Carbon Emission Policies Impact in Logistics Supply Chain Networks

This thesis is submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy

by

ZURINA HANAFI

April 2013
ABSTRACT

Environmental issue is becoming a serious global concern. Human activities associate with industrial activities and households produce a great amount of greenhouse gases, particularly carbon dioxide, and gives significant impact on the environment. The legislation on carbon emissions has become an important agenda in order to control the amount of carbon emissions that might affect the world for future generations. In conjunction to this issue, therefore, the research was conducted to investigate the impact of the carbon emission policies on reverse and forward logistics strategies and operations and propose optimisation models for the paper recycling and fresh produce industry with cases in the UK. The optimal network design approach for both cases under carbon emission control is formulated. The research concluded that exporting the waste paper to Asia is a better option when pollution from the recycling is not charged. However, when considering the carbon emission in both the UK and the Asian country, the best strategy would depend on the amount of recycling and the differences between the costs of the recycling locally and overseas. For fresh produce case, with no carbon policies, road is a better transportation option. However, if the industry has to pay for carbon emission, consideration of multimodal transportation has to be made in order to remain optimal. The analysis of business strategies and configuration of reverse and forward logistics networks are carried out with quantitative optimisation modelling. The analysis for paper recycling and the fresh produce industry consider contributions to the environment and costs in relation to carbon emission. Mixed integer linear programming models were developed for both cases to obtain the optimal choice in strategic and operational decision making. Transportation industry is a main contributor of greenhouse gases that give direct impact to the environment. Multimodal transportation planning is important because it can help to reduce impact on the environment, by using a combination of at least two modes of transportation in a single transport chain, without a change of container for the goods, with most of the route travelled by road, rail, inland waterway or ocean-going vessel and with the shortest possible initial and final journeys by road. Multimodal transportation planning is proposed in the fresh produce industry with another variable which is time. The analytical result derived from sensitivity analysis is discussed to draw academic and practical findings for carbon control policy making and logistics network configuration. The research outcome has a good generic contribution to eco-logistics management of other recycling materials and to generic logistics network configuration issues. The research is also significantly contributed to government policy making in carbon emission control.
ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Dr Dong Li, for his guidance, support and supervision throughout the entire research period. Moreover, I am thankful my co-supervisor Dr Paul Drake who always support and help me whenever needed.

Thank you to my internal and external examiners, Dr Hossam Ismail and Dr Shaofeng Liu. It is a great pleasure to have you both as my examiners.

I will not forget the staff and colleagues in the Management School, especially staff and fellow research students in e-Business department, for their assistance and friendship over the last 4 years.

Finally I would like to thank my husband, Muhd Fardi for his full support and sacrifice, my daughters Aisyah and Aina for their love and support. Thank you so much to my family and friends.
TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGEMENTS ... ii
TABLE OF CONTENTS ... iii
LIST OF FIGURES .. vi
LIST OF TABLES .. vii
CHAPTER ONE: INTRODUCTION ... 1
 1.1 RESEARCH BACKGROUND ... 1
 1.2 RESEARCH NEED ... 4
 1.3 RESEARCH QUESTIONS ... 5
 1.4 RESEARCH OBJECTIVES .. 5
 1.5 SCOPE OF THE RESEARCH .. 6
 1.6 RESEARCH CONTRIBUTIONS ... 7
 1.7 THESIS ORGANISATION .. 8
CHAPTER TWO: LITERATURE REVIEW .. 10
 2.1 INTRODUCTION .. 10
 2.2 REVERSE LOGISTICS SUPPLY CHAIN NETWORK ... 11
 2.2.1 Reverse logistics network ... 13
 2.2.2 Optimisation model in reverse logistics ... 14
 2.2.3 Paper recycling in reverse logistics supply chain network 16
 2.3 FORWARD LOGISTICS SUPPLY CHAIN NETWORK .. 19
 2.3.1 Multimodal transportation planning .. 20
 2.3.2 Freight transportation network with multimodal transportation planning 21
 2.3.3 Optimisation model in transportation planning ... 24
 2.3.4 Fresh produce industry in the UK .. 25
 2.4 CARBON EMISSIONS ... 27
 2.4.1 Carbon Emissions Trading ... 31
 2.4.2 Carbon Tax ... 34
 2.4.3 Theoretical Background of the Policies ... 36
 2.5 GREEN SUPPLY CHAINS .. 40
 2.6 CONCLUSION ... 42
CHAPTER THREE: RESEARCH METHODOLOGY .. 44
 3.1 INTRODUCTION .. 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>RESEARCH DESIGN</td>
<td>44</td>
</tr>
<tr>
<td>3.3</td>
<td>MATHEMATICAL MODELLING METHODOLOGY</td>
<td>47</td>
</tr>
<tr>
<td>3.4</td>
<td>SOURCE OF DATA</td>
<td>47</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Primary Data</td>
<td>48</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Secondary Data</td>
<td>49</td>
</tr>
<tr>
<td>3.5</td>
<td>OPTIMISATION – SENSITIVITY ANALYSIS</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>SUMMARY</td>
<td>55</td>
</tr>
<tr>
<td>4.1</td>
<td>INTRODUCTION</td>
<td>56</td>
</tr>
<tr>
<td>4.2</td>
<td>REVERSE LOGISTICS SUPPLY CHAIN NETWORK</td>
<td>56</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Paper recycling network development</td>
<td>62</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Carbon emission cost in road transportation</td>
<td>65</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Transportation cost for delivering waste paper from MRFs</td>
<td>66</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Operational cost</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>FORWARD LOGISTICS SUPPLY CHAIN NETWORK</td>
<td>68</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Multimodal transportation network development</td>
<td>70</td>
</tr>
<tr>
<td>4.4</td>
<td>SUMMARY</td>
<td>78</td>
</tr>
<tr>
<td>4.4</td>
<td>SUMMARY</td>
<td>78</td>
</tr>
<tr>
<td>5.1</td>
<td>INTRODUCTION</td>
<td>79</td>
</tr>
<tr>
<td>5.2</td>
<td>REVERSE LOGISTICS SUPPLY CHAIN NETWORK</td>
<td>79</td>
</tr>
<tr>
<td>5.3</td>
<td>FORWARD LOGISTICS SUPPLY CHAIN NETWORK</td>
<td>90</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Road – multimodal transportation interactions</td>
<td>99</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Transportation cost, carbon emissions and time interactions</td>
<td>113</td>
</tr>
<tr>
<td>5.4</td>
<td>RESULT VALIDATION</td>
<td>121</td>
</tr>
<tr>
<td>5.5</td>
<td>SUMMARY</td>
<td>121</td>
</tr>
<tr>
<td>6.1</td>
<td>INTRODUCTION</td>
<td>124</td>
</tr>
<tr>
<td>6.2</td>
<td>CARBON IMPACT DISCUSSIONS</td>
<td>124</td>
</tr>
<tr>
<td>6.3</td>
<td>CONTRIBUTION TO KNOWLEDGE</td>
<td>126</td>
</tr>
<tr>
<td>6.4</td>
<td>LIMITATIONS AND FUTURE RESEARCH</td>
<td>129</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Reverse Logistics</td>
<td>129</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Forward Logistics</td>
<td>130</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td>132</td>
</tr>
<tr>
<td>LIST OF ACRONYMS</td>
<td></td>
<td>147</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>Research design</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Optimisation – sensitivity analysis process for reverse logistics</td>
<td>51</td>
</tr>
<tr>
<td>3.3</td>
<td>Optimisation model for forward logistics</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>Reverse logistics network for paper recycling in the UK</td>
<td>58</td>
</tr>
<tr>
<td>5.1</td>
<td>Carbon emissions cost comparison with different carbon policies for reverse logistics supply chain</td>
<td>86</td>
</tr>
<tr>
<td>5.2</td>
<td>Allocation for local processing and export</td>
<td>89</td>
</tr>
<tr>
<td>5.3</td>
<td>Total carbon emissions for reverse logistics supply chain</td>
<td>90</td>
</tr>
<tr>
<td>5.4</td>
<td>Modes of transportation options</td>
<td>94</td>
</tr>
<tr>
<td>5.5</td>
<td>Total cost comparison with different carbon policies for open supply chain</td>
<td>95</td>
</tr>
<tr>
<td>5.6</td>
<td>Total travel time for open supply chain</td>
<td>96</td>
</tr>
<tr>
<td>5.7</td>
<td>Carbon emissions cost comparison with different carbon policies for open supply chain</td>
<td>98</td>
</tr>
<tr>
<td>5.8</td>
<td>Total carbon emissions for open supply chain</td>
<td>99</td>
</tr>
<tr>
<td>5.9</td>
<td>Transportation cost, carbon emissions cost and time trends</td>
<td>116</td>
</tr>
<tr>
<td>5.10</td>
<td>Transportation cost, carbon emissions cost and time</td>
<td>117</td>
</tr>
<tr>
<td>5.11</td>
<td>Costs under Carbon Tax Policy</td>
<td>119</td>
</tr>
<tr>
<td>5.12</td>
<td>Costs under Carbon Emissions Trading Policy</td>
<td>120</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 2.1: The difference between cap-and-trade and carbon tax (Yale, 2009) .. 37

Table 4.1: MRFs location and capacity ... 63
Table 4.2: Paper mill location and capacity .. 63
Table 4.3: Carbon emissions from delivering paper from MRFs to paper mills 65
Table 4.4: Freight charges between China Port to UK Port and vice versa 66
Table 4.5: UK regions with clusters division and capacity 71
Table 4.6: Distance (km) between ports to all RDCs in Cluster 7 72
Table 4.7: Distance between ports to virtual point in Cluster 7 73
Table 4.8: Travel time (hours) between ports to all RDCs in Cluster 7 73
Table 4.9: Travel time between ports to virtual point in Cluster 7 74
Table 4.10: Carbon emission for delivering fresh produce from the Ports to Cluster 7 using road ... 75
Table 4.11: Carbon emission for delivering fresh produce from Ports to Cluster 7 using rail ... 76
Table 4.12: Carbon emission for delivering fresh produce from UK Ports to Belfast Port using feeder ship ... 77

Table 5.1: Paper recycling industry behaviour under carbon tax 81
Table 5.2: Paper recycling industry behaviour with cost fractions under carbon tax ... 82
Table 5.3: Paper recycling industry behaviour under carbon emissions trading 84
Table 5.4: Allocation to local paper mill as carbon price is increased 87
Table 5.5: Fresh produce industry behaviour under carbon tax 92
Table 5.6: Fresh produce industry behaviour under carbon emission trading 93
Table 5.7: Carbon emissions under carbon tax and carbon emissions trading 97
Table 5.8: Allocations under different transportation modes with no carbon policies and current carbon charge ... 100
Table 5.9: Time/distance for different transportation modes with no carbon policies and current carbon charge ... 101
Table 5.10: Allocations under different transportation modes with £239 carbon charge 102
Table 5.11: Time/distance for different transportation modes with £239 carbon charge 104
Table 5.12: Allocations under different transportation mode with £438 carbon charge ... 105
Table 5.13: Time/distance for different transportation modes with £438 carbon charge ... 106
Table 5.14: Allocations under different transportation mode with £470 carbon charge ... 107
Table 5.15: Time/distance for different transportation modes with £470 carbon charge ... 108
Table 5.16: Allocations under different transportation mode with £513 carbon charge ... 109
Table 5.17: Time/distance for different transportation modes with £513 carbon charge ... 110
Table 5.18: Allocations under different transportation mode with £751 carbon charge ... 111
Table 5.19: Time/distance for different transportation modes with £751 carbon charge ... 112
Table 5.20: Transportation cost, carbon emissions cost and travel time interactions ... 113
Table 5.21: Relationship between carbon price and multimodal allocation 114
CHAPTER ONE

INTRODUCTION

1.1 RESEARCH BACKGROUND

The world population reached seven billion people by the end of 2011. With the increasing number of human beings, humankind has had a considerable impact on the environment. Environmental issues constitute the most serious problem in every part of the world. Global warming, which is mainly caused by the emissions of greenhouse gases (GHGs), is said to contribute significantly to these environmental problems. Although there are many types of GHGs that have an impact on the environment, such as water vapour, carbon dioxide, methane, nitrous oxide, ozone and chlorofluorocarbon (CFC), this study focuses on carbon dioxide emissions, which constitutes the largest portion of gas emissions.

In order to facilitate the control of carbon emission, environmental legislation has been extended. Since the Kyoto Protocol in 1997, most countries around the world have tried to reduce their carbon emission. Developed countries, which fall under Annex I of the Kyoto Protocol have to reduce their overall emissions by at least 5% below the 1990 level in the commitment period 2008-2012 (UNFCCC, 1998). In the United Kingdom (UK), according to the National Action Plan Phase II, the goal is to reduce carbon emission by 12.5% below base year over the same commitment period (Defra, 2007).

Humankind’s actions produce waste that is generated from industrial and household activities. Such waste generates a significant impact on the environment. The logistics and recycling networks to reprocess waste products to reduce pollution and recover value have
The contents of the thesis is for internal user only
REFERENCES

