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Abstrak 

Sejak dua dekad lalu, pemodelan geometri menggunakan pendekatan persarnaan pem- 
bezaan separa (PPS) telah dikaji secara meluas dalam Rekabentuk Geometri Bantuan 
Komputer (RGBK). Pendekatan ini pada mulanya diperkenalkan oleh beberapa orang 
penyelidik berdasarkan kepada permukaan BCzier yang berkaitan dengan luas permu- 
kaan minimum ditentukan oleh lengkung sempadan yang ditetapkan. Walau bagaima- 
napun, perwakilan permukaan BCzier boleh diperbaiki dari segi masa pengiraan clan 
luas permukaan minimum dengan menggunakan perwakilan permukaan Ball. Sehu- 
bungan itu, kajian ini membangunkan satu algoritma untuk mengitlak permukaan Ball 
dari lengkung sempadan menggunakan PPS eliptik. Dua permukaan Ball khusus iaitu 
hannonik dan dwiharmonik pertarnanya dibina dalam membangunkan algoritma yang 
dicadangkan. Permukaan terdahulu dan kemudian masing-masing memerlukan dua 
d m  empat syarat sempadan. Bagi mengitlak permukaan Ball dalam penyelesaian poli- 
nomial untuk sebarang PPS peringkat empat, kaedah Dirichlet digunakan. Keputusan 
berangka diperolehi keatas contoh titik data yang diketahui umum menunjukkan algo- 
ritma perrnukaan Ball teritlak yang dicadangkan mempamerkan keputusan lebih baik 
daripada perwakilan permukaan BCzier dari segi masa pengiraan dan luas permukaan 
minimum. Tambahan pula, algoritma yang baharu dibina juga memenuhi sebarang per- 
mukaan dalam RGBK termasuk permukaan BCzier. Algoritma ini kemudiannya diuji 
dalarn permasalahan pengekalan kepositifan permukaan d m  pembesaran imej. Kepu- 
tusan menunjukkan algoritma yang dicadangkan adalah setanding dengan kaedah yang 
sedia ada dari segi kejituan. Justeru, algoritrna ini adalah satu alternatif berdaya maju 
untuk membina permukaan Ball teritlak. Dapatan daripada kajian ini menyurnbang 
kearah bidang pengetahuan untuk pembinaan semula permukaan berdasarkan pende- 
katan PPS dalam bidang pemodelan geometri dan grafik komputer. 

Kata kunci: Permukaan Ball, Persamaan pembezaan separa, Kaedah Dirichlet, Pe- 
ngekalan kepositifan, Pembesaran imej. 



Abstract 

Over two decades ago, geometric modelling using partial differential equations (PDEs) 
approach was widely studied in Computer Aided Geometric Design (CAGD). This 
approach was initially introduced by some researchers to deal with Bkzier surface re- 
lated to the minimal surface area determined by prescribed boundary curves. However, 
BCzier surface representation can be improved in terms of computation time and min- 
imal surface area by employing Ball surface representation. Thus, this research devel- 
ops an algorithm to generalise Ball surfaces from boundary curves using elliptic PDEs. 
Two specific Ball surfaces, namely harmonic and biharmonic, are first constructed in 
developing the proposed algorithm. The former and later surfaces require two and 
four boundary conditions respectively. In order to generalise Ball surfaces in the poly- 
nomial solution of any fourth order PDEs, the Dirichlet method is then employed. 
The numerical results obtained on well-known example of data points show that the 
proposed generalised Ball surfaces algorithm performs better than BCzier surface rep- 
resentation in terms of computation time and minimal surface area. Moreover, the 
new constructed algorithm also holds for any surfaces in CAGD including the Bezier 
surface. This algorithm is then tested in positivity preserving of surface and image en- 
largement problems. The results show that the proposed algorithm is comparable with 
the existing methods in terms of accuracy. Hence, this new algorithm is a viable alter- 
native for constructing generalized Ball surfaces. The findings of this study contribute 
towards the body of knowledge for surface reconstruction based on PDEs approach in 
the area of geometric modelling and computer graphics. 

Keywords: Ball surface, Partial differential equation, Dirichlet method, Positivity pre- 
serving, Image enlargement. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Research Background 

Partial differential equations (PDEs) is a large subject with a history that goes back to 

Newton and Leibnitz. Many mathematical models involve functions which have the 

property that the value at a point depends on its value in a neighborhood. Dependencies 

like these can be modeled with a PDE. Famous examples are Newton's second law, 

Laplaces equation, Schrodinger's equation and Einstein's equations. 

Geometric modeling using PDEs have been widely studied in computer graphics for 

over two decades and was first introduced in blend surface generation by Arnal, Mon- 

terde and Ugail(201 I), Du and Qin (2004), Monterde (2004), Zhang and You (2004). 

Advantages of the PDE methods have been gradually recognized by researchers. A 

principle advantage comes from the ability that the differential operator of PDEs can 

ensure the generation of smooth surfaces, where the smoothness is strictly governed 

by the order of the PDE used. A second advantage of using the PDE method is that 

the PDE surface can be generated by intuitively manipulating a relative small set of 

boundary curves. Moreover, the behavior of PDE surfaces has been proven to be com- 

patible with underlying tensor product surfaces, such as BCzier surface (Monterde & 

Ugail, 2006), B-spline (Bloor & Wilson, 1990) and etc. These advantages have con- 

tributed to the widespread adoption of the PDE methods in a wide range of disciplines, 

such as free-form surface design, solid modeling computer aided manufacturing, shape 

morphing, web visualization, mesh reconstruct and facial geometry parameterization 

(Sheng, Sourin, Castro & Ugail, 2010). 
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