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Abstrak 
 

Pengkomputeran grid adalah sistem teragih dengan infrastruktur heterogen. Sistem 

pengurusan sumber (RMS) adalah salah satu komponen terpenting yang mempunyai 

pengaruh besar ke atas prestasi pengkomputeran grid. Bahagian utama RMS adalah 

algoritma penjadual yang bertanggungjawab untuk memeta tugas kepada sumber 

sedia ada. Kerumitan masalah penjadualan dianggap sebagai satu masalah lengkap 

polinomial tidak berketentuan (NP-lengkap) dan oleh itu, satu algoritma pintar 

diperlukan untuk mencapai penyelesaian penjadualan yang lebih baik. Salah satu 

algoritma pintar yang menonjol adalah ant colony system (ACS) yang digunakan 

secara meluas untuk menyelesaikan pelbagai jenis masalah penjadualan. Walau 

bagaimanapun, ACS mengalami masalah genangan dalam pengkomputeran grid 

bersaiz sederhana dan besar. ACS berasaskan mekanisma eksploitasi dan penerokaan 

di mana eksploitasi adalah mencukupi tetapi berkurangan pada penerokaan. 

Penerokaan dalam ACS adalah berasaskan kepada pendekatan rawak tanpa sebarang 

strategi. Kajian ini mencadangkan empat algoritma hibrid di antara ACS, Genetic 

Algorithm (GA), dan Tabu Search (TS) untuk meningkatkan prestasi ACS. Algoritma 

tersebut adalah ACS(GA), ACS+GA, ACS(TS), dan ACS+TS. Algoritma hibrid yang 

dicadangkan ini akan meningkatkan ACS dari segi mekanisma penerokaan dan 

penghalusan penyelesaian dengan melaksanakan penghibridan tahap rendah dan 

tinggi algoritma ACS, GA, dan TS. Semua algoritma yang dicadangkan telah dinilai 

dan dibandingkan dengan dua belas metaheuristic algoritma dalam persekitaran 

pengkomputeran grid statik (masa jangkaan kepada model pengiraan) dan dinamik 

(corak taburan). Satu simulator yang dinamakan ExSim telah dibangunkan untuk 

meniru sifat statik dan dinamik pengkomputeran grid. Keputusan eksperimen 

menunjukkan algoritma yang dicadangkan mengatasi ACS dari segi nilai makespan 

terbaik. Prestasi ACS(GA), ACS+GA, ACS(TS) dan ACS+TS adalah lebih baik 

daripada ACS dengan masing-masing meningkat sebanyak 0.35%, 2.03%, 4.65% dan 

6.99% untuk persekitaran statik. Untuk persekitaran dinamik, prestasi ACS(GA), 

ACS+GA, ACS+TS dan ACS(TS) adalah lebih baik daripada ACS iaitu masing-

masing meningkat sebanyak 0.01%, 0.56%, 1.16%, dan 1.26%. Algoritma yang 

dicadangkan boleh digunakan untuk penjadualan tugas dalam pengkomputeran grid 

dengan prestasi yang lebih baik dari segi makespan. 

 

 

Kata Kunci: Algoritma metaheuristik, Ant colony system, Genetic algorithm, Tabu 

search, Penjadualan kerja dalam pengkomputeran grid.  
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Abstract 
 

Grid computing is a distributed system with heterogeneous infrastructures. Resource 

management system (RMS) is one of the most important components which has great 

influence on the grid computing performance. The main part of RMS is the scheduler 

algorithm which has the responsibility to map submitted tasks to available resources. 

The complexity of scheduling problem is considered as a nondeterministic polynomial 

complete (NP-complete) problem and therefore, an intelligent algorithm is required to 

achieve better scheduling solution. One of the prominent intelligent algorithms is ant 

colony system (ACS) which is implemented widely to solve various types of 

scheduling problems. However, ACS suffers from stagnation problem in medium and 

large size grid computing system. ACS is based on exploitation and exploration 

mechanisms where the exploitation is sufficient but the exploration has a deficiency. 

The exploration in ACS is based on a random approach without any strategy. This 

study proposed four hybrid algorithms between ACS, Genetic Algorithm (GA), and 

Tabu Search (TS) algorithms to enhance the ACS performance. The algorithms are 

ACS(GA), ACS+GA, ACS(TS), and ACS+TS. These proposed hybrid algorithms 

will enhance ACS in terms of exploration mechanism and solution refinement by 

implementing low and high levels hybridization of ACS, GA, and TS algorithms. The 

proposed algorithms were evaluated against twelve metaheuristic algorithms in static 

(expected time to compute model) and dynamic (distribution pattern) grid computing 

environments. A simulator called ExSim was developed to mimic the static and 

dynamic nature of the grid computing. Experimental results show that the proposed 

algorithms outperform ACS in terms of best makespan values. Performance of 

ACS(GA), ACS+GA, ACS(TS), and ACS+TS are better than ACS by 0.35%,  2.03%, 

4.65% and 6.99% respectively for static environment. For dynamic environment, 

performance of ACS(GA), ACS+GA, ACS+TS, and ACS(TS) are better than ACS by  

0.01%, 0.56%, 1.16%, and 1.26% respectively. The proposed algorithms can be used 

to schedule tasks in grid computing with better performance in terms of makespan. 

 

Keywords: Metaheuristic algorithms, Ant colony system, Genetic algorithm, Tabu 

search, Job scheduling in grid computing.  
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 CHAPTER ONE 

INTRODUCTION 

The concept of grid systems goes back to 1969 when Leonard Kleinrock wrote, “We 

will probably see the spread of computer utilities, which, like present electric and 

telephone utilities, will service individual homes and offices across the country” 

(Wankar, 2008). From that time, many researchers presented various works and 

contributed in grid systems fields. The popularity of grid systems started by the late 

1990s when Foster developed a grid system called Globus Toolkit (Foster & 

Kesselman, 1997; 2004). 

Grid systems evolves from existing technology such as distributed computing, web 

service, and Internet (Magoules, Pan, Tan, & Kumar, 2009). According to Xhafa and 

Abraham (2010), grid computing is defined as “Geographically distributed computers, 

linked through the internet in a Grid-like manner, which are used to create virtual 

supercomputers of vast amount of computing capacity able to solve complex problem 

from e-Science in less time than known before”.  

Magoules, Nguyen, and Yu (2009) presented an extensive definition for grid systems 

as “A hardware and software infrastructure that provides transparent, dependable, 

pervasive and consistent access to large-scale distributed resources owned and shared 

by multiple administrative organizations in order to deliver support for a wide range 

of applications with the desired qualities of service. These applications can perform 

either: high throughput computing, on-demand computing, data intensive computing, 

or collaborative computing”. 
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From previous definitions, it can be concluded that grid computing is a collection of 

geographically distributed and heterogeneous resources. They are connected like a 

grid using internet technology to form a virtual supercomputer that has the capacity to 

solve very complex problems. Grid can be used by different fields such as science, 

commerce, and education.  

Grid systems could be distributed geographically through different organizations 

using different platforms (Kolodziej, 2012). Two services offered by grid systems are 

computing-intensive services and data-intensive services (Xhafa & Abraham, 2008b). 

In computing services, the grid process tasks are not possible or very difficult to be 

processed in traditional computer resource, while data storage services provide a 

storage which is available through many mirrors and servers. Grid computing 

provides powerful computation resources for complex tasks such as scientific 

research, stock markets, and business requirements for organizations. However, 

according to Xhafa and Abraham (2008), grid computing is still in the developmental 

stage, and there are many challenges to be addressed in the future. 

Grid systems are classified as a modern High Performance Distributed Systems 

(HPDSs) along with the clusters and cloud systems (Kolodziej, 2012). However, there 

are crucial characteristics which are different between them such as scale, network 

type, administrative domain, and resources structure (AL-Fawair, 2009; Montes, 

Sanchez, & Perez, 2012). Grid systems are extended to many other types of grids such 

as enterprise grid, sensor grid, campus grid, global grid, pc grid, and utility grid 

(Babafemi, Sanjay, & Adigun, 2013; Conejero, Caminero, Carrion, & Tomas, 2014; 

Fulop, 2008; Kolodziej, 2012). 
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Grid computing requirements, usage, and definitions have changed with time.  

Berman, Fox, and Hey (2003) categorized the evolution of grid into three different 

generations. The first generation is called meta-computing environment, namely 

FAFNER and I-WAY projects. In the second generation, the grid technology is 

developed such as grid resource management, resource brokers and schedulers, grid 

portal, and complete integrated systems. Some projects developed at this era are 

Globus, Legion, and UNICORE. The third generation represents the integration 

between grid computing and web services technologies such as OGSI and WSRF. 

According to Magoules, Pan, et al. (2009), grid architecture consists of four layers. 

The first layer is the user application level (APIs). The second layer is the middleware 

layer which includes management software and packages. The third layer deals with 

resources available to the grid such as data storage, processing capabilities and other 

application-specific hardware. The fourth layer deals with network components such 

as routers, switches, and the protocols used for communication between sources in the 

grid. In addition, the main characteristics of grid systems are distributed, non-

dedicated, service-oriented heterogeneous, and non-centralized (Montes et al., 2012).    

Magoules, Pan, et al. (2009) classified the usage of grid applications into five major 

groups: The first group is distributed computing which is the grid computing 

application to solve problems that cannot be solved on a single system, such as 

simulation of complex physical process, which needs many resources like CPU and 

memory. The second group is called high-throughput computing where the grid 

utilizes the unused processor cycles in order to perform independent tasks. Using this 

method, a complex task can be divided into multiple tasks and the grid will schedule 

and manage the process. Problems such as bio-statistical, molecular simulations of 
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liquid crystal and Monte Carlo simulations are very suited for high-throughput 

computing. The third group is on-demand computing. For this type, some resources 

cannot be cost-effectively or not locally located. Therefore, grid can provide an access 

to such a resource. Yet, there are many issues to be addressed, such as security, 

scheduling, code management, configuration, fault tolerance, and payments process. 

A typical example of an application requiring on-demand computing is the use of 

dynamically acquired supercomputer to perform cloud detection algorithm.  

The fourth group is data intensive computing, which is a grid that can be used to 

manage data from distributed data repositories, digital library and database. A field 

such as High Energy Physics (HEP) is an example of application that requires data 

intensive computing support. The fifth group is called collaborative computing, 

whereby some applications require strict real time capabilities and different types of 

interactions that can take place. A typical example of such application that could use a 

collaborative computing is multi-conferencing.  

One of the most important components in grid computing is resource management 

system (Hussain et al., 2013). Resource management system has the responsibility to 

map the submitted tasks to the available resources (Sim, 2009). Resource 

management system is implemented with scheduling algorithm to map tasks to the 

resources in an efficient way (Espling, 2013; Ma, Yan, Liu, Guan, & Lee, 2011).  In 

grid computing, job scheduling algorithm is the main issue for grid computing 

performance (Kolodziej, 2012; Kousalya & Balasubramanie, 2009; Mathiyalagan, 

Suriya, & Sivanandam, 2010; Visalakshi & Sivanandam, 2009). Scheduling can be 

done in a simple way by assigning the incoming task to the available resource. 

However, by using a more advanced and sophisticated scheduler algorithm, the grid 
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can obtain better computing performance (Kolodziej, 2012). The scheduler should 

take into account many aspects, such as dynamic tasks environment, joining and 

dropping of resources from grid and evaluating the current load of the resources. The 

scheduler can be in hierarchical or distributed organization to deal with large scale of 

the grid. 

In order to solve the grid computing scheduling problem, it is very important to define 

the problem first. The scheduling problem is defined as an NP-complete problem 

(Maheshbhai, 2011; Mao, 2011; Wei, Zhang, Li, & Li, 2012). The NP-complete 

problem needs heuristic or metaheuristics algorithms which have the ability to solve 

combinatorial optimization problems in a reasonable time (Aleti, 2012). 

Metaheuristics algorithms, such as Simulated Annealing (SA) algorithm, are 

implemented for job scheduling in grid computing (Cai, Ning, Li, & Zhong, 2007; 

Guo & Wang, 2010). However, SA needs a long running time to reach a good quality 

solution which is very restricted in grid computing environment (Xhafa, Barolli, & 

Durresi, 2007a). Genetic Algorithm (GA) is also implemented successfully in grid 

computing scheduling problems (Carretero, Xhafa, & Abraham, 2007). GA is able to 

find a good solution in consistent and semi-consistent environments. However, in 

inconsistent environment, GA suffers from premature convergence (Kolodziej, Xhafa, 

& Kolanko, 2009). Another important metaheuristics approach is Tabu Search (TS) 

algorithm which is implemented for job scheduling on computational grid system 

(Xhafa, Carretero, Dorronsoro, & Alba, 2009). TS algorithm has the benefit of 

systematic search which makes the algorithm avoid random solution. However, TS 

also suffers from stagnation due to the use of local neighbourhood search technique. 

One more important family of metaheuristics algorithms are ACO algorithms which 

are implemented widely on scheduling problems (Bandieramonte, Stefano, & Morana, 
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2008; Chang, Chang, & Lin, 2009; Cyril Daisy Christina & Miriam, 2012; Kant, 

Sharma, Agarwal, & Chandra, 2010; Zhu, Zhao, & He, 2010a).  

ACO algorithms which are inspired by biological ants present many solutions for 

different types of NP-complete problems (Dorigo & Stutzle, 2004).  

Biological ants have the ability to discover the shortest route from the nest to the 

source of food (Dorigo & Stutzle, 2004). Although they do not have an advanced 

vision system (Camazine et al., 2003), they have the ability to communicate with the 

environment. Ants use a chemical substance called “pheromone” to communicate 

with the environment and between each other (Dorigo & Gambardella, 1997a). 

Pheromone substance has evaporation property which is a powerful mechanism to 

update the route information. While an ant moves looking for food, it deposits a 

pheromone along the path. The following ant will more likely select the route with 

richer pheromone. This mechanism will make the ant choose the shortest path. 

There are several enhanced ACO algorithms implemented in grid computing 

scheduling problems such as balanced job scheduling using Ant Colony Optimization 

(BACO) for grid environment by Chang, Chang, and Lin (2007). A study proposed by 

Chang, Chang, and Lin (2009) implemented ant algorithm for balanced job 

scheduling in computational grid. Kousalya and Balasubramanie (2009) presented a 

study on improving ant colony optimization algorithm with local search for job 

scheduling in computational grid systems. Liusuqin, Shuojun, Menglingfen, and 

Lixingsheng (2009) published a study to improve ant colony optimization for Job 

Scheduling Problem (JSP). A multiple ant colony model called “Cooperative multi-

ant Colony Pseudo-parallel Optimization Algorithm” was proposed by Liu, Song, and 
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Dai (2010). Another study regarding ACO algorithm for job scheduling on 

computation grid was proposed by Kant, Sharma, Agarwal, and Chandra (2010). A 

research on task scheduling with load balancing using Multiple Ant Colonies 

Optimization (MACO) in grid computing was conducted by Bai et al. (2010). 

Enhanced ant colony algorithm for job scheduling in computational grid was 

proposed by Maruthanayagam and UmaRani (2010). Mou (2011) presented a new 

approach using double Pheromones technique for ant colony system. An improved 

ACO algorithm for job scheduling in computational grid systems proposed by 

MadadyarAdeh and Bagherzadeh (2011). Kokilavani and Amalarethinam (2013) 

published a study on implementing ant colony optimization based load sharing for job 

scheduling in computational grid systems.  

The first version of ACO known as ant system algorithm was presented by Dorigo, 

Maniezzo, and Colorni (1991). Ant system is utilized to solve job scheduling on grid 

computing (Kousalya & Balasubramanie, 2008). Another version of ACO is elitist ant 

system algorithm which has better performance than ant system (Dorigo, Maniezzo, 

& Colorni, 1996). However, the performances of ant system and elitist ant system 

algorithms drop dramatically once the size of the problem instance increase (Dorigo 

& Stutzle, 2004). Another important version of ACO algorithms is Ant Colony 

System (ACS) presented by Dorigo and Gambardella (1997b). ACS algorithm mimics 

the behaviour of real ant colony to solve optimization problems such as Traveling 

Salesman Problem (TSP) and network routing. ACS algorithm is considered as one of 

the best algorithms for solving NP-complete problems (Gendreau & Potvin, 2010). 

Therefore, this study selected ACS as the main algorithm to hybridize with GA and 

TS algorithms. 
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In ACS algorithm, ants apply exploitation and exploration mechanism when they 

select the next node to move. In addition, ACS applies local pheromone update and 

global pheromone update to direct the search for the next iteration. The global update 

is calculated based on the quality of the best solution so far, while the local update 

applies the evaporation concept. In ACS algorithm, the exploration mechanism is 

based on a stochastic process. Such a random process will affect the whole solution if 

the ant selects a bad choice in any cycle of the solution construction process. 

Therefore, a more deterministic and systematic exploration mechanism is required to 

enhance ACS algorithm performance.   

Hybridizing ACS algorithm with local search approaches such as genetic algorithm or 

tabu search algorithms will enhance the solutions produced by ACS. In spite of 

several enhanced ACS algorithms used for job scheduling problem, more studies are 

required to enhance the algorithm performance.  

1.1 Problem Statement 

In grid computing systems, many criteria depend on scheduling algorithm efficiency 

such as grid performance, utilization, Quality of Service (QoS), and load balancing 

(Nithya & Shanmugam, 2011; Zhu & Wei, 2010). 

Xhafa & Abraham (2010) stated that “Rather than a problem, scheduling in grid 

systems is a family of problems. This is due to the many parameters that intervene 

scheduling as well as due to the different needs of grid-enabled applications”.  

In scheduling algorithm, there are many factors and parameters that should be taken 

into account, such as job size, resource capacity, network speed, current load, and 
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expected time to complete (AL-Fawair, 2009; Bai et al., 2010). In addition, the 

dynamic and heterogeneous nature of grid environment makes the scheduling process 

more critical such as joining and dropping resources to the gird (Maheshbhai, 2011; 

Malarvizhi & Uthariaraj, 2009; Qureshi et al., 2014). If the scheduling algorithm is 

not efficient, the grid system user will experience a delay in response time, especially 

when the number of tasks is increased (Ku-Mahamud & Nasir, 2010). Therefore, 

scheduling algorithm is a very important part in grid computing systems and it needs 

to be improved to answer the dynamic requirements. Hence, a sufficient algorithm for 

dynamic grid scheduling problem is demanded to enhance the grid computing system 

performance (Ku-Mahamud & Nasir, 2010; Maruthanayagam & UmaRani, 2010). 

The traditional ACS is not efficient in large-scale computation problems due to the 

stagnation nature of pheromone in ACS (Mathiyalagan et al., 2010). ACS suffers 

from deficiency in the exploration mechanism. Experiments such as those in Dorigo 

and Stutzle (2004) used 0.1 for exploration and 0.9 for exploitation which indicate 

that the exploration mechanism is not sufficient, while the exploitation mechanism is 

efficient. However, because of the high ratio in exploitation, ACS algorithm has 

behaved like greedy algorithm more than metaheuristics algorithm. After observing 

the algorithm iteration step by step, it is found that the exploration is a stochastic 

process and not guided. As the ACS algorithm uses construction approach, any wrong 

selection for one or more node will affect the whole solution quality and that is what 

happens when the stochastic exploration has selected a wrong node. According to 

Glover and Laguna (1997), “bad strategic choice can yield more information than a 

good random choice”. Therefore, ACS algorithm needs to be enhanced in terms of 

exploration mechanism. In addition, ACS algorithm needs a mechanism to correct the 

construction phase after each cycle. Genetic algorithm and tabu search methods are 



10 

very good candidates to be hybridized with ACS as both algorithms complement 

ACS. In other words, ACS algorithm works based on constructive approach, while 

GA and TS algorithms work based on a local search which is suitable to be hybridized 

with ACS algorithm. Moreover, GA and TS algorithms could be hybridized as a low 

level as well as a high level with ACS. 

The research questions answered in this study are as follows: 

i. How to improve the job scheduling in static and dynamic grid computing. 

ii. How to hybridize ant colony system algorithm with genetic algorithm to 

enhance the exploration and exploitation mechanisms? 

iii. How to hybridize ant colony system algorithm with tabu search algorithm to 

enhance the exploration and exploitation mechanisms? 

iv. How the hybridized algorithms will avoid the local optimum trap? 

v. Can a simulator produce benchmark environment of the grid computing? 

1.2 Objective of the Study 

The main objective of the study is to develop a hybrid ant colony system algorithm in 

order to improve the job scheduling in static and dynamic grid computing 

environment. 

Specific objectives of the study are: 

i. To propose a hybrid low level algorithm to enhance the exploration 

mechanism in ACS algorithm. 

ii. To propose a hybrid high level algorithm in refining the final solution found 

by ACS algorithm. 
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iii. To design and develop a simulator that can be used to simulate the static and 

dynamic grid environment. 

iv. To evaluate the performance of the proposed hybrid ant colony system 

algorithm. 

1.3 Significance of the Study 

The developed hybrid algorithm can be considered as a new member in the family of 

ant colony optimization algorithms. The hybrid ACS algorithm is a new contribution 

to the body of knowledge in the area of swarm intelligence and job scheduling in grid 

computing.   

The hybridization between ant colony system algorithm, genetic algorithm, and tabu 

search algorithm to enhance the exploration part inside ACS guided the ants’ 

exploration in a better way. This hybridized algorithm concept can be used to solve 

other optimization problems with minimal customization. In addition, this study has 

implemented, compared and analysed sixteen algorithms for job scheduling in 

computational grid. The analyses provide a deep understanding regarding the 

behaviour of these algorithms.   

The developed gird computing environment simulator has the ability to generate static 

and dynamic benchmark problems which are very useful and highly demanded in the 

field of job scheduling in grid computing. The simulator can be extended easily for 

other scheduling algorithms.  
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1.4 Scope and Assumption of the Study 

This study has focused on a single ant colony system algorithm which is a variant of 

the ant colony optimization algorithms. The algorithm enhancement focused on low 

and high level hybridizations between ACS and local search algorithm to improve the 

exploration mechanism and enhance the final solution. 

The implemented algorithm is applied on static and dynamic environments using 

batch mode scheduling and independent task approach. For static environment, the 

experiments were conducted using benchmarks presented by Ali, Siegel, 

Maheswaran, Hensgen, and Ali  (2000). This benchmark is frequently used because of 

its effectiveness in simulating job scheduling problems in grid systems (Xhafa, Alba, 

Dorronsoro, Duran, & Abraham, 2008). For dynamic environment, a simulator was 

developed to mimic the real grid computing environment using the same pattern of 

distribution (Feitelson, 2013). 

This study has investigated GA and TS algorithms to enhance the exploration 

mechanism and refine the final solution in ACS algorithms. In addition, this study 

used three performance metrics to measure the grid computing performance, namely 

makespan, flowtime, and utilization. 

1.5 Thesis Organization 

This thesis is organized as follows: Chapter 2 presents a review on various scheduling 

algorithms in computational grid, hybrid approaches in metaheuristics algorithms, 

grid simulator, and conceptual framework. The research framework, methods, and 

techniques are discussed in Chapter 3. Chapter 4 presents the simulator development 

steps with verification and validation. Details regarding the problem formulation, 
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parameters, performance criteria, and static experiments are provided in Chapter 5. 

Chapter 6 presents the experiments on dynamic environment. Chapter 7 discusses the 

contributions, limitations, and concludes the study with suggestion for future research. 
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CHAPTER TWO 

LITERATURE REVIEW 

This chapter presents the review of previous studies that have been done in the areas 

of job scheduling in computational grid systems, swarm intelligence, scheduling 

algorithms based on hybrid approaches, and grid computing simulator.  

Job scheduling is the heart of grid computing processes. One of the main issues in job 

scheduling for grid computing is the dynamic environment. Many studies try to solve 

this problem using different techniques and algorithms. This chapter reviews some of 

these studies and points out how they evolved and developed. In addition, their limits 

and gaps will be highlighted.  

This chapter organized as follows: Section 2.1 discusses several algorithms 

implemented in job scheduling on computational grid. Hybrid approaches for job 

scheduling in grid computing are presented in Section 2.2. Studies on grid computing 

simulator are discussed in Section 2.3. Section 3.4 presents the conceptual framework. 

Finally, the chapter summary is presented in Section 2.5. 

2.1 Job Scheduling Algorithms in Computational Grid System 

Grid computing system can be categorized into two types, namely static and dynamic 

environments (Kolodziej, 2012). In static environment, resources are assumed to be 

available at all time. In addition, the resource capacity, number of tasks and load are 

also fixed. For dynamic environment, resources may join and leave the grid at any 

time. In addition, the resource capacity and load changes dynamically. Other 

characteristics of the dynamic environment are variation of network speed and 
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availability. The performance of the static and dynamic grid computing depends upon 

the efficiency of scheduler algorithm. The scheduler is considered as one of the most 

important parts of resource management system in grid computing system. The 

scheduler is implemented with heuristic or metaheuristics algorithms. The following 

reviews discuss several types of algorithms which are implemented successfully to 

solve job scheduling problems in computational grid. 

2.1.1 Heuristic Algorithms 

In general, a scheduling problem is considered as a complex decision making problem 

which needs to be solved optimally (Zapfel, Braune, & Bogl, 2010). This type of 

problem is known as optimization problem which is also categorized as NP-complete 

problem (Abraham, Grosan, & Ishibuchi, 2007; Talbi, 2013b). Due to the complexity 

of NP-complete problems, using exact approaches are not feasible (Framinan, Leisten, 

& García, 2014). Therefore, the optimal solution could be sacrificed for the sake of 

finding good solution in significantly reduced time using approximate algorithms 

(Blum & Roli, 2003). Heuristics and metaheuristics algorithms have been 

implemented to solve various optimization problems, such as routing, scheduling, and 

planning (Agnetis, Billaut, Gawiejnowicz, Pacciarelli, & Soukhal, 2014; Burke & 

Kendall, 2014). A simple approach could be used for job scheduling in grid 

computing based on greedy approach (Boussaid, Lepagnot, & Siarry, 2013; Ma, Lu, 

Zhang, & Sun, 2012). These types of algorithms provide fast solution which is 

suitable for extremely small and time restricted grid computing systems (Xhafa & 

Abraham, 2009). 

A study on batch mode scheduling for job scheduling in computational grid systems 

published by Xhafa, Barolli, and Durresi (2007b). The study aims to optimize four 
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criteria, namely makespan, flowtime, resource utilization, and matching proximity. 

The algorithms proposed in their study are: Min-Min, Max-Min, Sufferage, Relative 

Cost, and Longest Job to Fastest Resource-Shortest Job to Fastest Resource 

algorithms. These algorithms evaluated using static benchmark problems based on 

expected time to compute model defined by Braun et al. (2001). The experiment 

results show that Min-Min algorithm outperforms other algorithms in term of 

makespan and flowtime. In terms of average resource utilization, Max-Min algorithm 

achieved the best results among all other algorithms. However, the results show that 

Min-Min algorithm achieved the worst performance in terms of average resource 

utilization. For matching proximity criterion, Min-Min algorithm achieved the best 

performance closely followed by Relative Cost algorithm. The authors recommended 

that the proposed algorithms are useful to be utilized to generate an initial solution for 

other heuristics algorithms. 

An immediate mode scheduling of independent job in grid computing proposed by 

Xhafa, Barolli, and Durresi (2007c). Several heuristic algorithms were implemented 

and four criteria were used to measure the grid system performance, namely 

makespan, flowtime, resource utilization, and matching proximity. The study 

implemented and evaluated five algorithms, which are, Optimization Load Balancing 

(OLB), Minimum Completion Time (MCT), Minimum Execution Time (MET), 

Switching Algorithm (SwA), and K-Parents Best (KPB). These methods were tested 

using benchmark problems based on the expected time to compute  model proposed 

by Braun et al. (2001). The experiments show that MCT algorithm performs the best 

in terms of makespan. Regarding flowtime criterion, SwA algorithm performs good, 

followed by MCT. In terms of resource utilization, OLB algorithm outperforms other 

algorithms. MET algorithm was able to achieve the best matching proximity values 
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with perfect results. It is clear from the results that the objectives of optimizing job 

scheduling in computational grid system have some contradictions. Therefore, for 

very heterogeneous systems, not all criteria are considered as a good indicator for grid 

system performance. 

A study on job scheduling algorithm in computational grid environment conducted by 

Malarvizhi and Uthariaraj (2009) for grid job scheduling using minimum Time To 

Release algorithm (TTR). They proposed architecture for grid scheduling; some of the 

main architecture components are dispatcher, grid scheduler and load balancer. The 

idea behind their approach is to predict the performance of each resource by 

estimating the total time to release, and then map with each resource. Based on TTR, 

each combination of job and resource are stored in an increasing order of TTR to 

assign to a resource. They also calculate other parameters, such as transfer input time 

and transfer output time which makes the module more realistic and accurate for real 

life applications. The experiments were conducted using GridSim simulator and the 

environment consists of scheduler, five users with different time requirements and 

rates of task creating, and 30 nodes with different computer power. They compared 

TTR algorithm with first come first serve algorithm and Min-Min algorithm. The 

results show that the proposed algorithm performs better than the others in terms of 

computation time. However, according to Xhafa and Abraham (2010), metaheuristics 

algorithms such as ant colony optimization and genetic algorithm are much better than 

the other types of algorithm. 

A study presented by Izakian, Abraham, and Snsel (2009) proposed a heuristic 

method called Min-Max to generate a solution for job scheduling in grid environment. 

Min-Max algorithm could be used to produce a good initial solution for other 
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metaheuristics algorithms. In addition, Min-Max algorithm could be used in real-

world situations where applying metaheuristics algorithm is not applicable. The study 

focused on static environment which is based on expected time to compute model 

presented by Braun et al. (2001). The proposed algorithm was compared with five 

heuristic algorithms, namely Work Queue, Max-Min, LJFR-SJFR, Suffrage, and Min-

Min. The experiment results show that the proposed algorithm can minimize the 

makespan and flowtime better than other algorithms. The study also conducted 

experiment using the proposed algorithm to generate initial solution for simulated 

annealing algorithm. The results show that simulated annealing algorithm could not 

improve the solution that generated using the proposed algorithm. In addition, 

reducing the makespan leads to increasing in the flowtime and vice versa. However, 

such contradiction behaviour is common in the problem of job scheduling in grid 

computing. 

Bardsiri and Hashemi (2012) published a study on comparing seven static mapping 

heuristics algorithms for job scheduling on computational grid. The study compared 

seven popular heuristics algorithm, namely Opportunistic Load Balancing (OLB), 

Minimum Completion Time (MCT), Min-Min, Max-Min, Sufferage, Maxstd, and 

Longest Job to Fastest Resource-Shortest Job to Fastest Resource (LJFR-SJFR) 

algorithms. The proposed approaches were tested using the benchmark problems 

based on expected time to compute model developed by Braun et al. (2001). The 

study aims to optimize makespan, resource utilization, and matching proximity 

criteria for independent job scheduling in static grid computing environment. The 

experiment results show that Min-Min and Sufferage algorithms achieved good 

performance compared with other algorithms in terms of makespan. In terms of 

resource utilization, all algorithms have similar performance with little favour to Max-
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Min algorithm. For matching proximity criterion, Min-Min algorithm outperforms the 

other algorithms followed by Sufferage algorithm. However, the experiments were 

conducted using static environment which is not enough to explore the algorithm 

behaviour. Nevertheless, these algorithms are useful to generate an initial solution for 

other metaheuristics algorithms such as tabu search and genetic algorithm. 

2.1.2 Evolutionary Algorithms 

In spite of the fast solutions produced by schedulers based on greedy approach, the 

quality of these solutions will drop down dramatically once the grid size increase 

(Anousha, Anousha, & Ahmadi, 2014; Braun et al., 2001). In order to overcome the 

obstacle of size increasing, metaheuristics algorithms emerged as a practical solution 

for job scheduling with reasonable time and resources (Qureshi et al., 2014). One 

important category of metaheuristics algorithms is Evolutionary Algorithms (EA) (Yu 

& Gen, 2010). The process in EA algorithms is similar to natural process in living 

organic such as crossover, mutation, and selection (Stoean & Stoean, 2014). Several 

algorithms are developed under the EA category such as genetic algorithm (Holland, 

1992), evolution strategies (Schwefel, 1995), evolutionary programming (Fogel, 

Owens, & Walsh, 1996), and genetic programming (Koza et al., 2003). Evolutionary 

algorithms have been implemented successfully for job scheduling in computational 

grid systems with good results. Some of the EA works are discussed such as memetic 

algorithms, differential evolution algorithms, and genetic algorithms. 

I. Memetic Algorithms 

Memetic Algorithms (MA) is an optimization technique which combines different 

search methods such as population based search and local search algorithm (Moscato 
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& Cotta, 2010). The idea behind MA is that individuals are not simply doing 

crossover and mutation, but also doing some enhancement to their solution elements. 

This enhancement is accomplished by incorporating heuristic, approximation 

algorithms, or local search technique (Gendreau & Potvin, 2010). Due to the 

combination of different techniques, MA is sometimes called hybrid evolutionary 

algorithms (Davis, 1991). Memetic algorithms are applied to job scheduling in grid 

computing by several studies.  

Cellular Memetic Algorithm (cMA) proposed to optimize the makespan and flowtime 

for job scheduling in grid computing by Xhafa, Alba, and Dorronsoro (2007). As a 

component of cMA algorithm, the study implemented three types of local search 

algorithms: Local Move (LM), Steepest Local Move (SLM), and Local Minimum 

Completion Time Swap (LMCTS). The experiments conducted using static 

environment based on expected time to compute model presented by Braun et al. 

(2001). In addition, the proposed algorithm were evaluated with three other versions 

of GA as presented in Braun et al. (2001), Carretero and Xhafa (2006), and Xhafa 

(2006). The first experiment shows that the local search algorithm LMCTS is the best 

among the three considered algorithms. Experiment on makespan criterion shows that 

the proposed cMA performs better than other algorithms in some instances. However, 

the experiments were not organized properly for example, the flowtime results were 

obtained only from comparing cMA with LJFR-SJFR and GA from Xhafa (2006) and 

nothing was reported about the other two GA algorithms. Moreover, the study focused 

only on static grid computing environment. Therefore, more study and experiments 

using dynamic grid computing environment are required to explore the algorithm 

behaviour.  
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Xhafa, Alba, Dorronsoro, Duran, and Abraham (2008) published a study using 

Cellular Memetic Algorithm (cMA) for job scheduling in grid system. The study 

aimed to optimize makespan and flowtime simultaneously as a bi-objective. The 

authors implemented two different local moves: Local Minimum Completion Time 

Swap (LMCTS), and Local Tabu Hop (LTH) based on Tabu Search (Glover & 

Laguna, 1997). Therefore, the study proposed two different cMA algorithms, namely: 

cMA+LMCTS and cMA+LTH. The proposed approaches were evaluated with static 

and dynamic grid computing environments. The static environment benchmark 

problems were generated using expected time to compute model presented in Braun et 

al. (2001). On the other hand, the dynamic environment benchmark problems 

generated using a simulator developed by Xhafa, Carretero, Barolli, and Durresi 

(2007). The proposed algorithms were evaluated first with TS as presented by Xhafa, 

Carretero, Alba, and Dorronsoro (2008) in order to select the best move using static 

scenario. The first experiment shows that cMA+LTH algorithm was able to achieve 

good makespan reduction on five instances while cMA+LMCTS algorithm could not 

achieve any good results. On the other hand, TS achieved the best results on seven 

instances. Nevertheless, cMA+LMCTS performs better than cMA+LTH with 

flowtime reduction. The second experiment compared cMA+LTH performance with 

three other versions of GA approaches as presented by Braun et al. (2001), Carretero 

and Xhafa (2006), and Xhafa (2007). The empirical results show that cMA+LTH 

outperforms other algorithms in static and dynamic environments. It is clear from the 

results that some reduction in makespan value will lead to increase in flowtime 

values. Although the study was conducted using static and dynamic grid computing 

environments, the comparison is not sufficient, for example, the authors did not 
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compare with TS in dynamic scenario. However, the concept of utilizing local search 

algorithm inside other metaheuristics algorithm is quite useful. 

Zhong, Long, Zhang, and Song (2011) published a study on efficient memetic 

algorithm for scheduling job in grid computing. The authors incorporated hill-

climbing and tabu search algorithms as solution enhancement mechanisms. The 

experiments were conducted using benchmark problems based on expected time to 

compute model as introduced by Braun et al. (2001) and the fitness function to 

minimize makespan and flowtime values as proposed in Xhafa, Alba, et al. (2008). 

The proposed algorithms evaluated against genetic algorithm described in Braun et al. 

(2001). The experiment results show that MA with hill-climbing and tabu search 

algorithms outperforms genetic algorithm for consistent and semi-consistent grid 

scenarios. Comparing between MA-Tabu search and MA-hill-climbing, MA-tabu 

search showed faster performance. However, the flowtime results are not reported 

which is supposed to be part of the optimization function. In addition, an experiment 

conducted only on static environment is not enough to conclude the algorithm 

behaviour on dynamic scenario. Moreover, the proposed algorithm did not compare 

with other recent metaheuristics algorithms such as artificial bee colony and ant 

colony optimization. Nevertheless, the idea of using tabu search algorithm as a 

mechanism to enhance the individual solution could be integrated with other 

metaheuristics algorithms such as ant colony optimization. 

A comparison study on the performance of genetic algorithm, memetic algorithm, 

cellular memetic algorithm, and hybrid algorithms with tabu search has been proposed 

by Xhafa, Koodziej, Duran, Bogdanski, and Barolli (2011). The study illustrated the 

advantages and limitations of different population based methods for job scheduling 
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in computational grid systems. In addition, the study tried to investigate the benefits 

of hybridizing population algorithm with local search algorithms such as tabu search. 

The authors considered a bi-objective scheduling problem in grid computing to 

measure the scheduling effectiveness, namely makespan and flowtime which 

optimized simultaneously. The study considered the tasks to be processed in a batch 

mode as described in Xhafa and Abraham (2010). In addition, the problem was 

formulized based on expected time to computed matrix model as proposed by Ali et 

al. (2000b). The experimental analysis was performed using HyperSim-G simulator as 

developed by Xhafa et al. (2007). These experiments were conducted on static and 

dynamic instances. The experiment results for static instances show that memetic 

algorithm achieved the best makespan value for large instances, while cellular 

memetic algorithm hybridized with tabu search achieved the best results for small 

instances. The dynamic experiments results show that the hybrid cellular memetic 

algorithm with tabu search outperforms the other algorithms for small, medium, and 

large instances, while memetic algorithm hybridized with tabu search achieved the 

best makespan values for very large instances. The study concluded that hybridizing 

memetic and cellular memetic algorithms with tabu search will enhance the algorithm 

performance. However, the study did not show the result of the flowtime values 

which is considered as a part of the bi-objective function. Nevertheless, the proposed 

comparison provides good foundation regarding the performance of memetic and 

cellular memetic algorithm when they hybridize with tabu search algorithm. 

II. Differential Evolution Algorithm 

Differential Evolution (DE) is an optimization algorithm developed by Kenneth Price 

in 1995 (Price, Storn, & Lampinen, 2005). DE is a population-based algorithm that 
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has the operators: crossover, mutation, and selection to evolve a population of 

candidate solutions toward an optimal solution. Differential evolution algorithm for 

job scheduling in heterogeneous distributed environment has been proposed by 

Kromer, Snasel, Platos, Abraham, and Izakian (2009). The study aimed to optimize 

the job scheduling in terms of makespan and flowtime with priority to makespan as 

suggested by Carretero et al. (2007). The proposed algorithm was implemented with 

classic version adopted from Price et al. (2005). The experiments were conducted 

using the expected time to compute model as proposed by Braun et al. (2001). In 

addition, the experiments compared the proposed algorithm with max-min, suffrage, 

min-min, and min-max algorithms. The experiment results show that the proposed 

algorithm did not achieve a good result when it started with random initial solution. 

However, with initial solution generated using the heuristic algorithm, the proposed 

algorithm outperforms all other algorithms in terms of makespan. Nevertheless, in 

terms of flowtime optimization, the proposed algorithm did not perform well.  

Selvi and Manimegalai (2010) conducted a study on job scheduling for grid 

computing based on differential evolution algorithm. The objective of the study is to 

minimize the makespan value as an optimization objective. The experiments were 

conducted using static benchmark problems used by Liu, Abraham, and Hassanien 

(2010). The proposed algorithm was implemented using MATLAB application. The 

performance of the implemented algorithm is compared with fuzzy discrete particle 

swarm optimization algorithm as proposed in H. Liu et al. (2010). The experiment 

results show that the proposed algorithm achieved good standard deviation and 

completion time. However, in terms of makespan values, the proposed approach did 

not achieve good results compared to other algorithms. In addition, the experiments 
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were conducted using static benchmark problems. Therefore, the proposed algorithm 

needs to be tested on dynamic environment in order to draw the final conclusion.  

III. Genetic Algorithm 

Genetic Algorithm (GA) is a well-known algorithm to solve various types of 

combinatorial optimization problems developed in 1975 by John Holland (Blum & 

Roli, 2003). Genetic algorithm is applied in various types of scheduling problems, 

such as manufacturing scheduling (Gen, Zhang, Lin, & Jo, 2014), scheduling of 

production and transport systems (Hartmann, Makuschewitz, Frazzon, & Scholz-

Reiter, 2014), and scheduling workflow applications in cloud environment (Singh & 

Singh, 2014). 

GA has three prime operators, namely crossover, mutation, and selection (Yang, 

2014). However, In terms of mathematics, there are no explicit mathematical 

equations for general genetic algorithm (Yang, 2014). GA procedure’s details, such as 

steps on how to generate a new generation from a population and how to process the 

operators are provided in many literatures (Reeves & Rowe, 2003; Sivanandam & 

Deepa, 2008). Figure 2.1 shows the pseudocode of basic genetic algorithm. 
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Figure 2.1. Basic Genetic Algorithm (Zapfel et al., 2010) 

In Figure 2.1, the first step is initializing the population (P) which is generated 

randomly or using some heuristic algorithm (Carretero & Xhafa, 2006). Figure 2.2 

visualizing the GA population (Zapfel et al., 2010).  

 

Figure 2.2. Visualization of GA population (Zapfel et al., 2010) 

Procedure Genetic Algorithm 

Step 1- 𝑃 ← initial population; 

Step 2- Evaluate (𝑃); 

Step 3- While termination criterion not satisfied do 

Step 4- 𝑃′  ← Select(𝑃); 

Step 5- Crossover(𝑃′); 

Step 6- Mutate(𝑃′); 

Step 7- Evaluate(𝑃′); 

Step 8- 𝑃 ← 𝑅𝑒𝑝𝑙𝑎𝑐𝑒(𝑃′  ∪ 𝑃); 

Step 9- End 

End Procedure 

Population 

Individual / Chromosome 
1, 1, 0, 0, 0, 0, 1, 0, 0, 0 

0, 0, 0, 1, 0, 0, 1, 0, 1, 0 

1, 1, 0, 0, 0, 0, 1, 0, 0, 0 

1, 0, 0, 1, 0, 0, 1, 1, 0, 0 

0, 0 0, 0, 0, 0, 1, 1, 1, 1 

1, 1, 0, 1, 0, 0, 1, 0, 1, 0 

0, 1, 0, 1, 1, 0, 1, 0, 0, 1 

0, 1, 1, 0, 0, 1, 1, 0, 1, 0 1, 0, 1, 0, 0, 0, 1, 0, 0, 0 

1, 1, 0, 0, 0, 0, 1, 0, 0, 0 

1,  1,  0,  0,  0,  0,  1,  0,  0,  0 

Gene at locus 1 
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The second step in GA is the evaluation process. Evaluation is an operator to calculate 

the solution quality which is called fitness in terms of genetic algorithm. The solution 

fitness is required for selection and replacement operators. In other words, solutions 

with better fitness value are preferred in the selection process (Zapfel et al., 2010). In 

order to calculate the fitness value in job scheduling problem in grid computing, the 

following equation is used: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  1 / 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (2.1) 

where 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 is the completion time of the last task by the system (Xhafa & 

Abraham, 2010). 

The third step in GA algorithm is the loop using while and termination condition. The 

execution could be stopped using one or more conditions, such as, specific number of 

iteration, specific time of execution, and maximum number of iteration without any 

enhancement in the solution quality (Zapfel et al., 2010).  

The fourth step in GA algorithm is the selection process which is responsible to select 

part of the population for crossover and mutation operators. There several selection 

methods, such as Roulette-Wheel-Selection, Linear-Rank-Selection, and Tournament 

Selection (Zapfel et al., 2010).  

The fifth step in GA is the recombination or crossover operators. Crossover operator 

is the process of combining genes from the selected solutions in order to produce a 

new solution. There are several types of crossover operator, such as one-point, two-

point, N-point, and uniform crossover (Zapfel et al., 2010). Figure 2.3 shows 

examples of one-point, two-point, and uniform crossover.  
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Figure 2.3. Examples of crossover operators (Zapfel et al., 2010) 

The sixth step in GA algorithm is the mutation operator. Mutation is the process of 

perturbation of the solution with small probability. Mutation operator will help the 

algorithm to prevent from premature convergence. In binary solution representation, 

the mutation process could be done by changing the value from 1 to 0 or vice versa. 

This method is known as bit-flip mutation. In job scheduling problem for grid 

computing, mutation could be implemented using re-balance method (Xhafa, Duran, 

Abraham, & Dahal, 2008). 

The seventh step in GA is the evaluation of the new solutions. This step is similar to 

step 2 using the new solutions instead of the whole population. 

The last step in GA is the replace operator which replaces the new generated solution 

with other solutions from the population. There are several replacement methods, 

such as generational replacement and steady state replacement. In generational 

method, the new generated solutions supersede the old solutions. In steady state 

method, multiple solutions or only one solution is replaced. Figure 2.4 illustrates the 

process of genetic algorithm.  
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Figure 2.4. Process of Genetic Algorithm  (Zapfel et al., 2010) 

An experimental study regarding job scheduler based genetic algorithm for large grid 

environment has been proposed by Carretero and Xhafa (2006). The proposed 

algorithm aims to minimize the makespan and flowtime values of job scheduling on 
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grid computing. The study considered two versions of optimization. First is 

hierarchical structure where makespan is optimized first, then followed by flowtime. 

Second is simultaneous structure where both objectives are optimized simultaneously. 

The proposed algorithm was implemented using a skeleton as defined in Alba et al. 

(2002). The study conducted static and dynamic experiments. The static benchmark 

problems were generated using expected time to compute model from Braun et al. 

(2001), while dynamic benchmark problems were generated using dynamic simulator 

developed by Alba et al. (2002). For static experiments, the proposed algorithm 

compared with Min-Min, MCT, and GA algorithms from Braun et al. (2001). The 

results show that the proposed genetic algorithm with hierarchic optimization 

structure outperforms other algorithms in terms of makespan. However, flowtime 

results for static experiments are not reported in the study. For dynamic experiments, 

the results show that the proposed algorithm with hierarchical structure achieved the 

best makespan values for three instances, while simultaneous structure achieved the 

best results for one instance in terms of makespan. Flowtime results were not reported 

as well. The study provided the implementation details for genetic algorithm. 

However, the proposed algorithm was compared only with heuristic algorithms and 

other genetic algorithm implementation. Therefore, it is unknown how is the 

performance of the proposed algorithm compared with other metaheuristics 

algorithms such as ant colony optimization and artificial bee colony. 

Job scheduling for grid computing based on genetic algorithm has been proposed by 

Carretero et al. (2007). The study aimed to minimize makespan and flowtime values 

either in a hierarchical mode with makespan as primary objective or in a simultaneous 

mode. In addition, two types of encoding schemes have been presented in the study 

with several operators implementation. The proposed algorithm was implemented 
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based on a generic skeleton as developed by Alba et al. (2006). The benchmark 

problems were generated using expected time to compute model presented in Braun et 

al. (2001) which consists of twelve static instances. The implemented algorithm was 

evaluated against genetic algorithm results as presented in Braun et al. (2001). The 

experiment results show that the proposed algorithm outperforms other algorithms in 

terms of makespan with simultaneous mode. However, flowtime values are not 

provided in Braun et al. (2001). The study compared the proposed algorithm in terms 

of flowtime values between hierarchical and simultaneous modes which show favour 

results to simultaneous approach. The authors also noticed that makespan and 

flowtime are contradictory objectives. Therefore, trying to optimize one objective 

may not suit the other objective, especially when the scheduling plan is close to 

optimal solution. In spite of the good results achieved by the proposed algorithm, 

more investigations are required especially under dynamic job scheduling 

environment in order to conclude the algorithm performance in all circumstances.  

Another experimental study on genetic algorithm for job scheduling on grid 

computing has been proposed by Xhafa, Barolli, and Durresi (2007a). The authors 

presented two algorithms for scheduling independent jobs to grid resources based on 

two replacement mechanisms, namely Steady-State Genetic Algorithm (SSGA) and 

Struggle Genetic Algorithm (SGA). The study experiments were conducted using 

benchmark problems generated using expected time to compute model as presented in 

Braun et al. (2001). The proposed algorithm was compared with genetic algorithm 

developed by Braun et al. (2001). The experiment results show that SGA performs 

better than SSGA for moderate grid size problems in terms of makespan. However, 

for larger grid size problems, SGA did not achieve good results as SSGA. In terms of 

flowtime, SGA also achieved better performance than SSGA. The study 
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recommended implementing SGA for small and medium grid size and SSGA for large 

and very large grid size. However, the study only considered static grid computing 

environment which is not enough to observe the algorithm behaviour. Therefore, 

these two algorithms need to be tested on dynamic grid computing environment in 

order to conclude the algorithm robustness.    

Xhafa, Duran, Abraham, and Dahal (2008) published a study on Straggle strategy in 

Genetic Algorithm (SGA) for job scheduling in computational grid. The study 

implemented hash function for computing the similarity of solutions in order to 

enhance the standard similarity measures. The aim of the proposed approach is to 

minimize the makespan value as an optimization objective. The proposed algorithm 

was evaluated with static benchmark problems generated using the expected time to 

compute model as presented in Braun et al. (2001). The evaluation is done between 

SGA and SGA with hash function. The experiment results show that using the hash 

function with SGA, it improves the algorithm performance in terms of makespan 

value for several types of instances. The idea of using hash function is useful in order 

to avoid evaluating a similar solution for each cycle in the algorithm process which is 

time consuming. This idea could be implemented with other metaheuristics 

algorithms such as tabu search and ant colony optimization. However, more studies 

and experiments are required to observe the algorithm behaviour in terms of flowtime 

and resource utilization. In addition, more experiments on job scheduling in dynamic 

grid computing environment will provide more information regarding the use of hash 

function. 

A hierarchic genetic algorithm scheduler of jobs in grid computing environment has 

been published by Kolodziej, Xhafa, and Kolanko (2009). The authors proposed an 
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algorithm called Hierarchic Genetic Strategy (HGS) for job scheduling on grid 

computing systems. The study aimed to optimize the makespan and flowtime values 

simultaneously. In addition, the study objective is to investigate several variations of 

HGS operators and parameters to identify the best configuration for job scheduling 

problem. The experiments were conducted using static benchmark instances for job 

scheduling on grid computing which is based on the expected time to compute model 

as developed by Ali et al. (2000b). The proposed algorithm was compared with 

classic genetic algorithms as presented by Braun et al. (2001) and Carretero et al. 

(2007). The experiment results show that the proposed algorithm performs better than 

the other two algorithms in terms of makespan and flowtime as well. The study also 

revealed that rebalancing method is the best mutation operator for HGS. However, the 

experiments were conducted on static grid computing environment; therefore, more 

experiments are required to test the proposed algorithm on dynamic environment to 

examine the algorithm robustness.  

A study conducted by Kumar, Kumar, and Kumar (2011) for job scheduling used 

genetic algorithm. In their study, they considered the network transmission time when 

making scheduling decisions. They argue that the scheduler who does not take into 

account the network load when making the scheduling decisions might not produce 

optimal scheduling. In their work, they implemented multi-objective genetic 

algorithm for job scheduling in grid computing using GridSim simulator as developed 

by Buyya and Murshed (2002). The algorithm focused on minimizing the jobs’ 

finalization time and makespan by minimizing the jobs’ data transfer time between 

data storage location and computing resource site over the network. The job size was 

presented in Million Instructions (MI) and the resource capacity was presented in 

Million Instructions Per Second (MIPS). To calculate the network load in the 
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scheduling algorithm, they used four arrays. The proposed algorithm was compared 

with non-network-aware scheduling algorithm for grid computing. The results show 

that the proposed scheduling algorithm performs better than the non-network-aware 

scheduling algorithm. However, the experiments scenario is very limited (using only 

50 jobs) which did not give a clear robustness picture about the algorithm. 

Nevertheless, the idea of calculating the network transmission time is very important 

when scheduling jobs in grid systems and needs more investigation to concrete the 

concept. 

Enhanced Genetic-based scheduling for grid computing has been developed by 

Kolodziej and Xhafa (2011). The authors presented an implementation of hierarchic 

genetic strategy for job scheduling in dynamic computational grid environment. HGS 

has the ability to search the solution space concurrently using various evolutionary 

processes. The study focused on bi-objective optimization, specifically, makespan and 

flowtime to be simultaneously optimized. The experiments were conducted under 

heterogeneous, large scale, and dynamic environments using grid simulator. The 

algorithm was tested with static and dynamic grid computing environments. The 

experiment with static environment is based on expected time to compute matrix 

model as presented in Ali et al. (2000b). For dynamic environment, the authors used a 

simulator developed by Xhafa and Carretero (2009). The proposed algorithm was 

compared with two other GA-based schedulers presented in Braun et al.( 2001), and 

Carretero et al. (2007). The results show that the proposed algorithm outperforms the 

other GA-based scheduler algorithms. However, the proposed algorithm results were 

compared only with GA. Therefore, it is unknown how the proposed algorithm will 

perform against other metaheuristics algorithms. 
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2.1.3 Local Search    

The basic idea of local search is that solution is successively modified by performing 

moves that change solution locally (Vob, 2001). The solutions that can be reached by 

moves are called neighbourhood solutions. Various techniques have been developed 

to search the solution’s neighbourhood, such as random, iterated, greedy, variable 

neighbourhood search, and steepest descent algorithms (Aarts & Lenstra, 2003; 

Gendreau & Potvin, 2010; Zapfel et al., 2010). However, using metaheuristics 

algorithms for local search, such as simulated annealing and tabu search, showed 

promising performance in grid computing.    

I. Simulated Annealing 

Simulated Annealing (SA) is known as an optimization algorithm inspired by nature. 

SA mimics the physical process in the annealing of materials when a metal cools and 

freezes into a crystalline state (Yang, 2014). SA algorithm was developed in 1980s by 

Kirkpatrick, Gelatt, and Vecchi (1983). Simulated annealing algorithm has been 

implemented in almost every field of combinatorial optimization problems (Yang, 

2014). The main advantages using SA is the ability to skip from local minima by 

controlling the threshold value for the maximum allowed decrease in solution quality 

(Vidal, 1993; Zapfel et al., 2010). SA algorithm has been proved to converge to the 

global optimality if enough time and randomness are given with very slow cooling 

(Aarts, Korst, & Michiels, 2014; Yang, 2014). SA algorithm has been implemented 

for job scheduling in computational grid environment successfully.  

YarKhan and Dongarra (2002) conducted an experimental study on using Simulated 

Annealing (SA) algorithm for job scheduling in grid environment. The study used 

dynamic machine status and connectivity information from the Globus 
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Metacomputing Directory Service (MDS) defined in YarKhan and Dongarra (2002) 

and Network Weather System (NWS) proposed by Wolski, Spring, and Hayes (1999). 

The proposed algorithm was compared with Ad-hoc greedy approach presented in 

Ullman (1975). The experiments were conducted using real grid computing system 

provided from the University of Tennessee and University of Illinois. The experiment 

results show that the proposed simulated annealing algorithm outperforms Ad-hoc 

greedy algorithm in terms of estimated execution time. In spite of the practical 

experiments using real grid environment, the experiments were very limited in terms 

of benchmark problems size. In addition, the proposed approach needs to be 

compared with other metaheuristics algorithms in order to observe the algorithm 

performance. However, using simulated annealing algorithm will help to avoid the 

local minima and search near optimal solution. 

A study on implementing simulated annealing algorithm for job scheduling in 

computational grid has been proposed by Fidanova (2006). The authors claimed that 

simulated annealing has two important features, which are: First, SA algorithm is 

proved to converge to the optimal solution. Second, AS algorithm is easy to be 

implemented to solve job scheduling problems in grid computing. The implemented 

scheduler utilizes the expected time to compute model which is developed by 

Maheswaran, Ali, Siegel, Hensgen, and Freund (1999). The objective of the study is 

to minimize the makespan value for job scheduling as an optimization function in 

batch mode. The proposed algorithm starts with generating initial solution using 

greedy heuristic approach. The performance of the proposed AS algorithm compared 

with online (queue) algorithm and ant colony optimization provided by Fidanova and 

Durchova (2006). The experiments were conducted using a scenario developed by the 

authors which consists of 5 resources and 20 jobs. In terms of makespan, the results 
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show that the proposed algorithm outperforms other algorithms followed by ant 

colony optimization algorithm. However, the experiment scenario is very small in 

terms of the number of resources and jobs. In addition, the study only focused on 

static grid computing environment. Therefore, designing and conducting a bigger 

scenario in static and dynamic environments will reveal the real performance of 

simulated annealing algorithm for job scheduling in grid computing.  

Cai, Ning, Li, and Zhong (2007) published a study on using simulated annealing 

algorithm for independent task assignments in heterogeneous computing system. The 

authors proposed two neighbourhood structures to search the best neighbour of the 

current solution in the search space. The study aimed to minimize the makespan value 

as an optimization objective. The experiments were conducted using benchmark 

problems based on expected time to compute model defined in Braun et al. (1999). 

The proposed algorithm was compared with Min-Min algorithm and simulated 

annealing approach proposed by Braun et al. (1999). The empirical results show that 

the proposed simulated annealing algorithm with random and swapping 

neighbourhood structures outperforms the other algorithms in terms of makespan. 

However, the proposed approach needs to be compared with other metaheuristics 

algorithm. In addition, more experiments using dynamic grid computing environment 

are required to test the algorithm robustness. Nonetheless, the idea of using various 

neighbourhood structures is very important for local search algorithms such as 

simulated annealing.  

An implementation of simulated annealing algorithm for job scheduling in 

computational grid has been proposed by Guo and Wang (2010). The proposed 

approach tried to overcome two problems in implementing SA algorithm in grid 
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computing, namely the algorithm overhead and the best tuning parameters. The 

authors developed a simulator called Ana-GridSim which is an extension of GridSim 

simulator developed by Buyya and Murshed (2002). The experiment results show that 

the proposed approach achieved good performance in terms of average error. 

However, the experiment design was very poor in terms of benchmark problems (only 

7 resources were used). In addition, optimization function was not defined, such as 

makespan values have not been optimized. Moreover, the proposed algorithm was not 

compared with other metaheuristics algorithms. Therefore, a more comprehensive 

investigation on implementing simulated annealing algorithm for job scheduling on 

grid computing systems is required.      

II. Tabu Search 

Tabu search is a metaheuristics algorithm based on a guided local search developed 

by Glover (1986). TS algorithm has been successfully implemented to solve many 

optimization problems, such as job shop scheduling, travelling salesman problem, and 

vehicle routing problem (Gendreau & Potvin, 2014). According to Burke and Kendall 

(2014), over the last 25 years, hundreds of papers presenting applications of tabu 

search proposed to solve various combinatorial problems. TS is classified as a local 

search that has the ability to skip from the local minimum by applying many 

mechanisms such as memory and diversification (Rothlauf, 2011). Specifically, TS 

applies the concept of adaptive memory and responsive exploration that make the 

algorithm more flexible. TS algorithm operates using four types of memory, namely: 

recency (short-term memory), frequency (long-term memory), quality, and influence 

(Glover & Laguna, 1997). However, many successful applications use only one or 

two of these memories. Figure 2.5 shows the tabu search algorithm process. 
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Figure 2.5. Process of Tabu Search algorithm  (Zapfel et al., 2010) 

The memory in tabu search could be explicit or attributive. Explicit memory records 

the complete solution, while attributive memory records the information about the 

solution attribute that changes when moving from one solution to another. For 

example, in job scheduling scenario, moving a task 𝑡𝑖 from machine 𝑚𝑝 to machine 

𝑚𝑞 will create a new solution vector. Hence, TS memory could be implemented based 

on recording the complete old solution or recording only the attribute that changed the 

solution that is the history of assigning task 𝑡𝑖 to machine 𝑚𝑝. Recording the 

attributes will prevent the algorithm (tabu) to reverse to the old assignment for 𝑘 

number of iterations with the same task and machine. However, this tabu attribute 

could be override if the move will produce a solution better than the best-so-far 

solution (could be any other criteria); this mechanism is called aspiration level. The 

duration parameter for a move to be considered as a tabu is called tabu tenures 

(Glover & Laguna, 1997). Effective tabu tenures depend on the size of a problem 

instance. 
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Tabu search starts with initial solution which could be created randomly or by using 

any ad-hoc algorithm such as Max-min, Min-min algorithm for scheduling (Xhafa, 

Carretero, et al., 2008). From the initial solution, TS will start searching the 

neighbourhood in order to find the local optima. If the move to the neighbour solution 

is not tabu, then the neighbour solution is saved as the current solution. If the 

neighbour solution is better than the best-so-far solution, then it saved as the best-so-

far solution. In the case that the move is tabu, the inspire level will be checked in 

order to override the tabu if the neighbour solution is better than best-so-far solution. 

After moving to the neighbourhood solution, TS will update its memory and start a 

new iteration if the termination condition is not met. The mechanism of searching the 

neighbourhood repeatedly seems to guide the search towards an interesting area in the 

search space quickly (Costa, 1994). However, there are many issues which need to be 

addressed when implementing tabu search, such as what information to be saved in 

the memory, the size of the tabu lists, how to move to the neighbourhoods, and how to 

implement diversification (Thesen, 1998). Tabu search algorithm is applied for 

scheduling problems in grid computing successfully. Figure 2.6 shows tabu search 

algorithm pseudocode.  
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Figure 2.6. Tabu Search algorithm pseudocode  (Zapfel et al., 2010) 

In Figure 2.6, the first step in TS algorithm is creating the initial solution using 

random approach or ad hog algorithm. The second step is initializing the global 

solution from the initial solution. Third step is creating the tabu list to store the 

movement history. The forth step in initializing the aspiration function to be used to 

override the tabu movement. 

Fifth step is the starting of the algorithm iteration which is terminated using stop 

condition, such as the algorithm reached the maximum number of iterations, reach the 

maximum time allowed, or no enhancement achieved for specific number of 

iterations. 

Procedure Tabu Search Algorithm 

Step 1- Create initial solution 𝑠; 

Step 2- Create global solution 𝑠∗ ←   𝑠; 

Step 3- Create tabu list 𝑇𝐿; 

Step 4- Initialize the aspiration function 𝐴; 

Step 5- While (termination condition not satisfied) Do 

Step 6-      Search the neighbourhood 𝑁 of current solution 𝑠: {�̂� ∈ 𝑁(𝑠)}; 

Step 7-      If (move from 𝑠 to �̂� is not in 𝑇𝐿) Then 

Step 8-           𝑠 ← �̂�; 

Step 9-      End If; 

Step 10-    Else If (𝑓(�̂�) < 𝐴(𝑓(𝑠)) Then 

Step 11-           𝑠 ← �̂�; 

Step 12-    End If; 

Step 13-    Update 𝑇𝐿 memories; 

Step 14-    If (𝑓(𝑠) < 𝑓(𝑠∗)) Then 

Step 15-           𝑠∗ = 𝑠; 

Step 16-    End If; 

Step 17-    End While; 

Step 18-    Return Global solution 𝑠∗; 

End Procedure;  
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Sixth step is searching the neighbourhood in order to generate different solution 

which is based on current solution (Glover & Laguna, 1997). Step seven will check if 

the movement to the new neighbourhood solution is not tabu (not visited before) then 

the solution will be accepted even if it is worse than the current solution. This 

technique makes TS algorithm skips from local optima trap. Step eight will save the 

new accepted solution as the current solution and the condition ends at step nine. If 

the solution is tabu, step ten will check the aspiration function to determine whether to 

override the tabu if the solution quality better than the current solution or discard the 

new solution. Step eleven will save the new solution as the current solution if the 

aspiration condition satisfied and the step will end in step twelve.  

Step thirteen will update the tabu list memory, such as the short and long memories. 

Step fourteen will check if the current new solution is better than the global solution, 

then the current solution will be saved as the globe best solution in step fifteen and 

ends in step sixteen. In job scheduling problem, the solution quality is measured using 

makespan metric. Step seventeen will end the while and the best global solution return 

in step eighteen. 

Tabu search design and evaluation for job scheduling in grid computing has been 

proposed by Xhafa, Carretero, et al. (2008). The aim of the study is to minimize the 

makespan and flowtime values as a bi-objective optimization problem. The bi-

objective function is implemented with a hierarchic approach in which makespan is 

considered as a primary objective and flowtime as a secondary objective. The 

proposed algorithm starts with the initial solution generated using Min-Min algorithm. 

To search the neighbourhood of the initial solution, two types of movements were 

implemented, namely transfer and swap which are adopted from Thesen (1998). The 
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proposed study used the expected time to compute model as developed by Braun et al. 

(2001). The implemented algorithm was compared versus tabu search and ant colony 

optimization algorithm hybridized with tabu search as proposed in Ritchie and Levine 

(2004). The experiment results show that the proposed design and implementation 

outperforms the approach proposed by Ritchie and Levine (2004). Another 

experiment was conducted using the benchmark problem as defined by Carretero and 

Xhafa (2006) which represent a large instance problem in dynamic environment. The 

proposed algorithm was compared against steady-state genetic algorithm developed 

by Carretero and Xhafa (2006). Again, the results show that the proposed algorithm 

achieved better makespan values than steady-state genetic algorithm. The authors 

concluded that the proposed design and implementation for tabu search algorithm are 

more efficient than other implementation. In addition, the authors noticed that 

makespan and flowtime are contradictory objectives; this observation is very 

important to understand the complexity of job scheduling in grid computing.  

Tabu search algorithm has been implemented for job scheduling in grid computing by 

Xhafa, Carretero, Dorronsoro, and Alba (2009). The authors defined a bi-objective 

optimization problem consisting of makespan and flowtime. Their proposed algorithm 

adapted two types of neighbourhood movement namely transfer and swap. In 

addition, the algorithm implanted intensification and diversification strategies to 

achieve better results. Their study dealt with static and dynamic environments for 

algorithm evaluation. For static environment, the benchmarks were generated based 

on expected time to compute model as presented by Ali, Siegel, Maheswaran, 

Hensgen, and Ali (2000a). While for dynamic environment, the benchmarks were 

generated using extended HyperSim simulator as presented in Phatanapherom, 

Uthayopas, and Kachitvichyanukul (2003). The proposed algorithm was compared 
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with three metaheuristics algorithms, namely TS, ACO+TS, and cMA (Ritchie & 

Levine, 2004; Xhafa, Alba, et al., 2008) for static experiment. For dynamic 

experiment, the proposed algorithm was compared with GA as presented by Carretero 

and Xhafa (2006). The experiment results show that the proposed algorithm 

outperforms the other algorithms in static and dynamic environment. The study 

provides all the implementation details and the pseudo-code as well which makes the 

study repeatable and easy to re-implement. However, there are many neighbourhood 

movements other than transfer and swap, which has the ability to find better local 

optima, such as insert and load balance moves. 

2.1.4 Swarm Intelligence Algorithms 

According to Gazi and Passino (2011), the terminology of “swarms” has come to 

mean as “a set of agents possessing independent individual dynamics but exhibiting 

intimately coupled behaviours and collectively performing some task”. Swarm 

Intelligence (SI) algorithms are these algorithms which are nature-inspired such as ant 

colony optimization, artificial bee colony, particle swarm optimization, cuckoo 

search, and firefly algorithms (Yang, 2014). SI algorithms try to mimic the biological 

behaviour of some creatures such as colonies of ants or bees, flocks of birds, and 

schools of fish (Gazi & Passino, 2011). Swarm intelligence algorithms are inspired 

the field of computing study, specifically the optimization field (Pintea, 2014). In 

terms of computational model, swarm intelligence models are considered as 

computing algorithms that are useful for solving distributed optimization problems 

(Lim & Jain, 2009). The principles of swarm intelligence algorithm are proximity, 

quality, diverse response, stability, and adaptability (Lim & Jain, 2009). Swarm 

intelligence methods have shown very successful performance in the area of 
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scheduling which is of great importance for the industry and science (Blum & Li, 

2008). The following subsections discuss the studies of swarm intelligence algorithms 

for job scheduling in grid computing. 

I. Ant Colony Optimization 

In 1992, Marco Dorigo presented the first ACO algorithm in his PhD thesis to search 

for an optimal solution in graph (Dorigo & Stutzle, 2004).The variants of ACO are: 

(i) Ant System (AS), ant system is the first algorithm introduced in ant colony 

optimization algorithms and the prototype of a number of ant algorithms extension. It 

was initially proposed by Colorni, Dorigo, and Maniezzo (1991), and Dorigo et al. 

(1991) aimed to search for an optimal path in a graph based on the behaviour of ants 

seeking a path between their colony and food source. AS is also the first ACO 

algorithm which has been applied to the travelling salesman problem (Dorigo et al., 

1996). Three different versions of ant system were proposed, which are ant-density, 

ant-quantity, and ant-cycle. In ant-density and ant-quantity, the ants update the 

pheromone directly after a move from a city to another city. But in ant–cycle, the 

pheromone update was only done after all the ants had constructed the tours. The two 

main phases of the ant system algorithm constitute the ants’ solution construction and 

the pheromone update. The performance of ant system when compared to other 

algorithms tends to decrease dramatically as the size of the test-instances increases. 

For AS tour construction, an ant applies probabilistic action choice rule, called 

random proportional rule, to decide which node to visit next. The probability of the 

ant to move from node to node depends on pheromone and heuristic values. AS 

updates the pheromone trails after all ants have constructed their tours. The first step 

in pheromone updating is lowering the pheromone values (evaporation) on all arcs by 
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a constant factor. This step will enable the algorithm to forget the bad decision 

previously taken, at the same time if the arc is not chosen by the ants, its associated 

pheromone value decreases exponentially in the number of iterations. After 

evaporation, all ants deposit pheromone on the arcs they have visited in their tour.  

(ii) The first improvement on ant system, called the Elitist strategy for Ant System 

(EAS), was introduced by Dorigo et al. (1991, 1996). This algorithm provides strong 

additional reinforcement to the arcs belonging to the best tours found since the start of 

the algorithms. In EAS, the global best solution deposits pheromone on all iterations 

along with all the other ants and the pheromone evaporation is implemented as in the 

ant system. The use of the elitist strategy allows the ant system to both find the better 

tours and find them in a lower number of iterations. The additional reinforcement of 

best tour is achieved by adding an extra quantity of pheromone to its arcs based on the 

tour length and a new parameter defined as weight is given to the best-so-far tour.  

(iii) Rank-Based Ant System (ASrank), another improvement over the ant system is the 

rank-based version of ant system introduced by Bullnheimer, Hart, and Straub (1999). 

In ASrank, each ant deposits an amount of pheromone that decreases with its rank. In 

addition, as in EAS, the best-so-far ant always deposits the largest amount of 

pheromone with during iteration. In ASrank, the first step for updating the pheromone 

trails is sorting the ants by increasing the tour length. The quantity of pheromone an 

ant will deposit is weighted according to the rank of the ant. During iterations, only 

the best ranked ants and the ant that produced the best-so-far tour are allowed to 

deposit pheromone. Among the AS-based algorithms, both, ASrank and EAS 

performed significantly better than AS, with ASrank giving a slightly better result than 

EAS.  
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(iv) Another variant of ACO algorithm is Max-Min Ant System (MMAS). This 

algorithm has direct improvement over AS (Stutzle & Hoos, 1997, 2000). MMAS 

differs from the basic approaches of AS in the following aspects. Firstly, it uses a 

greedier search mechanism that allows a good exploitation of the accumulated 

experiences. Secondly, MMAS uses a range of pheromone trail values to the interval 

that help to avoid the premature stagnation (all ants converge early to one suboptimal 

solution) of the search process. Thirdly, the initial value of pheromone trails is set to 

the upper pheromone trail limit with a small pheromone evaporation rate to increase 

the exploration of tours at the start of the search. Finally, in MMAS, pheromone trails 

are reinitialized each time when the system does not produce an improved tour for a 

certain number of consecutive iterations. To update pheromone trails, in MMAS, after 

all ants have constructed a tour, pheromones are updated by applying evaporation as 

in AS. After that, the deposit of a new pheromone is applied based on the best-so-far 

tour. Only one of the two ants is allowed to add pheromone, either the best-so-far ant 

or the iteration-best ant. In MMAS, lower and upper limits [𝜏min and 𝜏max] of 

pheromone on any arc are used to avoid the search stagnation.  

(v) Ant Colony System (ACS), this improvement has been introduced by Dorigo and 

Gambardella (1997a, 1997b) to improve the performance of AS. ACS differs in three 

main aspects from ant system. First, ACS uses a more aggressive action choice rule 

than AS. Second, the pheromone is added only to moves belonging to the global-best 

solution. Third, each time an ant moves on a path, it removes some pheromone from 

that path. The three main phases of the ACS algorithm constitute the ants’ solution 

construction, global pheromone trail update, and local pheromone trail update. ACS 

algorithm starts solution construction when the ant moves from node to node. The ant 

will choose the node using one of the two rules. The first rule is called pseudorandom 
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proportional rule which is based on exploitation mechanism. The second rule uses 

exploration mechanism which is based on the probability distribution used in AS. The 

tuning between exploitation and exploration is controlled by a parameter fixed by the 

user. ACS algorithm applies the global pheromone trail update. In this update, only 

one ant (the best-so-far ant) is allowed to add pheromone after all ants have finished 

constructing their tours. In addition, ACS algorithm applies the local pheromone trail 

update. In this update, all the ants apply a local pheromone update rule immediately 

after moving on arcs during the tour construction using the evaporation concept.  

In ACS algorithm, when ant k wants to move from node i to node j, it will choose the 

node using a rule called pseudorandom proportional rule, calculated as:  

𝑃𝑖𝑗
𝐴𝑛𝑡𝑘 = {

𝑎𝑟𝑔𝑚𝑎𝑥
𝑙∈𝑁𝑖

𝑘 
{𝜏𝑖𝑙[𝜂𝑖𝑙]𝛽},    if 𝑞 ≤ 𝑞0;

𝐽,                                            otherwise
 

(2.2) 

where q is a random variable uniformly distributed in [0, 1], q0 (0 ≤ q0 ≤ 1) is a 

parameter, and J is a random variable selected according to the probability 

distribution calculated as: 

𝐽 =  
[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗]𝛽

∑ [𝜏𝑖𝑙]𝛼[𝜂𝑖𝑙]𝛽
𝑙∈𝑁𝑖

𝑘

, 𝑖𝑓 𝑗 ∈  𝑁𝑖
𝑘 

(2.3) 

with α = 1. The tuning between exploitation and exploration is controlled by the 

parameter q0. 

In ACS only one ant (the best-so-far ant) is allowed to add pheromone after each 

cycle. The Update is implemented using the following equation:  
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𝜏𝑖𝑗 ← (1 − 𝑃)τ𝑖𝑗 + 𝑝∆𝜏𝑖𝑗
𝑏𝑠,    ∀(𝑖, 𝑗) ∈ 𝑇𝑏𝑠,   (2.4) 

Where P is the pheromone evaporation rate, and ∆𝜏𝑖𝑗
𝑏𝑠 = 1/ C

bs
. 

For local pheromone update, a rule immediately applied after moving on arc (i, j) 

during the solution construction using the following equation:  

𝜏𝑖𝑗  ← (1 −  ξ)τij +  ξτ0,  (2.5) 

Where ξ, 0 < ξ < 1, and τ0 are two parameters. The value of τ0 is equal to the initial 

value for the pheromone trail. 

Each variant of ACO algorithms implemented construction and pheromone update 

methods. However, there are several differences between them.  Table 2.1 shows the 

differences between each variant in ACO algorithms. 

Table 2.1 

 

Difference between each variant algorithm in ACO 

Algorithm 

name 
Differences and work mechanisms 

AS 1. All ants deposit pheromone on the arcs they have crossed in their 

tour. 

EAS 1. Provides strong additional reinforcement to the arcs belonging to the 

best tour by adding a quantity e/C
bs

. 

ASrank 1. Ant deposits an amount of pheromone that decrease with its rank. 

2. In each cycle, only the best-so-far ant always deposits the largest 

amount of pheromone. 

MMAS 1. It strongly exploits the best tour found. 

2. Limits the possible range of pheromone trail values to the interval 

[𝜏min, 𝜏max]. 

3. The pheromone trails are initialized to the upper pheromone trail 

limit. 

4. Pheromone trails are reinitialized each time the system approaches 

stagnation. 

ACS 1. It exploits the search experience accumulated by the ant more 

strongly than AS. 
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2. Pheromone evaporation and pheromone deposit take place only on 

the arcs belonging to the best-so-far tour. 

3. Each time an ant uses the arc (i, j) to move from node i to node j, it 

removes some pheromone from the arc to increase the exploration. 

 

ACO algorithm has been applied on several domains such as optimization, 

classification, bioinformatics, and network.  

Some domains contain more than one problem that needs to be solved using ant 

colony optimization. Table 2.2 presents several types of researches conducted on 

different domains. 

Table 2.2 

 

Various research on different Domains and problems 

Domain Problem Name ACO type References 

Routing Travelling Salesman 

Problem 

Novel 

ACO 

(Zhu, Zhao, & He, 2010b) 

Vehicle Routing 

Problem 

ACS (Calvete, Gale, & Oliveros, 

2012) 

Vehicle Scheduling 

Problem 

Hybrid AS (Zhang, Ning, & Zhang, 

2012) 

Grid Computing Task Scheduling AS (Wei et al., 2012) 

Resource Discovery AS (Devi & Pethalakshmi, 

2012) 

Grid Resource 

Scheduling 

Improved 

AS 

(Liu, Ma, Guo, & Wang, 

2012) 

Image 

Processing 

Image Edge Detection AS (Tian, Yu, Chen, & Ma, 

2011) 

Image Classification AS (Seo, 2012) 

Optic Disc Detection AS (Pereira, Goncalves, & 

Ferreira, 2013) 

Operational 

Research 

Sequential Ordering 

Problem 

Enhanced 

ACS 

(Gambardella, 

Montemanni, & Weyland, 

2012) 

Surgery Scheduling 

Problem 

AS (Yin & Xiang, 2012) 

Process Planning 

Optimization 

AS (Liu, Yi, & Ni, 2013) 

Manufacturing Assembly Sequence 

Planning 

MMAS (Yu & Wang, 2013) 

Assembly Sequence AS (Youhui, Xinhua, & Qi, 
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Planning 2012) 

Assembly Line 

Balancing Problem 

AS (Zheng, Li, Li, & Tang, 

2013) 

Database Distributed Join Query 

Optimization 

MMAS (Golshanara, Rankoohi, & 

Shah-Hosseini, 2013) 

Optimization For RDF 

Chain Queries 

AS (Hogenboom, Frasincar, & 

Kaymak, 2013) 

Optimization Of 

Distributed Database 

Queries 

Hybrid AS (Dokeroglu & Cosar, 2012) 

Electrical 

Engineering 

Control Of Ocean 

Wave Energy 

AS (See, Tai, & Molinas, 

2012) 

Bus Priority In Power 

System 

AS (Hamid, Musirin, Rahim, 

& Kamari, 2012) 

Power Signal Pattern 

Classification 

 

Hybrid AS (Biswal, Dash, & Mishra, 

2011) 

Data Mining Classification Rule 

Discovery 

AS (Hodnefjell & Junior, 

2012) 

Data Classification ACS (Michelakos, Mallios, 

Papageorgiou, & 

Vassilakopoulos, 2011) 

Classification And Rule 

Generation 

AS (Tiwari & Verma, 2012) 

Bioinformatics Epistasis Detection AS (Shang, Zhang, Lei, Zhang, 

& Chen, 2012) 

Finding Optimal 

Spaced Seeds 

AS Duc, Dinh, Dang, Laukens, 

& Hoang, 2012) 

Classifying Imbalanced 

DNA 

AS (Yu, Ni, & Zhao, 2013) 

Robotics Robot Path Planning AS (Chen, Kong, Fang, & Wu, 

2011) 

Robot Path Planning AS (Bai, Chen, Jin, Chen, & 

Mao, 2012) 

Multi-Tasks 

Distribution In 

Heterogeneous Robot 

AS (Lope, Maravall, & 

Quinonez, 2012) 

Networks Energy-Saving Routing 

For Wireless Sensor 

Networks 

AS (Chen, Yu, Hong, & Dong, 

2012) 

Routing For 

Hierarchical Wireless 

Sensor Networks 

AS (Wang, Jing, & Wang, 

2012) 

Routing And Spectrum 

Allocation 

AS (Wang, Zhang, Zhao, 

Wang, & Gu, 2013) 

Assignment Timetabling Problem AS (Nothegger, Mayer, 

Chwatal, & Raidl, 2012) 

Graph Colouring 

Problem 

AS (Douiri & Elbernoussi, 

2012) 

Aircraft Assigning ACS (Zhang, Lin, Qiu, & Fu, 
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Problem 2011) 

 

Various AS algorithms have been derived and extended to exploit the search history 

without losing the chance of exploring new areas of the search space. Among them, 

ACS algorithm appears to be promising to extend the framework of ACO. It provides 

a good opportunity to explore a wide area of the search space in reasonable time. All 

variants of ACO algorithm have some similarity in their foundation, such as utilizing 

the heuristic information, pheromone value, and the solution is based on constructing. 

All ACO algorithms apply pheromone evaporation. 

Cordon, Viana, and Herrer (2002) and Cordon, Viana, Herrera, and Moreno (2000) 

proposed the Best-Worst Ant System (BWAS) as another extension of the basic idea 

of AS by including some concepts from evolutionary computation algorithms. BWAS 

uses the same transition rule as in AS algorithm to construct ants’ solutions. Then, 

BWAS enhances the ants’ solution by using a local optimizer to bring each solution to 

its local optimum. Like AS, ASrank and MMAS, all pheromone updates are performed 

by daemon actions.  

Lorpunmanee, Sap, Abdullah, and Chompoo-inwai (2007) presented a study called 

“An Ant Colony Optimization for Dynamic Job Scheduling in grid Environment”. In 

their study, they developed a general framework of grid scheduling using dynamic 

information and an ant colony optimization algorithm to improve the decision of 

scheduling. The experiment was conducted using GridSim simulator toolkit version 

4.0 with an extension. They presented a comparison between ant colony optimization 

and other various algorithms for job scheduling and dispatching rules for grid 

environment, such as First Come First Served (FCFS), Minimum Time Earliest Due 
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Date (MTEDD), and Minimum Time Earliest Release Date (MTERD). Their 

experiment results stated that ACO is able to perform the optimal scheduling job. 

Besides that, the ACO accounts for less than 17% of the total tardiness time in the 

average when it is compared with the other scheduler algorithms. However, in their 

approach, ACO algorithm performs much slower than the other scheduler algorithms. 

A research was conducted on Balanced job scheduling using Ant Colony 

Optimization (BACO) for grid environment by Chang, Chang, and Lin (2007). The 

main issue they tried to solve is how to schedule jobs efficiently in a grid 

environment. In their approach, they used four main components: portal, information 

server, jobs scheduler, and grid resource. BACO algorithm applied inside jobs 

scheduler in order to select the most appropriate resource to execute the job. The 

experiment was implemented using Taiwan UniGrid platform which consists of 26 

campuses. BACO performance was compared with other two algorithms: Improved 

Ant Algorithm (IACO) and Fastest Processor to Largest Task First Algorithm 

(FPLTF). The results show that BACO has the ability to balance the job scheduling 

load in the entire system. However, according to Bai et al. (2010) and Liu, Song, and 

Dai (2010), using the single ant colony system leads to local optima because of the 

stagnation that occurs due to the positive pheromone feedback mechanism.   

A study proposed by Chang, Chang, and Lin (2009) implemented ant algorithm for 

balanced job scheduling in computational grid. The study aimed to balance the entire 

system load, at the same time tried to minimize the makespan of the set of jobs. In 

addition, the study considered the bandwidth speed between the scheduler and 

resources as well. The proposed algorithm is based on ant system algorithm. The 

study was implemented in the Taiwan UniGrid platform which consists of more than 
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20 campuses in Taiwan. The experiments also simulated two problems, matrix 

multiplication and linear programming. The evaluation was done by comparing it with 

the improved ACO algorithm as proposed by Yan, Shen, Li, and Wu (2005), the 

fastest processor to the largest task first algorithm (Menasce, Saha, Porto, Almeida, & 

Tripathi, 1995), suffrage algorithm (Silva, Cirne, & Brasileiro, 2003), and random 

method. In terms of makespan and balance, the experiment results show that the 

proposed algorithm outperforms the other algorithms. However, the experiments are 

very limited and unrepeatable due to the using of real grid computing environment. 

Moreover, the comparison did not include other metaheuristics algorithms such as 

genetic algorithm and artificial bee colony. Nevertheless, the study provides a 

practical implementation guide which is useful to illustrate how job scheduling in 

computational grid is working. 

Kousalya and Balasubramanie (2009) presented a study on improving ant colony 

optimization algorithm with local search for job scheduling in computational grid 

systems. The proposed approach aims to minimize the makespan value as the main 

objective. The study adopted local search technique from Ritchie and Levine (2003) 

which is based on several neighbourhood searches such as Swap, Move, and Move 

Top methods. The experiments were conducted using static benchmark problems 

generated using Execution Time (ET) model presented by Fidanova (2006). The 

proposed algorithm was evaluated versus Min-Min, ACO, Swap, Move, and Move 

Top algorithms. The experiment results show that using ant colony optimization 

algorithm with Move Top local search method outperforms other algorithms in terms 

of makespan. However, the proposed algorithm was not compared with other 

metaheuristics and hybrid algorithms in order to prove the algorithms performance. In 



55 

addition, more experiments using dynamic grid computing environment are required 

which could provide more understanding to the behaviour of the proposed algorithm.   

Liusuqin, Shuojun, Menglingfen, and Lixingsheng (2009) proposed a study to 

improve ant colony optimization for Job Scheduling Problem (JSP). In their approach, 

they address the problem of “misusing the great resources for minor purpose” which 

makes some resources always idle and some resources are busy processing jobs. They 

solved the problem by introducing improved ACO algorithm called “making 

concessions in order to gain advantages” based on ACO. The experiment was 

conducted using grid pheromone model simulation developed by the authors. The 

proposed algorithm was compared with ant colony optimization using static 

benchmark problems. The results show that the improved ACO algorithm could 

perform better than the conventional ACO. The new algorithm could make better use 

of the resources and solve the “misusing the great resources for minor purpose” 

problem. However, the experiment size is very limited and did not contain 

heterogeneous resources and tasks. In addition, the proposed algorithm was not 

compared with other types of metaheuristics algorithms such as genetic algorithm and 

tabu search algorithm. 

A multiple ant colony model called “Cooperative multi-ant Colony Pseudo-parallel 

Optimization Algorithm” was proposed by Liu et al. (2010). In their approach, three 

subcolonies were used for optimization. Each subcolony respectively uses ant system 

algorithm, ant colony system algorithm, and max-min ant system algorithm 

independently. Each subcolony has its own pheromone matrix. By using three 

different colonies, the pheromone matrix will have different distributions and 

characteristics of change. After going through a certain number of iterations and 
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fulfilling the condition of pheromone interaction, the matrices of pheromone of the 

three subcolonies will interact. The interaction will be according to their weight value 

to gain new pheromone matrix. After the interaction process, the algorithm re-

initializes the three pheromone matrices. They conducted experiments to solve the 

travelling salesman problem. The experiment results show that their algorithm 

performance is better than the classic algorithms (AS, ACS, and MMAS). The 

researchers of the model claim the ability to prevent the system from stagnation 

because of different distribution of different ant algorithm used. However, their 

algorithm performs slightly better than classical MMAS, while MMAS has less 

complexity in implementation and processing time. 

Another study regarding ACO algorithm for job scheduling on computation grid has 

been proposed by Kant, Sharma, Agarwal, and Chandra (2010). The authors proposed 

two types of ant, namely red ants and black ants. The red ants’ responsibility is 

system resource estimation, while the black ants’ responsibility is decision of resource 

allocation. The study objective is to minimize the maximal total tardiness time of all 

jobs within the machines in grid environment. The proposed approach was simulated 

in real grid environment using 49 different resources. The comparative study was 

done using Min-Min and FCFS algorithms (Fidanova & Durchova, 2006; K. Liu, 

Chen, Jin, & Yang, 2009). The experiment results show that the proposed algorithm 

outperforms other algorithms. However, the experiments are very limited and the 

comparison did not include other metaheuristics algorithms. Therefore, more 

investigations are required to test the algorithm robustness. 

Load balancing is one of the important criteria in grid computing. A research on task 

scheduling with load balancing using Multiple Ant Colonies Optimization (MACO) in 
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grid computing was conducted by Bai et al. (2010). In their work, they used multiple 

ant colony optimizations to avoid the local optima from single colony behave. In their 

framework, they considered both positive and negative feedbacks in searching for 

solutions by sharing the search information and exploring a wider area of search space 

with the cooperation between the ant colonies. They defined the degree of imbalance 

by calculating the heuristic value using the load computing of each node. The 

experiments were conducted to evaluate the proposed algorithm with benchmark 

problems generated using GridSim simulator developed by Buyya and Murshed 

(2002). They compared MACO with ant colony systems (Dorigo & Gambardella, 

1997b) and first-come-first-served (Harchol-Balter, Crovella, & Murta, 1999). The 

results showed that their algorithm outperforms other algorithms in terms of 

makespan and load balancing. However, the solution for intractability between 

performance and load balancing is not illustrated. 

Enhanced ant colony algorithm for job scheduling in computational grid has been 

proposed by Maruthanayagam and UmaRani (2010). The proposed approach is based 

on Fast Ant System (FANT) algorithm which is a version of ACO algorithm. The 

study focused on makespan optimization using the independent task model as defined 

in Kousalya ad Balasubramanie (2009). The authors compared between two formulas 

proposed to calculate the probability of selecting a resource for processing a task. The 

experiment results show that using local search algorithm will improve the algorithm 

performance significantly. However, the study lacks a proper experiment design such 

as using known benchmark problems and comparing the proposed algorithm with 

other metaheuristics algorithms. Nonetheless, using fast ant system could be suitable 

for job scheduling in grid computing due to the time restriction imposed by 

computational grid systems. 
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Mou (2011) proposed a new approach using double Pheromones techniques for ant 

colony system. The study model was designed to solve Generalized Travelling 

Salesman Problem (GTSP) which is an extension of the classical traveling salesman 

problem. In GTSP, the nodes were partitioned into groups called clusters. The 

solution to GTSP is to find the shortest closed tour visiting exactly one node from 

each cluster. For such a problem, there are two pheromones, namely pheromone 

between the groups and pheromone on the edges. The researcher tried to differentiate 

between those pheromones by applying the double pheromones concept. In addition, a 

mutation idea inspired from genetic algorithm was introduced in this study. According 

to the experiment results conducted by the author, applying double pheromones 

produced better performance. However, the instances used in the experiment were 

small. According to Li, Liao, and Cai (2011), they stated about ant colony system that 

“it is difficult to realize the overall optimum and it takes a long time when being 

applied to large-scale TSP”. In addition, the implementation and influence of the 

mutation idea was not illustrated in the study.  

An improved ACO algorithm for job scheduling in computational grid systems has 

been proposed by MadadyarAdeh and Bagherzadeh (2011). The main objective of the 

study is to minimize the makespan value as an optimization objective in a batch 

mode. The authors improved the ACO algorithm for job scheduling provided in 

Kousalya and Balasubramanie (2008). The improvement is based on giving higher 

probability to tasks that have higher standard deviation. For evaluation purpose, the 

study adopted static benchmark problems based on expected time to compute model 

using Range-Based method as proposed by Ali et al. (2000b). The proposed algorithm 

was compared with ACO and P.ACO presented in Bagherzadeh and MadadyarAdeh 

(2009). The experiment results show that the proposed algorithm achieved the best 
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makespan values among other algorithms. However, the experiments were conducted 

using a very small scenario (32 tasks and 4 machines) which is not sufficient to test a 

metaheuristics algorithm. In addition, only static environment were considered in the 

experiment without any dynamic features to reflect the real job scheduling problem in 

grid computing. Moreover, the proposed algorithm was only compared with ACO 

approaches. Therefore, more comprehensive experiments and comparisons are 

required in order to discover the efficiency of the proposed algorithm. 

Kokilavani and Amalarethinam (2013) published a study on implementing ant colony 

optimization based load sharing for job scheduling in computational grid systems. The 

study aims to enhance the quality of service and share the load among the resources in 

order to optimize the resource usage in the computational grid environment. The 

proposed algorithm was implemented in MATLAB application simulating grid 

computing with 2 resources and 5 tasks. The proposed ant colony optimization based 

load sharing was compared with Min-Min and Max-Min algorithms. The experiment 

results show that the proposed approach outperforms other algorithms in terms of total 

wait time criterion. However, the experiments are very limited in terms of the 

benchmark problem size. In addition, the study is based on static environment and 

used unknown scenario. Moreover, the proposed algorithm was only compared with 

simple heuristic approaches. Therefore, the proposed algorithm should be evaluated 

on dynamic environment and compared with other metaheuristics algorithms. 

II. Artificial Bee Colony  

Bee algorithms are inspired by biological honeybee behavioural specifically the 

foraging and exploration (Yang, 2014). There are several types of bee algorithms, 

such as honeybee algorithm, virtual bee algorithm, artificial bee colony, and 
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honeybee-mating algorithm. Artificial Bee Colony (ABC) is an optimization 

algorithm developed by Karaboga and Basturk (2008) and Karaboga (2005). The bees 

in ABC algorithm are divided into three groups, namely: employed bees, onlooker 

bees, and scout bees. The idea behind ABC is that for each food source, there is only 

one employed bee. In other words, the total number of employed bees is equal to the 

total number of food sources. When the food source is discarded, the employed bee of 

that food source is forced to be a scout bee. The scout bee will search for new food 

source randomly. The onlooker bees wait in the hive to obtain the information from 

the employed bees. Based on that information, the onlooker bees will choose the best 

food source probabilistically and start foraging (Yang, 2014). ABC algorithm is 

applied to solve job scheduling problem in computational grid. 

A recent study published by Kim, Byeon, Liu, Abraham, and McLoone (2013) 

applied Artificial Bee Colony (ABC) for job scheduling in computational grid. The 

authors proposed Binary ABC (BABC), Efficient Binary Artificial Bee Colony 

(EBABC1), and flexible ranking strategy (EBABC2) algorithms. The study aimed to 

minimize the makespan criterion for job scheduling in grid computing. The 

experiments were conducted using a series of benchmark problems defined by Liu et 

al. (2010). The proposed algorithms were compared with genetic algorithm, simulated 

algorithm, and particle swarm optimization algorithm. In terms of makespan criterion, 

EBABC1 and EBABC2 algorithms achieved the best results among all other 

algorithms with superior performance for EBABC2. However, the experiments were 

conducted using static environment which is not enough to conclude the algorithm 

robustness in dynamic environment. Therefore, conducting more experiments is 

required. In addition, hybridizing artificial bee colony with local search seems a 

promising research area as well.  
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III. Bacterial Foraging Optimization Algorithm 

Bacterial algorithms mimic the behaviour of bacteria in the nature such as foraging, 

reproduction, and movement (Xing & Gao, 2014). There are several types of bacterial 

algorithms, such as bacterial foraging algorithm, bacterial colony chemotaxis, 

superbug algorithm, bacterial colony optimization, and viral system (Xing & Gao, 

2014). Bacterial algorithms have been implemented successfully in various 

scheduling problems such as job shop scheduling problems (Ge & Tan, 2012; Wu, 

Zhang, Jiang, Yang, & Liang, 2007), flow shop scheduling problems (Botzheim, 

Toda, & Kubota, 2012), and assembly line balancing (Atasagun & Kara, 2014). 

Bacterial algorithms have been utilized to solve job scheduling problems in grid 

computing systems. 

Nayak, Padhy, and Panigrahi (2012) proposed an algorithm which combined the 

merits of genetic algorithm and bacterial foraging optimization algorithm called 

Genetic Bacterial Foraging (GBF). The proposed algorithm implemented a dynamic 

mutation as presented in Michalewicz (1999) and crossover operator developed by 

Michalewicz (1992). The aim of the study is to reduce the execution time as a cost 

function. The experiment was conducted using dynamic environment generated with a 

simulator developed by the authors. The proposed algorithm was compared with 

Bacterial Foraging Optimization (BFO) algorithm. The experiment results show that 

the proposed GBF algorithm outperforms BFO algorithm. However, the experiment 

scenario was very small, using only four resources and five tasks. Therefore, more 

studies are required to understand the behaviour of bacterial foraging optimization 

algorithm. 
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A study has been conducted by Rajni and Chana (2013) on Bacterial Foraging 

optimization (BFO) algorithm for resource scheduling on computational grid systems. 

The study aimed to optimize makespan and cost values by considering Resource 

Provisioning (RP) unit adopted from Aron and Chana (2012). The proposed approach 

was implemented using GridSim simulator developed by Buyya and Murshed (2002). 

The experiments were conducted by generating a workload using a model defined in 

Lublin and Feitelson (2003) and expected time to compute model presented in Ali et 

al. (2000a). The authors compared the proposed algorithm with genetic algorithm, 

simulated annealing, and GA-TS algorithms. The experiment results show that the 

proposed BFO algorithm outperforms other algorithms in terms of makespan and cost 

values for both low and high machine heterogeneity benchmark problems. In addition, 

the results show that the Coefficient of Variation (CV) of the proposed algorithm is in 

the range 0%-2% which confirms the stability of the proposed algorithm. However, 

the experiments are very limited and did not include some dynamic grid attributes 

such as resource failure which is considered very important in dynamic grid 

computing system (Feitelson, 2013). 

IV. Particle Swarm Optimization Algorithm 

Particle Swarm Optimization (PSO) algorithm was initially developed by Eberhart 

and Kennedy (1995) and Kennedy and Eberhart (1995). PSO is considered as a 

population-based optimization algorithm based on biological swarm intelligence 

(Noghanian, Sabouni, Desell, & Ashtari, 2014). PSO has been implemented to solve 

many real time problems such as face recognition (Kothari, Anuradha, Shah, & 

Mittal, 2012), assembly scheduling problem (Tian, Liu, Yuan, & Wang, 2012), 

Resource-Constrained Project Scheduling Problem (Jia & Seo, 2013), and job shop 
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scheduling problem (Li & Pan, 2012). PSO is applied successfully to solve job 

scheduling problems in computational grid system. 

In job scheduling problems for grid computing environment, a fuzzy PSO approach 

was published by Abraham, Liu, Zhang, and Chang (2006). The proposed algorithm 

extends the position and velocity of the particles from real vectors to fuzzy matrices. 

The study aimed to optimize the scheduler performance in terms of makespan and 

flowtime as a bi-objective. The performance of the proposed algorithm was evaluated 

with genetic algorithm and simulated annealing approaches. The experiments were 

conducted using three static instances generated by the authors. The evaluation results 

show that the proposed fuzzy PSO algorithm was able to achieve better makespan 

values than other algorithms. However, the results did not include flowtime values 

which are supposed to be the second objective of the study. Thus, no conclusion could 

be provided regarding the performance of the proposed algorithm. Moreover, the 

experiments were conducted using only static scenario which is not enough to explore 

the proposed algorithm behaviour.  

Izakian, Abraham, and Snasel (2009a) proposed a particle swarm optimization 

algorithm for meta-tasks scheduling in distributed heterogeneous computing systems. 

The proposed approach aims to minimize makespan as an objective function. The 

implemented PSO algorithm was compared with genetic algorithm as presented in 

Braun et al. (2001), and continuous PSO developed by Salman, Ahmad, and Al-

Madani (2002). For the evaluation purpose, the authors generated benchmark 

problems using expected time to compute model proposed in Braun et al. (2001). The 

experiment results show that the proposed algorithm achieved the best makespan 

values in all instances. Moreover, the proposed algorithm has the lowest standard 
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deviation. It is clear from the results that the proposed PSO algorithm was able to 

achieve good results. However, the experiments were conducted on a static job 

scheduling scenario which is not enough to make a conclusion about the algorithm 

efficiency. Hence, more studies and experiments required using dynamic job 

scheduling scenario in order to understand the algorithm behaviour.  

Another study which implemented PSO approach has been proposed by Izakian, 

Ladani, Zamanifar, and Abraham (2009). The study objectives are to minimize the 

makespan as well as flowtime simultaneously. The approach’s implementation was 

based on static environment using expected time to compute model to estimate the 

required time for processing task in a machine. The proposed algorithm was 

compared with Fuzzy PSO presented in Abraham et al. (2006). The experiment results 

show that the proposed PSO approach performs better than Fuzzy PSO. However, no 

details were provided regarding the benchmark problem and the flowtime results were 

not reported in the study. In addition, the proposed PSO algorithm has not been 

implemented with dynamic environment. Therefore, the proposed approach requires 

more experiments with dynamic environment and compared with other metaheuristics 

algorithms as well.  

Another study using PSO to schedule jobs in heterogeneous computing systems has 

been proposed by Izakian, Abraham, and Snasel (2009b). The proposed algorithm 

aims to minimize the makespan value as a performance criterion. The study compared 

the proposed algorithm with GA presented in Braun et al. (2001) and PSO presented 

in Salman et al. (2002). The conducted experiment is based on static environment 

using expected time to compute model proposed in Braun et al. (2001). The empirical 

results show that the proposed PSO algorithm achieved the best makespan in all 
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instances. In addition, the algorithm convergence time was the lowest in most 

instances. In spite of these good results achieved using the proposed PSO algorithm, 

more experiments are required using dynamic environment in order to evaluate the 

algorithm robustness.  

A comparison of four metaheuristics algorithms for task scheduling in computational 

grid system was presented by Meihong and Wenhua (2010). The algorithms used in 

their study for comparison are genetic algorithm, ant colony optimization algorithm, 

particle swarm optimization algorithm, and simulated annealing algorithms. The 

evaluation criteria are makespan and the mean response time. The authors conducted 

experiments using static environment. The results show that PSO algorithm has the 

best performance among the other algorithms. However, the experiments were 

conducted in static environment and very small scenario (5 users and 3 resources). 

Therefore, the robustness of the compared algorithms is not proven. In addition, only 

classical versions of the algorithms are used while enhanced versions are better in 

terms of performance. In order to obtain a clear picture about which metaheuristics is 

better, more investigations and experiments are required using a known benchmark 

such as the one presented in Braun et al. (2001).  

Izakian, Ladani, Abraham, and Snasel (2010) proposed a discrete particle swarm 

optimization for job scheduling in grid computing. Their approach aims to minimize 

the makespan and flowtime simultaneously in grid computing. In their study, they 

provide two representations for mapping between problem solution and PSO particle. 

The first representation used a direct encoding that is a vector with size equal to the 

number of tasks. Each element in the vector represents the machine number. The 

second representation used a binary matrix size of (jobs number * machines number). 
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The matrix was represented with values either 0 or 1. The benchmark problem used to 

evaluate the proposed algorithm is based on expected time to compute model 

presented by Braun et al. (2001). The proposed algorithm was compared with GA, 

ACO, PSO, and Fuzzy PSO algorithms. The experiment results show that the 

proposed algorithm achieved good results in makespan reduction, while for flowtime, 

the algorithm performed the worst. Although the study aims to minimize makespan 

and flowtime, the contradiction is clear between them such that the algorithm could 

not reduce both of them simultaneously. This contradiction is mentioned by Xhafa 

and Abraham (2010) in grid computing as well. In general, the proposed algorithm 

performs better than other algorithms. However, the experiments were conducted 

using only static environment. Therefore, more experiments on dynamic environment 

are required to conclude the performance of the proposed algorithm.  

Another study using fuzzy particle swarm optimization for job scheduling in grid 

computing has been proposed in H. Liu et al. (2010). In their algorithm, they extended 

the velocity and position of particles from the real vectors to fuzzy matrices. The 

advantages of using fuzzy matrices in PSO are the speed of convergence and the 

increase of the ability to find a faster and feasible solution. The study used the 

makespan criterion to measure the algorithm performance. The performance of the 

proposed algorithm was compared with genetic algorithm and simulated annealing 

algorithm. The experiment results show that the proposed algorithm outperforms the 

other algorithm especially in terms of execution time. However, the study did not use 

a common benchmark in order to evaluate the proposed algorithm with other 

approaches. In addition, only genetic algorithm and simulated annealing algorithms 

were used for comparison which is also not enough to give a complete picture. 
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Moreover, the experiments were conducted with static environment only. Therefore, it 

is not clear how the proposed algorithm will behave in dynamic environment. 

2.2 Hybrid Approaches in Job Scheduling 

The term hybrid refers to the concept of combining two or more algorithms in order to 

complement each other hoping to achieve a better performance. Hybridization could 

be between any types of algorithms such as heuristic and metaheuristics algorithms 

(Talbi, 2013a). There are two levels of hybridization, namely low and high levels 

(Xhafa, Kolodziej, Barolli, & Fundo, 2011). In low level (also called strong coupled) 

hybridization, the algorithms interchange their inner procedures. One of the hybrid 

algorithms is considered as the main while the others are subordinate algorithms. The 

low level hybridization could be presented as 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1(𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2), where 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1 is the main algorithm and 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2 is the subordinate algorithm. On 

the other hand, high level hybridization could be represented as 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1 +

 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2 + ⋯ +  𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑛 where 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1 will start first, then it will call 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2 after it finishes its process and so on. The sequences could be repeated 

any number of times (depending on the algorithm design). Hybrid approach achieved 

very good performance in many fields compared with stand-alone approaches 

(Kolodziej, 2012). Hybridizing algorithms show promising results in job scheduling 

for grid computing. 

Ritchie and Levine (2004) published a hybrid approach between ant colony 

optimization and tabu search algorithm for job scheduling in heterogeneous 

computing environment. The idea behind this hybridization is that the tabu search 

algorithm executed to the best-so-far solution found by the ants after some iteration 

which is controlled by a parameter. In other words, tabu search algorithm is not 



68 

applied to every ant solution due to the longer processing time of tabu search 

algorithm. The proposed algorithm adopted ACO implementation from Dorigo and 

Stutzle (2003) and tabu search implementation from Ritchie and Levine (2003) which 

is based on the approach described in Thesen (1998). The experiments were 

conducted using static benchmark problems based on expected time to compute 

model presented by Braun et al. (2001). The implemented algorithm was compared 

with Min-Min, GA, Min-Min+LS, Min-Min+Tabu developed by Braun et al. (2001). 

The experiment results show that the proposed approach outperforms other algorithms 

for all instances in terms of makespan. However, the study reported that the proposed 

algorithm took 3.5 hours to finish the execution of 1000 iterations of ACO which is 

considered a very long time compared to 90 seconds according to Xhafa, Duran, et al. 

(2008). In addition, the experiments were conducted using only static environment 

and makespan criterion which is not enough to conclude the algorithm performance. 

Nevertheless, the study provides practical hybridization details which could be re-

implemented with enhancement. 

A hybrid approach for job scheduling in computational grid systems proposed by 

Xhafa (2007). The proposed algorithm is based on memetic algorithms and several 

local search algorithms. The idea of the hybridization is that MA can use any of the 

16 local search algorithms during the search process. In addition, MA algorithm 

hybridized with TS algorithm as a high level hybridization (MA+TS). The proposed 

algorithm aims to minimize the makespan and flowtime as a multi-objective 

optimization. The study investigated the proposed algorithms on static and dynamic 

grid computing environment. For static environment, the evaluation is based on ETC 

model proposed in Braun et al. (2001) and the proposed algorithms MA and MA+TS 

compared with two versions of GA implemented in Braun et al. (2001) and Carretero 
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and Xhafa (2006). Furthermore, the study conducted experiments on dynamic grid 

computing environment using HyperSim simulator developed by Phatanapherom et 

al. (2003). The experiment results show that for static environment, MA+TS 

outperforms all other algorithms in terms of makespan, while MA outperforms all 

other algorithms in terms of flowtime. Similar results were also obtained for dynamic 

environment experiments. However, the experiments on dynamic environment did not 

evaluate the proposed algorithms with other algorithms (only comparing MA with 

MA+TS). Therefore, more evaluation is needed with other algorithms especially in 

dynamic environment. Nevertheless, the study provides a good foundation regarding 

the performance of local search with metaheuristics. 

Another study called “An Improved Ant Colony Algorithm for Grid Scheduling 

Problem” was conducted by Bagherzadeh and MadadyarAdeh (2009) to improve AS 

algorithm. They argued that using the traditional AS (task, machine) will not achieve 

the optimal solution. In their approach, they hybridized between MaxStd and AS 

methods. The idea behind that is to give a higher probability to tasks that have higher 

standard deviation. They conducted experiments with twelve different types of 

problems. The results show an improvement in makespan and utilization vary from 

3% to 29% depending on the problem type. However, the proposed algorithm was 

compared with ant system algorithm, and not ant colony system, which is considered 

the newest version in ant colony optimization algorithms. 

A study on low level hybridization between Genetic Algorithm and Tabu Search 

GA(TS) for job scheduling in grid computing has been published by Xhafa, Gonzalez, 

Dahal, and Abraham (2009). The idea behind this hybridization is to enforce more 

exploitation of solution space using the smart process of tabu search algorithm. The 
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proposed approach starts with genetic algorithm as the main algorithm and calls tabu 

search algorithm to improve the population individuals. The hybrid algorithm 

considers the scheduling problem as a bi-objective optimization problem. The study 

aims to minimize makespan as a primary objective and then minimize flowtime as a 

secondary objective. The implementation and comparison of genetic algorithm and 

tabu search is adopted from Carretero et al. (2007) and Xhafa, Carretero, et al. (2009) 

respectively. For evaluation purpose, the experiments were conducted using a grid 

computing simulator developed by Xhafa et al. (2007). A three static scenario was 

generated using expected time to compute model as a benchmark problem for 

experiments. In terms of makespan, the experiment results show that the proposed 

hybrid algorithm performs better than GA and TS for small and medium size 

instances. However, GA(TS) achieved the worst value for large size problems. In 

term of flowtime, GA(TS) achieved the best result for large size instances and the 

worse values for other instances. The authors concluded that the proposed hybrid 

algorithm outperforms other algorithms in terms of makespan for small and medium 

size grid scenarios which is the prime objective of the study. In addition, the 

experiment results show that the bi-objective optimization problem in grid computing 

is a contradictive problem. However, the experiments are very limited in terms of 

static instances and the algorithms compared with. In addition, it is very important to 

test any hybrid approach on dynamic grid computing simulator in order to observe 

how the algorithm can cope with dynamic change.  

A hybrid genetic algorithm based scheduler with secure and task abortion features has 

been proposed by Kolodziej, Xhafa, and Bogdanski (2010). The study proposed four 

hybrid genetic algorithms, namely Secure Genetic Algorithm (SGA), Risky Genetic 

Algorithm (RGA), Player’s Genetic Algorithm (PGA1), and Player’s Minimum 
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Completion Time (PMCT). Besides the proposed algorithm for scheduling jobs in 

grid computing, the authors added security and task abortion mechanisms which are 

considered as crucial issues in grid systems. The performance of the proposed 

algorithm was measured through the makespan and flowtime metrics as bi-level 

optimization problem. The study focused on independent job scheduling problem in 

batch mode as described in Xhafa and Abraham (2010). In addition, the problem was 

formulated using expected time to compute matrix model presented by Ali et al. 

(2000b). The implementation of the proposed genetic algorithm for independent batch 

scheduling was adopted from Carretero et al. (2007). The experiments were 

conducted using discrete event-based grid simulator called HyperSim-G developed by 

Xhafa and Carretero (2009). Using HyperSim-G, static and dynamic sets of instances 

were generated as benchmark problems in order to evaluate the proposed algorithm. 

The experiment results show that PMCT algorithm outperforms other algorithms for 

static and dynamic instances in terms of makespan. For the case of flowtime, all 

results are similar except for very large grid size where PMCT did not perform well as 

other algorithms. Despite the fact that security and task abortion are very important 

features in grid computing, security could be separated from the scheduler layer to 

improve the algorithm performance. Regarding task abortion, more studies are 

required to define a sufficient mechanism for such a complex process. 

Song, Sun, and Cao (2010) presented a study on the convergence of converse ant 

colony algorithm for job shop scheduling problem. In their study, they addressed two 

problems with traditional ACO algorithm, slow and easy to fall into the local optimal 

solution. To solve these problems, they proposed an algorithm called “Hybrid 

Converse Ant Colony Optimization (HCACO)” with global convergence. HCACO 

algorithm uses ACO algorithm with simulated annealing algorithm. The hybrid 
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algorithm can quickly rule out the poor solutions, so that the pheromone of optimal 

path will be updated immediately, and the search time will be reduced. Because of 

using SA algorithm which has the probability of escaping from the local optimization, 

it is sure that ants will not fall into local optimal solution. The experiment was 

conducted using a simulator with 13 hard benchmark problems. The results presented 

a comparison between HCACO, Parallel Genetic Algorithm (PGA2), and ACO. From 

the results, HCACO shows the best result in terms of average relative error percentage 

which is smaller than PGA and ACO. The calculation time of HCACO and PGA was 

equal. 

A paper written by Wang, Duan, Jiang, and Zhu (2010) presented a new algorithm for 

grid task scheduling using Genetic and Simulated Annealing algorithms (GSA). The 

algorithm combined genetic algorithm with simulated annealing algorithm. They 

pointed out that in spite of GA being fast in searching rate at the beginning; it suffers 

from trapping in local minimum, while SA takes a long time to get the global 

minimum. Based on those reasons, the authors combined GA with SA to inherent the 

convergence property of simulated annealing and parallelism capability of genetic 

algorithm. The hybrid algorithm GSA will start with GA which is stopped 

prematurely after satisfying the termination condition. After that, each node visited at 

the last generation with the best node found overall are taken as starting input for the 

simulated annealing algorithm. The experiment results show that GSA performs better 

than GA and SA. GSA has the ability to converge to a global minimum because of SA 

property. However, the experiment was conducted using only 15 tasks and 3 resources 

which are not enough to prove the robustness of the algorithm and the feasibility of 

calculation time for big problem space such as 100 tasks and more than 10 resources. 

Therefore, more investigation is needed to evaluate the hybrid algorithm GSA. 
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A hybrid approach between population and local search algorithms has been 

developed by Xhafa, Kolodziej, Barolli, and Fundo (2011). The study represents a 

high level hybridization between GA and TS, named GA+TS algorithm for 

scheduling in grid computing. The algorithm starts with GA for a specific time, and 

then passes the results to TS algorithm as an initial solution. TS algorithm will search 

the neighbourhood of the initial solution until the termination condition is met. The 

authors expected that GA will explore the solution space widely, while TS will make 

in-depth exploration of the best solution found by GA. The objective of the proposed 

algorithm is to enhance the makespan as a primary objective and flowtime as a 

complement objective. This type of optimization scheme is referred as a hierarchic 

optimization with priority to makespan criterion. Both algorithms, GA and TS, have 

been implemented and evaluated for job scheduling in computational grid in Carretero 

et al. (2007) and Xhafa, Carretero, et al. (2009). The experiments were conducted 

using a HyperSim-G simulator developed by Xhafa et al. (2007). The study 

considered static and dynamic grid computing environment. The proposed algorithm 

evaluated with GA, TS and GA(TS) algorithms proposed in Carretero et al. (2007), 

Xhafa, Carretero, et al. (2009), and Xhafa, Gonzalez, et al. (2009). The experiment 

results show that the proposed algorithm outperforms other algorithms only in one 

instance for static environment in terms of makespan and flowtime. While for 

dynamic environment, the proposed algorithm achieved good results only in one small 

size grid instance in terms of makespan. However, the GA+TS did not perform good 

compared to other algorithms in terms of flowtime. In spite of these results, the 

concept of using local search with population algorithm needs more investigation 

specifically, the hybridization of different level and different population algorithms. 
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A study conducted by Xhafa, Kolodziej, Barolli, Kolici, et al. (2011) proposed a 

hybrid approach between GA and TS for independent batch job scheduling in grid 

computing. The hybrid algorithm aims to optimize the makespan and flowtime as a 

bio-objectives scheduling problem. In addition, the authors proposed hierarchic and 

simultaneous approaches for optimizing makespan and flowtime as well. Two types 

of hybridization provided are low and high level hybridizations, which in turn result 

in GA(TS) and GA+TS algorithms. The experiments were conducted considering 

static and dynamic grid computing environment using HyperSim-G simulator 

developed by Xhafa et al. (2007). The proposed algorithms were compared with GA 

proposed in Carretero et al. (2007) and TS represented in Xhafa, Carretero, et al. 

(2009). The experiment results show that the proposed hybrid algorithms outperform 

the other stand-alone algorithms in makespan criterion. However, in terms of 

flowtime criterion, GA and TS stand-alone algorithms outperform the proposed 

hybrid algorithm; such a contradiction is normal for job scheduling in grid computing. 

In spite of the limitation on the experiments and benchmark problem, the study 

illustrated the implementation of the hybrid algorithms clearly. 

A study has been proposed by Xhafa, Duran, and Kolodziej (2011) on exploitation 

and exploration of solution space for job scheduling in computational grid systems. 

The study aimed to utilize the population-based algorithm as an exploration 

mechanism for search space and hybridize it with local search as an exploitation 

mechanism. The authors proposed Memetic Algorithms (MAs) as a population-based 

exploration method and Hill Climbing (HC) and Tabu Search (TS) algorithms as 

exploitations methods. The proposed algorithm was evaluated using static benchmark 

problem adopted from Braun et al. (2001) and dynamic benchmark problem generated 

using HyperSim simulator developed by Phatanapherom et al. (2003). The proposed 
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hybrid MA+TS was compared with GA results implemented in Braun et al. (2001). 

The experiment results show that the proposed algorithm achieved the best makespan 

values for all instances. However, for flowtime results, the non-hybrid approach, that 

is MA approach, achieved the best flowtime values. Similar results were obtained for 

dynamic experiments where MA+TS achieved the best results for makespan, but 

worst for flowtime. It is clear from the results that the proposed algorithm faced 

contradictory optimization problem which is not possible to improve both objectives 

of makespan and flowtime. 

Nithya and Shanmugam (2011) proposed new Hybrid Ant Colony Optimization 

(HACO) algorithm for job scheduling in grid computing. In their research, they 

focused on high performance computing criteria to decrease the execution time in grid 

computing. The proposed algorithm is based on ant colony optimization for dynamic 

batch mode heuristic mapping. The new approach considers each job as an ant in the 

colony and the pheromone details are provided to help in finding the optimal solution. 

The proposed algorithm uses a new rule for updating the pheromone, and probability 

matrix calculation formula in order to increase the efficiency of the existing ant 

colony algorithm. Different types of experiments were conducted. The results show 

that the proposed algorithm reduces the makespan in reasonable time. However, the 

load balancing criterion is neglected in their research which is a very important factor 

in grid computing performance and throughput.  

Another study presented by Wei, Zhang, Li, and Li (2012) aimed to improve the ant 

colony algorithm for grid task scheduling. They introduced a new type of pheromone 

and a new node redistribution rule, at the same time, the algorithm can track the 

performance of resources and tag it. The proposed algorithm considers the load 
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balance, task execution time, and resource fault. The approach replaces the path 

pheromone into node pheromone to describe the handling capacity of current 

resource. The meaning of pheromone in this algorithm is resource processing 

capacity. The proposed system model consists of task receiver, task scheduler, and 

resource information service collector. The new pheromone is called resource 

suitability. By using this formula, the algorithm can evaluate the resource stability and 

increase its pheromone. Another important improvement in this algorithm is the 

resource redistribution rule which handles the unsuccessful task processing. The 

results are compared with traditional ant algorithm. They claimed that their algorithm 

performs better than the basic ant algorithm. The idea of a second type of pheromone 

is interesting, but the experiment is very limited. In order to prove this concept, more 

experiments are needed and more comparison with other algorithms such as ant 

colony systems, and ant systems are required.  

A recent study on hybrid approach between ant colony optimization and cuckoo 

search algorithm for job scheduling in grid computing has been presented by Raju, 

Babukarthik, and Dhavachelvan (2013). The authors tried to combine the advantages 

of pheromone in ant colony optimization with local search feature of cuckoo search 

algorithm. The study aimed to minimize the makespan value for job scheduling in 

computational grid systems. The experiments were simulated using parallel 

computing toolbox in MATLAB. The proposed algorithm performance was compared 

with ant colony optimization algorithm using static scenario developed by the authors. 

The experiment results show that the proposed algorithm executes faster than ACO 

algorithm. However, the makespan values which is supposed to be the study objective 

is not reported. In addition, the paper did not specify which ant colony optimization 

member was used in the hybridization. Moreover, the experiments were very limited 
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in terms of tasks and resources used and the benchmarks were unknown. Therefore, 

more studies are required to investigate the algorithm performance, especially in 

dynamic environment. Nevertheless, the idea of hybridizing new metaheuristics 

algorithms such as cuckoo search algorithm with ant colony optimization is a useful 

idea. 

2.3 Grid Simulator 

One of the main factors that affect the performance of a grid computing is the 

workload to which the system is subjected (Feitelson, 2013). Evaluating the job 

scheduling algorithm with wrong workloads will lead to erroneous results which 

cannot be relied upon (Smith, 2007). The workload could be classified into static and 

dynamic workload. The author also stated that the differences between static and 

dynamic workloads may have subtle implications for performance evaluation. 

Therefore, an experiment that utilizes static workloads is incapable to evaluate the 

performance of job scheduling algorithm. Feitelson (2013) has also stated that static 

workload cannot be considered as valid samples of real dynamic workloads. 

Organizations such as System Performance Evaluation Consortium, Grid Workloads 

Archive and Transaction Processing Performance Council provide several 

benchmarks on CPU, network file system, web servers, cluster, grid, database and 

parallel distributed systems for evaluation of computer systems (Feitelson, 2013). 

These benchmarks are useful to be analyzed and modelled.  

One of the successful models for heterogeneous static computing system is Expected 

Time to Compute (ETC) proposed by Ali et al. (2000). The model arranges the 

information in a two dimension matrix called ETC matrix. Each entry in the matrix, 

ETC [i, j], represents the expected execution time of task i on machine j. In ETC 



78 

matrix, the elements along a row represent the estimates of the expected execution 

times of a given task on different machines, while the elements along a column give 

the estimates of the expected times of different tasks on a given machine. Two 

methods are used in ETC model, namely Range Based ETC Matrix Generation and 

Coefficient-of-Variation Based ETC Matrix Generation. The first method used normal 

distribution while the second method used gamma distribution. However, there is a 

limitation with the ETC model. Its computing capacity of resources remains 

unchanged (static) during tasks execution. Thus, ETC model  does not reflect the real 

dynamic environment in grid computing (Xhafa & Abraham, 2008a). 

GridSim is one of the popular simulators for static job scheduling in grid computing 

(Hao, Liu, & Wen, 2012). GridSim is a java-based discrete-event simulation toolkit 

which can simulate heterogeneous resources, users, applications, brokers and 

schedulers in grid computing. However, GridSim suffers when simulating more than 

2,000 grid sites concurrently due to the memory consumption. In addition, GridSim 

does not simulate the failure of resources which is one of the dynamic natures in real 

grid computing environment. A simulator for mapping jobs to resources in grid 

environment was also proposed by Chaturvedi and Sahu (2011). They developed their 

simulator using C++ language for ten metaheuristics algorithms. However, their 

simulator is based on ETC model which can simulate only static environment.  

Caron, Garonne, and Tsaregorodtsev (2007) developed a simulator for many clusters 

of heterogeneous nodes belonging to a local network. Their simulator was developed 

based on Simgrid toolkit proposed by Grosan and Abraham (2007). They used the 

improved Simgrid simulator in their experiments for batch system. Probability 

distributions such as Gamma, Gaussian and Poisson were available to simulate the 
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pattern of arrival of jobs. However, the simulator lacks the attribute of resource 

failure.  

For large distributed grid systems and complex job scheduling, a simulator called 

GangSim was developed by Dumitrescu and Foster (2005). The simulator focuses on 

the interactions between local and community reservation allocation policies. 

GangSim allows parallel execution running on real resources which make scheduling 

process faster. GangSim includes components such as external scheduler, local 

scheduler, data scheduler, monitoring distribution points, and virtual organization. In 

spite of all these components in GangSim, the authors stated that GangSim is still far 

from an accurate simulation of the grid environment, primarily due to various 

idiosyncratic features.  

Grid World Archive (GWA) provides archives of operational data that can be used in 

evaluating job scheduling algorithms. However, GWA archives lack details and 

systematic description of the grid or cluster resources and from where the data were 

collected (Klusacek & Rudova, 2010). In addition, information on the background of 

the load, resource failures or specific user’s requests were not provided. It can be seen 

that present models cannot fully simulate the dynamic nature of jobs and resources in 

the grid environment. 

2.4 Conceptual Framework 

This study focused on metaheuristics algorithms domain specifically on the 

hybridization between ant colony system, genetic algorithm, and tabu search 

algorithms. Figure 2.7 illustrates the research conceptual framework. 
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Figure 2.7. Research conceptual framework 

In Figure 2.7, the framework starts with metaheuristics algorithms components. There 

are several categorise of metaheuristics which could be classified as population or 

individual based, swarm intelligence, local search, nature inspired algorithm. 

However, there is no standard classification for metaheuristics algorithms (Blum & 

Roli, 2003). This study selects ant colony system algorithm from swarm intelligence 

branch, genetic algorithm from evolutionary branch, and tabu search from local 

search branch. From these three algorithms, four hybridized algorithms are proposed 

in this study, namely ACS(GA), ACS+GA, ACS(TS), and ACS+TS. These hybrid 

algorithms are based on low and high level of hybridization between ACS, GA, and 

TS algorithms. The low level hybridization will enhance the exploration mechanism 

of ACS algorithm, while the high level hybridization will refine the final solution 

found by ACS algorithm. For evaluation purpose, the proposed hybrid algorithms are 

implemented and evaluated on job scheduling problem in static and dynamic grid 

computing system. 
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ACS(GA) 

ACS+GA 

ACS(TS) 

ACS+TS 
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2.5 Summary 

It is clear from the previous studies that scheduling problem is NP-complete problem. 

So far, there is no exact algorithm for solving NP-complete problems. Therefore, 

approximate algorithms were used for solving such a problem. All the approximate 

algorithms do not guarantee to find the optimum solution but they try to reach a near 

optimum solution within reasonable time and resources. ACS is one of these 

algorithms which have shown a good performance in solving different types of 

optimization problems. However, in huge instances problem, ACS suffers from 

stagnation problem which makes it insufficient in terms of computation time and 

solution quality. The huge instance means the search space is very big. In order to 

search a wide area of that search space, ants in ACS algorithm need to explore more 

nodes and arcs. In addition, the number of ants needs to be increased. As the 

mechanism of exploration in ACS influenced by random selection, any wrong path 

selection in terms of cost will affect the whole solution quality. Therefore, by 

increasing the exploration rate, the rate of wrong selection will also be increased and 

the final solution definitely will be out of quality (it was clear in most of the literature 

review that the rate of exploration is 0.1). On the other hand, increasing the number of 

ants will make the search process very slow because each ant will construct its own 

solution. Therefore, increasing any parameter value related to those issues will not 

give a better result, instead of that; it will give a worse result. Hence, ACS needs 

better exploration mechanism which is not based on random selection. Tabu search 

algorithm shows very fast convergence with reasonable processing time. Genetic 

algorithm and tabu search are considered as good candidates to do the enhancement 

process for the solution found by ACS algorithm. Therefore, this study proposes 
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hybrid ACS with GA and TS algorithms. The hybrid approaches are implemented in 

low and high level of hybridization. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

This chapter presents the framework and methodology of this study to implement the 

hybrid ACS with GA and TS algorithms. In addition, the level of hybridization for 

each approach is discussed in this chapter as well. Moreover, this chapter provides the 

evaluation details. 

The rest of this chapter is organised as follows. Section 3.1 discusses the research 

framework and Section 3.2 describes the methodology, techniques and the proposed 

algorithms. The summary is presented in Section 3.3. 

3.1 Research Framework 

The research framework started with enhancing the exploration mechanism in ACS 

algorithm by implementing low level hybridization with GA and TS algorithms as 

shows in Figure 3.1. Then, the GA and TS algorithms are hybridized with ACS 

algorithm in a high level order to refine the solution found by ACS algorithm. The 

design and development of the grid computing simulator is undertaken in the third 

phase. Finally, phase four focuses on the evaluation of the proposed algorithms. The 

following sections describe the methods and techniques used in each phase of the 

research framework.   
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Figure 3.1. The Research Framework                      
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3.2 Research Methodology 

The methods that have been used in conducting the research are explained in the 

following sections. 

3.2.1 Problem Formulation 

Job scheduling problem consists of complex job involving the execution of multiple 

tasks. Each job contains one or more tasks (Kolodziej, 2012). This study considered a 

static and dynamic grid computing system based on batch mode. In batch mode, the 

tasks are grouped into a batches and each batch assigned to the resources via the 

scheduler. In addition, this study deals with independent tasks that are tasks with no 

relation between each other. The task size is expressed using Million of Instruction 

(MI) and the resource capacity expressed using Million of Instruction Per Second 

(MIPS) (Kolodziej, 2012). The time required to process a task on a resource is 

calculated using Expected Time to Compute (ETC) model proposed by Braun et al. 

(2001) as follows: 

𝐸𝑇𝐶[𝑖, 𝑗] =
𝑡𝑎𝑠𝑘𝑖

𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑗
                                                             

 (3.1) 

𝐸𝑇𝐶𝑛×𝑚 is a matrix with two dimensions 𝑛 × 𝑚 where 𝑛 is the number of tasks and 

𝑚 is the number of machines. In addition, each machine has a load to process before 

processing the new tasks. The previous load expressed using ready time vector 

(Kolodziej, 2012). The ready time vector of all machines is defined as: 

𝑟𝑒𝑎𝑑𝑦_𝑡𝑖𝑚𝑒 = [𝑟𝑒𝑎𝑑𝑦1, 𝑟𝑒𝑎𝑑𝑦2, … , 𝑟𝑒𝑎𝑑𝑦𝑚]  
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The completion time of 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑗 is calculated using: 

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛[𝑗] = 𝑟𝑒𝑎𝑑𝑦𝑗 + ∑  𝐸𝑇𝐶[𝑖, 𝑗],

𝑖∈𝑇𝑎𝑠𝑘(𝑗)

 
 (3.2) 

Where 𝑇𝑎𝑠𝑘(𝑗) is the set of tasks assigned to the 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗 (Kolodziej, 2012).  

The 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛[𝑗] parameters are the coordinates of the following completion 

vector: 

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 =  [𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛[1], 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛[2], … , 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛[𝑚]]
𝑇
  (3.3) 

Using completion vector, the makespan calculated using the following equation: 

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max
j ∈ M

 (completion[j])  (3.4) 

where M is the number of machines (Kolodziej, 2012). 

The workflow of the sequence of tasks on a given 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 is calculated using the 

following equation: 

𝑊𝐹[𝑗] =  𝑟𝑒𝑎𝑑𝑦𝑗 +  ∑ 𝐸𝑇𝐶[𝑖, 𝑗]

𝑖∈𝑆𝑜𝑟𝑡𝑒𝑑[𝑗]

 
 (3.5) 

Where 𝑊𝐹[𝑗] is the workflow of the 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗, 𝑆𝑜𝑟𝑡𝑒𝑑[𝑗] is a set of tasks assigned 

to the 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗 sorted in ascending order by the corresponding ETC values 

(Kolodziej, 2012). 

 The flowtime value is the sum of  𝑊𝐹[𝑗] parameters using the following equation: 
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𝐹𝑙𝑜𝑤𝑡𝑖𝑚𝑒 =  ∑ 𝑊𝐹[𝑗]

𝑗∈𝑀

 
 (3.6) 

The utilization metric is calculated using the following equation (Kolodziej, 2012): 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  
∑ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛[𝑗]{𝑗∈𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠}

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ∙ 𝑛𝑢𝑚𝑛𝑒𝑟 𝑜𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠
 

 (3.7) 

3.2.2 Dynamic Expected Time to Compute 

For ACS implementation, the heuristic information needs to be defined. For static 

environment, heuristic value is calculated from the Expected Time to Complete (ETC) 

matrix using {1 / (ETC𝑖𝑗 + Load𝑗)} where ETC𝑖𝑗 represents the expected time to 

compute task 𝑖 on machine 𝑗 Equation (3.1), and Load𝑗 is the previous load assigned 

to machine 𝑗 (Ku-Mahamud & Alobaedy, 2012). For dynamic environment, this study 

will calculate the heuristic value from the Dynamic Expected Time to Complete 

(DETC) matrix using {1 / (DETC𝑖𝑗 + Load𝑗)} where DETC𝑖𝑗 represents the dynamic 

expected time to compute task 𝑖 on machine 𝑗, and Load𝑗 is the previous load assigned 

to machine 𝑗. Longer computing time and more loads will produce a smaller heuristic 

value, which will make the probability of selecting this machine smaller and vice 

versa.  

3.2.3 Solution Encoding 

One of the most important parts of any metaheuristics algorithms is how to encode the 

solution which is related to the algorithm data structure (Michalewicz, 1999). This 

study implemented the solution encoding using a vector (Kołodziej & Khan, 2012). 

The size of the vector is equal to the number of tasks. The vector value indicates the 
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machine number; therefore, the vector values are in the range of (1 – number of 

machines) (Xhafa et al., 2011). For example: 

Solution_Vector [1] = 2, means task 1 is assigned to machine number 2. 

This representation implemented for ant colony system, tabu search, and genetic 

algorithm. For ant colony system, each ant holds an empty vector which represents 

the schedule solution. During construction phase, each ant will assign a value to the 

vector which is a machine number. Once the construction phase is finished, the ant 

has the complete vector which is a complete schedule solution. Figure 3.2 shows the 

solution vector used by the ants. 

 

Figure 3.2. The solution vector used by the ants                      

For tabu search algorithm, same representation implemented as a solution trajectory. 

TS algorithm searched the vector neighbourhood using methods, such as swapping the 

adjacent machine. The vector will always represent a valid schedule solution as long 

as the vector values in the range of (1- number of machines). 

For genetic algorithm, the solution vector considered as a chromosome. The following 

scenario is used in demonstrating the practicality of the proposed representation. A 
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scheduler has to assign five tasks (t) to four resources (r). Figure 3.3 shows the 

solution vectors contain the resource number. 

 

Figure 3.3. Solution vectors used by genetic algorithm 

Note that the tasks sequences are fixed in ascending order ( 𝑡1, 𝑡2, … , 𝑡𝑛). This type of 

solution vector contains less information (only resource number) and easier to 

manipulate with operations such as crossover in genetic algorithm. For example, 

applying crossover after the third gene in Figure 3.3 will produce new solutions as 

shows in Figure 3.4. 

 

Figure 3.4. The new solution vectors produced by crossover operator                      

In validating the solution, changing the resource order will always produce valid 

solution even if there are resources that are assigned more than once or not utilized at 

all. In other words, validation of the solution can be omitted. Thus applying this type 

of representation will reduce the calculation process and time. 

3.2.4 Objective Function 

There are many criteria in job scheduling to measure the solution quality, such as 

makespan, flowtime, utilization, matching, and balance. Due to the importance of 
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makespan metric, this is study considered the makespan value as the main objective to 

minimize using the following fitness function for GA and ACS (Braun et al., 2001): 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛
 

 (3.8) 

Makespan value calculated using equation (3.4). Solution with smaller makespan 

value means it has higher fitness value. For TS algorithm, the makespan value is the 

fitness value itself, that is: 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑚𝑎𝑘𝑒𝑝𝑠𝑎𝑛. 

3.2.5 Ant Colony System Algorithm Implementation 

ACS algorithm starts with initializing the parameters and pheromone trails. The initial 

pheromone is calculated as (Dorigo & Stutzle, 2004):  

1/((𝑛𝑒𝑎𝑟𝑒𝑠𝑡 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 − 𝑠𝑜𝑙𝑢𝑡𝑖𝑛) ∙ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ∙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠))  

 (3.9) 

Once the initializing process is done, each ant in ACS starts solution construction 

process using the following equations: 

𝑃𝑖𝑗
𝐴𝑛𝑡𝑘 = {

𝑎𝑟𝑔𝑚𝑎𝑥 {[𝑡𝑖𝑗] . [1 / (𝐷𝐸𝑇𝐶𝑖𝑗 + 𝐿𝑜𝑎𝑑𝑗)]
𝛽

} ,   𝑖𝑓 𝑞 ≤ 𝑞0; 

𝐽                                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;
                                                                                      

 

 (3.10) 

where [𝑡𝑖𝑗] is the pheromone value between the task 𝑖 and machine 𝑗, 𝐷𝐸𝑇𝐶𝑖𝑗 is the 

dynamic expected time to compute task 𝑖 on machine 𝑗 (𝐸𝑇𝐶𝑖𝑗 is used for static), 

Load𝑗 is the previous load on machine 𝑗, 𝛽 is the parameter to control the influence of 

the heuristic information, 𝑞 is a random variable uniformly distributed in [0, 1], 𝑞0 (0 
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≤ 𝑞0 ≤ 1) is a parameter, and 𝐽 is a random variable selected according to the 

probability distribution using the following equation:  

𝑃𝑖𝑗
𝐴𝑛𝑡𝑘 =  

[𝑡𝑖𝑗] .  [1 / (𝐷𝐸𝑇𝐶𝑖𝑗 + 𝐿𝑜𝑎𝑑𝑗)]𝛽

∑ [𝑡𝑖𝑗] .  [1 / (𝐷𝐸𝑇𝐶𝑖𝑗 + 𝐿𝑜𝑎𝑑𝑗)]𝛽𝑀
𝑗=1

 
 (3.11) 

 

During the construction process, each ant will apply a local pheromone update using 

the following equation (Dorigo & Stutzle, 2004): 

𝑡𝑖𝑗 = (1 − 𝜌) ∙ 𝑡𝑖𝑗 +  𝜌 ∙ 𝑡0  (3.12) 

Where 𝜌 (0 < 𝜌 < 1) is the evaporation rate and 𝑡0 is the initial pheromone calculated 

using equation (3.9). 

Once all the ants finished their construction phase, the global pheromone update starts 

using the following equation (Dorigo & Stutzle, 2004): 

𝑡𝑖𝑗  ← (1 − 𝜌) ∙ 𝑡𝑖𝑗 + (𝜌 ∙ ∆𝑡𝑖𝑗
𝑏𝑖𝑗

),   ∀(𝑖, 𝑗) ∈ 𝑇𝑏𝑠,  (3.13) 

Where ∆𝑡𝑖𝑗
𝑏𝑖𝑗

 is the fitness value found be the best-so-far ant using equation (3.8) and 

𝑇𝑏𝑠 are the arcs of the best solution (Dorigo & Stutzle, 2004). 

Appendix A provides the C# code for ant colony system algorithm. 

3.4.6 Genetic Algorithm Implementation 

Genetic algorithm consists of several methods, namely generate population, 

evaluation, selection, crossover, mutation, and combination operators. In this study, 
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each operator is implemented according to Xhafa et al. (2007a). The following are the 

implementation details. 

I. Population  

A genetic algorithm is based on a population approach which is using many 

chromosomes in order to apply operators, such as crossover and mutation operators. 

Each chromosome is representing a complete solution. For job scheduling problem in 

grid computing, the chromosome is a vector of integer numbers [1 - machines 

numbers]. The size of the vector is equal to the number of tasks and the vector index 

represents the task number (Xhafa et al., 2007a).  For example Figure 3.5 shows two 

chromosomes for 5 tasks and three machines. 

Chromosome[1] = 1 2 2 1 2 
 

Chromosome[2] = 2 2 2 1 1 

 

Figure 3.5. Chromosomes for five tasks and three machines 

Each chromosome in the population is created randomly. However, for the proposed 

hybrid approach ACS(GA) and ACS+GA, one of the population chromosome is the 

best solution passed from ACS to GA. 

II. Evaluation  

Every chromosome’s fitness value in the population is evaluated using the objective 

function based on makespan value as defined in equation (3.8). 



93 

III. Selection 

This study implemented the K-tournament method as a selection operator. In K-

tournament operator, K chromosomes are randomly selected from the population. 

From these K chromosomes, two chromosomes are selected with the highest fitness 

values. This type of selection will give chance to all individual to compete fairly 

(Xhafa et al., 2007a). 

IV. Crossover 

There are many types of crossover operators, such as one-point, two-points, multi-

points, and uniform crossover. This study implemented a crossover operator knows as 

Fitness-Based crossover (Xhafa et al., 2007a). In Fitness-Based crossover, the 

crossing is made based on the fitness of the parents chromosomes (solutions). Let 𝑓1 

be the fitness of the first chromosome and 𝑓2 is the fitness of the second chromosome. 

Then the probability of interchanging for each gene (machine) is calculated using: 

𝑝 =  𝑓1 / (𝑓1 + 𝑓2) (3.14) 

In this method, if there is a large difference in the fitness values between two parent 

chromosomes, then it is quite probable that a chromosome of new structure will be 

obtained (Xhafa et al., 2007a). 

V. Mutation 

In this study, the mutation operator implemented based one the Re-balance mutation 

method (Xhafa et al., 2007a). Re-balance mutation tries to reduce the lode of the most 

overloaded machine by swapping jobs from the overloaded machine. The Re-balance 

mutation is done in two steps: 
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a. Choose a machine 𝑚 from most overloaded machines. 

b. Identify job 𝑡 assigned to 𝑚 and 𝑡′ assigned to another machine 𝑚′  such 

that 𝐸𝑇𝐶[𝑡′][𝑚′] <  𝐸𝑇𝐶[𝑡][𝑚]. Jobs 𝑡 and 𝑡′ are swapped. 

VI. Replacement 

The study implemented the replacement operator based on Steady-State Genetic 

Algorithm (SSGA) strategy (Xhafa et al., 2007a). In SSGA, the worse portion of the 

population will be replaced with the new generated chromosomes. The size of the 

population is maintained constantly. In spite of the risk of stagnation, using SSGA 

operator performs very well if  a good solution is required to be find very quickly 

such as the case of job scheduling problem in grid computing where the time to find 

the solution is very restricted (Xhafa et al., 2007a).   

Appendix B provides the C# code for genetic algorithm. 

3.4.7 Tabu Search Algorithm Implementation 

The major parts of the tabu search algorithm implementation in this study are adopted 

from the studies proposed by (Xhafa et al., 2009; Xhafa et al., 2011). The 

implemented tabu search algorithm consists of six parts as described in the following 

points: 

I. Initial Solution 

In this study, the initial solution is passed from the best solution found by the ants in 

ACS algorithm. Therefore, TS algorithm starts with good quality solution in order to 

enhance it. 
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II. Movements 

The implemented TS algorithm applies two types of movements in order to generate 

new solution from the current solution’s neighbourhood, namely transfer and swap. 

Transfer is the process of moving a job from one machine to another, while swap is 

the process of exchanging two jobs assigned to different machines (Xhafa et al., 

2009). 

III. Memory  

This study implemented the recency memory that is, a tabu list with the last time each 

job was assigned to every machine  machines (Xhafa et al., 2009). The recency 

memory is based on a matrix 𝑇𝐿𝑛×𝑚where 𝑛 is the number of tasks and 𝑚 is the 

number of machines (Xhafa et al., 2011).  

IV. Aspiration Criteria 

Two criteria are implemented to accept the tabu movements: First, if the movement to 

the new solution produce better makespan value, then accept the movement. Second, 

if the movement to the new solution produce equal makespan to the best found 

solution with better flowtime value, then accept the movement. 

V. Soft Diversification 

Soft diversification implemented using swap load method in order to move to new 

search space area near to the current solution. This method starts by identifying the 

highest load machine and tries to swap it with the lowest load machine. 
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VI. Strong Diversification 

During the algorithm execution, if the algorithm is not able to find better quality 

solution within 50 iterations, then the strong diversification is triggered. The strong 

diversification is based on a large perturbation of the current solution by changing the 

assignments of 1% of the number of jobs to the random machines (Xhafa et al., 2009). 

Appendix C provides the C# code for tabu search algorithm. 

3.2.8 Enhance ACS exploration 

Hybridization is a term which refers to the approach that combines two or more 

algorithms in order to achieve a result which is not achievable using a stand-alone 

approach (Xhafa, Gonzalez, et al., 2009). Algorithms could be hybridized fully or 

partially to be able to get the best features of the combined algorithms. According to 

Xhafa, Kolodziej, Barolli, and Fundo (2011), there are two levels of hybridization 

between algorithms, namely, high level and low level which refers to the degree of 

coupling between the metaheuristics algorithms. 

In low level hybridization, also called strongly coupled, the algorithms inter-change 

their inner procedures. The level of hybridization reflects the degree of inner 

exchange among the hybridized algorithms. In low level hybridization, one of the 

algorithms is the main algorithm, which calls other algorithms at any time of 

execution (depending on the hybridization design). The low level hybridization 

algorithm could be presented as 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1(𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2) (Xhafa, Gonzalez, et al., 

2009). In this representation, 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1 is the main algorithm and 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2 is 

the subordinated algorithm (Jourdan, Basseur, & Talbi, 2009; Xhafa, Kolodziej, 

Barolli, & Fundo, 2011).  
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This study has implemented both levels in order to determine the best hybridization. 

In low level hybridization, the combined algorithms ACS with GA “ACS(GA)” and 

ACS with TS “ACS(TS)” will interchange their inner procedures. ACS is the main 

algorithm which during its flow will call the GA and TS for enhancement. The 

algorithm notation ACS(GA) and ACS(TS) for low level means ACS is the main 

algorithm and GA or TS is the subordinated algorithm. Low level hybridization 

between ACS and GA will refine the solution produced by each ant in ACS. On the 

other hand, TS will enhance the exploration mechanism in ACS algorithm. Tabu 

search algorithm is based on systematic process (Glover & Laguna, 1997). Therefore, 

tabu search algorithm is a very suitable approach to be combined with ACS algorithm 

to enhance the exploration mechanism. In low level hybridization, the best solution 

produced by the ants is sent to the local search algorithm for enhancement. The 

enhanced solution is returned to the ant for pheromone update. Therefore, the ant will 

update the pheromone using the enhanced solution which makes the ants deposits 

more pheromone value. The pheromone value will influence the movements of the 

ants in the next iteration. Figures 3.6 and 3.7 represent the pseudocode for ACS(GA), 

and ACS(TS) algorithms respectively. 
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Figure 3.6. ACS(GA) (low level) algorithm pseudocode 

In ACS(GA) Figure 3.6, the first step is initializing the ants and distribute them 

randomly  (Dorigo & Stutzle, 2004). Second step is initializing the parameters and 

pheromone trails. The initial pheromone is calculated using equation (3.9).  

The third step is the while loop which is terminated when the condition is met, in this 

study the termination condition is satisfied after 90 seconds of the algorithm 

execution. The fourth step is the loop for each ant. The fifth step is the construction 

using the equation (3.10). 

Procedure ACS(GA) 

Step 1- Initialize the number of ants 𝑛; 

Step 2- Initialize parameters and pheromone trails;                 Equation (3.9) 

Step 3- While (Termination condition not met) Do; 

Step 4-        For i = 1 to 𝑛 Do; 

Step 5-             Construct new solution;                                   Equation (3.10) 

Step 6-             Apply local pheromone update;                       Equation (3.12) 

Step 7-        End For; 

       // Genetic algorithm starts here; 

Step 8-        Initialize population (P); 

Step 9-        Add (best ant solution from ACS to P); 

Step 10-       Evaluate (P);                                                        Equation (3.8) 

Step 11-       While (termination condition not met); 

Step 12-             Ṕ← Select (P); 

Step 13 -            Crossover (Ṕ); 

Step 14-             Mutate (Ṕ); 

Step 15-             Evaluate (Ṕ);                                                   Equation (3.8) 

Step 16-          P ← Replace (Ṕ ∪ P); 

Step 17-          End While; 

           // Genetic algorithm ends here; 

Step 18-          Apply Global pheromone update;                      Equation (3.13) 

Step 19-           Update best found solution 𝑠∗; 

Step 20- End while; 

Step 21- Return the best solution; 

End Procedure;  
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The sixth step is the local pheromone update using the equation (3.12). Step seven is 

the end of the ants loop. Step eight is the start of genetic algorithm which is start by 

initializing the population using random method. Step nine will add the best solution 

found by the ants to the population of genetic algorithm. Step ten will evaluate the 

population using the makespan fitness objective by equation (3.8). Step eleven is the 

main genetic algorithm loop using (while) with termination condition of two seconds. 

Step twelve is the selection process using tournament operator. Step thirteen is the 

crossover operator using fitness based crossover. Step fourteen is the mutation process 

using re-balance operator. Step fifteen will evaluate the new solution using the 

makespan objective function by equation (3.8). Step sixteen is the replication operator 

which replaces the old solution with the new generated solution using SSGA strategy. 

Step seventeen ends the genetic algorithm execution. The best solution found by 

genetic algorithm is passed back to the ant colony system algorithm.  

Step eighteen is the global pheromone update using the equation (3.13). Step nineteen 

will update the best so far solution found by the algorithm. Step twenty ends the ant 

colony system algorithm and the best solution is returned by step twenty one. 

Appendices A and B provides the C# code for ant colony system and genetic 

algorithm respectively.  

The proposed ACS(GA) algorithm is different than other proposed algorithm such as 

the one presented by Liu, Chen, Dun, Liu, and Dong (2008) which is based on using 

genetic algorithm to choose, cross, and mutate the parameters of ant colony algorithm. 

In the proposed ACS(GA) algorithm, the genetic algorithm is used to select, cross, 

and mutate the best-so-far solution found by ants in every cycle as illustrated in 

Figure 3.6 with the step “Add (best ant solution from ACS to P)”. Therefore, GA 
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works as an exploration mechanism to explore the search space based on the solution 

found by the ants in ACS algorithm.  

Another low level hybridization between ant colony system and tabu search algorithm 

is shown in Figure 3.7. 
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Figure 3.7. ACS(TS) (low level) algorithm pseudocode 

 

In Figure 3.7, the first step is initializing the ants and distribute them randomly  

(Dorigo & Stutzle, 2004). Second step is initializing the parameters and pheromone 

trails. The initial pheromone is calculated using equation (3.9).  

Procedure ACS(TS) 

Step 1- Initialize the number of ants 𝑛; 

Step 2- Initialize parameters and pheromone trails;                 Equation (3.9) 

Step 3- While (Termination condition not met) Do; 

Step 4-      For i = 1 to 𝑛 Do; 

Step 5-             Construct new solution;                                   Equation (3.10) 

Step 6-             Apply local pheromone update;                       Equation (3.12) 

Step 7-       End For; 

      // Tabu search algorithm starts here; 

Step 8-        Create solution 𝒔 from best ant 𝑨𝑪𝑺_𝒔∗; 

Step 9-        Create global solution 𝑠∗ ←   𝑠; 

Step 10-      Create tabu list 𝑇𝐿; 

Step 11-      Initialize the aspiration function 𝐴; 

Step 12-      While (termination condition not satisfied) Do; 

Step 13-              Search the neighbourhood 𝑁 of current solution 𝑠: {�̂� ∈ 𝑁(𝑠)}; 

Step 14-              If (move from 𝑠 to �̂� is not in 𝑇𝐿) Then; 

Step 15-                    𝑠 ← �̂�; 

Step 16-                    Update 𝑇𝐿 memories; 

Step 17-              End If; 

Step 18-               Else If (𝑓(�̂�) < 𝐴(𝑓(𝑠)) Then;  

Step 19-                     𝑠 ← �̂�; 

Step 20-                     Update 𝑇𝐿 memories; 

Step 21-               End If; 

Step 22-                If (𝑓(𝑠) < 𝑓(𝑠∗)) Then; 

Step 23-                      𝑠∗ = 𝑠; 

Step 24-               End If; 

Step 25-       End While; 

Step 26-       𝐴𝐶𝑆_𝑠∗ ← Global solution 𝑠∗; 

        // Tabu search algorithm ends here; 

Step 27-      Apply Global pheromone update;                         Equation (3.13) 

Step 28- End while; 

Step 29- Return Global solution 𝐴𝐶𝑆_𝑠∗; 

End Procedure;  
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The third step is the while loop which is terminated when the condition is met, in this 

study the termination condition is satisfied after 90 seconds of the algorithm 

execution. The fourth step is the loop for each ant. The fifth step is the construction 

using the equation (3.10). The sixth step is the local pheromone update using the 

equation (3.12). Step seven is the end of the ants loop.  

Step eight is the starting of tabu search algorithm. TS algorithm starts by creating 

initial solution using the best-so-far solution found by ACS algorithm. Step nine 

makes a global solution which is a copy of the initial solution. Step ten initializes the 

tabu list to store the movement attributes. Step eleven initializes the aspiration 

function. Step twelve is the (while) loop which is terminated after two seconds. Step 

thirteen searches the neighbourhood of the current solution. 

Step fourteen checks if the moving from the current solution to the neighbourhood 

solution is not tabu. If so, the neighbourhood solution will be saved in the current 

solution in step fifteen. Step sixteen will update the tabu list with old position to 

prevent visiting the same location. Step seventeen ends the moving condition. In case 

the movement to the new neighbourhood solution is tabu, the aspiration function at 

step eighteen will check. If the aspiration function returns true, then the 

neighbourhood solution will be saved in the current solution in step nineteen. Step 

twenty will update the tabu list with old position to prevent visiting the same location. 

Step twenty one ends the aspiration function. Step twenty two will check if the current 

solution’s makespan is better than the global solution’s makespan. Step twenty three 

saves the current solution as the global solution and ends with step twenty four. 
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Step twenty five ends the (while) loop and the best solution passed back to ACS 

algorithm in step twenty six. Ant colony system will apply global pheromone update 

in step twenty seven using equation (3.13). Step twenty eight ends the ACS (while) 

loop and the best global solution found by ACS(TS) is returned in step twenty nine. 

TS algorithm works as an enhancing exploration mechanism to explore the search 

space based on the solution found by the ants in ACS algorithm.  

Appendices A and C provides the C# code for ant colony system and tabu search 

algorithms respectively. 

Tabu search algorithm has been implemented in several hybrid algorithms as a local 

search technique. A study proposed by Nagariya, Mishra, and Shrivastava (2014) 

implemented ACO and TS algorithms for job scheduling in computational grid. In 

their study, they apply TS algorithm to identify the local solution and keep the ants 

searching for global solution. In contrast, the proposed ACS(TS) algorithm applies TS 

algorithm to search globally using the best so-far-solution found by the ants at every 

cycle as illustrated in Figure 3.7. The task is handled by “Create solution 𝒔 from best 

ant 𝑨𝑪𝑺_𝒔∗. 

The proposed approaches ACS(GA) and ACS(TS) show that ACS algorithm calls the 

local search algorithm before applying global pheromone update. The local search 

algorithm enhances the best-so-far solution found by the ants. After the enhancement 

process, ACS algorithm will apply the global pheromone update based on the solution 

enhanced by the local search. These hybrid approaches enhance the exploration 

mechanism of ACS algorithm by correcting any wrong decision taken in the previous 

step.  
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3.2.9 Refine the ACS solution 

In order to enhance the solution produced by ACS algorithm, a high level 

hybridization is implemented in this phase. High level hybridization is also called 

loosely coupled hybridization, whereby each algorithm preserves its identity, in other 

words; each algorithm operates fully in the hybridized approach. This type of 

hybridization can be seen as a chain of algorithm execution (𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1 →

 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2  → ⋯  →  𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑛) (Xhafa, Kolodziej, Barolli, & Fundo, 2011). 

This execution can further loop certain numbers of iterations until the termination 

condition is satisfied. Through the algorithms execution, the output solution is passed 

from 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1 to 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2 and so on.  

ACS will start first to generate an initial solution for GA (in ACS+GA) and TS (in 

ACS+TS) algorithms. The initial solution will be passed to GA and TS for 

enhancement. The algorithm notation is: ACS+GA and ACS+TS for high level which 

means ACS starts first followed by GA or TS. In high level hybridization, each 

algorithm preserves its identity without any influence on each other execution.  In 

other words, ACS algorithm execution and pheromone are total independent of GA or 

TS and vice versa.  Figures 3.8 and 3.9 represent the high level pseudocode 

hybridization of ACS+GA and ACS+TS respectively. 
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Figure 3.8. ACS+GA (high level) pseudocode 

 

In ACS+GA Figure 3.8, the first step is initializing the ants and distribute them 

randomly  (Dorigo & Stutzle, 2004). Second step is initializing the parameters and 

pheromone trails. The initial pheromone is calculated using equation (3.9).  

The third step is the while loop which is terminated when the condition is met, in this 

study the termination condition is satisfied after 45 seconds of the algorithm 

Procedure ACS+GA 

// ACS algorithm starts here; 

Step 1-   Initialize the number of ants 𝑛; 

Step 2-   Initialize parameters and pheromone trails;                Equation (3.9) 

Step 3-   While (Termination condition not met) Do; 

Step 4-        For i = 1 to 𝑛 Do; 

Step 5-               Construct new solution;                                 Equation (3.10) 

Step 6-               Apply local pheromone update;                     Equation (3.12) 

Step 7-         End For; 

Step 8-   Apply Global pheromone update;                              Equation (3.13) 

Step 9-   Update best found solution 𝑠∗; 

Step 10- End while; 

  // ACS algorithm ends here; 

  // Genetic algorithm starts here; 

Step 11- Initialize population (P); 

Step 12- Add (best ant solution from ACS to P); 

Step 13- Evaluate (P);                                                        Equation (3.8) 

Step 14- While (termination condition not met); 

Step 15-        Ṕ← Select (P); 

Step 16 -       Crossover (Ṕ); 

Step 17-        Mutate (Ṕ); 

Step 18-        Evaluate (Ṕ);                                                   Equation (3.8) 

Step 19-         P ← Replace (Ṕ ∪ P); 

Step 20- End While; 

    // Genetic algorithm ends here; 

Step 21- Return Global solution from Genetic algorithm; 

End Procedure;  
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execution. The fourth step is the loop for each ant. The fifth step is the construction 

using the equation (3.10). 

The sixth step is the local pheromone update using the equation (3.12). Step seven is 

the end of the ants loop. Step eight is the global pheromone update using the equation 

(3.13). Step nine will update the best-so-far solution found by the ants. Step ten ends 

the (while) loop of ACS algorithm and passes the best solution to genetic algorithm 

for refinement.  

Step eleven is the start of genetic algorithm which is start by initializing the 

population using random method. Step twelve will add the best solution found by 

ACS algorithm to the population of genetic algorithm. Step thirteen will evaluate the 

population using the makespan fitness objective by equation (3.8). Step fourteen is the 

main genetic algorithm loop using (while) with termination condition of 45 seconds. 

Step fifteen is the selection process using tournament operator. Step sixteen is the 

crossover operator using fitness based crossover. Step seventeen is the mutation 

process using re-balance operator. Step eighteen will evaluate the new solution using 

the makespan objective function by equation (3.8). Step nineteen is the replication 

operator which replaces the old solution with the new generated solution. Step twenty 

ends the genetic algorithm execution. The best solution found by genetic algorithm 

returned by the algorithm in step twenty one.  

GA algorithm works as a refinement mechanism to enhance the solution found by the 

ACS algorithm. Appendices A and B provides the C# code for ant colony system and 

genetic algorithms respectively. 
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High level hybridization between ACO and GA has been proposed by Kolasa and 

Krol (2010) for the assignment problem. In each cycle of their algorithm, the best 

solution of the two algorithms is selected and the search is continued by both of them. 

In contrast, the proposed ACS+GA algorithm applies the GA algorithm to refine the 

solution found by ACS algorithm. In other words, the ACS algorithm starts with a 

specific number of iterations or a period of time. Then the solution found by ACS 

algorithm is passed to GA as one of the initial chromosome population. GA will 

refine the solution received from ACS algorithm by applying selection, crossover, and 

mutation operators. The final solution will be produced by genetic algorithm as 

illustrated in Figure 3.8. 

Another high level hybridization between ant colony system and tabu search 

algorithm is shown in Figure 3.9. 
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Figure 3.9. ACS+TS (high level) algorithm pseudocode 

Procedure ACS+TS 

// ACS algorithm starts here; 

Step 1-   Initialize the number of ants 𝑛; 

Step 2-   Initialize parameters and pheromone trails;                Equation (3.9) 

Step 3-   While (Termination condition not met) Do; 

Step 4-        For i = 1 to 𝑛 Do; 

Step 5-               Construct new solution;                                 Equation (3.10) 

Step 6-               Apply local pheromone update;                     Equation (3.12) 

Step 7-         End For; 

Step 8-   Apply Global pheromone update;                              Equation (3.13) 

Step 9-   Update best found solution 𝑠∗; 

Step 10- End while; 

// ACS algorithm ends here; 

// Tabu search algorithm starts here; 

Step 11- Create solution 𝒔 from best ant 𝑨𝑪𝑺_𝒔∗; 

Step 12- Create global solution 𝑠∗ ←   𝑠; 

Step 13- Create tabu list 𝑇𝐿; 

Step 14- Initialize the aspiration function 𝐴; 

Step 15- While (termination condition not satisfied) Do; 

Step 16-      Search the neighbourhood 𝑁 of current solution 𝑠: {�̂� ∈ 𝑁(𝑠)}; 

Step 17-      If (move from 𝑠 to �̂� is not in 𝑇𝐿) Then; 

Step 18-           𝑠 ← �̂�; 

Step 19-           Update 𝑇𝐿 memories; 

Step 20-      End If; 

Step 21-      Else If (𝑓(�̂�) < 𝐴(𝑓(𝑠)) Then;  

Step 22-             𝑠 ← �̂�; 

Step 23-             Update 𝑇𝐿 memories; 

Step 24-       End If; 

Step 25-       If (𝑓(𝑠) < 𝑓(𝑠∗)) Then; 

Step 26-               𝑠∗ = 𝑠; 

Step 27-       End If; 

Step 28- End While; 

Step 29- Return Global solution 𝑠∗; 

End Procedure;  
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In ACS+TS Figure 3.9, the first step is initializing the ants and distribute them 

randomly  (Dorigo & Stutzle, 2004). Second step is initializing the parameters and 

pheromone trails. The initial pheromone is calculated using equation (3.9).  

The third step is the while loop which is terminated when the condition is met, in this 

study the termination condition is satisfied after 45 seconds of the algorithm 

execution. The fourth step is the loop for each ant. The fifth step is the construction 

using the equation (3.10). 

The sixth step is the local pheromone update using the equation (3.12). Step seven is 

the end of the ants loop. Step eight is the global pheromone update using the equation 

(3.13). Step nine will update the best-so-far solution found by the ants. Step ten ends 

the (while) loop of ACS algorithm and passes the best solution to genetic algorithm 

for refinement.  

Step eleven is the starting of tabu search algorithm. TS algorithm starts by creating 

initial solution using the best-so-far solution found by ACS algorithm. Step twelve 

makes a global solution which is a copy of the initial solution. Step thirteen initializes 

the tabu list to store the movement attributes. Step fourteen initializes the aspiration. 

Step fifteen is the (while) loop which is terminated after 54 seconds. Step sixteen 

searches the neighbourhood of the current solution. 

Step seventeen checks if the moving from the current solution to the neighbourhood 

solution is not tabu. If so, the neighbourhood solution will be saved in the current 

solution in step eighteen. Step nineteen will update the tabu list with old position to 

prevent visiting the same location. Step twenty ends the moving condition. In case the 

movement to the new neighbourhood solution is tabu, the aspiration function at step 
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twenty one will be checked.  If the aspiration function returns true, then the 

neighbourhood solution will be saved in the current solution in step twenty two. Step 

twenty three will update the tabu list with old position to prevent visiting the same 

location. The aspiration function ends at step twenty four. Step twenty five will check 

if the current solution better than the global solution. Step twenty six saves the current 

solution as the global solution and ends with step twenty seven. Step twenty eight 

ends the (while) loop and the best solution is returned in step twenty nine. 

TS algorithm works as a refinement mechanism to enhance the solution found by the 

ACS algorithm.  

Appendices A and C provides the C# code for ant colony system and tabu search 

algorithms respectively. 

Tsutsui ad Fujimoto (2013) proposed ACO with TS algorithm for quadratic 

assignment problem. In their study, ACO and TS algorithms are run in parallel 

without aspiration function. While in the proposed ACS+TS algorithm, ACS executes 

first to find the best solution on specific number of iterations or period of time. Then, 

the best solution is passed from ACS to TS algorithm. The TS algorithm will refine 

the solution by searching the neighbourhoods of that solution as shown in Figure 3.9.  

The high level hybrid approaches provide different improvement than low level 

hybrid approaches. The proposed ACS+GA and ACS+TS approaches show that ACS 

algorithm calls the local search algorithm after the algorithm execution. The solution 

produced by ACS algorithm pass to the local search algorithm. The local search 

algorithm will improve the solution as a final solution. 
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3.2.10 Grid Simulator Development 

The simulator was developed using C# language under the windows platform. Sixteen 

algorithms are implemented in this simulator, namely AS, ACS, TS, GA, PSO-GELS, 

BABC, EBABC1, EBABC2, AS(TS), AS+TS, AS(GA), AS+GA, ACS(TS), 

ACS+TS, ACS(GA), and ACS+GA.  

The developed simulator generates two types of grid computing environment, namely 

static and dynamic environments. The static environment is generated based on 

expected time to compute model developed by Braun et al. (2001). For dynamic 

environment, the developed simulator implemented dynamic expected time to 

compute model as proposed by this study. 

The grid computing is evaluated using three metrics, namely makespan, flowtime, and 

utilization (Xhafa & Abraham, 2010). The simulator reports the scheduling results 

graphically with all experiment details.  

3.2.11 Proposed Algorithm Evaluation 

In order to evaluate the proposed hybrid algorithms, several experiments are 

conducted based on static and dynamic environments. The proposed hybrid 

algorithms are compared with its own stand-alone algorithm and other metaheuristics 

algorithms to explore the performance robustness. Some algorithms are implemented 

using codes adopted from literatures, while others are implemented by this study. 

Table 3.1 shows the algorithms that have been the implemented and the source of the 

algorithms. 
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Table 3.1 

 

The implemented algorithms source 

No Algorithms Sources 

1 GA (Passos, 2009) with some modifications. 

2 TS This study using pseudocode from Xhafa, Carretero, et al. (2008) 

3 AS (Wiener & Of, 2009) with some modifications. 

4 AS(TS) (Wiener & Of, 2009) + (Xhafa, Carretero, et al., 2008) 

5 AS+TS (Wiener & Of, 2009) + (Xhafa, Carretero, et al., 2008) 

6 AS(GA) (Wiener & Of, 2009) + (Passos, 2009) 

7 AS+GA (Wiener & Of, 2009) + (Passos, 2009) 

8 ACS (Wiener & Of, 2009) with some modifications. 

9 ACS(TS) (Wiener & Of, 2009) + (Xhafa, Carretero, et al., 2008) 

10 ACS+TS (Wiener & Of, 2009) + (Xhafa, Carretero, et al., 2008) 

11 ACS(GA) (Wiener & Of, 2009) + (Passos, 2009). 

12 ACS+GA (Wiener & Of, 2009) + (Passos, 2009). 

13 PSO-GELS (Pooranian, Shojafar, Abawajy, & Abraham, 2013) 

14 BABC This study implemented the pseudocode in Kim et al. (2013) 

15 EBABC1 This study implemented the pseudocode in Kim et al. (2013) 

16 EBABC2 This study implemented the pseudocode in Kim et al. (2013) 

 

Each algorithm has executed 10 times on each benchmark problem in order to 

calculate the best, average and geometric mean values. As an objective function, the 

proposed algorithms aimed to enhance the prime criterion that is makespan value 

(Xhafa & Abraham, 2010). Minimizing the makespan value is considered as the most 

important objective which indicates the general productivity of the computational grid 

system (Xhafa & Abraham, 2008a). A small value of makespan indicates that the 

scheduler is performing well and the planning of tasks to resources is efficient. Other 

important performance metrics are flowtime and utilization. Flowtime metric is 

important to measure the response time to the user submissions of task executions, 

while utilization metric measures the resource utilization. Maximizing the resource 

utilization of the computational grid system is gaining importance due to the 

economic aspects of computational grid systems (Xhafa & Abraham, 2010). 



113 

3.3 Summary 

To achieve the main objective, a framework has been proposed in this study. 

Experimental research method has been adopted in conducting this research. GA and 

TS have been employed to solving the stagnation problem in ACS. A simulator has 

been proposed to simulate the job scheduling algorithm in the dynamic and static grid 

computing system. A comprehensive evaluation has been proposed to evaluate the 

performance of the proposed hybrid ACS algorithm using the standard performance 

metrics.   
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CHAPTER FOUR 

SIMULATOR DEVELOPMENT 

This chapter presents the development step for grid computing environment 

simulator. All the proposed algorithms plus the algorithms used for evaluations are 

implemented in this simulator. 

This chapter is organized as follows: Section 4.1 presents the measurement criteria. 

The implementation of benchmark problems is discussed in Section 4.2. Simulator 

verification and validation is provided in Section 4.3. Finally, the chapter is 

summarized in Section 4.4. 

4.1 Identifying the Measurement Criteria 

The problem in job scheduling for grid computing is known as multi-objective 

problem due to the various criteria in computational grid, such as makespan, 

flowtime, load balancing, utilization, matching proximity, turnaround time, total 

weighted completion time, and average weighted response time (Xhafa & Abraham, 

2008a). In this study, three metrics were implemented with priority to makespan as 

the main optimization objective. Makespan metric measures the general productivity 

of the grid computing. The best scheduling algorithm is the one that can produce a 

small value of makespan, which means that the algorithm is able to map tasks to 

machines in a good and efficient way. Therefore, the main objective in this study is to 

minimize the makespan. 
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4.2 Implementing the Benchmark Problems Model 

One of the main factors that affect the performance of a grid computing is the 

workload to which the system is subjected (Feitelson, 2013). Evaluating the job 

scheduling algorithm with wrong workloads will lead to erroneous results which 

cannot be relied upon (Smith, 2007). One of the successful models for heterogeneous 

static computing system is expected time to compute proposed in Braun et al. (1999). 

According to Xhafa (2007), ETC model, proposed by Braun et al. (2001), is the most 

known model to be the most difficult benchmark for static instances of the problem. 

Table 4.1 shows the studies which have implemented ETC model. 

Table 4.1 

 

Algorithms evaluated with ETC model. 

Authors Algorithms evaluated using ETC model 

(Maheswaran et al., 1999) MCT, MET, (switching algorithm, k-percent best, 

Min-min, Sufferage. 

(Braun et al., 2001) OLB, MET, MCT, Min-Min, Max-Min, Duplex, 

GA, SA, GSA, TS, and 𝐴∗. 

(Ritchie & Levine, 2003) Local Search. 

(Ritchie & Levine, 2004) Hybrid ACO. 

(Xhafa, 2006) Genetic algorithm. 

(J.-K. Kim et al., 2007) Max–Min, Min–Min, Max–Max, Relative Cost, 

Slack Sufferage, Switching Algorithm, Genetic 

algorithm, 

(Xhafa, Duran, et al., 2008) Genetic algorithm. 

(Xhafa, Carretero, et al., 2009) Tabu Search. 

(Izakian et al., 2010) Discrete Particle Swarm Optimization 

(Kromer et al., 2009) Differential Evolution. 

(Kołodziej et al., 2011) Enhanced Genetic algorithm. 

(Kromer, Platos, & Snasel, 

2012) 

Artificial Immune Systems, Differential Evolution, 

and Genetic Algorithms. 

(Rajni & Chana, 2013) Bacterial Foraging algorithm. 

(S.-S. Kim et al., 2013) Artificial Bee Colony. 

 

The model arranges the information in a two dimension matrix called ETC matrix. 

Each entry in the matrix 𝐸𝑇𝐶[𝑖, 𝑗] represents the expected execution time of task[𝑖] on 
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machine[𝑗]. In ETC matrix, the elements along a row represent the estimates of the 

expected execution times of a given task on different machines, while the elements 

along a column give the estimates of the expected times of different tasks on a given 

machine.  

In order to compare the implemented algorithms with other algorithms, a grid 

computing simulator is developed. The simulator has the ability to generate 

benchmark problems for static and dynamic environments. In both environments, the 

size of the tasks is presented in millions of instructions format. The resources capacity 

is presented in terms of millions of instructions per second.   

For static environment, the benchmark problems are generated using ETC model 

proposed by Braun et al. (2001). The calculation of the matrix will be based on 

expected time to compute of each task with every processor element in the grid 

resources. The ETC matrix values are generated using range-based technique (Braun 

et al., 2001). The ETC matrix will be categorized into four categories as follows: 

a) High task heterogeneity and high machine heterogeneity. 

b) High task heterogeneity and low machine heterogeneity. 

c) Low task heterogeneity and high machine heterogeneity. 

d) Low task heterogeneity and Low machine heterogeneity. 

 

Each category will be classified further into three classes: consistent, inconsistent, and 

semi-consistent ETC matrices. These classes are orthogonal to the previous 

categories. This combination produced twelve ETC matrices.  



117 

The benchmark problems based on ETC model provide a good static environment to 

conduct the experiments. However, in ETC matrix, the computing capacity of 

resources remains unchanged (static) during tasks execution. In addition, the number 

of available resources, resource load, and task size are fixed. Thus, ETC model does 

not reflect the real dynamic environment in grid computing (Xhafa & Abraham, 

2008a). 

According to Smith (2007), the differences between static and dynamic workloads 

may have subtle implications for performance evaluation. Therefore, the experiment 

that utilizes static workloads is incapable to evaluate the performance of job 

scheduling algorithm. Feitelson (2013) has also stated that static workload cannot be 

considered as valid samples of real dynamic workloads. Organizations such as System 

Performance Evaluation Consortium, Grid Workloads Archive and Transaction 

Processing Performance Council provide several benchmarks on CPU, network file 

system, web servers, cluster, grid, database and parallel distributed systems for 

evaluation of computer systems (Feitelson, 2013). These benchmarks are useful to be 

analysed and modelled.  

For dynamic environment, the developed simulator has the ability to generate 

benchmark problems with dynamic attributes based on benchmark modelling. 

Benchmark modelling is the attempt to create a simple and general model which can 

be used to generate synthetic workload. A good benchmark model is the one which 

has the ability to capture the statistical pattern of the real workloads. In addition, any 

benchmark model should contain a tunable parameter that allows for the generation of 

different load conditions. Such a model should reflect the real environment which is 

known as trace-driven simulations (Feitelson, 2013). Therefore, the most important 
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factor in any model is the underlying patterns, typically in the form of probability 

distributions. Figure 4.1 illustrates how to model a workload from a real system 

(Feitelson, 2013). Users submit their tasks to the grid computing and the grid will 

identify the task requirements and assign them to suitable resources. After 

successfully processing the task, the output will be sent back to the user based on the 

required output type. Every transaction inside the grid will be registered in the log file 

(Feitelson, 2013; Gainaru, Cappello, Trausan-matu, & Kramer, 2011). However, the 

degree of log details is different in each grid based on its implementation (Krakov & 

Feitelson, 2013). From the log file, a trace data will be created for analysis and by 

applying statistical methods on these trace data, the histogram and distribution pattern 

will be discovered (Javadi, Kondo, Vincent, & Anderson, 2009; Sonmez, Yigitbasi, 

Abrishami, Iosup, & Epema, 2010). These patterns will be used to model the 

workload which reflects the real environment plus the flexible characteristics, such as 

the workload size and format required by the user (Feitelson, 2013; Li, Groep, 

Wolters, & Templon, 2006). 
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Figure 4.1. Workload modelling (Feitelson, 2013) 

 

ETC model assumes that all machines are stable and available at all times, which is 

far from the real environment where machine failures are very common and inevitable 

(Javadi, Kondo, Iosup, & Epema, 2013). In addition, the option to add current 

machine load, specifying task size and machine speed are not provided in the ETC 

model. These features or attributes are crucial in job scheduling experiments using 

heuristic and metaheuristics approaches (Xhafa & Abraham, 2008a). 

This study enhanced the ETC model with dynamic attributes. The enhancement to the 

ETC model is named Dynamic Expected Time to Compute (DETC). Statistical 

analyses on the jobs and resources have been performed. The proposed model uses 

three probability distributions, namely Normal, Gamma and Weibull to describe the 

nature of the resources and the jobs submitted to the grid (Carvalho & Brasileiro, 
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2012; A. A. Iosup, Epema, Maassen, & Nieuwpoort, 2007). The join and drop of 

resources implies the availability of the network connection. 

Probability distributions were also used to describe the characteristics of resources in 

the grid (Heien et al., 2011). This will enable users with the ability to conduct a test 

on different types of arrival patterns for the jobs and availability patterns of the 

resources in validating the robustness of the scheduling algorithm. DETC model 

consists of three vectors and three matrices. The vectors represent the present machine 

load, task size and machine speed. The load is measured in second and this reflects 

the total time required by a machine to be ready to process the next task. The task size 

is measured in Millions of Instructions (MI) and the machine speed is measured in 

Millions of Instructions Per Second (MIPS) (Xhafa & Abraham, 2010). In static 

environment, 𝐸𝑇𝐶[𝑖, 𝑗] could be calculated simply by dividing the workload of task 𝑖 

by the computing capacity of resource 𝑗 (Xhafa & Abraham, 2008a). However, for 

dynamic environment, it is proposed that the entry [𝑖, 𝑗] in DETC is calculated as 

follows:  

𝐷𝐸𝑇𝐶[𝑖, 𝑗] = 𝐿𝑜𝑎𝑑[𝑗] +
𝑡𝑎𝑠𝑘[𝑖]

𝑚𝑎𝑐ℎ𝑖𝑛𝑒[𝑗]
 

(4.1) 

 

The model also provides machine failure probability which follows the Weibull 

distribution to mimic the real environment (Iosup, Jan, Sonmez, & Epema, 2007). A 

sequence of benchmark with time (t) specified by the user is provided. For example, if 

the user specifies t =10, then the model will generate ten datasets with different 

machine load, different DETC and dynamic machine status. This indicates that the 

number of available machines is dynamic. In order to generate dynamic ETC 

benchmarks, the users are required to enter inputs for the parameters. These 
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parameters play a very important role to shape the distribution pattern that mimic the 

real-world grid computing environment. The proposed model generates the following 

attributes: 

i. Load: the current load that each machine has to process before starting to process a 

new task. Normal distribution and Gamma distribution could be used to generate 

the load vector. The Gamma distribution is suitable to be used to model workload 

parameters (Feitelson, 2013).  

ii. Task: correct distribution should be used to present task heterogeneity in the grid 

computing. Normal or Gamma distributions could generate various types of 

heterogeneity (Kolodziej, 2012).  

iii. CPU speed: this is the capacity of each processor in the grid environment. Normal 

or Gamma distributions could be used to generate CPU capacity (Kolodziej, 

2012).  

iv. CPU Failure: for failure distribution, Weibull distribution is found to best 

represent the real-world failure in grid computing (Klusacek & Rudova, 2010).  

DETC has adopted ETC matrix and integrates it with the new dynamic attributes such 

as machine load and machine failure. The DETC model will be very practical in 

testing different scheduling algorithms in an environment similar to the real grid 

computing system. A simulator that incorporates the DETC model has been 

developed using C# language in Microsoft visual studio for desktop. Figure 4.2 

depicts the simulator interface which includes load, task and CPU failure settings. 

Appendix D provides the C# code for DETC simulator. 
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Figure 4.2. DETC simulator interface 

The benchmark for tasks and resources could be created using auto seed for random 

benchmark or fixed seed to generate repeatable benchmark. Table 4.2 represents the 

parameters used to generate the benchmark in Figure 4.2. 

Table 4.2 

 

Experimental parameters 

Parameter Value 

Time sequence 10 

Random seed 3 

Load distribution Gamma 

Load shape 20 

Load scale 0.01 

Task distribution Normal 

Task mean 1000000 

Task standard deviation 10000 

CPU distribution Normal 

CPU mean 2000 

CPU standard deviation 380 

CPU failure distribution Weibull 

Failure shape 0.8 
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Failure scale 0.15 

The benchmark on tasks and resources generated using DETC could be saved in CSV 

file. Figure 4.3 shows parts of the generated benchmark with real values. An option is 

also provided to generate a benchmark with integer values.  

 

Figure 4.3. Benchmark for dynamic grid computing 

 

The file contains information of the values for all the parameters that have been used 

in generating the benchmark for jobs and resources. These include:   

i. Load vector that represents the load value of each resource. 

ii. Tasks vector that represents the size of each task. 

iii. Machines vector that represents the capacity of each resource. 

iv. Machines failure vector which represents the probability of failure for each 

resource. 
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v. DETC matrix which represents the expected time to compute with current load 

of the resources. 

In addition, the simulator has the facilities to: generate reports, visualize the 

scheduling solution, and plot charts as depicted in Figures 4.4 and 4.5. 

 

Figure 4.4. Grid computing simulator interface 
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Figure 4.5. Simulator charts 

4.3 Simulation Verification and Validation 

A successful simulator is defined to be the one which has the ability to produce a 

credible and acceptable solution for the prescribed problem. However, according to 

Farina, Graziano, Panzieri, Pascucci, and Setola (2013), one of the biggest challenge 

in developing a simulator is to answer the question, “Are the results provided by the 

simulator believable, and, if yes, with which degree of credibility?” The authors also 

stated that there are several principles and techniques which have been proposed to 

assess the accuracy of modelling and simulation, known under the label of 

Verification and Validation (V&V).  
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Verification is defined as the process of ensuring that the simulation is implemented 

correctly (Garrido, 2001; Herd, Miles, McBurney, & Luck, 2014). Verification 

activities are generally performed concurrently with software development (Farina et 

al., 2013). 

On the other hand, validation is defined as the process of ensuring that the simulation 

closely represents the real system (Garrido, 2001; Herd et al., 2014).  

Verification and validation start with the initial step in this study. According to Brade 

and Lehmann (2002), “V&V should be associated to all phases of model development 

and model use”. Moreover, a framework which connects all research elements 

substantial for V&V will help to get an overview over V&V requirements. 

4.3.1 Verification Techniques 

There are many tools and techniques for simulation verification. In this study, the 

following techniques are used to verify the simulator (Garrido, 2001): 

a. Using trace: Each implemented algorithm is traced line by line with 

documentation. 

b. Graphical Outputs: All the simulator outputs such as benchmark problems, 

schedule tables, and statistics are represented graphically in the simulator 

interface. 

c. Testing with similar and different seed: Each algorithm using random variables is 

tested with fixed seed and random seed in order to observe the algorithm 

behaviours.  
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d. Consistency tests: The simulator is tested to generate similar results for the same 

parameter values.  

4.3.2 Validation Techniques 

Validation is another important criterion to measure the simulator quality. Validation 

is the answer regarding whether the assumptions taken about the real system are 

correct (Garrido, 2001; Herd et al., 2014). In other words, validation focuses on how 

much close is the behaviour of the developed simulator to the behaviour of the real 

system (in this study, it is the grid computing). The following techniques are adopted 

to validate the grid computing environment simulator (Garrido, 2001): 

a. Understanding the workflow of the grid computing from literature. 

b. Implementing the distribution pattern of the real grid computing log file. 

c. Matching the simulation results with the required output.  

4.3.3 Testing the Proposed Hybrid Algorithms 

Another technique known as dynamic methods has been proposed by David (2013) 

for simulation verification. The proposed methods are based on exercising the 

implemented model with a predefined problem scenario. The solutions obtained are 

compared to determine whether the computerized model has been implemented 

appropriately. A dynamic method is applied in this study as well. In order to test the 

simulator calculation accuracy, a scenario consists of three resources and thirteen jobs 

are designed with known expected time to compute matrix (Kim et al., 2013). Table 

4.3 shows the expected time to compute the jobs on different machines. Each row 

represents the expected time to compute job on different machines. The first column 
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represents the job numbers while other columns represent the expected time to 

compute different jobs on a machine.  

Table 4.3 

 

ETC matrix for 3 resources and 13 jobs 

Jobs / Machines 𝑴𝟏 𝑴𝟐 𝑴𝟑 

𝑱𝟏 1.5 2 3 

𝑱𝟐 3 4 6 

𝑱𝟑 4 5.33 8 

𝑱𝟒 5 6.66 10 

𝑱𝟓 6 8 12 

𝑱𝟔 7 9.33 14 

𝑱𝟕 7.5 10 15 

𝑱𝟖 9 12 18 

𝑱𝟗 10 13.33 20 

𝑱𝟏𝟎 10.5 14 21 

𝑱𝟏𝟏 12 16 24 

𝑱𝟏𝟐 13 18 27 

𝑱𝟏𝟑 15 20 30 

 

The exercising experiments are conducted on all implemented algorithms. Each 

algorithm has executed one time with 10 seconds and random seed value is set to 58. 

The output of each algorithm is in the form of a schedule table which represents the 

final scheduling map. Each schedule table is calculated manually to determine the 

simulator calculation accuracy. Figure 4.6 shows the scheduling solution of the 

proposed ACS(TS) algorithm using the scenario presented in Table 4.3. Figure 4.6 

shows three machines with different number of jobs and the grid makespan is 46. 
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Figure 4.6. ACS(TS) Schedule table 

Figure 4.7 shows the scheduling solution of the proposed ACS+TS algorithm using 

the scenario presented in Table 4.3. Figure 4.7 shows three machines with different 

number of jobs and the grid makespan is 46. 

 

Figure 4.7. ACS+TS Schedule table 

Figure 4.8 shows the scheduling solution of the proposed ACS(GA) algorithm using 

the scenario presented in Table 4.3. Figure 4.8 shows three machines with different 

number of jobs and the grid makespan is 46.67. 
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Figure 4.8. ACS(GA) Schedule table 

Figure 4.9 shows the scheduling solution of the proposed ACS+GA algorithm using 

the scenario presented in Table 4.3. Figure 4.9 shows three machines with different 

number of jobs and the grid makespan is 46.67. 

 

Figure 4.9. ACS+GA Schedule table 

4.4 Summary 

According to Pace (2003), it is impossible to check for every possible fault and bugs 

in a sizeable simulation; simply because there is not enough time (not even 

theoretically). Therefore, it is important to use a good software engineering process 

consistently throughout the simulator development. These processes employ 

simulation development environments that facilitate formal methods, and conduct 

thorough V&V throughout the simulation life cycle starting from the beginning. 

Therefore, this chapter presented the simulator development steps as well as 

verification and validation techniques.  
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CHAPTER FIVE 

JOB SCHEDULING IN STATIC GRID COMPUTING 

This chapter presents the evaluation and the proposed algorithm in the static grid 

computing environment. Section 5.1 discusses the static environment and ETC model 

for benchmark problems. The parameters of the proposed algorithms with the 

algorithms used for comparison are presented in Section 5.2. The experiment results 

of the proposed hybrid algorithms are provided in Section 5.3. Finally, Section 5.4 

summarizes the chapter. 

5.1 Static Environment 

For static environment, the benchmark problems are generated using ETC model 

proposed by Braun et al. (2001). The calculation of the matrix will be based on 

expected time to compute of each task with every processor element in the grid 

resources. The ETC matrix has been categorized into four categories as follows: 

 High task heterogeneity and high machine heterogeneity. 

 High task heterogeneity and low machine heterogeneity. 

 Low task heterogeneity and high machine heterogeneity. 

 Low task heterogeneity and Low machine heterogeneity. 

 

Each category has been classified further into three classes: consistent, inconsistent, 

and semi-consistent ETC matrices. These classes are orthogonal to the previous 

categories. This combination has produced twelve ETC matrices.  
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5.2 Algorithms Parameters 

Tuning metaheuristics parameters to find the best possible configuration of the 

algorithm is a very critical task (Aleti, 2012). In fact, the parameters in metaheuristics 

algorithms have the characteristics of a machine learning problem (Birattari, 2009). In 

this study, the parameter values for the algorithms which are implemented for 

comparison are adopted from Dorigo and Stutzle (2004); Kim et al. (2013); Xhafa, 

Carretero, et al. (2009); and Xhafa, Duran, et al. (2008) in order to perform a fair 

comparison. Table 5.1 summarizes the adopted algorithms and their parameter 

resources. 

Table 5.1 

 

Algorithms resource for parameter values 

Algorithm name Resource 

GA (Xhafa, Duran, et al., 2008) 

AS, ACS (Dorigo & Stutzle, 2004) 

TS (Xhafa, Carretero, et al., 2009) 

BABC, EBABC1, EBABS2 (Kim et al., 2013) 

PSO-GELS (Pooranian et al., 2013) 

5.2.1 Genetic Algorithm Parameters 

In this study, the algorithm implementation and parameter values are adopted from 

Xhafa, Duran, et al. (2008). Table 5.2 reports the parameter values. 

Table 5.2 

 

GA parameter values 

Parameter Value 

Iteration No 3000 

Time limit 90 seconds 

Population size 10 

Intermediate size 6 

Crossover rate 0.9 

Mutation rate 0.4 

Selection operator Tournament 3 
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In Table 5.2, the parameter iteration number is the algorithm termination condition. In 

addition, time limit will terminate the algorithm if the specified time elapses before it 

reaches the total number of iterations. The population size parameter represents the 

total number of solutions generated as a population for crossover and mutation 

operators. Part of the population is selected for crossover and mutation which is 

determined by the intermediate size parameter. The probability that crossover and 

mutation operators will be applied to the selected solution is controlled by crossover 

and mutation rate parameters respectively. Selection operator is very important to 

keep the diversity between solutions in genetic algorithm. The solutions selected 

using an operator is known as tournament operator which uses three candidates. This 

selection mechanism will ensure that each solution has a chance to compete with the 

other two solutions fairly. After the selection process, each pair of solutions applies 

crossover using fitness based operator. Finally, the mutation operator is applied using 

re-balanced operator in order to keep the scheduling balanced.  

5.2.2 Ant System Parameters 

The parameter values for AS algorithm in this study are adopted from Dorigo and 

Stutzle (2004). Table 5.3 provides the parameter values for AS algorithm. 

Table 5.3 

 

AS parameter value 

Parameter Value 

Iteration No 3000 

Alpha 1 

Beta 8 

Crossover operator Fitness based 

Mutation operator Re-balance 
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Evaporation rate 0.5 

No of ants No of machines 

Time limit 90 seconds 

 

In Table 5.3, the parameter iteration number is the algorithm termination condition. In 

addition, time limit will terminate the algorithm if the specified time elapses before it 

reaches the total number of iterations. The alpha parameter represents the pheromone 

influence, increasing the alpha value which will influence the ants to rely more on 

pheromone instead of heuristic value and vice versa. Beta parameter has the influence 

on heuristic value. Increasing the beta value will force the ants to follow the heuristic 

values strongly, while reducing its value will influence the ants more towards 

pheromone value. The duration of pheromone value is determined by the evaporation 

rate parameter. If the evaporation value is one, means all the pheromones will be 

evaporated after each cycle. In opposite, if the evaporation value is zero, then no 

evaporation will occur at all. In AS algorithm, each ant constructs its own solution, 

whereby the total number of ants is specified by the number of ant parameter. 

5.2.3 Ant Colony System Parameters 

ACS algorithm parameters values are adopted from Dorigo and Stutzle (2004). Table 

5.4 shows the parameter values. 

Table 5.4 

 

ACS parameter values 

Parameter Value 

Iteration No 3000 

Beta 8 

Evaporation rate 0.6 

No of ants 10 

Exploitation 0.9 

Time limit 90 seconds 



135 

In Table 5.4, the parameters iteration number, beta, evaporation rate, number of ants, 

and time limit are defined the same as in ant system algorithm. The extra parameter in 

ACS algorithm is the exploitation rate parameter. This parameter controls the 

algorithm exploitation/exploration behaviour. The value one means that the algorithm 

will do exploitation search in a greedy way, while the value 0 means the ants will 

search the space randomly.  

5.2.4 Tabu Search Parameters 

This study adopts the values for tabu search algorithm parameters from Xhafa, 

Carretero, et al. (2009). Table 5.5 shows the parameter values for TS algorithm. 

Table 5.5 

 

TS parameter values 

Parameter Value 

Iteration No 3000 

Search neighbour by Transfer, Swap adjacent, and Swap by load 

Tabu size 40 

Idle iteration 2 

Time limit 90 seconds 

 

In Table 5.5, the parameter iteration number is the algorithm termination condition. In 

addition, time limit will terminate the algorithm if the specified time elapses before it 

reaches the total number of iterations. One of the most important parameters in tabu 

search is searching the neighbourhood of the current solution. There are many 

techniques to perform this search. Three methods are used in this study to search the 

neighbourhood. First, transfer method works based on transferring between different 

jobs and machines. Second, swap adjacent works based on interchanging the adjacent 

jobs in the solution vector. Third, swap by load will interchange between high and 
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low load machines. The tabu size parameter will specify how many moves to keep in 

the list as a tabu move. TS algorithm will change from soft diversification into strong 

diversification based on the idle iteration parameter. 

5.2.5 BABC, EBABC1, and EBABC2 Parameters 

These algorithm implementation and parameter values are adopted from Kim et al. 

(2013). Table 5.6 reports the parameter value for each algorithm. 

Table 5.6 

 

BABC, EBABC1, EBABC2 parameter values 

Parameter name BABC EBABC1 EBABC2 

Iteration No 3000 3000 3000 

Number of food source 20 20 20 

Limit 800 800 800 

Time limit (seconds) 90 90 90 

No of FRS NA 3 NA 

Alpha NA NA 0.999 

NA: Not applicable for specific algorithm. 

 

In Table 5.6, the parameter iteration number is the algorithm termination condition. In 

addition, time limit will terminate the algorithm if the specified time elapses before it 

reaches the total number of iterations. The number of food source parameter specifies 

the number of solutions which is equal to the number of employed bees. The 

parameter limit controls the number of trials to improve the solution. After reaching 

the limit, the source food is abandoned and the employed bee for that food source 

becomes a scout. The extra parameters are number of FRS and alpha as proposed by 

Kim et al. (2013). FRS value is used to incorporate a Flexible Ranking Strategy (FRS) 

to improve the balance between exploration and exploitation. Alpha is a real number 

parameter greater than 0 and less than 1. 
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5.2.6 PSO-GELS Parameters 

The parameters values for Particle Swarm Optimization and Gravitational Emulation 

Local Search (GELS-PSO) are adopted from the study proposed by Pooranian et al. 

(2013) as shown in Table 5.7.  

Table 5.7 

 

PSO-GELS Algorithm Parameters Values 

Parameter Value 

Iteration No 3000 

Particle No 50 

V_max 40 

C1 2 

C2 2 

GC 6.672 

Radius 10 

 

In Table 5.7, the parameter iteration number is the algorithm termination condition. In 

addition, time limit will terminate the algorithm if the specified time elapses before it 

reaches the total number of iterations. One of the most important parameters in PSO-

GELS is the particle number which represents the number of solutions. The velocity 

values are initialized with maximum value determined by V-max parameters. C1 and 

C2 are positive acceleration constants which control the influence of the best and 

neighbour solutions on the search process (Izakian et al., 2010). GC is a constant with 

the value 6.672 and Radius is the neighbour radius between the two responses in the 

search space. 

5.2.7 AS(TS), AS+TS, ACS(TS), and ACS+TS Parameters 

Based on the stand-alone version of these algorithms, the hybrid approaches utilized 

the same parameter values as shown in Table 5.8. 
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Table 5.8 

 

AS, ACS, and TS Algorithms Parameter Values 

Parameter name AS ACS TS 

Iteration No 3000 3000 3000 

Alpha 1 1 NA 

Beta 8 8 NA 

Evaporation 0.5 0.6 NA 

No of ants No of machines 10 NA 

Exploitation NA 0.9 NA 

Time limit (seconds) 45 45 45 

Search neighbour NA NA Transfer, Swap adjacent, 

and Swap by load 

Tabu size NA NA 40 

Idle iteration NA NA 2 

NA: Not applicable for specific algorithm. 

5.2.8 AS(GA), AS+GA, ACS(GA), and ACS+GA Parameters 

These hybrid approaches adopted their parameter values from the stand-alone 

versions of them. Tables 5.9 and 5.10 summarize the parameter values. 

Table 5.9 

 

AS(GA) and AS+GA Algorithms Parameter Values 

AS GA 

Parameter name Value Parameter name Value 

Iteration No 3000 Iteration No 3000 

Alpha 1 Time limit 45 seconds 

Beta 8 Population size 10 

Evaporation 0.5 Intermediate size 6 

No of ants Number of machines Selection operator Tournament 3 

Time limit 45 seconds Crossover rate 0.9 

  Mutation rate 0.4 

  Crossover operator Fitness based 

  Mutation operator Re-balance 
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Table 5.10 

 

ACS(GA) and ACS+GA Algorithms Parameter Values 

ACS GA 

Parameter name Value Parameter name Value 

Iteration No 3000 Iteration No 3000 

Alpha 1 Time limit 45 seconds 

Beta 8 Population size 10 

Evaporation 0.7 Intermediate size 6 

No of ants 10 Selection operator Tournament 3 

Exploration rate 0.9 Crossover rate 0.9 

Time limit 45 seconds Mutation rate 0.4 

  Crossover operator Fitness based 

  Mutation operator Re-balance 

 

The execution time for GA, AS, ACS, TS, BABC, EBABC1, EBABC2 was set to 90 

seconds which is commonly used as a reasonable amount of time for scheduling jobs 

in a computational grid environment (Xhafa, Barolli, et al., 2007a; Xhafa & Duran, 

2008). To keep this restriction time in the hybrid approaches, each algorithm is 

limited to 45 seconds in order to conduct fair experiments. However, each algorithm 

is also terminated with an iteration number which also works as a termination 

criterion besides the limited time. In other words, each algorithm is terminated either 

by reaching the allowed run time or reaching the allowed iteration number.  

5.3 Experimental Result and Analysis  

The experiments are conducted using Intel® Core (TM) i7-3612QM CPU @ 2.10 

GHz and 8G RAM. The grid computing simulator is developed using visual C#. The 

time given for each experiment is 90 seconds (45 seconds for each algorithm in the 

hybrid approach). Each algorithm is executed 10 times in order to calculate the best 

and average values. The proposed algorithms are evaluated based on makespan, 

flowtime, and utilization metrics.  
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5.3.1 Best Makespan Results 

In order to compare and represent the performance of the proposed algorithms 

visually, a geometric mean is calculated to normalize the makespan, flowtime, and 

utilization values of the twelve instances (Izakian, Abraham, & Snsel, 2009). In 

addition, the difference between the ACS algorithm and the proposed hybrid 

algorithms are calculated to provide the enhancement of each hybrid algorithm in 

terms of percentage. 

Figure 5.1 displays the results of the sixteen algorithms in terms of the best makespan 

value. The Figure 5.1 shows that the worse performance produced by BABC and 

PSO-GELS algorithms. The algorithms EBABC2, GA, ACS, AS, and ACS(GA) 

show similar performance to each other which is better than BABC and PSO-GELS 

algorithms. The performance enhanced slightly by TS, AS(TS), ACS+GA, AS(GA), 

EBABC1, AS+GA, ACS(TS), and AS+TS algorithms.  The proposed hybrid 

algorithm ACS+TS achieved the best performance in terms of best makespan value as 

shown in Figure 5.1. This is due to the refinement process achieved by TS algorithm 

to the best solution produced by ACS algorithm. 

 

Figure 5.1. Geometric mean for the best makespan values 
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Figure 5.2 represents the enhancement of each hybrid algorithm which is expressed in 

terms of percentage. Each hybrid algorithm is compared with the ACS algorithm in 

terms of best makespan value enhancement. The Figure 5.2 shows that ACS+TS 

algorithm enhanced 6.99% followed by ACS(TS) 4.65%, ACS+GA 2.03%, and 

ACS(GA) 0.35%. This enhancement indicates that GA and TS algorithms increased 

the performance of ant colony system algorithm in both low and high levels. 

However, the best performance achieved when ACS algorithm hybridized with TS 

algorithm in high level order. Clearly in high level order, the TS algorithm starts with 

initial solution passed from ACS algorithm which is very high quality produced by 

the best ant. Therefore, TS starts from good location in the search space which leads 

to further enhancement to the solution found by ACS algorithm.  

 

Figure 5.2. The percentage enhancement of each hybrid algorithm in terms of the best 

makespan values 

5.3.2 Average Makespan Results 

Figure 5.3 displays the results of the sixteen algorithms in terms of the average 

makespan value. The Figure 5.3 shows that the worse performance produced by 

BABC followed by EBABC2 and PSO-GELS algorithms. The algorithms ACS, 
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EBABC1, ACS(GA), AS, GA, ACS+GA, AS(TS), and AS(GA) show similar 

performance to each other which is better than BABC, EBABC2 and PSO-GELS 

algorithms. The performance enhanced slightly by AS+GA, TS, ACS(TS), and 

AS+TS algorithms.  The proposed hybrid algorithm ACS+TS achieved the best 

performance in terms of average makespan value as shown in Figure 5.3. This is due 

to the refinement process achieved by TS algorithm to the best solution produced by 

ACS algorithm. 

 

Figure 5.3. Geometric mean for the average makespan values 

Figure 5.4 represents the enhancement of each hybrid algorithm which is expressed in 

terms of percentage. Each hybrid algorithm is compared with the ACS algorithm in 

terms of average makespan value enhancement. The Figure 5.4 shows that ACS+TS 

algorithm enhanced 7.46% followed by ACS(TS) 4.66%, ACS+GA 1.7%, and 

ACS(GA) 0.47%. This enhancement indicates that GA and TS algorithms increased 

the performance of ant colony system algorithm in both low and high levels. 

However, the best performance achieved when ACS algorithm hybridized with TS 

algorithm in high level order. Clearly in high level order, the TS algorithm starts with 

initial solution passed from ACS algorithm which is very high quality produced by 
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the best ant. Therefore, TS starts from good location in the search space which leads 

to further enhancement to the solution found by ACS algorithm.  

 

Figure 5.4. The percentage enhancement of each algorithm in terms of the average 

makespan values 

5.3.3 Best Flowtime Results 

The second metric to measure the scheduling algorithm performance is the flowtime. 

Figure 5.5 displays the results of the sixteen algorithms in terms of the best flowtime 

value. The Figure 5.5 shows that the worse performance produced by BABC followed 

by PSO-GELS, GA, and ACS(GA) algorithms. The algorithms ACS, TS, ACS+GA, 

and EBABC2 show similar performance to each other which is better than BABC and 

PSO-GELS algorithms. The performance enhanced slightly with AS(GA), AS(TS), 

AS+GA, AS, ACS(TS), AS+TS, and EBABC1 algorithms.  The proposed hybrid 

algorithm ACS+TS achieved the best performance in terms of best flowtime value as 

shown in Figure 5.5. This is due to the refinement process achieved by TS algorithm 

to the best solution produced by ACS algorithm. 
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Figure 5.5. Geometric mean for best flowtime values 

Figure 5.6 represents the enhancement of each hybrid algorithm which is expressed in 

terms of percentage. Each hybrid algorithm is compared with the ACS algorithm in 

terms of best flowtime value enhancement. The Figure 5.6 shows that ACS+TS 

algorithm enhanced 5.61% followed by ACS(TS) 3.15%, and ACS+GA 0.75%. The 

proposed hybrid algorithm ACS(GA) perform worse than ACS algorithm (not 

included in the graph). This enhancement indicates that TS algorithm increased the 

performance of ant colony system algorithm in both low and high levels while GA 

algorithm only increases the ACS algorithm performance in high level order. 

However, the best performance achieved when ACS algorithm hybridized with TS 

algorithm in high level order.  
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Figure 5.6. The percentage enhancement of each algorithm in terms of the best 

flowtime values 

5.3.4 Average Flowtime Results 

Figure 5.7 displays the results of the sixteen algorithms in terms of the average 

flowtime values. The Figure 5.7 shows that the worse performance achieved by 

BABC followed by EBABC2, and ACS(GA) algorithms. The algorithms ACS, 

ACS+GA, GA, PSO-GELS, and EBABC1 show similar performance to each other 

which is better than BABC algorithm. The performance enhanced little with AS(TS), 

TS, AS+GA, AS, ACS(TS), and AS+TS algorithms.  The proposed hybrid algorithm 

(ACS+TS) achieved the best value in terms of average flowtime values as shown in 

Figure 5.7.  
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Figure 5.7. Geometric mean for average flowtime values 

Figure 5.8 represents the enhancement of each hybrid algorithm which is expressed in 

terms of percentage. Each hybrid algorithm is compared with the ACS algorithm in 

terms of the average flowtime enhancement. The Figure 8.5 shows that ACS+TS 

algorithm enhanced 6.22% followed by ACS(TS) 3.37%, and ACS+GA 0.65%. The 

proposed hybrid algorithm ACS(GA) perform worse than ACS algorithm (not 

included in the graph). This enhancement indicates that TS algorithm increased the 

performance of ant colony system algorithm in both low and high levels while GA 

algorithm only increases the ACS algorithm performance in high level order. 

However, the best performance achieved when ACS algorithm hybridized with TS 

algorithm in high level order.  
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Figure 5.8. The percentage enhancement of each algorithm in terms of the average 

flowtime values 

5.3.5 Best Utilization Results 

The last metric implemented in this study to measure the algorithms performance is 

the utilization of resources in the computational grid.  

Figure 5.9 displays the results of the sixteen algorithms in terms of the best utilization 

value. The Figure 5.9 shows that the worse performance achieved by BABC and AS 

algorithms. The algorithms PSO-GELS, EBABC2, EBABC1, AS(TS), and ACS show 

similar performance to each other which is better than BABC and AS algorithms. The 

performance enhanced little with AS(GA), GA, ACS(GA), AS+GA, ACS+GA, TS, 

ACS+TS, and AS+TS algorithms.  The proposed hybrid algorithm ACS(TS) achieved 

the best value in terms of best utilization as shown in Figure 5.9. This is due to the 

refinement process achieved by TS algorithm to the solution produced by ACS 

algorithm. However, the algorithms ACS+TS, AS+TS, and ACS(TS) show similar 

performance in terms of best utilization value. 
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Figure 5.9. Geometric mean for best utilization value 

Figure 5.10 represents the enhancement of each hybrid algorithm which is expressed 

in terms of percentage. Each hybrid algorithm is compared with the ACS algorithm in 

terms of best utilization value enhancement. The Figure 5.10 shows that ACS(TS) 

algorithm enhanced 0.88% and ACS+TS 0.88% followed by ACS+GA 0.47%, and 

ACS(GA) 0.61%. This enhancement indicates that GA and TS algorithms increased 

the performance of ant colony system algorithm in both low and high levels. 

However, the best performance achieved when ACS algorithm hybridized with TS 

algorithm in both level order. Clearly in high level order, the TS algorithm starts with 

initial solution passed from ACS algorithm which is very high quality produced by 

the best ant. Therefore, TS starts from good location in the search space which leads 

to further enhancement to the solution found by ACS algorithm. While for low level 

hybridization between ACS and TS, the TS algorithm enhance the best solution at the 

end of each cycle which makes the ants update the pheromone based on the enhanced 

solution produced from TS algorithm. Therefore, the low level hybridization 

algorithm was able to achieve good results.  
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Figure 5.10. The percentage enhancement of each algorithm in terms of the best 

utilization values 

5.3.6 Average Utilization Results 

Figure 5.11 displays the results of the sixteen algorithms in terms of the average 

utilization value. The Figure 5.11 shows that the best performance achieved by the 

proposed hybrid ACS(TS) algorithm. Similar performance also achieved by 

ACS(TS), TS, AS(TS), ACS(GA), AS+GA, and ACS(GA) algorithms. Slightly less 

performance achieved by GA, AS(GA), ACS, and AS(TS) algorithms. The worse 

performance achieved by EBABC1, PSO-GELS, EBABC2, AS, and BABC 

algorithms. 

 

Figure 5.11. Geometric mean for average utilization values 
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Figure 5.12 represents the enhancement of each hybrid algorithm which is expressed 

in terms of percentage. Each hybrid algorithm is compared with the ACS algorithm in 

terms of average utilization value enhancement. The Figure 5.12 shows that ACS(TS) 

algorithm enhanced 1.36% followed by ACS+TS 1.33%, ACS+GA 1.07%, and 

ACS(GA) 0.87%. This enhancement indicates that GA and TS algorithms increased 

the performance of ant colony system algorithm in both low and high levels. 

However, the best performance achieved when ACS algorithm hybridized with TS 

algorithm in low level order.  

 

Figure 5.12. The percentage enhancement of each algorithm in terms of the average 

utilization values 

5.3.7 Discussion 

In terms of best makespan value, the proposed algorithm ACS+TS outperform the 

other algorithms. The best makespan value is the main objective of this study which 

reflects the productivity of grid computing system. ACS+TS achieved good results 

due to the ability of TS algorithm to refine the best solution found by ACS algorithm. 

The worse performances in terms of best makespan value were achieved by BABC 

and PSO-GELS algorithms. BABC is the binary version of ABC algorithm and PSO-
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GELS is the discrete version of PSO algorithm hybridized with GELS algorithm. 

These type of algorithms were originally developed to solve continues problems. In 

spite of several studies proposed methods to apply these algorithm into discrete 

problems, the difficulty there is that the notions of velocity and direction have no 

natural extensions for combinatorial problems, such as travelling salesman problem 

and scheduled problems (Poli, Kennedy, & Blackwell, 2007). Moreover, hybridizing 

PSO with GELS did not enhance PSO algorithm, according to Gauci, Dodd, and Groß 

(2012) “gravitational search algorithm' is not genuinely based on the law of gravity”, 

therefore, it could not enhance PSO algorithm.  

5.4 Summary 

The benchmark problems were generated using expected time to compute model 

consists of twelve datasets. Experimented results show that the proposed hybrid 

ACS+TS algorithm outperforms other algorithms in terms of makespan and flowtime 

criteria. However, for utilization criterion, two hybrid algorithms show good 

performance, namely ACS(TS) and ACS+TS.  

The results confirm that hybridizing ant colony system with tabu search algorithm is 

very useful and efficient, specifically the high level hybridization. Tabu search 

algorithm was able to enhance the solution found by ant colony system algorithm. In 

addition, ant system also benefited from tabu search and genetic algorithm in some 

instances. 
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CHAPTER SIX 

JOB SCHEDULING IN DYNAMIC GRID COMPUTING 

This chapter presents the evaluation and the proposed algorithm in the dynamic grid 

computing environment. Section 6.1 discusses the dynamic environment and DETC 

model for benchmark problems. The parameters of the proposed algorithms with the 

algorithms used for comparison are presented in Section 6.2. The experiment results 

of the proposed hybrid algorithms are provided in Section 6.3. Finally, Section 6.4 

summarizes the chapter. 

6.1 Dynamic Environment 

In spite of the effectiveness of using static environment for testing the algorithm 

performance, there are some attributes which are not presented in the static scenario. 

Attributes such as availability and varying in resource speed are presented in the 

dynamic scenario. In order to investigate the proposed algorithms performance, 

twelve algorithms are implemented for comparison. For dynamic experiment, five 

datasets are generated using the DETC simulator in order to mimic the real grid 

computing situations. Each algorithm is executed ten times on each dataset to 

calculate the best, average, and standard deviation values. Three metrics are 

implemented to measure the performance, namely makespan, flowtime, and 

utilization with priority to makespan as the main objective. Table 6.1 shows the 

dataset description (Xhafa, Koodziej, et al., 2011). 
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Table 6.1 

 

Datasets descriptions 

 Mini Small Medium Large Very large 

Tasks 256 512 1024 2048 4096 

Machines 16 32 64 128 256 
 

In the Table 6.1, the columns represent the size of the benchmarks dataset problem. 

The first row represents the number of tasks in each dataset while the second row 

represents the number of machines in each dataset. 

For benchmark problems, the simulator started by generating tasks and machines 

using the parameters given in Table 6.2.  

Table 6.2 

 

Parameters for Generating Dynamic Benchmark 

Parameter name Value 

Time Sequence 1 

Round to integer True 

Failure distribution Weibull(0.8, 0.4) 

No of machines 16, 32, 64, 128, 256 

Machine distribution Normal(1000, 175) 

No of tasks 256, 512, 1024, 2048, 4096 

Load distribution Normal(625000, 93750) 
 

In Table 6.2, the parameter time sequence is the number of batches to be sent to the 

grid computing system. The parameter round to integer makes all generated values 

integer if the parameter set to true. The parameter failure distribution controls the 

shape of the Weibull distribution method. The number of machines specifies the 

resources in the grid system. Machine distribution controls the shape of the Normal 

distribution method. The number of tasks specifies the number of tasks submitted to 
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the grid system. Load distribution controls the shape of the Normal distribution 

method. 

6.2 Algorithm Parameters 

Tuning metaheuristics parameters to find the best possible configuration of the 

algorithm is a very critical task (Aleti, 2012). In fact, the parameters in metaheuristics 

algorithms have the characteristics of a machine learning problem (Birattari, 2009). In 

this study, the parameter values for the algorithms which are implemented for 

comparison are adopted from Dorigo ad Stutzle (2004); Kim et al. (2013); Pooranian 

et al.( 2013) Xhafa, Carretero, et al. (2009); and Xhafa, Duran, et al. (2008) in order 

to perform a fair comparison. Table 6.3 summarizes the adopted algorithms and their 

parameter resources. 

Table 6.3 

 

Algorithms resource for parameter values 

Algorithm name Resource 

GA (Xhafa, Duran, et al., 2008) 

AS, ACS (Dorigo & Stutzle, 2004) 

TS (Xhafa, Carretero, et al., 2009) 

BABC, EBABC1, EBABS2 (Kim et al., 2013) 

PSO-GELS (Pooranian et al., 2013) 

 

6.2.1 Genetic Algorithm Parameters 

In this study, the algorithm implementation and parameter values are adopted from 

Xhafa, Duran, et al. (2008). Table 6.4 reports the parameter values. 
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Table 6.4 

 

GA parameter values 

 

In Table 6.4, the parameter iteration number is the algorithm termination condition. In 

addition, time limit will terminate the algorithm if the specified time elapses before it 

reaches the total number of iterations. The population size parameter represents the 

total number of solutions generated as a population for crossover and mutation 

operators. Part of the population is selected for crossover and mutation which is 

determined by the intermediate size parameter. The probability that crossover and 

mutation operators will be applied to the selected solution is controlled by crossover 

and mutation rate parameters respectively. Selection operator is very important to 

keep the diversity between solutions in genetic algorithm. The solutions are selected 

using an operator known as tournament operator using three candidates. This selection 

mechanism will ensure that each solution has a chance to compete with the other two 

solutions fairly. After the selection process, each pair of solutions apply crossover 

using fitness based operator. Finally, the mutation operator is applied using re-

balanced operator in order to keep the scheduling balanced.  

Parameter Value 

Iteration No 3000 

Time limit 90 seconds 

Population size 10 

Intermediate size 6 

Crossover rate 0.9 

Mutation rate 0.4 

Selection operator Tournament 3 

Crossover operator Fitness based 

Mutation operator Re-balance 
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6.2.2 Ant System Parameters 

The parameter values for AS algorithm in this study are adopted from Dorigo and 

Stutzle (2004). Table 6.5 provides the parameter values for AS algorithm. 

Table 6.5 

 

AS parameter value 

Parameter Value 

Iteration No 3000 

Alpha 1 

Beta 8 

Evaporation rate 0.5 

No of ants No of machines 

Time limit 90 seconds 

 

In Table 6.5, the parameter iteration number is the algorithm termination condition. In 

addition, the time limit will terminate the algorithm if the specified time elapses 

before it reaches the total number of iterations. The alpha parameter represents the 

pheromone influence, increasing the alpha value which will influence the ants to rely 

more on pheromones instead of heuristic value and vice versa. Beta parameter has the 

influence on heuristic value. Increasing the beta value will force the ants to follow the 

heuristic values strongly, while reducing its value will influence the ants more 

towards pheromone value. The duration of pheromone value is determined by the 

evaporation rate parameter. Evaporation value of one refers to all the pheromone will 

be evaporated after each cycle. In opposite, if the evaporation value is zero, then no 

evaporation will occur at all. In AS algorithm, each ant constructs its own solution, 

whereby the total number of ants is specified by the number of ants’ parameter. 
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6.2.3 Ant Colony System Parameters 

ACS algorithm parameter values are adopted from Dorigo and Stutzle (2004). Table 

6.6 shows the parameter values. 

Table 6.6 

 

ACS parameter values 

Parameter Value 

Iteration No 3000 

Beta 8 

Evaporation rate 0.6 

No of ants 10 

Exploitation 0.9 

Time limit 90 seconds 

 

In Table 6.6, the parameter iteration number, beta, evaporation rate, number of ants, 

and time limit are defined the same as in ant system algorithm. The extra parameter in 

ACS algorithm is the exploitation rate parameter. This parameter controls the 

algorithm exploitation/exploration behaviour. The value one means that the algorithm 

will do exploitation search in a greedy way, while the value 0 means the ants will 

search the space randomly.  

6.2.4 Tabu Search Parameters 

This study adopted the values for tabu search algorithm parameters from Xhafa, 

Carretero, et al. (2009). Table 6.7 shows the parameter values for TS algorithm. 

Table 6.7 

 

TS parameter values 

Parameter Value 

Iteration No 3000 

Search neighbour by Transfer, Swap adjacent, and Swap by load 
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Tabu size 40 

Idle iteration 2 

Time limit 90 seconds 

 

In Table 6.7, the parameter iteration number is the algorithm termination condition. In 

addition, time limit will terminate the algorithm if the specified time elapses before it 

reaches the total number of iterations. One of the most important parameters in tabu 

search is searching the neighbourhood of the current solution. There are many 

techniques to perform this search. Three methods are used in this study to search the 

neighbourhood. First, transfer method works based on transferring between different 

jobs and machines. Second, swap adjacent works based on interchanging the adjacent 

jobs in the solution vector. Third, swap by load will interchange between high and 

low load machines. The tabu size parameter will specify how many moves to keep in 

the list as a tabu move. TS algorithm will change from soft diversification into strong 

diversification based on the idle iteration parameter. 

6.2.5 BABC, EBABC1, and EBABC2 Parameters 

These algorithm implementations and parameter values are adopted from Kim et al. 

(2013). Table 6.8 reports the parameter value for each algorithm. 

Table 6.8 

 

BABC, EBABC1, EBABC2 parameter values 

Parameter name BABC EBABC1 EBABC2 

Iteration No 3000 3000 3000 

Number of food source 20 20 20 

Limit 800 800 800 

Time limit (seconds) 90 90 90 

No of FRS NA 3 NA 

Alpha NA NA 0.999 

NA: Not applicable for specific algorithm(s). 
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In Table 6.8, the parameter iteration number is the algorithm termination condition. In 

addition, time limit will terminate the algorithm if the specified time elapses before it 

reaches the total number of iterations. The number of food source parameter specifies 

the number of solutions which is equal to the number of employed bees. The 

parameter limit controls the number of trials to improve the solution. After reaching 

the limit, the source food is abandoned and the employed bee for that food source 

becomes a scout. The extra parameters are number of FRS and alpha as proposed by 

Kim et al. (2013). FRS value is used to incorporate a Flexible Ranking Strategy (FRS) 

to improve the balance between exploration and exploitation. Alpha is a real number 

parameter greater than 0 and less than 1. 

6.2.6 PSO-GELS Parameters 

The parameters values for GELS-PSO are adopted from the study proposed by 

Pooranian et al. (2013) as shown in Table 6.9.  

Table 6.9 

 

PSO-GELS Algorithm Parameters Values 

Parameter Value 

Iteration No 3000 

Particle No 50 

V_max 40 

C1 2 

C2 2 

GC 6.672 

Radius 10 

 

In Table 6.9, the parameter iteration number is the algorithm termination condition. In 

addition, time limit will terminate the algorithm if the specified time elapses before it 

reaches the total number of iterations. One of the most important parameters in PSO-
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GELS is the particle number which represents the number of solutions. The velocity 

values are initialized with maximum value determined by V-max parameters. C1 and 

C2 are positive acceleration constants which control the influence of the best and 

neighbour solutions on the search process (Izakian et al., 2010). GC is a constant with 

the value 6.672 and Radius is the neighbour radius between the two responses in the 

search space. 

6.2.7 AS(TS), AS+TS, ACS(TS), and ACS+TS Parameters 

Based on the stand-alone version of these algorithms, the hybrid approaches utilized 

the same parameter values as shown in Table 6.10. 

Table 6.10 

 

AS, ACS, and TS Algorithms Parameter Values 

Parameter name AS ACS TS 

Iteration No 3000 3000 3000 

Alpha 1 1 NA 

Beta 8 8 NA 

Evaporation 0.5 0.6 NA 

No of ants No of machines 10 NA 

Exploitation NA 0.9 NA 

Time limit (seconds) 45 45 45 

Search neighbour NA NA Transfer, Swap adjacent, 

and Swap by load 

Tabu size NA NA 40 

Idle iteration NA NA 2 

NA: Not applicable for specific algorithm. 

6.2.8 AS(GA), AS+GA, ACS(GA), and ACS+GA Parameters 

These hybrid approaches adopted their parameters values from the stand-alone 

versions of them. Table 6.11 and 6.12 summarize the parameter values. 
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Table 6.11 

 

AS(GA) and AS+GA Algorithms Parameter Values 

AS GA 

Parameter name Value Parameter name Value 

Iteration No 3000 Iteration No 3000 

Alpha 1 Time limit 45 seconds 

Beta 8 Population size 10 

Evaporation 0.5 Intermediate size 6 

No of ants Number of machines Selection operator Tournament 3 

Time limit 45 seconds Crossover rate 0.9 

  Mutation rate 0.4 

  Crossover operator Fitness based 

  Mutation operator Re-balance 

 

Table 6.12 

 

ACS(GA) and ACS+GA Algorithms Parameter Values 

ACS GA 

Parameter name Value Parameter name Value 

Iteration No 3000 Iteration No 3000 

Alpha 1 Time limit 45 seconds 

Beta 8 Population size 10 

Evaporation 0.7 Intermediate size 6 

No of ants 10 Selection operator Tournament 3 

Exploration rate 0.9 Crossover rate 0.9 

Time limit 45 seconds Mutation rate 0.4 

  Crossover operator Fitness based 

  Mutation operator Re-balance 

 

The execution time for GA, AS, ACS, TS, BABC, EBABC1, EBABC2 is set to 90 

seconds which is commonly used as a reasonable amount of time for scheduling jobs 

in a computational grid environment (Xhafa, Barolli, et al., 2007a; Xhafa & Duran, 

2008). To keep this restriction time in the hybrid approaches, each algorithm is 

limited to 45 seconds in order to conduct fair experiments. However, each algorithm 

is also terminated with an iteration number which also works as a termination 
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criterion besides the limited time. In other words, each algorithm is terminated either 

by reaching the allowed run time or reaching the allowed iteration number.  

6.3 Experimental Result and Analysis 

The experiments are conducted using Intel® Core (TM) i7-3612QM CPU @ 2.10 

GHz and 8G RAM. The grid computing simulator is developed using visual C#. The 

time given for each experiment is 90 seconds (45 seconds for each algorithm in the 

hybrid approach). Each algorithm is executed 10 times in order to calculate the best 

and average values. The proposed algorithms are evaluated based on makespan, 

flowtime, and utilization metrics.  

6.3.1 Best Makespan Results 

In order to compare and represent the performance of the proposed algorithms 

visually, a geometric mean is calculated to normalize the makespan, flowtime, and 

utilization values of five instances (Izakian, Abraham, & Snsel, 2009). In addition, the 

difference between ACS algorithm and the proposed hybrid algorithm is calculated to 

provide the enhancement of each algorithm in terms of percentage. 

Figure 6.1 displays the results of the sixteen algorithms in terms of the best makespan 

value. The Figure 6.1 shows that the worse performance produced by BABC, 

EBABC2 and EBABC1algorithms. The algorithms, AS, AS(GA), and AS(TS) show 

similar performance to each other which is better than BABC, EBABC2 and 

EBABC1 algorithms. The performance enhanced slightly by AS+TS, AS+GA, PSO-

GELS, GA, ACS, ACS(GA), ACS+GA, TS, and ACS+TS algorithms.  The proposed 

hybrid algorithm ACS(TS) achieved the best performance in terms of best makespan 
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value as shown in Figure 6.1. This is due to the enhancement process achieved by TS 

algorithm to the solution produced by each cycle in ACS algorithm. 

 

Figure 6.1. Geometric mean for the best makespan values 

Figure 6.2 represents the enhancement of each hybrid algorithm which is expressed in 

terms of percentage. Each hybrid algorithm is compared with the ACS algorithm in 

terms of best makespan value enhancement. The Figure 6.2 shows that ACS(TS) 

algorithm enhanced 1.26% followed by ACS+TS 1.16%, ACS+GA 0.56%, and 

ACS(GA) 0.01%. This enhancement indicates that GA and TS algorithms increased 

the performance of ant colony system algorithm in both low and high levels. 

However, the best performance achieved when ACS algorithm hybridized with TS 

algorithm in low level order. Clearly in low level hybridization between ACS and TS, 

the TS algorithm enhances the best solution at the end of each cycle of ACS 

algorithm. This makes the ants update the pheromone based on the enhanced solution 

produced from TS algorithm. Therefore, the low level hybridization algorithm was 

able to achieve good results. 
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Figure 6.2. The percentage enhancement of each hybrid algorithm in terms of the best 

makespan values 

6.3.2 Average Makespan Results 

Figure 6.3 displays the results of the sixteen algorithms in terms of the average 

makespan value. The Figure 6.3 shows that the worse performance produced by 

BABC followed by EBABC2 and EBABC1 algorithms. The algorithms AS, AS(GA), 

and AS(TS) show similar performance to each other which is better than BABC, 

EBABC2 and EBABC1 algorithms. The performance enhanced slightly by AS+TS, 

AS+GA, ACS, PSO-GELS, ACS(GA), GA, ACS+GA, TS, and ACS+TS algorithms.  

The proposed hybrid algorithm ACS(TS) achieved the best performance in terms of 

average makespan value as shown in Figure 6.3. This is due to the enhancement 

process achieved by TS algorithm to the solution produced by each cycle in ACS 

algorithm. 
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Figure 6.3. Geometric mean for the average makespan values 

Figure 6.4 shows that ACS(TS) algorithm enhanced 1.96% followed by ACS+TS 

1.85%, ACS+GA 1.01%, and ACS(GA) 0.43%. This enhancement indicates that GA 

and TS algorithms increased the performance of ant colony system algorithm in both 

low and high levels. However, the best performance achieved when ACS algorithm 

hybridized with TS algorithm in low level order.  

 

Figure 6.4. The percentage enhancement of each hybrid algorithm in terms of the 

average makespan values 
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6.3.3 Best Flowtime Results 

The second metric to measure the scheduling algorithm performance is the flowtime. 

Figure 6.5 displays the results of the sixteen algorithms in terms of the best flowtime 

value. The Figure 6.5 shows that the worse performance produced by BABC followed 

by EBABC1 algorithms. The algorithms AS(GA), AS(TS), AS+GA, EBABC2, 

AS+TS, and AS show similar performance to each other which is better than BABC 

and EBABC1 algorithms. The performance enhanced slightly with ACS(GA), ACS, 

PSO-GELS, GA, ACS+GA, TS, and ACS(TS) algorithms.  The proposed hybrid 

algorithm ACS+TS achieved the best performance in terms of best flowtime value as 

shown in Figure 6.5. This is due to the refinement process achieved by TS algorithm 

to the best solution produced by ACS algorithm. 

 

Figure 6.5. Geometric mean for the best flowtime values 

Figure 6.6 shows that ACS+TS algorithm enhanced 0.07% followed by ACS(TS) 

0.06%, and ACS+GA 0.01%. The proposed hybrid algorithm ACS(GA) perform 

worse than ACS algorithm (not included in the graph).  
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This enhancement indicates that TS algorithm increased the performance of ant 

colony system algorithm in both low and high levels while GA algorithm only 

increases the ACS algorithm performance in high level order. However, the best 

performance achieved when ACS algorithm hybridized with TS algorithm in high 

level order. Clearly in high level order, the TS algorithm starts with initial solution 

passed from ACS algorithm which is very high quality produced by the best ant. 

Therefore, TS starts from good location in the search space which leads to further 

enhancement to the solution found by ACS algorithm.  

 

Figure 6.6. The percentage enhancement of each algorithm in terms of the best 

flowtime values 

6.3.4 Average Flowtime Results 

Figure 6.7 displays the results of the sixteen algorithms in terms of the average 

flowtime value. The Figure 6.7 shows that the worse performance achieved by BABC 

followed by EBABC1, and EBABC2 algorithms. The algorithms AS(GA), AS(TS), 

AS+TS, AS+GA, and AS show similar performance to each other which is better than 

BABC, EBABC1, and EBABC2 algorithms. The performance enhanced little with 

ACS(GA), ACS, ACS+GA, PSO-GELS, GA, TS, and ACS+TS algorithms.  The 
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proposed hybrid algorithm ACS(TS) achieved the best value in terms of the average 

flowtime values as shown in Figure 6.7. This is due to the enhancement process 

achieved by TS algorithm to the solution produced by each cycle in ACS algorithm. 

 

Figure 6.7. Geometric mean for the average flowtime values 

Figure 6.8 shows that ACS(TS) algorithm enhanced 0.093% followed by ACS+TS 

0.076%, and ACS+GA 0.001%. The proposed hybrid algorithm ACS(GA) perform 

worse than ACS algorithm (not included in the graph).  

This enhancement indicates that TS algorithm increased the performance of ant 

colony system algorithm in both low and high levels while GA algorithm only 

increases the ACS algorithm performance in high level order. However, the best 

performance achieved when ACS algorithm hybridized with TS algorithm in low 

level order.  
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Figure 6.8. The percentage enhancement of each hybrid algorithm in terms of the 

average flowtime values 

6.3.5 Best Utilization Results 

The last metric implemented in this study to measure the algorithms performance is 

the utilization of resources in the computational grid. Figure 6.9 displays the results of 

the sixteen algorithms in terms of the best utilization value. The Figure 6.9 shows that 

the worse performance achieved by BABC, EBABC2, and EBABC1 algorithms. The 

algorithms AS, AS(TS), AS+TS, AS+GA, AS(GA), PSO-GELS, GA, and ACS(GA) 

show similar performance to each other which is better than BABC, EBABC2, and 

EBABC1 algorithms. The performance enhanced little with ACS, ACS+GA, TS, and 

ACS+TS algorithms.  The proposed hybrid algorithm ACS(TS) achieved the best 

value in terms of best utilization as shown in Figure 6.9. However, the algorithms 

ACS+GA, TS, and ACS+TS show good performance in terms of best utilization 

value. 
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Figure 6.9. Geometric mean for the best utilization value 

Figure 6.10 shows that ACS(TS) algorithm enhanced over ACS algorithm by 1.19% 

followed by ACS+TS enhanced by 1.09% and finally ACS+GA algorithm enhanced 

over ACS algorithm by 0.52%. The low level hybridization between ACS and GA did 

not enhance the ACS algorithm. 

 

Figure 6.10. The percentage enhancement of each hybrid algorithm in terms of the 

best utilization values 
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6.3.6 Average Utilization Results 

Figure 6.11 displays the results of the sixteen algorithms in terms of the average 

utilization value. The Figure 6.11 shows that the best performance achieved by the 

proposed hybrid ACS(TS) algorithm. Similar performance also achieved by ACS+TS, 

TS, ACS+GA, GA, PSO-GELS, ACS(GA), and ACS algorithms. Slightly less 

performance achieved by AS+GA, AS(GA), AS+TS, AS(TS), and AS algorithms. 

The worse performance achieved by EBABC1, EBABC2, and BABC algorithms.  

 

Figure 6.11. Geometric mean for the average utilization value 

Figure 6.12 shows that in terms of the average utilization value, ACS(TS) algorithm 

enhanced over ACS algorithm by 1.9% and ACS+TS enhanced over ACS algorithm 

by 1.8%. In addition, ACS+GA algorithm enhanced over ACS algorithm by 1.01% 

and ACS(GA) algorithm enhanced over ACS algorithm by 0.17%. 



172 

 

Figure 6.12. The percentage enhancement of each hybrid algorithm in terms of the 

average utilization values 

6.3.7 Discussion 

In terms of best makespan value, the proposed algorithm ACS(TS) outperform the 

other algorithms. The best makespan value is the main objective of this study which 

reflects the productivity of grid computing system. ACS(TS) achieved good results 

due to the ability of TS algorithm to enhance the solution produced by the ants at the 

end of the each iteration in ACS algorithm. In low level hybridization ACS(TS), ACS 

algorithm uses the solution produced by TS for global pheromone update. Therefore, 

the ants in the nest iteration will be influenced by the solution enhanced by TS 

algorithm. 

The worse performance produced by BABC algorithm. BABC is the binary version of 

ABC algorithm which originally developed to solve continues problems. In spite of 

several studies proposed methods to apply ABC algorithm into discrete problems, the 

difficulty there is no natural extensions for combinatorial problems, such as travelling 

salesman problem and scheduled problems (Poli et al., 2007).  
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6.4 Summary 

From these findings, it is clear that ACS algorithm did not produce good solutions 

when it is executed alone. On the other hand, the local search algorithms GA and TS 

performances depend on the initial solution. Hence, GA and TS algorithm 

performances are enhanced when they are hybridized with ACS. Therefore, the 

solution produced by ACS needs to be refined using local search which is done 

successfully using the proposed algorithms in this study, specifically ACS(TS) 

algorithm. It is important to mention that the execution time given is 90 seconds in 

order to provide the real requirements in grid computing environment. Such a strong 

time concentration makes the algorithm terminate before it finishes its iteration 

number. 
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CHAPTER SEVEN 

CONCLUSION AND FUTURE WORK 

Similar to any other NP-complete problems, job scheduling in grid computing is a real 

challenging problem which is very hard to tackle. These types of problems required 

metaheuristics algorithms to achieve near optimal solution. Each metaheuristics 

algorithm shows good performance in specific problem. Therefore, no algorithm 

could be said is good for all NP-complete problems. Moreover, some algorithms are 

able to achieve good results only in specific instances of the specific problem. Due to 

this restriction, this study has been focused on enhancing ant colony system for job 

scheduling problem in grid computing. This study has been implemented a hybrid 

approach between ACS, GA, and TS algorithms. Section 7.1 discusses the research 

contribution while the research limitations are presented in Section 7.2. Suggested 

future work is provided in Section 7.3. 

7.1 Research Contribution 

One way to enhance ant colony system is by hybridizing it with other algorithms. In 

this study, it is found that genetic algorithm and tabu search algorithm are very useful 

to enhance ACS algorithm for job scheduling in grid computing. This study has five 

contributions specifically, four hybrid algorithms and one simulator. 

The first contribution is the low level hybridization between ant colony system and 

genetic algorithm which is called ACS(GA) algorithm. This hybrid algorithm has the 

ability to enhance the exploration mechanism in ACS algorithm. In terms of best 

makespan value for the static environment, ACS(GA) enhanced over ACS algorithm 
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by 0.35%. For dynamic environment, ACS(GA) enhanced over ACS algorithm by 

0.01%. 

The second contribution is the low level hybridization between ant colony system and 

tabu search algorithm which is called ACS(TS) algorithm. This hybrid algorithm has 

the ability to also enhance the exploration mechanism in ACS algorithm. In terms of 

best makespan value for the static environment, ACS(TS) enhanced over ACS 

algorithm by 4.65%. For dynamic environment, ACS(TS) enhanced over ACS 

algorithm by 1.26%. 

The third contribution is the high level hybridization between ant colony system and 

genetic algorithm which is called ACS+GA algorithm. This hybrid algorithm has the 

ability to refine the solution produced by ACS algorithm. In terms of best makespan 

value for the static environment, ACS+GA enhanced over ACS algorithm by 2.03%. 

For dynamic environment, ACS+GA enhanced over ACS algorithm by 0.56%. 

The fourth contribution is the high level hybridization between ant colony system and 

tabu search algorithm which is called ACS+TS algorithm. This hybrid algorithm has 

the ability to refine the solution produced by ACS algorithm. In terms of best 

makespan value for the static environment, ACS+TS enhanced over ACS algorithm 

by 6.99%. For dynamic environment, ACS+TS enhanced over ACS algorithm by 

1.16%. 

The fifth contribution is the grid computing simulator called ExSim simulator which 

has the ability to simulate static and dynamic environments for job scheduling. A trial 

version of ExSim simulator could be requested from http://exsim.webs.com/. 

http://exsim.webs.com/
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The experimental results found that the hybridization between ACS and TS, 

specifically the high level hybridization ACS+TS achieved the best performance 

compared to other algorithms in static grid computing environment. Therefore, this 

study recommends applying ACS+TS algorithm for a grid computing system which 

has the characteristics similar to static environment. In addition, the study 

recommends applying ACS(TS) algorithm for dynamic computational grid system.  

7.2 Limitation of the Study 

Limitations are unavoidable events in any study and this study has no exceptions. The 

followings are the limitations of this study: 

i. For algorithm evaluation purpose, there is no standard simulator that could be 

used, especially when the required algorithms are hybridized like the proposed 

algorithms in this study. Therefore, a simulator is developed from scratch in 

order to conduct the evaluation experiments. 

ii. Due to the random variables used in the distribution methods to generate the 

benchmark problems, it is not possible to compare results reported in the 

literature. Hence, all the algorithms which were selected for comparison were 

implemented in this study. 

iii. This study did not consider the variation of the network connection speed. 

7.3 Recommendation for Future Work 

During the process of this study, several directions arose which are considered as 

good seeds for future research. The following points highlight the promising 

directions found by this study: 
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i. There are many other components in grid computing systems which need to be 

investigated, such as security, task immigration between resources, and the 

resource fault predicting. 

ii. Grid computing field needs standardization in terms of infrastructure and 

implementation in order to unify the grid architecture. 

iii. The enhanced scheduling algorithm could be investigated with other 

scheduling problems, such as job shop scheduling problem and Flow shop 

scheduling problem. 

iv. Other local search algorithms could be hybridized with ACS algorithms, such 

as simulated annealing and artificial bee colony. 

v. One of the most important components in tabu search algorithm is the 

neighbourhood search techniques. There are several techniques which could be 

investigated in order to find the best combination for tabu search algorithm. 

vi. During the iterations of ant colony system algorithm, after each cycle, each ant 

will calculate the fitness of its solution and compare it with the best-so-far 

solution. The process of calculating the solution fitness is time consuming. On 

the other hand, these solutions could already be found and calculated in some 

previous loops or by other ants which will waste time in calculating the same 

solution again. Therefore, introducing a hash function to convert the solution 

into hash code and save it in a hash table will reduce the calculation time. Each 

ant will use the hash function to convert its solution into a hash code and 

compare it with the codes saved in the table. If the code already exists in the 

table, then there is no need to calculate its fitness value and simply discard the 

solution. Otherwise, save the new code in the hash table and calculate the 

fitness value. This enhancement will save a lot of time in ACS run time.   
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