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Abstrak 

Sejak dua dekad lalu, pemodelan geometri menggunakan pendekatan persarnaan pem- 
bezaan separa (PPS) telah dikaji secara meluas dalam Rekabentuk Geometri Bantuan 
Komputer (RGBK). Pendekatan ini pada mulanya diperkenalkan oleh beberapa orang 
penyelidik berdasarkan kepada permukaan BCzier yang berkaitan dengan luas permu- 
kaan minimum ditentukan oleh lengkung sempadan yang ditetapkan. Walau bagaima- 
napun, perwakilan permukaan BCzier boleh diperbaiki dari segi masa pengiraan clan 
luas permukaan minimum dengan menggunakan perwakilan permukaan Ball. Sehu- 
bungan itu, kajian ini membangunkan satu algoritma untuk mengitlak permukaan Ball 
dari lengkung sempadan menggunakan PPS eliptik. Dua permukaan Ball khusus iaitu 
hannonik dan dwiharmonik pertarnanya dibina dalam membangunkan algoritma yang 
dicadangkan. Permukaan terdahulu dan kemudian masing-masing memerlukan dua 
d m  empat syarat sempadan. Bagi mengitlak permukaan Ball dalam penyelesaian poli- 
nomial untuk sebarang PPS peringkat empat, kaedah Dirichlet digunakan. Keputusan 
berangka diperolehi keatas contoh titik data yang diketahui umum menunjukkan algo- 
ritma perrnukaan Ball teritlak yang dicadangkan mempamerkan keputusan lebih baik 
daripada perwakilan permukaan BCzier dari segi masa pengiraan dan luas permukaan 
minimum. Tambahan pula, algoritma yang baharu dibina juga memenuhi sebarang per- 
mukaan dalam RGBK termasuk permukaan BCzier. Algoritma ini kemudiannya diuji 
dalarn permasalahan pengekalan kepositifan permukaan d m  pembesaran imej. Kepu- 
tusan menunjukkan algoritma yang dicadangkan adalah setanding dengan kaedah yang 
sedia ada dari segi kejituan. Justeru, algoritrna ini adalah satu alternatif berdaya maju 
untuk membina permukaan Ball teritlak. Dapatan daripada kajian ini menyurnbang 
kearah bidang pengetahuan untuk pembinaan semula permukaan berdasarkan pende- 
katan PPS dalam bidang pemodelan geometri dan grafik komputer. 

Kata kunci: Permukaan Ball, Persamaan pembezaan separa, Kaedah Dirichlet, Pe- 
ngekalan kepositifan, Pembesaran imej. 



Abstract 

Over two decades ago, geometric modelling using partial differential equations (PDEs) 
approach was widely studied in Computer Aided Geometric Design (CAGD). This 
approach was initially introduced by some researchers to deal with Bkzier surface re- 
lated to the minimal surface area determined by prescribed boundary curves. However, 
BCzier surface representation can be improved in terms of computation time and min- 
imal surface area by employing Ball surface representation. Thus, this research devel- 
ops an algorithm to generalise Ball surfaces from boundary curves using elliptic PDEs. 
Two specific Ball surfaces, namely harmonic and biharmonic, are first constructed in 
developing the proposed algorithm. The former and later surfaces require two and 
four boundary conditions respectively. In order to generalise Ball surfaces in the poly- 
nomial solution of any fourth order PDEs, the Dirichlet method is then employed. 
The numerical results obtained on well-known example of data points show that the 
proposed generalised Ball surfaces algorithm performs better than BCzier surface rep- 
resentation in terms of computation time and minimal surface area. Moreover, the 
new constructed algorithm also holds for any surfaces in CAGD including the Bezier 
surface. This algorithm is then tested in positivity preserving of surface and image en- 
largement problems. The results show that the proposed algorithm is comparable with 
the existing methods in terms of accuracy. Hence, this new algorithm is a viable alter- 
native for constructing generalized Ball surfaces. The findings of this study contribute 
towards the body of knowledge for surface reconstruction based on PDEs approach in 
the area of geometric modelling and computer graphics. 

Keywords: Ball surface, Partial differential equation, Dirichlet method, Positivity pre- 
serving, Image enlargement. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Research Background 

Partial differential equations (PDEs) is a large subject with a history that goes back to 

Newton and Leibnitz. Many mathematical models involve functions which have the 

property that the value at a point depends on its value in a neighborhood. Dependencies 

like these can be modeled with a PDE. Famous examples are Newton's second law, 

Laplaces equation, Schrodinger's equation and Einstein's equations. 

Geometric modeling using PDEs have been widely studied in computer graphics for 

over two decades and was first introduced in blend surface generation by Arnal, Mon- 

terde and Ugail(201 I), Du and Qin (2004), Monterde (2004), Zhang and You (2004). 

Advantages of the PDE methods have been gradually recognized by researchers. A 

principle advantage comes from the ability that the differential operator of PDEs can 

ensure the generation of smooth surfaces, where the smoothness is strictly governed 

by the order of the PDE used. A second advantage of using the PDE method is that 

the PDE surface can be generated by intuitively manipulating a relative small set of 

boundary curves. Moreover, the behavior of PDE surfaces has been proven to be com- 

patible with underlying tensor product surfaces, such as BCzier surface (Monterde & 

Ugail, 2006), B-spline (Bloor & Wilson, 1990) and etc. These advantages have con- 

tributed to the widespread adoption of the PDE methods in a wide range of disciplines, 

such as free-form surface design, solid modeling computer aided manufacturing, shape 

morphing, web visualization, mesh reconstruct and facial geometry parameterization 

(Sheng, Sourin, Castro & Ugail, 2010). 



Modeling a B-spline, BCzier or Ball surface at high degree is expensive in terms of 

computational time due to an excessive number of control points. To significantly 

solve this problem, a new method that can reduce computational time while retaining 

a highly accurate result will be used instead of all control points of B-spline, BCzier or 

Ball representations. Therefore the concept of PDE techniques plays a key role in this 

study. 

Ball basis was presented by cubic polynomials over a fine interval. The work of Said 

(1989) was extended to a polynomial of arbitrary high odd degree and then used Her- 

mite two-point Taylor interpolation theory to generalize the cubic basis functions of 

the Ball. Hence, the generalization enables higher order curves and surfaces to be 

defined and also develop a recursive algorithm for efficient computation of the gener- 

alized curves and surfaces Said (1989) . For the sake of convenience, Hu, Wang and 

Jin (1996) suggested that the Said-Ball basis should be of arbitrary even degree. Wang 

(1986) also extended the Ball basis to arbitrary high degree. In 2003, Delgado and 

Pefia (2003) introduced a new parametric curve representation of which the properties 

are normalized totally positive (NTP) basis functions, comer cutting algorithm and lin- 

ear computational complexity. Previously, it was called DP-Ball curve (Dejdumrong, 

2006; Jiang & Wang, 2005) though it has no relation with any of the generalized Ball 

curves (Itsariyawanich & Dejdumrong, 2008). 

There are many properties of Ball curve and its generalized Said-Ball, DP-Ball and 

Wang-Ball curves such as positivity, partition of unity, convex hull property, recursive 

relation, degree elevation, degree reduction, and etc (Goodman & Said 1991; Hu,Wang 

& Sun, 1998; Hu et al., 1996; Said, 1989). 



1.2 Problem Statement 

The main point of this work is to show that the harmonic, biharmonic and Dirichlet 

BCzier surfaces are related to minimal surface, that is, a surface that minimizes the 

area among all surfaces with the prescribed boundary data. In the harmonic case, two 

boundary conditions are required to construct the surface, while in the biharmonic case, 

four boundary conditions are required to satisfy the fourth order elliptic PDE. 

In this research, the focus will be on the construction of a generalized Ball surface 

representation using elliptic PDEs from the boundary curves information because to 

the best of our knowledge, this representation has not been investigated yet, although 

the Ball surface also play an important role in the surface modeling which is similar to 

the BCzier representation. The linear elliptic PDEs are chosen for the proposed method 

due to the fact that this type of PDEs have been widely used in many areas of sciences 

(Monterde and Ugail, 2006; Arnal et al., 201 1). 

1.3 Research Questions 

1. Does the concept of PDE techniques play a key role in the generalized Ball 

surfaces? 

2. What is the lowest expense in terms of computational time due to an excessive 

number of control points for B-spline, BCzier or Ball at high degree? 

3. What is the lowest expense in terms of computational time when interpolating 

an image ? 



1.4 Objective of the Research 

The main objective of this research is to develop an algorithm for constructing Ball 

surfaces from the Ball boundary curve of degree n using elliptic PDEs. In order to 

achieve this objective, we need to do the following: 

1. To construct the generalized polynomial solutions, in terms of Ball surface and 

the different order linear elliptic PDEs satisfying a given the boundary Ball 

curves. 

2. To compare the performance of the proposed algorithm with existing algorithm 

in terms of smoothness of constructing surface and computational time. 

3. To apply the proposed method in the area of image enlargement using different 

test images. 



1.5 Research Framework 

Image Interpolation Positivity preserving 

- - 

J, J. 

1.6 Scope of the study 

Two Boundaries 

This study seeks to construct generalized Ball surfaces (Said-Ball, DP-Ball and Wang- 

Ball) from their boundary curves using fourth order elliptic linear PDEs. Next we 

compared our result for generalized Ball surface with the existing work for BCzier sur- 

face in terms of surface area and computational time. Finally, we applied our algorithm 

in positivity preserving and image enlargement. 

Four Boundaries 
- - I1 

I 
v 

Pdynomial Sobtion of 4- wder 
- - . -  



1.7 Significance of the Study 

The contributions of this study are twofold. Firstly, the findings of this study con- 

tribute towards the body of knowledge in the field of geometric modeling using PDEs. 

New ideas and concepts are introduced in this study and can be easily extended for 

future research. Secondly, the proposed method is applicable in the area of surface 

reconstruction and image processing. 

1.8 Thesis Organization 

In this thesis, a generalized Ball surface using PDEs is presented. The main contri- 

bution is generating Ball surface from their boundaries information. The first part of 

Chapter One gives a brief introduction of PDEs and Ball surface by explaining the 

criteria, objectives, and techniques that are used in generalized Ball surface, while 

the second part of the chapter talks about the problem statement, research questions, 

objective of the study, scope of the study, research framework, and organization of 

the thesis. Chapter Two starts with a brief overview of the Ball curves classification 

and its generalization by the use of PDEs techniques to produce Ball surfaces. The 

discussion of issues found in prior relation including PDEs adopting boundary value 

approach is added. This chapter concludes with a summary and justifying the PDEs 

methods as a theoretical basis for the present study. Chapter Three begins with the 

general algorithm for harmonic and biharmonic which holds for any surface used in 

Computer Aided Geometric Design (CAGD), that is applied to Ball surface and our 

purposed method is compared with the existing method for BCzier surface. Chapter 

Four begins with a more general polynomial solutions for any fourth-order differential 

equation and any square surface by using the monomial matrix form which is hold for 

any surface used in CAGD, which is also applied to Ball surface. This is followed by 

more general algorithm for Dirichlet functional for any surface used in CAGD, and we 

applied it to Ball surface. Chapter Five is about the implementations and applications 
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of our proposed algorithm for the interpolation of the generalized Ball surface with 

positivity preserving and enlarge images . Finally, Chapter Six concludes the study by 

addressing several recommendations. It also discusses the possible extensions of the 

study and scope for further investigation. 



CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter begins with a brief overview of the classification of the Ball curves and its 

generalization by using partial differential equations (PDEs) method to generate Ball 

surfaces. This is followed by a discussion of issues found in prior relation including 

PDEs adopting boundary value approach. This chapter concludes with a summary and 

justification of the PDEs methods as a theoretical basis for the present study. 

Ball (1974; 1975; 1977) introduced Ball basis function as cubic polynomial, and Said 

(1989), Delgado and Peiia (2003a) and Wang (1987) further extended three different 

generalizations for high degree n polynomial that have been called the Said-Ball, DP- 

Ball and Wang-Ball, respectively. Their degree curve and surface can be obtained by 

overlapping interior control points (Said, 1989). Several researchers (Delgado & Peiia, 

2003b; Hu et al., 1996; Phien & Dejdumrong, 2000; Said, 1989; Aphirukmatakun & 

Dejdumrong, 201 1; Goodman & Said, 1991) have theoretically come to their calcula- 

tions, elevation and reduction (Monterde, 2004). 

Ball (1974; 1975; 1977) explained lofting surface program CONSURF at British Air- 

craft Corporation by exploiting various basis functions. The basis functions used are 

cubic polynomials, but this is distinctive from that used in BCzier method (Bernstein 

polynomials). The method employed by Ball is comparable to BCzier method though 

they have the same shape independently. Later, the generalized form for polynomi- 

als of higher degree by Wang, Delgado and Pefia; and Said namely Wang-Ball, DP- 

Ball and Said-Ball curves were presented, respectively (Wang, 1987; Delgado & Pefia, 

2003a; Said, 1989). The effectiveness of Said-Ball, DP-Ball and Wang-Ball basis were 

described in the works by Hu et al. (1996) and Delgado and Pefia (2003a). In addi- 
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tion, Phien and Dejdurnrong (2000) was regarded Said-Ball and Wang-Ball curves as 

effective methods in evaluating BCzier curves. 

Introducing this work in terms of boundary based smooth surface design involves the 

development of methods for generating BCzier surfaces verifying elliptic boundary 

value problems with specific applications to boundary value problems associated with 

the Laplace equation as well as the biharmonic BCzier surfaces (Arnal et al., 2011; 

Wang & Guo, 2012; Arnal& Monterde, 2014). These surfaces are smooth polynomial 

surfaces which conforms to the harmonic (degree two) or biharmonic (degree four) 

PDEs and have the same formulations as BCzier surface. 

The chosen fourth-order boundary value problem defines the boundaries of the surface 

patch alone, which will enable us to fully determine the entire surface. This poly- 

nomial solution method has been generalized to satisfy any fourth order biharmonic 

equation (Monterde & Ugail, 2006). Wang and Guo (2012) further extended the work 

of Monterde and Ugail(2006) into degree m x n. 

2.2 Review on BCzier Curves 

BCzier curves of degree n with n+ 1 control points {bi)F=o can be defined by 

(Aphirukmatakun & Dejdumrong, 2007; Farin, 2002) 

where By(t) are Bernstein polynomials defined by: 



Figure 

I 
0.2 0.4 0.6 0.8 1.0 

Figure 2.2. The Bernstein polynomials of degree three. 

Figure 2.3. The Bernstein polynomials of degree four. 
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Figure 2.4. The Bernstein polynomials of degree five. 

Bernstein basis function satisfies the following properties: 

i. By(t) 2 0 .  b' i=O,l, . . .  ,n. 

ii. By (t  ) = 1.  

Since Bernstein polynomials satisfies properties (i) and (ii), it implies the convex com- 

bination of its control points. Therefore, the curve lies in the convex hull of its control 

points (Farin, 2002). 

2.2.1 Derivative and Integral of Bernstein Polynomials 

The derivative and the integral of Bernstein polynomials are given by Farin (2002): 

d 
-By(t) = n ( Y 1 ;  ( t )  - B Y - ~  ( t ) ) ,  
dt 

and 



2.2.2 BCzier Monomial Form 

A BCzier curve of degree n, denoted by B(t), with n + 1 control points, denoted by 

{bi);=o, can be written in terms of the power basis as follows 

where 

2.2.3 Degree Elevation of BCzier Curves 

We can raise the degree of Bkzier curves by one by adding one new control point. 

We are thus looking for a curve with control point {b,!')}:$ that describes the same 

curve with the original control points {bi)F=o. BCzier curve can be defined in terms 

of its control points by the following formula (Aphirukmatakun & Dejdumrong, 2007; 

Farin, 2002) 

Figure 2.5. Degree elevation of BCzier curve from three to six. 



Lemma 3.1: Given a Bernstein polynomial B:(t), we have (Monterde & Ugail, 2004), 

Vn>O,k~{O,l,...,n) and iE{O,l,--.,n-k). 

2.2.4 B6zier Rectangular Surfaces 

The Bbier surfaces of degree m x n with control points {pi,j}ygo can be expressed as 

where By(u)  and B y ( v )  are the Bernstein basis (Wang & Cheng, 2001). 

2.3 Review on Ball Curves 

The curve was declared by A. A. Ball in his well-known aircraft design system CON- 

SURF in Ball (1974). It is described as a cubic polynomial curve and explained math- 

ematically as: 

(1 - t)2,2t(l - t)2,2t2(1 - t),t2. (2.10) 

Figure 2.6. Cubic Ball basis functions. 

13 



In further research, several studies have discussed about Ball curve's high generaliza- 

tion and its properties. For instance, in the 1980s there were two different Ball curves 

of arbitrary degree (Hu et al., 1996; Said, 1989; Wang, 1987) and in 2003 there was 

another generalization of Ball curve called DP-Ball (Delgado & Peiia, 2003a). 

2.3.1 Said-Ball Representation 

The Said-Ball curves of degree n with n + 1 control points { v ~ ) ~ = ~  can be given by: 

where Sy(t)  are Said-Ball polynomials defined by: 

(T+i)t i ( l  - t ) q + l  ,for 0 5 i 5 q, 
s;(t) = (2.12) 

( ~ ~ ' + ~ - i ) ~ ~ + l ( ~  - t)n-i ,for "+' < i < n, 
n-r 2 - - 

when n is odd, and 

when n is even ( Aphirukmatakun & Dejdumrong, 2007; Dan & Xinmeng, 2007; Hu 

et al., 1996; Said, 1989). 



I 
0.2 0.4 0.6 0.8 1.0 

Figure 2.7. Said-Ball basis functions of degree two. 

Figure 2.8. Said-Ball basis functions of degree three. 

0 2  0.4 0.6 0.8 1.0 

Figure 2.9. Said-Ball basis functions of degree four. 



Figure 2.10. Said-Ball basis functions of degree five. 

The Said-Ball basis function satisfies the following properties: 

i. The Said-Ball basis function is non-negative, that is, 

Sy( t )  >O,Vi = 0, I , . . .  ,n.  

ii. The partition of unity, that is, 

The fact that the Said-Ball basis fulfills the above properties implies the convex com- 

bination of its control points. Hence, the curve lies in the convex hull of its control 

points (Hu et al., 1996). 



2.3.1.1 Said-Ball Monomial Form 

A Said-Ball curve of degree n, denoted by S(t), with n + 1 control points, denoted by 

{vi)Zo,  can be written in terms of the power basis as follows 

where 

( - l ) ( j - i ) ( i + \ ; l )  ( l : j t l ) ,  
I-r 

for 0 5 i 5 [!I, 
Sij = (- l ) ( j ~ ~ )  (:) ( , L i ) ,  for i = !, (2.17) 

(-1) (j-151-i)  ( ) ( j l )  for LSl + 1 5 i 5 n7 LZ]+n-i n-i 

and 1x1 and [xl denote the greatest integer less than or equal to x ,  and the least integer 

greater than or equal to x, respectively. 

2.3.1.2 Conversion of Said-Ball Curve to BCzier Curve 

The converting formula for basis from Said-Ball to BCzier is given as follows (Hu et 

al., 1996; Aphirukmatakun & Dejdumrong, 2007): 



where q ( t ) ,  Br(t), i E (0, 1,. . . ,n) are Said-Ball basis functions and Bernstein basis 

functions, respectively. Thus from (2.18), we have 

A Said-Ball control point can be written as an associate BCzier control point as follows: 

and 

when n is even, and 

C i , j  = < 

when n is odd. 

!?) ( f :i;') / ( .  ,- ,for is j < $ - 1 ,  (7) 
3 n - ~  i-I-; 

(:-i')( i-j 1 
(7) ,for i >  j >  ; + I ,  

1 ,for i = j  = " 2 '  

0 ,otherwise, 
\ 



2.3.1.3 Said-Ball Rectangular Surfaces 

The Said-Ball surfaces of degree rn x n with control points { v ~ , ~ } ~ ~ ~  can be expressed 

where S y ( u )  and g(v) are the Said-Ball basis (Wang & Cheng, 2001). 

2.3.1.4 Converting Said-Ball Surface into BCzier Surface 

The Said-Ball surface of degree rn x n in (2.23) can be written in matrix form as 

7 v =  

and vij, i E {O,1, . , rn) ,  j E {O,l,. . . , n )  are the control points of the Said-Ball sur- 

face. By using (2.18) in (2.24) we get 

- - 
VOO vO1 " ' VOn 

v10 vll " '  v l n  

. .  . ... 

VmO Vml " ' Vmn - - 



where P = FVH, F = C and F, H are square matrices of order m and n, respectively, 

given by (2.21) and (2.22). Now, we rewrite (2.25) as 

where 

which is the BCzier surface of degree rn x n, where vij are Said-Ball control points. 

2.3.2 DP-Ball Curves Representation 

The degree n DP-Ball curves with n + 1 control points {di)go, is defined by 

where D?(t) are DP-Ball polynomials (Delgado & Pefia, 2003a) defined by: 

and 

T41-141 1 

K;(t) = (f) ( I  - ld+l - - t)L41+l) , 

1 1 
KE(t) = (r51 - t(1 -t)LiJ+l, 



Figure 2.11. DP-Ball basis function of degree three. 

Figure 2.12. DP-Ball basis function of degree four. 

The DP-Ball basis function satisfies the following properties: 

i. D l ( t )  2 O.Vi = 0,1, - .  . , n. 

ii. c 2 0 q ( t )  = 1. 

Since the DP-Ball satisfies properties (i) and (ii), it implies the convex combination of 

its control points. Therefore, the curve lies in the convex hull of its control points. 



2.3.2.1 DP Monomial Form 

An nth-degree DP curve, denoted by D(t), given by a set of n + 1 control points, de- 

noted by {di)7=o can be formulated in power basis form by 

where 
/ 

(-I)'(;), for i = 0, 

(- 1)'-I (;I;) ,for O < i 5 lgj - I ,  

(- I)'-' (n - 2i) 1-1 + in-2i ((y) 

1x1 and [xl denotes the greatest integer less than or equal to x, and the least integer 

greater than or equal to x, respectively. 

2.3.2.2 Conversion of DP-Ball Curve to BCzier Curve 

The formula for converting between DP-Ball Curve and Bezier curve (Aphirukrnatakun 

& Dejdumrong, 2007) are given as follows 



Thus we have, 

A DP-Ball control point can be written as an associate BCzier control point as follows: 

I coo COl . - .  - - -  

c 1 0  C l l  '. 

where Dy (t), B?(t), i E (0, 1  , . . . , n)  are DP-Ball basis functions and Bernstein basis 

functions, respectively, while C is the convert matrix given by: 

If n  is even, then 

I 1 - (&:I)-(~~~+I) ,for 1 2  j s  and i =  I;], 
(1;7+1) 

Cij  = 1  - (L$~+I)-(~&{I) ,for < j l n - 1  and i =  L;J, (2.36) 
(,;7+1) 

L o  , otherwise; 



but if n is odd, 

I for 1 < j <  191 and i=L$J ,  

I for 1 5 j 5 111 and i = [;I, 

I for 141 5 j 5 n - 1  and i =  191, 

for 5 j 5 n - 1 and i = [;I, 
0, otherwise. 

2.3.2.3 DP-Ball Rectangular Surfaces 

The DP-Ball surfaces of degree m x n with control points { d i , , ) ~ ~ ~ a n  be expressed 

where (u) and (v) are the DP-Ball basis (Wang & Cheng, 200 1).  

2.3.2.4 Converting DP-Ball Surface into BCzier Surface 

The DP-Ball surface of degree m x n in (2.38) can be written in matrix form as 



 here Du = [ ~ r  (u )  DT (u )  . . (u) ]  , Dv = [D; (v) D; (v) . . . (v)] , 

and di j ,  i E { O , 1 ,  - . . , m) , j E ( 0 ,  1 , . - . , n}  are the control points of the DP-Ball surface. 

By using (2.28) in (2.39) we get 

where P = FDH, F = d and F, H are square matrices of order m and n, respectively, 

given by (2.35), (2.36) and (2.37). Now, we rewrite (2.40) as 

where 
m n 

3 = x L f i r d r s h s j ,  i { O , l . . . ,  } j ~ { O , l ,  ..., n), (2.42) 
r=O s=O 

which is the BCzier surface of degree m x n, where dij  are DP-Ball control points. 



2.3.3 Wang-Ball Curves 

Wang-Ball curves of degree n with n + 1 control points, { w ~ ) ; = ~  (Aphirukmatakun & 

Dejdurnrong, 2007; Hu et al., 1996; Wang, 1987) can be defined by: 

where A ( t )  are Wang-Ball polynomials defined by: 

when n is odd, and 

when n is even. 

Figure 2.13. Wang-Ball basis function of degree two. 
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Figure 2.14. Wang-Ball basis function of degree three. 

Figure 2.15. Wang-Ball basis function of degree four. 

I 
0.2 0.4 0.6 0.8 1.0 

Figure 2.16. Wang-Ball basis function of degree five. 



The Wang-Ball basis function satisfies the following properties: 

i. Each term is positive, that is, 

Al( t )  2 0,Vi = 0 ,  I , . . .  ,n. 

ii. Partition of unity, that is, 

Since Wang-Ball satisfies properties (i) and (ii), it implies the convex combination of 

its control points. Therefore, the curve lies in the convex hull of its control points (Hu 

et al., 1996). 

2.3.3.1 Wang-Ball Monomial Form 

A Wang-Ball curve, denoted by A(t ) ,  provided with n + 1 control points, denoted by 

{ w ~ ) : = ~ ,  can be shown as 

where 

I (-1)(j-i)2i i+2 
( j - i )  , for O s i 5  L5J -1,  

(- l)(~-i)2i(+) , for i =  L;J, 
U i j  = 

(- l)(j-i)2n-i n-1 ( j - J  , for i  = 

( )(j-n+i)2n-i n-i 
(j-n+i-2), for 191 + 1 5 i 5 n, 

and 1x1 and 1x1 denote the greatest integer less than or equal to x, and the least integer 

greater than or equal to x, respectively. 



2.3.3.2 Conversion of Wang-Ball Curve to Bdzier Curve 

The converting formula for basis from Wang-Ball to Bkzier is given as fol- 

lows (Aphirukmatakun & Dejdumrong, 2007; Hu et al., 1996): 

Thus we have, 

- - 
A;; ( t )  

A; ( t )  

A l ( t )  

A:: ( t )  - - 

A Wang-Ball control point can be written as an associate BCzier control point as fol- 

lows: 

- - 

where A7 ( t  ) , Bl ( t  ) , i E {O,1, . . . , n) are Wang-Ball basis functions and Bernstein basis 

functions, respectively, and C is the convert matrix given by: 

- 

coo 

c10 

Cio 

c n ~  - 



1 o ,otherwise, 

where L;J and r;] denote the greatest integer less than or equal to g, and the least 

integer greater than or equal to 9, respectively. 

2.3.3.3 Wang-Ball Rectangular Surfaces 

The Wang-Ball surfaces of degree m x n with control points { w ~ , ~ ) ~ ~ ~  can be ex- 

pressed as 
m n 

W ( U , V ) = ~ ~ A ~ ( U ) A ; ( V ) W ~ , ~ ,  O < u , v <  1, (2.54) 
i=O j=O 

where v ( u )  and Wy(v) are the Wang-Ball basis (Wang & Cheng, 2001). 

2.3.3.4 Converting Wang-Ball Surface into BCzier Surface 

The Wang-Ball surface of degree rn x n in (2.54) can be written in matrix form as 

 here AU = [Af (u )  AT (u )  - - - A: (u)] , A, = [A; (v) A; (v) . . . A:(v)] T, 



and W i j ,  i E {O,l , .  . . , m ) ,  j E {O,1, . . . , n }  are the control points of the Wang-Ball sur- 

face. By using (2.50) in (2.55), we get 

X (u ,  V )  = (cB,)'v (HB,) 

= (B;c') v (HB,) 

= B;(C'VH)B, 

= B;PB, 

where P = FVH,  F = C and F, H are square matrices of order m and n ,  respectively, 

given by (2.53). Now we rewrite (2.56) as 

where 
rn n 

Pij = E Efifirwrshsj, i € { O ,  1 , .  . . ,m}, j E { 0 ,  1 , .  . . , n} ,  (2.58) 
r=Os=O 

which is the BCzier surface of degree m x n, where wij are Wang-Ball control points. 

2.4 Parametric Surface 

The general form of a parametric surface is P(u,  v )  = ( fi  ( u ,  v )  , f2 ( u ,  v )  , f3 ( u ,  v ) )  . The 

surface depends on two parameters, u and v, that vary independently in some interval 

[a, b] (normally, but not always, limited to [0,  11). For each pair ( u ,  v ) ,  the expression 

above produces the three coordinates of a point on the surface. 

2.5 Harmonic and Biharmonic Surface 

Let f : [u, v] 3 IR3 be a parametric surface patch, then 2 is harmonic if g2d = 0 

and biharmonic if (v2j?)~ = 0, where v2 is the Laplace operator defined by g2 = 

(&+$). 
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Harmonic surfaces are related to minimal surfaces, that is, surfaces that minimizes the 

area among all surfaces with prescribed boundary conditions introduced by Monterde 

(2004). Arnal and Monterde (2014) introduced a method for generating harmonic ten- 

sor product BCzier surfaces, and the explicit expression of each point in the control 

net is provided as a linear combination of prescribed boundary control points. Zhange, 

Cai and Wang (201 1) introduced a new effective approach to construct rational BCzier 

harmonic surfaces over rectangular or triangular domain, and Xua and Wang (2010) 

proposed the sufficient condition of quintic harmonic polynomial parametric surface 

being a minimal surface. Yang and Wang (2015) studied the constructing polyno- 

mial BCzier surface that interpolates a BCzier curvilinear quadrilateral as boundary 

geodesics, while Zhanga et al. (201 1) presented a new effective approach to construct 

rational BCzier harmonic surfaces over rectangular or triangular domain. Arnal et al. 

(201 1) also presented an explicit polynomial solution method for surface generation 

by some boundary configuration whereby the resulting surface conforms to a fourth 

order linear elliptic partial differential equation, and the Euler-Lagrange equation of a 

quadratic functional defined by a norm. 

2.5.1 The First Fundamental Form 

Given a parametric surface g ( u ,  v), we define the quantities E = & . zu ,F = gU . )7, 

and G = % .gv. Then, the first fundamental form, I of the surface is the quadratic 

expression defined as, 

I = ~ d u ~  + 2Fdudv + ~ d v ~ ,  (2.59) 

where = -&R and zv = $2 (Ugail, 201 1). The surface area can also be expressed 

in terms of the coefficients of the first fundamental form (Ugail, 201 1) 



2.5.2 Monomial Matrix Form 

A simple approach to represent polynomial curves is provided in the form of mono- 

mial matrices because it is more convenient to code and implement matrix operations 

than to solve for symbolic computations. The monomial form of BQier curves was 

first investigated by Faux and Pratt (1979), Mortenson and Micheal(1985), and Chang 

(1982), although it was obvious that the formula for Bkzier curve was very simple. 

Dejdumrong (2014) suggested the monomial functions for the Said-Ball, Wang-Ball, 

DP-Ball, Dejdumrong and NBl curves and these functions are less complicated and 

more efficient for constructing curves and surfaces in CAGD applications. Further- 

more, the conversions among polynomial curves can be readily obtained from their 

monomial matrices. 

There are many applications for monomial matrix form such as the use of the mono- 

mial form of DP-Ball to get a simple and efficient algorithm for approximating conic 

sections by DP-Ball curves of arbitrary degree with endpoint interpolation (Bakhshesh 

& Davoodi, 2014). Rewriting the monomial matrix form for the curves given in equa- 

tions (2.6), (2.3 l), (2.17) and (2.49) give the following. 

2.5.2.1 Bbzier Monomial Matrix 

The definition of BCzier monomial matrix is 

where mi,j is given as defined in (2.6). 
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2.5.2.2 Said-Ball Monomial Matrix 

The definition of Said-BalI monomial matrix is 

where si,j is given as defined in (2.17). 

2.5.2.3 DP-Ball Monomial Matrix 

The definition of DP-Ball monomial matrix is 

where ci,j is given as defined in (2.31). 



2.5.2.4 Wang-Ball Monomial Matrix 

The definition of Wang-Ball monomial matrix is 

where ai,j is given as defined in (2.49). 

2.5.2.5 Converting the Control Points of BCzier Surface into Control Points of 

Ball Surface using Monomial Matrix 

We rewrite the BCzier surface of degree rn x n in power basis (Dejdurnrong, 201 1) as 

follows: 

where B is BCzier monomial matrix form given in (2.61), U = [I  u u2. . . urn], 

W = [ l  w w2.. . fl], P is the control points of BCzier surface and K = B'P'B. In the 

same manner, we can rewrite X(u, w) surface of degree m x n where X(u, w) represents 

Said-Ball or DP-Ball or Wang-Ball surfaces of degree m x n as follows: 

X(u,w) = (uM')v(w#')' 

= U(M'VM)W'  

= ULW' 
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where M is X(u, w) monomial matrix form given in (2.61), U = [l u u2. . . urn], 

W = [I w w2.. . wn], V is the control points of X(u, w) surface and L = MtVM. 

Suppose X (u, w) = B(u, w), and by using (2.66) and (2.65), we have 

ULW = UKW 

O(Zero matrix) = ULW - UKW 

= U LW-KW ( 
= U( . -K)W 

Since U and W are different from zero, then we must have L - K = 0, i.e. L = K. 

Using the values of L and K we have 

2.6 Definition of Isothermal Surface 

A regular parametric surfaces x = x(u, v) is said to be isothermal (Do Carmo & Perdi- 

gao, 1976) if 

< x,,x, >=< xV,xv > and < x,,xv >=0 .  

We shall study some second order functionals defined on the space of smooth patches 

i : R + lR3, where R = [O, 11 x [0, 11. The Lagrangian is given as follows 

We take the functional I to be such that, 



Minimizing the functional I is equivalent to requiring that the first variation of I is zero 

which then gives rise to the corresponding Euler-Lagrange equations. For instance, 

the Lagrange functional generating the Laplacian operator is 

which is also known as the Dirichlet functional in the theory of minimal surfaces. 

In a similar fashion to the harmonic functional, the Lagrange functional defining the 

biharmonic Laplacian operator, which we shall refer to as the biharmonic functional 

(Monterde, 2004) is 

A surface is called minimal if its mean curvature vanishes everywhere. Ahmad and 

Masud (2014) presented an algorithm to reduce the area of a surface spanned by a 

finite number of boundary curves by initiating a variational improvement in the surface. 

Also, Chen, Xua and Wanga (2009) presented two other simple methods by using 

the extended stretching energy functional and the extended bending energy functional 

such that the resulting surface obtained by this new methods will have a smaller area 

obtained by using the Dirichlet functional. Ugail, Mkquez and Yflmaz (201 1) studied 

the Plateau-BCzier problem in three-dimensional Minkowski space (Kahyaolu & Emin, 

2014) and derived the necessary and sufficient condition for minimal surface by using 

the Frenet frame of a given curve and isothermal parameter. Li et al. (1996) studied the 

approximation of minimal surface with geodesics by using Dirichlet functional, while 

TrAsdahl and RGnquist (201 1) derived an algorithm for finding high order numerical 
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approximations of minimal surfaces with a fixed boundary. 

2.7 Estimate the Partial Derivative with respect to x and y for the Control Points 

at the Boundary Curves 

With the use of first order partial derivatives of interpolating surface S, where 

S(V;:) = f (V;:) with f (V;:) is the functional value at node V;:(xi,yj), i = 1,2,3,4, we can 

calculate the initial value of vlo, v20, V13, 

V23, ~ 0 1 ,  VW, ~ 3 1  and ~ 3 2  as follows Saaban, Man and Karim (2013) 



CHAPTER THREE 

HARMONIC AND BIHARMONIC SURFACE 

In this chapter, we discuss about the harmonic and biharmonic surface. All these sur- 

faces will give us the minimal surface areas. To compare our purposed method with 

the existing method for BCzier surface, we must have surface with the same boundary 

i.e. two opposite boundaries for harmonic and four boundaries for biharmonic . To 

do this, we must convert BCzier surface control points into generalization Ball surface 

control points. i.e. different surface with same boundary curves. 

3.1 Harmonic of X (u, v)  Surface 

The Harmonic equation for the parametric surface X(u, v)  (Said-Ball, DP-Ball and 

Wang-Ball) is defined as the differential equation obtained by applying the Laplace 

operator that is defined by 

0 2 x ( u ,  v)  = 0.  (3.1) 

Theorem 3.1. Given the control net of points in IR3, {qi , j }~$"o,  the associate X(u ,  v)  

surjGace, 2 : [O, 11 x [0, I] + IR3 is harmonic,i.e. v22 = 0 ifand only i f  



Proot By using (2.26), we can write the X(u,  v) surface of degree m  x n as the BCzier 

surface of degree m x n as follows: 

where 
... .. 

f ' i j = X z . f i r q r s h s j ,  i € { O , l , . . . ,  m}, j € { O , l , . . . ,  n } .  (3.3) 
r=O s=O 

The Laplace of the X(u,  v) surface is 

m-2 n 
= m(m - 1 )  z z yp2 (u)B; ( v )  a20f i j  

i=O j=O 

where 

Now, we rewrite (3.4) as the BCzier surface of degree m x n. To do this, we use the 

following relation (Cosin & Monterde, 2002) 



Then we define 

tin = (i+ 1 ) ( i + 2 )  for i E ( 0 ,  I , - - .  ,n-2),and I 
sin = bin = ci, = 0 ,  otherwise. J 

By using (3.6) in (3.4), we get 

Expression (3.8) is the BCzier surface of degree m x n associated with the new control 

points { F i , j } y G o ,  where 

+bi - l ,m( ( f i+ l , r  - f ir  + h - l , r ) q r s h s j )  

+ c i - z , j ( ( h r  - 5 - 1 , r  + f i -2 , r )qrshs j ) )  

+'(' - 1 )  ( a j , n f , r q r s ( h ,  - 2 h , j + l  + hsj)  

+bj-1 , n h r q r s ( h s , j + ~  - 2hs, j + hs, ) 

+cj-2 ,nf irqrs(hs ,  j - 2hs, j-1 + h S l p z j )  (3.9) 

Hence, as we know that { B ~ ( u ) B ~ ( v ) ) ~ ~ ~  is the basis of polynomials, it must not be 

equal to zero, we showed that X ( u ,  v) is harmonic if and only if 
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Now, we use the value of the operators n2Oand A'' from (3.5) and (3.3) in (3.9) to 

If we let n = m in (3.1 1) i.e. the quadratic case, we have the following theorem. 

Theorem 3.2. Given the quadratic net of points in IR3, {qi, j};'&, the associate 2 ( u ,  v)  

surface, 2 : [O,1] x [O,1] + EX3 is harmonic, i. e. o22 = 0 if and only if 



Remark 3.1. Theorem 3.2 holds for Bkzier if the control points { q i , , } ~ ~ O  of the 

X(u, v)  surface is replaced by the Bkzier control points {Pi,j};;"=o and also if the con- 

vert matrices F and H are being replaced by the identity matrix. 

Corollary 3.1. I f  we replace the convert matrices f, h by the convert matrices from 

(Said-Ball, DP-Ball, Wang-Ball) to Bizier as in (Said-Ball 2.21, 2.22, DP-Ball2.35, 

2.36, 2.37, Wang-Ball 2.53) and the control points {q i , i )~~: ,  of the X(u,  v)  surface 
j=o 

by the (Said-Ball {v~,~}:::, DP-Ball {dijj)Y,!:, Wang-Ball {wi,;}::: ,) control points 
j=O j=O j=O 

respectively. Then Theorem 3.1 and Theorem 3.2 gives us the harmonic condition for 

Said-Ball surface, DP-Ball su face and Wang-Ball su$ace. 

Let us study equation (3.12) in the simplest case: biquadratic and bicubical generalized 

Ball patches, i.e. Said-Ball, DP-Ball and Wang-Ball patches. 

3.1.1 Biquadratic Harmonic Patches 

In the case n = m = 2 from equation (3.12), it is possible to find an expression for four 

of the control points in terms of the other five. Ln fact, we have obtained that the null 

space of the coefficient matrix of (3.12) is of dimension four. Moreover, it is possible 

to choose free variables points in the first and last column of the control net. 

3.1.1.1 Said-Ball Patch 

Corollary 3.2. The biquadratic Said-Ball surface is harmonic ifand only i f  



A way of writing a sample equation involving the inner control point vll is by using 

the following mask 

Since the Said-Ball and BCzier basis functional for degree two are the same, then we 

use the dual of the mask (3.17) associated to the Laplace operator. It can be found in 

Farin and Hansford (1999) that the mask 

is the discrete form of the Laplace operator. 

In general, the notation of permanent patches (3.17) and (3.18) is generated by the 

mask of the form 

spa 

with 4 a  + 4P = 1 (Farin & Hansford, 1999). Thus, the mask (3.17) is a particular case 

with a = 0.25 while the mask (3.18) corresponds to a = 0. 

In order to obtain a minimal patch, we have to impose the isothermal conditions. 

Example 3.1. Given the control points of a biquadratic Said-Ball as follows: 

voo = (O,O,l), v10 = (1,0,O),v20 = (2,O,l),v01 = (O,l,O),v21 = (2,1,0), v02 = (0,2, I), 

v12 = (1,2, O),v22 = (2,2,1). Then, by using the mask (3.17), we have the inner control 

point as vll = (1,1, I), and we get v l l  = (1,1,0) by using the dual mask (3.18). 



Figure 3.1. (a) Boundary curves of biquadratic Said-Ball generated by dual harmonic 
mask (b) Surface of biquadratic Said-Ball generated by dual harmonic mask. 

Figure 3.2. (a) Boundary curves of biquadratic Said-Ball generated by harmonic mask 
(b) Surface of biquadratic Said-Ball generated by harmonic mask. 

Remark 3.2. Since the Said-Ball sugace, DP-Ball surface and Wang-Ball surJace of 

degree two are the same, then Corollary 3.2 holds on DP-Ball surface and Wang-Ball 

sugace of degree two. 

3.1.2 Bicubical Harmonic Patches 

In the case n = m = 3 from equation (3.12), it is possible to write half of the control 

points in terms of the other eight. We obtained that the null space of the coefficient 

matrix of (3.12) is of dimension eight. Moreover, it is possible to choose free variables 

for the exact eight points in the first and last column of the control net. 



3.1.2.1 Bicubical Harmonic Said-Ball Patches 

Corollary 3.3. A bicubic Said-Ball sur-$ace is harmonic ifand only if 

Remark 3.3. This means that, given the$rst and last columns of the control net (eight 

control points in total), the other eight control points are fully determined by the har- 

monic condition. In other words, any pair of two opposed borders of an harmonic Ball 

surface determines the rest of the control points. There are two difSerent kind of masks 

depending whether the point is an inner control point or not. 

Remark 3.4. Since the Said-Ball patch of degree 3 x 3 and Wang-Ball patch of degree 

3 x 3 are the same, then Corollary 3.3 holds on Wang-Ball patch of degree 3 x 3. 



3.1.2.2 Bicubical Harmonic DP-Ball Patches 

Corollary 3.4. A bicubic DP-Ball sullface is harmonic ifand only i f  

Remark 3.5. This means that given the first and last columns of the control net (eight 

control points in total), the other eight control points are fully determined by the har- 

monic condition. In other words, any pair of two opposed borders of the harmonic 

DP-Ball sullface determines the rest of the control points. 

Remark 3.6. Equations (3.28) to (3.3 1) imply that the inner control points are fully 

determined by the four corner points and the two neighbor control points that lies on 

the boundaries. There are two different kind of masks depending whether the point is 

an inner control point or not. 

The masks displayed below show the bicubic harmonic condition: the first column 

represents BCzier, second column meant for Said/Wang-Bal1,while the third column is 

for DP-Ball. 
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3.1.3 Graphical Examples for Harmonic Bicubic Surface 

Here we give some graphical examples for bicubic SaidIWang-Ball and bicubic DP- 

Ball, generated by four sets of control points such that the surface with the same two 

opposite boundaries are the same. 



3.1.3.1 Graphical Examples for Harmonic Bicubic SaiWang-Ball Surface 

To generate the harmonic Said-Ball surface, we have chosen four sets of boundary 

curves. 

Example 3.2. Given the boundary control points set 1 of the bicubic Said-Ball surface 

as follows 

voo = (O,O, I), V O ~  = (0,1815, -491/625), vO2 = (0,1415, -71/625), vO3 = (0,4, I), 

v30 = (4,0,1),~3l = (4,915, -885/1687), ~ 3 2  = (4, 11/5,-885/l687),vs3 = (4,4,1). 

Then, the inner control points of the bicubic Said-Ball surface by harmonic condition 

are 

V I I  = (2, 19/10,622/759),v12 = (2,17/10,1397/1209), 

~ 2 1  = (2,23/10,1021/1209) v22 = (2,21/10,896/759), vlo = (2, -7/5,601/191), 

V ~ O  = (2, -2/5,2294/809), v13 = (2,19/5,1525/846), 

and v23 = (0,27/10,1686/695). The graph of the above surface is in Figure 3.3(c) 

while its boundary with control points is in Figure 3.3(d). 

Example 3.3. Given the boundary control points set 2 of the bicubic Said-Ball surface 

as follows 

VOO = (o,o, o), VOI = (0,914, -9/2), V o z  = (0,3/4,9/2), Vo3 = (0,3, O), vgo = (3,0, O), 

v31 = (3,3/2,3/2), v32 = (3,3/2,3/2),~33 = (3,3,0). 

Then, the inner control points of the bicubic Said-Ball surface by harmonic condition 

are 

vl i  = (312,1518, -2), ~ 1 2  = (312,1518, -5/2), v21 = (312,1518, -5/2), 

~ 2 2  = (3/2,9/8,2), via = (312, -3/2,17/2), v20 = (312, -3/4,7/2), 

v13 = (312,912, -19/2), and ~ 2 3  = (0,3, -2514). The graph of the above surface is in 

Figure 3.4(c) while its boundary with control points is in Figure 3.4(d). 



Example 3.4. Given the boundary control points set 3 of the bicubic Said-Ball surface 

as follows 

voo = (1/2,0,0), vol = (3 1/80,0,27/40), vm = (29/80,0,5/8), 

vo3 = (1,0, I) ,  v30 = ( - 1 / 2 , 0 , 0 ) ~ ~ ~  = (-31/80,0,27/40), v32 = (-29/80,0,5/8), 

v33 = (-1,0,1). 

Then, the inner control points of the bicubic Said-Ball surface by harmonic condition 

are 

V I ~  = (1/8,O,21/40),vl2 = (1/8,0,19/40), v2l = (-1/8,0,21/40) 

~ 2 2  = (- 1/8,0,19/40), V ~ O  = (9/80,0, -9/40), V ~ O  = (9/80,0, -9/40), 

V 1 3  = (1 1/80,0,37/40), , andv23 = (9/160,0,47/80). The graph of the above surface 

is in Figure 3.5(c) while its boundary with control points in is Figure 3.5(d). 

Example 3.5. Given the boundary control points set 4 of the bicubic Said-Ball surface 

as follows 

voo = (-585/631,1378/483,0),, V O ~  = (- 11 1/581,2342/3983,21/40), 

~ 0 2  = (-327/3697,457/1674,2/5), V O ~  = (-585/631,1378/483,1), 

~ 3 0  = (5851631 - 137814830), vsl = (51211599, - 1699/1724,9/20), 

~ 3 2  = (16117124, -173/2475,13/40),~~~ = (5851631, -13781483,l). 

Then, the inner control points of the bicubic Said-Ball surface by harmonic condition 

are 

v l l  = (-475/2279,1047/1633,1 1/2O),vl2 = (-253/827,2219/2357,17/40), 

~ 2 1  = (2531827, -2219/2357,23/40), ~ 2 2  = (47512279, -1047/1633,9/20), 

V ~ O  = (-527/1651,1761/1792, - 1/8), V ~ O  = (-644/130087,84/5455, - 1/10), 

vl3 = (-501/2209,481/690,5/4), and v23 = (47211441, -626/621,21/20). The graph 

of the above surface is in Figure 3.6(c) while its boundary with control points is in Fig- 

ure 3.6(d). 



3.1.3.2 Graphical Examples for Harmonic Bicubic DP-Ball Surface 

To generate the harmonic DP-Ball surface, we have chosen four sets of boundary 

curves. 

Example 3.6. Given the boundary control points set 1 of the bicubic DP-Ball surface 

as follows 

do0 = (O,O,  I ) ,  d30 = (4 ,0 ,  I ) ,  dol = (0815 - 399/625),dm = (0,4,441/625),  

do3 = (0 ,4 ,  I ) ,  d31 = (4 ,  -215, -41/2500), d32 = (42215 - 41/2500),d33 = (4 ,4 ,1) .  

Then, the inner control points of the bicubic DP-Ball surface by harmonic condition 

are 

dl1 = (0,0,1),d12 = ( 0 , 4 , l ) ,  d21 = (4 ,0 ,1)  d22 = (4 ,4 ,1) ,  d I 0  = (0 ,  -8/5,1649/625), 

d20 = (4,215, 5041/2500),d13 = (0,4,809/625),, and d23 = (4,18/5,5041/2500). 

The graph of the above surface is in Figure 3.3(e) while its boundary with control 

points is in Figure 3.3(f). 

Example 3.7. Given the boundary control points set 2 of the bicubic DP-Ball surface 

as follows 

do0 = (o,o,O),d30 = (3 ,0 ,0) ,  do1 = (0,312, -9),d02 = (0,3/2,9),d03 = (0 ,3 ,0) ,  

d31 = (3 ,0 ,  I ) ,  d32 = (3 ,3 ,  = (3 ,3 ,0) .  

Then, the inner control points of the bicubic DP-Ball surface by harmonic condition 

are 

dl1 = (0,0,O),dl2 = (0 ,3 ,0 ) ,  d21 = (3 ,0 ,0) ,  d22 = (3 ,3 ,0) ,  dl0 = (0 , -3 /2 ,9) ,  

d20 = (3,0,-l),d13 = (0,912,-9), d23 = (3 ,3 , -1) .  The graph of the above surface 

is in Figure 3.4(e) while its boundary with control points is in Figure 3.4(f). 

Example 3.8. Given the boundary control points set 3 of the bicubic DP-Ball surface 

as follows 

doo = (1 /2 ,0 ,0) ,  d30 = (- 1/2,0 ,0) ,  dO1 = ( 1  1/40,0,3/20),  dO2 = (29/40,0,21/20),  

dO3 = (1 ,0 ,  1) ,  d3] = ( - 1  1/40,0,3/20),  d32 = (-29/40,0,21/20),  d33 = (-l,O, l). 



Then, the inner control points of the bicubic DP-Ball surface by harmonic condition are 

dl1 = (1 /2 ,0 ,0) ,  d12 = (1,0, I ) ,  d21= (-1/2,0,0),  d22= (-1,0, I ) ,  d ~ o =  (29/40,0, -3/20),  

dzo = (-29/40,0,  -3/20),  d13 = (51/40,0,19/20),  and d23 = (-51/40,0,19/20). 

The graph of the above surface is in Figure 3.5(e) while its boundary with control 

points is in Figure 3.5(f). 

Example 3.9. Given the boundary control points set 4 of the bicubic DP-Ball surface 

as follows 

doo = (-585/631,1378/483, O),d30 = (585163 1 ,  - 1378/483,0), 

dol = (-631/1250,1553/1000, l / lO),dm = (-749/2500,923/1000,17/20), 

do3 = (-585/631,1378/483, I ) ,  d3, = ( 1  12111555, -2773/1250,1/20), 

d32 = (29212323, -242/625,4/5),d33 = (585163 1 ,  - 13781483,l). 

Then, the inner control points of the bicubic DP-Ball surface by an extremal of the 

Dirichlet condition are 

dl 1 = (-585163 1 ,  1378/483,0),d12 = (-585/631,1378/483, I ) ,  

dzl = (5851631, -1378/483,0), d22 = (5851631, - 1378/483,1), 

dlo = (-7755/5747,760/183, - 1/10),  dZo = (221911958, -4221121, - 1/20) ,  

d13 = (-23491151 1,3152/659,23/20), and dz3 = (221911958, -4221121, - 1/20).  

The graph of the above surface is in Figure 3.6(e) while its boundary with control 

points is in Figure 3.6(f). 



Figure 3.3. Control points set 1 by harmonic condition on (a) BCzier patch (b) BCzier 
boundary (c) SaiWang-Ball patch (d) SaidIWang-Ball boundary (e) DP-Ball patch 
(f) DP-Ball boundary. 



Figure 3.4. Control points set 2 by harmonic condition on (a) BCzier patch (b) Bkzier 
boundary (c) SaidIWang-Ball patch (d) SaidJWang-Ball boundary (e) DP-Ball patch 
(f) DP-Ball boundary. 



Figure 3.5. Control points set 3 by harmonic condition on (a) BCzier patch (b) BCzier 
boundary (c)  Said/Wang-Ball patch (d) SaidIWang-Ball boundary (e) DP-Ball patch 
(f) DP-Ball boundary. 



Figure 3.6. Control points set 4 by harmonic condition on (a) BCzier patch (b) BCzier 
boundary (c) SaiWang-Ball patch (d) SaidNang-Ball boundary (e) DP-Ball patch 
( 0  DP-Ball boundary. 



The following comparisons between BCizer surface, SaidNang-Ball surface and DP- 

Ball surface was made using harmonic condition. We note that all surfaces have the 

same two boundary curves. 

Table 3.1 
Comparison between the aredcomputational time of Bbziel; Said/Wang-Ball and DP- 
Ball by using harmonic condition. 

Control Points BCzier Said/Wann-Ball DP-Ball 
w 

Set 1 
Area 19.396724 18.941272 19.372356 

Computational time 0.10468 0.0933 0.10549 
Area 22.959153 22.579643 23.022066 

Set Computational time 0.10837 0.0922 0.1 1019 

Set 3 
Area 1.230625 1.1 16308 1.230625 

Computational time 0.10665 0.0907 0.10939 
Area 5.166923 4.923 110 5.166923 

Set Computational time 0.10594 0.0939 0.10614 

From Table 3.1, the harmonic condition is applied to the bicubic patches of Said-Ball 

surface, Wang-Ball surface and DP-Ball surface, and compared with the existing work 

for bicubic patch of B6zier surface. It is discovered that the bicubic SaidNang-Ball are 

better than the bicubic BCzier and bicubic DP-Ball in terms of the minimal surface area 

and computational time required to construct the surfaces by harmonic condition. On 

the other hand, if we compare bicubic BCzier with bicubic DP-Ball by using harmonic 

condition, we see that the surface area for BCzier and DP-Ball are almost comparable 

but BCzier needs less computational time than DP-Ball. 

3.2 Biharmonic of X(u,  v) Patch 

The biharmonic equation for the parametric surface X(u,  v) is defined as the differential 

equation obtained by applying the biharmonic operator also known as the bilaplace, 

that is, the differential operator defined by v4 = where 



is the Laplace and setting them to zeros. In general, for a rectangular system of coor- 

dinates, it can be written as, 

We discuss the two solutions of equation (3.38), that are, the solutions on the rectan- 

gular grid. 

Theorem 3.3. Given a control net in IR3, {qi, j } y ~ o ,  the associated X ( a ,  v) surface 

X : [O,1] x [0, 11 4 IR3, is biharmonic, v4x = 0 i f  and only if b' i E {1,2, . . . , rn} and 

j E {1,2,... , n )  



where fori E {O,l , . . -  ,m-21, 

amio = ( m - i ) ( m - i - l ) ,  

amil = 2 ( i+ l ) (m- i - I ) ,  

ami2 = (i+l)(i+2),and 

= 0, otherwise; 

andfori E {O, l , - - .  ,m-41, 

bmio= (m- i ) (m- i -  l ) (m- i -2 ) (m- i -3 ) ,  

bmi, =4( i+ l ) ( m - i -  l ) (m- i -2 ) (m- i -3 ) ,  

bmi2 = 6(i+ l ) ( i+2) (m-  i - 2 ) (m- i -3 ) ,  

bmi3 =4(i+ l ) ( i+2) ( i+3) (m- i -3 ) ,  

bmi4 = (i+ l ) ( i+2)( i+3)( i+4) ,  

bmik = 0, otherwise. 

F and H are convert matrices from the curve X (u)  , X (v)  into the Bkzier curve. 

Proofi The X(u, v) surface of degree m x n can be written as the B6zier surface of 

degree m x n  as follows 

where 

f l j  = ~ ~ ~ ~ o f i , q r s h s j ,  qrs are the contol points of the surface, X(u, v),  



m,n-2 

+n (n  - 1 )  z BY (u) (v) n0j2q, j 
i, j = O  

where L 1 4 1 0 ,   and A014 are the usual forward difference operators given as: 



Now, we want to raise the degree of equation (3.42) as the Bezier surface of degree 

m x n. We need to use the formula given in Monterde and Ugail(2004) i.e, 

Thus we have, 

- - 
1 

( ( n  - i ) (n  - i - l )By(t)  
n(n - 1 )  

V iE {O,l, . . .  , n - 2 )  and 

By using (3.47) and (3.48) in (3.42), we get 



where 

Due to the fact that { ~ ~ ( u ) B ; ( v ) } ~ ~ ~  is a basis of bivariated polynomials, we get 

X(u,  v )  to be biharmonic if and only if { ~ i , j } ~ ~ ~ = ~ ,  for all i, j. 

Corollary 3.5. If we replace the convert matrix and the control points in Theorem 3.3 

of the X(u ,  v)  su$ace by the Said-Ball, DP-Ball, Wang-Ball convert matrix and control 

points {p i j )Tgo by {vij}T&, {d i j }yco ,  {wi j}Tg, ,  we get the bihamwnic condition 

for Said-Ball, DP-Ball and Wang-Ball sullface of degree m x n. 

Remark 3.7. Theorem 3.3 holds for Bkzier if the control points { q i , j } ~ ~ = o  of the 

X(u ,  v) surface is replaced by the Bkzier control points {P,,,};'=~ and also ifthe con- 

vert matrices F and H are being replaced by the identity matrix. 

3.2.1 Bicubic Biharmonic Patch 

In the case n = m = 3 from equation (3.39), it is possible to find an expression of four 

of the control points in terms of the other twelve. In fact, we have obtained that the null 

space of the coefficient matrix of (3.3) is of dimension four. Moreover, it is possible to 

choose free variables points in the four boundaries of the control net. 
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3.2.1.1 Bicubic SaiWang-Ball Biharmonic Equation 

We note that the first case where the biharmonic equation makes sense is for n = m = 3. 

In this case, the solution of equation (3.39) exists. Then, the inner control points by 

biharmonic condition for the bicubic Said-Ball surface are: 

3.2.1.2 DP-Ball Biharmonic Equation 

If we replace the convert matrix and the control points in Theorem 3.3 of the X ( u ,  v) 

surface by the DP-Ball convert matrix and control points { D ~ ~ } : : ~ ,  we get the bihar- 

monic condition for the DP-Ball surface of degree m x n. 

We note that the first case where the biharmonic equation makes sense is for n = m = 3. 

In this case, the solution of equation (3.39) exists. Then, the inner control points by 

biharmonic condition for the bicubic DP-Ball surface are: 

The masks represented below are for the bicubic biharmonic condition where the left 

represents Bkzier, the middle denotes SaidIWang-Ball, while the right signifies DP- 

Ball. 
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3.2.2 Graphical Examples for Biharmonic Bicubic Patch 

Here we give some graphical examples for bicubic SaidIWang-Ball and bicubic DP- 

Ball generated by four sets of control points such that the surface have the same bound- 

aries. 



3.2.2.1 Graphical Examples for Biharmonic Bicubic Said/Wang-Ball Patch 

To generate the Biharmonic Said-Ball surface, we have chosen four sets of boundary 

curves. 

Example 3.10. Given the boundary control points set 1 of the bicubic Said-Ball surface 

as follows 

voo = (O,O, I), v01 = (0,1815, -491/625), vo;! = (0,1415, -71/625), vo3 = (0,4, l ) ,  

V I O  = (6/5,0,2113/1000),~~~ = (1,0,23/8), v13 = (9/5,4,631/250), 

v23 = (11/5,4,631/250), V30 = (4,0, l),v3, = (4,915, -885/1687), and 

V32 = (4,11/5, -885/1687),vg3 = (4,4,1). 

Then, the inner control points of the bicubic Said-Ball surface by biharmonic condition 

are 

VI 1 = (3/2,27/10,1557/2347), vl2 = (3/2,5/2,1666/ 1667), 

v21 = (8/5,27/10,1576/1509), v22 = (8/5,5/2,13 101949). The graph of the above 

surface is in Figure 3.7(c) while its boundary with control points is in Figure 3.7(c). 

Example 3.11. Given the boundary control points set 2 of the bicubic Said-Ball surface 

as follows 

VOO = (olo, o), ~ 0 1  = (0,914, -9/2), V o 2  = (0,3/4,9/2), Vo3 = (0,3,0) 

VIO = (9/4,0, -9/2), ~ 2 0  = (3/4,0,9/2), v13 = (3/2,3, -3/2), v23 = (3/2,3, -3/2), 

V30 = (3,o10)v3i = (3,3/2,3/2), v32 = (3,3/2,3/2),v33 = (3,3,0). 

Then, the inner control points of the bicubic Said-Ball surface by biharmonic condition 

are v l l  = (15/8,15/8, -9/2), vl2 = (15/8,9/8, O), v2l = (9/8,15/8, O), and 

v22 = (9/8,9/8,9/2). The graph of the above surface is in Figure 3.8(c) while its 

boundary with control points is in Figure 3.8(c). 



Example 3.12. Given the boundary control points set 3 of the bicubic Said-Ball sur- 

face as follows 

voo = ( 1 / 2 , 0 , O ) , ~ ~ ~  = (433/3171,3/5,0),~20 = (-1/2,27/50,0),~30 = (-1/2,0,0), 

vol = (31/80,0,27/40), vm = (29/80,0,5/8), ~ 0 3  = (1 ,O,  I ) ,  v13 = (223/817,3/2,1), 

~ 2 3  = (- 1,27125, I),  ~ 3 1  = (-31/80,0,27/40), vg2 = (-29/80,0,5/8), vg3 = (- 1,0,1). 

Then, the inner control points of the bicubic Said-Ball surface by biharmonic condition 

are 

v l l  = (569/2779,21/20,27/40), vl2 = (569/2779,21/20,5/8), 

~ 2 1  = (-3/4,81/100,27/40), and v22 = (-3/4,81/100,5/8). The graph of the above 

surface is in Figure 3.9(c) while its boundary with control points is in Figure 3.9(c). 

Example 3.13. Given the boundary control points set 4 of the bicubic Said-Ball sur- 

face as follows 

voo = (-585163 1,1378/483,0), V ~ O  = (-2547163 1, -689/483,0), 

V ~ O  = (-7101173, -609/500,0), ~ 3 0  = (5851631, - 1378/483,0), 

V O ~  = (- 11 1/581,2342/3983,21/40), vm = (-327/3697,457/1674.2/5), 

vo3 = (-585/631,1378/483, l),v13 = (-6221163, -22341793, I),  ~ 2 3  = (-1 170/631, -13781483, I 

~ 3 1  = (51211599, -1699/1724,9/20), 

~ 3 2  = (16117124, -173/2475,13/40),~~~ = (5851631, -13781483,l). 

Then, the inner control points of the bicubic Said-Ball surface by biharmonic condition 

are 

~ 1 1  = (-2707/701, -485/209,39/80), ~ 1 2  = (- 14531367, -2491/1233,29/80), 

v21 = (- 12621433, - 1 135/508,39/80), and v22 = (-250183, - 1669/863,29/80). 

The graph of the above surface is in Figure 3.10(c) while its boundary with control 

points is in Figure 3.10(c). 



3.2.2.2 Graphical Examples for Biharmonic Bicubic DP-Ball Surface 

To generate the biharmonic DP-Ball surface, we have chosen four sets of boundary 

curves. 

Example 3.14. Given the boundary control points set 1 of the bicubic DP-Ball surface 

as follows 

do0 = (o,o, l),d30 = (4 ,0 ,  l ) ,  dol = (0,1815, -491/625), d3i = (4,  -215, -41/2500), 

4 2  = (0,4,441/625),d32 = (4,1115,-885/1687), do3 = (041),d33 = (4 ,4 ,  I ) ,  

d ~ o  = (-2/5,0,617/500),d20 = (16/5,0,  1379/500),d13 = (-2/5,4,252/125) and 

d23 = (4,2215, -4112500). 

Then, the inner control points of the bicubic DP-Ball surface by biharmonic condition 

are 

dl = (215, -815,101 1/2500), d12 = (215, -4, - 1076/625), 

d21 = (- 1615,215, -2177/ 1250), d22 = (-2215, -2215, -249912500). The graph 

of the above surface is in Figure 3.7(e) while its boundary with control points is in 

Figure 3.7(f). 

Example 3.15. Given the boundary control points set 2 of the bicubic DP-Ball surface 

as follows 

doo = (O,o,O),d~o= (3 /2 ,0 ,  -9),d20= (3/4,0,9/2),d3o = (3,0,0),dol = (0,312,-9), 

d02= (0,3/2,9),do3 = (0,3,0),dls = (0,3,-l) ,d23 = (3,3,-1),d31 = (3 ,0 ,1) ,  

d32 = (3,3,l),d33 = (3,370)- 

Then, the inner control points of the bicubic DP-Ball surface by biharmonic condition 

are 

dl1 = (-312, -312, 18),d12 = (0 ,  -312, -8), d21 = (-3/2,0,  - l o ) ,  and 

d22 = (-3,  -3,O). The graph of the above surface is in Figure 3.8(e) while its boundary 

with control points is in Figure 3.8(f). 



Example 3.16. Given the boundary control points set 3 of the bicubic DP-Ball surface 

as follows 

doo = (1/2,0,0),dlo = (9891974,l 1/25,0),d20 = (-1225/974,8/25,0), 

d30 = (-1/2,0,0),dO1 = (11/40,0,3/20),d02 = (29/40,0,21/20),  d03 = ( 1 , 0 , l ) ,  

d13 = (1659/817,32/25, 1),d23 = (-2055/817,11/25, I ) ,  d3] = (-11/40,0,3/20),  

d32 = (-29/40,0, 21/20),d33 = (-l,O, l). 

Then, the inner control points of the bicubic DP-Ball surface by biharmonic condition 

are 

dl 1 = (-4941625, - 1 1/25, -3/20),  d12 = (-8621491, -32125, -21/20), 

d21 = (9791948,-8/25, -3/20),  and dz2 = (17901799, - 11/25, -21120). The graph 

of the above surface is in Figure 3.9(e) while its boundary with control points is in 

Figure 3.9(f). 

Example 3.17. Given the boundary control points set 4 of the bicubic DP-Ball surface 

as follows 

doo = (-585163 1,13781483, O ) ,  dlo = (- 1297/363,1763/ 1000, O ) ,  

d20 = (-9271500, - 1763/500,0), d30 = (5851631, - 1378/483,0), 

dol = (-631/1250,1553/1000, l / lO),dm = (-749/2500,923/1000,17/20), 

do3 = (-585/631,1378/483,1), dl3 = (-2356/493,834/835,1), 

d23 = (8341835, -23561493, I ) ,  d3, = ( 1  12111555, -2773/1250,1/20), 

d32 = (29212323, -242/625,4/5), d33 = (585163 1 ,  - 13781483,l). 

Then, the inner control points of the bicubic DP-Ball surface by bihamonic condition 

are 

d l ]  = (24671783, -244/527, - 1/10),d12 = ( 1  1791284,5821625, - 17/20), 

d21 = (616/299,2689/930, - 1/20),  and dz2 = (- 10031508 1,2401/1038, -415). The 

graph of the above surface is in Figure 3.10(e) while its boundary with control points 

is in Figure 3.10(f). 



Figure 3.7. Control points set 1 by biharmonic condition on (a) BCzier patch (b) BCzier 
boundary (c) SaidIWang-Ball patch (d) Said/Wang-Ball boundary (e) DP-Ball patch (f) 
DP-Ball boundary. 



Figure 3.8. Control points set 2 by biharmonic condition on (a) BCzier patch (b) BCzier 
boundary (c) SaidIWang-Ball patch (d) SaidrWang-Ball boundary (e) DP-Ball patch (f) 
DP-Ball boundary. 



Figure 3.9. Control points set 3 by biharmonic condition on (a) BCzier patch (b) BCzier 
boundary (c) SaidNang-Ball patch (d) SaidNang-Ball boundary (e) DP-Ball patch ( 0  
DP-Ball boundary. 



Figure 3.10. Control points set 4 by biharmonic condition on (a) Bkzier patch (b) 
BCzier boundary (c) SaidJWang-Ball patch (d) Sai d/Wang-Ball boundary (e) DP-Ball 
patch (f) DP-Ball boundary. 



The following comparisons between BCizer surface, SaidIWang-Ball surface and DP- 

Ball surface was made using biharmonic condition. We note that all surfaces have the 

same four boundary curves. 

Table 3.2 
Comparison between the aredcomputational time of Bdzier, Said~Wang-Ball and DP- 
Ball by using biharmonic condition. 

-- 

Control PO=~ BCzier 

Set 1 
Area 18.765491 

Computational time 0.0933 

Set 2 
Area 14.064599 

Computational time 0.0952 

Set 3 
Area 1.867949 

Computational time 0.10458 

Set 4 
Area 10.045463 

Computational time 0.0932 

From Table 3.2, the biharmonic condition is applied to the bicubic patches of Said-Ball 

surface, Wang-Ball surface and DP-Ball surface, and compared with the existing work 

for bicubic patch of BCzier surface. It is discovered that the bicubic SaidlWang-Ball 

surface and bicubic BCzier surface have the same surface area but bicubic SaidIWang- 

Ball surface is better than the bicubic BCzier surface in terms of the computational 

time required to construct the surfaces by biharmonic condition. On the other hand, if 

we compare bicubic BCzier with bicubic DP-Ball by using the biharmonic condition, 

we see that the BCzier is better than DP-Ball in terms of minimal surface area and 

computational time. 

3.2.3 Biquartic Biharmonic Equation 

We note that the second case where the biharmonic equation makes sense is for n = 

m = 4. In this case, the solution of equation (3.39) exists. Then, the inner control 

points by biharmonic condition for the biquartic surface are given in Sections 3.2.3.1 

until 3.2.3.3. 
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3.2.3.1 Biquartic Said-Ball Biharmonic Equation 

Corollary 3.6. The biquartic Said-Ball surface is bihamzonic ifand only i f  



The masks below show the biharmonic conditions for degree 4. The first column rep- 

resents the BCzier, while the second column denotes Said-Ball. 





3.2.3.2 Biquartic DP-Ball Biharmonic Equation 

Corollary 3.7. The biquartic DP-Ball sugace is biharmonic ifand only if 



The masks below show the biharmonic conditions for degree 4. The first column rep- 

resents the BCzier, while the second column denotes for DP-Ball. 





3.2.3.3 Biquartic Wang-Ball Biharmonic Equation 

Corollary 3.8. The biquartic Wang-Ball sui$ace is biharrnonic ifand only i f  



The masks below show the biharmonic conditions for degree 4. The first column rep- 

resents the BCzier, while Wang-Ball is shown in the second column. 







3.2.4 Graphical Examples for Biharmonic Biquartic Patch 

Here we give some graphical examples for biquartic SaidIWang-Ball and biquartic 

DP-Ball generated by four sets of control points such that the surface have the same 

boundaries. 

3.2.4.1 Graphical Examples for Biharmonic Biquartic Said-Ball Patch 

To generate the biharmonic Said-Ball surface, we have chosen four sets of boundary 

curves. 

Example 3.18. Given the boundary control points set 1 of the biquartic Said-Ball sur- 

face as follows 

voo = (O,O, I), vol = (0,12/5, - 119/625), vm = (0,14/5,21/625), 

vos = (0,16/5,161/625), v a  = (0,4, I), vlo = (4/5,0,871/500), 

~ 2 0  = (7/5,0,499/250), V ~ O  = (2,0,9/4), ~ 4 0  = (4,0, I), ~ 4 1  = (4,615, -41/2500), 

v42 = (4,2, -41/2500), v43 = (4,1415, -41/2500), vqq = (4,4, I), and vo4 = (0,4, I), 

~ 1 4  = (6/5,4,252/125), v24 = (24252/125), v34 = (14/5,4,252/125). 

Then, the inner control points of the biquartic Said-Ball surface by biharmonic con- 

dition are 

VII  = (-0.1381, -0.5000, -0.4859), v12 = (-0.0004, -0.0013, -0.0001), 

~ 1 3  = (0.2899,1.2542,0.2305), v21 = (0.8768,O. 1 125,0.0982), 

~ 2 2  = (1.1576,1.1344,0.4138), ~ 2 3  = (1.2375,1.6875,0.5069), 

~ 3 1  = (1.4899, -0.2125,0.2372), v~~ = (1.2375,1.6875,0.5069), 

v33 = (1.9440,1.5583,0.5162). The graph of the above surface is in Figure 3.1 1(b) 

while its boundary with control points is in Figure 3.1 l(f). 



Example 3.19. Given the boundary control points set 2 of the biquartic Said-Ball sur- 

face as follows 

voo = (1/2,0,0), VOI = (17/40,0,9/20), vm = (1/2,0,3/5), vo3 = (23/40,0,3/4), 

v04 = (l,O,l), v10 = (251/974,2/5,0), vz0 = (-59/487,19/50,0), 

v30 = (- 112,9125, o), ~ 4 0  = (- 1/2,0, o), ~4~ = (- 17/40,0,9/20), 

v42 = (-1/2,0,3/5), v43 = (-23/40,0,3/4),~~~ = (-1,0,l), and 

v~=(1,0,1),~~4=(421/817,1,1),~~=(-198/817,43/50,1),~~~= (-1,18/25,1). 

Then, the inner control points of the biquartic Said-Ball surface by biharmonic condi- 

tion are 

vll = (-0.2246, -0.0548, -O.0857),vl2 = (0.0387, -0.3840, -0.3548), 

~ 1 3  = (-O.OlO2,0.3253,0.3616), v2l = (-0.4907,0.0980,0.0884), 

~ 2 2  = (-0.4286,0.2885,0.3288), ~ 2 3  = (-0.4580,0.3563,0.4688), 

v31 = (-0.9396,0.0053,0.0616), v32 = (-0.9227,O. 1963,0.3 187), 

v33 = (-1.0154,0.2399,0.4554). The graph of the above surface is in Figure 3.12(b) 

while its boundary with control points is in Figure 3.12(f). 

Example 3.20. Given the boundary control points set 3 of the biquartic Said-Ball sur- 

face as follows 

voo = (-5851631,13781483, O), vol = (-1091/2500,1343/1000,7/20), 

vw = (-1170/2909,619/500, 19/4O),vm = (-46/125,1133/1000,3/5), 

VM = (-585/631,1378/483,1), vl0 = (-450001/150000,0,0), 

V ~ O  = (-9851363, -729/827,0), ~ 3 0  = (-6651274, - 1763/1000,0), 

~ 4 0  = (5851631, -1378/483,0),~~~ = (2091400, -201/125,3/10), 

~ 4 2  = (80311897, -512/393,17/40), ~ 4 3  = (1171361, -1247/1250,11/20), 

v44 = (5851631, -13781483, I), and vo4 = (-5851631,13781483, l), 

~ 1 4  = (-12811449, -5851631, I), V~ = (-4160/2201, -4160/2201, I), 

~ 3 4  = (-5851631, - 13781483,l). 

Then, the inner control points of the biquartic Said-Ball surface by bihannonic condi- 



tion are 

v l l  = (0.8191, -0.7792, - 0 . 0 6 8 5 ) , ~ ~ ~  = (0.0005,0.0014, -0.0003), 

~ 1 3  = (-0.1363, - 1.0582,0.2920), v2l = (0.0191, - 1.2682,0.0538), 

~ 2 2  = (-0.4799, - 1.3567,0.2466), v~~ = (-0.3081, - 1.4224,0.3641), 

~ 3 1  = (0.325 1, - 1.7593,0.3457), vg2 = (0.0404, - 1.749 1,0.2307), 

v33 = (0.3251, - 1.7593,0.3457). The graph of the above surface is in Figure 3.13(b) 

while its boundary with control points is in Figure 3.13(f). 

Example 3.21. Given the boundary control points set 4 of the biquartic Said-Ball sur- 

face as follows 

voo = (0,0, l), vo1 = (0,0.6667,0.3333), vo2 = (0,1,0.3333), vo3 = (0,1.3333,0.3333), 

v04= (0,2,1),v10=(0.6667,0,0.3333),v20= ( 1 , 0 , 0 . 3 3 3 3 ) , ~ ~ ~ =  (1.3333,0,0.3333), 

VM = (2,0,1), vql = (2,0.6667,0.3333), vq2 = (2,1,0.3333), v43 = (2,1.3333,0.3333), 

v44 = (2,2,1), and v~ = (0,2, l),v14 = (0.6667,2,0.3333), v24 = (1,2,0.3333), 

v34 = (1.3333,2,0.3333). 

Then, the inner control points of the biquartic Said-Ball surface by biharmonic condi- 

tion are v l l  = (-0.1270, -0.1270, -0.3333), v12 = (-0.1949, -0.6909,0.4961), 

~ 1 3  = (0.0913,0.7579, -0.3333), ~ 2 1  = (0.4643,O. 13 10, -0.3333), 

~ 2 2  = (0.5982,0.5982, - 0 . 3 3 3 4 ) , ~ ~ ~  = (0.5833,0.9166, -0.3334), 

~ 3 1  = (0.7579,0.0913, -0.3333), v32 = (0.9166,0.5833, -0.3334), 

v33 = (0.8968,0.8968, -0.3334). The graph of the above surface is in Figure 3.14(b) 

while its boundary with control points is in Figure 3.14(f). 



3.2.4.2 Graphical Examples for Biharmonic Biquartic DP-Ball Patch 

To generate the biharmonic DP-Ball surface, we have chosen four sets of boundary 

curves. 

Example 3.22. Given the boundary control points set 1 of the biquartic DP-Ball sur- 

face as follows 

dm = (O,O, l), dol = (0, -1.2,0.3280),dm = (0,2.8,0.O336),do3 = (0,5.2,1.6720), 

d04= (0,4,1),d10= (-2,-1,1.3110),d20 = (2,-0.6,2.3274),d30= (6,1,0.6890), 

d40 = (4,0, 1),d41 = (4, -2.4, I), d42 = (4,2, -0.0164), d43 = (4,6.4, l),d44 = (4,4,l), 

andd~=(0,4,l),d~~=(-2,4.2,0.6390),d~~=(2,3.8,1.6554), 

d34 = (6,3.8,1.3610). 

Then, the inner control points of the biquartic DP-Ball surface by biharmonic condi- 

tion are 

dl1 = (-4.2321, -4.4879, -1.6939),d12 = (-2.8036,1.9763, -0.8062), 

dl3 = (-2.4464,4.9424,0.8444), d2, = (1.1964, -3.4237,1.4876), 

d22 = (1.1964, 1.1763,0.1602),d23 = (1.9107,5.7085,1.5621), 

d31 = (5.5536, -1.8576,0.2224),d32 = (5.9107,1.9085, -0.1097), 

d33 = (5.9107,6.1085,1.2677). The graph of the above surface is in Figure 3.11(d) 

while its boundary with control points is in Figure 3.1 l(h). 

Example 3.23. Given the boundary control points set 2 of the biquartic DP-Ball sur- 

face as follows 

doo = (0.5000,0, O), dol = (0.2748,0, -0.4500), do2 = (0.5000,0,0.6000), 

4 3  = (1.2248,0,1.4500), dm = (1.0000,0,1.0000), dlo = (1.6365,0.0600, O), 

d20 = (-0.121 1,0.3800,0), d30 = (- 1.6367, -0.0600,O) , d40 = (-0.5000,0,0), 

d4* = (-0.2748,0, -0.4500), d42 = (-0.5000,0,0.6000), d43 = (- 1.2248,0,1.4500), 

dqq = (- 1.0000,0,1.0000), and dW = (1.0000,0,1 .0000),d14 = (3.2732,0.4200,1), 

d24 = (-0.2424,0.8600,1 .OOOO) , d34 = (-3.2728, -0.4200,l .OOOO) . 



Then, the inner control points of the biquartic DP-Ball surface by biharmonic condition 

are 

dI1 = (0.1821, -1.0408, - 1.2033),d12 = (1.7079, -0.0915,0.3288), 

d13 = (3.9040,0.4158,1.2993), d2] = (-0.3074, -0.1915, -0.7212), 

d22 = (-0.4286,0.2885,0.3288), d23 = (-0.3304,1.0632,1.4199), 

d3, = (- 1.0054, -0.0642, -0.6007), d32 = (- 1.9820, -0.2768,0.5699), 

d33 = (-4.0679, -0.6368,1.4199). The graph of the above surface is in Figure 3.12(d) 

while its boundary with control points is in Figure 3.12(h). 

Example 3.24. Given the boundary control points set 3 of the biquartic DP-Ball sur- 

face as follows 

dm = (-0.9271,2.8530,0), do, = (- 1.0298,3.1680, -0.3750), 

do;! = (-0.4022, 1.2380,O.475O),do3 = (-0.8246,2.5380,1.3750), 

dm = (-0.9271,2.8530,1 .OOOO),dlo = (- 1.7867,5.4977,0), 

d20 = (-2.7135, -0.8815,0),d30 = (1.7865, -5.4975,o),dqO = (0.9271, -2.8530,0), 

d41 = (1.2245, -3.7688, -0.3750), dq2 = (0.4233, -1.3028,0.4250), 

d43 = (0.6293, - 1.9376,1.3750), d4,4 = (0.927 1, -2.8530,1.0000), and dm = (-0.927 1,2.8530,1.00 

(-3.8160,5.7416,1.0000), 

d24 = (- 1.8900, - 1.89OO,1 .OOOO) , d3q = (3.8 160, -5.7420,l .OOOO) . 

Then, the inner control points of the biquartic DP-Ball surface by biharmonic condi- 

tion are 

dl 1 = (3.9568,6.4770, -0.9400),d12 = (0.0493,2.4836,0.2966), 

d13 = (-3.5217,4.9675,1.2620), d2, = (-1.2165, -0.6161, -0.5784), 

d22 = (-0.4799, - 1.3568,0.2466), d23 = (- 1.3746, -2.0873,1.3524), 

d3j = (2.2755, -6.8723, -0.4880), d32 = (1.9843, -2.4802,0.3774), 

d33 = (4.5341, -4.3268,1.3524). The graph of the above surface is in Figure 3.13(d) 

while its boundary with control points is in Figure 3.13(h). 



Example 3.25. Given the boundary control points set 4 of the biquartic DP-Ball sur- 

face as follows 

doo=(O,O,l),dol = (0,-1,1),do2 = (0,1,0.3333),do3 = (O,3,l),dw = (0,2,l), 

dl0 = (-1,0, l),d2~ = (1,0,0.3333),d3~ = (3.0000,0, l.0000),d40 = (2,0,1), 

d41 =(2,-l,1),d4~=(2,1,0.3333),d~3=(2,3,l),d~=(2,2,1),anddo4=(0,2,l), 

d14= (-1,2,l),dZ4 = (l,2,O.3333),d34 = (3,2,l). 

Then, inner control points of the biquartic DP-Ball surface by biharmonic condition 

are 

dll = (-2.1161, -2.1 161, 1.0001),d12 = (-1.4018,0.5982,0.3333), 

dl3 = (-1.2232,2.7768,1.0000), d2i = (0.5982, - 1.4018,0.3333), 

d22 = (0.5982,0.5982, -0.3334),d23 = (0.9554,2.9554,0.3333), 

d3i = (2.7768, - 1.2232,l .OOOO), d32 = (2.9554,0.9554,0.3333), 

d33 = (2.9554,2.9554,1.0000). The graph of the above surface is in Figure 3.14(d) 

while its boundary with control points is in Figure 3.14(h). 

3.2.4.3 Graphical Examples for Biharmonic Biquartic Wang-Ball Patch 

To generate the biharmonic Wang-Ball surface, we have chosen four sets of boundary 

curves. 

Example 3.26. Given the boundary control points set 1 of the biquartic Wang-Ball 

surface as follows 

WOO = (O,O, 1), W O ~  = (0,3.6, -0.7856), w(n = (0,3.2, -0.4496), 

~ 0 3  = (0,2.8,-0.1136), ww = (0,4, l),w10 = (1.2,0,2.1130),~~~ = (1.1,0,2.4940), 

w30 = (1,0,2.8750), w m  = (4,0,l), w41 = (40,1.8, -0.5246), w42 = (4,2, -0.5246), 

w43 = (4,2,-0.5246),w4= (4,4,l),andwo4= (0,4,1),w14= (1.8,4,2.5240), 

~ 2 4  = (2,4,2.5240), w34 = (2.2,4,2.5240). 

Then, the inner control points of the biquartic Wang-Ball surface by biharmonic con- 

dition are 



W* 1 = (-0.9107, -2.9250, -2.0070), w12 = (-0.1272, -1.1969, -0.971 I), 

w13 = (-0.2478, -1.5781, -0.2670), ~ 2 1  = (-0.0772, - 1.0969, -0.9486), 

~ 2 2  = (0.3296, -0.2477, -0.3300), ~ 2 3  = (0.2844, -0.4531, -0.2120), 

~ 3 1  = (-0.1478, -1.3781, -0.8916), wg2 = (0.3344, -0.3531, -0.1895), 

w33  = (0.2741, -0.5938, -0.0883). The graph of the above surface is in Figure 3.1 l(c) 

while its boundary with control points is in Figure 3.1 l(g). 

Example 3.27. Given the boundary control points set 2 of the biquartic Wang-Ball 

surface as follows 

WOO = (0.5000,0,0), W O ~  = (0.3875,0,0.6750), wm = (0.3750,0,0.6500), 

W O ~  = (0.3625,0,0.6250), ~ 0 4  = (1 .OOOO, 0 , l  .OOOO) , W ~ O  = (0.1365,0.6000,0), 

W ~ O  = (-0.1817,0.5700,0), w 3 0  = (-0.5000,0.5400,0), W M  = (-0.5000,0,0), 

~ 4 1  = (-0.3875,0,0.6750), ~ 4 2  = (-0.3750,0,0.6500), ~ 4 3  = (-0.3625,0,0.6250), 

w q q  = (-1.0000,0,1.0000), and wo4  = (1.0000,0,1.0000), w 1 4  = (0.2730,1.5000,1), 

~ 2 4  = (-0.3635,1.2900,1 .WOO), ww = (- 1 .OOOO, 1.0800,1.0000). 

Then, the inner control points of the biquartic Wang-Ball surface by biharmonic con- 

dition are 

~ 1 1  = (-0.8924, -0.4232, -0.5304), WI;! = (-0.5358,0.0556, -0.1636), 

~ 1 3  = (-0.2558, -0.0181, -0.2489), ~ 2 1  = (-1.0132, -0.0644, -0.1386), 

W ~ Z  = (-0.8280,O. 1842,0.0398), ~ 2 3  = (-0.8486,O. 1566, -0.0078), 

~ 3 1  = (-1.5454, -0.2581, -0.1989), ~ 3 2  = (- 1.3260,0.0366,0.0172), 

w 3 3  = (- 1.3534, -0.0003, -0.0379). The boundary with control points of the above 

surface is in Figure 3.12(g) while its graph is in Figure 3.12(c). 

Example 3.28. Given the boundary control points set 3 of the biquartic Wang-Ball 

surface as follows 

WOO = (-0.9271,2.8530,0), W O ~  = (-0.1910,0.5880,0.5250), 

W O ~  = (-0.1397,0.4305,0.4625), W O ~  = (-0.0884,0.2730,0.4000), 



ww = (-0.927 1,2.853,1), W ~ O  = (-4.0365, - 1.4265,0), w20 = (-4.0702, - 1.3222,0), 

W ~ O  = (-4.1041, - 1 . 2 1 8 , 0 ) , ~ ~ ~  = (0.9271, -2.853,0), w~~ = (0.3202, -0.9855,0.45), 

~ 4 2  = (0.1714, -0.5277,0.3875), ~ 4 3  = (0.0226, -0.0699,0.325), 

W M  = (0.9271, -2.853,1), and wo4 = (-0.9271,2.853, I ) ,  w14 = (-3.816, -2.8172,l) 

, WU = (-2.835 1 ,  -2.835 1 ,  1 ) ,  w~~ = (- 1.8542, -2.8530,l). 

Then, the inner control points of the biquartic Wang-Ball surface by biharmonic con- 

dition are 

W ~ I  = (4.1886, -2.0473, -0.4165), ~ 1 2  = (1.5235, -1.9860, -0.1852), 

~ 1 3  = (1.2565,0.0884, -0.2929), ~ 2 1  = (2.0458, -2.0930, -0.1227), 

~ 2 2  = (0.6386, -1.9889, -0.03271, w~~ = (0.7408, - 1.8336, -0.1121), 

~ 3 1  = (2.9218, -2.0361, -0.1679), ~ 3 2  = (1.2630, -1.9406, -0.0496), 

w33 = (1.4156, - 1.7836, -0.1347). The graph of the above surface is in Figure 3.13(c), 

while its boundary with control points is in Figure 3.13(g). 

Example 3.29. Given the boundary control points set 4 of the biquartic Wang-Ball 

surface as follows 

woo = (070, I ) ,  WOl = (0,  L O ) ,  w02 = (O,l,O),wos = (0, L O ) ,  w04 = (0,2, I ) ,  

w lo  = ( 1 , 0 , 0 ) , w 2 ~  = ( 1 1 0 1 0 ) 1 w 3 ~  = (l,o,o),w40 = ( 2 > 0 j  l)yw41 = (2, 

~ 4 2  = (2, l ,O),  w43 = ( 2 , 1 , 0 ) , ~ 4 4  = (2,2, I ) ,  and wo4 = (0,2,1),wl4 = (1,2,0) ,  

w24 = (1 ,2 ,0 ) ,~34  = (1,2,0)- 

Then, inner control points of the biquartic Wang-Ball surface by biharmonic condition 

are 

wll = (-0.7857, -0.7857, - 1 .OOOO), w12 = (-0.2054, -0.2054, - 1 .OOOO), 

wl3 = (-0.2946, -0.2946, -0.3304), ~ 2 1  = (-0.2054, -0.2054, - 1 .OWO), 

wzz = (0.0960,0.0960, - 1 .WOO), w23 = (0.0625,0.0625, - 1 .OOOO), 

w31 = (-0.2946, -0.2946, - 1 .OOOO) , ~ 3 2  = (0.0625,0.0625, - 1 .WOO), 

w33 = (0.0179,0.0179, -1.0000). The graph of the above surface is in Figure 3.14(c) 

while its boundary with control points is in Figure 3.14(g). 



Figure 3.11. Control points set 1 by biharmonic condition on (a) BCzier patch (b) 
Said-Ball patch (c) Wang-Ball patch (d) DP-Ball patch (e) BCzier boundary (f) Said- 
Ball boundary (g) Wang-Ball boundary (h) DP-Ball boundary. 



Figure 3.12. Control points set 2 by biharmonic condition on (a) Btzier patch (b) 
Said-Ball patch (c) Wang-Ball patch (d) DP-Ball patch (e) BCzier boundary (f) Said- 
Ball boundary (g) Wang-Ball boundary (h) DP-Ball boundary. 



Figure 3.13. Control points set 3 by biharmonic condition on (a) BCzier patch (b) 
Said-Ball patch (c) Wang-Ball patch (d) DP-Ball patch (e) BCzier boundary (f) Said- 
Ball boundary (g) Wang-Ball boundary (h) DP-Ball boundary. 



Figure 3.14. Control points set 4 by biharmonic condition on (a) BCzier patch (b) 
Said-Ball patch (c) Wang-Ball patch (d) DP-Ball patch (e) BCzier boundary (f) Said- 
Ball boundary (g) Wang-Ball boundary (h) DP-Ball boundary. 



Table 3.3 
Comparison between the area/computational time of biquartic Bkziel; biquartic Said- 
Bal1,biquartic Wang-Ball and biquartic DP-Ball by using biharmonic condition. 

Control Points BCzier 
- -  

Area 19.455817 
Set Computational time 0.1938 

Area 1.896763 
Set Computational time 0.1938 

Set 3 
Area 14.0 12209 

Computational time 0.1878 

Set 4 
Area 5.20 1 627 

Comvutational time 0.189 1 

Said-Ball 
19.5 16096 

0.1417 
1.904573 
0.1416 

14.202749 
0.1414 

5.247477 
0.141 1 

Wang-Ball 
19.462083 

0.1343 
1.896 150 
0.1344 

13.960906 
0.1365 

5.207346 
0.1356 

From Table 3.3 , the biharmonic condition is applied to the biquartic patches of Said- 

Ball surface, Wang-Ball surface and DP-Ball surface, and compared with the existing 

work for biquartic patch of BCzier surface. It is discovered that the biquartic BCzier 

surface is better than biquartic Wang-Ball, followed by biquartic Said-Ball and then 

biquartic DP-Ball in terms of surface area for control points Set 1 and Set 4. We also 

discovered that the biquartic Wang-Ball is better than biquartic BCzier and biquartic 

DP-Ball, followed by biquartic Said-Ball in terms of surface area for control points Set 

2 and Set 3. On the other hand, biquartic DP-Ball requires the least computational time 

for all control point sets. 

3.3 Summary 

In this chapter, we derived a general algorithm for harmonic and biharmonic patches. 

These algorithms hold for Btzier if the control points {qi,j)ygo of the X(u, v) surface 

is replaced by the BCzier control points { f i , j } y ' o  and also if the convert matrices F 

and H are being replaced by the identity matrix. 



The harmonic and biharmonic conditions are applied to the Said-Ball surface, DP-Ball 

surface and Wang-Ball surface. The computational time for Said-Ball surface, DP- 

Ball surface and Wang-Ball surface are compared with BCzier surface. In Table 3.1 

and Table 3.2, the results show that the bicubic patch for SaiWang-Ball are better 

than BCzier patch in terms of computational time. However, the DP-Ball consumed 

the most computational time. On the other hand for biquartic biharmonic, it is seen 

in Table 3.3 that the DP-Ball takes lesser time than the others while BCzier requires 

much more computational time. The calculation of the area of each surface is also 

considered. 



CHAPTER FOUR 

POLYNOMIAL SOLUTIONS OF FOURTH ORDER LINEAR 

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS AND 

EXTREMAL OF THE DIRICHLET FUNCTIONAL IN TERMS 

OF BALL SURFACE 

In this chapter, we derived two general algorithms to generate any surface used in 

CAGD from their four boundary curves, where the first algorithm used the polynomial 

solutions of fourth order linear elliptic PDEs, while the second algorithm used the 

extremal of the Dirichlet functional. 

4.1 Polynomial Solutions of Fourth Order Linear Elliptic PDEs in terms of Ball 

Surface 

Consider the fourth order PDE in the form of 

where A, B, C, D, E E R are constants. 

We present a general algorithm to compute the polynomial solutions of any fourth- 

order differential equation and any square surface X (u, v) . 

First, we note that the boundary control points of surface X(u,v) determine the first 

column and the first row of the coefficients of the polynomial expression, as described 

below. 



where bij are control points of surface X(u, v); X:(u),X;(v) are basis functions of 

surface X(u ,  v) and ajj E IR3. The relation between the first row of polynomial coeffi- 

cients {ao,};=o with boundary control points {boj}y=o can be defined as follows. On 

substituting u = 0 in (4.2), we get 

so that 

is a curve of degree n, Then, we can write equation (4.4) in monomial matrix form as 

follows 

where ckj  is a monomial matrix form of curve Xy(v). On applying (4.5) in (4.3) we 

have 

where 

Similarly, substituting v = 0 in (4.2) yields 

Next, we shall calculate the second row { ~ j ~ } ~ = ~ ,  and the second column {al  j}y=o of 



coefficients {aij};$o in the same manner. We note that coefficients a01 and a10 are 

already computed. Next, we substitute u = 1 in (4.2) to obtain 

We can write (4.9) in monomial matrix form as 

Hence 

Thus, we have 

We note that al,  can be obtained from the boundary control points of X(u, v) by using 

the coefficients ao, and the coefficients {aij)i>l.  

Similarly, we substitute v = 1 in (4.2) to obtain 

The technique applied to compute the coefficients in the polynomial expression is by 

solving a set of systems of linear equations recursively. Each system corresponds to a 

line parallel to the transverse diagonal of the following scheme. 



We note that the coefficient akl with k + I > n + 1 belongs to a homogeneous system. 

Observe that the only solution is the trivial one. This implies that akl= 0 if k + l  > n + 1. 

The' first non homogeneous system corresponds to the line defined by k + 1 = n + 1. 
The coefficients ao,,+l and an+llo are zeros, but the coefficients al,, and an,l can be 

computed using (4.12) and (4.13). Once the coefficients al,, and a,,l are computed, 

we can assume that the linear system for k + 1 = n + 1 has an associated coefficient 

matrix with non vanishing determinant. In this case, there is a unique solution and we 

can compute all the unknowns ak,l with k + I = n + 1. 

We can now proceed with the line defined by k + 1 = n. Coefficients ao,, and an,o can 

be computed in terms of control points using (4.7) and (4.8), while coefficients al,,-l 

and an-l,l are computed using (4.12) and (4.13). Note that a2,,-2 and an-2,2 have been 

computed in the previous step since they are more to the right, are needed to compute 

al,n-1 and an-l,l. 



Remark 4.1. If we replace the monomial matrix form cij and the control points in 

equations (4.7), (4.8), (4.12) and (4.13) ) of the sur$ace X(u,  v) by the Bkzier mono- 

mial matrix form and Bkzier control points, we obtain the result which similar as in 

Monterde and Ugail(2006). 

For the purpose of our numerical examples of uniform scattered data, we will consider 

the fourth order PDE in the form of 

with the degree-3 and degree-5 boundary curves. 

Let R be a rectangle with vertices Vl ( X I ,  yl ) , V2 (x2, y1 ) , V3 (x2, y2) and Vq (x1 , y2). The 

edges along Vl V2, V4V3, VlV4 and V2V3 is respectively denoted by e l ,  e2, eg and e4 as 

shown in Figure 4.1. 

Figure 4.1. (a) Unit rectangle and (b) Said-Ball control points. 

4.1.1 Said-Ball Polynomial Solutions for Fourth Order Partial Differential Equa- 

tions 

If we replace the monomial matrix form cij in (4.7), (4.8), (4.12) and (4.13) by the 

Said-Ball monomial matrix form (2.62), and the control points bij by the Said-Ball 

control points vij, we get the Said-Ball polynomial solution. 



4.1.1.1 Odd Degree-n Said-Ball Boundary Curves Defined on Rectangular Grid 

The four Said-Ball boundary curves along the edges el,  e2,e-j and e4 are given by 

Cl (u) , C2 (u) , C3 (v) and C4 (v) , respectively with 

n 

C4(v) = S(1, v) = V ~ S ~  (v). 
i=O 

4.1.1.2 Relation Between Cubic Said-Ball Boundary Coefficients and Polyno- 

mial Coefficients Using Fourth Order PDEs 

The relationship between the first row of polynomial coefficients,{aoj)~=o and the 

boundary control points { v ~ , } ~ = ~ ,  are obtained by letting n = 3 in equation (4.7) and 

this gives 

a00 = voo, 

a01 = 2(vo1 - voo), 

a02 = ~ ( V O O  - 4vol+ 2~02 + ~ 0 3 ) ~  

a03 = 12(v01 - ~ 0 2 ) .  

equation (4.8) and this gives 

I 
In a similar way, the relationship between the first column of polynomial coefficients, 

{ ~ ~ o } j = ~  and the boundary control points {vjo}$, are obtained by letting n = 3 in 



Next, we calculate of the second row {aj3}:=, ,the second column { v ~ ~ ) : = ~  and the 

coefficients remained of polynomial coefficients in terms of boundary control point of 

Said-Ball patch with the use of expression (4.15) and by letting n = 3 in the expression 

(4.12) and (4.13) respectively. The following expressions are obtained 

with a22 = q1AF13C, where A, B, and C, (B # 0) are free parameters from equation 

(4.15). 

4.1.1.3 Relation Between Quintic Said-Ball Boundary Coefficients and Polyno- 

mial Coefficients Using Fourth Order PDEs 

The relationship between the first row of polynomial coe f f i c i en t~ ,{a~~)~=~ and the 

boundary control points {voj}&, are obtained by letting n = 5 in equation (4.7) and 

this gives 



a05 = -720(vO2 - vO3). 1 
In a similar way, the relationship between the first row of polynomial coefficients, 

{ojo}:=o and the boundary control points { ~ j ~ } ~ = ~ ,  are obtained b y  letting n = 5 in 

equation (4.8) and this gives 

Next, we calculate the second row {aj5}:=l ,the second column {vj5):=, and the co- 

efficients remained of polynomial coefficients in terms of boundary control point of 

Said-Ball patch with the use of expression (4.15) and by letting n = 5 in the expression 

(4.12) and (4.13) respectively. The following expressions are obtained 



with 

a23 = (BCa14 - A ~ u ~ ~ ) / ( B ~  - AC), 

where A, B, and C, ( B  # 0) are free parameters from equation (4.15). 



4.1.2 DP-Ball Polynomial Solutions for Fourth-Order Partial Differentia1 Equa- 

tions 

If we replace the monomial matrix form ci, in (4.7), (4.8), (4.12)and (4.13) by the DP- 

Ball monomial matrix form, and the control points bij by DP-Ball control points dij, 

we get the DP-Ball polynomial solution. 

4.1.3 Odd Degree-n DP-Ball Boundary Curves Defined on Rectangular Grid 

The four DP-Ball boundary curves along the edges el ,  e2, e3 and e4 are given by C1 ( u )  , C2 ( u )  , C3 (v) 

and C4(v), respectively with 

4.1.3.1 Relation Between Cubic DP-Ball Boundary Coefficients and Polynomial 

Coefficients Using Fourth Order PDEs 

The relationship between the first row of polynomial c o e f f i c i e n t ~ , { a ~ ~ } ~ ~ ~  and the 

boundary control points {doj)~=o, are obtained by letting n = 3 in equation (4.7) and 

this gives 



In a similar way, the relationship between the first column of polynomial coefficients, 

{ajo}:=o and the boundary control points {djo)j=o, are obtained by letting n = 3 in 

equation (4.8) and this gives 

Next, we calculate the second row {aj3}:=, ,the second column {dj3}j=1 and the co- 

efficients remained of polynomial coefficients in terms of boundary control point of 

Said-Ball patch with the use of expression (4.15) and by letting n = 3 in the expression 

(4.12) and (4.13) respectively. The following expressions are obtained 

with a22 = a 3 1 A ~ 1 3 c ,  where A, B, and C ,  (B # 0) are free parameters from equation 

(4.15). 



4.1.3.2 Relation Between Quintic DP-Ball Boundary Coefficients and Polyno- 

mial Coefficients Using Fourth Order PDEs 

The relationship between the first row of polynomial c o e f f i c i e n t ~ , { a ~ ~ ) ~ ~ ~  and the 

boundary control points {doj}:=o, are obtained by letting n = 5 in equation (4.7) and 

this gives 

In a similar way, the relationship between the first row of polynomial coefficients, 

{ajo}:=o and the boundary control points {djo):=o, are obtained by letting n = 5 in 

equation (4.8) and this gives 



Next, we calculate the second row {aj5}:=1 ,the second column {dj5}:=l and the co- 

efficients remained of polynomial coefficients in terms of boundary control point of 

Said-Ball patch with the use of expression (4.15) and by letting n = 5 in the expression 

(4.12) and (4.13) respectively. The following expressions are obtained 

a lA+a C with a;?;! = l 3  , where dij are control points of DP-Ball surface of degree 5 x 5, 

and A, B,  (B  # 0) and C are free parameters (4.15). 



4.1.4 Wang-Ball Polynomial Solutions for Fourth Order Partial Differential Equa- 

tions 

If we replace the monomial matrix form cij in (4.7), (4.8), (4.12) and (4.13) by the 

Wang-Ball monomial matrix form, and the control points bij by Wang-Ball control 

points wij ,  we get the Wang-Ball polynomial solution. 

4.1.4.1 Odd Degree-n Wang-Ball Boundary Curves Defined on Rectangular Grid 

The four Wang-Ball boundary curves along the edges el ,  e2, e3 and e4 are given by 

Cl (u) , C2 (u) , C3 (v) and C4 ( v ) ,  respectively with 

4.1.4.2 Relation Between Cubic Wang-Ball Boundary Coefficients and Polyno- 

mial Coefficients Using Fourth Order PDEs 

Since in application to degree three, cubic Said-Ball curve and Wang-Ball curve gen- 

erate the same results, it is however not necessary to express solutions for both, but it 

is sufficient to show the results for only bicubic Said-Ball as given in Section 4.1.1.2. 



4.1.4.3 Relation Between quintic Wang-Ball Boundary Coefficients and Polyno- 

mial Coefficients Using Fourth Order PDEs 

The relationship between the first row of polynomial coe f f i~ i en t s , {a~~}~=~  and bound- 

ary control points { w ~ , } ~ = ~ ,  are obtained by letting n = 5 in equation (4.7) and this 

gives 

a00 = woo, I 

In a similar way, the relationship between the first row of polynomial coefficients, 

{ajo};=o and boundary control points { ~ j ~ } ~ = ~ ,  are obtained by letting n = 5 in equa- 

tion (4.8) and this gives 



Next, we calculate of the second row {aj5}:=l ,the second column { w j 5 } ~ = l  and the 

coefficients remained of polynomial coefficients in terms of boundary control point of 

Wang-Ball patch with the use of expression (4.15) and by letting n = 5 in the expression 

(4.12) and (4.13) respectively. The following expressions are obtained 

a23 = (BCa41 - A2a41)/(B2 - AC), I 

a where A, B, and C ,  (B # 0)  are free parameters from equation with a22 = 31 



4.1.5 Surface Construction 

To generate a surface which interpolates some given functional values at the vertices of 

the rectangular, we also need to estimate the partial derivatives with respect to x and y at 

these vertices. Partial derivatives are estimated using well-known methods for uniform 

grid, that are forward, central and backward difference methods. Then, the surface 

interpolation defined with boundary curves will be generated by using polynomial form 

(4.2) with all coefficients aij calculated as the above method. To visualize our proposed 

method, we have chosen two datasets taken from well known test functions as follows: 

2 ( ~  - X I ,  if -0 .5  2 ( y - x )  2 0.5, 

C O S ( ~ X J ( X - I . S ) ~ + ( ~ - O . S )  + (4.34) 
2 , if(x - 1.5)~ + (y - 0 . 5 ) ~  5 A, 

I O, otherwise, 

We obtain the first dataset from f (x,y) and it comprises 45 data points with 32 rectan- 

gles in a rectangular domain as in Figure 4.2. 

Figure 4.2. (a) 32 rectangles in the rectangular domain (b) 45 data points from positive 
function, f (x, y). 



The second dataset is taken from g(x ,y)  which consists of 25 data points with 16 rect- 

angles as in Figure 4.3. 

Figure 4.3. (a) 16 rectangles in the rectangular domain (b) 45 data points from positive 
function, g(x,  y ) .  

After several numbers of experimentation, the values of the free parameters A,  B and C 

in (4.15) are set to be 0.0003, 2 and 0.005, respectively, which produced good quality 

of interpolating surfaces for all the datasets. 

4.1.6 Graphical Examples 

Here we give some graphical examples to illustrate the interpolations of the surfaces 

using the bicubic and biquintic Said-Ball, Wang-Ball and DP-Ball by using the test 

function f (x ,  y )  and g ( x ,  y )  . 

4.1.6.1 Bicubic Said/Wang-Ball 

Figure 4.4 shows the initial value for the edge bicubic Said/Wang-Ball control points 

for the datasets in Figure 4.2 (test function f (x ,  y ) )  and Figure 4.3 (test function g(x ,  y ) ) .  

Figure 4.5 shows the boundary curves for each rectangle for the edge control points, 

while the results for the interpolating surfaces cubic boundary curves for each test 

functions are shown in Figure 4.6. The summaries of these results is given in Table 4.1 

and Table 4.3. 



Figure 4.4. Edges SaidlWang-Ball control points for all rectangles (a) Test function 
f (x, y) (b) Test function g(x, y). 

Figure 4.5. Boundary curves for all rectangles (a) Test function 1, f (x,y) (b) Test 
function 2, g(x, y). 

Figure 4.6. Interpolating surface boundary curves (a) Test function 1, f (x,y) (b) Test 
function 2, g (x, y) . 



4.1.6.2 Biquintic Said-Ball 

Following the same approach from the bicubic Said-Ball, Figure 4.7 displays the initial 

value for the edge biquintic Said-Ball control points for the datasets in Figure 4.2 (test 

function f (x,  y)) and Figure 4.3 (test function g (x,  y)). 

Also, Figure 4.8 shows the boundary curves for each rectangle for the edge control 

points, while the results for the interpolating surfaces cubic boundary curves for each 

test functions are shown in Figure 4.9. Table 4.2 and Table 4.4 give the summaries of 

these results. 

Figure 4.7. Edges biquintic Said-Ball control points for all rectangles (a) Test function 
f ( x ,  y) (b) Test function g(x,  y ) .  

Figure 4.8. Quintic Boundary curves for all rectangles (a) Test function 1, f ( x ,y )  (b) 
Test function 2, g(x,y) .  



Figure 4.9. Interpolating biquintic surface boundary curves (a) Test function 1, f (x, y) 
(b) Test function 2, g(x,y). 

4.1.6.3 Bicubic DP-Ball 

Figure 4.10(b) shows the generated surface from the test function g(x,y), while Fig- 

ure 4.10(a) presents the initial value for the edge bicubic DP-Ball control points for the 

test function g(x, y). 

Figure 4.10. (a) Edges DP-Ball control points for all rectangles for test function g(x,y) 
(b) Interpolating surface boundary curves for test function g(x,y). 

4.1.6.4 Biquintic DP-BalI 

Following the same approach in Section 4.1.6.3, we show in Figure 4.1 1, the initial 

value for the edge biquintic DP-Ball control points for the dataset in Figure 4.3 (test 

function g(x, y)) . 

Also in Figure 4.1 l(a), we show the boundary curves for each rectangle for the edge 

control points, while the result for the interpolating surface quintic boundary curves 

for test function g(x,y) is shown in Figure 4.1 l(b). The summaries of these results are 

given in Table 4.2 and Table 4.4. 
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Figure 4.11. (a) Edges biquintic DP-Ball control points for all rectangles for test func- 
tion g(x ,  y )  (b) Interpolating biquintic surface boundary curves g (x ,  y). 

4.1.6.5 Biquintic Wang-Ball 

Following the same approach from the bicubic Wang-Ball, the initial value for the edge 

biquintic Wang-Ball control points for the datasets in Figure 4.2 (test function f ( x , y ) )  

and Figure 4.3 (test function g(x,  y ) )  respectively, is shown in Figure 4.12. 

The boundary curves for each rectangle for the edge control points in Figure 4.12 is 

also shown in Figure 4.13, while the results for the interpolating surfaces cubic bound- 

ary curves for each test functions are shown in Figure 4.14. Table 4.2 and Table 4.4 

gives the summaries of these results. 

Figure 4.12. Edges biquintic Wang-Ball control points for all rectangles (a) Test func- 
tion f ( x ,  y) (b) Test function g(x ,  y). 



Figure 4.13. Quintic boundary curves for all rectangles (a) Test function 1, f ( x , ~ )  (b) 
Test function 2, g(x, y). 

Figure 4.14. Interpolating biquintic surface boundary curves (a) Test function 1,  f (x, y) 
(b) Test function 2, g(x, y). 

Table 4.1 
Comparison of the interpolating suqaces between bicubic Bkziec bicubic SaicQWang- 
Ball and bicubic DP-Ball boundary curves for the testfunction g(x,y). 

Surface Number of Number of points below Minimum value 
evaluation points XY-plane and percentage of function 

BCzier 1681 29 1 -0.012363 

Table 4.1 showed that our proposed method for bicubic Said/Wang-Ball and bicubic 

DP-Ball representations are better than the bicubic BCzier representation in terms of 

the percentage of number of points below XY-plane. 



Table 4.2 
Comparison of the interpolating surfaces between biquintic Biziel; biquintic Said- 
Ball, biquintic Wang-Ball and biquintic DP-Ball boundary curves for the testfunction 

Surface Number of Number of points below Minimum value 
evaluation points XY-plane and percentage of function 

BCzier 1681 29 1 -0.039003 
17.014 % 

Said-Ball 168 1 246 -0.019917 
14.634 % 

Wang-Ball 1681 151 -0.0050132 
8.9827 % 

DP-Ball 1681 312 -0.037932 
18.56% 

Table 4.2 showed that our proposed method for biquintic Wang-Ball and biquintic 

Said-Ball representations are better than biquintic BCzier representation in terms of the 

percentage of number of points below the XY-plane. However, our proposed method 

for the biquintic DP-Ball is not as good as the biquintic Sais-Ball and biquintic Wang- 

Ball representations. 

Table 4.3 
Comparison of the interpolating sut$aces between bicubic Bhiel; bicubic Said/Wang- 
Ball and bicubic DP-Ball boundary curves for the testfinction f ( x ,  y ) .  

Surface Number of Number of points below Minimum value 
evaluation points XY-plane and percentage of function 

BCzier 3321 1134 -0.08232 
34.146 % 

Said/Wang-Ball 3321 1118 -0.04900 
33.6646 % 

As demonstrated in Table 4.3, we found out that our proposed method for bicubic 

SaiWang-Ball representation performed slightly better than the bicubic BCzier repre- 

sentation in terms of the percentage of number of points below XY-plane. 



Table 4.4 
Comparison of the interpolating surfaces between biquintic Bkzier, biquintic Said- 
Ball, biquintic Wang-Ball and biquintic DP-Ball boundary curves for the testfunction 
f ( x , ~ ) .  

Surface Number of Number of points below Minimum value 
evaluation points XY-plane and percentage of function 

BCzier 3321 1134 -0.08232 
34.146 % 

Said-Ball 3322 1147 -0.058653 
34.527 % 

Wang-Ball 3324 1136 -0.039102 
34.176 % 

Table 4.4 showed that the biquintic BCzier representation performed better than our 

proposed method for biquintic Said-Ball and biquintic Wang-Ball representations in 

terms of the percentage of number of points below XY-plane. 

4.2 Dirichlet Functional 

In this section, we present a more general algorithm to compute an extremal of the 

Dirichlet functional in terms of Ball surface. All these surfaces will give us the minimal 

surface areas. To compare our purposed method with the existing method for BCzier 

surface, we must have surface with the same four boundary curves. To do this, we must 

convert BCzier surface control points into generalization Ball surface control points, i.e. 

different surface with same boundary curves. 



Theorem 4.1. A square control net, P = {~1,}2;=~ of su$ace X(u ,  v), is an extremal 

of the Dirichlet functional with prescribed border ifand only if 

for any i E {I , .  . . ,n - 11, and j E { I , .  . . ,m - l ) ,  where cij is the monomial matrix 

f k  form of the curve X(u ) ,X(v )  and A f k  = (k+f-l)([+h). 

Proot Let us compute the gradient of the Dirichlet functional with respect to the 

coordinates of the control points Q = (xf,,<,, *;j) of X(u,  v).  For any i E { 1 ,  . . . , n - 

l } , a n d j ~ { l ,  ..., m-1) ,aE{1,2 ,3) ,e1=(1 ,0 ,0) ,e2=(0 ,1 ,0)ande3=(0 ,0 ,1) ,  

we have 

Compute the partial derivatives 

so that the surface X(u ,  v)  can be written in monomial matrix form as follows 

n n n n  

where crf is the monomial matrix form of the curve X(u) ,  and cSh is the monomial 

matrix form of the curve X(v) .  Now, we apply (4.39) in (4.38) to obtain 



Similarly, we have 

a j i , (u ,  v >  a n n  k l a  

a$j = k=o E 1=0 x c r f c s h u  v e  

On applying (4.40) and (4.41) in (4.37), we obtain 

n n n n  

Ex E z f c r f c s h ~ ~ - ~ @ p r s  
r=Os=O f = l  h=O 

n n n n  
Z C ~ C ~ U ~ P  

r=Os=O f=Oh=l 

U k+f  -2v1+h (ea , Prs) dudv + 

so that 



On applying (4.43) in (4.42), we obtain 

a"(P) = t t  kk k 2 cikcl jcrf csh f k 
a.qj ( k +  f - 1 ) (1+h)  (eU,PrS) + 

k=ll=Or=Os=Of=lh=O 

n n n n n n  

cikcl jcrf cshAlh (ea , Pn) , 
k=01=l r=Os=O f=Oh=l 

Remark 4.1. If we replace the monomial matrix form cij and the control points of the 

sulface X(u, v )  in Theorem 4.1 by the Bkzier monomial matrix form and Bkzier control 

points, we have the result similar as in Monterde (2004). 

4.2.1 Biquadratic Dirichlet Surfce 

If we substitute m = n = 2 in (4.36), this give us the biquadratic case. Since Said-Ball, 

DP-Ball and Wang-Ball surfaces are identical at degree 2, then it is enough to consider 

examples from biquadratic Said-Ball. 

If we replace the monomial matrix form cij in Theorem 4.1 by the Said-Ball monomial 

matrix form, and the control points bij by Said-Ball control points vij, we obtain the 

Dirichlet functional of Said-Ball polynomial solution. In this case, there are only one 

interior control point namely vl I .  



Proposition 4.1. A biquadratic Said-Ball surface is an  extrernal of the Dirichletfunc- 

tional with prescribed border if and only if 

Example 4.1. Given the control points as follows: voo = (0,0, I) ,  vlo = (1,0,0), v2o = 

(2,0,1), vol = ((41, O), v21= (2,1, O), ~ 0 2  = ((42, I ) ,  ~ 1 2  = (1,2, O), ~ 2 2  = (2,2,1). (Mon- 

terde & Ugail, 2009). 

By using equation (4.43, we have vll = (1,1,1.5). 

Figure 4.15. (a) Boundary curves of biquadratic Said-Ball surface generated by an ex- 
tremal of the Dirichlet condition (b) surface of biquadratic Said-Ball surface generated 
by an extremal of the Dirichlet condition. 

4.2.2 Bicubic Dirichlet Surfce 

If we substitute n = m = 3 in Theorem 4.1, we obtain the bicubic case. In this case, 

there are four equations corresponding to the inner control points. 

4.2.2.1 Said-Ball and Wang-Ball 

If we replace the monomial matrix form cij in Theorem 4.1 by the Said-Ball monomial 

matrix form, and the control points bij by Said-Ball control points wij, we obtain the 

Dirichlet functional of Said-Ball polynomial solution. 



Since in application to degree three, cubic Said-Ball curve and Wang-Ball curve gen- 

erate the same results, it is however not necessary to express solutions for both, but it 

is sufficient to show the results for only bicubic Said-Ball as given in Proposition 4.2. 

Proposition 4.2. A bicubic Said-Ball su$ace is an extremal of the Dirichletfinctional 

with prescribed border if and only if 

If n = m = 3, there are four equations corresponding to the inner control points dl1 ,  dl2,  

d21, d22. 

Proposition 4.3. A bicubic DP-Ball surface is an extremal of the Dirichletfinctional 

with prescribed border if and only if 



4.2.3 Dirichlet Mask for Bicubic Pathes 

The following masks for the bicubic Dirichlet functional, where the masks on the left 
side for bicubic BCzier, on the middle side for bicubic SaidIWang-Ball, and on the right 
side for bicubic DP-Ball. 



4.2.4 Graphical Examples for Extremal of the Dirichlet Bicubic Surface 

Here are some graphical examples of surfaces generated by extremals of the Dirichlet 

functional by using four different sets of control points such that each set has similar 

four boundaries for the surface. 

4.2.4.1 Graphical Examples for ExtremaI of the Dirichlet Bicubic Wang-Ball 

Surface 

Example 4.2. Given the boundary control points set 1 of bicubic Wang-Ball surface 

as follows 

WOO = (O,O, l ) ,w l0  = (6/5,0,2113/1000), w20 = (1,0,23/8), ws0 = (4,0, I), 

wol = (0,1815, -491 /625), w02 = (0,1415, -7 1/625), wo3 = (0,4, I), 

w13 = (9/5,4,631/250), wz3 = (1 1/5,4,631/250), wgl = (4,9/5, -885/1687), 

~ 3 2  = (4,11/5, -885/1687), ~ 3 3  = (4,4,1). 

The inner control points of bicubic Wang-Ball surface by an extremal of the Dirichlet 

condition are 

wl 1 = (573/260,213/260,779/395), w I 2  = (138/65,539/260,370/1043), 

w21 = (531260, -5 1/65, - 1219/893), and w22 = (389/260,119/65,1395/1097). 

The graph of the above surface is in Figure 4.16(c), while the boundary curves and its 

control points in Figure 4.16(d). 



Example 4.2. Given the boundary control points set 2 of bicubic Wang-Ball surface 

as follows 

WOO = ( o , O , O ) ,  wio = (9 /4 ,0 ,  -9 /2) ,  w20 = (3 /4 ,0 ,9 /2) ,  wso = (3 ,0 ,0) ,  

Woi  = (0,914, - 9 / 2 ) , ~ 0 2  = ( 0 , 3 / 4 , 9 / 2 ) , ~ 0 3  = (0 ,3 ,0) ,  wig = (3/2 ,3 ,  - 3 /2 ) ,  

W23 = (3 /2 ,3 ,  -3/2),wsi = (3 ,3 /2 ,3 /2) ,  w32 = ( 3 , 3 / 2 , 3 / 2 ) , ~ 3 3  = (3 ,3 ,0) .  

The inner control points of bicubic Wang-Ball surface by an extremal of the Dirichlet 

condition are 

W I  1 = (6/13,6/13,162/13),  wl2 = (369/208,33/13, -357/52), 

w2l = (21126, -1711208, -417/52), and 

w22 = (255/208,255/208,171/52). The graph of the above surface is in Figure 4.17(c), 

while the boundary curves and its control points in Figure 4.17(d). 

Example 4.3. Given the boundary control points set 3 of bicubic Wang-Ball surface 

as follows 

WOO = ( 0 . 5 , 0 , 0 ) , ~ ~ ~  = ( 0 . 2 5 7 7 , 0 . 4 , 0 ) , ~ ~ ~  = ( - 0 . 5 , 0 . 3 6 , 0 ) , ~ ~ ~  = (-0.5,0,0), 

wol = (0.425,0,O.45),wo2 = (0.575,0,0.75),wo3 = ( l , O , l ) ,  w13 = (0.5153,1, I ) ,  

~23=(-1 ,0 .72 ,  l) ,W3i = (-O.425,O1O.45), ~ 3 2 = ( - O . 5 7 5 , O , O . 7 5 ) , ~ ~ ~ =  ( - 1 , O ,  1 ) .  

The inner control points of bicubic Wang-Ball surface by an extremal of the Dirichlet 

condition are 

W ,  1 = (283/9635,9/200,909/2080), ~ 1 2  = (-6791 1879, -981/1300,203/416), 

w2l= (104811233, -84311300, -891/2080), and w22 = (92211487, -39/200,203/416). 

The graph of the above surface is in Figure 4.18(c), while the boundary curves and its 

control points in Figure 4.18(d). 



Example 4.4. Given the boundary control points set 4 of bicubic Wang-Ball surface 

as follows 

WOO = (-585/631,1378/483,0), W ~ O  = (-25471631, -689/483,0), 

W ~ O  = (-7101173,-609/500,0), ~ 3 0  = (5851631 - 137814830), 

W O ~  = (- 11 1/581,2342/3983,21/40), wO2 = (-327/3697,457/1674,2/5), 

~ 0 3  = (-585/631,1378/483,1), w13 = (-6221163, -2234/793,1), 

~ 2 3  = (-11701631, -1378/483,1), ~ 3 1  = (51211599, -1699/1724,9/20), 

~ 3 2  = (16117124, - 173/2475,13/40), w33 = (5851631, -1378/483,1). 

The inner control points of bicubic Wang-Ball surface by an extremal of the Dirichlet 

condition are 

WI 1 = (993/2087,517/373,447/1040), w12 = (1913/1636,2671/902,1159/2080), 

~ 2 1  = (104811233, -84311300, -891/2080), and 

w22 = (- 1711935, -21 1/178,79/130). The graph of the above surface is in Figure 

4.19(c), while the boundary curves and its control points in Figure 4.19(d). 

4.2.4.2 Graphical Examples for Extremal of the Dirichlet Bicubic DP-Ball Sur- 

face 

Example 4.6. Given the boundary control points set 1 of bicubic DP-Ball surface as 

follows 

do0 = (0,0, I) ,  dlo = (-2/5,0, 617/500),d20 = (16/5,0,1379/500), d30 = (4,0, l), 

dol = (0,815, -399/625),dO2 = (O,4,441/625),do3 = (0,4, I), 

dl3 = (-2/5,4,252/125), d23 = (22/5,4,252/125) ,d31 = (4, -215, -41/2500), 

d32 = (4,2215, -41 /2500), d33 = (4,4,l). 

The inner control points of bicubic DP-Ball surface by an extremal of the Dirichlet 

condition are 

dll  = (97/65,56/39,5199/1133),d12 = (-29165,7721195, -2104/1347), 

d21 = (6113,-8811195, -4974/1277), and d22 = (339/65,1141/195,759/185). 



The graph of the above surface is in Figure 4.16(e), while the boundary curves and its 

control points in Figure 4.16(f). 

Example 4.5. Given the boundary control points set 2 of bicubic DP-Ball surface as 

follows 

doo = (0,0,0),dio = (3/2 ,0 ,  -9),d20 = (3/2,0,9),d30 = (3,0,0),  do1 = (0,312, -9),  

do2 = (0,3/2,9),dos = (0,3,0),di3 = (0 ,3 , - I ) ,  

d23 = (3,3,-1),d31 = (3 ,0 ,  I ) ,  d32 = (3,3,l) ,d33 = (3 ,3 ,0) .  

The inner control points of bicubic DP-Ball surface by an extremal of the Dirichlet 

condition are 

d l l  = (-31/52,9/52,323/13),d12 = (11/13,207/52, -283/13), 

d21 = (107152, -3, -277/13), and dz2 = (38/13,48/13,242/13). The graph of the 

above surface is in Figure 4.17(e), while the boundary curves and its control points in 

Figure 4.17(f). 

Example 4.6. Given the boundary control points set 3 of bicubic DP-Ball surface as 

follows 

doo = (1 /2 ,0 ,0) ,  d lo  = (989/974,11/25, O ) ,  d20 = (- 12251974,8125, O ) ,  

d30 = (-1/2,0,0),  do, = ( 1  1/40,0,3/2O),do2 = (29/40,0,21/2O),do3 = (1 ,0 ,  I ) ,  

dl3 = (16591817,32125, l),d23 = (-2055/817,11/25, l ) ,d3l  = (-11/40,0,3/20),  

d32 = (-29/40,0,21/20), d33 = (- l ,O, l ) .  

The inner control points of bicubic DP-Ball surface by an extremal of the Dirichlet 

condition are 

dl 1 = (433/2569,1095/989,1 199/1560),d12 = (531/1333, -154/195,1013/1560), 

d2, = (4031809, - 12561975, -925/601), and 

d22 = (-90511 129,1095/989,788/437). 



The graph of the above surface is in Figure 4.18(e), while the boundary curves and its 

control points in Figure 4.18(f). 

Example 4.7. Given the boundary control points set 4 of bicubic DP-Ball surface as 

follows 

doo = (-5851631, 1378/483,0),dlo = (-1297/363,1763/1000,0), 

d20 = (-9271500, - 1763/500,0), d30 = (5851631, - 1378/483,0), 

dol = (-631/1250,1553/1000, 1/1O),do2 = (-749/2500,923/1000,17/20), 

do3 = (-5851631,13781483, l ) , d l s  = (-2356/493,834/835,1), 

d23 = (8341835, -23561493, I ) ,  d31 = ( 1  12111555, -2773/1250,1/20), 

d32 = (29212323, -242/625,4/5),d33 = (5851631, - 13781483,l). 

The inner control points of bicubic DP-Ball surface by an extremal of the Dirichlet 

condition are 

dl = (- 19667315 1756, - 1219/4014,553/780), 

d I 2  = (2132/1895,1589/284,77/120), 

d2, = (2281 /575,1157/614, -2467/1560), and 

dz2 = (- 12291499, -20581293,7071390). The graph of the above surface is in Figure 

4.19(e), while the boundary curves and its control points in Figure 4.19(f). 



Figure 4.16. Control points set 1 by Dirichlet condition on (a) BCzier patch (b) BCzier 
boundary (c) SaidIWang-Ball patch (d) SaiWang-Ball boundary (e) DP-Ball patch 
( f )  DP-Ball boundary. 



Figure 4.17. Control points set 2 by Dirichlet condition on (a) BCzier patch (b) BCzier 
boundary (c) SaidIWang-Ball patch (d) SaidWang-Ball boundary (e) DP-Ball patch 
(f) DP-Ball boundary. 



Figure 4.18. Control points set 3 by Dirichlet condition on (a) BCzier patch (b) BCzier 
boundary (c) SaidNang-Ball patch (d) SaidNang-Ball boundary (e) DP-Ball patch 
(f) DP-Ball boundary. 



Figure 4.19. Control points set 4 by Dirichlet condition on (a) BCzier patch (b) BCzier 
boundary (c) Said/Wang-Ball patch (d) SaidIWang-Ball boundary (e) DP-Ball patch 
(f) DP-Ball boundary. 



The following comparison between BCizer surface, SaiWang-Ball surface and DP- 

Ball surface was made by using Dirichlet functional. All surface have the same four 

boundary curves. 

Table 4.5 
Comparison between the area/computational time of Bkzier; Saimang-Ball and DP- 
Ball by using Dirichletfinctional. 

Control Points BCzier SaidJWang-Ball DP-Ball 
Area 18.757105 18.945053 18.945053 

Set Computational time 0.0959 0.0908 18 0.1113 

Set 2 
Area 11.766806 1 1.809898 1 1.809898 

Computational time 0.09 19 0.0914 0.10439 

Set 3 
Area 1.796075 1.806860 1.806860 

Computational time 0.0932 0.0909 0.10575 

Set 4 
Area 13.668435 14.2352 14.2352 

Computational time 0.0950 0.0906 0.10307 

From Table 4.5, the Dirichelet functional is applied to the bicubic patches of SaidNang- 

Ball surface and DP-Ball surface, and compared with the existing work for bicubic 

patch of BCzier surface. It is discovered that the bicubic BCzier surface is better 

than bicubic SaiWang-Ball surface in terms of minimal surface area. The bicubic 

SaiWang-Ball surface is better than the bicubic BCzier surface in terms of the com- 

putational time required to construct the surface by Dirichelet functional. On the other 

hand, if we compare bicubic BCzier with bicubic DP-Ball by using Dirichelet func- 

tional, we see that BCzier is better than DP-Ball in terms of minimal surface area but 

vice verse for computational time. 



4.3 Summary 

In this chapter, we have presented a more general algorithm for the polynomial solution 

method of generating any surface used in CAGD based on the Euler-Lagrange equation 

arises from the most quadratic functional by using the monomrnial matrix form. Also, 

we derived a more generalized algorithm to find the Dirichlet functional for any surface 

used in CAGD. 



CHAPTER FIVE 

IMPLEMENTATION AND APPLICATIONS 

In this chapter,we derived and discussed the sufficient condition for the positive preser- 

vation of boundary curves for each edge of rectangular Said-Ball, DP-Ball and Wang- 

Ball patches of odd degree-n. With the use of polynomial solution of fourth order 

linear elliptic PDEs, these curves are defined on rectangular grid for the purpose of 

enhancing the positivity preservation of the interpolating surface. We also apply the 

polynomial solution of fourth order linear elliptic PDEs to image enlargement using 

cubic Said-Ball, Wang-Ball and DP-Ball boundary curves with PDEs. 

5.1 An Improved Positivity Preserving Said-Ball, DP-Ball and Wang-Ball Curves 

of Odd Degree-n 

In this section, we will propose sufficient conditions for positivity preserving odd 

degree-n boundary curves defined on rectangular grid. 

5.1.1 Sufficient Condition for Positivity Preserving Odd Degree-n Said-Ball Curves 

Proposition 5.1. Consider the Said-Ball polynomial curve odd degree-n (n 2 3), 

r (x) = Sy (x) vi , 
i=O 

where vi represents control points of Said-Ball and T ( x )  are Said-Ball basisfunctions 

of odd degree-n, for all 0 5 x < 1. Zfvo,v, > 0, M = max(vo,v,), N = min(vo,v,) 

and vi 2 -to = 2, i # 0, i # n, such that so in [*, +] is the unique solution 

of G(s) = 1 with G(s) = 1 + +, then r(x) 2 0,Vx E [0, I]. 
(vos+l)a (v,s+l) ;;=T 



Pro05 Let all Said-Ball ordinates of Said-Ball polynomial curve of odd degree-n ex- 

cept of vo and v,, are equal to -t (t > 0). From (5.1) we get 

Recall that 

that is equivalent to 

n- 1 n+l 
( x )  = 1 1  x )  2 - X  2 

On applying (5.3) in (5.2), we obtain 

Assume that t is fixed. Then, the first and second derivatives of r with respect to x are 

and 

On setting r'(x) = 0, this gives 



Thus, we obtain 

It follows that vo > 0 and v, > 0,0  < x 5 1, implies that r"(x) > 0, then the minimum 
2 

(v0+t)  "-l value of r occurs when x = 2 , that is 
(vo+t)T;=T +(vn+t )  ?T=T 

rmin (x) = 
(VO + t) (vn + t )  

"-1 - t .  (5.5) 
((vO+t)f + (vn+t)f)'  

Observe that if t = 0, rmin > 0. Now, we describe how to obtain the value of to > 0, to 

ensure that r(x) preserved the positivity for all 0 5 x 5 1. We rewrite (5.5) to obtain 

which equivalent to 

t 
rmin (x) = - t ,  t > 0. (5.6) 

( 2 .  
1 

(?+l)T;=T (?+l)?T=T 

The Said-Ball polynomial curve r(x) is positive for all x if rmin > 0. Thus, the lower 

bound o f t  = to occurs when rmin = 0, and this can be achieved by setting the denomi- 

nator of (5.6) equal to 1 .  Therefore, 

Le t s=  f , t  #0 ,  and ~ ( s )  = 1 
2 + ' , , then (5.7) becomes 

(svo+l)T;=T (sv,+l)T;=T 



Since vo > 0 and v, > 0, then so is the solution of (5.8) and the value of to is equal to 

1 where so > 0. Thus, r(x) 2 0, for all x E [O, 11 if vi 2 -to = 2, i # 0 ,  i # n, such 
so 

that so is the unique solution of G(s) = 1 with G(s)  = 1 
2 + 1 

2 .  
(vos+l)X (vns+l)Ti=T 

n-1 
2 9  -1 2 -T  -1 We proved that there exists 5 so 5 for G(S)  = 1 where M = max(vo, v,) 

and N = min(vo, v,). Since 

vo 
2 (  n + l +  vn GI ( x )  = - - 

n - 1  ( s v o + l ) a  (sv,+l)n-1 

and 

GI/ ( x )  = 

then G(s)  is monotone decreasing and convex. Since lim,,, G(s) = 0, G(0)  = 2, and 

by the monotonicity of G(s) ,  then there exists s subject to G(s)  = 1 .  Now we need to 

determine the range of s. 

If vo = v, = max(vo, v,) = M, then G(s) > 2 . If vo = V ,  = min(vO, vn) = N, 
(Ms+ 1 )  

then G(s) 5 . Since 2 
2 and are also monotone decreasing 

(Ns+l)x  (Ns+ 1) (Ms+l) x 
2 2 and convex, then there exists sl , $2 such that = 1 and - = 1. On 

(Msl+l)q  (Ns2+1)x 
n- l n-l 

solving for sl and s2, we obtain sl = and s2 = v. Thus, if G(s) = 1, then 

si I so I s2. Figure 5.1 shows the form of G(s) ,  s 2 0 with the relative location of 
n- 1 

2 9  -1  
S1 = M ,  S 2 = -  2<-1 and s = SO. 



Figure 5.1. Function G(s) with s 2 0 for odd degree-n Said-Ball polynomial curve. 

5.1.2 SuMicient Condition for Positivity Preserving Odd Degree-n DP-Ball Curves 

Proposition 5.2. Consider the DP-Ball polynomial curve of odd degree-n (n 2 3), 

where di is a DP-Ball control point and D;(x) is DP-Ball of odd degree-n, for all 

0 5 x 5 1. g d o , d n  > 0,M = max(do,dn),N = min(do,d.) and di > -to = 2 , i  # 

0, i # n, such that so in [ 2 ~ 1 ,  - - 2L'] is the unique solution of G(s) = 1 with G(s) = 

Proof. Let all DP-Ball ordinates of DP-Ball polynomial curve of odd degree-n, except 

of do and d,, are equal to -t (t > 0). From (5.9) we get 

Recall that 



that is equivalent to 

Hence (5.10) becomes 

Assume that t is fixed. Then, the first and second derivatives of r with respect to x are 

and 

rl1(x) = n(n - 1) ((do + t ) ( l -  x ) " - ~  + (dn + t ) ~ " - ~ )  . 

On setting r'(x) = 0, this gives 

1 
( 1  -.)"-I - (dn + t )  (dn + t )  - 

xn- 1 (do + t )  , x # ~ , o r  kx x = (-) (do + t )  X Z O -  

Thus, we obtain 

1 
(do + t )  "-' 

x =  
(do + t ) h  + (dn + t ) A  ' 

It follows that do > 0 and dn > 0,0  < x 5 1, implies that J1(x)  > 0, then the minimum 
1 

value of r occurs when x = (do+r) ii=f , that is 
(da+t)A +(d,+t) 

rmin (x )  = 
(do + t ) (dn + t ) 

- t .  
1 n-1 

( ( d o + t ) A  + ( d n + t ) ~ )  

Observe that if t = 0, rmin > 0. Now, we describe how to obtain the value of to > 0, 



to ensure that r(x)  preserved the positivity for all 0 5 x < 1. We rewrite (5.14) to obtain 

which equivalent to 

The DP-Ball polynomial curve r(x) is positive for all x if ?-,,,in > 0. Thus, the lower 

bound o f t  = to occurs when r,in = 0, and this can be achieved by setting the denomi- 

nator of (5.15) equal to 1. Therefore, 

Lets= f , t  # 0 ,  a n d ~ ( s )  = ' I +  , , then (5.16) becomes 
( s & + l ) g  (sdn+l)"-r 

Since do > 0 and d, > 0, then so is the solution of (5.17) and the value of to is equal to 

1 where so > 0. Thus, r(x) 2 0, for all x E [O,l]  if di 2 -to = 3, i # 0 ,  i # n, such 
SO SO 

that so is the unique solution of G(s)  = 1 with G(s) = 1 I + 1 I 

( & + I )  n-l (dns+l) ii=S 

2,-1-1 2"-'-1 
We proved that there exist 5 so 5 7 for G(S) = 1 where M = max(do,dn) 

and N = min(do, d,) . Since 



( x )  = ( + (dnI2 

( n - 1 ) 2  ( s d o + l ) T  ( s d n + l ) ~  

then G(s)  is monotone decreasing and convex. Since lim,,, G(s) = 0, G(0) = 2, and 

by the monotonicity of G(s),  then there exists s subject to G(s)  = 1. Now we need to 

determine the range of s. 

2 If do = dn = max(do, d,) = M ,  then G(s) 2 -. If do = d, = min(do, d,) = N ,  
(Ms+l);;=T 

2 2 then G(s)  5 +. Since - and - are also monotone decreasing 
(Ns+l )a  (Ns+l)- (Ms+l)q 

2 2 and convex, then there exists S I  ,s2 SO that - = 1 and = 1. On 
(Msl+l)Ti=T (N~2s+ l ) s  

2"-1-1 2"-1- 1 . Thus, if G(s)  = 1, then solving for sl and s2 we obtain sl = 7 and s2 = - 

si I so I sz. Figure.5.2 shows the form of G(s) , s  > 0 with the relative location of 

2"-1-1 2"-1-1 
s1 = M , S 2 = -  ands=so.  

Figure 5.2. Function G(s)  with s 2 0 for odd degree-n DP-Ball polynomial curve. 



5.1.3 Sufficient Condition for Positivity Preserving Odd Degree-n Wang-Ball 

Curves 

Proposition 5.3. Consider the Wang-Ball curve of odd degree-n (n  > 3 )  

where W i  represents control points of Wang-Ball and Ay(x) are Wang-Ball basisfinc- 

tions of odd degree-n. Zfwo, wn > 0 and wi 1 -to, 1 5 i 5 n - 1 ,  such that to > 0 is the 

unique solution of 

2 t -wgw,=O. (5.19) 

It follows that r(x)  > 0,Vx E (0, 11. Pro05 Let wo, w, > 0 and all Wang-Ball ordinates 

of Wang-Ball polynomial curve of odd degree-n except of wo and wn, are equal to 

-t , (t > 0). From (5.1 8) we get 

Recall that (2.47) 

that is equivalent to 

On applying (5.22)) in (5.20), we obtain 

By taking the first order derivative with respect to x we have 



The value of r is minimum if r'(x) > 0 i.e 

By substituting equation (5.25) into equation (5.23), this gives the following expres- 

sion: 

If t = 0, then rmin > 0 .  Next, we describe how the value of t  > 0 is obtained to make 

sure that r(x) preserved the positivity for all 0 < x 5 1. When r ~ ,  = 0,  we have the 

lower bound of t ,  given as 

or by rewriting it, we have 

2 t  -wow,=O. 

Next, it is shown that there exists a real root to E (0 ,  wo + w,) of (5.28). 

Let f ( t )  = t2 - wow,. Given that wg, w,,t > 0, then f (0 )  = -wown < 0 and f (wo + 
w,) = (wo + w , ) ~  - wow, > 0. It follows that there exists 0 < to < (wo + w,),  such that 

f (to) = 0 where to is real root of (5.19). 

5.2 Sufficient Condition for Positivity Preserving Cubic Ball (Said-Ball, DP-Ball 

and Wang-Ball Curves) 

We derived a sufficient condition for positivity preserving boundary curves for a given 

positive cubic Ball (Said-Ball, DP-Ball and Wang-Ball ) ordinates at vertices of rect- 

angle R, i.e. boo, b 3 ~ ,  bo3, b33 > 0. In order to ensure the positivity of boundary curves 
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B(u,O), B(u, I ) ,  B(O,v) and B(l ,v) ,  we set bl07b20 2 -tl, bl39b23 2 -t2, b01,b02 2 

-t3 and b3,, b32 2 -t4, where tl ,t2,t3,t4 > 0 can be obtained from (5.30) for Said- 

Ball, (5.31) for DP-Ball and (5.34) for Wang-Ball, with bo = bO0,b3 = b30 along 

edge el ; bo = bo3, b3 = b33 along edge e2; bo = boo, b3 = bO3 along edge e3; and bo = 

b30, b3 = b33 along edge e4. Since Cl (u )  , C2 (u )  , C3 ( v )  and C4(v) are the Ball polyno- 

mial curve of degree-3, we can use the following Corollary 5.1 for Said-Ball, Corol- 

lary 5.2 for DP-Ball and Corollary 5.3 for Wang-Ball to obtain the positivity preserving 

conditions for each boundary curve. 

5.2.1 Sufficient Condition for Positivity Preserving Cubic Said-Ball Curves 

If we set n = 3 in Proposition 5.1, then we obtain the following corollary. 

Corollary 5.1. Consider the cubic Said-Ball curve, 

where vi are Said-Ball control points. If vo, v3 and vi > -to, 1 5 i 5 2, then to is a 

unique solution of 

2 t - V O V ~  = 0. (5.30) 

(a) (b) 

Figure 5.3. (a) Bicubic Said-Ball control points (b) A unit rectangle. 



5.2.2 Sufficient Condition for Positivity Preserving Cubic DP-Ball Curves 

If we set n = 3 in Proposition 5.2, then we obtain the following corollary. 

Corollary 5.2. Consider the cubic DP-Ball curve, 

where di are DP-Ball control points. I f  do, d3 > 0 and dl , dz 2 -to, then to is a unique 

solution of 

2 2 3t4 - 4(do + d3)t3 + 6dOd3t2 - do d3 = 0. (5.32) 

(a) (b) 

Figure 5.4. (a) Bicubic DP-Ball control points (b) A unit rectangle. 

5.2.3 Sufficient Condition for Positivity Preserving Cubic Wang-Ball Curves 

If we set n = 3 in Proposition 5.3, then we obtain the following corollary. 

Corollary 5.3. Consider the cubic Wang-Ball curve, 

where wi are Wang-Ball control points. I fwo,  w3 and wl , w2 2 -to, then to is a unique 

solution of 

2 t - wow3 = 0. (5.34) 



(a) (b) 

Figure 5.5. (a) Bicubic Wang-Ball control points (b) A unit rectangle. 

5.3 Sufficient Condition for Positivity Preserving Quintic Ball (Said-Ball, DP- 

Ball and Wang-Ball Curves) 

Now, we proceed to determine the lower bound on the edges of Ball (Said-Ball, DP- 

Ball and Wang-Ball) ordinates which ensure the positivity of boundary curves of degree- 

5 rectangular Ball (Said-Ball, DP-Ball and Wang-Ball) patch S. We derived a sufficient 

condition for positivity preserving boundary curves for a given positive quintic Ball or- 

dinates at vertices of rectangle R, i.e. boo, b s ~ ,  bo5, b55 > 0 .  In order to ensure the pos- 

itivity of boundary curves B(u, 0 ) ,  B(u, I ) ,  B (0 ,  v )  and B(1, v ) ,  we set bio 2 -tl , bi5 2 

- t2 ,  bOj > -t3 and bsj 2 -t4 for 1 5 i 5 4 , l  5 j 5 4, where tl ,t2, t3, t4 > 0  can be 

obtained from (5.36) with bo = bm,bS = bS0 along edge e l ;  bo = bo5,bs = b55 along 

edge e2; bo = boo, b5 = bO5 along edge e3; and bo = b50, b3 = bS5 along edge eq. Since 

Cl (u)  , C2 (u)  , C3 (v) and C4 ( v )  are the Ball (Said-Ball, DP-Ball and Wang-Ball) poly- 

nomial curve of degree-5, we can use the following Corollary 5.4 for Said-Ball, Corol- 

lary 5.5 for DP-Ball and Corollary 5.6 for Wang-Ball to obtain the positivity preserving 

conditions for each boundary curve. 



5.3.1 Sufficient Condition for Positivity Preserving Quintic Said-Ball Curves 

If we set n = 5 in Proposition 5.1, then we obtain the following corollary. 

Corollary 5.4. Consider the quintic Said-Ball cuwe, 

where vi are Said-Ball control points. I f  vo, v5 and vi 2 -to, 1 5 i 5 4, then to is a 

unique solution of 

5.3.2 Sufficient Condition for Positivity Preserving Quintic DP-Ball Curves 

If set put n = 5 in Proposition 5.2, then we obtain the following corollary. 

Corollary 5.5. Consider the quintic DP-Ball cuwe, 

where di are DP-Ball control points. Ifdo,d5 > 0 and di > -to, 1 5 i 5 4, then to is a 

unique solution of 

5.3.3 Sufficient Condition for Positivity Preserving Quintic Wang-Ball Curves 

If we set n = 5 in Proposition 5.3, then we obtain the following corollary. 

Corollary 5.6. Consider the quintic Wang-Ball cuwe, 



where wi are Wang-Ball control points. Zfwo, w5 > 0 and wi > -to, 1 5 i 5 4, then to 

is a unique solution of 

2 t - WOWS = 0. (5.40) 

5.4 Surface Interpolation Using Positivity Preserving Boundary Curves 

By using similar approach of Monterde and Ugail (2006) , the first and second rows 

(columns) of the coefficients in (4.2) can be obtained by using the boundary control 

points of Ball (Said-Ball, DP-Ball and Wang-Ball) representation as in (2.23), (2.38), 

and (2.54) for cubic case as described in Section 4.1.1.2 for Said-Ball, Section 4.1.3.1 

for DP-Ball and Section 4.1.4.2 for Wang-Ball; while for quintic case as described 

in Section 4.1.1.3 for Said-Ball, Section 4.1.3.2 for DP-Ball and Section 4.1.4.3 for 

Wang-Ball. However, to visualize our proposed method, we have chosen two datasets 

taken from well known test function as given in Section 4.1.5. 

5.4.1 Graphical Examples 

In this part, we obtained some graphical examples for positivity preserving by using 

two test function. 

5.4.1.1 Bicubic Patches 

Since Corollary 5.1 and Corollary 5.3 yield the same results when n = 3, then it is 

sufficient to apply just one of the corollaries for the cubic case. Figure 5.6, Figure 

5.7 and Figure 5.8 show the edges of the cubic SaidIWang-Ball control points in the 

rectangular domain, the cubic SaidNang-Ball boundary curves, and the interpolating 

bicubic SaidIWang-Ball surface, respectively for both functions f ( x ,  y) and g (x, y). 

Corollary 5.1 was used to generate the results, however, the DP-Ball for the function 

g(x,  y) displayed in Figure 5.9 is generated using Corollary 5.2. 



Table 5.1 displays a comparison of the interpolating surfaces between bicubic BCzier, 

bicubic SaiWang-Ball and bicubic DP-Ball boundary curves for the test function 

g(x,y), while Table 5.2 displays a comparison of the interpolating surfaces between 

bicubic BCzier and bicubic SaiWang-Ball boundary curves for the test function f (x,y). 

Figure 5.6. Edges SaidJWang-Ball control points for all rectangles (a) Test function 
f (x, y) (b) Test function g(x, y). 

Figure 5.7. Boundary curves SaiWang-Ball for all rectangles (a) Test function 1, 
f (x,y) (b) Test function 2, g(x, y). 

Figure 5.8. Interpolating SaiWang-Ball surface boundary curves (a) Test function 1, 
f ( x ,  y) (b) Test function 2, g(x, y). 



Figure 5.9. Test function g(x,y) (a) Edges DP-Ball control points for all rectangles (b) 
Interpolating DP-Ball surface boundary curves. 

Table 5.1 
Comparison of the interpolating sugaces between bicubic Bkziel; bicubic SaiWang- 
Ball and bicubic DP-Ball boundary curves for the testfinction g(x,y). 

Surface Number of Number of points below Minimum value 
evaluation points XY-plane and percentage of function 

BCzier 1681 47 -0.00047 154 

As demonstrated in Table 4.1 and Table 5.1, the number of points below the XY-plane 

for all the surfaces decreased after the positivity preserving by using test function 

g(x ,  y). Specifically, the number of points below XY-plane for the bicubic BCzier, 

bicubic SaidNang-Ball, and bicubic DP-Ball surfaces had decreased from 291, 231, 

and 1097 points (see Table 4.1) to 47, 13, and 74 points (Table 5.1), respectively. As 

in Table 5.1, the bicubic SaidNang-Ball surface produced the best result because it 

had the smallest number of points below the XY-plane, followed by the bicubic BCzier 

surface, and lastly the bicubic DP-Ball surface. 



Table 5.2 
Comparison of the interpolating surfaces between bicubic Bkzier and bicubic 
SaiMang-Ball boundary curves for the test function f (x ,  y). 

Surface Number of Number of points below Minimum value 
evaluation points XY-plane and percentage of function 

BCzier 3321 5 8 -0.00565 1 

As demonstrated in Table 4.3 and Table 5.2 , the number of points below the XY-plane 

for all the surfaces decreased after the positivity preserving by using test func- 

tion f (x ,y) .  Specifically, the number of points below XY-plane for the bicubic BCzier 

and bicubic SaidIWang-Ball surfaces had decreased from 1 134 and 1 1 18 points (see 

Table 4.3) to 58 and 47 points, (Table 5.2) respectively. As in Table 5.2, the bicubic 

SaidNang-Ball surface produced better result compared to bicubic BCzier surface be- 

cause the former had smaller number of points below the XY-plane, compared to the 

latter. 

5.4.1.2 Biquintic Pathes 

Figure 5.10, Figure 5.1 1 and Figure 5.12 show the edges of the biquintic Said-Ball 

control points in the rectangular domain, the biquintic Said-Ball boundary curves, and 

the interpolating biquintic Said-Ball surface, respectively for both functions f (x ,  y) 

and g(x, y). Corollary 5.4 was used to generate the results, however, the biquintic 

DP-Ball for the function g(x, y) displayed in Figure 5.13 is generated using Corollary 

5.5. Finally, in Figure 5.14, Figure 5.15 and Figure 5.16, Corollary 5.6 was used to 

show the edges of the biquintic Wang-Ball control points in the rectangular domain, 

the biquintic Wang-Ball boundary curves, and the interpolating biquintic Wang-Ball 

surface, respectively for both functions f (x ,y)  and g(x,y).  



Table 5.3 displays a comparison of the interpolating surfaces between biquintic BCzier, 

biquintic Said-Ball, biquintic Wang-Ball and biquintic DP-Ball boundary curves for 

the test function g(x,y), while Table 5.4 displays a comparison of the interpolating sur- 

faces between biquintic BCzier, biquintic Said-Ball and biquintic Wang-Ball boundary 

curves for the test function f (x ,y) .  

Figure 5.10. Biquintic edges Said-Ball control points for all rectangles (a) Test func- 
tion f ( x ,  y) (b) Test function g(x, y). 

Figure 5.11. Biquintic boundary curves Said-Ball for all rectangles (a) Test function 1, 
f (x, y )  (b) Test function 2, g(x ,  y ) .  

Figure 5.12. Interpolating biquintic Said-Ball surface boundary curves (a) Test func- 
tion 1, f (x,y) (b) Test function 2, g(x, y). 



Figure 5.13. Test function g(x,y)  (a) Biquintic edges DP-Ball control points for all 
rectangles (b) Interpolating biquintic DP-Ball surface boundary curves. 

Figure 5.14. Biquintic edges Wang-Ball control points for all rectangles (a) Test func- 
tion f ( x ,  y)  (b) Test function g(x,  y).  

Figure 5.15. Biquintic boundary curves Wang-Ball for all rectangles (a) Test function 
1, f ( x ,  y)  (b) Test function 2, g(x,  y). 



Figure 5.16. Interpolating biquintic Wang-Ball surface boundary curves (a) Test func- 
tion 1, f (x ,y )  (b) Test function 2, g(x, y). 

Table 5.3 
Comparison of the interpolating sul3caces between biquintic Bkziel; biquintic Said- 
Ball, biquintic Wang-Ball and biquintic DP-Ball boundary curves for the test finction 

~ ( x , Y > .  

Surface Number of Number of points below Minimum value 
evaluation points XY-plane and percentage of function 

BCzier 1681 3 9 -0.005 1633 
2.32 % 

Said-Ball 1681 0 2.3 109e-05 
0.0 % 

Wang-Ball 1681 0 3e-05 
0.0 % 

DP-Ball 1681 27 -0.002700 1 
1.6062% 

As demonstrated in Table 4.2 and Table 5.3, the number of points below the XY-plane 

for all the surfaces decreased after the positivity preserving by using test function 

g(x,y).  Specifically, the number of points below XY-plane for the biquintic BCzier, 

biquintic Said-Ball, biquintic Wang-Ball, and biquintic DP-Ball surfaces had decreased 

from 291,246, 151 and 312 points (see Table 4.2) to 39,0,O and 27 points (Table 5.3), 

respectively. As in Table 5.3, both biquintic Said-Ball and biquintic Wang-Ball sur- 

faces produced the best result, followed by the biquintic DP-Ball surface, and lastly 

the biquintic BCzier surface. 



Table 5.4 
Comparison of the interpolating su$aces between biquintic Bbzier; biquintic Said- 
Ball, biquintic Wang-Ball and biquintic DP-Ball boundary curves for the testjknction 
f (x7r) .  

Surface Number of Number of points below Minimum value 
evaluation points XY -plane and percentage of function 

BCzier 3335 1 24 -0.02224 1 
3.7181 % 

Said-Ball 3321 1 04 -0.02221 
3.1316 % 

Wang-Ball 3323 77 -0.014228 
2.3172 % 

As demonstrated in Table 4.4 and Table 5.4 , the number of points below the XY-  

plane for all the surfaces decreased after the positivity preserving by using test function 

f ( x , y ) .  Specifically, the number of points below XY-plane for the biquintic BCzier, 

biquintic Said-Ball and biquintic Wang-Ball surfaces had decreased from 1134, 1147 

and 1136 points (see Table 4.4) to 124, 104, and 77 points (Table 5.4), respectively. As 

in Table 5.4, the biquintic Wang-Ball surface produced the best result, followed by the 

biquintic Said-Ball surface, and lastly the biquintic BCzier surface. 

5.5 Image Enlargement Using Cubic Said-Ball, Wang-Ball and DP-Ball Bound- 

ary Curves with PDEs 

5.5.1 Introduction 

In computer graphics design, the process of resizing a digital image is known as im- 

age scaling. which involves a trade-off between smoothness, sharpness and efficiency 

(Kim, Seong & Lee, 2003). With bitmap graphics, when the size of an image is re- 

duced or enlarged, the pixels that form the image become increasingly visible, making 

the image appear to be smooth if pixels are averaged, or jagged if not. 



With vector graphic, the trade-off may be in processing power for re-rendering the 

image, which may be noticeable as slow re-rendering with still graphics, or slower 

frame rate and frame skipping in computer animation. 

There are a number of techniques one might use to handle the problems of enlarging 

and reducing an input image especially by using interpolation methods such as nearest 

neighbor interpolation, bilinear interpolation, bicubic and B-spline interpolation (Han, 

2013). 

For example, to enlarge an image by a factor 2, the simplest method is to replicate each 

pixel 4 times and this will lead to more pronounced jagged edges than appeared in the 

original image. 

The similar case applies for reducing an image by an integer divisor of the width by 

simply keeping every nth pixel, and aliasing of high frequency components in the orig- 

inal will occur. 

The more general case of changing the size of an image by an arbitrary amount requires 

interpolation of the colour informations between pixels. 

Resizing an image through upsampling or downsampling is generally common for 

making smaller imagery fit a bigger screen in fullscreen mode or reducing a higher 

resolution image to a smaller resolution. For example, in zooming a bitmap image, 

it is difficult to discover any more information in the image than already exists, and 

this will effect its quality. Due to some limitation of computer facilities for a faster 

runtimes, we will focus on image enlargement with our proposed method based on the 

scaling factor of 2. 



5.5.2 Image Scaling Concept 

Let the input of an image is given by m x n pixels; ( x ,y )  and (A?,$) are the arbitrary 

input and output pixels, respectively. If the input pixels are resized by a factor of s, 

and sy, respectively at point (1, I) ,  then the new output of 2m by 2n pixels will be 

obtained by the following transformation 

As an example , we use rn = n = 2 and scaling factor s, = sy = 2 as shown in Figure 

5.17, where the scaling up 2 x 2 pixels input image by a factor 2 resulting an ouput of 

4 x 4 pixels image. Note that, the input pixels with coresponding preserved intensity 

of output pixels are labeled by cirles and the remaining missing information in output 

pixels are labeled by a square. 

Figure 5.17. (a) 2 by 2 Input pixels (b) 4 by 4 output pixels of by scaling factor 2 of 
input pixel. 

Pixels (1, l), (4,1), (1,4) and (4,4) in the output pixels will preserve the information of 

the input pixels while the remaining pixels intensity are to be filled. 



Transformation of pixels from the input window to the output window can be done 

using (5.41). In order to find the missing pixels information of the output, these points 

should be transform to the pixels in the original input pixels by using the inverse trans- 

form of (5.41). Thus the points (2,1), (1,2), (2,2), (3,2), ( 4 3 ,  ( 1 3 ,  (2,3), (3,3), 

(4,3), (2, 4) and (3,4) of the output window can be represented as (413, I), (513, I), 

(1,4/3), (4/3,4/3), (513, 4/3), (2,4/3), (1, 5/3), (4/3,5/3), (5/3,5/3), (2, 513) and (5/3,2) 

in the input window, respectively, and these points should be interpolated by using a 

suitable interpolation techniques to obtain the respective intensities of output pixels. 

5.5.3 Image Interpolation using Rectangular Patches 

Given an m x n pixels of grayscale input image represented by a (m - 1) x (n - 1) 

rectangular patches and being scaled up by a factor of a and fi using (5.41), resulting 

an output image of a m  by fin pixels of higher resolution represented by ( a m  - 1) x 

(fin - 1) rectangular patches. Let (xi,yj), i = 1,2, . . .m, j = 1,2, . . . , n represent the input 

pixels and zi, (0-255) be its corresponding gray-scale intensity. Our aim is to find the 

function z = F(x,y) which interpolates the given input pixels (vertices of rectangular 

patches), that is F(xi,yi) = zij. 

For the purpose of this application , we consider the use of the polynomial solution 

of the fourth order PDEs, subject to a given four lines boundary conditions from 

Said-Ball, DP-Ball and Wang-Ball boundary curves of degree 3 as discussed in Sec- 

tion 4.1.1.2, Section 4.1.3.1 and Section 4.1.4.2, respectively. 

We used our rectangulation algorithm to rectangulate the input pixels (xi,yi). In order 

to contruct an interpolation function on each rectangle, beside the intensity values, we 

also need to estimate the partial derivative at a given input grid by using the method 

discuss in Section 2.7. 



5.5.4 Experimental Result 

In this simulation result, we use nine test grayscale images such as Lena (512 x 512), 

Rice (640 x 640), Cameraman (256 x 256), Nuvola (448 x 448), Pout (480 x 480), 

Tyre (460 x 460) , Monkey Face (5 12 x 5 12), Pepper (600 x 600) and Thumb Print 

(250 x 250) as shown in Figure 5.18. To evaluate the performance of our proposed 

method, a test image was zoom out to half of its original size by using the simple im- 

age interpolation in Matlab (bicubic convolution method), and this image will be scaled 

up by factor of two to get an original size. We calculate the Peak Signal-to-Noise Ratio 

(PSNR) for the scaled image based on the original image. The value of PSNR will re- 

flect the quality of image, i.e the larger PSNR means that the higher quality of an image 

(Han, 2013).We also compare our method with an existing nearest neighbor method, 

existing bilinear method and an existing bicubic method of Matlab Image Processing 

toolbox. 



Figure 5.18. (a) Rice (b) Cameraman (c) Nuvola (d) Pout (e) Tyre (f) Lena (g) 
Monkey Face (h) Pepper (i) Thumb. 

Now, we apply our proposed method to each figure and we compared the PSNR with 

the image generated by BCzier, SaidlWang-Ball and DP-Ball as follows.Results are 

shown in Figure 5.19 - Figure 5.27. 



Figure 5.19. Result using our proposed method for Rice test image (a) Input image 
(b) Image without interpolation (c) Image with proposed method. 

Table 5.5 
Comparison between Said/Wang-Ball and DP-Ball by using PSNR for Rice test image. 

Method PSNR 

Nearest neighbor 36.80 
Bilinear 40.52 
Bicubic 43.60 



Figure 5.20. Result using our proposed method for Cameraman test image (a) Input 
image (b) Image without interpolation (c) Image with proposed method. 

Table 5.6 
Comparison between SaidWang-Ball and DP-Ball by using PSNR for Cameraman test 
image. 

Method PSNR 

Proposed 
SaidIWang-Ball 40.47 

DP-Ball 40.38 
Nearest neighbor 40.38 
Bilinear 39.91 
Bicubic 40.32 
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Figure 5.21. Result using our proposed method for Nuvola test image (a) Input image 
(b) Image without interpolation (c) Image with proposed method. 

Table 5.7 
Comparison between Said/Wang-Ball and DP-Ball by using PSNR for Nuvola test im- 
age. 

Method PSNR 
SaiWang-Ball 37.17 

Proposed 
DP-Ball 37.22 

Nearest neighbor 36.57 
Bilinear 38.1 1 
Bicubic 38.11 



Figure 5.22. Result using our proposed method for Pout test image (a) Input image 
(b) Image without interpolation (c) Image with proposed method. 

Table 5.8 
Comparison between Said~Wang-Ball and DP-Ball by using PSNR for Pout test image. 

Method PSNR 

Proposed 
SaidIWang-Ball 49.65 

DP-Ball 49.63 
Nearest neighbor 46.99 
Bilinear 50.48 
Bicubic 52.73 



Figure 5.23. Result using our proposed method for Tyre test image (a) Input image 
(b) Image without interpolation (c) Image with proposed method. 

Table 5.9 
Comparison between Said/Wang-Ball and DP-Ball by using PSNR for Tyre test image. 

Method PSNR 
SaidIWang-Ball 40.84 

Proposed 
DP-Ball 41.00 

Nearest neighbor 39.33 
Bilinear 43.30 
Bicubic 46.59 



Figure 5.24. Result using our proposed method for Lena test image (a) Input image 
(b) Image without interpolation (c) Image with proposed method. 

Table 5.10 
comparison between SaidlWang-Ball and DP-Ball by using PSNR for Lena test image. 

Method PSNR 

Proposed 
Said/Wang-Ball 37.23 

DP-Ball 37.24 
Nearest neighbor 36.65 
Bilinear 37.08 
Bicubic 38.14 



Figure 5.25. Result using our proposed method for Monkey test image (a) Input image 
(b) Image without interpolation (c) Image with proposed method. 

Table 5.1 1 
Comparison between Saimang-Ball  and DP-Ball by using PSNR for Monkey test 
image. 

Method PSNR 
Said/Wang-Ball 37.33 

Proposed 
DP-Ball 37.12 

Nearest neighbor 36.89 
Bilinear 36.8 1 
Bicubic 40.18 



Figure 5.26. Result using our proposed method for Pepper test image (a) Input image 
(b) Image without interpolation (c) Image with proposed method. 

Table 5.12 
Comparison between SaidWang-Ball and DP-Ball by using PSNR for Pepper test im- 
age. 

Method PSNR 

Proposed 
SaidIWang-Ball 39.10 

DP-Ball 39.17 
Nearest neighbor 38.25 
Bilinear 42.36 
Bicubic 45.46 



Figure 5.27. Result using our proposed method for Thumb test image (a) Input image 
(b) Image without interpolation (c) Image with proposed method. 

Table 5.13 
Comparison between Said~Wang-Ball and DP-Ball by using PSNR for Thumb test im- 
age. 

Method PSNR 
SaidIWang-Ball 36.17 

Proposed 
DP-Ball 36.16 

Nearest neighbor 36.38 
Bilinear 35.29 
Bicubic 36.08 





The following observations can be obtained from Figure 5.28. For small size im- 

ages such as Cameraman (256 x 256) and Thumb (250 x 250) , our proposed method 

outperformed the bicubic and bilinear methods, but almost comparable to the nearest 

neighbor method. Furthermore, for large size images such as Rice (640 x 640), Pout 

(480 x 480), Tyre (460 x 460), Lena (5 12 x 5 12), Monkey (512 x 5 12) and Pepper 

(600 x 600), the bicubic method gives the best quality of these images because the 

value of PSNR given by bicubic method is the highest for each example; followed 

by the bilinear method, then our proposed method and finally the nearest neighbor 

method. There is an exception for Nuvola (448 x 448) where the best result came 

from the bicubic method, followed by our proposed method, then bilinear method, 

and lastly the nearest neighbor. This is simply because of the estimate of the gradient 

out pixel. Therefore, there is a need to consider the development of another suitable 

algorithm for the estimation of the gradient out pixel in the future. 

5.5.5 Summary 

In this chapter, we have proposed the sufficient conditions for positivity preserving 

odd degree-n generalized Ball (Said-Ball, DP-Ball and Wang-Ball) boundary curves 

defined on rectangular grid using a polynomial solution of fourth order linear PDEs in 

order to improve the positivity preserving of the interpolating surface. We described 

the sufficient condition on boundary curves for each edges of degree m x n rectangular 

Ball patches, where the lower bound of edge generalized Ball ordinates are adjusted 

independently. Implementations on the well-known test functions using cubic and 

quintic Ball boundary curves showed that our proposed method are well performed in 

terms of preserving the positivity of the boundary curves and improved the positivity 

preserving of overall interpolating surfaces. However, we have proposed to enlarge an 

image by a factor 2 using the polynomial solution of fourth order linear PDEs. 



CHAPTER SIX 

CONCLUSION AND FUTURE RESEARCH 

6.1 Conclusion 

In this thesis, a method for generating Ball surfaces with respect to the boundary infor- 

mation based on a general fourth order PDE is presented. We also presented the gener- 

alized Ball (Said-Ball, DP-Ball and Wang-Ball) polynomial solutions for the Laplace 

and the standard bihannonic equation. The generalized Ball solutions associated with 

the most general quadratic functional were studied and we took interest in using the 

monomial matrix form to present a general solution method for generating generalized 

Ball surfaces based on the Euler-Lagrange equation which arises from the most general 

quadratic functional. 

One of the main challenges associated with computer aided geometric design is to 

generate a surface with prescribed boundaries. A variety of surface generation methods 

can be found in existing literature, but these methods depends on the chosen conditions 

that such a surface must satisfy. One of such conditions that the surface must satisfy, 

is related to the minimization of the area of the resulting surface. This minimization 

is in relation with the highly nonlinear area functional and also the Laplace operator 

(an intrinsic operator which is quite challenging to work with) of the surface defined 

by its Euler-Lagrange equation. For this reasons, some of the techniques related to 

the minimization of the area adopt the use of the harmonic functional instead. This 

is because the Laplace operator is constrained to the parameterisation of the surface 

and it also presents a less complicated approach for computing good approximations 

unlike the Laplace-Beltrami operator. 

Due to the presence of high nonlinearity of the area functional, it is quite difficult 

to apply the area functional. With respect to an argument in the theory of minimal 

179 



surfaces, the Dirichlet functional is substituted in place of the area functional so that 

the extremals can be computed easily as the solutions of linear systems. 

We have used the monomial matrix approach to present a generalized way of getting 

approximations to the minimal surfaces, having prescribed boundary curves by the use 

of a mask. Computing the Dirichlet extremals is another approach for finding these 

approximations but this comes at a price which is the computational cost. Though the 

two methods are from the resolution of a system of linear equations of the same size, 

but when we use the masks, the matrix of the coefficients becomes a sparse matrix, 

while in the case of the Dirichlet, the matrix of the coefficients is a non-zero matrix. 

For generalized Ball surfaces, we have two methods that involve the Laplace operator, 

that are the minimization of the associated functional which is known as the harmonic 

functional, and the application of masks for the discretization of the Laplace opera- 

tor. Another problem associated with the Laplace operator is how to determine the 

harmonic generalized Ball surfaces. We can show that the harmonic generalized Ball 

surface is determined solely by the first and last rows (columns) of control points, un- 

like the biharmonic case, where the generation of a surface is fully determined by all 

of its boundary control points. 

In order to make comparison among the results of the different methods with respect to 

computational time and surface area for the surface with same boundaries (two oppo- 

site boundaries for harmonic and all boundaries for biharmonic), we adopted a natural 

and quite simple model problem throughout this thesis. We also used a collection of 

other problems which involves a variety of different boundary configurations to make 

comparison of the different methods with the existing method in literature for BCzier. 



For the Dirichlet approach, we hereby propose a new mask though we have compared 

between the results from BCzier masks and that of the Dirichlet extremals for differ- 

ent configurations of the boundary conditions. We cannot conclusively say there is 

a better option, but from the examples conducted and from theoretical arguments, it 

was noted that when the first fundamental form of the generalized Ball surface at the 

comers (at these points, this form depends only on the boundary conditions) is close 

to being isothermal, then we have a better approximation with the Dirichlet extremal 

in comparison to the results obtained by using the masks. However, if the first funda- 

mental form of the generalized Ball surface at the comers is far from being isothermal, 

then we have a better approximation when using the masks in comparison to the results 

obtained by the Dirichlet extremal. 

The extremals of the Dirichlet functional are another approach for obtaining (without 

integrating) an approximation of the surface minimizing area. So, if we want to obtain 

a better approximation, we can use the extremals of the Dirichlet functionals as the 

starting point for recursive algorithms that optimize the area hnctional. As shown in 

this research work, we can note that the biharmonic operator is not an intrinsic operator. 

However, the solutions computed can be seen as approximations to the true solutions 

of the bilaplace-Beltrarni operator because of the fact that the Laplace-Beltrami oper- 

ator reduces to the Laplace operator when the parameterization is isothermal, and the 

bilaplace-Beltrami operator also reduces to the biharmonic operator. 

One vital observation that is worth noting from this thesis is that some of the existing 

methods in literature for boundary based surface design, such as Bloor-Wilson PDE 

method, Coons patches, Ugail and Montede method are the peculiar cases of the gen- 

eralized framework presented in this thesis. We also applied a polynomial solution of 

fourth order linear PDEs in image enlargement using cubic Ball boundary curves in 

this research. 
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This thesis has also proposed the sufficient conditions for positivity preserving odd 

degree-n generalized Ball boundary curves defined on rectangular grid using a polyno- 

mial solution of fourth order linear PDEs in order to improve the positivity preserving 

of the interpolating surface. 

Two new masks are also proposed in relation to harmonic and biharmonic for finding 

the inner control points, and also an improvement of the Dirichlet method (without 

going into an iterative method) with better accuracy than the previous existing method 

for BCzier, but which will now come at a quite high computational cost. 

6.2 Future Research 

There are areas for future research associated to this work. For instance, the detailed 

study of how the various coefficients associated with a chosen fourth order PDE af- 

fect the shape of the generated surface can be investigated. Also, from our previous 

findings, we showed that the associated coefficients can be applied to remove the re- 

striction on the (u, v) parameter domain being a square [O, 112, and for that reason, 

surfaces with complicated boundary formulations can be generated easily. Whenever 

the parametric domain is restricted to the square [O, 112, for the PDE used which has 

a non-intrinsic functional associated with it, we are usually faced with this particular 

case. For this reason, it would be a great area of interest to investigate the shapes of 

the surfaces generated by various fourth order PDEs. The aim of this is to develop a 

surface classification system that would aid in the development of intuitive tools for 

generating generalized Ball surfaces with respect to boundary information. The gen- 

eralized algorithm of Said-Ball, DP-Ball and Wang-Ball surfaces could be extended 

to NB 1, NB2, Dejdumrong surfaces and three dimensional Minkowski space in future 

research, which generate any surfaces based on eighth order PDEs using monomial 

matrix form. 
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