COMPONENT-BASED TOOLS FOR

EDUCATIONAL SIMULATIONS

A thesis submitted in partial fulfilment of the requirements for the

Degree

of Doctor of Philosophy in Computer Science and Software Engineening

in the University of Canterbuny

by Ruzelan Khalid

Urnuversity of Canterbury

2013

ABSTRACT

e-Leamning is an effective medium for delivering knowledge and skills. In spite of
improvements in electronic delivery technologies, e-Learning is still a long way away
from offering anything close to efficient and effective learning environments. To
improve e-Learning experiences, much literature supports simulation based e-
Learning. This thesis begins identifying various types of simulation models and their
features that induce experiential learning. We focus on designing and constructing an
easy-to-use Discrete Event Simulation (DES) tool for building engaging and
informative interactive DES models that allow learners to control the models’
parameters and visualizations through runtime interactions. DES has long been used
to support analysis and design of complex systems but its potential to enhance
learning has not yet been fully utilized. We first present an application framework
and its resulting classes for better structuring DES models. However, importing
relevant classes, establishing relationships between their objects and representing
lifecycles of various types of active objects in a language that does not support
concurrency demand a significant cognitive workload. To improve this situation, we
utilize two design patterns to ease model structuring and logic representation (both in
time and space) through a drag and drop component approach. The pattemns are the
Delegation Event Model, used for linking between components and delegating tasks
of executing and updating active objects’ lifecycles, and the MVC (Model-View-
Controller) pattern, used for connecting the components to their graphical
instrumentations and GUIs. Components implementing both design patterns support
the process-oriented approach, can easily be tailored to store model states and
visualizations, and can be extended to design higher level models through hierarchical
simulation development. Evaluating this approach with both teachers and leamners
using ActionScript as an implementation language in the Flash environment shows
that the resulting components not only help model designers with few programming
skills to construct DES models, but they also allow learners to conduct various
experiments through interactive GUIs and observe the impact of changes to model
behaviour through a range of engaging visualizations. Such interactions can motivate

learners and make their learning an enjoyable experience.

ACKNOWLEDGMENTS

I wish to sincerely thank my supervisor, Associate Professor Dr. Wolfgang
Kreutzer and my associate supervisor, Professor Dr. Tim Bell for all their constant
intellectual challenges and very kind guidance and encouragement during this study.

I would also like to thank all staff and postgraduate students at University of
Canterbury for whatever help they gave to complete this study.

To my family, thanks so much for giving your continuous moral support and
encouragement, and sharing your valuable time during our stay in New Zealand. You
all have always been my source of strength and inspiration.

Lastly, thanks to all of those who implicitly or explicitly committed until the
completion of this study.

11

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

LIST OF FIGURES

LIST OF TABLES

1. INTRODUCTION

1.1
1.2
1.3
1.4
1.5
1.6

Introduction

Statement of the Problem
Objectives and Motivations
Scope of the Research
Contributions to Knowledge

Thesis Overview

2. SIMULATION AND EDUCATION

2.1.
.
5 8
24.

25.
2.6.
2.7.

Introduction

Simulation Models and Their Purposes

Types of Simulation Models

The Role of Simulation in Education and Learning

2.4.1 The Role of Simulation in Learning Theories

2.4.2 Empirical Evidence

2.4.3 Simulation and e-Learning
24.3.1 Promises and Problems of e-Learning
2.43.2 The Roles of Course Management Systems
2.4.3.3 Pedagogical Aspects of e-Learning

DES Development Tools

Animated DES Systems

Summary

111

vii

ix

12
14
17

19
19
20
22
26
26
32
33
33
35
36
38
40
44

3. AFRAMEWORK FOR DES AND ANIMATION

3.1.
3.2,
3.3.

34.

3.

4.1
4.2
43
44
4.5

4.6
4.7
438
4.9

Introduction

DES and Queuing Scenarios

Modelling Time

3.2.1 The Event-Oriented Approach

3.2.2 The Process-Oriented Approach

The DES Framework

3.4.1 The Data Collector Package

3.4.2 The Distribution Package

3.4.3 The Monitor (Simulation Executive) Package
3.4.4 The Resource (Servers and Queues) Package

Graphical Objects in Discrete Event Models

USING FLASH FOR SIMULATION

Introduction

Visual Simulation and Visual Interactive Simulation
Animation Approaches

Managing Simulation and Animation

Flash as an Implementation Language for Simulation and Animation
4.5.1 Flash Features for VIS Development

4.5.2 Flash Component Construction

4.5.3 Other Advantages of Flash and Its Drawbacks
Flash Components for Queuing Systems

Flash Components for Visualizing Queuing Systems
Example

Problems and Pitfalls

4.10 Extensibility

5.1
3.2
33
54
55

Introduction

Component Based Simulation

The Environment of Animated Simulation Models
The Delegation Event Model for Linking Components
The MVC for Visualizing Component States

v

46
46
48
50
51
52
54
56
57
59
61
62

67
67
68
71
74
77
78
79
81
83
89
91
96
99

COMPONENT-BASED MODELING FOR ANIMATED SIMULATION 102

102
104
105
107
111

5.6 Connecting External Data

5.7 Example

5.8 Towards Hierarchical Simulation Model Designs

5.9 Designing Mechanisms for Hierarchical DES Models
5.9.1 Monitor Delegation Mechanism
5.9.2 Monitor Communication Mechanism

5.10 Problems and Challenges

6. EVALUATION AND ANALYSIS
6.1 Introduction
6.2 Evaluating Models’ Attractiveness and Interactivity
6.2.1 Assessment and Evaluation Methods
6.2.2 Experiment Participants
6.2.3 Data Analysis and Results
6.2.3.1 General Information
6.2.3.2 General Questions
6.2.3.3 Model Rating
6.3 Evaluating the Tool’s Ease of Use, Usefulness and Enjoyment
6.3.1 Assessment and Evaluation Methods
6.3.2 Experiment Participants
6.3.3 Running the Experiment
6.3.4 Data Analysis and Results
6.3.4.1 General Information
6.3.4.2 Questionnaire Reliability and Validity
6.3.4.3 Usefulness, Ease of Use and Enjoyment of the Tool
6.3.44 Self Predicted Future Usage
6.3.4.5 Participants’ Cognitive Workload

7. CONCLUSION AND FUTURE RESEARCH
7.1 Introduction
7.2 Conclusion
7.3 Limitations of the Research

7.4 Recommendations for Future Research

114
118
122
125
126
130
133

136
136
137
137
139
142
142
143
145
159
159
160
162
164
164
165
166
168
171

175
175
175
179
181

BIBLIOGRAPHY 173

APPENDICES
Appendix A: Consent Form
Appendix B: Questionnaire Information Sheet
Appendix C: Learner Questionnaire
Appendix D: Model Builder Questionnaire
Appendix E: User Manual
Appendix F: Source Code (in CD)

Vi

Figure 1.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11

LIST OF FIGURES

Interactions between Teachers, Learners, Models and LMSs
The Event-Oriented Approach Mechanism

The Process-Oriented Approach Mechanism

Package Diagram for Queuing Models

Class Diagram for the DataCollectors Package

Class Diagram for the Distribution Package

Class Diagram for the Monitor Package

Class Diagram for the Resource Package

Graphical Objects in DES

Visual Simulation Components

Three Approaches to Combine Simulation with Animation
DES’s Animated Objects

Transformation from Model to Animation Time

Component Architecture

Class Diagram of Components for Simulation /nput and Output

Flash Component Panel
Samples of DES Visualization Tools
Sample of Interactions between Leamers and a Model

Sample of Information Gained from a Model

Extended Components for Supporting Logistic and Manufacturing

Systems

Simulation and Animation Aspects of a Model
The DES Delegation Event Model Structure
The flow of a SimProcess Object in DES Components
The DES MVC Structure

Flash Development Environment

A Queuing Network System

A Server’s Properties and Default Values

A Final Model

Interactions with Component Instances
Hierarchical Construction of a DES Model

Submodel Architecture and Transferring Mechanisms

vil

11

52
53
56
56
58
59
61

63
69
71
75
76
79
84
87
91
95
96

99
105
108
110
112
118
119
120
121
122
124
126

Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5

Monitor Delegation Mechanism

Submodel Class Definition

Simulation Class Definition

Agenda States

Simple Queuing Networks

More Complicated Queuing Networks
Participants’ Feedback on Simulation Knowledge
Arena Screenshot

Perceived Usefulness Results

viil

128
129
129
132
141
141
144
161
167

Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 3.1
Table 3.2
Table 4.1
Table 4.2

Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8

Table 4.9

Table 5.1
Table 6.1
Table 6.2
Table 6.3

Table 6.4

Table 6.5

Table 6.6

Table 6.7

Table 6.8

LIST OF TABLES

Classification of Constructive Computer Simulations
Simulation Types and Learning Support

Some Learning Theories and Their Features

Available DES Simulation Tools

Desirable Features for the Design of DES Tools

Types of Directed Graphs

Properties and Events for Dynamic Objects

Aspects of Simulation-Animation Approaches
Interaction Characteristics of Concurrent and Post-processed
Animations

Available Simulation Tools and Their Features
Simulation to Animation Conversion

Events and Model Time Difference in a Sample System
VIS Graphic Displays and Flash Features

DES Component Types

Flash Components for Building DES Models and Their
Functionalities

Flash Components for Visualizing DES Models and Their
Functionalities

Server Properties and Description
Items in Model Rating
Time Spent (in minutes) for Each Score

Good Simulation Knowledge Participants’ Feedback about
the Models

No Simulation Knowledge Participants’” Feedback about
the Models

Undecided Simulation Knowledge Participants’ Feedback about

the Models

Feedback on the Quality of Animation from the Participants
Who Always Used Computer as a Learning Tool

Sub-questions of “These tools help to understand the model
better (Please write if you have any comments)™

Good Simulation Knowledge Participants’ Feedback about
the Model Tools

1X

23
24
28

2 R

65
73

74
74
9
76
78
86

86

90
120
140
144

146

146

147

149

153

153

Table 6.9

Table 6.10

Table 6.11

Table 6.12

Table 6.13
Table 6.14
Table 6.15
Table 6.16

Table 6.17

Table 6.18

Table 6.19

Table 6.20

Table 6.21

No Simulation Knowledge Participants’ Feedback about
the Model Tools

Undecided Simulation Knowledge Participants’ Feedback about
the Model Tools

TAM Factors and Their Variables

Items of Perceived Ease of Use, Perceived Usefulness,
Perceived Enjoyment and Self-predicted Future Usage
of the Component-based Tool

The Participants’ Gender
The Participants’ Knowledge and Experiences
Cronbach’s Alpha Values

Factor Analysis of Perceived Usefulness, Perceived Ease
of Use and Perceived Enjoyment

Descriptive Statistics of the Items
Descriptive Statistics of Self-Predicted Future Usage

Correlations between Perceived Usefulness, Perceived Ease
of Use and Perceived Enjoyment to Self-Predicted Future
Usage

Regression Analyses of the Effect of Perceived Usefulness
and Perceived Ease of Use on Self-Predicted Future Usage

Participants’ Feedback about the TLX Subscales

154

154
160

163
164
164
165

166
167
168

169

170
172

CHAPTER 1

INTRODUCTION

1.1 Introduction

e-Learning (i.e., technologies that use digital technologies to deliver and facilitate
learning) is increasingly used in schools, higher education and training centres either
to support distance learning or to complement the traditional classroom environment.
Since it uses electronic media; e.g., the Intemnet, to support learning, this style of
knowledge transmission eases traditional constraints on time, space and distance. The
advantage to learners is that they can learn at anytime and anywhere. As a result, the
use of e-Learning has grown rapidly throughout the world. However, this technology
requires that learners themselves are responsible for gaining knowledge; a key
concept of learner-centred education.

The teacher-student ratios either for primary, secondary or tertiary education
in some countries (e.g., India, South Africa, Philippines, etc.) are still high. In India,
the teacher-student ratio for secondary school was reported 32.7 in 2004 and 25.33 in
2010 (http://www.tradingeconomics.com). Although the ratios have slightly been
improved in most countries during past few years, less time dedicated by teachers to
the needs of each individual student demands attractive and interactive leaming
materials to promote and enhance their learmning experiences. Leamning materials that
focus on activities (i.e., some degree of interaction) during the learning process are
crucial in this and have proved to have more positive impacts on learning than static
materials, such as numbers, texts and pictures (Holzinger & Ebner, 2003; Neumann,
Page, Kreutzer, Kiesel, & Meyer, 2005; L. P. Rieber, 1996). Multimedia matenials
that allow content navigation that integrate texts, pictures, diagrams, sound and
dynamic images (i.e., animations and movies) are increasingly integrated in learning

environments. More recently, techniques that make learning more enjoyable and fun

(e.g., simulations and computer games) have also been proposed (e.g., see Aldrich,
2002, 2004, 2005; Prensky, 2001).

Simulation is a technique for experimenting with models of real or imaginary
systems (see Aldrich, 2002, 2004, 2005; Prensky, 2001). Since it allows learners to
manipulate parameters and directly observe the impact of modifications on model
behaviour and performances, it can be a powerful learning tool, whose “hands-on™
activities engage learners emotionally and help to improve understanding of complex
scenarios. There is a large body of literature (e.g., C. N. Quinn, 2005; Rosson &
Seals, 2001; Smialek, 2002; Syrjakow, Berdux, & Szczerbicka, 2000; Thomas &
Milligan, 2004) that corroborates these benefits of simulations in a learmming and
teaching environment.

The main benefit of embedding simulations in an educational context is that it
stimulates a scientific discovery style of learning; 1.e., leaming based on self-directed
initiatives (Jong & Joolingen, 1998; Neumann et al., 2005; L. P. Rieber, 2002). This
learning style requires learners to initiate and control their knowledge acquisition
through designing and executing experiments, analyzing model feedback and
constructing hypotheses based on this information (River & Vockell, 1987). The
iterative cycle of experimentation and drawing conclusions from exploring a model
are believed to encourage critical thinking, scaffold a deeper and more structured
understanding of concepts, and encourage long lasting retention of a learned domain
(Aldrich, 2004, 2005; Schwartz, Bransford, & Sears, 2005).

In spite of its strengths, simulation-based learning is an unsupervised learning
environment whose effectiveness depends strongly on learners’ and models’
characteristics, and how much guidance can be provided. Learners’ characteristics
include leamming styles (Martinez, 2000), motivation (Wittrock, 1989), pror
knowledge (Dochy, Segers, & Buehl, 1999; Hailikan, Katajavuori, & Lindblom-
Ylanne, 2008), meta-cognitive aspects (i.e., strategies for directing learning) and other
miscellaneous skills (Joolingen & Jong, 1991b; Njoo & Jong, 1993; White, Shimoda,
& Frederiksen, 1999). Among these factors, prior knowledge of a studied domain
tends to have the strongest influence on effective exploration (Lee, 1999; Mayer,
2003). Without such knowledge, leamners tend to suffer ineffective and inadequate
exploration. Ineffective exploration leads learners to insignificant experimentations
and difficulties in drawing conclusions from model experiments, while inadequate

exploration tends to result in too shallow understanding. Thus, some researchers

(e.g., J. R. Anderson, Corbett, Koedinger, & Pelletier, 1995; Kirschner, Sweller, &
Clark, 2006) urge teachers to support learners with guidance that directs leaming and
aids their activities. Examples of suggested guidance are structuring tasks through
explicit instructions (Veermans, Jong, & Joolingen, 2000), requesting learners to
observe and describe interesting scenarios (Tan & Biswas, 2007), or guiding leamers
at appropriate times; e.g., through Adaptive Coaching for Exploration (Bedor,
Mohamed, & Shedeed, 2004; Bunt, Conati, Huggett, & Muldner, 2001; Bunt, Conati,
& Muldner, 2004; Noguez & Sucar, 2005).

While guidance is important for directing learning, models should act as
platforms for testing hypotheses. Experimentation and deduction is only possible if

models contain these features:

e activities (e.g., mouse clicking/rolling, keyboard input, etc.) to motivate learners’
actions and challenge their imagination,

e informative and meaningful feedback and visualizations (e.g., through texts,
images, diagrams, graphs, sounds, etc.) that motivate learners to perform further
experiments,

e attractive responsive animations that demonstrate feedback of model behaviour,
and

o reflection of real world scenarios that stimulate learners’ imagination and connect

their mental models to the outside world.

To draw good conclusions, learners not only need to engage and interact with
a model, but also need to communicate with their peers and teachers. Fortunately,
facilities for this are widely available in modem Learning Management Systems
(LMSs). To fully complement e-Learning environments, they need attractive,
interactive and informative learning materials. Prior to 1996, the development of such
materials was highly dominated by Java (Amold, Gosling, & Holmes, 2006; Lambert
& Osbomne, 2004). Since then the development of highly interactive models has been
made easier by the introduction of the Adobe’s Flash animation tool (Castillo,

Hancock, & Hess, 2004; Stenalt & Godsk, 2006). However, this multimedia

development tool has not been utilized to its full capabilities to support leaming and

teaching.

1.2 Statement of the Problem

In spite of improvements in electronic delivery technologies, e-Leaming is still a long
way away from offering anything close to efficient and effective learning
environments. To be effective, electronic courseware management (e.g., through
LMSs) requires high quality contents such as simulations and educational games to
improve e-Leamning experiences. Unfortunately, common LMSs offer no support for
this and little research has been done to ease the construction and customization of
online simulation models and their integration into learning management systems. As
a result, e-Learning is still dominated by static materials (e.g., PDF, Microsoft Word
and PowerPoint files, etc.), rather than more sophisticated and dynamic techniques;
some detailed data is given in Wagner (2006).

While much has been claimed about the benefits of simulations and games in
supporting and enhancing leaming and training, few investigations into how to
develop and construct simulation tools, how to design attractive and interactive model
graphical user interfaces (GUIs), how to store models” intermediate states, and how to
integrate simulations into LMSs have been performed. To improve this state of
affairs, it seems important to make both model construction and model deployment
easy for teachers, so that the resulting models are attractive and interactive enough to
motivate learners to explore and experiment, and so that tools can easily be extended
to help model developers to construct libraries for painless construction of many

different types of animations and visualizations.

1.3 Objectives and Motivations

This research assumes that simulation models are useful tools for clarifying ideas and
showing flows of events. It is therefore not our primary objective to demonstrate that
simulations enhance student learning - an assumption that has already been

corroborated by many empirical investigations (e.g., Gokhale, 1996; Liao & Miller,

1996; Michael, 2000; Renshaw & Taylor, 2000; L. P. Rieber, 1996). Instead, this
research investigates how simulation models can most easily be built and delivered
within an e-Leaming environment. We focus on Discrete Event Simulation (DES)

models. Thus, the research plans are to:

design and construct a fool for animated simulation models for web based delivery
and LMS integration

e integrate the models with suggested model features that facilitate learning

e analyse users’ feedback of the tool and its resulting models

e extend the tool to support more complex models

Our motivation is clear. We found no tools that allow users to interact with
their resulting models, customize the models’ visualizations during runtime and save
the models’ states and animations at any point of interest for later uploading. Thus,
our particular interests centre is on exploration, construction and application of DES

tools that can effectively support three groups of users:

1. developers (i.e., those who are interested in extending these tools to new
applications),
2. teachers (i.e., model designers and implementers) and

3. learners (1.e., model users).

Developers should be conversant with the tools' internal architecture, so that
extension is easy and not unduly limited. Teachers, on the other hand, need easy-to-
use model construction tools, since they are probably lacking in programming
knowledge and experiences. Finally, learners should be presented with attractive and
interactive amimated models that support knowledge acquisition through
experimentation.

To satisfy all three parties' expectations, a visual modelling environment that
offers component-based composition of simulation models has been designed and

constructed. It reduces model complexity through use of pre-assembled components,

N

each of which handles their specific functionality. These components can be
combined to form models. This approach eases model construction since components
can be reused over and over again. Component development is based on an Object
Oriented architecture (Eden, 2002; Lau, 2000) and the design of their code follows
Object Oriented Programming (OOP) principles of good practice with regard to
encapsulation, inheritance, polymorphism and exception handling.

We identified two design patterns that suit the development and extension of
the DES tool; i.e., the Delegate Event Model and the Model-View-Controller (MVC)
interface architecture. The Delegate Event Model was used to wire components to
each other, since its style of event broadcasting is analogue to the flow of entities in
DES components, so that that an entity (an event object) is passed from a component
(an event source) to other components (event listeners). The Model-View-Controller
(MVC) interface architecture is used to support a component’s graphical interfaces
(GUIs) and multiple visualizations of its states. By following this design pattern,
components can be loosely coupled to their GUIs (to receive inputs) and
visualizations tools (to receive state notifications). Adding or removing visualizations
does not affect other component parts since each component only store a list of
interested visualization instances - without any influence on a visualization’s
implementation. Since each component needs to perform two tasks; ie.,
communicating with each other and notifying state changes to an observer, the
component’s class must define both patterns in its implementation.

The component-based modelling framework offers ease-of-use by allowing
model designers to drag components from a library, drop them onto a worksheet and
assemble them appropriately into models. Four categories of simulation components

have been designed and implemented:

e components for modelling activities,
e components for visualizing simulation results,
o acomponent for controlling animation speed, and

e autility component for saving or refreshing model states and revealing their flows

or lifecycles.

Various component properties can be customized through GUIs. Since
modelling components have output port properties (i.e., they store a list of interested
components that wish to receive state change notifications), they must be wired to
each other so that messages can be routed in the right order. When all components
have been wired together into a model, teachers can test and then distribute the model
to learners. Although the resulting model has a fixed structure, we have tailored the
components to allow leamners to change model parameters and explore the resulting
chains of events without any need to change model code. Since each component is
also an object, the values for the output port properties can be specified during
runtime.

We have identified five elements that should exist in a DES model to help

learners understand its behavior; i.e.:

1. A model should provide easy-to-access runtime GUIs for changing component
parameters. These could employ mouse-over to allow learners to quickly view a
component’s attribute values, text boxes to receive input-based interactions (e.g.,
time of an entity’s creation, a resource's capacity, etc.), combo boxes to permit
learners to type a value directly into a field or choose a value from a list of
existing options (e.g., queuing disciplines, distributions that specify time between
arrivals, delays, resources' service times, etc.) and command buttons to activate
visualization tools (e.g., graphs, histograms, box plots, etc.). Data visualization
tools should be easy to be added, removed, sized and positioned at any location
through drag and drop gestures. To make their display both more informative and
attractive, some model components; e.g., servers, should be animated to depict
their current states.

2. A model should offer a display list of all past, current and next events, so that
learmers can obtain clarification on how it is executed and how component
parameters affect event sequences in the model. Without such a list, leamners tend
to just passively view animations rather than actively seeking an understanding of
model behaviour; i.e., how events are affected by different model parameters.

3. A model should animate message passing and movements of transient entities
between components. Arrows can depict a message’s or an entity’s travel
direction, but learners should be able to remove this feature if it obscures other

patterns or visualizations.

4. A model should provide a high degree of top-level control over a simulation and

its animation; e.g., allowing learners to stop, restart, speed up or slow down the
execution of models and their animations. This gives leamers a choice to look
closer at aspects that catch their attention and skip over aspects that are of no
current interest. While such a capability is helpful in fostering understanding,
proper synchronization of animation speed and simulation clock time is crucial to
preserve a consistent correspondence of simulation and animation activities.

A model should provide a utility component for allowing leamers to save model
visualizations and entities’ current states for restarts or reloads of a model without

the need to exit from the program or refresh a web page.

Embedding these functionalities in a model however poses a number of

challenges. These include:

L

The construction of runtime GUIs is only possible through an Application
Programming Interface (API). Since component GUIs are based on the MVC
pattern, this demands that each component must be equipped with its own GUI to
handle its parameters. When there are many components, this is a cumbersome
task.

While there could be many attractive and interactive third-party data visualization
components on the market, they cannot be easily integrated with our components.
The main reason once again lies in the implementation of the MVC pattern, which
demands that all interested observers (i.e., visualization tools) define an update
method in order to receive notifications from the components. We have therefore
opted to implement our own data visualization constructs.

Implementing the Delegation Event Model patten in an animated simulator
requires to correctly trigger sorted events in the Monitor at appropriate times (i.e.,
to stop or delay events appropriately before attempting to trigger subsequent
events) and to smoothly transfer entities along their life cycles so that they reach
their next destination at times that are consistent with the viewing ratio (i.e.,
animation speed) specified by a learner. This necessitated a nested design, where
model time must be mapped onto animation time, and animation time then

mapped onto real time. We have therefore opted for concurrent animations to

immediately display the effect of viewing ratio changes, rather than a post-
processed animations or direct simulation-animation (Hill, 1996) architecture.

4. Storing models requires storing all component instance identities (with their
current states and all interested observers) and running the models requires
continuation from their last saved positions (e.g., entities must continue travelling
to their next location based on their current locations and leftover travel times).
We therefore investigated methods to perform these.

5. Since we also designed our components to support hierarchical simulations that
can accommodate more complex model structures, we need to find a way to
connect and synchronize models in a hierarchical fashion, where aspects of parent
models may depend on their child model(s) states. This demands a mechanism
that not only synchronizes the flow of simulation entities in a child model, but can
also transmit this information to its parent whenever its relevant events have been

executed.

Before providing such components, we had to construct core libranes for
coordinating state transitions and processes in DES models; 1.e., a DES monitor
engine. Its purpose is to keep track of all DES aspects, such as entities, resources,
routing, buffering, scheduling, time management and statistical instrumentation. To
achieve this goal, it had to be possible to generate samples from a vanety of
distributions, maintain a list of events to be executed, offer a mechanism for
generating and cancelling events, maintain a simulation clock, compute statistical
performance measures (e.g., minima, maxima and averages of time spent in a system,
waiting times in queues, resource utilization, throughput, etc.) and collect and display
the results of a simulation run.

Since these models are intended to be embedded in web pages and meant to
drive animations, we have used Adobe’s Flash (Lopez, 2006; Peters & Yard, 2004;
Sanders, 2004) for coding their implementation. Flash was chosen as a delivery
platform mainly because of its strength as an animation tool (Holzinger & Ebner,
2003; Mohler, 2006; Peters & Yard, 2004; Shupe & Hoekman, 2006), and the fact
that it can generate very compact .sw/ applets that can be played “off the shelf” in the

vast majority of modem browsers.

Although there are a number of Java-based simulators; e.g., simjava (W.
Kreutzer, J. Hopkins, & M. V. Mierlo, 1997), JSIM (J. A. Miller, Y. Ge, & J. Tao,
1998), JavaSim (Kuljis & Paul, 2000; Tyan, 2002), Psim-J (Garrido, 2001) and
Desmo-J (B. Page & Kreutzer, 2005) and some simple device modelling tools for
operating cell phones, crane arms, etc. using Flash (e.g., Kaye & Castillo, 2003), we
have not found any reports or references to a Flash-based discrete event modelling
tool. We have therefore coded our own Flash-based DES model executive. This
meant that we first needed to learn how to use Flash’s development environment, its
object-oriented scripting language (ActionScript-2), both its generic and animation
specific libraries, and its features for building and packaging collections of reusable
components. Although the construction of such a DES engine was not a primarily
goal of this research, its development has been a necessary step in providing a suitable
infrastructure for subsequent work. Leamning how to build such a DES monitor in
ActionScript and how to package it so that its features can be easily used, took a
significant amount of time.

After coding the basic libraries, we fine-tuned our components so that they
could support all aspects and model features we have mentioned above. To test their
effectiveness, two experiments were conducted. First, we obtained feedback from
learners about the attractiveness, interactivity and usefulness of our Flash components
in the context of two DES sample models. Secondly, we distributed the components
to model developers to get their feedback about the tool’s usefulness, ease of use and
enjoyment. Here the information collected included whether the components
provided interesting run time GUIs, whether the GUIs were easy to interact with,
whether the leamners liked the approach to display visualizations only when requested,
which visualization tools (e.g., graphs, histograms, boxplots etc.) helped them to
understand models better, whether the ability to change simulation parameters during
run time and the ability to pause, slow down and speed up a model’s execution made
learning easier and/or more enjoyable, etc.

The resulting models should easily be embedded in LMSs. Fortunately, Flash
models can easily be tailored to handle communications between learmers and LMSs
compared to the use of JavaScript in HTML files as in the traditional approach. The

main justification for the integration was to take advantages of LMS facilities such as:

10

e collecting information of learners’ behaviour,
e allowing access to online forums or chat rooms that increase collaboration
between learners, or learners and teachers, and

e improving integration with other leaming materials.

Additional reasons are to present learners with a uniform interface (thereby
minimising any distractions from focussing on what they are meant to leamn) and to
ease model maintenance, so that models can regularly be updated without any need to
distribute new copies to all learners. Figure 1.1 shows a sketch of the interactions
between teachers, learners, simulation models and a LMS. Their interactions can
briefly be described as follows. Teachers translate their mental models to computer
models using the right tools. The computer models are then distributed into a LMS
where they can be viewed by remote learners. Leamers interact with the models and
the feedback from such interactions will automatically be displayed to them. If they
need further clarification on the feedback, they can use the LMS’s facilities (e.g., chat

rooms, email, etc.) to interact with their teachers or peers.

Action models
Simulation tools (Web-based and animated models)

Distribute / interaction

-

| Change parameters + Display the impact
View execute of modifications
Interaction J

|1 v

Remote learners (observe and understand)

- > < -
Interaction Interaction

Learner Leamer Learner

Figure 1.1 Interactions between Teachers, Learners, Models and LMSs

11

1.4 Scope of the Research

There are two types of simulation models: static and dynamic. In a static model, time
does not affect model behaviour. Examples are device simulations (Kaye & Castillo,
2003), equipment operation simulations (Towne, 2007) and so called “soft skill
simulations” (Aldrich, 2005; Gaffney, Dagger, & Wade, 2008; Maldonado et al.,
2005; Vries, 2004). These kinds of simulations are familiar to teachers and their use
in educational environments has long been discussed (e.g., sec‘ Aldrich, 2004, 2005;
Gibson, Aldrich, & Prensky, 2007). Dynamic models trace behaviour that changes
over time. Examples are DES, where system behaviour spawns a sequence of discrete
events, and system dynamics models, where the system behaviour is described
through sets of equations that model how states fluctuate “quasi-continuously™ over
time.

This research has concentrated on DES models, where the state of a model
changes only at specified points in time, and more specifically on Queuing Networks,
which explore the effects of capacity constrained resources on common performance
measures; such as response time and throughput. This choice was made because of
their many fields of applications (e.g., in manufacturing, transportation, service
systems and computer hardware and software analyses) and the fact that, although
they have long been used to support analysis and design of complex systems, their
potential to enhance e-Learning has not yet been fully utilized.

Leamners should be able to use animations to visually observe the effect of
changes to transient system behaviour caused by manipulating model parameters or
model structures. Within this context, we have therefore investigated a range of tools
that foster “modelling for insight” (i.e., those that improve understanding through
observation) rather than making accurate quantitative performance predictions (i.e.,
those that measure how efficiently a system performs its functions). In an e-Leamning
environment such models can be instructive, since they allow users to visually
experiment with changes of model parameters and observe their effects on model
behaviour. By stressing qualitative effects of chains of events over quantitative
analysis we also avoid a wide range of complex statistical modelling aspects.

Within the discrete event modelling domain, two dominant modelling styles

(world views) are typically used to control flows of events: event-orientation and

12

process-orientation. While event orientation eases coding, process orientation offers
a more natural framework for model development. Our designs therefore use a
process-oriented approach. Unfortunately this causes some implementation issues
(e.g., the lack of a built-in coroutine or continuation features in most common
implementation languages).

Since DES has the ability to model complex systems with relative ease, many
commercial or research tools have been developed for constructing DES models.
However, these tools are typically targeted at analysis rather than learning purposes.
Many commercial simulation software; e.g., Arena (Kelton, Sadowski, & Sturrock,
2004), Flexim (Nordgren, 2003) and SIMULS (Concannon, Elder, Tremble, & Tse,
2006), are excellent tools for building sophisticated simulation models and observing
model behaviour through animation. However, the resulting models mostly lack
support for user-experimentation during run time, are operating system dependent,
must be run using a specialized proprietary software, and are not designed to execute
on a web page; a very important element for incorporating models in e-Leaming
systems. Thus, investigations on how these constraints can be catered are crucial.

In order to support web-based models, most previous research tools in this
domain have been developed in Java. Two web-based approaches can be
distinguished: Web-supported simulation and Web-enabled simulation.

Web-supported simulation locates tools on a server that can then be accessed
to create and run models. Thus, users do not have to install software packages on
their machines. Examples include JSIM (J. A. Miller et al., 1998), Silk (Healy &
Kilgore, 1998; Kilgore, 2000), JavaGPSS (Kazymyr & Demshevska, 2001; Klein,
Straf3burger, & Beikirch, 1998), WSE (lazeolla & Ambrogio, 1998) and ASimJava
(Sikora & Niewiadomska-Szynkiewicz, 2007). JSIM and Silk ease model
constructions using component-based technology with Java Beans. However, among
these tools, only JSIM integrates a simple animation for displaying queues.

Web-enabled simulation requires the installation of software packages on
users’ machines. Examples are Psim-J (Garrido, 2001), SSJ (L Ecuyer, Meliani, &
Vaucher, 2002), JavaSim (Tyan, 2002) and DESMO-J (Meyer, Page, Kreutzer,
Knaak, & Lechler, 2005a). However, these packages, while giving experienced
programmers the flexibility to code their own extensions, typically only support

textual description and very simple data visualizations.

13

We chose the second approach. The main reasons are that we believe the first
approach would be a burden on servers, since all development processes (e.g., model
construction, execution and animation) must all be performed on a central server, and
also limit tool accessibility, since it depends on network availability, its speed and the

number of concurrent users accessing the servers.

1.5 Contributions to Knowledge

This research has made some positive contributions to simulations in education
especially in proposing a design of DES tools for engaging and helping learners to
understand DES behaviour. The design focused on methods of easing the
construction of attractive, interactive and informative web-based simulation models.
These contributions have been achieved through a various processes of investigating,
analyzing and structuring how a DES tool can be provided with the right design.

In proposing the tool, we first surveyed the current use of simulation models in
the leamning and teaching environment. We then identified and made a cntical
analysis of model features that support learner-centred learning based on leaming
theories and previous literature review. This deserves to be investigated since
educationalists and tool developers are considerably separated in their own domains.
Educationalists keep proposing and proving the benefits of using simulations as a tool
for learning and teaching in the new era of education, and how these benefits can be
gained using the right models. The tool developers meanwhile concentrate more on
the development of modelling and complete system analysis tools for measuring
system performances. Thus, they typically ignore the educationalists’ views of the
right models that stress on the importance of interactions between leammers and the
models in ensuring learning. We are trying to bring both parties closer. Thus, we
made an analysis of how simulation models could be better supported in the current
learning and teaching environment by investigating and analysing the available DES
software and packages to discover what tools and functions they provide and lack in
facilitating learning and teaching. This can be a reference for those who intend to
provide such the right tool.

The contribution that directly relates to the tool design was the proposal of
strategies to construct and incorporate the tool with the suggested model features that

14

relieve learners’ cognitive processes during their learning; i.e., hypothesis test
platforms, concurrent responsive animation and customized visualizations. Before
this work, no tools have been designed and constructed to support all the three
features during model runtime. Moreover, we designed the tool so that its resulting
models support a high degree of simulation and animation control and provide a store
capability of their states, animations and visualizations at any simulation time points
for future use. For this, we architected DES frameworks, extended them to various
components (i.e., simulation building blocks) with well-defined interfaces and
contracts that describe the input and output of entities and data flows, designed and
tested the components, and recommended the use of appropriate design patterns for
facilitating their constructions. To prove this design works, we managed to develop a
proof of concepts of a DES tool. We believe that its use eases the constructions of
attractive, interactive and informative DES models for self leaming purposes.

Our design focused on the integrations of simulation, animation and
visualization to reflect change in the time (i.e., when simulation encounters delays),
space dimension (i.e., when an entity moves) and model states (i.e., when an event is
executed). In an animated simulation environment, the time requires model time to be
mapped onto animation time and animation time to be mapped onto real time, the
space dimension requires a stage for constructing and locating animated entities and
model structures, while model states require visualization tools (e.g., graphs,
histograms, etc.) to display their abstract data. Investigating what elements should
exist to fulfil these requirements and how they were supported by Adobe Flash, and
arguing how best the Adobe Flash as a platform for the DES tool development were
another research contributions.

To reflect users’ feedback on our tool and to obtain their recommendations for
its future improvement, we conducted two experiments. Conducting these
experiments yielded two contributions. The first contribution was the analyses of
learners’ feedback about how significant relevant features (e.g., animations,
visualizations, interactions, customized interfaces, etc.) of DES models helps them
engage with and get insight into the models’ behaviour. The analyses enabled us to
compare and judge how consistent their feedback was with the previous claims that
stress the importance of providing the features to ensure leaming. The second

contribution was the analyses of model designers’ feedback about how good our tool

15

is in constructing DES models. The analyses enabled us to evaluate how useful and
easy our tool is for constructing the DES models for leaming and teaching purposes.

In addition to addressing the tool design for a single layer of DES models, we
also architected how the design could be extended to manage the complexity of large
and complex DES models. This complexity can either relate to the cognitive aspect
(i.e., how model logics can be split to smaller models for representing their functions)
or the representational aspect (i.e., how many elements are used and how they are
arranged to represent model structures). Our approach of catering the complexity is
through a hierarchical structured concept; i.e., by breaking up a model to relevant
sub-models with each sub-model conceals the details of their lower levels. The
concept manages both aspects through its ability in controlling the level of details (in
terms of structures and information) for better representing of the model and
arranging animation and visualization for better viewing and grasping the dynamic
parts of the model (as opposed to the crowdedness of graphical objects in a flat
model).

However, the main challenge for the design is the synchronization of each
sub-model’s behaviour so that they can be executed in the right order. For this, we
present two mechanisms for coordinating event executions among layers in
hierarchical DES models. These are the Monitor Delegation Mechanism that
delegates event executions to a relevant layer and the Monitor Communication
Mechanism that transfers event executions to all visited layers.

Our approaches differ from the approach proposed by Yi and Cho (Yi & Cho,
2001, 2003). We focused on how to extend our simulation engine and components
based on the concurrent animations where a simulation monitor controls both
simulation and animation aspects to guarantee animation accuracy. Since our
components allow interactions, the runtime interactions with all layers are
automatically supported. Their approach meanwhile is based on the direct-simulation
animation where the simulator and the animator have their own activity scheduling
lists. Thus, besides considering event executions among layers in the simulator, they
also need to find a method of communicating the simulator with animation scheduling
in the animator. The main drawback of their approach is that it only guarantees
animation accuracy from event to event, not between them since the graphics

rendering depends on the computer that simulator and animator reside.

16

1.6 Thesis Overview

This thesis is organised as follows. In Chapter 2, we first identify different types of
simulation models, examine their roles in facilitating leaming based on learning
theories and collect some empirical evidence that establishes their effectiveness in e-
Learning environments. Some available simulation tools and the current interests on
animated DES models are also reviewed.

Chapter 3 examines the mechanisms of two DES modelling styles: event-
oriented and process-oriented. Realising the limitations of the event-oriented style,
we architected a process-oriented DES framework to support various DES facilities
(e.g., generating random numbers for various distributions, collecting statistics,
managing simulation clocks, a list of future events, etc.). This framework has guided
the construction of our DES simulation libraries. To symbolize the libraries’
functionalities and ease the building of DES models through symbol compositions, we
then introduce relevant DES graphical objects. However, it still demands
programming effort and its resulting models offer no support for interactions.

Chapter 4 briefly reviews Visual Interactive Modelling (VIM) and Visual
Interactive Simulation (VIS) concepts and discusses their benefits in leaming and
teaching. We then argue the use of Adobe Flash and its scripting language to create a
tool to support both concepts. Since VIS combines simulations and animations, some
approaches for integrating these features are also discussed. How VIS’s essential
components can be created with the help of our framework is then presented. We
subsequently present how a series of our simulation components can be used to build
queuing models. This chapter ends with a discussion of some tricky issues in
integrating an animated simulator to DES models specifically in permitting animation
speed to dynamically be adjusted by leamners during model runtime.

Chapter 5 discusses how to systematically design a tool for building attractive
and interactive DES models. We first review component-based tool principles and
examine how these principles can ease model building. We then suggest the
Delegation Event Model for forging links between DES active and passive
components. Next, we present the MVC (Model-View-Controller) pattern and
discuss how it can be utilized for loose coupling between components, their interfaces

(GUIs) and their visualizations. We further our discussion on how to cater with

17

model complexity through model partitioning (i.e., hierarchical model development)
and how to support such development using the two patterns.

Chapter 6 reports two experiments that collected users’ feedback of the tool
and its resulting models. One experiment evaluated learners’ perceptions about the
attractiveness and interactivity of the models. We developed our own questionnaire
for this based on model features proposed by relevant studies. Another experiment
evaluated model designers’ perceptions about the perceived usefulness, perceived
ease of use and perceived enjoyment and their willingness to use the tool in the future.
For this, we used the Technology Acceptance Model (TAM) and other extension
models found in the literature. We also assessed the participants’ workload while
experiencing our tool using NASA Task Load Index (TLX).

Last chapter, i.e., Chapter 7 concludes the findings of the research, lists some

of its limitations and proposes some recommended future work.

18

CHAPTER 2

SIMULATION AND EDUCATION

2.1 Introduction

Many studies (e.g., Charles, 2008; Kauchak & Eggen, 2007; Nigel, 2008; Wurdinger
& Carlson, 2010) argue in favour of blended learning, which mixes different learning
environments (face-to-face and computer-based materials) and approaches to teaching
a subject. Typically all of these require that teachers prepare a set of activities that
support students’ cognitive styles and make learning an engaging activity. Teaching
approaches that are merely based on traditional lectures (which are typically
constrained to one-way communication), static learning materials and individual or
group assignments, will often result in only a shallow understanding of course
contents and decrease students’ motivation and enthusiasm for the taught subjects.
Better approaches seek to engage learners’ attention and actively involve them in the
learning processes.

To make learning enjoyable, several instructional methods have been
suggested; e.g., collaborative learning (i.e., a group of leamers cooperate in their
learning activities), problem-based learning (i.e., a group of learners collaboratively
solve assignments with the help of a teacher) and computer-supported instruction,
such as simulations and educational computer games. In this context simul/ations can
act as important tools for discovery-based leamning (Jong & Joolingen, 1998; Reid,
Zhang, & Chen, 2003; W. R. Robinson, 2000; Zhang, Chen, Sun, & Reid, 2004) by
offering a learning environment where learmers learn by doing. Swaak and Jones
(2001a, 2001b) suggest that simulations have three characteristics that enhance

discovery-based learning; 1.e.,

e richness, where knowledge is obtained through various dynamic representations

such as animations and numenical data displays,

19

e low transparency, where knowledge must be inferred by leamners themselves, and

e active interaction, where knowledge is obtained through experimentation.

Many benefits of including simulation models in teaching and learning
environments as part of learning materials or as complementary activities have been
listed in many relevant publications; e.g., by Aldrich (2004, 2005), Fitzpatrick (2003)
and Gibson, Aldrich, & Prensky (2007). For example, active experimentation while
exploring simulation models not only helps leamers develop a mental model of real
world processes or events, but can also support collaborative styles of learning (Beux
& Fieschi, 2007; Jeffries, 2005) as well as problem-based leaming through model
building (Milrad, 2002). To fully reap those benefits, leamers need models that
demand hands-on interactions (to stimulate learmning by doing) and offer support
whenever it may be needed. How one can best integrate such models into appropriate
approaches for knowledge construction and to enhance leaming and problem solving
skills has been investigated empirically by, e.g., Chang, Chen, Lin, & Sung (2008),
Gokhale (1996), Kennepohl (2001), Liao & Miller (1996), Reid, Zhang & Chen
(2003), Renshaw & Taylor (2000), and Rieber, Tzeng, & Tribble (2004).

This chapter examines the use of simulations in education. It scrutinizes
different types of simulation models, their roles in education and learning, empincal
evidence that establishes their effectiveness in e-Leaming environments, some
available simulation development tools, and current interests on animated DES

models.

2.2 Simulation Models and Their Purposes

There are many different definitions of simulation. From an educational perspective,
Castillo, Hancock and Hess (2004) and Aldrich (2002, 2004, 2005) define simulation
as digital learning material that allows learners to perform hands-on activities (e.g.,
mouse clicking, text entering, etc.) in order to receive additional tasks or information.
From an engineering perspective, the term refers to a model which replicates a

system's characteristics and behaviour based on specified goals of a study (Flynt &

20

Vinson, 2005; Law, 2007; Shannon, 1998). Since they permit learning through
experimentation in a safe and effective environment, simulations have become an

increasingly popular educational tool and have been used for four purposes; i.¢., to:

e train learners’ technical skills or to demonstrate and practice tasks that are too
dangerous or impractical to be performed directly; e.g., surgery or operating
dangerous equipment. Since real environments are replaced with safe and cheap
simulated environments, learners can freely explore their ideas, run a series of
actions and examine the consequences. Such virtual environments not only
reduce costs, but also offer learners the freedom of deciding when and where they
want to learn.

e permit leamers to practise decision making in situations where proposed actions
cannot be directly and immediately observed, for example because their effects
are delayed in time or/and dispersed in space. Since simulations can represent
such situations in attractive and interactive forms and give feedback from
learners’ actions (i.e., allow them to stretch or compress time and space), leamers
can become more engaged and their learning experiences may be enhanced.
Simplification while maintaining a high degree of fidelity is an important
challenge for this use of simulation (Aldrich, 2004, 2005; Lunce, 2006).

e explain concepts and complex interrelationships between variables; e.g., n
economic or queuing systems. In the traditional leamning approach, teachers can
only discuss complex interrelationships in verbal or textual forms. Watching
models in execution and interacting with them can, however, lead to better and
deeper levels of understanding.

e provide learners with a diversity of “soft skills” (Aldrich, 2005; Gaffney, Dagger,
& Wade, 2008; Maldonado, Lee, Brave, Nass, Nakajima, Yamada, Iwamura, &
Morishima, 2005; Vries, 2004); i.e., personal attributes (e.g., responsibility,
common sense, motivation, etc.) that enhance an individual's interactions, job
performance and leadership. Learners can use relevant models to practice a range
of skills before applying them to the real world.

e enhance materials to increase learners’ motivation to learn a subject (Castillo et
al., 2004; Prensky, 2001). It has often been claimed that leaming by doing can

cause knowledge to be retained longer compared to just reading static matenals in

21

traditional classroom settings. Within this context, simulations can offer more
engaged and immersive learning materials for learners to learn about events,

processes and activities.

2.3 Types of Simulation Models

We can classify simulations into three categories:

1. live simulations (or role playing), where real people manipulate simulated
operations of a real system using real equipment (e.g., a training exercise of a fire
drill),

2. virtual simulations, where real people operate simulated equipment in a simulated
environment (e.g., flight and vehicle simulators), and

3. constructive simulations, where real people operate computerised models from

which they obtain feedback.

While virtual simulations are well suited for some types of training,
constructive simulations can move beyond simple rehearsal of skills and provide
bases for easily analysing and comparing effectiveness and consequences of a wide
range of physical or cognitive tasks. Thus, constructive simulations have long been
used in a variety of domains in education. These include computer sciences (Aubidy,
2007; Yin, Ogata, & Yano, 2007), engineering (Ledin, 2001), logistics (Ganapathy,
Narayanan, & Srnnivasan, 2003), biology (Keen & Spain, 1992), medicine
(Hoppensteadt & Peskin, 2002), economics (Porter, Riley, & Ruffer, 2004), physics
(Chang et al., 2008; Jong et al., 1999), management sciences (Pidd, 2004) and
sociology (Halpin, 1999; Moretti, 2002). Constructive simulations can generally be
classified on the basis of the degree of learning support they offer: single concepr,
operational level or strategic level. A description, some charactenstics and examples

of each type of constructive simulations are shown in Table 2.1.

9
(9]

Table 2.1 Classification of Constructive Computer Simulations

Learning

Niipnort Description Characteristic Simulation Type
fo Simulations dealing o Encourages Soft skill simulations
with a simple learners to apply |Procedural simulations
calculation or a previous
Basic concept specific aspect of knowledge
theory e Often found in

e Model behaviour is educational
not affected by time| simulations

o Simulations dealing o Stimulates studentsDiscrete Event

with specific to explore, simulations; e.g.,

operations experiment, queuing networks,
Operational | Model behaviour is predict and invent manufacturing, logistic,
level changing at discrete| ~ &iven phenomena fetc.

points in time e Often found in

engineering and
science studies

e Simulations dealing ¢ Provoke systemic [Continuous

with complex thinking about imulations; e.g.,
T — natural processes given phenomena piology, &Ology.l
e Model behaviour f¢ Often found in NP NSy

keeps changing over| engineering and ©

time science studies

Based on this classification, Chwif and Barretto (2003) have argued that those
that support operational or strategic levels are more effective but difficult to design
than simulations that those intended to simply train people in basic (e.g., device
simulations for training operators of industrial machinery (Kaye & Castillo, 2003)) or
“soft skills” (e.g., teaching skills in communication, leadership or strategic thinking
(Gaffney, Dagger, & Wade (2008)). Table 2.2 shows how different types of

simulations can be used to support leamning in different domains.

Table 2.2 Simulation Types and Learning Support

Type

Learning support

Example

Soft skills simulations |e
(also known as
branching stories or
ituational
imulations) (Gaffney
et al., 2008; Idrus,
ﬂ)aham & Abdullah,
2009; Radcliff, 2005)

Exposing learners to
simulated work experiences
in order to improve their

communication and decision

making skills before dealing
with real situations

Exploring alternative paths
through a task with
additional information and
instructions, based on
learners’ responses

I

Software usage simulations

Situation-based simulations;
e.g., in business and
management training,
customer and sales training,
customer service training,
doctor-patient interaction,
etc.

[Procedural .
Simulations or

Virtual products (Kaye
& Castillo, 2003; o
ichelson &
anning, 2008)

Understanding the physical
characteristics of real
equipment

Leamning to use costly
equipment or perform
complex tasks

Mechanical device
simulations; e.g., medical,
manufacturing, home
electronic equipment, etc.

Discrete Event
Simulations (Banks,
1998; Wainer &
[Mosterman, 2010)

Understanding the operation of
E system that traces ordered
equences of events

I

Queuing systems
Manufacturing systems
Logistic systems; e.g.,
warehouses, ports, airports
etc.

System Dynamics
(Hannon, Ruth, &
[Meadows, 2001;
Sterman, 2001)

Understanding the behaviour of
ystems that contain feedback
oops involving stocks (entities

at accumulate or deplete

uantities over time) and flows
rates of change)

Policy analysis and design
Population systems
Ecological systems
Economic systems

Alternatively, Castillo, Hancock and Hess (2004) divide educational

simulations into two basic categories: structured simulations and open-ended

simulations.

1. Structured simulations are used to support the understanding of system behaviour.

Information is presented in a step by step fashion, where each step requires

learners’ responses to progress to the next of a number of alternative steps. Since

24

information is only delivered when requested, this approach has been claimed to
enhance traditional learning styles. It can be used in all learning domains.

2. Open-ended simulations, on the other hand, leave leamers to freely explore a
simulated environment; this is typical for DES and system dynamics simulations.
Although some studies (e.g., McKenna & Laycock, 2004; Michael, 2000) claim
that there is no clear benefits of using open-ended simulations, other studies (e.g.,
Jong & Joolingen, 1998; Land, 2000; Lunce, 2006) have argued that great benefits
can indeed arise from the fact that learners are not supported by additional
instructions to overcome problems. This may forces leamners to adopt a scientific
discovery style of learning; e.g., by performing experiments. Opponents to this
approach, however, assert that most students are unlikely to plan such experiments
carefully enough, do not have sufficient skills to interpret outputs appropriately
(particularly if models contain stochastic effects), and teachers may not state

objectives or the learning outcomes clearly enough.

By looking at the way in which simulation impacts students’ learning, Sahin
(2006) clarifies the pedagogical difference between the two above mentioned
approaches further. He distinguishes between instructive and constructive strategies.

Instructive strategies only consider leammers as passive entities. They simply
consume information with multimedia support. Such consumption and a limited
degree of interactions can lead to some learning, but the impact on students’ problem
solving skills may be minimal. This is the case in structured simulations.

Constructive strategies meanwhile permit leamning by freely exploring the
relationships between a system’s inputs and outputs through feedback obtained from a
model. This is the case in open-ended simulations. The two-way interaction between
experimentation and observation challenges learners’ thinking and may eventually
lead to acquisition of higher order thinking skills. Since such simulations are
typically based on models of complex real-world systems, the knowledge or
experiences gained from these interactions can later be transferred or applied to real-
life scenarios. To make them effective, such simulations require some pre-
knowledge; i.e. a basic understanding of the modelled systems. This must be supphed
by teachers or appropriate instructions (Land, 2000; Min, 2003).

To either complement traditional classroom teachings or support distance
education within a learning environment, two types of constructive simulations have

been proposed by Neumann, Page, Kreutzer, Kiesel, & Meyer (2005). These are:

e Simulation-based learning; i.c., computer simulations are used to explain complex
systems. To support knowledge acquisition through simulated systems, the
combination of simulation, animation, visualization and various other instructional
techniques is crucial.

e Simulation-focused learning; i.e., computer simulations are the vehicle through
which all learning occurs. In this approach all related modelling concepts and
methodologies are explained in detail, which then enables learners to apply
simulation to practical problems. Simulation-focused learning is usually found in

engineering and science courses.

2.4 The Role of Simulations in Education and Learning

2.4.1 The Role of Simulations in Learning Theories

In order to prepare suitable leaming materials for leamers, an understanding of the
learning process is required. A learning process involves three main aspects:
cognitive, emotional and experiential (Illeris, 2000; Livesey, 1986). The explanation
of how these three elements shape learning is called a /earning theory. Leaming
theories can be categorized into three main groups: behavioural, cognitive and
constructive (two categories that will not receive further mention are andragogy
(Knowles, 1984) and connectivism (Siemens, 2005)). Leamning theories are used as a
guidance to design and prepare leamming materials based on leaming goals and
outcomes, and the format and contents of leamning materials must assure the desired
effects on learners” performance (R. C. Clark, Nguyen, & Swelle, 2006).
Behaviourism only considers observable aspects of leaming processes (1.e., by
observing changes in learners’ responses), without allowing any speculation about
processes that may occur in the learner’'s mind. Its main principle is that learning

takes place through repetition and reinforcement. Continuous reinforcement (i.e., by

penalizing undesired behaviour while rewarding desired behaviour) is used to
promote learning, while intermittent reinforcement seeks knowledge retention. While
such strategies have been quite popular in conventional classroom teaching, they have
proved only effective for teaching simple tasks. Common applications include taking,
reading and memorising notes, and recalling knowledge and skills in tests or
examinations. An example of educational technologies based on this theory is drill
and practise software that delivers contents in small steps, with simple control
questions at the end. Such software relies heavily on right and wrong answers, where
“right” answers lead learners to new information, while “wrong” answers spawn
repetitions. Since the Behaviourist theory does not explain leaming and has failed to
help understanding and acquisition of complex scenarios and skills, educators have
looked for alternatives and cognitive theories, which attempt to take account of what
may take place in a learner’s mind.

Cognitivism asserts that the ability to construct new knowledge is strongly
influenced by how well individual learners’ memory can map (structure) new
information to already acquired information. The new information (retained in a new
logical slot) is then retrieved and modified to help process further new information.
Each learner may have a different capacity for processing, retaining and using
information. In order to ease the process of integrating new knowledge into existing
cognitive structures, leamers must have acquired all pre-requisite lower-level
information before being exposed to higher-level concepts. An example of
educational technologies based on this theory is an Intelligent Tutoring System (ITS),
which guides learners throughout their leamning processes.

Constructivist theories strongly emphasize the importance of prior knowledge,
and view learning as a process of actively constructing new knowledge based on three
elements: prior knowledge, activities and experiences. Active knowledge
construction means that learners themselves are responsible to use and explore
interactive learning materials and make use of all feedback to develop their mental
models. These iterative processes are supposed to promote active leaming (i.e.,
learning by doing) and extend knowledge retention. Since each leamner differs from
others in terms of pre-knowledge, experiences and relevant skills, the same leamning
materials will result in different knowledge structures and problem solving skills for
different learners. An example of educational technologies based on this theory is

simulation. Table 2.3 shows some features of learning theories.

27

Table 2.3 Some Learning Theories and Their Features

Feature Behaviourist Cognitivist Constructivist
I_earning Observable objectives [Problem solving Knowledge
principle construction
[.earning Reflection Cognition Interaction
focus
Teacher’ s Transmitter Helper or tutor Facilitator
task
Instructional |Direct instructions, PProblem solving Self-directed learning,
Design course based through exploratory case-based learning
measurement, learning, project-based
isequenced tasks works
[Learning Linear contents that ~ [Dynamic, complex Dynamic, unstructured
material move from simple to environments (not pre-specified)
presentation complex

Human brain

Passive knowledge
container

[Linear information
processor

Closed information
system

presentation via verbal
or graphical instruction

[earning Controlled by teachers IControlled by leamers Controlled by leamners
direction with proper guidance
from teachers
[Learning Predetermined and Predictable Unpredictable, since
outcome predictable instructions only foster,
not control learning
processes
Evaluation |[Performance based on [Knowledge based on Competence (degree of
correct answers where |discovering correct mastery) based on
each unit of content is methods for finding dealing with complex
treated and evaluated answers problems
iseparately
I_earning Easily measured by [Indirect, based on Not easily measured
measurement counting correct active problem solving @and much more
answers subjective, usually
based on on-going
@ctivities, experiences
and attitudes; e.g.,
notes, drafts, journals
or products
Learners’ Simple interactions Demands intelligence Demands more
interaction (with controlled communicative and

immersive contents to
show how a model
responds to individual
assumptions through
feedback

Criteria Closed system where [Solution-centred ore dependent on
learners are confined to eaming than teaching
the teachers’ world pproach

owledge [Encourages surface Creates deeper problemPromotes deeper,
construction |learning understanding ransferable
nderstanding and long
erm retention of
owledge

Software More quickly Time consuming ime consuming and

development [constructed uch effort is needed,

time ince it requires a

ignificant amount of
interactive and
nstructured leaming
terials

[Knowledge |[Works well for short- [Better at long-term ore long-term and

retention term transferable lkknowledge retention pplicable, since
knowledge owledge is obtained

ugh interactions
d activities (leaner-
eamer and learner-
odel), not through
mpetition among
earners

Software e Rigidly structured (¢ Intelligent sequcnceL Unstructured, no

characteristic |o pearth of content fo Modestly pre-packaged

interactions and interactive. pre- problcms, highly
forms of packaged problems | Interactive
presentations e The use of

e Sequential animation and
exposition of multimedia
information, canvironments is
followed by testing FonEncn

[[deal software [Drill and practise [Intelligent Tutoring [Simulations,
programs, programmed [System, Computer microworlds (L. P.
instructions and Based Training Rieber, 1995),
tutorials modelling

environment,
hypermedia
The development of e-Learning materials based on cognitive and

constructivist theories is an important step towards better leamming environments

since:

1. curricula are now packed with many subjects and learner-teacher interactions are
limited,

2. the demand for education keeps rising, but time and space remain restricting
factors, and

3. learners are now familiar with modem technologies and expect their use.

Interactive contents therefore become crucial.

These factors favour a shift of responsibility from teacher-oriented (the
behaviourist feature) to learner-oriented learning styles (the constructivist feature).
Some approaches to transfer such responsibility are through guided discovery (R. E.
Clark, Yates, Early, & Moulton, 2010; Leutner, 1993; Piaget, 1977), case-based
learning (Aamodt & Plaza, 1994; Jonassen & Land, 2000) and microworlds
(Brouwer, Muller, & Rietdijk, 2007; L. P. Rieber, 1992, 1995, 1996).

Guided discovery enables leamners to create their own understanding of a
subject, using tools (e.g., simulations) with guidance from a teacher. Since the role of
a teacher changes from a transmitter of information to a promoter of higher-order
thinking skills, this method has been claimed to be an ideal approach in education
(Aldrich, 2004; Chwif & Barretto, 2003; Gibson et al., 2007; Gokhale, 1996) and is
believed to produce “deeper” learning than teacher-centred approaches (e.g.,
demonstration, direct instructions, lectures or lecturer-discussion).

The main strength of simulations in this context is that it enables a “situated
learning” approach (Der-Thanq & David, 2002; Hemmngton & Oliver, 1995, 1997),
which claims that realistic contexts will motivate learners to engage more strongly
with the material. Since this instructional methodology requires leamners to be
equipped with a substantial amount of pre-knowledge and skills, several studies (e.g.,
Kirschner, Sweller, & Clark, 2006; Tripp, 1993; Wineburg, 1989) cnticize its
implementation in traditional classrooms. However, some other studies (e.g., Harley,
1993; Ketelhut, Dede, Clarke, Nelson, & Bowman, 2007; Lunce, 2006; Young, 1995)
report strong support for embedding situated leaming through use of modem
educational technologies.

Simulations can be used in a vaniety of leaming and training domains, since
most aspects of real-life processes and job environments can be simulated in

controlled settings. Simulations are appropnate for teaching situations when learmers

30

can gain high levels of knowledge and skills (i.e., application, analysis, synthesis and
evaluation levels in Bloom’s taxonomy - Krathwohl, Bloom, & Masia (1996),
Anderson & Krathwohl (2000)). However, since simulations are associated with

constructivist learning theories, they have some disadvantages, which include:

e Simulations heavily depend on learners taking responsibility for their own
learning. Without motivation, significant learning will not take place.

e Simulations require tacit knowledge and particular skills to enable learners to
drive experiments, analyse and understand feedback, draw their own conclusions
and predict a chain of actions throughout a learning activity (Whiteside, 2002).

e Simulations demand coaching and scaffolding to offer learners hints at certain
times (Min, 2003; Zhang et al., 2004). Without these elements, learners might
interact with simulation models without framing sensible hypotheses and may
draw wrong conclusions. However, too much guidance will stifle learners’
creativity, since they are now confined to a series of tasks (Herrington & Oliver,
1995, 1997).

e Simulations need collaboration (i.e., leamer-leammer and leamer-teacher
discussions) to promote critical thinking and problem solving skills.

e Simulations may require more time for leamers to abstract meaningful knowledge,
since learners need time to immerse themselves into a problem and experiment
with alternatives (Heinich, Molenda, Russell, & Smaldino, 1999).

e If they are overly simplistic, simulations may create an imprecise understanding of
real-life situations.

e Simulations need tools that offer authentic contexts and activities (Hermington &
Oliver, 1995, 1997; Lloyd P. Rieber et al., 2004) to engage learners’ attention.
Authentic contexts reflect how knowledge can be used in real-life and motivate
learners to use the model. Authentic activities ask learner to find and solve
problems themselves. Thus, explorative models that allow manipulation of widest
ranges of variables are crucial to stimulate leaming by doing (Kolb, 1984;
Whiteside, 2002). However, designing, building and testing such simulations is

time consuming and costly.

31

2.4.2 Empirical Evidence

Simulations have long been claimed to have positive effects on learning (e.g., Lunce,
2004; Min, 2003; Njoo & Jong, 1993; L. P. Rieber, 2002). Some researchers have
conducted experiments to evaluate the effectiveness of using simulations either as
complement to or as a replacement for other learning materials and tools. Such
studies include Liao and Miller (1996), Gokhale (1996), Michael (2000), Renshaw
and Taylor (2000) and Kennepohl (2001). Eck and Dempsey (2002) meanwhile have
examined the impact of embedding advisement and competition in computer
simulations.

Liao and Miller (1996) have studied the effects of using computer simulations
as complementary learning materials on learning in a construction and architectural
engineering technology course. Analysis of the course examination results showed
that the mean and median for the group supplied with both text-based course materials
and a simulation game was higher than the group supplied only with the text-based
materials, supporting the thesis that a computer simulator as a companion to reading
materials could help learners learn better.

Gokhale (1996) has examined the effectiveness of using computer simulations
to teach problem-solving skills in an electrical course. Data analysis showed that
students exposed to a computer simulation in addition to lecture-lab activities were
significantly better than students that only used traditional lecture lab activities. The
results therefore corroborated the assumption that simulations could be an effective
learning approach to equip students with problem-solving skills that are transferable
and applicable to real world problems.

Michael (2000) has explored the possibility of using a computer simulation as
a replacement for real-hands-on activities in creating a product. They found that no
significant difference in product creativity scores among the hands-on group and the
computer simulation group. This suggests that it was possible to use a computer
simulation in place of hands-on activities while maintaining student creativity.

Renshaw and Taylor (2000) assessed the impact of using system dynamics
simulations on students’ higher-order cognitive skills of environmental processes.
Data analysis showed that the students who had been exposed to the simulation had a
better understanding of what they had leamt (i.e., simulation had a positively impact

on students’ higher-order cognitive skills), were less prone to cognitive errors in

32

decision making and demonstrated higher information retention compared to the
students who obtained equivalent information through hands-out.

Kennepohl (2001) examined the effectiveness of simulations in enhancing
students’ chemistry laboratory experiences. They found no difference in overall
course performance between the students who fully attended supervised laboratory
sessions and the students who were partially attended the sessions but were
additionally exposed to individual laboratory simulations. However, the later students
completed laboratory work in a shorter time and achieved a slightly better
performance in the practical laboratory component (lab reports and quizzes). This
suggests that computer simulations can enhance student lab experiences in spite of lab
time reductions.

Eck and Dempsey (2002) have studied the effect of embedding advisement
and competition elements in a computer-based simulation to teach the concepts of
geometric shapes. Advice through interactive videos could be accessed whenever
students were stuck at certain problems. Competition refers to whether or not the
students were playing against computer characters to encourage their learning. The
results showed that (1) the presence of advisement during simulation did not
guarantee to help learning unless it was properly designed and used, (2) advisement
was probably effective in promoting leamning in a leisure environment, (3) the
presence of advisement during competition could create additional cognitive load and
hinder learning, and (4) knowledge transfer could be promoted as long as there was a
connection between the learning context and students’ prior knowledge no matter

which approach was used.

2.4.3 Simulations and e-Learning

2.4.3.1 Promises and Problems of e-Learning

e-Learning utilizes electronic documents for facilitating learmning. It has been boosted
by globalisation that forces people to regularly update their knowledge in order to

compete in the current job market, technological improvement particularly in software

that simplifies the development of attractive and interactive learning materials for

33

better learning experiences and internet speed that eases remote storing, updating and
accessing of the materials.

Recent research clearly shows the growth of e-Leaming in educational
institutions and training organizations worldwide to support traditional classrooms
and/or offer virtual learning environments (Ala-Mutka, Gaspar, Kismihok, Suurna, &
Vehovar, 2010; Garrot, Psillaki, & Rochhia, 2008; K. Kim, 2006). This type of
learning has been accepted as a typical teaching and learning platform since the
development of learning management systems (LMSs) that offers various learning
supports through the use of current technologies (e.g., online assessment,
communication, etc.) and the familiarity of current learners with a self-directed
learning environment through the use of computer. The use of e-Leamning as a virtual
learning environment through the support of information and communication

technologies (ICT) can promise:

e Leamning anytime, anyplace. Leamers can study learning matenals without time
constraints. This gives learners opportunities to learn and access a much wider
range of knowledge. Study can take place either at home, work, libranes, etc. as
long as learning materials can be accessed.

e Collaboration through synchronous and asynchronous interactions. This enables
learmers and teachers to discuss and exchange information at anytime and
anywhere. Such facilities are available in most LMSs.

e Leamning through new technology approaches. Current learners are computer-
literate and familiar with learning through computers. These opportunities can be
utilized by e-Learning content designers to provide highly motivating attractive
and interactive styles of presentation; e.g., interactive simulations and computer
games. Such methods when used properly are claimed to engage leamers,
enhance e-Leamning experiences and decrease the amount of reading, which
improves the retention of the materials (Aldnch, 2004, 2005; Neumann et al.,
2005).

e Cost effective. The use of technology can reduce costs related to teachers,
physical spaces, hardcopy of leaming contents, etc. Leamning can be delivered on

time.

34

Il =
B Il 1
1
Il 1
Il 1
Il 1
1 1
l
1
Il 1
|
i
Il 1
1
1 1

Improving the quality of e-Leamning experiences remains a continual challenge
for LMSs. Most e-Learning materials have been constructed without much
consideration of how learners leam (Dublin, 2004; McKenna & Laycock, 2004;
Romiszowski, 2004) where the use of static graphics (e.g., e-book, Word documents,
etc.) and simple online assessments (e.g., simple multiple-choice and true-false recall
type of questions) is common (Neumann et al., 2005; Wahlstedt, Pekkola, & Niemela,
2008). These materials cannot be considered quality e-Learning solutions since they
only deliver facts and fail to engage and attract learners. Consequently such materials
typically fail to promote a constructive and cooperative learning style and fail to
facilitate the transfer of knowledge to job environments; i.e., the utilization of the
knowledge (Kiihl, Scheiter, Gerjets, & Gemballa, 2011; Wilson, Jonassen, & Cole,
1993). The importance of interactivity, visual presentation and aesthetics in learning
materials has long been suggested in the relevant literature (e.g., Bransford, 2000;
Eppler & Burkhard, 2007; Mildrad, 2002).

2.4.3.2 The Roles of Electronic Course Management Systems

Most educational institutions and training organizations now support teaching and
learning activities with LMSs. LMSs (also sometimes called Course Management
Systems (CMSs)) offer tools for both management and delivery of course materials
and assessments. Open source LMSs include Moodle (www.moodle.org) and .LRN
(www.dotlm.org). Other LMSs, such as WebCT (www.webct.com), Blackboard
(www.blackboard.com) and eCollege (www.ecollege.com) are sold as commercial

products. The roles of LMSs are to:

e provide content management through attractive GUIs and layouts in order to ease
store, structure and distribute learning materials. Such charactenistics are
important to foster a pleasant experience when using and leaming through the
platform (Stenalt & Godsk, 2006).

e provide advanced communication facilities through synchronous and
asynchronous modes. The synchronous mode tries to imitate traditional leaming

environments and assumes that a group of leamers and their teachers will be

35

online at the same time. It uses chat rooms or video conferencing technology as a
communication. In contrast to this approach, an asynchronous mode that uses
email and bulletin board allows each leamer to be online at times that depend on
his or her preference.

e track learmers’ behaviour and performance, and record the number of times
learners access certain content, as well as the time spent on studying different
content materials. In order to support this communication, leamning materials
must comply with a set of technical standards for e-learmning; e.g., SCORM
(Gonzalez-Barbone & Anido-Rifon, 2010; Vossen & Westerkamp, 2006).

The development of LMSs to support virtual leaming and teaching activities
has increased the use of e-Learmning in higher education institutions worldwide
(Browne, Jenkins, & Walker, 2006; Falvo & Johnson, 2007). However, providing
right leaming materials (based on learning pedagogy) and supporting them through
various learning facilities available in LMSs are important in promoting student
involvement and ensuring the success of e-Leamning (Klobas & McGill, 2010).

2.4.3.3 Pedagogical Aspects of e-Learning

e-Learning shifts the medium of knowledge and skill transfer from a teacher to
computer. This transfer should imitate whatever important features in the traditional
classrooms (e.g., activities that involve leamers in the leaming processes, two-way
communication that allows leamners to respond and get feedback, etc.) and incorporate
them all into the virtual leaming environment (Alonso, Lopez, Manrique, & Vies,
2005). The absent of teachers during leaming time must be replaced with new
methods of instruction design that stimulates student engagement and involvement.
Instructional methods that are based on attractive and interactive matenals (e.g.,
simulation, computer games, etc.) and that provide activities that will impart learners’
knowledge and skills are important in guaranteeing successful learning outcomes.

Attractive and interactive materials that are based on dialoguing, controlling,
manipulating, searching and navigating (Moreno & Mayer, 2007) play three important

roles in virtual learning. Firstly, they can replace the dialogues between leamers and

36

their teacher and promote motivation for them to learn through multidirectional
communication (i.e., actions and feedback). Thus, learners will not be bored as
reading static texts, viewing static graphics or navigating non-interactive materials
(e.g., a narrated representation with animation, hypermedia, etc.). Secondly, they can
stimulate information acquisition and knowledge construction (Fletcher & Tobias,
2005; Moreno, 2006) especially if they are designed to support different modes of
presentation; e.g., verbal explanations (e.g., printed words, spoken words) and non-
verbal (e.g., animation) and mixed-modality representations (i.e., auditory and visual).
The approach of using multiple representation to illustrate content of knowledge eases
learners to utilize knowledge and enables meaningful leaming to occur in their
cognitive (Moreno & Mayer, 2007). Thirdly, they stimulate meaningful
communications among learners and increase the use of communication facilities
provided by the LMSs to a maximum level since their activities will challenge
learners’ understanding during their learning activities. If the given outputs contradict
with their hypotheses, learners will seek clarifications from their peers or teacher.
Attractive and interactive learning materials however do not automatically
create understanding. Besides their effectiveness depends on learners’ prior
knowledge and their cognitive factors (Kalyuga, Ayres, Chandler, & Sweller, 2003),
the interactivity could also create the potential of cognitive overload that disrupts
learning (Mayer & Moreno, 2003). Thus, it is important to design learning materials
that (1) manage the amount of information presented at a time, and (2) reduce
extraneous processing, i.e., the cognitive processes that add burden to digest new
information (e.g., asking learners to refer to information in other pages or computer
screens) and representational holding, i.e., the cognitive processes that force leamers
to hold their mental models during the making process (e.g., presenting animation
after narration) that waste learners’ cognitive capacities. For this, Moreno & Mayer
(2007) propose instructional design principles for interactive learning materials. The
design principles are guided activities to guide learning, reflection to encourage
information acquisition, feedback to repair learmers’ misconceptions, pacing that
enables leamers control their learning and pre-training to provide leamers with

relevant prior knowledge.

37

2.5 DES Development Tools

Generally, DES models can either be built in general purpose programming

languages, simulation packages, simulation languages or high level simulators as

shown in Table 2.4.
Table 2.4 Available DES Simulation Tools
Tool ___Example Advantage/Drawback
Non Object Oriented Advantage:
; ® Reduce programming
CSIM (Schwetman, 1988), GASP (Rose, 1981), SimPack effort by providing
(Fishwick, 1992), SimTools (Seila, 1986), SIMPAS simulation-specific
(Bryant, 1981). features
Object Oriented Disadvantage:
® Prone ical
CSIM19 (Schwetman, 2001), C++Sim (Little & McCue, 5 . Sl
1993), DESMO-J (Meyer et al., 2005a), JavaSim (the | _ °"°ha's .
Java version of C++SIM) (Tyan, 2002), JSIM (allow D"P"‘"’ dc“,"; -
Simulation | simple VIM) (J. A. Miller et al., 1998), J-Sim (Kacer, modd :i“'”"
Packages | 2002), PSim (Gamido, 1999), Silk (Kilgore, 2000), | _ T soap,
simJAVA (W. Kreutzer, J. Hopkins, & M. C. Mierlo, Do not usually offer
1997), Simjava (E. H. Page, Moose, & P.Griffin, 1997), animation capability
SimKit (Buss, 2002), Sim++ (based on SimPack)
(Lomow & Baezner, 1989), SSJ (L Ecuyer et al., 2002).
Object Oriented and support animations
D-SOL (Jacobs, Lang, & Verbraeck, 2002), Tomas
(Duinkerken, Ottjes, & Lodewijks, 2002; Veeke &
Ottjes, 1999), Psim-J (Garrido, 2001, Garrido and Im,
2004).
Non Object Oriented Advantage:
® Offer much flexibility
GPSS/H (Crain & Henriksen, 1999), SIMAN (C. Dennis for simulation model
Pegden, 1989), SLAM (Claude Dennis Pegden, Alan, & development
Pritsker, 1978), SLAM 11 (Pritsker, Sigal, &
Hammesfahr, 1994), SLX (Henriksen, 1997) Disadmmgc:
Simulation g 3 = Sull need substaf\tial
P Object Oriented ming expertise
SimPy (Matloff, 2008), SIMSCRIPT (Markowitz,
Hausner, & Karr, 1963; Rice, Marjanski, M., & Bailey,
2004), SIMSCRIPT IL.5 (Kreiman & Mullamey, 1987),
SIMSCRIPT III (Rice, Marjanski, Markowitz, & Bailey,
2005), Simula (Birtwistle, 1979), MODSIM III (Goble,
1997).
baseSIM, Extend (Krahl, 2003), ExtendSim7 (Krahl, | Advantage:
High 2007), SIMULS8 (Concannon et al.,, 2006), AweSim | ® Easier to leamn
U‘fm‘ (based on SLAM II) (O'Reilly, 2002; Pritsker & | ® Speed up the model
Simul O'Reilly, 1999), Micro Saint (Barnes & Laughery, 1997), building process and the
{MUAIOTS | Arena (based on SIMAN) (Bapat & Sturrock, 2003; | analysis of model output
Kelton et al, 2004), WITNESS (Thompson, 1996), | & \guch simpler to

38

Promodel (Harrel & Price, 2003), AutoMjod (LeBaron & maintain and change
Jacobson, 2007), Flexsim (Nordgren, 2003), compared to simulation
SIMPROCESS ("Getting Started with SIMPROCESS," languages or simulation
2006), Renque ("Renque Discrete Event Simulation: packages

User's Guide," 2008), em-Plant ("m-Plant: Empower for | ® (Cap incorporate
Manufacturing Process Management,” 2003), Simple++ sophisticated animations
(Geuder, 1995), SIMFACTORY IL5 (Goble, 1991) to depict system

behaviour

Disadvantage:

®* Commercial tools are
expensive to buy and
not so flexible

General purpose programming languages (e.g., C, C++, Java, etc.) allow
greater programming flexibility, but require model developers to be expert in a
particular programming language. Since models are developed from scratch, they
take a longer time to be built and are prone to syntax and logical errors. Developing
DES models using this approach is far from ideal in learning and teaching
environments, since both teachers and students typically need easy tools to quickly
build and animate a model’s inner working.

Simulation languages allow simulation models to be developed using
customized modelling statements. In spite of their strength in modelling almost any
kind of complex system, a modeller still needs programming expertise, as well as
knowledge of their specific features (e.g., linguistic abstractions) and representation
of model logic. Although most simulation languages support animation, the resulting
models often do not allow interactions and cannot be embedded on web pages or be
integrated with e-Learning systems.

High level simulators allow models to be constructed by dragging and
dropping readymade blocks onto a canvas. These blocks are then linked with each
other through pads (input and output points) using connectors. The use of blocks to
represent model logic facilitates model building and decreases model development
time. However, the manipulation of models is only allowed through whatever
features the package provides. Although most high level simulators support
animation in 2D or 3D, the models can only be run in the system itself or by using the
system’s player. Few of them can be embedded in web pages.

39

2.6 Animated DES Systems

DES models are implemented as sets of computer codes that represent their
relevant complex system processes’ evolution through time. In this context,
animations are used to gain insight into the systems through animated scenarios or
graphical displays of statistical measures. Visually accurate animations can be crucial
for better understanding of the models.

The benefits of animated DES models have been extensively discussed in the
literature (e.g., Belfore, Mielke, & Kunam, 2003; Gilman, 1985; Hill, 1996; Kamat &
Martinez, 2007; Kelton, Sadowski, & Swets, 2010; Macal, 2001; Rekapalli &
Martinez, 2007; Stahl, 2003; Wenzel & Jessen, 2001). An animated model can:

e present its simulation processes in a more user-friendly and more easily
understood form than textual traces of event sequences to improve users’
understanding of a system

e clearly illustrate its structure and logic and allow users to visually study and
analyze its process flows

e assist model developers in debugging (correcting syntax and logical errors),
verifying (checking whether the model is functioning as intended) and validating
(checking whether the model reasonable represents a real system being modelled)
the model

e make simulation results more comprehensible, which aids the analysis of
simulation results to gain better understanding of system performance under
various conditions

e give insight into model behaviour during a simulation run in addition to numerical

and statistical analyses at the end of a simulation run

Animations to improve the display and analysis of model execution are
considered a significant augmentation of DES methodology, caused by a shift towards
graphical model building and process orientation in modelling worldviews (Pedgen,
2007). New simulation tools that incorporate high quality 2D animation (e.g., Arena
or ProModel) or 3D visualization (e.g., AutoMod, QUEST or eM-Plant) capabilities

40

are preferred to older tools that do not offer such capabilities (e.g., SIMAN and
MODSIM). However, the high quality animations offered by these commercial tools
fail to offer any means of interaction with their model; i.e., they do not allow users to
change system conditions while the model is running. One of the reasons for this is a
loss of execution efficiency, a consideration that is much less relevant in educational
contexts than in DES technology’s predominant commercial use for performance
prediction.

Many researches that aim to add 2D or 3D visualization and animation
capabilities to conventional simulation tools have also been many conducted (e.g., see
Belfore et al., 2003; Kamat & Martinez, 2007; Zhong & Shirinzadeh, 2004). Most of
them are based a post-processing approach that only enables an animator to enhance
the visualization of objects, their states and behaviour affer a simulation run.
Moreover, model developers need to (1) learn how to use a particular simulation tool
before generating customized simulation output files, (2) have enough programming
knowledge to generate such files from within the model, and (3) modify the files; e.g.,
by inserting necessary commands for driving animations. Although this approach
offers the capability to jump back and forth in simulated time during animation
playback and to accelerate or slow viewing speeds, it is incapable of supporting
runtime interactions with its animations.

Largely for marketing reasons, many simulation tools now focus on 3D
visualizations since they promise to enhance presentation of simulation results. From
a more practical perspective, 3D animations have not proved all that useful (Alam,
Oloruntegbe, Oluwatelure, Alake, & Ayeni, 2010; Oloruntegbe & Alam, 2010) unless
they are for simulators meant to train system operators (e.g., flight simulators). In
other cases, 2D animation is usually adequate to capture essential system behaviour.
Animations that offer interfaces that allow users to be animation directors (i.e., they
can completely control each animated object rather than just viewing it, moving it, or
changing its shape or appearance) are able to add more realism to simulated scenarios
here. However, there must still be a clear separation of simulation and animation
concepts.

Although not directly related to the mapping between a simulation model and
its visual representation, Benjamin, Mazziotti and Armstrong (1994) suggest some

significant requirements for offering attractive animation models. These include:

41

e appropriate icons or symbols with names that correctly represent the purpose of
animated objects in a predefined library

e icons placed on an animation stage should have user-customizable label names to
ease cross referencing and undefined icons

e statistical reports that can be customized with headings, labels, etc.

e graphical interaction windows for receiving input from users

e multiple windows to view information in different formats

e zooming ability to view details of a specific area of interest

While items (i) to (v) can be programmed, item (vi) places stricter demands on
a programming language environment. It is therefore important to choose a language
environment that supports the capability.

As stated, many researchers have investigated software that animates
simulation results generated by separate simulation tools. This is a simplest way to
graft animation capabilities onto existing systems. If no interaction is needed this
may be a viable approach. However, such an animated model only suits users with
concrete concepts of the represented system and typically fails to be used in a learning
environment (Arbaugh & Benbunan-Fich, 2007; Su, Bonk, Magjuka, Liu, & Lee,
2005; Woo & Reeves, 2007). Thus, models for teaching and leaming purposes should
at least implement some kinds of interaction features to engage users and foster their
learning.

Below are some attempts for connecting simulation and animation. Since the
tools are separated, animated models based on this approach have two distinct
limitations: (1) interaction features that allow two-way communication (i.e.,
animation that reacts to users’ actions and any means that allow users to respond to
model information) cannot be supported, thus users are constantly served with the
same data driven animation, and (2) users are confined with static model graphical
user interfaces as no visualization tools can be attached during model execution since
simulation performance data is stored externally in the simulation tool.

Shi and Zhang (1999) create a platform for simulating and animating an
activity-based model using simple 2D icons. In this context, models are built using

activities blocks. Each block has its own dialog box for specifying its attribute values,

42

resource requirement, activity duration and an icon for presenting resources. Blocks
are connected using an arrow to represent logical sequences of activities. To animate
a resource’s states, one or more pre-created bitmap icons can be chosen from a
library, which stores common construction resources (e.g., trucks, cranes, etc.).
During animation, icons move along specified paths and change shapes. However,
animation of construction activities can only be performed affer a simulation is
finished. Although the tool does not allow user interactions with animated objects,
the system offers some run-time control, such as starting and stopping a simulation
and adjusting its animation speed.

Kamat and Martinez (2001) create a system called Dynamic Construction
Visualizer (DCV) for animating construction operations in a 3D virtual space. The
system reads a trace as an ASCII text file, which contains commands such as PATH
(for defining paths between two locations in 3D coordinates), CLASS (for importing a
3D file in VRML format that represents resources and system entities), TIME (for
driving animations at appropriate times), CREATE (for creating simulation objects),
PLACE (for placing objects at appropriate positions), MOVE (for objects that may
encounter time delays) and ROTATION (for rotating objects along specified planes).
This file can be generated manually or written by simulation software. At an
appropriate simulation time, DCV reads and performs the commands to drive
animation. Animation is stopped when no more statements are found in the file, or
when a viewer interrupts the animation. DCV allows animation to be run at any
speed.

Belfore et al. (2003) describe an approach for producing 3D visualizations that
can be played in the form of VRML (a standard file format for presenting 3D objects
in a web browser) animations. The VRML contains a VRML scene (background
transformation), VRML nodes (3D animated object transformation) and simulation
model information and results obtained from a simulation tool with added information
to create and animate 3D worlds (e.g., position, path, etc.).

Zhong and Shirinzadeh (2004) create an analyzer to convert important
processes in simulation models (developed using whatever simulation tools) to
animation events. The analyzer will group a sequence of events into events that
belongs to an object based on their source objects and the event sequence it
participates in. Events that are not important (e.g., no change in an object’s position)

will be filtered out. Each object is firstly positioned at its proper location in a 3D

43

layout editor and is then animated based on its animation events using animation

viewer,

2.7 Summary

Previous work on DES construction tools has simplified model building that
initially demands a substantial of programming effort to model building that only
requires dragging and dropping blocks of code. Approaches to connect DES models
with animations and visualizations that help learners to get insight into the models’
processes and behaviour by showing their sequences of events have also been
proposed. At the same time, commercial software has provided excellent tools for
modelling, animating and analyzing DES models. However, none of the current tools
have considered how learners’ learn. The main lesson from this chapter is that
models for learning purposes should support runtime interactions since interactions
through various engaging activities can help leamers to construct and develop their
mental models of a domain. Additionally, the models should have relevant features to
help learners engage in their learning. Table 2.5 show the features identified from the
literature review as being desirable for the design of DES tools.

Table 2.5 Desirable Features for the Design of DES Tools

& = Featre : Purpose

Illustration of model Help leamers visualize process flows

structures and logic

Feedback and performance | Aid learners to gain better understanding of system

visualizations performance

Activities through easy-to- | Allow learners to input simulation parameters

access GUIs

Attractive animation of Facilitate learners to get insight into model behaviour

simulation processes and improve their understanding

Multiple visualization Enable leamers to view information in different

windows perspectives

Appropriate symbols and Represent the function of animated objects

names

Top level control of Provide learners a choice to control simulation speed

simulations and animations

Zooming Ability Offer leamners to view details of a specific area of
interest

These models should also be web based models so that they can be embedded
in a web page and LMS-compatible models so that they can easily be integrated with
an LMS to take full advantages offered by the system. The next chapter will discuss
how to properly design DES tools for building informative interactive DES models
(that contain interactive and attractive GUIs, statistical tables, information windows,
animation control, etc.) that are ideal for learning and how Flash supports the
development of the tools.

45

CHAPTER 3

A FRAMEWORK FOR DES AND ANIMATION

3.1 Introduction

Dynamic systems contain various time-dependent processes and interconnected
elements. There are two techniques used to study and evaluate such stochastic time-
oriented systems: analytic and numeric. While analytical models can offer accurate
solutions, it is unpractical (and typically fails) to model systems with very complex
structures. A numerical technique (e.g., simulation) that uses numerical
approximation is always a choice.

Time-oriented simulation imitates a system’s behaviour over a period of time.
There are two types of simulations under this classification: discrete event simulation
(DES) where state variables change values at discrete time and continuous simulation
where state variables change values throughout time. The main advantage of using
DES to analyze discrete event systems over analytical models is that we only consider
elements and their interactions that influence the system’s behaviour, based on the
objectives of our study. Essential elements that simplify model development in many
types of DES systems have long been studied and presented.

DES has two different purposes. One focuses on decision making where
simulation is used as a prediction tool for estimating performances of limited, risky
and costly systems. Thus, the quality of a simulation model is paramount for feasible
predictions. For this, its modelling approach must go through a number of cycles:
system identification, model design, data collection, model implementation, model
verification, model validation, model experimentation and model output analysis.
Model implementation involves a transformation of a set of system significant
features to a computer program. Model verification ensures that the program contains
no errors and logically represents the system in terms of its functionality and

structures. Model validation ensures that the program reasonably represents the

46

system behaviour (up to a certain level of confidence) in terms of accuracy of outputs
it generates. If both conditions are satisfied, the model can be used for exploration.
This includes changing model parameters (e.g., random numbers of arrival, routing
policy, priority rules, server scheduling strategies, etc.) and/or model structures to
improve its performance. Detail explanations of the modelling cycles can be found in
most DES textbooks (Banks, 1998; Garrido, 2001; Kelton et al., 2004; Law, 2007)
with Law (Law, 2007) give detail explanations on simulation analysis.

Other focuses on teaching about complex (natural, organizational or technical)
processes. Compared to the first purpose that focuses on a quantitative aspect, the
second purpose focuses more on a qualitative aspect. In this context, a simulation
model is mainly used as an exploration tool for gaining insight into a system; i.e., to
help users to understand aspects that influence its behaviour and sensitivity. Thus,
providing a graphical representation of its structures, any means for its parameter
manipulations and facilities for observing the effect of the manipulations (preferably
without re-running the model) to current simulation results (e.g., through animations
and visualizations of its state values) are particularly useful in offering many
cognitive advantages for achieving this purpose.

Both purposes require basic tools for model implementation (i.e., constructing
and running simulation models). The only different is that the extension of the tool,
where one stresses more on providing tools for statistical analysis while the other one
stresses more on providing tools for structural and behaviour visualizations.

Developing simulation tools is not an easy task. It must be well designed and
structured in a reliable fashion based on an appropriate framework for preserving its
flexibility and extensibility. This framework consists of segments; each of which
handles its own functionality and cooperates with each other to accomplish a further
task. The segments are later translated into computer code (i.e., simulation libraries)
that can be called, initialized and assembled to construct a model.

Although the library-based approach offers ease of coding, they only support
model construction using text descriptions. Thus, a component-based approach that
offers a drag and drop fashion for model building and GUIs for easy accessing
libraries’ parameters while still supporting API (Application Programming Interface)
has been introduced. The use of relevant symbols to depict components” functionality
have been proved to offer some advantages especially in visualizing model structures

and processes (Repenning, Ioannidou, Payton, Ye, & Roschelle, 2001; Roschelle et

47

al,, 1999). However, runtime experimentations through the symbols’ parameter
modifications and responsive animation and model visualization customization for
observing the effects of the modifications are still uncommon. This chapter focuses
on a framework that leads to the construction of our component-based tools for
animated interaction-driven DES models.

This chapter starts with a brief introduction to DES and queuing networks. A
good understanding of DES mechanisms eases the development of our DES tools.
We first discuss basic mechanisms of two available DES modelling styles, i.e., event-
oriented and process-oriented and their suitability in implementing a DES engine.
Because of some limitations of the event-oriented, we have architected our own
process-oriented DES framework to support various DES facilities (e.g., generating
random numbers for various distributions, collecting statistics, managing simulation
clocks, a list of future events, etc).

This framework has been designed so that a collection of classes for providing
simulation libraries can be constructed easily using any programming languages.
While there are many programming languages that can be used to implement this
framework, the use of appropriate programming languages that offers a user-friendly
environment, supports OOP and eases integration of animation (e.g., facilities for
creating new images, importing outside images, attaching those images to classes and
animating objects through built-in animation methods) is important to support its
further extension and to guarantee users’ acceptance and satisfaction. For these
reasons, we argue that Flash is a suitable implementation tool for any kinds of

simulations (details on this will be discussed in Chapter 4).

3.2 DES and Queuing Scenarios

DES is a mathematical model that operates a system using a chronological sequence
of events; each of which happens at discrete time. The execution of each event (e.g.,
the arrival and departure times of customers in a service system) will update model
states, advance model time and consequently lead to a new event. Anything happens
between the two consecutive events are ignored since they will not affect model

behaviour. The change of state values is used to calculate various system

performances.

48

Such a computational mechanism can be found in a wide variety of systems.
Examples include manufacturing, transportation, service, network, inventory and
computer systems with the main focus is to study and analyse queuing networks that
explore the effects of capacity constrained resources and routing strategies on
common performance measures; €.g., the average waiting time in a queue, resource
utilization, throughput, etc. Results from this can be used to manage queues
especially in deciding scheduling strategies and the number of resources needed to
provide particular services. Analyses of queuing networks using simulations can be
found in much literature (e.g., Fan, 1976; Guan, Woodward, & Awan, 2006;
Raatikainen, 1997; Zhuang, Wong, Fuh, & Yee, 1998).

DES is generally built up by objects known as entities that move through
simulated time. There are two types of entities: transient and resident. Transient
entities enter and depart from a system with relative frequencies and may seek for
services. In other applications, they are sometimes called as tokens, jobs,
transactions, temporary entities, etc. Examples include customers in a service system,
parts in a manufacturing system, vehicles in a transportation system, etc. Resident
entities stay in a system for limitless times. They may offer services for transient
entities and are sometimes called as resources, servers, facilities, permanent entities,
etc. Examples include workers, machines, etc. The interaction among these entities
will create other concepts such as scheduling (the availability of resources), routing,
sequencing (queuing discipline) strategies and buffers (waiting spaces).

Each entity performs an operation at a finite time (either constant or random)
called an activity. Activating and executing a sequence of activities (called lifecycle)
will generate events and consequently change the entity’s states (i.e., its attribute
values). Detail explanations on how such activities consume model time (i.e., tracing
model execution) and how model states are used to measure various system
performance can be found in many textbooks (e.g., Banks, 1998; Harrell, Ghosh, &
Bowden, 2004; Kelton et al., 2004; Law, 2007).

There are two paradigms to study the dynamic behaviour of a system. One
focuses on transient entities’ lifecycles called material-driven. Another one focuses
on resident entities’ lifecycles called resource-driven. Both paradigms have their own
advantages and disadvantages in terms of execution speed and simulation output

accuracy.

49

The material-driven paradigm is used for a system with few transient entities
but with numerous resident entities. Since this system is examined based on the flow
of transient entities (that their lifecycles are typically detail than resident entities), we
can collect experiences of individual transient entities in much more detail. The
advantage of this is that entities’ animations and statistical output analysis can be
more interesting. However, the increment number of transient entities will consume a
lot of computer memory and consequently cause simulation execution becomes so
slow.

The resource-driven paradigm is typically used for a large and highly
congested system; i.e., a system that contains various transient entities demanding
some services. This scenario could be found in a transportation system with many
vehicles or a service system with many customers. Since there are relatively many
transient entities compared to resident entities, it is more efficient to view model
behaviour based on resident entities’ lifecycles. The advantage of this paradigm is
that since resident entities lifecycles typically involve few phases (e.g., idle or busy)
and variables (e.g., their capacities, queue sizes, etc.), computer memory requirements
and simulation execution speed are insensitive to system congestion caused by the
increment number of transient entities. However, statistical outputs related to
individual transient entities are limited since their lifecycles are not in focus in the
model development. The material-driven paradigm is a better choice for animated

DES models that focus more on entities’ animations and state value visualizations.

3.3 Modelling Time

To sequence state transitions in DES, two dominant modelling styles (world views)
are used: event-oriented and process-oriented. The choice of which modelling style
should be used depends on a developer’s familiarity with these concepts, their
programming expertise (procedural or OOP) and time constraints.

Updating model time needs a component called a monitor. The monitor
updates model time by jumping from event to event. During these processes of
activating and cancelling events, various model statistical performances can be

computed. The ideas of how model events are stored in an Agenda or an Event List

50

(i.e., a component for maintaining a list of events to be executed) make both

approaches different.

3.3.1 The Event-Oriented Approach

The event-oriented (or event-scheduling) models a system’s behaviour based on a set
of events triggered by entities. Instead of grouping a series of events into a process
description, it only lists events (no matter to which entity it belongs) based on their
time of occurrence. Executing relevant event routines will simulate the system’s
processes and consequently update its model states.

This approach is well suite to model a system with a few types of entities since
all relevant aspects of scheduling can be coded explicitly. This approach however
becomes complicated and difficult to program when there are different types of
transient and resident entities in a system (that introduce various kinds of events).
Simulation tools that implement this approach include SIMAN (C. Dennis Pegden,
1989), SLAM (Pritsker et al., 1994) and SLX (Henriksen, 1997).

Figure 3.1 shows the execution mechanisms of the event-oriented approach.
The Event List consists of a set of time-sorted event references (Event ID); each of
which points to an event routine (Event I, Event 2, etc.). At a particular point of
time, the Monitor invokes the imminent event pointer in the Event List and activates
its appropriate event routine. Executing a segment of code (Descriptions) for this
event routine will schedule a new event that will later be inserted back to an
appropriate location in the Event List. Consequently, the Monitor updates the
Simulation Clock.

There are two options for advancing a model clock under this approach: next-
event time and fixed-increment time. The next-event time advances model time to the
most imminent future event time. At this point of time, the computer executes event
routines, updates model states and determines the next scheduled event time. The
advantage of this is that it saves computer time to run simulation since model time
jumps from event to event. The fixed-increment time meanwhile advances model
time to a fix amount of time unit. Model states (if one or more events have occurred)
that have happened between these intervals will only be updated at the end of the

intervals. The main downsides of this are: (1) the use of small time intervals but no

51

events occurred during the interval will only cause wasteful scanning and additionally
impose computational costs, and (2) the use of big time steps but many events have
occurred during the interval will suffer output accuracy since all state changes are

only updated at the end of intervals.

The Monitor——— Event List (Agenda)

e =

Event ID Event Time
Event ID Event Time

- -
Event ID Event Time

Event ID Event Time
The Simulation Clock T —
trigger next event }]
execute current
Event ID
l nsert a new event
Event_1 Event_2 Event_n
Descriptions Descriptions Descriptions
\ v v

Figure 3.1 The Event-Oriented Approach Mechanism

3.3.2 The Process-Oriented Approach

The process-oriented approach is based on SIMULA (Birtwistle, 1980). It represents
system behaviour from the point of view of active entities (called processes); each of
which has its own lifecycle; i.e., a sequence of activities to be performed. Each
process can either be in one of three phases: active (i.e., when its relevant activities
are being executed), passive (i.e., when the process is suspended) or death (i.e., when
the process has exhausted its actions). Only active phases (i.e., phases with time
delays) update simulation time and model states.

A process can either be suspended for a definite time (delayed until a certain
amount of time) or an indefinite time (delayed until some conditions are true; e.g.,
waiting to be re-activated by other processes). When a process is suspended, the
Monitor retrieves the next imminent process from the Event List and then reactivates

it. The process then flows itself to the next phase of its lifecycle.

52

Figure 3.2 illustrates the process-oriented mechanisms. Compared to the
event-oriented approach that its Event List stores a set of time-sorted event routine
pointers, the Event List in the process-oriented stores a time-ordered set of process
identifications and their activation times (Process ID, time). At a particular point of
time, the Monitor retrieves the imminent process from the Event List and updates its
Simulation Clock. Once, the process receives notification from the Monitor, it
activates the current activation point (reactivation point A, reactivation point B, etc.),
executes appropriate activities under the phase (Activities), stores the next reactivation
pointer and re-schedule itself to the Event List. It is the task of the Event List to insert
the process at an appropriate location. The process is then suspended. This cycle is
repeated until simulation length has been reached, the Event List is empty or a certain

condition has been met.

Event List

Process ID | Activation Time
Process ID Time

Process ID Time <
Process ID Time

rThe Monitor——

Simulation Clock e R

Process ID Time

resume next process 9

Active Process
——reactivation point A—>| Phase A A

|—reactivation point B—>{ Phase B:

= iton b Phase C:
i Activities Entity’s lifecycle

L—reactivation point D—>{ Phase N-

Figure 3.2 The Process-Oriented Approach Mechanism

The process-oriented approach is usually implemented using languages that
support co-routine that allows multiple entry points for suspending and resuming

execution at a certain location of a subroutine (e.g., C#, Python, etc.) or

53

multithreading that allows more than one activities to be performed in parallel within
an application (e.g., Java, Ruby, etc.). However, any object-oriented languages can be
used to implement this approach. Handling the process-oriented using object-
orientation offers some benefits: (1) object-orientation is a natural framework for
handling the complexity of the process-oriented framework through its concepts of
objects, classes, properties, methods and messages thus easing the creation a class of
entities, (2) object-orientation ensures that information is localized through the
encapsulation concept thus simplifying the maintenance of entities’ states and
behaviour, and (3) object-orientation promises flexibility than conventional
procedures by supporting inheritance, polymorphism and composition concepts thus
easing the creation of various types of entities and their class maintenances.

The object-oriented approach eases the implementation of the process-oriented
approach that views a system as a set of entities that interacts with each other to
accomplish specific goals. In the object-oriented framework, a group of processes can
be presented as a class that encapsulates attributes (class properties) that can only be
accessed from the outside world through operations (class methods). Instantiating this
class will create a process instance with its own values of properties (states). Because
of these, the process-oriented approach offers an advantage when a model contains
many kinds of interacting objects. Thus, it has been regarded as the best predominant
modelling worldview for structuring DES models (Kreutzer, 1986; Law, 2007) and
has been implemented in many DES tools; e.g., SIMULA (Birtwistle, 1979),
SIMSCRIPT (Rice et al., 2005) and SimPy (Matloff, 2008).

3.4 The DES Framework

No matter which modelling style we choose, five main components have to be
provided to structure and execute DES models: entities to represent objects, a
simulation clock to manage current model time, distributions to generate entities’
stochastic behaviour and drive model probability (i.e., for sampling model-time
consuming activities), a monitor to manage interactions between entities, and
statistical instrumentation to gather, analyze and report relevant aspects of simulation

results.

54

Constructing these components should be based on an appropnate framework.
This framework must be transparent to support extensibility (i.e., further extension to
its base structures) and well-designed to avoid future amendments of its base
structures. Thus, we constructed our own framework to serve as a base for the
development of our DES tools. This design was based on the functionality of certain
class libraries such as DEMOS (Birtwistle, 1979) and Psim-J (Garrido, 2001), and
available frameworks such as SIMFONE (Rossetti, Aylor, Jacoby, Prorock, & White,
2000) and DESMO-J (Meyer, Page, Kreutzer, Knaak, & Lechler, 2005b).

We designed our own framework because of two reasons. First, most
simulation textbooks and literature use available tools to build DES models. The
tools’ frameworks are hidden, making their reliability and extensibility to support our
tool’s objectives is restricted. Second, although some simulation textbooks that focus
on simulation programming present their foundation frameworks (e.g., SIMFONE and
DESMO-J), these frameworks (especially the entity and the Monitor classes) can only
be implemented in languages that support co-routine or multi-threading (to continue
and interrupt entities’ lifecycles). Although this offers some advantages especially in
allowing simulation to operate faster on computer systems that have multiple CPUs,
they cannot serve as the base of the development of simulation libraries in any OOP
programming languages. Thus, OOP languages that do not support co-routine and
multi-threading (e.g., C++, ActionScript, etc.) cannot implement the frameworks.
Our framework is divided into four packages based on their functionality:

e Data Collectors
e Distributions
e Monitor (Simulation Executive)

e Resource (Servers and Queues)

Figure 3.3 shows a package diagram that depicts the dependencies between
these packages in order to create queuing network models. Note that this framework
has been presented in Khalid, Kreutzer and Bell (2009).

55

DESTod | dirgarts
[Morso | maotecir
Kreconra= B
«mport» _ 4
. umgonts s
«imports ~';'—|: "'?u
Sl :

Resource = 4 Distributions

--. --- E -- B

Figure 3.3 Package Diagram for Queuing Models

3.4.1 The Data Collectors Package

Facilities for statistical instrumentation and reporting are essential features in DES
models. Thus, to gather, analyze and report statistical information generated during
simulation runs, the Data Collectors package must be available. This package should

consist of seven classes: Collector, Counter, Tally, Histogram, Boxplot, Graph and

GraphEntry (see Figure 3.4).
Collector
strName String
show ():Sting
reset () Vod
setName() Vod
A
|]
Counter Histogram Graph
numCount:Number numMin: Number numNumberOfPomts Number
increment (amount Number) Void :Mm e
decrement (amount:Number) Vod numTotalNumOfinterval Number update (ime Number value Number) Vod

update (value Number) Vod
Boxplot
numCount Number numMedian Number
numMin Number numFirstQuantie Number
numMax Number numThrdQuantie Number
numSum Number numiQR Number
numSumSquare Number Number
numCount Number numlowerLime Number
numMinValue Number
. numMaxValue Number
maxmum () Vod
mean () Vod medan() Vod
stdDewation() Vod firstQuantile() Vod
thrdQuantile() Vod
QR() Vod
findLowerLima() Vod
findUpperlLima() Voud

Figure 3.4 Class Diagram for the DataCollectors Package

56

The Collector class forms the base of the data collector hierarchy. Counters
record relevant changes in model states; e.g., occurrences of significant events. They
can, for example, be used to record the number of entities that have entered or left a
model, the number of entities that have joined or left a queue, or the number of
entities that have been serviced by a resource. This class consists of two methods:
increment(amount) and decrement(amount). While the increment(amount) is used to
increase the counter with a certain value, decrement(amount) should also be provided
to decrease the counter with a specified value. The combination of the two methods is
always used in an object; e.g., to report the number of entities in a queue object or in a
resource object. Note that we have to provide flexibility for users to specify the
amount number in case they want to represent a batch arrival or departure.

A Tally reports the minimum, maximum, mean and standard deviation of a
series of values. It can, for example, be used to gather reports on delays; e.g., time
spent waiting in queues or residence times in the model. Histograms assign values to
intervals and show frequency counts for each interval in graphical forms (bar charts).
They can be used to gather and report, for examples, time between arrival of entities,
time waiting in a queue, service times of a resource and cycle times. Boxplots provide
descriptive statistics of data variation. They can be used to graphically report
information about the smallest, largest and median values of observations, and the
lower and upper quartiles of a series of data. The use of Histograms in conjunction
with Boxplots will help users to understand data better.

TimePlots (chronological graphs) are used to track the temporal evolution of a
variable’s values; i.e., how they change over time. Plotting the number of entities in a
queue or showing changes to a resource’s utilization during some model time
intervals can serve as examples. The TimePlot class uses an instance of the
TimePlotEntry class as data points; i.e., a set of model time and its value. Each class
(except TimePlotEntry) should implement show() and reset() methods to display
information of a series of observed data and to discard all these data, respectively.

3.4.2 The Distribution Package

DES models typically are stochastic; i.e., their elements occur in a random pattern that

eventually generates random events. For example, each entity has its own arrival time

57

and travel times (from location to location) that will generate non-deterministic
results. Experimentations with these inputs to find the best possible outputs in various
scenarios are one of the purposes of DES. Simulating this random behaviour requires
a component that has capabilities for generating samples from a variety of
distributions.

The Distributions package provides a selection of pre-packaged distribution
objects. These may, for example, be used to schedule the time between workload
items’ arrivals or service times of resources. Note that the term “RNG”, used in
Figure 3.5, stands for random number generator. There are two methods to generate
computer random numbers: the middle square method (Knuth, 1981) and the
congruental method (Boyar, 1989; Hull & Dobell, 1962). The main limitations of the
first method are the iterations for generating new random numbers cannot be longer
than 10", where n is the number of digit random numbers and if the first half digits of
generated numbers are zeros, the subsequent numbers will then be decreasing to zero
and this will eventually stuck the generator. The advantages of the second method are
that (1) this method is easy to understand and be implemented in addition to
producing decent random numbers with the right choice of its coefficients, and (2)
this method only needs minimal computer memory to retain its state.

RNG
Distribution nextRN ():Number
numRNGSeed Number
mginstance:RNG Tally

tlySampleTallyTaily minimum ():Void
sample ():Number e L
reset ():Void stdDewiation ()'Void
show ():String e & Gl
JaY
[[! :
raww]|cms'""Lw']lw]lmJ
e [Exponential J [LogNormal] I Triangular l l Wedull J

Figure 3.5 Class Diagram for the Distribution Package

We use Actionscript’s generator, which is based on the standard congruential
method, for this purpose. The nextRN() method is used to create random numbers
uniformly distributed between 0 and 1, which are then used in distribution functions.

Examples are Boolean, Exponential, Gamma, etc.; each of which represents a

58

statistical analysis of empirical data either collected from a real system or an
approximation of sample data for an imagination system. More comprehensive
discussion on estimating an input distribution and its characteristics can be found in
any textbooks; e.g., by Banks (1998) and Law (2007).

Each distribution class has a sample() method that implements a function of a
random number for generating distribution samples. These samples can be updated in
a Tally instance (through a composition technique) to report basic information (e.g.,
the minimum, maximum, etc.) of a series of generated data. Options to show and
remove these data should be available through show() and reset() methods.

3.4.3 The Monitor (Simulation Executive) Package

The Monitor package provides the infrastructure for sequencing state transitions in
DES models. Its main focus is on the creation, scheduling and termination of
processes. This package consists of five classes: SimProcess, Monitor, Agenda,
Clock, and Event as shown in Figure 3.6. The SimProcess class describes the life

cycles (i.e. the sequence of events such an entity moves through) of active entities.

Monitor Py
agdAgenda:Agenda
simClock:Clock numTime Number

set (time Number) Vod
getTime () Number
reset () Voud
show ():String

terminatingCondition ():Boolean
setSimulateFor (time:Number) Void

schedule (proc:SimProcess, time:Number):Void
getCurrentObject (). SimProcess

run ():Void

reset ():Void [SimProcess
? strName String
strPhase String
Agenda static eventType Array
arrEvent:Array schedule (ime Number) Voiud

hold (time Number) Void
addPhase (phase String) Void
liteCycle (phase String) Void

insertEvent (proc:SimProcess, time:Number) Void
getNextEvent () Event

isEmpty ():Boolean

reset ():Void

show ():String moveTo (X_:Number, Y Number) Void

initLocation (X_Number, Y Number) Void

¢

Event

smpProc. SimProcess
numTime Number
strEventType String

show ():Void

Figure 3.6 Class Diagram for the Monitor Package

59

Two important methods should be provided in the SimProcess class:
schedule(time) and hold(time). The schedule(time) method is to schedule an instance
of SimProcess with a specific time value. The hold(time) method is to delay this
process until a specific value of future time (i.e., current model time plus a specified
amount of delay time). When the time is reached, this process will be activated so
that it can flow to the next phase of its lifecycle and once again one of the two
methods will be called again until it is destroyed. Since Actionscript 2 does not offer
any features for implementing co-routines or threads, each SimProcess instance needs
to keep track of its current phase (i.e., the current stage of its lifecycle) using a class
variable. This property is updated whenever the process encounters a model time
delay. Tracking SimProcess instances’ current phases needs the SimProcess class to
compose a Monitor instance so that they can insert themselves to the Monitor’s
Agenda.

The Monitor owns an Agenda (or known as an Event List) that maintains a
time-ordered list of future events. Whenever a new event is scheduled, the Monitor
inserts a process and its time reference (event notice) at an appropriate agenda
position and will then wake and remove this process whenever its time of occurrence
is reached. Thus, the Monitor should have two encapsulated methods; i.e.,
schedule(proc:SimProcess, time:Number) and getCurrentObjects() to insert and
remove processes from the Agenda (by delegating tasks to the Agenda’s
insertEvent(proc:SimProcess, time:Number) and getNextEvent() methods),
respectively.

Instances of the Event class are used as agenda entries that store a process
reference and its wake-up time. An awakened process’ phase value ensures that the
process’ execution continues from just after the point at which it incurred a delay and
then passes the control back to the Monitor. The Agenda can be implemented using
arrays, linked lists, trees, etc. Arrays are adequate; the Monitor will however
consume more computer time to insert a process at a proper location in its Agenda
whenever its array size is getting larger.

A simulation’s temporal progress is controlled by the Monirtor class’ single
instance, which owns all model components and whose functionality selects the next
imminent event from an agenda, updates the model clock (an instance of a Clock
class) to the relevant time value, and activates the appropriate process, instructing it to

execute its next phase. This executing process is repeated until the Agenda is empty

60

(isEmpty(), a certain condition has been met (terminatingCondition()) or simulation
time has been reached (setSimulateFor(time)). Thus, to avoid an empty Agenda for
the first run, it is important to ensure that at least one process has been placed in the
Agenda. Executing this process will transfer it to other phases and/or create a new

process.

3.4.4 The Resource (Servers and Queues) Package

Figure 3.7 shows a class diagram for the Resource package. This package consists of
two classes: Server and Queue. Both the Server and Queue classes can compose
instances of Tally, Graph, Histogram and Boxplot to report their states in various

formats.

Server
numTotalUnits:Number
numFreeUnits:Number e
mon:Monitor
watting:Queue o [ayaweaing Tally
tlyServeTime: Tally tpQLength: TimePiot
;;:gm_lt_:ap.:gfmeﬂot htQWaiting Histogram
erveTime: logram hti ing -
htServeTime:Boxplot e
- - enter (simProcess: SimProcess)
fileintoQueue (simProcess: SimProcess): SimProcess leave () SimProcess
request (simProcess:SimProcess):Void show ():String
takeFirstFromQueue ():SimProcess Number
seizeServer (simProcess: SimProcess):Void e .
release ():Void
show ():String

Figure 3.7 Class Diagram for the Resource Package

Servers allocate limited capacity resources to service requests. If a server’s
capacity is exhausted, the requesting entity will be placed in a service queue - an
instance of the Queue class. As the SimProcess class, the Server class must compose
a Monitor instance so that its lifecycle can be tracked.

The Queue class should implement two methods: enter(simProcess) and
leave(). The enter(simProcess) method is to insert a SimProcess instance to a queue
while the /eave() method is to retrieve the head of the queue. These two methods are
used in the Server class through a composition technique. Among methods that

should be provided for the Server class include:

61

fileIntoQueue(simProcess) is to insert a SimProcess instance into a queue before

allocating the instance with a certain unit of the server. This method uses the

Queue’s enter(simProcess) method to accomplish this task.

e request(simProcess) is to check if the Server is ready to allocate its service; i.e., if
it can supply a certain amount of unit for a requested SimProcess instance.

o takeFirstFromQueue() is to enable the Server to retrieve the first SimProcess
instance from a queue . It calls the Queue’s leave() method to accomplish this
task.

e seizeServer(simProcess) is to allocate a certain unit of the Server ‘s capacity to a
requested SimProcess instance.

e release() is to enable the Server to get back a certain amount of unit that it has

allocated to a SimProcess instance, so that the next SimProcess instance can

request for its service. Once again, the request(simProcess) method will be
called.

3.5 Graphical Objects in DES Models

Figure 3.4, Figure 3.5, Figure 3.6 and Figure 3.7 show class diagrams for creating
queuing networks’ classes. Implementing these classes in any computer languages
eases model building through API. The resulting models are however limited to text
description models; i.e., a list of texts that describes their logic and behaviour.
Creating graphical structures and animated versions of the models needs the concept
of graphical objects that symbolize their functionalities and ease access to model
properties.

Graphical objects for animating DES models can be split into two different
categories. The first one is independent of the simulation domain or Domain
Independent Objects, while the second one is specific to a particular type of
simulation or Domain Dependant Objects; see Figure 3.8.

Domain Independent Objects can be further divided into two subgroups: static
objects and dynamic objects. Static objects do not move or change visual appearances
during animation; e.g., simulation inputs (i.e., different types of distributions under

the Distribution package) or symbols for the simulation controller (i.e., the Monitor).

62

Dynamic graphical objects, on the other hand, change their appearances and/or
locations. This category includes clocks (under the Monitor package), histograms,
graphs and boxplots (under the Collector package) and queues (under the Resource
package).

Figure 3.8 Graphical Objects in DES

Domain Dependent Objects are often dynamic objects that represent
SimProcesses’ changing location (e.g., moving customers or vehicles) and/or
appearance (e.g., machines or conveyor belts). Figure 3.8 depicts some examples of
domain dependant objects for service, manufacturing and logistic systems. In
manufacturing systems, transporters are used for transporting entities from location to
location based on a mean velocity value. Transporters are of two types: static
(conveyers) and dynamic (vehicles). While vehicles move along with entities,
conveyers remain at the same places; i.e., they only move entities from location to
location using belts based on the velocity of the belts.

As shown in Figure 3.8, there are two types of vehicles: free-path and guided.
Free-path vehicles can move freely between stations and are not influenced by other
transporters’ traffic. Examples are trucks, forklifts, etc. Guided vehicles (e.g.,
automated guided vehicles) run on fixed networks (tracks or rails) and are influenced

63

by traffic congestion. Conveyers meanwhile are of two types: accumulating and non-
accumulating. Accumulating conveyers will keep moving although they have been
accessed by entities. On the other hand, non-accumulating conveyers will stop their
belts for loading or unloading entities.

In logistic systems, bins and stocks are used for holding goods. A bin object
represents an unlimited capacity container while a stocks object has a fix capacity.
Chapter 4 discusses how these objects can be created in the Flash environment by
attaching symbols and key frames to their classes.

As mentioned earlier, each dynamic object has to go through a sequence of
events; each of which associates with a list of activities that changes their states and
affects other objects’ states; e.g., changing a server’s status from idle to busy. We can
link the events using a directed graph (Kalra & Barr, 1992). Table 3.1 shows
different types of directed graphs, their descriptions and how they can be used to
connect various events in DES objects. Based on these directed graphs, we have
identified some properties and events that should be included in dynamic objects as
shown in Table 3.2.

Table 3.1 Types of Directed Graphs

Horaphit e Deiptim i et | e Bl
A linear arrangement of events. Each object | Entities with a fix path.
must follow a fix sequence of events; i.e.,
one event will only lead to one other event.
Time line
Event_1 Event_2 Event_3
— —
A few alternatives of events. An event can | Entities with a diverse
traverse to several possibilities of the next | sequence of events; e.g.,
events. a model that considers
decision points, balking
e (arriving entities that do
T tres Actiwties not join a queue bq 2o
Event_t Event_2 away), reneging (entities
Activities Activties < that join a queue at first
Event_4 but decide to leave the
Activiies queue later) or jockeying
(switching queues).

Time

A loop of events; i.e., a series of events that
is repeated by an object.

Event_1 Event_2

graph

Event_4

Servers,
conveyers,
stocks.

transporters
bins and

Table 3.2 Properties and Events for Dynamic Objects

Objects

___ Properties

- : ——
s Lo n Eventa/Phases F -l %
e SRR Vel o4,

Entity

Initial location
Current location
Target location
Arrival time
Departure time

Arrive, Depart and events associated
with other communicated objects

Server

Capacity
Service Time
Status: idle or busy

| Utilization

Request, Seize, Delay (Busy), Release
(Idle), Inactive and Fail

Transporter

Status: idle, busy or
inactive

Velocity

Time unit

Capacity

Current load

Initial position
Distance set: beginning
station, ending station,
distance

Request, Load, Transport, Free and
Stop

Conveyer

Velocity

Units

Cell size

Segment: beginning
station, next station,

length

Access, Convey, Exit and Halt

Stock and Bin

Initial stock

Inventory levels:
minimum, current,
desired

Costs: keeping, ordering,

unfulfilled

Request, Product Delivery and Stock
Order

65

Time graph entities can be hard coded by tool designers while time tree
entities that traverse to several paths of events must flexibly be coded by model
developers. However, leaving this task in their hand could create certain problems.
First, they have to code the events using if-else or switch-case statements with
descriptions of activities. The process of creating, extending and saving entity classes
and writing such selection structure statements may burden and cause tension.
Second, at certain levels of if-else or switch-case statements, they again have to write
another selection structures so that at the relevant stage certain entities can skip linear
events to represent an alternative flow; e.g., based on certain probability, queue
length, work in process, etc. These processes tend to make code clumsier and lead to
logical errors. This problem is getting worse if there are many classes of entities in a
model, each of which has their own alternative paths. Third, they have to carefully
study a segment of relevant code if they plan to modify entities’ lifecycles to ensure
that the modification will flow the entities along the right paths. We have catered
these problems by generating events during runtime instead of specifying events
during design time. This approach will be discussed in details in Chapter 5.

66

CHAPTER 4

USING FLASH FOR SIMULATION

4.1 Introduction

The use of simulations in education and training is an attractive idea since it allows
learners to gain access to and experiment with dynamic models under different
scenarios. However, to take full advantages of the technology’s potential, simulations
must be interactive enough to allow learners to fully immerse themselves rather than
tediously studying lists of results or just watching pre-recorded animations of
simulation experiments.

Visualizing DES models in an attractive and interactive environment is
suspected to help leamers to leamn and understand DES systems better. While most
DES tools offer some capabilities to generate animations, simulators with a strong
feature set for animation design typically stress qualitative understanding of system
behaviour rather than statistically well corroborated predictions of system
performance. Thus, supplying teachers with easy-to-use tools (e.g., through a drag
and drop approach) that create highly animated models to motivate leamers,
equipping the models with dynamic displays and means of interactions to engage
learners and easing the deployment of the models either on the web or modern LMSs
to serve communities of learners are crucial. Unfortunately, no single current DES
tools have been fashioned for these.

Attractive and interactive DES models integrate simulations and animations to
reflect change in either the time or space dimension. Temporal change, for example,
occurs whenever a simulation encounters delays (in model time) and whenever an
animated object changes appearance. Spatial change occurs whenever a visual entity
moves. To support animated simulations requires a nested design, where model time
must be mapped onto animation time, and animation time must be mapped onto real

time. There are a number of strategies for connecting such layers of representation.

67

We have however opted for a concurrent (synchronous) approach, where model time
is always proportional to animation time and animation time is always proportional
to real time.

The design of DES tools should be based on Visual Interactive Simulation
(VIS) fundamental concepts. For this reason, we start this chapter with a brief review
of the concepts and the benefits they offer to leaming and teaching. Some available
approaches for integrating simulation and animation in VIS models will also be
introduced. Based on the concepts and a selected integration approach, we then argue
that Adobe Flash is a suitable development environment for constructing tools of VIS
models. A proposal of how VIS’s essential components can be created with the help
of our framework (discussed in Chapter 3); i.e., how we relate all the four packages to
a single overall class diagram for VIS models is then presented. We then present a
series of simulation components that have been developed to build queuing models.
We further our discussion by listing some tricky issues in integrating an animated
simulator to DES models specifically in permitting animation speed to be dynamically
adjusted during runtime. This chapter ends with a presentation of an overall class

diagram that supports DES for logistic and manufacturing systems.

4.2 Visual Simulation and Visual Interactive Simulation

Interactive simulations use tools that focus on either model developers (e.g., teachers)
or consumers (e.g., leamners). The first type of tool helps developers to specify model
structures and model parameters within a graphical programming environment; e.g.,
through blocks and symbols, or by answering a series of questions. The second type
of tool uses animation and interaction for showing a model’s behaviour either during
or after a simulation run.

Model building through blocks and symbols typically gives developers more
flexibility in constructing models than answering a series of questions that constrains
developers in only choosing models from a set of pre-fabricated models, considered
by the mindset of tool designers. Since both approaches focus on building a model
using some means of interactions, it is well-known as Visual Interactive Modelling
(VIM). Au & Paul (1996), Odhabi, Paul, & Macredie (1998) and Sargent (2004)

discuss such simulation software.

68

The resulting models can be of two types: Visual Interactive Simulation (VIS)
or Visual Simulation. While simulation models that permit users to interact with them
during their execution are referred to as Visual Interactive Simulation, any simulation
model that only allows users to view its behaviour through animations without any
capability for interaction is known as Visual Simulation (see Bell, 1989;
Mascarenhas, Rego, & Sang, 1995; S. Narayanan et al., 1997; S. L. Robinson, 1994;
Sargent, 2004). Visual Simulation focuses on the attractiveness of simulation by
tracing and surfacing the dynamic behaviour of models through graphical forms.
They typically support two types of graphic displays: abstract displays and
representative displays; see Rooks (1991) and Figure 4.1.

Cumulative
Abstract Displays
Continous
Representative Displays Static Elements I
Schematic F—D Concrete]

Figure 4.1 Visual Simulation Components

Abstract displays stress on data visualization of model states. They are used
for interpreting and enhancing the presentation of statistical data (e.g., the Data
Collector package in Chapter 3) in the simplest form that can be comprehended by
consumers. Various visualization methods (e.g., the use of colour, approprate texts,
etc.) that engage them and promote their understanding could be implemented.
Abstract displays can be further divided into two groups; i.e. cumulative and
instantaneous displays. As the name suggests, cumulative displays increase the
amount of data shown during a simulation’s execution. Past data points will remain
on display until removed by model developers or consumers. Cumulative displays
help document the values of model variables’ change over time; e.g., the number of
entities in a queue. Examples are graphs, progress bars and scatter plots.

Instantaneous displays, on the other hand, only expose cwrrent states of model

69

variables during a simulation run, without showing their previous states. Examples
include histograms, bar charts, pie charts, gauges that indicate levels, etc.

Representative displays offer pictorial views of a model in a simplified form.
They can be of two types: a scale model or schematic. A scale model gives a pictorial
view of a system drawn prior to starting a simulation and will not change during a
simulation experiment. It typically offers the physical layout of a model, trying to
offer a realistic background in front of which the simulation takes place. Schematic
displays are more abstract. They are used to visualize the topology and paths of
movement within a simulation and are typically required for animations. While a
scale model is completely static, schematic displays serve to frame changes during a
simulation run.

Schematic consists of two types of components: static elements and dynamic
elements. Static elements remain at a specific location, but can change their
appearance during a simulation. Using different dynamic icons to picture idle or busy
states of a server can serve as an example. Dynamic elements represent objects that
actively move (e.g., entities) over a static background (scale model). These objects
can be split further into two groups: concrete dynamic displays are objects that do not
change their appearance while moving and abstract dynamic displays are objects that
change their appearance while moving (e.g., walking customers with moving legs).
Henriksen (2000) further differentiates these objects based on their types of motion;
i.e., objects that only move in a linear form between two fixed points (absolute
movement), or objects that move along defined paths (guided movement); see (Kamat
& Martinez, 2007).

Animations create and change the appearance of images at different points in
time to convey visual information to viewers. In DES, animations are used mainly to
observe patterns of movement of entities including their transformation from one state
to another, their interactions with other objects, and the occurrence of queues
whenever capacity-constrained resources cannot be seized. To attain advantages over
traditional DES models, some researchers (e.g., Belfore et al., 2003; Gilman, 1985;
Hill, 1996; Macal, 2001; Rekapalli & Martinez, 2007; Stahl, 2003; Wenzel & Jessen,
2001) suggest a few alternatives. This includes presenting a model in a more user-
friendly and understood form (e.g., model developers should clearly illustrate model
structures with appropriate symbols and label names on a stage, and display

simulation results in a graphical form with appropriate headings, labels, etc.),

70

providing graphical interaction windows for receiving input from their users (model
consumers) and designing multiple windows to display simulation information so that
users can customize their views of the model.

Simulation, animation and interaction are core components for VIS.
Basically, VIS models allow leamers to (1) initialize simulation parameters and run
the model, (2) observe the simulation behaviour through animation, (3) experiment by
making changes to model parameters while a model is running, (4) re-observe the
impact of the changes, and (5) customize model visualization during a model
execution. Since the very notion of simulation implies experimentation with models
(Rooks, 1991), such runtime interaction capabilities should be an integral part of any
advanced computer-based simulation development tools. Providing the interaction

requires us to examine some DES animation approaches.

4.3 Animation Approaches

Dynamic elements focus on object movement from location to location, satisfying
their time delays. For this, relevant information from simulation needs to be mapped
with animation. This mapping process can be based on three available approaches;
i.e. post-processed animation, direct simulation-animation and concurrent animation

(see Figure 4.2).

Trace file

Create Patient#1 0
Place Patient#1 Door 0

Move Patient#1 Counter#1 10 Simulation

e g

Post-processed Animation
Animation
@ Direct Simulation Animation

o e
-

Concurrent Animation

Figure 4.2 Three Approaches to Combine Simulation with Animation

71

Post-processed animations separate simulation and its animation. An animation is
performed after a simulation has been run to completion (Hill, 1996; Rohrer, 2000).
To drive an animated model, an animation tool needs to read a simulation trace file
that contains relevant data as well as time-ordered command sequences; e.g.,
commands for creating, moving or destroying entities. Trace files can be written
using a simulation package that provides the capability of writing to text files during a
simulation run, general purpose programming tools or a text editor. Because of their
reliance on pre-collected data, post-processed animations cannot support any runtime
interaction between users and a simulation model. Despite this drawback, they offer
some advantages such as (1) animation tools and simulation tools can be independent
in terms of software and operating systems, (2) no computer memory is shared
between simulation and animation tools that causes their executions become efficient,
and (3) animation viewers can still jump backward and forward in the model time
dimension and speed or slow down the rate at which sequences of events are
displayed since all relevant simulation data has been collected.

Direct simulation-animation is a form of real time animation, in which a trace
of simulation events and their visual displays are created on the fly; i.e., during a
simulation run. Animation tools that support this approach must be based on some
means that allow interaction with the simulation software at execution time; e.g., a
Dynamic Link Library (DLL) in case of the Proof (Henriksen, 2000) software. Since
the simulation and animation tools are still separated processes, the technique does
not usually allow user interaction with models. Some researchers have however
begun to investigate how this constraint may be overcome (e.g., see Strassburger,
Schulze, Lemessi, & Rehn, 2005).

Concurrent animations couple animations with simulation engines; i.e., their
interactions must be directly programmed into the simulation scheduler’s (the
Monitor’s) operation. Simulation events and animation events are both activated
whenever the model changes its states; i.e., the scheduler sends event relevant
animation commands to the animator at the model time that such changes should be
displayed. This approach is a suitable for supporting VIS. Although altering a
model’ parameters during its execution may seriously harm the validity of simulation
results (Hill, 1996; Matwiczak, 1990), the tight synchronization between event

scheduler and animator permits flexible patterns of interaction with running models;

an often essential element for enhanced understanding of complex systems in training
and education (S. Narayanan et al., 1997) and making the distribution of the models
on the web or LMSs much easier. However, the proper connection between
simulation (model) time (i.e., a set of important points of time (events) abstracted
from a continuous process system where model behaviour and state changes take
place) and animation time (i.e., a set of interval time to animate and move entities) is
a challenge for developing the kind of tool.

Table 4.1 shows some aspects of simulation and animation approaches. Table
4.2 meanwhile lists interaction characteristics of concurrent and post-processed
animations. Based on these characteristics, we have categorised some DES tools as in
Table 4.3. As we can see, most of the tools are based on a unidirectional
characteristic; i.e., their resulting models do not support runtime interactions and the
models cannot also be executed on web pages. DES tools that are concurrent,
bidirectional, homogeneous and integrated are important for building models for
learning purposes.

Table 4.1 Aspects of Simulation-Animation Approaches

Concurrent. Animations are | Direct, Post-processed:-
¢ directly coupled with a | Animation is performed
Mg N simulation engine after the entire model has
been processed
Bidirectional: Simulation and | Unidirectional: Simulation
Interaction animation can react to each | controls animation
other

Homogeneous: Simulation and | Distributed: Simulation and
Hardware Platform | animation are executed on the | animation can be executed

same platform on different platforms
Integrated: Animation is | External: Animation and

Animation integrated in a simulation | simulation are independent
engine

73

Table 4.2 Interaction Characteristics of Concurrent and Post-processed Animations

Interaction Characteristic Concurrent | Post-processed

Ability to change simulation parameters and

. : . Yes No
directly observe simulation results
Amrpatnon performance (speed, smooth Variable Excellent
motion)
Ability to fast forward Yes Yes
Ability to rewind No Yes
Ability to run large models Variable Excellent

Table 4.3 Available DES Tools and Their Features

Simulation Tool | - Feature >

Proof Concurrent/Direct, unidirectional,
homogeneous/distributed, external

SLAM Concurrent/Post-processed, unidirectional,
homogeneous/distributed, integrated

Arena, AutoMOD,

ProModel, Simul8, Extend, | Concurrent, unidirectional, homogeneous, integrated

GPSS

SIMAN/CINEMA,

SEEWHY/WITNESS, Concurrent, unidirectional, homogeneous, external

SLAM/TESS

4.4 Managing Simulation and Animation

Animated DES deals with animation of various entities in a system. Each entity is

animated independently in terms of its dynamic appearance (transformation of

physical displays from state to state), motion (movement from location to location)

and interactions with other objects at appropriate instances of time; see Figure 4.3.

The motion of DES’ entities only employs descriptive motion (i.e., motion without

considering factors that cause it) and behavioural motion (i.e., reactions of the object

based on its communications with its environment during temporal interval) rather

than generative motion (i.e., motion caused by some external factors; e.g., forces or

torques that effect objects’ position and orientation); see Donakian and Cozot (1995).

74

Linking a simulation model to its animation requires a conversion of three
types of simulation information; see Table 4.4. The time difference between two
consecutive events (see Table 4.5) and the resulting delay (in a model time unit) are
the only information available for an animator to display changes of simulation
entities’ activities, location or appearance; e.g., to show a smooth glide between
screen coordinates or changing an icon representing a server’s idle state to one
showing that it’s now busy. Thus, anything happening between two consecutive

events is considered irrelevant (i.e., outside the brief of the model) and therefore

ignored.
Visual physical dynamic appearance in 2D (images, geometries) or 3D
(geometries) formats
Animated | Properties with temporal states (values of properties)
entity that f:hange durin.g simulation to adapt the current
situation. Properties can be scalars (e.g., the current
location, a transformation value, a velocity value, etc.)
or vectors (the direction of movement)
Animation methods to define
actions in response to events;
e.g., creation, movement, Interfaces
translation, rotation,
Activities modification, communication,
(functions/operations) | elimination, etc.
Event handlers to support
runtime interactions with users;
e.g., onClick, onMouseOver,
oL,
Events that modify entities’ behaviour (internal states)
Figure 4.3 DES’s Animated Objects
Table 4.4 Simulation to Animation Conversion
RS Simulation | Animation A
Delay (time) Continuous movement between two
locations (time and space)
Events (state changes) Visual appearance of objects’ behaviour
Numerical output that is typically | Visual format reports to ease leamers’
difficult to understand by learners understanding

75

Table 4.5 Events and Model Time Difference in a Sample System

Time Process Event Model Time Difference

0 Customer 1 Armrival 2
2 Customer 2 Arrival g‘" e :°' 1
3 Customer 1 Sewze Teller 2
5 Customer 2 Join Queue 3
8 Customer 1 Release Teller Delay time for 1
9 Customer 3 Amval Customer 2 [)
9 Customer 2 Seize Teller

Consistent transformations of model time to animation time (see Figure 4.4)
are essential for maintaining the realistic illusion of a real system either its model is
consistently running at a default rate or variably running at a user-specified rate.
However, animated models that allow users to flexibility adjust their execution speed
(i.e., to speed up, slow down or halt their model time) at any time they wish need to
embed a term called a viewing ratio. A viewing ratio is used to map the given number
of model time units into a corresponding number of seconds of animation time. For
example, if the viewing ratio is set to 10, then 1 second of animation time is equal to

10 units of simulation time.

T ¥y T o puccug >
0 2 3 5 8 9 Model Time
(discrete ponts)

Transformation

0 1 2 3 4 5 6 7 8 9 10 Animation Time
(continuous process)

Figure 4.4 Transformation from Model to Animation Time

Equation 4.1 can be used to smoothly animate all transactions between events.
This equation ensures that all state changes will be visible at their proper time, no

matter what viewing ratio has been selected by users.

Animation time = model time difference between two consecutive
5 Gl . (Eq. 4.1)
events * (1 / viewing ratio)

76

Equation 4.2 can meanwhile be used to show smooth movement of an object
from location to location. It ensures that the object arrives at its target location at a
specified point of time, with a condition that a viewing ratio is smaller or equal to
model delay. If the viewing ratio is greater than a certain entity’s delay time, we need
to set the movement to 1 to make sure that the object will armve at one second

animation time.

Movement (per unit = distance * (viewing ratio / delay to location)
RS (Eq.4.2)
animation time)

4.5 Flash as an Implementation Language for Simulation and Animation

Adobe Flash (H. M. Deitel, Deitel, & Goldberg, 2004; Lopez, 2006; Mohler, 2006;
Shupe & Hoekman, 2006) offers a tool for creating attractive, interactive and
multimedia affect models. However, we have not found any reports on Flash-based
DES models or Flash libraries for DES model construction.

We have therefore investigated Flash’s features for its suitability as a DES
development tool. In spite of the fact that Flash does not support coroutine that
requires us to write the lifecycle of each type of active entity using selection structures
(if-else or switch-case statements), we found that it provides a good base for DES
framework development for four main reasons: (1) Flash offers various features for
VIS development and we consider this as a very important aspect of providing highly
animated DES models, (2) Flash facilitates the construction of DES components and
this simplifies model building in terms of their structures and logic, (3) Flash enables
model developers to locate animated objects on a relevant layer of multiple layers and
this eases the management of various objects and GUIs, and (4) Flash automatically
creates web-based models and supports web interactions and these ease model
distribution. Additionally, its scripting language ActionScript is syntactically similar
to Java and C++ in many ways; e.g., object-oriented structure, package, class, method,
properties, data types etc. Thus, anyone who knows the languages and has some
background in DES frameworks could easily implement the frameworks using Flash.
Note that other tools exist or may appear that meet these criteria. However, at the

time the research was done, Flash was a widely used tool that met these criteria. A

77

recent candidate would a

Iso be HTMLS, although this is nowhere near as mature as

Flash. It does have the advantage of working on Apple mobile products.

4.5.1 Flash Features for VIS Development

Flash supports the development of some typical graphic displays in VIS through its

facilities (e.g., text, sound, video, animated graphics, etc.) and built-in methods (e.g.,

rotation, movement, etc.). Its scripting language, ActionScript (Donatis, 2006;

Hamlin, Tarbell, & Willi

ams, 2003) can be used to support interactive contents and

enhance model presentation that make simulations to come alive. Table 4.5 relates

VIS Graphic Displays to relevant Flash features.

Table 4.6 VIS Graphic Displays and Flash Features

_VIS Graphic Display |

~ Flash Feature

Abstract displays (e.g.,
graphs, histograms, etc.)

Flash runtime drawing methods such as lineTo(), lineStyle(
), beginFill(), endFill(), beginGradientFill(), etc. These
methods can be written in an ActionScript class and
fassociated with a movie clip symbol as a component.

Scale models

l: Flash Drawing Tools

Flash import facilities to import various kinds of image
and geometry files. Supported files include AutoCAD
DXF (*.dxf), Silicon Graphic Image (*.sgi), JPEG
Image (*.jpg), etc.

Static elements (e.g.,
ervers or animated

ymbols)

A movie clip associated with an ActionScript file. The file
controls Keyframes to animate the status of static elements.

|

model presentation (e.g.,
laudio, video and text)

Concrete dynamic A movie clip associated with an ActionScript file. Th

displays movement of the movie clip onstage is controlled by
movie clip’s instance's x and y properties.

Abstract dynamic An animated movie clip that uses multiple frames an

displays layers associated with an ActionScript file.

Tools for enhancing

Line, etc.) and Flash built-in components (e.g., Button
MediaController, Label, TextInput, etc.).

Audio, video and other Flash Tools (e.g., Text, Rectangle%

78

4.5.2 Flash Component Construction

Flash supports architectures for component development. A Flash component is a
compiled movie clip that contains a symbol that depicts its functionality and an
ActionScript file that defines its operations as in Figure 4.5. Dragging and dropping
this symbol onto the Flash stage will automatically create an instance of its class.

A component is often broken up to smaller components to reduce its
implementation complexity. These smaller components are then tied to other
components (e.g., through a composition technique) to form a more complex
structure. By doing this, a component can now delegate relevant tasks to other
components to perform the whole application functionality and this simplifies
application development. In order to encapsulate its internal information and
structures (i.e., its properties and behaviour), property accessing and behaviour
triggering are only possible through messages specified by signatures; i.e., publicly
accessible methods. This ensures that the component’s internal modifications can

extensively be made as long as its signatures are not altered.

Run Time Run Time

Coupling
Component | Component
Properties (states) Properties (states)
Methods (operations) Methods (operations)
Sntamag | |Branesee

: s i : Gul Syshal
Wi o B s SRR S MR e b o B
Design Time Design Time

Figure 4.5 Component Architecture

79

Accessing component properties is typically through APL. As an altemnative,
GUIs that compose of other types of objects (e.g., text boxes, combo boxes, buttons,
sliders, etc.) are used as attractive platforms to parameterise the properties. In Flash,
the interactive property changing can be done through Property Inspector. However,
this facility is only available during design time and does not integrate any
mechanism to verify input values (e.g., to force correct data types or limit the range of
data values to avoid any logical errors). To address this, Flash allows designers to
construct their own GUIs using the API approach either for filtering input data (e.g.,
displaying a warning for invalid data), easing data input processes (e.g., displaying
step by step GUIs) or supporting component parameter manipulation during run time.
Each GUI should be located in a relevant layer so that users can freely tum it on or off
anytime they wish.

Showing the instant effect of data manipulations (e.g., scale, colour,
description, etc.) on a component at design time can be done through a Live Preview
facility. This facility can be utilized for providing interactive DES components that
their current visual appearance can instantly be observed. Developers however need
to embed the component with an external relevant movie file that consumes the
component’s parameters.

All Flash’s components are movie clips (Moock, 2002). Thus, all
ActionScript classes that control components” properties and behaviour are created by
extending the MovieClip class. This inheritance technique enables the subclasses to
utilize the entire API of the MovieClip class especially methods related to animations.

A MovieClip is a generic animation object whose changes in visual
appearance are defined on a timeline. Movie clips may contain graphics, audio or
video, and can be nested recursively; i.e., clips inside clips, inside clips, etc. that can
be controlled programmatically. A rapid succession of the clips” visual changes at run
time creates animations. For example, a movie clip representing a customer in a bank
simulation may move across a stage, from a source (door) to a server (teller), while a
clip embedded inside it may play an animation (i.e., walking by moving arms and
feet).

Movie clips are suited for creating simulation objects (entities, servers,
components, etc.) in DES. In addition to adding specific features, their classes should
extend the MovieClip class to inherit its (1) properties (e.g., location, visibility, etc.),
(2) methods (e.g., moving, rotation, etc.), and (3) built-in events (e.g., click, rollover,

80

drag and drop, etc.) to support interactive dialogues between users and the objects
during run time; e.g., to change their parameters, to drag and drop the objects or their
GUISs to other locations, etc. Furthermore, Flash allows tool developers to attach the
objects with symbols to portray their functionalities. The use of appropriate symbols
can help model builders to differentiate various objects and their tasks in a library.

Flash only considers components as reusable movie clips that simplify the
creation of a Flash movie. Thus, many of its stand alone components (e.g., Label,
TextArea, DataGrid, etc.) that do not offer cooperation with each other can be seen in
its Component Panel. Such components do not suit the real definition of component-
based development (CBD) that views components as customizable building blocks;
each of which needs to offer specific services and can be aggregated visually or
programmatically with each other to form an application. The aggregation could be
through a coupling mechanism that wires components together using interfaces; i.e.,
ports that allow communications among them to perform the application’s logic (see
Figure 4.5).

The component approach suits DES model constructions since entities flow
from component to component to receive different services. Analogue to these entity
flows, signals can be used as activation mechanisms for certain components to
support more complex DES; e.g., a transportation system. In this case, signals are
sent by relevant components to activate transporter or conveyer components.

We focused on the development of DES components and approaches for
wiring them together and manipulating their parameters during runtime. Combining
these approaches and the facilities that allow learners to view component states using
various data visualization tools may offer advantages especially in easing leaming.

Details about this are discussed in Chapter 5.

4.5.3 Other Advantages of Flash and Its Drawbacks
Besides supporting architectures for component development, Flash offers other

advantages for building VIS models particularly and any types of simulations

generally over other multimedia-development applications. These include:

81

Flash makes it easy to animate smooth motion of simulation entities at a default
rate of 12 frames per second (fps). This is adequate for web-based animations, but
model users can easily change this to control the animation speed (i.e., up to 120
fps). Higher rates smooth visual changes but will increasingly tax the host CPU.
Slower rates reveal more detail, but may make animations less smooth. Note that
this specified fps value only acts as the maximum speed limit; i.e., the animation
should not play faster than the fps value. However, the minimum limit of its
execution is uncontrollable since it depends on CPU speed.

Flash animates a sequence of images using key frames. Each key frame can
represent a critical point of animation; e.g., the change of shapes or visual
appearances.

Flash offers a large stage for drawing and composing objects and playing
animations. Its run-time player offers the ability to pan, zoom out and zoom in to
look at interesting locations around the stage.

Flash employs vector graphics that use line segments to form figures. Thus, these
figures can be scaled without loss in resolution and clarity. However, raster
graphics that represent images as an array of pixels are still supported.

Flash produces executable files that can be played on both PCs and Mac
platforms. These files can be distributed via Internet without any modifications.
Flash allows model builders to control the visual depth of an object. This eases
the arrangement of various simulation objects and their GUIs on a stage.

Flash provides some supports for student assessments (Castillo et al., 2004).
Teachers can use these to create exercises that gauge students’ understanding of a
certain topic.

ActionScript syntax is similar to Java; which again similar to the C family. For
those who are familiar with these languages, ActionScript can be learnt without

much effort.

Besides these advantages, Flash also has some drawbacks; 1.e.:

Flash is not supported on Apple mobile devices. This limits the delivery of Flash-

based contents to Apple tablets and the Iphone. However, there are now some

82

applications (e.g., iSwiffer) which claimed to run Flash contents directly on the
Ipad and Iphone.

e Flash applications require an updated plug-in to play. Downloading the plug-in
may consume time.

e Flash applications may be slow to download. This situation may frustrate users
with slow bandwidth or internet speed.

e Flash applications cannot be indexed by most search engines. This may limit its
visibility or rank in web browsers.

e Flash applications should be developed to serve a specific purpose of its site. The
use of Flash to only decorate a webpage will annoy users and cause them to leave

the site.

4.6 Flash Components for Queuing Systems

Based on the process-oriented modelling style (Castagna, 1997; Craig, 2007; Garrido,
1999, 2001), we have structured an overall class diagram for creating Flash-based
components that can be used to construct animated queuing models as in Figure 4.6.
This structure is the combination of the class diagrams discussed in Chapter 3 with
some additional classes.

We extend all these classes from the MovieClip class for two reasons. First,
extending the MovieClip class allows us to utilize its built-in events to provide drag
and drop and interaction environments during runtime. By default, Flash allows its
components to be dragged and dropped at authoring time. However, supporting this
capability during runtime needs us to implement the startDrag(this) and
stopDrag(this) events in relevant classes. Allowing learmers to have their own model
GUIs through creating, customizing and positioning visualization components is
important for learning (Ebner & Taraghi, 2010). The same thing applies to providing
an interaction environment where the onRelease() event is used for accessing
component GUIs during runtime. Second, extending the MovieClip class allows us to
rightly control the depth of each component instance on the stage using the
createEmptyMovieClip(instanceName, depth) method. For example, entity instances

should have smaller depth values compared to other movie clips to guarantee that they

83

are always on bottom of other component instances; e.g., visualization components.
This method can also be used to create a container; on which other movie clips (e.g.,
textboxes, buttons, labels, etc.) can reside. This ease the construction of component
GUISs since the depth of their child is now controlled by its parent and dragging the

parent movie clip to other locations will automatically retract its entire child.

MovieClip
X Number
Y Number
) Vod
)
stopOrag(the)
depth)
S
BaseMocel I
) [) [
r ont 1 numXlocation Number
T numYLocation Number

. Component

Figure 4.6 Class Diagram of Components for Simulation /nput and Output

We designed and created three other components; ie., the
DistributionComponent, the Source and the Sink components to ease DES model
constructions. The DistributionComponent is used to provide a combo box of a list of
distribution types. Its main purpose is to ease the selection process of random
samples in other components; e.g. the Source, the Queue, the Station and the Server.
The Source component is a component that receives parameters that control the
creation of entities; e.g., time for the first arrival, time between arrival, priority, entity
type, etc. These parameters are fed to the Create class through a composition
technique. In order to generate entities appropriately, the Create class has to compose

two classes; i.e., the SimProcess class to create entity instances and the

84

DistributionComponent to control the creation of entities based on a specified
distribution type. Since code for creating entities has been embedded in the Source
component, model builders do not need to write any code to perform this task as in
any simulation languages. The Sink component is to destroy the SimProcess instances
that have been created so that computer memory allocated for these instances can be
freed and reclaimed by the Flash’s garbage collector.

All Flash components including our DES components are represented by
symbols in the Flash’s Component panel. By dragging these symbols onto the stage
and customizing the resulting simulation entities” appearance and properties, teachers
can quickly assemble web-based VIS models. Graphical displays and interfaces
attached to these entities show and animate relevant information and allow learners to
interact with a simulation while it is running. Since Flash also provides good support
for multiple media (e.g., text, sound, video, and animated graphics), simulations can
be made to come “alive” and attract learners” attention and interest.

Modifying simulation parameters requires only a click on a component
(without any need for stopping the simulation) and any impact on changes to model
behaviour can immediately be observed. A variety of statistics counters with suitable
functionality and representation are built into components, so that teachers need not
worry about this, which is often time consuming aspect of DES model design and
construction. These features are important for the computer based leaming
environment (Min, 2003). Since the components have been developed in Flash, VIS
models can draw on its functionality to easily integrate with a learning management
system (LMS). Access from remote locations through intenet browsers is a further
benefit that can be attributed to this architecture.

Table 4.7 shows three types of Flash DES components that have been
developed for supporting the construction of queuing networks. All three types of
queuing networks are supported: open queuing that studies a system in which
transactions are generated, flow through a model and disappear (e.g., in most service
systems), closed queuing that examines a system in which transactions are permanent
(e.g., in a computer system) and a mixture of open and closed queuing (e.g., in a
healthcare system). The functionality and features of these components that support
both teachers and learners are detailed in Table 4.8. Figure 4.7 meanwhile shows the

location of DES components in the Flash component panel.

85

Table 4.7 DES Component Types

Component Type Description Example

o Components which involve | Source, Queue, Sink,
cooperation with entities Monitor, Server
Components which do not | Station

Passive involve cooperation with
entities

st Components which show | Counter, Graph, Histogram,

states of active components Boxplot

Table 4.8 Flash Components for Building a DES Model and Their Functionalities

- Component

AR, Lol ST 5 Punctionality/FeRture - S35 WIEE W
* I = &l >

Source

IAnimates the arrival of entities.

lo Teachers can specify the time of the first entity's creation, priority
value and the default distribution of time between successive arrivals.
e Learners can click on the Source’s instances, pick a list of available
distributions and change the default parameter of entities' time
between arrivals. They can directly observe the effect of the chang
to the model’s behaviour. Each instance automatically collects
displays the number of entities that have entered the model at th
current simulation time.

Graphically animates queues with priority rules such as FIFO (First |
Fimt Out), LIFO (Last In First Out), lowest priority value, highest priori

value, or a random order. The removal of entities from a queue i
Fontrolled by the priority rule at the time of removal. All Queu
instances automatically collect statistics, such as the number of entiti

which have left a queue, maximum, minimum, sum, mean, variance and
istandard deviation of times spent in the queue.

lo Teachers can initialize a default priority rule and specify whaq
visualization instances will report queue statistics.
l» Learners can change a queue rule anytime time they wish and observe
the effect of priority rules on a model’s behaviour through the
changes in queuing statistics.

Sink

Collects and graphically displays entities leaving a model.

L Teachers can attach visualization instances to display statistics about
time entities spent in a model.
o Learners can mouse over a Sink instance to obtain maximum,
minimum, sum, mean, variance and standard deviation statistics for
times entities spent in a model.

86

epresents points to which entities are transferred in a model; i.e., poinlJ

Station n the stage thcy can move 1o.

enerates random samples from a list of specified distributions.

[Distribution r

Teachers can use this component to sample the duration of various|
model-time consuming activities.

Acts as a simulation engine and controls viewing ratio and simulation

length.

fo Teachers can initialize viewing ratio and simulation length. They can|
also link Clock and Timer instances to graphically represent
simulation current simulation time and its proportion to simulation
length respectively.

k Learners can click the Monitor’s instance to observe simulation
events that have been executed, a current event being executed, an
the list of events still to be executed in future. They can also stop
resume animations and adjust animation speed by only clickin
appropriate sub-symbols.

[Monitor

Figure 4.7 Flash Component Panel

Simulating DES entities in the Flash environment requires model builders to
create an ActionScript class that extends our SimProcess class. The class describes
the entities’ lifecycles using if-else or switch-case statements. This task could not be
avoided since ActionScript does not support coroutines or threads. Adobe’s official

reasons for this are that threads will induce very different behaviour on different

87

machines especially in performance intense platforms and race conditions in threading
will led to performance problems on the Flash player.

Flash imposes model builders to convert an image to a movie clip symbol
before it can be attached to an ActionScript class in order to animate these entities.
For example, to associate a movie clip with a Customer class that extends our

SimProcess class, the following actions must be stepped through:

1. Draw a picture on (or import a picture in any format onto) the Flash stage.

2. Convert the picture to a symbol and give it a name. This symbol will appear in
the Flash Library.

3. Select a movie clip symbol in the Flash Library.

4. Right-click on the symbol and choose “Linkage”.

5. In the resulting dialog, enter the symbol’s name (e.g., Customer) and its associated
class (i.e., the Customer class).

6. Select “Export for ActionScript™ as “linkage type™.

Once the movie clip is in the Flash library, we can make the Customer objects’
visual appearance more attractive by providing keyframes named onMoving, inQueue
and inProcess to depict the Customer’s states. All code that animates these states
together with code to handle their movement from component to component and halt
at a queue or being processed by a server has been defined in the SimProcess class.
Note that these frames are defined on the Customer symbol’s timeline and not
globally on the stage. This gives us a local animation for Customers (i.e., their
change of appearance in different states) that is nested inside the main animation
(tween movements across the stage). To create this local animation, we must step

through the following actions:

1. Right-click the Customer movie clip symbol in the Flash Library and select Edit
from the resulting pop up menu.

Select frame 10 on the timeline.

Select Insert > Timeline > Keyframe.

In the Properties panel, change Frame Label to onMoving.

- T G -

Draw a suitable picture of a customer’s movement on the current Flash stage.

88

6. Repeat steps 3 to S for frame 20, 30 and 40, and make appropriate changes at each
step.

The entity movie objects can be clicked during execution time to display a
variety of relevant information; e.g., its number in a model, its creation time, the time
spent in queues or servers that it has visited.

The server objects can be animated in a similar way; i.e., by assigning
different symbols to keyframes /dle and Busy and attaching each symbol to our Server
class. Note that we leave this task in the hands of model builders instead of providing
a compiled Server clip in order to give them flexibility in animating server objects
using any images they wish. Actually, a set of Server components with different
symbols can be provided. The server’s capacity and service time can be changed
during a simulation run by clicking its symbol and then picking up one type of

distribution from a list of available distributions.

4.7 Flash Components for Visualizing Queuing Systems

Table 4.9 shows Flash components for visualizing model states and their
functionality. Figure 4.8 meanwhile shows some sample instances of visualization
components (e.g., histogram, graph, boxplot and timer) on the Flash stage during a
simulation run. Visualization components are connected to active components (i.e.,
Source, Queue, Sink and Server) through a composition technique (see Figure 4.6).

Embedding visualization components in an active component through a hard-
coded composition approach has two distinct drawbacks. First, this approach requires
us to explicitly declare the name of the visualization instance in the active
component’s class variables so that we can access its methods and properties and
update its states. This problem is getting worse if we want to embed many types of
visualization instances to provide a platform for leamers to flexibly create various
visualization tools during runtime.

We can use an array to store each type of the visualization instances.
However, an array is not a suitable data type for storing such a vanable size of

visualization instances since in certain languages this may cause space wasting (if we

89

do not fully use the array’s size) and an insertion problem (if the array size has been

exceeded). We can alternatively store a list of array objects of type Collector (see

Figure 4.6) or general objects, but treating a base-class object as a derived-class object

is a bad programming practice and may cause errors; e.g., when we cast a base-class

as a derived-cl

ass and then refer to derived-class members that do not exist in that

object. Second, this approach tends to contribute to syntax errors since any

modification of the visualizations” method or property names will impose the changes

of code in the active component’s class.

Table 4.9 Flash Components for Visualizing DES Models and Their Functionalities

Component | ~ Functionality/Feature
[Dynamically animates patterns of changes in simulation outputs, such as
the current number of entities in a queue versus simulation time, or the
number of a server’s busy units versus simulation time.

Graph

e Teachers can specify width and height, a title, a colour for graph lines,
background and fill area for each Graph’s instance.

Learners can clear the previous data, drag the Graph’s instances to anyl
location and resize them at any time they wish.

h—listogram

ynamically animates frequency information, such as the time spent by
tities in a queue, the operation time of a server, the time between
ivals, the successive time between departures, etc.
fo Teachers can specify width and height, a title, a colour for text,
background, bar fill area, maximum value, minimum value and the
number of intervals. They can also activate drop-shadows for each
instance of the Histogram component.
e Leamers can change maximum value, minimum value and the number
of intervals at any time to see a new distribution of frequency
information, drag the Histogram’s instances to any location and resize
them at any time they wish.

lPoxplot

ynamically animates groups of numerical data through its ﬁve-numbeﬂ
ummaries. It is a complementary tool for the Histogram component.

o Teachers can specify width and height, a title, a colour for graph lines,
background and fill area for each Boxplot’s instance.

lo Leamners can drag the Boxplot’s instances to any location and resizq
them at any time they wish.

Eynamically animates the current simulation time while a simulation a
ing.

Clock fo Teachers can specify a title, fill colour, initial time value and
simulation time unit.

| Learners can drag the Clock’s instances to any location and resize them
at any time they wish.

Animates the proportion of the current simulation time to its total
duration.
Timer o .
e Teachers can specify title, fill colour and elapsed time fill colour.
e Learners can drag the Timer’s instances to any location and resize

them at any time they wish.
Frequency 9 ’ Q 38!:0 =
25
3
2 . 1 3 “
0 05 .
<0 [0,5 [510) »>=10 B 6 - 8. % NN B
Time Interval Time
Armival Rate for Sourced in in vs Time
(after t=0) (after &=5)
(a) Graph (b) Histogram
X
[ime Spent
1405 1405
10
8 82
6
4 e
2 3
Sim Time vs
Sim Length
Boxplot of Wart Time in officerQ Queue
(after t=5)
(c) Boxplot (d) Timer

Figure 4.8 Samples of DES Visualization Tools

4.8 Example

This section presents a simple example of how the DES libraries and components may
be used to model a queuing scenario. The example simulates a bank, where
customers arrive, walk to a counter, get served by a teller and finally exir from the

bank. The corresponding model uses a single Server object for the teller, a stream of

91

SimProcess instances representing customers, and a number of active and
visualization components for structuring the model and visualizing its states. As
mentioned earlier, some active components embed Distribution objects for sampling
the duration of various model-time consuming activities.

To represent customers, we must first create a new ActionScript class and save
it under an appropriate name (in this case Customer.as) to the simulation tools folder.
Here we define a Customer class based on the SimProcess class, declare various class
variables and define its /ifecycle method; see Listing 4.1.

1 // import packages

2 import Monitors.*;

3 import Resources.Server;

B

5 class Customer extends SimProcess {

6 // route times

7 public static var walkToCounterTime;

8 public static var walkToExitTime;

9 // active components

10 public static var myEntry;

33 public static var myBench;

12 public static var myExit;

o o public static var teller;

14

15 private function init ():Void {

16 addPhase ("ARRIVAL, ARRIVE COUNTER, SEIZE_TELLER, DELAY TELLER,
i RELEASE_TELLER, DISPOSE"):

18 }

19

20 public function lifeCycle (phase) {

21

22 switch (phase) {

23 case "ARRIVAL":

24 delay(Customer.walkToCounterTime.sample());
25 moveTo (myBench) ;

26 break;

27 case "ARRIVE_COUNTER":

28 teller.request (this);

29 break;

30 case "SEIZE_TELLER":

31 delay(0):

32 moveTo (teller);

39 break;

34 case "DELAY TELLER":

35 delay(teller.serviceTime.sample());
36 break;

37 case "RELEASE_TELLER":

38 teller.release();

39 delay(Customer.walkToExitTime.sample()):;
40 moveTo (myExit) ;

41 break;

42 case "DISPOSE":

43 myExit.remove (this);// remove this object
44 break;

45 } //end switch

46 }

47 } // end Customer class

Listing 4.1 The Customer Class

92

In lines 7 and 8, we declare two class variables for representing customers’
route times; i.e., a walkToCounterTime distribution for sampling the time taken by
customers to walk from an entry to a counter, and a walkToExitTime distribution for
sampling walking time from the counter to exit. In line 13, we declare a reller
variable representing an object of the Server class. Note that visualization
components (e.g., Graph, Histogram, Boxplot, etc.) can be composed to the active
component instances using the Flash’s Properties panel. Line 10 to 13 stores
instances of Source, Queue and Sink component respectively.

The init method (line 15) initializes Customer objects. Here we must specify a
sequence of phases (i.e., a lifecycle) that all Customers instances step through. The
addPhase method in line 16 attends to this requirement. The lifecycle method’s
description begins with a description of what will happen when the control retumns to
this object, based on the phase it is in (lines 23 to 44). Customer objects are generated
by a Source instance based on specified time between arrivals. Upon arrival; i.e., the
first phase of the lifecycle (line 23), a Customer object advances itself to the next
phase by calling delay. The Source instance (i.e., myEntry) instantiates a new
Customer object, whose associated movie clip is then used to animate it on the stage.
delay (line 24) schedules the current customer to continue to its next phase and inserts
a corresponding event notice at the appropriate point on the agenda. At the right
model time instant, the monitor will later remove this event notice from the head of
the agenda, retrieve the associated object and direct it to continue its execution from
the relevant point on its lifecycle. The monitor will terminate the simulation when the
end of the requested duration is reached or when no more events can be found on the
agenda.

In preparation for the model’s animated display. the location of the Sowrce
instance is the initial location for arriving Customer objects and the moveTo method
(e.g., in line 25) moves a customer’s picture to a given location (e.g., that of a Server
object). While the previously described actions prescribe simulation activities, this
method serves animation. Note that moveTo uses a motion tween, whose duration is
controlled by the ratio of animation to simulation time, a value that can be
dynamically adjusted by the model users.

Server objects have two methods: request and release. request (line 28)
allocates any free unit to a requesting customer. If all available capacity has been

used, a Customer object has to wait in a queue. A call on release (line 47) reactivates

93

a Customer object, returns however many capacity units it holds, and gives the next
waiting customer a chance to acquire those units. In the final phase of a Customer
object’s lifecycle, the remove method (line 43) destroys the Customer object, whose
storage will eventually be reclaimed by the Flash’s garbage collector.

Notice that we had to use a switch case statement to execute different sections
of code, based on the phase a currently executing instance of the Customer class was
in. Phase’s value was stored in a phase attribute and the addPhase method listed six
valid phases (i.e, ARRIVAL, ARRIVE COUNTER, SEIZE TELLER,
DELAY TELLER, RELEASE TELLER and DISPOSE). While this construction is
arguably a rather clumsy way to implement a process oriented modelling framework,
it was forced by ActionScript 2’s lack of support for either coroutine, threads or any
other control abstraction which would allow the persistence of state that could store
one of multiple entry points to a method.

In addition to Customer objects, which arrive, request services and leave, we
need to specify the environment these dynamic objects are to operate in; i.e., we need
to add relevant components to the Flash® stage (see Figure 4.8), specify their names
and link the visualization components to the active components. We then initialize
the active components’ properties; e.g., simulation length, server capacity, time-
between arrival, etc.

To complete our model’s definition and use the Customer class, we must first
create a new Flash document. For this example, we need just two keyframes:
Parameter and Animation. The Parameter keyframe displays a form for choosing
statistical distributions for Customer objects’ route times. Distribution components
are dragged from the Components panel and dropped at appropriate places on the
Flash’s stage. They are then used to initialize the Customer’s walkToCounterTime
and walkToExitTime variables. This keyframe can be ignored if model developers
choose not to give model users flexibility in customizing their own Customer objects’
route times.

The Animation keyframe is used as a stage to assemble the visual
representation of the model’s animation. Here we use active components (i.e.,
Source, Server, Queue and Sink) and visualization components (i.e., Timer, Clock,
Graph and Histogram), whose properties (e.g., time between arrival, service capacity,
colour, width, etc.) can be changed through a Component Inspector. For each change

in properties, the component’s appearance on the stage will be automatically adjusted.

94

Note that each component should be given a unique identifier that corresponds to the
names used by the Customer class (e.g., myEntry, myBench, etc.; see line 10 to 13) to
make sure that these variables are correctly assigned with their relevant component
instances. To animate the Customer and Server objects, the approach discussed in
Section 4.6 needs to be followed. A model layout as a base for model structures and
animation can either be drawn using Flash’s drawing tools, or we can import external
graphic files in JPEG or DXF formats.

Figure 4.9 shows an example of a VIS model built using our DES
components. It is indeed the model constructed using the previous code and
procedures, with an addition of one more Source and Server instances and another
class of entities. These entities need two servers, the second of which is the same one
that processes the Customer objects. As shown in this figure, learmers can change the
distribution of time between arrivals, server capacities and service time and queue
priority rules (queuing disciplines) by clicking relevant component instances. Figure
4.10 meanwhile shows sample information that can be obtained from the underlying
VIS model. This includes statistics on queues and servers, as well as what previous
events have been executed, what current event is being executed and what further

events are still scheduled for execution.

fh Yo Cred b

Covcs Tt Tautmiep O OF D o
Font o Fogt 2 59
Last e Fogl O AFODY

(€)

grecthomn
B e “roe

4

.1]

g =

, . am un.u-nul

$7 4
.
4
3

-
——

0 PN J ° oW M2 N

1
|
)

PRErdes B0 Aeeew bon (W0 - Wk @ e (x| ol

Figure 4.9 Sample of Interactions between Leamners and a Model

95

T T — |

Proviem and Camant Frmom
T e e .
] P 4] oy
v

LR L] [A b) A
s el -
L] Pt A1 SETE TR >
- i o m‘
s P] - ' - — -
| S— V-
L3 L) B] o, | ——————————
| Cumunt Gumae Lamgh .
LPT] B ad M TA . | ion comms atame e

e s o e ey saerr)
| A e e e et . e
Tome [— Toones . | Weim s pae Cuonwd 5
4 204 B o RELEASE_OF0 '“ | e b Senned d
«“ D] ey T e st ve w8 ammt 1T
. Conmeny |nmows W S————— L L

Bavenr 0t © of ' sl Acns S Sumee Ce -

Botmr BBl - L Tene swragn weg® o g 3 A
Berar bty ¥me + ¥ |

Barenr o S 18 B0L L S L

S S 0P e

Cmeet Yuwum (setams

=
. ‘.
I et o
2 o —
— 1
|_°____° i - <3 6 i

MR - . .-I.',l AN BT s A e
J

Moarvdons W e S (W - ot b e o |l

Figure 4.10 Sample of Information Gained from a Model

4.9 Problems and Pitfalls

Flash controls movie contents over time using a timeline. Rapidly running the
timeline forms an illusion of animated images. All animated images in Flash are
organized using frames and layers. Frames control the sequence of various images in
definite length of time along the timeline. They can contain key frames; i.e., control
points that change images’ appearance along with their behaviour. Layers meanwhile
support the organization of these images so that their structures can be broken up to
smaller parts.

Key frames are analogue to simulation events in DES models. Thus,
simulation events could possibly be attached to key frames on Flash’ timeline. In this
fashion, an animation describing an entity’s visual transformations along its timeline
would be in charge of describing the dynamics of both model (i.e., changes in the
entity’s abstract states) and animation (i.e., changes in the entity’s appearance and
location). However, since the timeline typically belongs to a whole mowvie (i.e.,
model) rather than a single object (i.e., entity), programming DES models on this way

is unpractical. The use of timeline to stage model and animation methods (e.g., its

9%

movement, rotation, etc.) to control the object’s behaviour will make model code
unmanageable.

For this reason, a component-based approach can minimize the effort of
creating animated DES models. Although our Flash-based simulation and
visualization components strive to provide easily used drag-and-drop components and
visually supported environments for developing VIS interfaces, and although these
interfaces automatically collect and display statistical and other data and allow
learners to flexibly interact with an underlying VIS model, model builders need to
program Flash ActionScript classes to annotate lifecycles of dynamic objects (i.e., to
flow entities from component to component) and attach visualization tools. In spite of
the fact that classes for different types of processes often follow a common pattern,
this is still tedious and difficult for occasional teachers with little programming skills.
As mentioned earlier, this is due to the fact that ActionScript does not support suitable
semantic abstractions for providing a coroutine feature. While we believe that our
first iteration of a Flash-based “DES with animation™ toolbox is a step in the right
direction, its use is still short of the level of ease that we hope to achieve.

Ideally there should be no need for Actionscript coding at all, so that models
and animations could both be constructed by dropping and linking components from
libraries while cloaking them in appropriate visual representations. Unfortunately
Actionscript currently offers no support for turning text into code (i.e., there is no
equivalent to an eval statement) and a small compiler would need to be written to
allow users the flexibility to alter dynamic components’ behaviour through visual
interfaces. In Chapter 5, we introduce one approach for building interactive visual
components that will cater the current need to annotate the lifecycles of dynamic
objects and easily connect the components.

The main tricky issue in integrating an animated simulator to a DES model is
to correctly trigger sorted events based on a viewing ratio specified by leamers (i.e.,
to stop, continue or proportionally decrease or increase model time before attempting
to trigger next events in the Event List) since they are free to stop or change the ratio
at any time they wish. This includes precisely animating two consecutive events at
appropriate time and moving entities within specified time frames. In the Flash
environment, animating such entities’ active and passive states can be accomplished

using the set/nterval and clearinterval functions.

97

We use the Flash’s set/nterval function that periodically calls a move method
to update an entity’s locations during its movement to a target location (see Equation
4.1 and Equation 4.2 in Section 4.4) and the clearinterval function to clear the
interval once the entity has reached its destination. Flash claims that this function is
accurate since it is not influenced by any frame rate values and can thus be used to
update object properties at a specified time interval. To check this, we conducted
some tests and found that it was only 2% to 6% different for one second interval in
various frame rates. Tests on other machines also confirmed the claims in spite of the
fact that the execution of frame rates depends on CPU speeds.

However, a pitfall occasionally arises when a viewing ratio for a certain model
(changed using a slider) reaches at a certain value. This is especially true when we
want to update an object’s locations in very small steps (that typically needs a very
small interval time; i.e., less than a second) so that it can move smoothly. For
example, let say the distance between two locations is 10 distance units and its route
time is 2 time units. If we assume that a viewing ratio is 1, the entity then needs to
reach its destination in 2 seconds. Since it only needs 2 movement steps (i.e., 5
distance units for each second), the animation looks jumpy. To make it look smoother,
we need a smaller time interval so that we can get smaller steps, but still within 2
seconds time frame. For example, if we use a 100 milliseconds time interval, we can
have 20 steps with each step causes 0.5 increment from its previous location. If users
increase a viewing ratio, the time interval must be decreased; e.g., for a viewing ratio
value of 2, the interval should be 50 milliseconds since model time must be
maintained but animation is now changed (so that the object can reach the target
location in a second animation time, refer to Equation 4.1). However, we notice that
entities do not exactly reach at their target locations within specified animation time,
making our animation engine looks like it is not working accurately.

We found that the set/nterval function will only start executing a called
method after it has completely finished executing the previous called method. This
problem becomes worse when a called method has intensive code that needs an
amount of time to be processed (e.g., it contains repetition structures) or when the
animation is running in slow CPUs. As a result, the elapsed time of the handler
function gets added to the overall interval, making accumulated delays in executing
the method within the specified time frame. In our case, this delays the update of

objects’ locations and consequently delays the armival of the object. To cater this

98

problem, we checked the time elapse and adjusted the motion accordingly based on

that current time.

4.10 Extensibility

Figure 4.11 extends the overall class diagram in Figure 4.6 to support DES for logistic
and manufacturing systems. As discussed in Section 3.5, logistic systems require two
types of objects, i.e., Bin and Stock while manufacturing systems require two types of

objects, i.e., Transporter and Conveyer.

Figure 4.11 Extended Components for Supporting Logistic and Manufacturing
Systems

If we compare the pattems of synchronization in producer/consumer

relationships with capacity constrained resources, their operations are similar. A

99

Server object stores a number of units to be allocated for competing processes (i.c.,
the SimProcess objects) and takes back the unit(s) once they have been released.
Thus, we need to declare a variable in a Server class for storing the current available
units and a Queue object for holding requested processes.

In a Bin object’s operations, a producer deposits items through a store
operation while a bin object supplies the stored items for requested consumers
through a deliver operation. If the stored items are not enough, consumers must be
queued and will be treated using a FIFO rule. Thus, a Bin class also needs to declare
a variable for storing the current available items and a Queue object for holding
blocked consumers.

Compared to Bin objects that can store unlimited items, Stock objects limit
their holding items. Thus, in addition to a variable that stores the current available
items and a queue object that holds blocked consumers as in the Bin object, a Stock
object needs another variable for storing its item capacity and queue object for storing
blocked producers. Producers will be blocked from storing their items if the capacity
limits has been exceeded. Thus, a Stock class is actually a derived-class of a Bin
class. Standard statistics for Bin and Stock objects involves only initial, current,
maximum and average number of units held by the Bin and Stock objects, besides the
standard statistics of a queue.

The SimProcess class in Figure 4.5 can be extended to create Transporter and
Conveyer objects. Their classes should extend the SimProcess class and have
lifecycles to sequence its operations. For example, transporters should support
request, load, transport, stop and free operations (refer to Table 3.2 in Chapter 3).
Other entities (e.g., parts or customers) that would like to use its facilities should
request the transporter by calling its request operation. If it is in an idle state and its
available capacity is enough, then it will proceed to other operations; i.e., it can move
from its default location, load the entities, transport the entities to a target location
based on its velocity, and stop and release the entities when arriving at its destination.
Otherwise, the requested entities need to be hold in a queue until both conditions are
true. For this, we need a queue that listens to the transporter’ states; e.g., by receiving
the transporter’s signal message. Ability to send and receive signals to or from other
types of objects (that notifies a certain event has happened in the object) is a better
communication approach among objects that enables us to provide a component that

handles these processes internally.

100

However, using a composition technique to achieve such a communication
between classes (i.e., by storing other instances) without implementing a relevant
mechanism is not a suitable approach. For example, a tool designer needs to ask one
type of objects to regularly check if its interested objects change states; and this
process will incur execution penalty. As there are many other types of objects that are
interested to listen to a single source object, the programming process is getting
harder since the synchronization process is getting complex. In Chapter 5, we will
introduce such an interaction between DES components that allows us to flexibly

registered interested objects to an object, while maintaining a loose coupling between
these components.

101

CHAPTER 5

COMPONENT-BASED MODELING FOR ANIMATED SIMULATION

5.1 Introduction

Ease of use and flexibility are essential criteria for DES tools. Unfortunately, both
often conflict with each other. General-purpose DES simulators such as PSim-J
(Garrido, 2001), SSJ (L’Ecuyer et al., 2002), J-Sim (Kacer, 2002), DESMO-J (Meyer
et al.,, 2005b) and others can be difficult to master, since they typically require
significant programming effort for model construction. Visual and interactive
commercial modelling tools; e.g., Arena (Kelton et al., 2004) and ProModel (Harrel
& Price, 2003) offer a user-friendly environment for construction and initialization of
simulation models. Unfortunately, they often lack flexibility since their architectures
are hidden and difficult to extend with additional simulation logic.

Although object oriented simulation libraries have long been used in providing
a flexible and powerful simulation environment, they do not usually promote ease of
use. Component-based simulation tools that provide links between simulation
libraries have been proposed to solve this problem and have been adopted by
commercial simulation tools and other complex software.

Our primary focus is to design and construct easy-to-use and extensible DES
simulation tools that foster learning through insight; i.e., models that improve
understanding through observation. Such models should incorporate interfaces to
visualize model structures, activities to request interactions and challenge leamers’
understanding, interesting scenarios to attract learners’ activities and challenge their
imagination, animation to depict processes and dynamic behaviour, informative and
meaningful feedback to reflect learners’ actions and motivate them for further
experimentations and saving ability to record interesting scenarios. The runtime

interaction demands the implementation of concurrent animations to immediately

102

display the effect of changes rather than post-processed animations or direct
simulation-animation (Hill, 1996).

Based on the benefits offered by component technologies and the importance
of animations and visualizations in learning, we have identified two design patterns
(i.e., generic solutions to systematically structure classes in object oriented
applications) that are useful for the construction of interactive DES components.
These patterns are the Delegation Event Model, which is used to link components
together, and the Model-View-Controller (MVC) pattern, which is used to support
GUIs and multiple visualizations of component states for providing a complete
picture of model performance over time.

In Chapter 4, we designed and constructed DES components using Flash
ActionScript (Moock, 2004). Besides its strengths as an animation tool (Mohler,
2006) and its support for component design (e.g., a default GUI, live preview,
symbolizing a class, packaging facilities, etc.) and cross-platform distribution (i.e.,
through the WWW) and integration (i.e., through LMSs), a sample of ActionScript
basic classes and interfaces (i.e., a group of related methods with empty bodies that
defines common functionalities across various classes) for implementing many useful
design patterns are also well documented (e.g., see Lott & Patterson, 2007; Sanders &
Cumaranatunge, 2007).

This chapter presents the concepts related to the design and development of
our interactive DES components for eliminating the need to write entities’ lifecycles
during design time and supporting the creation of various model visualizations during
runtime. We first review the principles of component-based simulation. We then
relate these principles with our model architecture to provide a graphical environment
for building, visualizing and experimenting with the models. The strengths and
weaknesses of some existing component-based simulators are also discussed. Based
on the architecture, we identified the combination of two design patterns that fit the
design of interactive DES components; i.e., the Delegation Event Model used to forge
links between DES active and passive components and the MVC (Model-View-
Controller) pattern used to loosely couple between components, their GUIs and their
visualizations to provide facilities for model customization. The explanation of how
both design patterns can be implemented in the Flash environment (including
interfaces and classes that are used to create our components and their connections) is

also presented. This chapter continues with the discussion of how to store a model’s

103

states so that its visualizations and parameter settings can be saved for future use. To
show the benefits of the combination of both the design patterns in providing a truly
attractive and interactive environment, an example of a DES model is then presented.
We further our discussion on how to cater with the model complexity by partitioning
the model. This chapter ends with some discussions of problems and challenges that

we faced during the design and implementation of our DES components.

5.2 Component Based Simulation

When describing his DEVS (Discrete Event System Specification) formalism, Zeigler
(1984, 1990, 2000) proposed that a simulation model should be built in a hierarchical
and modular fashion; i.e., a model is a collection of interconnected components, each
of which deals with its own input, state transitions and output. These basic
components can be combined to form “higher level” components, which can then be
further connected and aggregated to construct a new sub-model. For building a
complex model, this process can be repeated recursively. Such component
architectures have since been used to develop many different types of simulators and
other complex software systems or applications (e.g., see Alejandra, Mario, &
Antonio, 2003; Atkinson, Bunse, Gross, & Peper, 2005). Some important concepts of
component software development including methods for designing and composing
them can be found in Jifeng, Li and Liu (2005).

Zeigler’s DEVS formalism has bred two types of component technologies:;
those that focus on visual modelling such as the use of JavaBeans (Prachofer,
Sametinger, & Stritzinger, 2001) and those that focus on distributed simulation
environments such as CORBA (Yahiaoui, Hensen, & Soethout, 2004) and Microsoft’s
COM (Cho & Kim, 2002).

Visual modelling environments often organize components in a library (with
its own internal logic) and offer a GUI for easy access to their properties and methods.
Interfaces in which icons or blocks are attached to components and simulation
structures can be quickly constructed via “drag and drop™ interactions are often
provided (Odhabi et al., 1998). Since the underlying library is typically based on an
OOP metaphor, components support encapsulation, inheritance, polymorphism and

exception handling. The advantages and disadvantages of such software architectures

104

have been discussed in detail elsewhere (e.g., Oses, Pidd, & Brooks, 2004; Valentine,
Verbraeck, & Sol, 2003).

Each component is designed to guide messages’ flows and to control their
movements. Messages are generated by the first “upstream”™ components and then
transferred to other “downstream” (listener) components; e.g., through output ports.
Since downstream components are configured by upstream components (either at
design time or during runtime), the only task of the downstream components is to
react to messages they receive; e.g., by updating their own states, other components’
states and/or the messages’ states. To do this, they need no knowledge of where the

messages have come from.

5.3 The Environment of Animated Simulation Models

>ﬁ

Simulation aspect : Anmation aspect
(structure and logic) 1 (appearance and display)
I ! 1
Programming language : T —
L 1 descnbing appearance and ts changes
Wy g 1 In space and time
)
Z. . ! /L b ¥
Library Library : Library Library
S i i
I g
] :
§=\~ "J'- , GuUl ’fi GuUI
Component *31s Component 7 S Component“---~ % Compaonent
D S g 2
The Delegate Event Mode! B
The MVC pattem

Figure 5.1 Simulation and Animation Aspects of a Model

Figure 5.1 shows the architecture of an animated simulation model. Note that we
propose a clear separation between a model’s simulation aspect (which describes
model structures and logic) and its animation aspect (which traces model dynamics by
showing the sequence of generated events and how its components’ appearance and
location will change over time). Although animation is optional (i.e., not all models

need to be animated), it is an essential feature for observing and understanding

105

dynamic behaviour, verifying and validating models (Law & Kelton, 2000) and can

prove particularly useful to generate insights rather than simply predictions.

As discussed earlier, the logic for a simulation model can easily be structured
using a component approach. Recognizing the benefits offered by this approach,
many component-based simulators have been built and reported; e.g, XCELL+
(Conway & Maxwell, 1987), SIMFACTORY (Tumay, 1987), simjava (McNab &
Howell, 1996, 1998), JSIM (John A. Miller, Youngfu Ge, & Junxin Tao, 1998),
Simkit (Buss, 2000, 2002), COST (Chen & Szymanski, 2002), JDEVS (Filippi,
Delhom, & Bemardi, 2002), Viskit (Buss & Blais, 2007) and BPSim++ (Meldo &
Pidd, 2007). A common thread of all these tools is that they use input and output
ports (either specifying through code or a GUI) to permit interactions between their
components.

A In term of ease-of-use, Simkit and COST are not user-friendly, since they only
allow a model builder to construct models through an API. XCELL+ and
SIMFACTORY, on the other hand, provide easy-to-use GUIs with which simulation
models can be constructed by dragging and connecting components and initializing
their properties through graphical interactions. Since their internal architectures are
hidden from users, however, these tools’ extension capabilities are rather limited. To
solve this problem, BPSIM++ tries to combine techniques for offering both ease of
use and flexibility, but its resulting models are written in C++ and can therefore not be
accessed through a web browser. JDEVS, JSIM and Viskit are easy-to use and
extensible tools with support for web-based simulation since they were developed
using Java, but do not incorporate any animation and visualization facilities. The
animation of displaying message passing between components was emerged in
simjava but the visualization of model states was limited to text labels only which are
placed over the components. Many modern simulation software, e.g., Arena (Kelton
et al., 2004), Flexim (Nordgren, 2003), SIMULS (Concannon et al., 2006) and
ProModel (Harrell, Ghosh, & Bowden, 2004) meanwhile are excellent tools for
building sophisticated DES models and analyzing system performances through
animation and various visualization tools. However, their capabilities to support

learning through user-directed experimentations during run time are rather limited.

106

5.4 The Delegation Event Model for Linking DES Components

The Delegation Event Model suggests a generic design for how to broadcast many
different events (about which information is stored in an event object) from an event
source to all registered event listener objects and invoke an appropriate method on
them. This pattern offers flexibility since (1) a single event source can broadcast any
number of events, (2) its listeners can register to receive any interesting events by just
implementing interfaces that define the events, and (3) each listener can respond to a
received event(s) in its own special way. To enable the event source class to
broadcast many different events, it just needs to provide separate registration methods
and listener lists for each class of event.

This style of event broadcasting is analogous to the flow of entities in DES
components, where a temporary entity (an event object) is passed from an upstream
component (an event source) to downstream components (the event listeners). Any
downstream component can then act as an event source to further downstream
components. Entities’ and visited components’ states will be updated during this
process, which will continue until a message’s path is completed and the message is
removed. Thus, entities should have properties to store their current source
component and target component; and optionally an array to store all their visited
components.

The Delegation Event Model plays two important roles in building DES
simulators. First, without implementing this pattern, model developers (e.g., teachers)
must create a class which defines an entity type’s lifecycle as discussed in Chapter 4.
Writing such lifecycle descriptions become more complicated if entities need to be
split (e.g., using conditional statements to represent probabilities and/or conditions)
when they reach at a certain phase of their lifecycles. Second, through sub-classing,
other tool designers can extend our existing architecture and create new high level
components to support additional requirements (e.g., other simulation metaphors and
styles). An example for these is a record component used to collect and report
various types of observational statistics. Implementation of this would be easy, since
a component can broadcast events to many interested listeners. Another example is a
renege component that listens to a queue, removes relevant entities from the queue if
their waiting time’s tolerance threshold has been exceeded and then transfers the

entities to certain locations.

107

Based on this pattern for tracing events triggered by message flows, DES
components can be constructed to simulate and animate the transfer of many types of
entities from one component to another, using the upstream components’ output ports.
We have used class and interface structures suggested by Moock (2004) to build a
suitable implementation of DES components in Flash ActionScript, which is
illustrated in Figure 5.2. DES classes in Chapter 4 will again be used for our
discussion here. Note that these structures can easily be applied to implementations in

other programming languages.
EventListenerList shome ComponentSource .' EventListener]
getListener() ——@ listeners-EventListenerList A
.ddoz%bj() addSimProcessListener(l)
remo 1 j |
runoveSvn‘.s‘mPfooulu:L ,“w) , impaements
creates SimProcesslistener

=

SimProcess passed o ComponentListener
delay(time source) eMsg(SimPr . Time)

Figure 5.2 The DES Delegation Event Model Structure

We use five basic classes and two interfaces to implement DES components
based on the Delegation Event Model; i.e., ComponentSource, EventListenerList,
EventObject, SimProcess, ComponentListener, EventListener and
SimProcessListener. The ComponentSource (an event source) represents classes that
schedule an instance of the SimProcesss class (a SimProcess object) and broadcast
this object to its registered listeners. Simulation specific ComponentSource classes
include Sources, Queues, Servers, Sinks, etc. A ComponentSource object should be
composed of EventListenerList objects; i.e., it should manage a list of the
ComponentSource’s event listeners. The ComponentSource class can be equipped
with a GUI to provide easy access points to its properties, including a point to specify
its listener objects.

The SimProcess (an event object) class encodes entities that can be placed on

an Agenda (a list to store the next scheduled event for a particular SimProcess object)

108

and will be broadcasted to ComponentListener objects when its scheduled event time
is reached (i.e., when it should be activated by the simulation Monitor). The
SimProcess class is derived from the EventObject class; a base class that holds a
reference to the class that has scheduled it. In order to receive event notifications
from a ComponentSource object, the ComponentListener class must implement the
SimProcessListener interface; an interface that specifies a set of event methods.

The SimProcessListener interface implements the EventListener interface; a
marker (empty) interface that enables event listener classes to be notified by
ComponentSource objects. When an event occurs, the ComponentSource invokes a
handleMsg (SimProcess, Time) method for each ComponentListener object.

Based on these structures, we can now provide output ports that should be
easily accessed by model builders to link active components (refer to Table 4.7 in
Chapter 4). These output ports substitute the need for declaring a class of entities’
lifecycles since the sequence phases of the entities are now intemnally controlled by
components. Since entities’ lifecycles can now be created during runtime rather than
design time, we have constructed a Decide or Routing component that couples a
component with a set of its listeners to support decision forward flow based on certain
control strategies; e.g., their types, probabilities, a shorter queue and server status.

Figure 5.3 traces a simple flow of a SimProcess object in an M/M/] queuing
scenario. An instance of the SimProcess class (which contains data about its birth
time, current phase, current location, etc.) is first created and scheduled in the Event
List by invoking a delay (time:Number, source:Component) method on a Source
component (which then becomes the highest upstream component). The fime
argument is the time that the next event for this SimProcess object is scheduled to
occur and the source argument refers to the ComponentSource object that scheduled
it. When the scheduled time comes, the SimProcess object is removed from the Event
List by the Monitor. During the removal activity, the SimProcess object makes a call
back to the event source that scheduled it (in this case a Source object) and invokes an
executeMsg (SimProcess) method on the event source. This event source then
executes relevant code (e.g., an animation method to move the SimProcess object to
its downstream component or animate its physical appearance) and broadcasts the
SimProcess object to its all registered listeners by invoking handleMsg (SimProcess,
Time).

109

[Time Tme Evert
0 Customer®1 Arrival

1 Custometr2 Arrival

2 Customer®! Jon Queue
2 Customer®1 Seize Server
2

3

5

Customer#1 Delay Server
Customer®#2 Join Queue
Customers3 Arrival

10 Customer#1 Release Server
10 Customer#2 Seize Server

fule 10 Customer#2 Delay Server
15 Customer#1 Leave

calib 4 callback
The Monitor ﬁm
stPort ﬂ”’m O
Source Queue g Server - Sirk
executeMsg(SimProcess) executeMsg(SimProcess | executeMsg(SimP { AeMsg SimP A

) y))
handleMsg(SimProcess, time) handieMsg(SimProcess, tme) handleMsg(SmProcess tme)

)))

Figure 5.3 The flow of a SimProcess Object in DES Components

All registered listeners can respond to the SimProcess object in different ways,
but one of them should instruct the SimProcess object to proceed to its next phase;
i.e., by reinserting it into a suitable location in the Event List. When the next
scheduled time is reached, the SimProcess object has to call the event source that
scheduled it. The event source then executes executeMsg (SimProcess) and
broadcasts the SimProcess object to all of its downstream components. This
mechanism is repeated until the SimProcess object departs from the system; i.e., when
it arrives at a Sink; i.e., its lowest downstream component.

Implementing the Delegation Event Model in DES classes not only enables us
to link active components with each others, but it also allows us to control and
simulate entities’ delay time to their downstream components; i.e., to represent travel
time from location to location. The travel time should then again be made accessible
for modifications through the components’ GUIs during design time and runtime.
Permitting learners to change entities’ travel time at any time they wish will help them

to understand the effect of delay time to model performance.

110

5.5 The MVC for Visualizing DES Component States

The MVC pattern prescribes how to structure classes that create and manage user
interfaces based on input-process-output cycles. In doing so, it implements the
Observer pattern; i.e., a pattern which notifies a group of interested objects (the
observers) whenever a single object (the subject) changes its state. The MVC patterns
main concern is to clearly structure an application’s code into three major
components: a model to store an application’s current states and logic, views that
reflect (e.g., visualize) changes of its states, and a controller that modifies the model
based on inputs made in a view. In order to receive notifications from the model, all
views must implement an interface that provides a suitable update method.

There are three reasons why the MVC pattern is so useful for building
attractive and interactive DES components. Firstly, component views can be added or
removed at design time or runtime without affecting any other components” parts.
Learners can therefore freely customize model visualizations. Secondly, all views are
concurrently notified through an info object; i.e., an object that contains information
about its subject’s current states. This allows the synchronous display of all of a DES
component’s current states, either graphically (e.g., histograms, graphs, etc.) or in a
more abstract fashion (e.g., texts, tables, etc.). Thirdly, when designed properly,
many visualization tools (e.g., histograms, graphs, etc.) can be reused by different
types of DES components (e.g., sources, servers, etc.).

Figure 5.4 shows generic MVC implementation structures for a single DES
component. This involves seven basic classes and four interfaces that cooperate with
each other to provide a GUI and suitable visualizations. The ComponentModel (e.g.,
sources, queues, servers, sinks, etc.) class broadcasts its states to all registered
observers through its ComponentUpdate object (info object). This is an object that
stores its current states. Each ComponentModel class should have its own
ComponentUpdate class with a unique name (e.g., SourceUpdate, QueueUpdate,
ServerUpdate, SinkUpdate, etc.).

111

i interface [I class

Figure 5.4 The DES MVC Structure

The ComponentModel class implements the Observable interface to provide
abstract methods for maintaining and notifying Observer objects. The
implementation for the Observable interface is provided by the ObservableSubject
class. An instance of the ObservableSubject class is used in the ComponentModel 1o
broadcast updates to its observers whenever its internal states have changed. By
implementing the Observable interface, the ComponentModel class can freely inherit
from any other class; i.e., it can be a subclass of other class.

To receive input from its views, each ComponentModel class must have its
own controller (e.g., SourceController, QueueController, ServerController,
SinkController, etc.). The model’s controller must extend the AbstractController
class; a class that provides basic services specified in the Controller interface. The
Controller interface in turn contains references to the model and its view. To receive
notifications about state changes in the ComponentModel, all interested views must
extend the AbstractView class; a generic implementation of the View and Observer
interfaces. The View interface contains abstract methods to set and retrieve the model
and controller objects observed by this view, while the Observer interface contains an
abstract update() method. It is up to a view’s update method to react to the
information object sent by a ComponentModel.

We can now make some modifications so that the visualization components
(e.g., Clocks, Histograms, Graphs, BoxPlots, Levels and Tables) to be derived-classes

(subclasses) of the AbstractView class; 1.e., the class that extends the MovieClip class.

112

Note that the ObserverObject class is to provide common methods for all
visualization components; e.g., to set location, size, title, etc. and to attach related
event handlers that allow dragging, pressing, etc. for the component. The benefit of
this is that many visualization components can now be registered or removed at any
time during design time or runtime to trace state notifications from its active or
passive components. Since these components must communicate with each other
(using the Event Delegation Model) and report its states to observers (using the MVC
pattern), their classes must implement both the ComponentListener for handling a
SimProcess object and Observable interfaces for notifying state changes to its
observers. Note that a visualization instance only receives the notification of its
active or passive component states from the time point it is created. This could offer
some benefits; e.g., learners can inspect in detail the performance of the model and
compare its performance from various simulation times. To receive the notification at
simulation time zero, learners must create all interested instances before running the
model.

Implementing both design patterns in a DES component permits a loose
coupling among DES components and its visualization components. Because of this
flexibility, we have created a utility component called visualization palette that floats
on the top of a model during runtime and holds various types of visualization tools to
allow learners to customize the model’s GUIs. Various model GUIs can be created
by instantiating a new visualization instance (i.e., clicking its symbol on the palette),
registering it to receive the notification from a relevant component’s state changes
(i.e., dragging a point on it and dropping the point onto the component) and dragging
it to any location on the stage. However, since these processes demand some efforts
from learners and not all visualization tools can be associated to a component (e.g., a
Clock component can only be used with the Monitor component), this approach is not
so effective for a learning environment.

To overcome this problem, we directly embedded a list of visualization tools
on the components’ GUIs. Learners only need to click a command button (each of
which associates to a new type of visualization tools) to instantiate a new
visualization tool. We believe this approach will help them to understand the

dynamic behaviour of a DES model.

113

5.6 Connecting External Data

Allowing learners to save the current states of a model offers some benefits in
learning and teaching. These include permitting them to retain the model’s
visualization and parameter settings and mark time points of interesting scenarios.
Unfortunately, this feature is not offered by existing DES tools. As a result, learners
are always presented with a new fresh model each time it is loaded.

Saving a DES model requires us to store model relevant structures and states
to a file. Generally, there are three types of files for storing application data: text
files, databases (Rob & Semaan, 2000) and XML (Hunter et al., 2000). These files
will be accessed to reflect the current behaviour of an application and can be updated
to save the application’s latest information during running time.

Text files are supported by many applications, easy to create and use and
readable by humans. However, they cannot store complex data structures as in DES
models since information storing is restricted in a sequence of lines (i.e., a list of
name-value pairs). Databases ease an application to access data through the use of
query languages. They have been used for storing DES static structures as
implemented in Arena software. However, designing, creating and linking dynamic
tables that store DES temporary entities and data fields for updating (storing or
deleting) timely changed DES model components (especially visualization tools) is
unpractical.

XML provides a good data storage for DES models due to its ability to support
complex data structures for storing entities and components with their own properties.
Additionally, the current structures can easily be extended to support additional levels
of more complex DES data structures. However, the process of creating and updating
these structures can only be done in the server for a security reason. As a result, XML
is usually used for storing and accessing data than updating the data, unless the
updating process is done manually (Castillo et al., 2004).

To eliminate these constraints, Flash has introduced Local Shared Objects
(LSOs) that store an application’s relevant information (especially its parameter
settings) on users’ computers. Thus, each time they access the application through
their computer, they will get the updated version of the application. This makes the

application looks like it has been customized for each user.

114

The main advantage of LSOs is that data can be stored in various data types
(e.g., number, array, boolean, date, XML objects, etc.), making the storing processes
of various objects are quite straight forward. However, little Flash interactive movies
have exploited its potential since it is usually used for storing basic data; e.g., user
names. For this reason, we used LSOs for storing our DES models’ states, animation
and visualization instances. The ideas behind this implementation can easily be
applied in XML with little effort.

Each DES component and entity should have its own LSO file (with a “.SOL”
extension) and be named based on its instance name on the Flash stage. The main
storage location for LSO files is operating system-dependent but it is typically located
under the Flash Player\#SharedObjects folder. All LSO files belonging to a DES
model are saved under a subfolder (under the main storage location) named based on
its DES model file name to avoid conflicts with other models’ LSO files. We thus
need to retrieve the DES file name using ActionScript code whenever the model is
reloaded. Since the LSO name exactly follows its object name, entities (i.e.,
SimProcess objects) and visualization instances that are created during runtime must
be coded so that each of these objects has their own unique names. However, Flash
will automatically assign a default unique name for an unspecified object name.
Thus, the issue of an object without a name will not arise.

We created a Utility component as a means to save component instances and
their states. It has a Save button for instructing all objects (in the form of MovieClips)
on the Flash stage to detect the existence of their associated LSO files. This can be of
two cases.

If their LSO files have not existed (i.e., the model has not been saved, or new
SimProcess or visualization instances have been created since the last save), we need
to command the objects to create their LSO files and store their relevant property
values. In case of active or passive components, we can directly transfer information
in their info objects to their LSO files.

If the LSO files exist (i.e., the model has been saved before), we only need to
update these LSO files with their latest property values. Note that the updating
processes will only take place at the points where learners opt to save or resave the
model, not during the whole process of model running. This is to ensure that
information in the LSO files is preserved until the next saving point so that leamers

will only be presented with a model of the latest saving point. The Unlity component

115

has other buttons; the first one is to flush all LSO files for a model, i.e., to get a fresh
model with its default values and the second one is to show all the paths of entity
movement for clarifying the sequence of events in the model. The paths are presented
by arrows that link active or passive components based on their output port
parameters.

Supporting such a saving capability needs all components to have certain
features. First, each active and passive component needs to transfer the current list of
its observers (we have had an array for this since we implement the MVC pattern) into
its own LSO file and consequently instruct all these observers to create (or update)
and store relevant information in their LSO files every time the model is saved.
Second, a Source component needs to have an array for holding a current list of its
created SimProcess objects that are still available on the stage at certain points of
time. Note that we do not have this in our previous Source components. This array
needs to be updated each time a SimProcess object is created or destroyed (i.e., all
SimProcess objects will remain in the list until they are destroyed by a Sink
component).

If learners opt to save the DES model, the current list must be transferred into
its Source’s LSO file. Sequentially, each of the SimProcess objects is to create its
own LSO file (or update if its LSO file has existed) to store their current information;
e.g., their latest locations, birth times, left time to finish a certain activity, etc. The
Source component also needs a variable to store the latest number of generated
entities so that it can extent this number when the model is re-run. Third, all
scheduled events in the Monitor (i.e., events that have not been cancelled in the
Agenda) need to be transferred to respective SimProcess’s LSO files whenever
learners save the model. Thus, we have to make sure that the SimProcess’s LSO files
have already existed before transferring a list of their unexecuted events (with their
time of occurrence) to their LSO files.

Whenever a model is loaded or refreshed (after saving the model using the
save button in a Utility component) in a web-browser, a Source component will first
get its current list of SimProcess objects from its associated LSO file and then create
those entities. Each time a SimProcess object is created, all scheduled events stored
in its LSO file will be retrieved and inserted to the model’s Agenda. Consequently,
each active and passive component reads its LSO file to initialize its parameter

settings and creates visualization instances based on its list of observers. Each

116

visualization instance will then be matched with its LSO file and fed with the data
stored in the file. Through these processes, learners will obtain the model with the
previous animation, visualization and component parameter settings.

A tricky issue arose when we wanted to resave a model; i.e., the model that
has previously been saved is loaded and re-run. During this point onward, some
objects (e.g., entities that have left the model or certain visualization instances that
have been removed by learners) have to be destroyed to save computer memory. If
we automatically destroy the LSO files along with their associated objects and
learners opt to discard any changes during this time interval, we will lose the LSO
files. As a result, if the model is re-loaded, some objects will be reinitialized with
their default values due to the missing of their LSO files. However, if we just destroy
the objects (i.e., we do not automatically destroy their LSO files) and learners opt to
resave the models, we will keep a number of worthless LSO files; i.e., a list of orphan
LSO files without their owners. This is particularly true for a model that contains
many active entities and/or has been extensively experimented with various
visualization tools.

To solve this problem, we programmed SimProcess objects so that they
destroy themselves when they exit a model but their associated LSO files are still
available until a certain point of time. For this, the SimProcess objects should
communicate with its creator; i.e. the Source instance that creates them. To do this,
the Source instance temporarily stores a list of destroyed objects. If learners want to
resave the model, this list will destroy all stored objects” associated files, else nothing
will happen. The same thing applies to any removed visualization instances where
each active component needs a temporary array to store its removed observers, and
then removes the relevant visualization instance” LSO file in case learners opt to save
the model.

We also need to maintain the smoothness of animation whenever a model that
has previously been saved is loaded to be run for the first time. At any saving point,
the model is bound to have some entities that have not completed movement to their
destinations. These entities can be at any path; each of which has used some amount
of its route time to reach its destination. Anytime we load and re-run the model, we
have to ensure that each entity continues its movement from the previous stopping

location to its destination using only the remaining time lefi.

117

We handle these entities’ residual movements by delaying the execution of the
model’s Event List. Using this approach, the entity that has the smallest remaining
time can finish its movement based on its residual time. Other entities meanwhile use
this time to step toward their destinations before the Monitor executes the next
scheduled event and updates model time. Without delaying the execution of the
Monitor, the entity will jump directly to its destination while other entities remain
static in their previous locations until their scheduled times have been reached that
denote the times for them to jump to their destinations. Since we move SimProcess
objects based on movement steps (the partition of these steps depends on its time
delay and a viewing ratio; refer to Chapter 4), delaying the Monitor only needs us to
store the number of remaining steps left to reach the destination in the entity’s LSO
file.

5.7 Example

This section discusses the ease of use aspects of our components in building queuing
networks and how final queuing models allow leamers to conduct various
experiments and visualize model behaviour through their GUIs. Figure 5.5 shows a

snapshot of the DES components and their locations within the Flash environment.

- _ir
LI
s/ e
LA
on
27/
o DES
L Components
.
ca
Cotirn.
v .
“am
L
8 Stage for
[composing
components
I e
A -
« » =‘
-
» ro— o - ° -
- - - ~ - B~
- Properties ~ . . 2
———— - R A G &
R —— = i (S Proparties
. Ra— :— < ll‘ 0
RN - 'fq-—_s' ey o
- wa - L ve—

Figure 5.5 Flash Development Environment

118

All components reside in the Flash’s Components panel and can be
instantiated by dragging them onto the Flash’s Stage to construct any types of queuing
networks; i.e., open networks, closed networks or mixed networks (see Bose, 2002;
Gelenbe & Pujolle, 1998). The construction of these networks is accomplished by
utilizing Decide component instances that route entities to their downstream
components based on three options: probabilities, a shortest queue or entity types.

To demonstrate the ease of use of our DES components, we will develop a
sample of a queuing network as illustrated in Figure 5.6. This sample simulates two
types of entities arriving into a system. The first type joints a single queue and will
then be served if one of the two available servers is idle. Upon completion, these
entities need to go to another queue before leaving the system. The second type
chooses the shortest queue between the two available queues. After being served,
some percentage of the entities exits the system while others need to go to the servers

that process the first type of entities. They are then free to leave the system.

O O

Queue
(Es T
e ype) »

(Shortest Queue) {

Figure 5.6 A Queuing Network System

These queuing network structures can easily be transferred to a computer
simulation model using our components. Based on these structures, teachers need two
instances of the Source component, four instances of the Quewe component, five
instances of the Resource component, three instances of the Decide components, one
instance of the Sink component and one instance of the Monitor component. Note
that a Monitor instance is needed by all simulation models. Its functionality is to
coordinate the sequence of entities in a model so that entities can be invoked and

transferred between components at appropriate times and in the right orders.

119

All of these component instances need to be dragged and dropped onto Flash’s
Stage. Once they are on the Stage, teachers can arrange the component instances’
locations accordingly, give them a name and access their properties through the
Properties layout panel (see Figure 5.7). The process of dragging, dropping, naming
an instance, initializing its parameter values and specifying its targeted components is
repeated until the simulation model structure has been constructed.

All components must have unique names to correctly link them with each
other; i.e., these names are specified in their upstream components’ output port
properties so that these upstream components can route entities to their downstream
components. This approach avoids us from writing case statements to represent the
entities’ lifecycles as in our example in Chapter 4. All components have their default
property values that specify their behaviour during runtime and can be changed by
clicking the appropriate row in the Properties layout panel. For example, a Server
instance has properties as listed in Table 5.1. Once the simulation structure has been
built, other visualization tools can then dragged, dropped at appropriate locations and
connected to the DES components to provide a default GUI for the model.

w413 |x 499 | ousort
& H: 501 ly; 1340 |

Figure 5.7 A Server’s Properties and Default Values

Table 5.1 Server Properties and Description

» Pr0perties S S " Descripti
capacity Number of resources that can be seized by entities in a queue

delayToNextStation | Time taken (based on a distribution type; e.g., Constant,
Exponential, etc.) for entities to reach the next component

graphlnstance Name of a graph instance to display capacity used vs.
simulation time

histogramlInstance | Name of a histogram instance to display service times

monitorName Name of a monitor instance that sequences state transitions of
all types of entities in a model

outPort Name of the next component to transfer entities

serviceTime Type of distribution specifying processing time

120

Figure 5.8 shows a sample of the final model constructed in this manner with
its own customized visualizations. The model allows leamners to stop, increase and
decrease the animation speed for their best visualization effect (Figure 5.9a), conduct
various experiments through an interactive GUI and observe the impact of changes to
model behaviour through a range of engaging visualizations. Conducting experiments
are easy since they can change any component’s parameters at any time they wish
(i.e., by clicking the component and typing appropriate values into text boxes and/or
choosing one of several options in combo boxes) and directly visualize the
component’s internal states by clicking available command buttons. For example,
learners can change priority rules (queuing disciplines) for queues (Figure 5.9b), alter
the distribution of time between arrivals for the two types of entities, modify
capacities and service times for servers (Figure 5.9c) and interact with data
visualizations; e.g., changing minimum and maximum values, and the number of
intervals of histograms (Figure 5.9d). The ability to change histogram parameters
enables learners to view the distribution of data in a variety of formats. Labels of

important components’ current parameter values are also displayed during runtime for

model clarification.

Figure 5.8 A Final Model

121

[C“Q FestinFest Ot 6 FO) -

|
— o1 ; 0 0 1
ox || Canct sl Fust Ot FW O ;
L._’. — T ATVTY 2] ¥

0}‘,; Lo o1 P risrty

| ranas Prom

Sim Clock — | Rangom Orser
” ! Boupiot of Watl Tune J
Speed 8. o G
e Shiutes)
[1
Monitor
(a) Monitor (b) Queue
a Ot Stratens |}
I_ 7‘; 5
[;h_ " [r—— =4 M S—A g
5 {l-.-v- : Comuens o }8
cad (W20 =
v [T - s] C 9 .
e xJ Co=_ L pan wsm >
o——— S . —
Gt of i st Copony Teme Spert n te teler Server
_— T R
(c) Server (d) Histogram

Figure 5.9 Interactions with Component Instances

All data visualization (that reports the model’s performance during the
simulation run) selected by learners can be located at any location on the model stage
or closed when unneeded. This approach enables learners to customize the model’s

visualizations based on their interest to ease their learning.

5.8 Towards Hierarchical Simulation Model Design

Systems are usually large and complex. However, their complexity can be well
structured if we partition them to many sub-systems; each of which focuses on its own
function. The use of a hierarchical model to break up a system to smaller functions
not only help learners to understand the model, but it also allows learners to control
the display of model information based on their ability to digest the information.
Hierarchical simulation models offer some advantages for the leaming and
teaching environment. First, teachers can structure a large and complex simulation

model to different layers of abstraction; i.e., by building and representing the model

122

from a basic, general model to more detail sub-models (its child models). Thus, a
complex model can now be constructed and managed easily. Second, learners can
have a better view of a model since its complexity (i.e., simulation components, their
interconnections, animation and data visualization) is now well controlled to limit its
crowdedness on a limited computer screen space. Thus, learners can control their
leaming by concentrating on a certain sub-model at a time in which they are
interested. For example, if they have understood a basic model, they can now
transverse to the model’s children that hide more details of their structures and
functions. Additionally, understanding the model can be boosted if at each layer,
learners are allowed to conduct various model experiments and customize the layer’s
visualization. Third, using layer by layer model design can ease the development of
various simulation models. The main reason for this is that each component,
visualization tool and sub-model can be reused to construct a new type of simulation
model. This will expedite the creation of simulation based leaming materials.
However, designing the architecture that supports the development of
hierarchical simulation models and implementing them on computer will post some

challenges. These include:

1) How to connect and synchronize a model with its children in a hierarchical
fashion since parent models are dependent on their child model(s). This requires
us to design a mechanism not only to synchronize the flow of entities in a relevant
layer but also to properly transfer these entities to its child model and back to the
layer whenever the entities exit the last components of the child model.

2) How to hide and display animation and visualization of sub-models at an
appropriate time so that the model abstraction can be controlled properly.

3) How to store model states, animation, learners’ experiment parameters and their
customized visualization for each model layer so that when they revisit the layer,

they will get back the settings they have had before.

Figure 5.10 shows an example of a hierarchical construction of a DES model.
The model is partitioned to four layers (Layer I to Layer 4). The execution of a
particular layer depends on other layers. The top layer (i.e., Layer /) represents the

overall function of the model while the lower layers give more information about their

123

upper layers’ functions. Each layer except the lowest layer has a sub-model symbol
that hides its structures (components and their connections) that perform its function.
Clicking this sub-model symbol will take learners to a lower layer (i.c., the layer’s
structures) while hiding the layer (e.g., through a button or a menu) will bring learners
back to its upper layer. At any layer, there could be a sub-model that generates and
handles their own type of entities, but these entities will not be transferred to any

other layers. The flow of these entities must also be synchronized with the whole

model time.

s21

s31 r——»

sub-model

Figure 5.10 Hierarchical Construction of a DES Model

124

Each layer has its own window for locating its component structures and
supporting its animation and visualization development. Entities that flow on this
window must be well synchronized with its lower layers; i.c., entities should appear at

a sub-model symbol at the right time once they exit their lower layer based on their
time delays.

5.9 Designing Mechanisms for Hierarchical DES Models

We have designed two mechanisms for coordinating event executions in hierarchical
DES models. The main trick for these is sorting events in all hierarchies and
executing them accordingly. First of all, we need to introduce these objects:

1. (* t) Messages
(* t) messages are additional messages to entity messages (i.e., dynamic entities
flowing in DES models). They are also inherited from the entity class; e.g., the

SimProcess class. The main differences are:

o entities flow from component to component while (¥, 7) messages flow from
layer to layer to coordinate event executions in the layers,

e flowing entities from component to component typically consumes some
delays while flowing (*, ¢) messages does not incur delay,

e entities contain personal information (e.g., birth time, delay time, etc.) while
(* t) messages only contain the lowest simulation time of the source layers
and the ¢ value is not used to update simulation time, and

e entities are created by a Source component (i.e., a type of component that

creates entity instances) while (¥ #) messages are created by a Submodel

object.

The insertion of (*) messages to an Agenda makes it looks clumsy.

However, their existence is important to tally all event executions.

125

2. Submodel Objects

%

A Submodel object encloses another layer. Entities arriving at a Submodel object
could be in one of two cases: (1) the entities are from the same layer’s previous
component, or (2) the entities are from a lower layer’s last component; see Figure
5.11. To differentiate these entities, the entity class needs to have a property; e.g.,
named fromLayer that takes a value of current (the first case) or child (the second

case).

Submodel e
component (child port component
entity
(]
entity
/ ('.n\
transfer to the child's recesved from the child ‘s
first component last component

Figure 5.11 Submodel Architecture and Transferring Mechanisms

For the first case, the entities continue their flows to a lower layer’s first
component through a child port; i.e., a port specifying the child model’s first
component. For the second case, the entities flow to the same layer’s next

component through an output port; i.e., a port storing its downstream component.

Local monitor

Each layer has its own local monitor that executes the layer’s activities stored in

its Agenda in the right order.

5.9.1 Monitor Delegation Mechanism

When a model is loaded, each Submodel inserts a (*, 1) message to its local monitor.

This is to find the layer that has the lowest simulation time; e.g., in case of a

Submodel object contains its own types of entities, or a Submodel object is the first

component that locates a Source component under it. The model execution starts with

the top layer’s monitor removes the (¥ 7) message and transfer it to its lower layer’s

first component which then inserts the message to its local monitor. This process

126

continues until the imminent entity is found in a relevant layer. The entity will then
be executed so that it can flow to the same layer or to another layer. Their flows to
another layer must be accompanied by a (*, 1) message.

The imminent item after this first iteration can be of two types: (*, 1) object or
entity object. If it is a (* 1) object, the execution of the current local monitor is
passed to either its lower or upper layer’ monitor depending on the source of the (*, 1)
message. Otherwise, it is flowed to the next destination; i.e., a component or a
Submodel object. For a Submodel object, the entity with a (* 1) message is
transferred to a lower layer that will then be inserted into an appropriate location in
the layer’s local monitor by its child’s first component. This monitor then executes
and removes the imminent item from its Agenda.

Transferring the model execution to other layer’s local monitor implies that
the layer contains lower next schedule time compared to the previous layer. The
execution of this current layer’s local monitor continues until another (*, 1) message is
found in its Agenda. These processes are illustrated in Figure 5.12. Figure 5.13 and
Figure 5.14 meanwhile show some code under the handleMsg(SimProcess, time) and
executeMsg(SimProcess) methods for the Submodel class and the simulation
component class.

Basically, the Monitor Delegation Mechanism coordinates the execution of
events in a hierarchical DES model through these mechanisms:

1. Instruct Submodel objects to insert (* t) to each local monitor. Execute the top
layer’s monitor, followed by other layers.

2. Determine the imminent item type and the component that executes it.

3. (a) Flow the item to its next component in the same layer if the item is the type of
entity and the component that executes it is a simulation component, or
(b) Transfer the item and a (*, 7) message if the item is the type of entity and the
component that executes it is a Submodel object; see Layer I in Figure 5.12.
Insert them at appropriate locations in the layer's local monitor. This process
should be done by the child’s first component upon receiving the messages.
Transfer the model execution to the layer’s monitor.

4. Retrieve and remove the next imminent item from the current layer’s local

monitor. If the item is the type of (¥, 7) message, transfer the monitor execution to

127

-~

the layer where the (*, ¢) is from and then repeat this step 4. Else, repeat the step

Time Process Event 5
0 Customer#t1 Arrival ’
Customer#2 | Armival ’
5 Customer#1 Enter submode! g
10 Customer#2 Enter submodel '
P) r— ' : Layer 1
(Root Monitor ‘
.\.- s
Submodel = ;
* ~oomponent H C'Iuwn component *
---------- \-- W N -."-_.-- R e R TS W AR
Rt
.'.. .\-
(1) entity R, SOANEDRIL i
(2 9 -,
b Time Process Event ’ =
. v 20 Customer#1 Next Comp , “
3 P | Custome#r2 |Next Comp 2
¥ : 50 Customer#1 | Enter Submosel | / .
: ; 60 Customer#2 | Enter Submodel |/ ~. £
‘ entity 65 X Execute :
e ekl Y =2 _ ‘ Layer 2
. : ; Local Monitor !
s i H (- t) .
: .‘ :': .
: g Submodel g
. I > port Outut port %
component | Chid port component -
< DS e SRRl I R -
'.'-\':
.

BT e o T el R S el ~'\"-“‘
4 Time Process Event \ .
.‘ wi5s Customer#1 Next Comp .
: 70 Customer#2 | Next Comp [
. ¢ ./'
i entity 4" .9 Execute
- Ly Local Monitor

Figure 5.12 Monitor Delegation Mechanism

128

O e Tl Ty N e SR

private function handleMsg (entitylnstance:SimProcess, time:Number) {
/* schedule the entity to its Agenda */
entitylnstance.delay(this, time)

}

private function executeMsg (entitylnstance:SimProcess) |

/* if the entity is from the current layer* /

if (entityInstance.fromLayer() = = “current”) {
/* send the entity to its lower layer */
child.handleMsg(entityInstance, 0)
/*create a new instance of externalMsg*/
extMsg = externalMsg.createNew();
child.handleMsg(extMsg, 0)

/* if the entity is received from a lower layer */

} else {
/* send the entity with some delay to the next component in the current
layer */
outport.handleMsg(entitylnstance, delay);

Figure 5.13 Submodel Class Definition

private function handleMsg (entitylnstance:SimProcess, time:Number) {
/* schedule the entity to its Agenda */
entityInstance.delay(this, time)

}

private function executeMsg (entitylnstance:SimProcess) {
if (entityInstance typeOf ExternalMsg) {
/*transfer the monitor execution to the Source of the extMsg monitor*/
entityInstance.getSource().handleMsg(entityInstance, 0);
} else {
/* transfer the message with some delay to the next component */
outport.handleMsg(entitylnstance, delay);

Figure 5.14 Simulation Class Definition

129

5.9.2 Monitor Communication Mechanism

The Monitor Communication Mechanism differs from the Monitor Delegation
Mechanism in two ways. First, (* 1) messages are sent by a monitor, not by a
Submodel. However, a Submodel object and the last simulation component in a layer
still transfer entities (i.e., SimProcess objects) to its lower and upper layer
respectively. Second, for each iteration, monitors located above the source of a (*, 1)
message must all be executed sequentially rather than transferring monitor execution
to a relevant layer. Such monitor communications through broadcasting (*)
messages demand the monitor to implement the Delegate Event Model.

The purpose of broadcasting (*,) messages down to a certain layer where the
(* t) comes from is to find the model’s lowest simulation time in all visited layers’
Agendas. For this, two types of iterations are needed. The first iteration broadcasts a
(*, t) message from the top layer until the lowest layer to consider the cases of Source
components are located in the lowest layer or certain layers have their own types of
entities. The second iteration onward only involves broadcasting a (* 1) message
until a relevant layer since any lowest next scheduled time below this layer definitely
has a bigger value. This can be achieved by detecting the origin of a (¥, 1,) message.

The (* t,) message is actually a (*, #) message containing the latest value of
the lowest next scheduled time. This value is collected during its traversal to the top
layer. By broadcasting the (*, f,) message up from layer to layer, a parent layer
acknowledges its child layer’s lowest next scheduled time. For example, Layer /
stores the lowest next scheduled time for Layer 2; Layer 2 stores the lowest schedule
time for the Layer 3 and so on. Thus, the execution of the child layer is controlled by
its parent monitor. The details of the Monitor Communication Mechanism are as

follows:

1. Insert a default (*, #) message in the root Agenda whenever the model is first run.

2. Broadcast the (*, t) message from monitor to monitor in a sequence order (Layer
1, Layer 2, Layer 3, ...) until it reaches the lowest monitor.

3. Execute the local monitor to coordinate events in the layer each time the layer
receives the (* 1) message. For example, execute the local monitor in the Layer 2,
followed by the Layer 3 and so on. Consequently, send the (* 1) message to

lower monitors.

130

4. Once the (* t) message reaches the lowest layer’s local monitor, retrieve the
imminent item in its Agenda. Take its lowest scheduled time. Update the (*, 1)
message with a (¥, t,), where ¢, is the lowest next scheduled time for the layer.
Broadcast the (*, 1,) to its parent monitor; i.e., the local monitor in its upper layer.
Note that the (*, 1,) message is supposed to traverse up to the top layer.

5. Once the (* t,) reaches its upper layer’s local monitor, insert the message at an
appropriate location in its Agenda based on the 1, value. Retrieve the imminent
item from the Agenda. Broadcast a new (*, 1,) message (could be the previous (*,
t,) message if it is the imminent item) to its upper local monitor. Repeat these
processes until the (*, 1,) reaches the top layer. This will guarantee that each layer
stores its child’s lowest next scheduled time.

6. Once the (* t,) reaches and has been inserted to the top layer’s Agenda (i.e., root
Agenda), execute the root monitor. If the imminent item in its Agenda is the type
of (* t,), send another (*, #) message down to the layer where the (*, 1,) message
is from. During this traversal, execute all visited layers” Agendas to remove the
(* t,) messages. Note that only the layer that has generated the (*, 1,) message
will create a new event (i.e., flowing a relevant entity); other layers only remove
the message from their Agendas. Broadcast another (*, 1,) message. Repeat step
-

7. Stop the processes if the length of simulation time has been reached.

Figure 5.15 traces a sample of Agendas based on the Monitor Communication

Mechanism. The figure is split up to (a), (b) and (c); each one shows the Agendas at

simulation time 0, 10 and 14 respectively.

131

Time Prosess Event T oy —
] ~ 0 Exvcuts %) Loy 7 " L) i)|
(W TR S— e ol " i Ly 1
2 n
» =
: S 7
.0 .o e cigC0)
Time Process I Event Time Process Evem T Promens e
N[o [or=) e d - N[[~ o) Layw 3 [e Loyw 3
¥ P o7 (7 E N " =0 =) A
. " "
» =
: » £
¢ c.0 () (AU A
R 10 (=0 Lave 4 Z Qe 1~ o) Loyw & N[0 [Cosomeniz | Oyt v
: v T 0
P 18 |cem e 4 s 2z
: 2 »
: £ | "
c.0 c0 (A .18
" [rme Process Event - [rime Process Evem Time [o
N[0 |Customenst [Amval 3 e .
2 18 1"
3 Customer®2 | Amval » 2
24 %
%

(a) (b) (©)

Figure 5.15 Agenda States

At simulation time 0 (i.e., at initial run time), broadcasting a (*, 1) message
down to the lowest layer (i.e., Layer 4) is compulsory to find the lowest next
scheduled time for the model. This example locates a Source component in the Layer
4. However, if it were located in other layers, broadcasting the (*, 1) message down to
the lowest layer would ensure the lowest next scheduled time is collected among the
Agendas.

When the (*,) message reaches the lowest layer, the (*, 1) is converted to a (*,
t=0); we assume that 0 is the first event; i.e., the creation of first entity. The (*, 1=0)
is then transferred up to the top layer since it is the lowest next scheduled time in the
whole hierarchy. After this first iteration, each time a (*) goes down toward its
origin layer, all the visited layers’ monitors need to execute their Agendas by
removing their imminent item; i.e., the (¥, r=value) message. For example, executing
the monitors in Layer 2 and Layer 3 at simulation time 0 removes the (* r=0) from
their Agendas. Only Layer 4 that contains a default entity (which is inserted by the
Source component) removes the (* r=0) and schedules a new event for the entity.

At simulation time 10, a (* 1) message is broadcasted to Laver 4 from which
the (* t=10) has come. During this (*, t) broadcasting, all visited Agendas’ imminent

132

items are removed (denoted by italic words). However, only Layer 4 schedules a new
event for its imminent entity (denoted the bold words). Its new lowest scheduled
time, i.e., (* t=16) is then transferred to Layer 3 and inserted to the layer’s Agenda
(denoted by underlined words). This value is then compared with its lowest next
scheduled time; i.e., t=14. Since t=14 is smaller than =16, the (* t=14) is
transferred up to Layer 2. The processes of broadcasting a (*, 1,) message, inserting it
to an Agenda, comparing the value with the lowest value of the Agenda and re-
broadcasting the smallest value are repeated until the top layer in order to ensure that
all parent layers know their child layers’ next scheduled time.

At simulation time 14, traversing down until Layer 4 is not needed since its
lowest next scheduled time is bigger than the lowest next scheduled time in Layer 3.
Layer 3 then transfers a (*, t=16) message to Layer 2 since t=16 is smaller than r=22.
Layer 2 transfers a (* t=16) message to Layer | after comparing the value of =16
with r=18. However, at simulation time 16, a (* 7) will again need to traverse down
to the Layer 4. These processes will continue until the length of simulation time has

been reached.

5.10 Problems and Challenges

The ability to create many visualization instances during runtime can slow model
execution and could create awkward model visualization. Model execution is
dependent on the number of visualization instances on the stages and more
visualization instances will definitely demand more time to render the data on the
instances. Awkward model visualization happens when we do not control the depth
of the objects on the stage properly. For example, DES components or entity
instances that have higher depth than a visualization instance will disturb learners’
view of data rendered on the visualization instance whenever it is dragging over them.
Thus, we need to specify a range of depth numbers that a certain object type can take
whenever it is created.

In order to properly stack objects on the stage, we first gave a lower range of
depth numbers for active and passive components, followed by a Monitor, a Unility,
entities and then visualization components. This ensures that all visualization

components are always on the top of the stage wherever they are dragged. Entities

133

should have higher depth compared to simulation components for a reason that they
should move over the model structures fabricated by the simulation components.

Based on the Delegation Event Model, we can actually permit learners to
modify or expand model structures during runtime. This is possible since a
simulation component’ output port only needs to be fed with the name of its listener
in order to transfer entities to the listener. For this, we need to provide a palette that
hosts various simulation components (as in our first approach of providing
visualization components) where a relevant component can be instantiated with a
default ID name by clicking its associated symbol, dragged onto a certain location and
linked to its upstream component; e.g., through dragging a point from the instance to
the upstream component.

Permitting model configuration during runtime can create interesting activities
that engage learners with the model. Observing and analyzing the effect of change of
model structures to model behaviour will help learners to understand the model better.
However, allowing learners to drag simulation components during runtime will pose a
problem; i.e., the animation of entity movement between a component and a dragged
component could not be simulated properly. This is true when entities are moving
toward the component and at the same time the target component is dragged to other
places. As a result, the entities will not properly reach their destination since the
distance calculated when they started moving has already changed.

We sometimes need auxiliary messages (in addition to entity messages) for
accomplishing relevant tasks in DES; e.g., in activating transporter or handling
reneging and jockeying activities in a queue. Handling reneging and jockeying needs
a queue to acknowledge a component that handles these activities, i.e., by sending
messages that contain entity names whenever the entities enter the queue. The
component needs two main properties: (1) tolerance time that employs a list of
distributions for representing the time limit that the entity is willing to wait in the
queue, and (2) destination port for specifying the destination that the entity will go
after being retrieved from the queue. A message received from the queue will be
delayed based on its tolerance time. When the message has consumed the time, it will
search its associated entity in the queue. If its associated entity is still available, the
entity will retrieved from the queue and moved to the destination specified in the
destination port. The message will then be destroyed. If its associated entity is

missing (i.e., its associated entity has been removed from the queue), the message will

134

just be destroyed. We have to insert these auxiliary entities into the model’s Agenda
to tally their execution with the model time. However their existence in the Agenda
could make the Agenda looks clumsy.

We could use Flash’s keyframes to form layers in a hierarchical DES model.
Each keyframe handles a sub-model’s structures and provides a platform for learners
to conduct experiments and customize its visualization. However, Flash treats each
keyframe as a totally new program. It only provides a basic transition between
keyframes; i.e., moving an execution point from keyframe to keyframe without a
support for either accessing objects in or transferring objects to other keyframes. In
case of the development of hierarchical DES model, this hinders us from passing
entities or other types of messages to other keyframes. Such an approach is totally
difference with Microsoft Visual Basic (Wright, 1998) since this language allows the
use of FormName.ObjectName.Property to access objects that reside in other forms
and objects can be passed from form to form freely.

The only way to implement the discussed mechanisms is the use of only one
keyframe, but with a number of main movie clips. Each movie clip represents a layer
and can contain many other movie clips; i.e., simulation components, visualization
components, etc. Since all movie clips now reside in the same keyframe, the
simulation components can easily be accessed from other movie clips and the
lifecycles of entities and (* ¢) messages can be maintained. To prevent the

clumsiness of many main movie clips on a stage, learners should be allowed to hide or

display the main movie clips.

135

CHAPTER 6

EVALUATION AND ANALYSIS

6.1 Introduction

Learners should acquire knowledge and experiences during their learning.
Knowledge can be delivered using various media (e.g., communications, texts, etc.) in
classrooms or through online environments. However, experiences can only be
gained when learners are exposed to real applications of the knowledge; e.g., through
the use of models that implicitly embed the knowledge.

Interactive models can offer learmers valuable experiences in two ways:
providing information explicitly or implicitly during model exploration and
challenging learners’ judgment during model interaction. For example, the
explanation of how various variables affect DES systems can offer basic knowledge
to learners. However, allowing them to explore and interact with relevant models of
the systems will really fill in and clarify their mental models. Thus, the use of various
teaching modalities to meet various types of learners’ needs is important in leaming
and teaching settings (Fenrich, 2006; Smith & Renzulli, 1984).

Leaming and understanding DES concepts is a challenging task. This is
especially true when the availability of teachers in assisting leaming is rather limited;
e.g., in online environments. There are a lot of static matenals that completely
explain DES concepts. Although their use in the leaming environment has been
claimed to have at least equal leaming outcomes as interactive materials (e.g.,
Hegarty, Kniz, & Cate, 2003; Mayer, Hegarty, Mayer, & Campbell, 2005; N. H.
Narayanan & Hegarty, 2002; Tversky & Morrison, 2002), they typically fail to attract
and engage learners, especially visual learners who leamn by seeing and visualizing,
and kinaesthetic learners who learn by doing relevant activities. There are also a lot
of attractive DES models. However, they were developed for specific real systems

that typically focus on system performance analysis. Since their focuses are more on

136

final outputs rather than getting insight into model behaviour, interactions with the
models are considered as irrelevant aspects.

We believe that queuing models created using our components are attractive,
interactive, informative and useful to be used in the leaming and teaching
environment. The main premise for this claim is that we have designed DES
components that are capable of providing models that fulfil characteristics of
educational models as suggested in literature (e.g., Bransford, 2000; Lunce, 2004,
2006; Mildrad, 2002). These include activities through variable manipulations,
informative and meaningful feedback through various visualization tools, attractive
animation of various objects that depicts model behaviour and flexibility in
replicating of real systems. However, this assumption needs to be assessed through
experiments; i.e., by obtaining feedback from a sample of leamers about knowledge
and insight they gain while experiencing samples of our models. Analyzing the
feedback will truly indicate if our tool can construct queuing models that have a
positive effect on learning.

We conducted two types of experiments. The first experiment evaluated
learners’ perceptions about the attractiveness and interactivity of samples of our DES
models. For this, we designed our own questionnaire based on model characteristics
argued important in literature. The second experiment evaluated model designers’
perceptions about the usefulness, ease of use and enjoyment of the tool and their
willingness to use the tool in the future. To measure these factors, we used the
Technology Acceptance Model (TAM) and other extension models found in
literature. We also assessed the participants’ workload while experiencing our tool
using NASA Task Load Index (TLX).

6.2 Evaluating Models’ Attractiveness and Interactivity

6.2.1. Assessment and Evaluation Methods

We developed our own questionnaire to evaluate the attractiveness and interactivity of
models constructed using our component-based tool. The questionnaire was divided
into four main sections: general information, general questions, model ratings and

additional questions.

137

The general information section contained two questions: how much computer
experience our participants had and how much they used computers as a learning tool.
The general questions also consisted of two questions. The first question was based
on a five-point Likert-type scale that requested the participant to circle one of
available options (i.e., 1 = strongly disagree; 2 = disagree; 3 = neither disagree nor
agree; 4 = agree; 5 = strongly agree) that they had good knowledge on simulation.
The second question requested them to specify how long they had spent exploning the
given models. Thus, during our briefing each participant was reminded to record how
long they used the models.

The model ratings are shown in Table 6.1. Items in this section were all based
on a five-point Likert-type scale. However, they were invited to write any comment
on each of these items. All items were always asked from the positive aspects (i.e.,
we did not mix positive and negative aspects of items). This makes it easier for them
to understand the items and avoids them making any inadvertent mistakes when
circling the options from strongly disagree to strongly agree.

The development of the items were based on educational model charactenistics
that were argued to be important in literature (e.g., Beux & Fieschi, 2007; Gredler,
2003; Jeffries, 2005; Jong, 1991; Joolingen & Jong, 1991a; Swaak & Jong, 2001a).
We embedded all these characteristics in our components to produce such types of
models. Samples of resulting models were then tested to obtain learners’ levels of
satisfaction for each criterion so that we can judge the attractiveness, interactivity and
usefulness of the models. Note that we did not include item number 12 in Table 6.1
since it contained a list of sub-items that requested the participants to rate if each
visualization tool (e.g., graphs, histograms and boxplots) and each facility provided
by the models (e.g., ability to pause, resume and adjust animation speed, table of
events, etc.) helped them to understand the models better. The item and its sub-items
were displayed in Table 6.5.

The additional question section also consisted of two items. The first item
asked the participant if they had ever used other animated queuing models. The
second item invited the participants to provide additional suggestions on how to make

learning through simulation easier.

138

Table 6.1 Items in Model Rating

I am clear about the objectives of the model.

. The model is useful for information visualization and observing animated objects

and events.

3. The model is interactive, inviting input and providing appropriate feedback.

4. The model contains high quality animation which makes leaming enjoyable and
interesting.

5. The animation helps me to understand scenarios in the model.

6. The various performance visualizations (graphs and other data displays) are
meaningful.

7. The model provides a graphical user interface (GUI) which is easy to interact

with.

I like the design of the GUL

It is good that the visualizations (e.g., graphs, histograms, etc.) are only displayed

when requested.

10. The interaction with the model by changing the model’s parameters during
model execution (e.g., arrival rate, queue rule, server unit) is important in order
to understand model behaviour.

11. The change of the representation of animated objects based on their current states
is important for me.

13. The model is considerably out of bugs. Please specify if you found any bugs
while running the model.

14. Overall, the attractiveness and interactivity of the model is good. Any
suggestions to improve the attractiveness and interactivity of the model?

15. I would like to use this kind of model for understanding queuing scenarios.

N -

=

6.2.2. Experiment Participants

Our objective is to obtain as much as possible of learners” honest feedback about their
experiences while using the given models. Thus, we only distributed the models to
volunteer participants. Additionally, we did not impose them any time limit and time
specification to use the models (i.e., they could explore the models how long the
wished at their leisure time). These approaches allowed them to interact with the
models and observed the impacts of any changes they had made in a convenient way
without any constraints (e.g., unfocused mind, bad mood, etc.). However, since
simulations are under constructivist learning, their feedback about the usefulness,
attractiveness and interactivity of the models could be influenced by certain factors.
These include their types of leamers whether they are visual learners, auditory
learners, kinaesthetic learners or read-write leamers (Aragon, Johnson, & Shaik,
2002; Haapala, 2006), their prior knowledge on a relevant domam (Dochy et al.,

139

1999; Hailikari et al., 2008; Johnson, Aragon, Shaik, & Palma-Rivas, 2000), etc.
Above all, the feedback analyses could give us hints on the participants’ acceptance of
the models.

We conducted this experiment in a two-week time interval. Participants were
approached in the laboratories of the Computer Science and Software Engineering
Department, and the laboratories of the Mathematics and Statistics Department (both
at the University of Canterbury) for their willingness to participate in the experiment.
They were offered an incentive; i.e., two bars of chocolate. A total of 28 participants
volunteered to experience our sample models. They were from various year students
and programmes; e.g., Computer Sciences, Engineering, Mathematics, Commerce,
etc. Six of them were female and the rest were male. We purposely distributed our
models to various students so that we had flexibility in analyzing the feedback from
various learners about the models’ attractiveness and interactivity, irrespective of their
knowledge on simulation. This enabled us to analyze the feedback in various angles;
e.g., analyzing the data based on overall participants, gender and/or their knowledge
levels of simulation.

All of the participants were provided with two models. The first model
(Figure 6.1) simulated a simple queuing network. It populated two types of
simulation entities using two Source components. The first type only required a
single server to be processed. The second type needed two servers, the second of
which was the same one that processed the first type of entities. The second model
(Figure 6.2) just added complexities into the first model. The first type selected an
idle server from two parallel servers. After going through one of the parallel servers,
they needed to visit another server before leaving the model. The second type
selected a server with a shorter queue. After going through this process, only 30% of
them directly leave the system. Another 70% went through the servers that processed
the first type of entities. However, they did not need to go through another server as
for the first type of entities; instead they directly left the model. See Appendix C.

The purposes of the experiment and the description with a snapshot of each
model were provided on an information sheet and attached to the questionnaire.
Additionally, we demonstrated the models to each participant and explained what they
were requested to do during and after the experiment (e.g., clicking components,
changing their vanables, instantiating visualization tools, changing animation speed,

etc.) so that they had some strategies in their exploration. This was important since

140

the models were open-ended simulation models that needed the participants to at least
be equipped with basic mental models before they were left free to explore the models
themselves. They were also briefly introduced to all items in the questionnaire in
order to make sure that they understood the items and answered them appropniately.
Any relevant questions regarding the models and the questionnaire were then

welcomed and answered.

Figure 6.1 Simple Queuing Networks

Figure 6.2 More Complicated Queuing Networks

141

The participants were encouraged to experience with both of the models.
They were then left to use the models as long as they wished either in the laboratories
or at their homes. By leaving the models to be experienced at their leisure they had
and no time limits imposed, we hoped that we would get as honest feedback as
possible.

6.2.3. Data Analysis and Results

6.2.3.1 General Information

When we asked the participants to specify how much computer experience including
programming they had, only five participants (18%) considered that they did not have
much experience in that. When we looked at the data, four of them were first year
students of the programmes of Engineering (two students), Commerce (one student)
and Geophysics (one student). The other one was a third year student of the
Geography programme. They were probably familiar with computers but likely
confused when seeing the phrase “including programming”. Two students (7%)
skipped this question; i.e., they did not write anything in the provided space.
However, we believed that both of them had quite experience in programming since
they were a fifth year Engineering programme student and a third year Mathematics
and Physics programme student. Three participants (11%) considered that they only
had average experience in computing in spite of the fact that they were third year
students of Engineering (two students) and Computer Science programmes. Other
participants (64%) stated they had excellent experience in computer.

For the second question, four participants (14%) stated that they did not use the
computer much as a learning tool. Two of them were the same participants that
claimed they did not have much experience in computer. One participant (4%)
skipped this question and he was the same participant that skipped the first question.
Two participants (7%) claimed they used computer moderately as a learning tool.
Other participants (75%) considered that they used a computer as a learning tool a lot
based on the key answers they gave; e.g., very often, a lot, everyday, most of the time,

etc.

142

6.2.3.2 General Questions

Simulation is a learning environment where its contents are not explicitly exposed to
learners. Its usefulness in providing the opportunity to leam in a more realistic
context heavily depends on students’ prior knowledge. There are two types of
knowledge that learners should have: specific conceptual knowledge; i.¢., the domain-
specific knowledge about concepts and facts that a model represents, and general
knowledge; i.e., quantitative and qualitative aspects to read information and draw
conclusions from the model’s outputs. The importance of both types of knowledge in
structuring and accommodating learning through models has been argued in much
literature (e.g., Dochy et al., 1999; Hailikari et al., 2008).

Operating a simulation model without the knowledge may create three distinct
problems. First, learners tend to conduct inefficient experiments, thus any
interactions with the model seems not to be important. Second, leamers may have
trouble in interpreting information, thus animations and data visualizations seem to
give insignificant impacts and eventually demotivate them to leam. Third, leamers
may not be able to regulate their leaming processes, thus the model seems not to be
useful. Therefore, collecting participants’ prior knowledge to properly judge their
feedback about the usefulness of our models and their relevant features in ensuring
the participants’ learning is important.

Based on the participants’ responses, only six participants (21%) were
confident (agreed/strongly agreed) that they had good knowledge on simulation. Nine
participants (32%) considered that they did not have good knowledge on simulation
based on their choices of strongly disagree/disagree options. The other thirteen
participants (46%) stated that they were undecided about their knowledge on
simulation. Figure 6.3 shows the frequencies of the participants’ scores for the first
general question.

Table 6.2 shows the summary reports of estimated time spent on the models
by all participants grouped by their knowledge levels on simulation. The average
time spent by all of the participants was 17.61 minutes. The minimum and the
maximum time spent were 3 minutes and 60 minutes respectively. Both the minimum
and the maximum values were from the participants that were undecided about their
knowledge on simulation.

143

Knowledge on simulation

Frequency

O N » O O

Rating

[I Strongly Disagree B Disagree O Neutral B Agree B Strongly Agreel

Figure 6.3 Participants’ Feedback on Simulation Knowledge

Table 6.2 Time Spent (in minutes) for Each Level of Knowledge on Simulation

Score N Minimum | Maximum Mean Std. Deviation]
I 1 10 10 10 - |
2 8 5 30 13.75 7.44 |
3 13 3 60 19.08 19.26 |
4 5 10 30 23 975 |
5 1 10 10 10 -

It is interesting to observe that the participants who agreed that they had good
knowledge on simulation were in fact the group that used the models for the longest
time in average (i.e., 23 minutes), followed by the group of participants that neither
disagreed nor agreed that they had good knowledge on simulation (ie, 19.08
minutes). This perhaps signals that the use of simulation models in leaming settings
is effective for leamers for whom their knowledge levels on simulation are between
moderate and good. One possible reason for this is that learners in this group more
often have hypotheses in mind to be tested during their exploration. These induce
them to engage with the models through conducting and understanding the models’
relevant outputs.

If we look at Table 6.2, the use of simulation models could probably fail to
engage the extreme point participants; i.e., the participants that had little knowledge

on the concepts that the models represented and the participants that had already had

144

concrete mental models about the concepts. One reason for the former is that this
type of learners probably did not have ideas of what the models try to represent.
Thus, they had no strategies in designing experiments and understanding the models’
outputs. The reason for the latter is that this type of leamers probably felt bored with
the models because their outputs could well be predicted for each experiment.

6.2.3.3 Model Rating

Some researchers (e.g., Jong & Joolingen, 1998, 2008; Land, 2000; Landriscina,
2009; Lunce, 2006; J. Quinn & Alessi, 1994) claim that leamers that have relevant
mental models or been equipped with some basic knowledge can effectively
experience and evaluate open-ended simulation models. Based on this argument, we
separated our analyses based on the participants’ knowledge on simulation. Table 6.3
reports the experienced participants’ (i.e., who had good simulation knowledge)
feedback about the models. Table 6.4 and Table 6.5 meanwhile report the
inexperienced participants’ feedback about the models; i.e., who were undecided and
who did not consider that they have good simulation knowledge respectively. By
separating the results, we can effectively evaluate and judge the usefulness of our
models in offering the opportunity to leam DES concepts and the significance of their
features in ensuring the participants’ learning.

Question 1 asked the participants if they were clear about the objectives of the
models; i.e., what situations the models represented and what they were expected to
gain while exploring the models. Interestingly, all the six experienced participants
were clear about the objectives of the models. This indicated that they had a clear
picture about the principles of the models. Of the nine participants who claimed that
they did not have knowledge on simulation, only one participant (11%) was unclear
about the objectives of the models. There were two participants (22%) undecided
while the remaining six participants (67%) stated that they understood the model
objectives. Of the group that were undecided about their knowledge on simulation,
six participants (46%) confirmed that they were clear about the objectives of the
models. Only two participants disagreed with this statement. In general, most of the
inexperienced participants (55%) understood the purposes of the models. We
believed that our approach of providing a description sheet of the models,

145

demonstrating the models and handling a question and answer session with the
participants before they started their explorations gave some mental images for most

of the participants in these two groups.

Table 6.3 Good Simulation Knowledge Participants” Feedback about the Models

& s ¥ el ¥ Vil ol P gt | s sl Bager e PR =5l
%; Ttem &5 |5 8D 5] 72 njj;@ ~ NDA e AT, Mode | u’- Sd
Clear 0 0 0 4 2 4 433 0.21
objectives (0%) (0%) 0%) | 67%) | (33%)
0 0 0 3 3 4,5 450 0.22
Modelusell | o] | o] con| oo
Model 0 0 1 2 3 5 433 033
interactive (0%) (0% (17%) | 3% | (50%)
Quality 0 0 1 4 1 4 4.00 0.26
animation (0%) 0% | (7%)| (67%)] (17%)
Animation 0 0 0 3 3 Fl 450 0.22
helpful (0%) (0%) 0%) | (50%) | (50%)
Visualization 0 0 0 4 2 4 433 0.21
meaningful (0%) (0%) 0% | (67%) | (33%)
GUI 0 0 1 4 1 1 4.00 0.26
interactive (0%) (0%) (17%) (67%) (17%)
GUI 0 0 1 5 0 4 383 0.17
acceptable (0%) 0% | (7%) | (83%) (0%)
Pop-up 0 0 1 2 3 5 433 033
visualization (0%) (0%) (17%) (33%) (50%)
Interaction 0 0 1 3 2 4 417 031
helpful (0%) 0% | (7%) | (50%)| (33%)
Animation 0 1 0 3 2 4 4.00 0.45
important 0%) | (17%) 0%) | (50%) | (33%)
Model out of 0 0 3 2 1 3 367 033
bugs (0%) O%) | (50%) | (3%]| (17%)
0 0 1 2 3 5 433 033
R - 0] 0wl arel G3w| 0%
Model 0 0 1 2 3 5 433 033
preference (0%) 0% | (17%)]| (33%) | (50%)

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Strongly Agree

Table 6.4 No Simulation Knowledge Participants’ Feedback about the Models

3 ,‘A‘ ".. 'i o . oA 3 o , “;- e y 4 B 3 E v ry B g z u '_“
& lmll:‘~ g VJSD ;g)_D‘,»,L»:- = NDA 3 A : SA | Mode _ Deviath v
Clear 0 1 2 6 0 1 156 0.24
objectives 0%) | (1%)]| (22%) | (67%) (0%)
0 1 0 7 1 4 389 0.26
Modeluseltl | | mm] ©o] %] ai%
Model 0 1 1 6 1 4 an 0.28
interactive (0%) (11%) | (11%) (67%) | (11%)
Quality 0 0 3 4 2 4 389 0.26
animation (0%) (%) | (3% | (4% | (22%)
Animation 0 0 3 5 1 4 378 0.22
helpful (0%) (0%) (33%) (56%) (11%)
Visualization 0 2 1 6 0 4 344 0.29
meaningful (0% | @2% | (1%)]| (67%) (0%)
GUI 0 1 4 3 1 3 344 0.29
interactive (0%) (11% (44%) (33%) (11%)

146

GUI 0 0 5 3 1 3 156 0.24
acceptable 0%) | (0% | (56%)) (33%) | (11%)
Pop-up 0 1 2 5 1 4 3.67 0.29
visualization (0%) (11%) (22%) (56%) (11%)
Interaction 0 0 1 6 2 4 an 0.20
helpful %) | (0% (1% | (67%)] (22%)
Animation 0 2 2 5 0 Fl 333 0.29
important (0%) (22%) (22%) (56%) (0%)
Model out of 0 0 5 1 3 3 3.78 0.32
bugs (0%) 0%) | (56%) | (11%)]| (33%)

0 0 2 6 1 4 3189 0.20
Bl good 0%) | 000%) | @2%]| 6| 1%
Model 0 1 2 3 3 4 389 035
preference 0% | (1% | 2% (3% | (33%)

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Suongly Agree

Table 6.5 Undecided Simulation Knowledge Participants’ Feedback about the

Models

_ tem | sp | D | NDA | A | SA | Mode | M | S
Clear 0 2 5 2 4 3 3.62 031
objectives 0%) | (15%)]| (38%)]| (15%)] (31%)

0 0 2 10 1 4 392 0.14
ey (0%) 0%) | (15%) | (17%) (8%)
Model 0 1 4 5 3 4 3.76 0.26
interactive (0%) (8%) (31%) (38%) (23%)
Quality 0 4 4 4 B e B 315 027
animation 0% | G1%| G1%]| (Gl%) (8%)
Animation 0 0 2 7 4 4 415 0.19
helpful (0%) 0% | (15%)] (4%) | (1%)
Visualization 0 1 s 5 2 3,4 362 0.24
meaningful (0%) (8%) | (8%)| (38%)| (15%)
GUI 0 3 5 3 2 3 331 0.29
interactive 0%) | @3%)| (8% | (23%) | (15%)
GUI 1 2 4 5 1 4 323 030
acceptable B%) | (5% | (G1%)| (38%) (8%)
Pop-up 0 0 1 6 6 4,5 438 0.18
visualization | (0%) (0%) (8%) (46%) (46%)
Interaction 0 0 3 6 4 4 4.08 0.21
helpful _(0%) 0%) | (23%)| (46%)| (31%)
Animation 0 2 3 7 1 4 354 0.24
important 0%) | (15%)] (23%)] (54%) (8%)
Model out of 0 1 4 5 3 4 kW) 0.26
bugs (0%) (8% | (1%)| (38%) | ((23%)

0 2 3 6 2 4 1.62 0.27
WV o 0% | 5% @%]| @l 5%
Model 0 1 2 9 1 4 an 0.20
preference (0%) (8%) | (15%) [(69%) (8%)

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Strongly Agree

Much literature (e.g., Falvo, 2008; Hegarty, 2004; Hegarty et al., 2003; Lowe,
2004) stresses the usefulness of embedding animations and data visualizations in

educational models. Animations motivate learners to learn and help them get insight

147

into complicated phenomena and understand the relationships between various model
variables. The effect of these variables to model behaviour is then made visible
through various data visualizations. However, the usefulness of animations and data
visualizations is much influenced by whether or not a leamer has been equipped with
basic domain specific knowledge for understanding model outputs, generic
knowledge of quantitative and qualitative methods for interpreting the outputs and
skills for performing further experiments.

Question 2 tested if our models were useful for information visualizations and
observing animated objects and events in order to understand the models’ states and
behaviour. All of the six experienced participants believed that the models were
useful for these. This reflected that our DES components could build models with
good animations and data visualizations. Data also revealed that eight of the
participants (89%) who did not have good knowledge on simulation and eleven of the
participants (85%) who were undecided about their simulation knowledge considered
that our models provided useful animations and information visualizations. Of these
inexperienced participants, only one participant disagreed with the statement. The
high percentage of agree/strongly agree opted by the participants in this group showed
that information visualizations and animations of objects and events in our models
helped them understand DES concepts better.

Interaction plays an important role in any leaming processes (Arbaugh &
Benbunan-Fich, 2007; Su et al., 2005; Woo & Reeves, 2007). In the traditional
classroom environment, interactions between leamners and their teachers can stimulate
their knowledge acquisition and clarify their judgment. In case of virtual classrooms
and online learning environments that use models as mediums of instructions, model
interactivity can replace the teachers’ role. Although this feature does not guarantee
learmning through models (Davies, 2002; Pilkington & Parker-Jones, 1996), its
significance in motivating and engaging leaming has been corroborated in many
studies (e.g., Beux & Fieschi, 2007; Bransford, 2000; Mildrad, 2002; Schank,
Berman, & Macpherson, 1999). Question 3 tested if our models were interactive,
inviting input and providing appropnate feedback.

Based on the data, five experienced participants (83%) agreed/strongly agreed
that our models were interactive and provided appropriate feedback. The other one
participant circled an undecided option. This indicated that DES models built using

our components provided an interactive platform for stimulating active explorations

148

and showing cause and effect of the participants’ relevant actions. Of the
inexperienced participants, only two participants (9%) disagreed with the statement;
one was from the participants that disagreed that she had good knowledge on
simulation while the other one was the participant that was undecided about his
knowledge on simulation. A majority of participants that did not have knowledge on
simulation (i.e., 78%) and were undecided about their knowledge on simulation (i.c.,
62%) agreed that the models were interactive. Once again, the feedback reflected that
our models were interactive and informative to be used as DES leaming tools even
though they were used by the participants that did not have adequate prior knowledge
on DES.

Flash has been claimed to produce high quality animated applications (Castillo
et al., 2004; Mohler, 2006; Shupe & Hoekman, 2006). This was a reason why we
used Flash to build DES models and animate their behaviour. Question 4 tried to
obtain feedback from the participants about the animation quality of our models. Five
experienced participants (83%) considered that the models contained high quality
animations. Of the inexperienced participants, only four participants (18%) disagreed
with the statement and they were the participants that were undecided about their
simulation knowledge.

Table 6.6 shows in details the feedback of the participants that claimed they
often used computer as a learning tool (21 participants) about the animation quality of
our models. Eleven participants (52%) from this group considered that the models
contained high quality animations. Only three participants (14%) disagreed with the
statement. The majority of agreed/strongly agreed participants indicated that our
components produced high quality animated models that could effectively represent
The
animations offered exciting leaming materials that motivated their leaming and

the DES concepts which were difficult to be explained in static matenals.

attracted them to engage with the models.

Table 6.6 Feedback on the Quality of Animation from the Participants Who
Always Used Computer as a Learning Tool

Scale | Frequency | Percent Percent Percent
5 3 143 143 143
3 7 333 333 476
4 8 38.1 38.1 85.7
. 3 a3 143 100.0
Total 21 100.0 | 100.0

149

Model presentation is important to attract and engage learers (Djajadiningrat,
Matthews, & Stienstra, 2007; Parrish, 2009). The use of meaningful animations for
showing model behaviour can offer many benefits. These include facilitating
learners’ understanding about dynamic processes in a model, making the leaming
experience enjoyable and enriching. Some studies have also shown that leaming
through meaningful animations typically motivates leamers to learn and induce them
to retain information longer (Teoh & Neo, 2007, Vogel-Walcutt, Gebrim, &
Nicholson, 2010). Question 5 tested if our embedded animations helped them to
understand scenarios in the models. Interestingly, all the experienced participants
agreed/strongly agreed with this statement. The feedback reflected that our approach
of demonstrating the behavior of the models through meaningful animations (e.g.,
showing a sequence of events, animating the movement of entities and their current
states, changing the pictures of a server based on its status, etc.) was very useful for
understanding the models. Data also revealed that six of the participants (67%) who
did not have knowledge on simulation and eleven of the participants (85%) who were
undecided about their knowledge on simulation agreed/strongly agreed with the
statement. This suggested that we successfully integrated animations in our DES
models and the animations helped this inexperienced group understand scenarios in
the models.

When asked if various performance visualizations were meaningful for
leamning (Question 6), all the experienced participants gave positive feedback on the
item. This showed that graphs and other data displays used to report the detailed
performance of the models over simulation time were meaningful and should be used
to complement animations. This is expected since this group of leamers knows the
importance of the visualization tools in measuring the performance of the models.
However, three of the inexperienced participants (14%) disagreed and six of them
(27%) were undecided about the meaningful of the various performance visualization
tools. This probably signaled that the visualization tools may not so useful unless
learners would like to understand in details the current performances of the models.

GUISs play important roles in data-driven simulations; i.e., to capture learners’
inputs and send them to particular model processes. We partitioned the processes to
relevant components, each of which has its own GUI that can be accessed by clicking
on it. The GUIs have two functions: (1) displaying all editable vanables and their
current values, and (2) instantiating data visualization tools that graphically chart the

150

component behavior in real time. We expected this approach enabled leamers to
easily interact with the models (Question 7). Data analysis showed that five of the
experienced participants (83%) agreed/strongly agreed with us. Of the inexperienced
participants, only four (18%) disagreed that the GUIs provided by our tools were easy
to interact with. The results might indicate that the use of a mouse clicking approach
to access components offered an easy platform for learners to explore and experiment
with the models. However, a better approach to access the GUIs should be
investigated since about half of the inexperienced participants were still undecided if
the GUIs were easy to access.

When asked if they liked the design of the GUIs (Question 8), five of the
experienced participants (83%) agreed with the statement. This might reflect that our
approach of providing simple interfaces using text boxes, command buttons, combo
boxes, etc. and presenting simulation results in various windows that can be dragged
to any locations was effective. However, three inexperienced participants (14%) did
not like the design of the GUIs. One of them was the same participant that disagreed
the GUIs were easy to interact with. The other two participants were from the
participants that could not decide if the GUIs were easy to interact with. Interestingly,
there were no participants that agreed/strongly agreed that the GUIs were easy to
interact with did not like the design of the GUIs.

There has been a substantial amount of evidence that proves the use of
multiple representations through different choices of data presentations and different
forms of feedback can significantly enhance learning in complex domains (e.g., see
Ainsworth, 1999; Ainsworth, Bibby, & Wood, 2002; Bodemer & Faust, 2006;
Goldman, 2003; Kozma, 2003; Schnotz & Bannert, 2003; Seufert, 2003).
Unfortunately, this desirable feature has not been integrated in DES models. Our
DES models allow visualization customizations; i.e., learners can dynamically create
a number of visualization instances from many available types of visualization tools
(e.g., graphs, tables, clocks, etc.) during a simulation run. Thus, our models can be
represented by many interfaces, with each interface containing many representations
that show various angles of model information and vanable relationships. For
examples, texts are used to represent certain contexts, graphs (or other visualization
tools) or tables of numeric values are used to represent quantitative aspects of the
models and animations are used to represent qualitative information of their inner

processes. Data analysis of Question 9 showed that five experienced participants

151

(83%) considered that the approach of displaying visualizations only when requested
was a good approach. Of the inexperienced participants, only one participant
disagreed with this approach. A majority of them showed their strong support for the
approach. The feedback reflected that our approach of allowing leamers to customize
their own visualizations was deemed as a good idea since they could control the
display of model information based on their ability to understand the models’
behaviour.

As mentioned earlier, interactions during model execution are important to
understand model behaviour. However, most DES models provide no support for
model variable alterations during runtime. This is totally different with our DES
models that allow learners to interact with DES variables (e.g., by changing arrival
rates, queue rules, server units, etc.) on the fly and observe the effect of those
variables to model behaviour. Question 10 tests if this approach is important in
leamning. Five experienced participants (83%) stated that this feature helped their
learning. Of the inexperienced participants, there was no one who was negative about
the importance of this approach (although there were four participants (18%) could
not decide). This proved that providing an interaction platform for leamers to clanfy
their ideas was a desirable feature for learning through models.

The change of animated object representations explicitly shows the change of
model states. We suspected that these tiny changes may not help leamers to
understand model behaviour so much. However, analyses of Question 11 showed that
four experienced participants (67%) agreed/strongly agreed that such changes were
important for them to understand model behaviour. Of the inexperienced participants,
there were thirteen participants (59%) agreed/strongly agreed while only four
participants (18%) disagreed with the statement. This indicated that animations of
objects based on their states might assist learming and offered the advantage of
delivering better representations of relevant concepts. Thus, animations should be
used to explicitly explain dynamic and complicated processes such as DES and
system dynamic.

While visualization tools are important to graphically chart the pattemn of
numerical data, other relevant tools can also offer benefits in easing learming. For
example, we provided a slider to allow leamers to control animation speed based on
their abilities in extracting information from the models (i.c., time scale of events), a

table of events to show a list of types of the previous, current and next events with

152

their occurrence time in relation to model variables, tables of statistical information to
report the current statistics of each component, a description table of each entity to
display a list of its performed activities in the models, and a facility button to hide and
display paths of entity movement. This feature enables them to clearly view the
lifecycles of various entities especially for more complex structure models.

The usefulness of these tools in helping leamers to understand queuing models
was investigated in Question 12. The question was divided into sub-questions, each
of which requested the participants to rank the tool’s usefulness in model exploration.
The sub-questions and their associated tools are shown in Table 6.7. Table 6.8, Table
6.9 and Table 6.10 meanwhile show the descriptive analysis of the participants’
feedback about the tools based on their knowledge on simulation.

Table 6.7 Sub-questions of “These tools help to understand the model better (Please
write if you have any comments)”

E Sl question [y, BLE T B e Tool X 2 R
12.1 Graphs
12.2 Histograms
12.3 BoxPlots
12.4 Ability to pause, resume and adjust animation speed
125 Table of events (previous, current and future)
12.6 ;ab)le of component’s statistical information (e.g., queue, server,
c.
12.7 Entities’ i_nformation window showing activities they have
: performed in the model
12.8 Ability to hide and show the path of entities

Table 6.8 Good Simulation Knowledge Participants’ Feedback about the Model

Tools
4‘.,2‘“1.”'@";!' raSDés - A-De - NDA bl 5 SA -.““ | Mean m
0 0 0 4 2 4 433 0.21
iy ©%) | ©% %) | 6| @3%)
Histo 0 0 1 3 2 4 416 031
. (0%) (0%) (17%) (50%) (33%)
Boxplots 0 0 1 4 1 Kl 4.0 0.26
(0%) (0%) (17%) (67%) (17%)
Animation 0 0 1 1 4 s 450 034
control O] W] o] arel| ©m)
Event table 0 | | 4 0 4 3s0 034
(0%) (17%) (17%) (67%) (0%)
Statistical 0 0 1 Y | 3) 433 033
tables (0%) (0%) (17%) (33%) (50%)
Information 0 0 2 3 1 4 s 031
windows (0%) (0%) (33%) (50%) (17%)
Path 0 0 4 1 1 3 350 034
visibility (0%) (0%) (67%) (17%) (17%)

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Strongly Agree

153

Table 6.9 No Simulation Knowledge Participants’ Feedback about the Model Tools

:“ 2 5] ‘ 2 P ; 0 M I .. HEEy 8 &

ke SDI . 0 Nbﬁl : 0 “I 4 3.66 037
Graphs (11%) 0% 1wl 6| 1%

= 1 0 4 3 1 3 333 037
BAmS | (11%) %) | 44%) | (33%) | (11%)

Ssiten 1] 1 2 I 3 311 039
Mm% | %] @ | @%]| 1%

Animation 0 0 0 3 5 5 456 0.18
control (0%) (0%) (0%) | (44%) | (56%)

e 1 2 1 3 2 4 333 0.47
M| @l a1l 63%| @2%)

Statistical 0 0 3 3 2 1 189 0.26
tables (0%) 0%) | 3% | @4%) | 2%

Information 0 1 5 2] 3 333 0.29
windows 0% | (11%)| 6% | @2%)] 11%)

Path 0 4 2 1 2 2 an 0.42
visibility 0%)] @%| @%| 01%)] 2%

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Strongly Agree

Table 6.10 Undecided Simulation Knowledge Participants’ Feedback about the

Model Tools

B3 T piin] o5 SR

u&«.-é&_, fRamar]s : 5

0 2 2 9 0

S ©0s) | asw)| asw)| (69%) (0%)
0 1 5 6 1 rl 3s4| o2

i e (0%) (8%) | (38%) | (46%) (8%)
i 0 3 3 6 0 4 323| 023

oo (0%) (23%) (31%) (46%) (0%)
Animation 1 0 1 7 Il 1 400| 030

control (8%) (0%) 8% | (4% | 1%)
B i 0 4 2 5 2 4 338 031

(0%) (31%) (15%) | (38%) (0%)
Statistical 0 1 3 " 3 r) 3s4| 028

tables (0%) 8% | @3%)] @] (23%)
Information 1 1 2 8 1 4 354 030

windows (8%) (8%) (15%) | (62%) (8%)
Path 1 2 1 5 1 4 369 | 036

visibility (8%) (15%) 8% | (8% | (1%

SD=Strongly Disagree, D=Disagree, NDA=Neither Disagree nor Agree, A=Agree, SA=Strongly Agree

Based on Table 6.8, graphs were rated as the most important visualization tool
by the experienced participants (i.e., all of them agreed/strongly agreed that graphs
helped them understand the models better), followed by an animation control (five

participants with four of them strongly agreed), statistical tables (five participants

with three of them strongly agreed), histograms (five participants with two of them

strongly agreed), boxplots (five participants with one of them strongly agreed), event

tables (four participants) and lastly the path visibility facility (two participants). This

reflected that graphs plotting relevant variables (e.g., number of entities in a queue,

154

number of units of a resource used, etc.) over simulation time and an animation
control slider providing a feature for pausing, resuming and adjusting animation speed
based on the participants’ abilities to retrieve information from simulation were the
two most desirable visualization tools to get insight to the models’ behaviour. The
two visualization tools that received minimum scores were the path visibility facility
and event tables. The probable reason why the facility to hide and display received
the lowest score was because the models’ structures were not so complicated. This
tool would be useful if the models’ structures were complicated; i.e., they contained
many types of entities, each of which has its own paths. The participants that
disagreed with the usefulness of the table of events in helping them understand the
models claimed that the table was not very human readable. The table was actually
used by the models to update their behaviour and it could be used by interested
participants to trace how the models’ behaviour and their animations have been and
will be simulated over time.

For the inexperienced participants, the animation slider was rated as the most
important tool (i.e., twenty participants with nine of them strongly agreed), followed
by graphs (sixteen participants), statistical tables (fifteen participants), path visibility
(twelve participants with five of them strongly agreed), event tables (twelve
participants with four of them strongly agreed), information windows (twelve
participants with two of them strongly agreed), histograms (eleven participants) and
boxplots (nine participants). One inexperienced participant that felt the entity’s
information window was not an essential feature complained that the windows were
hard to locate while in use. This is probably true since the images of the entities in
our models are quite small.

When asked if the models were free of bugs (Question 13), fifieen of the
participants (three experienced participants and twelve inexperienced participants)
agreed/strongly agreed with the statement. Twelve of the participants (three
experienced participants and nine inexperienced participants) could not decide while
one participant disagreed. Five participants reported two bugs during their
exploration. However, two of them still agreed that the models were considerably
free of bugs, while the other three participants opted to choose neither disagree nor
agree options. These two bugs were: (1) arrows depicting paths of entity movement
disappeared after certain simulation time, and (2) certain components sometimes

could not be clicked to access their GUIs. One participant complained that the

155

description texts of some components in the second model were located under other
components and this hindered him to properly read the texts. Overall, only one
participant disagreed that the models were free of bugs. This reflected that our
approach of structuring all classes for the DES components prior to writing their code
led to relatively few syntax and logical errors.

We scrutinized our code to find the reasons for these bugs. The first bug
happened because we did not properly control the depths of arrow clips connecting
the components. After a particular number of depths, the arrows would disappear
whenever their depths were replaced by the depths of newly generated entities. We
corrected this bug. We however could not find the reasons for the second bug. For
the complaint that there were some texts under certain components, we actually
overlooked the arrangement of the components in the second model. When
simulation structures are getting complex, all simulation components have to be
compacted in a limited stage to give learmers enough spaces to customize the models’
visualization during run time. As a result, texts for some components may be located
under some other components.

When asked to rate the overall attractiveness and interactivity of the models
(Question 14), five experienced participants (83%) chose agree/strongly agree
options. Of the inexperienced participants, fifteen of them (68%) agreed with the
statement. This showed that a good balance between quantitative analyses through
data visualizations and qualitative aspects through animations, clear presentation and
attractive interfaces could improve learners’ understanding on DES concepts. There
were two participants who disagreed that our models were attractive and interactive,
and they were actually the same participants that disagreed that the models contained
high quality animations.

Question 15 asked if the participants would like to use these types of models
for understanding queuing networks. Five experienced participants and sixteen
inexperienced participants (six participants were from the participants that did not
consider to have good knowledge on simulation and ten participants were from the
participants that were undecided about their knowledge on simulation) would like to
do so. A majority of the participants that agreed with the attractiveness and
interactivity of the models reflected that our models could be used as self-study or
supplementary materials to leam DES concepts. However, there were two

inexperienced participants who disagreed that they would use the models. One of

156

them was the same participant that felt the overall attractiveness and interactivity of
the models was not good. This might signal that without basic knowledge, attractive
and interactive models would not help and improve students’ learming through
models.

For the first additional question that asked the participants if they had ever
used any other animated simulation models for queuing scenarios, only one
participant claimed that she used to use animated simulation models. She stated that
the other models that she had used had better graphics but with no exploration
capabilities. Five participants (two experienced participants and three inexperienced
participants) explicitly noted that our models helped them to understand DES
concepts. One participant said that it was so interesting to see the mechanism of
queuing networks that were difficult to illustrate using traditional paper-based or
static materials.

We invited the participants to suggest how to make simulation learning easier.
Some participants responded to this request. Their suggestions included (1) showing
the functionality of each component used in the models (e.g., in the form of tool tip
texts, pop-up windows, etc.) whenever learners selected the component, (2) providing
editable models so that their structures can be changed or modified (e.g., leamers can
arrange the flow of entities during runtime), (3) providing tutorials or helping menus
to assist them whenever they were stuck in their learning processes, (4) providing 3D
versions of the models to make them more attractive, and (5) displaying overall
results whenever simulation had finished. Some participants noted that our approach
of allowing them to create multiple visualizations themselves (i.e., controlling the
amount of visualization tools to be displayed and dragging them to wherever locations
on the model stage) was really a good approach in helping them to understand model
behaviour.

The first suggestion is easy to implement. In fact, we used this approach for
showing an entity’s activities. Since we implemented a click event in a component’s
code to access its GUI, a mouse-over event (that activates a new movie clip and holds
a description of its functionality) and a mouse-out event (that removes the movie clip
whenever a mouse pointer is not on the component region) can be used. The second
suggestion can also be accomplished since we implemented the Delegate Event Model
pattern that uses ports to link components. For this, we need to reveal all
components” names and provide fields in their GUIs to accept their downstream

157

component names during runtime. However, this will make the models look clumsy
with component names and prone to logical errors if the output ports are not specified
correctly by learners.

We agree that providing a textual tutorial, integrating other multimedia
resources or supplying a list of instructions (i.e.; some suggested hands-on
experiments) is important to assist leaming through models. Examples of hands-on
experiments include investigation experiments that request learers to investigate the
effects of various variables to model behaviour and optimization experiments that
request learners to identify and vary simulation variable values so that specified
model constraints are not broken.

The suggestion of using 3D models to make leaming through simulation
models easier is not always true. Such models could attract and engage learners since
they are close to their actual systems. However, their use in education has been
claimed to only benefit some learmers while other leamers may suffer additional
cognitive workloads (Huk, 2006; Korakakis, Pavlatou, Palyvos, & Spyrellis, 2009).
To be effective, a simulation model should offer an interactive platform for
hypotheses testing (i.e., an experimentation platform for clarifying learners’ ideas)
instead of graphic sophistication that is fun to look (Prensky, 2001).

We have to stress the danger of misinterpretation of DES results by learners
manipulating model parameters interactively during simulation run. The animations
and visualizations of our models only reflect the impacts of the parameter settings to
their current behaviour. They are not supposed to be used as an analysis tool for
measuring model performances which strictly requires unchanged parameter values
until the end of simulation. The statistical analyses in our models is to help learners
understand how a relevant parameter (e.g., time between armval, route time, queue
rule, process time, etc.) affects the models’ current states and performance. Some of
the analyses can be viewed through animations and visualizations. For example,
learners can observe the animations of the current number of entities in a queue and
visualize the current utilization of a server. Other analyses are to give the detail of the
models’ current performance measures over simulation time, and these are typically
reported using tables; e.g., throughput, waiting time in a queue (average, minimum
and maximum), length in a queue (average, minimum and maximum), time spent in

the system (average, minimum and maximum), resource utilization, etc.

158

6.3 Evaluating the Tool’s Ease of Use, Usefulness and Enjoyment

6.3.1 Assessment and Evaluation Methods

Human behaviour has long been claimed as an important element that determines the
acceptance of a technological innovation (Greenbaum & Kyng, 1991; Isomaki,
Pekkola, & Bannon, 2011). In order to empirically assess model builders’ perception
towards our component-based tool, we have conducted an experiment by adapting the
Technology Acceptance Model (TAM) developed by Davis (1989). Results of this
can signal the acceptance of our tool and can be used to improve it in the future.

TAM consists of a list of items (variables) discriminated under two cognitive
responses (factors); i.e., perceived usefulness and perceived ease of use. Perceived
usefulness relates to significant functions that the innovation provides while perceived
ease of use generally relates to interfaces and attractiveness of the innovation. These
responses were originally proposed by the Theory of Reasoned Action (Ajzen &
Fishbein, 1980; Fishbein & Ajzen, 1975) and significantly determine users’
acceptance (i.e., their attitudes and behaviour) of an innovation.

Variables for each factor in TAM were derived from previous empirical
studies on the self-efficiency theory (Banduras, 1977), the cost-benefit paradigm
(Payne, 1982) and the adoption of innovations (Tomatzky & Klein, 1982). Each
factor initially consisted of 14 candidate variables. However, after being tested for
reliability and content validity, the variables were then cut out to only six vanables
(see Table 6.11) that are adequate for testing perceived usefulness and perceived ease
of use of an innovation.

TAM has been tested as a valid and reliable model for measuring users’
acceptance of an innovation (e.g., by Adams, Nelson, & Todd, 1992; Davis &
Venkatesh, 1996; Mathieson, 1991). The significance of each factor and its vanables
in determining the acceptance of an innovation have been corroborated by other
researches (e.g., Legrs, Ingham, & Collerette, 2003; Saadé & Bahli, 2005; Teo, Lim,
& Lai, 1999; Venkatesh & Morris, 2000). At the same time, TAM has also widely
been adapted without modification or with minor extensions (i.e., by adding other
factors that affect users’ point of views, e.g., perceived enjoyment, work contexts, etc.
or that directly affect users’ perceived usefulness, e.g., social influence and cognitive

instrumental processes) by many researchers to assess users’ acceptance about various

159

technological innovations. These include tools or software (Babar, Winkler, & Biffi,
2007; Chau, 1996; Davis & Venkatesh, 1996; Laitenberger & Dreyer, 1998) and
applications (Henderson & Divett, 2003; Jahangir & Begum, 2008; Pikkarainen,
Pikkarainen, Karjaluoto, & Pahnila, 2004; Saadé & Bahli, 2005; Teo et al., 1999).

Table 6.11 TAM Factors and Their Variables
B Tactirs W[A% 4 Variable &L P

Work more quickly
Job performance
Increase productivity
Effectiveness

Makes Job Easier
Useful

Usefulness

SN R T e

Easy to learn
Controllable

Clear and understandable
Flexible

Easy to become skillful
Easy to use

Ease of use

Ll a5 ol o

6.3.2 Experiment Participants

Our participants were volunteer students at Universiti Utara Malaysia, Malaysia
(http://www.uum.edu.my) who enrolled for the Computer Modelling in Business
course. This course focuses on the concepts and analyses of DES and uses Arena
(Kelton et al., 2004; Kelton et al., 2010) as the implementation software. It is a
compulsory course for the students of the Bachelor of Decision Science programme
and can be taken in the second or third year of the programme. However, other
programme students can enrol it as an elective course.

Arena is DES software that uses the SIMAN language (C. Dennis Pegden,
Shannon, & Sadowski, 1995) as its simulation engine. DES models are created using
modules and connectors to represent their processes and logic. Animation that shows
the models” behaviour can be provided using its animation tools. Simulation outputs
will automatically be displayed when simulation ends. Figure 6.4 shows a screenshot
of Arena.

160

DL G 80 1 ur G = sl eEmsw. v

Bres dedoai¥ o HimiBe » - LAY BibBisPE~

Figure 6.4 Arena Screenshot

We intentionally chose these students since they had been equipped with
knowledge on DES concepts and had experiences in using Arena for DES model
development. This choice was made since participants with tacit knowledge and
experiences of particular contexts can effectively evaluate a tool since they exactly
know what they and other users want (Davis & Venkatesh, 1996; Whitworth, Banuls,
Sylla, & Mahinda, 2008). The effect of experiences and job relevance on users’
perceived usefulness and perceived ease of use, and eventually on their acceptance of
a tool has well been documented (e.g., in Venkatesh & Davis, 2000; Whitworth et al.,
2008).

40 students participated in this experiment. Besides their knowledge on DES,
the participants also had knowledge on programming, particularly on Visual Basic
(Harvey M. Deitel, 2006; Zak, 2009) that they leamed in the first year of their
programmes. We collected their own assessments of their knowledge on DES and
programming so that we could properly assess their perceptions of our tool.

161

6.3.3 Running the Experiment

We first provided a training session for the participants. They were first briefed about
Adobe Flash software. The explanation included the reasons we have used Flash as
an implementation environment, its GUI environment (e.g., the locations and the
functionalities of rool, component, properties and library panels, etc.) and how to
create Flash and ActionScript files. The participants were then introduced to our DES
components and their functionalities in DES models. All relevant ActionScript files
(although most of the files were already converted to relevant components) were also
presented. All these files and components had been fixed from bugs reported in the
first experiment.

We then assisted the participants in constructing a simple DES model (i.e., an
M/M/I model). The significant step was the creation of a SimProcess class file and its
attachment to an animation object to represent entity arrival. When they were familiar
with the model construction processes, they were asked to either add complexity to
the model or create a new model of their own. During model building, we were
available to answer their questions and were ready to guide them whenever they were
stuck. After experiencing with various components for an hour, they were asked to
fill out the questionnaire.

As stated earlier, users’ experiences can influence their perceived usefulness,
perceived ease of use and perceived enjoyment of a tool and eventually affect their
acceptance of the tool. Thus, our questionnaire first collected their perceived
knowledge on DES concepts, experiences in programming and familiarity with Adobe
Flash and its environment.

Items for measuring the perceived usefulness and the perceived ease of use of
our tool are shown in Table 6.12. Note that we modified the work and job keywords
in the original items in Davis (1989) and replaced them with construct words (see the
complete questionnaire in Appendix D). We also included one more factor, perceived
enjoyment, which has been claimed (e.g., by Pikkarainen et al., 2004; Saadé & Bahl,
2005; Teo et al., 1999) to influence users’ acceptance of a tool (denoted as Perceived
Enjoyment in the questionnaire). All items under these three factors used a five-point
Likert-scale that asked the participants to indicate their disagreement or agreement
about the items from (1) strongly disagree to (5) strongly agree.

162

Table 6.12 Items of Perceived Ease of Use, Perceived Usefulness, Perceived
Enjoyment and Self-predicted Future Usage of the Component-based Tool

~ Perceived Usefulness (PU)

PUI: The component-based tool enables me to construct DES models that help
learn and understand DES concepts more quickly.

PU2: The component-based tool improves my construction performance on DES
models.

PU3: The component-based tool increases my productivity of constructing DES
models.

PU4: The component-based tool enhances my effectiveness of constructing DES
models.

PUS: The component-based tool makes the construction of DES models easier.

PU6: Overall, the component based tool is useful for constructing DES models.

 Perceived Ease of Use (PEU)

PEU1: Leamning to use the component-based tool is easy for me.

PEU2: 1 find the processes of using the component-based tool were controllable
(clear, understandable and straight forward).

PEU3: My interaction with the component-based tool is clear and understandable.

PEUA4: 1 find the component-based tool to be flexible to interact with.

PEUS: 1t is easy to become skillful at using the component-based tool.

PEU6: Overall, the component-based tool is easy to use.

_Perceived Enjoyment(PE):

PEl: I have fun interacting with the component-based tool.
PE2: 1 enjoy using the component-based tool.

_Self-Predicted Future Usage (SP):
SP1: I intend to use the component-based tool to construct DES models in the
future

SP2: Iintend to show others this component-based tool.

Based on the participants’ responses, we performed two tests. First, we
assessed the reliability of the items in the questionnaire. Second, we evaluated model
builders’ perceptions on our component-based tool. High responses for the three
factors would imply that the tool was useful, easy to use and enjoy to be used.

163

6.3.4 Data Analysis and Results

6.3.4.1 General Information

Table 6.13 shows the number and the percentage of the participants grouped by their
gender. 10.00% of the participants were male while 90.00% were female. Data also

revealed that most of the participants were between 20 to 24 years old.

Table 6.13 The Participants’ Gender

X5 Gendery [NV T I
Male 4 10.00%
Female 36 90.00%

As mentioned earlier, relevant knowledge and experiences could influence the
participants’ cognitive responses (i.e., their perceived usefulness, perceived ease of
use, perceived enjoyment, etc.) about the tool (Davis & Venkatesh, 1996; Stoel &
Lee, 2003; Taylor & Todd, 1995). Table 6.14 reports how the participants rated their
knowledge on DES, their experiences in programming and their familiarity with

Adobe Flash and its environment.

Table 6.14 The Participants’ Knowledge and Experiences

 Experience | S8 | Disagree | Neutral | Agree | {0 | Mode | Mean | [S0

DES 1 8 23 8 0 3 295 0714
(2.50%) | (20.00%) | (57.50%) | (20.00%) | (0.00%)

Programming : | 10 15 12 0 3 290 0928
(7.50%) | (25.00%) | (37.50%) | (30.00%) | (0.00%)

2 11 17 10 0 3 288 0.853
AdobeFlash | - 5 5500) | (27.50%) | (42.50%) | 25.00%) | (0.00%)

The data revealed that only 22.50% of the participants perceived that that they
did not have good knowledge on DES. We can also see that 32.50% of the
participants disagreed/strongly disagreed that they had good programming
experiences and were familiar with Adobe Flash and its environment, respectively.

Of the 40 participants, only 25.00% of them perceived that they were familiar with

164

Adobe Flash. However, most of them stated that they used Adobe Flash to only
create a simple animation with little or no ActionScript programming.

6.3.4.2 Questionnaire Reliability and Validity

Based on the participants’ feedback, we first measured the reliability of the items in
the questionnaire. For this, we conducted a Cronbach’s alpha test. Table 6.15 reports
the Cronbach’s alpha values for perceived usefulness, perceived ease of use and
perceived enjoyment factors. All factors showed values higher than 0.8 (the overall
reliability was 0.927). Thus, perceived usefulness, perceived ease of use and
perceived enjoyment scales showed high levels of reliability (George & Mallery,
2009). This indicates that the questionnaire is a reliable measurement instrument.

Table 6.15 Cronbach’s Alpha Values

Perceived Usefulness 0.933
Perceived Ease of use 0.890
Perceived Enjoyment 0.823

We also checked the factorial validity of the questionnaire; i.e., whether
perceived usefulness, perceived ease of use and perceived enjoyment form distinct
constructs. For this, we performed factor analysis with varimax rotation that checks
which items tend to cluster together. Table 6.16 shows the factor analysis results.

Each value in the Table 6.16 shows the correlation of the vanable with the
three factors respectively. This value is called a variable's loading factor. It can
range between -1 (a perfect negative association with the factor) and 1 (a perfect
positive association with the factor). A value that closes to 0 indicates that there is no
relationship between the variable and the factor. A loading factor of at least 0.7
shows a strong correlation of a vanable with a considered factor (J. O. Kim &
Mueller, 1978). However, a lower value of 0.5 is sometimes considered important for
the factor (Coakes, 2007).

165

Table 6.16 Factor Analysis of Perceived Usefulness, Perceived Ease of Use and
Perceived Enjoyment

e S & T e R R L R

7 N 75 L ek 4 ess llnd',ﬁ, lqu-ut’
Work more qulckly (PUl) 714 .206 359
Job performance (PU2) 172 390 174
Increase productivity (PU3) 873 235 058
Effectiveness (PU4) 896 154 136
Makes Job Easier (PUS) 826 351 046
Useful (PU6) .820 089 203
Easy to learn (PEU1) 236 761 130
Controllable (PEU2) 226 777 312
Clear and understandable (PEU3) 8§ p 827 166
Flexible (PEU4) 261 649 492
Easy to become skilful (PEUS) 119 a77 141
Easy to use (PEU6) 241 368 649
Fun (PE1) 115 271 864
Enjoy (PE2) 142 090 872

We can see that all variables except two variables loaded greater than 0.7 on
one of the factors. The first variable, i.e., Flexible (PEU4) only had a value of 0.649
on the perceived ease of use factor. However, since this variable had a value greater
than 0.5 and loaded higher on the perceived ease of use factor than the other two
factors, we could attribute this variable to the perceived ease of use factor. The
second variable, i.e., easy to use (PEU6) loaded higher on the perceived enjoyment
factor (loading factor = 0.649). Data showed that the easy to use variable had strength

correlation with the perceived enjoyment factor.

6.3.4.3 Usefulness, Ease of Use and Enjoyment of the Tool

Table 6.17 shows the descriptive statistics for all items in the questionnaire. As we
can see, in general, most participants were positive about the tool. Few of the
participants (less than 7.50%) disagreed/strongly disagreed with the items related to
perceived usefulness, perceived ease of use and perceived enjoyment of the tool (see

the last column in Table 6.14).

166

Table 6.17 Descriptive Statistics of the Items

Variable Mean Std. Dev. Mode Dl::r' Strnmi 'z_“

Work more quickly (PUI1) 4.03 0.768 4(23) 2 (5.00%)
Job performance (PU2) 3.98 0.733 4(22) 1 (2.50%)
Increase productivity (PU3) 4.00 0.716 4 (20) 0 (0.00%)
Effectiveness (PU4) 3.88 0.822 4(16) 1 (2.50%)
Makes Job Easier (PUS) 3.93 0.730 4(22) 1(2.50%)
Useful (PU6) 4.15 0.700 4 (20) 0 (0.00%)
Perceived Usefulness 23.95 3.876 24 -

Easy to learn (PEU1) 3.65 0.834 4(19) 3 (7.50%)
Controllable (PEU2) 3.68 0.797 4(17) 2 (5.00%)
Clear and understandable (PEU3) 3.75 0.840 4(19) 3 (7.50%)
Flexible (PEU4) 3.83 0.781 4(18) 1 (2.50%)
Easy to become skillful (PEUS) 3.85 0.700 4(23) 1(2.50%)
Easy to use (PEU6) 3.75 0.809 4(21) 3 (7.50%)
Perceived Ease of Use 22.50 3.830 22 -

Fun (PE1) 393 0.572 4(27) 0 (0.00%)
Enjoy (PE2) 4.08 0.526 4(29) 0 (0.00%)
Perceived Enjoyment 8.00 1.013 8.00 -

Figure 6.5 reports the results of the tool’s perceived usefulness in graphical
formats. It shows the summative results (Figure 6.5(a)) and the detail results of each
item (Figure 6.5(b)) under this factor. The rating of summative results ranged
between 15 and 30 with the mean of 23.95. Considering the maximum rating was 30,
we could conclude that most of the participants considered the tool were useful for
constructing educational DES models. All vanables received good scores (mean

above 3.88) with the useful variable (PU6) received the highest score with the mean
of 4.15.

-
-
A

oy

N !

T

nmy an -

"nd

(a) (b)
Figure 6.5 Perceived Usefulness Results

167

The sum of items under the perceived ease of use factor ranged between 14
and 30, with the mean value of 22.50. This mean value showed the participants
perceived the tool was easy to use. A close examination of different items revealed
that all items received positive feedback from most of the participants. The easy 1o
become skilful variable (PEUS) was rated with the highest value (with the mean of
3.85). This probably indicates that the drag and drop fashion eases model
constructions and demands little guidance. Most of the participants also perceived
our tool was flexible (mean: 3.83) and easy to become skilful (mean: 3.85). The two
items that received low ratings from the participants were easy to learn (PEU1) and
controllable (PEU2) with the mean values of 3.65 and 3.68 respectively.

The sum of items under the perceived of enjoyment factor ranged between 6
and 10 with the mean value of 8. This indicated that most of the participants enjoyed
using the tool. They also stated that they had fun (mean: 3.93) and enjoyed using the
tool and its resulting models (mean: 4.08).

6.3.4.4 Self-predicted Future Usage

The participants were requested to predict their future usage of the tool; i.e., whether
they will use the tool if it is available in the future. Such self predictions are among
the most accurate predictors available for measuring an individual’s future behaviour
of an innovation (Sheppard, Hartwick, & Warshaw, 1998; Warshaw & Davis, 1985).
Table 6.18 reports the participants” self-predicted future usage of the tool. As we can
see, both variables received good feedback from them.

Table 6.18 Descriptive Statistics of Self-Predicted Future Usage

N of participants

Variable Mean Is):d' Mode strongly disagreed/
V. -
disagreed
Intend to use (SP1) 4.08 0.730 4(22) 1 (2.00%)
Intend to show to others (SP2) 4.05 0.714 4 (20) 0 (0.00%)
Self-predicted Future Usage 8.125 1.381 8 -

168

According to the Theory of Reasoned Action (Ajzen & Fishbein, 1980;
Fishbein & Ajzen, 1975), user’s perceived usefulness and perceived ease of use are
significantly correlated to the acceptance of an innovation. The acceptance has also
been proved by other studies (e.g., Pikkarainen et al., 2004; Saadé & Bahli, 2005; Teo
et al., 1999) to be influenced by their perceived enjoyment.

To investigate the degree (strength) of relationships between each of these
three factors and the participants’ acceptance of our tool, we ran a Pearson
correlation analysis. For this, we correlated the three summative results of the
perceived usefulness, perceived ease of use and perceived enjoyment to the
summative results of the participants’ predicted future usage. Table 6.19 reports the

results of the analysis.

Table 6.19 Correlations between Perceived Usefulness, Perceived Ease of Use and
Perceived Enjoyment to Self-Predicted Future Usage

Usefulness Eal.s;:eof Enjoyment ll:}ulm:
Usefulness | £ €270 Correlation 1 594" | 366 428
Sig. (2-tailed) 000 | 020 006
Pearson Correlation 594" 1 562 298
Ensoflne | cie (2iled) 000 000 062
Bt Pearson Correlation 366 562" | 1 605"
Sig. (2-tailed) 020 000 | 000
St il Pearson Correlation 428" 298| 605" | 1
Sig. (2-tailed) 006 062 | 000

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

The results showed that each perceived usefulness and perceived enjoyment
was positively correlated with self-predicted future usage. This indicated that both of
the factors were important determinants influencing the participants’ future usage of
the tool. The correlation coefficient between perceived enjoyment and self-predicted
future usage was much higher than the correlation coefficient between perceived
usefulness and self-predicted future usage; i.e., 0.605 (p < 0.005) compared to 0.428
(p < 0.010). However, we are not confident that there was a correlation between
perceived ease of use and self predicted future usage since the p-value was greater
than 0.05. This hints that the participants opted to use the tool primanly because of its
usefulness and perceived enjoyment compared to its ease of use. We can also see that

169

there was a correlation between usefulness and ease of use (r = 0.594, p < 0.005),
usefulness and enjoyment (r = 0.366, p < 0.010) and ease of use and enjoyment (r =
0.562, p < 0.005).

To reveal predictive power between self-predicted usage of the tool and the
three individual factors, regression analyses were conducted. Table 6.20 shows the
regression analysis results. The results clearly showed that perceived usefulness and
perceived enjoyment had positive effects on self-predicted future usage.

Table 6.20 Regression Analyses of the Effect of Perceived Usefulness and Perceived
Ease of Use on Self-Predicted Future Usage

Model Summary

Adjusted | Std. Error of

Model R R Square | R Square | the Estimate
1 .671(a) 451 405 1.06543
Predictors: (Constant), EaseOfUse, Enjoy, Usefulness

Coefficients
Unstandardized Standardized
Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 429 1.486 289 775
Usefulness A27 055 356 2317 026
Enjoyment 849 .204 623 4.165 000
Ease of Use -.095 062 -.264 -1.523 | 136

Dependent Variable: Future Usage

The R? of the regression was 0.451. However, the R? value is generally of
secondary importance unless the regression model will be used to make accurate
predictions. To tell how confidence we are that each of the independent vanables
(i.e., perceived usefulness, perceived ease of use and perceived enjoyment) has some
correlation with the dependant variable (i.e., future usage), we should observe the p-
values of each variable.

The p-values for perceived usefulness (p = 0.026) and perceived enjoyment (p
= 0.000) were smaller than 0.05. This indicated that both of the factors were useful
predicators for self predicted future usage. The analysis also revealed that perceived
enjoyment was the most influential factor to self-predicted usage (t = 4.165, p < 0.05).
Note that the t-value suggests the relative importance of each variable in the model

170

and t-value between -2 and 2 reflects a useful predicator. Our finding of perceived
enjoyment has significant effect on an innovation is tally with some researchers’
finding (e.g., by Pikkarainen et al., 2004; Saadé & Bahli, 2005; Teo et al., 1999).
However, this finding is in contrast with that of other researchers (e.g., Igbana, Livari,
& Maragahh, 1995) that claimed perceived enjoyment was not related to the
acceptance of an innovation.

Perceived usefulness was also found to be the influential factor to self-
predicted usage (t = 2.317, p < 0.005). This finding is in line with other TAM studies
(e.g., Davis, 1989; Davis, Bagozzi, & Warshaw, 1989; Igbaria, Zinatelli, Cragg, &
Cavaye, 1997; Keil, Beranek, & Konsynski, 1995) that found perceived usefulness
had more impact on technology acceptance than perceived ease of use since perceived
ease of use impinges on acceptance through perceived of usefulness. However, some
researchers claim the opposite (Chau, 1996; Venkatesh & Morris, 2000). We can see
that the ease of use factor had small relation with the self predicted future usage as
indicated by its non-significant t-value (p > 0.05).

6.3.4.5 Participants’ Cognitive Workloads

It is important to measure the participants’ cognitive workloads while using our tool.
There are two approaches for measuring this: Short Subjective Instrument (SSI) (Paas,
Tuovinen, Tabbers, & Gerven, 2003) and the NASA TLX mental workload
instrument (Hart, Stavenland, Hancock, & Meshkati, 1988).

The SSI assesses a participant’s overall cognitive workload using a single
question that requests him/her to rate a given task from extremely easy (1) to
extremely difficult (7). We chose the NASA TLX since it can assess the level of the
participant’s various cognitive loads, based on the combination of his’her extraneous
load (i.e., his/her memory load while using a material but this can be controlled by the
material’s designer; e.g., through the use of graphics or relevant presentation formats)
and intrinsic load (i.e., the level of perceived difficulty of a matenial and this can be
influenced by his/her knowledge and experience). Both types of workloads are
measured using the NASA TLX instruments based on six factors:

171

e Mental demand; i.e., if the task affects the participant’s attention

e Physical demand; i.e., if the task affects the participant’s health

e Temporal demand; i.e., if the task consumes a lot of time that the participant
cannot afford

e Performance; i.e., if the task is heavy or light in terms of workload

e Frustration; i.e., if the task makes the participant unhappy

o Effort; i.e., if the participant has spent a lot of effort on the task

In our case, the physical demand factor reflects the participants’ physical
tension and stress while and after developing DES models using our tool. We have
explained this term to them during the experiment. The more they use keyboards and
mice, the more physical activities they have to perform and these may cause pain in
the back, neck, shoulder and muscle, strain on the eyes and strain on fingers, etc. We
would like them to rate how the activities affected their health.

Originally, the NASA TLX calculates the participants’ overall cognitive
workloads based on their responses to pair-wise comparisons among the six factors
and their ratings on each of these factors. However, the factor rating is the most
important element in calculating the overall workload score; and removing the pair-
wise comparisons may increase the experimental validity and reduce the experimental
error (Bustamante, 2008). Since our purpose was to generally assess our participants’
cognitive workloads while using our tool, we only requested them to rate the six
factors based on a 7-point scale (1 = low, 7 = high). Table 6.21 shows their feedback
for each of the factors. The overall cognitive workload for all of the participants were
close to average with mean = 3.642 and standard deviation = 1.104. This value
indicated that the participant’s mental requirement for building DES sample models
using our tool was not so simple since they had to do some hands-on tasks (e.g.,
creating class files, attaching the files to their relevant objects, dragging, dropping and
connecting the components, etc.) and was not so complex since they had been

equipped with knowledge on and experiences in the domain.

172

Table 6.21 Participants’ Feedback about the TLX Subscales

S 3 L S T A T] Nedei | Benn | WD
8 7 4 1 7 ! 5 39 1.641
Mental demand
(5.00%) | (2000%) | (7.50%) | (10.00%) | 27.50%) | (17.50%) | (2.50%)
Physical 2 7 1 9 3 3 0 3 s | 138
demand (5.00%) | (17.50%) | (27.50%) | (22.50%) | (20.00%) | (7.50%) | (0D.00%)
Temporal 0 7 3 16 ‘“ 4 1 4 393 1.2%9
demand 0.00%) | (17.50%) | (15.00%) | (40.00%) | (15.00%) | (10.00%) | (2.50%)
2 10 13 9 5 1 0 3 30| 1LIm1
Performance
(5.00%) | (25.00%) | (32.50%) | (22.50%) | (12.50%) | (2.50%) | (0.00%)
g 2 9 4 7 13 5 0 s 358 1522
Frustration
(5.00%) | (22.50%) | (10.00%) | (17.50%) | (32.50) | (12.50%) | (0.00%)
Effoct 1 8 18 5 7 1 0 3 3w 1137
(2.50%) | (20.00%) | (45.00%) | (12.50%) | (17.50%) | (2.50%) | (0.00%)

There were two main complaints noted by the participants about the tool.
First, some of the participants complained that the approach of linking components
based on their specified names during design time tended to create logical errors.
Many of them experienced this. These hard-to-trace errors happened when specified
downstream component names were misspelled in their upstream component’s
outport property. As a result, entity flows to the upstream components would be
broken. They suggested that the components should easily be conneeted during
design time; e.g., using arrows. Secondly, the requirement processes of creating an
entity class file and attaching it to an animation object really burdened them and
should be simplified. We explained that we could actually create a library that
consists of various considered entities. However, permitting model builders to define
and create their own entities would give flexibility for them in animating the entities.

The analyses of various feedback in the first experiment confirmed that our
component-based tools produced attractive, interactive and informative DES models
which were suitable for learning and teaching purposes. Its attractiveness in terms of
animations (e.g., high quality animated objects and events, different images of objects
based on their states, etc.) makes learning enjoyable and fun. Its interactiveness in
relation to permitting learners to manipulate the models’ parameters through easy-to-
access GUIs, controlling the speed of simulation and customizing the models’
visualizations by adding, removing and relocating relevant data visualizations (e.g.,
graphs, tables, etc.) to any locations during runtime helps leamers to understand the
model’s behaviour. Its informative feature that provides feedback on the impact of

173

parameter changing through various meaningful animations and animated data
visualizations aids leamners to clarify their ideas and understand various scenarios in
the models. The analyses of various feedback in the second experiment reflected that
our DES components were useful, easy to use and enjoy to be used to build these
kinds of models. However, there is still a room for their future improvements. These
include investigating how to easily link the components instead of typing the names
of their downstream components in a layout property and providing various libranies

of entities and resources for model developers to easily animate the objects without
the need to create their appropriate classes.

174

CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

7.1 Introduction

This chapter consists of three sections: Conclusions, Limitations of the Research and
Recommendations for Future Research. The Conclusions section summarizes and
discusses the findings of this research. The Limitations of the Research section lists
and discusses some weaknesses of this research. The Recommendations for Future

Research section proposes some ideas for future research.

7.2 Conclusion

Many studies have expressed strong support for the use of games and simulations as
educational tools. Their support is mainly based on the hypothesis that leamers
implicitly acquire target knowledge during their engagement and interactions with the
models. Although such interactions can create different motivation levels of leaming
(e.g., leamners with good mental models of a domain may lose interest since its
model’s outputs can well be predicted, while other learners with less detailed models
may lose motivation since the outputs induces no significance cognitive responses),
many educators believe that the right design of a model can facilitate leaming.
Examining the benefits of using various types of simulation models and dealing with
their potential constraints in the leaming and teaching environment were one of the
research contributions.

The main contribution of this research is the proposal of how to construct DES
tools for building attractive, interactive and informative DES models to be used as
learning and teaching materials. Before this work, DES was typically used as an
analysis tool for system performance prediction and its outputs were only usable for

175

system modellers. Thus, in order to offer the benefits of DES to the education
community especially in helping learners understand the effect of capacity constraints
on the performance of a system, we proposed a component-based tool approach. This
approach allows DES tool developers to directly embed the three model features
suggested in literature review (i.e., hypothesis test platforms, concurrent responsive
animations and customized visualizations) that help to get insight into DES behaviour
during their leamning through models.

The use of attractive and interactive models of soft skill simulations or
procedural simulations to support basic concepts of relevant theories is common in
educational settings. In fact, these types of models can easily be constructed even
without using a commercial tool, since the rules regulating their logic are fully
structured. However, educational models of open-ended simulations (i.e., DES that
analyses a system’s performances or continuous simulations that deal with complex
natural processes) that allow learners to get insight into most of real world systems are
uncommon. One reason for this is that their operations involve a lot of computation
that hinders model builders from constructing their own models without the help of
the right tool.

Current DES tools have some distinct weaknesses. Most of the free research
tools are not easy to use since model construction requires a lot of programming and
their resulting models offer no animation and visualized structures. Better research
tools, although supporting model construction through a drag and drop fashion to a
certain extent, do not typically integrate good animation and visualization capabilities.
Commercial tools provide high quality animation and visualization. However, the
tools restrict further extension. Their resulting models must also be played using the
software’s player and this hinders the models from being accessed through internet or
integrated with LMSs. Additionally, no single tool generates models with runtime
interactions and visualization customization capabilities; ie., two important
characteristics that facilitate leaming according to many educational studies.

This thesis focuses on designing and developing a DES tool to help model
builders to construct educational DES models. These models facilitate leamers to get
insight into DES concepts through model interactions, customized state visualization,
entities” and resources’ animation and animation speed manipulation during runtime.
Model interactions help leamers to perform whar-if experiments without the need to
modify models’ source code. Customized state visualizations ease them to control the

176

amount of information displayed on computer screen at a time; i.e., each learner can
construct his’her own model GUIs by adding or removing particular state
visualization during runtime. Additionally, the GUIs and any interesting scenario
(i.e., its current models’ states, animation and visualization) can be saved at any time
to be loaded in the future. Speed manipulation gives flexibility to leamers to look
closer at aspects that catch their attention and skip over aspects that are of no current
interest. Furthermore, arrows that depict paths of entity movements for viewing
various entities’ lifecycles that would be helpful for more complex models are also
supported. These features are important in the learning environment, but often
neglected in the current DES tools, since their main focus is on system performance
analyses.

To systematically design such a tool, we first architected a framework that
consists of classes with their own functionalities. We have shown that this framework
was flexible enough to support the construction of various queuing models and their
specific logics, and extensible to cater various types of DES models. Model
construction tasks have now been relieved from the many of the routine tasks
associated with DES models using an object-oriented style that supports the concepts
of inheritance, encapsulation and polymorphism. However, the model building is
only through Application Programming Interface (API); ie, an amount of
programming that uses to show relationships between objects of the classes is still
needed to represent their logics.

To support the tool’s ease of use feature through a component drag and drop
fashion and to ensure that its resulting models are informative, useful and enjoyable to
be used in the learning and teaching environment, we proposed the combination of
two design patterns; i.e., the Delegation Event Model (DEM) which is used to link the
models’ components together, and the Model-View-Controller (MVC) pattern which is
used to support their GUIs and customisable visualizations during runtime.
Implementing the DEM pattern in the DES components allows us to flexibly specify
various entities’ lifecycles during design time without the need to write conditional
statements, while implementing the MVC pattern allows us to freely link vanous
visualization tools with the components without the need to refer them in the
components’ code. Thus, various visualization facilities that render generated data
during simulation can be automated or integrated with ease. We later showed how a
component’s states and its relevant animation and visualization can be saved for

177

future use. How these two design patterns support the development of a hierarchical
simulation model (i.e., how to connect and synchronize the model with its children so
that entities can be transferred between layers in the right orders) has also been
architected and discussed in detail.

We used Adobe Flash as the tool’s implementation language for two reasons.
First, it expedites the development processes of the components; e.g., through its
layout properties, facilities to attach objects with their classes and animate them based
on their states, stage for composing the components, etc. Second, it automatically
generates web-based and LMS-compatible models. With the right design and
environment, we believe that our tool eases the construction of useful DES models.

As mentioned earlier, we designed and constructed DES tools to effectively
support three groups of users; i.e., developers, teachers and leamers. We did not
investigate how easily developers could expend the tools to support other DES
applications; e.g., manufacturing, logistic, etc. However, we believed the tools could
easily be extended since their development are based on UML (Unified Modelling
Language) class diagrams (that clearly shows its relevant classes, methods attributes
and the relationships among the classes) and two well-known designed patterns, 1.¢.,
the Delegation Event Model and the Model-View-Controller which are common
approaches to all software developers. We however investigated the feedback from
teachers about the tools’ usefulness and the ease of use and learners about the tools’
attractiveness and interactivity through experiments.

Perceived usefulness, perceived ease of use and perceived emjoyment have
been claimed as crucial factors that determine the acceptance of a tool. To assess if
our component-based tool and its resulting models support these three factors, we
conducted two experiments. The first experiment basically evaluated if the tool’s
resulting models were attractive, interactive, informative and useful enough to be used
for learning and understanding DES concepts. The results of the experiment showed
that a majority of the 28 participants gave positive feedback for all items in our
questionnaire. The items were constructed based on essential model features claimed
by previous studies. The second experiment assessed usefulness, ease of use and
enjoyment of the tool from model builders’ perspectives; i.e., their experiences while
using the tool to construct DES models. Items for measuring these factors were
designed based on the Technology Acceptance Model (TAM) and other previous
relevant studies. Participants were from those that had knowledge on DES and

178

programming. Analyses of their feedback showed that a majority of the 40
participants found that the tool was useful, easy to use and enjoyable. They were also
very positive about the regular use of the tool for constructing DES models in the
future.

The feedback analyses of the second experiment also revealed that perceived
enjoyment and perceived usefulness were important determinants for the tool
acceptance. However, perceived enjoyment was discovered to be a critical factor for
its acceptance. Perceived ease of use meanwhile was found to have a relatively weak
relationship with the participants’ acceptance. We also assessed the level of the
participants’ perceived cognitive workloads while experiencing the tool using the
NASA Task Load IndeX (TLX) instrument. The results showed that the overall
workload for all participants based on a 7-point scale (1 = low, 7 = high) was 3.642
(standard deviation = 1.104); i.e., their mental requirements while using the tool were

not too simple and not too complex.

7.3 Limitations of the Research

We only focused on the design and development of DES components for building
DES educational models. Each component symbolises the location where relevant
events and their occurrence time may take place while their linkages provide
visualization structures of various entity flows. This logic can suit many types of
real-life systems; e.g., service, transportation and manufacturing systems.

In case of a continuous system where its states change continuously, the ideas
of components that simplify its model building and allow exploring its behaviour
through various GUIs and visualizations are still relevant. However, representing its
operational logic may only need three types of components; i.e., level or stock that
stores variables of continuous processes that are always changing, rate or flow that
defines the rates of change of the variables over time and these rates may depend on
other continuous processes, and semup (a continuous simulation engine) that
configures all continuous simulation calculation (e.g., size of increment time steps,
the numerical method to be used, etc.). The linkage between level and rate
components is much simpler since it only involves the assignments of vanables with

their relevant differential equations that represent the rates of change of the vanables.

179

However, specifying the equations is only possible through an APL. This requires
model builders to have some basic programming knowledge besides their mental
model of a system being constructed.

Our tool’s resulting models do not offer model construction capabilities at run
time. Right now, learners can only experiment with the models and customize their
visualizations. Allowing them to alter the existing model structures or create a new
model during runtime may offer some educational benefits especially in facilitating
their understanding of various DES aspects from model building to model analyses.
This can be achieved through providing a palette that floats around the models during
runtime and contains various model construction components, entity and resource
objects.

We used the Flash environment and its ActionScript as an implementation
language for constructing DES components. The use of other languages although
possible may introduce additional burdens since they may not provide facilities for
simplifying component development (e.g., facilities for attaching an object to a class,
embedding default GUIs to the components, etc.) and animation capabilities.
However, the design and development techniques that have been discussed in this
thesis can be implemented and extended in any other object oriented programming
languages.

Other limitations of the research relate to the experiment limitations. Firstly,
both of the experiments used small sample sizes of participants. The number of
participants in the first experiment was only 28 while the number of participants in the
second experiments was 40. Such small sample sizes definitely had an effect on the
ability to generalize the findings. As a result, we could not give conclusive evidence
about learners’ perceptions on attractiveness and interactivity of our tool’s sample
models and model builders ' perceptions on the usefulness, ease of use and enjoyment
of the tool for constructing DES models. However, we believe that these sample sizes
were sufficient enough for obtaining and reporting users” feedback about the tool. In
order to have greater confidence that the experiment results are representative, we
should have a large number of voluntary participants. Secondly, both experiments
also suffered from other possible factors; i.e., social influence processes that directly
affected the participants’ acceptance of the tool and cognitive instrumental processes
that influenced perceived usefulness and perceived ease of use of the tool (see
Venkatesh & Davis, 2000).

180

7.4 Recommendations for Future Research

Continuous systems can be found anywhere in our life; e.g., plant and animal growth,
human population, weather changes, etc. However, relevant models that ease leaming
of their behaviour are uncommon. Current tools not only require an amount of
programming code to represent the systems’ dynamic processes, but their resulting
models do not also allow adjustment of different aspects of their parameters and
customization of their visualizations during runtime. In this case, component-based
tools may ease the construction of attractive and interactive continuous simulation
models. However, how to properly structure such components to continuously track
system responses over time according to a set of differential equations and how to
support the resulting models’ GUIs so that their parameters and relevant equations can
be changed on the fly are worth to be investigated. Hopefully, there will be research
that will investigate this matter.

Many studies claim that interactions during classroom enhance leaming.
However, few researchers focus on studying learners’ interactions while using an
open-ended simulation model for making judgement about their leaming.
Investigating various factors (e.g., how long they have used the model, how many
times they have clicked relevant objects, what model parameters they have changed,
what additional evaluation need to embedded in the model, how to judge their
understanding, etc.) may signal their leaming are worth exploring. This is possible
since all relevant data about their interactions while using the model can be captured
and analysed (either using LMS facilities or by the model itself). The next step is just
to develop mechanisms that relate all the data to induce relevant conclusions about the
effective use of the model.

Guiding exploration on open-ended models through a list of structured
activities may help leaming and decrease their sense of being lost during exploration.
For this, the models must have quality and aesthetics values to support vanous
exploration capabilities. Finding a way of how to judge or measure the quality of a
model based on educational perspectives and how to better structure more flexible
objects that enable learners to deeply drill down their hierarchies (i.e., their internal
structures, operations and possibly into their source code) step by step via modal
windows is another possibility of a future research. This feature will not only enable
leamers to visualize and analyse the model (e.g., through its multiple views of

181

structures, states, abstraction levels, composition, etc.), but also help them to easily
understand how important processes and properties of a real system are presented in a
computer environment.

Our future work includes upgrading our components to support the proposed
hierarchical models discussed in Chapter 5. If they function as outlined, this will be a
great enhancement to our component-based simulation tool since the tool now

supports both of the construction of attractive and interactive a single layer and multi
layer DES models.

182

REFERENCES

Aamodt, A., & Plaza, E. (1994). Case-Based Reasoning: Foundational Issues,
Methodological Vanations, and System Approaches. A/ Communications,
7(1), 39-59.

Adams, D.A., Nelson, R.R., & Todd, P.A. (1992). Perceived Usefulness, Ease of Use,
and Usage of Information Technology: A Replication. MIS Quarterly, 16(2),
227-247.

Ainsworth, S. (1999). The Functions of Multiple Representations. Computers &
Education, 33, 131-152.

Ainsworth, S., Bibby, P., & Wood, D. (2002). Examining the Effects of Different
Multiple Representational Systems in Learning Primary Mathematics. Jowrnal
of the Learning Sciences, 11(1), 25 - 61.

Ajzen, 1., & Fishbein, M. (1980). Understanding Attitudes and Predicting Social
Behavior. Englewood Cliffs, NJ: Prentice Hall.

Ala-Mutka, K., Gaspar, P., Kismihok, G., Suurmna, M., & Vehovar, V. (2010). Status
and Developments of eLearning in the EUI0 Member States: The Cases of
Estonia, Hungary and Slovenia. European Journal of Education, 45(3), 494-
513. doi: 10.1111/5.1465-3435.2010.01442 x

Alam, G.M., Oloruntegbe, O.K., Oluwatelure, A.T., Alake, M., & Ayeni, AE. (2010).
Is 3D just an Addition of 1 to 2 or Is It More Enhancing Than 2D
Visualizations. Scientific Research and Essays, 5(12), 1536-1539.

Aldrich, C. (2002). A Field Guide to Educational Simulations. Retrieved Oct 18,
2007, from http://www.simulearn.net/pdf/astd.pdf

Aldrich, C. (2004). Simulations and the Future of Learning: An Innovative (and
Perhaps Revolutionary) Approach to e-Learning. San Francisco, California:
Pfeiffer.

Aldrich, C. (2005). Learning by Doing: A Comprehensive Guide to Simulations,
Computer Games, and Pedagogy in e-Learning and Other Educational
Experiences. San Francisco, California: Pfeiffer.

Alejandra, C., Mario, P., & Antonio, V. (2003). Component-Based Software Quality:
Methods and Techniques. Berlin: Springer.

Alonso, F., Lopez, G., Manrique, D., & Vies, J.M. (2005). An Instructional Model for
Web-based e-leaming Education with a Blended Leaming Process Approach.
British Journal of Educational Technology, 36(2), 217-235.

Anderson, J.R., Corbett, A.T., Koedinger, K.R., & Pelletier, R. (1995). Cognitive
Tutors: Lessons Learned. The Journal of the Learning Sciences, 4(2), 167-207.

Anderson, L.W., & Krathwohl, D.R. (2000). 4 Taxonomy for Learning, Teaching,
and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives.
Boston: Allyn & Bacon.

Aragon, S.R., Johnson, S.D., & Shaik, N. (2002). The Influence of Leaming Style
Preferences on Student Success in Online Versus Face-to-face Environments.
American Journal of Distance Education, 16(4), 227-245.

Arbaugh, J.B., & Benbunan-Fich, R. (2007). The Importance of Participant
Interaction in Online Environments. Decision Support Systems, 43(3), 853-
865. doi: http://dx.doi.org/10.1016/}.dss.2006.12.013

Amold, K., Gosling, J., & Holmes, D. (2006). The Java Programming Language (4th
ed.). Upper Saddle River: Addison-Wesley.

Atkinson, C., Bunse, C., Gross, H.-G., & Peper, C. (2005). Component-Based
Software Development for Embedded Systems: An Overview of Current
Research Trends. Berlin: Springer-Verlag.

Au, G., & Paul, R.J. (1996). Visual Interactive Modelling: A Pictorial Simulation
Specification System. European Journal of Operational Research, 91(1), 14-
26.

Aubidy, K.M.A. (2007). Teaching Computer Organization and Architecture Using
Simulation and FGPA Applications. Journal of Computer Science, 3(8), 624-
632.

Babar, M.A., Winkler, D., & Biffi, S. (2007). Evaluating the Usefulness and Ease of
Use of a Groupware Tool for the Software Architecture Evaluation Process.
First International Symposium on Empirical Software Engineering and
Measurement 2007 (ESEM 2007), 430-439.

Banduras, A. (1977). Self-efficacy: Toward a Unifying Theory of Behavioral Change.
Psychological Review, 84(2), 191-215.

Banks, J. (1998). Handbook of Simulation: Principles, Methodology, Advances,
Applications, and Practice. New York: John Wiley & Sons.

Bapat, V., & Sturrock, D.T. (2003). The Arena Product Family: Enterprise Modeling
Solutions. Proceedings of the 2003 Winter Simulation Conference, 210-217.

Barnes, C.D., & Laughery, J.K.R. (1997). Advanced Uses for Micro Saint Simulation
Software. Proceedings of the 1997 Winter Simulation Conference, 680-686.

Bedor, H.S., Mohamed, HK., & Shedeed, R.A. (2004). A General Architecture of
Student Model to Assess the Learning Performance in Intelligent Tutoring
Systems. Proceedings of International Conference on Electrical, Electronic
and Computer Engineering 2004, 173- 178.

Belfore, A.L., Mielke, R.R., & Kunam, K.C. (2003). A Framework for Creating
VRML Visualizations from Discrete Event Simulations. Proceedings of the
International Symposium on Collaborative Technologies and Systems, 93-98.

Bell, P.C. (1989). Stochastic Visual Interactive Simulation Models. Jowrnal of the
Operational Research Society, 40, 615-624.

Benjamin, D.M., Mazziotti, B.W., & Armstrong, F.B. (1994). Issues and Requirement
for Building a Generic Animation. Proceedings of the 1994 Winter Simulation
Conference, 1304-1310.

Beux, P.L., & Fieschi, M. (2007). Virtual Biomedical Universities and e-leaming.
International Journal of Medical Informatics, 76(5-6), 331-335.

Birtwistle, G.M. (1979). DEMOS: A Discrete Event Modelling on Simulation.
London: McMillan.

Birtwistle, G.M. (1980). Simula Begin (2 ed.). Lund, Sweden: Studentlitteratur.

Bodemer, D., & Faust, U. (2006). External and Mental Referencing of Multiple
Representations. Computers in Human Behavior, 22(1), 27-42.

Bose, S.K. (2002). An Introduction to Queueing Systems. New York: Kluwer
Academic/Plenum Publisher.

Boyar, J. (1989). Inferring Sequences Produced by Pseudo-random Number
Generators. Journal of the ACM (JACM), 36(1), 129 - 141

Bransford, J.D. (2000). How People Learn: Brain, Mind, Experience and School.
Washington, D.C: National Academy Press.

Brouwer, N., Muller, G., & Rietdijk, H. (2007). Educational Designing with
MicroWorlds. Journal of Technology and Teacher Education, 15(4), 439-462.

184

Browne, T, Jenkins, M., & Walker, R. (2006). A Longitudinal Perspective Regarding
the Use of VLEs by Higher Education Institutions in the United Kingdom.
Interactive Learning Environments, 14(2), 177-192.

Bryant, RM. (1981). A Tutorial on Simulation Programming with SIMPAS.
Proceedings of the 1981 Winter Simulation, 363-377.

Bunt, A., Conati, C., Huggett, M., & Muldner, K. (2001). On Improving the
Effectiveness of Open Leamning Environments through Tailored Support for
Exploration. Proceedings of the 10th International Conference on Artificial
Intelligence in Education (AI-ED 2001), 365-376.

Bunt, A., Conati, C., & Muldner, K. (2004). Scaffolding Self-explanation to Improve
Learning in Exploratory Leamning Environments. /ntelligent Tutoring Systems,
3220, 656-667.

Buss, A. (2000). Component-Based Simulation Modelling. Proceedings of the 2000
Winter Simulation Conference, 964-971.

Buss, A. (2002). Component Based Simulation Modeling with SIMKIT. Proceedings
of the 2002 Winter Simulation Conference, 243-249.

Buss, A., & Blais, C. (2007). Composability and Component-Based Discrete Event
Simulation. Proceedings of the 2007 Winter Simulation Conference, 694-702.

Bustamante, E.A., & Spain, R. D. . (2008). Measurement Invariance of the NASA
TLX. Human Factors and Ergonomics 52, 1522-1526.

Castagna, G. (1997). Object Oriented Programming: A Unified Foundation. Boston:
Birkhauser.

Castillo, S., Hancock, S., & Hess, G. (2004). Using Flash MX to Create e-Learning
(1" ed.). Vancouver: Rapid Intake Press.

Chang, K.-E., Chen, Y.-L., Lin, H.-Y., & Sung, Y.-T. (2008). Effects of Learning
Support in Simulation-based Physics Leaming. Computers & Education,
51(4), 1486-1498.

Charles, C.M. (2008). Today's Best Classroom Management Strategies: Paths to
Positive Discipline. Boston: Pearson/Allyn Bacon.

Chau, P.Y K. (1996). An Empirical Investigation on Factors Affecting the Acceptance
of CASE by Systems Developers. Information and Management, 30, 269-280.

Chen, G., & Szymanski, B.K. (2002). COST: A Component-Oriented Discrete Event
Simulator. Proceedings of the 2002 Winter Simulation Conference, 776-782.

Cho, YI, & Kim, T.G. (2002). DEVS Framework for Component-based
Modeling/Simulation of Discrete Event Systems. Proceedings of the 2002
Summer Computer Simulation Conference.

Chwif, L., & Barretto, M.R.P. (2003). Simulation Models as an Aid for the Teaching
and Learning Process in Operations Management. Proceedings of the 2003
Winter Simulation Conference, 1994-2000.

Clark, R.C., Nguyen, F., & Swelle, J. (2006). Efficiency in Learning: Evidence-based
Guidelines to Manage Cognitive Load. San Francisco: Jossey-Bass.

Clark, R.E., Yates, K., Early, S., & Moulton, K. (2010). An Analysis of the Failure of
Electronic Media and Discovery-Based Learning. In K. H. Silber & W. R.
Foshay (Eds.), Handbook of Improving Performance in the Workplace:
Volumes I (pp. 263-297). San Francisco: Pfeiffer.

Coakes, S.J. (2007). SPSS Version 12.0 for Windows: Analysis without Anguish.
Singapore: John Wiley & Sons Australia.

Concannon, K., Elder, M., Hindle, K., Tremble, J., & Tse, S. (2006). Simulation
Modeling with SIMULS. Mississauga, Ontario: Visual Thinking International.

185

Conway, R., & Maxwell, W. (1987). Modeling Asynchronous Materials Handling
Systems in XCELL+. Paper presented at the Proceedings of the 19th
Conference on Winter Simulation.

Craig, L.D. (2007). The Interpretation of Object Oriented Programming Languages.
London: Springer.

Crain, R.C., & Henriksen, J.O. (1999). Simulation Using GPSS/H. Proceedings of the
1999 Winter Simulation Conference, 182-187.

Cronbach, L. (1951). Coefficient Alpha and the Internal Structure of Tests.
Psychometrika, 16(3), 297-334. doi: 10.1007/bf02310555

Davies, C., H., J. (2002). Student Engagement with Simulations. Computers and
Education, 39 (3), 271-282.

Davis, F.D. (1989). Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340.

Davis, F.D., Bagozzi, R.P., & Warshaw, P.R. (1989). User Acceptance of Computer
Technology: A Comparison of Two Theoretical Models. Management
Science, 35(8), 982-1003. doi: 10.1287/mnsc.35.8.982

Davis, F.D., & Venkatesh, V. (1996). A Crtical Assessment of Potential
Measurement Biases in the Technology Acceptance Model: Three
Experiments. International Journal of Human-Computer Studies, 45(1), 19-
45.

Deitel, HM. (2006). Visual Basic 2005: How to Program. Upper Saddle River:
Pearson Prentice Hall.

Deitel, H.M., Deitel, P.J., & Goldberg, A.B. (2004). Internet & World Wide Web:
How to Program (3rd ed.). New Jersey: Pearson Education Intemational.

Djajadiningrat, T., Matthews, B., & Stienstra, M. (2007). Easy Doesn't Do It: Skill
and Expression in Tangible Aesthetics. Personal Ubiquitous Computing,
11(8), 657-676. doi: 10.1007/s00779-006-0137-9

Dochy, F., Segers, M., & Buehl, M.M. (1999). The Relation between Assessment
Practices and Outcomes of Studies: The Case of Research on Prior
Knowledge. Review of Educational Research, 69(2), 145-186.

Donatis, A.D. (2006). Advanced ActionScript Components: Mastering the Flash
Component Architecture. Berkeley: APress.

Donikian, S., & Cozot, R. (1995). General Animation and Simulation Platform.
Computer Animation and Simulation '95, 197-209. .

Dublin, L. (2004). The Nine Myths of e-leaming Implementation: Ensuring the Real
Return on Your e-leaming Investment. /ndustrial and Commercial Training,
36(7), 291-294.

Duinkerken, M.B., Ottjes, J.A., & Lodewijks, G. (2002). The Application of
Distributed Simulation in Tomas: Redesigning a Complex Transportation
Model. Proceedings of the 2002 Winter Simulation Conference, 1207-1213.

Ebner, M., & Taraghi, B. (2010). Personal Leaming Environment for Higher
Education — A First Prototype. World Conference on Educational Multimedia,
Hypermedia and Telecommunications 2010, 1158-1166.

Eck, R.V., & Dempsey, J. (2002). The Effect of Competition and Contextualized
Advisement on the Transfer of Mathematics Skills in a Computer-Based
Instructional Simulation Game. Educational Technology Research and
Development, 50(3), 23-41.

Eden, A.H. (2002). A Theory of Object-Oriented Design. Information Systems
Frontiers, 4(4), 379-391.

186

Eppler, M.J., & Burkhard, R.A. (2007). Visual Representations in Knowledge
Management: Framework and Cases. Journal of Knowledge Management, 11,
112-122.

Falvo, D.A. (2008). Animations and Simulations for Teaching and Learning
Molecular Chemistry. International Journal of Technology in Teaching and
Learning, 4(1), 68-77.

Falvo, D.A., & Johnson, B.F. (2007). The Use of Leaming Management Systems in
the United States. TechTrends, 51(2), 40-45. doi: 10.1007/s11528-007-0025-9

Fenrich, P. (2006). Getting Practical with Learning Styles in Live and Computer-
based Training Settings. The Journal of Issues in Informing Science and
Information Technology, 3, 233-242.

Filippi, J.B., Delhom, M., & Bemnardi, F. (2002). The JDEVS Modelling and
Simulation Environment. Proceedings of the Ist Biennial Meeting of the
iEMSs, 283-288.

Fishbein, M., & Ajzen, 1. (1975). Belief, Attitude, Intention and Behavior: An
Introduction to Theory and Research Massachusetts: Addison-Wesley.
Fishwick, P.A. (1992). SimPack: Getting Started with Simulation Programming in C

and C++. Proceedings of the 1992 Winter Simulation Conference, 154-162.

Fitzpatrick, S. (2003). A Review of Web-based Leaming and Teaching. Retrieved

Nov 20, 2008, from
http://www.le.ac.uk/cc/rjm1/etutor/elearmning/reviewofwebbasedt]_html

Fletcher, J.D., & Tobias, S. (2005). The Multimedia Principle. In R. E. Mayer (Ed.),
Cambridge Handbook of Multimedia Learning (pp. 17-133). New York:
Cambridge University Press.

Flynt, JP.,, & Vinson, B. (2005). Simulation and Event Modeling for Game
Developers. Boston, MA: Thomson Course Technology.

Gaffney, C., Dagger, D., & Wade, V. (2008). A Survey of Soft Skill Simulation
Authoring Tools. Proceedings of the nineteenth ACM Conference on
Hypertext and Hypermedia, 181-185.

Ganapathy, S., Narayanan, S., & Srinivasan, K. (2003). Simulation Based Decision
Support for Supply Chain Logisitics. Proceedings of the 2003 Winter
Simulation Conference, 1013-1020.

Garrido, J.M. (1999). Practical Process Simulation Using Object-Oriented Technique
and C++. Boston: Artech House.

Garrido, JM. (2001). Object-Oriented Discrete-event Simulation: A Practical
Introduction. New York: Kluwer Academic/Plenum Publishers.

Garrot, T., Psillaki, M., & Rochhia, S. (2008). Describing E-leaming Development in
European Higher Education Institutions Using a Balanced Scorecard. The
Economics of E-learning, 5(1), 57-71.

Gelenbe, E., & Pujolle, G. (1998). Introduction to Queing Network. New York:
Wiley.

George, D., & Mallery, P. (2009). SPSS for Windows Step by Step: A Simple Guide
and Reference 18.0 Update. Boston: Pearson Allyn and Bacon.

Getting Started with SIMPROCESS. (2006). Retrieved September 6, 2008, from
http://www.renque.com/downloads/RenqueManual pdf

Geuder, D.F. (1995). Object Oriented Modeling with Simple++. Proceedings of the
1995 Winter Simulation Conference, 534-540.

Gibson, D., Aldrich, C., & Prensky, M. (2007). Games and Simulations in Online
Learning: Research and Development Frameworks. Hershey, PA: Information
Science Publishing.

187

Gilman, A. (1985). Interactive Control of the Model: A Natural Companion to
Animated Simulation Graphics. Proceedings of the 1985 Winter Simulation
Conference, 196-198.

Goble, J. (1991). Introduction to SIMFACTORY IL5. Proceedings of the 1991 Winter
Simulation Conference, 77-80.

Goble, J. (1997). MODSIM III - A Tutonal. Proceedings of the 1997 Winter
Simulation Conference, 601-605.

Gokhale, A.A. (1996). Effectiveness of Computer Simulation for Enhancing Higher
Order Thinking. Journal of Industrial Teacher Education, 33(4), 36-46.
Goldman, S.R. (2003). Learning in Complex Domains: When and Why Do Multiple

Representations Help? Learning and Instruction, 13(2), 239-244.

Gonzalez-Barbone, V., & Anido-Rifon, L. (2010). From SCORM to Common
Cartridge: A step forward. Computers & Education, 54(1), 88-102.

Gredler, M.E. (2003). Games and Simulations and Their Relationships to Leamning. In
D. Jonassen (Ed.), Handbook of Research for Educational Communications
and Technology (2nd ed., pp. 571-581). Mahwah, NJ: Lawrence Erlbaum
Associates.

Greenbaum, J., & Kyng, M. (1991). Design at Work: Cooperative Design of
Computer Systems. New Jersey: Lawrence Erlbaum Associates.

Haapala, A. (2006). Promoting Different Kinds of Learners towards Active Leamning
in the Web-Based Environment. Informatics in Education, 2(2), 207-218.

Hailikari, T., Katajavuori, N., & Lindblom-Ylanne, S. (2008). The Relevance of Prior
Knowledge in Leaming and Instructional Design. American Jowrnal of
Pharmaceutical Education, 72(5).

Halpin, B. (1999). Simulation in Sociology. American Behaviroral Scientist, 42(10),
1488-1508.

Hamlin, J.S., Tarbell, J., & Williams, B. (2003). The Hidden Power of Flash
Components. San Francisco: Sybex.

Hannon, B., Ruth, M., & Meadows, D.H. (2001). Dynamic Modeling (2nd ed.). New
York: Springer.

Harrel, C.R., & Price, R.IN. (2003). Simulation Modeling Using ProModel
Technology. Proceedings of the 2003 Winter Simulation Conference, 175-181.

Harrell, C., Ghosh, BK., & Bowden, R.O. (2004). Simulation Using ProModel (2nd
ed.). New York: McGraw Hill.

Hart, S.G., Stavenland, L.E., Hancock, P.A., & Meshkati, N. (1988). Development of
NASA-TLX (Task Load Index): Results of Empinical and Theoretical
Research. In P. A. Hancock & N. Meshkati (Eds.), Human Mental Workload
(pp. 139-183). Armsterdan: Elsevier Science Publisher.

Healy, K.J., & Kilgore, R.A. (1998). Introduction to SILK and Java-based Simulation.
Proceedings of the 30th Conference on Winter Simulation, 327-334.

Hegarty, M. (2004). Dynamic Visualizations and Leaming: Getting to the Difficult
Questions. Learning and Instruction, 14, 343-351

Hegarty, M., Kriz, S., & Cate, C. (2003). The Roles of Mental Animations and
External Animations in Understanding Mechanical Systems. Cognition and
Instruction, 21(4), 325-360.

Heinich, R., Molenda, M., Russell, J.D., & Smaldino, S.E. (1999). Instructional
Media and Technologies for Learning (6 ed.). Upper Saddle River, N.I:
Merrill.

188

Henderson, R., & Divett, M.J. (2003). Perceived Usecfulness, Fase of Use and
Electronic Supermarket Use. International Journal of Human-Computer
Studies, 59(3), 383-395.

Henriksen, J.O. (1997). An Introduction to SLX. Proceedings of the 1997 Winter
Simulation Conference, 559-566.

Henriksen, J.O. (2000). Adding Animation to a Simulation Using PROOF.
Proceedings of the 2000 Winter Simulation Conference, 191-196.

Herrington, J., & Oliver, R. (1995). Critical Characteristics of Situated Leaming:
Implications for the Instructional Design of Multimedia. Proceedings of
ASCILITE'9S.

Herrington, J., & Oliver, R. (1997). Multimedia, Magic and the Way Students
Respond to a Situated Leamming Environment. Auwstralian Jowrnal of
Educational Technology, 13(2), 127-143.

Hill, D.R.C. (1996). Object-Oriented Analysis and Simulation. Harlow, New York:
Addison-Wesley.

Holzinger, A., & Ebner, M. (2003). Interaction and Usability of Simulations &
Animations: A Case Study of the Flash Technology. Proceedings of
International Conference on Human-Computer Interactions 2003
(INTERACT'03), 777-780.

Hoppensteadt, F.C., & Peskin, C.S. (2002). Modelling and Simulation in Medicine
and Life Science. New York: Springer.

Huk, T. (2006). Who Benefits from Learning with 3D Models? The Case of Spatial
Ability. Journal of Computer Assisted Learning, 22(6), 392-404. doi:
10.1111/5.1365-2729.2006.00180.x

Hull, T.E., & Dobell, A.R. (1962). Random Number Generators. SIAM Review, 4(3),
230-254.

Hunter, D., Cagle, K., Gibbons, D., Ozu, N., Pinnock, J., & Spencer, P. (2000).
Beginning XML. Birmingham: Wrox.

lazeolla, G., & Ambrogio, A.D. (1998). Distributed Systems for Web-based
Simulation. Advances in Computer and Information Science'98, 1-8.

Idrus, H., Dahan, H.M., & Abdullah, N. (2009). Challenges in the Integration of Soft
Skills in Teaching Technical Courses: Lecturers’ Perspectives. Asian Jowrnal
of University Education, 5(2), 67-81.

Igbaria, M., Livan, J., & Maragahh, H. (1995). Why Do Individuals Use Computer
Technology?: A Finnish Case Study. Information & Management, 2%5), 227-
238. doi: 10.1016/0378-7206(95)00031-0

Igbaria, M., Zinatelli, N., Cragg, P., & Cavaye, A. (1997). Personal Computing
Acceptance Factors in Small Firms: A Structural Equation Model. MIS
Quarterly(279-302).

Illeris, K. (2000). The Three Dimensional of Learning: Contemporary Learning
Theory in the Tension Field between the Cognitive, the Emotional and the
Social. Frederiksberg: Roskilde University Press.

Isomaki, H., Pekkola, S., & Bannon, L.J. (2011). “20 Years a-Growing™: Revisiting
From Human Factors to Human Actors Reframing Humans in Information
Systems Development (Vol. 201, pp. 181-188). London: Springer

Jacobs, P.H.M., Lang, AN., & Verbraeck, A. (2002). D-SOL; A Distributed Java
Based Discrete Event Simulation Architecture. Proceedings of the 2002
Winter Simulation Conference, 793-800.

Jahangir, N., & Begum, N. (2008). The Role of Perceived Usefulness, Perceived Ease
of Use, Security and Privacy, and Customer Attitude to Engender Customer

189

Adaptation in the Context of Electronic Banking. African Journal of Business
Management, 2 (1), 32-40.

Jeffries, P.R. (2005). A Framework for Designing, Implementing, and Evaluating:
Simulations Used as Teaching Strategies in Nursing. Nursing Education
Perspectives, 26(2), 96-103.

Jifeng, H., Li, X., & Liu, Z. (2005). Component-Based Software Engineering -
Need to Link Methods and their Theories. Lecture Notes in Computer Science,
3722, 70-95.

Johnson, S.D., Aragon, S.R., Shaik, N., & Palma-Rivas, N. (2000). Comparative
Analysis of Leamner Satisfaction and Learning Outcomes in Online and Face-
to-face Learning Environments. Journal of Interactive Learning Research,
11(1), 29-49.

Jonassen, D.H.,, & Land, S.M. (2000). Theoritical Foundations of Learning
Environment. New Jersey: Lawrence Erlbaum Associates.

Jong, T.D. (1991). Learning and Instruction with Computer Simulations. Education &
Computing, 6(3-4), 217-229

Jong, T.D., & Joolingen, W.R.V. (1998). Scientific Discovery Leaming with
Computer Simulations of Conceptual Domains. Review of Educational
Research, 68(2), 179-201.

Jong, T.D., & Joolingen, W.R.V. (2008). Model-Facilitated Leaming. In J. M.
Spector, M. D. Merrill, J. v. Merrienboer & M. P. Driscoll (Eds.), Handbook
of Research on Educational Communications and Technology (pp. 457-468).
New York: Taylor & Francis Group.

Jong, T.D., Martin, E., Zamarro, J.M., Esquembre, F., Swaak, J., & Joolingen,
WR.V. (1999). The Integration of Computer Simulation and Leaming
Support: An Example from the Physics Domain of Collisions. Jownal of
Research in Science Teaching, 36(5), 597-615.

Joolingen, W.R.V,, & Jong, T.D. (1991a). Characteristics of Simulations for
Instructional Settings. Education & Computing, 6(3-4), 241-262.

Joolingen, W.R.V., & Jong, T.D. (1991b). Supporting Hypothesis Generation by
Leamers Exploring an Interactive Computer Simulation. /nstructional Science,
20(5), 389-404.

Kacer, J. (2002). Discrete Event Simulations with J-Sim. Proceedings of the
Inaugural Conference on the Principles and Practice of Programming, 13-18.

Kalra, D., & Barmr, A H. (1992). Modeling with Time and Events in Computer
Simulations. Eurographics'92, 45-58.

Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The Expertise Reversal
Effect. Educational Psychologist 38(1), 23-31.

Kamat, V.R., & Martinez, J.C. (2001). Enabling Smooth and Scaleable Dynamic 3D
Visualization of Discrete-Event Construction Simulations. Proceedings of the
2001 Winter Simulation Conference, 1528-1533.

Kamat, V.R.,, & Martinez, J.C. (2007). Variable-Speed Resource Motion in
Animations of Discrete-Event Process Models. Electronic Jowrnal of
Information Technology in Construction (ITcon), 12, 293-303.

Kauchak, D.P., & Eggen, P.D. (2007). Learning and Teaching: Research Based
Methods. Boston: Pearson Allyn & Bacon.

Kaye, J., & Castillo, D. (2003). Flash MX for Interactive Simulation. New York:
Thompson Delmar Learning.

190

Kazymyr, V., & Demshevska, N. (2001). Application of Java-technologies for
Simulation in the Web. Proceedings of the 2001 International Conference on
Information Systems Technology and Its Applications, 173-184.

Keen, RE., & Spain, J.D. (1992). Computer Simulation in Biology. New York:
Wiley-Liss.

Keil, M., Beranek, P.M., & Konsynski, B.R. (1995). Usefulness and Ease of Use:
Field Study Evidence Regarding Task Considerations. Decision Support
Systems 13, 75-91.

Kelton, W.D., Sadowski, R.P., & Sturrock, D.T. (2004). Simulation with Arena (3"
ed.). New York: Mc-Graw Hill.

Kelton, W.D., Sadowski, R.P., & Swets, N.B. (2010). Simulation with Arena (5th ed.).
Singapore: Mc Graw Hill.

Kennepohl, D. (2001). Using Computer Simulations to Supplement Teaching
Laboratories in Chemistry for Distance Delivery. Jownal of Distance
Education, 16(2), 58-65.

Khalid, R., Kreutzer, W., & Bell, T. (2009). Combining Simulation and Animation of
Queueing Scenarios in a Flash-based Discrete Event Simulator. Lecture Notes
in Business Information Processing, 20, 240-251.

Kilgore, R.A. (2000). Silk, Java and Object-Oriented Simulation. Proceedings of the
2000 Winter Simulation Conference, 246-252.

Kim, J.O., & Mueller, C.W. (1978). Introduction to Factor Analysis: What It Is and
How To Do it. Newbury Park: Sage Publications.

Kim, K. (2006). The Future of Online Teaching and Leamning in Higher Education:
The Survey Says. EDUCAUSE Quarterly, 29(4), 22-30.

Kirschner, P.A., Sweller, J., & Clark, R.E. (2006). Why Minimal Guidance During
Instruction Does Not Work: An Analysis of the Failure of Constructivist,
Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching
Educational Psychologist, 41(2), 75-86.

Klein, U., Straburger, S., & Beikirch, J. (1998). Distributed Simulation with
JavaGPSS Based on the High Level Architecture. Proceedings of the 1998
SCS International Conference on Web-Based Modeling and Simulation, 85-90.

Klobas, J., & McGill, T. (2010). The Role of Involvement in Learning Management
System Success. Journal of Computing in Higher Education, 22(2), 114-134.
doi: 10.1007/s12528-010-9032-5

Knowles, M.S. (1984). Andragogy in Action. San Francisco: Jossey-Bass.

Knuth, D.E. (1981). The Art of Computer Programming, Volume 2: Seminumerical
Algorithms (2nd ed.). Reading: Addison-Wesley.

Kolb, D.A. (1984). Experiental Learning: Experience as the Source of Learning and
Development. Englewood Cliffs: NJ: Prentice-Hall.

Korakakis, G., Pavlatou, E.A., Palyvos, J.A., & Spyrellis, N. (2009). 3D Visualization
Types in Multimedia Applications for Science Leaming: A Case Study for 8th
Grade Students in Greece. Computers & Education, 52(2), 390-401.

Kozma, R. (2003). The Material Features of Multiple Representations and Their
Cognitive and Social Affordances for Science Understanding. Learning and
Instruction, 13(2), 205-226.

Krahl, D. (2003). Extend: An Interactive Simulation Tool. Proceedings of the 2003
Winter Simulation Conference, 188-196.

Krahl, D. (2007). ExtendSim7. Proceedings of the 2007 Winter Simulation
Conference, 226-232.

191

Krathwohl, D.R., Bloom, B.S., & Masia, B.B. (1996). Taxonomy of Educational
Objectives, Handbook 1: Affective Domain (2nd ed.). New York: Longman.

Kreiman, J., & Mullamey, A. (1987). SIMSCRIPT 115 Programming Language (4™
ed.). Los Angeles, CA: CACL

Kreutzer, W. (1986). System Simulation: Programming Styles and Languages.
Boston: Addison-Wesley Publisher Limited.

Kreutzer, W., Hopkins, J., & Mierlo, M.C. (1997). SimJAVA: A Framework for
Modelling Queing Networks in Java. Paper presented at the Proceedings of the
1997 Winter Simulation Conference, Atlanta, GA.

Kreutzer, W., Hopkins, J., & Mierlo, M.V. (1997). SimJAVA - A Framework for
Modeling Queueing Networks in Java. Proceedings of the 29th Conference on
Winter Simulation, 483-488. doi: http://doi.acm.org/10.1145/268437 268548

Kiihl, T., Scheiter, K., Gerjets, P., & Gemballa, S. (2011). Can Differences in
Learning Strategies Explain the Benefits of Leamning from Static and Dynamic
Visualizations?. Computers & Education, 56(1), 176-187.

Kuljis, J., & Paul, R.J. (2000). A Review of Web Based Simulation: Whither We
Wander?. Proceedings of the 2000 Conference on Winter Simulation, 1872-
1881.

L’Ecuyer, P., Meliani, L., & Vaucher, J. (2002). SSJ: A Framework for Stochastic
Simulation in Java. Proceedings of the 2002 Winter Simulation Conference,
234-242.

Laitenberger, O., & Dreyer, H.M. (1998). Evaluating the Usefulness and the Ease of
Use of a Web-based Inspection Data Collection Tool. Proceedings of Fifth
International on Software Metrics Symposium, 1998 (Metrics 1998), 122-132.

Lambert, K.A., & Osborne, M. (2004). Java: A Framework for Program Design and
Data Structures. Belmont, CA: Thomson-Brooks/Cole.

Land, S. (2000). Cognitive Requirements for Learning with Open-ended Leamning
Environments. Educational Technology Research and Development, 48(3),
61-78.

Landriscina, F. (2009). Simulation and Leaming: The Role of Mental Models.
Journal of e-Learning and Knowledge Society, 5(2), 23-32.

Lau, Y.-T. (2000). The Art of Objects: Object-Oriented Design and Architecture.
Upper Saddle River: Addison-Wesley Professional

Law, A.M. (2007). Simulation Modeling and Analysis (4 ed.). Boston: McGraw-Hill.

Law, AM., & Kelton, W.D. (2000). Simulation Modeling and Analysis. New York:
McGraw-Hill.

LeBaron, T., & Jacobson, C. (2007). The Simulation Power of AutoMOD.
Proceedings of the 2007 Winter Simulation Conference, 210-218.

Ledin, J. (2001). Simulation Engineering: Build Better Embedded Systems Faster.
Lawrence, KS: CMP Books.

Lee, J. (1999). Effectiveness of Computer-Based Instructional Simulation: A Meta
Analysis. International Journal of Instructional Media, 26(1), 71-85.

Legris, P., Ingham, J., & Collerette, P. (2003). Why Do People Use Information
Technology? A Critical Review of the Technology Acceptance Model.
Information & Management, 40(3), 191-204.

Leutner, D. (1993). Guided Discovery Learming with Computer-based Simulation
Games: Effects of Adaptive and Non-adaptive Instructional Support. Learning
and Instruction, 3(2), 113-132.

192

Liao, T.T., & Miller, D.C. (1996). Computer Games: Increase Leaming in an
Interactive Multidisplinary Environment. Journal of Educational Technology
Systems, 24(2), 195-205.

Little, M.C., & McCue, D.L. (1993). Construction and Use of a Simulation Package
in C++: University of Newcastle Upon Tyne.

Livesey, P.J. (1986). Learning and Emotion: A Biological Synthesis. Hillsdale, N.J -
Lawrence Erlbaum Associates.

Lomow, G., & Baezner, D. (1989). A Tutorial Introduction to Object-Oriented
Simulation and SIM++. Proceedings of the 1989 Winter Simulation
Conference, 140-146.

Lopez, L.A. (2006). New Perspective on Macromedia Flash 8: Comprehensive.
Boston: Thompson Course Technology.

Lott, J., & Patterson, D. (2007). Advanced ActionScript 3 with Design Patterns.
Berkeley, CA: Peachpit Press.

Lowe, R. (2004). Interrogation of a Dynamic Visualization During Learning.
Learning and Instruction, 14(3), 257-274.

Lunce, L.M. (2004). Computer Simulations in Distance Education. International
Journal of Instructional Technology and Distance Learning, 1(10), 29-40.

Lunce, L.M. (2006). Simulations: Bringing the Benefits of Situated Leaming to the
Traditional Classroom. Journal of Applied Educational Technology, 3(1), 37-
45.

m-Plant: Empower for Manufacturing Process Management. (2003). from
http://www.sim-serv.com/pdf/tools/tool_14. pdf

Macal, C.M. (2001). Simulation and Visualization. SIMULATION, 77(49), 90-92.

Maldonado, H., Lee, J.-E.R., Brave, S., Nass, C., Nakajima, H., Yamada, R. (2005).
We Learn Better Together: Enhancing eLeaming with Emotional Characters.
Proceedings of the 2005 Conference on Computer Support for Collaborative
Learning 2005: The Next 10 Years, 408-417.

Markowitz, H., Hausner, B., & Karr, HW. (1963). SIMSCRIPT: A Simulation
Programming Language. Englewood Cliffs, NJ: Prentice-Hall.

Martinez, M. (2000). International Learning in an Intermational World. ACM Jowrnal
of Computer Documentation, 24(1), 3-20. doi:
http://doi.acm.org/10.1145/330409.330411

Mascarenhas, E., Rego, V., & Sang, J. (1995). DISplay: A System for Visual-
Interaction in Distributed Simulations. Proceedings of the 1995 Winter
Simulation Conference, 698-705.

Mathieson, K. (1991). Predicting User Intentions: Comparing the Technology
Acceptance Model with the Theory of Planned Behavior. Information Systems
Research, 2(3), 173-191.

Matloff, N. (2008). Introduction to Discrete-Event Simulation and the SimPy
Language. Retrieved September 2008, 2008, from
http://heather.cs.ucdavis.edu/~matloff/1 56/PLN/DESimIntro.pdf

Matwiczak, K.M. (1990). Interactive Simulation: Let the User Beware. Proceedings
of the 1990 Winter Simulation Conference, 453-456.

Mayer, R.E. (2003). Elements of a Science of E-leaming. Jowrnal of Educational
Computing Research 29(3), 297 - 313

Mayer, R.E., Hegarty, M., Mayer, S., & Campbell, J. (2005). When Static Media
Promote Active Learning: Annotated Illustrations Versus Narrated Animations
in Multimedia Instruction. Jowrnal of Experimental Psychology: Applied,
11(4), 256-265.

193

Mayer, RE., & Moreno, R. (2003). Nine Ways to Reduce Cognitive Load in
Multimedia Leaming. Educational Psychologist, 38(1), 43-52.

McKenna, P., & Laycock, B. (2004). Constructivist or Instructivists Pedagogical
Concepts Practically Applied to a Computer Leaming Environment. ACM
SIGCSE Bulletin, 36(3), 166-170.

McNab, R., & Howell, F.W. (1996). Using Java for Discrete Event Simulation
Proceeding of Twelfth UK Computer and Telecommunications Performance
Engineering Workshop (UKPEW), 219-228.

McNab, R., & Howell, F.W. (1998). simjava: A Discrete Event Simulation Package
for Java with Applications in Computer Systems Modelling. Proceeding of the
First International Conference on Web-based Modelling and Simulation.

Meldo, N., & Pidd, M. (2007). Using Component Technology to Develop a
Simulation Library for Business Process Modelling. Ewropean Jowrnal of
Operational Research, 172(1), 163-178.

Meyer, R., Page, B., Kreutzer, W., Knaak, N., & Lechler, T. (2005a). DESMO-J - A
Framework for Discrete Event Modelling & Simulation. In B. Page & W.
Kreutzer (Eds.), The Java Simulation Handbook - Simulating Discrete Event
Systems with UML and Java (pp. 263-335). Aachen: Shaker Verlag.

Meyer, R., Page, B., Kreutzer, W., Knaak, N., & Lechler, T. (2005b). DESMO-J - A
Framework for Discrete Event Modelling & Simulation. In B. Page & W.
Kreutzer (Eds.), Simulating Discrete Event Systems with UML and Java.
Aachen: Shaker Verlag.

Michael, K.Y. (2000). 4 Comparison of Students' Product Creativity Using a
Computer Simulation Activity Versus a Hands-on Activity in Technology
Education. Virginia Polytechnic Institute and State University.

Michelson, J.D., & Manning, L. (2008). Competency Assessment in Simulation-based
Procedural Education. The American Journal of Surgery, 196(4), 609-615.

Mildrad, M. (2002). Using Construction Kits, Modeling Tools and System Dynamics
Simulations to Support Collaborative Discovery Leaming. Educational
Technology & Society, 5(4), 76-87.

Miller, J.A., Ge, Y., & Tao, J. (1998). Component-Based Simulation Environment:
JSIM as a Case Study Using Java Beans. Proceedings of the 1998 Winter
Simulation Conference, 373-381.

Miller, J.A., Ge, Y., & Tao, J. (1998). Component-based Simulation Environments:
JSIM as a Case Study Using Java Beans. Paper presented at the Proceedings
of the 30th conference on Winter simulation, Washington, D.C., United States.

Milrad, M. (2002). Using Construction Kits, Modeling Tools and System Dynamics
Simulations to Support Collaborative Discovery Leaming. Educational
Technology & Society, 5(4), 76-87.

Min, R. (2003). Simulation and Discovery Leaming in an Age of Zapping and
Searching: Learmning Models. Turkish Online Journal of Distance Education,
4(2).

Mohler, J.L. (2006). Flash 8: Graphics, Animation and Interactivity. New York:
Thomson/Delmar Learning.

Moock, C. (2002). ActionScript for Flash MX: The Definitive Guide, Second Edition
(2 ed.). Sebastopol: O'Reilly Media.

Moock, C. (2004). Essential ActionScript 2 0. Farnham: O'Reilley.

Moreno, R. (2006). Does the Modality Principle Hold for Different Media? A Test of
the Method-Affects-Learning Hypothesis. Jowrnal of Computer Assisted
Learning, 22(3), 149-158. doi: 10.1111/5.1365-2729.2006.00170.x

194

Moreno, R., & Mayer, R. (2007). Interactive Multimodal Learning Environments.
Educational Psychology Review, 19(3), 309-326. doi: 10.1007/510648-007-
9047-2

Moretti, S. (2002). Computer Simulation in Sociology: What Contributions?. Social
Science Computer Review, 20(1), 43-57.

Narayanan, N.H., & Hegarty, M. (2002). Multimedia Design for Communication of
Dynamic Information. /nternational Journal of Human Computer Studies,
57(4), 279-315. doi: http://dx.doi.org/10.1006/ijhc.2002.1019

Narayanan, S., Cowgill, J., Malu, P., Nandha, H., Patel, C., Schneider, N. (1997).
Web-based Distributed Interactive Simulation Using Java. Proceedings of the
1997 IEEE International Conference on Systems, Manufacturing and
Cybernetics, 3, 2690-2695.

Neumann, G., Page, B., Kreutzer, W., Kiesel, G., & Meyer, R. (2005). Simulation and
E-Leaning. In B. Page & W. Kreutzer (Eds.), Simulating Discrete Event
Systems with UML and Java (pp. 401-433). Aachen: Shaker Verlag.

Nigel, N. (2008). Curriculum and the Teacher: 35 years of the Cambridge Jowrnal of
Education. London: Routledge.

Njoo, M., & Jong, T.D. (1993). Exploratory Leaming with a Computer Simulation for
Control Theory: Leamning Processes and Instructional Support. Jowrnal of
Research in Science Teaching, 3((8), 821-844.

Noguez, J., & Sucar, L. (2005). A Semi-open Leamning Environment for Virtual
Laboratories MICAI 2005: Advances in Artificial Intelligence (pp. 1185-1194).

Nordgren, W.B. (2003). Flexsim Simulation Environment. Proceedings of the 2003
Winter Simulation Conference, 197-200.

O’Reilly, J. (2002). Introduction to AweSim. Proceedings of the 2002 Winter
Simulation Conference, 221-224.

Odhabi, H.I.,, Paul, R.J., & Macredie, R.D. (1998). Developing a Graphical User
Interface for Discrete Event Simulation. Proceedings of the 1998 Winter
Simulation Conference, 429-436.

Oloruntegbe, K.O., & Alam, G.M. (2010). Evaluation of 3d Environments and Virtual
Realities in Science Teaching and Leaming: The Need to Go Beyond
Perception Referents. Scientific Research and Essays, 5(9), 948-954.

Oses, N., Pidd, M., & Brooks, R.J. (2004). Critical Issues in the Development of
Component-based Discrete Simulation. Simulation Modelling Practice and
Theory, 12(7-8), 495-514.

Paas, F., Tuovinen, J., Tabbers, H., & Gerven, P.V. (2003). Cognitive Load
Measurement as a Means to Advance Cognitive Load Theory. Educational
Psychologist, 38(1), 63-71.

Page, B., & Kreutzer, W. (2005). The Java Simulation Handbook: Simulating
Discrete Event Systems with UML and Java. Aachen: Shaker Verlag.

Page, E.H., Moose, R.L.J., & P.Griffin, S. (1997). Web-Based Simulation in Simjava
Using Remote Method Invocation. Proceedings of the 1997 Winter Simulation
Conference, 468-473.

Parrish, P. (2009). Aesthetic Principles for Instructional Design. Educational
Technology Research and Development, 57(4), 511-528. doi: 10.1007/s11423-
007-9060-7

Payne, J.W. (1982). Contingent Decision Behavior. Psychological Bulletin, 92(2),
382-402.

Pedgen, C.D. (2007). Simio: A New Simulation System Based on Intelligent Objects.
Proceedings of the 2007 Winter Simulation Conference, 2293-2300.

195

Pegden, C.D. (1989). Introduction to SIMAN. Sewickley, PA: Systems Modelling
Cooperation.

Pegden, C.D., Alan, A., & Pritsker, B. (1978). SLAM Tutorial. Proceedings of the
1982 Winter Simulation Conference, 661-668

Pegden, C.D., Shannon, R.E., & Sadowski, R.P. (1995). Introduction to Simulation
Using Siman (2™ ed.). New York: McGraw-Hill.

Peters, K., & Yard, T. (2004). Extending Macromedia Flash MX 2004: Complete
Guide and Reference to JavaScript Flash. Birmingham: Friends of ED.

Piaget, J. (1977). The Development of Thought: Equilibration of Cognitive Structures.
Oxford: B. Blackwell.

Pidd, M. (2004). Computer Simulation in Management Sciences (5th ed.). Hoboken,
NJ: Wiley.

Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., & Pahnila, S. (2004). Consumer
Acceptance of Online Banking: An Extension of the Technology Acceptance
Model. Internet Research, 14(3), 224-235.

Pilkington, R., & Parker-Jones, C. (1996). Interacting with Computer-based
Simulation: The Role of Dialogue. Computers and Education, 27(1), 1-14.

Porter, T.S., Riley, T.M., & Ruffer, R.L. (2004). A Review of the Use of Simulations
in Teaching Economics. Social Science Computer Review, 22(4), 426-443.

Praehofer, H., Sametinger, J., & Stritzinger, A. (2001). Concepts and Architecture of
a Simulation Framework Based on the JavaBeans Component Model. Future
Generation Computer Systems, 17(5), 539-559.

Prensky, M. (2001). Digital Game-Based Learning. New York: McGraw-Hill.

Pritsker, A.A.B., & O'Reilly, J.J. (1999). Simulation with Visual SLAM and AweSim.
New York: John Wiley & Sons.

Pritsker, A.A.B., Sigal, C.E., & Hammesfahr, R.D.J. (1994). SLAM II: Network
Models for Decision Support. New York: Scientific Press.

Quinn, C.N. (2005). Engaging Learning: Designing e-Learning Simulation Games.
San Francisco: Pfeiffer.

Quinn, J., & Alessi, S. (1994). The Effects of Simulation Complexity and Hypothesis-
generation Strategy on Leaming. Jowrnal of Research on Computing in
Education 27(1), 75-91.

Radcliff, J.B. (2005). Why Soft Skall Simulation.
www.competenet.com/downloads/SimulationWP-F1 .pdf

Reid, D.J., Zhang, J., & Chen, Q. (2003). Supporting Scientific Discovery Leaming in
a Simulation Environment. Journal of Computer Assisted Learning, 19, 9-20.

Rekapalli, P.V., & Martinez, J.C. (2007). A Message-Based Architecture to Enable
Runtime User Interaction on Concurrent Simulation-Animations of
Construction Operations. Proceedings of the 2007 Winter Simulation
Conference, 2028-2031

Renque Discrete Event Simulation: User’s Guide. (2008). Retrieved September, 6,
2008, from http://www.renque.com/downloads/RenqueManual pdf

Renshaw, C.E., & Taylor, H.A. (2000). The Educational Effective of Computer-based
Instruction. Computer & Geocities, 26, 677-682.

Repenning, A., loannidou, A., Payton, M., Ye, W., & Roschelle, J. (2001). Using
Components for Rapid Distributed Software Development. Jowrnal of
Software, 18(2), 38-45.

Rice, S.V., Mananski, A., M., M.H,, & Bailey, SM. (2004). Object Oriented
SIMSCRIPT. Proceedings of the 37* Annual Simulation Symposium, 178-187.

196

Rice, S.V., Marjanski, A., Markowitz, HM., & Bailey, S.M. (2005). The SIMSCRIPT
[l Programming Language for Modular Object-Oriented Simulation.
Proceedings of 2005 Winter Simulation Conference, 621-630).

Rieber, L.P. (1992). Computer-based Microworlds: A bridge between Constructivism
and Direct Instruction. Educational Technology Research and Development,
40(1), 93-106.

Rieber, L.P. (1995). Using Computer-based Microworlds with Children with
Pervasive Developmental Disorders: An Informal Case Study. Jowrnal of
Educational Multimedia and Hypermedia, 4(1), 75-94.

Rieber, L.P. (1996). Seriously Considering Play: Designing Interactive Leaming
Environments Based on the Blending of Microworlds, Simulations, and
Games. Educational Technology Research & Development, 44(2), 43-58.

Rieber, L.P. (2002). Supporting Discovery-based Leaming with Simulations. The
International Workshop on Dynamic Visualizations and Learning, Knowledge
Media Research Center.

Rieber, L.P., Tzeng, S.-C., & Tribble, K. (2004). Discovery leaming, representation,
and explanation within a computer-based simulation: finding the right mix.
Learning and Instruction, 14(3), 307-323.

River, R.H., & Vockell, E. (1987). Computer Simulations to Stimulate Scientific
Problem Solving. Journal of Research in Science Teaching, 24, 403-415.

Rob, P., & Semaan, E. (2000). Databases: Design, Development and Deployment.
Singapore: McGraw-Hill Higher Education.

Robinson, S.L. (1994). An Introduction to Visual Interactive Simulation in Business.
International Journal of Information Management, 14(1), 13-23.

Robinson, W.R. (2000). A View of the Science Education Research Literature:
Scientific Discovery Leaming with Computer Simulations. Jowmnal of
Chemical Education, 77(1), 17. doi: 10.1021/ed077p17

Rohrer, M.W. (2000). Seeing is Believing: The Importance of Visualization in
Manufacturing Simulation. Proceedings of the 2000 Winter Simulation
Conference, 1211-1216.

Romiszowski, A. (2004). How's the E-leaming Baby? Factors Leading to Success or
Failure of an Educational Technology Innovation. Educational Technology,
44(1), 5-27.

Rooks, M. (1991). A Unified Framework for Visual Interactive Simulation.
Proceedings of the 1991 Winter Simulation Conference, 1146-1155.

Roschelle, J., DiGiano, C., Koutlis, M., Repenning, A., Phillips, J., Jackiw, N. (1999).
Developing Educational Software Components. Jowrnal of Computer, 32(9),
50-58

Rose, L.L. (1981). Hierarchical Modelling in GASP. Proceedings of the 1 £* Annual
Symposium on Simulation, 199-213.

Rossetti, M.D., Aylor, B., Jacoby, R., Prorock, A., & White, A. (2000). SIMFONE:
An Object-Oriented Simulation Framework. Proceedings of the 2000 Winter
Simulation Conference, 1855-1864.

Rosson, M.B.,, & Seals, C.D. (2001). Teachers as Simulation Programmers:
Minimalist Learning and Reuse. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 237-244.

Saadé, R., & Bahli, B. (2005). The Impact of Cognitive Absorption on Perceived
Usefulness and Perceived Ease of Use in On-line Leaming: An Extension of
the Technology Acceptance Model. Information & Management, 42(2), 317-
327.

197

Sahin, S. (2006). Computer Simulations in Science Education: Implications for
Distance Education. Turkish Online Journal of Distance Education, 7(4), 132-

146.

Sanders, W.B. (2004). Macromedia Flash MX Professional 2004: Kick Start.
Indianapolis: Sams.

Sanders, W.B., & Cumaranatunge, C. (2007). ActionScript 3.0 Design Patterns.
Sebastapol, CA: OReilly.

Sargent, R.G. (2004). Some Recent Advances in the Process Worldview. Proceedings
of the 2004 Winter Simulation Conference, 294-299.

Schank, R.C., Berman, T.R., & Macpherson, K.A. (1999). Leaming by Doing. In C.
M. Reigeluth (Ed.), Instructional-Design Theories and Models: A New
Paradigm of Instructional Theory, Vol. 2 (Instructional Design Theories &
Models). Mahwah, NJ: Lawrence Erlbaum Associates.

Schnotz, W., & Bannert, M. (2003). Construction and Interference in Learning from
Multiple Representation. Learning and Instruction, 13 (2), 141-156.

Schwartz, D.L., Bransford, J.D., & Sears, D. (2005). Efficiency and Innovation in
Transfer. In R. E. Haskell (Ed.), Transfer of Learning from a Modern
Multidisciplinary Perspective (pp. 1-51). CT: Information Age Publishing.

Schwetman, H. (1988). Using CSIM to Model Complex Systems. Proceedings of the
1988 Winter Simulation Conference, 246-253.

Schwetman, H. (2001). CSIM19: A Powerful Tool for Building System Models.
Proceedings of the 2001 Winter Simulation Conference, 250-255.

Seila, A.F. (1986). Discrete Event Simulation in PASCAL with SIMTOOLS. Paper
presented at the Proceedings of the 18th Conference on Winter Simulation,
Washington, DC.

Seufert, T. (2003). Supporting Coherence Formation in Leaming from Multiple
Representations. Learning and Instruction, 13 (2), 227-237.

Shannon, R.E. (1998). Introduction to the Art and Science of Simulation. Proceedings
of the 30th Conference on Winter Simulation, 7-14.

Sheppard, B.H., Hartwick, J., & Warshaw, P.R. (1998). The Theory of Reasoned
Action: A Meta Analysis of Past Research with Recommendations for
Modifications and Future Research. Journal of Consumer Research, 15(3),
325-343.

Shi, JJ.,, & Zhang, H. (1999). Iconic Animation of Construction Simulation.
Proceedings of the 1999 Winter Simulation Conference, 992-997.

Shupe, R., & Hoekman, R. (2006). Flash 8: Projects for Learning Animation and
Interactivity. Sebastopol: O'Reilley Media Inc.

Siemens, G. (2005). Connectivism: A Leaming Theory for the Digital Age.
International Journal of Instructional Technology and Distance Learning,
2(1), 3-10.

Sikora, A., & Niewiadomska-Szynkiewicz, E. (2007). A Federated Approach to
Parallel and Distributed Simulation of Complex Systems. International
Journal of Applied Mathematics and Computer Sciences, 17(1), 99-106.

Smialek, M. (2002). Developing e-Leamning Simulations with Tools You Already
Know. Retrieved May 12, 2008, from
http://www.elearningguild.com/pdf/2/120302DEV-P pdf

Smith, L.H., & Renzulli, J.S. (1984). Leamning Style Preferences: A Practical
Approach for Classroom Teachers. Theory into Practice, 23(1), 44-50.

Stahl, 1. (2003). How Should We Teach Simulation. Proceedings of the 2000 Winter
Simulation Conference, 1602-1612.

198

Stenalt, M.H., & Godsk, M. (2006). The Pleasure of E-Leaming - Towards Aesthetic
E-Learning Platforms. Proceedings of the 12" International Conference of
European University Information Systems, 210-212.

Sterman, J.D. (2001). System Dynamics Modeling: Tools for Leaming in a Complex
World. California Management Review, 43(1), 8-25.

Stoel, L., & Lee, K.H. (2003). Modeling the Effect of Experience on Student
Acceptance of Web-based Courseware. Internet Research, 13 (5), 364 - 374,

Strassburger, S., Schulze, T., Lemessi, M., & Rehn, G.D. (2005). Temporally Parallel
Coupling of Discrete Simulation Systems with Virtual Reality Systems.
Proceedings of the 2005 Winter Simulation Conference, 1949-1957.

Su, B., Bonk, C.J., Magjuka, R.J., Liu, X., & Lee, S.-h. (2005). The Importance of
Interaction in Web-Based Education: A Program-level Case Study of Online
MBA Courses. Journal of Interactive Online Learning, 4(1), 1-18.

Swaak, J., & Jong, T.D. (2001a). Discovery Simulations and the Assessment of
Intuitive Knowledge. Journal of Computer Assisted Learning, 17(3), 284-294.

Swaak, J., & Jong, T.D. (2001b). Leamer vs. System Control in Using Online Support
for Simulation-based Discovery Leaming. Learning Environments Research,
4(3), 217-241.

Syrjakow, M., Berdux, J., & Szczerbicka, H. (2000). Interactive Web-based
Animations for Teaching and Leaming. Proceedings of the 2000 Winter
Simulation Conference, 1651-1659.

Tan, J., & Biswas, G. (2007). Simulation-Based Game Leaming Environments:
Building and Sustaining a Fish Tank. The First IEEE International Workshop
on Digital Game and Intelligent Toy Enhanced Learning, 73-80.

Taylor, S., & Todd, P.A. (1995). Understanding Information Technology Usage: A
Test of Competing Models. Information Systems Research, 6(2), 144-176. dox:
10.1287/isre.6.2.144

Teo, T.S.H., Lim, V.K.G., & Lai, R.Y.C. (1999). Intrinsic and extrinsic motivation in
Internet usage. Omega, 27(1), 25-37.

Teoh, B.S.-P., & Neo, T.-K. (2007). Using Computer-generated Animation as
Additional Visual Elaboration in Undergraduate Courses. The Turkish Online
Journal of Educational Technology, 6(4), 28-37.

Thomas, R.C., & Milligan, C.D. (2004). Putting Teachers in the Loop: Tools for
Creating and Customizing Simulations. Jowrnal of Interactive Media in
Education(15).

Thompson, W.B. (1996). Introduction to the WITNESS Visual Interactive Simulator
and OLEIl Automation. . Proceedings of the 1996 Winter Simulation
Conference, 547-550.

Tomatzky, L.G., & Klein, K.J. (1982). Innovation Characteristics and Innovation
Adoption-Implementation: A Meta-Analysis of Findings. /EEE Transactions
on Engineering Management, 29(1), 28-45.

Towne, D.M. (2007). Enhancing Human Performance via Simulation-based Training
and Aiding: A Guide to Design and Development. Rotterdam: Sense
Publishers.

Tumay, K. (1987). Factory Simulation with Animation: The No Programming
Approach. Proceedings of the 1987 Winter Simulation Conference, 258-260.

Tversky, B., & Morrison, J. (2002). Animation: Can It facilitate?. International
Journal of Human-Computer Studies, 57, 247-262.

199

Tyan, H.Y. (2002). Design, Realization and Evaluation of a Component-Based
Compositional Software Architecture for Network Simulation. (PhD Thesis),
The Ohio State University.

Valentine, E.C., Verbraeck, A., & Sol, H.G. (2003). Advantages and Disadvantages of
Building Blocks in Simulation Studies: A Laboratory Experiment with
Simulation Expert. Proceedings of the 15th European Simulation Symposium,
141-148.

Veeke, HP.M., & Ottjes, J.A. (1999). Tomas: Tool for Object-Oriented Modelling
and Simulation. Proceedings of the Business and Industry Simulation
Symposium, 76-81.

Veermans, K., Jong, T.D., & Joolingen, W.R.V. (2000). Promoting Self-Directed
Learning in Simulation-Based Discovery Leaming Environments Through
Intelligent Support. Interactive Learning Environments, 8(3), 229-255.

Venkatesh, V., & Davis, F.D. (2000). A Theoretical Extension of the Technology
Acceptance Model: Four Longitudinal Field Studies. Management Science,
46(2), 186-204.

Venkatesh, V., & Morris, M. (2000). Why Don't Men Ever Stop to Ask for
Directions? Gender, Social Influence, and Their Role in Technology
Acceptance and Usage Behavior. MIS Quarterly, 24(1), 115-139.

Vogel-Walcutt, J.J., Gebrim, J.B., & Nicholson, D. (2010). Animated versus Static
Images of Team Processes to Affect Knowledge Acquisition and Leamning
Efficiency. Journal of Online Learning and Teaching, 6(1), 163-173.

Vossen, G., & Westerkamp, P. (2006). Towards the Next Generation of E-Leaming
Standards: SCORM for Service-Oriented Environments. Proceedings of Sixth
International Conference on Advanced Learning Technologies, 1031-1035.

Vries, JD. (2004). Character-Based Simulations: @ What Works.
http://www.openu.ac.il/research_center/download CHARAC] .pdf

Wagner, E.D. (2006). Delivering on the Promise of elLeaming
http://www.adobe.com/education/pdf/eleaming/Promise_of el.eaming wp_fi
nal.pdf

Wahlstedt, A., Pekkola, S., & Niemela, M. (2008). From e-leaming Space to e-
learning Place. British Journal of Educational Technology, 39, 1020-1030.
doi: 10.1111/5.1467-8535.2008.00821 _1.x

Wainer, G.A., & Mosterman, P.J. (2010). Discrete-Event Modeling and Simulation:
Theory and Applications. Boca Raton: CRC Press.

Warshaw, P.R., & Davis, F.D. (1985). Disentangling Behavioral Intention and
Behavioral Expectation. Journal of Experimental Social Psychology, 21(3),
213-228.

Wenzel, S., & Jessen, U. (2001). The Integration of 3-D Visualization into the
Simulation-based Planning Process of Logistics Systems. SIMULATION,
77(3-4), 114 -127.

White, B., Shimoda, T., & Frederiksen, J. (1999). Enabling Students to Construct
Theories of Collaborative Inquiry and Reflective Learning: Computer Support
for Metacognitive Development. International Jowrnal of Al in Education, 10,

151-182.
Whiteside, J.A. (2002). Beyond Interactivity: Immersive Web-Based Leaming
Experiences. Retrieved May 12, 2007, from

www.elearmningguild.com/pdf/2/120302DEV-P pdf

200

Whitworth, B., Banuls, V., Sylla, C., & Mahinda, E. (2008). Expanding the Criteria
for Evaluating Socio-Technical Software. JEEE Transactions on Systems,
Manufacturing and Cybernetics, 38(4), 777-790.

Wilson, B.G., Jonassen, D.H., & Cole, P. (1993). The ASTD Handbook of
Instructional Technology. In G. M. Piskurich (Ed.), Cognitive Approaches 1o
Instructional Design (pp. 21.21-21.22). New York: McGraw-Hill.

Wittrock, M.C. (1989). Generative Processes of Comprehension. Educational
Psychologist, 24(4), 345.

Woo, Y., & Reeves, T. (2007). Meaningful Interaction in Web-based Leaming: A
Social Constructivist Interpretation. Internet and Higher Education, 1(X1), 15-
25.

Wright, P. (1998). Beginning Visual Basic 6 Objects. Indianapolis: Wrox Press.

Wurdinger, S.D., & Carlson, J. (2010). Teaching for Experiential Learning: Five
Approaches that Work. Lanham: Rowman & Littlefield Education.

Yahiaoui, A., Hensen, J.LM., & Soethout, L.L. (2004). Developing CORBA -based
Distributed Control and Building Performance Environments by Run-time
Coupling. Proceedings of the 10th International Conference on Computing in
Civil and Building Engineering, 86-94.

Yi, M.R., & Cho, T.H. (2001). Hierarchical Simulation Model with Animation for
Large Network Security. Lecture Notes in Computer Science, 2229, 456-460.

Yi, MR, & Cho, T.H. (2003). Hierarchical Simulation Model with Animation.
Engineering with Computers, 19(2), 203-212.

Yin, C., Ogata, H.,, & Yano, Y. (2007). Participatory Simulation Framework to
Support Leaming Computer Science. International Jowrnal of Mobile
Learning and Organisation 1(3), 288 - 304.

Zak, D. (2009). Clearly Visual Basic programming with Microsoft Visual Basic 2008.
Boston: Course Technology.

Zeigler, B.P. (1984). Multifaceted Modeling and Discrete Event Simulation. London:
Academic Press.

Zeigler, B.P. (1990). Object Oriented Simulation with Modular, Hierarchical Models.
New York: Academic Press.

Zeigler, B.P. (2000). Theory of Modeling and Simulation (2nd ed.). San Diego:
Academic Press.

Zhang, J., Chen, Q., Sun, Y., & Reid, D.J. (2004). Triple Scheme of Learning Support
Design for Scientific Discovery Leamning Based on Computer Simulation:
Experimental Research. Journal of Computer Assisted Learning, 20, 269-282.

Zhong, Y., & Shirinzadeh, B. (2004). Analysis, Conversion and Visualization of
Discrete Simulation Results. Proceedings of the Eighth International
Conference on Information Visualisation, 118-123.

201

