BACKDOOR ATTACK DETECTION BASED ON STEPPING STONE DETECTION APPROACH

KHALID ABDULRAZZAQ ABDULNABI AL-MINSHID

UNIVERSITI UTARA MALAYSIA
2014
Backdoor Attack Detection Based on Stepping Stone Detection Approach

A dissertation submitted to Dean of Research and Postgraduate Studies Office
in partial Fulfillment of the requirement for the degree Master of Science (Information Technology)
Universiti Utara Malaysia

By
Khalid Abdulrazzaq Abdulnabi Al-Minshid

Copyright © Khalid Al-Minshid, 2014
Permission to Use

In presenting this dissertation in fulfilment of the requirements for a Master of Science in Information Technology (MSc. IT) from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely available for inspection. I further agree that permission for the copying of this dissertation in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this dissertation or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my dissertation.

Requests for permission to copy or to make other use of materials in this dissertation, in whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences
UUM College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman
Abstract

Network intruders usually use a series of hosts (stepping stones) to conceal the tracks of their intrusion in the network. This type of intrusion can be detected through an approach called Stepping Stone Detection (SSD). In the past years, SSD was confined to the detection of only this type of intrusion. In this dissertation, we consider the use of SSD concepts in the field of backdoor attack detection. The application of SSD in this field results in many advantages. First, the use of SSD makes the backdoor attack detection and the scan process time faster. Second, this technique detects all types of backdoor attack, both known and unknown, even if the backdoor attack is encrypted. Third, this technique reduces the large storage resources used by traditional antivirus tools in detecting backdoor attacks. This study contributes to the field by extending the application of SSD-based techniques, which are usually used in SSD-based environments only, into backdoor attack detection environments. Through an experiment, the accuracy of SSD-based backdoor attack detection is shown as very high.

Keywords: Stepping stone, stepping stone detection, backdoor, hacker, intrusion
Acknowledgement

“In the name of Allah the Most Beneficent and Most Merciful”

All praises and thanks to the Almighty, Allah (SWT), who helps me to finish this dissertation. Allah gives me the opportunity, strength and the ability to complete my study for Master degree after a long time of continuous work. No volume of words is enough to express my gratitude towards my supervisor, Dr. Mohd Nizam Omar, who has been very concerned and gave me many interesting, valuable and sincere feedbacks throughout his supervision. Indeed, I found in his experience the main reference of my research, I greatly benefited from his detailed comments and insights that helped me clarify ideas in “Backdoor Attack Detection Based on Stepping Stone Detection Approach”.

I sincerely thank to my evaluators, Dr. Shahrudin bin Awang Nor and Dr. Ahmad Suki Bin Che Mohamed Arif, and thanks to Dr. Mohd. Hasbullah bin Omar, Prof. Madya Dr. Faudziah Bt Ahmad, Dr. Nooraini Binti Yusoff, and other committee members, for graciously reviewing this work and giving valuable suggestion and comments on my work. I would also like to say a big thanks to all UUM lecturers and staff members at the School of Computing who were kind enough to give me their precious time and assistance, without which I would not have been able to complete this Master’s dissertation. I am indebted and thankful to all Malaysian people who are very friendly and make us feel that we are not strangers in Malaysia. Last but not least, the words cannot express my gratitude to my family, especially my mother, my dear brothers Salam, Hamid and Wissam, my sisters, my faithful wife, my sons Ahmed and Murtdha and my five daughters, Duha, Saja, Nor, Tbark and Baneen. Words cannot describe their constant love, care, concern, patience, throughout the two years of my study abroad. I’m forever thankful, grateful, and indebted to them. I dedicate the accomplishment of this dissertation to my father, may Allah bless him!, my affectionate mother, and to the twin of my spirit, my wife.

“Thank you UUM”

Khalid Al-Minshid

iii
TABLE OF CONTENTS

PERMISSION TO USE ...i
ABSTRACT .. ii
ACKNOWLEDGEMENT ... iii
TABLE OF CONTENTS ... iv

CHAPTER ONE INTRODUCTION .. 1
1.1 Introduction .. 1
1.2 Research Background ... 2
1.3 Problem Statement ... 4
1.4 Research Question ... 5
1.5 Research Objectives .. 5
1.6 Scope ... 6
1.7 Significance of the Research .. 6
1.8 Summary ... 7

CHAPTER TWO LITERATURE REVIEW ... 8
2.1 Introduction .. 8
2.2 Terminology .. 9
 2.2.1 Network Security Terminology ... 9
 2.2.2 SSD Terminology .. 13
2.3 Backdoor Attack ... 15
 2.3.1 Types of Backdoors ... 15
 2.3.2 Authors and Users of Backdoors .. 17
 2.3.3 Backdoor Detectors ... 18
 2.3.4 Recent Backdoor's Detection Approaches and Related Works 22
2.4 Stepping Stone ... 24
 2.4.1 Stepping Stone Chain ... 24
 2.4.2 SSD Approach .. 24
 2.4.3 SSD Evolution and Related Work .. 26
 2.4.3.1 The Past of SSD ... 26
LIST OF TABLES

Table 2.1: Signature-based and Anomaly-based Characteristics 21
Table 2.2: Prior Works for Stepping Stone Detection Approach 29
Table 2.3: Characteristics of SSD Techniques ... 38
Table 2.4: Characteristics of SSD Models .. 44
Table 3.1: The relation between attributes and variables ... 50
Table 5.1: The detection ratio result for the known backdoors 90
Table 5.2: The initial values for the detection result for 10 samples 91
Table 5.3: TPR and FPR for the 10 known backdoors .. 91
Table 5.4: The detection ratio result for the unique samples ... 91
LIST OF FIGURES

Figure 1.1: Stepping Stones Chain Intrusion ... 3
Figure 2.1: The Layer in the TCP/IP model and OSI model .. 10
Figure 2.2: TCP packet structure .. 10
Figure 2.3: IP header structure ... 11
Figure 2.4: Stepping Stone Connection Chain .. 13
Figure 2.5: Organization of backdoor detection .. 20
Figure 2.6: One-to-one relationship .. 34
Figure 2.7: One-to-many relationship ... 35
Figure 2.8: Many-to-many relationship .. 35
Figure 2.9: General Classification of SSD ... 40
Figure 2.10: SSD Host-based model design ... 41
Figure 2.11: SSD Network-based model design ... 42
Figure 2.12: Backdoor Attack Traffic .. 45
Figure 3.1: Operational Framework .. 49
Figure 3.2: The relationship between variables and attributes 51
Figure 4.1: The interface of Spy Net Client’s software .. 56
Figure 4.2: The interface of Sub7 Gold client’s software ... 57
Figure 4.3: The tools that can be used to encrypt and make new samples 58
Figure 4.4: The interface to one of the encryption tools .. 59
Figure 4.5: Test result for the sample UUM_Backdoor before the encryption 60
Figure 4.6: Test result for the sample (UUM_Backdoor) after the encryption 60
Figure 4.7: Eset Smart Security 6 test result for the sample after the encryption 61
Figure 4.8: Network Topology used for Offline Design testbed 63
Figure 4.9: Backdoor’s client (attacker) software that used offline design 63
Figure 4.10: Network Topology used for Online Design testbed 64
Figure 4.11: UUM_Backdoor in virtual machine software (VMware) environment 65
Figure 4.12: UUM_Backdoor in real environment ... 66
Figure 4.13: Virtual Machine software environment ... 67
Figure 4.14: System restore method in Virtual Machine software 67
Figure 4.15: Eset Smart Security 6 tool process ... 68
Figure 4.16: Using Wireshark tool to capture the network packets 69
Figure 5.1 : Scenario (1), the flow between the backdoor and the attacker 73
Figure 5.2 : Scenario (1), the capture packets in the victim side 73
Figure 5.3: Scenario (1), the capture packets in the attacker side 74
Figure 5.4: Scenario (2), flow between the backdoor and the host of the attacker ... 75
Figure 5.5: Scenario (2), Poison backdoor in the victim side.................................. 76
Figure 5.6: Scenario (2), Poison backdoor in the attacker side............................... 76
Figure 5.7: Scenario (3), the victim host is active and the attacker host is offline ... 77
Figure 5.8: Scenario (3), the capture packets in the victim side 78
Figure 5.9: Scenario (4), the flow between the APT backdoor and the attacker....... 79
Figure 5.10: Scenario (4), the backdoor use outgoing flow only 80
Figure 5.11: Scenario (5), using the intermediate server .. 81
Figure 5.12: Scenario (5), the capture packets in the victim side 82
Figure 5.13: The information of the intermediate online server 82
Figure 5.14: The activity graph of the backdoor .. 84
Figure 5.15: The backdoor activity .. 84
Figure 5.16: Backdoor detection based on the round trip time (RTT) technique 85
Figure 5.17: Backdoor’s scenario without round trip time 86
Figure 5.18: Detection Backdoor Technique Based on Stepping Stone Approach 88
Figure 5.19: The detection result for the known samples 90
Figure 5.20: Avira Antivirus Scan Process Time .. 92
Figure 5.21: Eset Smart Security 7 Scan Process Time ... 93
Figure 5.22: SSD Detection Time .. 93
LIST OF APPENDICES

Appendix A The Snapshots to SSD Results... 102
Appendix B The Snapshots to Antivirus and IDS Results 109
CHAPTER ONE
INTRODUCTION

1.1 Introduction

Network applications are an important part of our daily lives. We cannot dispense with the use of these networks. At the same time, security attacks have been dramatically increasing. Security attacks come from users who do not have authorization to access the network and use the software. Most of the time, an unauthorized access is run by using a special malicious software called “malware.”

In the last ten years, malware attacks have become a common crime story online. Nowadays, well-known threats, including viruses, worms, trojans, backdoors, exploits, password stealers, and spyware, have reached millions, and among these threats, the backdoor attack has a high rate of intrusion across global networks around the world (Microsoft, 2012).

The backdoor attack is a hidden technique used to gain remote access to a machine or another system without authentication. It was a major threat in recent years and is one of the threats that cause serious concerns because the outbound it generates consists of several types of packages and exerts dangerous control over a range of hosts (B. Choi & Cho, 2012). As such, detecting backdoors has become an urgent demand today.
The contents of the thesis is for internal user only
REFERENCES

