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Abstrak

Bees Algorithm (BA), satu prosedur pengoptimuman heuristik, merupakan salah satu
teknik carian asas yang berdasarkan kepada aktiviti pencarian makanan lebah.
Algoritma ini menjalankan sejenis eksploitasi di tetangga digabungkan dengan
gelintaran penerokaan rawak. Walau bagaimanapun, isu utama BA ialah ia memerlukan
masa pengiraan yang lama serta pelbagai proses pengiraan untuk mendapatkan
penyelesaian yang baik, terutamanya dalam isu-isu yang lebih rumit. Pendekatan ini
tidak menjamin apa-apa penyelesaian optimum bagi masalah terutamanya masalah
kekurangan ketepatan. Untuk menyelesaikan isu ini, gelintaran setempat dalam BA itu
disiasat menggunakan Simple swap, 2-Opt dan 3-Opt telah dicadangkan sebagai kaedah
asal untuk Bees Algorithm Feature Selection (BAFS). Dalam kajian ini, cadangan
lanjutan kaedah asal adalah 4-Opt sebagai gelintaran yang dibentangkan. Cadangan ini
telah dilaksanakan dan membandingkan secara komprehensif dan menganalisis prestasi
mereka berkaitan dengan kejituan dan masa. Tambahan pula, dalam kajian ini algoritma
pemilihan ciri dilaksanakan dan diuji menggunakan set data paling popular dari (UCI)
Machine Learning Repository. Keputusan yang diperolehi daripada kerja-kerja
eksperimen mengesahkan ' bahawa  cadangan  lanjutan = carian. komuniti termasuk
pendekatan 4 Opt telah menyediakan ramalan ketepatan yang lebih baik dengan masa

yang sesuai daripada BAFS asal.

Kata Kunci : Bees Algorithm (BA), Feature selection, Local search, Simple swap, 2-
Opt and 3-Opt, 4-Opt.



Abstract

Bees Algorithm (BA), a heuristic optimization procedure, represents one of the
fundamental search techniques is based on the food foraging activities of bees. This
algorithm performs a kind of exploitative neighbourhoods search combined with
random explorative search. However, the main issue of BA is that it requires long
computational time as well as numerous computational processes to obtain a good
solution, especially in more complicated issues. This approach does not guarantee any
optimum solutions for the problem mainly because of lack of accuracy. To solve this
issue, the local search in the BA is investigated by Simple swap, 2-Opt and 3-Opt were
proposed as Massudi methods for Bees Algorithm Feature Selection (BAFS). In this
study, the proposed extension methods is 4-Opt as search neighbourhood is presented.
This proposal was implemented and comprehensively compares and analyse their
performances with respect to accuracy and time. Furthermore, in this study the feature
selection algorithm is implemented and tested using most popular dataset from Machine
Learning Repository (UCI). The obtained results from experimental work confirmed
that the proposed extension of the search neighbourhood including 4-Opt approach has

provided better accuracy with suitable time than the Massudi methods.

Keywords: Bees Algorithm (BA), Feature selection, Local search, Simple swap, 2-Opt
and 3-Opt, 4-Opt approaches.
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CHAPTER ONE
INTRODUCTION

1.1 Optimisation Algorithms

Nature-inspired optimisation algorithms have gained considerable attention in recent
years [1]. Its role is crucial and manifold in a wide number of research areas as varied as
computer science, operational research, mathematics, and artificial intelligence where it
is used as an optimum solution for complex problems [1][2]. A number of optimisation
algorithms have been proposed to solve varied problems including real-time issues like
Traveling Salesman Problem (TSP), Cutting Stock Problem, Packing Problems,
Minimum Spanning Tree (MST) and timetabling problems, which are difficult to resolve

in traditional way [3][4].

One of the common ways of resolving optimisation problems is the use of Swarm-based
optimisation algorithms, such as Bees Algorithm (BA) [5], Ant Colony Optimisation [6],
Bat Algorithm [7], Particle Swarm Optimisation [8], Firefly Algorithm [9], Cuckoo
search [10] and so on. However, there is no algorithm that can single-handedly resolve
all sorts of optimisation problems [1][11][12][13][14], mainly due to the massive
amount of data and their applications with each introducing different types of problem
that requires different algorithm to bring out solutions. This has further led to the
development of various optimisation methods to resolve different optimisation
problems. In order to choose the best method for a given problem, one must first identify
and understand the type of the problem [15]. The challenge here is that for each

problem, there are different algorithms offering the optimum result [1].
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