
COMPONENT-BASED TOOLS FOR

EDUCATIONAL SIMULATIONS

A thesis submitted in partial fulfilment of the requirements for the

Degree

of Doctor of Philosophy in Computer Science and Software Engineering

in the University of Canterbury

by Ruzclan Khalid

LrU\ ersuy of Canterbury

2()13

ABSTRACT

e-Leaming is an effective medium for delivering knowledge and skills. In spite of

improvements in electronic delivery technologies, e-Learning is still a long way away

from offering anything close to efficient and effective learning environments. To

improve e-Leaming experiences, much literature supports simulation based e­

Learning. This thesis begins identifying various types of simulation models and their

features that induce experiential learning. We focus on designing and constructing an

easy-to-use Discrete Event Simulation (DES) tool for building engaging and

informative interactive DES models that allow learners to control the models'

parameters and visualizations through runtime interactions. DES has long been used

to support analysis and design of complex systems but its potential to enhance

learning has not yet been fully utilized. We first present an application framework

and its resulting classes for better structuring DES models. However, importing
relevant classes, establishing relationships between their objects and representing

lifecycles of various types of active objects in a language that does not support

concurrency demand a significant cognitive workload. To improve this situation, we

utilize two design patterns to ease model structuring and logic representation (both in

time and space) through a drag and drop component approach. The patterns are the

Delegation Event Model, used for linking between components and delegating tasks

of executing and updating active objects' lifecycles, and the MVC (Model-View­

Controller) pattern, used for connecting the components to their graphical
instrumentations and GUIs. Components implementing both design patterns support

the process-oriented approach, can easily be tailored to store model states and

visualizations, and can be extended to design higher level models through hierarchical

simulation development. Evaluating this approach with both teachers and learners

using ActioriScript as an implementation language in the Flash environment shows

that the resulting components not only help model designers with few programming
skills to construct DES models, but they also allow learners to conduct various

experiments through interactive GUIs and observe the impact of changes to model

behaviour through a range of engaging visualizations. Such interactions can motivate

learners and make their learning an enjoyable experience.

ACKNOWLEDGMENTS

I wish to sincerely thank: my supervisor, Associate Professor Dr. Wolfgang
Kreutzer and my associate supervisor, Professor Dr. Tim Bell for all their constant

intellectual challenges and very kind guidance and encouragement during this study.
I would also like to thank all staff and postgraduate students at University of

Canterbury for whatever help they gave to complete this study.
To my family, thanks so much for giving your continuous moral support and

encouragement, and sharing your valuable time during our stay in New Zealand. You

all have always been my source of strength and inspiration.

Lastly, thanks to all of those who implicitly or explicitly committed until the

completion ofthis study.

11

TABLE OF CONTENTS

ABSTRACT i

ACKNOWLEDGEMENTS ii

LIST OF FIGURES vii

LIST OF TABLES ix

1. INTRODUCTION

1.1 Introduction

1.2 Statement of the Problem

1.3 Objectives and Motivations

1.4 Scope of the Research

1.5 Contributions to Knowledge
1.6 Thesis Overview

1

4

4

12

14

17

2. SIMULATION AND EDUCATION

2.1. Introduction

2.2. Simulation Models and Their Purposes

2.3. Types of Simulation Models

2.4. The Role of Simulation in Education and Learning

2.4.1 The Role of Simulation in Learning Theories

2.4.2 Empirical Evidence

2.4.3 Simulation and e-Learning
2.4.3.1 Promises and Problems of e-Learning

2.4.3.2 The Roles of Course Management Systems

2.4.3.3 Pedagogical Aspects of e-Learning

2.5. DES Development Tools

2.6. Animated DES Systems

2.7. Summary

19

19

20

22

26

26

32

33

33

35

36

38

40

44

III

3. A FRAMEWORK FOR DES AND ANIMATION 46

3.1. Introduction 46

3.2. DES and Queuing Scenarios 48

3.3. Modelling Time 50

3.2.1 The Event-Oriented Approach 51

3.2.2 The Process-Oriented Approach 52

3.4. The DES Framework 54

3.4.1 The Data Collector Package 56

3.4.2 The Distribution Package 57

3.4.3 The Monitor (Simulation Executive) Package 59

3.4.4 The Resource (Servers and Queues) Package 61

3.5. Graphical Objects in Discrete Event Models 62

4. USING FLASH FOR SIMULATION 67

4.1 Introduction 67

4.2 Visual Simulation and Visual Interactive Simulation 68

4.3 Animation Approaches 71

4.4 Managing Simulation and Animation 74

4.5 Flash as an Implementation Language for Simulation and Animation 77

4.5.1 Flash Features for VIS Development 78

4.5.2 Flash Component Construction 79

4.5.3 Other Advantages of Flash and Its Drawbacks 81

4.6 Flash Components for Queuing Systems 83

4.7 Flash Components for Visualizing Queuing Systems 89

4.8 Example 91

4.9 Problems and Pitfalls 96

4.10 Extensibility 99

5. CO.MPONENT-BASED MODELING FOR ANIMATED SIMULATIO 102

5.1 Introduction 102

5.2 Component Based Simulation 104

5.3 The Environment of Animated Simulation Models 105

5.4 The Delegation Event Model for Linking Components 107

5.5 The MVC for Visualizing Component States III

IV

5.6 Cormecting External Data

5.7 Example
5.8 Towards Hierarchical Simulation Model Designs
5.9 Designing Mechanisms for Hierarchical DES Models

5.9.1 Monitor Delegation Mechanism

5.9.2 Monitor Communication Mechanism

5.1 0 Problems and Challenges

114

118

122

125

126

130

133

6. EVALUATION AND ANALYSIS

6.1 Introduction

6.2 Evaluating Models' Attractiveness and lnteractivity

136

136

137

6.2.1 Assessment and Evaluation Methods 137

6.2.2 Experiment Participants 139

6.2.3 Data Analysis and Results 142

6.2.3.1 Generallnformation 142

6.2.3.2 General Questions 143

6.2.3.3 Model Rating 145

6.3 Evaluating the Tool's Ease of Use, Usefulness and Enjoyment 159

6.3.1 Assessment and Evaluation Methods 159

6.3-.2 Experiment Participants 160

6.3.3 Rurming the Experiment 162

6.3.4 Data Analysis and Results 164

6.3.4.1 General Information 164

6.3.4.2 Questionnaire Reliability and Validity 165

6.3.4.3 Usefulness, Ease of Use and Enjoyment of the Tool 166

6.3.4.4 Self Predicted Future Usage 168

6.3.4.5 Participants' Cognitive Workload 171

7. CONCLUSION AND FUTURE RESEARCH 175

7.1 Introduction

7.2 Conclusion

7.3 Limitations of the Research

7.4 Recommendations for Future Research

175

175

179

181

v

BmLIOGRAPHY 173

APPENDICES

Appendix A: Consent Form

Appendix B: Questionnaire Information Sbeet

Appendix C: Learner Questionnaire

Appendix D: Model Builder Questionnaire

Appendix E: User Manual

Appendix F: Source Code (in CD)

LIST OF FIGURE

Figure 1.1 Interactions between Teachers, Learners, Models and LMSs 11

Figure 3.1 The Event-Oriented Approach Mechanism 52

Figure 3.2 The Process-Oriented Approach Mechanism 53

Figure 3.3 Package Diagram for Queuing Models 56

Figure 3.4 Class Diagram for the DataCollectors Package 56

Figure 3.5 Class Diagram for the Distribution Package 58

Figure 3.6 Class Diagram for the Monitor Package 59

Figure 3.7 Class Diagram for the Resource Package 61

Figure 3.8 Graphical Objects in DES 63

Figure 4.1 Visual Simulation Components 69

Figure 4.2 Three Approaches to Combine Simulation with Animation 71

Figure 4.3 DES's Animated Objects 75

Figure 4.4 Transformation from Model to Animation Time 76

Figure 4.5 Component Architecture 79

Figure 4.6 Class Diagram of Components for Simulation Input and Output 84

Figure 4.7 Flash Component Panel 87

Figure 4.8 Samples of DES Visualization Tools 91

Figure 4.9 Sample of Interactions between Learners and a Model 95

Figure 4.10 Sample of Information Gained from a Model 96

Figure 4.11 Extended Components for Supporting Logistic and Manufacturing
Systems 99

Figure 5.1 Simulation and Animation Aspects of a Model 105

Figure 5.2 The DES Delegation Event Model Structure 108

Figure 5.3 The flow of a SimProcess Object in DES Components 110

Figure 5.4 The DES MVC Structure 112

Figure 5.5 Flash Development Environment 118

Figure 5.6 A Queuing Network System 119

Figure 5.7 A Server's Properties and Default Values 120

Figure 5.8 A Final Model 121

Figure 5.9 Interactions with Component Instances 122

Figure 5.10 Hierarchical Construction of a DES Model 124

Figure 5.11 Submodel Architecture and Transferring Mechanisms 126

V1I

Figure 5.12 Monitor Delegation Mechanism 128

Figure 5.13 Submodel Class Definition 129

Figure 5.14 Simulation Class Definition 129

Figure 5.l5 Agenda States 132

Figure 6.1 Simple Queuing Networks 141

Figure 6.2 More Complicated Queuing Networks 141

Figure 6.3 Participants' Feedback on Simulation Knowledge 144

Figure 6.4 Arena Screenshot 161

Figure 6.5 Perceived Usefulness Results 167

Vlll

LIST OF TABLES

Table 2.1 Classification of Constructive Computer Simulations 23

Table 2.2 Simulation Types and Learning Support 24

Table 2.3 Some Learning Theories and Their Features 28

Table 2.4 Available DES Simulation Tools 38

Table 2.5 Desirable Features for the Design of DES Tools 44

Table 3.1 Types of Directed Graphs 64

Table 3.2 Properties and Events for Dynamic Objects 65

Table 4.1 Aspects of Simulation-Animation Approaches 73

Table 4.2 Interaction Characteristics of Concurrent and Post-processed
Animations 74

Table 4.3 Available Simulation Tools and Their Features 74

Table 4.4 Simulation to Animation Conversion 75

Table 4.5 Events and Model Time Difference in a Sample System 76

Table 4.6 VIS Graphic Displays and Flash Features 78

Table 4.7 DES Component Types 86

Table 4.8 Flash Components for Building DES Models and Their
Functionalities 86

Table 4.9 Flash Components for Visualizing DES Models and Their
Functionalities 90

Table 5.1 Server Properties and Description 120

Table 6.1 Items in Model Rating 140

Table 6.2 Time Spent (in minutes) for Each Score 144

Table 6.3 Good Simulation Knowledge Participants' Feedback about
the Models 146

Table 6.4 No Simulation Knowledge Participants' Feedback about

the Models 146

Table 6.5 Undecided Simulation Knowledge Participants' Feedback about
the Models 147

Table 6.6 Feedback on the Quality of Animation from the Participants
Who Always Used Computer as a Learning Tool 149

Table 6.7 Sub-questions of "These tools help to understand the model

better (please write if you have any comments)" 153

Table 6.8 Good Simulation Knowledge Participants' Feedback about

the Model Tools 153

1X

Table 6.9 No Simulation Knowledge Participants' Feedback about
the Model Tools 154

Table 6.10 Undecided Simulation Knowledge Participants' Feedback about
the Model Tools 154

Table 6.11 TAM Factors and Their Variables 160

Table 6.12 Items ofPerceived Ease of Use, Perceived Usefulness,
Perceived Enjoyment and Self-predicted Future Usage
of the Component-based Tool 163

Table 6.13 The Participants' Gender 164

Table 6.14 The Participants' Knowledge and Experiences 164

Table 6.15 Cronbach's Alpha Values 165

Table 6.16 Factor Analysis ofPerceived Usefulness, Perceived Ease
ofUse and Perceived Enjoyment 166

Table 6.17 Descriptive Statistics of the Items 167

Table 6.18 Descriptive Statistics of Self-Predicted Future Usage 168

Table 6.19 Correlations between Perceived Usefulness, Perceived Ease
of Use and Perceived Enjoyment to Self-Predicted Future

Usage 169

Table 6.20 Regression Analyses of the Effect of Perceived Usefulness
and Perceived Ease ofUse on Self-Predicted Future Usage 170

Table 6.21 Participants' Feedback about the TLX Subsca1es 172

x

CHAYfER 1

INTRODUCTIO

1.1 Introduction

e-Leaming (i.e., technologies that use digital technologies to deliver and facilitate

learning) is increasingly used in schools, higher education and training centres either

to support distance learning or to complement the traditional classroom environment.

Since it uses electronic media; e.g., the Internet, to support learning, this style of

knowledge transmission eases traclitional constraints on time, space and clistance. The

advantage to learners is that they can learn at anytime and anywhere. As a result, the

use of e-Learning has grown rapidly throughout the world. However, this technology

requires that learners themselves are responsible for gaining knowledge; a key

concept of learner-centred education.

The teacher-student ratios either for primary, secondary or tertiary education

in some countries (e.g., India, South Africa, Philippines, etc.) are still high. In India,

the teacher-student ratio for secondary school was reported 32.7 in 2004 and 25.33 in

2010 (http://www.tradingeconomics.com). Although the ratios have slightly been

improved in most countries during past few years, less time dedicated by teachers to

the needs of each individual student demands attractive and interactive learning
materials to promote and enhance their learning experiences. Learning materials that

focus on activities (i.e., some degree of interaction) during the learning process are

crucial in this and have proved to ha e more positi e impacts on learning than static

materials, such as numbers, texts and pictures (Holzinger & Ebner, 2003; eumann,

Page, Kreutzer, Kiesel, & Meyer, 2005; L P. Rieber, 1996). Multimeclia materials

that allow content navigation that integrate text , picture, cliagrarns, ound and

dynamic images (i.e., animations and movies) are increa ingly integrated in learning
environments. More recently, techniques that make learning more enjoyable and fun

(e.g., simulations and computer games) have also been proposed (e.g., see Aldnch,

2002, 2004,2005; Prensky, 2001).

Simulation is a technique for experimenting with models of real or imaginary

systems (see Aldrich, 2002, 2004, 2005; Prensky, 2001). Since it allows learners to

manipulate parameters and directly observe the impact of modifications on model

behaviour and performances, it can be a powerful learning tool, whose "hands-on"

activities engage learners emotionally and help to improve understanding of complex
scenarios. There is a large body of literature (e.g., C. N. Quinn, 2005; Rosson &

Seals, 2001; Smialek, 2002; Syrjakow, Berdux, & Szczerbicka, 2000; Thomas &

Milligan, 2004) that corroborates these benefits of simulations in a learning and

teaching environment.

The main benefit of embedding simulations in an educational context is that it

stimulates a scientific discovery style of learning; i.e., learning based on self-directed

initiatives (long & Joolingen, 1998; Neumann et aI., 2005; L. P. Rieber, 2002). This

learning style requires learners to initiate and control their knowledge acquisition

through designing and executing experiments, analyzing model feedback and

constructing hypotheses based on this information (River & Vockell, 1987). The

iterative cycle of experimentation and drawing conclusions from exploring a model

are believed to encourage critical thinking, scaffold a deeper and more structured

understanding of concepts, and encourage long lasting retention of a learned domain

(Aldrich, 2004, 2005; Schwartz, Bransford, & Sears, 2005).

In spite of its strengths, simulation-based learning is an unsupervised learning
environment whose effectiveness depends strongly on learners' and models'

characteristics, and how much guidance can be pro ided. Learners' characteristics

include learning styles (Martinez, 2000), motivation (Wittrock, 1989), prior

knowledge (Dochy, Segers, & Buehl, 1999; Hailikari, Katajavuori, & Lindblom­

Ylanne, 2008), meta-cognitive aspects (i.e., strategies for directing learning) and other

miscellaneous skills (Joolingen & Jong, 1991 b; joo & Jong, 1993; White, Shimoda,

& Frederiksen, 1999). Among these factors, prior knowledge of a studied domain

tends to have the strongest influence on effective exploration (Lee. 1999; Mayer,

2003). Without such knowledge, learners tend to suffer ineffective and inadequate

exploration. Ineffective exploration leads learners to insignificant experimentation
and difficulties in drawing conclusions from model e perirnents, while inadequate

exploration tends to result in too hallow understanding. Thus, some researchers

2

(e.g., J. R. Anderson, Corbett, Koedinger, & Pelletier, 1995; Kirschner, Sweller, &

Clark, 2006) urge teachers to support learners with guidance that directs learrung and

aids their activities. Examples of suggested guidance are structuring tasks through

explicit instructions (Veermans, long, & Joolingen, 2000), requesting learners to

observe and describe interesting scenarios (Tan & Biswas, 2007), or guiding learners

at appropriate times; e.g., through Adaptive Coaching for Exploration (Bedor,

Mohamed, & Shedeed, 2004; Bunt, Conati, Huggett, & Muldner, 2001; Bunt, Conati,

& Muldner, 2004; Noguez & Sucar, 2005).
While guidance is important for directing learning, models should act as

platforms for testing hypotheses. Experimentation and deduction is only possible if

models contain these features:

• activities (e.g., mouse clicking/rolling, keyboard input, etc.) to motivate learners'

actions and challenge their imagination,
• informative and meaningful feedback and visualizations (e.g., through texts,

images, diagrams, graphs, sounds, etc.) that motivate learners to perform further

experiments,
• attractive responsive animations that demonstrate feedback of model behaviour,

and

• reflection of real world scenarios that stimulate learners' imagination and connect

their mental models to the outside world.

To draw good conclusions, learners not only need to engage and interact with

a model, but also need to communicate with their peers and teachers. Fortunately,

facilities for this are widely available in modern Learning Management Systems

(LMSs). To fully complement e-Learning environments, they need attractive,

interactive and informative learning materials. Prior to 1996, the development of such

materials was highly dominated by Java (Arnold, Gosling, & Holmes, 2006: Lambert

& Osborne, 2004). Since then the development of highly interactive models has been

made easier by the introduction of the Adobe's Fla h animation tool (Castillo.

Hancock, & Hess, 2004; Stenalt & Godsk, 2006). However, this multimedia

3

development tool has not been utilized to its full capabilities to support learning and

teaching.

1.2 tatement of the Problem

In spite of improvements in electronic delivery technologies, e-Learning is still a long

way away from offering anything close to efficient and effective learning
environments. To be effective, electronic courseware management (e.g., through

LMSs) requires high quality contents such as simulations and educational games to

improve e-Learning experiences. Unfortunately, common LMSs offer no support for

this and little research has been done to ease the construction and customization of

online simulation models and their integration into learning management systems. As

a result, e-Learning is still dominated by static materials (e.g., PDF, Microsoft Word

and PowerPoint files, etc.), rather than more sophisticated and dynamic techniques;
some detailed data is given in Wagner (2006).

While much has been claimed about the benefits of simulations and games in

supporting and enhancing learning and training, few investigations into how to

develop and construct simulation tools, how to design attractive and interactive model

graphical user interfaces (GUls), how to store models' intermediate states, and how to

integrate simulations into LMSs have been performed. To improve this state of

affairs, it seems important to make both model construction and model deployment

easy for teachers, so that the resulting models are attractive and interactive enough to

motivate learners to explore and experiment, and so that tools can easily be e tended

to help model developers to construct libraries for painless construction of many

different types of animations and visualizations.

1.3 Objectives and Motivations

This research assumes that simulation models are useful tool for clarifying idea and

showing flows of events. It is therefore not our primary objective to demon trate that

simulations enhance student learning - an a umption that ha already been

corroborated by many empirical in e tigations (e.g., Gokhale, 1996: Liao & 1iller.

4

1996; Michael, 2000; Renshaw & Taylor, 2000; L. P. Rieber, 1996). Instead, this

research investigates how simulation models can most easily be built and dehvered

within an e-Leaming environment. We focus on Discrete Event Simulation (DES)

models. Thus, the research plans are to:

• design and construct a tool for animated simulation models for web based delivery
and LMS integration

• integrate the models with suggested model features that facilitate learning
• analyse users' feedback of the tool and its resulting models

• extend the tool to support more complex models

Our motivation is clear. We found no tools that allow users to interact with

their resulting models, customize the models' visualizations during runtime and save

the models' states and animations at any point of interest for later uploading. Thus,

our particular interests centre is on exploration, construction and application of DES

tools that can effectively support three groups of users:

I. developers (i.e., those who are interested ill extending these tools to new

applications),

2. teachers (i.e., model designers and implementers) and

3. learners (i.e., model users).

Developers should be conversant with the tools' internal architecture. so that

extension is easy and not unduly limited. Teachers, on the other hand, need easy-to­

use model construction tools, since they are probably lacking in programming

knowledge and experiences. Finally, learners should be presented with attractive and

interactive animated models that support knowledge acquisition through

experimentation.
To satisfy all three parties' expectations, a visual modelling environment that

offers component-based composition of simulation models has been designed and

constructed. It reduces model complexity through use of pre-assembled component ,

5

each of which handles their specific functionality. These components can be

combined to form models. This approach eases model construction since components

can be reused over and over again Component development is based on an Object
Oriented architecture (Eden, 2002: Lau, 2000) and the design of their code follows

Object Oriented Programming (OOP) principles of good practice with regard to

encapsulation, inheritance, polymorphism and exception handling.
We identified two design patterns that suit the development and extension of

the DES tool; i.e., the Delegate Event Model and the Model-View-Controller (MVC)

interface architecture. The Delegate Event Model was used to wire components to

each other, since its style of event broadcasting is analogue to the flow of entities in

DES components, so that that an entity (an event object) is passed from a component

(an event source) to other components (event listeners). The Model-View-Controller

(MVC) interface architecture is used to support a component's graphical interfaces

(GUIs) and multiple visualizations of its states. By following this design pattern,

components can be loosely coupled to their GUIs (to receive inputs) and

visualizations tools (to receive state notifications). Adding or removing visualizations

does not affect other component parts since each component only store a list of

interested visualization instances - without any influence on a visualization's

implementation. Since each component needs to perform two tasks; i.e.,

communicating with each other and notifying state changes to an observer, the

component's class must define both patterns in its implementation.
The component-based modelling framework offers ease-of-use by allowing

model designers to drag components from a library, drop them onto a worksheet and

assemble them appropriately into models. Four categories of simulation components

have been designed and implemented:

• components for modelling activities,

• components for visualizing simulation results,

• a component for controlling animation speed, and

• a utility component for saving or refreshing model states and revealing their flows

or lifecycles.

6

Various component properties can be customized through GUIs. Since

modelling components have output port properties (i.e., they store a list of interested

components that wish to receive state change notifications), they must be wired to

each other so that messages can be routed in the right order When all components

have been wired together into a model, teachers can test and then distribute the model

to learners. Although the resulting model has a fixed structure, we have tailored the

components to allow learners to change model parameters and explore the resulting
chains of events without any need to change model code. Since each component is

also an object, the values for the output port properties can be specified during
runtime.

We have identified five elements that should exist in a DES model to help
learners understand its behavior; i.e.:

1. A model should provide easy-to-access runtime GUls for changing component

parameters. These could employ mouse-over to allow learners to quickly view a

component's attribute values, text boxes to receive input-based interactions (e.g.,
time of an entity's creation, a resource's capacity, etc.), combo boxes to permit
learners to type a value directly into a field or choose a value from a list of

existing options (e.g., queuing disciplines, distributions that specify time between

arrivals, delays, resources' service times, etc.) and command buttons to activate

visualization tools (e.g., graphs, histograms, box plots, etc.). Data visualization

tools should be easy to be added, removed, sized and positioned at any location

through drag and drop gestures. To make their display both more informative and

attractive, some model components; e.g., servers, should be animated to depict
their current states.

2. A model should offer a display list of all past, current and next events. so that

learners can obtain clarification on how it is executed and how component

parameters affect event sequences in the model. Without such a list, learners tend

to just passively view animations rather than actively seeking an understanding of

model behaviour; i.e., how event are affected by different model parameters.

3. A model should animate message passing and movements of transient entities

between components. Arrov can depict a me age' or an entity' trav el

direction, but learners should be able to remove thi feature if it ob cures other

patterns or visualizations.

7

4. A model should provide a high degree of top-level control over a irnulation and

its animation; e.g., allowing learners to stop, restart, speed up or slow down the

execution of models and their animations. This gives learners a choice to look

closer at aspects that catch their attention and skip over aspects that are of no

current interest. While such a capability IS helpful in fostering understanding,

proper synchronization of animation speed and SImulation clock time is crucial to

preserve a consistent correspondence of simulation and animation activities.

5. A model should provide a utility component for allowing learners to save model

visualizations and entities' current states for restarts or reloads of a model without

the need to exit from the program or refresh a web page.

Embedding these functionalities in a model however poses a number of

challenges. These include:

1. The construction of runtime GUIs is only possible through an Application

Programming Interface (API). Since component GUIs are based on the MVC

pattern, this demands that each component must be equipped with its own GUI to

handle its parameters. When there are many components, this is a cumbersome

task.

2. While there could be many attractive and interactive third-party data visualization

components on the market, they cannot be easily integrated \1 ith our components.

The main reason once again lies in the implementation of the Mi/C pattern, which

demands that all interested observers (i.e., visualization tools) define an update
method in order to receive notifications from the components. We have therefore

opted to implement our own data visualization constructs.

3. Implementing the Delegation Event Model pattern in an animated simulator

requires to correctly trigger sorted events in the Monitor at appropnate times (i.e ..

to stop or delay events appropriately before attempting to trigger ub equent

events) and to smoothly transfer entities along their life cycles 0 that they reach

their next destination at times that are con i tent with the viewing ratio (i.e.,

animation speed) specified by a learner. Thi neces itated a nested design. \\ here

model time must be mapped onto animation time, and animation tune fum

mapped onto real time, We have therefore opted for concurrent animauons to

Immediately display the effect of viewing ratio changes, rather than a post­

processed animations or direct simulation-animation (Hill, 1996) architecture.

4. Storing models requires storing all component mstance idenuues (with their

current states and all interested observers) and running the models requires
continuation from their last saved positions (e.g., entities must continue travelling
to their next location based on their current locations and leftover travel times).

We therefore investigated methods to perform these.

5. Since we also designed our components to support hierarchical Simulations that

can accommodate more complex model structures, we need to find a way to

connect and synchronize models in a hierarchical fashion, where aspects of parent

models may depend on their child model(s) states. This demands a mechanism

that not only synchronizes the flow of simulation entities in a child model, but can

also transmit this information to its parent whenever its relevant events have been

executed.

Before providing such components, we had to construct core libraries for

coordinating state transitions and processes in DES models; i.e., a DES monitor

engine. Its purpose is to keep track of all DES aspects, such as entities, resources,

routing, buffering, scheduling, time management and statistical instrumentation. To

achieve this goal, it had to be possible to generate samples from a variety of

distributions, maintain a list of events to be executed. offer a mechanism for

generating and cancelling events, maintain a simulation clock, compute statistical

performance measures (e.g., minima, maxima and averages of time spent m a system,

waiting times in queues, resource utilization, throughput, etc.) and collect and display
the results of a simulation run.

Since these models are intended to be embedded in web pages and meant to

drive animations, we have used Adobe's Flash (Lopez, 2006: Peters & Yard, 2004;

Sanders, 2004) for coding their implementation. Flash was cho en as a deli, ery

platform mainly because of its strength as an animation tool (Holzmger & Ebner,

2003; Mohler, 2006; Peters & Yard, 2004; Shupe & Hoekman, 2006), and the fact

that it can generate very compact .s11fapplets that can be played "off the helf" in the

vast majority of modem browsers.

9

Although there are a number of Java-based simulators; e g., simjava (W.

Kreutzer, 1. Hopkins, & M. V. Mierlo, 1997), JSIM (1. A. Miller, Y. Ge, & J. Tao,

1998), JavaSim (Kuljis & Paul, 2000; Tyan, 2002), Psim-J (Garrido, 2001) and

Desmo-J (B. Page & Kreutzer, 2005) and some simple device modelling tools for

operating cell phones, crane arms, etc. using Flash (e.g., Kaye & Castillo, 2003), we

have not found any reports or references to a Flash-based discrete event modelling
tooL We have therefore coded our own Flash-based DES model executive. This

meant that we first needed to learn how to use Flash's development environment, its

object-oriented scripting language (ActionScript-2), both its generic and animation

specific libraries, and its features for building and packaging collections of reusable

components. Although the construction of such a DES engine was not a primarily

goal of this research, its development has been a necessary step in providing a suitable

infrastructure for subsequent work. Learning how to build such a DES monitor in

ActionScript and how to package it so that its features can be easily used, took a

significant amount oftime.

After coding the basic libraries, we fine-tuned our components so that they
could support all aspects and model features we have mentioned above. To test their

effectiveness, two experiments were conducted. First, we obtained feedback from

learners about the attractiveness, interactivity and usefulness of our Flash components

in the context of two DES sample models. Secondly, we distributed the components

to model developers to get their feedback about the tool's usefulness, ease of use and

enjoyment. Here the information collected included whether the components

provided interesting run time GUIs, whether the GUIs were easy to interact with.

whether the learners liked the approach to display visualizations only when requested,
which visualization tools (e.g., graphs, histograms, boxplots etc.) helped them to

understand models better, whether the ability to change simulation parameters during
run time and the ability to pause, slov down and speed up a model' execution made

learning easier and/or more enjoyable, etc.

The resulting models should easily be embedded in LM . Fortunately, Flash

models can easily be tailored to handle communications between learners and LMSs

compared to the use of Ja aScript in HTML files as in the traditional approach. The

main justification for the integration was to take advantage ofLM facilities uch as:

10

• colle ling information of learner' behaviour,

• allowing access to online forums or chat room that increa e collaboration

between learners, or learner and teachers, and

• improving integration with other learning materials.

Additional reasons are to present learners with a uniform interface (thereby

minimising any distractions from focussing on what they are meant to learn) and to

ease model maintenance, so that models can regularly be updated without any need to

distribute new copies to all learners. Figure 1.1 shows a sketch of the interactions

between teachers, learners, simulation models and a LMS. Their interactions can

briefly be described as follows. Teachers translate their mental models to computer

models using the right tools. The computer models are then distributed into a L�S

where they can be viewed by remote learners. Learners interact with the models and

the feedback from such interactions will automatically be displayed to them. If they
need further clarification on the feedback they can use the LMS's facilities (e.g., chat

rooms, email, etc.) to interact with their teachers or peers.

Teachers

J Knowtedge I mental model

,------F� l-j-I
flT73: ActIon models

,-- � �=-:-."
IntetacbOn

Remote learners (obseNt! and undet'Stand1

Leamer Leamer L....-

Figure 1.1 Interaction between Teachers. Leamer. Model and L 1

11

1.4 cope of the Re earch

There are two types of simulation models: static and dynamic. In a tatic model, time

does not affect model behaviour. Examples are device simulations (Kaye & Castillo,

2003), equipment operation simulations (Towne, 2007) and 0 called .. oft kill

simulations" (Aldrich, 2005; Gaffney, Dagger, & Wade, 2008; Maldonado et al.,

2005; Vries, 2004). These kinds of simulations are familiar to teachers and their use

in educational environments has long been discussed (e.g., ee Aldrich. 2004, 2005;

Gibson, Aldrich, & Prensky, 2007). Dynamic models trace behaviour that changes
over time. Examples are DES, where system behaviour spawns a sequence of discrete

events, and system dynamics models, where the system behaviour is described

through sets of equations that model how states fluctuate "quasi-continuously" over

time.

This research has concentrated on DES models, where the state of a model

changes only at specified points in time, and more specifically on Queuing Networks.

which explore the effects of capacity constrained resources on common performance

measures; such as response time and throughput. This choice w as made because of

their many fields of applications (e.g., in manufacturing, transportation, service

systems and computer hardware and software analyses) and the fact that. although

they have long been used to support analysis and design of complex systems, their

potential to enhance e-Learning has not yet been fully utilized.

Learners should be able to use animations to visually observe the effect of

changes to transient system behaviour caused by manipulating model parameters or

model structures. Within this context, we have therefore investigated a range of tools

that foster "modelling for insight" (i.e., those that impro e understanding through

observation) rather than making accurate quantitative performance predictions (i.e ..

those that measure how efficiently a system performs its function). In an e-Leammg

environment such models can be instructive. ince they allow users to \ i ually

experiment with changes of model parameters and ob erve their effect on model

behaviour. By stressing qualitative effect of chain of event oyer quantitative

analysis we also avoid a wide range of comple . stati tical modelling aspects,

Within the discrete event modelling domain, two dominant modelling style

(world iews) are typically u ed to control flow of event : event-orientation and

12

process-orientation. While event orientatton ea es coding, proce .\ orientation offers

a more natural framework for model development. Our de ign therefore u e a

process-oriented approach. Unfortunately this cau es orne implementation is ues

(e.g., the lack of a built-in coroutine or contmuation features in mo. t common

implementation languages).
Since DES has the ability to model complex systems with relative case, many

commercial or research tools have been developed for constructing D S models.

However, these tools are typically targeted at analysis rather than learning purposes.

Many commercial simulation software; e.g., Arena (Kelton, Sadowski, & Sturrock,

2004), Flexim (Nordgren, 2003) and SIMUL8 (Concannon, Elder, Tremble, & Tse,

2006), are excellent tools for building sophisticated simulation models and observing
model behaviour through animation. However, the resulting models mostly lack

support for user-experimentation during run time, are operating system dependent,
must be run using a specialized proprietary software, and are not designed to execute

on a web page; a very important element for incorporating models in e-Learning

systems. Thus, investigations on how these constraints can be catered are crucial.

In order to support web-based models, most previous research tools in this

domain have been developed in Java. Two web-based approaches can be

distinguished: Web-supported simulation and Web-enabled simulation.

Web-supported simulation locates tools on a server that can then be accessed

to create and run models. Thus, users do not have to install software packages on

their machines. Examples include JSIM (J. A. Miller et al., 1998), Silk (Healy &

Kilgore, 1998; Kilgore, 2000), JavaGPSS (Kazymyr & Demshev ka, 2001: Klein,

StraBburger, & Beikirch, 1998), WSE (lazeolla & Ambrogio, 199) and ASunJava

(Sikora & Niewiadomska-Szynkiewicz 2007). JSIM and Silk ease model

constructions using component-based technology with Java Beans. Howe, er, among

these tools, only JSIM integrates a simple animation for di playing queue .

Web-enabled simulation requires the installation of oftware packages on

users' machines. Examples are Psirn-J (Garrido, 2001), SSJ (L 'Ecuyer, Meliani, &

Vaucher, 2002), JavaSim (Tyan, 2002) and DESMO-J eyer. Page, Kreutzer,

Knaak, & Lechler, 2005a). However, the e packages, \' hile giving e. penenced

programmers the fie ibility to code their own exten ions, typically only support

textual de cription and very imple data vi ualization .

We chose the second approach. The main reasons are that we believe the first

approach would be a burden on erver, since all development proce ses (e.g., model

construction, execution and ammation) must all be performed on a central erver, and

also limit tool accessibility, since it depends on network availability, it peed and the

number of concurrent users accessing the servers.

1.5 Contribution to Knowledge

This research has made some positive contributions to simulations in education

especially in proposing a design of DES tools for engaging and helping learners to

understand DES behaviour. The design focused on methods of easing the

construction of attractive, interactive and informative 'web-based simulation models.

These contributions have been achieved through a various proces es of investigating,

analyzing and structuring how a DES tool can be provided with the right de ign,
In proposing the tool, we first surveyed the current use of simulation models in

the learning and teaching environment. We then identified and made a critical

analysis of model features that support leamer-centred learning based on learning
theories and previous literature review. This deserves to be investigated since

educationalists and tool developers are considerably separated in their own domains.

Educationalists keep proposing and proving the benefits of using simulations a a tool

for learning and teaching in the new era of education, and how the e benefits can be

gained using the right models. The tool developers meanwhile concentrate more on

the development of modelling and complete sy tern analysi tool for measuring

system performances. Thus, they typically ignore the educationali ts' vie, of the

right models that stress on the importance of interactions betv een learners and the

models in ensuring learning. We are trying to bring both partie do er Thus. we

made an analysis of how simulation models could be better upported ill the current

learning and teaching environment by investigating and analy ing the available DE

software and packages to di cover what tool and functions the) provide and lac' ill

facilitating learning and teaching. Thi can be a reference for tho e who intend to

provide such the right tooL

The contribution that directly relate to the tool d ign was the proposal of

strategies to construct and incorporate the to I WIth the ugg ted m del feature that

14

relieve learners' cognitive proce se during their learning' i.e., hypothe is te I

platforms, concurrent re pOI1SIVe animation and customized Visualization. Before

this work, no tools have been designed and constructed to upport all the three

features during model runtime. Moreover, we de igned the tool so that it resulting
models support a high degree of simulation and animation control and provide a store

capability of their states, animations and visuahzations at any simulation time points
for future use. For this, we architected DES frameworks, extended them to various

components (i.e., simulation building blocks) with well-defined interfaces and

contracts that describe the input and output of entities and data flows, designed and

tested the components, and recommended the use of appropriate design patterns for

facilitating their constructions. To prove this design works, we managed to develop a

proof of concepts of a DES tool. We believe that its use eases the constructions of

attractive, interactive and informative DES models for self learning purposes.

Our design focused on the integrations of simulation, animation and

visualization to reflect change in the time (i.e., when simulation encounters delays),

space dimension (i.e., when an entity moves) and model states (i.e., when an event is

executed). In an animated simulation environment, the time requires model time to be

mapped onto animation time and animation time to be mapped onto real time, the

space dimension requires a stage for constructing and locating animated entities and

model structures, while model states require visualization tools (e.g.. graphs.

histograms, etc.) to display their abstract data. Investigating" hat elements should

exist to fulfil these requirements and how they were supported by Adobe Flash. and

arguing how best the Adobe Flash as a platform for the DES tool development \ ere

another research contributions.

To reflect users' feedback on our tool and to obtain their recommendation for

its future improvement, we conducted 1\",0 experiments. Conducting these

experiments yielded two contributions. The first contribution was the anal)' e of

learners' feedback about how significant relevant features (e.g.. animations.

visualizations, interactions, customized interface, etc.) of DES model help them

engage with and get in ight into the model
.

behaviour. The anal)' e enabled us to

compare and judge how con istent their feedback wa With th pre, ious claim that

stress the importance of providing the feature to en ure learnmg. The econd

contribution was the analy e of model designer
.

feedback about how go d our tool

is in constructing D': models. The analy e enabled u to evaluate how u eful and

easy our tool is for constructmg the DI:.S model for learning and teaching purpo e .

In addition to addressing the tool design for a single layer of D S model , we

also architected how the design could be extended to manage the complexity of large
and complex DES models. This complexity can either relate to the cognitive aspect

(i.e., how model logics can be split to smaller models for representing their functions)
or the repre entational aspect (i.e., how many elements are used and how they are

arranged to represent model structures). Our approach of catering the complexity is

through a hierarchical structured concept; i.e., by breaking up a model to relevant

sub-models with each sub-model conceals the details of their lower levels. The

concept manages both aspects through its ability in controllmg the level of details (in

terms of structures and information) for better representing of the model and

arranging animation and visualization for better viewing and grasping the dynamic

parts of the model (as opposed to the crowdedness of graphical objects in a flat

model).

However, the main challenge for the design is the synchronization of each

sub-model's behaviour so that they can be executed in the right order. For this. \1 e

present two mechanisms for coordinating event executions among layers in

hierarchical DES models. These are the Monitor Delegation Mechani m that

delegates event executions to a relevant layer and the Monitor Communication

Mechanism that transfers event executions to all visited layers.
Our approaches differ from the approach proposed by Yi and Cho (Yi • Cho,

2001, 2003). We focused on how to extend our simulation engine and component

based on the concurrent animations where a simulation monitor controls both

simulation and animation aspects to guarantee animation accuracy. Since our

components allow interactions, the runtime interaction with all layers are

automatically supported. Their approach meanwhile i based on the direct- imulation

animation where the simulator and the animator have their own activity cheduling
lists. Thus, besides considering event executions among layers III the imulator, they
also need to find a method of communicating the imulator With animauon chedulmg

in the animator. The main drawback of their approach 1 that it only guarantees

animation accuracy from e ent to event, not between them ince th graphic'

rendering depends on the computer that imulator and animator reside.

16

1.6 The i Overview

Thi the i is organised as follows. In Chapter 2, we fir t identify different types of

simulation models, examine their role In facilitating learning based on learning
theories and collect some empirical evidence that establishes their effectiveness in e­

Learning environments. Some available simulation tools and the current interests on

animated DES models are also reviewed.

Chapter 3 examines the mechanisms of two DES modelling styles: event­

oriented and process-oriented. Realising the limitations of the event-oriented style,
we architected a process-oriented DES framework to support various DES facilities

(e.g., generating random numbers for various distributions, collectmg statistics,

managing simulation clocks, a list of future events, etc.). This framework has guided
the construction of our DES simulation libranes. To symbolize the libraries'

functionalities and ease the building of DES models through symbol composttton , we

then introduce relevant DES graphical objects. However, it still demands

programming effort and its resulting models offer no support for mteractions.

Chapter 4 briefly reviews Visual Interactive Modelling (VIM) and Visual

Interactive Simulation (V1S) concepts and discusses their benefits in learning and

teaching. We then argue the use of Adobe Flash and its scripting language to create a

tool to support both concepts. Since VIS combines simulations and animations. some

approaches for integrating these features are also discussed. How VI
.

essential

components can be created with the help of our framework is then presented. We

subsequently present how a series of our simulation components can be used to build

queuing models. This chapter ends with a discussion of orne tricky 1 sues 10

integrating an animated simulator to DES models specifically in permittmg animation

speed to dynamically be adjusted by learners during model runtime.

Chapter 5 discusses how to systematically design a tool for building attractiv e

and interactive DES models. We first review component-based to I pnnciples and

examine how these principles can ease model building. We then uggest the

Delegation Event Model for forging link between DE active and pas ive

components. Next, we present the M C (Model- iew-Controller) pattern and

discuss how it can be utilized for 100 e coupling between c mponents, their int rfa

(GUIs) and their isualizations. We further our di eu Ion on how t cater WIth

17

model complexity through model partitioning (i e , hierarchical model development)
and how to support such development using the two patterns.

Chapter 6 reports two experiments that collected users' feedback of the tool

and its resulting models. One experiment evaluated learners' perceptions about the

attractiveness and interactivity of the models. We developed our own que tionnaire

[or this based on model features proposed by relevant studies. Another experiment
evaluated model designers' perceptions about the perceived usefulness, perceived
ease of use and perceived enjoyment and their Willingness to use the tool in the future.

For this, we used the Technology Acceptance Model (TAM) and other extension

models found in the literature. We also assessed the participants' workload while

experiencing our tool using NASA Task Load Index (TLX).
Last chapter, i.e., Chapter 7 concludes the findings of the research, lists some

of its limitations and proposes some recommended future work.

HAPT R 2

1M LATIO ADD ATIO

2.1 Introduction

Many studies (e.g., Charles, 2008; Kauchak & Eggen, 2007; igel, 2008; Wurdinger
& Carlson, 20 I 0) argue in favour of blended learning, which mixes different learning
environments (face-to-face and computer-based materials) and approaches to teaching
a subject. Typically all of these require that teachers prepare a set of activities that

support students' cognitive styles and make learning an engaging activity. Teaching

approaches that are merely based on traditional lectures (which are typically
constrained to one-way communication), static learning materials and individual or

group assignments, will often result in only a shallow understanding of course

contents and decrease students' motivation and enthusiasm for the taught subjects.
Better approaches seek to engage learners' attention and actively involve them in the

learning processes.

To make learning enjoyable, several instructional methods have been

suggested; e.g., collaborative learning (i.e., a group of learners cooperate in their

learning activities), problem-based learning (i.e., a group of learners collaborativ ely
solve assignments with the help of a teacher) and computer-supported instrucnon.

such as simulations and educational computer games. In this context _ imulations can

act as important tools for discovery-based learning (long & Joolingen, 199 : Reid,

Zhang, & Chen, 2003; W. R. Robinson, 2000: Zhang, Chen. Sun, r Reid. 2004) by

offering a learning environment where learners learn by domg. Swaak and Jones

(2001 a, 200 1 b) suggest that imulations hax e three characten tic that enhanc

discovery-based learning; i.e.,

• richness, where knowledge IS obtained through variou dynarru representations

uch as animations and numerical data di play .

19

• low transparency. where knowledge must be inferred by learners themselves, and

• active interaction, where knowledge IS obtained through experimentation.

Many benefits of including simulation models in teaching and learrung
environments as part of learning materials or as complementary activities have been

listed in many relevant publications; e.g., by Aldrich (2004, 2005), itzpatrick (2003)
and Gibson, Aldrich, & Prensky (2007). For example, active expenmentation while

exploring simulation models not only helps learners develop a mental model of real

world processes or events, but can also support collaborative styles of learning (Beux

& Fieschi, 2007; Jeffries, 2005) as well as problem-based learning through model

building (Milrad, 2002). To fully reap those benefits, learners need models that

demand hands-on interactions (to stimulate learning by doing) and offer support

whenever it may be needed. How one can best integrate such models into appropriate

approaches for knowledge construction and to enhance learning and problem solving
skills has been investigated empirically by, e.g., Chang, Chen, Lin, & Sung (2008).

Gokhale (1996), Kennepohl (2001), Liao & Miller (1996), Reid, Zhang & Chen

(2003), Renshaw & Taylor (2000), and Rieber, Tzeng, & Tribble (2004).
This chapter examines the use of simulations in education. It scrutinizes

different types of simulation models, their roles in education and learning, empirical
evidence that establishes their effectiveness in e-Learning environments, some

available simulation development tools, and current interests on arumated DES

models.

2.2 Simulation Models and Their Purpo e

There are many different definitions of simulation. From an educational perspectiv e,

Castillo, Hancock and Hess (2004) and Aldrich (2002, 2004, 2005) define unulation

as digital learning material that allows learners to perform hands-on acttvitte (e.g ..

mouse clicking, text entering, etc.) in order to receive additional tasks or information.

From an engineering perspective, the term refers to a model which replicates a

system's characteristics and behaviour based on pec(fied goals 0/ a study (Flynt .

_0

Vins n, 2005; Law, 2007; Shannon, 1998). Since they permit learning through

experimentauon in a safe and effective environment, simulations have become an

increasingly popular educational tool and have been used for four purposes; i.e., to:

• train learners' technical skills or to demonstrate and pracuce tas that are too

dangerous or impractical to be performed directly; e.g., surgery or operating

dangerous equipment. Since real environments are replaced with safe and cheap
simulated environments, learners can freely explore their ideas, run a senes of

actions and examine the consequences. Such virtual environments not only
reduce costs, but also offer learners the freedom of deciding when and where they
want to learn.

• permit learners to practise decision making in situations where propo. ed action

cannot be directly and immediately observed. for example because their effects

are delayed in time orland dispersed in space. Since simulations can represent

such situations in attractive and interactive forms and give feedback from

learners' actions (i.e., allow them to stretch or compress time and space), learners

can become more engaged and their learning experiences may be enhanced.

Simplification while maintaining a high degree of fidelity is an important

challenge for this use of simulation (Aldrich, 2004, 2005: Lunce, 2006).

• explain concepts and complex interrelationship between variable : e.g., III

economic or queuing systems. In the traditional learning approach, teachers can

only discuss complex interrelationships in verbal or textual forms. Watching
models in execution and interacting with them can, however, lead to better and

deeper levels of understanding.
• provide learners with a diversity of "soft kills' (Aldrich. 2005; Gaffney, Dagger,

& Wade, 2008; Maldonado, Lee, Bra e, ass, akajima, Yamada Iwamura, '

Morishima, 2005; Vries, 2004); i.e., personal attributes (e.g., responsibility.

common sense, motivation, etc.) that enhance an indiv idual' interacnons. Job

performance and leadership. Learners can u e relevant model to practice a range

of skills before applying them to the real world.

• enhance materials to increase learner "monvatton to learn a . ubj ct (a tillo et

al., 2004; Prensky, 200 I). It has often been claimed that learning by doing can

cause knowledge to be retained longer compared to Just reading tatic matenal III

21

traditional cia sroom setungs Within this context, simulauon can ofter more

engaged and immersive learning materials for learners to learn about event,

processe and activities.

2.3 Type of imulation Models

We can classify simulations into three categones:

1. live simulations (or role playing), where real people manipulate simulated

operations of a real system using real equipment (e.g., a training exercise of a fire

drill),

2. virtual simulations, where real people operate sunulated equipment in a simulated

envirorunent (e.g., flight and vehicle simulators), and

3. constructive simulations, where real people operate computerised models from

which they obtain feedback.

While virtual simulations are well suited for some types of trairung,

constructive simulations can move beyond simple rehearsal of skill and provide
bases for easily analysing and comparing effectiveness and consequence of a Wide

range of physical or cognitive tasks. Thus, constructive simulations hav e long been

used in a variety of domains in education. These include computer sciences (Aubidy.

2007; Yin, Ogata, & Yano, 2007), engineering (Ledin., 2001). logistic (Ganapathy.

Narayanan, & Srinivasan, 2003), biology (Keen & Spain., 1992). medicine

(Hoppensteadt & Peskin, 2002). econormcs (Porter. Riley. & Ruffer. 2004). ph) IC

(Chang et aI., 2008; long et aI., 1999). management ciences (Pidd, 2004) and

sociology (Halpin, 1999; Moretti, 2002). Constructiv e imulation can generally be

classified on the basis of the degree of learning support they offer single concept.

operational level or strateRic level. description, orne characten tIC
- and e arnples

of each type of constructive simulations are hown in Table 2 1

Table 2.1 lassification of onstructivc .omput r Simulation

Learning De cription haracteristic Simulation 'peSupport
• Simulations dealing � Encourages �oft kill imulations

with a simple learners to apply Procedural simulations
calculation or a previous

Basic concept specific aspect of knowledge
theory � Often found in

• Model behaviour is educational
not affected by time SImulations

• Simulations dealing � Stimulates students Discrete Event
with specific to explore,

�mUlatiOns:
e.g.,

operations experiment, ueumg networks,
pperational • Model behaviour is predict and invent anufacturing, logi tic.
level changing at discrete given phenomena c.

points in time • Often found in

engineering and
science studies

• Simulations dealing. Provoke systemic Continuous
with complex thinking about simulations. e g .

Strategic level
natural processes given phenomena biology. ecology,

• Model behaviour • Often found in �nomics. sociology,
keeps changing over engineering and .

time science studies
I

Based on this classification, Chwif and Barretto (2003) have argued that those

that support operational or strategic levels are more effective but difficult to design
than simulations that those intended to simply train people in baSIC (e.g .. device

simulations for training operators of industrial machinery (Kaye & Castillo. 2003» or

"soft skills" (e.g. teaching skills in communication. leadership or trategic thinking

(Gaffney, Dagger, & Wade (2008)). Table 2.2 show how different types of

simulations can be used to support learning in different domams.

23

abl 2.2 Simulation ypes and Learning Support

Type Learning upport E ample

Soil skills imulations • Exposing learners to � Software usage simulation

Kalso known a simulated work expenences • Situation-based imulation ;
Ibranching stories or in order to improve their

e.g., in business and
situational communication and decision management training,
simulations) (Gaffney making skills before dealing cu tomer and sale training,
et al., 2008; Idrus, with real SItuations customer service training,
Dahan, & Abdullah, • Exploring alternative paths doctor-patient interaction,
2009; Radcliff, 2005) through a task with etc.

additional information and

instructions, based on

learners' responses

Procedural Ie Understanding the physical • Mechanical device
Simulations or characteristics of real srmulations; e.g., medical.
Virtual products (Kaye equipment manufacturing. home

& Castillo, 2003; • Learning to use costly electronic equipment, etc

Michelson & equipment or perform
Manning, 2008) complex tasks

Discrete Event Understanding the operation of � Queuing systems
Simulations (Banks, a system that traces ordered

� Manufacturing systems
1998; Wainer & sequences of events

Mosterman, 2010) Ie Logistic systems; e.g ..

warehouses. ports. airports
etc.

System Dynamics Understanding the behaviour of Ie Policy analysis and design
(Hannon, Ruth, & systems that contain feedback

• Population sy tem
Meadows, 2001; oops involving stocks (entities
Sterman, 2001) that accumulate or deplete

• Ecological s)' tern

�uantities over time) and flows • Economic systems
l{rates of change)

Alternatively, Castillo, Hancock and Hes (2004) divide educational

simulations into two basic categories: tructured simulation and open-ended

simulations.

1. Structured imulations are used to support the understanding of) tern behaviour.

Information is pre ented in a tep b t P fa hion, \\ here ea h step requires

learner' re pon e to progres to the next of a number of alternative step- mce

24

informauon IS only delivered when reque ted, thi approach has been claimed to

enhance traditional learrung styles. It can be used in all learning domain.

2. Open-ended simulations, on the other hand, leave learners to freely explore a

simulated environment; this IS typical for 0 S and system dynamics imulations.

Although some studies (e.g., McKenna & Laycock, 2004; Michael, 2000) claim

that there is no clear benefits of usmg open-ended simulation , other studies (e.g.,

long & Joolingen, 1998; Land, 2000; Lunce, 2006) have argued that great benefits

can indeed arise from the fact that learners are not supported by additional

instructions to overcome problems. This may forces learners to adopt a scientific

discovery style of learning; e.g., by performing experunents. Opponents to this

approach, however, assert that most students are unlikely to plan such experiments

carefully enough, do not have sufficient skills to interpret outputs appropriately

(particularly if models contain stochastic effects), and teachers may not state

objectives or the learning outcomes clearly enough.

By looking at the way in which simulation impacts students' learning, ahin

(2006) clarifies the pedagogical difference between the two above mentioned

approaches further. He distinguishes between instructive and constructive strategies.
Instructive strategies only consider learners as passive entities. They Simply

consume information with multimedia support. Such consumption and a hmited

degree of interactions can lead to some learning. but the impact on students' problem

solving skills may be minimal. This is the case in structured simulations.

Constructive strategies meanwhile permit learning by freely exploring the

relationships between a system's inputs and outputs through feedback obtained from a

model. This is the case in open-ended simulations. The two-way interaction betw een

experimentation and observation challenges learners' thinking and may ev entually

lead to acquisition of higher order thinking skills. Smce uch simulation are

typically based on models of complex real-world S) tern. the knowledge or

experiences gained from these interactions can later be transferred or applied to real­

life scenarios. To make them effective. uch unulations require orne pre­

knowledge; i.e. a ba ic understanding of the modelled :1 tern' Till mu t be supplied

by teacher or appropriate instruction (Land. :WOO; tin, 2003).

25

To either complement traduional c1as room teaching or. upport di tance

educauon within a learning environment, two types of constructive imulation: have

been proposed by Neumann, Page, Kreutzer, Kiesel, & Meyer (2005). These are:

• Simulation-based learning; i.e., computer simulations are used to explain complex

systems. To support knowledge acquisition through simulated systems, the

combination of simulation, animation, visuahzation and various other instructional

techniques is crucial.

• Simulation-focused learning; i.e., computer simulations are the vehicle through
which all learning occurs. In this approach all related modeIhng concepts and

methodologies are explained in detail, which then enables learners to apply
simulation to practical problems. Simulation-focused leammg IS usually found in

engineering and science courses.

2.4 The Role of Simulations in Education and Learning

2.4.1 The Role of Simulations in Learning Theories

In order to prepare suitable learning materials for learners, an understanding of the

learning process is required. A learning process involves three main aspects:

cognitive, emotional and experiential (Uleris, 2000; Livesey, 19 6). The explanation
of how these three elements shape learning is called a learning theory. Learning
theories can be categorized into three main groups: behavioural, cognitive and

constructive (two categories that will not receive further mention are andragogy

(Knowles, 1984) and connectivism (Siemens, 2005». Learrung theories are u ed as a

guidance to design and prepare learning materials based on learnmg goal and

outcomes, and the format and contents of learning materials must a sure the desired

effects on learners' performance (R. C. Clark, guyen, • Swelle, 2006)

Behaviourism only considers observable aspects of learnmg processes (1 e., by

observing changes in learners' re pon e), \\ ithout allow ing any peculation about

processes that may occur in the learner' mind. It main prin iple I that learning

takes place through repetition and reinforcement, Continuous reinforcement (i.e. by

26

penalizing undesired behaviour while rewarding d . ired behaviour) I u ed to

promote learning, while interrruttcnt reinforcement seeks knowledge retention. While

such strategies have been quite popular in conventional classroom teaching, they have

proved only effective for teaching simple tasks. Common applications include taking,

reading and memorising notes, and recalling knowledge and kill 10 tests or

examinations. An example of educational technologre based on this theory is drill

and practise software that delivers contents In small steps, with imple control

questions at the end. Such software relies heavily on right and wrong answers, where

"right" answers lead learners to new information, while "wrong" answers spa ... n

repetitions. Since the Behaviourist theory does not explain learning and has failed to

help understanding and acquisition of complex scenarios and skills, educators have

looked for alternatives and cognitive theories, which attempt to take account of what

may take place in a leamer's mind.

Cognitivism asserts that the ability to construct new knowledge IS strongly
influenced by how well individual learners' memory can map (structure) new

information to already acquired information. The new information (retained in a new

logical slot) is then retrieved and modified to help process further new information.

Each learner may have a different capacity for processing, retairung and using
information. In order to ease the process of integrating nev knowledge into existmg

cognitive structures, learners must have acquired all pre-requisite lower-level

information before being exposed to higher-level concepts. An example of

educational technologies based on this theory is an Intelligent Tutoring System (ITS),

which guides learners throughout their learning processes.

Constructivist theories strongly emphasize the importance of pnor know ledge,

and view learning as a process of actively constructing new knowledge based on three

elements: prior knowledge, activities and experiences. ctive knowledge
construction means that learners themselves are responsible to u e and explore
interactive learning materials and make use of all feedback to develop their mental

models. These iterative processes are suppo ed to promote activ e leanung (i e.,

learning by doing) and extend knowledge retention. mce each learner differs from

others in terms of pre-knowledge, e tperiences and relevant kills, the same learning
materials will result in different knowledge tructures and problem olving skills for

different learners. An e ample of educational technologie ba ed on this theory 1

simulation. Table 2.3 shows some features of learning theone .

27

Table 2.3 Some Learning Theones and Their features

Feature Behaviou ri t Cognitivist Coo tructivist

Learning Observable objectives Problem solving Knowledge
principle construction

-

Learning Reflection �ognition Interacuon
focus

Teacher's Transmitter !Helper or tutor facilitator
task

lnstructional Direct instructions, !problem solving iSelf-directed learning, I

Design course based hrough exploratory case-based learning
measurement, �earning, project-based
sequenced tasks 1W0rks

Learning Linear contents that Dynamic, complex Dynamic, unstructured
material move from simple to environments not pre-specified)
presentation cornplex I

Human brain Passive knowledge Linear information �losed information Icontainer processor system

Learning �ontrolled by teachers Controlled by learners �ontrolled by learners
direction with proper guidance

from teachers

�earning !predetermined and Predictable !Unpredictable, since I

outcome predictable linstructions only foster,
not control learning
processes

!Evaluation !performance based on Knowledge based on Competence (degree of

correct answers where �iscovering correct mastery) based on

Ieach unit of content is methods for finding dealing with complex
reated and evaluated answers problems

separately

�earning tEasily measured by tIndirect. based on �ot easily measured

�easurement counting correct active problem solving and much more

answers subjective, usually
based on on-going

�tl\'itie , expenences
d attitudes: e.g ..

Iinotes. draft • Journals
lOr products I

lLearners' Simple interactions Demand intelligence Demands more

interaction with controlled commurucative and

presentation via verbal mrnersiv e content to

or graphical instruction show how a model

�espond' to individual

urnption through
feedback.

�ritena Closed system where Solution-centred More dependent on

earners are confined to earnmg than teachmg
he teachers' world approach

!Knowledge IEncourages surface Create deeper problem Promote deeper,
Fonstruction earning understanding ransferablenderstanding and long

erm retention of

knowledge
Software More quickly rrime consuming [Iune consuming and

�evelopment constructed much effort is needed,
ime since it requires a

SIgnificant amount of
nteractive and

unstructured learning
materials

Knowledge Works well for short- Better at long-term More long-term and
etention erm transferable knowledge retention applicable, since

knowledge knowledge is obtained

�ough interactions
and activities (leaner-
earner and learner-

model). not through
competition among
earners

Software • Rigidly structured � Intelligent sequencer Unstructured, no

characteristic
• Dearth of content � Modestly pre-packaged

interactions and interactive. pre- I problems, highly
forms of packaged problems interactive

presentations • The use of

• Sequential animation and

exposition of multimedia
environment I

I

information, Ifollowed by testing common

�deal software Drill and practise Intelligent Tutoring �Simulatlons.
programs, programmed System, Computer

�croworlds
(L P.

instructions and Based Training eber, 1995),
tutorials odelling

��\irOnmenLyperrnedia

The development of e-Learning matenal based on COgnitIYC and

constructivist theones i an important tep towards better leaming em ironments

since:

1. cumcuJa are now packed with many subject and learner-teacher interaction are

limited,

2. the demand for education keeps rising, but lime and space remam restricting
factors, and

3. learners are now familiar with modem technologies and expect their use.

Interactive contents therefore become crucial.

These factors favour a shift of responsibility from teacher-oriented (the

behaviourist feature) to leamer-oriented learning styles (the constructivist feature).
Some approaches to transfer such responsibility are through guided discovery (R. E.

Clark, Yates, Early, & Moulton, 2010; Leutner, 1993; Piaget, 1977), case-based

learning (Aamodt & Plaza, 1994; Jonassen & Land, 2000) and microworlds

(Brouwer, Muller, & Rietdijk, 2007; L. P. Rieber, 1992, 1995, 1996).
Guided discovery enables learners to create their own understanding of a

subject, using tools (e.g., simulations) with guidance from a teacher Smce the role of

a teacher changes from a transmitter of information to a promoter of higher-order

thinking skills, this method has been claimed to be an ideal approach in education

(Aldrich, 2004; Chwif & Barretto, 2003; Gibson et aI., 2007; Gokhale. 1996) and is

believed to produce "deeper" learning than teacher-centred approaches (e.g.

demonstration, direct instructions, lectures or lecturer-discussion).

The main strength of simulations in this context is that it enables a "situated

learning" approach (Der-Thanq & David, 2002; Herrington & Oliver. 1995. 1997).

which claims that realistic contexts will motivate learners to engage more trongly
with the material. Since this instructional methodology requires learners to be

equipped with a substantial amount of pre-knowledge and kills. several studie (e.g ..

Kirschner, Sweller, & Clark, 2006; Tripp, 1993; Wineburg. 19 9) criticize It

implementation in traditional classrooms. However, orne other studies (e.g., Harley,

1993; Ketelhut, Dede, Clarke, Nelson. & Bowman, 2007; Lunce, 2006; Young. 1995)

report strong support for embedding situated learning through use of modem

educational technologies.
Simulations can be used in a variety of learning and training domains. mce

most aspects of real-life proce ses and Job em ironment can be imulated in

controlled settings. Simulations are appropriate for teaching ituations \\ hen learners

30

can gain high levels of knowledge and kill (i C., application, analy is, ynthc i and

evaluation level in Bloom's taxonomy - Krathwohl, Bloom, & Masia (1996),
Anderson & Krathwohl (2000». However, since simulation are associated with

constructivist learning theories, they have some disadvantages, which include:

• Simulations heavily depend on learners taking respon ibility for their own

learning. Without motivation, significant learning will not take place.
• Simulations require tacit knowledge and particular skills to enable learners to

drive experiments, analyse and understand feedback, draw their own conclusions

and predict a chain of actions throughout a learning activity (Whiteside, 2002).
• Simulations demand coaching and scaffolding to offer learners hints at certain

times (Min, 2003; Zhang et ai., 2004). Without these elements, learners might
interact with simulation models without framing sensible hypotheses and may

draw wrong conclusions. However, too much guidance will stifle learners'

creativity, since they are now confmed to a series of tasks (Herrington & Oliver.

1995, 1997).
• Simulations need collaboration (i.e., learner-learner and learner-teacher

discussions) to promote critical thinking and problem solving skills.

• Simulations may require more time for learners to abstract meaningful knowledge,
since learners need time to immerse themselves into a problem and experunent

with alternatives (Heinich, Molenda, Russell, & Smaldino, 1999).
• If they are overly simplistic, simulations may create an imprecise understanding of

real-life situations.

• Simulations need tools that offer authentic contexts and activities (Hemngton .

Oliver, 1995, 1997; Lloyd P. Rieber et al., 2004) to engage learner' attention.

Authentic contexts reflect how knowledge can be used in real-life and motivate

learners to use the model. Authentic acti itie ask learner to fmd and olve

problems themselves. Thus, explorati e model that allov manipulation of widest

ranges of variables are crucial to timulate learning by doing olb. 19 4:

Whiteside, 2002). However, designing. building and te tmg uch unulation i

time consuming and costly.

2.4.2 Empirical E idencc

Simulations have long been claimed to have positive effects on learning (e.g., Lunce,

2004; Min, 2003; Njoo & long. 1993; L. P. Rieber, 2002). Some researchers have

conducted experiments to evaluate the effecttveness of using simulations either as

complement to or as a replacement for other learning materials and tools. Such

studies include Liao and Miller (1996), Gokhale (1996), Michael (2000), Renshaw

and Taylor (2000) and Kennepohl (2001). Eck and Dempsey (2002) meanwhile have

examined the impact of embedding advisement and competition in computer

simulations.

Liao and Miller (1996) have studied the effects of using computer simulations

as complementary learning materials on learning in a construction and architectural

engineering technology course. Analysis of the course examination results showed

that the mean and median for the group supplied with both text-based course materials

and a simulation game was higher than the group supplied only with the text-based

materials, supporting the thesis that a computer simulator as a companion to reading
materials could help learners learn better.

Gokhale (1996) has examined the effectiveness of using computer simulations

to teach problem-solving skills in an electrical course. Data analysis showed that

students exposed to a computer simulation in addition to lecture-lab activines were

significantly better than students that only used traditional lecture lab activities. The

results therefore corroborated the assumption that simulations could be an effecnve

learning approach to equip students with problem-solving skills that are transferable

and applicable to real world problems.
Michael (2000) has explored the possibility of using a computer imulation as

a replacement for real-hands-on activitie in creating a product. They found that no

significant difference in product creativity scores among the hand -on group and the

computer simulation group. This sugge ts that it wa po ible to use a computer

simulation in place of hands-on activitie while maintaining tudent creativity.

Renshaw and Taylor (2000) a se sed the unpact of u ing y stern dynamic

simulations on student
'

higher-order cognitive kill of environmental proc
-

es.

Data analysis showed that the students who had been e p ed to the imulanon had a

better understanding of what they had learnt (i.e., irnulation had a po siuvely impact

on students' higher-order cogrutiv e kill). were le prone to cogrutiv e errors m

decision making and demon trated higher information retention compared to the

student who obtained equivalent information through hand -out.

Kennepohl (200 I) examined the effecuvenes of imulations in enhancing
students' chemistry laboratory experiences. They found no difference in overall

course performance between the students who fully attended supervised laboratory
sessions and the students who were partially attended the ession but were

additionally exposed to individual laboratory simulations. However, the later student

completed laboratory work in a shorter time and achieved a slightly better

performance in the practical laboratory component (lab reports and quizzes). This

suggests that computer simulations can enhance student lab experiences m spite of lab

time reductions.

Eck and Dempsey (2002) have studied the effect of embedding advisement

and competition elements in a computer-based simulation to teach the concepts of

geometric shapes. Advice through interactive videos could be accessed whenever

students were stuck at certain problems. Competition refers to whether or not the

students were playing against computer characters to encourage their learning. The

results showed that (1) the presence of advisement during simulation did not

guarantee to help learning unless it was properly designed and used, (2) advisement

was probably effective in promoting learning in a leisure environment, (3) the

presence of advisement during competition could create additional cognitive load and

hinder learning, and (4) knowledge transfer couId be promoted as long as there was a

connection between the learning context and students' prior knowledge no matter

which approach was used.

2.4.3 Simulations and e-Learning

2.4.3.1 Promi es and Problem of e-Learning

e-Leaming utilizes electronic document for facilitating learning. It ha been boo ted

by globalisation that forces people to regularly update their know ledge ill order to

compete in the current job market. technological improvement particularly Ill" oftwar

that simplifie the development of attractive and intera tiv learning matenal for

3

better learning experience and Internet speed that eases remote storing, updatmg and

accessing of the materials.

Recent research clearly shows the growth of e-Learning in educational

institutions and traming organizations worldwide to support traditional classrooms

and/or offer virtual learning environments (Ala-Mutka, Gaspar, Kisrmhok. Suurna, &

Vehovar, 2010; Garrot, Psillaki, & Rochhia, 2008; K. Kim, 2006). This type of

learning has been accepted as a typical teaching and learning platform since the

development of learning management systems (LMSs) that offers various learmng

supports through the use of current technologies (e.g., onhne assessment,

communication, etc.) and the familiarity of current learners with a self-directed

learning environment through the use of computer. The use of e-Learning as a virtual

learning environment through the support of information and commurucation

technologies (lCT) can promise:

• Learning anytime, anyplace. Learners can study learning matenals without time

constraints. This gives learners opportunities to learn and access a much wider

range of knowledge. Study can take place either at home, work, hbraries, etc. as

long as learning materials can be accessed.

• Collaboration through synchronous and asynchronous interactions. This enables

learners and teachers to discuss and exchange information at anytime and

anywhere. Such facilities are available in most LMSs.

• Learning through new technology approaches. Current learners are computer­

literate and familiar with learning through computers. These opportunities can be

utilized bye-Learning content designers to provide highly motivating attractive

and interactive styles of presentation; e.g., interactive simulations and computer

games. Such methods when used properly are claimed to engage learners.

enhance e-Learning experiences and decrease the amount of reading. which

improves the retention of the materials (Aldrich. 2004, 2005; . Ieumann et al.,

2005).
• Cost effective. The use of technology can reduce co t related to teachers.

physical spaces, hardcopy of learning contents. etc. Learmng can be delivered on

time.

34

Improving the quality of e-Learning expcnencc remains a continual challenge
for LMSs. Most e-Learning matenals have been constructed without much

consideration of how learners learn (Dublin, 2004, McKenna & Laycock, 2004;

Rorniszowski, 2004) where the use of static graphics (e.g., e-book, Word documents,

etc.) and simple online assessments (e.g., simple multiple-choice and true-fal e recall

type of questions) is common (Neumann et al., 2005; Wahlstedt, Pekkola, & iemela,

2008). These materials cannot be considered quality e-Learning solutions ince they

only deliver facts and fail to engage and attract learners Consequently uch materials

typically fail to promote a constructive and cooperative learning style and fail to

facilitate the transfer of knowledge to job environments; i.e., the utilization of the

knowledge (Kiihl, Scheiter, Gerjets, & Gemballa, 2011; Wilson, Jonassen, & Cole,

1993). The importance of interactivity, visual presentation and aesthetics in learning
materials has long been suggested in the relevant literature (e.g., Bransford, 2000;

Eppler & Burkhard, 2007; Mildrad, 2002).

2.4.3.2 The Roles of Electronic Course Management y tern

Most educational institutions and training organizations now support teaching and

learning activities with LMSs. LMSs (also sometimes called Course Management

Systems (CMSs)) offer tools for both management and delivery of course materials

and assessments. Open source LMSs include Moodie (www.moodle.org) and LRX

(www.dotlrn.org). Other LMSs, such as WebCT (www.webct.com), Blackboard

(www.blackboard.com) and eCollege (www.ecollege.com) are sold as commercial

products. The roles of LMSs are to:

• provide content management through attractive GUl and layout in order to ease

store, structure and distribute learning material. Such characten nc are

important to foster a pleasant experience \ hen u mg and learning through the

platform (Stenalt & Godsk, 2006).

• provide advanced communication facilities through ynchronous and

asynchronous mode. The synchronou mode trie to imitate traditional learning
environments and a sumes that a group of learners and their teachers will b

online at the arne time. It u e chat r om or vid conferen mg technology as a

communication. In contra t to thi approach, an asynchronou m de that u e

mail and bull tin b ard allows each learner to be online at times that depend on

his or h r preference.
• track learner' behaviour and performance, and record the number of um

learner access certain content, as well as the time pent on tudying di erent

content materials. In order to support this communication, learning materials

must comply with a set of technical standards for e-learning; e.g., ORM

(Gonzalez-Barbone & Anido-Rifon, 2010; Vossen & Westerkamp, 2006).

The development of LMSs to support virtual learning and teaching activitie

has increased the use of e-Leaming in higher education institutions worldwide

(Browne, Jenkins, & Walker, 2006; Falvo & Johnson, 2007. Howe er, pro iding

right learning materials (based on learning pedagogy) and supporting them through
various learning facilities available in LMSs are important in promoting tudent

involvement and ensuring the success of e-Leaming (Klobas & McGill 2010).

2.4.3.3 Pedagogical Aspects of e-Learning

e-Learning shifts the medium of knowledge and skill transfer from a teacher to

computer. This transfer should imitate whate er important features in the traditional

classrooms (e.g., activities that in 01 e learners in the learning pro es two-wa

communication that allows learners to respond and get feedback, etc.) and incorporate
them all into the virtual learning environment Alonso Lopez, annque Vies,

2005). The absent of teachers during learning time must be replaced with ne

methods of instruction design that timulate tudent engagem nt and inv lvement.

Instructional methods that are based on attracti and interactive material e.g ..

imulation computer game etc.) and that pro ide acti itie that will impart) amer
'

knowledge and kill are imp rtant in guarant eing u ces fulleaming ut m .

Attracti e and int racti e material that are based n dial guing, c ntrolling,

manipulating, earching and navigating (M r no Ma r, 2007) pia' three in) rtant

roles in virtual learning. Fir tl • the can r pia e th dial gu b tw n learn and

6

their teach rand pr mote m ti at! n f r them t learn thr ugh multidirectional

ommuni ati n (i.e., a tion and feedback). u , learn will n t be bored

reading tatic text , vi wing tatic graphic r na igating non-interacti e matenal

(e.g., a narrated repre entation with animation, hypermedia, etc.. econdly, they can

timuJate information acqui ition and knowledge construction (letcher & obias,

2005; Moreno, 2006) e pecially if they are de igned to upport different mod of

pr sentation; e.g., verbal explanation (e.g., printed words, spoken word) and non­

verbal (e.g., animation) and mixed-modality representations (i.e., auditory and visual).
The approach of u ing multiple repre entation to illustrate content of knowledge eas

learners to utilize knowledge and enables meaningful learning to occur in their

cognitive (Moreno & Mayer, 2007). Thirdly, they stimulate meaningful
communications among learners and increase the use of communication facilities

provided by the LMSs to a maximum level since their acti itie will challenge
learners' understanding during their learning acti itie . If the gi en output contradict

with their hypotheses, learners will seek clarifications from their peers or teacher.

Attractive and interactive learning materials however do not automatically
create understanding. Besides their effecti eness depends on learners' prior

knowledge and their cognitive factors (Kalyuga, Ayres, Chandler & Sweller 2003),

the interactivity could also create the potential of cogniti e 0 erload that di rup

learning (Mayer & Moreno, 2003). Thus, it is important to design learning materials

that (1) manage the amount of information presented at a time and (2) reduce

extraneous processing, i.e., the cognitive processes that add burden to dig t new

information (e.g., asking learners to refer to information in other pages or computer

screens) and representational holding, i.e. the cogniti e proces that force learners

to hold their mental models during the making proce (e.g., presenting animation

after narration) that waste learner cogniti e capacities. For this, oreno r Iayer

(2007) propose instructional de ign principles for intera ti e learning material. The

design principles are guided activitie to guide learning, reflection to nc urage

information acquisition, feedback to r pair learners' rni on epti n , pa in that

enables learners control their learning and pr -training to provid learners ith

rele ant prior knowledge.

7

2.5 0 D v lopm nt

enerally, 0 m del can either b built 10 general purpo e pr gramming

languag , imulati n packages, imulation languag or high level imulato as

hown in able 2.4.

rawbaekTool

Object Oriented and upport animation

• Prone to logical and

syntax erro

• Depend hea nly on

model de 'elopers
programming 11

• Do not ually offer
animation capability

on Object Oriented Advantage.
• Reduce programming

effort by pro," iding
imularion-speci fie

features

SIM (Schwetman, 1988), GASP (Ro e, 1981), SimPack

(Fi hwick, 1992), SimTool (Seila, 19 6), SIMPAS

(Bryant, 1981).

Object Oriented Disadvantage:

Simulation

Packages

CSIM 19 (Schwetman, 200 I), C++Sim (Little & McCue,
1993), DESMO-J (Meyer et al., 2005a, JavaSim (the
lava version of C++SIM) (Tyan, 2002), JSIM (allow
imple VIM) (1. A. Miller et aI., 199), J-Sim (Kacer.

2002), PSim (Garrido, 1999), Silk (Kilgor, 2000),
simJAVA (W. Kreutzer, J. Hopkin, & M. C. Mierlo,
1997), Simjava (E. H. Page, Moo e, & P.Griffin, 1997),
SimKit (Bu s, 2002), Sim++ (based on SimPack)
(Lomow & Baezner, 1989), SSJ (L 'Ecuyer et al., 2002).

D-SOL (Jacob, Lang, & Verbraeck, 2002), Tom

(Duinkerken, Ottjes, & Lodewijks 2002; ee e &

Ottjes, 1999), P irn-J (Garrido. 2001, Garrido and lrn,
2004).

on Object Oriented dvantage:
• Offer much fle ibiliry

for imulation mod 1

development
GPSSfH (Crain & Henri en, 1999), SIM (c. Denni

Pegden, 1989) SLAM (Claude Denni Pegden, Alan, &
Prit ker, 197), SLAM II (Pritsker, iga1 &
Hamme fahr, 1994), SLX (Henrik en, 1997) Di dvantage:

Simulation
1---------------------1. till need su stantial

Object Oriented
Language pr gramming peru e

imPy (Matloff, 200), 1M CRlPT (Markowitz,
Hau ner, & Karr, 1963; Rice, Marjan i, M.. . Bailey.
2004), 1M CRlPT II.5 (Kreiman & Mullarney, 19).
SIMSCRlPT III (Rice, Marjaruki, Markowitz, . Baile).
2005), Simula (Birtwi tie, 1979), MOD 1M III (Goble,
1997).

High
Le el

imu1ators

Prom d I (Ilarr I Price, 2003), AutoMJod (Lejsaron
2007), Flex irn (Nordgren, 2003),

(" etting tarted WIth IMPR S,"
2006). Rcnque ("Rcnque 01 cr te vent irnulauon

er
'

uide," 200), em-Plant ("m-Plant mpower r •

Manufacturing Proce Managem nt," 2003), imple+
(cuder, 1995), 1M A RY 115 (Gobi, 1991)

maintain and chang
mpared to imulati n

languag or imulation

package
an incorporat
phi icated animation

to depict tern

bcha iour

01 dvantage
• ornmercial tool are

expen ive to buy and
not flexibl

General purpose programmmg languages e.g., , C++, Ja a, etc. allow

greater programming flexibility, but require model developers to be expert in a

particular programming language. Since models are developed from cratch, they
take a longer time to be built and are prone to syntax and logical errors. Developing
DES models using this approach is far from ideal in learning and teaching

environments, since both teachers and students typically need easy tool to quickly
build and animate a model's inner working.

Simulation languages allow simulation models to be developed using

customized modelling statements. In spite of their strength in modelling almost any

kind of complex system, a modeller still needs programming e perti e as well as

knowledge of their specific features (e.g. linguistic abstractions) and representation
of model logic. Although most simulation languages support animation, the resulting
models often do not allow interactions and cannot be embedded on web pag or be

integrated with e-Learning sy terns.

High level imulators allow models to be con tructed b dragging and

dropping readymade blocks onto a can a. The e bloc' are then linked \\ ith ea h

other through pads (input and output point) using connectors. The use of bloc to

represent model logic facilitates model building and deer model devel pment

time. Howe er, the manipulation of model i nl allowed thr ugh what .

r

features the package provides. Although most high level imulat rs upport

animation in 2D or 3 ,th model can onl be run in the tern i elf r busing th

ystem player. Few of th m can b embedd in web pag

9

2.6 Anima. d D

� m d I are implement d as ets computer code that repre ent their

relevant complex y tern proce e' evolution through time. In thi conte. t,

animation are used to gain insight into the sy tern through animated cenario or

graphical di plays of tati tical measures. Vi ually accurate animations can be crucial

for better understanding of the models.

The benefits of animated D S models have been extensively discu ed in the

literature (e.g., Belfore, Mielke, & Kunam, 2003; ilman, 19 5; Hill, 1996; Kamat

Martinez, 2007; Kelton, Sadowski, & Swets, 2010; Macal, 20 1; Rekapalli &

Martinez, 2007; Stahl, 2003; Wenzel & Jessen, 2001). An animated model can:

• present its simulation processes ill a more user-friendly and more easily
understood form than textual traces of event sequences to impro e users

understanding of a system

• clearly illustrate its structure and logic and allow users to visually study and

analyze its process flows

• assist model developers ill debugging (correcting syntax and logical errors)

verifying (checking whether the model is functioning as intended) and alidating

(checking whether the model reasonable represents a real sy tern being modelled)

the model

• make simulation results more comprehensible, which aids the analy i of

simulation results to gain better understanding of ystem performance under

various conditions

• give insight into model beha iour during a imulation run in addition to numencal

and statistical analyses at the end of a imulation run

Animations to impro e the display and anal i of model e. ecunon are

considered a significant augmentation of D meth dology, caused b , a hift tow ards

graphical model building and pr c orientation in m dellin w rldview (Pedgen,

2007). New imulation t I that incorp rat high qual it _D animati n .g., ena

or ProModel) or 3D i ualizati n (e.g., ut od, r -Plant) apabihu

40

ar pre erred t ldcr t 1 that do n t 0 fer uch capabiliti
M OSIM. H wever, the high quality animation offered by the

(e.g., SIM and

commercial 1 I

fail to fer any mean [interaction with their m del; i.e., they do n tall w u ers to

change y tern conditions while the mod 1 is running. ne [the reas n for thi i a

los f execution efficiency, a consideration that is much le relevant m educati nal

conte ts than in 0 techn logy predominant commercial u e for perforrnanc

prediction.

Many researches that aim to add 2D or 3D visualization and animation

capabilities to conventional simulation tools have also been many conducted (e.g., ee

Be1fore et al., 2003; Kamat & Martinez, 2007; Zhong & Shirinzadeh., 2004). Mo t of

them are based a post-processing approach that only enables an animator to enhance

the visualization of objects, their states and beha iour after a simulation run.

Moreover, model developers need to (1) learn how to use a particular imulation tool

before generating customized simulation output file , (2) ha e enough programming

knowledge to generate such files from within the model, and 3) modify the files' e.g.,

by inserting necessary commands for driving animations. Although thi approach
offers the capability to jump back and forth in simulated time during arumation

playback and to accelerate or slow viewing speeds, it is incapable of upporting
runtime interactions with its animations.

Largely for marketing reasons, many simulation tools now focus on 3D

visualizations since they promise to enhance presentation of simulation result . From

a more practical perspective, 3D animations have not pro ed all that useful (Alam,

Oloruntegbe, Oluwatelure, Alake, & Ayeni, 2010; Oloruntegbe & Alarn 2010) unl

they are for simulators meant to train system operators (e.g., flight imulat rs). In

other cases, 20 animation is usually adequate to capture es ential tern behaviour.

Animations that offer interfaces that allow users to be animation directors (i.e., the

can completely control each animated object rather than just
.

ev ing it, moving it. or

changing its shape or appearance) are able to add more reali rn to imulated enano

here. However, there must still be a clear eparati n f imulation and animati n

concepts.

Although not directl related to the mappin betw n a irnulati n m I and

its vi ual repre entation, Benjamin, Mazziotti and Arm trong (19 4 me

ignificant requirement for offering attracti anirnati n models. Tb in lud :

41

• appr priate i n r ym 1 with nam that correctly rcpr ent the purpo c [

animated object in a predefined library
• ic n placed on n animation tage hould have user-cu t rmzable la el nam t

ea cro s referencing and undefined icons

• stati tical report that can be customized with headings, labels, etc.

• graphical interaction windows for receiving input from users

• multiple windows to view information in different formats

• zooming ability to view details of a specific area of interest

While items (i) to (v) can be programmed, item (vi places stricter demand on

a programming language environment. It is therefore important to choo e a language
environment that supports the capability.

As stated, many researchers have investigated software that animates

simulation results generated by separate simulation tools. This is a simplest ay to

graft animation capabilities onto existing systems. If no interaction i needed this

may be a viable approach. However, such an animated model only sui users with

concrete concepts of the represented system and typically fails to be used in a learning
environment (Arbaugh & Benbunan-Fich, 2007; Su Bonk, Magjuka Liu. Lee,

2005; Woo & Reeves, 2007). Thus, models for teaching and learning purpo e hould

at least implement some kinds of interaction features to engage users and fo ter their

learning.
Below are some attempts for connecting imuiation and animation. in e the

tools are separated, animated model based on thi approach hav e two di tinct

limitations: (1) interaction featur that allow two-way communication i.e.

animation that reacts to user actions and an means that allow us rs to r pond to

model information) cannot be upported, thus u ers are c nstantl erved with the

same data driven animation, and (2) u ers are confined with tati m del graphical
user interfaces a no visualization tool can be attached during m del e ecuti n in

simulation performance data i tored e temall in the imulation tool.

Shi and Zhang (1999) create a platf rm f r imulating and animating an

acti ity-ba d model u ing imple 2D ic n. In thi cont t. model are built u ing
activiti blocks. a h bl k ha it 0\ n dial g 0, f r p ifying it attribut valu .

r ur e requir mcnt, activity durati n and an Icon f r pre eating r ur . Bloc

are c nnected u ing an arr w to repr ent I gical equences of activitie .' arurnate

a re urce' tate, ne or more pre-created bitmap icons can be ho en fr m a

library, which stores common construction res urces (e.g., trucks, cran , etc..

During animation, icons move along pecified paths and change hap . However,

animation of con truction activities can only be performed a fer a imulauon I

fini hed. Although the 1 01 doe not allow user interactions with arumated object ,

the y tern offers some run-time control, such a tarting and topping a simulation

and adjusting its animation peed.
Kamat and Martinez (2001) create a system called Dynamic onstruction

Visualizer (DCY) for animating construction operations ill a 3D virtual space. The

system reads a trace as an ASCn text file, which contains commands such as PA111

(for defining paths between two locations ill 3D coordinates), CLASS (for importing a

3D file in VRML format that represents resource and system entities, TIME for

driving animations at appropriate times), CREATE (for creating simulation object),
PLACE (for placing objects at appropriate positions), MOVE (for object that may

encounter time delays) and ROTATIO for rotating objects along specified planes .

This file can be generated manually or written by simulation oftware. At an

appropriate simulation time, DCV reads and performs the commands to dn e

animation. Animation is stopped when no more statements are found in the file or

when a viewer intenupts the animation. DCV allows animation to be run at any

speed.
Belfore et al. (2003) describe an approach for producing 3D vi ualizations that

can be played in the form of VRML (a tandard file format for pre enting 3D objects
in a web browser) animations. The VRML contains a VRML cene (ba ground

transformation), VRML nodes (3D animated object transformation and imulation

model information and results obtained from a imulation tool with added inti rmation

to create and animate 3D worlds (e.g. po ition, path etc.).

Zhong and Shirinzadeh (2004) create an analyzer to c nvert imp rtant

processes in imulation models (de lop d using what ver imulati n t 1) to

animation e ents. The analyzer will group a equ n e of yen int event that

belongs to an object ba ed on their ure object and th event equen it

participate ill. E nt that ar not imp rtant (e.g .. no hange in an bj t' po tti n)

will b filtered out. ach object i first 1 p iti ned at it prop rID

4

lay ut edit r and then animated b ed on it animation event u ing anirnati n

view r.

2.7 ummary

Previous work on D S construction tool has imphfied model building that

initially demands a substantial of programming effort to m del building that only

require dragging and dropping blocks of code. Approaches to connect D S model

with animations and visualizations that help learners to get insight into the model '

processes and behaviour by showing their sequences of event ha e also been

proposed. At the same time, commercial software has provided excellent tool for

modelling, animating and analyzing DES models. Howe er, none of the current tool

have considered how learners' learn. The main lesson from this chapter i that

models for learning purposes should support runtime interactions since interactions

through various engaging activities can help learners to construct and develop their

mental models of a domain. Additionally, the models should ha e relevant features to

help learners engage in their learning. Table 2.5 show the features identified from the

literature review as being desirable for the design of DES tools.

Table 2.5 Desirable Features for the Design of DES Tools

Feature Purpose
lllustration of model Help learners isualize proces flov
structures and logic
Feedback and performance Aid learners to gain better understanding of tern

visualizations performance
Activities through easy-to- Allow learners to input simulation paramete
access GUls

Attracti e animation of Facilitate learners to get insight into model behavi ur

simulation processes and improve their understanding
Multiple visualization Enable learners to VIe, information in different
windows perspectives
Appropriate symbols and Repr ent the function of animated object
names

Top le el control of Prov 'de learn a hoi e to ntrol imulati n

simulations and animations

Zooming Ability ffer learners t Ie\ detail fa p ific area of
interest

44

Th c m del h uld al be web ba ed m del that they can be embedded

in a web pag and MS-compatlble m del that they can ea i1y be int grated with

n LM t tak full advantag offered by the y tern. e next chapter will di u

how to pr p rly design • t ols f r building informative interactive . model

(that contain interactive and attractive , statistical tabl ,mformatlOn window ,

animation control, etc.) that are ideal for learning and how Fla h upports the

development of the tools.

45

II

A RAMEWORK OR D

3.1 Introduction

Dynamic systems contain various time-dependent processes and interconnected

elements. There are two techniques used to study and evaluate such stochastic time­

oriented systems: analytic and numeric. While analytical models can offer accurate

solutions, it is unpractical (and typically fails) to model systems with ery complex
structures. A numerical technique (e.g., simulation) that uses numerical

approximation is always a choice.

Time-oriented simulation imitates a system's beha iour over a period of time.

There are two types of simulations under this classification: di crete event imulation

(DES) where state variables change values at discrete time and continuous imulation

where state variables change values throughout time. The main ad antage of u ing
DES to analyze discrete event systems over analytical model is that we only consider

elements and their interactions that influence the s stem s behaviour, based on the

objectives of our study. Essential elements that simplify model de elopment in many

types of DES systems have long been studied and presented.
DES has two different purposes. One focu e on deci ion making where

simulation is used as a prediction tool for estimating performan of limited. ri ky
and costly systems. Thus, the quality of a imulation model i paramount for feasible

predictions. For this its modelling approach must go through a number of cy I :

system identification, model de ign data collection., model implementation, model

verification, model validation, model e perimentanon and model output anal is.

Model implementation in 01 es a tran formation fat of) tern igruficant
features to a computer program. Mdl erification n ur that the program ntains

no errors and logically repr ent the t m in term f it fun tionalitv and

tructure. Model alidation n ur that the program reas nabl rep nt the

4

y tcm b ha i ur (up t a certain Je el of confidence) In term of accuracy of output

it g nerate. I b th conditi n are ati fied, the m del can be used for exploration.
This include changing model parameter (.g., random numbers of arrival, routing

policy, pri rity rul ,server cheduling trat gie , etc.) and/or model tructures to

improv its perf rrnance. etail explanations of the modelling cycle can be found in

mo t S textbo ks (Banks, 1998; arrido, 2001; Kelton et aI., 2004; Law, 2007)
with Law (Law, 2007) give detail explanations on simulation analy i .

Other focu es on leaching about complex (natural, organizational or technical)

processes. Compared to the first purpose that focuses on a quantitati e aspect, the

second purpose focuses more on a qualitative aspect. In this context, a simulation

model is mainly used as an exploration tool for gaining insight into a system; i.e., to

help users to understand aspects that influence its behaviour and sensiti ity. Thus,

providing a graphical representation of its structures, any means for it parameter

manipulations and facilities for observing the effect of the manipulations (preferably
without re-running the model) to current simulation results (e.g., through animations

and visualizations of its state values) are particularly useful in offering many

cognitive advantages for achieving this purpose.

Both purposes require basic tools for model implementation (i.e., constructing
and running simulation models). The only different is that the extension of the tool,

where one stresses more on providing tools for statistical analy is while the other one

stresses more on providing tools for structural and behaviour visualizations.

Developing simulation tools is not an easy task. It must be well designed and

structured in a reliable fashion based on an appropriate framework for pre erving Its

flexibility and extensibility. This framework consi ts of egment· each of which

handles its own functionality and cooperates with each other to accompli h a further

task. The segments are later translated into computer code i.e., irnulation libran)

that can be called, initialized and assembled to con truct a model.

Although the library-ba ed approach offers ease of coding th only upp rt

model construction using te t descriptions. Thu, a compon nt-bas d approach that

offers a drag and drop fa hion for model building and U1 f r easy ac
� ing

libraries' parameter hile till upp rting API pplicanon Programming Int rfa e

ha b en introduced. Th u e of rele ant yrnb L t depi t mp nent
.

fun ti naliry
ha been pro ed to offer om ad antage p iall in vi uahzing model tru tures

and pr ce (R p nning, I annid u, Payt n, Y, R hell. 2001: R hell et

47

al., 1999). 1 [we cr, runtime e p nm ntation through th yrnbols' pararnet r

m difi ati n and r pon iv animati n and model VI. ualizauon cu t mizau n r

b erving the eff ct of the m dification are till uncommon. 11u chapter cus

n a framework that lead to the con truction of ur compon nt-ba d 1001 for

animated interacti n-driven ·S model.

hi chapter tart with a brief introduction to and qu umg networ . A

g od under tanding of D S mechani ms ease the development of our D Stool.

We fir t discuss basic mechanisms of two available D S modelling tyles, i.e .. even/­

oriented and process-oriented and their suitability in implementing a DE engine.

Because of some limitations of the event-oriented, we have architected our own

process-oriented DES framework to support various DES facilities (e.g., generating
random numbers for various distributions, collecting statistic managing simulation

clocks, a list of future events, etc).
This framework has been designed so that a collection of clas es for pro iding

simulation libraries can be constructed easily using any programming languages.
While there are many programming languages that can be used to implement thi

framework, the use of appropriate programming languages that offers a user-fnendly

environment, supports OOP and eases integration of animation e.g. facihties for

creating new images, importing outside images attaching those images to cla ses and

animating objects through built-in animation methods is important to upport it

further extension and to guarantee users' acceptance and satisfa tion. For the e

reasons, we argue that Flash is a suitable implementation tool for an kinds of

simulations (details on this will be discussed in Chapter 4).

3.2 DES and Queuing cenario

DES is a mathematical model that operate a tern using a chron logical equen

of events; each of which happens at di cr te time. The e. uti D of each ev ent e.g.,

the arrival and departure times of cu tomers in a rvi tern) will update model

state , ad anc m del time and consequentl lead tan w ev nt. ything happen
b tween the two consecuti e e ent are ign red in e the \\ III n t aff t rn del

behaviour. Th change f tat alu u sed to al ulat van t m

performanc

4

u h a mputati nal mechani m can be f und in a wid variety [y t m .

xampl include manufa turing, transp rtauon, ervice, n w rk, in entory and

c mputer y tern with th main Iocu i to study and analy e queuing networ. that

xplore the effect of capacity constrained resourc and routing trategi on

common performance measures; e.g., the average waiting time in a queue, r urce

utilization, throughput, etc. Re ult from thi can be used to manage queu

e pecially in deciding scheduling strategie and the number of resources needed to

provide particular services. Analy es of queuing networ u ing imulation can be

found in much literature (e.g., an, 1976; Guan, Woodward, & Awan., 2006;

Raatikainen, 1997; Zhuang, Wong, Fuh, & Vee, 1998).
DES is generally built up by objects known as entitie that move through

simulated time. There are two types of entities: tran ient and re ident. Transient

entities enter and depart from a system with relative frequencies and may seek for

services. In other applications, they are sometimes called as tokens, job ,

transactions, temporary entities, etc. Examples include customers in a service y tern,

parts in a manufacturing system, vehicles in a transportation system, etc. Resident

entities stay in a system for limitless times. They may offer services for transient

entities and are sometimes called as resources, servers, facilities permanent entities.

etc. Examples include workers, machines, etc. The interaction among these entiti

will create other concepts such as scheduling (the a ailability of r ources) routing

sequencing (queuing discipline) strategies and buffers (waiting paces).
Each entity performs an operation at a finite time (either constant or random)

called an activity. Activating and e ecuting a sequence of acti ities (called lifecy I

will generate events and consequentl change the entity tate i.e. its attribute

values). Detail explanations on how uch acti ities consume model time (i.e., tra ing
model execution) and how model tates are u ed to measure anous) tern

performance can be found in many te tboo (e.g., Banks 199 ; Harrell Gho h. r

Bowden, 2004' Kelton et aI., 2004; Law 2007).
There are two paradigm to tudy the dynamic b ha 'our of a

. t m. ne

focuses on transient entities' lifecycle called material-driv n. Another one f

on re ident entitie ' lin c cle call d r ource-driven. B th paradigm have th ir wn

advantage and di ad antag in t rm f e cecution peed and imulati n urput

accuracy.

49

h material-dri en paradigm i u ed or a ystem with e« transient enutre

but with numer u re id nt entitie. inee thi y tern j examined b eel on the fl w

f tran ient entitie that their lifecycJe are typically detail than r ident entitle ,we

can collect experience of individual transient entities in much m re detail. he

advantage of thi i that entitie ' animations and tati tical output anal)' I can b

more interesting. However, the increment number of transient entities will consume a

lot of computer memory and con equently cause imulation execution becomes so

slow.

The resource-driven paradigm is typically used for a large and highly

congested system; i.e., a system that contains various transient entities demanding
some services. This scenario could be found in a transportation system with many

vehicles or a service system with many customers. Since there are relati ely many

transient entities compared to resident entities, it i more efficient to iew model

behaviour based on resident entities' lifecycles. The ad antage of this paradigm is

that since resident entities lifecycles typically involve few pha es e.g., idle or busy)
and variables (e.g., their capacities, queue sizes, etc.), computer memory requirements
and simulation execution speed are insensitive to system congestion cau ed by the

increment number of transient entities. However, statistical outpu related to

individual transient entities are limited since their lifecycle are not in focus in the

model development. The material-driven paradigm is a better choice for animated

DES models that focus more on entities' animations and state alue visualizations.

3.3 Modelling Time

To sequence state transitions in DES two dominant modelling t Ie (world iews)

are used: event-oriented and proc -oriented. The choice of hich modelling t -le

should be u ed depends on a de elop r
'

familiarity \ ith the e con ept , their

programming e perti e (procedural or OOP and time constraint .

Updating model time need a component called a monitor.

update model time by jumping from e ent to ev nt. Dunng th

The monitor

p of

acti ating and cane Iling

computed. The id a

ent, arious mod 1 tati ti al p rfi rman can e

nt are tored in an A nda r an Ev 111 LI {

o

(i .. , a c mpon nl r maintaining a list 0 event to be executed) make both

appr a he dif erent.

3.3.1 The eat-Oriented pproacb

The event-oriented (or event-scheduling) model a ystem' beha iour based on a et

of events triggered by entitie. Instead of grouping a enes of event into a process

description, it only lists events (no matter to which entity it belon) based on their

time of occurrence. Executing relevant event routine will imulate the sy tern' s

processes and consequently update its model states.

This approach is well suite to model a system with a few types of entities since

all relevant aspects of scheduling can be coded explicitly. This approach ho e er

becomes complicated and difficult to program when there are different types of

transient and resident entities in a system (that introduce various kinds of event).

Simulation tools that implement this approach include SIMAN (C. Denni Pegden,

1989), SLAM (pritsker et a1., 1994) and SLX (Henriksen, 1997).

Figure 3.1 shows the execution mechanisms of the event-oriented approach.
The Event List consists of a set of time-sorted event reference (Event ID); each of

which points to an event routine (Evenf_i, Evenl_2 etc.). At a particular point of

time, the Monitor invokes the irnrninent event pointer in the Event Li t and acti 'ales

its appropriate event routine. Executing a segment of code (De criptions for this

event routine will schedule a new e ent that will later be inserted back to an

appropriate location in the Event Li t. Consequently, the [onitor updates the

Simulation Clock.

There are two options for ad ancing a model clock under thi approach: next­

event time andjixed-increment time. The next-e ent time advanc

most imminent future event time. At this point of time the mput r e. ecut event

routines, updates model state and determines the ne tt heduled event time. Th

advantage of this is that it a e computer time to run imulati n in m d I time

jumps from event to e ent. Th fi ed-increment time meanv bile adv anc model

time to a fix amount of time unit. M del tates (if ne or m re vent hav e urred)

that have happened bet een the int rval \! ill nl b updated at th end of th

interval . The main downsid f thi are: (I th use f mall tim int rvals but n

vent c urr during the interval will nly cau e wast ful scannin and additi nally

imp e mputational c t, and (2) th u e f big time tep but many ha

curred during the interval will uffer utput accuracy mce all tate change are

nly upd ted at the end f interval

Th M it Event Ust (Agenda)e on or

Event Time

EveniiO EventTme

Event 10 EventTme

Event 10 Event Tme

Event 10 EventTme
tion Clock

Event 10 EventTme

l trigger next event t exerutJ rurrent
Event 10

The Simula

l'lsen a new

� � .l
Evant_1 Event_2 Evant_n

Oescnpbons OesmptJons OesmptJons

...

l -�- �

Figure 3.1 The Event-Oriented Approach Mechanism

3.3.2 The Process-Oriented Approach

The process-oriented approach is based on SIMULA (Birtwistle, 19 O. It repr en

system behaviour from the point of view of acti e entities (called proc : ea h of

which has its own lifecycle; i.e., a sequence of activiti to be performed. Ea h

process can either be in one of three phases: active (i.e., when i rei ant a tiv iue

are being executed), pas ive (i.e., '\) hen the proces i uspended) or d all! (i.e.. when

the process has exhau ted its actions). Only acti e phase (i.e., ph e \ ith tune

delays) update simulation time and model tates.

A proces can either be upended for a definit lim dela -ed until a rtain

amount of lime) or an ind ifinit time (dela d until me nditi n ar true: e.g ..

waiting to be re-acti ated b th r pr ce e). Wh nap usp nded, th

Monitor retrie es th n ,t immin nt pr from the Ev nt Lis t and then rea tivat

it. The pr th n flo it If to th ne: t pha

Figure .2 illu trat - n nted mecharu ms. rnpared t th

event- riented appr a h that it Event Li.H tor a t f time- ned e ent routin

pointer, the Event Li t in the pro t re a tim rdcrcd et of pr

identification and their activati n tim (Proce fD, umey. At a particular POlOt of

tim, th Monitor retrieve the imminent proce from the Event LI t and updat it

imulation lock. nee, the process receive n ufication from the Momlor, it

activate the current activation pint (reactivation point A, reactivation point B, etc. ,

executes appropriate activities under the phase (Activities, store the next reacti ation

pointer and re-schedule itself to the Event Li t. It is the task of the Event Li I to insert

the process at an appropriate location. The proce is then suspended. TIll cycle i

repeated until simulation length has been reached, the Event Li I i empty or a certain

condition has been met.

The Monitor� Event List

, Process 10 Activation TIme

@
Process 10 Time

Process 10 Tme

Process 10 Time

Simulation Clock

Process 10 Time

Process 10 Time

remsert the process
resume next process

eadiwtion POIIlt

ActJve P1"OCess

A� Phase A.
AI::tI'<I!bes

B� Phase B
AdlIIIbes

c� PhaseC
Al::tl1IIbes Entity's

� Phase
AdJIIIbes

lifecycle

eactivabon POInt

eactivabon pant

Figure 3.2 The Proce s-Oriented Approach echani m

The proces -oriented approach i u uall impl mented u ing languag that

upp rt co-routine that allo

execution at a certain location of a ubroutine (e.g., #, Pyth n, et.) or

5

multithr adin that all w m re than n activitie be perf rmed 10 paraIJ I within

an appli ati n .g., Java, Ruby, etc.). However, any bject-onented languag can be

u ed t implement thi appr a h. lIandling the proce -onented u ing bj t­

ori ntati n ffer s me benefits: (I object-orientati n I a natural frarnewor for

handling the c mplexity of the proce s-oriented framework through it concept 0

object ,cfa es, propertie ,method and me age thus easing the creauon a cia 0

entitie, (2) object-orientation ensures that information i localized through the

encap ulation concept thus implifying the maintenance of entitles tat and

behaviour, and (3) object-orientation promises flexibility than con entional

procedures by supporting inheritance, polymorphism and compo ition concepts th

easing the creation of various types of entities and their class maintenances.

The object-oriented approach eases the implementation of the proces -oriented

approach that views a system as a set of entities that interact with each other to

accomplish specific goals. In the object-oriented framework. a group of proces e can

be presented as a class that encapsulates attributes (class properties) that can only be

accessed from the outside world through operations (class methods). Instantiating thi

class will create a process instance with its own values of properties (state). Because

of these, the process-oriented approach offers an advantage when a model contains

many kinds of interacting objects. Thus, it has been regarded as the best predominant

modelling worldview for structuring DES models (Kreutzer, 19 6' Law, 2007 and

has been implemented in many DES tools; e.g., SIMULA (Birtwi tie. 1979),

SIMSCRJPT (Rice et aI., 2005) and SimPy (Matloff, 200).

3.4 The DES Framework

No matter which modelling style we choo e, fi e main component have to be

provided to structure and e ecute DES model: entiti to repr ent obj t. a

simulation clock to manage current model time, di tribution to generate ntities'

stochastic beha iour and dri e model probability (i.e., f r ampling m el-time

consuming acti itie), a monitor to manage intera ti ns bern n nun . and

tali tical in trum ntation to gath r, analyz and rep rt relevant f imulau n

re ult .

4

n lructing the e c mp nent h uld be b cd on an ppr priate frarn work.

hi framew rk mu t be transpar nt to upport extensibility (1 e., further xtension to

its ba e tru ture) and w ll-de igned t av id future amendmen 0 i base

tructure. Thu, we con tructed our own framework to erv a abe or th

devel pment four S to I . This de ign was ba cd n the functionahty 0 certain

class libraries such as D M (Birtwi lie, 1979 and P im-J (arrido, 20 1 , and

available frameworks such as SIMF Ros etti, Aylor, Jacoby, Proroc & White,

2000) and D �SM -J (Meyer, Page, Kreutzer, Knaak, & Lechler, 200Sb).
We designed our own framework because of two reasons. irst, mo t

simulation textbooks and literature use available tools to build DES model. The

tools' frameworks are hidden, making their reliability and extensibility to upport our

tool's objectives is re tricted. Second, although some simulation te tboo that focus

on simulation programming present their foundation frameworks (e.g., SIMFO and

DESMO-J), these frameworks (especially the entity and the Monitor clas es can only
be implemented in languages that support co-routine or multi-threading (to continue

and interrupt entities' lifecycles). Although this offers orne advantages e pecially in

allowing simulation to operate faster on computer systems that have multiple CP

they cannot serve as the base of the development of simulation libraries in any 0 P

programming languages. Thus, OOP languages that do not support co-routine and

multi-threading (e.g., C++, ActionScript, etc.) cannot implement the frame 000.

Our framework is divided into four packages based on their functionality:

• Data Collectors

• Distributions

• Monitor (Simulation Executi e)
• Resource (Servers and Queues)

Figure 3.3 show a package diagram that depict the dependenci between

these packages in order to create queuing network m del . te that thi fram w rk

has be n pr sented in Khalid, Kreutzer and B 11 (2009).

DESTocI I

igure 3.3 Package Diagram for Queuing Model

3.4.1 The Data Collector Package

Facilities for statistical instrumentation and reporting are essential features in DES

models. Thus, to gather, analyze and report statistical information generated during
simulation runs, the Data Collectors package must be a ailable. This package hould

consist of seven classes: Collector, Counter, Tally, Histogram, Boxplot, Graph and

GraphEntry (see Figure 3.4).

CoIedO!

sIrtUme Stmg

show() Stmg
reset()VoIt
••!Name() Voct

Coonter

nurrMn Number
nurrMaxNumber
numi'lteMlScze mber
numTotllNum()f)1tetWI Number

".,.....m () Volt
maJamJm () IIotd
nu�tOMls (>lIN' ITi>er)
upelote (IOIIue orb.., VoII

numCountNulTber

l1aement (amount Number) Voct
deaement (amount NuITber) Voll

Talty
numCount Number
nullMn NulTber
nulTMalc NulTber
numSum.NulTber
numSumSquare Numbti
numCounlNumber

"",mum () IIotd
maJamJm () VoII
mean () Volt

stdOe\lllloonO IIotd
modlBllO VoII

r..tQullllio() Voct
thrdQU., Volt

IClRQ Volt
frldl OVoct
flndUpporlmlO VoII

igur .4 la Diagram f r th DataColI tor Pa cag

5

The oll ctor cIa form the ase of the data collect r hierarchy. ounter.

r ord relevant chang in m el tate; e.g., occurrences f ignificant e en . They

can, for example, be u cd 1 record th numb r of entitle that have entered or left a

m del, the number of entitie that have joined or left a queue, r the number of

entitie that have been serviced by a resource. Thi clas consi of two method .

increment/amount) and decrement/amount). While the increment/amount) 1 u ed to

increase the counter with a certain value, decrement(amount) hould al 0 be provided
to decrease the counter with a specified value. The combination of the two rneth ds i

always used in an object; e.g., to report the number of entities in a queue object or in a

resource object. Note that we have to provide flexibility for users to specify the

amount number in case they want to represent a batch arrival or departure.
A Tally reports the minimum, maximum, mean and standard deviation of a

series of values. It can, for example, be used to gather reports on delays; e.g., time

spent waiting in queues or residence times in the model. Histograms assign alues to

intervals and show frequency counts for each interval in graphical forms (bar charts).

They can be used to gather and report, for examples, time between arri al of entities,

time waiting in a queue, service times of a resource and cycle times. Boxplot provide

descriptive statistics of data variation. They can be used to graphical! report

information about the smallest, largest and median alues of ob ervations, and the

lower and upper quartiles of a series of data. The use of Histograms in conjunction
with Boxplots will help users to understand data better.

TimePlots (chronological graphs) are used to track the temporal evolution of a

variable's values' i.e., how they change over time. Plotting the number of entities in a

queue or showing changes to a re ouree' utilization during orne model time

intervals can serve as examples. The Timel'lot clas u es an instance of the

TimePlotEntry class as data points' i.e., a set of model time and it value. Each cia

(except TimePlotEntry) should implement howt } and re t() meth ds to displa
information of a series of observed data and to di card all th e data, r peeti I.

3.4.2 The Distribution Package

DES models typically are t chasti; i .. th ir lements c ur in a rand m pattern that

eventually generat rand m e nt. F r e_ ampl ,each ntit ha it \ 'n arrival urn

7

and trav I lim (fr m locati n to I ali n) that will generate non-determini tic

re ult. ·xperimentati ns with the e input to ind the b t p ible utpu in variou

cenari f the purpo e f imulating tlu random beha lour requir
a component that has capabilitie for generating amplcs fr m a variety of

di tributi n .

The Di tribution package provides a election f pre-packaged di tribution

objects. The e may, for example, be u ed to chedule the time between work1 ad

item 'arrival or service limes of re ource . ote that the term' G", u ed in

Figure 3.5, stands for random number generator. There are two methods to generate

computer random numbers: the middle quare method (Knuth, 19 1) and the

congruental method (Boyar, 1989; Hull & Dobell, 1962). The main limitations of the

first method are the iterations for generating new random numbers cannot be longer
than IO", where n is the number of digit random numbers and if the first half digits of

generated numbers are zeros, the subsequent number will then be decreasing to zero

and this will eventually stuck the generator. The advantages of the second method are

that (1) this method is easy to understand and be implemented in addition to

producing decent random numbers with the right choice of its coefficients, and (2)
this method only needs minimal computer memory to retain its state.

numRNGSeed Number

mginslance.RNG
UySampleTallyTally

Figure 3.5 CIa s Diagram for the Di tribution Package

We u e Action ript
'

gen rator, which i ba ed n the tandard ngruential

method, for thi purpo e. The 11 -tRN() m th diu d to creat rand m numb

uniformly distributed between 0 and 1 \ hi h ar th n u ed in di tribunon fun non .

Exampl are Bool an, Expon ntial, Gamma, tc.: h f which repr nt

tati ti 1 analysi f mpirical data either collected r m a real y tern r an

appr ximati n f ampl data for an imagination y tern. More comprehensi e

di cu ion n timating an input di tribution and it characteri uc can be f und in

any textb ks; e.g., by anks (19 and Law (2007).
ach di tribution cia has a . ampler) method that implement a fun u n of a

random number [or generating di tribution ample. The e sampl can be updated in

a Tally in tance through a compo ition technique to report. basic mformation (e.g.,
the minimum, maximum, etc.) of a cries of generated data. tJOOS to how and

remove these data should be available through how() and re et() methods.

3.4.3 The Monitor (imulation Executi e) Package

The Monitor package provides the infrastructure for sequencing state transition in

DES models. Its main focus is on the creation, scheduling and termination of

processes. This package consists of five classes: imProces Monitor, Agenda

Clock, and Event as shown in Figure 3.6. The SimProces class describes the life

cycles (i.e. the sequence of events such an entity moves through) of acti e entities.

Monitor
ClOCk

agdAgenda:Agenda � numTwne Number
simClock:Clock

terminatingCondition O:Boolean
set (time Number) VOtct

setSimulateFor (time:Number):Void getTwne () umber
reset () Void

schedule (proc:SimProcess. time:Number),Vold show () StfVlggetCurrentObject ().SimProcess
run ().Void

p.__reset ()'Void SomProcess

? strName Stnng
strPhase Stnng

Agenda statIC e_ntType Array

arrEvent.Array schedule (bme Number) Void

insertEvent (proc SimProcess, time'Number) Void
hold (lime Number) VOtct
add Phase (phase StfVlg) Void

getNeXlEvent O:Event IIfaCyda (phase Stnng) Vood
IsEmpty ().Boolean onrtLocalJon (X Number Y umber) Vood
reset ()'Void moveTo (X.Number Y Number) Void
show ()'String

?
Event

smpProcSlmProcess
numTime Number

strEventType Stnng
show () VOid

Figure 3.6 la Diagram f r the [onitor Pa kag

wo imp rtant m th ds h uld b pr ided in th • unl'roc s cl

chedulettime) and holdttim t). The ich tduletume) m th d I chedule an in lance

f imProc s with a pecific time value. The hold/tim) meth d 1 to delay thi

pr ce until a pe ific value f future time (i.e., current model time plu a p cified

amount f d lay time). When the time I reached, thi proce WIll be acti ated 0

that it can flow to the next pha e of it lifecycle and once again one f the two

methods will be called again until it is de troyed. Since Action cnpt 2 d n 1 offer

any features for implementing co-routines or threads, each SimProce. instance needs

to keep track of its current pha e (i.e., the current stage of it lifecycle u ing a clas

variable. This property is updated whenever the process encounters a model time

delay. Tracking SimProcess in tances' current phases need the imProce clas to

compose a Monitor instance so that they can insert tbemselve to the Monitor'

Agenda.
The Monitor owns an Agenda (or known as an Event Li t) that maintains a

time-ordered list of future events. Whenever a new e ent i scheduled, the Monitor

inserts a process and its time reference (event notice) at an appropriate agenda

position and will then wake and remove this process whene er its time of occurrence

is reached. Thus, the Monitor should have two encap ulated methods; i.e.

schedule(proc:SimProcess, time:Number) and getCurrentObject () to insert and

remove processes from the Agenda (by delegating tasks to the Agenda'

insertEvent(proc:SimProcess, time: umber) and getNextEvent() method,

respectively.

Instances of the Event class are u ed as agenda entries that tore a proces

reference and its wake-up time. An awakened proce
.

pha value en ur that the

process execution continue from ju t after the point at \ hich it incurred a delay and

then passes the control back to the Monitor. The Agenda can b implemented using

arrays, linked lists, trees, etc. Array are adequate; the donitor \ ill however

consume more computer time to insert a proce at a proper location in it Ag nda

whenever its array size i getting larger.
A simulation' temporal progre ontrolled h. tb Ionitor cl

.

mgle

instance, which own all mod I omponent and \! h e functi the n ct

imminent event from an agenda, updat th m d I c1 k (an mstan e f a C/o k:

clas) to the rele ant time alue and a ti appropriate pro

e ecute it n t phase. Thi e ecuting pr rep ted until the enda 1 ernptj

60

(i Empt () , ertain c nditi n ha been met (terminating ondtuont) or simulation

time ha b en reached (I imulat For(lime). 1 us, t avoid an empty Agenda f r

the fir t run, it i imp rtant t nsure that at least ne proc has been placed 10 the

Agenda. xecuting thi pr ce will transfer it to other phase and/or create a n

pr ce .

3.4.4 The Re ouree (erver and Queue) Packag

Figure 3.7 shows a class diagram for the Re ource package. This package consis of

two classes: Server and Queue. Both the Server and Queue c1as es can compose

instances of Tally, Graph, Histogram and Boxplot to report their stales 10 vanous

formats.

Server

numTolalUnHs:Number
numF reeUn �s:Number

Queuemon:MonHor

waHing:Queue 0- UyOWaitlllg Tally
lIyServeTime:Tally IpOlengttl TmePlot
IpServerCapacity:TmePlol tllQWanng HlStogr.wn
htServeTome:Histogram htOWatblg Boxplot
htServeTome:Boxplot

filelnloOueue (simProcess.SimProcess):SimProcess
enter (smProcess SmProcess)
leave ().SmProcess

request (simProcess·SimProcess):Void show () Slrrog
lakeFirslFromQueue {):SimProcess getOueueLengthO Number
seizeServer {simProcess:SimProoess).Void
release ():Void
show ():String

Figure 3.7 Class Diagram for the Resource Package

Server: allocate limited capacity resources to ervice requests. If a en er

capacity is exhausted, the requesting entity ill be placed in a ervic queu - an

instance of the Queue class. � the imProce class, the en' r clas must compo e

a Monitor in tance so that its lifecycle can be tracked.

The Queue class should implement two method: nteri. imProc) and

leave(). The enteri: imProce) method i to insert a imPro

while the leave() method i to retrie e the head of the queu . Th

used in the erver cla through a compo iti n techniqu. Am ng m th that

instan eta qu u

hould be pro ided for the rver cla include:

• [1/ Into LI 'U (siml'ro ss) i to In ert a lmi'rocess in lance int a queu before

all eating the in lance with a certain unit 0 th TV r 1nJ mcth us th

Queu ' entert. imProce s) m th d to accompli h thi La k.

• reque I(imPro e s) is to check if the erver i ready t allocate I ervice: i.e., if

it can upplya certain amount of unit for a requested imProce III tance.

• takeFirstFromQu u () is to enable the erver to retneve the fi t iml'roc

instance from a queue. It calls the Queue leave() meth d to accomplish thi

task.

• seizeServer(simProce s) is to allocate a certain unit of the erver
' capacity 10 a

requested imProce instance.

• release() is to enable the Server to get back a certain amount of unit that it has

allocated to a SimProces instance, so that the next imProce instance can

request for its service. Once again, the requests. imi'rocess) method will be

called.

3.5 Graphical Objects in DE Model

Figure 3.4, Figure 3.5, Figure 3.6 and Figure 3.7 show clas diagram for creating

queuing networks classes. Implementing these clas es in any computer languages
eases model building through API. The resulting model are howe er limited to teo t

description models; i.e., a list of texts that describes their logic and beha iour.

Creating graphical structures and animated ersions of the models need the concept

of graphical objects that symbolize their functionalities and ease ac to model

properties.

Graphical objects for animating DES model can be plit into two different

categories. The first one is independent of th

Independent Object , while the ec nd one 1

imulation domain or Domain

pecific a parti war typ of

simulation or Domain Dependant Obje ts: ee Figure
Domain Ind pendent Objects can be further di idee! int tw ubgroup:. tati

object and dynamic objects. tali object do n t m r hang vi ual a earan
�

during animation; e.g., imulation input (i .. , different typ f di tributi ns under

the Di. tribution package) r yrnb 1 for th imulati n nt Her 1. ., th Monitor).

D nomic graphi � ct, n th

I cati ns. Till cat g ry includ cl

graph and b xpl t (under the ollector pa kag

package).

ther hand, hang th ir appearance and/or

under th Monitor pa kage), hi 1 gram ,

and queues under the R ource

Figure 3.8 Graphical Object in DES

Domain Dependent Objects are often dynamic objects that repr ent

SimProcesses changing location (e.g., moving customers or ehicl and or

appearance (e.g., machines or con eyor belts). Figure 3. depicts orne e: amples of

domain dependant objects for service, manufacturing and logi tic tern. In

manufacturing systems transporters are used for transporting entities from locati n to

location based on a mean elocity alue. Transport IS are of tv 0 typ : tatic

(conveyers) and dynamic (ehicle). While ehicles m ve along With entin .

conveyers remain at the same place . i.e., the onI m ve entin fr m 1 ati n to

location using belt ba ed on the I cit of the belt .

As shown in Figure 3. ,th re ar tw typ of v hiel : free-path and guid d.

ree-path ehicle can mo tati ns and ar n t influ n ed b ther

tran porter
' traffic. amp I ar

automated guided hid) run n fi ed netv rk (tra k r rail) and ar influ n ed

6

by If ffi con 1 n. nvcy meanwhil ar 0 two Lyp accumulating and non-

accumulating. Accumulating nveyer will k ep moving alth ugh they ha e een

acce ed by entities. n the ther hand, n n-accumulating c n eyer will t p th if

f r I ading or unJoading ntities,

In logi tic y t m ,bin and stocks are u ed for holding god. A bin object

repr ents an unJimited capacity container while a stoc object has a fix capa ity,

hapter 4 di cusse how the e objects can be created in the lash environment by

attaching symbols and key frames to their clas

As mentioned earlier, each dynamic object has to go through a equence 0

events; each of which associates with a list of activitie that chang their tat and

affects other objects' states; e.g., changing a server s status from idle to busy. We can

link the events using a directed graph (Kalra & Barr, 1992). able 3.1 hows

different types of directed graphs, their descriptions and how they can be used to

connect various events in DES objects. Based on the e directed graphs, we ha e

identified some properties and events that should be included in dynamic objects a

shown in Table 3.2.

Table 3.1 Types of Directed Graphs

path.

Directed
Gra bs Descriptions

A linear arrangement of events. Each object
must follow a fix sequence of e ents; i.e.
one event will only lead to one other e ent.

Time line
E\lent_ 1 E\lent_2 E\lent_l

ActMbes ActMIleS ActMtJes

traverse to se

e ents.

Entiti with a divers

equence of e ents: e.g ..

a m del that c nside
d is ion point, balking
arriving ntitie that do

n t j in a queu but
av a) r n gmg (nnue

that j in a queu at first
but d id t I \ th

Ewnt_l
ActMlJesTime tree

4

im

graph

Objects

Table 3.2 Properties and Events for Dynamic bjects

EveotslPhases

Entity

Server

Transporter

Properties
Initial location
Current location

Target location
Arrival time

Departure time

Capacity
Service Time
Status: idle or busy
Utilization

Status: idle, busy or

inactive

Velocity
Time unit

Capacity
Current load
Initial position
Distance set: beginning
station, ending station,
distance

Arrive, Depart and events as ociated
with other communicated objects

Request, Seize Delay (Busy Release

(Idle), Inactive and Fail

Request, Load, Transport. Free and

Stop

Con eyer

tock and Bin

Velocity
nits

Cell size

Seglnent: beginning
tat ion, next tation,

length
Initial tock
In entory le el :

minimum, current,
desired

o t : k ping ord ring,
unful fi 11ed

Acces ,Con e E it and Halt

Requ t Produ t Delivery and t

Ord r

Time graph entitie can b hard coded by t 01 d ign while tim tree

entiti that traver e t evcral path of event mu t fl xibly be coded by model

dev I pers. However, leaving thi ta k in their hand could create certain problem .

irst, they have to code the events u ing if-el. e or witch-co e atement wuh

de cription of activities. The process of creating, extending and saving entity clas es

and writing uch election structure statements may burden and ca e tension,

Second, at certain level of if-el. e or switch-co e statement , they again ha e to write

another selection structures so that at the relevant stage certain entities can kip linear

events to represent an alternative flow; e.g., based on certain probability, queue

length, work in process, etc. These processes tend to make code clumsier and lead to

logical errors. Thi problem is getting worse if there are many clas es of entities m a

model, each of which has their own alternative paths. Third, they ha e to carefully

study a segment of relevant code if they plan to modify entitie ' lifecycles to ensure

that the modification will flow the entities along the right paths. We ha e catered

these problems by generating events during runtime instead of specifying event

during design time. This approach will be discussed in details in Chapter 5.

66

HAPT R4

INGFL H OR 1M TJ

4.1 Introduction

The use of simulations in education and training i an attractive idea since it allow

learners to gain access to and experiment with dynamic models under different

scenarios. However, to take full advantages of the technology' potential, simulation

must be interactive enough to allow learners to fully immerse them el es rather than

tediously studying lists of results or just watching pre-recorded animations of

simulation experiments.

Visualizing DES models in an attractive and interactive environment is

suspected to help learners to learn and understand DES systems better. While most

DES tools offer some capabilities to generate animations simulators with a trong

feature set for animation design typically stress qualitati e understanding of ystem

behaviour rather than statistically well corroborated predictions of tern

performance. Thus, supplying teachers with easy-to-use tools (e.g., through a drag
and drop approach) that create highly animated model to moti ate learners,

equipping the models with dynamic displays and means of interaction to engage

learners and easing the deployment of the model either on the web or modem Ll :1

to serve communities of learners are crucial. nfortunately no ingle current DE

tools have been fashioned for the e.

Attractive and interactive DE model integrate imulations and animatio to

reflect change in either the time or pace dimension. T. mporal change, for e. ample,
occurs whenever a simulation encounters dela (in m del time) and wh n ver an

animated object change appearance. 'patial change urs

move . To support animated imulations requir a n ted d ign, where m d I tim

must be mapped onto animation tim and anirnati n tim must b mapped nt real

time. There are a number of trat gi for connecting u h la . f rep entati n.

67

We have h wev r pt f r a con .urr nt (synchronous) approa h, wh re m el time

lway proportional t animation time and animation time i always proportional
to real tim .

Th de ign of 01 h uld be ba ed on Vi ual Intera tive imulation

(VIS) fundamental concept. or thi rea n, we tart thi chapter with a bnef r lew

f the concepts and the benefit they offer to learning and teaching. orne available

approaches for integrating imulati n and animation in VIS mod I will al be

introduced. Based on the concept and a elected integration approach, we then argue

that Adobe Fla h is a suitable development environment for con tructing t I of VI

models. A proposal of how Vl ' essential component can be created with the help
of our framework (discussed in Chapter 3); i.e., how we relate all the four packages to

a single overall class diagram for VIS models is then pre ented. We then present a

series of simulation components that have been developed to build queuing model .

We further our discussion by listing some tricky issues in integrating an animated

simulator to DES models specifically in permitting animation speed to be dynamically

adjusted during runtime. TIlls chapter ends with a presentation of an 0 erall clas

diagram that supports DES for logistic and manufacturing ystern .

4.2 Visual Simulation and Vi ual Interactive imulation

Interactive simulations use tools that focus on either model developer (e.g., teachers

or con umers (e.g., learners). The first type of tool help de elopers to pecify model

structures and model parameters within a graphical programming environment: e.g.,

through blocks and symbols, or by answering a eries of questions. The econd type

of tool uses animation and interaction for howing a model' beha iour eith r during
or after a simulation run.

Model building through block and ymbol typica1l giv d velopers m re

flexibility in constructing model than an wering a

idered

fo u on buildin a m

Vi. ual lnt ractive \fodellinR

a redie (199 and art> nt (_)

by the mindset of tool d ign r. ill

using orne mean of int raction , it i

(Vllv1). u & Paul 1996), dhabi, Paul,

discu such imulati n oftwar .

Th r ullin' mod I· can be of two types. Vi ual Int ractive Simulation (VI)

r Vi ual imulation. While imulati n m el that permn u l interact nh them

during their executi n re referred t as Vi ual lnt racuve imulati n, any imulation

m del that nly allow users t view It beha i ur thr ugh animati n with ut any

apability for interacti n i known I ua1 unulanon (ee ell, 19 9;

Ma carenha , Rego, & ang, 1995; S. arayanan et aI., 1997;. Robinson, 1 94;

Sargent, 2004). Visual imulation foeu e on the atlractivene. of irnulation by

tracing and surfacing the dynamic behaviour of models through graphical f rms.

They typically support two types of graphic di plays: ab tract di play and

representative di plays; see Rooks (1991) and igure 4.1.

Abstract Displays

Cumubtt...

Visual Simulation

Continot.d

Representative Displays

Scate

Schematic

Figure 4.1 Visual Simulation Components

Abstract displays stress on data vi ualization of model states. The are used

for interpreting and enhancing the presentation of tati tical data (e.g .. the Data

Collector package in Chapter 3) in the imp lest form that can be comprehended by
consumers. Various visualization method (e.g. the use of colour. appropriate te ts,

etc.) that engage them and promote their understanding could be implemented.
Abstract displays can be further divided into two group; i.e. cumulative and

in tantaneou display. s the name ugge t cumulative di pla increase the

amount of data hown during a irnulation '

e ecuti n. P t data poin will remain

on display until rerno ed b mod I de el pers or c urn umulatrv di play

help document the value of rn del variable
.

chan

entities in a queue. ampI ar graphs, progr

In tantaneous di play n th th r hand, nl

b and atter pi t .

current states f mod I

9

variable during a imulati n run, with ut h wing their previ u ate. �xampl
include hi togram , bar chart, pie chart "

gauge that indicate level . etc.

Repre entative di play offer pictorial view of a model 10 a implified form.

hey can be f two type: a cale model or schematic. A calc m d I give a pict nal

view of a yst m drawn prior to tarting a simulation and will n t change dunng a

imulation experiment. It typically offer the physical layout of a model, trying to

offer a realistic background in front of which the simulation takes place. chematic

di plays are more abstract. They are used to visualize the topology and paths of

movement within a simulation and are typically required for animations. Wlule a

scale model is completely static, schematic display serve to frame changes during a

simulation run.

Schematic consists of two types of components: static element and dynamic
elements. Static elements remain at a specific location, but can change their

appearance during a simulation. Using different dynamic icon to picture idle or busy

states of a server can serve as an example. Dynamic elements represent object that

actively move (e.g., entities) over a static background (scale model). These objects
can be split further into two groups: concrete dynamic di play are objects that do not

change their appearance while moving and abstract dynamic di plays are objects that

change their appearance while moving (e.g., walking customers with moving legs).
Henriksen (2000) further differentiates these objects based on their typ of motion;

i.e., objects that only mo e in a linear form between two fixed points (ab o/ute

movement), or objects that move along defined paths (guided mo ement); ee amat

& Martinez, 2007).
Animations create and change the appearance of image at different points in

time to convey visual information to viewers. In DES, animation are used main! to

observe patterns of movement of entities including their transformation from one tate

to another, their interactions ith other object, and the urrence of queu

whenever capacity-constrained resource cannot be eized, To attain advantag over

traditional DES models me r earcher (e.g., Belfore et al., _00 : Gilman. 19

Hill, 1996; Macal, 2001; RekapaUi Martinez 2007; tahl, _00 : Wenzel 'J en,

2001) sugge t a few altemati . Thi includ presenting a m dim a m re er­

friendly and under tood f rm (e.g., m d I dey lop rs hould I earl illu trat mod I

tructure with appropriat ymb I and label name n a tag. and d.i play
imulati n re ult 10 a graphical f rm ith appropriat h dings, la 1, t .),

70

pro iding graphical int ra tion window f r recei ing input r m th ir us r (model
c n umer) and de igning multipl window t di play irnulation inf rmati n that

u rs can u t mize their view f the m d I.

imulation, animation and mt raction are core component for VI

Sa ically, VIS m del allow learner to (1 initialize imulation paramete and run

the model, (2) ob erve the simulation behaviour through animation. (3 experiment by

making changes to model parameters while a model is running, (4) re-ob erve the

impact of the change , and (5) customize model i ualization dunng a model

execution. Since the very notion of imulation implies experimentation with model

(Rooks, 1991), such runtime interaction capabilities hould be an integral part of any

advanced computer-based simulation development tools. Providing the interaction

requires us to examine some DES animation approaches.

4.3 Animation Approaches

Dynamic elements focus on object movement from location to location. sati fying
their time delays. For this, relevant information from simulation needs to be mapped
with animation. This mapping process can be based on three a ailable approaches;
i.e. post-processed animation, direct simulation-animation and concurrent animation

(see Figure 4.2).
Trace file

Create Patiert#1 0
Place Patient# 1 Door 0
Mow Patient#1 Courter#1 10

Post-processed Animation

Direct Simulation Animation

Concurrent Animation

mbin imulati n \\ ith 'mall n

71

P t-pr e ed animati n eparate irnulation and It amrnauon. An animati n 1

p rf rmcd after a imulation ha been run t compleu n I hit, 1 6; Rohrer, 2 00 .

drive an animated m del, an animation t 01 need to read a imulauon trace lie

that c ntain relevant data a well as time-ordered command equen .g.,

c mmand f r creating, moving or de troying entitie . race file can be written

u ing a imulation package that provides the capability of wntmg t text til during a

simulation run, general purpo e programming tool or a text editor. Becau of their

reliance on pre-collected data, post-processed animations cannot upport any runtime

interaction between users and a imulation model. Despite thi drawback, they offer

some advantages such as (1) animation tools and simulation tools can be independent

in terms of software and operating systems, (2) no computer memory i hared

between simulation and animation tools that causes their executions become efficient,

and (3) animation viewers can still jump backward and forward in the model time

dimension and speed or slow down the rate at which equences of events are

displayed since all relevant simulation data has been collected.

Direct simulation-animation is a form of real time animation, in which a trace

of simulation events and their visual displays are created on the fly' i.e., during a

simulation run. Animation tools that support this approach must be based on some

means that allow interaction with the simulation software at e ecution time; e.g., a

Dynamic Link Library (DLL) in case of the Proof(Heruiksen, 2000) oftware. Since

the simulation and animation tools are still separated proces es, the technique do

not usually allow user interaction with models. Some researchers ha e however

begun to investigate how this constraint may be 0 ercome (e.g., ee tras burger

Schulze, Lemessi, & Rehn, 2005).
Concurrent animations couple animation with imulation engin . i.e., their

interactions mu t be directl programmed into the imulation heduler (the
Monitor) operation. Simulation e ents and animation events are both activated

whenever the model changes its tates: i.e. the cheduler nd event r levant

animation commands to the animator at the model tim that u h change h uld b

displayed. Thi approach i a uitable for upporting 1 th ugh alt nng a

model' parameters during it e ecution may harm the \ aliditv f imulau n

r sults (Hill 1996; Matwiczak, 19 0), the tight yn hr nization b tw n v nt

cheduler and animator p nnit f1 ible patt rn of int fa ti n with runrung m els,

an flen e ntial I merit r nhanced under tandin ' of complex ystem in trainin '

and educati n arayanan et al ,1 7) and making the dr tnbuti n 0 the m el

n the web r M rnu h I I wever, the pr per connection bet een

simulation (model) lime (i .. , a t 0 important pomt f time (e ent) ab tracted

fr m a continuou proce ystem where m del beha iour and tate chang tak

plac) and animation time i.e., a et of interval time to animate and move enuti) i

a chall nge for developing the kind of tool.

able 4.1 shows orne a pect of imulation and animation approach able

4.2 meanwhile lists interaction characteri tics of concurrent and po t-proc ed

animations. Based on these characteri tics, we have categorised some D S 1001 as in

Table 4.3. As we can ee, mo t of the tools are based on a unidirectional

characteristic; i.e., their resulting models do not support runtime interaction and the

models cannot also be executed on web pages. DES tools that are concurrent,

bidirectional, homogeneous and integrated are important for building models for

learning purposes.

Table 4.1 Aspects of Simulation-Animation Approaches

Aspect Feature

Concurrent: Animations are Direct, Po t-proce ed:

Mapping Approach directly coupled with a Animation IS performed
simulation engine after the entire model has

been proces ed

Bidirectional: Simulation and Unidirectional: Simulation
Interaction animation can react to each control animation

other

Homogeneous: Simulation and Di tributed: imulation and
Hardware Platform animation are e ecuted on the animation can b e. ecuted

same platform on different platforms

Integrated: Animation 1 Ext mal: Anirnati n and
Animation integrated ill a imulation imulation are independent

engme

7

abl

Ability to fa t forward

xcellent

o

Vanable
Animati n

motion)
th

Y

Ability to rewind Yes

Ability to run large models Vanable xcellent

Table 4.3 Available D S Tools and Their Features

Simulation Tool Feature

Proof ConcurrentiDirect, unidirectional,
homogeneous/distributed. external

SLAM ConcurrentJPost-proces ed unidirectional

homogeneous/distributed, integrated

Arena, AutoMOD,
ProModel, Simu18, Extend, Concurrent, unidirectional, homogeneous integrated
GPSS

SIMAN/CINEMA,
SEEWHYfWITNESS, Concurrent, unidirectional homogeneou e temal
SLAMffESS

4.4 Managing Simulation and Animation

Animated DES deals with animation of arious entities in a system. Each entit

animated independently in term of it dynamic appearance (transformati n of

physical di plays from tate to tate), motion (mo ement from locati n to locati n)

and interactions with other object at appropriate in tan of time; ee Figur 4 ..

The motion of DE 'entitie onl emplo d criptiv motion i.e., m ti n without

considering factor that cau e it) and b havioural motion (i.e., rea ti ns f the

ba ed on its communicati n with it nvir nment during tem ra1 interval) rather

than generativ motion (i.e., motion cau ed b om xt mal fa 1

torques that eff ct obje t
•

p ition and rientati n);

74

inking a irnulau n m del to I amman n requir over i n of thr

typ f imulati n in rmau n; abl 4 4. Th urn di feren e etween two

consecutive vent able 4.5) and the re lung delay In a mod 1 time unit ar

the only inf rmati n available for an anima/or to di play chan f imulati n

entitie ' activitie , I cation r appearance; e.g., to how a m th glid et een

creen co rdinate or changing an icon repre nting a erver' idle tate to on

howing that it' now bu . Thus, anything happening between two consecuti e

event is considered irrelevant (i.e., out ide the brief of the model) and therefore

ignored.

Visual physical dynamic appearance in 2D (images, geometrie or 3

(geometries) formats

Animated

entity
Properties with temporal states value of properties)
that change during simulation to adapt the current

situation. Properties can be scalars (e.g., the current

location, a transformation value, a elocity alue, etc.)
or vectors (the direction of movement)

Interfac

-+- Animation method to define
actions in response to event ;

e.g., creation, mo ement,
translation, rotation,
modification, communication,
elimination, etc.

Activities

(functions/operations)
Event handlers to support
runtime interactions with users;

e.g., onClick onbdouse/Iver
etc.

Events that modify entities' beha iour (internal tate)

Figure 4.3 DE Animated Object

Table 4.4 Simulation to Animation on ersi n

imulation

Delay (time)

7

TIme Process Event

0 Customer 1 Am".

2 Customer 2 An'IV.

3 Customer 1 SetZe Tell«

5 Cuatomer 2 JOin Oueue

8 Cuatomer 1 Relea5e Teller

9 Customer 3 Am,,1JI.

9 Customer 2 SeIZe Telter

I Delay tune lor
Cuatomer 1

Model Tune DIfference

2

1

2

3

1

0

-_ -- ..

I Delay tune tOf
Customer 2

Consistent transformations of model time to animation time (ee Figure 4.4

are essential for maintaining the realistic illu ion of a real y tern either Its model i

consistently running at a default rate or variably running at a user- pecified rate.

However, animated models that allow users to flexibility adjust their execution peed

(i.e., to speed up, slow down or halt their model time) at any time they wish need to

embed a term called a viewing ratio. A viewing ratio is used to map the gi en number

of model time units into a corresponding number of seconds of animation time. For

example, if the viewing ratio is set to 10, then 1 second of animation lime is equal to

10 units of simulation time.

o

�Transformation

f))
o 1 2 3 4 5 6 7 8 9 10 bon n e

(con uws process)

2 3 5 8 9 Modelli e

(dISCrete poIlts)

Figure 4.4 Transformation from Model to Animation Time

Equation 4.1 can be u ed to moothly animate all transactions b tw n en.

This equation ensures that all tate chang will be vi ible at th ir prop r tim , n

matter what viewing ratio has be nit d b users.

Animation time = mod I time differ nee b 111' 11 two

vent * (J I viewin ratio) (q. 4.1)

7

· uation 4.2 can meanwhile th m vernent of an object
Ir m) cau n to locati n. It en ure that th 0 ject amve at It tar et locan n at a

p ified point f lime, with a c ndition that a viewing ratio I mailer r equal t

model d lay. 1 the viewing ratio i greater than a certain entity' delay lime, w need

t t th m vement to 1 to make ure that the object will arrive at ne econd

animation time.

Movement (per unit = di tance • (viewing ratio / delay 10 location)
animation time) (Eq.4.2)

4.5 Fla h a an Implementation Language for imulation and nimation

Adobe Flash (H. M. Deitel, Deitel, & Goldberg, 2004; Lopez 2006; ohler, 2 6'

Shupe & Hoekman, 2006) offers a tool for creating attracti e, interacti e and

multimedia affect models. However, we have not found any reports on Flash-based

DES models or Flash libraries for DES model construction.

We have therefore investigated Flash s features for its uitabilit as aDS

development tool. In spite of the fact that Flash does not support coroutine that

requires us to write the lifecycle of each type of acti e entity using selection tructur

(If-else or switch-case statements), we found that it pro ides a good base for DE

framework development for four main rea ons: (1) Flash offers arious features for

VIS development and we consider this a a ery important a pect of providing high!
animated DES models, (2) Fla h facilitates the construction of DE component and

this simplifies model building in term of their structures and logic, (3) Flash enabl

model developers to locate animated objects on a rele ant la er of multiple layers and

this eases the management of ariou object and GUI and 4) Flash aut maticall

creates web-based model and upport \ eb interaction and th e model

distribution. Additionally its scripting language Action ript i yntacticall imilar

to Java and e++ in many way; e.g. object-oriented tru tur pa

properties, data type etc. Thu an on v ho kn w th languag and has m

background in DES framewor framex rk using la 11.

ote that other tool app ar that m r th rit ria.

time the r arch a done Fla h a a v idel u ed t 1 that m t tb - riteria.

77

r nt c ndidat w uld al be I J L5, alth ugh thi i nowher near as mature

-la h. It d e hav th advantag of w rking n Apple mobile product .

4.5.1 Fla h eature for I Dev lopment

Fla h upports the development of orne typical graphic di play in VI through it

facilitie (e.g., text, ound, video, animated graphic, etc. and built-in methods (e.g.,

rotation, movement, etc.). Its scripting language, ActionScript 0 nati , 2006;

Hamlin, Tarbell, & Williams, 2003) can be used to upport interacti e content and

enhance model presentation that make simulation to come alive. Table 4.5 relates

VIS Graphic Displays to relevant Flash features.

Table 4.6 VIS Graphic Displays and Flash Features

bstract displays (e.g.,
aphs, histograms, etc.)

Fla b Feature

lash runtime drawing methods such as lineTo(), line lyle
, beginFill(), endFill(), beginGradientFilf(), etc. The
ethods can be written in an Action cript clas and
sociated with a movie clip symbol as a component.

Flash Drawing Tools
• Flash import facilities to import arious kind of imag

and geometry files. Supported file in lude utoC
DXF (*.dxf), Silicon Graphic Image *. gi), JPE

Image (*.jpg), etc.

Scale models

Static elements (e.g.
ervers or animated

ymbols)

o I for enhancing
odel pre entation (e.g.,

udio, video and te t)

movie clip associated with an ctionScript file. Th fil
ontrols Ke frame to animate the tatus of tati elemen .

ript fil .

ntrolled �

that us multipl fram and

ript file.

.g., 'TI 1, R
.a.

7

4.5.2 I' lash ompon ot 00 tructioo

'Ia h upp rt architecture for m nent development. lash component i a

c mpiled movie clip that contains a ymbol that depict it functionality and an

Action cript file that define it operations as in ·igure 4.5. Dragging and dropping
thi ymbol onto the la h tage will automatically create an instance of i clas.

A comp nent is often broken up to smaller componen to reduce 1

implementation complexity. The e smaller componen are then tied to other

components (e.g., through a compo ilion technique) to form a more complex
structure. By doing this, a component can now delegate rele ant las to other

components to perform the whole application functionality and thi implifies

application development. In order to encapsulate it internal information and

structures (i.e., its properties and behaviour), property accessing and behaviour

triggering are only possible through messages specified by ignatures; i.e., publicly
accessible methods. This ensures that the component' internal modification can

extensively be made as long as its signatures are not altered.

Run Time Run lime
........

Viisualizabon

Coupling
Component

Propetties (stales)

Component

Properties (stales)

Methods (operabOnS)

SymbolGUI
(Property Inspector)

..........................

Design Time

GUI
(Property Inspector)

Figure 4.5 m n nt hit tur

9

Ace ing c mp nent propertie i typically thr ugh API. an alternative,

that comp f other typ f objects (e.g., text b x , com boxes, button

lider , etc.) ar u ed a attractive platform to paramete
.

e the pr perue . In lash.

the interactive pr perty changing can be done through Property In peetor. Howe er,

thi facility is only available during de ign time and do not Integrate any

mechanism to verify input values (e.g., to force correct data type or limit the range of

data values to avoid any logical errors). 0 addres this, Flash allow designe to

construct their own VIs u ing the API approach either for filtering input data (e.g.,

displaying a warning for invalid data), easing data input proces e (e.g., displaying

step by step GUIs) or supporting component parameter manipulation during run time.

Each Gill should be located in a relevant layer 0 that users can freely turn it on or off

anytime they wish.

Showing the instant effect of data manipulations (e.g., cale, colour,

description, etc.) on a component at design time can be done through a Live Preview

facility. This facility can be utilized for providing interacti e DES component that

their current visual appearance can instantly be observed. Developers however need

to embed the component with an external relevant movie file that consumes the

component's parameters.

All Flash's components are movie clips (Moock, 2002. Thus, all

ActionScript classes that control components properties and behaviour are created by

extending the MovieClip class. This inheritance technique enables the subclasses to

utilize the entire API of the MovieClip class especially methods related to animations.

A MovieClip is a generic animation object who e changes in vi ual

appearance are defined on a timeline. Movie clips rna contain graphics audio or

video, and can be nested recursi ely; i.e. clips inside clip inside clip etc. that can

be controlled programmatically. A rapid succession of the clip
, visual changes at run

time creates animations. For e ample, a mo ie clip representing a customer in a bank

simulation may mo e aero s a stage from a ource (d or) to a erver (teller. while a

clip embedded inside it may play an animation (i.e., walking b m ving arm and

feet).
Movie clip are uited for creating imulation obj ntiti en e ,

component, etc.) in D In addition to adding p ifi featur

e tend the MovieClip la to inh rit it (1) properti (e.g., 1 ti n, vi ibility, et .).

(2) m thod (e.g. moving, rotati n, tc.) and) built-in \' n (e.g., li k. rollov r.

o

drae and drop, etc.) to supp rt intcra live dialogu \ between u

during run tim; .g., to change their parameters, t drag and dr p th

I t other I ati n ,etc. ·urthcrmore, Ja hallow tool d lop

and th object

bj or their

to attach th

bject with ymb I to portray th ir funcnonaliue . The u e appr priate ymbol
an help m del builders t differentiate vanou objec and their ta in a library.

lash only consider component a reusable movie clips that implify the

creation of a lash movie. Thu, many of it tand alone componen (e.g., Label,

TextArea, DataGrid, etc.) that do not offer cooperation with each ther can be een in

it Component Panel. Such components do not suit the real definition of component­

ba ed development (BD) that view component as customizable building bloc ;

each of which needs to offer pecific services and can be aggregated i ually or

programmatically with each other to form an application. The aggregation could be

through a coupling mechanism that wires components together using interfaces' i.e.,

ports that allow communications among them to perform the application' logi (ee

Figure 4.5).
The component approach suits DES model constructions inee enuues flo

from component to component to receive different services. Analogue to the e entit

flows, signals can be used as activation mechanism for certain componen to

support more complex DES; e.g., a transportation ystem. In this case ignals are

sent by relevant components to activate transporter or con eyer component .

We focused on the development of DES components and approaches for

wiring them together and manipulating their parameters during runtime. Combining
these approaches and the facilitie that allow learners to iew component tates using
various data visualization tools may offer ad antages e peciall in easing learning.
Details about this are discu sed in Chapter 5.

4.5.3 Other Ad antage of Fla h aod It Drawbac

Besides upporting architecture f r compon nt d vel prnent, la h

advantages for building I m d I parti ularl and an t 'P f irnulati n

gen rally 0 er other multimedia-d lopm nt application. Th m lude:

• lash mak it a y t anirn te In olh motion 0 irnulau n entiti at a default

rtf 12 frame p r econd fp). Thi I adequate for web-ba ed animau

m diu rs can ea ily change thi t contr I th animation p ed i.e.• up t 120

fp). Higher rate m th VI ual hange but will increa mgly tax the h t P .

Slower rate reveal m re detail. but may make amrnati mooth. te that

thi pecified fp value only act a the maximum peed limit; i.e., the arumation

hould not play faster than the fp value. However, the rnirumum limit of i

execution is uncontrollable since it depends on P peed.
• Flash animate a sequence of image using key frames. Each key frame can

represent a critical point of animation; e.g., the change of hape or visual

appearances.

• Flash offers a large stage for drawing and compo mg objects and playing
animations. Its run-time player offers the ability to pan, zoom out and zoom in to

look at interesting locations around the stage.

• Flash employs vector graphic that use line segment to form figures. Thus these

figures can be scaled without loss in re olution and clarity. Howe er ra ter

graphics that represent images as an array of pixels are till supported.
• Flash produces executable files that can be played on both PC and Mac

platforms. These files can be distributed via Internet without any modifications.

• Flash allows model builders to control the vi ual depth of an object. This eas

the arrangement of various simulation objects and their GUIs on a tage.

• Flash provides some supports for student asses ment (Castillo et al. _004.

Teachers can use these to create e ercise that gauge tudents '

understanding of a

certain topic.
• ActionScript syntax is similar to Ja a; which again imilar to the C famil '. For

those who are familiar with these language
much effort.

ction cript can be learnt with ut

Besides the e ad antages Fla halo ha me drawba ts: I.

• Fla h i not upported on ppl m bil de ice. Thi lim! th delivery f Flash-

ba ed cont nt t pple tabl t and th lph n. H \V \ r, there ar n \\ m

application (.g., i wifier) which claim l run 'Ia h c ntent dir tly n the

Jpad and Iph n .

• la h appli ati ns require an updated plug-in t play. ownloadin the plug-in

may coo ume time.

• la h applications may be low to d wnl ad. Thi ituau n may Iru trate u e

with slow bandwidth or internet peed.
• lash application cannot be indexed by most search engines. Thi may limit it

visibility or rank in web brow ers.

• Flash applications should be developed to erve a pecific purpo e of i site. e

use of lash to only decorate a webpage will annoy users and cause them to lea e

the site.

4.6 Flash Component for Queuing tern

Based on the process-oriented modelling style (Castagna, 1997' raig 2007; arrido.

1999, 2001), we have structured an 0 erall clas diagram for creating Flash-based

components that can be used to construct animated queuing models as in Figure 4.6.

This structure is the combination of the class diagrams di cussed in Chapter with

some additional classes.

We extend all these classes from the MovieClip class for two reasons. First,

extending the MovieClip class allows us to utilize it built-in even to provide drag
and drop and interaction environments during runtime. By default, Fla h allow It

components to be dragged and dropped at authoring time. H wever upporting thi

capability during runtime need u to implement the tartliragtthis) and

topDrag(thi) events in relevant classes. Allo ing learne to have their wn m el

Gills through creating, customizing and po itioning i ualizati n compon nt 1

important for learning (Ebner & Taragbi, 20 I 0). The arne thing appli to pr viding
an interaction environment where th onR lea e() event i u ed f r a ing

component UI during runtime. econd,. tending the Movie lip to

rightly control the depth f each c mpon nt in tan on the ta e u ing th

createEmptyMovi lip(in tan e am , d -pth) m th d. mstan

hould ha e mall r d pth alu ompared loth r m 'vi lip t zuarant that th

are alway n b It m

hi m th d an al

other c mp nent instanc ; e.g., i ualizauon componen .

u ed t creal a ntamer; on which oth r movi clip (e. '.,

textb xe buttons, label, tc.) can re ide. e the co trucu n of mponent

inc the depth f their child i now controlled by 1 parent and dragging the

parent movie clip to oth r I cation will aut matically retract i entire child.

_ ...

�i(�.,""""'"
MllSa_I(....,.., � '*O'f: �J
� 1.tdXxN """'1

o Component

Figure 4.6 Class Diagram of Component for Simulation Input and Output

We designed and created three other comp nents; i.e., the

Di. tributionComponenl the ouree and the Sink components to ea DE model

constructions. The Di tributionComponent is used to provide a m

distribution types. It main purpo e i to ea e the election

of a it t of

m

samples in other component
.

e.g. the ource, the Queu • the lotion and th n r.

The ouree component i a comp n nt that ree i e param te that ntrol th

creation of entitie ; e.g., time for th first arrival, time b tw n arrival. pnonty, nut

type, etc. The param ters ar fed to th Creal la through a mp in n

technique. In order to gen rat ntiti appr priatel ,th r alia h t c m

two cia . i.e., the imProe la reate nut 1 tan � and the

Di. itribution omponent t contr J th creati n entitle b ed on a pecrfied
di tributi n type. ince d f r cr aung entiti has been embedded in the ource

mp n nt, model builders d n t need to wnte any code t perform thi tas a in

any irnulation language . e ink component i to d tr y the imProees. instances

that have been created 0 that computer memory allocated for the e mstanc can b

freed and reclaimed by the lash' garbage collector.

All Flash components including our D S comp nen are repr enied by

symbols in the Flash' omponent panel. By dragging the e ymbol onto the tage

and customizing the re ulting simulation entities' appearance and propertie , teachers

can quickly assemble web-based VIS models. Graphical di play and interfaces

attached to these entities show and animate relevant information and allow learners to

interact with a simulation while it is running. Since Flash also provides good support

for multiple media (e.g., text, sound, video, and animated graphics), imulations can

be made to come "alive" and attract learners' attention and interest.

Modifying simulation parameters requires only a click on a component

(without any need for stopping the simulation and any impact on changes to model

behaviour can immediately be observed. A variety of statistics counters with uitable

functionality and representation are built into components so that teachers need not

worry about this, which is often time consuming aspect of DES model design and

construction. These
.

features are important for the computer based learning
environment (Min, 2003). Since the components ha e been de eloped in Flash. IS

models can draw on its functionality to easily integrate with a learning management

system (LMS). Access from remote locations through internet brov ers i a further

benefit that can be attributed to this architecture.

Table 4.7 shows three types of Fla h DE component that have been

developed for supporting the construction of queuing netw r . All three typ of

queuing networks are supported: open queuing that studi a tern In "hi h

transactions are generated, flow through a model and di appear e.g., in m ervi e

systems), clo ed queuing that e arnines a tern in which transactions are p rmanent

(e.g., in a computer y tern and a mixture of op n and cl ed queuing (e.g .. in a

healthcare y tern). The functionalit and featur of th mponen that

both teacher and learner are detailed in Tabl 4 .. Figur 4.7 mean, hil

location of 0 comp n nt in th Fla h component pan I.

abl

Active

Pas ive

Visualization

Table 4.8 Flash Components for Building aDS Model and Their unctionaliues

Component Functionality/Feature

ates the arrival of entities.

Source

• Teachers can specify the time of the first entity's creation, priority
value and the default distribution of time between ucce i e arri a .

• Learners can click on the Source instance pick a list of availabl
distributions and change the default parameter of entities' tim
between arrivals. They can directly ob erve the effect of the change
to the model's beha iour. Each in lance autornaticall colle ts an

di plays the number of entities that ha e entered the model at th
current simulation time.

raphically animates queues ith priority rule uch as FIFO ir t

irst Out), LIFO (Last In First Out), lowe t priority value. high t priori
alue, or a random order. The remo al of entitie from a queue i
ntrolled by the priority rule at the time of removal. All Queu

instances automaticall collect stati tic uch as the Dumber of entiti
hich ha e left a queue maximum, minimum,

ueue standard deviation of times spent in the queue.

• Teachers can initialize a default priorit rule and p if \ ha
visualization instance will report queue tati u .

• Learners can change a queue rule anytime time the wi hand ob rv

the effect of priority rule on a model' behav iour through th

changes in queuing tati tic .

leaving a model.

Sink

• Teachers can attach i ualization in anc

time entities p nt in a model.
• Learners can mou ink

di pia'

ample the durati n 0

• eachers can initialize viewing ratio and irnulauon length. h
also link lock and irner instanc to graphically
imulation current imulation time and it prop rtion to

length respectively.
• Leamer can click the Monitor in tance to ob erve imulatio

events that have been executed, a current event being e ecuted, an

the Jist of e ents still to be executed in future. The} can al 0 top an

resume animations and adjust animation peed by onl eli kin

appropriate sub-symbols.

onitor

" '**

.....

11.--
-

Q�
.w
.......

s_

......-

�-

Figure 4.7 Flash omponent Panel

Simulating DES entities in the Fla h environment requir m del builde to

create an AetionSeript cla that e tend our iml'ro las. The la d

avoided inee ction cript d

the entities' lif cycle u fig if- I e or vit h- as tat ment . Thi

r thread.

uld n t b

d be' om ral

rea ons for thi ar that thread will indu v ry diff rent havi ur n different

7

machine pe ially in p rf nnancc intense platf rrn: and rae conditi n in threadin

willi d t perf! nnance pr bl m nth Flash play r.

la h imp e m d I builder t convert an Image to a mo re chp ymbol
before it can be attached t an Action cript ela in order t animate the e emitie .

or example, to a ciate a movie clip with a u tomer la that extends our

imProce cIa , the f llowing actions mu t be tepped thr ugh:

I. Draw a picture on (or import a picture in any format onto the lash tage.

2. onvert the picture to a symbol and give it a name. ymbol will appear in

the Flash Library.
3. Select a movie clip symbol in the Fla h Library.
4. Right-click on the symbol and choo e "Linkage".
5. In the resulting dialog, enter the symbol's name (e.g., Cu tomer) and its as ociated

class (i.e., the Customer class).
6. Select' Export for Action cript' as "linkage type' .

Once the movie clip is in the Flash library, we can make the Customer objects'

visual appearance more attractive by providing keyframe named onbdoving, inQueue
and inProcess to depict the Customer states. All code that animates these tat

together with code to handle their rno ement from component to component and halt

at a queue or being processed by a erver has been defined in the imProc elas.

Note that these frames are defined on the Customer mbol' timeline and no/

globally on the stage. This give u a local animation for C tomers i.e. their

change of appearance in different state) that i nested inside the main animati n

(tween mo ements aero the stage). To create thi local animation., we must tep

through the following actions:

1. Right-click the Cu tom r movi clip ymbol in the la h ibrary and elect Edit

from the re ulting pop up m nu.

2. Select frame 10 on the tirneline.

3. elect In rt > Timelin > K yfram
4. In the Propertie pan I chang rame Lab I to onbdovin

5. Drav a uitable pictur ofaut mer' m \ m nt on th urr nt FI h t g .

6. t 5 f r Cram 20, 30 and 40, and rna e appr pnat chang at ea h

t p.

Th entity movie object can be clicked during execution time t di playa

variety of relevant inti rmation; e.g., it number in a model, u creation time, th tim

pent in queues or erver that it has visited.

The server objects can be animated ill a SImilar way; i.e., by as igning
different ymbols to keyfrarnes Idle and Busy and attaching each symbol to ur erver

class. ote that we leave this task in the hands of model builders instead of pro idin

a compiled Server clip in order to give them flexibility in animating erver objects

using any images they wish. Actually, a set of Server component with different

symbols can be provided. The server' capacity and service lime can be changed

during a simulation run by clicking it symbol and then picking up one type of

distribution from a list of available distributions.

4.7 Fla h Component for Visualizing Queuing terns

Table 4.9 shows Flash components for visualizing model tates and their

functionality. Figure 4.8 meanwhile shows some sample instances of visualization

components (e.g., histogram, graph, boxp/ot and timer) on the Fla h stage during a

simulation run. Visualization components are connected to acti e comp nents (i.e..

Source, Queue, Sink and Server) through a compo it ion technique ee Figure 4.6 .

Embedding visualization component in an acti e component through a hard­

coded composition approach has two distinct dra.. backs. First, thi approach requires
us to explicitly declare the name of the isualization instan e in the a rive

component's class ariables 0 that we can acces it method and prop rti and

update its states. Thi problem i getting worse if we \ ant to embed man t 1> f

visualization instance to provide a platform f r learn to fle ibl reate \ an

vi ualization tool during runtime.

We can u e an arra t re ea h typ f th

Howe er, an array is not a uitable data typ

visualization instanc In III rtain languag thi rna

'vi ualization mstan

u h a variable 17 f

If \ e

d n t Ily u th array' I/, and an In cruon pr blcm (I th array 11 ha b en

c cdcd). We can alt rnatively t r a li t f array bj t 0 typ oil lor (

igur 4.6 r general obj t, but treatin I a b -cl object a d n cd-cla

a bad pr gramrning practic and may cau e ITO ; e.g., wh n w ca t a a

a a derived-cla and then re er to derived-cia m mb that do n til in that

obj t.

t

econd, thi appr ach tend to contribute to ynta In any

m dification f the i ualization ' method or property names will impo e th chang
of cod in th acti e comp nent's clas .

Component

Table 4.9 lash omponents for Vi ualizing DES Model and eir Functionalities

raph

istogram

ynamically animates patterns of changes in imulauon outpu
he current number of entitie in a queue ersus imulation time, or th
umber of a server's busy units versus simulation time.

• Teachers can specify width and height, a title, a colour for graph lin

background and fill area for each Graph's instance.
• Learners can clear the pre ious data, drag the Graph' instan e to an}

location and resize them at any time they wish.

ynarnically animates frequency information, uch as the time pent b)
entities in a queue, the operation time of a erver, th time b rwee

.

vals, the successive time between departures etc.

• Teachers can specify width and height, a title, a colour for teo

background bar fill area, maximum alue, minimum \ alue and th

number of intervals. They can al 0 acti ate drop- hado for a

instance of the Histogram component.
• Learners can change maximum alue minimum \ alu and the numbe

of interval at an time to a new di tribution of fr qu n }

information, drag the Hi togram
' in tan to an) I cation and re iz

them at any time they wish.

oxplot

ynamically animates group of nwnerica1 data through II fiv e-num

ummaries. It is a complementary tool f r th Hi t gram c m nent

• Teachers can pecify width and height, a title, a 01 ur [I r graph lin -

background and fill area f reach Bo: pl t
'

in tan

• earners can drag the B rpl t
' in tan to an}

them at an tim they \! i h.

I ck • can pecify a title, fill colour, initial time alu
imulati n tim unit.

• Learner can drag the 10 k' in lance to any I catron and re ize th
at any time they wish.

the proportion of the current

uner
• Teachers can pecify title, fill colour and elap ed time fill colour
• Learner can drag the imer' in Lance to any location and re iz

them at any time they wi h.

ArrIval Rate for SourceS

(after 1=0)

(a) Graph

It)(
requency 9

I 2
0

<0 [0,5) [5,10) .: 10
Time Interval

Q SIZe
3

;�I0.5 k
o 6

. ,(

I
12 1& 24 :I) 37 .5

n'l'lt'

(b) Hi togram

..)(
Ime Spent
4D5 14.05

Boxplot of Wart Time In otl'icera Queue

(after 1=5)

(c) Bo plot (d) Timer

Figure 4.8 Samples of D

4.8 E ample

Thi ection pre nt a impl e ample ofho th 0 librari and mp nen may

be u ed to model a queuing c nan .

cu tom rs arri e walk to a c unter, g t

. ampl unulat a • w h r

xu from th

bank. TIle rre p nding m 1 u a ingl r, a tream

vi ualizati n m

m nti ned earlier,

the durati n f vari

tru tunng th m dcl and vi uahzmg

mponent embed Di tribution 0 �

f a tiv and

tal A

f r samplin

imPro iss in tan c r pre enung cu 1 m , and a number

o repr cnt cu t mer • we must first create a new Action cnpt cl and a e

it under an appr priate name (in this case Cu tamer as) to the simulation tool [older.

Here we define a u tomer cia s ba ed on the imi'roces cla • declare arious clas

variables and define it lifecycle method; ee Listing 4. I.

1 II import packages
2 import Mon�tors.*;
3 import Resources.Server;
4

5 class Customer extends S�mProcess

6 II route times
7 public static var walkToCounterTime;
8 public static var walkToExitTime;
9 II active components
10 public static var myEntry;
11 public static var myBench;
12 public static var myExit;
13 public static var teller;
14
15 private function init () :Void

16 addPhase("ARRIVAL, ARRIVE_COUNTER, SEIZE_TELLER, DELAY_TELLER,
17 RELEASE_TELLER, DISPOSE");
18
19
20 public function 1ifeCycle (phase) {
21
22 switch (phase) (
23 case "ARRIVAL":
24 de1ay(Customer.walkToCounterT�me.sample{»);
25 moveTo(myBench);
26 break;
27 case "ARRIVE COUNTER":

28 teller.request(th�s);
29 break;
30 case "SEIZE TELLER":
31 delay(O);
32 move To (teller) ;

33 break;
34 case "DELAY TELLER":

35 delay(teller.serv�ceTime.sample(»;
36 break;
37 case "RELEASE TELLER":
38 teller.release();
39 delay(Customer.walkToExitTime.sample(»);
40 moveTo(myExit);
41 break;
42 case "DISPOSE":
43 myExit.remove(this);11 remove th1S obJect
44 break;
45 Ilend sW1tch
46 }
47 } II end Customer class

i ting 4.1

In lines 7 and ,we de lare tw c1 . anabl for repr nune cu torner
'

r ut lime; i.e., a walkTo ounterTime di tribution f r ampling tb time taken by
cu tom rs to walk fr m an entry to a counter, and a walk'Ioiixit'Iime d. tribution for

sampling walking time fr m the count r to exit. In line 13, we declar a teller

variable repre enting an object of the erver clas. ote that i uahzau n

components (e.g., raph, Hi togram, Boxplot, etc. can be compo ed t the acuve

component in tance u ing the Flash's Properties panel. ine to t) 3 tores

in tances of Source, Qu ue and ink component respectively.
The init method (line 15) initializes Cu tomer objects. Here we must specify a

sequence of phases (i.e., a lifecyc/e) that all Customers instances step through. The

addPhase method in line 16 attends to this requirement. The lifecycle method'

description begins with a description of what will happen when the control returns to

this object, based on the phase it is in (lines 23 to 44). Customer objects are generated

by a Source instance based on specified time between arri a1 . Upon arrival- i.e., the

first phase of the lifecycle (line 23), a Customer object advances itself to the ne t

phase by calling delay. The Source instance i.e. myEntry) instantiates a new

Customer object, whose associated movie clip is then used to animate it on the tage.

delay (line 24) schedules the current customer to continue to its next phase and inserts

a corresponding event notice at the appropriate point on the agenda. t the right
model time instant, the monitor will later remove this e ent notice from the head of

the agenda, retrieve the associated object and direct it to continue it execution from

the relevant point on its lifecycle. The monitor will terminate the imulation hen the

end of the requested duration is reached or when no more events can be found on the

agenda.
In preparation for the model' animated di pia, the location f the ourc

instance is the initial location for arri ing Cu tomer objec and the mov To method

(e.g. in line 25) mo e a cu tomer s picture to a gi en location e.g., that of a n' r

object). While the previou ly described actions prescribe irnulati n a tiviti , thi

method serves animation. ote that move'Io us duration i

controlled by the ratio of animation to imulation time, a alue that can b

dynamicallyadju ted by the model u rs.

erver object ha e two m th d : r qu t and r I a e. r. qu t

allocate any free unit to a reque ting u t mer. If all availabl b

u ed a Customer bject ha to, ait in a queu. call n relea Om 4) r tiv 1

9

u. tomer bj t, r tun h wev r many capacity umt . It h Id , and give th nc t

waiting u t mer a chanc acquir tho e unit. In th final ph f a u tomer

object' lifecycle, the r move m th d (lin 4) d troy the ustomer obj t, ho e

t rage will eventually be reclaimed by the h' garbag co lie lor.

N tice that we had to u e a witch ca e tatement to execute different

of code, ba ed on the pha 'e a currently executing instance of the Cu tomer cJ w

in. Pha e's value was tored in a pha e attribute and the addPha e method li ted ix

valid phase (i.e., ARRIVAL. ARRIVE_COUNTER. EIZE_TELLER,

DELAY_TELLER, RELEA E_TELLER and oi 'POSE). While thi construction i

arguably a rather clumsy way to implement a process oriented modelling framework,

it was forced by Action cript 2' Jack of support for either coroutine, thread or any

other control abstraction which would allow the persistence of state that could tore

one of multiple entry points to a method.

In addition to Customer objects, which arri e, request ervices and lea e, we

need to specify the environment these dynamic objects are to operate in; i.e. we need

to add relevant components to the Flash stage (see Figure 4.), specify their names

and link the visualization components to the active components. We then initialize

the active components' properties' e.g., simulation length server capacity lime­

between arrival, etc.

To complete our model's definition and use the Customer clas , we must first

create a new Flash document. For this e ample, we need ju t two keyfram :

Parameter and Animation. The Parameter keyframe di play a form for choo mg

statistical distributions for Cu tomer objects' route time. Di tribution component

are dragged from the Component panel and dropped at appropriate plac on the

Flash' stage. They are then u ed to initialize the ustorner walk'IoCouruer'Iim

and walkToExitTime variables. This keyframe can be ignored if model develop
choose not to give model users fie ibility in cu tornizing their own Cu 10m r obj ts'

route times.

The Animation keyfram u ed as a tage t mble the visual

repre entation of the mod I' animation. H re we u e activ c mp nen i.e,

ouree, rver, Queue and ink) and i ualizati n m n nt (i.e., Timer, Clo ,

Graph and Hi togram), ho prop rti .g., tim b twe n arriv al, rvi

c lour, width, etc.) can be changed thr ugh a Compon 111 In p tor. F rea h hang
in propertie ,th camp n nt

'

appearan n the tag will b ut m u all, adju t d.

94

N l that h c m nent h uld be given a unique identi ier thai corre p nd t th

nam u d by th C.g., mylintry, myB 'nell, C· •

" 13) to

mak ure that the vanable ar correctly as igned WIth th ir reI ant mponen

instance. animate th u lorn r and Server objec ,the appr ach di

ti n 4.6 n ed t be foil wed. A m del layout a a b

ed in

and

animation an either b drawn u ing I h' drawing tool, r we can rrn rt e l mal

graphic file in JP r X formats.

Figure 4.9 show an example of a VI model built u ing our 0 S

components. It i indeed the model constructed u ing the pre io code and

procedures, with an addition of one more Source and erver instanc and another

class of entities. The e entities need two servers, the econd of which i the arne one

that processes the Customer object . As shown in this figure, learne can change the

distribution of time between arrivals, server capacitie and ervice tune and queue

priority rules (queuing discipline) by clicking rele ant component instances. igure
4.10 meanwhile shows sample information that can be obtained from the underlying
VIS model. This includes statistics on queues and servers, as well as what previous

events have been executed, what current e ent is being executed and w hat further

events are still scheduled for execution.

Figure 4.9 ampl f Int n Learn and 1 del

Figure 4.10 Sample of Information Gained from a Model

4.9 Problem and Pitfall

Flash controls mOVIe contents over time using a timeline. Rapidly running the

timeline forms an illusion of animated images. All animated images in Flash are

organized using frames and layers. Frames control the equence of arious images in

definite length of time along the timeline. They can contain ke fram ; i.e .. control

point that change images appearance along v ith their beha iour. Layers m an hile

upport the organization of these images so that their tructur can b bro en up to

smaller parts.

Key frames are analogue to imulation events in D· model. Thus.

imulation events could po ibl be atta hed to ke frame on FI h'tim lin In thi

fashion, an animation describing an entity' i ual tran formation al ng i tim lin

would be in charge of de cribing the dynarni f th m del (i.e., han mth

ntity ab tract tate) and animation (i .. , chang in th entity' app aran e and

location). Hower, ince the timelin typicall bel ng

model) rath r than a ingl bj t (i.e., ntit ,p gramrning

a wh J m vi (i...

i unpractical. Th u f tim lin t tage m d 1 and arurnati n m thod (.g., it

m ement, rotati n, ct. t c ntr I the object' cha lour will rna e m del code

unmanageabl .

r thi rca n, a comp nent-b ed appr a h can minimize th f

creating animated m d I. Although ur Ia h-ba ed imulati n and

vi ualization com nent trive to provide easily u cd drag-and-dr p mponent and

vi ually upported environment for devel ping VI interfaces, and although th e

interfaces automatically collect and di play stati tical and other data and allo

learners to flexibly interact with an underlying VI m del, m del builde need to

program Flash ActionScript cla ses to annotate lifecycles of dynamic objects (i.e., to

flow entities from component to component) and attach visualization tool . In pite of

the fact that classes for different types of processes often follow a common pattern,

this is still tedious and difficult for occasional teachers with little programming kills.

As mentioned earlier, this is due to the fact that ActionScnpt does not support suitable

semantic abstractions for providing a coroutine feature. While we believe that our

first iteration of a Flash-based DE with animation" toolbox is a tep in the right

direction, its use is still short of the level of ease that we hope to achie e.

Ideally there should be no need for Actionscript coding at all, 0 that model

and animations could both be constructed by dropping and linking componen from

libraries while cloaking them in appropriate visual representations. Unfortunately

Actionscript currently offers no support for turning text into code (i.e., there i no

equivalent to an eval statement) and a small compiler would need to b written to

allow users the flexibility to alter dynamic components' beha iour through i ual

interfaces. In Chapter 5, we introduce one approach for building intera live visual

components that will cater the current need to annotate the lifec of dynamic

objects and easily connect the components.

The main tricky is ue in integrating an animated imulator to a D model 1

to correctly trigger orted e ents ba ed on a ie ing ratio cified b learn I."

to stop, continue or proportionally decrea e or increas model time b f attempting

to trigger next event in the Event Li t) ince th ar free t top r bange th rati

at any tim they wi h. Thi include preci el animaung t\! utive \ ent at

appropriate time and m ving entitie ithin urn fram s. in the FI h

environment, animating uch entitie '

a ti e and p 1\ tat can

u ing the tInterval and cl arlnt rval fun ti n .

a mph hed

97

We 1I e the h' tint rval funcn n that pen dically call a rno e m th

update an entity' cati n during It", mov ment to a target I anon (c E uati n

4.1 and uati n 4.2 in ecu n 4.4 nd the clearlnterval funcn n to clear the

interval once the entity h reached it destinau n. Fla h claim that thi [unction i

accurate ince it i not influenced by any frame rate value and can thu b u ed t

update bject pr pertie at a pecified time interval. 0 check thi , we conducted

orne te ts and found that it was only 2% to 6% different for one econd interval in

various frame rate . Te ts on other machines also confirmed the claim in pite of the

fact that the execution of frame rate depend on PU peed .

However, a pitfall occasionally arise when a viewing ratio for a certain model

(changed using a lider) reaches at a certain value. Thi is especially true when we

want to update an object's locations in very small steps (that typically need a very

small interval time; i.e., less than a second) so that it can mo e smoothly. For

example, let say the distance between two locations i 10 distance units and its route

time is 2 time units. If we assume that a iewing ratio is I, the entity then need to

reach its destination in 2 seconds. Since it only need 2 movement tep (i.e., 5

distance units for each second), the animation looks jumpy. To make it look moother,

we need a smaller time interval so that we can get mailer step but till within 2

seconds time frame. For example, if we use a 100 milliseconds time interval, we can

have 20 steps with each step causes 0.5 increment from it previous location. Ifu ers

increase a viewing ratio, the time interval must be decreased; e.g., for a viewing ratio

value of 2, the interval should be 50 millisecond ince model time must be

maintained but animation is now changed (so that the object can reach the target

location in a second animation time, refer to Equation 4.1). Howe er, we n nee that

entities do not exactly reach at their target location ithin pecified animation time,

making our animation engine looks like it i not working accuratel .

We found that the etlnterval function will on] tart e. ecuting a called

method after it has completely fini hed ecuting th previous called m thod. Thi

problem becomes worse when a called method has intensive code that n an

amount of time to be pr ce ed e.g., it contains rep titi n tru tur) or \ hen lh

animation i running in I Par ult th lap ed time of the handJ r

function get added to the verall int rval, making a umulated d lay m e: uung

the method within th pecified time fram. In ur ca . tlu d la th f

objects' location and c n qu ntl dela th arrival f th 0 � 1.

9

pr blem, w hecked th tim lap e and adju ted the m non accordingly b cd n

that current time.

4.10 E ten ibility

Figure 4.11 extends the overall class diagram in igure 4.6 to upport 0 f r logi tic

and manufacturing systems. As discussed in Section 3.5, logistic ystems require two

types of objects, i.e., Bin and Stock while manufacturing ystem require two types of

objects, i.e., Transporter and Conveyer.

_UI

�x�y�
MCsa.(wdItI ""'*- NIgtt;.�1
.........cc.-(_"_ -._,

Component

o Extended Component

Figure 4.11 Extended Components for upporting Logi tic and Ianufacturing
Systems

If we compare th pattern f yo hronizati n 10 produ
relation hip ith capacity con trained r ourc , th ir op rati ar unilar.

9

th

a numb r of unit to be allocated r c mp 109 proce I e.,

b ck the unite) once th y have be n released.

Thus, we need to declare a variabl in a 'erver cl for stonng the current available

unit and a Queue bject for holding reque ted proces e .

In a Bin object' operation, a producer dep it item through a tore

operation while a bin object supplies the tored item for requ ted consurn

through a deliver operation. If the stored item are not enough. consumers must be

queued and will be treated using a FIF rule. Thus, a Bin clas al 0 need to declare

a variable for storing the current available items and a Queue object for holding
blocked consumers.

ompared to Bin objects that can store unlimited items, tock objec limit

their holding items. Thus, in addition to a variable that store the current a ailable

items and a queue object that holds blocked consumers as in the Bin object, a Stock

object needs another variable for storing its item capacity and queue object for toring

blocked producers. Producers will be blocked from storing their items if the capacity

limits has been exceeded. Thus, a Stock class is actually a derived-cia of a Bin

class. Standard statistics for Bin and Stock objects in olves only initial. current,

maximum and average number of units held by the Bin and Stock objects, b id the

standard statistics of a queue.

The SimProcess class in Figure 4.5 can be extended to create Transporter and

Conveyer objects. Their classes should extend the SimProce class and have

lifecycles to sequence its operations. For example transporters should upport

request, load, fran port, stop and free operations (refer to Table 3.2 in Chapt r

Other entities (e.g., parts or customers) that would like to u e its faciliti

request the transporter by calling its reque t operation. If it i in an idle state and It

available capacity is enough, then it will proceed to other operati ns: i.e., it can move

from its default location, load the entitie transport the entiti to a targ t local} n

based on its velocity, and stop and release the entities when arriving at its d tinati n.

Otherwise, the requested entiti need to be hold in a qu u until b th ndiu ar

true. For thi , we need a queue that Ii ten to th tran p

the tran porter ignal me age. bili to nd and r

type of object (that notifi a certain ent ha happ ned in th

tate : e.g., b) r i\ ing
r from ther

communication approach among obj
handle these pr ce intemall.

that enabl u t p vide a m nent that

Ilowev r, using a cornp . ni n technique 1 chiev uch a communi ti n

b tween las' I.., by t nn th r In tan e) with ut impl menting a relcv nt

m hani min t a unable appr ach or example, a tool designer need to as ne

type f bject t regularly check If It. inter ted object change late; and thi

pr ce will incur execution penalty. there are many ther typ 0 bjec that are

intere ted t li ten to a ingle ouree object, the programming proce genin

harder ince the synchronization proce i gettmg complex In hapter 5, we will

introduce uch an interaction between 0 S components that allow u to flexibly

registered intere ted objects to an object, while maintaining a 100 e coupling between

these components.

101

lIAPT R

OMPO DMOD L FOR

5.1 Introduction

Ease of use and flexibility are essential criteria for D Stool. Unfortunately, both

often conflict with each other. General-purpose DES simulators uch a P im-J

(Garrido, 2001), SSJ (L'Ecuyer et al., 2002), J-Sim (Kacer, 2002), DESMO-J eyer

et al., 2005b) and others can be difficult to master, since they typically require

significant programming effort for model construction. Visual and interactive

commercial modelling tools; e.g., Arena (Kelton et al., 2004) and ProModel (Harrel

& Price, 2003) offer a user-friendly environment for construction and initializanon of

simulation models. Unfortunately, they often lack flexibility ince their archnectur

are hidden and difficult to extend with additional simulation logic.

Although object oriented simulation libraries have long been u ed in providing
a flexible and powerful simulation environment, they do not usually promote ease of

use. Component-based simulation tools that pro ide links between imulation

libraries have been proposed to sol e this problem and ha e been ad pted b)
commercial simulation tools and other comple oftware.

Our primary focus is to design and construct ea -to-u e and e ·tensible D

simulation tools that fo ter learning through in ight; i.e. model that unprov e

understanding through observation. Such model hould in orporate tnterfa

visualize model tructures, actis itie to reque t interaction and challenge I arne

understanding, intere ting cenario to attra t learner' a tiv iti and hall ng th ir

imagination, animation to depict proce e b havi ur, 1I1[i rmativ and

meaningful feedba k to refle t learner '

a tion and m tivate th m for furth r

experimentation and aving ability to r rd iot tin enan Th runum

imrn dial I)'interaction demand the implem ntation f on lin-en! animatio

102

di play the ffc t change rather than post-pro '
. .5 d anima/ron or dire I

imulation-animation llill,) 996).
a ed n the benefit [fered by mp nent techn J gi and the importan

[animations and vi ualizations in learning, we have identif two d ign patterns

(i.e., generic olutions t ystematically tructure cla e In bject riented

application) that are u eful [or the construction of mteracti e component .

The e pattern are the Delegation Event Model, which i used to link component

together, and the Model- View-Controller (MVC) pattern, which i used t upport

GUls and multiple visualization of component states for providing a complete

picture of model performance over time.

In Chapter 4, we designed and constructed DES component using FL h

ActionScript (Moock, 2004). Besides its strengths as an animation tool ohler,

2006) and its support for component design (e.g., a default Ul, Ii e preview,

symbolizing a class, packaging facilities, etc.) and cro -platform distribution (i.e.,

through the WWW) and integration (i.e., through LMS), a ample of ctionScnpt
basic classes and interfaces (i.e., a group of related methods with empty bodies that

defines common functionalities across various classes) for implementing many u eful

design patterns are also well documented (e.g. see Lott & Patterson, 2007' anders

Cumaranatunge, 2007).
This chapter presents the concepts related to the design and de elopment of

our interactive DES components for eliminating the need to write entiti "Iifecy Ie

during design time and supporting the creation of arious model vi ualizations during
runtime. We first review the principles of component-based imulati n.. \ 'e then

relate these principles with our model architecture to provid a graphical environment

for building, visualizing and e perimenting with the model. The trength and

weaknesses of some existing cornponent-ba ed imulators are al 0 di u ed. sed

on the architecture, we identified the combination of two d ign patterns that fit th

design of int ractive DES components· i.e. the D I galion E)' nt Mod I used t f r e

links between D S acti e and pa i e mponent and the Air (Mod I-I Itlt­

Controller) pattern u ed to 100 ly couple b hi een m nents, th IT Il and th ir

vi ualization to pr ide faciliti n. Th . planati n f h \\

both de ign pattern can b implement d 10 th FI h envi nrn nt ill luding
int rface and cia e that are u ed t

al pre ent d. Thi chapt r ontinu

reat ur mponent and th ir

\! ith th di f h w t mod I'

10

tat that it vi ualizati n and parameter ting can b a ed for future u .

h w the ben fit f the c rnbination f th the d 19n pattern in pr iding a truly
attractive and int ractive envir nrnent, an example of a 0 model i then pr ented.

We further ur di eu i non h w t cat r WIth th m del compl xity by partiti nine

the m del. This chapter ends with orne di c ion of pr blem and challenge that

we faced during the design and implementation of our D'S componen .

5.2 omponent Ba ed imulation

When describing his DEVS (Discrete Event System Specification) formali m, Zeigler

(1984, 1990, 2000) proposed that a simulation model should be built in a hierarchical

and modular fashion; i.e., a model is a collection of interconnected componen . each

of which deals with its own input, state transitions and output. These basic

components can be combined to form 'higher level" components which can then be

further connected and aggregated to construct a new sub-model. or building a

complex model, this process can be repeated recursively. Such component

architectures have since been used to develop many different types of imulators and

other complex software systems or applications (e.g. see Alejandra, Mario, &

Antonio, 2003; Atkinson, Bunse, Gross, & Peper, 2005). Some important concepts of

component software development including methods for designing and compo ina

them can be found in Jifeng, Li and Liu (2005).

Zeigler's DEY formali m has bred two type of component te hnologie :

those that focus on visual modelling such a the u e of Javafseans (Praehofer,

Sametinger, & Stritzinger, 200 I) and tho e that focus on di tributed imulation

environments such as CORBA (Yahiaoui Hensen & 0 thout, 2004) and Mi ro oft

COM (Cho & Kim, 2002).
Visual modelling environment often organize comp nent in a library with

its own intemallogic) and offer a I for eas acce t th ir prop rtie and rneth

Interfaces in which icons or bl ck ar attached to mp nent and irnulan n

tructure can be quick I con truct d

provided (dhabi et al., 199 inc th und rlying library 1

P metaphor, compon nt upp rt

exception handling. Th ad antag and di advantag

ar ften

ft var arclut tur

104

hav be n di cu d in detail el ewh r .g., es, Pidd,

V rbrae k, & 1, 2003).
ach omp nent i de igned to guid mage' 11 wand to contr I their

movement. Messag are generated by the fir t "up tream" ompon nt nd then

tran ferred t other "downstream" (Ii tener componen ; e g., through output port .

Since down tream component are configured by up tream component (either at

design time or during runtime), the only ta k of the downstream componen i to

react to message they receive; e.g., by updating their own tat ,other component
'

states and/or the messages' state. 0 d this, they need no kn wledge of where the

messages have come from.

5.3 The Environment of Animated imuJation Model

Programming lan�ge
for

desCtlbing IoQIC

ProgralT1TWlg �ge
()(

desCt1br1g appe;nnce and s dwlges
III space a1d line

Figure 5.1 Simulation and Animation pect of a 1 del

Figure 5,1 shows the architecture of an animated imulati n m d 1. t t that \\

propose a clear eparation betwe n a model' imulation

model structure and logic) and it animation apt (whi h tra

howing the equenc of g nerated ent and h \\ it mp n nt app ran and

location will change 0 r time), lth ugh animati n i n nal (I. " n t all m

n

need to be animated), it i an ntial f atur f r rving and und tanding

5

dynamic b haviour, rifying and alidating m d I (Law K It n, 2C 0 and can

pr ve particularly u eful to) nerate insights rather than imply predictions

A discu ed earlier, the I gic f r a imuJatton mod 1 can easily tru tured

u ing a component appr ach. Recognizing the ben fit 0 ered by thi approa h,

many compon nt-based imulator have been built and rep rted; e.g., x: ELL

(onway & Maxwell, 1987), 'lMFA TORY umay, 19 7), simjava (Mc ab

Howell, 1996, 1998), J. 1M (John A. Miller, Youngfu Ge, & Junxm a 19),

imkit (Buss, 2000, 2002), 0 T (hen & Szyrnan ki, 2002, JDEV. (Filippi,

Delhom, & Bernardi, 2002), Vi kit (Bu & Blais, 2007) and BP im + (elao

Pidd, 2007). A cornmon thread of aLI these tools i that they use input and output

ports (either specifying through code or a GUI) to permit interactions between their

components.

In term of ease-of-use, Simkit and COST are not u er-friendly, since they on!

allow a model builder to construct models through an API. XCELL- and

SIMFACTORY, on the other hand, provide easy-to-use GUls with which imulation

models can be constructed by dragging and connecting componen and initializing
their properties through graphical interactions. Since their internal architectures are

hidden from users, however, these tools' exten ion capabilitie are rather lirruted. To

solve this problem, BPSIM++ tries to combine techniques for offering both ease of

use and flexibility, but its resulting models are written in C++ and can therefore not e

accessed through a web browser. JDEVS, JSIM and i kit are eas -to use and

extensible tools with support for web-based simulation ince the were dev eloped

using Java, but do not incorporate any animation and vi ualization facilities. The

animation of displaying message pa sing between components wa emerged in

simjava but the visualization of model tates as limited to tei t label only \! 'hI h are

placed over the components. Many modern irnu1ation oftwar e.g., Ar na (elt n

et al., 2004), Flexim (Nordgren, 2003) 1MUL (ncann n et al.. _ and

ProModel (Harrell, Gho h & Bov den, 2004) meanwhile ar e. cellent fi r

building ophisticated D S model and analyzing y tern p rforman throu h

animation and ariou i ualization tool. H \! \ r, th ir capabihn to upport

learning through u er-directed e perim ntati n dunng run tim ar rather lmut d

106

.4 Th D I gatioo nt od I f r inking ompon n

he D I galion Event Model uggc t a generic d ign r how t br adca t many

di erent event (ab ut which inf rmation i t red in an event object) fr m an ent

ourc to all regi tered event li tener object and invoke an appr priate method on

them. his pattern off r flexibility ince (l a ingle event ource can broadca t any

number of event, (2) it listener can register to receive any inter ling e en by j t

implementing interface that define the events, and (3 each 11 tener can respond to a

received event(s) in its own special way. 0 enable the event ource clas to

broadcast many different events, it ju t needs to provide eparate reg! tration methods

and listener list for each class of event.

This style of event broadcasting i analogous to the flow of entities in D

components, where a temporary entity (an event object) 1 pas ed from an up tream

component (an event source) to downstream components (the event li tener.). Any

downstream component can then act as an event ource to further downstream

components. Entities' and visited components' states will be updated during thi

process, which will continue until a message' path i completed and the message i

removed. Thus, entities should have propertie to store their current ource

component and target component; and optionally an array to tore all their vi ited

components.

The Delegation Event Model play two important roles in building D

simulators. First, without implementing this pattern, model de elopers (e.g, teachers

must create a class which define an entity type' lifecycle as di cus ed in Chapter 4.

Writing such lifecyc1e descriptions become more complicated if entities need to b

split (e.g., using conditional statements to represent probabilitie and-or condiuons)

when they reach at a certain phase of their lifecycles. econd, through sub-cl mg.

other tool designers can extend our e i ting architecture and reate new high I vel

components to support additional requirement (e.g., other imulation metaph and

styles). An e ample for these i a re ord mponent used to collect and rep rt

various type of ob ervational tati tic. lmplem ntati n of tlu \! uld " sin

a component can broadca t e ents to man inter An ther ampl I a

renege compon nt that Ii ten to a qu u , rem rei vant enuu from th qu u If

their aiting time' tol ranee thr hold h b n. d d and th n transf � th

ntitie to certain I cation .

I 7

Ba ed n this pattern r tracing ern triggered by m ag f1 w ,

mp n nt can be c n tructed to imulat and arum te th tra fer of many types of

ntitie from one component to another, u ing the up tream comp nent
•

output port .

We have u ed cIa and interface tru turcs ugge ted by M k 2 4 t build a

suitable implementation of c mp nent 111 lao h Action cnpt, which i

illu trated in igure 5.2. D S cia e in hapter 4 will again be ed r our

di cu ion here. ote that these structure can ea ily be applied to irnplementatio 111

other programming language .

EvenllistenerUst

getLlstenerO
addObjO
removeObjO

isleners·Event1.Jstener1..ts1
addSlmProcessuslenet(l)
removeSlmProcessuslener(l)
executeSim Process(SrnProcess)

ComponentSource

���'-[.���
; S"nProces51..t_ i
� hardeMsg(SimProceu. T.me)

•

f········j interlace D dass
:..-...J

Figure 5.2 The DES Delegation E ent Model Structure

We use five basic classes and two interfaces to implement DE components

based on tbe Delegation Event Model; i.e. Component ource Eventl.i len rl.i t,

EventObjeet, SimProee , Componentl.i tener, Eventl.i tener and

SimProees Listener. The Component ouree (an event ouree) repr ent clas es that

schedule an instance of the imProee cla (a imProe object) and broadcast

this object to its registered listeners. imulation specific Compon
include Sources, Queues, Servers inks etc. Component our bject bouId

composed of Eventl.istenerl.i t object; i.e. it bould manage a Ii t of the

Component ource' e ent li teners. The Component our can equip ed

with a GUI to provide ea y acces point t it properti in luding a point to

it listener object .

he imProee (an ev nt obje t) la that can pia ed n

an Ag nda (a Ii t to t re the n t hedul d v nt for a parti ular mtPro

10

and will b ted t omponentl.istcner obj t. when it eru tim

i reached (i.e., when it h uld e a tivated y the irnulau n Momtor) Th

imPro e clas derived fr m the Eventobject cia ; a ba e clas that hold a

refer nee to the cla that ha chcdulcd it. in rder to receive e ent n tificati n

from a ompon nt ource object, the omponentLi len r cia mu t implement th

imProees Li / ner interface; an interface that pecifie a et of event method .

h imProeessLi tener interface implement the Eventl.istener mterfa ; a

marker (empty) interface that enables event listener clas es to be notified by

ComponentSouree objects. When an event occurs, the omponentSource invo a

hand!eM g (, imProce .Time) method for each Componentl.i tener object.
Based on these structures, we can now provide output ports that hould be

easily accessed by model builders to link active component (refer to able 4.7 ill

Chapter 4). These output ports substitute the need for declanng a cia s of entitle
•

lifeeycles since the sequence phases of the entities are now internally controlled by

components. Since entities' lifecycle can now be created during runtime rather than

design time, we have constructed a Decide or Routing component that coupI a

component with a set of its listeners to support decision forwardflow based on certam

control strategies; e.g., their types, probabilities, a shorter queue and erver tatus.

Figure 5.3 traces a simple flow of a SimProee s object in an MIMI] queumg

scenario. An instance of the SimProee class (which contains data about its birth

time, current phase, current location, etc.) is first created and cheduled in the Event

List by invoking a delay (time.Number, ource.Component) method on a ouree

component (which then becomes the highest up tream component). The tim

argument is the time that the ne t e ent for thi imProce object i cheduled to

occur and the ource argument refer to the Componentsourc object that cheduled

it. When the scheduled time comes, the imProc object i removed from the Ev nt

List by the Monitor. During the remo al acti it the imProc object mak a caU

back to the event source that scheduled it in thi ca e a our an

executeM g (, imProee) method on the e ent ouree. Thi vent urce then

executes relevant code (e.g., an animation meth d t mov th 1 1

its downstream component or animate it ph) ical appearan) and broad th

imProce object to it all regi t r d Ii ten rs b in' king hand! .\1. (Siml'ro

Time).

109

2

3

5

10 ReleHe Ser>'IW

10 s..ze Server-

10 cu.� Oellty Server

15 Customerll1 La_

The Monitor

Queue

executeMsg<S,mProcess){ exeruteMsg(S,mProcess){

...

)

handeMsg(S,mProc:ess bme)

.-

)
-

)

Figure 5.3 The flow of a Simhrocess Object in D Component

All registered listeners can respond to the Siml'roces object in different way .

but one of them should instruct the SimProces object to proceed to its next phase;

i.e., by reinserting it into a suitable location in the Event Li t. en the ne. t

scheduled time is reached, the SimProce s object has to call the e ent ouree that

scheduled it. The e ent source then e ecutes executebdsg (iml'ro c) and

broadcasts the SimProce object to all of its down tream component. This

mechanism is repeated until the imProc object departs from the

it arrives at a Sink; i.e., it lowest do n tream component.

Implementing the Delegation Event Model in DE clas n t nl nabl u

tern' i.e., v 'ben

to link active component with each others, but it al 0 allow u t ntrol and

simulate entitie ' delay time to their down tream componen ; 1. ., t repr nt trav I

time from location to location. The tra el time hould th n again made a ibl

for modification through the components' GUl during d ign tim and runtim

Permitting learner to chang ntitie' tra el time at an tim th \\ i h \ iii h Ip th m

to under tand the effe t of d la tim t model p rf rman e.

110

.5 Tb M for i ualizing DE' omp 0 nt tat

h MV< pattern prescribe how to tructure clas es that create and manage u er

interface ba ed n input-proces -output cycle. In d ing 0, it implement th

Ob rver pattern; i.e., a pattern which n tifi a gr up f inter ted object (th

observer.) whenever a single object (the ubject) chang e MV<

main concern is to clear! tructure an application' de into thr major

components: a model to tore an application' current tat and logic Vie11 that

r fleet (e.g., visualize) changes of it tates, and a controller that modifi the model

based on inputs made in a view. In order to receive notifications fr m the model, all

views must implement an interface that provide a suitable update method.

There are three reasons why the MVC pattern i 0 useful for building
attractive and interactive DES components. Firstly, component view can be added or

remo ed at design time or runtime without affecting an} other components' parts.

Learners can therefore freely customize model visualizations. Secondly, all view are

concurrently notified through an info object; i.e., an object that contains information

about its subject's current states. This allows the ynchronous di pIa of all of a DES

component's current states either graphically (e.g. histogram graph tc.) or in a

more abstract fashion (e.g., texts tables, etc.). Thirdly, when designed properl .

many visualization tools (e.g., histograms, graphs etc.) can be ret ed by different

types of DES components (e.g., sources, servers, etc.).

Figure 5.4 shows generic MVC implementation tructur for a ingle DE

component. This involves seven basic cla ses and four interfac that c perate WIth

each other to provide a GUT and suitable vi ualizations. The Compon ntMod. I e.g ..

sources, queues, servers, sinks, etc.) class broadcas tate to all regi tered

observers through its ComponentUpdate object (info object). Thi i an obj t that

stores its current states. Each Component [odel cia

ComponentUpdate class with a unique name (e.g.. our Update. Qu

erverilpdate, SinkUpdate, etc.).

n

'pdate,

111

�.

f········l interface D class
L.__J

Figure 5.4 The 0 S MVC Structure

The ComponentModel class implements the Ob ervable interface to pro ide

abstract methods for maintaining and notifying Ob erver objects. The

implementation for the Observable interface is provided by the Ob ervable ubject
class. An instance of the Observablesubject class i used in the Component.Model to

broadcast updates to its observers whenever its internal state have changed. B

implementing the Observable interface, the ComponentModel clas can freely inhent

from any other class; i.e., it can be a subclass of other clas .

To receive input from its views, each ComponentModel clas mu t have 1

own controller (e.g., SourceController, QueueController, ervertlontroller,

SinkControl/er, etc.). The model's controller must e tend the Ab tractilontroli r

class; a class that provides basic service pecified in the Controll r interfa e. The

Controller interface in turn contains references to the mod I and i vie . To receiv e

notifications about state changes in the Compon ntMod I, all inter; ed vi w must

extend the Ab tractView cla .

a generic implementation of the ri w and Db n r

interfaces. The View interface contains ab tract m thods t 1 and retrie e the mod 1

and controller objects ob erved by thi iew, while the Db n' r interfa e ntain an

abstract update() method. It i up to a i w' updat m th d to rat 1 th

information object ent by a ComponentMod I.

We can n w mak som modification that th \1 ualizati n m n nt

(e.g., Clocks, Hi tograms, Graph, BoxPlot L 'I and Table) to d n -ed- 1

(subcla e) ofth Ab tractVi w la ; I. ., th la that xt nds th ,\10\1 lip I

11-

tc that the b irverobject cia to pr vid comm n method for all

vi ualizati n et locauon, ize, title, etc. and t attach related

vent handlers that allow dragging, pr 109, etc. for th comp nent. ben fit of

this i that many vi ualization comp nent can now be r gJ tered or removed at any

time during de ign time or runtime to trace tate notifications fr m i a ti e or

pa ive c mponents. inee the e component must communicate with each ther

(u ing the Event Delegation Model) and report it ta to ob ervers u ing th MJ/I

pattern), their classe must implement both the Componentl.isten r for handling a

imProces object and Ob ervable interfaces for notifying state changes to it

observers. Note that a visualization instance only receives the notification of i

active or passive component states from the time point it i created. Thi could offer

some benefits; e.g., learners can inspect in detail the performance of the model and

compare its performance from various simulation times. To recei e the notification at

simulation time zero, learners must create all interested instances before running the

model.

Implementing both design patterns in a DES component permit a I e

coupling among DES components and its visualization components. Because of this

flexibility, we have created a utility component called vi ualization palette that floats

on the top of a model during runtime and holds various types of visualization tools to

allow learners to customize the model's GUIs. Various model GUIs can be created

by instantiating a new visualization instance (i.e., clicking it ymbol on the palette).

registering it to receive the notification from a rele ant component' tate chang

(i.e., dragging a point on it and dropping the point onto the component) and dragging
it to any location on the stage. However since the e proc demand orne efforts

from learners and not all visualization tool can be as ociated to a c mponent (e.g. a

Clock component can only be u ed with the Monitor component), thi appr a h i n t

so effective for a learning environment.

To overcome thi problem e directly embedded a Ii t of vi ualizati n tool

on the components' GUIs. Leamer only need to click a c mmand bun n (ea h f

which a sociate to a nev typ of
.

ualization t I to in tantiat a n \

visualization tooL We belie e thi appr ach will help th m to und tand th

dynamic beha iour of a D m del.

I I

5.6 ODn ting t rn I Data

All wing learner to save the CUIT nt tat 0 a mod I of er m benefi in

learning and Leaching. se include permitting them to retain the m del'

visualizati n and parameter etting and mark time poll 0 inter ting ari

Unfortunately, thi feature is not offered by exi ting � tool. As a r ult, learne

ar always presented with a new fresh model each time II i loaded.

Saving aDS model requires us to store model relevant tructures and state

to a file. Generally, there are three type of files for toring application data: text

files, databases (Rob & Semaan, 2000) and XML (Hunter et aJ., 2 00). These fit

will be accessed to reflect the current behaviour of an application and can be updated
to save the application's latest information during running time.

Text files are supported by many applications, easy to create and u e and

readable by humans. However, they cannot store complex data structures a in D S

models since information storing is restricted in a sequence of lines (i.e., a li t of

name-value pairs). Databases ease an application to acces data through the use of

query languages. They have been used for storing DES tatic structure as

implemented in Arena software. However, designing, creating and linking dynamic

tables that store DES temporary entities and data fields for updating toring or

deleting) timely changed DES model components (especially i ualization tool) i

unpracticaL
XML provides a good data storage for DES models due to its ability to upport

complex data structures for storing entities and component with their own properue .

Additionally, the current structures can ea ily be e tended to upport additional level

of more complex DES data tructures. However, the proc of creating and updating
these structures can only be done in the erver for a ecurit reason. a r ult,

• 1.L

is usually used for toring and acces ing data than updating the data un) the

updating proce is done manually (astillo et al., 2004).

To eliminate the e constraint, Fla h bas introdu ed Lo a/ har d Obi

(LSOs) that tore an application' rel ant information param

settings) on u er comput r. Thu, each tim th

their computer, they will get th updated

a the apphcan n thr ugh

applicati n. Thi m the

application looks like it ha be n cu t mized f r ea h u r.

114

Th m in advantag 0 L IS that data can be tored in van u data typ

(c. g., number, array, b lean, date, XML objects, etc), making th 1 rinz proc

bject are quite traight forward. However, lrule 'Ia h interact! em

hav expl ited it p tential incc It i u ually u cd [I r storing ba ic data; c. '., er

nam . For this rea n, we u ed SO for tonng our ate , anirnati n

and vi ualization instance. The ideas behind thi Implementation can ea ily b

applied in XML with little effort.

ach D S component and entity hould have It own S tile with a
.. L"

extension) and be named based on it in tance name on the la h tage. e main

storage location for LSO files is operating system-dependent but It is typically located

under the Fla h Player\#SharedObjec/s folder. All LSO files belongmg to a DE

model are saved under a subfolder (under the main torage location) named based on

its D �S model file name to avoid conflicts with other models' L file. e thus

need to retrieve the DES file name using ActionScript code whenever the model 1

reloaded. Since the LSO name exactly follows its object name, entities i.e.,

SimProcess objects) and visualization instances that are created during runtime must

be coded so that each of these objects has their own unique names. Howe er. Fla h

will automatically assign a default unique name for an unspecified object name.

Thus, the issue of an object without a name will not arise.

We created a Utility component as a means to a e component instances and

their states. It has a Save button for instructing all objects (in the form of Movieilhp
on the Flash stage to detect the existence of their as ociated LSO files. Thi can b of

two cases.

If their LSO files have not exi ted (i.e. the model has not been saved, or new

SimProce or visualization instance have been created ince the last sav e). we need

to command the objects to create their LSO files and tore their relev ant property

values. In case of active or pas i e component, we can directly transf r inf rman n

in their info objects to their LS file.

If the LS files exi t (i.e., the m del ha been aved b f r). we nly n

update the e LS tile with th ir lat t prop rt valu

proce es will only take place at the pint wher learn pt t -3\

model, not during th f model runruna. 11u

th u daung
- \e th

information in the L

will only b pr

fil I pr rved until th next aving pomt th t learn

[the lat t ving p int, Th Utilitv m nent

I 1

ha th r butt ns; the fir t ne i . t flu h all L fil [I r a model, i. "t ct a fr h

m d I with it d fault values and th econd ne i to h w all th p 0 ntity
m v ment f r clarifying th equenc event in the mod 1. fhe path are pr flied

by arrow that link active or pas ive component a ed n their output rt

parameter.

upporting such a aving capability need all componen to ha e certain

features. irst, each active and pas ive c mponent need t transfer the current U of

its ob ervers (we have had an array for thi since we implement the M� pattern into

its own LS file and consequently instruct all these ob erver to create or update)
and store relevant information in their LSO files every time the model i sa ed.

Second, a Source component needs to have an array for holding a current list of its

created SimProces objects that are still available on the stage at certain poin of

time. Note that we do not have thi in our previous ource componen . TIns array

needs to be updated each time a SimProce object is created or destroyed i.e., all

SimProcess objects will remain in the list until they are de troyed by a ink

component).
If learners opt to save the DES model the current list must be transferred into

its Source's LSO file. Sequentially, each of the imProces objects is to create its

own LSO file (or update if its LSO file has existed) to store their current information:

e.g., their latest locations, birth times, left time to finish a certain activity. etc. The

Source component also needs a variable to store the latest number of generated

entities so that it can extent this number when the model ire-run. Third, all

scheduled events in the Monitor (i.e., events that ha e not been can elled in the

Agenda) need to be transferred to respective SimProc ' L 0 file whenever

learners save the model. Thus, we have to make sure that the imProc
.

L 0 file

have already existed before transferring a Ii t of their une ecuted even (ith their

time of occurrence) to their LS files.

Whenever a model i loaded or refr hed (after saving th model ing the

ave button in a Utility compon nt) in a web-br w r, a our m nent v 111 first

get its current li t of imProc s object from it a iated

those entities. Each tim a iraPro obj t i reated, all

file will b retrie ed and in Ag nda.

reate

\ nt tored

nsequ nily.
each active and pa i e c mp nent read fil t mitiahz It param t r

setting and reate i ualizati n instan b ed n it Ii -I. f b T\ a h

11

i ualization in lance wiJl then b matched with it L II and cd with th data

t red in th file. Thr ugh the e pr e ,learner WIll brain th mod I with th

previ u anirnati n, vi ualizati nand m nent parameter ettinz .

A tri ley i ue aro e when we wanted to resa a m d I; i e., th m d 1 that

ha previou Iy been aved i I aded and re-run. unng thi point onward m

bject (e.g., entitie that have left the model or certam vi uahzati n i tanc that

have been removed by learner) have to be d troyed to ave computer mem ry. I

we automatically destroy the LS file along with their as ociated object and

learners opt to discard any change during thi time interval, we will 10 e the L

files. As a result, if the model is re-loaded, ome object Will be reuutiahzed ith

their default values due to the missing of their LS files. However, If we JU t destroy
the objects (i.e., we do not automatically destroy their LSO files) and learners opt to

resave the models, we will keep a number of worthless LS file; i.e., a I t of orphan
LSO files without their owners. This is particularly true for a model that contains

many active entities and/or has been extensively experimented ith various

visualization tools.

To solve this problem, we programmed SimProce object 0 that they

destroy themselves when they exit a model but their associated L 0 file are till

available until a certain point of time. For this the imProce objec hould

communicate with its creator; i.e. the Source instance that create them. To d this,

the Source instance temporarily stores a list of destroyed objec . If learners \\ ant to

resave the model, this list will destroy all stored object
'

as ociat d file. I nothing
will happen. The same thing applies to any rerno ed vi ualization instanc \\ her

each active component needs a temporary array to tore it removed ob rve and

then remo es the relevant i ualization in tance L 0 file in c e leame opt to av

the model.

We also need to maintain the sm tho of animati n \\ h nev r a model that

has previously been aved i loaded to be run for the first tim. tan ving point.
the model is bound to ha e orne entitie that ha n tempI t m vement t th ir

de tinations. The e entities can be at an path; ea h f \ hi h hued m am unt

of it route time to reach it d tinati n. ytime we 10 d and r -run th m l. \\

have to ensure that each entity ntinu it m \ m nt fr m th

location to its d tination u ing nl th r maining tim I ft.

ppmg

117

W handle the e entitle: '
re idual rno crnents y d layin th eution th

m del '

ing thi appr ach, the ntity that ha the all t remain in

tim can fini h it m vement based n its re idual tim. ther entiti meanwhile u

this time t tep I ward their de tinatio befor th Monitor execut th n xt

sch duled vent and update mod J lime. WIth ut delaying th n of th

Monitor, th entity will jump directly to it de tinauon while ther entiti remam

tatic in their previous locations until their cheduled tim ha e been reached that

den te the times for them to jump to their destinations. Since we mo e imProc

objects based on movement step (the partition of the e teps depen on It time

delay and a viewing ratio; refer to hapter 4), delaying the Monitor only need us to

store the number of remaining tep left to reach the de tination in th enn
•

file.

5.7 Example

This section discusses the ease of use aspects of our components in building queuing
networks and how final queuing models allow learners to conduct .anous

experiments and visualize model behaviour through their GUls. Figure 5.5 bow a

snapshot of the DES components and their locations within the Flash environment.

_J
, , �--,
/P

o "

00.
/�----�====�--------------------------�

C�
..

/v

, .

...

"

Pre J'Cf11
1 Ul

Figure 5. 0\ ironrn t

11

All rnp nent: re id In the H h' omponents pan I and can

in tantiated by dragging them ont the Fla h' lag to co tru t any typ f qucuin
networ ; i .. , open network, clo ed n tw r or mixed networ e, 2 2;

elenbe & Puj lie, 1998). e con truction f the e networ accompli hed by

utilizing Decide component instance that route entiu to their d wnstrearn

comp nent ba cd on three options: probabilitie , a hort t queue r entity types.

o demonstrate the ea e of use of our D component, we will develop a

sample of a queuing network as illustrated in igure 5.6. Thi ample irnulat two

types of entities arriving into a system. The first type joint a ingle queue and will

then be served if one of the two available ervers i idle. pon completion these

entities need to go to another queue before leaving the ystem. The econd type

chooses the shortest queue between the two available queues. After being erved

some percentage of the entities exits the system while others need to go to the ervers

that process the first type of entities. They are then free to lea e the y tern.

SOUfCO
Queoe

Jill

ill]
-�

(ShoftestQueuo) �
Figure 5.6 A Queuing etwork Sy tern

These queuing network tructur can easil be tran ferred to a omputer

imulation model using our component. Ba ed on th tru tur s, tea h need t�

instances of the ource component, four instanc

instances of the Re ource component, thr instanc of the De id

instance of the ink component and on instanc f th Monitor

that a Monitor in lance i n eded b all imulati n m d I. It fun uon lit 1 t

coordinate the equ nee of ntiti in a mod I a that enuu an b IQ\ and

transferred betwe n compan nt at appr priat tim and in th ri zht rd

mp nent, five

11

All f the c mp n nt in tan n cd t be drag cd and dr pped nto Fl h'

lag'. n tb yare on the. tage, teacher an arr n the com nent in lane

location ac rdingly, give them a name and acccs their properti

Prop rtie layout panel (ee igure 5.7 . The pr c of draggin , dropping, namin

an instance, initializing it parameter value and pecifying I targeted componen

repeated until the simulation model structure ha been constructed.

All components must have unique names to correctly link them with each

other; i.e., these names are specified in their up tream compon n
'

output port

properties so that these upstream components can route entities to their downstream

components. This approach avoids u from writing case tatements to repr ent th

entitie ' lifecycles as in our example in Chapter 4. All componen ha e their de ault

property values that specify their behaviour during runtime and can be changed by

clicking the appropriate row in the Propertie layout panel. For example a rver

instance has properties as listed in Table 5.1. Once the imulation tructure has been

built, other visualization tools can then dragged, dropped at appropriate locations and

connected to the DES components to provide a default GUI for the model.

.�

r:; c� _ I:.::::.a-'-
- w-;:: x:� ,==--i

H: SO.1 V: 134.0
'SW"C."'"

_. ..___

._._Clp

Figure 5.7 A Server's Properties and Default alues

Table 5.1 Server Propertie and Description

monitor

outPort

LO

f

·igure 5. h w a ample 0 the final model constru 1 in thi manner ith

it wn u t mized vi ualizatio . Th m del all w learn 1 p, increa d

decrea the animati n peed for their b t visuahzauon e eet (igur 5.9a. con u t

vanou xperirnent through an interactive VI and ob erve the irnpa 1 of chan to

mod 1 behavi ur through a range of engaging VI ualizauons. onducting experiment
are ea y ince they can change any component' parameter at any lime the wi h

(i.e., by clicking the comp nent and typing appropriate valu into text box an or

ch 0 ing one of several options in combo boxe and directly i uahze the

component' internal state by clicking available command button. r ample.
learners can change priority rule (queuing di ciplines) for queu (Figure 5. b), alter

the distribution of time between arrivals for the two types of enun • modify

capacities and service times for servers (Figure 5.9c) and interact with data

visualizations; e.g., changing minimum and maximum values. and the number of

intervals of histograms (Figure 5.9d). The ability to change hi tograrn parameters

enables learners to view the distribution of data in a ariety of formats. Label of

important components' current parameter alues are also displayed during runtime for

model clarification.

tft���

PI (WfMfwotdE

"'� -

0 c--._, _...

10 CUItDmt1'8_, _...

11'" c____ , -

c_.) -...

• "lI C�_' Do<_

"'__'.'

""-'

Fizure 5. inal 10d I

1-1

Strn Clock

Speed

Monitor

(a) Monitor

(c) Server

(b) ueue

Figure 5.9 Interactions with Component Instances

(d) Histogram

All data visualization (that reports the model's performan e during th

simulation run) selected by learners can be located at any location on the model tage

or closed when unneeded. This approach enable learner to customize the model'

visualizations based on their interest to ease their learning.

5.8 Towards Hierarchical imulation Model D ign

Systems are u ually large and comple. Ho e er th ir omplexit an b \\ U

structured if we partition them to many ub- t m ; each f \! hi h f us nit v 'n

function. The use of a hierarchical model to break up a

not only help learners to understand the mod 1, but it als

tern t maller fun tio

learn c ntrol

Hierarchical imulation mod

the display of model information ba ed on th ir abilit t dig t th inf rman n.

ff r m advantag f r th I armng and

teaching en ironment. ir t tea h can tru lure a larg and mpl imulati n

model to different 1a r f ab tracti n; i.e., b building and repr nting th model

1....2

fr m a ba i , general model to more de iJ ub-rnodel (It cluld mod I). u , a

c rnpl x rn del can n w be con tructcd and m naged ea ily. econd, learners can

have a better view of a m del ince It compl xity (i.e., imulati n componen ,their

int rc nne ti ns, animation and data vi uahzation) i now well controlled t hrnit i

crowdedne on a limited c mputer creen space. Thus, learn can contr I th ir

learning by cone ntrating on a certain ub-model at a time in which they ar

intere ted. or example, if they have under to d a basic model, they Cat! n w

transver e to the model' children that hide more detail 0 their tru lure and

functions. Additionally, understanding the model can be boo ted if at each layer,
learner are allowed to conduct arious model experimen and cu tomize the layer'
visualization. Third, using layer by layer model design can ease the development of

various simulation models. The main reason for thi is that each component,

visualization tool and sub-model can be reused to construct a new type of imulation

model. This will expedite the creation of simulation based learning material .

However, designing the architecture that support the de elopment of

hierarchical simulation models and implementing them on computer will po t m

challenges. These include:

1) How to connect and synchronize a model with its children in a hierarchical

fashion since parent models are dependent on their child model(). Thi requir
us to design a mechanism not only to synchronize the flow of entities in a relevant

layer but also to properly transfer these entities to its child model and bac ' to the

layer whenever the entities exit the la t components of the child model.

2) How to hide and display animation and i ualization f ub-m del at an

appropriate time so that the model abstraction can b controlled properly.

3) How to store model state, animation, learner' e. p riment pararnete and their

customized visualization for each model la er 0 that \. hen the r vi It th la er,

they will get back the ettings they ha e had befor .

Figure 5.10 how an e ample of a hi rar hi al tru ti n of mod 1.

The model i partitioned to four 1a er (Layer 1 to Layer 4. Th

particular layer depend n ther la rs. Th top la r (I. ., Lay r 1) repr nts th

overall function f the m d I hil th I wer la rs gi\ m r mf rmati n ut th If

L

upp r layer' functi n. "a h layer e ept lh I we t layer ha a ub-rnod 1 ym

that hid it tructure (mpon nts and th ir connections) that perform it uncti n

li king thi ub-m del ymb I will take learners to a lower layer (i.e., th layer'
tructure) while hiding the layer (e.g., through a button or a menu) will brin r learn

back to it upper layer. At any layer, there could be a ub-m del that general and

handles their own type of entitie , but the e entities WIll not be tra ferred to any

other layers. he flow of the e entitie mu I al 0 be ynchronized with th wh Ie

model time.

Sou"",

contains Layer 1

Layer 2

� Local Mon�or

Queue

s.._.

contains Layer 3

Layer 4

'---_--'I sub-model

igure 5.10 Hierar hi al n tru ti n of a D

1-4

<ach layer ha it wn window or locaun It component tructur and

upp rting it animati n and vi ualizati n development. Isnuu that f1 w on thi

wind w mu t be well ynchr nized with it lower layers; i.e., entities hould ppear at

a ub-rnodel ymbol at the right time once they exit their lower layer ba ed n th ir

time delays.

We have designed two mechanisms for coordinating event executions in hierarchical

DES models. The main trick for the e is sorting events in all hierarchies and

executing them accordingly. First of all, we need to introduce these object :

1. r. t) Messages

c. t) messages are additional messages to entity messages (i.e., dynamic entities

flowing in DES models). They are also inherited from the entity cla ; e.g., the

SimProeess class. The main differences are:

• entities flow from component to component while (". t) messages flo from

layer to layer to coordinate event executions in the layers
• flowing entities from component to component typically consum om

delays while flowing (*, t) messages does not incur delay.
• entities contain personal information (e.g. birth time dela time, etc.) while

(*, t) messages only contain the lowest imulation time of the urc laye
and the t value is not used to update simulation time, and

• entities are created by a ource component (i.e., a type of m nent that

creates entity instances) while (*, f) m ag are created b� a ubmod I

object.

The inserti n of (", t) me ag an nda max It lum .

However, their e i tence i important to tall all v nt e: uu ns.

1
-

2. ubmodel bj t

ubmodel object enclo an th r layer. nuue arriving at a .ubmodel bject
c uld be in one of two ca e : (I the entitie are rom th arne layer' pre IOU

comp nent, or (2) the entitie are from a lower layer' I t cornp n nt; I igur

5.11. To differentiate the e entitie , the entity cia needs to ha e a pr perty; .. ,

namedJromLayer that takes a value 0 current (the first case r child (the econd

ca e).

.(,.Q�
receNed "'an the cI'*I 's

last componrC
transfer to the child's

first component

Figure 5.11 Submodel Architecture and Transferring Mechani ms

For the first case, the entities continue their flow to a lower layer first

component through a child port; i.e., a port specifying the child model' f t

component. For the second case the entities flow to the arne la 'er
'

ne. t

component through an output port; i.e., a port storing its downstream component.

3. Local monitor

Each layer has its own local monitor that execute the lay er' activ itie lor d in

its Agenda in the right order.

5.9.1 Monitor Delegation Mechani m

When a model is loaded each Submodel inserts a (". t) me ge to it 10 of monuor.

This is to find the layer that ha the 10 e t imulati n tun ; e.g., ill of a

Submodel object contains its own typ of entitie , or a ubmodcl bj t 1 th fi

component that locate a ource component und r it. Th

the top la er
' monitor remo e the (". t) m

fir t component hich th n in ert th m

uti n tart -

'\ nh

It I " r layer'

L6

ntinu until th imminent ntity i f und In a r I vant layer. The tity will then

b exe uted that it can Il w to the am layer or to an th r lay r. Their 11 w to

an ther lay r mu t be accompanied by a (". I) me sage.

he imminent item after thi Iir t iteration can be tw typ : (• I) bject or

ntity object. If it is a c. t) object, the execuuon of th current local mom lor i

pas ed to either i lower or upper layer' monitor depending on the urcc the (, t)

me sage. therwi e, it i flowed to the next destination; i.e., a component r a

ubmodel object. For a ubmodel object, the entity WIth a (". t) m e i

transferred to a lower layer that will then be inserted into an appr priate I arion in

the layer's local monitor by its child's first component. Thi monitor then ute

and removes the imminent item from its Agenda.

Transferring the model execution to other layer's local monitor implies that

the layer contains lower next schedule time compared to the previous layer. The

execution of this current layer' local monitor continues until another (", t) message i

found in its Agenda. These processes are illustrated in Figure 5.12. Figure 5.13 and

Figure 5.14 meanwhile show some code under the handleMsg(. iml'roce .Ume) and

executeM g(SimProcess) methods for the Submodel class and the imulation

component class.

Basically, the Monitor Delegation Mechanism coordinates the execution of

events in a hierarchical DES model through these mechani ms:

1. Instruct Submodel objects to insert (*, t) to each local monitor.

layer's monitor, folio ed by other la er .

2. Determine the imminent item type and the component that e ecutes it.

3. (a) Flow the item to its next component in the arne la er if the item i the typ of

ecute the top

entity and the component that e ecute it i a imulation c mponent, or

(b) Transfer the item and a (*, t) mes age if the item i the typ f entit and the

component that execute it is a ubmodel object; Lay r 1 in igure .L.

Insert them at appropriate location in the layer" 10 al monitor. Thi p

should be done b the child' first component upon r h ing th m ag

Tran fer the model e recution to the la er
'

rnorutor.

4. Retrieve and remo e th ne: t imminent it m fr ru th urr nt 1 � r 10 al

monitor. If the item i the type of (", t) m age, transf r the monit r uti n t

L7

the layer wh re the C·, /) i Ir m and then repeal thi tep , LI c. repeat th rep

2 .

.............. -- .. - .. - -_ ..

Time Proc ... Ev t

0 Custom'" ArrIval

1 Cuatomd2 Arroval

5 Custom'" Enter ,lA>mooel

10 Custom�2 Enter 'IA>model

,-, 20 r.u Execute Layer 1

Root Monitor

component
_ " _ _

�,"_
_ _

....
-I'-- ... ,�

.

.
" ...

_

..........

(1) entity

��) (0, I)
----------_

�.
\
I

entity

Time Proces-s Event

.�
20 CustomerlM NextComp

40 Custome#a Next Comp
50 Customer#' Enter Submodel

60 Customer#2 Enter Submodel

"
65 r.l) Execute

I
.:..
r ",

" Local Monitor
("I) "

.
.

: .:

.:
..........

�

component

-
..
_ ..

_

entity

Time Process Event

.� 65 Custom'" NextComp

70 Customenr2 Nex1ComP

.�
74 (' l) Execute

(0: I) Local MonJtor

component

Figure 5,12 M nitor D 1 galion ham m

L

. Layer 2

.

}
/

: Layer 3

private function handleMsg (entityln tance:SimProces ,time: umber) {
1* schedule the entity to its Agenda ./

entityln tance.delay(thi , time

}

private function executeM g (entitylnstance:SimProcess) {
1* if the entity is from the current layer" I

if(entityln tance.fromLayer() = = "current") {
1* send the entity to its lower layer ·1

child.handleMsg(entityInstance, 0)
I*create a new instance of extemalMsg*1
extMsg = extemalMsg.create ew();
child.handleMsg(extMsg, 0)

1* if the entity is received from a lower layer *1

} else {
1* send the entity with some delay to the next component in the current

layer *1

outport.handleMsg(entityInstance, delay);
}

}

Figure 5.13 Submodel Class Definition

private function handleMsg (entityInstance:SimProces ,time: umber) {
1* schedule the entity to its Agenda *1

entitylnstance.delay(this, time)
}

private function executeMsg (entityInstance:SimProces) {
if (entityInstance typeOf ExtemalMsg) {

I*transfer the monitor execution to the Source of the e tM g m nit r /

entityInstance.getSource().handleMsg(entit Instan e.O :

} else {
1* transfer the mes age with orne dela to the n t c rnpon nt */

outport.handleMsg(entityInstance, dela);
}

}

Figure 5.14 imulation la Definiti n

12

5.9.2 Monitor ommuni arion M chani m

he Monitor ommunication Mechani m differ fr m the Monitor Delegation
Mchan; m in two ways. irst, (*, t) me age are ent by a m OJt r, n t by a

ubmodel. However, a ubmodel object and the last imulation component in a layer
till transfer entities (i.e., imProces object) to It lower and upper layer

re pectively. Second, for each iteration, monitors located above the urce (", /)

mes age must all be executed equentially rather than transfemng monitor execution

to a relevant layer. Such monitor communications through br adcasting (*, /)

messages demand the monitor to implement the Delegate Event Model.

The purpose of broadcasting (*, t) message down to a certain layer where the

c. t) comes from is to find the model's lowest simulation time in all i ited laye
'

Agendas. For this, two types of iterations are needed. The first iteration broadcas a

c. t) message from the top layer until the lowest layer to consider the cases of ource

components are located in the lowest layer or certain layers ha e their own types of

entities. The second iteration onward only involves broadcasting a (", /) message

until a relevant layer since any lowest next scheduled time below thi layer definitely
has a bigger value. This can be achieved by detecting the origin of a (". t,J message.

The c: t,J message is actually a (". t) message containing the latest value of

the lowest next scheduled time. This value is collected during it tra ersal to the top

layer. By broadcasting the (", t,J message up from layer to layer, a parent la er

acknowledges its child layer s lowest next scheduled time. For e. ample, Layer 1

stores the lowest next scheduled time for Layer 2; Layer 2 tores the lowest heduJe

time for the Layer 3 and so on. Thus, the e ecution of the child la ntr lled b

its parent monitor. The details of the Monitor Communication f, chan; m ar as

follows:

1. Insert a default (*, t) me sage in the root Ag nda whenev r the model I first run.

2. Broadcast the (*, t) me age from monitor to monitor in a equen

1, Layer 2, Layer 3 ...) unti I it rea he the low t monit r.

3. Execute the local monitor to coordinate e nt in th la. r ea h urn th lay r

rder Lay r

receives the c. t) me age. or xample, ut th I cal m rut r in th Laver I,

followed by the Layer 3 and n. n equ ntl, end the (. I) m

lower m nit r .

1 0

4. nee the (*, I) me age rea he the lowe t layer' local monitor, retri e th

imminent item in it Ag nda. ake it lowe t chcduled lime. pdate the (". I)

m age with a r. I,J, where In i the I w t next cheduled tim f r th layer.

Br adca t the (*, I,J t it parent monitor; i.e., the I al monitor in it upper I y .

Note that the (". I,J me age i uppo ed to traver e up to the t play r.

5. nee the (*, I,J reache it upper layer' local monitor, in rt th me ag at an

appropriate location in its Agenda based on the I" value. Retrieve the imminent

item from the Agenda. Broadcast a new (*, 1,J me sage (could be th previ u (*,

t,J message if it is the imminent item) to its upper local monitor. Repeat the

processes until the (". 1,J reaches the top layer. This will guarantee that each layer

stores its child's lowest next scheduled time.

6. Once the (*, t,J reaches and has been inserted to the top layer Agenda i.e., root

Agenda), execute the root monitor. If the imminent item m 1 Agenda I the typ

of c, t,J, send another (". t) message down to the layer where the (", tn) me ge

is from. During this traversal, execute all visited layer' Agenda to remove the

(*, t,J messages. Note that only the layer that has generated the (*, t,J me sage

will create a new event (i.e., flowing a relevant entity)' other layers only remove

the message from their Agendas. Broadcast another (*, I,J message. Repeat rep

5.

7. Stop the processes if the length of simulation time has been reached.

Figure 5.15 traces a sample of Agenda based on the Monitor Communi arion

Mechanism. The figure is split up to (a) (b) and (c), each one how the A nd at

simulation time 0, 10 and 14 respecti ely.

I I

TIm. ,,_•••
-r·' --

1,,-,

• " U ..._
- --

'--"lI1 l.Jw< II'fa.- --

-

r,')

TIM. P,-_. ..wtl

I:
g � �

... ,_ h-

I-; r ",.,J

�!
.

.taI,

..

2>

r,') r 0) r,')

'11m. rr..... 1,,_,

-.lg � l.WU -4
i"

,,_ ,,--. ..-

,. I" ""'I

"

11 c..t:.lII � II'
:n

2t

r} r 0) r!}! r ,

:
'11m. " 1,,,.,.,, 1'_ ,.,--. ._

'<J • Cu.�' � , . ""- -,-..

Cu.�' JWIOu.u.1 ,.

eu__ "

z•

..,. ..,_,._

(a) (b)

Figure 5.15 Agenda States

T_ ,.- t._

. ,. ... I '

"._, l!'o
II

..

71

r H) co ' co

... ,.- t._

�" r .. • L.,_;t

I,;,I .. r '
•

•

n

(c)

At simulation time 0 (i.e., at initial run time broadcasting a (", t) m e

down to the lowest layer (i.e., Layer 4) is compul ory to find the 10\\ t n

scheduled time for the model. This example locates a Source component In th Lay r

4. However, if it were located in other layers, broadcasting the (". t) mage d wn t

the lowest layer would ensure the lowest ne t cheduled time i collected among the

Agenda.
When the (", t) mes age reaches the 10 t la er the (". t) i c D\ erted to a (•

t=O); we assume that 0 is the first e ent; i.e., the creation of first enut . Th (, t=D)

is then transferred up to the top layer ince it i the 10 e 1 ne: 1 heduled tun in th

whole hierarchy. After thi first iteration, each time a (*, I) go d wn t \ ard It

origin layer all the i ited la er
' monitor need to e

removing their imminent item' i .. the (*, t=value) me age. F r uting

the monitor in La er 2 and La r 3 at imulati n tim m

th

Duree component) remo th (*, 1=0) and h dul

their Agenda. nly La er 4 that c ntain a d fault ntit (\\ lu h 1 1

nlil, .

t imulation tim La) r../ m \ hi h

th c. t= I 0) ha com. uring thi r. t) br ad a ting. all \ 1 It
• irnmin nt

1 �

item are rem ved (denot d y italic w rd). 1) wever, only La r 4 hedul a new

event [or it imminent entity (denot d the bold word). J n 1 we t cheduled

tim, i.e., (", t=16) is then transferred to Layer 3 and inserted to the la er' Ag nda

(denoted by underlined words). Thi value j then compared With It I w t n

cheduled time; i .. , 1=14. Since l=14 i mailer than 1=16, the (". 1=14) I

transferred up to Layer 2. The proce ses of broadcasting a t". I,J m sage, i rting It

to an Agenda, comparing the value with the lowest value of the Agenda and re­

broadcasting the smallest value are repeated until the top layer in order to ensure that

all parent layer know their child layer 'next cheduled time.

At simulation time 14, traversing down until Layer 4 i not needed ince l

lowest next scheduled time is bigger than the lowest next scheduled time in La r 3.

Layer 3 then transfers a (*, t=16) message to Layer 2 since t=16 is maller than t=22.

Layer 2 transfers a (*, t=16) message to Layer I after comparing the alue of t=16

with t=18. However, at simulation time 16, a (*, t) will again need to tra erse down

to the Layer 4. These processes will continue until the length of simulation time has

been reached.

5.10 Problems and ChaUenges

The ability to create many visualization instances during runtime can low model

execution and could create awkward model visualization. Model e ecution i

dependent on the number of visualization instances on the tag and more

visualization instances will definitely demand more time to render the data on the

instances. Awkward model isualization happen when we do not control the depth
of the objects on the stage properly. For e ample, DE components or ennt

instances that have higher depth than a i ualization in tan w ill di rurb 1 am

view of data rendered on the visualization instance whene er it i dra ging over them.

Thus, we need to specify a range of depth numbe that a ertain 0 � t t pe an t re

whenever it is created.

In order to properly tack object on th tag, we first cav a 10\\ r ran f

depth numbers for acti e and pa i e ompon nt , f llov ed b a Monuor. a ulity ,

entities and then i ualization mp n nt. 10i en ur
� that all \ i ualiz u n

component are alway on the top of th tag wh r v r th are dragged. nuues

h uld have higher depth c rnpared to imulati n com nent or a r on tha th y

h uld move ver the m del tructure fabricated by th imulau n nent .

Based on the Delegation Event Model, we can actually p rmit learner to

m dify or expand m del tructures during runtime. Thi i po ibl inc a

imulation component' output port only need to be fed with the nam of i Ii tener

in order to transfer entities to the Ii tener. -or this, we need to provide a palette that

hosts various simulati n components (as in our first approach of pr iding
vi ualization components) where a relevant component can be instantiated with a

default ID name by clicking its associated symbol, dragged onto a certain location and

linked to its upstream component; e.g., through dragging a point from the instance to

the upstream component.

Permitting model configuration during runtime can create interestmg activities

that engage learners with the model. Observing and analyzing the effect of change of

model structures to model behaviour will help learners to understand the model better.

However, allowing learners to drag simulation component during runtime wilJ po e a

problem; i.e., the animation of entity movement between a component and a dragged

component could not be simulated properly. This is true when entities are moving

toward the component and at the same time tbe target component is dragged to other

places. As a result, the entities will not properly reach their destination ince the

distance calculated when they started moving has already changed.
We sometimes need auxiliary messages (in addition to entity messag) for

accomplishing relevant tasks in DES; e.g., in activating transporter or handling

reneging and jockeying activities in a queue. Handling reneging and joe eymg need

a queue to acknowledge a component that handle these acti itie , i.e., b nding

messages that contain entity names wbene er the entities enter the queue. Th

component needs two main properties: (1) tolerance time that empl 'j a Ii t f

distributions for representing the time limit that the entity i ilhna to W31t in th

queue, and (2) destination port for pecifying the d tination that th entitv \ ill g

after being retrieved from the queue. rn age recei ed from the qu u \ ill

delayed based on its tolerance time. When the mage h nsumed th tim . It \ III

search its a sociated entity in the queue. If it a ciated nut i till availabl . th

entity will retrieved from the queue and rno ed to th d tinau m th

de tination port. The me age ill th n b d tro -ed, If it

missing (i.e., it as ociated entity ha b n r m ved from th

1 4

ju I b de Ir ed. We have to in 'crt the e au iii ry entitle into the model' Ag nda

t tally their e ccution with the mod I lime, However th ir XI. ten e in th Agenda
c uld make the Ag nda 1 ok c1um y.

We c uld u e FJ h' keyframe to form layer in a hierarchical model.

ach keyframe handles a ub-rnod I' tru ture and pro Ide a plat orm for learner

to conduct experiments and cu tomize it visuahzation. However, a h treat each

keyframe as a totally new program. It only provid a basic transition between

keyframes; i.e., moving an execution point from keyframe to eyfrarne without a

upport for either acce sing object in or tran [erring objects to other eyframe. In

case of the development of hierarchical D S model, this hinders us from pas ing
entities or other types of messages to other keyframes. Such an approach i totally
difference with Microsoft Visual Basic (Wright, 1998) since this language allow the

use of FormName. ObjectName.Property to access objects that reside in other form

and objects can be passed from form to form freely.
The only way to implement the discussed mechanisms i the u e of only one

keyframe, but with a number of main movie clip . Each movie clip represent a layer
and can contain many other movie clips; i.e., simulation components, \ i ualization

components, etc. Since all movie clips now reside in the same eyframe, the

simulation components can easily be accessed from other movie chp and the

lifecycles of entities and (*, t) messages can be maintained. To prevent the

clumsiness of many main movie clips on a stage, learners hould be allowed to hide or

display the main movie clips.

1
-

6.1 Introduction

Learners should acquire knowledge and experiences during their learning.

Knowledge can be delivered using various media e.g., communications, tex e c.) in

classrooms or through online environments. Howe er, expenences can only be

gained when learners are exposed to real applications of the knowledge' e.g., through
the use of models that implicitly embed the knowledge.

Interactive models can offer learners aluable expenen in two wa :

providing information explicitly or implicitly dunng model e ploration and

challenging learners' judgment during model interaction. For e. ample. the

explanation of how various variables affect DES y tem can offer basic 0 'ledge
to learners. However, allowing them to explore and interact with relevant model of

the systems will really fill in and clarify their mental model. Thus, the u e of ano

teaching modalities to meet various type of learners need important in leamin

and teaching settings (Fenrich, 2006; Smith Renzulli 19 4).

Learning and understanding DES concep a challenging Thi
.

especially true when the availability of teachers in a ing learning i rather limited:

e.g., in online environments. There are a lot of tati material that mplet.e1

explain DES concept. Although th ir u e in the learning nv ir nment ha

claimed to have at lea t equal learning outcom mt ra tiv material .g ..

Hegarty, Kriz, & Cat 2003; Ma er, Hegarty, 1a er, ell. _00_, . H.

Narayanan & Hegarty, 2002; T ersky r Morri n, 200_), th typically fail t artra l

109 and \ 1 ualizin .

Th ar a lot

ten

ar m n

In I utput roth r than tung Insight int mod I b haviour, inter II n ith th

m din idered as irrcl ant p ct .

We b Ii vc that queuing m d I created u ing our mpon nt ar attra ti

int racti e, informative and useful to u ed in th learning and 1 r. hin

nvir runent. The main prerm e for thi laim 1 that we have d j

c mponent that are capable of providing m d I that fulfil characteri 11 f

educational model a ugge ted 111 Itterature (e.g., ransford, 200; un ,2004

2006; Mildrad, 2002). These include activitie through ariable rnanipulati

informative and meaningful feedback through vario i uahzauon I. attractiv

animation of various object that depic model beha tour and fle ibilit 10

replicating of real sy tern. However, this as umption needs to be as ed through

experiments; i.e., by obtaining feedback from a sample of learne about knowledge
and in ight they gain while experiencing samples of our model. Analyzing the

feedback will truly indicate if our tool can con truct queuing model that ha .. e a

positive effect on learning.
We conducted two types of experiments. The first expenment ev aluated

learners' perception about the attractiveness and interacti ity of samples of our D

models. For this, we designed our own questionnaire based on model cham ten u

argued important in literature. The second experiment evaluated model de igner.
'

perceptions about the usefulness, ease of use and enjoyment of the tool and th ir

willingness to use the tool in the future. To measure the e fa to • we ed the

Technology Acceptance Model (TAM) and other e tension model f und ill

literature. We also asse sed the participant' workload while e. perien ing our tool

using ASA Task Load lode (TLX).

6.2 Evaluating Model ttracti en and Interacti it)'

We de el ped our n qu tionnair to aluat th attra tiv n and int ra tiviry

model con truet d u ing our mpon nt-ba ed t I. The qu u nnaire \ di id

into f ur main tion : g n ral inf rman n, g n ,m 1 raun d

additi nal que ti

1 7

Th en ral inf rmauon ecu n contained two qu tions: h w much computer

n e our participant had and h w mu h th y u cd computer a a learnin ' tool.

The general qu ti n al 0 nsi: led 0 tw questions. orb fi t qu ti n wa: b

n a Iive-p int ikert-typ calc that requ led th parti ipant to circl one of

availabl opti ns (i.e., I = trongly di agree; 2 = di agree; 3 = neither di gree nor

agre ; 4 = agree; 5 = trongly agree) that th y had g d kn wledg on irnulati n.

The econd question requested them to pecify how long they had spent explonng the

given models. Thus, during our briefing each participant was reminded to record h

long they used the models.

The model ratings are shown in Table 6.1. Items in thi ection w ere all b ed

on a five-point Likert-type scale. However, they were in ited to write any comment

on each of these items. All items were always asked from the po tn e aspect (i.e,

we did not mix positive and negative aspects of item). Thi ma es it easier for them

to understand the items and avoids them making any inad ertent rm takes when

circling the options from strongly disagree to strongly agree.

The development of the items were based on educational model charac en tic

that were argued to be important in literature e.g., Beux & Fiescru, 200 � redler.

2003; Jeffries, 2005; Jong, 1991; Joolingen & long, 1991a' Swaak J ng.2 la.

We embedded all these characteristics in our components to produce uch types of

models. Samples of resulting models were then tested to obtain Jearn
.

level of

satisfaction for each criterion so that we can judge the attracu en int ra tivny and

usefulness of the models. ote that we did not include item number L 10 Table 6.1

since it contained a list of sub-item that requested th participan to rate If ea h

visualization tool (e.g., graphs, hi tograms and bo 'plot) and ea h fa ihry pr \ ided

by the models (e.g., ability to pau e, resume and adju t arumati n ed, ta Ie of

events etc.) helped them to understand the model better. Th it m and it ub-item

were displayed in Table 6.5.

The additional question ection al consi ted f tw item Th fi t item

a ked the participant if the had e er u ed other animated queuing model. Th

second item in ited the participant to pro id additi nal ugg tt -

n h \ to m

learning thr ugh imulati n ea i r.

L

bl .1 Item in Model Ratin 1

1.

2. em dell
bj en e f the model
r inf rmau n vi uahzauon and ob ervin anim 100 ject

int ractiv ,inviting input and pr viding appropriat fi db
4. e m I c ntain high quahty animation which make learning enjoyable and

inter ting.
5. The animation help me to understand cenario in the model.
6. The various performance vi uahzauons (grap and ther data di pla are

meaningful.
7. The model provide a graphical user interface (f) which i ea y to interact

with.
8. I like the design of the VI.
9. It i good that the visualizations (e.g., graphs, histogram • etc. are illy di layed

when requested.
) O. he interaction with the model by changing the model' parameter during

model execution (e.g., arrival rate, queue rule, server urut) 15 important in order
to understand model behaviour.

11. The change of the representation of animated objects based on their current stat

is important for me.

13. The model is considerably out of bugs. Please specify if you ound an

while running the model.
14. Overall, the attractiveness and interactivity of the model i good. Any

suggestions to improve the attractivenes and interactivity of the model?
15. I would like to use this kind of model for understanding queuing cenario .

6.2.2. Experiment Participant

Our objective is to obtain as much as po ible of learners' hone t feedbac about th ir

experiences while using the given models. Tbu. we only di tributed the mod I 1

volunteer participants. Additionally, we did not impo e them an time limit and time

pecification to u e the model (i.e., the could explore the model h v loth

wished at their leisure time). The e approach allowed them t intera t with th

models and ob erved the impact of an chang the had mad in a 0\ enienl \\ 3)

without any constraint (e.g., unf used mind, ad m

simulation are under con tructivi t learning, th ir fi

attracti ene and interacti it of th model c uld

• to

Th e include th ir typ f learn wh th r th)' are udit ry

learner kina th ti I arners r read-w rit me (

1 9

1 99; Hailikan t al., 2 ; John n, Ara 'on, haik, Palma-Rivas, 2),

all, th eedback an I e could &1 e u: hin on the parti ip nt
•

a eptan e 0

th m del.

We conducted thi exp riment in a two-wee time interval. Participan wer

approached in the laborat ric of the �omputer Scien and ftwar

epa rtment, and the laboratories f the Mathematic and Stan uc Department th

at the Univer ity of anterbury) for their willingn to parncipate In th experiment.

They were offered an incentive; i.e., two bar of chocolate. A total of 2 participan
volunteered to experience our sample model. They were from ario year tuden

and prograrrunes; e.g., Computer Sciences, ngineenng, Mathematic, ommerce,

etc. Six of them were female and the rest were male. We purpo ely di tributed our

models to various students so that we had flexibility in analyzing the feedback from

various learners about the models attracti ene and interacti ity, irre pe tiv of their

knowledge on simulation. This enabled us to analyze the feedback in anous angles'

e.g., analyzing the data based on overall participant, gender and/or their knowledge
levels of simulation.

All of the participants were provided with two models. The fi model

(Figure 6.1) simulated a simple queuing network. It populated two types of

simulation entities using two Source component. The first type onl required a

single server to be processed. The second type needed two ervers, the econd of

which was the same one that processed the first type of entities. The econd model

(Figure 6.2) just added complexities into the first model. The first type leeted an

idle server from two parallel servers. After going through one of the parallel en

they needed to isit another server before leaving the model. The

selected a server with a shorter queue. After going through till proc nly 000 of

them directly leave the system. Another 70% went through the rv

the first type of entities. Ho e er, the did not need to g through an ther en er as

for the first type of entities' instead the directl left th m d 1. pp ndr

The purpo es of the e periment and the d ripnon ith a

model were provid d n an informati n h t and atta hed (

Additionally, we demon trat d th mod 1 t plain
were requ t d t do during and after th rperim nt (e.g., It -

ng

changing th ir ariabl ,instantiating
.

ualizati 11 t I, hanging amman n
-

etc.) that the had om trategie in th ir pl call n. This w im rtant ill

f ea h

140

th m I were pen-ended irnulati n mod I that need the participant ttl - l

b quipped with ba ic mental mod I pi
th rnselv . Th y w r al 0 briefly Introduced to 11 items in th q

ord r to make sure that th Y unde t d the item and an wercd th m ppr pri tely.

Any rel vant que tion regarding the model and the qu ti nnaire were then

w lcomed and an wered.

[::_l
-

Figure 6.1 Simple Queuing etworks

igure 6.2 rnphcated ueumg

141

Th p rti ipant wer encouraaed to experien e with th th mod I .

h y were then left t u th m del a I they wi hed ither in th la ratori

r at th ir h meso By lcavin the mod I b xperien ed t th ir I ur had

and n time limit impo d, w hoped that we would g a h n t ba

p ibl

6.2.3. Data Anal si and Re ult

6.2.3.1 General Information

When we asked the participants to pecify how much computer experience mcludin

programming they had, only five participants (l % considered that they did n t have

much experience in that. When we looked at the data, four of them w ere fi t year

students of the programmes of Engineering (two students), ommerce (one tudent

and Geophysics (one student). The other one was a third year udent of the

Geography programme. They were probably familiar with comput but r ely
confused when seeing the phrase "including programming". Two tuden (7%)

skipped this question; i.e., they did not write anything in the provided spa e.

However, we believed that both of them had quite e perience m programmmg in e

they were a fifth year Engineering programme tudent and a third year Iatheman

and Physics programme student. Three participants (110'0) con idered that they nlv

had average experience in computing in pite of the fact that they � ere third year

students of Engineering (two tudent) and omputer cien pr gramm ther

participants (64%) stated they had e cellent e p rience in computer.

For the second question, four participant 1400) tated that th)' did n t u th

computer much a a learning t 1. Two of them wer the sam paru ipant th t

claimed they did not ha e much e rperience in omputer ne parti ipant (400)

kipped thi que tion and he a the arne paru ipant that . pped th first qu ti n.

Two participant (7%) claimed th u ed comput r mod rat I a a learmng t 1.

ther participant (75%) enid red that the used a mputer a a learrun 1 I a I

ba d n the key an wer th gave: e.g., v ry 0(1 II, a lot, ll' ryday, mo to tire lim.

etc.

6.2. .2 u lion

imulati n I a learmng environm nt where It. conten ar n 1 explicitly e p

learner. It u efulne in providing the pportunity to learn in a mor reali ric

context heavily depend n tudent' pnor knowledge. ere are two typ of

knowledge that learners hould have: .pecific conceptual knowledg ; i.e., th d main­

specific knowledge about concept and fact that a model repre ent • and g neral

knowledge; i.e., quantitative and qualitative aspect to read information and draw

conclusion from the model' outputs. The importance of both type ofknowledg in

structuring and accommodating learning through model has been argued in much

literature (e.g., Dochy et aI., 1999; Hailikari et al., 200).

Operating a simulation model without the knowledge may create three di in t

problems. First, learners tend to conduct mefficient e periment, thu any

interactions with the model seems not to be important. Second, learners may ha 'e

trouble in interpreting information, thu animations and data visuahzations eem to

give insignificant impacts and eventually demoti ate them to learn. Third. leame

may not be able to regulate their learning proces e , thus the model eems n t to be

useful. Therefore, collecting participants' prior knox ledge to properb judge their

feedback about the usefulness of our models and their rele ant features in ensuring
the participants' learning is important.

Based on the participants responses, onl participan _100) were

confident (agreed/strongly agreed) that they had go d knowledge on imulati n. me

participants (32%) considered that they did not ha e good knowledge n unulan n

based on their choices of strongly di agr di agree options. The ther thut n

participants (46%) tated that they were undecided ab ut their 0\\ ledge on

simulation. Figure 6.3 ho the frequen i of th parti ipants' or for th first

general question.
Table 6.2 show the ummary rep rts of timated time pent n th mod 1

by all participant grouped by their knowledg 1, el n s imulau n. Th av rag

time pent by all of the participant 17.61 minut s. Th minimum and th

rna imum time p nt w r minut and th th minimum

and the maximum alu wer from the participant' that w re und id ab ut th ir

kn wledg on imulation.

14_

14

12

10

4

2

o

Rating

I. Strongly DIsagree. DIsagree 0 Neutral • Agree • S rong Agree I

Figure 6.3 Participants' eedback on Simulation Knowledge

Table 6.2 Time Spent (in minutes) for Each Le el of Knowledge on Simulation

Score N Minimum Maximum Mean Std. Deviation

1 1 10 10 10 -

2 8 5 30 13.75 744

3 13 3 60 19.08 1926
4 5 10 30 23 9.75

5 1 10 10 10 -

It is interesting to observe that the participant who agreed that the} had good

knowledge on simulation were in fact the group that used the model for the I ng t

time in average (i.e., 23 minute), followed b the group of parucipan that neither

disagreed nor agreed that they bad good knowledge on unulau n (i.e., 19,0

minutes). This perhaps signal that the u e of imulation model in learning tting
is effective for learners for whom their kno ledge level

moderate and good. One po ible rea on for thi i that learn m thi group m re

often have hypothe in mind to be t ted during th ir e .pl rati n. Th mdu

them to engage with the model through c ndu tin and und tandin th m

relevant outputs.

If we I k at able 6.2, th u f imulanon mod I uld pro

engag the tr me p int parti ipant ; 1. "th parti ipant that had hnl \ leda

on th cone pt that the model repr nt and th parn I ant th t had Ire) h d

144

n rete m ntal m d I a OUI th C(ncepts One rea on for the ormer i that thi

lyp f learner pr bably did n 1 hav ideas 0 wha the m I try to n...pr ent.

Thu , they had n trategies in d ignin I exp riment and understandin I the model •

outputs. The rea on for the latter J that this type 0 learner pr bably It bored ith

the m d J becau their utput could well be predicted rea h e perim t.

6.2.3.3 Model Rating

Some researchers (e.g., Jong & Joolingen, 199 , 200 ; Land, 20 ; Landri ina,

2009; Lunce, 2006; J. Quinn & Alessi, 1994 claim that learners that have rele ant

mental models or been equipped with orne basic know ledge can effecti 'ely

experience and evaluate open-ended simulation model. Based on thi argument., we

separated our analyses based on the participants' knowledge on irnulation. Table 6.3

reports the experienced participants (i.e., who had good irnulation .. 0 ledge)
feedback about the models. Table 6.4 and Table 6.5 mean rule report the

inexperienced participants feedback about the models; i.e., who were undecided and

who did not consider that they have good simulation knowledge respecti eI By

separating the results, we can effectively e aluate and judge the usefuln of our

models in offering the opportunity to learn DES concept and the ignificance of their

features in ensuring the participants' learning.

Question 1 asked the participants if they were clear about the objectiv es of me

models; i.e., what situations the model represented and what they \\ ere e p ted t

gain while exploring the model. Interestingly, all the ix e. penen ed parti ipants

were clear about the objecti es of the model. Thi indicated that th
_

had a lear

picture about the principles of the model . Of the rune participan \\ ho laimed that

they did not ha e knowledge on imulation, onl n participant (1100 w un lear

about the objective of the model. There wer tw part I ipan

while the remaining six participant (670'0) tated that th y und th m

objective. f the group that w r undecided a ut th ir ledg
six participant (46%) confirmed that th w r lear a

model. nl two participant eli agr ed \ ith tlu tat merit. [n g n

ine p rienced participant (500) und I od th f th

beli ed that ur approach f providing d npti n h 1

n irnulati n,

. of the

1. rn f the

mod 1- \\

f th m

14

d m n tr ung the m del and handling a qu tstion and am� r . Ion � ith th

parti ipant bef re th y tatted their xplorau n gave m mental imaa for m I

of the participant in th e tw group.

able 6.3 od imuJation Knowl dge Paru ipants -c db k a ut th Model

Item 0 0 0 S 10d \1
Std.

DnlAUon
lear 0 0 0 4 2 .. 4 .21

objectives (0%) (0%) (0010) (67%) (3J%)

Model useful
0 0 0 3 3 4.5 4 0.22

(0%) (0%) (0010) (5001o) (50%)
Model 0 0 I 2 3 s 4
interactive (0%) (0%) (17%) 03%) (50010)
Quality 0 0 I 4 1 4 4.00 0.26
animation (0%) (0%) (17%) (67%) (I 7��)
Animation 0 0 0 3 3 4 4.50 0.22
helpful (0%) (0%) (0%) (50010) (50�.)
Visualization 0 0 0 4 2 4 4.33 0.21

Imeaningful (0%) (0%) (0%) (67�0) (33%)
GU! 0 0 I 4 (17%1) I 4 4.00 0.26
interactive (0%) (0%) (17%) (67%)
GUI 0 0 I 5 0 4 3.83 0.17

acceptable (0%) (0%) (17%) (83%) (O��)
Pop-up 0 0 I 2 3 5 4.33 0.33
visualization (0%) (0%) (17%) (330/.) (50·,.)
Interaction 0 0 I 3 2 4 4.r J

helpful (0%) (0%) (17%) (50010) (33�.)
Animation 0 I 0 3 2 4 4. .4_

important (0%) (17%) (0%) (50°'.) (33·.)
Model out of 0 0 3 2 I 3 .6 0.33

bugs (0%) (0%) (50%) (33%) (17%)

Model good
0 0 I 2 3 5 4.33 3

(0%) (0%) (17�'o) (33�.) (500.)
Model 0 0 I 2 3 5 4.33 0.33

preference (0%) (0%) (171\'0) (330,.) (500.)
SD=Stron I Disa ree, D=Di a ree. NDA=Netther Disa n rAt A=A SA=SIrOD I 'AIgy g g , gree

Table 6.4 No Simulation Kno ledge Participant "Feedba about th lode

Item 0 0 NO . ! 100 \Ina I IH�:UOIJ
Clear 0 I 2 6 0 4 3.56 O.H

objectives (0%) (II °'0) (220o) (67�.) (O�.)

Model useful
0 I 0 7 I 4 J.� 0.�6

(00/0) (1100) (0%) _i7�!.) _til!:')
Model 0 I I 6 I 4 3.
interactive (0%) (11· 0) (11 ° 0) (67�.) (11m
Quality 0 0 3 4 :>. 4 3.89 0.2
animation (0·'.) (0·.) (33°.) (44°0) (_2%)
Animation 0 0 3 5 1 4 3.78 0.Z2

helpful (0%) 1°°0) _Q3°.) t5o·.) III .)
Vi ualization 0 2 I 0 0 4 .'\44 0.19

meaningful (O�o) (22·.) lll�o) (b7".) (Om
GUl 0 I 4 3 I J 3.44 0.29
mteracuve (0·0) (110.) (440.) (.n!,) (II!;')

14

Table 6.5 Undecided Simulation KnO\! ledge Participan Feedba a ut th
Models

Item SD D DA 100 lean
Sld.

lH\i.ttioa

Clear 0 2 5 2 4 3. 2 31

objectives (0%) (15%) (3S%) (15°/.) om,

Model useful
0 0 2 10 I .. 3.92 .14

(0%) (0%) (15%) (77%) (S%)
Model 0 I 4 5 3 4 3.76 0.16
interactive (0%) (S%) (31%) (3S%) (23%)
Quality 0 4 4 4 1 2,3.4 3.15 0.27
animation (0%) (31%) (31O/ol (31%) (S�'o)
Animation 0 0 2 7 4 4 4.1 0.1

helpful (0%) (0%) (15%) (54%) (3 1 �o)
Visualization 0 1 5 5 :! 3 4 .621 .24

meaningful (0%) (S%) (3S%) (3S·;') (15�.)
GUJ 0 3 5 3 2 3 1 .-

interactive (0%) (23%) (38%) (23%) (150'0)
GUJ 1 2 4 5 1 .. .13 0.30

acceptable (S%) (15%) (31%) (3S%) (8�.)
Pop-up 0 0 1 6 6 4. S 4.38 0.18
visualization (0%) (0%) (8�0) (46'0) (46·.)
Interaction 0 0 3 6 4 .. 4.08 0.21

helpful _{0%1 (_O%) . (_23%) (460/0)_ 01·.)
Animation 0 2 3 I 4 354 .24

important (0%) (1500) (230;0) (54°0) (8�.)
Model out of 0 I 4 3 .. 3.77 o._

bugs (0%) (SOo) (3100) (38%) (,m.)

Model good
0 2 3 6 � .. 3.62 0.2"

(0%) (15° 0) (23° 0) (46·0) (15!!)
Model 0 1 2 9 1 4 .7 �

preference lOG,.) (1°0) (15° 0) l6()O 0) (s!,.)
SD=Strongly Oi agree. D=OI agree. NDA=Neather Di agree n r Agree. A1:Agn.'e S -\=Strong)y AgT"C\:

Much literatur (e.g., Falx , _00 ; H garry. _ 4. H garty et \ .

2004) tre e the u efuln f em ddmg arumauons and dat rsualiz tic n in

educati nal m d 1 . Arumati n m uv t learn rs t learn an h Ip th m 1 might

147

int compli ated ph n mena and under land the relati n hip between vari u mod I

variable, 1 he e Icct the e variable I m del behaviour i then mr de vi ible

through vari u data vi. ualizati ns. I I we er, the u ulne 0 animatio

much influcn cd by wh ther r not a learner ha been equipp ith

ba ic d main pe ific knowledge [I r und r tanding m del output, generi
len wledg of quantitative and qualitative meth d for interpretin th utput and

kill for performing further experiment,

Question 2 tested if our model were u eful for informati n isuahzau n and

observing animated objects and event in order to understand th model tat and

behaviour. All of the six experienced participan belie ed that the model ere

useful for these. This reflected that our DES components could build m del ith

good animations and data visualizations. Data also revealed that eight of the

participants (89%) who did not have good knowledge on simulation and eleven of the

participants (85%) who were undecided about their imulanon knowledge co idered

that our models provided useful animations and information visualizations. f th e

inexperienced participants, only one participant disagreed with the tatemenL Th

high percentage of agree/strongly agree opted by the participant in thi gr up sh wed

that information visualizations and animations of object and ev en in our models

helped them understand DES concepts better.

Interaction plays an important role in an learning proc es (Arbaugh .

Benbunan-Fich, 2007; Su et al., 2005; Woo & Reeves, 2007. In the traditi nal

classroom environment, interactions between learners and their tea h rs can umulate

their knowledge acquisition and clarify their judgment. In case of' irtual cl

and online learning environments that u e model a mediums of instructio . model

interactivity can replace the teachers' role. Although thi featur d n t guarant

learning through model (Da ie, 2002; Pilkingt n 'Par .er-J

significance in moti ating and engaging learning h ITO rated in many

studie (e.g., Beux Fie chi, 2007; Bransford _ hldrad,

Berman, & Macpherson, 1999). Qu tion t ted If ur m I \ ere mt ra ti •

inviting input and providing appropriat feedba k,

Ba ed on the data, fi

that our m dels wer intern tive and provided app pnat

participant cirel d an und ided option. Tlu indi ated that

ur compon nt pr vided an int ra tiv platf rm [I r timulatin

strongly a

The th

tn pI ran ill

14

and sh wing au e and cf c t of the parucipan •

r le ant ction. 0 the

inc perien cd participant, only tw participant. (%) di

n wa fr m the parti ipant that dr greed that h h

imulation while the other ne w the participant that w und ided a ut hi

with th tement;

k:n wledge on simulation. A majority of participant that did n t ha e n wled on

simulation (i.e., 78% and were undecided about their owledge on imulati n (i.e.,

62%) agreed that the models were interactive. nee again, the feedba ref ed that

our model were interactive and informative to be u ed as 0 learning tool even

though they were used by the participant that did not have adequate prior - owledge
on DES.

Flash has been claimed to produce high quality animated applications (a illo

et aI., 2004; Mohler, 2006; Shupe & Hoekman, 2006). This was a rea n why we

used Flash to build DES models and animate their beha iour. Qu tion 4 tried to

obtain feedback from the participants about the animation quality of our models. Five

experienced participants (83%) considered that the model contained high quality
animations. Of the inexperienced participants, only four participan (1 %) disagreed
with the statement and they were the participants that were undecided about their

simulation knowledge.
Table 6.6 shows in details the feedback of the participan that claimed they

often used computer as a learning tool (21 participants about the animation quahtj of

our models. Eleven participants (52%) from thi group considered that the model

contained high quality animations. Only three participants 14°10) disagreed 'ltb the

statement. The majority of agreed/strongly agreed participan indicated that our

components produced bigh quality animated model that could effectively rep ent

the DES concepts which were difficult to be e plained in tati matenal. Th

animations offered exciting learning materials that m tivated their learning and

attracted them to engage ith the model .

Table 6.6 Feedback on the uality f Animation from th Parn ipant 'h

Alway U ed omputer as a Learrung T I

caJe Frequency Percent

2
3
4

5
T tal _1

149

Mdl pr cntan n I important to att ct and

MaUh w, ' II n tra, 2007, Parrish, 200g). 'J h u

h wing m del behaviour can fer m ny bene It. 'In

leamer' under tanding ab ut dynami

Ii r

In

p riencc enjoyable and ennching. ludic have al ho n th t I rrune

thr ugh meaningful animation typically motivate lcarnc to learn and indu

to retain information longer (eoh 00, 2 7, ogel- alcutt Ge nm

Nichol on, 2010). u lion 5 te ted if our embedded animation h lped them t

understand scenario in the model. Interestingly, all the e perienced participan

agreed/strongly agreed with thi tatement. The feedba reflected that our appr ach

of demonstrating the behavior of the model through meaningful animations e.g.

showing a sequence of events, animating the movement of entiti and their CUITerJt

states, changing the picture of a server based on It tat , c.) was very efuJ f r

understanding the models. Data al 0 revealed that ix of the participan (6 %) wh

did not have knowledge on simulation and eleven of the participan (5%) h were

undecided about their knowledge on simulation agreed-strongly agreed lth the

statement This suggested that we succes fully integrated animaiio in our 0

models and the animations helped this inexperienced group understand enario m

the models.

When asked if vanous performance vi ualizauons were meaningful for

learning (Question 6) all the e perienced participant ga e po rtiv e feedba -

on the

item. This showed that graphs and other data di play used to report th detailed

performance of the model 0 er imulation time \\ ere meanmgful and h uld ed

to complement animations. Thi i e pected ince thi group of learn th

importance of the visualization t I in measurmg the p rf rman el .

Howe er, three of the ine p rienced participant (14�o) dr greed and i f them

(27%) were undecided about the meaninzful of th van u \1 ualizati n

tools. Thi probably ignaled that the \,1 uahzaii n t rna: n
- fuJ unl

learners would lik to understand in d tail the urrent perf rman �

GUl play important rol 'in data-dnv n irnulan ns, l. " t

input and end th m t part I ular mod I pr \\ partui

rele ant comp nents, ach f \\ hr h ha It \\ n J th t an b accessed

n it. The 1 hav tw fun u n (1) dt pla 'lOg all edit I' \"3f1 bl

CUIT nt alu • and (�) In tanuaung data \1 uahzati n t 1 th t rraphi th

150

rn n nt b h i r m rca I time. W cxp ted thi

ily int ract with th model. (u tion 7). Data

ppr(

Iy i

h nabled learn r 0

howed that I

(% agre tr ngly agr ed with u (J the in

participant, nly four I %) disagreed that the J provided by our tool ere y

t intera t with. Th re ult might mdicate that the u h

to acce c mp nent of ered an ea y platform for learn

with the model. However, a better approach t

to c plor and

ace the

periment

investigated ince about half of the inexperienced parti ipan
the UIs were ea y to acces .

When a ked if they liked the de ign of the

er till und ided if

ion , fi f the

experienced participants (83%) agreed WIth the taternent. Thi might reflect that our

approach of providing imple interfaces using text box ,command bu t011;), combo

boxes, etc. and presenting simulation result In ano window that can dragged
to any locations was effecti e. However, three me perienced participant (1 %) did

not like the design of the GUls. One of them was the same participant that disagreed
the GUIs were easy to interact with. The other two parucipant ere fr m th

participants that could not decide if the GUl were easy to interact with. In er ingly
there were no participants that agreed/strongly agreed that the G

interact with did not like the design of the GUls.

There has been a substantial amount of evidence that prov the use f

multiple representations through different choic of data presentatr and different

forms of feedback can significantly enhance learrung in c mple d mains e.g.
-

Ainsworth, 1999; Ainsworth Bibby, & Wood. 2002; Bodemer ' Fa t, _

er easy to

Goldman, 2003; Kozma, 2003; chnotz r Bannert, 2 uf n, _

Unfortunately, this desirable feature has not been mtegrated in

D S models allow i ualization cu tomization : i.e., learn

a number of vi ualization instanc from man available typ

(e.g., graphs, table cl tc.) during a imulati

repr ented by many int rfac ,with ea h interfa ntaining many r

that how arious angle of model mf rman n and varia r

e ample t t ar u ed t r pr nt rtain nt L. graphs r ther \ I ualiz ti n

t 01 of numeric \ alu ar u ed t th

ur

ar

processes. Data anal I f

nn

I I

% c n. id red that the ppr h 0 dl playin
wa a to d appr a h. th 10 perienced part I ipant • only On p rucipant

di agr d with thi appr ach A maj nty of th m bowed their tr n' up

appr ach. Th f edback reflected that our appr a h f allo ing I m to

their wn i ualizati n w deemed as a good idea in they could control the

di play of model inf rmauon ba cd n their ability to unde land th m

behaviour.

menti ned earlier, mteracu n during model executi n are important t

under tand model behaviour. However, most D model pr vide no upport or

model variable alterations during runtime. 11u I totally different with our Df"

models that allow learners to interact WIth DES variable (.g., by hanging arrival

rates, queue rules, server units, etc.) on the fly and ob erve th effect of th

variables to model behaviour. Question 10 te t if thi appr ach j important in

learning. Five experienced participants (3%) tated that thi feature helped their

learning. Of the inexperienced participant , there was no one who was negati e about

the importance of this approach (although there w ere four participant (t 0 uld

not decide). This proved that providing an interaction platform for learn to clanfy
their ideas was a desirable feature for learning through model .

The change of animated object representation e pliculy h w the chan e of

model states. We suspected that the e tiny changes may n t help learne

understand model behaviour so much. Ho ever, anal n 11 h \\ ed that

four experienced participants (67%) agreed/stronglj agreed that ere

important for them to understand model behaviour. f the me penen ed parti ipant
there were thirteen participant (59%) agreed; trongl agreed while nJ. our

participants (18%) di agreed ith the tatement. Till mdicated that anim ti f

objects based on their states might as i t learning and ff red the adv anta e f

delivering better repre entation of relevant ncept. Th

used to e plicitly e plain dynamic and omplicated p �" ,:,,� F ..nd

y tern dynamic.
Whil i ualization t 01 ar imp rtant graphi all. chart th patt m f

numerical data th r rele ant I off r b n fit in in learrun 1. r

ample, e pr ided a ltd r to allow learn.

their abiliti in e tra tin mformau n IT ru th m

table f v nt t pr \ 1 U • 'UIT t nd n t nt \ I h

th ir urrcn e urn 10 relation to m I variable, tabl of tali ti . I in rmanon t

rep rt th curr nt tati tic of each comp nent, a d cop i n table 0 h lily to

di playa Ii t In the model, and a fa ility butt n 1 hide nd

di play path f entity m vement. Thi feature enabl them 1 clearly th

lifecycle ofvariou entitie e p rally for m re complex
The u efulne of the e t I 10 helping learners to understand queuin mod I

wa investigated in ue tion 12. The question wa divided into ub-qu tions, ea h

of which reque ted the participants to rank the tool' u efuln in model exploration.
The sub-questions and their a sociated tool are hown in able 6.7. Tabl 6., abl

6.9 and Table 6.10 meanwhile how the de cripti e anal} i of the participan
.

feedback about the tools based on their knowledge on imulation.

Table 6.7 Sub-questions of t'The e tool help to understand the model better (Please
write if you have any comments)"

Sub-question Tool

12.1 Graphs
12.2 Histograms
12.3 BoxPlots

12.4 Ability to pause, resume and adjust animation speed
12.5 Table of events (previous, current and future)

12.6
Table of component' tatistical information e.g .. qu u erver,

etc.)

12.7
Entities' information window hov ing activiue the) have

performed in the model

12.8 Ability to hide and show the path of entities

Table 6.8 Good Simulation Knowledge Participan
'

Feedba k about the fodel
Tool

Tool

15_

abl 6.9 N imulati n Knowl dge Part! ip nl
' Feedb a ut the M I J

fool 0 0 0 100 1 II
SId.

Dniltio.

raphs
I 0 I 6 1 4 3.66 0-17

(11%) (0%) (11%) (67%) (I J��

Histograms
1 0 4 3 1 3 3-1J 0.37

(11%) (0%) (44%) (33%) (1101,,)

Boxplots
I I 4 2 I 3 3.1 J 0.39

(11%) (11%) (44%) (22%) (11%)
Ammation 0 0 0 4 5 S 4.56 OJ.
control (0%) (0%) (OOIe) (44%) (56%)

vent table
1 2 I 3 2 4 3-13 047

(11%) (22%) (11%) (33%) (22%)
Statistical 0 0 3 4 2 4 3.89 026
tables (0%) (0%) (33%) (44%) (22%)
lnformation 0 1 5 2 I 3 3-13 0.19
windows (Oo/� _(_II%) (56%) (22%) (1I·1e)
Path 0 4 2 [2 2 3.11 0.42
visibility (0%) (44%) (22%) (11%) (22%)

SD=StroDgly Disagree, D=DIsagree, NDA=Nelther DIsagree nor Agree, A=Agree, SA:Sll'OIlgly Agree

Table 6.10 Undecided Simulation Knowledge Participants' Fe dback about th
Model Tools

Tool SD D IDA A .\100 f

Graphs

Histograms

Boxplots

Animation
control

Event table

Statistical
tables
Information

Based on Table 6.8, graphs re rated as the rno imp rtant vi ualizati n t

by the experienced participants (i.e.

helped them understand the model b tter) , foil wed

th t grap

participant with four of them trongl agreed), tat! tical tabl

with three of th m tr ngl agreed), hi I gram (fi\ paru ipant

trongly agr ed), bo 'plot (fiv parti ipant with n ngl. < greed). vent

tabl (four participan) and la tl the path vi 1 iht f lit!) (tw parti I pant TIll

reflect d that graphs pl tting rei "ant vanabl . (g., num f nun III qu u .

1 ..t

numb r f unit a r s urce u ed, etc.) ver imuJ tl n tim and an arum II n

ntr I lidcr pr vrding a Ieatur for pau in'. r urning and adju lin' amman n p ed

ba cd on the participant' abilitie I retrie e in orrnati n r m irnulati n ere th

tw mo t d irable vi ualizati n t I I get III ight 10 the mod I ' b ha I ur. Th

two vi ualizati n to .1 that ree ived minimum cor WeT th path i ibility C i1ity
and event table. The probable rea on why the facility to hide and di play rcc i ed

the lowest core wa because th model' tructure wer not 0 ompli at d. Thi

tool would be u eful if the model' tructures were complicated; i.e., they contained

many types of entities, each of which has it own paths. e participant that

disagreed with the usefulness of the table of event in helping them understand the

models claimed that the table was not very human readable. The table actually
used by the models to update their behaviour and it could be used by inter ted

participants to trace how the models' behaviour and their animations ha e been and

will be simulated over time.

For the inexperienced participants, the animation lider was rated as the m t

important tool (i.e., twenty participants with nine of them trongly agreed), followed

by graphs (sixteen participants), statistical tables (fifteen participants). path ... i ibilit

(twelve participants with five of them strongly agreed), event tab I (twel e

participants with four of them strongly agreed), information window (twelve

participants with two of them strongly agreed) hi tograms (eleven parucipan) and

boxplots (nine participants), One inexperienced participant that f It the entity'

information window was not an es ential feature complained that the v nndow ere

hard to locate while in use. Thi is probably true ince the imag
our models are quite small.

When asked if the model were free of bugs (u non I ,fift en of the

f the enuti III

participants (three e perienced participant and t elv inexperien ed arn ipan

agreed/strongly agreed with the tatement. Twelv f th aru ipan three

experienced participant and nine ine perienced part) ipan uld n t dec) \! hile

one participant di agreed. Five participant reported tw dunno their

e ploration. Howe er, two of th m till agr that th m d I

free f bug, while th oth r three participant pled t n r

agree option . Th t o bug v r : (1) arr w rnent

di appeared aft r certain irnulau n tim . and (-) rtain m n nt m lID

could not be eli k d t a thlf 1 , n part I ipant mpl ned that tb

15

de ripti n t xt: f om c mpon nt 10 th ond model we • located un er th

c m n nt and thi hindered him to properly read th t xu ven ll, only on

participant di agr ed that the mod I w re ree buus. fhi r fl ted that ur

appr a h of stru turing all cl

led t relatively few yntax and logical err rs

We crutinized our code to find the r

compon n prior to writin their

n for the e buzs. The fi t bug

happened becau e we did not properly control the depth of arrow clip conn in

the components. After a particular number of depths, the arro w uld di ppear

whenever their depth were replaced by the depth of newly generated ntiti e

corrected this bug. We however could not find the reasons for the second bug. or

the complaint that there were orne texts under certain componen • \\ e actually
overlooked the arrangement of the componen in the econd model. en

simulation structures are getting complex, all imulanon componen ha e to be

compacted in a limited stage to give learners enough pace to customize the model
.

visualization during run time. As a result texts for me components rna be located

under some other components.

When asked to rate the overall attractiveness and interactivity of the model

(Question 14), five experienced participant (3%) cho e agree tr ngly agr e

options. Of the inexperienced participant, fifteen of them 6 0/0) agreed ith the

statement. This showed that a good balance between quanntati e anal} thr ugh
data visualizations and qualitative a pects through animations. clear pr entation and

attractive interfaces could impro e learners understanding on DE on p Ther

were two participants who disagreed that OUf model were attractive and mtera tive,

and they were actually the same participant that di agreed that the model ontained

high quality animations.

Question 15 asked if the participan ould lik to e the typ of m

for understanding queuing networ . Fi e . p nen ed part: ipan

inexperienced participants (ix participant \\ re from the paru 1 an that rod n 1

consider to ha e good knowledge n imulation and t n parti ipant v from th

participant that w re undecided ab ut th ir \ ledg n unulati n) \ uld li

do o. majorit of the parti ipant that agr ed with th attra u en 'and

interactivity of the m del r f1 ted that ould I f- -IUd. r

upplementary mat rial to learn

ine prien ed participan \ ho di agr

Hov.. " r.

that th) \\ uld ill th mI. f

15

th m was th am participant that fell the overall attn ti en and int eli ny f

th m I w n t g d. Thi might I gna I that with ut basi nowled 1
• au

and inter ctive m d I w uld n t help and impr ve tudent' I h

m del .

or the fir t additional gu uon that asked th parti ipant i th Y had er

u ed any other animated imulauon model r queuing cenarios, nly on

participant claimed that he u ed to u e animated imulati n mod I. he tatoo that

the other model that she had u ed had better graphic but with no c pi rati n

capabilities. Five participants (two experienced parucipant and three inexperienced

participants) explicitly noted that our model helped them t understand D

concepts. ne participant said that it was so inter ung to ee the mecharu m f

queuing networks that were difficult to illustrate using traditional paper-based or

static materials.

We invited the participant to sugge t how to rna e imula ion learrung easier.

Some participants responded to this request. Their suggestions included 1) how ing

the functionality of each component used in the model (e.g., in the form of tool lip

texts, pop-up windows, etc.) whenever learners selected the component. (2 providing
editable models so that their structures can be changed or modified (e.g. learners can

arrange the flow of entities during runtime), (3) pro iding tutonal or helping men

to assist them whenever they were tuck in their learning proces , (4) providing 3D

versions of the models to make them more attracti e, and (5) displaying 0 eraU

results whenever simulation had fini hed. Some participant noted that ur approa h

of allowing them to create multiple vi ualizations them elve (i.e., ntr lling the

amount of visualization tools to be di played and dragging them to .. her ver locau

on the model tage) was really a good approach in helping them to understand model

behaviour.

The first suggestion i ea y to implement. In fa t, we ed thi approa h f r

shox ing an entity' acti itie. inee \ e implemented a li k v nt In a m nents

code to access its GUl, a mouse-over ent (that a trvat a new m \1

a de cription of its functionalit) and a mous -out \ ent (that rern \ lip
whenever a mou e pinter i not on th omp nent regi n) Call nd

ugg tion can al 0 b ac mpli h dille we impl m nted th Dclceat E\ nt • Iod I

patt m that u p rt to link mponent . r tlu . \\ n 11

comp n nts' nam and provid fi Id in th if 1 t

I 7

mp n nt narn . durin J runtime. J J w v r, 1hi will m c til

with c mponent name and pr nc to logical errors if the output

COIT ctly by learner.

We agree that providing a textual tutonal, int gratin ther multim j

re OUIce r upplying a h t 0 In tru I ns (i.e.; orne ugg ted hand-on

experiment) i important to a si t learning through mod I. :xampl hand -on

experiment include inve ligation experiment that requ t leame ti t the

effects of various variable to model behaviour and opttmtzauon e p rim nt that

request learners to identify and vary simulation anabIe valu so that pecified
model constraints are not broken.

The sugge tion of using 3D models to make learning through imulati n

models easier is not always true. Such models could attract and en age learners in e

they are close to their actual ystems. However, their use in education has been

claimed to only benefit some learners while other learners may uffer additi nal

cognitive workloads (Huk, 2006; Korakakis, Pavlatou, Palyvo, r pyreIIi 2 9.

To be effective, a simulation model should offer an intera uve plat orm r

hypotheses testing (i.e., an experimentation platform for clarifying I amers' ide

instead of graphic sophistication that is fun to look (Prensky, 2001).

We have to stress the danger of misinterpretation of DE resul by learn

manipulating model parameters interacti ely during simulation run. The animations

and visualizations of our models only reflect the impacts of the parameter ening to

their current behaviour. They are not uppo ed to be used as an anal I I I for

measuring model performances which trictly requires unchanged param er \ alu

until the end of simulation. The stati tical anal in OUI model 1 to h lp learn

understand how a relevant parameter (e.g., time between arrival. route urn , queue

rule, process time, etc.) affect the model
.

current tat and pen; rman m f

the analyse can be viewed thr ugh animations and \ 1 uahzau r ample,
learners can ob erve the animation of the current numb in a qu u and

vi ualize the current utilization of a erver. ther analy ar to gJ\ e the d

model '
current perfonnanc mea ure over unulati n urn . and th ar

reported u ing tabl ; .g., throughput, \\ aiung urn in a queu 3\ rag . minimum

and rna imwn), length in a qu u (a rage, minimum and m unum), tim

the y tern (a rag, minimwn and maximum), re urc utiliza 1 n, t

15

6. lu Ciog th 001' .a e 0 uln njoym 01

6..1 m ot and .. alu tion thod

vi ur has long been claimed a an important elem t that de rrm th

acceptance f a techn logical innovation cen aum Kyn) 991; I m I,

Pekkola, & annon, 20 11). ln order t empirically d I budd •

p rception

toward our component-based tool, we have conducted an experiment by adapting the

echnology Acceptance Model (TAM) de eloped by aVI (19 9) R ul f thi

can signal the acceptance of our tool and can be used to impro e it in the future.

TAM consists of a list of items (variables) di criminated under t 0 cogniti e

responses (factors); i.e., perceived usefulne and perceived eas of u e. Percei ed

usefulness relates to significant functions that the moo ation provid while percei ed

ease of use generally relate to interfaces and attractivenes of the innovatio Th

responses were originally proposed by the Theory of Rea on d Action (jzen

Fishbein, 1980; Fishbein & Ajzen, 1975) and ignificantly d tennin u r

acceptance (i.e., their attitudes and behaviour) of an mnovauon,

Variables for each factor in TAM were derived from previous empirical
studies on the self-efficiency theory (Banduras, 1977) the co t-ben fit paradigm

(payne, 1982) and the adoption of innovations (Tornatzky ein, 19 _). Ea h

factor initially consisted of 14 candidate ariable. However. after bein 1 ted f r

reliability and content validity the ariables were then cut out to nly variabl

(see Table 6.11) that are adequate for te ting perceived usefuln and perc I ed

of use of an innovation.

TAM has been tested a a alid and rehabl mod 1 f r m unng u

acceptance of an innovation (e.g., by dam, n,' T d. 1 Dav c

Venkatesh, 1996; Mathieson, 1991). The ignifican of ea h fa t r and It \ ariabl

in determining the acceptance of an moo ati n hav

researche (e.g., Legris, Ingham, Her tt • 2003: aade • Bahli. _

& Lai, 1999; enkate h t th sam tun.

be n adapted ith ut m

factor that affect u rs' pint of i \V • e.g.. p rc I ed nJo� m

or that directl affect u
'

p r eiv d u efuln

th

. Lim.

m(l

20 7; h u, 19 6; I avr

appli all n (H nd r on

r tware (I b r, in 1 r, HI fi

6 Laitenb er

IV rum,

Pikkarain n, Karjaluoto, Pahrula, 2 4; aade Bahli, 2005;' eo aI., I 9.

abJ 6.11 AM Factor and Their Variabl

Factor Variable

1. Work more quickly
2. Job performance

Usefulnes
3. Increase producti ity
4. fIectivenes
5. Makes Job Easier
6. eful

1. Easy to learn
2. Controllable

Ease of use
3. Clear and understandable
4. Flexible
5. Easy to become killful
6. Easy to use

6.3.2 Experiment Participant

Our participants were volunteer student at niversiti Itara ? Ialay ia, Ialay ia

(http://www.uum.edu.my) who enrolled for the Comput r [odelling In Bu inc

course. This course focuses on the concepts and anal of DE and a

(Kelton et al., 2004; Kelton et al., 2010) as the implementan n ftv are. It i a

compulsory course for the students of the Bach lor ofD ton H:n I! p gramme

and can be taken in the second or th.ird ear f the programm H" ver. th r

programme student can enrol it a an el tiv e cours .

Arena is DES oftwar that us the Ianguag (c. Denni P d n.

Shannon, & adov ki, 1995) as it imulati n engine. D mod I are reared us ml!

modules and connectors to r pr ent their pro
, and logic. imati n that 00\\

the model ' beha iour an be provided u 109 11 arurnation t I. irnulati n urput

will automatically b di pia ed wh n imulau n end. Figure 6.4

of Arena.

reen 11 t

._
... -

Figure 6.4 Arena creenshot

We intentionally chose these students since they had been equipped with

knowledge on DES concepts and had experiences in using Arena for DE model

development. This choice was made since participant with tacit kno 'ledge and

experiences of particular contexts can effecti ely evaluate a tool ince the} e

know what they and other users want (Davis & enkate h. 1996; Whi orth, Banuls.

Sylla, & Mahinda, 2008). The effect of e perien e and job relev an e on u e
.

perceived usefulness and percei ed ease of use, and eventually on their a eptance of

a tool has well been documented (e.g. in enkat h r Davis. 20 0: Whirw n.h al.,

2008).
40 students participated in thi e p runent. B ide their 0\\ ledge n

the participants al 0 had knowledge on programming, paru ularly n \'1 ual

(Harvey M. Deitel, 2006; Zak, 2009) that the learned ill th fi t year f th If

programmes. We collected their own as ment of th rr
.

0 ledge on D and

programming 0 that we could prop rl th ir rcepu 11!) furl I.

161

6.. Running th

We fir t provided a training . Ion for the participant.
Ad be Fla h oftware The explanation included the r

y wer fi t brie ed about

u ed Fla h a

an implementation environment, 1t I envir nment (c. t., the I anon and th

functionalitie of tool, component, properties and library pan I etc.) and h to

create Flash and ActiooScript files. The participant wer then introdu ed to ur L

components and their functionalitie in S model . All rei van I AC(l(Jn npt file

(although most of the file were already converted to rei vant componen) er al

presented. All these file and components had been fixed from bug rep rted in the

first experiment.
We then assisted the participants in constructing a imple DE model (i.e., an

MIMI] model). The significant step was the creation of a iml'roc cl file and it

attachment to an animation object to represent entity am al. When they 'ere familiar

with the model construction processes, they were asked to either add compte ity t

the model or create a new model of their own. Dunng model building, e \\ ere

available to answer their questions and were ready to guide them whene er the were

stuck. After experiencing with various component for an hour, they were red t

fill out the questionnaire.
As stated earlier, user experiences can influence their perceiv ed usefuln

perceived ease of use and percei ed enjoyment of a tool and eventually affect their

acceptance of the tool. Thus our questionnaire first collected their perc ived

knowledge on DES concepts experiences in programnung and farmhanty wuh d b

Flash and its en ironment.

Items for measuring the percei ed usefuln and the p iv ed

our tool are shown in Table 6.12. ot that we modified the \\ or:
- and job

in the original items in Da i (19 9) and repla ed them 'ith onstru 1\

complete questionnaire in ppendi D). We al included n m re fa I r. p rceived

enjoyment, which ha been claimed (.g., b Pikkarainen t al .. _ ahli,

2005' eo et al., 1999) to intluen plan

Enjoym nt in the qu ti nnair). I It m under th thr

Likert- cale that a ked th participant I

about th items fr m (l) tr ngl di agrc t (-)

r gTC- m nt

f Perceived '

el -predicted
C, Perceived e uln • Prj cd

th rnponent-ba T I

The comp nent-b me to con truct mod 1 th 1 h Ip
learn and under tand 0 S concept. more quickly

PU2: he component-based tool unprove my construction P irforman enD _

models.
PU3: The comp nent-ba ed tool increase my producuvity con tructing 0 -

models.
PU4: The component-based tool enhance my effecuven of constructing 0

models.
PUS:
PU6:

PEU I: Learning to use the component-based tool i easy for me.

PEU2: I find the processes of u ing the component-based tool were controllable

(clear, understandable and straight forward).
PEU3: My interaction with the component-based tool i clear and und r tandable.
PEU4: I find the component-based tool to be flexible to interact with.
PEUS: It is easy to become skillful at using the component-based tool.
PEU6: Overall, the component-based tool is easy to u e.

PEl: I havefun interacting with the component-ba ed tool.
PE2: I enjoy using the component-based tool.

Self-Predicted Future Usage (P):
SPI: I intend to u e the component-based t 01 to construct DE models in the

future
SP2: I intend to how others thi component-based t 1.

Based on the participant' response, we p rf rmed hot t F1TS. \\ e

assessed the reliability of the item in the qu ti nnaire. nd, w evaluated mod 1

builder 'perception on our component-based tool. High r
-

ns f r th thr

factors would imply that the tool was u eful, eas t us and nJ) t b u ed.

1 _

able. 1 how th number and the p rcentage 0 the participant grouped by th ir

gender. 10.00% of the participant were male while 0.00% ere ernal . D ta I

revealed that mo t [the participant were between 20 t 24 year old

able 6.13 The Participant' nd r

Gender N Percentage
Male 4 10.00%

Female 36 90.00%

As mentioned earlier, relevant knowledge and experience could influence the

participants' cognitive responses (i.e., their perceived u efulne • percei d e 0

use, perceived enjoyment, etc.) about the tool (Davi & Venkate 11. 1996. toel '

Lee, 2003; Taylor & Todd, 1995). Table 6.14 reports how the participan rated their

knowledge on DES, their experience in programming and their familiarity with

Adobe Flash and its environment.

Table 6.14 The Participant' Knowledge and E. perien e

DES

Experience

Programming

Adobe Flash

The data re ealed that 001 22.5000 f the participan perc iv cd that th t �

did not ha e good kn ledge on D \\ an al that 2 5 0

participant di agr edI trongl ill agr ed that they had good programming
e perience and were familiar \l ith 'Ia h and It min nm ru,

f the 40 participant. nl 2 .0000 of th m p r 1\ d that th y \ r farmhar \\ ith

164

II wev r, m t the tatoo that they u ed doh r J' h t onl

create impl animation with little or n Action ript programmin '.

6..4.2 Que tioooair R liability od lidi

Based on the participants' feedback, we first m ured the reliability the item in

the questionnaire. for this, we conducted a ronbach' alpha te l able .15 report

the ronbach , alpha value for perceived usefulne , perceived e of us nd

perceived enjoyment factors. All factors howed value higher than O. the 0 erall

reliability was 0.927). Thus, perceived usefulnes , perceived ea e of e and

perceived enjoyment cales showed high level of reliabihty eorge allery,

2009). This indicates that the questionnaire is a reliable measurem nt instrument.

Table 6.15 Cronbach' Alpha Value

Factor Croobacb's Alpa Value

Perceived Usefulness 0.933
Perceived Ease of use 0.890
Perceived Enjoyment 0.823

We also checked the factorial alidity of the questionnaire: i.e., -hetber

perceived usefulness, perceived ease of u e and perceived enjoyment form di tin t

constructs. For this, we performed factor analy i with varimax rotation that chee ..

which items tend to cluster together. Table 6.16 how the fa t r anal i result.

Each value in the Table 6.16 how the rrelation of th variable ith th

three factors respectively. Thi alue i called a variable'. I din a tor. It can

range between -1 (a perfect negati

po iti e association with the factor .

relation hip bet een the variabl

show a strong correlation of a

Mueller, 197). H we r, a L wer \ alue

th factor (Coak ,_007).

t 0 mill at that there i

a t r (J.

rtant r

1
-

abl .16 Fa tor An lysi ofPercei ed
I er ivcd Enj yment

uln � , Per ed r· o and

Variable f- _�
Factor

fulo�_!_ of use !;_'!i_o_.tme_nt- -i--
Work more quickly CPU) 714 206 .359
Job performance (PU2) .772 .390 .174
Increase productivity (PU3) .873 .235 05�
Effectiveness (PU4) .896 .154 .136
Makes Job Easier (PUS) .826 .351 .046

Useful (PU6) .820 .089 .203

Easy to learn (PEU 1) .236 .761 .130

Controllable (PEU2) .226 .777 .312

Clear and understandable (PEU3) .372 .827 .166
Flexible (PEU4) .261 .649 .492

Easy to become skilful (PEU5) .119 771 .141

Easy to use (PEU6) .241 368 .649

Fun (PEl) lIS 271 .864

Enjoy (PE2) .142 .090 .872

We can see that all variables except two anable loaded greater than O. n

one of the factors. The first variable, i.e., lexible (PE 4) onl had a 'alue of O. 9

on the perceived ease of use factor. However, since thi ariable had a alue greater

than 0,5 and loaded higher on the percei ed ea e of use fa tor than the ther two

factors, we could attribute this variable to the perceived ease of e fa t r. The

second variable, i.e., easy to use (PE 6) loaded higher on the perceived enjoyment
factor (loading factor = 0.649). Data ho ed that the ea to e variable had trength
correlation with the percei ed enjoyment factor.

Table 6,17 shows the de cripti e tati ti for all Item in th qu u nnaire, '\ e

can see, in general, rno t participant ere p itrv about th 1

participants (Ie than 7. 0%) eli agreed! trongl disagr ed uh th

percei ed u efulne , perc idea of us and p r 1\'00 nj ym nt f the t (I

the la t column in able 6.14).

1 6

T bl 6.17 [) riptiv tati u of th ne..m

24

365 4 (19) 3 (7 5Q4/o)
3.68 4 (17) 2 .00%

U3) 3.75 4 (19) 3 (7.50%,
3. 3 4 (18) 1 2.5Q4/.
385 4 (23) I (2 0%)
3.75 4 (21) 3 (75
22.50 22

3.93 0572 4 (27) 0(0
4.08 0526 4 (29) 0(0
8.00 1.013 . 0Perceived Enjoyment

Figure 6.5 reports the results of the tool' perceiv ed us fulne in graphi
formats. It shows the summative results (Figure 6.5(a» and the detail r ul ea h

item (Figure 6.5(b» under this factor. The rating of summative � ul ranged

between 15 and 30 with the mean of 23.95. Considering the maximum rating
fulf,rwe could conclude that most of the participant considered the tool were

constructing educational DES model. All ariables received good (mean

above 3.88) with the useful variable (P 6) recei ed the high t core with the mean

of4.15.

""

T
.. =»

""
..

..

(a)

ur .S Pe ived sefuln - R ult

(b)

1 7

The um f Item. under th perceived ea e of u factor ran ed

and 0, with the mean value a 22.50. Ihi m alu

p rceivcd th I wa ca y to u e. A cia examination 0

that all it m r eivcd pILI e feedba k from mo t til partt ipant
be ome skil ul variable P 5) wa rated with th

3. 5). Thi probably indicat that the drag and de; p fa hion

can tructions and demand little guidance. Mo t of th parti ipant al

our tool wa flexible (mean: 3. 3 and easy to become kilful (mean: 3. 5). Th t a

items that received low rating from the partrcipan were a to I am P J) and

controllable (P U2) with the mean values of3.65 and 3.6 r pecuv Iy.

to

The sum of items under the perceived of enjoyment fact r ranged b een

and 10 with the mean value of 8. Thi indicated that mo t of the participan enjoyed

using the tool. They also stated that they had fun (mean: 3.9) and enjoyed using the

tool and its resulting models (mean: 4.0).

6.3.4.4 Self-predicted Future age

The participants were requested to predict their future u age of the tool: i.e., hether

they will use the tool if it is a ailable in the future. Su h elf predi ti ali am n

the most accurate predictors a ailable for measuring an indiv idual' futur beha j ur

of an innovation (Sheppard, Ham ick, & Warshaw, 199 ; Warshaw . Davi . 19).

Table 6.18 reports the participant
.

elf-predicted future usag f the t \. can

see, both variables recei ed good feedback from them.

Table 6.18 De criptive tati tic of elf-Predi ted

16

rdmg to th Th tory of R awn d cuon (j/

Ajzen, 1975 ,u r' p r cived u c ulne nd p r ei

ignificantly correlat d t the acceptance of an 1M ali n.

been pr ved by ther tudi (e.g., Pi ramen et aI., 2004;

et aI., 1 99) t be influenced by their perceived enjoyment.

To inve tigate the degree (trength) of relati nship

0,

Bahli 2

tween h 0 th

three factor and the participant
'

acceptance of our to I, we ran a P ar. on

correlation analysis. or thi , we correlated the three umrnative r ult 0 th

perceived usefulness, perceived ease of use and perceived enjoyment th

summative results of the participants' predicted future u age. Table 6.19 report th

results of the analysis.

Table 6.19 Correlations between Perceived Usefulnes .Perceiv ed Ease of e and
Perceived Enjoyment to Self-Predicted uture sage

29

62
Ease ofU e

.594"
.000

Enjoyment
Pear on Correlation

Sig. (2-tailed)
.366'
.020

.562"
.000

60"

** Correlation i ignificant at the 0.01 Ie el (2-tailed).
* Correlation i ignificant at the 0.05 Ie el (2-tailed).

.000

Pearson Correlation .42

Sig. (2-tailed) .006 .062 .000

The results showed that each percei ed usefuln and percerv ed enj •
-ment

wa positively correlated with elf-predicted future usage. Till indicated that th

the factors were important determinant influencin the parti ipan
'

futur f

the tool. The correlation c efficient between perceiv ed nJ yment and

future u age wa much higher than the corr lati n

usefulne and elf-predict d future usage; i.e., O. 0 (p)

(p < 0.010). Howe er, \ ar n t c nfident that th r

percei ed ea of u and elf predi ted futur

than 0.05. Thi hint that the parti ipant
u efuln and per i ed nj ym nt mpared t It u

hed

th re wa a rrelation b tween u. cfuln sand ea 0 u e r 0 5(4, P O. 5),

u fuln and njoym nt r O. 66, p < 0.010) and

0.5 2, p < 0.005).
T r veaJ predictive power between el -predicted

three individual factors, regre ion analy were conducted. a Ie 6.2 lh

regre sion analysis re ult . The r ults clearly howed that percei ed u fuln and

d enjoym t (r =

perceived enjoyment had po itive effec on elf-predicted future u e.

able 6.20 Regression Analy es of the ffect of Perceived U efuln and Percei ed
Ease of Use on Self-Predicted Future sage

Model R

Coefficien
Unstandardized tandarc:lized

Coefficients Coefficien
Model B Std, Error Beta

1 .429 1.4 6
.127 .055 .356

.849 .204 .623 4.165

.062 -.264 -1.SD .13

The R2 of the regression was 0.451. Howe er, the R� value i generallj of

secondary importance unless the regre sion model will be used t m .e accurat

predictions. To tell how confidence we are that ea h of the independent varia I

(i.e., perceived usefulness, percei ed ease of use and p rceived njoyment has me

correlation with the dependant ariable (i.e., futur usage), we h uld ob erve the p­

values of each variable.

The p-valu for p rcei ed u efulne (p = 0.0_) and perc h ed enj yment (p
= 0.000) were maIlerthanO.05.Thi indicated that th f th f t ful

predicator f r self predicted futur u a e. Th anal' i al

enjoyment wa th m t influ ntial fa t r t

ote that the t- alue ugg ts th r lative im rtan

)

h van bl in th m

I 0

and t-valu betw en -2 and 2 reflect a u eful predicator ur indin 0

enjoyment ha igni J ant ef cct on an inno anon j tally with m r at her'

finding (e.g., by Pikkarainen et aI., 2004; aade Bahh, 2 05; co t al., 1 9).

However, this finding i in contrast with that f other r earcher (.g., J bari ,Li ari,

& Maragabh, 1995) that claimed perceived enjoyment w n 1 related t ttl

acceptance of an innovation.

Perceived u efulness was al 0 found to be the influential fa r t elf-

predicted usage (t = 2.317, P < 0.005). This finding i ill line WIth other A tudi

(e.g., Davis, 1989; Davis, Bagozzi, & Warshaw, 19 9; lgbana, Zmatelli, ragg,

Cavaye, 1997; Keil, Beranek., & Konsynski,) 995) that found percei ed u fuln

had more impact on technology acceptance than perceived ease of u e 1Il e perceiv ed

ease of use impinges on acceptance through perceived of usefuln Ho ever, m

researchers claim the opposite (Chau, 1996; Venkatesh & Mom, 2). We can

that the ease of use factor had small relation with the elf predicted future usage as

indicated by its non-significant t-value (p > 0.05).

6.3.4.5 Participants' Cogniti e Workload

It is important to measure the participants' cogniti e workload while using our tool.

There are two approaches for measuring this: Short Subjective Instrument (I) (P

Tuovinen, Tabbers, & Gerven, 2003) and the AS TL mental world ad

instrument (Hart, Stavenland, Hancock., & Me hkati 19).
The SSI asses es a participant' 0 erall cognitive \ orkl ad u mg a ingle

question that requests hirnlher to rate a gi en las from e. tremelj) 1 t

extremely difficult (7). We cho e the ASA TLX ince It can th level f the

participant's various cogniti e loads, based on the combination f hi her xtran 0

load (i.e., hislher memory load while u ing a material but thi can be ntr lied b_ tb

material' designer; e.g., through the u e of graphic or r lev ant p sentati n fi rma)

and intrin ic load (i.e. the Ie el of perc i ed diffi ulty of a matenal and thi

influenced by hislher knowledge and exp ri n). B th t 'P

measured u ing th A instrument b ed n i: fa t

171

• M ntal d mand; i .. , if the ta k a ect th paru ipant' attention

• Phy ic I d mand; i.e., i the ta .k a ect th paru 'pant' h alth

• emporal demand; i .. , if the ta k consume a 1 t 0 time that the participant
cannot afford

• Performance; i.e., if the task i heavy or light In term f w rkJ ad

• rustration; i.e., if the La k make the participant unhappy
• ffort; i.e., if the participant has pent a lot of eff It on the las

In our case, the physical demand factor reflects th part, 'pan
• phy ical

tension and stress while and after developing D S models using our tool. e ha e

explained this term to them during the experiment. The more they e eyb ard and

mice, the more physical activities they ha e to perform and th e may cau pam in

the back, neck, shoulder and muscle, strain on the eyes and train on fingers, etc. '\ e

would like them to rate how the activities affected their health.

Originally, the NA A TLX calculate the parti 'pan
'

0\ erall ognitiv
workloads based on their responses to pair-wise comparisons among the ix fa to

and their ratings on each of these factors. Howe er, the factor ratmg is the mo

important element in calculating the overall workload core; and removing the pair­

wise comparisons may increase the experimental alidity and reduce the e penmental
error (Bustamante, 2008). Since our purpose was to generall as e our part, ipan

.

cognitive workloads while using our tool, we onl requ ted them La rate th IX

factors based on a 7 -point scale (l = low, 7 = high). Table 6._1 how their feed a
.

for each of the factors. The a erall cogniti e workload for all of the parncipan \\ ere

close to average with mean = 3.642 and tandard deviation = 1.104. 11u alue

indicated that the participant' mental requirement f r building D sample mod 1

using our tool was not so imple in e the had t d

creating clas files, attaching the file to their rele ant

me hands-on e.

, dragging. dr ppmg and

connecting the components etc.} and wa n t mpl

equipped with knowledge on and p nen in the d main.

in th had been

17 ..

bl 6.21 Parti ip nts' e db k a ut the 1 X ub

.actor J 1 J • 5 , 7 MIHk Muft SD

2 I 7 4 " 7 , , ,
Menl.ill demand

(S.��) (2000%) (7 50'!.) (10000,.) 127 SOO.) (17�.) 12..5O"�'

Ph I , 2 7 II 9 J 0 I.;lll
demand (5 OOO�) (17.50'10) (27.50��) (22.5(1.'.) 120 OO'!., 17JO'!., (OW..,

Temporal 0 7 6 16 6 4 1 ., t ,

demand (0.00%) (17.50%) (15.000/.) (40(�.) (15 OIJ'!.) lIorn..) (2��)
2 10 n 9 S I 0 J 3.2. ,

Performance
(5.000/.) (25.00010) (32.5�.) (22�.) (12�., 12.5<'-., (01lO"/.)

2 9 4 7 n 5 0 1 111
rustration

(000'-',(5.00010) (22.50"1.) (10000.) (17.50"10) (32 SO) 112 �.)
I 8 18 5 7 I 0 3 l.3t 1.1l7

(fort
(2.50%) (2000010) (45.00%) (12.50"10/ (17 SO".J 1250%) 1000".4)

There were two main complaints noted by the participan about the tool.

First, some of the participants complained that the approach of linking componen

based on their specified names during design time tended to create logical erro .

Many of them experienced this. These hard-to-trace errors happened" hen pecified
downstream component names were mi spelled in their up tream component

outport property. As a result, entity flow to the up tream componen ould b

broken. They suggested that the components should easily be connected during

design time; e.g., using arrows. Secondly, the requirement proc es of creating an

entity class file and attaching it to an animation object reall burdened them and

should be simplified. We explained that we could actuall create a library that

consists of various considered entities. Howe er permitting model builders to define

and create their own entities would give flexibility for them in arumatmg the entiu .

The analyses of various feedback in the first e cperim nt c nfirmed that our

component-based tools produced attractive, interactiv and in ormativ 0 mod 1

which were suitable for learning and teaching purp I anracuven

animations (e.g., high quality animated object and even differ nt irnag
based on their states, etc.) mak

relation to permitting learners to manipulate the mod I '

param t rs through

acces OUI, controlling the p ed of imulati nand ust nuzin

vi ualizations by adding, r mo ing and r latin

graph ,tables, tc.) to an I cati ns during runtim h lps learn

model' b ha iour. It informati featur that provid

f

in

1m

17

paramct or hanging through an u mcanin ,ful animati n and animated data

id learn t c1anfy th ir id and unde nd anou ru In

analy vanou feedback in the nd xpenrnent rcfl led hal

n nt w re u e ul, ea y to and enjoy to b u 1 build th

kind f model . II wever, there I till arm or th ir future impro em

in lude in e tigating how t easily link the componen i t d 0 typin th nam

of their d wnstream componen In a layout property and pro idin an u librari

of entitie and re ources for model developers to easily animat th

the need to create their appropnate cia es.

1 4

lIAPT R 7

o R II

7.1 Introduction

This chapter consists of three sections: Conclusions, Limitations 0 th R earch and

Recommendations for Future Re earch. The Conclusions ection ummanz and

discusses the findings of thi research. The Limitations of the R earch ection r

and discusses some weaknesses of this research. The Recommendations f r uture

Research section proposes some ideas for future research.

7.2 Conclu ion

Many studies have expressed strong support for the u e of gam and unula ions

educational tools. Their support i mainly based on the hypothesi that learn

implicitly acquire target knowledge during their engagement and intera nons WIth the

models. Although such interactions can create different m tivati n lev el f learning

(e.g., learners with good mental model of a domain rna I e int e 1

model's outputs can well be predicted while other learn WIth 1 d tailed m el

may lose motivation since the output indu no igrufican e grutive responses

many educators belie e that the right d ign of a model can fa I11t31 learning.

Examining the benefit of using arious t l' f unulau n model and dealing 'lth

their potential constraint in the learning and t lung environment \\ th

research contributions.

Themaincontributi noftlu fh \\ t

tool for building attractive, in! ra tiv and in. ormattv

learning and t aching mat rial . re thi w r .

rn

typ: By us

t m rf rrnan predi II n and It ut u \\ nly u I f r

1 _

hu ,in rder t 0 er th bene It 0 th

community e pecially in h lping I mer: und nd th

on the p rf rmance of a y tern, we pr po

appr ach all w S 1 1 dev loper directly embed th

ugge ted in literatur review (i.e., hypoth I t

animations and customized vi ualizations) that help get in ight im

during their learning through model

The use of attractive and interactive mod 1 0 Ii kill imulati or

procedural simulations to support basic concep of relevant th ri j comm n in

educational settings. In fact, these types of model can easily be co truct 'en

without u ing a commercial tool, since the rule regulatin their logic are fully
structured. However, educational models of open-ended imulations (i.e., D that

analyses a system's performances or continuous irnulations that deal with comple
natural processes) that allow learners to get insight into mo t of real world terns are

uncommon. One reason for this is that their operations involve a lot 0 computati n

that hinders model builders from constructing their own model Without the help of

the right tool.

Current DES tools have some distinct weaknes e. 0 of th free research

tools are not easy to use since model construction requires a lot of programmmg and

their resulting models offer no animation and visualized tru tures. Better r earch

tools, although supporting model construction through a drag and drop f hi n to a

certain extent, do not typically integrate good animation and visualizati n capabiliii .

Commercial tools provide high quality animation and visualizati n. H wev er, th

tools restrict further extension. Their resulting model must al be pia red USlDg th

software s player and this hinders the model from being a ed through mtern r

integrated with LMSs. Additionally, no ingle tool generat m

interaction and visualization customization capabihti i.e., tw im rtaot

characteristic that facilitate learning according to man edu n nal d.t

This thesis focu es on d igning and d v I ping a

builders to con truct ducational DE model. Th

insight into DE concepts thr ugh mod I int ra n ,ust mil tat 1 uahzau n,

entitie ' and re our e
' animati nand animati n ed manipul II n dunn> runtim

Mod 1 interacti ns h lp learn rs t perf rm what-if � uh ut th n

modify model 'our cd. rnized t l \ I uahzau th 1 t control th

am unt inform u n dl played n

nstruct hi /her wn m d I

mput

by

tim; I " h)

vi ualization during runtime, Addiii nally, In

(i.e., i current m d I' tatc, animau nand j ualization n ed is ny tim

t b loaded in the futur. peed manipulation ri {1 xibility t

clo er at a pee that catch th ir attenn n and kip er peel rrenl

intere t. urthennore, arrow that depict pat 0 entity m

various entities' lifecycle that would be helpful for m r compl

upported. These feature are important in the learning en ironm but 0 en

neglected in the current D Stool, ince their main focus i on tern pert; rmance

analyses.
To systematically design such a tool, we first architeeted a ramewors that

consists of classes with their own functionalities. We ha e hown that thi ram '0

was flexible enough to support the construction of arious queuing mode and their

specific logics, and exten ible to cater ariou types of DE model. 1od)

construction tasks have now been relie ed from the many of the routin tas

associated with DES models using an object-oriented tyle that uppo the n ep

of inheritance, encapsulation and polymorphi m. Ho ever, the model buildm 1

only through Application Programming Interface (APD: i.e.. an amoun: 0

programming that uses to show relationships between objec of the cl 111

needed to represent their logic .

To upport the tool's ea e of use feature through a mponent dra and

fashion and to ensure that it resulting models are informative, ifUl and njo, abl

be u ed in the learning and teaching environment w propo ed th com inati n f

two design pattern; i.e., the Delegation Ev nt Mod I (DEAf) whi h th

model '

components together and the Model- Vi w-Controll r (, fJ 'C) pattern hi h i

used to support their GUI and cu tomi ble " dunna runum .

Implementing the D M pattern in th D l(
various entities lifecycl during d na1

tatements, whil imp) m nting th patt rn all \ an u

vi ualizati n t 01 with th

component
' cod .

during imulation can b

m n nt

i ualizati n f iuu

r int grated \\ ith

c mpon nt' tat and it r 1 \ ant amman n and \1 uali u n fi r

futur u e. 11 w the two d ign patterns upport the d 1 pment 0 a hi r hi

imulation m d I (i.e., h w t connect and yn hr ruz th mod I with it children

that entitie can be tran Ierred between layers in th right ord al b

architected and di cu ed in detail.

We u ed Adobe Ja h the tool'

-irst, it expedites the development proces e f the componen ; e.g., thr ugh i

layout propertie , facilities to attach object with their clas and animate them ba

on their states, stage for compo ing the components, etc. Second, it automatically

generates web-ba ed and LMS-compatible model. With the right d ign and

environment, we believe that our tool eases the construction of useful D models.

As mentioned earlier, we designed and constructed D tool to e eetively

support three groups of users; i.e., de elopers, teachers and learners e did n 1

investigate how easily developers could expend the tool to pport other D

applications; e.g., manufacturing, logistic, etc. However, we believed the t I could

easily be extended since their development are based on UML (rufied odelling

Language) class diagrams (that clearly shows its relevant clas es methods anribut

and the relationships among the classes) and two well-known d igned patterns i.e ,

the Delegation Event Model and the Model-View-Controller which are common

approaches to all software developers. We howe er in esngated the feedbac from

teachers about the tools' usefulness and the ease of u e and learners about the t I'

attractiveness and interactivity through experiment.
Perceived u efulness, percei ed ease of use and perceived njoyment ha e

been claimed as crucial factors that determine the acceptan e of at 1. To If

our component-based tool and its resulting model upport th three fa t • we

conducted two experiments. The first e periment basicaJl evaluated if th

resulting models were attracti e, interacti e informative and us ful en ugh t ed

for learning and understanding DES concept. The resuJ f th e .penrnent \\ ed

that a majority of the 2 participants gave p itive feedba . for all It

questionnaire. The item were constructed based n ential mod I fea laimed

by previou tudies. The econd e perim n1 a ed us fuln and

enjoyment of the tool fr rn model builders' pe p

using the tool to con truct D

designed ba ed n th echnology
rele ant tudi . Parti ipant were from th that had and

programming. Analyse of their feedbac hewed that rna' rity t

participant f und that the t) wa u. ful, easy to e and enj yabl . ere

very po itivc about the r gular use of the t I f r constructin D m I in th

future.

The feedback analy e of tile econd experiment at 0 r ealed that per i ed

enjoyment and perceived u efulne were important d erminan for the L

acceptance. However, perceived enjoyment was disco ered to be a critical r

its acceptance. Perceived ea e of use meanwhile was found to ha e a relatively w

relationship with the participants' acceptance. We also

participants' perceived cognitive workloads while experiencing the too) u ing the

NASA Task Load indeX (TLX) instrument. The resul howed that the 0 emit

workload for all participants based on a 7-point scale (1 = low, 7 = high) was 3.642

(standard deviation = 1.104); i.e., their mental requiremen
not too simple and not too complex.

hiJe using the tool ere

7.3 Limitation of the Re earch

We only focused on the design and development of DES components for building
DES educational models. Each component ymboli es the location here rele ant

events and their occurrence time may take place while their hnkag provide
visualization structures of various entity flo s. Thi logic can suit many t) of

real-life systems; e.g., service, transportation and manufa turing ems.

In case of a continuous sy tern where it tates change c ntinuousl '. the rd

of components that simplify it model building and allow e. pI ring I hav 1 ur

through various Gl.Ils and visualizations are till relevant. However, repr entmg 1

operational logic may only need three typ of componen ; i.e., I 'c! r I til t

stores variables of continuous pr ces that are alwa changing, rot or Ol� that

defines the rate of change of th ariabl ov r nm and th rat m d nd n

other continuou proce , and etup (a c nunu imul u n gm that

configures all continuous simulation calculati n e.g .. siz f m rem nt tun

the numerical meth d to b us d, t .). Th linkage b w It: \ I and rot

component i much impler in e it onI inv lv th

their reI vant diff r ntial equati ns that repr nt th rat 2 f han f th van bl

179

H w vcr, pccifying the equau n. i only API Thi r uir

m del builder to have

mod 1 fay tern being

me b I pr

nstru ted.

mmm id th ir m tal

ur tool' re ulting model do n to er model

tim . Right now, learners can only experiment wuh th

ruction cap biliti t run

nd t mil th ir

vi ualizati ns. Allowing them to alter the exi ling model

model during runtime may offer orne educanonal benefi

their understanding of various D aspects if m model building to m

This can be achieved through providing a palette that floa ar und th mod I durin

runtime and contains various model construction componen , ennty and r urce

objects.
We used the Flash environment and it Action cnpl as an implementa ion

language for constructing DES components. The use of other languag although

possible may introduce additional burdens since the may not provide aciliti for

simplifying component development (e.g., facilities for attaching an object t a c

embedding default GUIs to the component etc.) and animanon capabiliti

However, the design and development techniques that have been di ed m thi

thesis can be implemented and extended in any other object oriented p grammin

languages.
Other limitations of the research relate to the e; periment limitauo . Firs 1

� •

both of the experiments used small sample izes of participan . Th number

participants in the first experiment was only 2 while the number 0 panicipan m th

second experiments was 40. Such small ample izes definitel had an eff 0 th

ability to generalize the findings. A a result, we could n t grv

about learner '

perceptions 00 attracti en r sample

models and model builder 'perceptions on the u fu1n 0 us and enj yment

of the tool for constructing DES model . However, w believ

were sufficieot enough for obtaining and r porting use I. In

order to ha e greater confidence that the

hould ha e a large number of oluntary parn I an .

also uffered from oth r po ible fa t ; i, ",0 tal influ n

affected the participan 'a c ptan of th t

that influ nced p rc i d u fuJn and p

Venkatesh Davis, _00).

f th (I

I 0

7.4 Recommendation or utur R

ontinuou y tern can be f und anywh e In our Ii ; .g., plant and animal

human p pulation, weather chang ,etc. H wever, r levant mod I that

urrent t I not nJy requir an

VUI:�:.t;:o;, but their

of their behaviour are uncommon.

programming code to repr ent the lung
models do not also allow adjustment of different asp of th ir paramet and

customization of their visualizations during runtime. In tins case, component-b
tools may ease the construction of attractive and interactive connnuous imulation

models. However, how to properly structure such componen to continu Iy trac

system responses over time according to a set of differential equauo and how 10

support the resulting models' GUls so that their parameters and relevant equanons can

be changed on the fly are worth to be investigated. Hopefully, there will be n earch

that will investigate this matter.

Many studies claim that interactions dunng clas room enhance learmng.

However, few researchers focus on studying learners interactions while usin an

open-ended simulation model for making judgement about their learning.

Investigating various factors (e.g., how long they ha e u ed the model. ho man}'

times they have clicked relevant objects what model parameters the have changed.
what additional evaluation need to embedded in the model, how to judge their

understanding, etc.) may signal their learning are worth exploring, ThI 15 po ible

since all relevant data about their interactions while using the model can be captured
and analysed (either using LMS facilities or by the model i elf). The ne. t tep 1 J

to develop mechanisms that relate all the data to induce relevant COlli Ius}

effective use of the model.

Guiding exploration on open-ended model through a Ii t of tru lured

activities may help learning and decrea e their ense of being 10 t dunng e pi rau n.

For this, the models must ha e qualit and a theti valu

exploration capabilities. Finding a wa of how t judg r measur th qual it, fa

model based on educational perspecti e and h \\ t

objects that enable learner to deepl drill d wn their hierarchie I " their mtemal

structure , operation and po ibly int th ir urc al

window i another po ibilit fa futur earch. llu f ture \! '111 n t

learners to i ualiz and anal th m .g., through It multipl 'I \
� f

I 1

tru ture t t, m hi n, .), but

rtant processes and pr perti

h Ip th

und

mputer envir run nt.

ur futur w rk in Iud upgrading ur

hi rar hical m d 1 di cu ed in hapt r 5. I th

great enhancement t our cornponent-b ed irnulati n t

upport b th of the constructi n I attracti and interacti

layer 0 S model .

a

inal layer multi

I -

am 1, A., Plaza, T�. (1994) a d R
Meth d I I al Vanauon , and

7(1),3 -59
Adam, .A., Nelon, R.R., S:'. dd, P.A. (1992). P rrcer ed

and a ze of Information T echn logy: A R Ii tion.
227-247.

Ain w rth, . (1999). The un uons 0 MUltiple Repr entati

Education, 33,131-152.
Ain worth, S., ibby, P., & W d, . (2 02).•xamining the of OJ erent

Multiple Repre entational y tern in Learning Primary Journal

of the Learning ciences, J J(l), 25 - 61.

Ajzen, 1., & Fishbein, M. (19 0). Under tandtng Attitude and Predi lin ocial
Behavior. nglewood liffs, J: Prentice Hall.

Ala-Mutka, K., Gaspar, P., Ki mihok, ., Suuma,
and Developments of eLeaming in the U I 0 e

Estonia, Hungary and Slovenia. European Journal of Edu ation, 45(
513. doi: 10.1llllj.1465-3435.2010.01442.x

Alarn, G.M., Oloruntegbe, O.K., Oluwatelure, A.T., Alake, M., yeru . (2010).
Is 3D just an Addition of 1 to 2 or I It ore nhancing Than 2D
Visualizations. cientific Re earch and E ays, 5(12), 1536-1539.

Aldrich, C. (2002). A Field Guide to Educational Simulations. Retrieved Oct 1

2007, from http://www.simulearn.netlpd astd.pdf
Aldrich, C. (2004). Simulation and the Future of Learning: An Innovativ (and

Perhaps Revolutionary) Approach to e-Learntng. an Franci all orrua:

Pfeiffer.

undational I u

AI ommunt utto •

Arnold

tmulations,
Educational

d 'oftwar Qualm

1 _

tkin m, ',(unse, (JTO, II J 1'1.1' T, C, (2(XJS) d
. oftware f evelopm -nt ftn I mbcddcd Sy. tem. . An 0\ urr III

R tsearch Irends 13 rlin pnn tcr- V rl "

u, Paul, R J (I 96 Vi ual lnt ell Modcllinz: PI t nal irnulati n

pcci I II n y t m European Journal of Op rational R arch. 91(1) 14-
26.

Aubidy, K.M.A. (2 07) ea hinu �ompul r)rgamzdhon and
imu lau nand f PA Applicauon Journal 0/ omputer

632.
abar, M.A., Winkler, D., & iffi, (2007). valuatin the

e of a roupware 001 for the Software Ar hitectur
Fir t Int irnauonal ympostum on Empirical So n..ar and
Mea urement 2007 (E 'EM 2007),430-439.

Bandura , A. (1977). elf-efficacy: oward a nifying Theory of B havioral han e.

Psychological Review, 4(2),191-215.
Banks, J. (199 . Ilandbook 0/ tmulauon Pnnctpl

Application, and Practice. ew York: John Wiley n .

Bapat, V., & Sturrock, D.T. (2003). The Arena Product amrly znterpn Iodelin
Solutions. Proceedings ofthe 2003 Winter tmulation Con r n e , 210-21 .

Barne , C.D., & Laughery, J.K.R. (1997). Ad anced r Mi ro amt imulati n

Software. Proceeding. of the 1997 Winter imulation Confer nc.c , 6 0-6 6.

Bedor, H.S., Mohamed, H.K., & Sbedeed, R.A. (2004) A eneral chi ecture f
Student Model to As es the Learning Performance in Int lit ent ut nn

Systems. Proceedings of International Conferen e on Ef tri al, El ctrom

and Computer Engineering 2004, 173- 17 .

Belfore, A.L., Mielke, R.R., & Kunam, KC, (2003 . A Framew or f r reanng
VRML Visualizations from Di crete E ent imulations. Pro ... ding. of th
International ympo fum on ollaborative Technologi and) te • 93-9 .

Bell, P.C. (1989). Stocha tic Vi ual Interactive imulation Iodel Journal of tit

Operational Re earch Society, 40, 615-624.

Benjamin, D.M., Mazziotti, B.W., Armstrong, F.B. 1994). I su and Requirement
for Building a Generic Animation. Proceeding of til 1 94 Winter imulati n

Conference, 1304-1310.

Beux, P.L., & Fie chi, M. (2007). and e-leaming.
International Journal ofMedical Informati

Birtwi tie, .M. (1979). DEMO. A Di cr t E, nt Modellmg n mulatio
London: McMillan.

Birtwistle, G.M. (19 0). imula Begin (2 00.). Lund. weden: tud tlitteratur.

Bodemer, D., & Fau t, . (2006. . ternal and 1 ntal Refer ing f Iultipl
Repre entati ns. Computer. In Human Behavior __ I). _ "-4_

Bo e, .K. (2002). An Introduction to Qu u ill
Acad mi lenum Publi h r.

Boyar, J. (19 9). Inferring equ n

nerators. Journal oftil AC f (J .\1) 3 (I). 1-9 - 1 1

Bran [I rd, J.D. (2000). How People Learn Brain
Wa hingt n, . : at! nal adem_ Pr

r, ., Mull r, ' RI tdij H. "). u nc ith

MI roW rlds. Journal ofTc hnology and J, a II r Edu ti n

1 4

r wn ,'1'., Jenkin, M.,
th 0 VLL

unt,

Bu the 200f)

. Pro din

II "AJX to Cr at -L amtn

f Leanun

Education,

Path to

Cha,

an Aid f r the
Pro t: din

1 _

(19�7). todclin A nchronou \lut(rial. Handline
Paper pr t I I th Preece III I (I) th I (h

n ren n Wmt r unulauon

raig, I. . (2007) The Interpr tauon of Ob) �U Om 111 d Pro rammtn Lan rua

nd n: pnnger
'rain, R. , II nn en, J. . (I imulatic n in JP fH. Pro dill I) th

1999 Wint r tmulauon on renee, I 2-1 7.
r nba h, L. 1 51) ocffici nt Alpha and the Internal tru tur

Psychom trika, 16(3),297-3 4. d I IO.I0071bID2310555
Da ics, ., H., 1. (20 2) tudent ngagement with irnulation omput r. and

Edu ation, 39 (3 ,271 -2 2

aVIS, .. (19 9). Percei ed efuln

cceptance of Information echnology Ml.

Davi, .D., Bagozzi, R.P., & Warshaw, P.R. (19 er Acceptan
echnol gy: A ompan on of wo Theoretical m nt

cience,35(),9 2-1003. doi: 10.12 7/mnsc.35.. 9 2

Davi, F.D., & Venkate h, V. (I 96). ntical ment

Measurement Biase in the Technology cceptan
Experiments. International Journal of Human- omputer tudi • 45(1)
45.

Deitel, H.M. (2006). Vi ual Basic 2005: HOlt! to Program. pper addJ Riv
Pearson Prentice Hall.

Deitel, H.M., Deitel, PJ., & oldberg, AB. 2004). Internet World Wid J r b:
How to Program (3rd ed.). ew Jer ey: Pea n Education Inicrna i nal.

Djajadiningrat, T., Matthews, B., & Stienstra M. (2007 . y 11
and Expression in Tangible Aesthetic. Personal Ubiquitou
11(8),657-676. doi: 10.1007/s00779-006-01 7-9

Dochy, F., Segers, M., & Buehl, M.M. (1999 . Th Relation bet een

Practices and Outcome of Studie: The Case of R earch
Know ledge. Review ofEducational R earch, 6 2 145-1 6

Donatis, A.D. (2006). Advanced Action 'cript Component: Ma termg liz Fl. h

Component Architecture. Berkele : APTes .

Donikian, S., & ozot R. (1995). General Arumati n and unulati n Plat nn.

Computer Animation and imulation '95, 197-209 ..

Dublin, L. (2004). The ine Myths of e-learning Implementati
Return on Your e-learning In tment. Indu trial and

36(7),291-294.
Duinkerken, M.B., ttj , J .. ,

Di tributed

d n, sign, btl rm tt

Eppl r, M.J., urkhard, R.A (2007) 1 ual R �rc tauon m n

Mana' merit: Frarn w r and a c Journal or Know I d. e 't,flJfUJ
112-122.

Falvo, O.A. (2 0) Arumauon and irnulati or chin I and I rm g
Molecular herm try. Intemattonal Journal 0 7 ichnology In achin ami

Learning, 4(1),6 -77.
al ,D.A., John n, .r , (20 7) Th e 0 Learning Mana'

the ruled tale. Te hTr nd . 51(2),40-45. d i: 10.10071 11

enrich, P. (2006 . tung Practical with Learning tyl in LI
ba ed Training ettings. The Journal 0 1 U' in Informin
Information Technology, 3,233-242.

Filippi, 1.B., Delhorn, M., Bernardi, (20 2). The JDF
Simulation nvironment. Proce dings 0 [he
iEM s,283-2 .

Fishbein, M., & Ajzen, I. (1975). B lief. Attitude, Intention and B havior: n

Introduction to Theory and Re earch Mas achu et ddi n-\

Fishwick, P.A. (1992). SimPack: Gettmg Started with imulati n Programming in
and ++. Proceeding. oj the 1992 Winter imulauon Confc rene , 154-162.

Fitzpatrick, S. (2003). A Review of Web-based Learning and eachin. Retrie ed
Nov 20, 200 , fr m

http://www.le.ac.uklcclrim 1 letutor/elearnmg re, lewofv, ebbasedtLhtml

Fletcher, J.D., & Tobia, S. (2005). The Multunedia Pnn iple. In R. .

Cambridge Handbook oj Multimedia Learning (pp. 17-1 3.

Cambridge University Pres .

Flynt, J.P., & Vinson, B. (2005). imulation and Ev nt Mod ling or Ga

Developers. Bo ton, MA: Thomson ourse Technology.
Gaffney, C., Dagger, D., & Wade, . (200). urve of oft

Authoring Tools. Proceeding. oj the nineteenth ACJf Confer nee on

Hypertext and Hypermedia, 1 1-1 5.

Ganapathy, S., arayanan, S., & Srini asan, . (2 3). imulation B

Support for Supply Chain Logi itic. Proceedin 0 th
Simulation ConJerence, 1013-1020.

Garrido, I.M. (1999). Practical Proce imulation
and C++. Bo ton: Artech House.

Garrido, J.M. (2001). Object-Oriented Di r I -event

Introduction. e York: Kluwer cadenu

Garrot, T., P ilJaki M., Rochhia, . (200).
European Higher Education In tituuons
Economics ojE-I aming, 5(1) 57-71.

Gelenbe, Puj lie, G. (199 . Introdu tion [0 Qu tng
Wil y.

George, D., Mall ry, P. (2009).
and ReJerenc 1 .0 pdat.

etting tarted with IMPR

http://www.rengu. m downl ad R ngu lanual pdf
uder, D.. (1995). bj t noted 1 d 1m ith irnpl

199 Wint r imulation onfcr n , 4- 4

ib n, D., dri h. ., r Pr n , 1. (_0 7).
Laming' R arch and DlT tlopmcnt Fram l\

Publi hin .

lIin and

Ed. ,

imulati n

mpl CUI

from

"onference, 77- 0
M 1M III - A 1 ut rial Proc eding of Ih I Y97 .1 Inter

onfer nee, 601-605
okhal , A.A. (1 6. ·ffecti en f mputer imulati n or Enhan In HI

rder Thinking, Journal 0 Indu: trial T. ocher 'du anon 33(4) 6

oldman, .R. 2003). Learning in mplex omams: en and hy D

Repre entations Help? Learning and In truction, 13 2),239-244.
onzalez-Barb ne, V., & Arudo-Rifon, L. (2010). rom :1 mm

artridge: A step forward. omputer. & Education, 54(1), -102.
redler, M. . (2003). arne and Simulations and err Rei ti nship

D. Jonas en (d.), Handbook of Re earch for Educational
and Technology (2nd ed., pp. 571-5 1). Mahwah., J La

Associates.
Greenbaum, J., & Kyng, M. (1991). De ign at Work Coop rattv De i n of

Computer Sy terns. ew Jersey: Lawrence rlbaum iates,

Haapala, A. (2006). Promoting Different Kind of Learn rs toward cti e Learning
in the Web-Based En ironment. Informatic. in Education, 2(2),20 -21 .

Hailikari, T., Katajavuori, ., & Lindblom-Ylanne, (200). The Rele a 0 Pri T

Knowledge in Learning and Instructional D ign, Amen an J, umal 0

Pharmaceutical Education, 72(5).
Halpin, B. (1999). Simulation in Sociology. American Behaviroral ci nil t, 42(10).

1488-1508.

lntcn tiv Control () th Mod I aiural mparu n t

Pro cedings of the 1985 JJlnt r �/muICJJ/(Jn

(J the J (J9 J WillI

Hegarty, M., Kriz,
temal Anirnati

In tru I)

RI J

) P rceived c uln
Int rnational Journal

LX. Proc din oJ III jfJ97 1",1,

A

Herrington, J., Ii er, R. (1997). Multimedia, agic and th
Re p nd l a ituated Learning nvironment.
Educational Technology, 13(2), 127-143.

Hill, D.R. . (1996). Obje t-Oriented Analy 1 and imulation, Harl
Addi on-We ley.

Holzinger, ., & boer, M. (2003). Interaction and sability
Animations: A a e Study of the lash hn I y.
international Conference on Human-Computer
(INTERA T'03), 777-7 O.

Hoppensteadt, . ., & Peskin, .S. (2002). Modelling and imulation in {, dicin
and Life Science. ew York: Springer.

Huk., T. (2006). Who Benefit from Learrung with 3D Model? Th

Ability. Journal of Computer A i ted Learning. 22(6
10.1111/j.1365-2729.2006.001 O.x

Hull, T.E., & Dobell, A.R. (1962). Random Iumber Generators.
230-254.

., Pinnoc J.. '

Ja

J hnson,
Analy i
1 -Iace earrung En

II 1),29-49.
Jonas en, .H., & Land, .M. (2000). Theonti a/ ·(Jundalio of L armn

Environment. ew Jersey: Lawrence ·r1baum tat.

Jong, . . (1991). Learning and Instruction With Computer unulations, Education

Computing, 6(3-4),217-229
J ng, .0., & Joolingen, W.R.V. (199). SCientific D1SCOVery Leamin ith

omputer Simulations of onceptual Domains. R i () Edu utional

Research, 68(2), 179-201.

Jong, T.D., & Joolingen, W.R.V. (200). Model-Facilitated Learning. In J. f.

Spector, M. D. Merrill, 1. . Merrienboer M. P. Driscoll (Eds.) Handboo

of Research on Educational Communications and Technology (pp. 45
ew York: Taylor & Franci Group.

Jong, T.D., Martin, E., Zamarro, 1.M., Esquembre, F., lin en

W.R.V. (1999). The Integration of Computer imulati n and earrun

Support: An Example from the Physic Domain of Colli 1 ns. J umal oj
Re earch in Science Teaching, 36(5) 597-615.

Joolingen, W.R.V., & Jong, T.D. (l99Ia). Characteri uc of imulati 05 or

Instructional Settings. Education & Computing, 6 3-4 241-_62

Joolingen, W.R.V., & Jong T.D. (l99Ib). Supporting Hypoth i eneraii n

Learners Exploring an Interactive Computer imulation. Instructional

20(5), 389-404.

Kacer, J. (2002). Discrete E ent Simulation with J- im. Pro ding
Inaugural Conference on the Principle and Practice 0.1 Pro ammin

Kalra, D., & Barr, A.H. (1992). Modeling \ ith Time and E ems ill

Simulations. Eurographic '92, 45-5 .

Kalyuga, S., Ayre , P. handler P., \\ eller, J. (_00). Th Re

Effect. Educational P hologi t 3 (I), _
- I.

Kamat, V.R., Martinez, J .. (2001). nabling m

Vi ualization of Di cr te- vent onstructi n

2001 Winter imulation Confe ren ,I
-

_ -15

Kamat, .R., Martin z, J.e. (_007. Vanabl - p 10

Animations of 01 crete- vent Proc fOO I Elcctrom of

Information Technology in Co truction (IT, 011) 1_. __ -_ _.

Kauchak, D.P., r gg n, P.O. 2007). L rning and Teaching: RI:

Method . ton: P n lyn' B n .

. (_00). Fla: h ;\lX tor Int ra III tmul. II n

lrnar Leamma.

J In

K zymyr, V" 3, ,(20() I) pph iJIIOn 0 J I hn ,II I

irnulauon m the W b Fmc cdings of 111' 2001 Int motional

Information S stem 7, hnology and II Application , 17 - J
K n, R. '" pam, J (I 92) omput r SImulation In R'(JI(J

Wil Y: i .

Keil, M., Beran k, P.M , K nsyn kl B R
ield tudy Evid n e Regardin I

tystem 13, 75-91.
K It n, W.O., adow kr, R.P ,& turr c (2004), imulatlon 'kith Ar na (

ed.). ew York: Me- raw HIll

Kelton, W.O., adow ki, R.P., wet, B (2010). SImulation cith Arena (5th ed.).
Singap re: Me raw IIIIl.

Kennepohl, D. (2001). smg omputer irnulati n to upplemen 'I hin
Laboratories in herm try for Distance Del! ery. Journal o Di tan

Education, 16(2), 58-65.

Khalid, R., Kreutzer, W., & Bell, T. (2009). ombining imulati n and Animation 0

Queueing Scenarios in a Flash-based 01 crete \ ent imulator. Lectur '()I
in Business Information Proces mg, 20, 240-25 J

Kilgore, R.A (2000). Silk, Ja a and bject- nented Simulation, Proce ding. 0 th
2000 Winter Simulation Conference, 246-252.

Kim, 1.0., & Mueller, .W. (1978). lntroduction 10 Factor Analy. L : What It 1 and
How To Do it. ewbury Park: Sage Pubhcation .

Kim, K. (2006). The Future of Online Teaching and Leammg in Higher d
The Survey Says. EDUCAUSE Quarter! ,294),22-30.

Kirschner, P.A, Sweller, J., & lark, R.E. (2006). Why J 1irumal uidanc
Instruction Does ot Work: An Anal i of the allure of tru i\ i t.

Discovery, Problem-Based, perientia 1, and Inquiry-B ed T hing.
Educational P ychologi t, 41(2), 75- 6.

Klein, U., StraBburger, S., & Beikirch, J. (199). DIStributed unulation ith
JavaGPSS Based on the High Level Architecture. Pro eding. of th 199
SCS International Conference on Web-B ed Mod ltng and tmulation.

-

-

Klobas, J., & McGill, T. (2010). The Role of In olvement in Learnmg Ianagem
System Success. Journal of Computing in Higher Edu ation _..:(_)) 14-L
doi: 10.10071 1252 -010-9032-5

minumeri al

Q L amine and

dm

Krahl, ot' till _)0- Hznt r 1011 n

) 1

L' cu

Kiihl,

Laitenberger, ., & Dreyer, H.M. (199). valuating the efuln
U e of a Web-based In pection Data oIlect I n Tool. Pro din
International on oftware Metric Sympo tum, 199 (.\.f, tri 199 122-J 2.

Lambert, K.A., & borne, M. (2004). Java: A Framework for Progra D I

Data tructure. Belmont, A: Thorn n-Brook ole.

Land, S. (2000). ogniti e Requirements for Learmng with
Environments. Educational Technology R earch and D
61-78.

Landri cina, F. (2009). imulation and Learmng. The Role of tent I
Journal ofe-Learning and Knowledg ociety, 5(2 • .2 - 2.

Lau, Y.-T. (2000). The Art of Object: Object-Orient d D ign and

Upper addle Ri er: ddi on-Wesle Prof ronal

Law, A.M. (2007). imulation Modeling and Analy 1 (400.). t n:

Law, A.M., Kelton, W.D. (2000). imulation Modclin and Analy
Me raw-Hill.

1 _

Lia ,

�

.1,
' Mill r, J)

on truction and

pon '1 yne.
ive and Emotion A Biologi al J.:

clat

m w, ., & aczner, (1 9) A ut rial Introdu ti n

imulati nand SlM++. Proceeding: of the 19 9

Conference, 140-146.

Lopez, L.A. (2006). New Perspective on Macromedia Fla h X ompreh 'n Il

Bo ton: Thomp on ourse echnol gy.
Lott, J., & Patter on, D. (2007 . Advanced ACllOlI npt with IJ I Pau

Berkeley, A: Peachpit Pre .

we, R. (2004). Interrogation of a Dynamic i ualizauon Dunng Learning.
Learning and Instruction, /4(3),257-274.

Lunce, L.M. (2004). Computer Simulations in i lance ducation, Int rnationul
Journal ofInstructional Technology and Distance Leamin ,/(l0 29 O.

Lunce, L.M. (2006). Simulations: Bringing the Benefit of ituated Learning to the
Traditional Clas room. Journal ofApplied Edu ational Technology, 3 1) 7-
45.

m-Plant: Empower for Manufacturing Proc Management. (200 from

http://www.sim-erv.com/pdfltool . tool 14.pdf
Macal, C.M. (2001). Simulation and Visualization. lMULATIO (49) -92.

Maldonado, H., Lee, J.-E.R., Brave, S. as, ., akajima, H.. Yamada. R. (200
We Learn Better Together: Enhancing eLearnmg with Em ti nal Cham t

Proceedings of the 2005 Conference on Computer upport or 0110 ratn

Learning 2005: The Next 10 Year ,40 -417.

Markowitz, H., Hausner, B., & Karr, H.W. (1963). IJf. RlPT: A tmulation

Programming Language. Englewood Cliff J: Prentice-Hall.

Martinez, M. (2000). International Learning in an International W rid AC f Journal

of Computer Documentation, 24(1 . -20. d i:

http://doi.acm.org/10.1145/330409. 30411

Mascarenha, E., Rego, ., & Sang, J. (199 Dr play:) em for
Interaction in Distributed imulations. Proc din of the 199-
Simulation Conference 69 -705.

Mathie on, K. (1991). Predicting er Intenu n :

Acceptance Model with the Th ry of Planned
Re earch, 2(3), 17 -191.

Matloff, . (200). Introdu tion to I rete- \ ent

Language. Retrieved ptemb r

http://heather.c .ucdavi . du -matl fL 1: 6 PL DI: unlntr

Matwiczak, K.M. (1990). lnteracti e imulati n: l th B

of the 1990 Winter imulation Confcrcn ,,,4 -L

Mayer, R. . 2003). lernent of a i n e f -1 armng, Journal 01 E U IJ I

Computing Re arch _9(). _97 - I

Mayer R. ., H gart , M., May r,
Pr m te ti eamin:
in Multim dia In tructi

11(4 ,2

19.

May r, R.l:..., Moreno, f 2(0) in W y 10 R u

Multim dra I sarnm J Educational Ps chologtst, 3x(I)
M Kenna, P, Y k, B 2(0) tru II I I or In tru II I I Peda� ...

pt Practically Applied t a .omputcr Leaminz r n ir run

'E Bulletin, 36(,166-170
M ab, R., II well, I· W. (19 6). ing Java

Proc teding of Tw lfth K 'omput rand

Engineering Workshop (KPEW), 219-22
Me ab, R., Howell,'.W. 199) irnja a: A I r L ent irnul I n P ",_

for Java with Applicati n In mputer Systems Mod lIin '. P oc dill (J

Fir t Internattonal onference on Web-based Mod 11m and 'imuiallOn.
Melao, ., Pidd, M. (2007). 109 omponent hn logy to I el a

Simulation Library for Bu me Proces odellinz. Euro an Journal o

Operational Re earch, 172(1), 163-17

Meyer, R., Page, B., Kreutzer, W., Knaak, ., Lechler, . (2005a
Framework for Di crete vent Modelling & imulation. In
Kreutzer (Eds.), The Java Simulation Handbook - imulatin Di cr I

'ystem with UML and Java (pp. 263-335) Aachen er Verlag.
Meyer, R., Page, B., Kreutzer, W., Knaak, ., & Lechler, r. (2005b). 0, 1

Framework for Discrete Event Modelling SImulation. In B. Pa e " '.
Kreutzer (Eds.), Simulating Di crete Event y tems lUI" UAIL and JCJ '0.

Aachen: Shaker Verlag.
Michael, K.Y. (2000). A Compari on of tudents' Product r auvuy

Computer Simulation Activity Ver lIS a Hand -on ACIl\'l� In �
Education. Virginia Polytechnic Institute and State ni ersit

Michelson, J.�., & Manning, L. (2008). Competency es ment In

Procedural Education. The American Journal of urgery, 19

Mildrad, M. (2002). Using Construction Kits, Modeling Tool and tern Dynami
Simulations to Support Collaborative Oi covery Learnmg Edu ational

Technology & Society, 5(4), 76- 7.

Miller, J.A., Ge, Y., & Tao, J. (199). ornponent-Based imulati n 0\1 nmeru:

JS1M as a ase Study Using Ja a Beans. Pro ceding of til 199 Jf 1111 r

imulation Conference, 373-3 1.

Miller, J.A., Ge, Y., & Tao, J. (199). Component- d imulation Environm nt

JSIM a a a e tudy U ing Java Bean. Paper pr nted
of the 30th conference on Winter imulati n, Wa hington, 0

Milrad, M. (2002). U ing Con truction Kits. M deling I and
Simulations to upp rt ollaborauve

Technology & ociety, 5(4), 76- 7

Min, R. (2003). Simulation and Di very Learning in an

Searching: Learning Model . Turk"! h Online Journal 0

4(2).
Mohler, J.. (2006). Flash Graphics, Animation and lnteroctivitv.

Th m nlDelmar Learning.
Mo ck, . (2002). A lion ript for Fla h JIX The efiniti: {lid

(2 ed.. ba t p 1: 'R III 1 dia,
Mo ck, . (2004). E intial 11011 -npl _ 0 Farnham 'R III Y
M r no, R. (200). th alu Prm ipl I I Id for iff rent

th Meth d- [[I t - earning II poth 1 Journal c t (T1tJ ut ,

Learning, 2_(),149-1 . d 1. 10.1111 J L 6_-_ "_9 _ . 170

I)

E Iti II

I -l

M r n ,R., M y r, R (2007) micra uv Multimodal Learninz En ironm

Educational Ps hology ReV/�, 19), 09- 2 . d i: 10.10071 I(
047-2

M rcui, . (2002). rnput r imulauon 10 ociol 'y: ntribut] n ? So ial
cience omputer Review, 20 1),43-57

arayanan, .B., & Hegarty, M. (2002). Mulumedia I r rnmum non 0

Dynami Inti rmauon. International Journal of Human omputer tudies,
57(4),279-315. doi: http.lldx.doLorgllO.IOO6/l1h .2002101

arayanan, S., owgill, L, Malu, P., andha, H., Pall, hn der,
Web-ba ed Di tributed Interactive imulati n 10 Ja a. Pro
1997 IEEE International onference on :}' tem •

Cybernetic, 3,2690-2695.
eumann, ., Page, B., Kreutzer, W., Kiesel, G., & Meyer, R. (2 nand

E-Leaming. In B. Page & W. Kreutzer). imulatin Di cr I E\ nt

Systems with UML and Java (pp. 401-433). Aachen haker erlag,
Nigel, N. (2008). Curriculum and the Teacher: 35 year. of the Cambridg. Journal of

Education. London: Routledge.
joo, M., & long, T.D. (1993). xploratory Learning with a omput imulati n r

Control Theory: Learning Proces es and lnstru tional upport. Journal ()

Research in Science Teaching, 30(),821- 44.

Noguez, 1., & Sucar, L. (2005). A Semi-open Learning En ironment for Virtual
Laboratories MICA] 2005: Advance in Artificial Intelligence (pp. 11

-

-l l 4).
Nordgren, W.B. (2003). Flexsim Simulation n ironment. Proc ding 0 th 10 J3

Winter Simulation Conference, 197-200.

O'Reilly, J. (2002). Introduction to AweSim. Proceeding 0 the 1002 If tnt r

Simulation Conference, 221-224.

Odhabi, H.I., Paul, RJ., & Macredie, R.D. (199 . Developing a raphical er

Interface for Discrete Event Simulation. Proceeding of tit /99 Wint r

Simulation Conference, 429-436.

Oloruntegbe, K.O., & Alam, G.M. (2010). E aluation of 3d nvironmen
Realities in Science Teaching and Learning: The ; eed to

Perception Referents. cientific Research and E ay, 5 9), 94 -9
Oses ., Pidd, M., & Brook, RJ. (2004). Critical Is u in the Devel

Component-based Di crete Simulation. imulation Mod 11m

Theory. 12(7-8),495-514.
Paas, F., Tuovinen, l., Tabbers H., Gerven, P. . _00. gnitive d

Measurement as a Means to Ad ance ogniti e L ad Th T) Edu ati 1

Psychologi t,3 (1),63-71.
Page, B., & Kreutzer, W. (2005). The Jam imulation Handbook imulatin

Di crete Event terns with 'ML and Java. a hen: .er Verl g.
Page E.H., Moo e, R.LJ., P. riffin, . (1997). W b-B ed unulati n in 1m] \

U ing Remote M thod Invocation. Pro din ofth /99� TJ'inlLr imulation

Conferenc ,46 -473.
Parri h, P. (2009). Ae th tic Prmcipl f r

Technology Re arch and Development.
007-9060-7

Payne, l.W. (19 2). ontin ent Deci i n havi r. Psv hoiogic I 8111/ tin

3 2-402.

Pedg n, .0. (2007). uruo: ew imulati n
_

tern

Proc eding. of the 2007 Winter imulation

19_

od 11m
perau n.

P gd n, . ., Alan, A., & Pri k r, B. (1 78) ut rial. Proc din \ () th
1982 Winter Simulation onference, 661-

Pegden, . ., hann n, R.., adow kr, R P. (J 5 Introdu lion 10 imulation
U. ing liman (2nd ed.). ew York: Me raw-Hill.

Peter, K., Yard,. 2004). Extending Ma om dia la II IX 200 (omp/ I

Guide and Reference to Java cript Flo h irrmngham. D.

Piaget, J. (1977). The Development of Thought: Equilibration 0 tructur

xford: B. Blackwell.

Pidd, M. (2004). omputer Simulation in Management i nc (5th ed . Hobo
NJ: Wiley.

Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., & Pahnila,
Acceptance of nline Banking: An xtension of the Technol gy
Model. Internet Re earch, 14(3),224-235.

Pilkington, R., & Parker-Jones, C. (1996). Interacting with omputer-b
Simulation: The Role of Dialogue. Computer: and Education, 2 7(1) 1-14.

Porter, T.S., Riley, T.M., & Ruffer, R.L. (2004). A Review of the of imulati
in Teaching Economics. Social Science Computer Review, 22(4).426-443.

Praehofer, R., Sametinger, J., & Stritzinger, A. (2001). Concep and Architeetur f
a Simulation Framework Based on the Ja aBeans Component Model. Futur
Generation Computer Systems, 17(5),539-559.

Prensky, M. (2001). Digital Game-Based Learning. ew York: Me ra -Hill,
Pritsker, A.A.B., & O'Reilly, J.J. (1999). Simulation with Vi ual U. f and im

New York: John Wiley & Sons.
Pritsker, A.A.B., Sigal, C.E., & Hammesfahr, R.DJ. (1994). 'LA. f II: r

rn r

Models for Decision Support. ew York: Scientific Pr

Quinn, C.N. (2005). Engaging Learning: Designing e-L arning imulation Gam .

San Francisco: Pfeiffer.

Quinn, J. & Alessi, S. (1994). The Effect of Simulation Comple t) and H th 1-

generation Strategy on Learning. Journal of R ar h on Computin in
Education 27(1), 75-91.

Radcliff, J.B. (2005). Wh oft ' 11 unula 1 n.

www.competenet.comldown)oadstSimuJationWP -F I.pdf
Reid, D.J., Zhang J., & Chen Q. (2003). Supporting cientifi 01 very Learnin

a Simulation En ironment. Journal ofComput r A 1 [d Learning, 19,9-_
Rekapalli, P.Y., & Martinez J.C. (2007). 1essag -B ed hit tur t

Runtime U er Interaction on Concurrent
Construction perations. Proceeding of th

Conference 202 -2031

Renque Di crete E ent imulation: er' Guide. (_00)
2008, from http://www.rengue.col1lJdownloa R gu, lanual.OOf

Renshaw, .E., & Taylor H. . (2000). Th Educati nal ff tl

In truction. omputer & G ociti , 6, 6 -6_.

Repenning, A., Ioannidou, ., Payt n, 1., Y ,\Y., 'R ch 11 . J

omp nent for Rapid Di tributed ftw

ofMar , 1 (2), -4.

Rice, Marjanski,., M., M.H..
RIPT. Proc din of III 'WI

Ri , .V., Marj n ki, A, Markownz, Il.M. B il y
III Pr grarnmmg Lan 11J3 ze for Modular ObJ I nent
Proce tdtng. of2005 Winter 'imulauon onferenc 621- 0

Ri b r, .P. (1 2). mputer-ba ed MICTOW rl . A bride W >n

and irect Instruction. Educauonal To chnology R search and D·
40 1), 3-10 .

Rieber, .P.) 995 . ing omputer-ba ed Micr world hildr ith
Perva iv evelopmental Di rder An lnf nnal tudy. Journal 0

Educational Multimedia and Hypermedia, 4(1), 75-94.
Rieber, L.P. 1996). Seriously onsidering Play: ignin Intera ti e Learnin

nvironment Based on the Blending of Microworlds, imul ion, and
am . Educational Technology R earch & Developm nt, 44(2) 4 -

.

Rieber, L.P. (2002). Supporting Di covery-based Learning ith imulati n . Th
International Workshop on Dynamic Vi ualizations and L arning. Knowl d
Media Research Center.

Rieber, L.P., zeng, S.- ., & Tribble, K. (2004). Discovery learning. repr cotati n.

and explanation within a computer-based sunulation: finding th right rm .

Learning and Instruction, 14(3),307-323.
River, R.H., & Vockell, E. (1987). Computer Simulations to timulate ientific

Problem Solving. Journal ofResearch in 'cience Teaching, 24. 403-415.
Rob, P., & Semaan, E. (2000). Databases: Design. Development and D plo)n nt,

Singapore: McGraw-Hill Higher Education.

Robinson, S.L. (1994). An Introduction to Visual Interactive Simulati n in B in

International Journal ofInformation Management, J 4(1 , 13-2

Robinson, W.R. (2000). A View of the Science Education R earth terature:

Scientific Discovery Learning with Computer Simulations Journal 0

Chemical Education, 77(1),17. doi: 10.10211ed07 pi
Rohrer, M.W. (2000). Seeing is Believing: The Importance of Visualization 10

Manufacturing Simulation. Proceeding of the 2000 Win! r imul. non

Conference, 1211-1216.

Romiszowski, A. (2004). Ho 's the E-learning Baby? Fa to Leading t u

Failure of an Educational Technology Inno ation. Educational T. chnolo .

44(1),5-27.
Rooks, M. (1991). A Unified Framework for isual Intern tive

Proceedings of the 1991 Winter Simulation Confi. renee. 1146-115

Roschelle, J., DiGiano, C., Koutli M. Repenning, ., Phillip . J., J .' II).

Developing Educational Software Componen . Journal of Computer, 3_

50 - 58
din 0 th J 4 Annual

iF
J' �,

eptan

19

ahin, . (2 06 . rnput r rmulan n In renee Edu lion' Jmpli lion
i tance sducation. Turkt. II nlin Journal ofDtstanc Edu atton, 7(

146.
and r, W. . 2004). Macromedia Flash MX Prole sional]()()4 Ktc furl.

Indianap Ii: am.

anders, W.B., & umaranatunge, . 2007. Acuon cnpt 0 D 'Kn Pall m.

ebastapol, A: 'Reilly.
argent, R. . (2004). me Recent Advanc in th Pr rId j • Proc ding

a/the 2004 Winter imulation on erence, 294-299
chank., R. ., Berman, .R., & Macpher on, K A. (1999) Learning b ing, In

M. Reigeluth Ed.), In tructional-De IgIl Til one and Mod I: A J'

Paradigm 0/ In tructional Theory, Vol 2 (Instructional D If:1I 7h on

Models). Mahwah, NJ: Lawrence 'rlbaum ociates.

Schnotz, W., & Bannert, M. (2003). onstrucuon and Interference m Learnine r rn

Multiple Representation. Learning and In tructton, J3 (2), 14) -156,
Schwartz, D.L., Bransford, J.D., & Sears, D. (2005. fficren y and Inn arion in

Transfer. In R. . Haskell Ed.), Tran er of Leamtng rom a Mod m

Multidisciplinary Perspective (pp. 1-51). T: Information Ag Publi hin .

Schwetman, H. (1988). Using CSIM to Model Complex Sy em . Proceeding of lit
1988 Winter Simulation Conference 246-253.

Schwetman, H. (2001). CSIM19: A Powerful Tool for Building tern odel.
Proceedings of the 2001 Winter Simulation Conference, 250-255

Seila, A.F. (1986). Di crete Event Simulation in PA CAL with 1. {TOOLS Paper
presented at the Proceedings of the 1 th Conference on \ mter unulati n,

Washington, DC.

Seufert, T. (2003). Supporting Coherence Formation in Learning fr m Iu ipl
Representations. Learning and Instruction, J 3 (2 22 -23 .

Shannon, R.E. (1998). Introduction to the Art and cience of Simulation, Pro ding
of the 30th Conference on Winter Simulation, 7-14.

Sheppard, B.H., Hartwick, J. & Warshaw P.R. (199). The Theory f R ned
Action: A Meta Analysis of Past Research WIth R mrnendati ns r

Modifications and Future Research. Journal of Consum r R ar h. 1 (_),
325-343.

Shi, unulati n.

tcnalt, M.I1., d k, M. (2006). The Plea re 0 J', I . ming - 0 d
�-Learning Platf rm . Pro ieeding» of th I ih lnt motional (onfi r. n 7 (If
European Univer ity Information. � tems, 210-212

terman, J. . (2001). y tern ynarm Modeling: i (I r Leamin to (mple
World, 'alifomia Management Review, 43(1), ·25.

toei,., Lee, K.II. 2003), Mod hng the E ect of xpenence 0 tu

Acceptance of Web-based urseware. Internet R isearch, 13 (5) 3 - 37
Stras burger, S., Schulze, T., Leme i, M., Rehn, . . (2005). emporally Parallel

oupling of Di crete Simulation System with irtual Reality
Proceedings of the 2005 Winter imulauon Conference, 1949-1957.

Su, B., Bonk, C.J., Magjuka, R.1., iu, X., & Lee, .-h, (2005) The lm nan 0

Interaction in Web-Based Education: A Program-level tudy of Onlin
MBA Courses. Journal ofInteractive Online Learning, 4(I). J -I .

Swaak, J., & Jong, .D. (2001 a). Di covery Sunulauons and th men! of
Intuitive Knowledge. Journal ofComputer A SI ted Learning. 17(3).2

Swaak, J., & Jong, T.O. (2001b). Leamer vs. System ontrol in U ing nhn
for Simulation-based Discovery Learning. Learning Environm n R

4(3),217-241.
Syrjakow, M., Berdux, J., & Szczerbicka, H. (2000). lnteractive Web-based

Animations for Teaching and Learning. Proceeding of the 10 0 J Infer

Simulation Conference, 1651-1659.
Tan, J., & Biswas, G. (2007). Simulation-Based Game Learning En ironment :

Building and Sustaining a Fish Tank, The Fir. I IEEE International Wor' hop
on Digital Game and Intelligent Toy Enhanced Learning, 73- O.

Taylor, S., & Todd, P.A. (1995). Understanding Informauon Technol gy e:

Test of Competing Models. Information � tems Research, 6(2). 144-) 6. d i:
10.1287/isre.6.2.144

Teo, T.S.H., Lim, V.K.G., & Lai, R.Y.C. (1999). lntrinsic and e. tnnsic motiv lion in
Internet usage. Omega, 27(1),25-37.

Teoh, B.S.-P., & Neo, T.-K. (2007). sing Computer-generated Arumati n

Additional Visual Elaboration in ndergraduate Cours . 711 Tur. h Onltn
Journal ofEducational Technology, 6(4),2 -37.

Thomas, R.C., & Milligan, C.O. (2004). Putting Teachers in the p r

Creating and Customizing Simulations. Journal of Inc ra Tn in

Education(15).
Thompson, W.B. (1996). Introduction to the WITNE isual lntera rve irnulat r

and OLEII Automation. . Proceedings of til /996 Jrinttr imulation

Conference, 547-550.

Tornatzky, L.G., & Klein, K.1. (19 2). Inno ation Chara ten n and Inn vati n

Adoption-Implementation: Meta-Anal i of Finding . IEEE Tra a tio
on Engineering Manageni nt, 29(1), 2 -45.

Towne, D.M. (2007). Enhancing Human P rforman e via imulation-b d Training
and Aiding: A Guid to D ign and D -elopm nt. R tterdam
Publishers.

Turnay K. (19 7). Factory Simulati n tth Arum II n: Th
.

Programrni l

Approach. Proceeding of tlz J 9 7 If/lnter imulation Confcren
Tversky, B., Morri on, J. (2002). Animation: an It f ilitat 7. lnu n (I 11 I

Journal ofHuman- omput r tudics, . 24 -26_

19

yan, ILY. (20 2. D Sign. Realizauon and Evaluation of (J omponent-Ba d
ompo itional 'oftware Archit cture for ttwork Simulanon (PhD Ih 1)

The hi tatc niver ny
Valentin, •. ., Verbraeck, A., & 01, H. '. (2 3) Ad anta and J)I d nw' 0

Building BI c in irnulauon tudies A Laborat ry I.xpcrim t ith
irnulation zxpert. Proceeding of the J 5th European limulation Sympo tum

141-14 .

Veeke, H.P.M., & ttjes, J.A. (1999). omas: 001 or bject- nented �od 11m'
and Simulation. Proceedings of the Bu. me and Industry Imulation
')Impo ium, 76- 1.

Veennan , K., Jong, .D., & Joolingen, W.R.V (2000). Pr meting elf-Dir ed

Learning in Simulation-Based Discovery Learning nvironm Thr ugh
Intelligent Support. Interactive Learning Environment, (3),229-255.

Venkate 11, V., & Davis, .D. (2000). A Theoretical xtension 0 th Technology
Acceptance Model: Four Longitudinal Field Studt . Man gement i nc •

46(2), 186-204.
Venkatesh, V., & Morris, M. (2000). Why Don't Men ver SLOP

Directions? Gender, Social Influence, and Their Role in

Acceptance and Usage Behavior. MIS Quarterly, 24(1), 115-139,

Vogel-Walcutt, J.1., Gebrim, J.B., & icholson, D. (2010). Animated ver tatic

Images of Team Processes to Affect Knowledge AcqUI iuon and Learnin

Efficiency. Journal ofOnline Learning and Teaching. 6(1), 163-173.

Vossen, G., & Westerkamp, P. (2006). Towards the ext Generation of E-Leamin
Standards: SCORM for Service-Oriented Environmen . Pro ding. 0 ixth
International Conference on Advanced Learning Technologi t 10 1-10 5.

Vries, J.D. (2004). Character-Based Simulations: What \\

http://www.openu.ac.il/research center/download CHARAC I.pdf
Wagner, E.D. (2006). Delivering on the Promise of el.eaming.

http://www.adobe.comleducation/pd£.elearning/Proffil of eLeammg WI> fi

nal.pdf
Wablstedt, A., Pekkola, S., & iemela, M. (200). From e-leamin pa to e-

learning Place. Briti h Journal of Educational Technology, 9, 1020-1 O.
doi: 10.l11l/j.l467-8535.200 .00 21_1.

Wainer, G.A., & Mosterman, PJ. (2010). Discrete-Event Modeling and imulation

Theory and Applications. Boca Raton: R Pr

Warshaw, P.R., & Davis, F.D. (19 5). Di entangling Behavioral Int nti n and
Behavioral Expectation. Journal of Experim ntal 0 tal Ps; chology, _/(,

213-22 .

Wenzel, S., & Je en, . (2001). The Integration of
Simulation-ba ed Planning Proces of LOg! ti

77(3-4), 114 -127.

White, B., Shimoda, T. Frederik n 1. (1999 . Enabling tuden t

Theories of ollaborati e Inquiry and Refl t1\ e Learning. m uter u

for Metacogniti e De elopment. lilt rnational Journal of, I In Edu at

151-1 2.
White ide, J. . (2002). Bond Int fa tivn -; lmm 1\

perience . R tn ved .1a.
ww\ .cl amingguild.c m'pdf/2 120 O_D ·\'-P pdf

\ b-
1-,

Lcamin
trom

_0

Whitw rth, B., Banul ,V.. ylla, • & Mahinda, L. (200) [� p ndmg th
f r �valuating ci -T hrucal ftware. lEU', I ran action on

Manufacturin and 'ybem tic , 3 (4).777-790.
Wil n, ..• J nassen, O.If., & Ie, P. (1993) 'II) Hand f

In tructi nal Technology. In . M Pi n h (Ld) ognuiv pproach
In tructional D ign (pp. 21 21-21 22). ew Y ric Me rraw Hill.

Wittr ck, M.. 19 9 . eneran e Proces ompr hen i n. Diu ational

Psych0 log; I, 24(4),345.
W ,Y., & Reeve, . (2007). Meaningful lnteracti n in eb-b Learnin :

Social onstructivist Interpretation. Internet and HIgher Education, 10(1) 1 -

25.

Wright, P. (199). Beginning Vi ual Ba ic 6 Object lndianapoli: ro Pr

Wurdinger, S.D., & arl on, J. (2010). Teaching for Exp riential Learning: iv

Approaches that Work. Lanham: Rowman & LIttlefield Educau n

Yahiaoui, A., Hensen, J.L.M., & Soethout, L.L. (2004) Developin RB-b
Distributed ontrol and Building Performance nvironmen by Run-lim

Coupling. Proceedings of the lOth International Confer neon Computing In

Civil and Building Engineering, 86-94.

Yi, M.R., & Cho, T.H. (2001). Hierarchical Simulation Model with Animation or

Large Network Security. Lecture Notes in Computer cience, 2229.45 -4 .

Yi, M.R., & Cho, T.H. (2003). Hierarchical Simulation Model with Animati n.

Engineering with Computers, /9(2), 203-212.

Yin, C., Ogata, H., & Yano, Y. (2007). Participatory Simulation ramewo t

Support Learning Computer Science. Intemational Journal 0 \fo II

Learning and Organisation 1(3),288 - 304.

Zak, D. (2009). ClearLy Vi ual Basic programming with Micro oft V· ual B ic 200 .

Boston: Course Technology.
Zeigler, B.P. (1984). Multifaceted Modeling and Di crete Event imulation. London:

Academic Press.

Zeigler, B.P. (1990). Object Oriented Simulation with Modular. Hi rarchi of, Iod I .

New York: Academic Press.

Zeigler, B.P. (2000). Theory of Modeling and imulation (2nd ed) an Ole
Academic Press.

Zhang, J., hen, Q. Sun, Y., & Reid, DJ. (2004). Triple cherne of earnin u rt

Design for Scientific Di co ery Learning Ba ed on Computer imul 11 n:

Experimental Re earch. Journal ofComput r I I d L amin 10. _ 9-_ -

Zhong, Y., & Shirinzadeh, B. (2004). Analysi onversi n and 'I ualizan n f

Discrete Simulation Result. Proceeding. 0 th Ei hth Int mational

Conferen e on Information i uali ation, 11 -123.

_01

