N.J. Oxford:

Princeton University Press.

Caron, E., Garonne, V., & Tsaregorodtsev, A. (2007). Definition, Modelling and

Simulation of a Grid Computing Scheduling System for High Throughput

Computing. Journal of Future Generation Computer Systems, 23(8), 968–976.

doi:10.1016/j.future.2007.04.008

Carretero, J., & Xhafa, F. (2006). Use of Genetic Algorithms for Scheduling Jobs in

Large Scale Grid Applications. Journal of Technological and Economic

Development of Economy, 12(1), 11–17.

Carretero, J., Xhafa, F., & Abraham, A. (2007). Genetic Algorithm Based Schedulers

for Grid Computing Systems. International Journal of Innovative Computing,

Information and Control, 3(6), 1–19.

Carvalho, M., & Brasileiro, F. (2012). A User-Based Model of Grid Computing

Workloads. In Proceedings of the 13th ACM/IEEE International Conference on

Grid Computing (pp. 40–48). Beijing.

Chang, R., Chang, J., & Lin, P.-S. (2009). An Ant Algorithm for Balanced Job

Scheduling in Grids. Journal of Future Generation Computer Systems, 25(1),

20–27. doi:10.1016/j.future.2008.06.004

Chang, R.-S., Chang, J.-S., & Lin, P.-S. (2007). Balanced Job Assignment Based on

Ant Algorithm for Computing Grids. In Proceedings of the 2nd IEEE Asia-

Pacific Conference on Service Computing (pp. 291–295). Tsukuba Science City.

Chaturvedi, A. K., & Sahu, R. (2011). New Heuristic for Scheduling of Independent

Tasks in Computational Grid. International Journal of Grid and Distributed

Computing, 4(3).

Chen, X., Kong, Y., Fang, X., & Wu, Q. (2011). A Fast Two-Stage ACO Algorithm

for Robotic Path Planning. Journal of Neural Computing and Applications,

22(2), 313–319.

Chen, Y., Yu, L., Hong, Z., & Dong, Q. (2012). On Energy-Saving Routing Based on

Ant Colony Algorithm for Wireless Sensor Networks. In Proceedings of the

International Conference in Electrics, Communication and Automatic Control

Proceedings (pp. 1241–1247). Chongqing.

Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed Optimization by Ant

Colonies. In Proceedings of the European Conference on Artificial Life (pp. 134

– 142). Paris.

Conejero, J., Caminero, B., Carrion, C., & Tomas, L. (2014). From Volunteer to

Trustable Computing: Providing QoS-Aware Scheduling Mechanisms for Multi-

Grid Computing Environments. Journal of Future Generation Computer

Systems, 34(1), 76–93. doi:10.1016/j.future.2013.12.005

182

Cordon, O., Viana, I. F. de, & Herrera, F. (2002). Analysis of the Best-Worst Ant

System and its Variants on the TSP. Journal of Mathware and Soft Computing,

9(3), 228–234.

Cordon, O., Viana, I. F. de, Herrera, F., & Moreno, L. (2000). A New ACO Model

Integrating Evolutionary Computation Concept: The Best-Worst Ant System. In

Proceedings of the 3rd International Workshop on Ant Algorithms (pp. 22–29).

Granada.

Costa, D. (1994). An Evolutionary Tabu Search Algorithm and the NHL Scheduling

Problem. Journal of INFOR, 33(1), 161–178.

Cyril Daisy Christina, P., & Miriam, D. D. H. (2012). Adaptive Task Scheduling

Based on Multi Criterion Ant Colony Optimization in Computational Grids. In

Proceedings of the International Conference on Recent Trends in Information

Technology (pp. 185–190). Tamil Nadu.

David, N. (2013). Validating Simulations. In B. Edmonds & R. Meyer (Eds.),

Simulating Social Complexity. Berlin: Springer. doi:10.1007/978-3-540-93813-

2_8

Davis, L. D. (1991). Handbook Of Genetic Algorithms. New York: Van Nostrand

Reinhold Computer Library.

Devi, S. N., & Pethalakshmi, A. (2012). Resource Discovery for Grid Computing

Environment Using Ant Colony Optimization by Applying Routing Information

and LRU Policy. In Proceedings of the 4th International Conference on Global

Trends in Computing and Communication Systems (pp. 124–133). Vellore, India.

Do Duc, D., Dinh, H. Q., Dang, T. H., Laukens, K., & Hoang, X. H. (2012).

AcoSeeD: An Ant Colony Optimization for Finding Optimal Spaced Seeds in

Biological Sequence Search. In Proceedings of the 8th International Conference

on Swarm Intelligence (pp. 204–211). Brussels.

Dokeroglu, T., & Cosar, A. (2012). Dynamic Programming with Ant Colony

Optimization Metaheuristic for Optimization of Distributed Database Queries. In

Proceedings of the 26th International Symposium on Computer and Information

Sciences (pp. 107–113). London.

Dorigo, M., & Gambardella, L. M. (1997a). Ant Colonies for the Travelling Salesman

Problem. Journal of BioSystems, 43(2), 73–81. doi:10.1016/S0303-

2647(97)01708-5

Dorigo, M., & Gambardella, L. M. (1997b). Ant Colony System: a Cooperative

Learning Approach to the Traveling Salesman Problem. Journal of IEEE

Transactions on Evolutionary Computation, 1(1), 53–66.

doi:10.1109/4235.585892

Dorigo, M., Maniezzo, V., & Colorni, A. (1991). Positive Feedback as a Search

Strategy (Report No 91- 016) (pp. 1–20). Milan.

183

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant System: Optimization by a

Colony of Cooperating Agents. Journal of IEEE Transactions on Systems, Man,

and Cybernetics-Part B, Cybernetics, 26(1), 29–41. doi:10.1109/3477.484436

Dorigo, M., & Stutzle, T. (2004). Ant Colony Optimization. Cambridge, Mass: MIT

Press.

Dorigo, M., Stutzle, T., & Stützle, T. (2003). The Ant Colony Optimization

Metaheuristic: Algorithms, Applications, and Advances. In F. Glover & G. A.

Kochenberger (Eds.), Handbook of Metaheuristics (pp. 250–285). Boston:

Kluwer Academic Publishers.

Douiri, S. M., & Elbernoussi, S. (2012). A New Ant Colony Optimization Algorithm

for the Lower Bound of Sum Coloring Problem. Journal of Mathematical

Modelling and Algorithms, 11(2), 181–192.

Dumitrescu, C. L., & Foster, I. (2005). GangSim: a Simulator for Grid Scheduling

Studies. In Proceedings of the IEEE International Symposium on Cluster

Computing and the Grid (pp. 1151–1158). Cardiff.

Eberhart, R., & Kennedy, J. (1995). A New Optimizer Using Particle Swarm Theory.

In Proceddings of the 6th International Symposium on Micromachine and

Human Science (pp. 39–43). Nagoya.

Espling, D. (2013). Enabling Technologies for Management of Distributed Computing

Infrastructures. (Doctoral dissertation). Retrieved from http://www.diva-

portal.org/smash/search.jsf

Farina, A., Graziano, A., Panzieri, S., Pascucci, F., & Setola, R. (2013). How to

Perform Verification and Validation of Critical Infrastructure Modeling Tools. In

Proceedings of the 6th International Workshop on Critical Information

Infrastructure Security (pp. 116–127). Lucerne. doi:10.1007/978-3-642-41476-

3_10

Feitelson, D. G. (2013). Workload Modeling for Computer Systems Performance

Evaluation. Jerusalem: The Hebrew University of Jerusalem.

Fidanova, S. (2006). Simulated Annealing for Grid Scheduling Problem. In

Proceedings of the International Symposium on Modern Computing (pp. 41–45).

Sofia.

Fidanova, S., & Durchova, M. (2006). Ant Algorithm for Grid Scheduling Problem.

In Proceedings of the 5th International Conference on Large-Scale Scientific

Computing (pp. 405–412). Sozopol.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1996). Artificial Intelligence Through

Simulated Evolution. New York: Wiley.

184

Foster, I., & Kesselman, C. (1997). Globus: a Metacomputing Infrastructure Toolkit.

International Journal of High Performance Computing Applications, 11(2), 115–

128.

Foster, I., & Kesselman, C. (2004). The Grid 2, Second Edition: Blueprint for a New

Computing Infrastructure. Amsterdam Boston: Morgan Kaufmann.

Framinan, J. M., Leisten, R., & García, R. R. (2014). Manufacturing Scheduling

Systems An Integrated View on Models, Methods and Tools. London: Springer.

Fulop, N. Z. C. (2008). A Desktop Grid Computing Approach for Scientific

Computing and Visualization. (Doctoral dissertation). Retrieved from

http://www.diva-portal.org/smash/search.jsf

Gainaru, A., Cappello, F., Trausan-matu, S., & Kramer, B. (2011). Event Log Mining

Tool for Large Scale HPC Systems. In Proceedings of the 17th International

Euro-Par Conference on Parallel Processing (pp. 52–64). Bordeaux, France.

Gambardella, L. M. L. M., Montemanni, R., & Weyland, D. (2012). An Enhanced

Ant Colony System for the Sequential Ordering Problem. Proceedings of the

International Conference on Operations Research, 355–360. doi:10.1007/978-3-

642-

Garrido, J. M. (2001). Object-Oriented Discrete-Event Simulation with Java: A

Practical Introduction. New York: Kluwer Academic. doi:10.1007/978-1-4615-

1319-3

Gauci, M., Dodd, T. J., & Groß, R. (2012). Why “GSA: a Gravitational Search

Algorithm” is not Genuinely Based on the Law of Gravity. Journal of Natural

Computing, 11(4), 719–720. doi:10.1007/s11047-012-9322-0

Gazi, V., & Passino, K. M. (2011). Swarm Stability and Optimization. Heidelberg:

Springer.

Ge, H., & Tan, G. (2012). A Cooperative Intelligent Approach for Job-shop

Scheduling Based on Bacterial Foraging Strategy and Particle Swarm

Optimization. In C. Kahraman (Ed.), Computational Intelligence Systems in

Industrial Engineering (pp. 363–383). Paris: Atlantis Press.

Gen, M., Zhang, W., Lin, L., & Jo, J. (2014). Recent Advances in Multiobjective

Genetic Algorithms for Manufacturing Scheduling Problems. In Proceedings of

the 8th International Conference on Management Science and Engineering

Management (pp. 815–831). Lisbon.

Gendreau, M., & Potvin, J. (2014). Tabu Search. In E. K. Burke & G. Kendall (Eds.),

Search Methodologies: Introductory Tutorials in Optimization and Decision

Support Techniques (pp. 243–263). Boston, MA: Springer.

Gendreau, M., & Potvin, J.-Y. (2010). Handbook of Metaheuristics. New York:

Springer.

185

Glover, F. (1986). Future Paths for Integer Programming and Links to Artificial

Intelligence. Journal of Computers and Operations Research, 13(5), 533 – 549.

doi:10.1016/0305-0548(86)90048-1

Glover, F., & Laguna, M. (1997). Tabu Search. Boston: Kluwer Academic.

Golshanara, L., Rankoohi, S. M. T. R., & Shah-Hosseini, H. (2013). A Multi-Colony

Ant Algorithm for Optimizing Join Queries in Distributed Database Systems.

Journal of Knowledge and Information Systems, 39(1), 75–206.

Grosan, C., & Abraham, A. (2007). Hybrid Evolutionary Algorithms : Methodologies

, Architectures , and Reviews. In A. Abraham, C. Grosan, & H. Ishibuchi (Eds.),

Hybrid Evolutionary Algorithms (pp. 1–17). Heidelberg: Springer.

Guo, Y., & Wang, X. (2010). Application of Simulated Annealing Algorithm toGrid

Computing Scheduling based on GridSim. In Proceedings of the 2nd

International Conference on Information Science and Engineering (pp. 1021–

1024). Hangzhou, China: Ieee. doi:10.1109/ICISE.2010.5691633

Hamid, Z. A., Musirin, I., Rahim, M. N. A., & Kamari, N. A. M. (2012). Application

of Electricity Tracing Theory and Hybrid Ant Colony Algorithm for Ranking

Bus Priority in Power System. International Journal of Electrical Power &

Energy Systems, 43(1), 1427–1434.

Hao, Y., Liu, G., & Wen, N. (2012). An Enhanced Load Balancing Mechanism Based

on Deadline Control on GridSim. Journal of Future Generation Computer

Systems, 28(4), 657–665. doi:10.1016/j.future.2011.10.010

Harchol-Balter, M., Crovella, M. E., & Murta, C. D. (1999). On Choosing a Task

Assignment Policy for a Distributed Server System. Journal of Parallel and

Distributed Computing, 59(2), 204–228.

Hartmann, J., Makuschewitz, T., Frazzon, E. M., & Scholz-Reiter, B. (2014). A

Genetic Algorithm for the Integrated Scheduling of Production and Transport

Systems. In Proceedings of of the International Annual Conference of the

German Operations Research Society (pp. 533–539). Leibniz University of

Hannover, Germany.

Heien, E., Kondo, D., Gainaru, A., LaPine, D., Kramer, B., & Cappello, F. (2011).

Modeling and Tolerating Heterogeneous Failures in Large Parallel Systems. In

Proceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis (pp. 1–11). Seatle, WA.

Herd, B., Miles, S., McBurney, P., & Luck, M. (2014). Verification and Validation of

Agent-Based Simulations Using Approximate Model Checking. In Proceedings

of the International Workshop on Multi-Agent-Based Simulation XIV (pp. 53–

70). Saint Paul. doi:10.1007/978-3-642-54783-6 4,

Hodnefjell, S., & Junior, I. C. (2012). Classification Rule Discovery with Ant Colony

Optimization Algorithm. In Proceedings of the 13th International Conference on

186

Intelligent Data Engineering and Automated Learning (pp. 678–687). Natal,

Brazil.

Hogenboom, A., Frasincar, F., & Kaymak, U. (2013). Ant Colony Optimization for

RDF Chain Queries for Decision Support. Journal of Expert Systems with

Applications, 40(5), 1555–1563.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. Cambridge,

Mass: MIT Press.

Hussain, H., Malik, S. U. R., Hameedb, A., Khanb, S. U., Bickler, G., Min-Allah, N.,

… Rayes, A. (2013). A Survey on Resource Allocation in High Performance

Distributed Computing Systems. Journal of Parallel Computing, 39(11), 709–

736.

Iosup, A. A., Epema, D. J. H. J., Maassen, J., & Nieuwpoort, R. van. (2007).

Synthetic Grid Workloads with Ibis, Koala, and Grenchmark. In S. Gorlatch &

M. Danelutto (Eds.), Integrated Research in GRID Computing SE - 20 (pp. 271–

283). Pisa, Italy: Springer US.

Iosup, A., Jan, M., Sonmez, O., & Epema, D. H. J. (2007). On the Dynamic Resource

Availability in Grids. In Proceedings of the 8th IEEE/ACM International

Conference on Grid Computing (pp. 26–33). Austin, Texas.

Izakian, H., Abraham, A., & Snasel, V. (2009a). Metaheuristic Based Scheduling

Meta-Tasks in Distributed Heterogeneous Computing Systems. Journal of

Sensors, 9(7), 5339–50.

Izakian, H., Abraham, A., & Snasel, V. (2009b). Scheduling Meta-Tasks in

Distributed Heterogeneous Computing Systems: A Meta-Heuristic Particle

Swarm Optimization Approach. In Proceedings of the 9th International

Conference on Hybrid Intelligent Systems (pp. 397–402). Shenyang.

Izakian, H., Abraham, A., & Snsel, V. (2009). Performance Comparison of Six

Efficient Pure Heuristics for Scheduling Meta-Tasks on Heterogeneous

Distributed Environments. Journal of Neural Network World, 6(09), 695–711.

Izakian, H., Ladani, B. T., Abraham, A., & Snasel, V. (2010). A Discrete Particle

Swarm Optimization Approach for Grid Job Scheduling. International Journal of

Innovative Computing, Information and Control, 6(9), 1–15.

Izakian, H., Ladani, B. T., Zamanifar, K., & Abraham, A. (2009). A Novel Particle

Swarm Optimization Approach for Grid Job Scheduling. In Proceedings of the

3rd International Conference on Information Systems, Technology and

Management (pp. 100–109). Ghaziabad. doi:10.1007/978-3-642-00405-6_14

Javadi, B., Kondo, D., Iosup, A., & Epema, D. (2013). The Failure Trace Archive:

Enabling the Comparison of Failure Measurements and Models of Distributed

Systems. Journal of Parallel and Distributed Computing, 73(8), 1208–1223.

187

Javadi, B., Kondo, D., Vincent, J., & Anderson, D. P. (2009). Mining for Statistical

Models of Availability in Large-Scale Distributed Systems : An Empirical Study

of SETI @ Home. In Proceedings of the IEEE International Symposium on

Modeling, Analysis & Simulation of Computer and Telecommunication Systems

(pp. 1–10). London.

Jia, Q., & Seo, Y. (2013). An Improved Particle Swarm Optimization for the

Resource-Constrained Project Scheduling Problem. The International Journal of

Advanced Manufacturing Technology, 67(9-12), 2627–2638.

Jourdan, L., Basseur, M., & Talbi, E.-G. (2009). Hybridizing Exact Methods and

Metaheuristics: A Taxonomy. European Journal of Operational Research,

199(3), 620–629. doi:10.1016/j.ejor.2007.07.035

Kant, A., Sharma, A., Agarwal, S., & Chandra, S. (2010). An ACO Approach to Job

Scheduling in Grid Environment. In Proceedings of the 1st International

Conference on Swarm, Evolutionary, and Memetic Computing (pp. 286–295).

Chennai. doi:10.1007/978-3-642-17563-3_35

Karaboga, D. (2005). An Idea Based On Honey Bee Swarm For Numerical

Optimization (Technical Report No TR06). Turkey: Erciyes University.

Karaboga, D., & Basturk, B. (2008). On the Performance of Artificial Bee Colony

(ABC) Algorithm. Journal of Applied Soft Computing, 8(1), 687–697.

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. In Proceedings of

the IEEE International Conference on Neural Networks (pp. 1942–1948). Perth.

Kim, J.-K., Shivle, S., Siegel, H. J., Maciejewski, A., Braun, T. D., Schneider, M., …

SankarYellampalli, S. (2007). Dynamically Mapping Tasks with Priorities and

Multiple Deadlines in a Heterogeneous Environment. Journal of Parallel and

Distributed Computing, 67(1), 154–169.

Kim, S.-S., Byeon, J.-H., Liu, H., Abraham, A., & McLoone, S. (2013). Optimal Job

Scheduling in Grid Computing using Efficient Binary Artificial Bee Colony

Optimization. Journal of Soft Computing, 17(5), 867–882. doi:10.1007/s00500-

012-0957-7

Klusacek, D., & Rudova, H. (2010). The Importance of Complete Data Sets for Job

Scheduling Simulations. In Proceedings of the 15th International Workshop on

Job Scheduling Strategies for Parallel Processing (pp. 132–153). Atlanta.

doi:10.1007/978-3-642-16505-4_8

Kokilavani, T., & Amalarethinam, D. I. G. (2013). An Ant Colony Optimization

Based Load Sharing Technique for Meta Task Scheduling in Grid Computing. In

Proceedings of the 2nd International Conference on Advances in Computing and

Information Technology (pp. 395–404). Chennai. doi:10.1007/978-3-642-31552-

7_41

188

Kolasa, T., & Krol, D. (2010). ACO-GA Approach to Paper-Reviewer Assignment

Problem in CMS. In Proceedings of the International Symposium on Agent and

Multi-Agent Systems: Technologies and Applications (pp. 360–369). Gdynia,

Poland.

Kolodziej, J. (2012). Evolutionary Hierarchical Multi-Criteria Metaheuristics for

Scheduling in Large-Scale Grid Systems. New York: Springer. doi:10.1007/978-

3-642-28971-2

Kołodziej, J., & Khan, S. U. (2012). Multi-Level Hierarchic Genetic-Based

Scheduling of Independent Jobs in Dynamic Heterogeneous Grid Environment.

Journal of Information Sciences, 214(1), 1–19. doi:10.1016/j.ins.2012.05.016

Kolodziej, J., Xhafa, F., Bogdanski, M., & Bogda, M. (2010). Secure and Task

Abortion Aware GA-Based Hybrid Metaheuristics for Grid Scheduling. In

Proceedings of the 11th International Conference on Parallel Problem Solving

from Nature (pp. 526–535). Krakow.

Kolodziej, J., Xhafa, F., & Kolanko, L. (2009). Hierarchic Genetic Scheduler of

Independent Jobs in Computational Grid Environment. In Proceedings of the

23rd European Conference on Modelling and Simulation (pp. 1–7). Madrid.

Kołodziej, J., Xhafa, F., & Kolodziej, J. (2011). Enhancing the Genetic-Based

Scheduling in Computational Grids by a Structured Hierarchical Population.

Journal of Future Generation Computer Systems, 27(8), 1035–1046.

doi:10.1016/j.future.2011.04.011

Kothari, V., Anuradha, J., Shah, S., & Mittal, P. (2012). A Survey on Particle Swarm

Optimization in Feature Selection. In Proceedings of the 4th International

Conference on Global Trends in Information Systems and Software Applications

(pp. 192–201). Vellore.

Kousalya, K., & Balasubramanie, P. (2008). An Enhanced Ant Algorithm for Grid

Scheduling Problem. International Journal of Computer Science and Network

Security, 8(4), 262–271.

Kousalya, K., & Balasubramanie, P. (2009). To Improve Ant Algorithm’s Grid

Scheduling Using Local Search. International Journal of Intelligent Information

Technology Application, 2(2), 71–79.

Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J., & Lanza, G. (2003).

Genetic Programming IV Routine Human-Competitive Machine Intelligence.

New York: Springer.

Krakov, D., & Feitelson, D. G. (2013). High-Resolution Analysis of Parallel Job

Workloads. In Proceedings of the 16th International Workshop on Job

Scheduling Strategies for Parallel Processing (pp. 178–195). Shanghai.

Kromer, P., Platos, J., & Snasel, V. (2012). Independent Task Scheduling by Artificial

Immune Systems, Differential Evolution, and Genetic Algorithms. In

189

Proceedings of the 4th International Conference on Intelligent Networking and

Collaborative Systems (pp. 28–32). Bucharest.

Kromer, P., Snasel, V. V., Platos, J., Abraham, A., & Izakian, H. (2009). Scheduling

Independent Tasks on Heterogeneous Distributed Environments by Differential

Evolution. In Proceedings of the International Conference on Intelligent

Networking and Collaborative Systems (pp. 170–174). Barcelona.

Ku-Mahamud, K. R., & Alobaedy, M. M. (2012). New Heuristic Function in Ant

Colony System for Job Scheduling in Grid Computing. In Proceedings of the

17th International Conference on Applied Mathematics (pp. 47–52). Montreux.

Ku-Mahamud, K. R., & Nasir, H. J. A. (2010). Ant Colony Algorithm for Job

Scheduling in Grid Computing. In Proceedings of the 4th Asia International

Conference on Mathematical/Analytical Modelling and Computer Simulation

(pp. 40–45). Kota Kinabalu. doi:10.1109/AMS.2010.21

Kumar, S., Kumar, N., & Kumar, P. (2011). Genetic Algorithm for Network-Aware

Job Scheduling in Grid Environment. In Proceedings of the Recent Advances in

Intelligent Computational Systems (pp. 615–620). Trivandrum.

Li, H., Groep, D., Wolters, L., & Templon, J. (2006). Job Failure Analysis and Its

Implications in a Large-scale Production Grid. In Proceedings of the 2nd IEEE

International Conference on e-Science and Grid Computing (pp. 1–8).

Amsterdam.

Li, J., & Pan, Y. (2012). A Hybrid Discrete Particle Swarm Optimization Algorithm

for Solving Fuzzy Job Shop Scheduling Problem. The International Journal of

Advanced Manufacturing Technology, 66(4), 583–596.

Li, X., Liao, J., & Cai, M. (2011). Ant Colony Algorithm for Large Scale TSP. In

Proceedings of the International Conference on Electrical and Control

Engineering (pp. 573–576). Yichang.

Lim, C. P., & Jain, L. C. (2009). Advances in Swarm Intelligence. In C. P. Lim, L. C.

Jain, & S. Dehuri (Eds.), Innovations in Swarm Intelligence. Heidelberg:

Springer.

Liu, D., Ma, S., Guo, Z., & Wang, X. (2012). Research of Grid Resource Scheduling

Based on Improved Ant Colony Algorithm. In Proceedings of the Third

International Conference on Information Computing and Applications (pp. 480–

487). Chengde, China.

Liu, H., Abraham, A., & Hassanien, A. E. (2010). Scheduling Jobs on Computational

Grids using a Fuzzy Particle Swarm Optimization Algorithm. Journal of Future

Generation Computer Systems, 26(8), 1336–1343.

doi:10.1016/j.future.2009.05.022

Liu, J., Chen, L., Dun, Y., Liu, L., & Dong, G. (2008). The Research of Ant Colony

and Genetic Algorithm in Grid Task Scheduling. In Proceedings of the

190

International Conference on MultiMedia and Information Technology (pp. 47–

49). Three Gorges: Ieee.

Liu, K., Chen, J., Jin, H., & Yang, Y. (2009). A Min-Min Average Algorithm for

Scheduling Transaction-Intensive Grid Workflows. In Proceedings of the 7th

Australasian Symposium on Grid Computing and e-Research (pp. 41–48).

Wellington.

Liu, L., Song, Y., & Dai, Y. (2010). Cooperative Multi-Ant colony Pseudo-Parallel

Optimization Algorithm. In Proceedings of the IEEE International Conference

on Information and Automation (pp. 1269–1274). Harbin.

doi:10.1109/ICINFA.2010.5512118

Liu, X., Yi, H., & Ni, Z. (2013). Application of Ant Colony Optimization Algorithm

in Process Planning Optimization. Journal of Intelligent Manufacturing, 24(1),

1–13.

Liusuqin, Shuojun, Menglingfen, & Lixingsheng. (2009). “Making Concessions in

Order to Gain Advantages" Improved Ant Colony Optimization for Improving

Job Scheduling Problems. In Proceedings of the Global Congress on Intelligent

Systems (pp. 115–118). Xiamen.

Lope, J. de, Maravall, D., & Quinonez, Y. (2012). Decentralized Multi-tasks

Distribution in Heterogeneous Robot Teams by Means of Ant Colony

Optimization and Learning Automata. In Proceedings of the 7th International

Conference on Hybrid Artificial Intelligent Systems (pp. 103–114). Salamanca,

Spain.

Lorpunmanee, S., Sap, M. N., Abdullah, A. H., & Chompoo-inwai, C. (2007). An Ant

Colony Optimization for Dynamic Job Scheduling in Grid Environment.

International Journal of Computer and Information Science and Engineering,

1(4), 314–321.

Lublin, U., & Feitelson, D. G. (2003). The Workload on Parallel Supercomputers:

Modeling the Characteristics of Rigid Jobs. Journal of Parallel and Distributed

Computing, 63(11), 1105–1122. doi:10.1016/S0743-7315(03)00108-4

Ma, L., Lu, Y., Zhang, F., & Sun, S. (2012). Dynamic Task Scheduling in Cloud

Computing Based on Greedy Strategy. In Proceedings of the International

Conference on Trustworthy Computing and Services (pp. 156–162). Beijing.

Ma, T., Yan, Q., Liu, W., Guan, D., & Lee, S. (2011). Grid Task Scheduling:

Algorithm Review. Journal of IETE Technical Review, 28(2), 158–167.

MadadyarAdeh, M., & Bagherzadeh, J. (2011). An Improved Ant Algorithm for Grid

Scheduling Problem Using Biased Initial Ants. In Proceedings of the 3rd

International Conference on Computer Research and Development (pp. 373–

378). Shanghai.

191

Magoules, F., Nguyen, T.-M.-H., & Yu, L. (2009). Grid Resource Management :

Toward Virtual and Services Compliant Grid Computing. Boca Raton: CRC

Press.

Magoules, F., Pan, I., Tan, K.-A., & Kumar, A. (2009). Introduction to Grid

Computing. Boca Raton: CRC Press.

Maheshbhai, L. A. (2011). Job Scheduling Based on Reliability, Time and Cost

Constraints under Grid Environment. In Proceedings of the Nirma University

International Conference on Engineering (pp. 1–5). Ahmedabad.

Maheswaran, M., Ali, S., Siegel, H. J., Hensgen, D., & Freund, R. F. (1999). Dynamic

Matching and Scheduling of a Class of Independent Tasks onto Heterogeneous

Computing Systems. In Proceedings of the 8th Heterogeneous Computing

Workshop (pp. 30–44). San Juan.

Malarvizhi, N., & Uthariaraj, V. R. (2009). A Minimum Time to Release Job

Scheduling Algorithm in Computational Grid Environment. In Proceedings of

the 5th International Joint Conference on INC, IMS and IDC (pp. 13–18). Seoul.

Mao, J. (2011). A Task Scheduling Method of Grid Service using Ant Colony

Optimization. In Proceedings of the 2nd International Conference on Artificial

Intelligence, Management Science and Electronic Commerce (pp. 2752–2755).

Zhengzhou, China.

Maruthanayagam, D., & UmaRani, R. (2010). Enhanced Ant Colony Algorithm for

Grid Scheduling. International Journal of Computer Technology and

Applications, 1(1), 43–53.

Mathiyalagan, P., Suriya, S., & Sivanandam, S. N. (2010). Modified Ant Colony

Algorithm for Grid Scheduling. International Journal on Computer Science and

Engineering, 02(02), 132–139.

Meihong, W., Wenhua, Z., Wang, M., & Zeng, W. (2010). A Comparison of Four

Popular Heuristics for Task Scheduling Problem in Computational Grid. In

Proceedings of the 6th International Conference on Wireless Communications

Networking and Mobile Computing (pp. 1–4). Chengdu.

doi:10.1109/WICOM.2010.5600872

Menasce, D. A., Saha, D., Porto, S. C. D. S., Almeida, V. A. F., & Tripathi, S. K.

(1995). Static and Dynamic Processor Scheduling Disciplines in Heterogeneous

Parallel Architectures. Journal of Parallel and Distributed Computing, 28(1), 1–

18. doi:10.1006/jpdc.1995.1085

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution

Programs. Heidelberg: Springer-Verlag.

Michalewicz, Z. (1999). Genetic Algorithms + Data Structures = Evolution

Programs. New York: Springer-Verlag.

192

Michelakos, I., Mallios, N., Papageorgiou, E., & Vassilakopoulos, M. (2011). Ant

Colony Optimization and Data Mining. In N. Bessis & F. Xhafa (Eds.), Next

Generation Data Technologies for Collective Computational Intelligence (pp.

31–60). Heidelberg: Springer. doi:10.1007/978-3-642-20344-2_2

Montes, J., Sanchez, A., & Perez, M. S. (2012). Riding Out the Storm: How to Deal

with the Complexity of Grid and Cloud Management. Journal of Grid

Computing, 10(3), 349–366. doi:10.1007/s10723-012-9225-4

Moscato, P., & Cotta, C. (2010). A Modern Introduction to Memetic Algorithms. In

M. Gendreau & J.-Y. Potvin (Eds.), Handbook of Metaheuristics (pp. 141–183).

New York: Springer.

Mou, L.-M. (2011). A Novel Ant Colony System with Double Pheromones for the

Generalized TSP. In Proceedings of the 7th International Conference on Natural

Computation (pp. 1923–1928). Shanghai.

Nagariya, S., Mishra, M., & Shrivastava, M. (2014). An Inherent Approach based on

ACO and Tabu Search for Resource Allocation in Grid Environment.

International Journal of Computer Applications, 87(6), 39–45.

Nayak, S. K., Padhy, S. K., Panigrahi, S. P., Kumari, S., & Prasada, S. (2012). A

Novel Algorithm for Dynamic Task Scheduling. Journal of Future Generation

Computer Systems, 28(5), 709–717. doi:10.1016/j.future.2011.12.001

Nithya, L. M., Nadu, T., & Shanmugam, A. (2011). Scheduling in Computational

Grid with a New Hybrid Ant Colony Optimization Algorithm. European Journal

of Scientific Research, 62(2), 273–281.

Noghanian, S., Sabouni, A., Desell, T., & Ashtari, A. (2014). Global Optimization

Differential Evolution, Genetic Algorithms, Particle Swarm, and Hybrid

Methods. In S. Noghanian, A. Sabouni, T. Desell, & A. Ashtari (Eds.),

Microwave Tomography Global Optimization, Parallelization and Performance

Evaluation (pp. 39–61). New York: Springer.

Nothegger, C., Mayer, A., Chwatal, A., & Raidl, G. R. (2012). Solving the Post

Enrolment Course Timetabling Problem by Ant Colony Optimization. Journal of

Annals of Operations Research, 194(1), 325–339. doi:10.1007/s10479-012-

1078-5

Pace, D. K. (2003). Verification, Validation, and Accreditation of Simulation Models.

In M. S. Obaidat & G. I. Papadimitriou (Eds.), Applied System Simulation

Methodologies and Applications. New York: Springer.

Passos, W. Dos. (2009). Numerical Methods, Algorithms and Tools in C#. Boca

Raton: CRC Press.

Pereira, C., Goncalves, L., & Ferreira, M. (2013). Optic Disc Detection in Color

Fundus Images Using Ant Colony Optimization. Journal of Medical &

Biological Engineering & Computing, 51(3), 295–303.

193

Phatanapherom, S., Uthayopas, P., & Kachitvichyanukul, V. (2003). Fast Simulation

Model for Grid Scheduling Using Hypersim. In Proceedings of the Winter

Simulation Conference (pp. 1494 – 1500). New Orleans, LA.

Pintea, C.-M. (2014). Advances in Bio-inspired Computing for Combinatorial

Optimization Problems. Berlin Heidelberg: Springer.

Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle Swarm Optimization. Journal

of Swarm Intelligence, 1(a), 33–57. doi:10.1007/s11721-007-0002-0

Pooranian, Z., Shojafar, M., Abawajy, J. H., & Abraham, A. (2013). An efficient

meta-heuristic algorithm for grid computing. Journal of Combinatorial

Optimization, 1–22. doi:10.1007/s10878-013-9644-6

Price, K. V., Storn, R. M., & Lampinen, J. A. (2005). Differential Evolution A

Practical Approach to Global Optimization. Berlin: Springer.

Qureshi, M. B., Dehnavi, M. M., Min-Allah, N., Qureshi, M. S., Hussain, H., Rentifis,

I., … Zomaya, A. Y. (2014). Survey on Grid Resource Allocation Mechanisms.

Journal of Grid Computing, 12(2), 399–441. doi:10.1007/s10723-014-9292-9

Rajni, & Chana, I. (2013). Bacterial Foraging Based Hyper-Heuristic for Resource

Scheduling in Grid Computing. Journal of Future Generation Computer

Systems, 29(3), 751–762. doi:10.1016/j.future.2012.09.005

Raju, R., Babukarthik, R. G., & Dhavachelvan, P. (2013). Hybrid Ant Colony

Optimization and Cuckoo Search Algorithm for Job Scheduling. In Proceedings

of the 2nd International Conference on Advances in Computing and Information

Technology (pp. 491–501). Chennai.

Reeves, C. R., & Rowe, J. E. (2003). Genetic Algorithms: Principles and Perspectives

A Guide to GA Theory. Boston: Kluwer Academic Publishers.

Ritchie, G., & Levine, J. (2003). A Fast, Effective Local Search for Scheduling

Independent Jobs in Heterogeneous Computing Environments. In Proceedings of

the 22nd Workshop of the UK Planning and Scheduling Special Interest Group

(pp. 178–183). Glasgow.

Ritchie, G., & Levine, J. (2004). A Hybrid Ant Algorithm for Scheduling Independent

Jobs in Heterogeneous Computing Environments. In Proceedings of the 23rd

Workshop of the UK Planning and Scheduling Special Interest Group (pp. 1–7).

Cork.

Rothlauf, F. (2011). Design of Modern Heuristics Principles and Application.

Heidelberg: Springer.

Salman, A., Ahmad, I., & Al-Madani, S. (2002). Particle Swarm Optimization for

Task Assignment Problem. Journal of Microprocessors and Microsystems,

26(8), 363–371.

194

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. New York: Wiley.

See, P. C., Tai, V. C., & Molinas, M. (2012). Ant Colony Optimization Applied to

Control of Ocean Wave Energy Converters. Journal of Energy Procedia, 20(1),

148–155.

Selvi, S., & Manimegalai, D. (2010). Scheduling Jobs on Computational Grid using

Differential Evolution Algorithm. In Proceedings of the 12th International

Conference on Networking, VLSI and Signal Processing (pp. 118–123).

University of Cambridge, UK.

Seo, K.-K. (2012). An Ant Colony Optimization Algorithm Based Image

Classification Method for Content-Based Image Retrieval in Cloud Computing

Environment. In Proceedings of the International Conferences on Computer

Applications for Web, Human Computer Interaction, Signal and Image

Processing, and Pattern Recognition (pp. 110–117). Jeju Island.

Shang, J., Zhang, J., Lei, X., Zhang, Y., & Chen, B. (2012). Incorporating Heuristic

Information into Ant Colony Optimization for Epistasis Detection. Journal of

Genes & Genomics, 34(3), 321–327.

Silva, D. P. da, Cirne, W., & Brasileiro, F. V. (2003). Trading Cycles for Information:

Using Replication to Schedule Bag-of-Tasks Applications on Computational

Grids. In Proceedings of the 9th International Euro-Par Conference on Parallel

Processing (pp. 169–180). Klagenfurt. doi:10.1007/978-3-540-45209-6_26

Sim, K. M. (2009). Special Issue on Grid Resource Management. IEEE SYSTEMS

JOURNAL, 3(1), 2–5.

Singh, L., & Singh, S. (2014). A Genetic Algorithm for Scheduling Workflow

Applications in Unreliable Cloud Environment. In Proceedings of the 2nd

International Conference on Recent Trends in Computer Networks and

Distributed Systems Security (pp. 139–150). Trivandrum.

Sivanandam, S. N., & Deepa, S. N. (2008). Introduction to Genetic Algorithms.

Electronics (Vol. 2, p. 442). Heidelberg: Springer. doi:10.1007/978-3-540-

73190-0

Smith, A. J. (2007). Workloads. Journal of Communications of the ACM, 50(11), 45–

50.

Song, X., Sun, L., & Cao, Y. (2010). Study on the Convergence of Converse Ant

Colony Algorithm for Job Shop Scheduling Problem. In Proceedings of the 6th

International Conference on Natural Computation (pp. 2710–2714). Yantai.

Sonmez, O., Yigitbasi, N., Abrishami, S., Iosup, A., & Epema, D. (2010).

Performance Analysis of DynamicWorkflow Scheduling in Multicluster Grids.

In Proceedings of the 19th ACM International Symposium on High Performance

Distributed Computing (pp. 49–60). Chicago.

195

Stoean, C., & Stoean, R. (2014). Support Vector Machines and Evolutionary

Algorithms for Classification. Switzerland: Springer.

Stutzle, T., & Hoos, H. (1997). MAX-MIN Ant System and Local Search for the

Traveling Salesman Problem. In Proceedings of the International Conference on

Evolutionary Computation (pp. 309–314). Indianapolis.

doi:10.1109/ICEC.1997.592327

Stutzle, T., & Hoos, H. H. (2000). MAX-MIN Ant System. Journal of Future

Generation Computer Systems, 16(8), 889–914. doi:10.1016/S0167-

739X(00)00043-1

Talbi, E. (2013a). A Unified Taxonomy of Hybrid Metaheuristics with Mathematical

Programming, Constraint Programming and Machine Learning. In E. Talbi (Ed.),

Hybrid Metaheuristics. Heidelberg: Springer.

Talbi, E. (2013b). Hybrid Metaheuristics. Heidelberg: Springer.

Thesen, A. (1998). Design and Evaluation of Tabu Search Algorithms for

Multiprocessor Scheduling. Journal of Heuristics, 4(2), 141–160.

Tian, J., Yu, W., Chen, L., & Ma, L. (2011). Image Edge Detection Using Variation-

Adaptive Ant Colony Optimization. In N. T. Nguyen (Ed.), Transactions on

Computational Collective Intelligence V (pp. 27–40). New York: Springer.

Tian, Y., Liu, D., Yuan, D., & Wang, K. (2012). A Discrete PSO for Two-Stage

Assembly Scheduling Problem. The International Journal of Advanced

Manufacturing Technology, 66(4), 481–499.

Tiwari, P., & Verma, B. (2012). Application of Ant Colony Algorithm for

Classification and Rule Generation of Data. In S. Patnaik & Y.-M. Yang (Eds.),

Soft Computing Techniques in Vision Science (pp. 155–170). Berlin: Springer.

doi:10.1007/978-3-642-25507-6_14

Tsutsui, S., & Fujimoto, N. (2013). ACO withTabu Searchon GPUs for Fast Solution

of the QAP. In S. Tsutsui & P. Collet (Eds.), Massively Parallel Evolutionary

Computation on GPGPUs (pp. 179–202). Heidelberg: Springer.

Ullman, J. D. (1975). NP-Complete Scheduling Problems. Journal of Computer and

System Sciences, 10(3), 384–393.

Url, S., Archive, T. J., Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983).

Optimization by Simulated Annealing. Journal of Science, 220(4598), 671–680.

Vidal, R. V. V. (1993). Applied Simulated Annealing. Berlin Heidelberg: Springer.

Visalakshi, P., & Sivanandam, S. N. (2009). Dynamic Task Scheduling with Load

Balancing using Hybrid Particle Swarm Optimization. International Journal of

Open Problems Compt Math, 2(3), 475–488.

196

Vob, S. (2001). Meta-Heuristics: The State of the Art. In Proceedings of the

Workshop on Local Search for Planning and Scheduling (pp. 1–23). Heidelberg.

Wang, J., Duan, Q., Jiang, Y., & Zhu, X. (2010). A New Algorithm for Grid

Independent Task Schedule ： Genetic Simulated Annealing. In Proceedings of

the World Automation Congress (pp. 165–171). Kobe.

Wang, Y., Zhang, J., Zhao, Y., Wang, J., & Gu, W. (2013). ACO-Based Routing and

Spectrum Allocation in Flexible Bandwidth Networks. Journal of Photonic

Network Communications, 25(3), 135–143. doi:10.1007/s11107-013-0397-z

Wang, Z., Jing, X., & Wang, J. (2012). A Novel Routing Algorithm Based on Ant

Colony Optimization for Hierarchical Wireless Sensor Networks. In Proceedings

of the International Conference on Electrics, Communication and Automatic

Control (pp. 825–831). Chongqing, China.

Wankar, R. (2008). Grid Computing with Globus: an Overview and Research

Challenges. International Journal of Computer Science and Applications, 5(3),

56–69.

Wei, L., Zhang, X., Li, Y., & Li, Y. (2012). An Improved Ant Algorithm for Grid

Task Scheduling Strategy. Journal of Physics Procedia, 24(1), 1974–1981.

doi:10.1016/j.phpro.2012.02.290

Wiener, R., & Of, O. (2009). Ant Colony System Optimization. Journal of Object

Technology, 8(6), 39–58.

Wolski, R., Spring, N. T., & Hayes, J. (1999). The Network Weather Service: a

Distributed Resource Performance Forecasting Service for Metacomputing.

Journal of Future Generation Computer Systems, 15(5-6), 757–768.

doi:10.1016/S0167-739X(99)00025-4

Wu, C., Zhang, N., Jiang, J., Yang, J., & Liang, Y. (2007). Improved Bacterial

Foraging Algorithms and Their Applications to Job Shop Scheduling Problems.

In Proceedings of the 8th International Conference on Adaptive and Natural

Computing Algorithms (pp. 562–569). Warsaw.

Xhafa, F. (2006). An Experimental Study on GA Replacement Operators for

Scheduling on Grids. In Proceedings of the 2nd International Conference on

Bioinspired Optimization Methods and their Applications (pp. 121–130).

Ljubljana.

Xhafa, F. (2007). A Hybrid Evolutionary Heuristic for Job Scheduling on

Computational Grids. In A. Abraham, C. Grosan, & H. Ishibuchi (Eds.), Hybrid

Evolutionary Algorithms (pp. 269–311). Heidelberg: Springer.

Xhafa, F., & Abraham, A. (2008a). Meta-heuristics for Grid Scheduling Problems. In

F. Xhafa & A. Abraham (Eds.), Metaheuristics for Scheduling in Distributed

Computing Environments (pp. 1–37). Heidelberg: Springer. doi:10.1007/978-3-

540-69277-5_1

197

Xhafa, F., & Abraham, A. (2008b). Metaheuristics for Scheduling in Distributed

Computing Environments. Berlin: Springer.

Xhafa, F., & Abraham, A. (2009). A Compendium of Heuristic Methods for

Scheduling in Computational Grids. In Proceedings of the 10th International

Conference on Intelligent Data Engineering and Automated Learning (pp. 751–

758). Burgos. doi:10.1007/978-3-642-04394-9_92

Xhafa, F., & Abraham, A. (2010). Computational Models and Heuristic Methods for

Grid Scheduling Problems. Journal of Future Generation Computer Systems,

26(4), 608–621. doi:doi:10.1016/j.future.2009.11.005

Xhafa, F., Alba, E., & Dorronsoro, B. (2007). Efficient Batch Job Scheduling in Grids

using Cellular Memetic Algorithms. In Proceedings of the IEEE International

Parallel and Distributed Processing Symposium (pp. 1 – 8). Long Beach, CA.

Xhafa, F., Alba, E., Dorronsoro, B., Duran, B., & Abraham, A. (2008). Efficient

Batch Job Scheduling in Grids Using Cellular Memetic Algorithms. Journal of

Mathematical Modelling and Algorithms, 7(2), 217–236.

Xhafa, F., Barolli, L., & Durresi, A. (2007a). An Experimental Study on Genetic

Algorithms for Resource Allocation on Grid Systems. Journal of Interconnection

Networks, 8(4), 427–443.

Xhafa, F., Barolli, L., & Durresi, A. (2007b). Batch Mode Scheduling in Grid

Systems. International Journal of Web and Grid Services, 3(1), 19–37.

Xhafa, F., Barolli, L., & Durresi, A. (2007c). Immediate Mode Scheduling of

Independent Jobs in Computational Grids. In Proceedings of the 21st

International Conference on Advanced Networking and Applications (pp. 970–

977). Niagara Falls.

Xhafa, F., & Carretero, J. (2009). Experimental Study of GA-Based Schedulers in

Dynamic Distributed Computing Environments. In E. Alba, C. Blum, P. Isasi, C.

Leon, & J. A. Gomez (Eds.), Optimization Techniques for Solving Complex

Problems (pp. 423–441). Hoboken, N.J: Wiley.

Xhafa, F., Carretero, J., Alba, E., & Dorronsoro, B. (2008). Design and Evaluation of

Tabu Search Method for Job Scheduling in Distributed Environments. In

Proceedings of the International Symposium on Parallel and Distributed

Processing (pp. 1 – 8). Miami, FL.

Xhafa, F., Carretero, J., Barolli, L., & Durresi, A. (2007). Requirements for an Event-

Based Simulation Package for Grid Systems. Journal of Interconnection

Networks, 08(02), 163–178. doi:10.1142/S0219265907001965

Xhafa, F., Carretero, J., Dorronsoro, B. B., & Alba, E. (2009). A Tabu Search

Algorithm for Scheduling Independent Jobs in Computational Grids. Journal of

Computing and Informatics, 28(2), 237–250.

198

Xhafa, F., & Duran, B. (2008). Parallel Memetic Algorithms for Independent Job

Scheduling in Computational Grids. In C. Cotta & J. van Hemert (Eds.), Recent

Advances in Evolutionary Computation for Combinatorial Optimization (pp.

219–239). Heidelberg: Springer. doi:10.1007/978-3-540-70807-0_14

Xhafa, F., Duran, B., Abraham, A., & Dahal, K. P. (2008). Tuning Struggle Strategy

in Genetic Algorithms for Scheduling in Computational Grids. In Proceedings of

the 7th Computer Information Systems and Industrial Management Applications

(pp. 275–280). Ostrava.

Xhafa, F., Duran, B., & Kolodziej, J. (2011). On Exploitation vs Exploration of

Solution Space for Grid Scheduling. In Proceedings of the 3rd International

Conference on Intelligent Networking and Collaborative Systems (pp. 164–171).

Fukuoka. doi:10.1109/INCoS.2011.128

Xhafa, F., Gonzalez, J. A., Dahal, K. P., & Abraham, A. (2009). A GA(TS) Hybrid

Algorithm for Scheduling in Computational Grids. In Proceedings of the 4th

International Conference on Hybrid Artificial Intelligence Systems (pp. 285–

292). Salamanca. doi:10.1007/978-3-642-02319-4_34

Xhafa, F., Kolodziej, J., Barolli, L., & Fundo, A. (2011). A GA+TS Hybrid Algorithm

for Independent Batch Scheduling in Computational Grids. In Proceedings of the

14th International Conference on Network-Based Information Systems (pp. 229–

235). Tirana. doi:10.1109/NBiS.2011.41

Xhafa, F., Kolodziej, J., Barolli, L., Kolici, V., Miho, R., & Takizawa, M. (2011).

Evaluation of Hybridization of GA and TS Algorithms for Independent Batch

Scheduling in Computational Grids. In Proceedings of the International

Conference on P2P, Parallel, Grid, Cloud and Internet Computing (pp. 148–

155). Barcelona. doi:10.1109/3PGCIC.2011.31

Xhafa, F., Koodziej, J., Duran, B., Bogdanski, M., & Barolli, L. (2011). A

Comparison Study on the Performance of Population-based Meta-Heuristics for

Independent Batch Scheduling in Grid Systems. In Proceedings of the

International Conference on Complex Intelligent and Software Intensive Systems

(pp. 123–130). Seoul.

Xing, B., & Gao, W.-J. (2014). Bacteria Inspired Algorithms. In B. Xing & W.-J. Gao

(Eds.), Innovative Computational Intelligence: A Rough Guide to 134 Clever

Algorithms (pp. 21–38). Cham: Springer.

Yan, H. U. I., Shen, X., Li, X., & Wu, M. (2005). An Improved Ant Algorithm for

Job Scheduling in Grid Computing. In Proceedings of the 4th International

Conference on Machine Learning and Cybernetics (pp. 2957–2961). Guangzhou.

doi:10.1109/ICMLC.2005.1527448

Yang, X.-S. (2014). Nature-Inspired Optimization Algorithms. Amsterdam: Elsevier.

199

YarKhan, A., & Dongarra, J. J. (2002). Experiments with Scheduling Using

Simulated Annealing in a Grid Environment. In Proceedings of the 3rd

International Workshop on Grid Computing (pp. 232–242). Baltimore.

Yin, J., & Xiang, W. (2012). Ant Colony Algorithm for Surgery Scheduling Problem.

In Proceedings of the Third International Conference on Advances in Swarm

Intelligence (pp. 198–205). Shenzhen, China.

Youhui, L., Xinhua, L., & Qi, L. (2012). Assembly Sequence Planning Based on Ant

Colony Algorithm. In Y. Zhang (Ed.), Future Communication, Computing,

Control and Management (Vol. 141, pp. 397–404). Heidelberg: Springer.

Yu, H., Ni, J., & Zhao, J. (2013). ACO Sampling: An Ant Colony Optimization-

Based Under sampling Method for Classifying Imbalanced DNA Microarray

Data. Journal of Neurocomputing, 101(1), 309–318.

doi:10.1016/j.neucom.2012.08.018

Yu, J., & Wang, C. (2013). A Max–Min Ant Colony System for Assembly Sequence

Planning. International Journal of Advanced Manufacturing Technology, 67(9),

2819–2835.

Yu, X., & Gen, M. (2010). Introduction to Evolutionary Algorithms. London:

Springer.

Zapfel, G., Braune, R., & Bogl, M. (2010). Metaheuristic Search Concepts a Tutorial

with Applications to Production and Logistics. Heidelberg: Springer.

Zhang, S., Ning, T., & Zhang, Z. (2012). A New Hybrid Ant Colony Algorithm for

Solving Vehicle Scheduling Problem. International Journal of Advancements in

Computing Technology, 4(5), 17–23.

Zhang, T., Lin, J., Qiu, B., & Fu, Y. (2011). Solving the Aircraft Assigning Problem

by the Ant Colony Algorithm. In Proceedings of the International Conference on

Information and Management Engineering (pp. 179–187). Wuhan, China.

Zheng, Q., Li, M., Li, Y., & Tang, Q. (2013). Station Ant Colony Optimization for the

Type 2 Assembly Line Balancing Problem. The International Journal of

Advanced Manufacturing Technology, 66(9), 1859–1870.

Zhong, L., Long, Z., Zhang, J., & Song, H. (2011). An Efficient Memetic Algorithm

for Job Scheduling in Computing Grid. In Proceedings of the International

Symposium on Information and Automation (pp. 650–656). Guangzhou.

Zhu, P., Zhao, M., & He, T. (2010a). A Novel Ant Colony Algorithm for Grid Task

Scheduling. Journal of Computational Information Systems, 6(3), 745–752.

Zhu, P., Zhao, M., & He, T. (2010b). A Novel Ant Colony Optimization Algorithm in

Application of Pheromone Diffusion. In Proceedings of the International

Conference on Life System Modeling and Simulation (pp. 1–8). Wuxi, China.

200

Zhu, Y., & Wei, Q. (2010). An Improved Ant Colony Algorithm for Independent

Tasks Scheduling of Grid. In Proceedings of the 2nd International Conference

on Computer and Automation Engineering (pp. 566–569). Singapore.

