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Abstrak

Sejak dua dekad lalu, pemodelan geometri menggunakan pendekatan persamaan pem-
bezaan separa (PPS) telah dikaji secara meluas dalam Rekabentuk Geometri Bantuan
Komputer (RGBK). Pendekatan ini pada mulanya diperkenalkan oleh beberapa orang
penyelidik berdasarkan kepada permukaan Bézier yang berkaitan dengan luas permu-
kaan minimum ditentukan oleh lengkung sempadan yang ditetapkan. Walau bagaima-
napun, perwakilan permukaan Bézier boleh diperbaiki dari segi masa pengiraan dan
luas permukaan minimum dengan menggunakan perwakilan permukaan Ball. Sehu-
bungan itu, kajian ini membangunkan satu algoritma untuk mengitlak permukaan Ball
dari lengkung sempadan menggunakan PPS eliptik. Dua permukaan Ball khusus iaitu
harmonik dan dwiharmonik pertamanya dibina dalam membangunkan algoritma yang
dicadangkan. Permukaan terdahulu dan kemudian masing-masing memerlukan dua
dan empat syarat sempadan. Bagi mengitlak permukaan Ball dalam penyelesaian poli-
nomial untuk sebarang PPS peringkat empat, kaedah Dirichlet digunakan. Keputusan
berangka diperolehi keatas contoh titik data yang diketahui umum menunjukkan algo-
ritma permukaan Ball teritlak yang dicadangkan mempamerkan keputusan lebih baik
daripada perwakilan permukaan Bézier dari segi masa pengiraan dan luas permukaan
minimum. Tambahan pula, algoritma yang baharu dibina juga memenuhi sebarang per-
mukaan dalam RGBK termasuk permukaan Bézier. Algoritma ini kemudiannya diuji
dalam permasalahan pengekalan kepositifan permukaan dan pembesaran imej. Kepu-
tusan menunjukkan algoritma yang dicadangkan adalah setanding dengan kaedah yang
sedia ada dari segi kejituan. Justeru, algoritma ini adalah satu alternatif berdaya maju
untuk membina permukaan Ball teritlak. Dapatan daripada kajian ini menyumbang
kearah bidang pengetahuan untuk pembinaan semula permukaan berdasarkan pende-
katan PPS dalam bidang pemodelan geometri dan grafik komputer.

Kata kunci: Permukaan Ball, Persamaan pembezaan separa, Kaedah Dirichlet, Pe-
ngekalan kepositifan, Pembesaran ime;j.
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Abstract

Over two decades ago, geometric modelling using partial differential equations (PDEs)
approach was widely studied in Computer Aided Geometric Design (CAGD). This
approach was initially introduced by some researchers to deal with Bézier surface re-
lated to the minimal surface area determined by prescribed boundary curves. However,
Bézier surface representation can be improved in terms of computation time and min-
imal surface area by employing Ball surface representation. Thus, this research devel-
ops an algorithm to generalise Ball surfaces from boundary curves using elliptic PDEs.
Two specific Ball surfaces, namely harmonic and biharmonic, are first constructed in
developing the proposed algorithm. The former and later surfaces require two and
four boundary conditions respectively. In order to generalise Ball surfaces in the poly-
nomial solution of any fourth order PDEs, the Dirichlet method is then employed.
The numerical results obtained on well-known example of data points show that the
proposed generalised Ball surfaces algorithm performs better than Bézier surface rep-
resentation in terms of computation time and minimal surface area. Moreover, the
new constructed algorithm also holds for any surfaces in CAGD including the Bezier
surface. This algorithm is then tested in positivity preserving of surface and image en-
largement problems. The results show that the proposed algorithm is comparable with
the existing methods in terms of accuracy. Hence, this new algorithm is a viable alter-
native for constructing generalized Ball surfaces. The findings of this study contribute
towards the body of knowledge for surface reconstruction based on PDEs approach in
the area of geometric modelling and computer graphics.

Keywords: Ball surface, Partial differential equation, Dirichlet method, Positivity pre-
serving, Image enlargement.
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CHAPTER ONE
INTRODUCTION

1.1 Research Background

Partial differential equations (PDEs) is a large subject with a history that goes back to
Newton and Leibnitz. Many mathematical models involve functions which have the
property that the value at a point depends on its value in a neighborhood. Dependencies
like these can be modeled with a PDE. Famous examples are Newton’s second law,

Laplaces equation, Schrédinger’s equation and Einstein’s equations.

Geometric modeling using PDEs have been widely studied in computer graphics for
over two decades and was first introduced in blend surface generation by Arnal, Mon-

terde and Ugail (2011), Du and Qin (2004), Monterde (2004), Zhang and You (2004).

Advantages of the PDE methods have been gradually recognized by researchers. A
principle advantage comes from the ability that the differential operator of PDEs can
ensure the generation of smooth surfaces, where the smoothness is strictly governed
by the order of the PDE used. A second advantage of using the PDE method is that
the PDE surface can be generated by intuitively manipulating a relative small set of
boundary curves. Moreover, the behavior of PDE surfaces has been proven to be com-
patible with underlying tensor product surfaces, such as Bézier surface (Monterde &
Ugail, 2006), B-spline (Bloor & Wilson, 1990) and etc. These advantages have con-
tributed to the widespread adoption of the PDE methods in a wide range of disciplines,
such as free-form surface design, solid modeling computer aided manufacturing, shape
morphing, web visualization, mesh reconstruct and facial geometry parameterization

(Sheng, Sourin, Castro & Ugail, 2010).



Modeling a B-spline, Bézier or Ball surface at high degree is expensive in terms of
computational time due to an excessive number of control points. To significantly
solve this problem, a new method that can reduce computational time while retaining
a highly accurate result will be used instead of all control points of B-spline, Bézier or
Ball representations. Therefore the concept of PDE techniques plays a key role in this

study.

Ball basis was presented by cubic polynomials over a fine interval. The work of Said
(1989) was extended to a polynomial of arbitrary high odd degree and then used Her-
mite two-point Taylor interpolation theory to generalize the cubic basis functions of
the Ball. Hence, the generalization enables higher order curves and surfaces to be
defined and also develop a recursive algorithm for efficient computation of the gener-
alized curves and surfaces Said (1989) . For the sake of convenience, Hu, Wang and
Jin (1996) suggested that the Said-Ball basis should be of arbitrary even degree. Wang
(1986) also extended the Ball basis to arbitrary high degree. In 2003, Delgado and
Peiia (2003) introduced a new parametric curve representation of which the properties
are normalized totally positive (N'TP) basis functions, corner cutting algorithm and lin-
ear computational complexity. Previously, it was called DP-Ball curve (Dejdumrong,
2006; Jiang & Wang, 2005) though it has no relation with any of the generalized Ball

curves (Itsariyawanich & Dejdumrong, 2008).

There are many properties of Ball curve and its generalized Said-Ball, DP-Ball and
Wang-Ball curves such as positivity, partition of unity, convex hull property, recursive
relation, degree elevation, degree reduction, and etc (Goodman & Said 1991; Hu,Wang

& Sun, 1998; Hu et al., 1996; Said, 1989).



1.2 Problem Statement

The main point of this work is to show that the harmonic, biharmonic and Dirichlet
Bézier surfaces are related to minimal surface, that is, a surface that minimizes the
area among all surfaces with the prescribed boundary data. In the harmonic case, two
boundary conditions are required to construct the surface, while in the biharmonic case,

four boundary conditions are required to satisfy the fourth order elliptic PDE.

In this research, the focus will be on the construction of a generalized Ball surface
representation using elliptic PDEs from the boundary curves information because to
the best of our knowledge, this representation has not been investigated yet, although
the Ball surface also play an important role in the surface modeling which is similar to
the Bézier representation. The linear elliptic PDEs are chosen for the proposed method
due to the fact that this type of PDEs have been widely used in many areas of sciences

(Monterde and Ugail, 2006; Arnal et al., 2011).

1.3 Research Questions

1. Does the concept of PDE techniques play a key role in the generalized Ball
surfaces?

2. What is the lowest expense in terms of computational time due to an excessive
number of control points for B-spline, Bézier or Ball at high degree?

3. What is the lowest expense in terms of computational time when interpolating

an image ?



1.4 Objective of the Research

The main objective of this research is to develop an algorithm for constructing Ball
surfaces from the Ball boundary curve of degree n using elliptic PDEs. In order to

achieve this objective, we need to do the following:

1. To construct the generalized polynomial solutions, in terms of Ball surface and
the different order linear elliptic PDEs satisfying a given the boundary Ball
curves.

2. To compare the performance of the proposed algorithm with existing algorithm
in terms of smoothness of constructing surface and computational time.

3. To apply the proposed method in the area of image enlargement using different

test images.



1.5 Research Framework
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1.6 Scope of the study

This study seeks to construct generalized Ball surfaces (Said-Ball, DP-Ball and Wang-
Ball) from their boundary curves using fourth order elliptic linear PDEs. Next we
compared our result for generalized Ball surface with the existing work for Bézier sur-
face in terms of surface area and computational time. Finally, we applied our algorithm

in positivity preserving and image enlargement.



1.7 Significance of the Study

The contributions of this study are twofold. Firstly, the findings of this study con-
tribute towards the body of knowledge in the field of geometric modeling using PDEs.
New ideas and concepts are introduced in this study and can be easily extended for
future research. Secondly, the proposed method is applicable in the area of surface

reconstruction and image processing.

1.8 Thesis Organization

In this thesis, a generalized Ball surface using PDEs is presented. The main contri-
bution is generating Ball surface from their boundaries information. The first part of
Chapter One gives a brief introduction of PDEs and Ball surface by explaining the
criteria, objectives, and techniques that are used in generalized Ball surface, while
the second part of the chapter talks about the problem statement, research questions,
objective of the study, scope of the study, research framework, and organization of
the thesis. Chapter Two starts with a brief overview of the Ball curves classification
and its generalization by the use of PDEs techniques to produce Ball surfaces. The
discussion of issues found in prior relation including PDEs adopting boundary value
approach is added. This chapter concludes with a summary and justifying the PDEs
methods as a theoretical basis for the present study. Chapter Three begins with the
general algorithm for harmonic and biharmonic which holds for any surface used in
Computer Aided Geometric Design (CAGD), that is applied to Ball surface and our
purposed method is compared with the existing method for Bézier surface. Chapter
Four begins with a more general polynomial solutions for any fourth-order differential
equation and any square surface by using the monomial matrix form which is hold for
any surface used in CAGD, which is also applied to Ball surface. This is followed by
more general algorithm for Dirichlet functional for any surface used in CAGD, and we
applied it to Ball surface. Chapter Five is about the implementations and applications

6



of our proposed algorithm for the interpolation of the generalized Ball surface with
positivity preserving and enlarge images . Finally, Chapter Six concludes the study by
addressing several recommendations. It also discusses the possible extensions of the

study and scope for further investigation.



CHAPTER TWO
LITERATURE REVIEW

2.1 Introduction

This chapter begins with a brief overview of the classification of the Ball curves and its
generalization by using partial differential equations (PDEs) method to generate Ball
surfaces. This is followed by a discussion of issues found in prior relation including
PDEs adopting boundary value approach. This chapter concludes with a summary and

justification of the PDEs methods as a theoretical basis for the present study.

Ball (1974; 1975; 1977) introduced Ball basis function as cubic polynomial, and Said
(1989), Delgado and Peiia (20032) and Wang (1987) further extended three different
generalizations for high degree n polynomial that have been called the Said-Ball, DP-
Ball and Wang-Ball, respectively. Their degree curve and surface can be obtained by
overlapping interior control points (Said, 1989). Several researchers (Delgado & Pefia,
2003b; Hu et al., 1996; Phien & Dejdumrong, 2000; Said, 1989; Aphirukmatakun &
Dejdumrong, 2011; Goodman & Said, 1991) have theoretically come to their calcula-

tions, elevation and reduction (Monterde, 2004).

Ball (1974, 1975; 1977) explained lofting surface program CONSURF at British Air-
craft Corporation by exploiting various basis functions. The basis functions used are
cubic polynomials, but this is distinctive from that used in Bézier method (Bernstein
polynomials). The method employed by Ball is comparable to Bézier method though
they have the same shape independently. Later, the generalized form for polynomi-
als of higher degree by Wang, Delgado and Pefia; and Said namely Wang-Ball, DP-
Ball and Said-Ball curves were presented, respectively (Wang, 1987; Delgado & Peiia,
2003a; Said, 1989). The effectiveness of Said-Ball, DP-Ball and Wang-Ball basis were

described in the works by Hu et al. (1996) and Delgado and Pefia (2003a). In addi-
8



tion, Phien and Dejdumrong (2000) was regarded Said-Ball and Wang-Ball curves as

effective methods in evaluating Bézier curves.

Introducing this work in terms of boundary based smooth surface design involves the
development of methods for generating Bézier surfaces verifying elliptic boundary
value problems with specific applications to boundary value problems associated with
the Laplace equation as well as the biharmonic Bézier surfaces (Arnal et al., 2011;
Wang & Guo, 2012; Arnal & Monterde, 2014). These surfaces are smooth polynomial
surfaces which conforms to the harmonic (degree two) or biharmonic (degree four)

PDEs and have the same formulations as Bézier surface.

The chosen fourth-order boundary value problem defines the boundaries of the surface
patch alone, which will enable us to fully determine the entire surface. This poly-
nomial solution method has been generalized to satisfy any fourth order biharmonic
equation (Monterde & Ugail, 2006). Wang and Guo (2012) further extended the work

of Monterde and Ugail (2006) into degree m X n.

2.2 Review on Bézier Curves

Bézier curves of degree n with n+1 control points {b;}?_; can be defined by

(Aphirukmatakun & Dejdumrong, 2007; Farin, 2002)
n
B(r)=Y bBi(1),0<t <1, @.1)
i=0
where BY(t) are Bernstein polynomials defined by:

Bl t) = (’Z)ﬂ'u — )0, (2.2)
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Figure 2.1. The Bernstein polynomials of degree two.
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Figure 2.3. The Bernstein polynomials of degree four.
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Figure 2.4. The Bernstein polynomials of degree five.

Bernstein basis function satisfies the following properties:
i. B¥(t) >0. Vi=0,1,--- ,n.

i Y7 o Br(1) = 1.

Since Bernstein polynomials satisfies properties (i) and (ii), it implies the convex com-
bination of its control points. Therefore, the curve lies in the convex hull of its control

points (Farin, 2002).

2.2.1 Derivative and Integral of Bernstein Polynomials

The derivative and the integral of Bernstein polynomials are given by Farin (2002):

SBI) =n(B 0 - B (1), 23)

and
1
n+1’

/0 Bt = 2.4)
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2.2.2 Bézier Monomial Form

A Bézier curve of degree n, denoted by B(z), with n+ 1 control points, denoted by

{bi}1,, can be written in terms of the power basis as follows

n n

B(t)=Y Y bimjt/,0<t<1,
i=0 j=0

)

2.2.3 Degree Elevation of Bézier Curves

where

(2.5)

(2.6)

We can raise the degree of Bézier curves by one by adding one new control point.

We are thus looking for a curve with control point {bgl)};’:ol

that describes the same

curve with the original control points {b;}7_,. Bézier curve can be defined in terms

of its control points by the following formula (Aphirukmatakun & Dejdumrong, 2007;

Farin, 2002)

b(l)z : bi—l+(1_nl )biaizoal,z""7n:1'

+1

: n+1

|
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06 //’\
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TN

02}
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06F
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Figure 2.5. Degree elevation of Bézier curve from three to six.
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Lemma 3.1: Given a Bernstein polynomial B?(¢), we have (Monterde & Ugail, 2004),

k (n—i—\ i+l
By =) %—) O

=0 k

(2.8)

Vn>0ke{0,1,--,n} and i€ {0,1,--- ,n—k}.

2.2.4 Bézier Rectangular Surfaces

The Bézier surfaces of degree m x n with control points {p; j}; i, can be expressed as

m n
B(u,v)=Y Y BI'w)B}(v)pij, 0<u,v<I1, (2.9)
i=0 j=0

where B}"(u) and BT (v) are the Bernstein basis (Wang & Cheng, 2001).

2.3 Review on Ball Curves

The curve was declared by A. A. Ball in his well-known aircraft design system CON-
SUREF in Ball (1974). It is described as a cubic polynomial curve and explained math-

ematically as:

(1-1)2,20(1 —1)2,262(1 — 1), 12 (2.10)

Figure 2.6. Cubic Ball basis functions.
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In further research, several studies have discussed about Ball curve’s high generaliza-
tion and its properties. For instance, in the 1980s there were two different Ball curves
of arbitrary degree (Hu et al., 1996; Said, 1989; Wang, 1987) and in 2003 there was

another generalization of Ball curve called DP-Ball (Delgado & Peiia, 2003a).

2.3.1 Said-Ball Representation

The Said-Ball curves of degree n with n+ 1 control points {v;}?_, can be given by:
n
NOEDIHOIE (2.11)
i=0
where S7(¢) are Said-Ball polynomials defined by:

(21 —r) "7 Jfor 0 <i< 2l

n—1

2.

ORI
1 bn—iy, 2214 n—i ntl

( o ez ti(1-1) Jfor 5= <i<n,

2.12)

when » is odd, and

[SIE]

()1 —r)3H! for 0<i<?-1,

SO =1 (-1 for i=1, (2.13)

(g+n7i)tg+l(1 —r)"t for 2 <i<n,

n—i

when n is even ( Aphirukmatakun & Dejdumrong, 2007; Dan & Xinmeng, 2007; Hu

et al., 1996; Said, 1989).
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Figure 2.7. Said-Ball basis functions of degree two.

Figure 2.8. Said-Ball basis functions of degree three.
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Figure 2.9. Said-Ball basis functions of degree four.
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Figure 2.10. Said-Ball basis functions of degree five.

The Said-Ball basis function satisfies the following properties:

i. The Said-Ball basis function is non-negative, that is,
SH(t)>0,Vi=0,1,---,n. (2.14)
ii. The partition of unity, that is,

iS?(t) =1. (2.15)
i=0

The fact that the Said-Ball basis fulfills the above properties implies the convex com-
bination of its control points. Hence, the curve lies in the convex hull of its control

points (Hu et al., 1996).
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2.3.1.1 Said-Ball Monomial Form

A Said-Ball curve of degree n, denoted by S(z), with n+ 1 control points, denoted by

{vi} ¢, can be written in terms of the power basis as follows

S(I):ZZvisi’jtj,OStfl, (2.16)
i=0 j=0
where
(~nUd(HLEl) (1B, for 0<i<[4],
5= (DU () for i =4, 217
(—1)l-L3)=d (laltn=dy (j_'[%—f_l), for [5]+1<i<n,

and |x] and [x] denote the greatest integer less than or equal to x, and the least integer

greater than or equal to x, respectively.

2.3.1.2 Conversion of Said-Ball Curve to Bézier Curve

The converting formula for basis from Said-Ball to Bézier is given as follows (Hu et

al., 1996; Aphirukmatakun & Dejdumrong, 2007):

Sg(t) COO cOl S e cee Con Bg(t)

St(t) clo cu - Cin B (1)
= ' S (2.18)

SE(t) cio cil v - c¢in | | Bi(2)

] SZ([) | i Ch0 Cnl "+ "+ ‘' Cmn ] B;ll(t)
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where S7(t),B}(t),i € {0,1,...,n} are Said-Ball basis functions and Bernstein basis

functions, respectively. Thus from (2.18), we have

S™(u) = ): cifB(u). (2.19)

A Said-Ball control point can be written as an associate Bézier control point as follows:

COO COl . e e .« cOn
clo ¢ Cln
[bo by -+ bal=[vo vi -~ va]| . (2.20)
cio ci1 Cin
_Cno Cnl PR RS . cnn
and
EHED
S risiggel
(771 1)(1 1- 7) ' .
nt Jori>j>5+1,
=< 0 =J=2 (2.21)
1 Jfor i=j=7,
0 , otherwise,
when #n is even, and
n—1_.  n—1
T-H T—x
— ()"()J—') for i < j < 257,
Ci,j = 3n-1 ,.j il (2.22)
CEDCE) o oo n
@) orizj="75,
J

when # is odd.
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2.3.1.3 Said-Ball Rectangular Surfaces

The Said-Ball surfaces of degree m x n with control points {v;, j}:"]’.';o can be expressed

as

m n
Swv)y=Y Y SPw)Si(vvij, 0<u,v<1, (2.23)
i=0 j=0

where S7'(u) and ST'(v) are the Said-Ball basis (Wang & Cheng, 2001).

2.3.1.4 Converting Said-Ball Surface into Bézier Surface

The Said-Ball surface of degree m X n in (2.23) can be written in matrix form as
X(u,v) =S,VS,, (2.24)

where S, = [ST(u) S™(u)--- Sm(w)], Sy = [SE(v)  S*(v)...sm()]",

Yoo Vo1 " Yon

VIO V11t Via
V= ,

Ym0 Vml ~°° Vmn

and v;j,i € {0,1,---,m},j € {0,1,---,n} are the control points of the Said-Ball sur-

face. By using (2.18) in (2.24) we get

X(u,v) = (CB,)'V(HB,)
= (B,C')V(HB,)
— BL(C'VH)B,

= B.PB, (2.25)
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where P = FVH, F = C' and F,H are square matrices of order m and n, respectively,

given by (2.21) and (2.22). Now, we rewrite (2.25) as

X (u,v) Z Z B (u)B}(v)Pyj, (2.26)
i=0j=0
where
m n
Z): wveshsj, 1€{0,1,...,m}, j€{0,1,...,n}, (2.27)

which is the Bézier surface of degree m x n, where v;; are Said-Ball control points.

2.3.2 DP-Ball Curves Representation

The degree n DP-Ball curves with n+ I control points {d;}7_, is defined by
n
D(t)=Y diD}(r), 0<t<1, (2.28)

where D7 (t) are DP-Ball polynomials (Delgado & Pefia, 2003a) defined by:

( (1—=r)" JdJor i=0,
t(1—e)mt for 1<i<|3]-1,
Di(t) =19 KPMt)+KB(t) for i=|2], (2.29)

Ki(t)+KE(r) for i=T§],

Dp_(1—t) for [3]+1<i<n,

and
n(r) = (%)H = [3)+1 _ (1_t)L%J+1),
10 = (13- LEJ)t(l D,
3 = (131-150) a0
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Figure 2.11. DP-Ball basis function of degree three.

0.2 0.4 0.6 0.8 1.0

Figure 2.12. DP-Ball basis function of degree four.

The DP-Ball basis function satisfies the following properties:

i Drt)>0Vi=0,1,---,n.

ii. Y2 D) =1.

Since the DP-Ball satisfies properties (i) and (ii), it implies the convex combination of

its control points. Therefore, the curve lies in the convex hull of its control points.
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2.3.2.1 DP Monomial Form

An n*f-degree DP curve, denoted by D(t), given by a set of n+ 1 control points, de-

noted by {d;}"_, can be formulated in power basis form by

D(t) = i i dicijt!, (2.30)

i=0 j=0
where
(=1)/(}),for i =0,
(1)1 (5 for 0<i < [B] -1,
(=1 =20 () + 1 (O)
() = (DI (5))) for i = 15,
(=1 —20) () + 57 ((‘j’.)
(i) — (DI ) for = 1),

(=1)l=D (jl_i),for [Bl1+1<i<n—1,

2.31)

(jgn),for i=n,

\

|x] and [x] denotes the greatest integer less than or equal to x, and the least integer

greater than or equal to x, respectively.

2.3.2.2 Conversion of DP-Ball Curve to Bézier Curve

The formula for converting between DP-Ball Curve and Bézier curve (Aphirukmatakun

& Dejdumrong, 2007) are given as follows

DH([) co0 €0l v -+ ' Con Bg(t)
D'll(t) clo ¢11 - Cln B'll(t)
_ : : . . : : . 232)
Di(t) co ci1 o Cin Bi(1)
I DZ(t) | I Ch0 Cnl ** ' Cpn 11 BZ(I) |
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Thus we have,

n n

Di(t)=Y Y cifB}(1). (2.33)

i=0 f=0

A DP-Ball control point can be written as an associate Bézier control point as follows:

COO CO] » e « s a » e Con
cio c11 - Cln
[bo by - ba]=[do dy -+ dn] . (2.34)
cio ¢t o - Cin
CnO cnl e e s e . Cnn

where D?(t),B?(t),i € {0,1,...,n} are DP-Ball basis functions and Bernstein basis

functions, respectively, while C is the convert matrix given by:

([ fori=j=0 or i=j=n,
_,_2 i) forl1<j<il<i<|E 1 2.35
W) e ofrtssseisislEoh -
(n——j) J) . . n ;
[ e o Fsssno bl sis s
If n is even, then
. n—j Ny _ nj
- Wl ) ey ) e i g,
_([%JH)_
i N_( ni
cij= ¢ 1_(_12M Jfor [3]1<j<n—1andi=|}], (2.36)
([%Hl)
0 ,otherwise;

\
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but if # is odd,

Cij =«

( 1 1— ([gj_il)_([%j+l zj([gj——{-l
2 ([§T+1 ("—1)([gj'+1)
for 1<j<|[3] and i=[7],
14 (Lg]il)_([§j+l) (n J)(ngﬂ)
2 n + n—1
(LgJ+1) ”(Lgm)
for 1<j<|5] and i=[7],
: (1g740) (573 i(341) (2.37)
2 1 - n + n—1
(L§J+1) "(ngﬂ)

for [J]<j<n—1andi=|3],
] (

1l_ ([gjﬂ)—(éﬂ] 2(n—j) [gnj+1)
2 i (L§T+1) (”—1)(ng+1)
for [3]<j<n—1and i=[7],

0, otherwise.

2.3.2.3 DP-Ball Rectangular Surfaces

The DP-Ball surfaces of degree m x n with control points {d;, J}:"sz__o can be expressed

as

m n
D(u,v) =Y Y DFw)Di(v)dij, 0<uv<l,
i=0 j=0

(2.38)

where DJ*(u) and D77(v) are the DP-Ball basis (Wang & Cheng, 2001).

2.3.2.4 Converting DP-Ball Surface into Bézier Surface

The DP-Ball surface of degree m x n in (2.38) can be written in matrix form as

X (u,v) = D,DD,
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where D, = [DF(u) D(w) -+~ D)), Dy = [DE() D) ... D2(W)]T,

doo do1 -+ don

dio di1 - din
D= ,

dmO dml Tt dmn

and d;j,i € {0,1,---,m}, j€{0,1,--- ,n} are the control points of the DP-Ball surface.

By using (2.28) in (2.39) we get

X(u,v) = (CB,)'D(HB,)
= (B!C")D(HB,)
— B'(C'DH)B,

= B!PB, (2.40)

where P = FDH, F = C" and F, H are square matrices of order m and n, respectively,

given by (2.35), (2.36) and (2.37). Now, we rewrite (2.40) as

X (u,v) = Z ZB”’(u )B}(v)Pij, (2.41)
i=0j=0
where
m n
Pi=YY fudrshsj, i€{0,1,....m}, je€{0,1,...,n}, (2.42)
r=0s5s=0

which is the Bézier surface of degree m x n, where d;; are DP-Ball control points.
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2.3.3 Wang-Ball Curves

Wang-Ball curves of degree n with n+ 1 control points, {w;}?_, (Aphirukmatakun &

Dejdumrong, 2007; Hu et al., 1996; Wang, 1987) can be defined by:
n
A(t) =) wiAl(t), 0<t<1, (2.43)
i=0

where A(z) are Wang-Ball polynomials defined by:

4

i s
(1—2)>*(2t)' ,0<i <83,
-0 @)% =1,
Al = ( 2 (2.44)
ol ail : n+1
2(1—1)7 12 =5,
2e(1—g))yrign=i+2  H3 <<,
when # is odd, and
1 —1)2ti(2)! 0<i<i_1,
(1-1) , 2
Af(t) =4 (21(1-1))2 =1 (2.45)
QA —p)rimmi2 mM3 <i<p,
when n is even.
10
038
0.6
04
02
0.2 0..4 0.6 0.; 1.0

Figure 2.13. Wang-Ball basis function of degree two.
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Figure 2.14. Wang-Ball basis function of degree three.

Figure 2.15. Wang-Ball basis function of degree four.
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Figure 2.16. Wang-Ball basis function of degree five.
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The Wang-Ball basis function satisfies the following properties:

i. Each term is positive, that is,

Al(t) >0,Vi=0,1,--- ,n. (2.46)
ii. Partition of unity, that is,
n
Y A =1. (2.47)
=0

Since Wang-Ball satisfies properties (i) and (ii), it implies the convex combination of
its control points. Therefore, the curve lies in the convex hull of its control points (Hu

et al., 1996).

2.3.3.1 Wang-Ball Monomial Form

A Wang-Ball curve, denoted by A(z), provided with n+ 1 control points, denoted by

{wi}l,, can be shown as

n n
A(t) = Z Z w,-a,-,jtj,O <t <1, (2.48)
i=0 j=0
where ,
(_1)(j—i)2i(;f;2i), for 0<i<|5]—-1,
—1)U=ioi(n—hy. for i=1[%],
aij = (D72 () . 3] (2.49)
(_1)(1'—1')2"—"(']',:;), for i= 3],
(_1)(j—n+i)2n—i(j*:_—*_::_2), for [—g] +1<i<n,

\

and |x] and [x] denote the greatest integer less than or equal to x, and the least integer

greater than or equal to x, respectively.
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2.3.3.2 Conversion of Wang-Ball Curve to Bézier Curve

The converting formula for basis from Wang-Ball to Bézier is given as fol-

lows (Aphirukmatakun & Dejdumrong, 2007; Hu et al., 1996):

Ag([) co0 Co1 vttt Com 8([)

A'll(l) cl0 c11 - Cln '11(2)
_ : : . . : : ' (2.50)

AL(t) cip i1 vt - Cin Bi(r)

I Ag(t) I Cho Cnl "'t r Cmm 11 BZ(I) J
Thus we have,
n n
Al() =Y Y cisBi(). (2.51)
i=0 f=0

A Wang-Ball control point can be written as an associate Bézier control point as fol-

lows:
r -
cw C01 e e .o COn
clo ¢ Cin
[b() bl b,,] = [Wo wp - Wn] s (2.52)
ciop Ci1 ot Cin
CnO Cnl “ e PR e Cnn

where A%(t),B}(t),i € {0,1,...,n} are Wang-Ball basis functions and Bernstein basis

functions, respectively, and C is the convert matrix given by:
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(Y

2= Jfor i < 7],

on i(Jzi;z'_") f [n'|
P Jfor i >[5,

9] 2
Cij = < (ZTJ) Jori=j= LgJ’ (2.53)

j

2{,,3’ Jfor i =j=[%],
7

0 ,otherwise,

where | 7| and [7] denote the greatest integer less than or equal to 7, and the least

integer greater than or equal to 75, respectively.

2.3.3.3 Wang-Ball Rectangular Surfaces

The Wang-Ball surfaces of degree m x n with control points {w;;};"", can be ex-

pressed as

m n
W(u,v) =) Y APWA(wij, 0<u,v<1, (2.54)
i=0 j=0

where W/ (1) and W}"(v) are the Wang-Ball basis (Wang & Cheng, 2001).

2.3.3.4 Converting Wang-Ball Surface into Bézier Surface

The Wang-Ball surface of degree m X n in (2.54) can be written in matrix form as
X (u,v) = A, WA, (2.55)

where A, = [AT(u) A7(u) - AT(W)], Ay = [AR(V) A7) ... A2()]T,

woo Wo1 - Won

Wio Wil Win
W= ,

Wm0 Wml " Wmn J
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and w;j,i € {0,1,--- ,m}, j € {0,1,---,n} are the control points of the Wang-Ball sur-

face. By using (2.50) in (2.55), we get

X(u,v) = (CB,)V(HB,)
— (B,C)V(HB,)
— B'.(C'VH)B,

= B.PB, (2.56)

where P = FVH, F = C' and F,H are square matrices of order m and n, respectively,

given by (2.53). Now we rewrite (2.56) as

m n
X(u,v) =YY Bu)B}(v)P;, (2.57)
i=0j=0
where
m n
Pi=Y Y fiwmshg, i€{0,1,...,m}, je{0,1,...,n}, (2.58)

r=0s=0

which is the Bézier surface of degree m x n, where w;; are Wang-Ball control points.

2.4 Parametric Surface

The general form of a parametric surface is P(u,v) = (f1(u,v), f2(u,v), f3(u,v)). The
surface depends on two parameters, u and v, that vary independently in some interval
[a,b] (normally, but not always, limited to [0, 1]). For each pair (u,v), the expression

above produces the three coordinates of a point on the surface.

2.5 Harmonic and Biharmonic Surface

Let f : [u,v] — R3 be a parametric surface patch, then X is harmonic if vzy =0

and biharmonic if (vz?)2 = 0, where /2 is the Laplace operator defined by /2 =
92 32

(%+32)
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Harmonic surfaces are related to minimal surfaces, that is, surfaces that minimizes the
area among all surfaces with prescribed boundary conditions introduced by Monterde
(2004). Arnal and Monterde (2014) introduced a method for generating harmonic ten-
sor product Bézier surfaces, and the explicit expression of each point in the control
net is provided as a linear combination of prescribed boundary control points. Zhange,
Cai and Wang (2011) introduced a new effective approach to construct rational Bézier
harmonic surfaces over rectangular or triangular domain, and Xua and Wang (2010)
proposed the sufficient condition of quintic harmonic polynomial parametric surface
being a minimal surface. Yang and Wang (2015) studied the constructing polyno-
mial Bézier surface that interpolates a Bézier curvilinear quadrilateral as boundary
geodesics, while Zhanga et al. (2011) presented a new effective approach to construct
rational Bézier harmonic surfaces over rectangular or triangular domain. Arnal et al.
(2011) also presented an explicit polynomial solution method for surface generation
by some boundary configuration whereby the resulting surface conforms to a fourth
order linear elliptic partial differential equation, and the Euler—Lagrange equation of a

quadratic functional defined by a norm.

2.5.1 The First Fundamental Form

Given a parametric surface X (u,v), we define the quantities E = Xu -Xu Jo= Xu ~}_fv
and G = X’v -X'v. Then, the first fundamental form, I of the surface is the quadratic
expression defined as,

[ = Edu® + 2F dudv + Gdv?, (2.59)

where X, = 9‘;—,‘)? and X, = %}? (Ugail, 2011). The surface area can also be expressed

in terms of the coefficients of the first fundamental form (Ugail, 2011)

A®) = / /R VEG - F2dudv. (2.60)
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2.5.2 Monomial Matrix Form

A simple approach to represent polynomial curves is provided in the form of mono-
mial matrices because it is more convenient to code and implement matrix operations
than to solve for symbolic computations. The monomial form of Bézier curves was
first investigated by Faux and Pratt (1979), Mortenson and Micheal (1985), and Chang
(1982), although it was obvious that the formula for Bézier curve was very simple.
Dejdumrong (2014) suggested the monomial functions for the Said-Ball, Wang-Ball,
DP-Ball, Dejdumrong and NB1 curves and these functions are less complicated and
more efficient for constructing curves and surfaces in CAGD applications. Further-
more, the conversions among polynomial curves can be readily obtained from their

monomial matrices.

There are many applications for monomial matrix form such as the use of the mono-
mial form of DP-Ball to get a simple and efficient algorithm for approximating conic
sections by DP-Ball curves of arbitrary degree with endpoint interpolation (Bakhshesh
& Davoodi, 2014). Rewriting the monomial matrix form for the curves given in equa-

tions (2.6), (2.31), (2.17) and (2.49) give the following.

2.5.2.1 Bézier Monomial Matrix

The definition of Bézier monomial matrix is

mijg mjpp -+ - Min
B=| + i Eo (2.61)
mpyy Mup1 -+ - Mgy

- < (n+1)x(n+1)

where m; ; is given as defined in (2.6).

33



2.5.2.2 Said-Ball Monomial Matrix

The definition of Said-Ball monomial matrix is

00 So1 vt SOn
SIO sll “ e s sln
S= ,
[ S0 Sal ottt S (n+1)x(n+1)
where s; ; is given as defined in (2.17).
2.5.2.3 DP-Ball Monomial Matrix
The definition of DP-Ball monomial matrix is
coo Co1 - -+ Con
€10 €11+ ° Cln
C= ,
C c .o .« C
L o0 ont "1 () (n1)

where ¢; ; is given as defined in (2.31).
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2.5.2.4 Wang-Ball Monomial Matrix

The definition of Wang-Ball monomial matrix is

aOO aol P P aOn
ap ail ‘- ‘- QAin
A= + 1 - N (2.64)
| An0 Gn1 - 0t ann |

(n+1)x(n+1)

where a; ; is given as defined in (2.49).

2.5.2.5 Converting the Control Points of Bézier Surface into Control Points of

Ball Surface using Monomial Matrix

We rewrite the Bézier surface of degree m x n in power basis (Dejdumrong, 2011) as

follows:

Blu,w) = (Uﬁ’)P(WB’)'
= U(B’PB)W'

= UKW' (2.65)

where B is Bézier monomial matrix form given in (2.61), U =[1 u ut ... u™,
W =[1 w w?...w", P is the control points of Bézier surface and K = B*PB. In the
same manner, we can rewrite X (u, w) surface of degree m x n where X (u, w) represents

Said-Ball or DP-Ball or Wang-Ball surfaces of degree m x n as follows:

X (u,w)

(UM’) % (WM’)t
— U (M’VM) W
— ULW (2.66)
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where M is X (u, w) monomial matrix form given in (2.61), U =[1 u u?...u4")

b

W=[1 w w?...w",V is the control points of X (u,w) surface and L = M'VM.

Suppose X (u,w) = B(u,w), and by using (2.66) and (2.65), we have

ULW = UKW
0(Zero matrix) = ULW —UKW
= U(w-kw)

= u(L-K)w

Since U and W are different from zero, then we must have L — K =0, i.e. L=K.

Using the values of L and K we have

MVM = B'PB

VM = (M’)—IB’PB

vV o= (M’>_1CB’PB(M) . 2.67)

2.6 Definition of Isothermal Surface

A regular parametric surfaces x = x(u, v) is said to be isothermal (Do Carmo & Perdi-
gao, 1976) if

< Xy, Xy >=< Xy, Xy > and < X,,X, >=0.

We shall study some second order functionals defined on the space of smooth patches

X:R — R3, where R =[0,1] x [0, 1]. The Lagrangian is given as follows
L(X) = L(%, %u, Xy, Xuu, ¥uy, Koy (2.68)

We take the functional / to be such that,
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I&) = / /R L(X)dudv. (2.69)

Minimizing the functional / is equivalent to requiring that the first variation of I is zero
which then gives rise to the corresponding Euler-Lagrange equations. For instance,

the Lagrange functional generating the Laplacian operator is

D) = 5 [ (Rall>+ IR P) 2.70)

which is also known as the Dirichlet functional in the theory of minimal surfaces.

In a similar fashion to the harmonic functional, the Lagrange functional defining the
biharmonic Laplacian operator, which we shall refer to as the biharmonic functional

(Monterde, 2004) is
1 - - —
Bx) =5 [ (Kl + 205 + %) duds. @7

A surface is called minimal if its mean curvature vanishes everywhere. Ahmad and
Masud (2014) presented an algorithm to reduce the area of a surface spanned by a
finite number of boundary curves by initiating a variational improvement in the surface.
Also, Chen, Xua and Wanga (2009) presented two other simple methods by using
the extended stretching energy functional and the extended bending energy functional
such that the resulting surface obtained by this new methods will have a smaller area
obtained by using the Dirichlet functional. Ugail, Marquez and Yilmaz (2011) studied
the Plateau-Bézier problem in three-dimensional Minkowski space (Kahyaolu & Emin,
2014) and derived the necessary and sufficient condition for minimal surface by using
the Frenet frame of a given curve and isothermal parameter. Li et al. (1996) studied the
approximation of minimal surface with geodesics by using Dirichlet functional, while
Trasdahl and Rgnquist (2011) derived an algorithm for finding high order numerical
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approximations of minimal surfaces with a fixed boundary.

2.7 Estimate the Partial Derivative with respect to x and y for the Control Points

at the Boundary Curves

With the use of first order partial derivatives of interpolating surface S, where
S(Vi) = f(V;) with f(V;) is the functional value at node V;(x;,y;),i = 1,2,3,4, we can
calculate the initial value of v1g,v29, V13,

v23,V01, V02, V31 and vz, as follows Saaban, Man and Karim (2013)

vio = voo + 3 (Ax) 3 (v1),
vo1 = voo + %(A)’)%f("l),
v20 = v30 + 2 (Ax) L (1),
v31 = vao + 5(8y) % (v2),
v23 =v33 + 5 (A1) (vs),
V32 =Vvi3+ %(A}’)%(‘B)a
vi3 = vo3 + 5 (Ax) 3 (va),

Vo2 = Vo3 + %(Ay):%—i(m),

where Ax =x; —x) =x3—xgand Ay=ys—y; =y3—yi.
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CHAPTER THREE
HARMONIC AND BIHARMONIC SURFACE

In this chapter, we discuss about the harmonic and biharmonic surface. All these sur-
faces will give us the minimal surface areas. To compare our purposed method with
the existing method for Bézier surface, we must have surface with the same boundary
i.e. two opposite boundaries for harmonic and four boundaries for biharmonic . To
do this, we must convert Bézier surface control points into generalization Ball surface

control points. i.e. different surface with same boundary curves.

3.1 Harmonic of X (u,v) Surface

The Harmonic equation for the parametric surface X(u,v) (Said-Ball, DP-Ball and
Wang-Ball) is defined as the differential equation obtained by applying the Laplace
operator that is defined by

VX (u,v) = 0. (3.1)

nm

i j—0- the associate X (u,v)

Theorem 3.1. Given the control net of points in R3,{g; ;}

surface, X : [0,1] x [0,1] — R3 is harmonic,i.e. V*X = 0 if and only if

m,n

0= Z (m(m - 1) (fi+2,rqrshsjai,m + fi+1,rQrshsj (bi—l,m - 2ai,m)

ris=0
+ fi—1,rGrshsj(bi—1,m — 2¢i—2m) + fi—2,rqrshs jci—2,m)
+n(n—1) (firqrshS,j+2Cj,n + firrshs,j+1 (bj—l,n - 2aj,n)
+ firGrshs, j—1(bj—1,0 — 2Cj—2,n) + firdrshs, j—2c j—2,n>
+ firQrshsj (m(m — 1)aim—2bi—1m)

+ciggm) +n(n—1)(ajn—2bj-10+ Cj—2,n))> :
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Proof. By using (2.26), we can write the X (u,v) surface of degree m x n as the Bézier

surface of degree m x n as follows:

(u,v) = Z ZB’” u)B}(v)P;, (3.2)
i=0j=0
where
tj_ZZﬁrqu sjs 16{0,1, m}) jE{O,l,...,}’l}. (3.3)

r=0s=

The Laplace of the X (u,v) surface is

2 9J?
v2X (u,v) = <8u2 82>X(u V)

Zz(az o BB,
= B"(u)B"
par S 8u2 ov?
m=2 n
- _1)223'" u)B7(v) A?P;
i=0 j=0
m n—2
n(n—1) ZZB’" )BT 2(v) AR (3.4)
i=0i=

where

m n
AP =Py j—2Py1;+P = Z Z (fixz,r —2fit1,r + fir)qrshsj,
r—Os—O
(3.5)
A®P, =P, ji2—2P j 1 +P;= Z Zf,rqrs 5.j+2 = 2hs ji1 +hyj).

r=0s=

Now, we rewrite (3.4) as the Bézier surface of degree m x n. To do this, we use the

following relation (Cosin & Monterde, 2002)

B2 = ﬁ ((e=i)n i~ 1))

423+ 1) (n—i— DB (£) + i+ 1) (i+2)B L, (t )). (3.6)
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Then we define

ain=(n—1i)(n—i—1),

bin=2(i+1)(n—i-1),
r 3.7
cin=(i+1)(i+2) for i€ {0,1,---,n—2},and

ain = bip = cip = 0, otherwise.

By using (3.6) in (3.4), we get

VX (u,v) = i 3 B (u)B}(v)
i=0 j=0

(m(m — D)(@imOAP, j+bi 1 mSOPi 1, j+ Cin jAPis )

+n(n—1)(aj  APP j 4 by fAPP g+ Cj—2,nA02Pi,j—2)> . (3.8)

Expression (3.8) is the Bézier surface of degree m x n associated with the new control

points {F; ;}77_ g, where
im0 = (m(m — 1)(@imAPPj+biy NPy o+ i AP ) +

n’(n - 1)(a1’"A02B’J + bJ_] anAozpiajul + Cj_z,nAzof)i,j_Z))

mnn

= ZO (m(m —1) (ai,m((fi+2,r — fir1,r+ fir)rshsj)

ro—
+bi 1 ((firr,r — fir + fim1,)qrshsj)
+ci2,j((fir — fi-1,r+ fi—Z,r)qrshsf))
+n(n—1) (a jnfirdrs(hsj — 2hs,j 11+ hgj)
+bj1,nfirqrs(hs,jr1 —2hs j+ hs j_1)

+Cj—2,nfir4rs (hs,j - 2hs,j—] + hs,—2j)> ) . (3.9)

Hence, as we know that {B}(u)B}(v)}]"i, is the basis of polynomials, it must not be
equal to zero, we showed that X (u,v) is harmonic if and only if
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F.;=0, V i,j. (3.10)

Now, we use the value of the operators AZ%and A% from (3.5) and (3.3) in (3.9) to

get

= Z (m(m - 1) (fi+2,r‘]rshsjai,m + fi+1,r‘]rshsj (bi-—l,m - 2ai,m)

+ fi1,,Grshsj(bic1m — 2¢i—om) + fi-2,rqrshs jci—2,m)
+n(n—1) (firqrshs, j+2Cjn+ firqrshs, j+1(bj—10 —2ajp)
+ fir@rshs, j—1(bj—1,0 — 2¢j—2.) + firqrshs,j—2c¢ j—2,n)

+ Firdrohsj (m(m = 1)agm — 2bi1m)

+Cimom) +n(n—1)(ajn—2bj_1n+ Cj—z,n)>> : 0
(3.11)

If we let n = m in (3.11) i.e. the quadratic case, we have the following theorem.

n

Theorem 3.2. Given the quadratic net of points in R3,{g; ;} i,’;l:o’ the associate X (u,v)

surface, X :[0,1] x [0, 1] — R is harmonic, i.e.v2X = 0 if and only if

nn
0= Z (fi—i—Z,jQrshsjci,n + fi—i—l,j‘]rshsj (bi—2,n - 2ai,n)

r,s=0

+ fi—l,jQrshsj (bi—l,n - 2Ci—2,n) + fi—2,jQrshsti—2,n
+ fijdrshs,j+1ajn+ fijGrshs,j+1(bj—1,n = 2ajn) (3-12)
+ fijQrshs,j—1(bj—1.0 —2Cj—2.0) + fijGrshs, j—2Cj—2.p

+fij4rshsj(ai,n - 2bi-l,n +Ci—an+ajn— 2bj—l,n + Cj—2,n)) .
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Remark 3.1. Theorem 3.2 holds for Bézier if the control points {q; ]}Z’J":O of the
X (u,v) surface is replaced by the Bézier control points {P, j}}""_, and also if the con-

vert matrices F and H are being replaced by the identity matrix.

Corollary 3.1. If we replace the convert matrices f,h by the convert matrices from
(Said-Ball, DP-Ball, Wang-Ball) to Bézier as in (Said-Ball 2.21, 2.22, DP-Ball 2.35,

2.36, 2.37, Wang-Ball 2.53) and the control points {qi ;} 2, of the X(u,v) surface

j=0
by the (Said-Ball {v; ;Y. DP-Ball {d; ;}’",, Wang-Ball {w;;}'"y,) control points

Jj=0 Jj=0 Jj=0
respectively . Then Theorem 3.1 and Theorem 3.2 gives us the harmonic condition for

Said-Ball surface, DP-Ball surface and Wang-Ball surface.

Let us study equation (3.12) in the simplest case: biquadratic and bicubical generalized

Ball patches, i.e. Said-Ball, DP-Ball and Wang-Ball patches.

3.1.1 Biquadratic Harmonic Patches

In the case n = m = 2 from equation (3.12), it is possible to find an expression for four
of the control points in terms of the other five. In fact, we have obtained that the null
space of the coefficient matrix of (3.12) is of dimension four. Moreover, it is possible

to choose free variables points in the first and last column of the control net.

3.1.1.1 Said-Ball Patch

Corollary 3.2. The biquadratic Said-Ball surface is harmonic if and only if

vor = %(2V00+V02—21’10+V20), (3.13)
vipr = %(Voo+voz+v20 +v), (3.14)
v = 50— 2vio+ 2vaot va2), (315)
Vi = %(—V00+V02+2V10 — V20 + v22). (3.16)
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A way of writing a sample equation involving the inner control point vy; is by using

the following mask
1 01

Vii=—=0 e 0 (3.17)

1 01
Since the Said-Ball and Bézier basis functional for degree two are the same, then we
use the dual of the mask (3.17) associated to the Laplace operator. It can be found in

Farin and Hansford (1999) that the mask

1 o 1 (3.18)

is the discrete form of the Laplace operator.

In general, the notation of permanent patches (3.17) and (3.18) is generated by the

mask of the form
a B «

Vil = ﬁ ® [3 (3.19)
o B «
with 4a +4f = 1 (Farin & Hansford, 1999). Thus, the mask (3.17) is a particular case

with o = 0.25 while the mask (3.18) corresponds to & = 0.

In order to obtain a minimal patch, we have to impose the isothermal conditions.

Example 3.1. Given the control points of a biquadratic Said-Ball as follows:
Voo = (0,0, 1), Vio = (1,0,0),1)20 = (2,0, l),vm = (0, 1,0),VZ1 = (2, 1,0), Vo — (0,2, 1),
vi2 =(1,2,0),v20 = (2,2, 1). Then, by using the mask (3.17), we have the inner control

point as vi; = (1,1,1), and we get vi; = (1,1,0) by using the dual mask (3.18).
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(a) (b)

Figure 3.1. (a) Boundary curves of biquadratic Said-Ball generated by dual harmonic
mask (b) Surface of biquadratic Said-Ball generated by dual harmonic mask.

(a) (b)

Figure 3.2. (a) Boundary curves of biquadratic Said-Ball generated by harmonic mask
(b) Surface of biquadratic Said-Ball generated by harmonic mask.

Remark 3.2. Since the Said-Ball surface, DP-Ball surface and Wang-Ball surface of
degree two are the same, then Corollary 3.2 holds on DP-Ball surface and Wang-Ball

surface of degree two.

3.1.2 Bicubical Harmonic Patches

In the case n = m = 3 from equation (3.12), it is possible to write half of the control
points in terms of the other eight. We obtained that the null space of the coefficient
matrix of (3.12) is of dimension eight. Moreover, it is possible to choose free variables

for the exact eight points in the first and last column of the control net.
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3.1.2.1 Bicubical Harmonic Said-Ball Patches

Corollary 3.3. A bicubic Said-Ball surface is harmonic if and only if

V11

V21

V12

V22

V1o

V20

Vi3

V23

(2vgo + vo1 — 2vo2 + 2vo3 + vap + 2v31 — vip +v33),
(voo + 2vo1 — vo2 -+ vo3 + 2v30 + v31 — 2vag + 2v33),
(2voo — 2vo1 + Vo2 + 2vg3 + vap — v31 + 2v3z + v33),

(voo — vor1 + 2vo2 + vo3 + 2vap — 2v31 + vaz +2v33),

— A= A~ N =N =

I3 (5voo — 8vor +4voz + 2ve3 +4v3g — 4vag + 2v3n + v33),

1
3 (4voo — 4vo1 + 2von + vos + Svap — 8vap +4vsp + 2v33),

1
¢ (2vgo +4vo1 — 8oz + Svo3 + vap + 2v31 — 4vsp +4v3z),

1
¢ (voo + 2vo1 — 4vo2 +4vo3 +2v3p + v31 — 8vap 4+ 5v3s3).

(3.20)
3.21)
(3.22)
(3.23)
(3.24)
(3.25)
(3.26)

(3.27)

Remark 3.3. This means that, given the first and last columns of the control net (eight

control points in total), the other eight control points are fully determined by the har-

monic condition. In other words, any pair of two opposed borders of an harmonic Ball

surface determines the rest of the control points. There are two different kind of masks

depending whether the point is an inner control point or not.

Remark 3.4. Since the Said-Ball patch of degree 3 x 3 and Wang-Ball patch of degree

3 % 3 are the same, then Corollary 3.3 holds on Wang-Ball patch of degree 3 x 3.
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3.1.2.2 Bicubical Harmonic DP-Ball Patches

Corollary 3.4. A bicubic DP-Ball surface is harmonic if and only if

dn
diz
dai
dn
dio
do
di3

d

doo,
dos,
dso,
ds3,
2doo — dor,
2d3y0 — day,
2dg3 — do2,
2d33 — d3.

(3.28)
(3.29)
(3.30)
(3.31)
(3.32)
(3.33)
(3.34)

(3.35)

Remark 3.5. This means that given the first and last columns of the control net (eight

control points in total), the other eight control points are fully determined by the har-

monic condition. In other words, any pair of two opposed borders of the harmonic

DP-Ball surface determines the rest of the control points.

Remark 3.6. Equations (3.28) to (3.31) imply that the inner control points are fully

determined by the four corner points and the two neighbor control points that lies on

the boundaries. There are two different kind of masks depending whether the point is

an inner control point or not.

The masks displayed below show the bicubic harmonic condition: the first column

represents Bézier, second column meant for Said/Wang-Ball,while the third column is

for DP-Ball.
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2 e e 1
) 4 o e 2
V10= dio=
-8 e o —4
5 e e 4
]l e o 2
: 2 e e 4
V20= ¢ dro=
—4 o e —8
4 e e 5
5 e o 4
. —8 e e —4
Vi3=¢ diz=
4 e o 2
2 e e 1
4 e e 5
1 —4 e e -8
1)23: g d23=
2 e e 4
1 e o 2
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2 e e 1 2 e e 1 0 e e 0
0O e o O : -2 e e —1 0 e o 0
Pi=3 Vii=g di=
0O o e O 1 o o 2 0 o o 0
4 e o 2 2 e e 1 1 o e 0
1] o o 2 2 e e 1 1 o e 0
. 0 e e O . 1 e o 2 0O e o 0
Pp=3 Vi2=¢ dip=
0 e e 0 -2 e e —1 0 o e O
2 e e 4 2 e e 1 0 e o O
1 o e 2 1 o e 2 0 e o
) 0 e e O . -1 e e -2 0 o o O
P=3 V3= ¢ diz=
0 e e 0 2 o o 2 0O o e 0
2 e e 4 1] e e 2 0 e o 1
2 e e 4 1 e o 2 0 o e 1
0 o e O . 2 e o 1 0 o o 0
Pyp=3 Vo= ¢ dyr=
0 e o 0 -1 o e -2 0 e o O
1] o e 2 1 e o 2 0 e e 0

3.1.3 Graphical Examples for Harmonic Bicubic Surface

Here we give some graphical examples for bicubic Said/Wang-Ball and bicubic DP-
Ball, generated by four sets of control points such that the surface with the same two

opposite boundaries are the same.
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3.1.3.1 Graphical Examples for Harmonic Bicubic Said/Wang-Ball Surface

To generate the harmonic Said-Ball surface, we have chosen four sets of boundary

curves.

Example 3.2. Given the boundary control points set 1 of the bicubic Said-Ball surface
as follows

voo = (0,0,1), vo1 = (0,18/5,—491/625),vep = (0,14/5,—71/625), vz = (0,4,1),
v3o = (4,0,1),v3; = (4,9/5,—885/1687), vz, = (4,11/5,—885/1687),v33 = (4,4,1).
Then, the inner control points of the bicubic Said-Ball surface by harmonic condition
are

vi1 = (2,19/10,622/759),vi2 = (2,17/10,1397/1209),

vo1 = (2,23/10,1021/1209) vop = (2,21/10,896/759), vig = (2,—7/5,601/191),
vao = (2,—2/5,2294/809),v13 = (2,19/5,1525/846),

and vo3 = (0,27/10,1686/695). The graph of the above surface is in Figure 3.3(c)

while its boundary with control points is in Figure 3.3(d).

Example 3.3. Given the boundary control points set 2 of the bicubic Said-Ball surface
as follows

voo = (0,0,0), vo; = (0,9/4,—-9/2),ver = (0,3/4,9/2),ve3 = (0,3,0),v30 = (3,0,0),
v31 = (3,3/2,3/2), v3o =(3,3/2,3/2),v33 = (3,3,0).

Then, the inner control points of the bicubic Said-Ball surface by harmonic condition
are

vi1 = (3/2,15/8,-2),vi2 = (3/2,15/8,-5/2), vo1 = (3/2,15/8,-5/2),

vap = (3/2,9/8,2), vio = (3/2,-3/2,17/2),v20 = (3/2,-3/4,7/2),

vi3 =(3/2,9/2,—19/2), and v,3 = (0,3,—25/4). The graph of the above surface is in

Figure 3.4(c) while its boundary with control points is in Figure 3.4(d).
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Example 3.4. Given the boundary control points set 3 of the bicubic Said-Ball surface
as follows

voo = (1/2,0,0),v01 = (31/80,0,27/40),ve, = (29/80,0,5/8),

voz = (1,0,1),v30 = (—1/2,0,0)v3; = (—31/80,0,27/40), vzp = (—29/80,0,5/8),
vz =(—1,0,1).

Then, the inner control points of the bicubic Said-Ball surface by harmonic condition
are

vi1 = (1/8,0,21/40),v12 = (1/8,0,19/40), vo; = (—1/8,0,21/40)

vy = (—1/8,0,19/40), vio = (9/80,0,—9/40), v = (9/80,0,—9/40),

vi3 = (11/80,0,37/40),, andvys = (9/160,0,47/80). The graph of the above surface

is in Figure 3.5(c) while its boundary with control points in is Figure 3.5(d).

Example 3.5. Given the boundary control points set 4 of the bicubic Said-Ball surface
as follows

voo = (—585/631,1378/483,0),, vo1 = (—111/581,2342/3983,21/40),

(-
= (—327/3697,457/1674,2/5), vo3 = (—585/631,1378/483,1),
vao = (585/631 — 1378/4830),v3; = (512/1599, —1699/1724,9/20),
(

v3p = (161/7124,—173/2475,13 /40),v33 = (585/631,—1378/483,1).
Then, the inner control points of the bicubic Said-Ball surface by harmonic condition

are

(—475/2279,1047/1633,11/20), v = (—253/827,2219/2357, 17 /40),
va1 = (253/827,—2219/2357,23 /40), vyp = (475/2279, —1047/1633,9/20),
vio = (—527/1651,1761/1792,—1/8), vao = (—644 /130087, 84 /5455, —1/10),
= (—501,/2209,481/690,5/4), and vp3 = (472/1441,—626/621,21/20). The graph

of the above surface is in Figure 3.6(c) while its boundary with control points is in Fig-

ure 3.6(d).
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3.1.3.2 Graphical Examples for Harmonic Bicubic DP-Ball Surface

To generate the harmonic DP-Ball surface, we have chosen four sets of boundary

curves.

Example 3.6. Given the boundary control points set 1 of the bicubic DP-Ball surface
as follows

doo = (0,0,1),d39 = (4,0,1), do; = (08/5—399/625),do; = (0,4,441/625),

doz = (0,4,1), d31 = (4,-2/5,—41/2500), d3p = (422/5 —41/2500),d33 = (4,4,1).
Then, the inner control points of the bicubic DP-Ball surface by harmonic condition
are

di1 =(0,0,1),d12=1(0,4,1),d21 = (4,0,1) dp2 = (4,4,1),d10 = (0,—8/5,1649/625),
dy = (4,2/5,5041/2500),d13 = (0,4,809/625),, and dp3 = (4,18/5,5041/2500).
The graph of the above surface is in Figure 3.3(e) while its boundary with control

points is in Figure 3.3(f).

Example 3.7. Given the boundary control points set 2 of the bicubic DP-Ball surface
as follows

doo = (0,0,0),d30 = (3,0,0), do1 = (0,3/2,-9),do2 = (0,3/2,9),do3 = (0,3,0),

ds1 = (3,0,1),dsp = (3,3,1),d33 = (3,3,0).

Then, the inner control points of the bicubic DP-Ball surface by harmonic condition
are

di1 = (0,0,0),d12 = (0,3,0), da1 = (3,0,0), d22 = (3,3,0), dio = (0,-3/2,9),

dy = (3,0,—1),d13 = (0,9/2,-9), dp3 = (3,3,—1). The graph of the above surface

is in Figure 3.4(e) while its boundary with control points is in Figure 3.4(f).

Example 3.8. Given the boundary control points set 3 of the bicubic DP-Ball surface
as follows
doo = (1/2,0,0), d3g = (—1/2,0,0), do; = (11/40,0,3/20), dpz = (29/40,0,21/20),

doz = (1,0,1), d3; = (—11/40,0,3/20), d3; = (—29/40,0,21/20), d33 = (—1,0,1).
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Then, the inner control points of the bicubic DP-Ball surface by harmonic condition are
di1=(1/2,0,0),d12=(1,0,1), d2y = (—1/2,0,0), dpp = (—1,0,1), d1o = (29/40,0,—3/20),
dyo = (—29/40,0,—3/20), dy3 = (51/40,0,19/20), and dp3 = (—51/40,0,19/20).
The graph of the above surface is in Figure 3.5(e) while its boundary with control

points is in Figure 3.5(f).

Example 3.9. Given the boundary control points set 4 of the bicubic DP-Ball surface

as follows

—585/631,1378/483,0),d3p = (585/631, —1378/483,0),

= (-
do; = (—631/1250,1553/1000,1/10),dg, = (—749/2500,923/1000,17/20),
= (—585/631,1378/483,1), d3; = (1121/1555,-2773/1250,1/20),
dzp = (292/2323,—-242/625,4/5),d33 = (585/631,—1378/483,1).

Then, the inner control points of the bicubic DP-Ball surface by an extremal of the
Dirichlet condition are

din = (—585/631,1378/483,0),d12 = (—585/631,1378 /483, 1),

dy1 = (585/631,—1378/483,0), dyp = (585/631,—1378/483,1),

dig = (—7755/5747,760/183,—1/10),dpo = (2219/1958,—422/121,—1/20),

di3 = (—2349/1511,3152/659,23/20), and dp3 = (2219/1958,—-422/121,—1/20).
The graph of the above surface is in Figure 3.6(e) while its boundary with control

points is in Figure 3.6(f).
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Figure 3.3. Control points set 1 by harmonic condition on (a) Bézier patch (b) Bézier
boundary (c) Said/Wang-Ball patch (d) Said/Wang-Ball boundary (e) DP-Ball patch
(f) DP-Ball boundary.
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Figure 3.4. Control points set 2 by harmonic condition on (a) Bézier patch (b) Bézier
boundary (c) Said/Wang-Ball patch (d) Said/Wang-Ball boundary (e¢) DP-Ball patch
(f) DP-Ball boundary.
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Figure 3.5. Control points set 3 by harmonic condition on (a) Bézier patch (b) Bézier
boundary (c) Said/Wang-Ball patch (d) Said/Wang-Ball boundary (e¢) DP-Ball patch
(f) DP-Ball boundary.
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Figure 3.6. Control points set 4 by harmonic condition on (a) Bézier patch (b) Bézier
boundary (c) Said/Wang-Ball patch (d) Said/Wang-Ball boundary (e¢) DP-Ball patch
(f) DP-Ball boundary.
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The following comparisons between Béizer surface, Said/Wang-Ball surface and DP-
Ball surface was made using harmonic condition. We note that all surfaces have the

same two boundary curves.

Table 3.1
Comparison between the area/computational time of Bézier, Said/Wang-Ball and DP-
Ball by using harmonic condition.

Control Points Bézier Said/Wang-Ball  DP-Ball
Set 1 Area ' 19.396724 18.941272 19.372356
Computational time ~ 0.10468 0.0933 0.10549
Set 2 Area . 22.959153 22.579643 23.022066
Computational time  0.10837 0.0922 0.11019
Set 3 Area 1.230625 1.116308 1.230625
Computational time  0.10665 0.0907 0.10939
Set 4 Area . 5.166923 4.923110 5.166923
Computational time  0.10594 0.0939 0.10614

From Table 3.1, the harmonic condition is applied to the bicubic patches of Said-Ball
surface, Wang-Ball surface and DP-Ball surface, and compared with the existing work
for bicubic patch of Bézier surface. It is discovered that the bicubic Said/Wang-Ball are
better than the bicubic Bézier and bicubic DP-Ball in terms of the minimal surface area
and computational time required to construct the surfaces by harmonic condition. On
the other hand, if we compare bicubic Bézier with bicubic DP-Ball by using harmonic
condition, we see that the surface area for Bézier and DP-Ball are almost comparable

but Bézier needs less computational time than DP-Ball.

3.2 Biharmonic of X (u,v) Patch

The biharmonic equation for the parametric surface X (u, v) is defined as the differential
equation obtained by applying the biharmonic operator also known as the bilaplace,

that is, the differential operator defined by v4 = (v2)? where
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9?2 92

= W—FW’ (3.36)

v2

is the Laplace and setting them to zeros. In general, for a rectangular system of coor-

dinates, it can be written as,

2 9%\?
<8u2 + avZ) ) =0, 37
or
9*x *X  I*X
2 2o T A G-38)

We discuss the two solutions of equation (3.38), that are, the solutions on the rectan-
gular grid.

m,n

i i the associated X (u,v) surface

Theorem 3.3. Given a control net in R3,{g; ;}
X :[0,1] x [0, 1] — R, is biharmonic,7*X =0 ifand only if ¥ i€ {1,2,--- ,m} and

]6{1’27 ,ﬂ}

4 mpn

0 = Y Y bmikk ((fi—k+4,r —4fi k3, 6ficki2r — fickr1,r T fimkr)drshs j)
k=0r,s=0

2 mn

+2 Z Z Qm,i—kkOn,j—1] ((fi~k+2,r - 2fi—k~l—1,r + fi—k,r)Qrs X
k,J1=0rs=0

(hs,j—l+2 - 2hs,j—l+1 + hs,j—l))
4 mn
+ Z Z bn,j—l,l (fi—k,rQrs X
1=0rs=0
(hs,ja = 4ho j13+ Ohs,jo = 4hs 1 + hsj)) ) (3.39)
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where fori € {0,1,--- ,m—2},

amo = (m—i)(m—i~1),
amit = 2(i+1)(m—i-1),
amp = (i+1)(i+2),and

amix = 0, otherwise; (3.40)

andforie {0,1,--- ,m—4},

bmio = (m—i)(m—i—1)(m—i—2)(m—i-3),
boit = 4G+ 1) (m—i— 1) (m—i—2)(m—i—3),
bz = 6(i -+ 1)(i+2)(m—i—2)(m—i—3),
bz = A4(i+ 1) (i+2)(i+3)(m—i—3),

bmia = (i+1)(i+2)(i+3)(i+4),

bmir = 0, otherwise.

F and H are convert matrices from the curve X (u),X (v) into the Bézier curve.

Proof. The X (u,v) surface of degree m x n can be written as the Bézier surface of

degree m x n as follows

m n

X(u,v) =Y Y B'(w)B}(v)P;, (3.41)

i=0 j=0

where

Pij =Y firgrshsj, qrs are the contol points of the surface, X (u,v),
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4 2\’
VX (u,v) = <8u2+8v2) X (u,v)

02
auz 2 auz 8v2 (,7)

m 2.n
_ (92 ) (m Z Bm 2 u)Bn( )Az’OPi,j
au P20

m,n—2
nin—1) Y. B?(u)B;*Z(vaZP,-,;-)

i,j=0

m—4.n
= (m(m —1)(m—2)(m—3) Y, B *(w)B}(v)A*P,
i,j=0
m—2,n—2
+2m(m—1)n(n—1) Y, B *(u)B} AP,
i,j=0

mpn—4
+n(n—1)(n=2)(n—3) Y BIu)BY *(v)A%*P, j> ., (3.42)
i,j=0

where A9 A22and A%# are the usual forward difference operators given as:

mn

APy =) ((N’Ofi,r)qrshsf)
r,s=0
m,n

= Z ((fi+4,r - 4fi+3,r + 6fi+2,r - 4fi+1,r + fir)Qrshsj> ,  (3.43)

r,5s=0

myn

8228y = ), ((5hi)an(80%hy)
r,s=

= ((szr=2fierr+ fiddrslsjia—2h i +hsj)), - (3:44)

myn

A0’4Pij = Z (fisQrs(AOAhsj))

r,s=0

= Z (ferrs s, j+4 — 4hs,j+3 + 6hs’j+2 — 4hs,j+l + hsj)) . (345

rs—
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Now, we want to raise the degree of equation (3.42) as the Bezier surface of degree

m X n. We need to use the formula given in Monterde and Ugail (2004) i.e,

n—i—l\ i+l
B} (1) = f:, G () 1(0)- (3.46)

L0

Thus we have,

B2r) = (nzz) k
= (r=i)(n—i-1)B{(t)

+2(i4+1)(n—i—1)BE (¢) + (i+1)(i+2)B},5)

1
= . (am'oB? (1) + ani1B?+1 (1) + anizB;l+2(t)) , (3.47)

Vie{0,1,--,n—2} and

n—4 _ n—4 4 .
B; (t) ( i >k—20(z-ﬁk) i+k
- ”(”-1)(n—2)(n—3)((n_i)(”_i—1)(n—i—2)(n—i—3)B;l(t)
+43i+1)(n—i—=1)(n—i—2)(n—i—3)B}.,(t)

+6(i+1)(i+2)(n—i—2)(n—i—3)B} (1)
+4(i+1)(i+2)(i+3)(n—i—3)B} (1)

+ ((+1)(E+2)(i43)(i+4)BE4(1)
1 n n
= (n—l)(n—2)(n—3) (bniOBi (t)+bni1Bi+l(t)

+ buiaBy (1) + busBlsa (1) + busBEa(1)) (3.48)

Vie{0,1, - ,n—4}.
By using (3.47) and (3.48) in (3.42), we get

VX (u,v) = ZZB’"(u)B” v) x {Fij}, (3.49)

i=0j=0
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where

{fft]}’] -0 — Zanl kkA Pt k]+2 Z Am,i—kkOn,j— llA Pi—k,j—l
k=0 k=0

4
04
+an,j—l,lA P,
=0
4 mn

= Y ) bmi-ki ((fi—k+4,r —4fi ki3, +6fik42,r — 4ficki1,p T fiokr) X
k=0r,s=0

2 mn
Qrshsj) +2 Z Z ((fi—k+2,r - 2fi—k+1,r + fi—k,r) X
k,1=0r,s=0

4 mn

Grs(hs jo142 — 2hs j_141+ hg, j—l))am,i—k,kan, it Y, Y bnjig X
1=07,5=0

<firqrs (s, j—1+4 —4hs j_143+6hs j_110 —4hs j_ 111+ h, j—z)) . (3.50)

Due to the fact that {B*(u) B"(v)} "o is a basis of bivariated polynomials, we get

X(u,v) to be biharmonic if and only if {F; ;}}" i " 0=0, forall i, j. O

Corollary 3.5. If we replace the convert matrix and the control points in Theorem 3.3
of the X (u,v) surface by the Said-Ball, DP-Ball, Wang-Ball convert matrix and control
points {q,]}”_o by {vij}; sl o {dij} i 0,{w,~j}z’]’.’;0, we get the biharmonic condition

for Said-Ball, DP-Ball and Wang-Ball surface of degree m X n.

Remark 3.7. Theorem 3.3 holds for Bézier if the control points {qi;}; V=0 Of the
X (u,v) surface is replaced by the Bézier control points {P; J'}?,’J{;O and also if the con-

vert matrices F and H are being replaced by the identity matrix.

3.2.1 Bicubic Biharmonic Patch

In the case n = m = 3 from equation (3.39), it is possible to find an expression of four
of the control points in terms of the other twelve. In fact, we have obtained that the null
space of the coefficient matrix of (3.3) is of dimension four. Moreover, it is possible to

choose free variables points in the four boundaries of the control net.
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3.2.1.1 Bicubic Said/Wang-Ball Biharmonic Equation

We note that the first case where the biharmonic equation makes sense is for n =m = 3.

In this case, the solution of equation (3.39) exists. Then, the inner control points by

biharmonic condition for the bicubic Said-Ball surface are:

vii = (1/4)(—voo+2vo1 — vo3 + 2vip + 2vi3 — vap + 2v31 — va3),
vi2 = (1/4)(—voo+2voy — vo3 + 2vip + 2vi3 — v3p +2v32 — v33),
var = (1/4)(—voo+2vo1 — vo3 + 2vap + 2va3 — v3p +2v31 —v33),

vp = (1/4)(—voo+2vo2 — vo3 +2va + 2vaz — v3p + 2v3p — v33).

3.2.1.2 DP-Ball Biharmonic Equation

(3.51)
(3.52)
(3.53)

(3.54)

If we replace the convert matrix and the control points in Theorem 3.3 of the X (u,v)

surface by the DP-Ball convert matrix and control points {D;;}]"/,, we get the bihar-

monic condition for the DP-Ball surface of degree m X n.

We note that the first case where the biharmonic equation makes sense is for n =m = 3.

In this case, the solution of equation (3.39) exists. Then, the inner control points by

biharmonic condition for the bicubic DP-Ball surface are:

dyy = do —doo+ dio,
diz = doy—doz+d3,
dyy = dy—d3+dsy,

dy = dy+dip—dss.

(3.55)
(3.56)
(3.57)

(3.58)

The masks represented below are for the bicubic biharmonic condition where the left

represents Bézier, the middle denotes Said/Wang-Ball, while the right signifies DP-

Ball.
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Py=34

Pp=3

3.2.2 Graphical Examples for Biharmonic Bicubic Patch

=

vii=

V=g

dy=

dy=

(= - = N =]

o o o O

Here we give some graphical examples for bicubic Said/Wang-Ball and bicubic DP-

Ball generated by four sets of control points such that the surface have the same bound-

aries.
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3.2.2.1 Graphical Examples for Biharmonic Bicubic Said/Wang-Ball Patch

To generate the Biharmonic Said-Ball surface, we have chosen four sets of boundary

curves.

Example 3.10. Given the boundary control points set 1 of the bicubic Said-Ball surface
as follows

voo = (0,0,1), vo1 = (0,18/5,—491/625),vo2 = (0,14/5,—-71/625),vp3 = (0,4,1),
vio = (6/5,0,2113/1000), v = (1,0,23/8),v13 = (9/5,4,631/250),

vas = (11/5,4,631/250), v39 = (4,0,1),v3; = (4,9/5,—885/1687), and

vy = (4,11/5,—885/1687),v33 = (4,4,1).

Then, the inner control points of the bicubic Said-Ball surface by biharmonic condition
are

vi1 = (3/2,27/10,1557/2347),v12 = (3/2,5/2,1666/1667),

vy = (8/5,27/10,1576/1509),v2, = (8/5,5/2,1310/949). The graph of the above

surface is in Figure 3.7(c) while its boundary with control points is in Figure 3.7(c).

Example 3.11. Given the boundary control points set 2 of the bicubic Said-Ball surface
as follows

voo = (0,0,0),v01 = (0,9/4,—9/2),ve2 = (0,3/4,9/2),vp3 = (0,3,0)

vio = (9/4,0,-9/2),v20 = (3/4,0,9/2), vi3 = (3/2,3,-3/2),v23 = (3/2,3,-3/2),
vzo = (3,0,0)v31 = (3,3/2,3/2), v32 = (3,3/2,3/2),v33 = (3,3,0).

Then, the inner control points of the bicubic Said-Ball surface by biharmonic condition
are v = (15/8,15/8,-9/2),v1o = (15/8,9/8,0), vo; = (9/8,15/8,0), and

voo = (9/8,9/8,9/2). The graph of the above surface is in Figure 3.8(c) while its

boundary with control points is in Figure 3.8(c).
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Example 3.12. Given the boundary control points set 3 of the bicubic Said-Ball sur-
face as follows

voo = (1/2,0,0),v10 = (433/3171,3/5,0),v20 = (—1/2,27/50,0),v39 = (—1/2,0,0),
vo1 = (31/80,0,27/40), v = (29/80,0,5/8), vos = (1,0,1),v13 = (223/817,3/2,1),
vps = (—1,27/25,1), v3; = (—31/80,0,27/40),v3, = (—29/80,0,5/8),v33 = (—1,0,1).
Then, the inner control points of the bicubic Said-Ball surface by biharmonic condition
are

vi1 = (569/2779,21/20,27/40),v1, = (569/2779,21/20,5/8),

vp1 = (—3/4,81/100,27/40), and vy, = (—3/4,81/100,5/8). The graph of the above

surface is in Figure 3.9(c) while its boundary with control points is in Figure 3.9(c).

Example 3.13. Given the boundary control points set 4 of the bicubic Said-Ball sur-
face as follows

voo = (—585/631,1378/483,0),v10 = (—2547/631,—689/483,0),

vao = (—710/173,-609/500,0), v3o = (585/631,—1378/483,0),

vor = (—111/581,2342/3983,21/40),vey = (—327/3697,457/1674.2/5),

585/631,1378/483,1),v13 = (—622/163,—2234/793, 1), vp3 = (—1170/631,— 1378 /483, ]

v31 = (512/1599, —1699/1724,9/20),

(=
=(-
(
vyp = (161/7124,—-173/2475,13 /40),v33 = (585/631,—1378 /483, 1).

Then, the inner control points of the bicubic Said-Ball surface by biharmonic condition
are

vi1 = (—2707/701,—485/209,39/80),v12 = (—1453/367,—2491/1233,29/80),

va1 = (—1262/433,—1135/508,39/80), and vy = (—250/83,—1669/863,29/80).
The graph of the above surface is in Figure 3.10(c) while its boundary with control

points is in Figure 3.10(c).
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3.2.2.2 Graphical Examples for Biharmonic Bicubic DP-Ball Surface

To generate the biharmonic DP-Ball surface, we have chosen four sets of boundary

curves.

Example 3.14. Given the boundary control points set 1 of the bicubic DP-Ball surface
as follows

doo = (0,0,1),d30 = (4,0,1), do1 = (0,18/5,—491/625),d3; = (4,—-2/5,—41/2500),
dop = (0,4,441/625),d3p = (4,11/5,—885/1687), dpz = (041),d33 = (4,4,1),
dio = (—2/5,0,617/500),do = (16/5,0,1379/500),d13 = (—2/5,4,252/125) and
dys = (4,22/5,—41/2500).

Then, the inner control points of the bicubic DP-Ball surface by biharmonic condition
are

dy; =(2/5,-8/5,1011/2500),d12 = (2/5,—4,—1076/625),

dy1 = (—16/5,2/5,-2177/1250), dyp = (—22/5,—22/5,—2499/2500). The graph
of the above surface is in Figure 3.7(e) while its boundary with control points is in

Figure 3.7(f).

Example 3.15. Given the boundary control points set 2 of the bicubic DP-Ball surface
as follows

doo = (0,0,0),d10=(3/2,0,-9),dz0 = (3/4,0,9/2),d30 = (3,0,0), do1 = (0,3/2,-9),
doz = (0,3/2,9),do3 = (0,3,0),d13 = (0,3, -1),d23 = (3,3, -1),d31 = (3,0,1),

dzn = (3,3,1),d33 = (3,3,0).

Then, the inner control points of the bicubic DP-Ball surface by biharmonic condition
are

diy =(-3/2,-3/2,18),dy2 = (0,—-3/2,-8), doy = (—3/2,0,—10), and

dy = (—3,—3,0). The graph of the above surface is in Figure 3.8(e) while its boundary

with control points is in Figure 3.8(f).
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Example 3.16. Given the boundary control points set 3 of the bicubic DP-Ball surface
as follows
doo = (1/2,0,0),d10 = (989/974,11/25,0),do = (—1225/974,8/25,0),

= (—~1/2,0,0),do; = (11/40,0,3/20),dp, = (29/40,0,21/20), dpz = (1,0,1),
di3 = (1659/817,32/25,1),dp3 = (—2055/817,11/25,1), d3; = (—11/40,0,3/20),
dzp = (—29/40,0,21/20),d33 = (—1,0,1).
Then, the inner control points of the bicubic DP-Ball surface by biharmonic condition
are
diy = (—494/625,—11/25,-3/20),d1, = (—862/491,—32/25,—-21/20),
dpy = (979/948,—8/25,—3/20), and dyp = (1790/799,—11/25,—-21/20). The graph
of the above surface is in Figure 3.9(e) while its boundary with control points is in

Figure 3.9(f).

Example 3.17. Given the boundary control points set 4 of the bicubic DP-Ball surface
as follows

doo = (—585/631,1378/483,0),d19 = (—1297/363,1763/1000,0),

dyo = (—927/500,—1763/500,0), d3g = (585/631,—1378/483,0),

dp; = (—631/1250,1553/1000,1/10),dp = (—749/2500,923/1000,17/20),

doz = (—585/631,1378/483,1),d13 = (—2356/493,834/835,1),

dys = (834/835,—-2356/493,1), d3; = (1121/1555,-2773/1250,1/20),

dzp = (292/2323,—-242/625,4/5),d33 = (585/631,—1378 /483, 1).

Then, the inner control points of the bicubic DP-Ball surface by biharmonic condition
are

dy1 = (2467/783,—244/527,—1/10),d1, = (1179/284,582/625,—17/20),

dy1 = (616/299,2689/930,—1/20), and dpp = (—1003/5081,2401/1038, —4/5). The
graph of the above surface is in Figure 3.10(e) while its boundary with control points

is in Figure 3.10(f).
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22 2 -2

(e ()

Figure 3.7. Control points set 1 by biharmonic condition on (a) Bézier patch (b) Bézier
boundary (c) Said/Wang-Ball patch (d) Said/Wang-Ball boundary (e) DP-Ball patch (f)
DP-Ball boundary.
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Figure 3.8. Control points set 2 by biharmonic condition on (a) Bézier patch (b) Bézier
boundary (c) Said/Wang-Ball patch (d) Said/Wang-Ball boundary (e¢) DP-Ball patch (f)
DP-Ball boundary.
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Figure 3.9. Control points set 3 by biharmonic condition on (a) Bézier patch (b) Bézier
boundary (c) Said/Wang-Ball patch (d) Said/Wang-Ball boundary (¢) DP-Ball patch (f)
DP-Ball boundary.
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Figure 3.10. Control points set 4 by biharmonic condition on (a) Bézier patch (b)
Bézier boundary (c) Said/Wang-Ball patch (d) Said/Wang-Ball boundary (e) DP-Ball
patch (f) DP-Ball boundary.
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The following comparisons between Béizer surface, Said/Wang-Ball surface and DP-
Ball surface was made using biharmonic condition. We note that all surfaces have the

same four boundary curves.

Table 3.2
Comparison between the area/computational time of Bézier, Said/Wang-Ball and DP-
Ball by using biharmonic condition.

Control Points Bézier Said/Wang-Ball DP-Ball

Set 1 Area 18.765491 18.765491 26.738931
Computational time ~ 0.0933 0.0924 0.10538

Set 2 Area 14.064599 14.064599 17.723976
Computational time  0.0952 0.0936 0.10994

Set 3 Area 1.867949 1.867949 2.282157
Computational time  0.10458 0.0937 0.11671

Set 4 Area 10.045463 10.045461 21.665577
Computational time  0.0932 0.0927 0.10517

From Table 3.2, the biharmonic condition is applied to the bicubic patches of Said-Ball
surface, Wang-Ball surface and DP-Ball surface, and compared with the existing work
for bicubic patch of Bézier surface. It is discovered that the bicubic Said/Wang-Ball
surface and bicubic Bézier surface have the same surface area but bicubic Said/Wang-
Ball surface is better than the bicubic Bézier surface in terms of the computational
time required to construct the surfaces by biharmonic condition. On the other hand, if
we compare bicubic Bézier with bicubic DP-Ball by using the biharmonic condition,
we see that the Bézier is better than DP-Ball in terms of minimal surface area and

computational time.

3.2.3 Biquartic Biharmonic Equation

We note that the second case where the biharmonic equation makes sense is for n =
m = 4. In this case, the solution of equation (3.39) exists. Then, the inner control
points by biharmonic condition for the biquartic surface are given in Sections 3.2.3.1

unti] 3.2.3.3.
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3.2.3.1 Biquartic Said-Ball Biharmonic Equation

Corollary 3.6. The biquartic Said-Ball surface is biharmonic if and only if

V11

V12

V13

V21

V22

V23

V3

—1
750 (37voo + 39vo1 + 36vp2 — 18vg3 + 6vps +39v10

—18v14 + 36vy0 + 18vpy — 18v3g — 9v34 + 6vyg

—18v41 + 18v4p — Yvy3 + 3V44),

1
151584 (89vgo +227vo1 — 92vn — 178vgs + 134vgs + 3vi0

—402v14 + 132v90 + 402vp4 — 66v39 — 201v34 + 22v49
+46v41 —46v4y — 8943 + 67V44),

25116 (13\)00 +83 1V01 + 948V()2 — 1818VQ3 -+ 6O6v04

+831vy9 — 1818v14 —396v50 + 1818vp4 + 198v39 — 909v34
—66v40 + 198v4; +474v4p — 909v43 +303v44),

—1
672 (89vgo + 3vo1 + 132vpp — 66vg3 + 22v04 + 227v10

+46v14 — 92vp0 — 46vas — 178v3g9 — 89v34 + 134v49

—402v41 4+ 402v49 — 201v43 + 67\/44),
-1
896
—178v14 — 92vo0 + 178vp4 — 178v39 — 313v34 + 134v49

(89voo +227vo1 — 92ve — 178vo3 + 134vgs +227vy9

—178v41 + 178v4p — 313v43 + 179v44),

;_61 (voo +27vg1 + 36vpp — 66vg3 + 22vp4 +43v10

—34v14 — 28vyg + 34va4 — 2v30 — 49v34 + 649

—18v4; +66v4p — 81vgs +27vaa),

#116 (13vgp + 831vp; — 396v + 198vg3 — 66vg4
+831v10 + 198v14 + 948vyp + 474vy4 — 1818v3g — 909134

+606v49 — 1818v41 + 1818v4p — 909v43 + 303v44),
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(3.62)
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(3.64)
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-1
vy = 9% (voo +43vo1 — 28vpa — 2vg3 + 6v4 + 27v10
—18v14 4+ 36v0 + 66vo4 — 66v39 — 81vag + 22v40
—34v41 + 34vgy —49v43 +27v44), (3.66)

V33 = m(_53"00 +489vg1 + 12vgy — 342v¢3 + 114vge + 489v1g
—342v14 4+ 12v9 + 1014v94 — 342v30 — 1179v34 + 114v4g

—342v41 + 1014v4p — 1179v43 + 393v44). (3.67)

The masks below show the biharmonic conditions for degree 4. The first column rep-

resents the Bézier, while the second column denotes Said-Ball.

18 24 -—18 12 -9 -6 18 -18 9 -3
24 ° ] ° 12 18 . [ . 9
Pi=gs —36 o o o —I8 vii= g5 —36 e e o I8
60 o o o 24 239 e« e e 18
-39 60 —36 24 —18 —37 -39 -3 18 -6
—982 1608 —1206 804 —49 134 —402 402 —201 67
72 e . o« 356 ~178 e . « -89
Pia= 5z 948 . . o« 138 Vo= g5iem 92 e . o  —46
908 o . o —184 27 e . o 46
—37 —12 -39 264 -8 89 3 132 —66 22
2042 3320 1818 1212 —909 —606451584 1818 1818 909 —303
3320 . . « 1212 1818 . e & 909
Pi= 535 —948 . . o 474 vi3= ;5 —948 . o o 474
1108 o . o 264 —831 . « o 198
541  —1108 396 —264 198 ~13 -831 396 198 66
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—264
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541

—38
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—-172

67

—342
456
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379
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264

—396

—37
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712
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—-264
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108
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712
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-747 1212 -909
. e 1212
° ° —1818
. . 3320
—948 3320 —2042
—198 324 -211
. . 196
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-166

P

Wl

—108

264

34 —108
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136 -6 196 -211 —-22 34 34 49 27

e o o 32 6 o o o 81
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T 27 e e e 18
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3.2.3.2 Biquartic DP-Ball Biharmonic Equation

Corollary 3.7. The biquartic DP-Ball surface is biharmonic if and only if

di

di2

di3

da

d

1
@(391@0 —719dp; + 1125dy; +250dg3 — 1422dps — 719d419

+698d14 + 1125d20 + 375d24 +250d30 + 125d34 — 1422d49
+698d41 +375d4z + 125d43 — 151d4a), (3.68)

1
2638 (709doo +227dp; — 2817dgy — 178dp3 + 1654dps — 66941

—1074d4 + 1215d39 + 405dp4 + 270d30 + 135d34 — 1930d 40

+718d41 + 1749d4y + 583d43 — 1525d44), (3.69)
—1
896
+1294d14 — 225d5q — T5d24 — 50d30 — 25d34 — T4dsg

(997dgo — 125dy; — 225de + 1294ds — 1866d0s — 573d10

—50d41 —75d4y — 473d43 + 747d44), (3.70)
1
2688
+718d14 —2817drg + 1749d4 — 17830+ 583d34 + 1654d49

(709dgo — 669dy; + 1215dg, + 270dg3 — 1930dg4 +227d

—1074d4; +405ds + 135d43 — 1525d44), 3.7
-1

7688 (187doo —227dy1 + 129d, + 178do3 — 758dpa — 227410

+178d14 + 129dp0 +939da4 + 178d30 + 313d3q — 758d40

+178ds1 + 939day + 313dsz — 1163daa), (3.72)
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~1
dyy = 5 (1315doo — T5do1 — 135dog + 1314dgs — 2374dpa — 523d1g

+418d14 — 1479d50 + 3987d24 — 478d30 +433d34 + 1210d49

—30dy; — 45d + 1329dy3 — 2419d4s), (3.73)
~1
dyy = 5ee(997doo — 573dot — 225dyy — 50dgs — T4doa — 125d10

—50d14 — 225dp0 — 75dp4 + 1294d39 — 473d34 — 1866d4g

+1294d41 — 75d4y — 25d43 + 747dsa), (3.74)
-1
dy; = m(lfﬂSd@o —523dp1 — 1479dgy — 478dg3 + 1210dps — 75d19

—30d14 — 135d20 — 45dp4 + 1314d30 + 1329d34 — 2374d4g

+418d41 + 3987dsp +433da3 — 2419das), (3.75)
1
diz = 8—96(159d00 +25do1 +45dy +458dp3 — 702dps + 25d10

+10d14 + 45d20 + 15d34 +458d39 — 1339d34 — 702dy9

+10da; + 15dsr — 133943 +2001das). (3.76)

The masks below show the biharmonic conditions for degree 4. The first column rep-

resents the Bézier, while the second column denotes for DP-Ball.
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—758 712 —-534 1252 -1163 —758 178 939 313 -1163
712 ° . . 1252 178 ° . . 313
Pn= iéls—s 276 . . . —534 dp= Tlss 129 . . . 939
-908 . [ . 712 227 . . . 178
187 —908 276 712 —758 187 —-227 129 178 758
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Pr=3% -108 e o e -198 dy=gm 135 e . o 45
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67 —-172 84 8 —38 1315 —523 -—1497 478 1210
3.2.3.3 Biquartic Wang-Ball Biharmonic Equation
Corollary 3.8. The biguartic Wang-Ball surface is biharmonic if and only if
-1
wi = m(103W00+82W01 + 24w — 12wo3 + 3woa + 82wy
—12w1g4 4+ 24wy0 + 12wo4 — 12w30 — 6w34 + 3wy
—12w41 + 12w4p — 6w4s + 3waq), 3.77)
—1
Wi = 396 (629wgp +454wp1 + 264wgp — 356wo3 + 89wps + 230w
—580w14 + 264wqg + 804woy — 132w30 — 402w34 + 89wyg
+92w41 — 92way — 178wyz + 89W44), (3.78)
—1
wiy = 306 (59wgp + 554w + 632wpp — 764wg3 + T9woq + 554w
—T764w14 — 264wy0 + 1212wo4 + 132w3g — 606w34 + 79wy
+132w41 + 316w4p — 606w43 + 79W44), 3.79)
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w22

w23

w31

w32

w33

—1
896
+92w14 4 264wog — 92wo4 — 356w39 — 178wsq + 89wy

(629wgp + 230wp1 + 264wgy — 132wo3 + 89wps + 454wy

—580w4; + 804wygy — 402wz + 89W44), (3.80)

—3;814 (21 11wgo + 1362wq; + 344wgy — 1068wz + 491wps + 1362w

—1068w14 + 344wy + 1964woq — 1068w3g — 1878w34 +491wygp
—1068wy4; + 1964w4p — 1878wygz +491way), (3.81)

—1
ﬁ(77W00 + 54wo1 + 72w — 100wgs + 17wggq + 86wyg

—68wi4 — 56woq + 132wo4 — dwzp — 98w3q 4+ 17wyg

—36wga1 + 132w4 — 130wy3 + 17W44), (3.82)
—1
896
+132w14 + 632wy0 + 316wy4 — 764w3zg — 606w34 + 79w4ag

(659wqg + 554wg; — 264wy + 132wo3 + 79wos + 554w

—T764w41 + 1212wy — 606w43 + 79W44), (3.83)
-1
128
—36w14 + 72wo0 -+ 132w94 — 100w3zg — 130w34 + 17w4g

(77woo + 86wo1 — 56w — 4wz + 17wos + 54wio

—68wa1 + 132w4p —98wyz + 17W44), (3.84)
-1

148 (27Twog + 326wo1 + 8wop — 228wp3 + 5Twos + 326w

—228w14 + 8wag + 676wo4 — 228w3g — 562w34 + 5Twyp

—228wy41 + 676wap — 562w43 + 5Twag). (3.85)

The masks below show the biharmonic conditions for degree 4. The first column rep-

resents the Bézier, while Wang-Ball is shown in the second column.
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3.2.4 Graphical Examples for Biharmonic Biquartic Patch

Here we give some graphical examples for biquartic Said/Wang-Ball and biquartic
DP-Ball generated by four sets of control points such that the surface have the same

boundaries.

3.2.4.1 Graphical Examples for Biharmonic Biquartic Said-Ball Patch

To generate the biharmonic Said-Ball surface, we have chosen four sets of boundary

curves.

Example 3.18. Given the boundary control points set 1 of the biquartic Said-Ball sur-
face as follows

voo = (0,0,1), vo1 = (0,12/5,—119/625), vy = (0,14/5,21/625),

vos = (0,16/5,161/625), vos = (0,4,1), vio = (4/5,0,871/500),

vao = (7/5,0,499/250), v3o = (2,0,9/4), vao = (4,0,1), v41 = (4,6/5,—41/2500),
vay = (4,2,—41/2500), va3 = (4,14/5,—41/2500), vag = (4,4,1), and vos = (0,4, 1),
via = (6/5,4,252/125), vpsa = (24252/125), v34 = (14/5,4,252/125).

Then, the inner control points of the biquartic Said-Ball surface by biharmonic con-
dition are

vi1 = (—0.1381, —0.5000, —0.4859),v12 = (—0.0004,—0.0013, —0.0001),

vi3 = (0.2899,1.2542,0.2305), vo; = (0.8768,0.1125,0.0982),

vyp = (1.1576,1.1344,0.4138), vo3 = (1.2375,1.6875,0.5069),

v3; = (1.4899,—-0.2125,0.2372),v3, = (1.2375,1.6875,0.5069),

v3z = (1.9440,1.5583,0.5162). The graph of the above surface is in Figure 3.11(b)

while its boundary with control points is in Figure 3.11(f).
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Example 3.19. Given the boundary control points set 2 of the biquartic Said-Ball sur-

face as follows

1/2,0,0), vor = (17/40,0,9/20), v = (1/2,0,3/5), ve3 = (23/40,0,3/4),

(
voa = (1,0,1),v19 = (251/974,2/5,0),vo0 = (—59/487,19/50,0),
= (—1/2,9/25,0),v40 = (—1/2,0,0),v41 = (—17/40,0,9/20),
vap = (—1/2,0,3/5), vaz = (—23/40,0,3/4),v44 = (—1,0,1), and
voa = (1,0,1),v14 = (421/817,1,1),v04 = (—198/817,43/50,1),v34 = (—1,18/25,1).
Then, the inner control points of the biquartic Said-Ball surface by biharmonic condi-

tion are

—0.2246, —0.0548, —0.0857), v15 = (0.0387,—0.3840, —0.3548),

—0.0102,0.3253,0.3616), v21 = (—0.4907,0.0980,0.0884),

V22

(=
(=
(—0.4286,0.2885,0.3288), vp3 = (—0.4580,0.3563,0.4688),
(—0.9396,0.0053,0.0616),v3; = (—0.9227,0.1963,0.3187),
(=

vay3 = (—1.0154,0.2399,0.4554). The graph of the above surface is in Figure 3.12(b)

while its boundary with control points is in Figure 3.12(f).

Example 3.20. Given the boundary control points set 3 of the biquartic Said-Ball sur-

face as follows

voo = (—585/631,1378/483,0), vo; = (—1091/2500, 1343 /1000,7/20),

voz = (—1170/2909,619/500,19/40),ve3 = (—46/125,1133/1000,3/5),

voa = (—585/631,1378/483,1),v10 = (—450001/150000,0,0),

v = (—985/363,—729/827,0),v30 = (—665/274, —1763/1000,0),

v4o = (585/631,—1378/483,0),v4; = (209/400,—201/125,3/10),

vay = (803/1897,—512/393,17/40), v43 = (117/361,—1247/1250,11/20),
= (585/631,—1378/483,1), and vo4 = (—585/631,1378/483, 1),

viga = (—1281/449,—585/631,1),vo4 = (—4160/2201,—4160/2201,1),

v34 = (—585/631,—-1378/483,1).

Then, the inner control points of the biquartic Said-Ball surface by biharmonic condi-
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tion are

vi1 = (0.8191,-0.7792, —0.0685),v12 = (0.0005,0.0014, —0.0003),

viz = (—0.1363,—1.0582,0.2920), vo1 = (0.0191,—1.2682,0.0538),

vay = (—0.4799, —1.3567,0.2466),vy3 = (—0.3081, —1.4224,0.3641),

va1 = (0.3251,—1.7593,0.3457), v3; = (0.0404, —1.7491,0.2307),

v3z = (0.3251,—1.7593,0.3457). The graph of the above surface is in Figure 3.13(b)

while its boundary with control points is in Figure 3.13(f).

Example 3.21. Given the boundary control points set 4 of the biquartic Said-Ball sur-

face as follows

voo = (0,0, 1), vor = (0,0.6667,0.3333), vz = (0, 1,0.3333), vg3 = (0,1.3333,0.3333),

40 = (2,0,1),v41 =(2,0.6667,0.3333), vap = (2,1,0.3333), va3 =

=(0,2,1),v10 = (0.6667,0,0.3333), vao = (1,0,0.3333), v30 = (1.3333,0,0.3333),
(2,1.3333,0.3333),
= (

44 = (2,2,1), and vos = (0,2,1),v14 = (0.6667,2,0.3333),vp4 = (1,2,0.3333),

viq = (1.3333,2,0.3333).

Then, the inner control points of the biquartic Said-Ball surface by biharmonic condi-
tion are vi; = (—0.1270,—0.1270,—-0.3333), v12 = (—0.1949,—-0.6909,0.4961),
vi3 = (0.0913,0.7579,-0.3333), vo; = (0.4643,0.1310,—0.3333),

vy = (0.5982,0.5982,-0.3334), vo3 = (0.5833,0.9166, —0.3334),

v31 = (0.7579,0.0913, -0.3333),v3, = (0.9166,0.5833, —0.3334),

vaz = (0.8968,0.8968, —0.3334). The graph of the above surface is in Figure 3.14(b)

while its boundary with control points is in Figure 3.14(f).
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3.24.2 Graphical Examples for Biharmonic Biquartic DP-Ball Patch

To generate the biharmonic DP-Ball surface, we have chosen four sets of boundary

curves.

Example 3.22. Given the boundary control points set 1 of the biquartic DP-Ball sur-
face as follows

doo = (0,0,1), do; = (0,—1.2,0.3280),dpp = (0,2.8,0.0336),dp3 = (0,5.2,1.6720),
dog = (0,4,1),d1o = (—2,—1,1.3110),dp = (2,—0.6,2.3274),d3¢ = (6,1,0.6890),
dao=(4,0,1),d41 = (4,—-2.4,1),dgp = (4,2,—0.0164), ds3 = (4,6.4,1),dss = (4,4,1),
and dog = (0,4,1),d14 = (—2,4.2,0.6390),dp4 = (2,3.8,1.6554),

dzs = (6,3.8,1.3610).

Then, the inner control points of the biquartic DP-Ball surface by biharmonic condi-
tion are

dyp = (—4.2321,—4.4879,—1.6939),d1, = (—2.8036,1.9763,-0.8062),

di3 = (—2.4464,4.9424,0.8444), dy; = (1.1964,—3.4237,1.4876),

dyy = (1.1964,1.1763,0.1602),dp3 = (1.9107,5.7085,1.5621),

dz1 = (5.5536,—1.8576,0.2224),d3p = (5.9107,1.9085, —0.1097),

dsz = (5.9107,6.1085,1.2677). The graph of the above surface is in Figure 3.11(d)

while its boundary with control points is in Figure 3.11(h).

Example 3.23. Given the boundary control points set 2 of the biquartic DP-Ball sur-

face as follows

doo = (0.5000,0,0), dg; = (0.2748,0,—0.4500), gz = (0.5000,0,0.6000),

0.1211,0.3800,0), dso = (—1.6367,—0.0600,0), d4o = (—0.5000,0,0),

(
— (1.2248,0, 1.4500), dos = (1.0000,0,1.0000), d1o = (1.6365,0.0600,0),
dy = (—

ds1 = (—0.2748,0,—0.4500), dgs = (—0.5000,0,0.6000), daz = (—1.2248,0,1.4500),
das = (—1.0000,0, 1.0000), and dos = (1.0000,0,1.0000), d14 = (3.2732,0.4200, 1),
das = (—0.2424,0.8600, 1.0000), d34 = (—3.2728, —0.4200, 1.0000).
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Then, the inner control points of the biquartic DP-Ball surface by biharmonic condition
are

dj1 = (0.1821,—1.0408,—1.2033),d;12 = (1.7079,—0.0915,0.3288),

di3 = (3.9040,0.4158,1.2993), dp; = (—0.3074,—-0.1915,—-0.7212),

]I

(

(

(—0.4286,0.2885,0.3288),d»3 = (—0.3304,1.0632,1.4199),

= (—1.0054,—0.0642, —0.6007),d3, = (—1.9820,—0.2768,0.5699),
(=

dzz = (—4.0679,—0.6368,1.4199). The graph of the above surface is in Figure 3.12(d)

while its boundary with control points is in Figure 3.12(h).

Example 3.24. Given the boundary control points set 3 of the biquartic DP-Ball sur-
face as follows

doo = (—0.9271,2.8530,0), do; = (—1.0298,3.1680,—0.3750),

dy = (—0.4022,1.2380,0.4750),dp3 = (—0.8246,2.5380,1.3750),

dos = (—0.9271,2.8530,1.0000),d;9 = (—1.7867,5.4977,0),

dyo = (—2.7135,—0.8815,0),d30 = (1.7865,—5.4975,0),dso = (0.9271,—2.8530,0),
da1 = (1.2245,—-3.7688,—0.3750), dsp = (0.4233,—1.3028,0.4250),

daz = (0.6293,—1.9376,1.3750),ds4 = (0.9271,—2.8530, 1.0000), and dpy = (—0.9271,2.8530,1.00
(—3.8160,5.7416,1.0000),

dr4 = (—1.8900, —1.8900, 1.0000),d34 = (3.8160,—5.7420,1.0000).

Then, the inner control points of the biquartic DP-Ball surface by biharmonic condi-
tion are

di1 = (3.9568,6.4770,—0.9400), dy, = (0.0493,2.4836,0.2966),

diz = (—3.5217,4.9675,1.2620), dy; = (—1.2165,—0.6161,—0.5784),

dyy = (—0.4799, —1.3568,0.2466),d»3 = (—1.3746,—2.0873,1.3524),

dsy = (2.2755,—6.8723,—0.4880),d3; = (1.9843,—2.4802,0.3774),

dszz = (4.5341,—4.3268,1.3524). The graph of the above surface is in Figure 3.13(d)

while its boundary with control points is in Figure 3.13(h).
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Example 3.25. Given the boundary control points set 4 of the biquartic DP-Ball sur-
face as follows

doo = (0,0,1), do1 = (0,—1,1),dgp = (0,1,0.3333),dg3 = (0,3, 1), dpg = (0,2,1),
dio = (—1,0,1),d20 = (1,0,0.3333),d30 = (3.0000,0, 1.0000),ds0 = (2,0,1),

da1 = (2,—1,1),dar = (2,1,0.3333),dsz = (2,3,1), daa = (2,2,1), and doy = (0,2, 1),
dia=(—1,2,1),dra = (1,2,0.3333),d34 = (3,2,1).

Then, inner control points of the biquartic DP-Ball surface by biharmonic condition
are

di; =(—2.1161,-2.1161,1.0001),d1, = (—1.4018,0.5982,0.3333),

di3 = (—1.2232,2.7768,1.0000), d»; = (0.5982, —1.4018,0.3333),

dy = (0.5982,0.5982,—0.3334),dp3 = (0.9554,2.9554,0.3333),

d31 = (2.7768,—1.2232,1.0000),d3; = (2.9554,0.9554,0.3333),

d33 = (2.9554,2.9554,1.0000). The graph of the above surface is in Figure 3.14(d)

while its boundary with control points is in Figure 3.14(h).

3.2.4.3 Graphical Examples for Biharmonic Biquartic Wang-Ball Patch

To generate the biharmonic Wang-Ball surface, we have chosen four sets of boundary

curves.

Example 3.26. Given the boundary control points set 1 of the biquartic Wang-Ball
surface as follows

woo = (0,0, 1), wor = (0,3.6,—0.7856),wp, = (0,3.2,—0.4496),

woz = (0,2.8,—0.1136), wos = (0,4,1), w10 = (1.2,0,2.1130), w0 = (1.1,0,2.4940),
wig = (1,0,2.8750),wap = (4,0,1),wa; = (40, 1.8, —-0.5246), wap = (4,2,—0.5246),
waz = (4,2,—0.5246),w4q = (4,4,1), and wog = (0,4,1),w14 = (1.8,4,2.5240),

wog = (2,4,2.5240), w34 = (2.2,4,2.5240).

Then, the inner control points of the biquartic Wang-Ball surface by biharmonic con-

dition are
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wyy = (—0.9107,-2.9250, —2.0070), w1, = (—0.1272,—1.1969,—0.9711),

wyz = (—0.2478,—1.5781,—-0.2670), wo; = (—0.0772,—1.0969, —0.9486),

wyy = (0.3296, —0.2477,—0.3300), wp3 = (0.2844,—-0.4531,—0.2120),

w3 = (—0.1478,—1.3781,—0.8916), w3, = (0.3344,—0.3531,—0.1895),

w3z = (0.2741,—0.5938, —0.0883). The graph of the above surface is in Figure 3.11(c)

while its boundary with control points is in Figure 3.11(g).

Example 3.27. Given the boundary control points set 2 of the biquartic Wang-Ball
surface as follows

woo = (0.5000,0,0), wo; = (0.3875,0,0.6750), wpz = (0.3750,0,0.6500),

wos = (0.3625,0,0.6250), woq = (1.0000,0,1.0000), w9 = (0.1365,0.6000,0),

wyo = (—0.1817,0.5700,0), w39 = (—0.5000,0.5400,0), wao = (—0.5000,0,0),

wa1 = (—0.3875,0,0.6750), wgp = (—0.3750,0,0.6500), wa3 = (—0.3625,0,0.6250),
waq = (—1.0000,0, 1.0000), and wos = (1.0000,0,1.0000), w14 = (0.2730,1.5000, 1),
waq = (—0.3635,1.2900, 1.0000), w34 = (—1.0000, 1.0800, 1.0000).

Then, the inner control points of the biquartic Wang-Ball surface by biharmonic con-
dition are

wi = (—0.8924,—-0.4232,-0.5304), w2 = (—0.5358,0.0556,—0.1636),

wyz = (—0.2558,—0.0181,—0.2489), wy; = (—1.0132,—-0.0644,—0.1386),

woy = (—0.8280,0.1842,0.0398),wy3 = (—0.8486,0.1566, —0.0078),

w3y = (—1.5454,—-0.2581, —0.1989), w3, = (—1.3260,0.0366,0.0172),

wiz = (—1.3534,—-0.0003,—0.0379). The boundary with control points of the above

surface is in Figure 3.12(g) while its graph is in Figure 3.12(c).

Example 3.28. Given the boundary control points set 3 of the biquartic Wang-Ball
surface as follows
woo = (—0.9271,2.8530,0), wo; = (—0.1910,0.5880,0.5250),

woz = (—0.1397,0.4305,0.4625), w3 = (—0.0884,0.2730,0.4000),
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wos = (—0.9271,2.853,1), w10 = (—4.0365,—1.4265,0), w0 = (—4.0702,—1.3222,0),

w3 = (—4.1041,—1.218,0), w40 = (0.9271,—2.853,0),ws; = (0.3202,—0.9855,0.45),

way = (0.1714,-0.5277,0.3875), was = (0.0226, —0.0699,0.325),
=(0.9271,—2.853,1), and wos = (—0.9271,2.853,1),w;4 = (—3.816,—2.8172, 1)

ywas = (—2.8351,—2.8351,1), w34 = (—1.8542,—2.8530,1).

Then, the inner control points of the biquartic Wang-Ball surface by biharmonic con-

dition are

wi = (4.1886,—2.0473,—0.4165), wip = (1.5235,—1.9860, —0.1852),

wys = (1.2565,0.0884, —0.2929), wy; = (2.0458,—2.0930,—0.1227),

way = (0.6386,—1.9889, —0.0327),wy3 = (0.7408, —1.8336,—0.1121),

wir = (2.9218,-2.0361,—0.1679), w3y = (1.2630, —1.9406, —0.0496),

w3z = (1.4156,—1.7836,—0.1347). The graph of the above surface is in Figure 3.13(c),

while its boundary with control points is in Figure 3.13(g).

Example 3.29. Given the boundary control points set 4 of the biquartic Wang-Ball
surface as follows
woo = (0,0,1), wo; = (0,1,0),wgz = (0,1,0),wos = (0,1,0), wos = (0,2,1),
wio = (1,0,0),wa = (1,0,0), w30 = (1,0,0),ws0 = (2,0,1),wa; = (2,1,0),

= (2,1,0), waz = (2,1,0),waq = (2,2,1), and woq = (0,2,1), w14 = (1,2,0),
wos = (1,2,0), w34 = (1,2,0).
Then, inner control points of the biquartic Wang-Ball surface by biharmonic condition
are

wit = (—0.7857,—0.7857, —1.0000), wy = (—0.2054, —0.2054, —1.0000),

II

(-
(—0.2946,—0.2946, —0.3304), wop; = (—0.2054,—0.2054, —1.0000),
w2z = (0.0960,0.0960, —1.0000), w3 = (0.0625,0.0625, —1.0000),

w31 = (—0.2946, —0.2946, —1.0000), w3, = (0.0625,0.0625, —1.0000),

w3z = (0.0179,0.0179, —1.0000). The graph of the above surface is in Figure 3.14(c)

while its boundary with control points is in Figure 3.14(g).
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Figure 3.11. Control points set 1 by biharmonic condition on (a) Bézier patch (b)
Said-Ball patch (c) Wang-Ball patch (d) DP-Ball patch (e) Bézier boundary (f) Said-
Ball boundary (g) Wang-Ball boundary (h) DP-Ball boundary.
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Figure 3.12. Control points set 2 by biharmonic condition on (a) Bézier patch (b)
Said-Ball patch (c) Wang-Ball patch (d) DP-Ball patch (e) Bézier boundary (f) Said-
Ball boundary (g) Wang-Ball boundary (h) DP-Ball boundary.
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Figure 3.13. Control points set 3 by biharmonic condition on (a) Bézier patch (b)
Said-Ball patch (c) Wang-Ball patch (d) DP-Ball patch (e) Bézier boundary (f) Said-
Ball boundary (g) Wang-Ball boundary (h) DP-Ball boundary.
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Figure 3.14. Control points set 4 by biharmonic condition on (a) Bézier patch (b)
Said-Ball patch (c) Wang-Ball patch (d) DP-Ball patch (e) Bézier boundary (f) Said-
Ball boundary (g) Wang-Ball boundary (h) DP-Ball boundary.
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Table 3.3
Comparison between the area/computational time of biquartic Bézier, biquartic Said-
Ball,biquartic Wang-Ball and biguartic DP-Ball by using biharmonic condition.

Control Points Bézier Said-Ball Wang-Ball  DP-Ball

Set 1 Ar_ea . 19.455817 19.516096 19.462083 20.147274

Computational time  0.1938 0.1417 0.1343 0.1320
Set 2 Area . 1.896763  1.904573  1.896150  1.896763

Computational time  0.1938 0.1416 0.1344 0.1334
Set 3 Ar_ea . 14.012209 14.202749 13.960906 14.012209

Computational time  0.1878 0.1414 0.1365 0.1329
Set 4 Area 5.201627 5247477 5.207346  5.247499

Computational time  0.1891 0.1411 0.1356 0.1330

From Table 3.3 , the biharmonic condition is applied to the biquartic patches of Said-
Ball surface, Wang-Ball surface and DP-Ball surface, and compared with the existing
work for biquartic patch of Bézier surface. It is discovered that the biquartic Bézier
surface is better than biquartic Wang-Ball, followed by biquartic Said-Ball and then
biquartic DP-Ball in terms of surface area for control points Set 1 and Set 4. We also
discovered that the biquartic Wang-Ball is better than biquartic Bézier and biquartic
DP-Ball, followed by biquartic Said-Ball in terms of surface area for control points Set
2 and Set 3. On the other hand, biquartic DP-Ball requires the least computational time

for all control point sets.

3.3 Summary

In this chapter, we derived a general algorithm for harmonic and biharmonic patches.
These algorithms hold for Bézier if the control points {g;, ]}:”]';0 of the X (u,v) surface
is replaced by the Bézier control points {P; j};"}';o and also if the convert matrices F

and H are being replaced by the identity matrix.
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The harmonic and biharmonic conditions are applied to the Said-Ball surface, DP-Ball
surface and Wang-Ball surface. The computational time for Said-Ball surface, DP-
Ball surface and Wang-Ball surface are compared with Bézier surface. In Table 3.1
and Table 3.2, the results show that the bicubic patch for Said/Wang-Ball are better
than Bézier patch in terms of computational time. However, the DP-Ball consumed
the most computational time. On the other hand for biquartic biharmonic, it is seen
in Table 3.3 that the DP-Ball takes lesser time than the others while Bézier requires
much more computational time. The calculation of the area of each surface is also

considered.
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CHAPTER FOUR
POLYNOMIAL SOLUTIONS OF FOURTH ORDER LINEAR

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS AND
EXTREMAL OF THE DIRICHLET FUNCTIONAL IN TERMS

OF BALL SURFACE

In this chapter, we derived two general algorithms to generate any surface used in
CAGD from their four boundary curves, where the first algorithm used the polynomial
solutions of fourth order linear elliptic PDEs, while the second algorithm used the

extremal of the Dirichlet functional.

4.1 Polynomial Solutions of Fourth Order Linear Elliptic PDEs in terms of Ball
Surface

Consider the fourth order PDE in the form of

%X %X 24X L€ 2*x
A5 8555, T a0 T Pouas T EGA T

0, (4.1)

where A,B,C,D,E € R are constants.

We present a general algorithm to compute the polynomial solutions of any fourth-

order differential equation and any square surface X (u,v) .

First, we note that the boundary control points of surface X (u,v) determine the first

column and the first row of the coefficients of the polynomial expression, as described

below.
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Let

n n L.
= Y XPWXI b= Y, —duiv, 4.2)

i,j=0 ij=o0tJ:
where b;; are control points of surface X (u,v); Xj'(u),X7(v) are basis functions of
surface X (u,v) and a;; € R3. The relation between the first row of polynomial coeffi-

cients {ag j};?=0 with boundary control points {bg j};!:o can be defined as follows. On

substituting u = 0 in (4.2), we get

X(0) = ¥ Xjbo;= Y. (“2), (43)
j=0 =07
so that
X(0,v) =Y X}(v)bo; (4.4)
j=0

is a curve of degree n, Then, we can write equation (4.4) in monomial matrix form as

follows

— ,Z:b ( y cjbok )V, 4.5)

where ¢ is a monomial matrix form of curve X7(v). On applying (4.5) in (4.3) we

have
n n n
X(0,) =Y. (¥ ewboe)v = (a"’) (4.6)
j=0 "k=0 j=0
where
n
aoj = Jj!( Y. cu,jbok),j = 0,1,...,n. 4.7
k=0

Similarly, substituting v = 0 in (4.2) yields
n
aiOzil(zckibko),i=0,1,...,n. (4.8)

k=0

Next, we shall calculate the second row {a;1 }7._,, and the second column {a;}"_ of
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n

coefficients {a; J'}i’}l=0 in the same manner. We note that coefficients ag; and ajg are
b

already computed. Next, we substitute # = 1 in (4.2) to obtain

X(1,v) = ioxy(v)b,,j =Y l(i@)w (4.9)
=

We can write (4.9) in monomial matrix form as

X(1,v) = i ():ck,-b,,k)vf - i l(i%)w (4.10)

j=0 “k=0 =0 NS0

Hence

& 1 &aij o,

Y kb= Y i =00 (4.11)

k=0 Joizo
Thus, we have

A e LT
a1j=j!(Zijbnk)—Z,—',]>O. (4.12)
k=0 i=0,
i#1

We note that ay; can be obtained from the boundary control points of X (u,v) by using

the coefficients ap; and the coefficients {a;;}i>1.

Similarly, we substitute v = 1 in (4.2) to obtain

n n L.

an =i!( Y. cubm) = Y i >0, (4.13)

k=0 j=0,J°
j#1

The technique applied to compute the coefficients in the polynomial expression is by
solving a set of systems of linear equations recursively. Each system corresponds to a

line parallel to the transverse diagonal of the following scheme.
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agpo ao ano c. * * ako --- aAn—1,0 ano

apl ar az1 e * a 11 * ... 4p-1,1 Anl

ap? aln ann Cen ak_z’z * * - Qp-22 0
* *  Apg-p ... * * x 0 0 4.14)

* al,k_l * Ce * * 0 ce 0 0

a0k * * ces * 0 0 AN 0 0

a0n-1 Adlp-1 AQp-1 ... 0 0 0 e 0 0

aon Aln 0 0 0 0 ce 0 0

We note that the coefficient ay; with k+/ > n-+ 1 belongs to a homogeneous system.

Observe that the only solution is the trivial one. This implies thatay =0if k+1>n+1.

The first non homogeneous system corresponds to the line defined by k41 =n+ 1.
The coefficients ag »41 and a1 are zeros, but the coefficients a; , and a,,;1 can be
computed using (4.12) and (4.13). Once the coefficients a; , and a,; are computed,
we can assume that the linear system for k+ [ = n+ 1 has an associated coefficient
matrix with non vanishing determinant. In this case, there is a unique solution and we

can compute all the unknowns ay; withk+/=n+1.

We can now proceed with the line defined by k+ ! = n. Coefficients ag ,, and a, o can
be computed in terms of control points using (4.7) and (4.8), while coefficients a1 1
and @, 1,1 are computed using (4.12) and (4.13). Note that a3 ,» and a,_2 > have been
computed in the previous step since they are more to the right, are needed to compute

ajp—1anda,_q;.
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Remark 4.1. If we replace the monomial matrix form c;j and the control points in
equations (4.7), (4.8), (4.12) and (4.13) ) of the surface X (u,v) by the Bézier mono-
mial matrix form and Bézier control points, we obtain the result which similar as in

Monterde and Ugail (2006).
For the purpose of our numerical examples of uniform scattered data, we will consider
the fourth order PDE in the form of

2%x %X 2*Xx
Asiay P85 T s

0, (4.15)

with the degree-3 and degree-5 boundary curves.

Let R be a rectangle with vertices V;(x1,y1),Va(x2,¥1), V3(x2,y2) and V4(x1,y2). The
edges along V1V,,V4V3,V V4 and V, V3 is respectively denoted by eq,e3,e3 and ey as

shown in Figure 4.1.

Va(x1,¥2) Vi(x2.¥2)  von  Vipn .. Vm Vi
€2
€3 A Vgj Vij ... Vi 2%}
H :
e, Vo1 Vi1 ... Yy Vim
Vi(x1.y1) V2 (%2, ¥1) Voo Vig " YV VYmo
(a) (b)

Figure 4.1. (a) Unit rectangle and (b) Said-Ball control points.

4.1.1 Said-Ball Polynomial Solutions for Fourth Order Partial Differential Equa-

tions

If we replace the monomial matrix form c¢;; in (4.7), (4.8), (4.12) and (4.13) by the
Said-Ball monomial matrix form (2.62), and the control points b;; by the Said-Ball

control points v;;, we get the Said-Ball polynomial solution.
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4.1.1.1 Odd Degree-n Said-Ball Boundary Curves Defined on Rectangular Grid
The four Said-Ball boundary curves along the edges eq,ez,e3 and e4 are given by
Ci1(u),Cy(u),C3(v) and C4(v), respectively with
m N
Ci(u) = S(u,0) =Y vioST'(u),
i=0
m
Cu) = S(u,1) =) vinS} (w),
i=0

- (4.16)
C3(v) = S(0,v) =) voiSTH(v),
i=0

Cs(v)= S(1,v)= iv,m-Sg"(v).
i=0 )

4.1.1.2 Relation Between Cubic Said-Ball Boundary Coefficients and Polyno-

mial Coefficients Using Fourth Order PDEs

The relationship between the first row of polynomial coefﬁcients,{aoj};:0 and the

3

0> are obtained by letting » = 3 in equation (4.7) and

boundary control points {vo;}
this gives

ago = V00,

agr = 2(vo1 — voo),
[ (4.17)

apz = 2(voo — 4vo1 + 2voy + vo3),

aoz = 12(vo1 — vo2)- J
In a similar way, the relationship between the first column of polynomial coefficients,
{a j0}3f=0 and the boundary control points {v j0}3=0, are obtained by letting n = 3 in

equation (4.8) and this gives

a0 =2(vio — voo),

(4.18)

'

ax = 2(voo — 4vig + 2v20 +v3p),

asp = 12(vip — vao)
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Next, we calculate of the second row {a j3}3.=1 ,the second column {v j3}3f:1 and the
coefficients remained of polynomial coefficients in terms of boundary control point of
Said-Ball patch with the use of expression (4.15) and by letting n = 3 in the expression

(4.12) and (4.13) respectively. The following expressions are obtained

asz3 =azy = ap =0,

a3) = —azo+ 12(vi3 —va3),
a2
ajl = —ax) — —— +2(V03 — 4V13 + 2V23 + V33),
2 \ (4.19)
a2l a3l
a1 = o1 — - =~ —2v30+2v31,

a3 = —ags + 12(v31 — v3),

a2
ary = —an — —- +2(v0 — 4v31 +2v32 +v33),

7

with ayp = ﬂ%, where A, B, and C, (B # 0) are free parameters from equation

(4.15).

4.1.1.3 Relation Between Quintic Said-Ball Boundary Coefficients and Polyno-

mial Coefficients Using Fourth Order PDEs

The relationship between the first row of polynomial coefficients,{ag j}§=0 and the
boundary control points {vg j}§=0’ are obtained by letting n = 5 in equation (4.7) and

this gives
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aij =0,Vi+j> 6,

ago = voo,ao01 = —3(voo — Vo1 ),

ag = 6(voo — 3vo1 + 2vo2),
(4.20)

aoz = —6(voo — 9vo1 + 18vo2 — 6vp3 — 3vps — vos),

ag4 = —72(\/01 —6vy +4ves + V()4),

aps = —720(v02 - vo3). J

In a similar way, the relationship between the first row of polynomial coefficients,
{a j0}§:0 and the boundary control points {v 1'0}§=0’ are obtained by letting n = 5 in

equation (4.8) and this gives

aio = —3(voo — vo1),
azo = 6(voo — 3vio +2v0),
azo = —6(voo — 9v10 + 18v20 — 6v30 — 3v40 — v5p), 4.21)

aso = —72(vig — 6vag +4v30 + vao),

asg = —720(v20 — v39)-

5
=1

Next, we calculate the second row {ajs}>_; ,the second column {v j5}§=1 and the co-
efficients remained of polynomial coefficients in terms of boundary control point of
Said-Ball patch with the use of expression (4.15) and by letting n = 5 in the expression

(4.12) and (4.13) respectively. The following expressions are obtained
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with

ais = —aps — 720(vs2 — vs3),

asy = —asp — 720(vas — v3s),

ais = —aos — % —72(vs1 — 6vsy +4vs3 +vsq),

as = —a40 — % —72(v15 — 6vo5 +4v3s + vas),

a3 = —ag3 — % - % — 6(vsg — 9vsy + 18vsy — 6vs3 — 3vsq —vss),

a3 = —a30 =~~~ 6(vos — 9vys + 18vys — 6v3s — 3vgs — vss),

axyp a4z ag

a azz a4
ay = —agy — % — < "2 + 6(vos — 3vis +2vp5),
an = —ag _ﬂ_@_ﬂ_ﬁ—ﬁi(v —vs1)
I 1= 76 24 120 “\0TVsU

(A%as; +C(B*— AC)ays)

az4

(B2AC-B%))
a (CPa15 +A(B> —AC)as:)
B2AC—B%)
4y — anA +a13C’
B

a3 = (A%as;+C%ays5)/(B*>—24C),
a3 = (BCais—A%as;)/(B*—AC),

ay = (C2a14 —ABayy)/(AC — BZ),

where A, B, and C, (B # 0) are free parameters from equation (4.15).
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4.1.2 DP-Ball Polynomial Solutions for Fourth-Order Partial Differential Equa-

tions

If we replace the monomial matrix form c;; in (4.7), (4.8), (4.12)and (4.13) by the DP-
Ball monomial matrix form, and the control points b;; by DP-Ball control points d;;,

we get the DP-Ball polynomial solution.

4.1.3 Odd Degree-n DP-Ball Boundary Curves Defined on Rectangular Grid

The four DP-Ball boundary curves along the edges ey, 2, e3 and ¢4 are given by Cy (1), Ca(u), C3(v)

and C4(v), respectively with

A

Ci(w) = D(u,0) = ﬁo diD?(u),

Co(u) = D(u,1)= f:d,-,,D?(u),
o > (4.23)

G(v)= D(0,v) = Y} doD(v),
i=0

Cs(v)= D(1,v)= i‘éd,m-D?’(v).J

4.1.3.1 Relation Between Cubic DP-Ball Boundary Coefficients and Polynomial

Coefficients Using Fourth Order PDEs

The relationship between the first row of polynomial coefficients,{ag j}§=0 and the
boundary control points {dg f}3=0’ are obtained by letting n = 3 in equation (4.7) and
this gives
aoo = doo,
ao1 = —3doo + 2dopy + doz, L

(4.24)
agy = 2(3doo —3do1),

apz = 6(—doo + do1 — dop + do3)

7
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In a similar way, the relationship between the first column of polynomial coefficients,
{a jO}?:o and the boundary control points {d j0}:;=0’ are obtained by letting n = 3 in

equation (4.8) and this gives

ajp = —3doo +2d10 + dao,

az = 2(3doo — 3dio), f (4.25)

aso = 6(—doo + dio — dao + d3p). )

Next, we calculate the second row {a j3}3-:1 ,the second column {d j3}3.=1 and the co-
efficients remained of polynomial coefficients in terms of boundary control point of
Said-Ball patch with the use of expression (4.15) and by letting » = 3 in the expression

(4.12) and (4.13) respectively. The following expressions are obtained

a3 = az3 = az =0,
az1 = azp — 6(doz —d13 +da3 — ds3),
ax
a1 = ~az0 = —° +6(do3 — di3),
. . r (4.26)
2
ay = —apr — 71 -~ % —3d30+ 2da; +daa,
a3 = —ags — 6(dso — da1 +dspy — ds3),
a
ap = —aoz—%+6(d30—d31), J

with ayy = 93"4—;“‘35 , where A, B, and C, (B # 0) are free parameters from equation

(4.15).
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4.1.3.2 Relation Between Quintic DP-Ball Boundary Coefficients and Polyno-

mial Coefficients Using Fourth Order PDEs

The relationship between the first row of polynomial coefficients,{ag j}§=0 and the
boundary control points {dp J'}?:O’ are obtained by letting n = 5 in equation (4.7) and

this gives

aj =0,Yi+j>6, ]
a0 = doo,

ag = %(— 10doo + 2do1 + 5doz + 3do3),
ap2 = 20dpo — 8do1 — 9doz — 3do3, r (4.27)
ag3 = —6(10dpg — 6do1 — 3doz — do3),

apa = 24(5doo — 4do1 — doa — doz + dpa),

ags = —120(doo — doy + doa — dos). |

In a similar way, the relationship between the first row of polynomial coefficients,
{a J'O}j':O and the boundary control points {d j0}§'=0’ are obtained by letting n =5 in

equation (4.8) and this gives

A

1
ajpp = 5(— 10dpo + 2d19 + Sdag + 3d30),
azo = 20dpg — 8d10 — 9da0 — 3d3o,
azp = —6(10dgg — 6d10 — 3d20 — d3p), f (4.28)

as0 = 24(5dop — 4d1o — dao — d3p + dao),

asy = —120(dgo — d10 + dao — dsp).
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Next, we calculate the second row {a j5}§:1 ,the second column {d j5}3=1 and the co-

efficients remained of polynomial coefficients in terms of boundary control point of

Said-Ball patch with the use of expression (4.15) and by letting n =5 in the expression

(4.12) and (4.13) respectively. The following expressions are obtained

a1s = —ags — 120(dso — ds1 + dsa — dss),
asy = —asg — 120(d05 —d15 +d45 - d55)’
ax = (A’as) +C(B* — AC)ays) / (B(2AC — B?),
azz = (AZaSI +C2a15)/(32 —2AC),
as = (A(B? — AC)as; +C3ay5)/B(2AC — B?),
az4
ais = —aps — 7 —+ 24(5d50 - 4d51 - d52 - d53 +d54),

a
a4 = —a4o — % +24(5dps — 4dys — dps — das +das),

oy a3 \ 4.29)
a3z = —ap3 — 7 - ? - 6(10d50 '—6d51 - 3d52 _d53)a
azxy as3
azl = —azp — 7 — ? — 6(10d05 b 6d15 - 3d25 _d35)’
ay = — (Aaz1 +Cay3) /B,
axy a3 axy
= —ayg— 22— 22 72 1 20dns — 8d1s — 9dors — 3d
az; axo 5 6 " +20dps 15 25 35,
axp azx a4
= gy 2229298 5000 — 8dsy — 9ds, —
an an — = ¢ +20dsp — 8ds1 — 9dsy — 3ds3,
a1 a3 asy asp 1
— gy — — 222 M 2 (104 2d
@ = =01 = 5~ === = o~ g + 5 (- 10ds0 +2ds,
+5ds; +3ds3), J

with agy = 93“4—2”‘35, where d;; are control points of DP-Ball surface of degree 5 x 5,

and A,B, (B # 0) and C are free parameters (4.15).
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4.1.4 Wang-Ball Polynomial Solutions for Fourth Order Partial Differential Equa-

tions

If we replace the monomial matrix form c¢;; in (4.7), (4.8), (4.12) and (4.13) by the
Wang-Ball monomial matrix form, and the control points b;; by Wang-Ball control

points w;;, we get the Wang-Ball polynomial solution.

4.1.4.1 Odd Degree-n Wang-Ball Boundary Curves Defined on Rectangular Grid

The four Wang-Ball boundary curves along the edges eq,e,e3 and e4 are given by

Ci(u),Co(u),C3(v) and C4(v), respectively with

N\

Ci(w) = D(u,0) = io wioAT (1),
Cy(u)= D(u,l)= iw,’nA;'(u),

=0 \ (4.30)
G(v)= D(0,v) = ;JWO,-AE"(V),

Calv) = D(1,v) = gwm,’AE"(v).

7

4.1.4.2 Relation Between Cubic Wang-Ball Boundary Coefficients and Polyno-

mial Coefficients Using Fourth Order PDEs

Since in application to degree three, cubic Said-Ball curve and Wang-Ball curve gen-
erate the same results, it is however not necessary to express solutions for both, but it

is sufficient to show the results for only bicubic Said-Ball as given in Section 4.1.1.2.
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4.1.4.3 Relation Between quintic Wang-Ball Boundary Coefficients and Polyno-

mial Coefficients Using Fourth Order PDEs

The relationship between the first row of polynomial coefficients,{ag f}§'=0 and bound-

5

—0» are obtained by letting n = S in equation (4.7) and this

ary control points {wg;}

gives

ai;=0Yi+j>6,
aoo = Woo,

a1 = —2(woo — wo1),
agy = 2(wpo — 6woy +4wop +wps), ¢ (4.31)
agz = 12(3wp1 — 6w + 2wo3 + wog),

ags = —48(wo1 — 6wy + 4wos + wog),

aps = —480(W02 — W03).

In a similar way, the relationship between the first row of polynomial coefficients,
{ajo}>_o and boundary control points {wo}>_, are obtained by letting n =5 in equa-

tion (4.8) and this gives

aip = —2(wop — wio),

azo = 2(wgo — 6w + 4w + wsp),

v

azp = 12(3wyg — 6wy +2w30 + wag), (4.32)

ago = —48(w10 — 6w + 4wszg + wag),

asg = —480(W20 - W30).
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5

7=1 »the second column {w j5}§=1 and the

Next, we calculate of the second row {a;s}
coefficients remained of polynomial coefficients in terms of boundary control point of
Wang-Ball patch with the use of expression (4.15) and by letting » = 5 in the expression

(4.12) and (4.13) respectively. The following expressions are obtained

ajj =0,Vi+j>6,

as1 = aso — 480(das — dss),

ajs = —ags — 480(dsy — ds3),
a

414 = —ags — %/ —48(ds) — 6dsy + 4ds3 + dsq),
as

as1 = —a4p — —- = 48(d1s — 6dys +4dss + das),

a a
a3 = —ags — %3 — % + 12(3ds1 — 6dsy + 2ds3 + dsa),
a
az) = —azg — %2 — % + 12(3d15 — 6da5 + 2d3s5 + das),
_ (Aaz; +Ca3)
ay = ——7—",
B (4.33)
azp a3 ay
— gy =2 9B 0% o 6dys+ddas+d
az e i i (dos 15 +4das +dss),
azy aszp  asg
— a2 92 o 6ds +4dsy +d
apn ag2 5 6 24+ (dso 51 +4dsy +dss),
aip  a13 a4
— g2 43 G4 Ha
an an— - 6 " a (dos — dis),

a4 = (Aas; +C(B? — AC)ass)/ (B(2AC — B2),
azs = (A%as; +C?ays5) /(B —24C),
agy = (A(B? — AC)as; + C3a;5) /B(2AC — B?),

az3 = (BCas1 — A’as1)/(B* — AC),

asp = (Bza14 —ABa41 )/(AC — Bz),

with ap = 31%35, where A, B, and C, (B # 0) are free parameters from equation

(4.15).
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4.1.5 Surface Construction

To generate a surface which interpolates some given functional values at the vertices of
the rectangular, we also need to estimate the partial derivatives with respect to x and y at
these vertices. Partial derivatives are estimated using well-known methods for uniform
grid, that are forward, central and backward difference methods. Then, the surface
interpolation defined with boundary curves will be generated by using polynomial form
(4.2) with all coefficients g;; calculated as the above method. To visualize our proposed

method, we have chosen two datasets taken from well known test functions as follows:

0.1, lf(y—)C)ZO,
2(y—x), if —0.5> (y—x)>0.5,
flwy) = ) cos(4m/ (x—1.5)24-(y~0.5)2+1)
2= if(x— 1.5 4+ (y—0.5)2 < g

1
6°

(4.34)

0, otherwise,

\

where 0 <x<2,0<y<1,and
gry) = 1+43(BOVERI6N gy 0<y<l. (435

We obtain the first dataset from f(x,y) and it comprises 45 data points with 32 rectan-

gles in a rectangular domain as in Figure 4.2.

o pr-a :\T,..m;,;».”,,g:‘ré U TR Y'Y

4

8

M [FalETRT I TR

Figure 4.2. (a) 32 rectangles in the rectangular domain (b) 45 data points from positive
function, f(x,y).
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The second dataset is taken from g(x,y) which consists of 25 data points with 16 rect-

Same ) ,‘H,” |

(a) (b)

Figure 4.3. (a) 16 rectangles in the rectangular domain (b) 45 data points from positive
function, g(x,y).

angles as in Figure 4.3.

£

PEEEEE

After several numbers of experimentation, the values of the free parameters A, B and C
in (4.15) are set to be 0.0003, 2 and 0.005, respectively, which produced good quality

of interpolating surfaces for all the datasets.

4.1.6 Graphical Examples

Here we give some graphical examples to illustrate the interpolations of the surfaces
using the bicubic and biquintic Said-Ball, Wang-Ball and DP-Ball by using the test

function f(x,y) and g(x,y).

4.1.6.1 Bicubic Said/Wang-Ball

Figure 4.4 shows the initial value for the edge bicubic Said/Wang-Ball control points
for the datasets in Figure 4.2 (test function f(x,y)) and Figure 4.3 (test function g(x,y)).
Figure 4.5 shows the boundary curves for each rectangle for the edge control points,
while the results for the interpolating surfaces cubic boundary curves for each test
functions are shown in Figure 4.6. The summaries of these results is given in Table 4.1

and Table 4.3.
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(a) (b)

Figure 4.4. Edges Said/Wang-Ball control points for all rectangles (a) Test function
f(x,y) (b) Test function g(x,y).

(a) (b)

Figure 4.5. Boundary curves for all rectangles (a) Test function 1, f(x,y) (b) Test
function 2, g(x,y).

(a) (b)

Figure 4.6. Interpolating surface boundary curves (a) Test function 1, f(x,y) (b) Test
function 2, g(x,y).
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4.1.6.2 Biquintic Said-Ball

Following the same approach from the bicubic Said-Ball, Figure 4.7 displays the initial
value for the edge biquintic Said-Ball control points for the datasets in Figure 4.2 (test

function f(x,y)) and Figure 4.3 (test function g(x,y)).

Also, Figure 4.8 shows the boundary curves for each rectangle for the edge control
points, while the results for the interpolating surfaces cubic boundary curves for each
test functions are shown in Figure 4.9. Table 4.2 and Table 4.4 give the summaries of

these results.

(a) (b)

Figure 4.7. Edges biquintic Said-Ball control points for all rectangles (a) Test function
f(x,y) (b) Test function g(x,y).

Figure 4.8. Quintic Boundary curves for all rectangles (a) Test function 1, f(x,y) (b)
Test function 2, g(x,y).
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(a) (b)

Figure 4.9. Interpolating biquintic surface boundary curves (a) Test function 1, f(x,y)
(b) Test function 2, g(x,y).

4.1.6.3 Bicubic DP-Ball

Figure 4.10(b) shows the generated surface from the test function g(x,y), while Fig-
ure 4.10(a) presents the initial value for the edge bicubic DP-Ball control points for the

test function g(x,y).

(a) (b)

Figure 4.10. (a) Edges DP-Ball control points for all rectangles for test function g(x,y)
(b) Interpolating surface boundary curves for test function g(x,y).

4.1.6.4 Biquintic DP-Ball

Following the same approach in Section 4.1.6.3, we show in Figure 4.11, the initial
value for the edge biquintic DP-Ball control points for the dataset in Figure 4.3 (test

function g(x,y)) .

Also in Figure 4.11(a), we show the boundary curves for each rectangle for the edge
control points, while the result for the interpolating surface quintic boundary curves
for test function g(x,y) is shown in Figure 4.11(b). The summaries of these results are

given in Table 4.2 and Table 4.4.
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(a) (b)

Figure 4.11. (a) Edges biquintic DP-Ball control points for all rectangles for test func-
tion g(x,y) (b) Interpolating biquintic surface boundary curves g(x,y).

4.1.6.5 Biquintic Wang-Ball

Following the same approach from the bicubic Wang-Ball, the initial value for the edge
biquintic Wang-Ball control points for the datasets in Figure 4.2 (test function f(x,y))

and Figure 4.3 (test function g(x,y)) respectively, is shown in Figure 4.12.

The boundary curves for each rectangle for the edge control points in Figure 4.12 is
also shown in Figure 4.13, while the results for the interpolating surfaces cubic bound-
ary curves for each test functions are shown in Figure 4.14. Table 4.2 and Table 4.4

gives the summaries of these results.

(@) (b)

Figure 4.12. Edges biquintic Wang-Ball control points for all rectangles (a) Test func-
tion f(x,y) (b) Test function g(x,y).
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(@ (b)

Figure 4.13. Quintic boundary curves for all rectangles (a) Test function 1, f(x,y) (b)
Test function 2, g(x,y).

(a) (b)

Figure 4.14. Interpolating biquintic surface boundary curves (a) Test function 1, f(x,y)
(b) Test function 2, g(x,y).

Table 4.1
Comparison of the interpolating surfaces between bicubic Bézier, bicubic Said/Wang-
Ball and bicubic DP-Ball boundary curves for the test function g(x,y).

Surface Number of Number of points below  Minimum value
evaluation points XY -plane and percentage of function
Bézier 1681 291 -0.012363
17.31 %
Said/Wang-Ball 1681 231 -0.012736
13.7419 %
DP-Ball 1707 292 -0.072144
17.1060%

Table 4.1 showed that our proposed method for bicubic Said/Wang-Ball and bicubic
DP-Ball representations are better than the bicubic Bézier representation in terms of

the percentage of number of points below XY -plane.
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Table 4.2
Comparison of the interpolating surfaces between biquintic Bézier, biquintic Said-
Ball, biquintic Wang-Ball and biquintic DP-Ball boundary curves for the test function

g(x,y).

Surface Number of Number of points below Minimum value
evaluation points XY -plane and percentage of function
Bézier 1681 291 -0.039003
17.014 %
Said-Ball 1681 246 -0.019917
14.634 %
Wang-Ball 1681 151 -0.0050132
8.9827 %
DP-Ball 1681 312 -0.037932
18.56%

Table 4.2 showed that our proposed method for biquintic Wang-Ball and biquintic
Said-Ball representations are better than biquintic Bézier representation in terms of the
percentage of number of points below the XY -plane. However, our proposed method
for the biquintic DP-Ball is not as good as the biquintic Sais-Ball and biquintic Wang-

Ball representations.

Table 4.3
Comparison of the interpolating surfaces between bicubic Bézier, bicubic Said/Wang-
Ball and bicubic DP-Ball boundary curves for the test function f(x,y).

Surface Number of Number of points below Minimum value
evaluation points XY -plane and percentage of function
Bézier 3321 1134 -0.08232
34.146 %
Said/Wang-Ball 3321 1118 -0.04900
33.6646 %

As demonstrated in Table 4.3, we found out that our proposed method for bicubic
Said/Wang-Ball representation performed slightly better than the bicubic Bézier repre-

sentation in terms of the percentage of number of points below XY -plane.
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Table 4.4
Comparison of the interpolating surfaces between biquintic Bézier, biquintic Said-
Ball, biquintic Wang-Ball and biquintic DP-Ball boundary curves for the test function

flxy).

Surface Number of Number of points below  Minimum value
evaluation points XY -plane and percentage of function

Bézier 3321 1134 -0.08232
34.146 %

Said-Ball 3322 1147 -0.058653
34.527 %

Wang-Ball 3324 1136 -0.039102
34.176 %

Table 4.4 showed that the biquintic Bézier representation performed better than our
proposed method for biquintic Said-Ball and biquintic Wang-Ball representations in

terms of the percentage of number of points below XY -plane.

4.2 Dirichlet Functional

In this section, we present a more general algorithm to compute an extremal of the
Dirichlet functional in terms of Ball surface. All these surfaces will give us the minimal
surface areas. To compare our purposed method with the existing method for Bézier
surface, we must have surface with the same four boundary curves. To do this, we must
convert Bézier surface control points into generalization Ball surface control points, i.e.

different surface with same boundary curves.
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Theorem 4.1. A square control net, P = {P,j}}"\_, of surface X (u,v), is an extremal

i,j=0

of the Dirichlet functional with prescribed border if and only if

dD(P)

n n n n
ax¢ - Z Z Z Z Z Z CikC1iCrfCshA fiFrs
ij
n n n n
+ Z Z Z Z Z Z CikC1jCrfCshAinPrs, (4.36)

foranyie{l,....n—1}, and j € {1,...,m— 1}, where cij is the monomial matrix

form of the curve X (u),X (v) and Ag, = W

Proof. Let us compute the gradient of the Dirichlet functional with respect to the
coordinates of the control points P;j = (xilj,x,-zj,x?j) of X(u,v). Forany i€ {1,...,n—

1},and j€ {1,...,m—1},a € {1,2,3},¢! = (1,0,0),¢* = (0,1,0) and &> = (0,0, 1),

a(?x(;) :/A(<gf: Xu>+<§X X >)dua’v. (4.37)

Compute the partial derivatives

we have

X(u V), (4.38)

so that the surface X (u,v) can be written in monomial matrix form as follows

n n n n

= Z Z Z Z c,fcshufthrs, (4.39)

r=05=0 f=0h=0

where ¢,¢ is the monomial matrix form of the curve X (u), and cg, is the monomial

matrix form of the curve X (v). Now, we apply (4.39) in (4.38) to obtain
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aX (u v) 0 n

n n

= szcrfcshuk"lvle“. (4.40)
k=11=0

Slmllarly, we have

9%, (1, 5

% = Y Y lerpeguVilel. (4.41)
ij k=0i=1

On applying (4.40) and (4.41) in (4.37), we obtain

agx(f) B //R (<§ )::kcik“lj”k—lvle“,??u(u,v)> +
<Z Y lepejn)uv' e Xy (u, v)> )dudv

k=01=

1
n n
- /R( Y ¥ kewcrjut Ve,

/R Z Z Z Z Z Z kfcixcijcresn %

k=01=1r=05=0f=0h=
V=2 (68 P Y dudy, (4.42)

so that
1

1 rl
k+f-2, btk _
/O/Ou V" dudy IR (4.43)
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On applying (4.43) in (4.42), we obtain

I3 c . fk
KELCrICSh et F— 1) I+ h)

lh
CikCIerszh(k+f)(l+h_l)

c (€%, Prs) +

QO
28
[

1=
D=
1=
M=
D=
=

<
k‘
Il
—_
o~
I
=
~
Il
=
W
Il
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~
il
_
3
Il
o

(eaaPrs>
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=
=
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]
o
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I
[e]
o
i
(=]
T
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==
I
05

i
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ngE
=
M=
M=
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c,-kcljc,fcshAfk (ea, Prs) +

E
If
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Il
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I
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I
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™=
(ngE
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(ngE
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cikcrjcricshAin (€%, Prs) » (4.44)

x~
Il
=]
~
Il
—_
~
Il
=]
1)
Il
=)
4
Il
o
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—_

k
WhereAfk——— W‘W O

Remark 4.1. If we replace the monomial matrix form c;j and the control points of the
surface X (u,v) in Theorem 4.1 by the Bézier monomial matrix form and Bézier control

points, we have the result similar as in Monterde (2004).

4.2.1 Biquadratic Dirichlet Surfce

If we substitute m = n = 2 in (4.36), this give us the biquadratic case. Since Said-Ball,
DP-Ball and Wang-Ball surfaces are identical at degree 2, then it is enough to consider

examples from biquadratic Said-Ball.

If we replace the monomial matrix form ¢;; in Theorem 4.1 by the Said-Ball monomial
matrix form, and the control points b;; by Said-Ball control points v;;, we obtain the
Dirichlet functional of Said-Ball polynomial solution. In this case, there are only one

interior control point namely v;i.
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Proposition 4.1. A biquadratic Said-Ball surface is an extremal of the Dirichlet func-

tional with prescribed border if and only if
1
Vi1 = §(3V()0 —vo1 +3vga —vio —viz +3vae — vo1 + 3V22). (4.45)

Example 4.1. Given the control points as follows: vgg = (0,0,1),v10 = (1,0,0),v0 =
(2’0, 1),1101 = (Oa 1,0),\)21 = (2) 1,0),V02 = (0’2a 1),V12 = (11250);‘)22 = (2',27 1) (MOD-
terde & Ugail, 2009).

By using equation (4.45), we have vy; = (1,1,1.5).

(a) (b)

Figure 4.15. (a) Boundary curves of biquadratic Said-Ball surface generated by an ex-
tremal of the Dirichlet condition (b) surface of biquadratic Said-Ball surface generated
by an extremal of the Dirichlet condition.

4.2.2 Bicubic Dirichlet Surfce

If we substitute » = m = 3 in Theorem 4.1, we obtain the bicubic case. In this case,

there are four equations corresponding to the inner control points.

4.2.2.1 Said-Ball and Wang-Ball

If we replace the monomial matrix form ¢;; in Theorem 4.1 by the Said-Ball monomial
matrix form, and the control points b;; by Said-Ball control points w;;, we obtain the

Dirichlet functional of Said-Ball polynomial solution.
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Since in application to degree three, cubic Said-Ball curve and Wang-Ball curve gen-
erate the same results, it is however not necessary to express solutions for both, but it

is sufficient to show the results for only bicubic Said-Ball as given in Proposition 4.2.

Proposition 4.2. A bicubic Said-Ball surface is an extremal of the Dirichlet functional

with prescribed border if and only if

1
vy = 104 (T4vop — 96vo1 +48vp + 39vp3 — 96V + 30v13 +48vyg

—8v23 + 39v30 + 30v31 — 8viy +4vsz), (4.46)

1
Vip = Toa (39vgo + 48vg1 — 96vgy + T4ves 4 30v19 — 96v13 — 8vap

+48vy3 + 4v3g — 8va1 + 30v3p + 39vs3), (4.47)
V21 = ﬁ (39vgg + 30vo; — 8vpz + 4vp3 + 48v1g — 8vyz — 96vog

+30v23 + 74v3p — 96v31 +48v3y + 39v33), (4.48)
vy = %04(4%0 — 8vo1 + 30vg + 39vg3 — 8vig + 48vi3 + 30vy0

—96vy3 + 39v30 + 48v3; — 96v3y + T4v33). (4.49)

4.2.2.2 DP-Ball

If n = m = 3, there are four equations corresponding to the inner control points d;, diz,

da1, da.

Proposition 4.3. A bicubic DP-Ball surface is an extremal of the Dirichlet functional

with prescribed border if and only if

1
din = %(196d00 —59dp; + 52dy, — 104dg3 — 59d1o + 52d33 + 52dag

—32dy3 — 104dsg + 52d31 — 32d3p + 64d33), (4.50)
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di

dy

da

1

(104doo — 52dp1 + 59dgy — 196dy3 — 52d10 + 59d13 + 32d0

78
—52dy3 — 64d3g +32d3; — 52d3 + 104d33) (4.51)
% — (104dgg — 52dg;1 + 32dgy — 64dgs — 52d10 + 32dy3 + 594
—52dp3 — 196430 + 59d31 — 52d3, + 104ds3), 4.52)
7—18 (64dgo — 32dg; + 52dgy — 104dg3 — 32d10 + 52d13 + 52dag

—59dy3 — 104d39 + 52d31 — 59d3 + 196d33). (4.53)

4.2.3 Dirichlet Mask for Bicubic Pathes

The following masks for the bicubic Dirichlet functional, where the masks on the left
side for bicubic Bézier, on the middle side for bicubic Said/Wang-Ball, and on the right
side for bicubic DP-Ball.

—22
48

48

-22
Pro= 35
24

-4 4 39 30 -8 4 -10 52 -32 64
. -4 . 48 . . -8 1 52 . . -32
wii= W d] V= 73
. 15 ~96 . . 30 —-59 . ° 52
24 0 74 -96 48 39 196 -59 52 —104
24 0 4 -8 30 39 64 -32 52 -—104
. 15 -8 . ° 48 -32 ° ° 52
win= 1l diz= g
s 4 30 . ° -96 52 ° . -59
0 4 39 48 -96 74 —-104 52 -59 196
-15 0 47 -96 48 139 196 -59 52 -—104
. 24 . —-96 ° . 30 -59 e e 52
W= 15 dyy = %
. -22 48 . ° -8 52 ° . -32
-22 48 39 30 -8 4 —-104 52 -32 64
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. 15 ° s 22 , 30 . . —96 : 52 ° . -59
Po= 3 w2 = 103 dyp= 3
-4 e o 24 -8 o o 48 -32 o ° 52
4 -4 15 0 4 -8 30 39 64 -32 52 -104

4.2.4 Graphical Examples for Extremal of the Dirichlet Bicubic Surface

Here are some graphical examples of surfaces generated by extremals of the Dirichlet
functional by using four different sets of control points such that each set has similar

four boundaries for the surface.

4.2.4.1 Graphical Examples for Extremal of the Dirichlet Bicubic Wang-Ball

Surface

Example 4.2. Given the boundary control points set 1 of bicubic Wang-Ball surface
as follows

woo = (0,0,1), w19 = (6/5,0,2113/1000), wso = (1,0,23/8), w30 = (4,0,1),

wor = (0, 18/5,—491/625), w2 = (0,14/5,—71/625),we3 = (0,4,1),

wiz = (9/5,4,631/250),wy3 = (11/5,4,631/250),ws3; = (4,9/5,—885/1687),

wiy = (4,11/5,—885/1687), w33 = (4,4,1).

The inner control points of bicubic Wang-Ball surface by an extremal of the Dirichlet
condition are

w1t = (573/260,213/260,779/395), w1, = (138/65,539/260,370/1043),

w1 = (53/260,—51/65,—1219/893), and wyy = (389/260,119/65,1395/1097).
The graph of the above surface is in Figure 4.16(c), while the boundary curves and its

control points in Figure 4.16(d).
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Example 4.2. Given the boundary control points set 2 of bicubic Wang-Ball surface
as follows

woo = (0,0,0),wie = (9/4,0,—9/2), w0 = (3/4,0,9/2), w30 = (3,0,0),

wor = (0,9/4,-9/2),wez = (0,3/4,9/2), w03 = (0,3,0), w13 = (3/2,3,-3/2),

wos = (3/2,3,-3/2),ws1 = (3,3/2,3/2), wsa = (3,3/2,3/2),w33 = (3,3,0).

The inner control points of bicubic Wang-Ball surface by an extremal of the Dirichlet
condition are

wi = (6/13,6/13,162/13), w1, = (369/208,33/13,—-357/52),

wyy = (21/26,—171/208,—417/52), and

wop = (255/208,255/208,171/52). The graph of the above surface is in Figure 4.17(c),

while the boundary curves and its control points in Figure 4.17(d).

Example 4.3. Given the boundary control points set 3 of bicubic Wang-Ball surface
as follows

woo = (0.5,0,0), w9 = (0.2577,0.4,0), w0 = (—0.5,0.36,0), w39 = (—0.5,0,0),

wor = (0.425,0,0.45),wgp = (0.575,0,0.75),wez = (1,0,1), w13 = (0.5153,1,1),
waz = (—1,0.72,1),w3; = (—0.425,0,0.45), w3, = (—0.575,0,0.75), w33 = (—1,0,1).
The inner control points of bicubic Wang-Ball surface by an extremal of the Dirichlet

condition are

wi1 = (283/9635,9/200,909,/2080), w1, = (—679/1879, —981/1300,203 /416),

wa1 = (1048 /1233, —843/1300, —891/2080), and wy = (922/1487, —39/200,203 /416).

The graph of the above surface is in Figure 4.18(c), while the boundary curves and its

control points in Figure 4.18(d).
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Example 4.4. Given the boundary control points set 4 of bicubic Wang-Ball surface
as follows

woo = (—585/631,1378/483,0), wig = (—2547/631,—689/483,0),

710/173,—609/500,0), wo = (585/631 — 1378/4830),

wos = (—585/631,1378/483,1), w13 = (—622/163,-2234/793,1),

(=
(-
(—111/581,2342/3983,21/40),wpy = (—327/3697,457/1674,2/5),
(-
(—1170/631,—1378/483,1), wz; = (512/1599, —1699/1724,9/20),
= (161/7124,—173/2475,13/40),w33 = (585/631,—1378/483,1).

The inner control points of bicubic Wang-Ball surface by an extremal of the Dirichlet
condition are

wiy = (993/2087,517/373,447/1040), w12 = (1913/1636,2671/902,1159/2080),
wo1 = (1048/1233,—843 /1300, —891/2080), and

woy = (—171/935,-211/178,79/130). The graph of the above surface is in Figure

4.19(c), while the boundary curves and its control points in Figure 4.19(d).

4.2.4.2 Graphical Examples for Extremal of the Dirichlet Bicubic DP-Ball Sur-

face

Example 4.6. Given the boundary control points set 1 of bicubic DP-Ball surface as
follows

doo = (0,0,1),d10 = (—2/5,0,617/500),dy = (16/5,0,1379/500),d30 = (4,0,1),
do1 = (0,8/5,—399/625),dp, = (0,4,441/625),do3 = (0,4,1),

di3 = (—2/5,4,252/125),dr3 = (22/5,4,252/125),d3; = (4,—2/5,—41/2500),

dz = (4,22/5,-41/2500),d33 = (4,4,1).

The inner control points of bicubic DP-Ball surface by an extremal of the Dirichlet
condition are

di1 = (97/65,56/39,5199/1133),d12 = (—29/65,772/195,—2104/1347),

dy = (6/13,—881/195,—-4974/1277), and dpy = (339/65,1141/195,759/185).
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The graph of the above surface is in Figure 4.16(e), while the boundary curves and its

control points in Figure 4.16(f).

Example 4.5. Given the boundary control points set 2 of bicubic DP-Ball surface as
follows

dpo = (0,0,0),d10 = (3/2,0,-9),d20 = (3/2,0,9),d30 = (3,0,0), dor = (0,3/2,-9),
do = (0,3/2,9),do3 = (0,3,0),d13 = (0,3,-1),

dy3 =(3,3,—1),d3; =(3,0,1), d3p = (3,3,1),d33 = (3,3,0).

The inner control points of bicubic DP-Ball surface by an extremal of the Dirichlet
condition are

dy; = (—31/52,9/52,323/13),dy2 = (11/13,207/52,—283/13),

dy1 = (107/52,—-3,-277/13), and dy, = (38/13,48/13,242/13). The graph of the
above surface is in Figure 4.17(e), while the boundary curves and its control points in

Figure 4.17(f).

Example 4.6. Given the boundary control points set 3 of bicubic DP-Ball surface as
follows

doo = (1/2,0,0),d10 = (989/974,11/25,0),dpo = (—1225/974,8/25,0),

dzo = (—1/2,0,0), dn = (11/40,0,3/20),do; = (29/40,0,21/20),do3 = (1,0,1),
diz = (1659/817,32/25,1),dp3 = (—2055/817,11/25,1),d3; = (—11/40,0,3/20),
dzp = (—29/40,0,21/20),d33 = (—1,0,1).

The inner control points of bicubic DP-Ball surface by an extremal of the Dirichlet
condition are

di1 = (433/2569,1095/989,1199/1560),d1, = (531/1333,—154/195,1013/1560),
dr1 = (403/809,—1256/975,—925/601), and

dyp = (—905/1129,1095/989,788 /437).
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The graph of the above surface is in Figure 4.18(e), while the boundary curves and its

control points in Figure 4.18(f).

Example 4.7. Given the boundary control points set 4 of bicubic DP-Ball surface as
follows

doo = (—585/631,1378/483,0),d10 = (—1297/363,1763/1000,0),

dho = (—927/500,—1763/500,0), d3p = (585/631,—1378/483,0),

doy = (—631/1250,1553/1000,1/10),dp, = (—749/2500,923/1000,17/20),

doz = (—585/631,1378/483,1),d13 = (—2356,/493,834/835,1),

dy; = (834/835,-2356/493,1), d3; = (1121 /1555,—-2773/1250,1/20),

dsp = (292/2323,-242/625,4/5),d33 = (585/631,—1378/483,1).

The inner control points of bicubic DP-Ball surface by an extremal of the Dirichlet
condition are

di1 = (—196673/51756,—1219/4014,553/780),

dip = (2132/1895,1589/284,77/120),

dy; = (2281/575,1157/614,—2467/1560), and

dy = (—1229/499, —2058/293,707/390). The graph of the above surface is in Figure

4.19(e), while the boundary curves and its control points in Figure 4.19(f).
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Figure 4.16. Control points set 1 by Dirichlet condition on (a) Bézier patch (b) Bézier
boundary (c) Said/Wang-Ball patch (d) Said/Wang-Ball boundary (e) DP-Ball patch
(f) DP-Ball boundary.
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Figure 4.17. Control points set 2 by Dirichlet condition on (a) Bézier patch (b) Bézier
boundary (c) Said/Wang-Ball patch (d) Said/Wang-Ball boundary (e) DP-Ball patch
(f) DP-Ball boundary.

136



(e ®

Figure 4.18. Control points set 3 by Dirichlet condition on (a) Bézier patch (b) Bézier
boundary (c) Said/Wang-Ball patch (d) Said/Wang-Ball boundary (e¢) DP-Ball patch
(f) DP-Ball boundary.
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Figure 4.19. Control points set 4 by Dirichlet condition on (a) Bézier patch (b) Bézier
boundary (c) Said/Wang-Ball patch (d) Said/Wang-Ball boundary (e¢) DP-Ball patch
(f) DP-Ball boundary.
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The following comparison between Béizer surface, Said/Wang-Ball surface and DP-
Ball surface was made by using Dirichlet functional. All surface have the same four

boundary curves.

Table 4.5
Comparison between the area/computational time of Bézier, Said/Wang-Ball and DP-
Ball by using Dirichlet functional.

Control Points Bézier = Said/Wang-Ball DP-Ball
Area 18.757105 18.945053 18.945053
Setl - -omputational time  0.0959 0.090818 0.1113
Set 2 Area . 11.766806 11.809898 11.809898
Computational time ~ 0.0919 0.0914 0.10439
Set 3 Area 1.796075 1.806860 1.806860
Computational time  0.0932 0.0909 0.10575
Set 4 Area 13.668435 14.2352 14.2352
Computational time ~ 0.0950 0.0906 0.10307

From Table 4.5, the Dirichelet functional is applied to the bicubic patches of Said/Wang-
Ball surface and DP-Ball surface, and compared with the existing work for bicubic
patch of Bézier surface. It is discovered that the bicubic Bézier surface is better
than bicubic Said/Wang-Ball surface in terms of minimal surface area. The bicubic
Said/Wang-Ball surface is better than the bicubic Bézier surface in terms of the com-
putational time required to construct the surface by Dirichelet functional. On the other
hand, if we compare bicubic Bézier with bicubic DP-Ball by using Dirichelet func-
tional, we see that Bézier is better than DP-Ball in terms of minimal surface area but

vice verse for computational time.
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4.3 Summary

In this chapter, we have presented a more general algorithm for the polynomial solution
method of generating any surface used in CAGD based on the Euler-Lagrange equation
arises from the most quadratic functional by using the monommial matrix form. Also,
we derived a more generalized algorithm to find the Dirichlet functional for any surface

used in CAGD.
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CHAPTER FIVE
IMPLEMENTATION AND APPLICATIONS

In this chapter,we derived and discussed the sufficient condition for the positive preser-
vation of boundary curves for each edge of rectangular Said-Ball, DP-Ball and Wang-
Ball patches of odd degree-n. With the use of polynomial solution of fourth order
linear elliptic PDEs, these curves are defined on rectangular grid for the purpose of
enhancing the positivity preservation of the interpolating surface. We also apply the
polynomial solution of fourth order linear elliptic PDEs to image enlargement using

cubic Said-Ball, Wang-Ball and DP-Ball boundary curves with PDEs.

5.1 AnImproved Positivity Preserving Said-Ball, DP-Ball and Wang-Ball Curves

of Odd Degree-n

In this section, we will propose sufficient conditions for positivity preserving odd

degree-n boundary curves defined on rectangular grid.

5.1.1 Sufficient Condition for Positivity Preserving Odd Degree-» Said-Ball Curves
Propeosition 5.1. Consider the Said-Ball polynomial curve odd degree-n (n > 3),

n

r(x) =Y St(x)vi, (5.1)

i=0

where v; represents control points of Said-Ball and S} (x) are Said-Ball basis functions
of odd degree-n, for all 0 < x < 1. If vg,v, > 0, M = max(vo,vs), N = min(vo,vn)

n—1 n—1
andv; > —ty = ;—Ol,i #£ 0,1 £ n, such that sg in {%, %] is the unique solution

of G(s) = 1 with G(s) = L+ L, then r(x) > 0,Vx € [0,1].
(vos+1)n=T  (vys+1)n=T
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Proof. Let all Said-Ball ordinates of Said-Ball polynomial curve of odd degree-n ex-

cept of vy and vy, are equal to —¢ (¢ > 0). From (5.1) we get

n—1
r(x) = vp(1 —x)"_erl —t Z StH(x) —|—v,,x"2il. (5.2)

i=1
Recall that

n n—1
Y S = (1-0)F + Y st +x"F =1,
i=0 i

i=1

that is equivalent to

n—1
Y S =1—(1—x)"F —x7T. (5.3)
i=1
On applying (5.3) in (5.2), we obtain
1 nt1
r(x) = (o+1)(1—x) 2 +(vy+t)x 2 —t. (5.4)

Assume that ¢ is fixed. Then, the first and second derivatives of r with respect to x are

T = _ngrl("Oth)(l —xt e 2 e
and
r//(x) = %‘fn_l) ((v0+t)(1 —x)"%3 + (Vn-l—t)x#) _

On setting r/(x) = 0, this gives

2

(1—x)"7 _ (1) 1—x ((v,,+t))"—1
5 (v°+t)>x7'50, or ——= (ot 1) X #0.
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Thus, we obtain

2
n—1

(vo+1)
(Vo +1)7T + (vy+1)

X = 2 -
n—1

It follows that vg > 0 and v, > 0,0 < x < 1, implies that #/(x) > 0, then the minimum

2
A=1 .
(vo-+1) -, that is
(vo+2)n=T +(vp+t) 7T

value of r occurs when x =

(vo+1)(vat1)

Ymin(X) = —1. (5.5)

((v0+t)ﬁ + (v,,+t)n“—‘1>"_51

Observe that if ¢ = 0, 7, > 0. Now, we describe how to obtain the value of #5 > 0, to

ensure that r(x) preserved the positivity for all 0 < x < 1. We rewrite (5.5) to obtain

rm,-,,(x) = —1 L

2
( V 1 Vn 11 )

which equivalent to

Fmin(X) = ——1,1>0. (5.6)
2
L+ —1
CR+D)TT - (84+1)7T

The Said-Ball polynomial curve r(x) is positive for all x if 7y, > 0. Thus, the lower

bound of ¢ = #y occurs when r,,;,, = 0, and this can be achieved by setting the denomi-

nator of (5.6) equal to 1. Therefore,

1 1
+ =1. (5.7)

2 2
(R4+1)71  (E41)aT

Lets= },t # 0, and G(s) = L 1, then (5.7) becomes
(svo+1)n=T  (sv,+1)=-T

G(s)=1,5>0. (5.8)
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Since vg > 0 and v,, > 0, then sq is the solution of (5.8) and the value of 7 is equal to

+ where so > 0. Thus, r(x) >0, for all x € [0,1] if v; > —to = 3,i # 0,i # n, such

1 + 1

that sg is the unique solution of G(s) = 1 with G(s) = 5 .
(vos+1)n-1 (vas+1)m-T

n—1 n—1
We proved that there exists %_—1 <sp< % for G(S) = 1 where M = max(vg,vy)

and N = min(vg, v,). Since

£

/ 2
G(x):— X0 ol T on <0
n=1\ (svo+ 1)1 (sv,+1)n

—

and

oy 2 20D [ ()2 (vn)°
GOy ((sv0+1)% +(svn+1)nzTnl) ="

then G(s) is monotone decreasing and convex. Since lim;_,. G(s) = 0, G(0) = 2, and
by the monotonicity of G(s), then there exists s subject to G(s) = 1. Now we need to

determine the range of s.

If vo = v, = max(vg,vn) = M, then G(s) > — 2 Kfyvy=v,= min(vy,v,) = N,

(Ms+1)7=T
then G(s) < —2——. Since 2 and Z__ are also monotone decreasing
(Ns+1)n-1 (Ns+1)n-T (Ms+1)n-1
and convex, then there exists s1,s7 such that —22— =1 and —22— =1. On
(Ms;+1)7-T (Nsy+1)-1
n—1 n—1
solving for s and s, we obtain s = 2_2;1_1 and s, = 2_2;,_1. Thus, if G(s) = 1, then

51 < 5o < 7. Figure 5.1 shows the form of G(s),s > 0 with the relative location of

n—1 n—1
e o
s1=2 W l,sz———Z i 1ands——so. L
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Gfs)
A

"1 n—1
277 -1 S0 gy = 2Tl
S 2= N

& =

Figure 5.1. Function G(s) with s > 0 for odd degree-n Said-Ball polynomial curve.

5.1.2 Sufficient Condition for Positivity Preserving Odd Degree-n DP-Ball Curves
Proposition 5.2. Consider the DP-Ball polynomial curve of odd degree-n (n > 3),

n

r(x) =Y D}(x)d;, (5.9)

i=0

where d; is a DP-Ball control point and D} (x) is DP-Ball of odd degree-n, for all

0<x< 1 If do,dyp > 0,M = max(do,dn),N = min(do,dy) and d; > —to = 5 ,i #

0,i # n, such that sy in [2;1 , 2;,—_1] is the unique solution of G(s) = 1 with G(s) =

L+ L, then r(x) > 0,Vx € [0,1].
(dos+1)m=T  (dps+1)n-1

Proof. Let all DP-Ball ordinates of DP-Ball polynomial curve of odd degree-n, except‘

of dy and dy,, are equal to —¢ (¢ > 0). From (5.9) we get

n—1
r(x) =do(1—x)" —t Y D}(x)+dnx". (5.10)

i=1

Recall that
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ZD" =(1—x)"+ ZD” x)+x" =1, (5.11)

that is equivalent to
n—l
x)=1~-(1-x)"—x". (5.12)

l=1

Hence (5.10) becomes

r(x) = (do +1)(1 — )" + (dy + )" — 1. (5.13)

Assume that ¢ is fixed. Then, the first and second derivatives of r with respect to x are

r'(x) = —n(do+1)(1 —x)" " +n(dy+1)x" ",

and

() = n(n—1) ((do+1)(1 = x)" >+ (dn + 1)"?) .

On setting 7’'(x) = 0, this gives

-

(1—x)""1  (dn+1) 1—x (dn+1)
T T o) T O ((d0+t)> x7 0.

Thus, we obtain

(d()+l‘)"—lT
(do+ )71 + (dn+1)7

X =

It follows that dy > 0 and d,, > 0,0 < x < 1, implies that r/(x) > 0, then the minimum

1
n=T .
value of r occurs when x = (do+1)" —, that is

(d0+t)zl—f +(dp+1)n-1

(do+1t)(dn+1)

1 : —t. (5.14)
((do )7+ (d,,+z)ﬁ)

Ymin (x) = n—1

Observe that if t = 0, r,,;, > 0. Now, we describe how to obtain the value of ¢y > 0,
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to ensure that r(x) preserved the positivity for all 0 < x < 1. We rewrite (5.14) to obtain

Tmin(X) = —1,

n—1
( t 1 t 1 >
(d() )n (d" )"

which equivalent to

rmin(x): —t. (515)

n—1
1 1
+
((%0+1)n—1r (‘-‘,a+1)rlr>

The DP-Ball polynomial curve r(x) is positive for all x if 7, > 0. Thus, the lower
bound of ¢ = ¢y occurs when r,,;, = 0, and this can be achieved by setting the denomi-

nator of (5.15) equal to 1. Therefore,

(@+1)+1+ — =1 (5.16)

Lets:%,t;éo, and G(s) = - 1 then (5.16) becomes
(sdo+1)™T  (sdyt1)n=T

G(s)=1,5s > 0. (5.17)

Since dy > 0 and d,, > 0, then sg is the solution of (5.17) and the value of #; is equal to

é where so > 0. Thus, r(x) >0, forall x € [0,1] if d; > —19 = ;—Ol,i #0,i # n, such

1 1
1 + 1 -
(dos+1)n-T (dns+1)n-1

that s is the unique solution of G(s) = 1 with G(s) =

We proved that there exist 2"_1:[1 <s0 < 2"_1:,_1 for G(S) = 1 where M = max(dy, d,)

and N = min(dy,d,). Since

G (x) = —— d__,__di )
n—1\ (sdo+ 1)1 (sd,+1)n-1
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and

" n 2 2
G (x) = (n_ 1)2 (( (dO) + (dn) ) >0,

sdo+ 1)WT (sdp+1)77
then G(s) is monotone decreasing and convex. Since limg_,.. G(s) = 0, G(0) =2, and
by the monotonicity of G(s), then there exists s subject to G(s) = 1. Now we need to

determine the range of s.

If dy = d, = max(do,d,) = M, then G(s) > —2—. If dy = d, = min(dy,dy,) =N,

(Ms+1)n-T
then G(s) < —2 . Since 2 __ and Z__ are also monotone decreasing
(Ns+1)n=T (Ns+1)n=T (Ms+1)n=T
and convex, then there exists s1,s2 so that —Zr— —land —2— =1. On
. (Ms1+1)n=T . (Nsgg+1)n-T
solving for s; and s, we obtain s; = £ M_l and s, = Z"N—'l Thus, if G(s) = 1, then

s1 < sp < s2. Figure.5.2 shows the form of G(s),s > 0 with the relative location of

n—1_
,szzleands=s0. O

2n 1o
S1= "1

Gist
A

Figure 5.2. Function G(s) with s > 0 for odd degree-n DP-Ball polynomial curve.
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5.1.3 Sufficient Condition for Positivity Preserving Odd Degree-n Wang-Ball

Curves

Proposition 5.3. Consider the Wang-Ball curve of odd degree-n (n > 3)

n
r(x) =Y wiAl(x), 0<x<1, (5.18)
i=0

where w; represents control points of Wang-Ball and A% (x) are Wang-Ball basis func-
tions of odd degree-n. If wo,wn, > 0 and w; > —tg,1 <i <n—1, such that to > 0 is the

unique solution of

2 — wowy, = 0. (5.19)

It follows that r(x) > 0,Vx € (0, 1]. Proof. Let wy, w, > 0 and all Wang-Ball ordinates
of Wang-Ball polynomial curve of odd degree-n except of wo and wy, are equal to

—t,(t > 0). From (5.18) we get

n—1
r(x) =wo(l —x)>—1 ¥ AZ(x) + wnx”. (5.20)
i=1
Recall that (2.47)
n n-—1
Y AT(x)=(1-x)2+ Y AMx)+2> =1, (5.21)
i=0 i=1
that is equivalent to
n—1
Y Al =1-(1—-x)?-x. (5.22)
i=1

On applying (5.22)) in (5.20), we obtain

r(x) = (wo+1)(1 —x)* + (wp+1)x* —1. (5.23)

By taking the first order derivative with respect to x we have
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r(x) = —2(wo+1)(1 —x) + 2(wn +1)x. (5.24)
The value of r is minimum if 7/ (x) > 0 i.e

wo +1

= 5.25
o wo+ 2t +wy, ( )

By substituting equation (5.25) into equation (5.23), this gives the following expres-

sion:

; = —1. 5.26
Timin ) wo + 2 + wy, ! (5.26)

If t =0, then r,;, > 0. Next, we describe how the value of ¢ > 0 is obtained to make
sure that r(x) preserved the positivity for all 0 < x < 1. When r,,;, = 0, we have the

lower bound of ¢, given as

H(wp+1
(wot)(wntt) _ (5.27)
wo+2t+wy,
or by rewriting it, we have
12 —wow, = 0. (5.28)

Next, it is shown that there exists a real root 75 € (0, wg + wy,) of (5.28).

Let f(t) = t> — wowyp. Given that wg,wp,t > 0, then f(0) = —wow, < 0 and f(wp +
wn) = (wo +wp)% — wowy > 0. Tt follows that there exists 0 < 7o < (wg+w,), such that

f(to) = 0 where 1 is real root of (5.19). O

5.2 Sufficient Condition for Positivity Preserving Cubic Ball (Said-Ball, DP-Ball

and Wang-Ball Curves)

We derived a sufficient condition for positivity preserving boundary curves for a given
positive cubic Ball (Said-Ball, DP-Ball and Wang-Ball ) ordinates at vertices of rect-
angle R, i.e. bgg, b30,b03,b33 > 0. In order to ensure the positivity of boundary curves
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B(u,0), B(u,1), B(0,v) and B(1,v), we set byo,ba9 > —t1, b13,b23 > —12, bo1,bz >
—t3 and b3y,b3y > —14, Where t1,15,13,14 > 0 can be obtained from (5.30) for Said-
Ball, (5.31) for DP-Ball and (5.34) for Wang-Ball, with by = bgg,b3 = b3y along
edge ej; by = bg3,b3 = b33 along edge es; by = bgo, b3 = bo3 along edge e3; and by =
b3y, b3 = b33 along edge e4. Since Cy(u),Cp(u),C3(v) and C4(v) are the Ball polyno-
mial curve of degree-3, we can use the following Corollary 5.1 for Said-Ball, Corol-
lary 5.2 for DP-Ball and Corollary 5.3 for Wang-Ball to obtain the positivity preserving

conditions for each boundary curve.

5.2.1 Sufficient Condition for Positivity Preserving Cubic Said-Ball Curves

If we set n = 3 in Proposition 5.1, then we obtain the following corollary.

Corollary 5.1. Consider the cubic Said-Ball curve,
3
r(x) =Y 8} (x)vi, (5.29)
i=0

where v; are Said-Ball control points. If vo,v3 and vi > —tg,1 < i <2, then ty is a

unique solution of

2 —vgr3 = 0. (5.30)
() U3 U3 Uy Va(xi, 32) Vi(xa, y2)
pp (3P U2 s2
Vo1 vy Uy 223
L) L1 Tap U'an Vi(xy, ») Va(xa, )’1)
(a) (b)

Figure 5.3. (a) Bicubic Said-Ball control points (b) A unit rectangle.
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5.2.2 Sufficient Condition for Positivity Preserving Cubic DP-Ball Curves

If we set n = 3 in Proposition 5.2, then we obtain the following corollary.

Corollary 5.2. Consider the cubic DP-Ball curve,
3
r(x) = Y. D} (x)d;, (5.31)
i=0

where d; are DP-Ball control points. If dy,dz > 0 and dy,d, > —to, then ty is a unique

solution of

3t* — 4(dg + da)> + 6dodst* — dy’d3> = 0. (5.32)
dos dia da3 dys
Valx, ») Vi(xa, '}’2)
doz diz dzs 32
dog dyy dyy dyy
doo dso dzo 4 VL) Va(xa, 31)
(a) (b)

Figure 5.4. (a) Bicubic DP-Ball control points (b) A unit rectangle.

5.2.3 Sufficient Condition for Positivity Preserving Cubic Wang-Ball Curves

If we set n = 3 in Proposition 5.3, then we obtain the following corollary.

Corollary 5.3. Consider the cubic Wang-Ball curve,
3
r(x) = Z’A,3 (x)w;, (5.33)
i=0

where w; are Wang-Ball control points. If wy, w3 andwi,wy > —tg, then ty is a unique

solution of

2 —wowz = 0. (5.34)
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Figure 5.5. (a) Bicubic Wang-Ball control points (b) A unit rectangle.

5.3 Sufficient Condition for Positivity Preserving Quintic Ball (Said-Ball, DP-

Ball and Wang-Ball Curves)

Now, we proceed to determine the lower bound on the edges of Ball (Said-Ball, DP-
Ball and Wang-Ball) ordinates which ensure the positivity of boundary curves of degree-
5 rectangular Ball (Said-Ball, DP-Ball and Wang-Ball) patch S. We derived a sufficient
condition for positivity preserving boundary curves for a given positive quintic Ball or-
dinates at vertices of rectangle R, i.e. bgg, bsg, bos,bss > 0. In order to ensure the pos-
itivity of boundary curves B(u,0),B(u,1),B(0,v) and B(1,v), we set bjg > —11,b;5 >
—ty,bgj > —t3 and bs; > —t4 for 1 <i < 4,1 < j <4, where t1,12,13,t4 > 0 can be
obtained from (5.36) with by = bgp, b5 = bsg along edge e1; by = bgs,bs = bss along
edge ex; by = bgg, b5 = bys along edge es; and by = bsg, b3 = bss along edge e4. Since
Ci1(u),C2(u),C3(v) and Cy4(v) are the Ball (Said-Ball, DP-Ball and Wang-Ball) poly-
nomial curve of degree-5, we can use the following Corollary 5.4 for Said-Ball, Corol-
lary 5.5 for DP-Ball and Corollary 5.6 for Wang-Ball to obtain the positivity preserving

conditions for each boundary curve.
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5.3.1 Sufficient Condition for Positivity Preserving Quintic Said-Ball Curves

If we set n =5 in Proposition 5.1, then we obtain the following corollary.

Corollary 5.4. Consider the quintic Said-Ball curve,
5
r(x) =Y S} (x)vs (5.35)
i=0

where v; are Said-Ball control points. If vo,vs and v; > —t9,1 < i< 4, then ty is a

unique solution of

1242t/ (vo+1)(vs+1) —vovs = 0. (5.36)

5.3.2 Sufficient Condition for Positivity Preserving Quintic DP-Ball Curves

If set put n = 5 in Proposition 5.2, then we obtain the following corollary.

Corollary 5.5. Consider the quintic DP-Ball curve,
5
r(x) =Y D} (x)d;, (5.37)
i=0

where d; are DP-Ball control points. If dy,ds > 0 and d; > —tg,1 < i <4, thenty is a

unique solution of

Vds+1+ Y/ do+t —/ds+1/dy+1=0. (5.38)

5.3.3 Sufficient Condition for Positivity Preserving Quintic Wang-Ball Curves
If we set n = 5 in Proposition 5.3, then we obtain the following corollary.
Corollary 5.6. Consider the quintic Wang-Ball curve,

5
r(x) = Y A7 (x)w;, (5.39)

i=0
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where w; are Wang-Ball control points. If wo,ws > 0 and w; > —t9,1 <i < 4, then 1y

is a unique solution of

2 — wows = 0. (5.40)

5.4 Surface Interpolation Using Positivity Preserving Boundary Curves

By using similar approach of Monterde and Ugail (2006) , the first and second rows
(columns) of the coefficients in (4.2) can be obtained by using the boundary control
points of Ball (Said-Ball, DP-Ball and Wang-Ball) representation as in (2.23), (2.38),
and (2.54) for cubic case as described in Section 4.1.1.2 for Said-Ball, Section 4.1.3.1
for DP-Ball and Section 4.1.4.2 for Wang-Ball; while for quintic case as described
in Section 4.1.1.3 for Said-Ball, Section 4.1.3.2 for DP-Ball and Section 4.1.4.3 for
Wang-Ball. However, to visualize our proposed method, we have chosen two datasets

taken from well known test function as given in Section 4.1.5.

5.4.1 Graphical Examples

In this part, we obtained some graphical examples for positivity preserving by using

two test function.

5.4.1.1 Bicubic Patches

Since Corollary 5.1 and Corollary 5.3 yield the same results when rn = 3, then it is
sufficient to apply just one of the corollaries for the cubic case. Figure 5.6, Figure
5.7 and Figure 5.8 show the edges of the cubic Said/Wang-Ball control points in the
rectangular domain, the cubic Said/Wang-Ball boundary curves, and the interpolating
bicubic Said/Wang-Ball surface, respectively for both functions f(x,y) and g(x,y).
Corollary 5.1 was used to generate the results, however, the DP-Ball for the function

g(x,y) displayed in Figure 5.9 is generated using Corollary 5.2.
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Table 5.1 displays a comparison of the interpolating surfaces between bicubic Bézier,
bicubic Said/Wang-Ball and bicubic DP-Ball boundary curves for the test function
g(x,y), while Table 5.2 displays a comparison of the interpolating surfaces between

bicubic Bézier and bicubic Said/Wang-Ball boundary curves for the test function f(x,y).

(a) (b)

Figure 5.6. Edges Said/Wang-Ball control points for all rectangles (a) Test function
f(x,y) (b) Test function g(x,y).

(a) (b)

Figure 5.7. Boundary curves Said/Wang-Ball for all rectangles (a) Test function 1,
f(x,y) (b) Test function 2, g(x,y).

(a) (b)

Figure 5.8. Interpolating Said/Wang-Ball surface boundary curves (a) Test function 1,
f(x,y) (b) Test function 2, g(x,y).
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(a) (b)

Figure 5.9. Test function g(x,y) (a) Edges DP-Ball control points for all rectangles (b)
Interpolating DP-Ball surface boundary curves.

Table 5.1
Comparison of the interpolating surfaces between bicubic Bézier, bicubic Said/Wang-
Ball and bicubic DP-Ball boundary curves for the test function g(x,y).

Surface Number of Number of points below  Minimum value
evaluation points XY -plane and percentage of function
Bézier 1681 47 -0.00047154
2.796 %

Said/Wang-Ball 1681 13 -0.0001312
0.77335 %

DP-Ball 1712 74 -0.00111
4.32243%

As demonstrated in Table 4.1 and Table 5.1, the number of points below the XY -plane
for all the surfaces decreased after the positivity preserving by using test function
g(x,y). Specifically, the number of points below XY -plane for the bicubic Bézier,
bicubic Said/Wang-Ball, and bicubic DP-Ball surfaces had decreased from 291, 231,
and 1097 points (see Table 4.1) to 47, 13, and 74 points (Table 5.1), respectively. As
in Table 5.1, the bicubic Said/Wang-Ball surface produced the best result because it
had the smallest number of points below the XY -plane, followed by the bicubic Bézier
surface, and lastly the bicubic DP-Ball surface.
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Table 5.2
Comparison of the interpolating surfaces between bicubic Bézier and bicubic
Said/Wang-Ball boundary curves for the test function f(x,y).

Surface Number of Number of points below  Minimum value
evaluation points XY -plane and percentage of function
Bézier 3321 58 -0.005651
1.7465 %
Said/Wang-Ball 3321 47 -0.0044644
1.4152 %

As demonstrated in Table 4.3 and Table 5.2 , the number of points below the XY -plane
for all the surfaces decreased after the positivity preserving by using test func-
tion f(x,y). Specifically, the number of points below XY -plane for the bicubic Bézier
and bicubic Said/Wang-Ball surfaces had decreased from 1134 and 1118 points (see
Table 4.3) to 58 and 47 points, (Table 5.2) respectively. As in Table 5.2, the bicubic
Said/Wang-Ball surface produced better result compared to bicubic Bézier surface be-
cause the former had smaller number of points below the XY -plane, compared to the

latter.

5.4.1.2 Biquintic Pathes

Figure 5.10, Figure 5.11 and Figure 5.12 show the edges of the biquintic Said-Ball
control points in the rectangular domain, the biquintic Said-Ball boundary curves, and
the interpolating biquintic Said-Ball surface, respectively for both functions f(x,y)
and g(x,y). Corollary 5.4 was used to generate the results, however, the biquintic
DP-Ball for the function g(x,y) displayed in Figure 5.13 is generated using Corollary
5.5. Finally, in Figure 5.14, Figure 5.15 and Figure 5.16, Corollary 5.6 was used to
show the edges of the biquintic Wang-Ball control points in the rectangular domain,
the biquintic Wang-Ball boundary curves, and the interpolating biquintic Wang-Ball

surface, respectively for both functions f(x,y) and g(x,y).
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Table 5.3 displays a comparison of the interpolating surfaces between biquintic Bézier,
biquintic Said-Ball, biquintic Wang-Ball and biquintic DP-Ball boundary curves for
the test function g(x,y), while Table 5.4 displays a comparison of the interpolating sur-
faces between biquintic Bézier, biquintic Said-Ball and biquintic Wang-Ball boundary

curves for the test function f(x,y).

Figure 5.10. Biquintic edges Said-Ball control points for all rectangles (a) Test func-
tion f(x,y) (b) Test function g(x,y).

(a) (b)

Figure 5.11. Biquintic boundary curves Said-Ball for all rectangles (a) Test function 1,
f(x,y) (b) Test function 2, g(x,y).

() (b)

Figure 5.12. Interpolating biquintic Said-Ball surface boundary curves (a) Test func-
tion 1, f(x,y) (b) Test function 2, g(x,y).
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(a) (b)

Figure 5.13. Test function g(x,y) (a) Biquintic edges DP-Ball control points for all
rectangles (b) Interpolating biquintic DP-Ball surface boundary curves.

(a) (b)

Figure 5.14. Biquintic edges Wang-Ball control points for all rectangles (a) Test func-
tion f(x,y) (b) Test function g(x,y).

() (b)

Figure 5.15. Biquintic boundary curves Wang-Ball for all rectangles (a) Test function
1, f(x,y) (b) Test function 2, g(x,y).

160



(a) (b)

Figure 5.16. Interpolating biquintic Wang-Ball surface boundary curves (a) Test func-
tion 1, f(x,y) (b) Test function 2, g(x,y).

Table 5.3
Comparison of the interpolating surfaces between biquintic Bézier, biquintic Said-
Ball, biquintic Wang-Ball and biquintic DP-Ball boundary curves for the test function

g(x,y).

Surface Number of Number of points below  Minimum value
evaluation points XY -plane and percentage of function
Bézier 1681 39 -0.0051633
232 %
Said-Ball 1681 0 2.3109e-05
0.0 %
Wang-Ball 1681 0 3e-05
0.0 %
DP-Ball 1681 27 -0.0027001
1.6062%

As demonstrated in Table 4.2 and Table 5.3, the number of points below the XY -plane
for all the surfaces decreased after the positivity preserving by using test function
g(x,y). Specifically, the number of points below XY -plane for the biquintic Bézier,
biquintic Said-Ball, biquintic Wang-Ball, and biquintic DP-Ball surfaces had decreased
from 291, 246, 151 and 312 points (see Table 4.2) to 39, 0, 0 and 27 points (Table 5.3),
respectively. As in Table 5.3, both biquintic Said-Ball and biquintic Wang-Ball sur-
faces produced the best result, followed by the biquintic DP-Ball surface, and lastly

the biquintic Bézier surface.
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Table 5.4
Comparison of the interpolating surfaces between biquintic Bézier, biquintic Said-
Ball, biquintic Wang-Ball and biquintic DP-Ball boundary curves for the test function

f(x).

Surface Number of Number of points below  Minimum value
evaluation points XY -plane and percentage of function

Bézier 3335 124 -0.022241
3.7181 %

Said-Ball 3321 104 -0.02221
3.1316 %

Wang-Ball 3323 77 -0.014228
23172 %

As demonstrated in Table 4.4 and Table 5.4 , the number of points below the XY -
plane for all the surfaces decreased after the positivity preserving by using test function
f(x,y). Specifically, the number of points below XY -plane for the biquintic Bézier,
biquintic Said-Ball and biquintic Wang-Ball surfaces had decreased from 1134, 1147
and 1136 points (see Table 4.4) to 124, 104, and 77 points (Table 5.4), respectively. As
in Table 5.4, the biquintic Wang-Ball surface produced the best result, followed by the

biquintic Said-Ball surface, and lastly the biquintic Bézier surface.

5.5 Image Enlargement Using Cubic Said-Ball, Wang-Ball and DP-Ball Bound-

ary Curves with PDEs

5.5.1 Introduction

In computer graphics design, the process of resizing a digital image is known as im-
age scaling. which involves a trade-off between smoothness, sharpness and efficiency
(Kim, Seong & Lee, 2003). With bitmap graphics, when the size of an image is re-
duced or enlarged, the pixels that form the image become increasingly visible, making

the image appear to be smooth if pixels are averaged, or jagged if not.
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With vector graphic, the trade-off may be in processing power for re-rendering the
image, which may be noticeable as slow re-rendering with still graphics, or slower

frame rate and frame skipping in computer animation.

There are a number of techniques one might use to handle the problems of enlarging
and reducing an input image especially by using interpolation methods such as nearest
neighbor interpolation, bilinear interpolation, bicubic and B-spline interpolation (Han,

2013).

For example, to enlarge an image by a factor 2, the simplest method is to replicate each
pixel 4 times and this will lead to more pronounced jagged edges than appeared in the

original image.

The similar case applies for reducing an image by an integer divisor of the width by
simply keeping every n” pixel, and aliasing of high frequency components in the orig-

inal will occur.

The more general case of changing the size of an image by an arbitrary amount requires

interpolation of the colour informations between pixels.

Resizing an image through upsampling or downsampling is generally common for
making smaller imagery fit a bigger screen in fullscreen mode or reducing a higher
resolution image to a smaller resolution. For example, in zooming a bitmap image,
it is difficult to discover any more information in the image than already exists, and
this will effect its quality. Due to some limitation of computer facilities for a faster
runtimes, we will focus on image enlargement with our proposed method based on the

scaling factor of 2.
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5.5.2 Image Scaling Concept

Let the input of an image is given by m X n pixels; (x,y) and (X,y) are the arbitrary
input and output pixels, respectively. If the input pixels are resized by a factor of s,
and s,, respectively at point (1,1), then the new output of 2m by 2n pixels will be

obtained by the following transformation

. —1 mgl—s,!

o I = el (5.41)
) nso—1 n(l-s) | '
IR IREE

As an example , we use m = n = 2 and scaling factor s, = 5, = 2 as shown in Figure
5.17, where the scaling up 2 x 2 pixels input image by a factor 2 resulting an ouput of
4 x 4 pixels image. Note that, the input pixels with coresponding preserved intensity
of output pixels are labeled by cirles and the remaining missing information in output

pixels are labeled by a square.

4 »
(1) (X} 3.4 4.4
e " "
I @d
a2 @y P @3 J
n- L ]
(42) 2.2 (33 @,
¢ N =
(D @0 @ @ 6.1 “wh
(a) (b)

Figure 5.17. (a) 2 by 2 Input pixels (b) 4 by 4 output pixels of by scaling factor 2 of
input pixel.

Pixels (1, 1), (4,1), (1, 4) and (4,4) in the output pixels will preserve the information of

the input pixels while the remaining pixels intensity are to be filled.
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Transformation of pixels from the input window to the output window can be done
using (5.41). In order to find the missing pixels information of the output, these points
should be transform to the pixels in the original input pixels by using the inverse trans-
form of (5.41). Thus the points (2,1), (3,1), (1,2), (2,2), (3,2), (4,2), (1,3), (2,3), (3,3),
(4,3), (2, 4) and (3,4) of the output window can be represented as (4/3, 1), (5/3, 1),
(1,4/3), (4/3,4/3), (5/3, 4/3), (2,4/3), (1, 5/3), (4/3,5/3), (5/3,5/3), (2, 5/3) and (5/3,2)
in the input window, respectively, and these points should be interpolated by using a

suitable interpolation techniques to obtain the respective intensities of output pixels.

5.5.3 Image Interpolation using Rectangular Patches

Given an m x n pixels of grayscale input image represented by a (m — 1) x (n—1)
rectangular patches and being scaled up by a factor of & and f using (5.41), resulting
an output image of am by Bn pixels of higher resolution represented by (am — 1) x
(Bn—1) rectangular patches. Let (x;,y;),i =1,2,...m, j =1,2,...,n represent the input
pixels and z;;  (0-255) be its corresponding gray-scale intensity. Our aim is to find the
function z = F(x,y) which interpolates the given input pixels (vertices of rectangular

patches), that is F (x;,y;) = zj.

For the purpose of this application , we consider the use of the polynomial solution
of the fourth order PDEs, subject to a given four lines boundary conditions from
Said-Ball, DP-Ball and Wang-Ball boundary curves of degree 3 as discussed in Sec-

tion 4.1.1.2, Section 4.1.3.1 and Section 4.1.4.2, respectively.

We used our rectangulation algorithm to rectangulate the input pixels (x;,y;). In order
to contruct an interpolation function on each rectangle, beside the intensity values, we
also need to estimate the partial derivative at a given input grid by using the method

discuss in Section 2.7.
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5.5.4 Experimental Result

In this simulation result, we use nine test grayscale images such as Lena (512 x 512),
Rice (640 x 640), Cameraman (256 x 256), Nuvola (448 x 448), Pout (480 x 480),
Tyre (460 x 460) , Monkey Face (512 x 512), Pepper (600 x 600) and Thumb Print
(250 x 250) as shown in Figure 5.18. To evaluate the performance of our proposed
method, a test image was zoom out to half of its original size by using the simple im-
age interpolation in Matlab (bicubic convolution method), and this image will be scaled
up by factor of two to get an original size. We calculate the Peak Signal-to-Noise Ratio
(PSNR) for the scaled image based on the original image. The value of PSNR will re-
flect the quality of image, i.e the larger PSNR means that the higher quality of an image
(Han, 2013).We also compare our method with an existing nearest neighbor method,
existing bilinear method and an existing bicubic method of Matlab Image Processing

toolbox.
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nuvola tools

Figure 5.18. (a) Rice (b) Cameraman (c) Nuvola (d)Pout (e) Tyre (f) Lena (g)
Monkey Face (h) Pepper (i) Thumb.

Now, we apply our proposed method to each figure and we compared the PSNR with
the image generated by Bézier, Said/Wang-Ball and DP-Ball as follows.Results are

shown in Figure 5.19 - Figure 5.27.
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(b) (c)

Figure 5.19. Result using our proposed method for Rice test image (a) Input image
(b) Image without interpolation (c) Image with proposed method.

Table 5.5
Comparison between Said/Wang-Ball and DP-Ball by using PSNR for Rice test image.
Method PSNR
Proposed Said/Wang-Ball 39.39
DP-Ball 39.55
Nearest neighbor 36.80
Bilinear 40.52
Bicubic 43.60

168



(b) ©

Figure 5.20. Result using our proposed method for Cameraman test image (a) Input
image (b) Image without interpolation (c) Image with proposed method.

Table 5.6
Comparison between Said/Wang-Ball and DP-Ball by using PSNR for Cameraman test

image.

Method : PSNR
Proposed Said/Wang-Ball 40.47

DP-Ball 40.38
Nearest neighbor 40.38
Bilinear 39.91
Bicubic 40.32
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Figure 5.21. Result using our proposed method for Nuvola test image (a) Input image
(b) Image without interpolation (c) Image with proposed method.

Table 5.7
Comparison between Said/Wang-Ball and DP-Ball by using PSNR for Nuvola test im-
age.

Method PSNR
Proposed Said/Wang-Ball 37.17

DP-Ball 37.22
Nearest neighbor 36.57
Bilinear 38.11
Bicubic 38.11

170



(b) (©)

Figure 5.22. Result using our proposed method for Pout test image (a) Input image
(b) Image without interpolation (c) Image with proposed method.

Table 5.8
Comparison between Said/Wang-Ball and DP-Ball by using PSNR for Pout test image.
Method PSNR
Proposed Said/Wang-Ball 49.65
DP-Ball 49.63
Nearest neighbor 46.99
Bilinear 50.48

Bicubic 52.73
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(b) ()

Figure 5.23. Result using our proposed method for Tyre test image (a) Input image
(b) Image without interpolation (c) Image with proposed method.

Table 5.9
Comparison between Said/Wang-Ball and DP-Ball by using PSNR for Tyre test image.

Method PSNR
Said/Wang-Ball 40.84

Proposed ——r b Ral  41.00
Nearest neighbor 39.33
Bilinear 43.30
Bicubic 46.59
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(b) (©

Figure 5.24. Result using our proposed method for Lena test image (a) Input image
(b) Image without interpolation (c) Image with proposed method.

Table 5.10
Comparison between Said/Wang-Ball and DP-Ball by using PSNR for Lena test image.

Method PSNR
Said/Wang-Ball 37.23

Proposed ——55 B 37.24
Nearest neighbor 36.65
Bilinear 37.08
Bicubic 38.14
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(b) ()

Figure 5.25. Result using our proposed method for Monkey test image (a) Input image
(b) Image without interpolation (c) Image with proposed method.

Table 5.11
Comparison between Said/Wang-Ball and DP-Ball by using PSNR for Monkey test
image.

Method PSNR
Proposed Said/Wang-Ball 37.33

DP-Ball 37.12
Nearest neighbor 36.89
Bilinear 36.81
Bicubic 40.18
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(b) (©

Figure 5.26. Result using our proposed method for Pepper test image (a) Input image
(b) Image without interpolation (c) Image with proposed method.

Table 5.12
Comparison between Said/Wang-Ball and DP-Ball by using PSNR for Pepper test im-
age.

Method PSNR
Proposed Said/Wang-Ball 39.10

DP-Ball 39.17
Nearest neighbor 38.25
Bilinear 42.36
Bicubic 45.46
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(b) (©)

Figure 5.27. Result using our proposed method for Thumb test image (a) Input image
(b) Image without interpolation (c) Image with proposed method.

Table 5.13
Comparison between Said/Wang-Ball and DP-Ball by using PSNR for Thumb test im-
age.

Method PSNR
Proposed Said/Wang-Ball 36.17

DP-Ball 36.16
Nearest neighbor 36.38
Bilinear 35.29
Bicubic 36.08
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The following observations can be obtained from Figure 5.28. For small size im-
ages such as Cameraman (256 x 256) and Thumb (250 x 250) , our proposed method
outperformed the bicubic and bilinear methods, but almost comparable to the nearest
neighbor method. Furthermore, for large size images such as Rice (640 x 640), Pout
(480 x 480), Tyre (460 x 460), Lena (512 x 512), Monkey (512 x 512) and Pepper
(600 x 600), the bicubic method gives the best quality of these images because the
value of PSNR given by bicubic method is the highest for each example; followed
by the bilinear method, then our proposed method and finally the nearest neighbor
method. There is an exception for Nuvola (448 x 448) where the best result came
from the bicubic method, followed by our proposed method, then bilinear method,
and lastly the nearest neighbor. This is simply because of the estimate of the gradient
out pixel. Therefore, there is a need to consider the development of another suitable

algorithm for the estimation of the gradient out pixel in the future.

5.5.5 Summary

In this chapter, we have proposed the sufficient conditions for positivity preserving
odd degree-n generalized Ball (Said-Ball, DP-Ball and Wang-Ball) boundary curves
defined on rectangular grid using a polynomial solution of fourth order linear PDEs in
order to improve the positivity preserving of the interpolating surface. We described
the sufficient condition on boundary curves for each edges of degree m x n rectangular
Ball patches, where the lower bound of edge generalized Ball ordinates are adjusted
independently. Implementations on the well-known test functions using cubic and
quintic Ball boundary curves showed that our proposed method are well performed in
terms of preserving the positivity of the boundary curves and improved the positivity
preserving of overall interpolating surfaces. However, we have proposed to enlarge an

image by a factor 2 using the polynomial solution of fourth order linear PDEs.
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CHAPTER SIX
CONCLUSION AND FUTURE RESEARCH

6.1 Conclusion

In this thesis, a method for generating Ball surfaces with respect to the boundary infor-
mation based on a general fourth order PDE is presented. We also presented the gener-
alized Ball (Said-Ball, DP-Ball and Wang-Ball) polynomial solutions for the Laplace
and the standard biharmonic equation. The generalized Ball solutions associated with
the most general quadratic functional were studied and we took interest in using the
monomial matrix form to present a general solution method for generating generalized
Ball surfaces based on the Euler-Lagrange equation which arises from the most general

quadratic functional.

One of the main challenges associated with computer aided geometric design is to
generate a surface with prescribed boundaries. A variety of surface generation methods
can be found in existing literature, but these methods depends on the chosen conditions
that such a surface must satisfy. One of such conditions that the surface must satisfy,
is related to the minimization of the area of the resulting surface. This minimization
is in relation with the highly nonlinear area functional and also the Laplace operator
(an intrinsic operator which is quite challenging to work with) of the surface defined
by its Euler—Lagrange equation. For this reasons, some of the techniques related to
the minimization of the area adopt the use of the harmonic functional instead. This
is because the Laplace operator is constrained to the parameterisation of the surface
and it also presents a less complicated approach for computing good approximations

unlike the Laplace—Beltrami operator.

Due to the presence of high nonlinearity of the area functional, it is quite difficult

to apply the area functional. With respect to an argument in the theory of minimal
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surfaces, the Dirichlet functional is substituted in place of the area functional so that

the extremals can be computed easily as the solutions of linear systems.

We have used the monomial matrix approach to present a generalized way of getting
approximations to the minimal surfaces, having prescribed boundary curves by the use
of a mask. Computing the Dirichlet extremals is another approach for finding these
approximations but this comes at a price which is the computational cost. Though the
two methods are from the resolution of a system of linear equations of the same size,
but when we use the masks, the matrix of the coefficients becomes a sparse matrix,

while in the case of the Dirichlet, the matrix of the coefficients is a non-zero matrix.

For generalized Ball surfaces, we have two methods that involve the Laplace operator,
that are the minimization of the associated functional which is known as the harmonic
functional, and the application of masks for the discretization of the Laplace opera-
tor. Another problem associated with the Laplace operator is how to determine the
harmonic generalized Ball surfaces. We can show that the harmonic generalized Ball
surface is determined solely by the first and last rows (columns) of control points, un-
like the biharmonic case, where the generation of a surface is fully determined by all

of its boundary control points.

In order to make comparison among the results of the different methods with respect to
computational time and surface area for the surface with same boundaries (two oppo-
site boundaries for harmonic and all boundaries for biharmonic), we adopted a natural
and quite simple model problem throughout this thesis. We also used a collection of
other problems which involves a variety of different boundary configurations to make

comparison of the different methods with the existing method in literature for Bézier.
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For the Dirichlet approach, we hereby propose a new mask though we have compared
between the results from Bézier masks and that of the Dirichlet extremals for differ-
ent configurations of the boundary conditions. We cannot conclusively say there is
a better option, but from the examples conducted and from theoretical arguments, it
was noted that when the first fundamental form of the generalized Ball surface at the
corners (at these points, this form depends only on the boundary conditions) is close
to being isothermal, then we have a better approximation with the Dirichlet extremal
in comparison to the results obtained by using the masks. However, if the first funda-
mental form of the generalized Ball surface at the corners is far from being isothermal,
then we have a better approximation when using the masks in comparison to the results

obtained by the Dirichlet extremal.

The extremals of the Dirichlet functional are another approach for obtaining (without
integrating) an approximation of the surface minimizing area. So, if we want to obtain
a better approximation, we can use the extremals of the Dirichlet functionals as the
starting point for recursive algorithms that optimize the area functional. As shown in
this research work, we can note that the biharmonic operator is not an intrinsic operator.
However, the solutions computed can be seen as approximations to the true solutions
of the bilaplace—Beltrami operator because of the fact that the Laplace—Beltrami oper-
ator reduces to the Laplace operator when the parameterization is isothermal, and the

bilaplace—Beltrami operator also reduces to the biharmonic operator.

One vital observation that is worth noting from this thesis is that some of the existing
methods in literature for boundary based surface design, such as Bloor—Wilson PDE
method, Coons patches, Ugail and Montede method are the peculiar cases of the gen-
eralized framework presented in this thesis. We also applied a polynomial solution of
fourth order linear PDEs in image enlargement using cubic Ball boundary curves in

this research.
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This thesis has also proposed the sufficient conditions for positivity preserving odd
degree-n generalized Ball boundary curves defined on rectangular grid using a polyno-
mial solution of fourth order linear PDEs in order to improve the positivity preserving

of the interpolating surface.

Two new masks are also proposed in relation to harmonic and biharmonic for finding
the inner control points, and also an improvement of the Dirichlet method (without
going into an iterative method) with better accuracy than the previous existing method

for Bézier, but which will now come at a quite high computational cost.

6.2 Future Research

There are areas for future research associated to this work. For instance, the detailed
study of how the various coefficients associated with a chosen fourth order PDE af-
fect the shape of the generated surface can be investigated. Also, from our previous
findings, we showed that the associated coefficients can be applied to remove the re-
striction on the (,v) parameter domain being a square [0,1]?, and for that reason,
surfaces with complicated boundary formulations can be generated easily. Whenever
the parametric domain is restricted to the square [0, 1]2, for the PDE used which has
a non-intrinsic functional associated with it, we are usually faced with this particular
case. For this reason, it would be a great area of interest to investigate the shapes of
the surfaces generated by various fourth order PDEs. The aim of this is to develop a
surface classification system that would aid in the development of intuitive tools for
generating generalized Ball surfaces with respect to boundary information. The gen-
eralized algorithm of Said-Ball, DP-Ball and Wang-Ball surfaces could be extended
to NB1, NB2, Dejdumrong surfaces and three dimensional Minkowski space in future
research, which generate any surfaces based on eighth order PDEs using monomial

matrix form.
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