COMPONENT-BASED TOOLS FOR
EDUCATIONAL SIMULATIONS

A thesis submitted in partial fulfilment of the requirements for the
Degree
of Doctor of Philosophy in Computer Science and Software Engineering
in the University of Canterbury

by Ruzelan Khalid

University of Canterbury

2013
e-Learning is an effective medium for delivering knowledge and skills. In spite of improvements in electronic delivery technologies, e-Learning is still a long way away from offering anything close to efficient and effective learning environments. To improve e-Learning experiences, much literature supports simulation based e-Learning. This thesis begins identifying various types of simulation models and their features that induce experiential learning. We focus on designing and constructing an easy-to-use Discrete Event Simulation (DES) tool for building engaging and informative interactive DES models that allow learners to control the models' parameters and visualizations through runtime interactions. DES has long been used to support analysis and design of complex systems but its potential to enhance learning has not yet been fully utilized. We first present an application framework and its resulting classes for better structuring DES models. However, importing relevant classes, establishing relationships between their objects and representing lifecycles of various types of active objects in a language that does not support concurrency demand a significant cognitive workload. To improve this situation, we utilize two design patterns to ease model structuring and logic representation (both in time and space) through a drag and drop component approach. The patterns are the Delegation Event Model, used for linking between components and delegating tasks of executing and updating active objects' lifecycles, and the MVC (Model-View-Controller) pattern, used for connecting the components to their graphical instrumentations and GUIs. Components implementing both design patterns support the process-oriented approach, can easily be tailored to store model states and visualizations, and can be extended to design higher level models through hierarchical simulation development. Evaluating this approach with both teachers and learners using ActionScript as an implementation language in the Flash environment shows that the resulting components not only help model designers with few programming skills to construct DES models, but they also allow learners to conduct various experiments through interactive GUIs and observe the impact of changes to model behaviour through a range of engaging visualizations. Such interactions can motivate learners and make their learning an enjoyable experience.
ACKNOWLEDGMENTS

I wish to sincerely thank my supervisor, Associate Professor Dr. Wolfgang Kreutzer and my associate supervisor, Professor Dr. Tim Bell for all their constant intellectual challenges and very kind guidance and encouragement during this study.

I would also like to thank all staff and postgraduate students at University of Canterbury for whatever help they gave to complete this study.

To my family, thanks so much for giving your continuous moral support and encouragement, and sharing your valuable time during our stay in New Zealand. You all have always been my source of strength and inspiration.

Lastly, thanks to all of those who implicitly or explicitly committed until the completion of this study.
TABLE OF CONTENTS

ABSTRACT

i

ACKNOWLEDGEMENTS

ii

LIST OF FIGURES

vii

LIST OF TABLES

ix

1. INTRODUCTION

1.1 Introduction

1.2 Statement of the Problem

1.3 Objectives and Motivations

1.4 Scope of the Research

1.5 Contributions to Knowledge

1.6 Thesis Overview

1

2. SIMULATION AND EDUCATION

2.1 Introduction

2.2 Simulation Models and Their Purposes

2.3 Types of Simulation Models

2.4 The Role of Simulation in Education and Learning

2.4.1 The Role of Simulation in Learning Theories

2.4.2 Empirical Evidence

2.4.3 Simulation and e-Learning

2.4.3.1 Promises and Problems of e-Learning

2.4.3.2 The Roles of Course Management Systems

2.4.3.3 Pedagogical Aspects of e-Learning

2.5 DES Development Tools

2.6 Animated DES Systems

2.7 Summary

19

20

22

26

26

32

33

33

35

36

38

40

44
3. **A FRAMEWORK FOR DES AND ANIMATION**

3.1. Introduction 46

3.2. DES and Queuing Scenarios 48

3.3. Modelling Time
 - 3.2.1 The Event-Oriented Approach 51
 - 3.2.2 The Process-Oriented Approach 52

3.4. The DES Framework
 - 3.4.1 The *Data Collector* Package 56
 - 3.4.2 The *Distribution* Package 57
 - 3.4.3 The *Monitor* (Simulation Executive) Package 59
 - 3.4.4 The *Resource* (Servers and Queues) Package 61

3.5. Graphical Objects in Discrete Event Models 62

4. **USING FLASH FOR SIMULATION** 67

4.1 Introduction 67

4.2 Visual Simulation and Visual Interactive Simulation 68

4.3 Animation Approaches 71

4.4 Managing Simulation and Animation 74

4.5 Flash as an Implementation Language for Simulation and Animation 77
 - 4.5.1 Flash Features for VIS Development 78
 - 4.5.2 Flash Component Construction 79
 - 4.5.3 Other Advantages of Flash and Its Drawbacks 81

4.6 Flash Components for Queuing Systems 83

4.7 Flash Components for Visualizing Queuing Systems 89

4.8 Example 91

4.9 Problems and Pitfalls 96

4.10 Extensibility 99

5. **COMPONENT-BASED MODELING FOR ANIMATED SIMULATION** 102

5.1 Introduction 102

5.2 Component Based Simulation 104

5.3 The Environment of Animated Simulation Models 105

5.4 The Delegation Event Model for Linking Components 107

5.5 The MVC for Visualizing Component States 111
5.6 Connecting External Data 114
5.7 Example 118
5.8 Towards Hierarchical Simulation Model Designs 122
5.9 Designing Mechanisms for Hierarchical DES Models 125
 5.9.1 Monitor Delegation Mechanism 126
 5.9.2 Monitor Communication Mechanism 130
5.10 Problems and Challenges 133

6. EVALUATION AND ANALYSIS 136
6.1 Introduction 136
6.2 Evaluating Models’ Attractiveness and Interactivity 137
 6.2.1 Assessment and Evaluation Methods 137
 6.2.2 Experiment Participants 139
 6.2.3 Data Analysis and Results 142
 6.2.3.1 General Information 142
 6.2.3.2 General Questions 143
 6.2.3.3 Model Rating 145
6.3 Evaluating the Tool’s Ease of Use, Usefulness and Enjoyment 159
 6.3.1 Assessment and Evaluation Methods 159
 6.3.2 Experiment Participants 160
 6.3.3 Running the Experiment 162
 6.3.4 Data Analysis and Results 164
 6.3.4.1 General Information 164
 6.3.4.2 Questionnaire Reliability and Validity 165
 6.3.4.3 Usefulness, Ease of Use and Enjoyment of the Tool 166
 6.3.4.4 Self Predicted Future Usage 168
 6.3.4.5 Participants’ Cognitive Workload 171

7. CONCLUSION AND FUTURE RESEARCH 175
7.1 Introduction 175
7.2 Conclusion 175
7.3 Limitations of the Research 179
7.4 Recommendations for Future Research 181
APPENDICES

Appendix A: Consent Form
Appendix B: Questionnaire Information Sheet
Appendix C: Learner Questionnaire
Appendix D: Model Builder Questionnaire
Appendix E: User Manual
Appendix F: Source Code (in CD)
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Interactions between Teachers, Learners, Models and LMSs</td>
<td>11</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>The Event-Oriented Approach Mechanism</td>
<td>52</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>The Process-Oriented Approach Mechanism</td>
<td>53</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Package Diagram for Queuing Models</td>
<td>56</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Class Diagram for the DataCollectors Package</td>
<td>56</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Class Diagram for the Distribution Package</td>
<td>58</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Class Diagram for the Monitor Package</td>
<td>59</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Class Diagram for the Resource Package</td>
<td>61</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Graphical Objects in DES</td>
<td>63</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Visual Simulation Components</td>
<td>69</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Three Approaches to Combine Simulation with Animation</td>
<td>71</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>DES's Animated Objects</td>
<td>75</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Transformation from Model to Animation Time</td>
<td>76</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Component Architecture</td>
<td>79</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Class Diagram of Components for Simulation Input and Output</td>
<td>84</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Flash Component Panel</td>
<td>87</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Samples of DES Visualization Tools</td>
<td>91</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Sample of Interactions between Learners and a Model</td>
<td>95</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Sample of Information Gained from a Model</td>
<td>96</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Extended Components for Supporting Logistic and Manufacturing Systems</td>
<td>99</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Simulation and Animation Aspects of a Model</td>
<td>105</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>The DES Delegation Event Model Structure</td>
<td>108</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>The flow of a SimProcess Object in DES Components</td>
<td>110</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>The DES MVC Structure</td>
<td>112</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Flash Development Environment</td>
<td>118</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>A Queuing Network System</td>
<td>119</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>A Server's Properties and Default Values</td>
<td>120</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>A Final Model</td>
<td>121</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>Interactions with Component Instances</td>
<td>122</td>
</tr>
<tr>
<td>Figure 5.10</td>
<td>Hierarchical Construction of a DES Model</td>
<td>124</td>
</tr>
<tr>
<td>Figure 5.11</td>
<td>Submodel Architecture and Transferring Mechanisms</td>
<td>126</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.12</td>
<td>Monitor Delegation Mechanism</td>
<td>128</td>
</tr>
<tr>
<td>5.13</td>
<td>Submodel Class Definition</td>
<td>129</td>
</tr>
<tr>
<td>5.14</td>
<td>Simulation Class Definition</td>
<td>129</td>
</tr>
<tr>
<td>5.15</td>
<td>Agenda States</td>
<td>132</td>
</tr>
<tr>
<td>6.1</td>
<td>Simple Queuing Networks</td>
<td>141</td>
</tr>
<tr>
<td>6.2</td>
<td>More Complicated Queuing Networks</td>
<td>141</td>
</tr>
<tr>
<td>6.3</td>
<td>Participants’ Feedback on Simulation Knowledge</td>
<td>144</td>
</tr>
<tr>
<td>6.4</td>
<td>Arena Screenshot</td>
<td>161</td>
</tr>
<tr>
<td>6.5</td>
<td>Perceived Usefulness Results</td>
<td>167</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 2.1 Classification of Constructive Computer Simulations 23
Table 2.2 Simulation Types and Learning Support 24
Table 2.3 Some Learning Theories and Their Features 28
Table 2.4 Available DES Simulation Tools 38
Table 2.5 Desirable Features for the Design of DES Tools 44
Table 3.1 Types of Directed Graphs 64
Table 3.2 Properties and Events for Dynamic Objects 65
Table 4.1 Aspects of Simulation-Animation Approaches 73
Table 4.2 Interaction Characteristics of Concurrent and Post-processed Animations 74
Table 4.3 Available Simulation Tools and Their Features 74
Table 4.4 Simulation to Animation Conversion 75
Table 4.5 Events and Model Time Difference in a Sample System 76
Table 4.6 VIS Graphic Displays and Flash Features 78
Table 4.7 DES Component Types 86
Table 4.8 Flash Components for Building DES Models and Their Functionalities 86
Table 4.9 Flash Components for Visualizing DES Models and Their Functionalities 90
Table 5.1 Server Properties and Description 120
Table 6.1 Items in Model Rating 140
Table 6.2 Time Spent (in minutes) for Each Score 144
Table 6.3 Good Simulation Knowledge Participants’ Feedback about the Models 146
Table 6.4 No Simulation Knowledge Participants’ Feedback about the Models 146
Table 6.5 Undecided Simulation Knowledge Participants’ Feedback about the Models 147
Table 6.6 Feedback on the Quality of Animation from the Participants Who Always Used Computer as a Learning Tool 149
Table 6.7 Sub-questions of “These tools help to understand the model better (Please write if you have any comments)” 153
Table 6.8 Good Simulation Knowledge Participants’ Feedback about the Model Tools 153
Table 6.9 No Simulation Knowledge Participants’ Feedback about the Model Tools
Table 6.10 Undecided Simulation Knowledge Participants’ Feedback about the Model Tools
Table 6.11 TAM Factors and Their Variables
Table 6.12 Items of Perceived Ease of Use, Perceived Usefulness, Perceived Enjoyment and Self-predicted Future Usage of the Component-based Tool
Table 6.13 The Participants’ Gender
Table 6.14 The Participants’ Knowledge and Experiences
Table 6.15 Cronbach’s Alpha Values
Table 6.16 Factor Analysis of Perceived Usefulness, Perceived Ease of Use and Perceived Enjoyment
Table 6.17 Descriptive Statistics of the Items
Table 6.18 Descriptive Statistics of Self-Predicted Future Usage
Table 6.19 Correlations between Perceived Usefulness, Perceived Ease of Use and Perceived Enjoyment to Self-Predicted Future Usage
Table 6.20 Regression Analyses of the Effect of Perceived Usefulness and Perceived Ease of Use on Self-Predicted Future Usage
Table 6.21 Participants’ Feedback about the TLX Subscales
CHAPTER 1

INTRODUCTION

1.1 Introduction

e-Learning (i.e., technologies that use digital technologies to deliver and facilitate learning) is increasingly used in schools, higher education and training centres either to support distance learning or to complement the traditional classroom environment. Since it uses electronic media; e.g., the Internet, to support learning, this style of knowledge transmission eases traditional constraints on time, space and distance. The advantage to learners is that they can learn at anytime and anywhere. As a result, the use of e-Learning has grown rapidly throughout the world. However, this technology requires that learners themselves are responsible for gaining knowledge; a key concept of learner-centred education.

The teacher-student ratios either for primary, secondary or tertiary education in some countries (e.g., India, South Africa, Philippines, etc.) are still high. In India, the teacher-student ratio for secondary school was reported 32.7 in 2004 and 25.33 in 2010 (http://www.tradingeconomics.com). Although the ratios have slightly been improved in most countries during past few years, less time dedicated by teachers to the needs of each individual student demands attractive and interactive learning materials to promote and enhance their learning experiences. Learning materials that focus on activities (i.e., some degree of interaction) during the learning process are crucial in this and have proved to have more positive impacts on learning than static materials, such as numbers, texts and pictures (Holzinger & Ebner, 2003; Neumann, Page, Kreutzer, Kiesel, & Meyer, 2005; L. P. Rieber, 1996). Multimedia materials that allow content navigation that integrate texts, pictures, diagrams, sound and dynamic images (i.e., animations and movies) are increasingly integrated in learning environments. More recently, techniques that make learning more enjoyable and fun
The contents of the thesis is for internal user only
REFERENCES

