
THE INVESTIGATION ON THE BEST PRACTICES OF

EXTREME PROGRAMMING (XP) QUALITY

IMPLEMENTATION AT UUM IT

RANA ALAULDEEN ABDULRAHMAN

MASTER OF SCIENCE (INFORMATION TECHNOLOGY)

UNIVERSITI UTARA MALAYSIA

2015

 i

Permission to Use

In presenting this dissertation in partial fulfilment of the requirements for a

postgraduate degree from Universiti Utara Malaysia, I agree that the Universiti

Library may make it freely available for inspection. I further agree that permission

for the copying of this dissertation in any manner, in whole or in part, for scholarly

purpose may be granted by my supervisor(s) or, in their absence, by the Dean of

Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any

copying or publication or use of this dissertation or parts thereof for financial gain

shall not be allowed without my written permission. It is also understood that due

recognition shall be given to me and to Universiti Utara Malaysia for any scholarly

use which may be made of any material from my dissertation.

Requests for permission to copy or to make other use of materials in this project

dissertation, in whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUMCollege of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

 ii

Abstrak

Kejuruteraan perisian (SE) memainkan peranan yang penting dalam meningkatkan

kesejahteraan masyarakat melalui penggunaan perisian yang berkualiti tinggi.

Kebanyakan projek perisian gagal disebabkan organisasi perisian tidak mempraktis

amalan pembangunan perisian yang sewajarnya. Sehubungan itu, organisasi perisian

perlu mempunyai metodologi pembangunan perisian yang baik bagi memenuhi

keperluan pihak pemegang taruh. Salah satu metodologi pembangunan perisian

dalam SE yang semakin berkembang penggunaannya adalah metodologi Extreme

Programming (XP). Metodologi ini merupakan pendekatan baru dalam SE yang

mampu meningkatkan kualiti perisian dan berupaya mengurangkan masa

pembangunan perisian dan kos. Walau bagaimanapun, tahap penggunaan metodologi

ini di kalangan pembangun perisian di Pusat UUM IT masih tidak jelas. Oleh yang

demikian, kajian ini bertujuan untuk mengkaji penggunaan amalan XP di pusat ini.

UUM IT telah dipilih sebagai kajian kes kerana peranan organisasi ini telah berubah

bagi memenuhi permintaan yang tinggi di kalangan masyarakat kampus. Oleh itu,

penyelidikan yang memfokuskan kepada kepada 12 amalan XP di UUM IT amat

diperlukan. Kajian ini dijalankan dengan menemubual secara separa berstruktur

dengan lima (5) pakar dari UUM IT bagi mengenal pasti kejayaan pelaksanaan

amalan XP. Hasil kajian telah menunjukkan bahawa sebahagian besar daripada

amalan XP digunakan oleh pembangun perisian di UUM IT tetapi perlu

dipertingkatkan Sebaliknya, beberapa amalan seperti pair programming dan test first

programming tidak digunakan oleh pembangun perisian di UUM IT. Ini disebabkan

jenis dan sifat projek perisian yang terlibat, dan juga disebabkan oleh personaliti,

pengalaman dan tahap pendidikan yang berbeza di kalangan pembangun perisian.

Kajian ini menyediakan bukti kualitatif yang dapat membantu pengurus projek

perisian dalam membimbing mereka meningkatkan amalan pembangunan perisian

bagi menghasilkan perisian yang berkualiti tinggi.

 iii

Abstract

Software engineering (SE) plays an important role for improving society‘s well-

being through the use of high quality software. There is noted that most of the

software projects are failed, due to missing or poor software development practices

in software organizations. Due to this reason, having a good and sound software

development methodology is crucial for software organization to satisfy

stakeholder‘s requirements. One of the prevalent software development

methodologies in SE is Extreme programming (XP) methodology. This methodology

is an emerging SE approach, which is able to increase software quality and hence

reducing software development time and cost. However, the level of application of

this methodology among software developers in UUM IT centre is still unclear.

Therefore, this study aims to investigate the application of XP practices in this

centre. UUM IT was chosen as a case study because the role of this organization has

changed to meet high demand among campus communities. Thus, research that

focuses on the 12 XP practices of UUM IT is highly needed. This study was

conducted using a semi–structured interview with five (5) experts from the UUM IT,

to identify the successful implementation of the XP practices. The findings have

shown that, most of the practices are used by UUM IT developers but need to

improve. In contrast, some of the practices such as pair programming and test first

programming are not used by the UUM IT developers. This is due to the nature and

type of software projects involved, also because of the personality, experiences and

the education level differences among developers. This study provides qualitative

evident that can assist software project managers to guide them in improving

software development practices for producing high quality software.

 iv

Acknowledgement

In the name of Allah Gracious and most Merciful. In the first place, I wish to

express my deepest gratitude to Allah for providing me with the substance, time,

health, strength and patience to participate in this journey to acquire knowledge.

In accomplishing this research, I would like to express my gratitude to Dr. Mazni

Omar for supervision, advice, and guidance of this research as well as giving me

from her experiences.

My deepest thanks to my father Alauldeen Abdulrahman who put the fundamental of

my learning character since I was a child and my mother Luma Alauldeen who

sincerely raised me with her caring and gently love. Thank you for your love, your

support, your prayers, for everything you did for me during my study.

 v

Table of Contents

Permission to Use ... I

Abstrak ... II

Abstract .. III

Acknowledgement ... IV

CHAPTER ONE INTRODUCTION ... 1

1.1 Overview .. 1

1.2 Background of Study ... 1

1.3 Problem Statement ... 5

1.4 Research Questions .. 7

1.5 Research Objectives ... 7

1.6 Research Scope .. 8

1.7 Significance of the Study ... 9

1.8 Organization of the Dissertation .. 9

1.9 Summary of Chapter One .. 10

CHAPTER TWO REVIEW OF LITERATURE .. 11

2.1 Introduction .. 11

2.2 Software Development Practices Methodology ... 11

2.3 Agile Software Development ... 14

2.4 Extreme Programming Practices (XP) ... 21

2.5 The Adoption of Agile Practices .. 29

2.5.1 Small-Medium-Large Scale Project ... 31

2.5.2 Strengths and Weaknesses of XP Method ... 32

2.6 Related Works .. 34

2.7 Summary of Chapter Two .. 36

CHAPTER THREE RESEARCH METHODOLOGY .. 37

3.1 Introduction .. 37

3.2 Research Design ... 37

3.3 Research Approaches ... 39

 vi

3.4 Data Collection... 42

3.4.1 Sampling .. 42

3.4.2 Research Instrument ... 42

3.5 Data Analysis and Interpretation .. 48

3.6 Validation of Data Collection .. 50

3.7 Summary of Chapter Three .. 51

CHAPTER FOUR DISCUSSION OF RESULTS AND FINDINGS 52

4.1 Introduction .. 52

4.2 XP Best Practices ... 52

4.3 Proposed Conceptual Model .. 57

4.4 Case Study Results at UUM IT with Five Experts .. 59

4.4.1 Expert 1 .. 60

4.4.2 Expert 2 .. 66

4.4.3 Expert 3 .. 71

4.4.4 Expert 4 .. 74

4.4.5 Expert 5 .. 77

4.5 Discussing of Findings ... 79

4.6 The XP Quality Implementation .. 87

4.7 Summary of Chapter Four .. 93

CHAPTER FIVE CONCLUSION ... 95

5.1 Introduction .. 95

5.2 Achievement of Research Objectives .. 95

5.2.1 Objective One .. 95

5.2.2 Objective Two .. 96

5.2.3 Objective Three .. 96

5.3 Contributions of the Study ... 97

5.4 Limitations and Future Work Directions ... 97

 vii

List of Tables

Table 2.1 Principles of the Manifesto for Agile Software Development 16

Table 2.2 Agile Practices and Methods ... 17

Table 2.3 XP practices mapping with respect to quality subjects ... 29

Table 2.4 Summary of the Common Strengths and Weaknesses of XP. 33

Table 2. 5 Summary of the Application Extreme programming Practices 34

Table 3.1 Overview of research design and methodological processes 39

Table 3.2 Interview Questionnaire .. 44

Table 4.1 XP Best Practices .. 53

Table 4.2 Expert's profile .. 59

Table 4.3 Summaries the final XP practices based on the experts .. 86

Table 4.4 Summary of the XP quality implementation findings based on the Expert's

opinion ... 89

 viii

List of Figures

Figure 2.1 Comparison of the Methodologies ... 20

Figure 2.2 Original XP practices.. 23

Figure 3.1 Research Process of the Study .. 41

Figure 3.2 The qualitative process of data analysis ... 49

Figure 3.3 Nvivo project .. 50

Figure 4.1 Conceptual Model of XP Quality implementation .. 58

Figure 4.2 The interview based on the themes (Nvivo 11) .. 59

Figure 4.3 Expert 1 with XP practices ... 61

Figure 4.4 Expert 2 with XP Practices ... 66

Figure 4.5 Expert 3 with XP practices ... 72

Figure 4.6 Expert 4 with XP practices ... 75

Figure 4.7 Expert 5 with XP Practices ... 77

Figure 4.8 X Links between practices .. 88

 ix

List of Appendices

Appendix A INTERVIEW QUESTIONAIRE .. 114

Appendix B VALIDITY OF DATA .. 118

 1

CHAPTER ONE

INTRODUCTION

1.1 Overview

This initial chapter introduces the background on the phenomenon under study,

problem statement, research questions, and research objectives. The research scope

and significance of this research are also discussed. The chapter ends with the outline

of the thesis structure and summary of the current chapter.

1.2 Background of Study

Software engineering (SE) is a domain that deals with engineering discipline in

software construction. It has been kept formal and has practical methodologies as

guidance in software development. It has been manifested by software life cycle that

is composed of requirement elicitation and analysis, design specification,

implementation, verification and validation, deployment and maintenance (Wu,

2011). Software development processes are an important part of software

engineering, which influence the product outcome (Senapathi & Srinivasan, 2012;

Päivärinta & Smolander, 2015). Several studies noted that software projects are

considered a failure for many reasons. Tan (2011) refers that the research conducted

by Gartner where data was collected from 845 project sample has shown that 42.5%

did not deliver all the benefits, 44% were delivered over budget and 42% were not

delivered on time. Furthermore, Gulla (2011) mentions that missing methodology is

one of the reasons for software failure. The reason of software failure has also been

discussed by Haughey (2011), who claims that poor or missing methodologies and

tools are among the reasons.

 2

Generally, there are many traditional methodologies for software engineering, such

as waterfall, prototyping, iterative and incremental, and spiral. The technique of

using a methodology has appeared since the late 1960s and has traditionally been

administrated through the waterfall methodology (Hass, 2007). The traditional

methodologies connected the empirical and theoretical issues. Hence, they have a lot

of troubles in software engineering industry. With regard to these problems, the

researchers have shown that the weaknesses of traditional methods come from the

lack of theoretical and empirical connection (Abrahamsson, Conboy, & Wang, 2009;

Ahlemann, El Arbi, Kaiser & Heck, 2013).

Nowadays, business processes are more complex, interconnected, interdependent,

and interrelated than ever before. Due to this multifaceted nature of businesses, the

software industry is strongly going toward the use of the methodologies which have

been developed from practices such as agile methods (Burman, 2015; Hass, 2007).

Recently, the agile methodologies family – such as Extreme Programming (XP),

Scrum, and Adaptive Software (ASD), have become extremely established in

software engineering. In general, agile is characterized by the following attributes:

incremental, cooperative, straight forward, and adaptive. However, agile methods are

iterative processes, where stakeholders and developers work together effectively,

understand the system‘s idea, identify the requirements, and prioritize the functions

of the system (Abrahamsson et al., 2009). Additionally, agile software methods

emphasize on delivering the software after iteration. They emerged as a response to

the inability of previous plan driven approaches to handle rapidly changing

environments (Mushtaq & Qureshi, 2012).

 3

The key spirit of agile is that software should be completely integrated and tested

before the end of iteration. The agile models offer rapidly changing requirements to

develop software for the teams. In Malaysia, the current software development

practices are focusing on agile-based software development, which reveals that

agile-based software development practices are important in order to produce high

quality software (Mohamed, Farvin, Baharom & Deraman, 2014). Agile methods are

an established process for developing software nowadays (Asnawi, Gravell & Wills

2012; Asnawi, Gravell & Wills, 2014). There is, however, less evidence on their

usage among software practitioners in Malaysia (Asnawi et al., 2014; Mohamed et

at., 2014). While the methods have become mainstream in other regions, that is not

the case in this country. More specifically, Asnawi et al (2012) assert that agile

methods are still emerging methodologies in Malaysia, where the adopters are still at

a minimum number.

Extreme programming XP is one of the most widespread and most useful methods of

agile in software engineering (Conboy & Fitzgerald, 2010; Tessem, 2003). It is a

collection of well-known practices in software engineering. It aims to enable

successful software development despite ambiguity or constant changing of the

requirements. The novelty of XP is based on the way the individual practices are

collected and lined up to function with each other. Darwish (2011) states that the

main advantage of XP method is the resilience it provides, allowing for easy

incorporation of changes. In the same context, according to Darwish (2013), the life

cycle of XP methodology has six phases to develop a software, which are

exploration, planning, iteration to release, product ionizing, maintenance, and death.

 4

XP practices are suitable for large-scale, complex software development.

Furthermore, XP has many characteristics, such as short iterations with small

releases and rapid feedback, close customer participation, constant communication

and coordination, continuous refactoring, continuous integration and testing,

collective code ownership, and pair programming (Mohammed & Rauf, 2015;

Mushtaq & Qureshi, 2012; Rumpe & Schröder, 2014).

XP is a software development discipline in the family of agile methodologies that

contributes towards quality improvement using a dozen practices. According to beck

(2000) and Haider and Ali (2011), XP consists of twelve practices, which are

planning game, small releases, metaphor, simple design, testing, refactoring, pair

programming, collective code ownership, continuous integration, 40-hour week, on-

site customer, and coding standard. Therefore, XP requires direct communication

among all members to give the developers a shared view of the system which

matches the view held by the users of the system. Thus, most of the previous studies

were focused only on the pair programming practice or another practice separately

(Agarwal & Deep, 2014; Sillitti, Succi, & Vlasenko, 2012; da Silva Estácio &

Prikladnicki, 2015). Moreover, many scholars emphasize the importance of using

every practice, such as Beck (2000) who says that ―Any one practice does not stand

well on its own. They require other practices to keep them in balance‖. This claim is

also supported by Alshehri (2014) and Stellman and Greene (2014).

In addition, the XP approach is very important for software development as

mentioned in the literature. Few empirical studies, particularly qualitative approach

conducted in Universiti Utara Malaysia, are related to this approach. Based on these

 5

arguments and many other arguments discussed in the next sections, this study

exploits the experts‘ viewpoint to explore the main XP practices that are harnessed in

the UUM IT center. In general, in the next section, the researcher will determine the

problem statement based on the previous studies related to this phenomenon.

1.3 Problem Statement

Among the agile methodologies, the Extreme Programming (XP) is the one that has

received the most attention (Mannaro, Melis & Marchesi, 2004; Rumpe & Schröder,

2014; Syed-Abdullah, Holcombe & Gheorge, 2006; Solinski & Petersen, 2014). It is

the most prevalent in agile software development methodology (Cockburn, 2007;

Omar, Syed-Abdullah & Yasin, 2011; Salo & Abrahamsson, 2008). In the same

context, da Silva Estácio and Prikladnicki (2014) and Al-tarawneh, Abdullah and Ali

(2012) and Hummel (2014) state that Extreme Programming (XP) is one of the agile

methods most adopted in the industry. Moreover, Omar and Abdullah (2015) argue

that by applying XP methodology, software development teams experience higher

enthusiasm levels in the most dynamic project. This is also supported by Sison and

Yang (2007), who refer that XP increases good relationship among developers.

However, even though in XP it is emphasized that the better results are obtained

when applying all the practices, it is not clear what the impact on productivity or

quality would be if some practices were ignored (Marchesi, 2005). Moreover, it has

been found that there are few empirical studies in this research field.

Furthermore, XP method is used for business where time is important and when

requirements are not known earlier (Kumar Srivastava, Singh Chanhan & Singh,

 6

2011). However, many organizations remain skeptical regarding XP‘s value. In the

same context, Mohamed, et al (2014) declare that only few studies were conducted

among Malaysian software practitioners regarding agile practices, whereas most of

the studies were performed in the Western countries. On top of that, Omar, Syed-

Abdullah and Yasin (2010) refer that a formal approach of developing software

amongst software developers in UUM IT is still unclear.

Moreover, XP proposes twelve software development practices to increase

productivity and maintain quality (Abdullah, Al-Tarawnehb & Alia, 2012).

However, most of the previous studies focus on pair programming (such as, Sillitti,

Succi & Vlasenko, 2012 and Rejab, Omar, Mohd and Ahmed, 2011), while a few

studies that concentrate on other XP practices on software development have been

found (such as, Kuppuswami, Vivekanandan, Ramaswamy & Rodrigues, 2003). This

is also confirmed by Hummel (2014), who points out that most empirical research is

concerned with the XP practice pair programming, while other practices are

neglected. However, XP practices can create a coherent method when they work

together (Paulk, 2001). Moreover, most of the previous studies were focused on pair

programming in the education sector (Brereton, Turner & Kaur, 2009). Sillitti et al.

(2012) refer that pair programming can foster knowledge sharing among students. In

addition, Canfora, Cimitile and Visaggio (2003) state that pair programming has

been gaining acceptance among practitioners and the software development

community. This successfully leads to a wide use of pair programming in

educational setting as a computer science or software engineering pedagogical tool

 7

especially in programming courses (Cliburn, 2003; Rejab, Omar, Mohd & Ahmed,

2011)

Therefore, because of the many advantages of XP method, the progressive usage of

XP in software organizations, and the importance of XP practices for the success of

applying this method, there is a need to ensure the proper implementation of XP

practices in UUM IT. Consequently, this study focuses on evaluating the degree to

which various XP practices are implemented in this center. To achieve this objective,

the researcher uses qualitative study to discover the XP practices mostly used in this

center and at the same time highlight the poor practices that need to be well-

organized or improved.

1.4 Research Questions

Based on the arguments discussed in section 1.3, this study attempts to answer the

following questions:

i. What are the best practices of Extreme Programming (XP)?

ii. What is the conceptual model for evaluating the best practices of Extreme

programming (XP) quality implementation?

iii. How is the proposed conceptual model validated?

1.5 Research Objectives

The main aim of this study is to investigate the Extreme programming practices used

among UUM IT‘s developers. In order to achieve this aim, the following objectives

have been formulated:

 8

i. To identify the best practices of Extreme programming (XP).

ii. To propose the conceptual model for evaluating the best practices of Extreme

Programming (XP) quality implementation.

iii. To validate the proposed conceptual model using a case study at UUM IT.

1.6 Research Scope

In this study, the agile methodology is focused on Extreme Programming (XP)

methodology, which is one of the most prevalent agile methodologies. Meanwhile, it

is one of the agile methods most adopted in the industry. Therefore, the prior

literature states that the usage of XP can help improve quality and productivity. More

specifically, the current study concentrates on identifying the best practices for

evaluating XP software development among software developers in UUM IT. In

fact, UUM IT was established in 1989. In the 25 years of its operation, the role of

UUM IT has changed to delivering more impact software projects to cater high

demand from the campus communities. Therefore, applying good software

development practices amongst UUM IT software developers is crucial because it

can help the organization to produce better software.

In addition, qualitative approach, semi-structured interviews are used to highlight

these practices that may be harnessed in this center. These interviews were

conducted with experts who have more than ten years' experience in software

development in University Utara Malaysia

 9

1.7 Significance of the Study

This study significantly provides qualitative evidence on the implementation of

Extreme Programming practices used by the software developers in UUM IT. It is

able to demonstrate whether to what extent the XP practices have been applied in

UUM IT. Also, this qualitative evidence can assist the top management in making

informed decisions on how to improve the software development practices in UUM

IT. This is because applying good software development practices can improve the

software delivered to the customers.

In addition, despite the many benefits agile methods can deliver, to date, little work

has been published regarding its current usage in developing countries like Malaysia.

Furthermore, this kind of study is also lacking in the Southeast Asia region.

Therefore, this research strives to enrich the literature by identifying the key XP

practices (as a kind of the agile methodologies) used in Malaysia in general and

UUM IT in particular.

1.8 Organization of the Dissertation

i. Chapter one: Overview

This chapter discusses the issues related to the phenomenon. In addition, it

illustrates the objectives of the study, the scope of the study, and the

significance of the current study.

ii. Chapter two: Review of Literature

Most of the related studies are discussed in this chapter. In addition, the

concepts and the agile methodologies as well as the practices are discussed.

 10

iii. Chapter three: Research Methodology

The research process that assists to achieve the main objectives of the present

research is highlighted. The qualitative approach is discussed as the

technique for collecting data from the participants through semi-structured

interview.

iv. Chapter four: Discussion of Results and Findings

The preparation and analysis of interviews carried out with experts by using

manual methods and using tools is discussed.

v. Chapter five: Conclusion

This chapter discusses the objectives of study. In addition, it highlights the

limitations and future work directions.

1.9 Summary of Chapter One

Software plays an important role in the modern world. In addition, the development

of software has always been regarded as a difficult task. Thus, the current study aims

to explore how to use the most permanent agile methodologies called Extreme

Programming (XP) in the computer centers within public universities in Malaysia.

Based on the former studies, there is a lack of attention towards the use of agile

methodologies in the Southeast Asia region, and especially in Malaysia. Literature

also shows that little work has been published regarding XP practices. This chapter

also presents the research questions, the research significance, and the scope of the

study.

 11

CHAPTER TWO

REVIEW OF LITERATURE

2.1 Introduction

Through this chapter, a review of literature related to agile software development

and Extreme programming practices methodology will be explained. Section 2.2 will

be discussed the overview about software development practices methodologies, that

will be via discussed the importance of used the methodologies among software

developers. In the section 2.3 shows the agile software development practices

methodology and an overview of agile methods practices. Section 2.4 focused on

Extreme Programming. While, the adoption of agile methods issues were discussed

in section 2.5.

2.2 Software Development Practices Methodology

Software engineering methods often introduce a new set of criteria for software

quality and a special language-oriented or graphical notation (Kalermo & Rissanen,

2002; Chandra, Kumar, & Kumar, 2010). A notation is a system of characters,

symbols or abbreviated expressions used to express technical facts or quantities and

usually a technique uses a notation (Blokdijk, 2014). For example, structured

analysis and design, object-oriented analysis and design and prototyping are

methods. Techniques of structured analysis and design are for instance data flow

diagrams and entity-relationship diagrams that can be described by using annotation.

Paradigm the term (software engineering) paradigm is often used to refer to a set of

steps that consist of methods, tools and procedures (Pressman, 2005; Chung, Nixon,

 12

Yu, & Mylopoulos, 2012). A paradigm is also used in order to perceive the different

phases in development. Phases are decomposed into tasks and activities and tools

such as templates, forms and checklists are used to complete the tasks and activities

(Pressman, & David Brian, 2009; Pickering, 2001).

Software engineering approaches from part of a quality assurance system, and may

include methods such as waterfall, prototyping, iterative and incremental

development, spiral development, rapid application development, and extreme

programming (McConnell, 2004; Miller, & Page, 2009; Cyganek & Siebert, 2011)

Thus, study the software development methodologies and their stages is essential in

improving the software industry. The software development process, along with its

associated systems analysis and design phase, needs to be more adaptive as the

business community advances into the future economy (Boehm, 2006;

Unterkalmsteiner et al., 2012; Highsmith, 2013; Santos, 2014). The process of

software development has progressed through three significant historical stages,

including (1) developer-as-artist, (2) developer-as-engineer, and (3) agile

methodologies (Valacich, George, & Hoffer, 2009; Bird, 2007; Douglas, 2006).

According to Valacich, George, and Hoffer (2009) the first of these phases in

software development, developer-as-artist, was evidenced by software developers

not documenting the programs being developed or not utilizing automated tools

during the development process. The software developers in this phase were

considered geniuses and artists as a high degree of dependence on the software

developer was necessary for continued maintenance. The next phase, developer-as-

engineer, was when organizations brought more control and regulation to the

 13

software development arena as the development process and the lifecycle of software

development became a more structured process (Valacich et al., 2009). This is where

the rise of a waterfall system development methodology was formed, in which the

system development lifecycle is more of a linear process and moves in strict order

from the actual software system concept through the software system design,

implementation, testing, installation, and troubleshooting, and finally ends up with

the ultimate operation and maintenance of the software system (Cyganek & Siebert,

2011; Douglas, 2006).The rise of the third phase, agile development methodologies,

has been ushered in over the last few years as the growth of the Internet economy

and object-oriented approaches have intersected (Valacich et al., 2009).

According to Leffingwell (2010) there are several methodologies was developed by

the developers, one of the main software development methodologies is an agile

methodology. Agile software development methodologies require closer cooperation

between programmers and the ultimate business user community that will combine a

number of software lifecycle phases into fewer phases, and involve multiple

iterations of software implementations within an application system (Stober &

Hansmann, 2010; Cagle, 2010; Bustard, Wilkie, & Greer, 2013). Prototyping, time

constraints, smaller project team members, management involvement, and iterative

software development are all significant components of the agile software

development process (Leau, Loo, Tham, & Tan, 2012; Eckstein, 2013). This new

concept of agile software development has aided in adding value to software

generation and seems to fit into a world where the requirements for businesses to

 14

develop application software are at a faster pace to meet the demands of a changing

environment (Stober & Hansmann, 2010; Cano et al., 2015).

2.3 Agile Software Development

Agile software development is an approach to software development that, in addition

to programming, concentrates on subjects like project management and teamwork.

Agile is a philosophy or a way of thinking about software development and there is

no single unified agile methodology to follow (Shore & Warden, 2008; Leffingwell,

2010; Turk, France, & Rumpe, 2014). The term agile also refers to a number of

different iterative and incremental software development methodologies that share

common principles and practices. These methodologies emphasize people,

communication and the ability to adapt to change rather than the process, tools and

predictive planning. The methodologies ―are processes that support the agile

philosophy‖ (Shore & Warden, 2008; Stober & Hansmann, 2010; Soundararajan,

Arthur, & Balci, 2012) and each of them consists of individual practices and

techniques.

Many of the agile methodologies (then called as lightweight) were created in the

1990s (Sliger & Broderick, 2008; Stober & Hansmann, 2010) as an alternative to the

traditional sequential (waterfall), document-centric and often heavyweight software

development processes and their problems. Although agile methodologies are

relatively new, some of their concepts like Iterative and Incremental Development

(IID) can be traced back to the 1930s (Larman, 2004; Petersen & Wohlin, 2009;

Eckstein, 2013). NASA has used IID in software projects since the 1960s and IBM

from the 1970s (Larman, 2004; Kruchten, 2013) and it has been promoted by several

 15

software development thought leaders since the 1970s (Larman, 2004; Petersen &

Wohlin, 2009). Also the ideas of Lean Product Development (used and propagated

by Toyota in automobile production) have influenced the development of agile

methodologies (Sliger & Broderick, 2008; Soundararajan et al., 2012) as they spread

to North America and to the IT community at large in the 1980s (Aguanno, 2004).

The actual term agile software development was coined in 2001 when 17 lightweight

methodologists got together (Sliger & Broderick, 2008; Leffingwell, 2010) and they

wrote the Agile Manifesto based on four values as shown below:

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan)

According to Fowler and Highsmith (2001) the manifesto is also accompanied by the

following 12 principles that reflect its four values as illustrated in Table 2.1.

 16

Table 2.1 Principles of the Manifesto for Agile Software Development(Fowler &

Highsmith; 2001)

Principles of Principles of the Manifesto for Agile Software Development

1. Our highest priority is to satisfy the customer through early and continuous delivery

of valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity - the art of maximizing the amount of work not done - is essential.

11. The best architectures, requirements, and designs emerge from self-organizing

teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly.

In general, it is confirmed that the agile methodologies share many common

practices like iterative and incremental development and delivery, adaptive planning

and put open face-to-face communication and people before documentation,

processes and tools (Stober & Hansmann, 2010; Leffingwell, 2010).

Moreover, the agile methodologies besides working and delivering in short

iterations, an agile team works as a one sharing a common goal (Cohn, 2005).

Problems are solved together regardless of roles. Documents are no longer passed

from one specialist to another as the primary means of communication.

Programming is seen as a comprehensive craft. Besides writing the code, it also

includes the technical design (modeling) and testing of the code. Agile teams focus

on business priorities by delivering complete user-valued features in customer

 17

specified order to optimize the ROI (Cohn, 2005). Teams also include an on-site

customer representative that works with the team daily to give feedback and define

requirements for the software (Shore & Warden, 2008; Petersen & Wohlin, 2009).

This interactive face-to-face communication (Cockburn, 2004) (and other practices)

allows the team to develop the software without needing a detailed written

documentation (like a traditional software requirements specification). If these

stakeholders are not available, much of the agility of the project is lost as

requirements need to be collected and documented by traditional means.

Furthermore, all agile software development methodologies include a number of

different practices and techniques that define how requirements, design,

development, testing and project management should be done. Many of the practices

are shared between the different methodologies. In fact, there are more practices

which could be introduced and summarize some of the more significant ones in

Table 2.2.

Table 2.2 Agile Practices and Methods (Cohn, 2005; Shore & Warden, 2008;

Elssamadisy, 2008)

Practice Description
Work

products

On-site

customer

The whole team works together in a common project

room with an onsite customer or a customer

representative like a product manager. The on-site

customer is a subject matter expert working on the

requirements with the developers and is empowered to

make decisions about the requirements. Having an on-

site customer enhances communication helping to

develop better quality requirements and reducing

documentation overhead.

Story cards

User stories

User stories (or just stories) are a requirements

engineering tool in agile projects. They are short written

descriptions of features used for planning and as

reminder, conversations to flesh out the details of the

Story cards

 18

feature and tests that document and determine that the

feature is complete. They also include work estimation.

User stories can be documented on paper index cards or

in an appropriate software tool. In many ways user

stories replace the traditional requirements documents.

Project management

Planning

Planning is done on several levels in an agile project

and it usually means the process of creating, choosing

and elaborating the next work items, such as user stories

for example, for the next cycle (project, release, sprint,

day). Planning usually involves a backlog which is a

documented list of prioritized work items and their work

estimates. Planning poker is a specific sprint planning

technique in which the whole team participates.

Backlogs:

• Product

• Release

• Sprint

Burn down

chart

Story Cards

Small

releases

The development progresses in a series of short, time

boxed sprints, each producing new fully functional

features and working software. Work cannot be added to

a sprint once it has started.

Not applicable

Self

organizing

teams

During the sprint, the team itself is responsible for

meeting the sprint's goals and has the authority to plan

and execute its work as it sees fit. The role of the project

manager is not to direct the team but to help it achieve

its goals.

Not applicable

Sustainable

pace

Work should be done at such a pace that can be

sustained indefinitely. People create better, higher

quality products when they are healthy, motivated and

enjoying their work. Frequent overtime is discouraged

as it causes opposite effects and is seen a sign of deeper

problems.

Not applicable

Daily meeting

Each day a short meeting is held where the team

coordinates its work, synchronizes daily efforts and

assesses and revises its plans. The Daily Scrum (or

stand-up) is specific technique related to Scrum.

Not applicable

Retrospective

Retrospectives are meetings held after sprints, releases

and projects where the project team reflects its

experiences and decides on possible actions for

improving the process.

Not applicable

Design

Metaphor

Metaphor supports the idea of having simple design by

providing a frame of reference for how the team should

think about the system and thus aiding communication

about the design.

Not applicable

 Simple design means that the team aims to have the

simplest possible design that is enough to deliver the

Not applicable

 19

Simple design features the customer needs. Simple doesn't necessarily

mean simplistic but rather that the system should not

contain anything unnecessary for its intended goal.

Programming

Refactoring

The program code should be continuously cleaned and

restructured to achieve a better and simpler design

without changing the external behavior / functionality of

the system.

Program code

Pair

programming

Pair programming is a practice where two developers

program together in order to produce better quality code

and to share an understanding of the code. The

developers switch roles often, e.g., a few times in an

hour and also pairs are switched on a daily basis.

Program code

Team code

ownership

All code is owned by everyone and any pair of

programmers can change any code. This collective

responsibility encourages problems to be fixed as they

are spotted and development is faster as the

―bottleneck‖ of individual code ownership is removed.

Not applicable

Sustainable

pace

Work should be done at such a pace that can be

sustained indefinitely. People create better, higher

quality products when they are healthy, motivated and

enjoying their work. Frequent overtime is discouraged

as it causes opposite effects and is seen a sign of deeper

problems.

Not applicable

Testing

Continuous

integration

All code checked in to a version control system is

automatically and continuously re-integrated and tested

on a separate build machine. Doing integration testing

continuously and automatically lets the team find

related problems when they are created and reduces the

amount of repetitive manual work needed to integrate

the software.

Automation

Scripts

Test-driven

development

In test-driven development a unit test is written before

the actual program code that passes the test. Testing can

be automated by writing test code that runs the actual

operational code. This approach helps to create a

comprehensive set of tests for the system and ensures

good code quality.

Test code

Sprint review

At the end of each sprint, a meeting is held where the

results of the sprint are demonstrated to stakeholders in

the form of working software. The goal is to share

information, evaluate the design and functionality of the

software, get feedback and brainstorm future directions.

Not applicable

 20

In the same context, there are several agile methodologies used by the developers,

but the most notable methodology is Extreme Programming (XP) (Alite &

Spasibenko, 2008). Figure 2.1 shows the flexibility (how they accept change) and

quality (defects and accuracy of the product) of XP method compared to other

software development.

Figure 2.1 Comparison of the Methodologies(Baird; 2002)

The following section will explain in detail about XP. This highlighted in the next

section elements related to XP method, for instance the definitions, values and the

twelve practices.

Customer

acceptance

testing

Customer representatives write acceptance criteria for

the user stories they create which then can be automated

by the developers. These tests are then run to see if the

related feature was developed as defined in the user

stories.

Story cards

Test code

 21

2.4 Extreme Programming Practices (XP)

XP was created by Kent Beck and Martin Fowler (Wells, 2009) while working for

Chrysler Corporation and was first published in his book (Beck, 1999) .The name

reflects the idea that teams should take good, proven engineering practices to the

extreme (Sliger & Broderick, 2008). XP stresses ―customer satisfaction through

rapid creation of high-value software, skilful and sustainable software development

techniques and flexible response to change‖ (Larman, 2004). According to Shore

and Warden (2008) XP project life-cycle is divided into 1-4 week iterations

(preference on the shorter) and the teams are relatively small (5-20 members). In

fact, the XP method involves a main four values. In the following paragraph

discusses these values in more detail (Rittenbruch, McEwan, Mansfield &

Bartenstein, 2002; Darwish, 2013;):

1- Communication: XP encourages the team members and users to own a

shared view on requirements. As a result of continuous communication

between the team members as well as with the user, the knowledge about the

new system becomes unified. Therefore, there are fewer possibilities of

ambiguities and misunderstandings on requirements. Projects developed with

XP show that good results can be obtained using sheets of papers to collect

user requirements, wall boards to show diagrams and other project-relevant

information, and shared workspaces to maximize face-to-face

communication.

2- Feedback: developers must always have a way for obtaining information

regarding the development process. Feedback includes several dimensions:

 22

the system, customer, and team members. Feedback from the system and the

team members aims to provide project leaders with quick indicators of the

project‘s progress whereas feedback from customer includes the functional

and acceptance tests.

3- Simplicity: is one of the values supported explicitly by XP. A simple design

always needs less time to finish than a complex one. Therefore, XP

encourages developers to start with the simplest solution. Extra functionality

can then be added later. Programmers do the simplest thing that could work,

and leave the system in the simplest condition. This improves the general

speed of development while still retaining an emphasis on working software.

4- Courage: XP encourages the team members to make decisions that support

the implementation of XP practices. The team members need courage to

refactor the software code. The team members review the existing system and

modify it to facilitate the implementation of future changes. In addition,

courage may include removing parts of source code that is obsolete, no

matter how much effort was used to create these parts.

The emphases of XP‘s practices are on programming and the quality of code, but it is

also a communication and team oriented methodology. XP does not require other

detailed work products (like a requirements specification document) but program

code and test cases. Oral communication is the suggested way of working with

requirements and design. The whole team, including customers, developers and

managers, is expected to work together in the same project space to quickly deliver

software with high business value (Martin, 2003; Stober & Hansmann, 2010).

 23

 The customer's role in an XP project is to document software

requirements/features as user stories, prioritize these stories by their business value

and write and execute tests that demonstrate that the stories are implemented as

expected. The XP programmer role is versatile making no distinction between

programmers, designers, testers and so on. All programmers work as a team and

share responsibilities that might be assigned to specific individuals in a non-XP

project. In addition to the design and development tasks, the programmers are

responsible of making work estimations for the user stories and writing automated

unit tests for everything they program. The team might also have an XP coach or a

project manager who monitors the use of XP practices and keeps the work ongoing

(Leffingwell, 2010). In addition to the values and principles, XP includes twelve

software engineering practices which it combines for greater synergy as shows in

Figure 2.2.

Figure 2.2Original XP practices (Cohn, 2005; Darwish, 2013; Turk, Franc &

Rumpe, 2014)

 24

i. On site customer: is the practice which deals with the communication

aspects among the customers and developmental team. It is an extremely

important towards producing quality software. In another words, it concerns

about many characteristics in software engineering. For example, the number

and type of meetings is a main target for this practice. It has used to collect

the software‘s requirements and the feedback for versions previews of

software. Moreover, it refers to how many times that the team spends with

the customer to set immediate and continuous feedback when developing

software. The customers have to be available full-time for the development

team. On site customer practice is looking for explaining how to

communicate with customers and get the requirements and feedback from

them and how long take every meeting. As well as, the activity of customers

in software development (Syed-Abdullah, Omar, Hamid, bt Ismail, & Jusoff,

2009; Wood, Michaelides & Thomson, 2013).

ii. Planning game: it refers to agreed statement by the client that demonstrates

what the system can do, determine the target functions, and constrains of

system. The planning practice deals with writing and documenting methods

for system needs and function and how to get the requirements from clients.

As well as, estimate the development time and prioritize the software

requirements (Jun, Qiuzhen & Lin, 2010; Abrantes & Travassos, 2011).

iii. Collective Code Ownership: it considers that the developed code is

belonging to the development team rather than the individual member for the

software. The code must be available and accessible to all developers of

team. For this reason, every developer is going to contribute and add a new

 25

idea to all parts of software at anytime and anywhere they gets an opportunity

to add new value and feel it is an important without asking for permission. As

a final point, this practice makes the code as a one repository and reachable

for all the programmer of project team (Lindstrom & Jeffries, 2004; Turk et

al., 2014b).

iv. Coding Standard: in software engineering industry, every project has a set

of coding rules. The main idea of this practice is that developers should that

the entire developers of project team agree to adhere and follow a common

set of coding standards on a software project throughout the project. As well,

this practice discuss that the type of standard which use in this project and

what the responsibility of developers for that selected standard. Just like there

is value in following common coding conventions, clean code that follows

your chosen coding guidelines is easier to understand and evolve than code

that doesn‘t, there is similar value in following common modeling

conventions. In addition, developers also incorporate coding standard

practice with note taking technique by adding comments to their code. By

applying this coding standard, the code written by different team members is

easier to understand and helps software reuse in the future projects (Aveling,

2004; Mushtaq & Qureshi, 2012; Omar, Abdullah & Lailee, 2013).

v. Continuous Integration: this practice refers to developers is able to merge

code into a shared depository several times a day. It involves in continuous

quality control as small pieces of work are tested frequently to provide

continuous feedback on the project‘s progress and to improve the quality of

software. Moreover, it cares about how the development team uses it and

 26

what the tool of this practice. On other side, it replaces the traditional practice

of applying quality control only after completing all development. It helps for

reducing developments risks. Continuous integration guarantees that working

software is available to employ with new features. It allow developers to

learn, interact, and share knowledge to enhance learning process(Salo &

Abrahamsson, 2008; Wood et al., 2013).

vi. Frequent Releases: this practice refers to a team could launch code/module

to the user frequently and listening to feedback, whether crucial or

appreciative. It shortens release cycle to speed the feedback from the client.

In condition, the requirements often change, one keeps release cycles short

and ensures that each release produces a beneficial software that makes

business value for the client. An early version of the project is put into

production quickly, small iteration later. In the end of every version, the

client reviews the interim product; identify defects and adjusting changes and

future requirements to improve the software functions and features (Sison &

Yang, 2007; Abrantes & Travassos, 2011).

vii. Sustainable Pace (40-Hours week): sometime it is known as 40-weeks

hours. Extreme programming teams are in it for the long term. They work

hard, and at a pace that can be sustained indefinitely. This means that they

work overtime when it is effective, keeping them fresh, healthy, as to reduce

as much as possible mistakes and that they normally work in such a way as to

maximize productivity week in and week out. On other hand, they do not

work for more than 40 hours for week as a rule and never overtime for two

consecutive weeks. It is pretty well understood these days that death much

 27

quality software. XP teams are in it to win, not to die (Kongyai & Edi, 2011;

Hummel, 2014).

viii. Pair programming: this practice is one of the primary practices of Extreme

Programming (XP). It is means that two programmers can work and writes all

production code together as a pair on the single computer, one is the driver (writes

code) while the other the observer will assist the driver and suggest a solution. On

the other word, one writes the code and, at the same time, another reviews the

code for correctness and understandability. They have selected according to

specific criteria and they can switch their tasks. It ensures that all written

code is reviewed by at least one other developer, resulting in better design,

better testing, and better code. It may seem inefficient to have two developers

doing "one developer‘s job", but the reverse is true. Research on pair

programming shows that pairing produces better code in about the same time

as programmers working singly (Begel & Nagappan, 2008; Rumpe &

Schröder, 2014).

ix. Test First Programming: this kind of practice is known as unit test and test

first design also. It means that the software‘s programmers make a prior test

before beginning the coding process. It helps programmers to really get what

needs to be developed. The requirements of software are nailed down firmly

by these tests. It clears the understanding a specification written in the form

of executable code. It is often very difficult to test some software systems.

These systems are typically built code first and testing second, often by a

different team entirely. By creating tests first the programming will be

influenced by a desire to test everything of value to your customer. The

 28

design will reflect this by being easier to test (Lemos, Ferrari, Silveira &

Garcia, 2012; Turk et al., 2014).

x. Simple design: XP follows the principle „keep it simple.‟ That is, in XP,

designs must be easy to implement and a developer should be able to make

necessary amendments when required (Harriosn, 2003; Singhal & Banati;

2014).

xi. Refactoring: it is the process of improving the design of an artifact without

changing its functionality. Refactoring should be done on an ongoing basis

throughout development of the artifact. Better arrangements for parts of an

artifact can provide, for example, support to other ideas. On the other hand,

allowing poorly structured ideas to exist in a project is a risk that accumulates

over weeks of development (Siebra, Mozart Filho, Silva & Santos; 2008).

xii. Metaphor: a metaphor represents a coherent view of the system that makes

sense to both the business and technical sides and represents ―what we are

trying to do.‖ The metaphor is sometimes embodied in a single user story that

portrays this idea and gives everyone the system basics. In a sense, the

metaphor serves as the high-level software architecture (Maurer & Martel,

2002). At its best, the metaphor is a simple evocative description of how the

program works, such as "this program works like a hive of bees, going out

for pollen and bringing it back to the hive" as a description for an agent-

based information retrieval system (Jeffries, 2003).

Based on the discussion above and the previous studies, Table 2.3 distinguishing the

XP practices which address the software quality and those which address the

 29

development process quality. This mapping highlights the different aspects

concerning quality with respect to XP practices.

Table 2.3 XP practices mapping with respect to quality subjects (Dubinsky &

Hazzan, 2002)

XP practices address the

software quality

XP practices address the

development process

quality

Quality aspect

 Influence level

Simple design

Testing

Refactoring

Continuous integration

Planning game

Customer on-site

Pair programming

Collective code ownership

High

Small releases

Coding standard

Metaphor

40- hour week

Normal

2.5 The Adoption of Agile Practices

Agile methodologies were developed as a remedy to the failure of predictable

manufacturing concepts, such as the waterfall life-cycle, big up-front specifications

and speculative planning as they were misapplied to software development. Besides

giving flexibility and focusing on delivering customer value, where Leffingwell,

(2010) stated that the agile methodologies reduce the risk of building a wrong

product by:

1- Working on the requirements with an on-site customer,

2- Eliciting stakeholder feedback early and often with working software, and

3- Adapting development to changing requirements based on that feedback.

Agile development also reduces the risk of building the right product wrong with

test-driven development, continuous integration and other practices and techniques

concentrating on software quality. When working software is evaluated and tested in

 30

every sprint, requirements and design issues and also software defects are discovered

much earlier than in waterfall type projects where testing is done only once at the

end of the project. Also, the risk of getting stuck in the requirements or design phase

in an unclear project is negated as agile development ensures that actual

implementation is done in every sprint (Aguanno, 2004). Aguanno also points out

two issues related to agile development that needs to be considered. Firstly, a self-

organizing, empowered agile team tends to locally optimize their way of working in

a particular project, which can cause problems in enterprise project/portfolio

management. Secondly, agile methodologies are not formal enough for life-critical

systems development as they lack the necessary design reviews and evaluations

needed to discover possible safety issues.

Furthermore, agile methods have many significant attribute one of them is an

adaptive development process, which draws on the two lean principles of

―amplifying learning‖ and ―decide as late as possible.‖ The lean principle

―amplifying learning‖ is based on the concept that Development is an exercise in

discovery while production is an exercise in reducing variation, and for this reason, a

lean approach to development results in practices that are quite different than lean

production practices.‖ (Poppendieck & Oppendieck, 2003). The lean principle

―decide as late as possible‖ provides a capacity for change by delaying decisions as

late as possible. ASDMs follow with these principles by emphasizing adaptive

software development, which requires iterative and incremental development

through productive feedback. Satzinger, Jackson, and Burd (2005) mentioned that

some projects were reasonably predictable and could be managed sequentially but

 31

most projects are less predictable, demanding an iterative and adaptive approach to

development.

2.5.1 Small-Medium-Large Scale Project

Most agile methods have primarily been applied to small to medium size projects

such as internet and web-based information systems. It is not clear if agile methods

are used on large-scale projects that they can provide end-users with the desired

quality in a timely manner (Marrington, Hogan & Thomas, 2005). However, some

researchers have reported that large-scale and complex projects have benefited from

suitably tailored agile development methods (Bowers, May, Melander, Baarman, &

Ayoob, 2002; Lippert et al., 2003; Cao, Mohan, Xu, & Ramesh, 2004; Lindvall et

al., 2004).

As well as, Bowers et al (2002) examined whether the XP method can handle large-

scale and life-critical software systems. The authors adopted the XP method to

redesign their public safety communication systems, which consists of over a million

lines of C language code. They indicated that a suitably adapted agile development

process (in particular XP) was ideal for long-term projects and the development of

large systems. This is contradictory to the preferences of many information

technology (IT) managers who often consider XP as a slightly chaotic methodology.

Lippert et al (2003) mentioned that they followed the recommended practice of

adapting XP to their specific project. They also developed methodological

extensions to XP for use in a number of areas in which questions and problems

frequently occur. The majority of studies on large-scale projects have been

 32

conducted using the XP method, which was initially designed for small-scale

projects with less than 10 developers and a product that would not be excessively

complex (Beck, 2000).

There studies used the XP method to mitigate risks with early, frequent feedback.

However, they did not use every part of the XP method. Instead, they adopted some

practices, dropped others and supplemented others with practices from other fields.

This paper revealed the possibilities for applying the XP method to large-scale and

life-critical projects if the XP method was modified to fit into the specific application

development environment. Lippert et al (2003) also examined whether the XP

method was appropriate for large and long term projects.

In dead, each agile method is a unique system or software development methodology

according to the definition of Avison and Fitzgerald (2006), each agile method has a

different purpose. For example, XP is specifically designed for software

development in high change environments, for satisfying customer needs, and for

maintaining effective teams (Beck, 2000). Scrum focuses on project management of

iterative development (Schwaber & Beedle, 2002), and Adaptive System

Development (ASD) is a framework for managing software projects under intense

time pressure (Highsmith, 2000).

2.5.2 Strengths and Weaknesses of XP Method

Many researchers indicate the strengths and weaknesses of XP method. Table 2.4

depicted these cons and pros of the XP based on number of the researchers.

 33

Table 2.4 Summary of the Common Strengths and Weaknesses of XP

Strengths of XP Method

XP method helps the software industry for shorter release of

functional software, where the customers are always contacted to

ask for the highest priority features in the software.

Beck, 2000; Fruhling &

Vreede, 2006; Xu, 2009.

XP method saves the project against the cancellation with the

help of periodic releases.

Beck, 2000; Guha et al.,

2011.

XP method always focuses on the highest priority tasks;

therefore false features are not prioritized during the

development of the software, as it gives the freedom to the

developers and testers to give their feedbacks upon the release

time and cost of the software which will helpful for interaction

with the clients via the business people.

Beck, 2000; Munassar &

Govardhan, 2010; Xu,

2009.

XP method is more flexible and includes more explicitly the

needs and intentions of all project participants.

Beck, 2000; Fruhling &

Vreede, 2006; Xu, 2009.

By test driven development practices, XP method resulting in

less errors and acceptance of changing requirements.

Beck, 2000; Fruhling &

Vreede, 2006; Munassar

& Govardhan, 2010.

XP method is suited for single project, developed and maintained

by a single team. It cannot be implemented in the system where

developers don‘t work well with each other and like to work on

their own.

Beck, 2000; Guha et al.,

2011; Hneif & Hock

Ow, 2009.

Weaknesses of XP Method

XP method is not suitable for medium and large scale projects.

Munassar & Govardhan,

2010; Mushtaq &

Qureshi, 2012; Hneif &

Hock Ow, 2009.

XP method is not suitable to be implemented in an environment

where a customer or manager insists on a complete specification

or design before they begin programming.

Beck, 2000, Turk et al.,

2002; Xu, 2009.

Lack of project management practices.

Beck, 2000; Turk et al.,

2002; Mushtaq, 2012.

Lack of documentation though the development lifecycle.

Qureshi, 2011;

Munassar & Govardhan,

2010; Guha et al., 2011;

Paulk, 2001.

 34

Developers must be experienced. Paulk, 2001; Munassar

& Govardhan, 2010.

2.6 Related Works

The research community has devoted a great deal of attention to agile software

development since the agile manifesto was created in 2001. Dingsøyr, Nerur,

Balijepally and Moe (2012) referred that there are around 32 articles from 2003 until

2011 addressed the agile software development and their applying such methods in

industry. Moreover, the XP was described as the most common agile methods. These

articles were focused on understanding of agile concepts, adoption and/or adaptation

of agile, and evaluation of adoption issues in environments that are not inherently

conducive to agile. The reviewing of the previous studies would illustrated the

applied of Extreme programming methodologies in different area as showed in Table

2.5.

Table 2. 5 Summary of the Application Extreme programming Practices

Authors Year
Type of the

study
Finding

Sfetsos, Angelis &

Stamelos

2006

Mix methods

 The results have shown that

companies, facing various

problems with common code

ownership, on-site customer,

40-hour week and metaphor,

prefer to develop their own

tailored XP method and way of

working-practices that met

their requirements.

 Pair programming and test-

driven development were found

to be the most significant

success factors.

Salo &

Abrahamsson

2008 Quantitative

 The outcomes of study showed

that the organizations are able

to apply the two agile methods,

namely, XP and Scrum, and

 35

their individual practices in

their projects and report fairly

positive results of their

application; and the most used

XP practices among the

respondents.

 Moreover, the experienced

usefulness of the practices was

clearly higher than the expected

usefulness among the

respondents not having applied

the practices of XP and Scrum

in their projects.

Omar, Syed-

Abdullah, &Yasin,

A.

2010

Qualitative

 The output shows that the

adopting agile-XP practices

have been successfully

implemented in this centre;

despite the XP practices have

not fully adopted. This is

because organization culture

may affected the adoption.

Haider & Ali 2011 Mix methods

 The outcome of this study

shows that the using of Pair

programming as an effective

software development

technique as well as a

pedagogical tool. Furthermore,

the use of pair programming

also effects performance in

distributed software

development, and positively

impacts the social practices

(human or social factors).

Ghani,

Izzaty, & Firdaus
2013 Qualitative

 The results indicated that

software development using

XP method delivered quickly.

Mohamed, Farvin,

Baharom, &

Deraman,

2014

Quantitative

 All of the respondents agreed

that agility should be

considered during software

development in order to

produce high quality software.

 Software practitioners in

Malaysia are gradually

implementing agile based

software development; but

there still exist among them

who have never heard about it.

 36

 The most implemented agile

methods are XP and Scrum.

Omar & Abdullah

2015

Quantitative

 The findings showed that the

use of agile methodology does

not significantly affect work-

related well-being.

 Agile practices, such as pair

programming, continuous

integration, and frequent

release, are able to induce

teams to work closely and

experience higher well-being.

2.7 Summary of Chapter Two

The literature review is important for clarifying the problem statement and also to

understand the elements related to phenomena. Therefore, this chapter focused on

the agile method as a preliminary introduction to the XP method. Following that, XP

method with all the pertaining components discussed. Finally, several of previous

studies have been included in the current study as a related work.

Twelve XP practices discussed in more details to understand the content each

practice to achieve the first objective of this study. As well as, literature review help

the research also to achieve the last research objective through extract the codes and

themes from the interviews. In this chapter also highlighted several strengthens and

weaknesses of the XP approach. Also the prior literature asserted to need more

empirical studies related to XP practices in Asia and especially in Malaysia. In the

next chapter, the process to attain the aim of the current study will be discussed in

details.

 37

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

This chapter includes a detailed description of the research methodology that was

utilized in the study. Methodology is a research process that applies a collection of

methods to resolve the problem (Ishak & Alias, 2005; Pickard, 2012; Flick, 2015),

which is organized in phases, and each of phase has been completed sequentially.

However, the aims of the research process is to achieve the objectives of the study.

This chapter will be a description of the research design and method used to address

the research problem as outlined in chapter one. The remainder of this chapter will

discuss the data collection procedures that include the details on the technique to be

used, which include: literature review and interview. Following this data analysis

and interpretation of findings will be discussed.

3.2 Research Design

The research design differs depending on the methodology. According to Creswell

(2013), there is no definite structure to design a qualitative study. Generally, the

research design encompasses tasks such as sample design, data collection design,

and methodology tests. The type of problem can influence the choice of the

methodology. According to Creswell (2009), research designs are plans and the

procedures for research that span the decisions from broad assumptions to detailed

methods of data collection and analysis. Hence, it implies the plan for conducting

the study (Creswell, 2013).

 38

Basically, there are two methods of data analysis: qualitative and quantitative

analysis (Sekaran & Bougie, 2010; Zikmund, 2003), where most researchers prefer

to utilize either quantitative or qualitative (Ragin, 1987; Kaplan & Duchon, 1988;

Lee, 1991; Gable, 1994; Mingers, 2001). Previous studies also show that qualitative

methods are very famous for IS studies. Puvenesvary, Rahim, Naidu, Badzis, Nayan,

and Aziz (2008, p.1) say that: "An extensive literature review in your area of study

will help you determine the most appropriate method to use in your research‖.

Similarly, Saunders and Lewis (2012), state that the previous studies will give the

researchers ideas about how they might collect data. In addition, if a concept or

phenomenon needs to be understood because little research has been done on it, then

it merits a qualitative approach (Creswell, 2009). Hence, in this study, in order to

investigate Extreme Programming Practices at UUM IT, the qualitative approach is

used.

This qualitative study seeks to develop a deep understanding on the practices used in

UUM IT. The researcher collected extensive data from experts who work in UUM IT

because individuals with more experience in the central phenomenon enable the

researcher to obtain more in-depth data (Creswell & Clark, 2007). Furthermore,

research design expresses a plan for the study, providing the overall framework for

collecting data, outlining the detailed steps of the investigation, and providing

guidelines for systematic data collection (Lankshear & Knobel, 2004; Creswell,

2006). The research design can also be described as the specific procedures involved

in the last three steps of the research process: data collection, data analysis, and

report writing (Alison, 2000; Creswell, 2005). In regards to the research design as

 39

defined by those authors, the research design for this study is summarized in Table

3.1

Table 3.1 Overview of research design and methodological processes

ASSUMED PARADIGMS

Methodological Qualitative

Approaches Case study Approach

SELECTION OF PARTICIPANTS

Purposive sampling

With the assistance of the Director

of UUM IT, five of the UUM IT

experts who have experience in

this phenomenon have been

selected.

DATA COLLECTION

Data collection instruments Individual interviews

DATA ANALYSIS AND INTERPRETATION

Transcription, data coding, free quotations, and links

3.3 Research Approaches

The qualitative approach is utilized in this study. Creswell (2009) recommends that

qualitative approach is able to explore the complex set of factors surrounding the

central phenomenon and present the varied perspectives or meanings that

participants hold. Furthermore, Figure 3.1 illustrates the overview of this study

which involves research process activities to achieve the objectives of this study.

The initial phase of the research process involves problem identification and building

the conceptual model for the best practices depending on the Extreme Programming

(XP) Method. Extreme Programming (XP) is a software engineering methodology

and the most prominent of several agile methodologies (Abrahamsson, Warsta,

Siponen & Ronkainen, 2003). In addition, Siebra, Mozart Filho, Silva and Santos

 40

(2008) state that XP encourages particular values such as short quick development

steps, feedback, communication and adaptation to clarify the requirements and

design. However, during this phase, an extensive literature survey is conducted to

understand the problem and XP practices. Although this phase only involved

preliminary and basic work, the foundation of the study is very essential in order to

ensure that the researcher has defined the problem to be studied correctly and to

make sure the researcher is heading in the right direction for building the conceptual

model. Thereafter, based on the prior literature the researcher will attain the first

objective “To identify the best practices of Extreme programming (XP)” from this

objective the researcher will highlight the XP practices and draw the suitable

conceptual framework. Achieved these objectives first is very important to the

present study. Where, by these attained these objectives the researcher can conduct

the interviews with the participants (experts) and also understanding the effect if

ignore one of these practices on the quality of the software.

 41

Figure 3.1 Research Process of the Study

The second phase of the research process involves gathering data from the

participants once the instrument has been developed and the sample of the current

study has been identified. The data was collected primarily through semi-structure

interviews with five experts in UUM IT to attain the last objective “To validate the

proposed conceptual model using a case study at UUM IT”. After the required data

was collected, the data analysis procedures were then performed. Then, interpretive

analysis was applied as the data analysis technique in this study. In this phase mainly

strive to explore any of the XP practices are applied among the UUM IT team and

why other practices not apply or partially apply. The next sections of this study

further discuss the research elements mentioned above.

 42

3.4 Data Collection

Based on the general characteristics of qualitative research, qualitative data

collection consists of collecting data using forms with general, emerging questions to

allow the participants to generate responses; gathering word (text) or image (picture)

data; and collecting information from a small number of individuals or sites

(Creswell, 2012). In addition, in qualitative inquiry, the intent is not to generalize the

results to a population, but to develop an in-depth exploration of a central

phenomenon (Creswell, 2012; Baker & Edwards, 2012; Maxwell, 2013).

3.4.1 Sampling

With regard to sampling, Roulston (2010, p.81) says that “researchers include

participants in studies on the basis of ease of access or ready availability are using

convenience sampling”. Furthermore, in qualitative research, the researchers

intentionally select participants who have experience with the central phenomenon or

key concept being explored (Creswell & Clark, 2007; Creswell, 2012, 2013).This

study sampled (experts) the subjects among those who have experienced working

with IT development in UUM IT. Moreover, most of these experts have experience

with UUM IT (formerly called computer center) for more than 10 years. Regarding

this study, there are 5 experts who have accepted to participate in the semi-structured

interview.

3.4.2 Research Instrument

Many common qualitative research instruments can be used to collect qualitative

data, including participant observation, interviews, and focus group interviews

 43

(Tsvara, 2013). Among them, this study adopted the distinct instrument, particularly

the semi-structure interviews. This type is particularly suited for obtaining specific

data. Semi-structure interviews are operational for collecting data on individuals‘

personal perspectives, perceptions, and experiences, particularly when sensitive

topics are explored.

In this study, interviews were used to gather data from the employees as suggested

by a number of previous studies (Marshall & Rossman, 1999; Fontana & Frey, 2005;

Chism, Douglas & Wayne, 2008). Technically Ackroyed and Hughes (1992, p.100)

state that ―interview encounters between a researcher and a respondent in which an

individual is asked a series of questions relevant to the subject of the research.‖ In

other words, a qualitative interview occurs when researchers ask one or more

participants general, open-ended questions and record their answers (Creswell,

2012). Willig and Stainton-Rogers (2007) argue that interview is one of the most

powerful and widely used tools for qualitative research. The questions for this study

are organized in several sections, where each section is related to the specific XP

practice. Table 3.2 below listed the questions that exploited to extract the raw data

from the experts through the interview session.

 44

Table 3.2 Interview Questionnaire

References QUESTIONS
XP

PRACTICES

Williams, Layman and Krebs

(2004); Sfetsos, Angelis and

Stamelos (2006); Begel and

Nagappan (2007); Manyam and

Kurapati (2011); Qureshi (2012);

Jalali, Wohlin and Angelis

(2014); Harris (2014)

How many times you can get feedback from your client?

How do you get feedback from your client?

How long it will take when you see your client?

Does your client always give immediate and consistent feedback?

Does your client helpful? e.g. give sample code, clear requirements

Does your client always change his/her requirements? How many

requirements changes?

How did you get clear requirements?

On-site

customer

Do you write user requirements?

Do each member responsible for each story cards?

Do you discuss the requirements with your client?

Does your client write user requirements?

Do you estimates the time needed to complete the task in user

requirements?

Do you prioritize the user requirements? How did you prioritize the

Planning game

 45

Williams, Layman and Krebs

(2004); Sfetsos, Angelis and

Stamelos (2006); Begel and

Nagappan (2007); Manyam and

Kurapati (2011); Qureshi (2012);

Jalali, Wohlin and Angelis

(2014); Harris (2014)

user requirements?

How you documents the requirement gathered?

Can any of your team change code that he/she did not originally

write? how often do they do so?
Does your team have a code repository? How did you manage the

repository?

Collective code

ownership

Do you have and adhere to team coding standards? How often it is

followed?

What type of coding standard you are followed?

There was hardly any degradation of code due to difference in coding

standards between two XP partners working on the project? If No,

how the standard maintain?

Does the programmers worked efficiently in the presence of proper

coding standards? Why?

Coding standard

How often you synchronize and check in your code?

Which tool used to assist source code integration?

Continuous

integration

When is the first release? Frequent release

 46

Williams, Layman and Krebs

(2004); Sfetsos, Angelis and

Stamelos (2006); Begel and

Nagappan (2007); Manyam and

Kurapati (2011); Qureshi (2012);

Jalali, Wohlin and Angelis

(2014); Harris (2014)

The early release give the team an opportunity to improve which of

the following areas?

All the reviews (release) is being tested thoroughly?

Do early reviews (release) help in fixing bugs better? How? Why?

 Did the first release cover most of the functionalities mentioned in

the specification document?

What percentage of the estimated functionalities was captured?

How many releases were made before the final releases?

How well do you pace yourself?

Do you delivered a completed project?

Sustainable pace

How easy do the team members accept pair programming?

What are the criteria that decide the partners?

How often your works done in pair?

How often do you swap between partners?

What criteria when you decide to swap partners?

State any difficulties during pair programming implementation?

Pair

programming

When were the test cases developed? Test first

programming

 47

Williams, Layman and Krebs

(2004); Sfetsos, Angelis and

Stamelos (2006); Begel and

Nagappan (2007); Manyam and

Kurapati (2011); Qureshi (2012);

Jalali, Wohlin and Angelis

(2014); Harris (2014)

 Is it easy to develop test cases before coding?

What percentage of the time you employ test-first programming?

 Does the client help with the test cases?

All codes undergo unit testing?

Did you use any automated tool to unit testing?

How often functional testing is carried out?

Did you do the simplest thing that can possibly work?

How often do you succeeded in ‗keeping it simple‘?

Simple design

Does the team reuse code? How often?

Does reuse code can help to speed up the development process?

How? Why?

How often do you stop to cleanup code that has already been

implemented without changing functionality?

Refactoring

How often do you feel that this is true of the system develop? For

instance, classes and methods have good descriptive name, other

members do not need often to ask and refer to understand

architecture, and the client understand and explain the metaphor.

Metaphor

 48

3.5 Data Analysis and Interpretation

Qualitative research is ―interpretive‖ (Dey, 1993; Creswell, 2012) research, in which

a personal assessment to a description that fits the situation or themes that capture

the major categories of information is made. This implies that data analysis in

qualitative research consists of preparing and organizing the data for analysis, then

reducing the data into themes through a process of coding and condensing the codes,

and finally representing the data in figures, tables, or a discussion (Creswell, 2007;

2013). In addition, qualitative data analysis is a range of processes and procedures

whereby we move from the qualitative data that have been collected into some forms

of explanation, understanding, or interpretation of the people and situations we are

investigating (Creswell, 2005; Lewins, Taylor & Gibbs, 2005).

However, there is no single, accepted approach to analyzing qualitative data,

although several guidelines exist for this process (Dey, 1993; Miles & Huberman,

1994). It is an eclectic process because each qualitative study is unique, so the

analytical approach used will be unique (Saldaña, 2012). With reference to the

discussions in the previous paragraphs, this study adopts the several steps in

analyzing and interpreting qualitative data by Creswell (2009; 2012).

 49

Figure 3.2 The qualitative process of data analysis

As seen in Figure 3.2, this study first collected data and then prepared them for data

analysis. This analysis initially consists of developing a general sense of the data and

then coding description and themes about the central phenomenon. Moreover, the

twelve XP practices will be used as a guide for coding the interview data.

Furthermore, with the popularity of computers, researchers have a choice whether to

manually analyze the collected data or to use a computer (Creswell, 2012). This

study uses Nvivo 11 (Figure 3.3) to organize data or themes. This is also influenced

by the fact that Nvivo can facilitate the qualitative research process by making all

investigation phases open to public inspection (Sinkovics & Alfoldi, 2012).

 50

Figure 3.3 Nvivo project

3.6 Validation of Data Collection

Member checking technique strives to harness validation in this study. This

technique has been considered by Lincoln and Guba (1985, p.314) as ―the most

critical technique for establishing credibility.‖ Member checking is a process in

which one asks one or more participants to check the accuracy of the account

(Creswell, 2012; Yin, 2011). This does not mean taking back the raw transcripts to

check for accuracy; instead, parts of the polished product, such as the themes, the

case analysis, the grounded theory, the cultural description, and so forth (Creswell,

2009) are re-analyzed. Once an analysis is completed, the analysis (the findings and

specific description) will be returned to the participants for confirmation of accuracy

(Yin, 2011). In this research, two experts accepted to check the findings, and they

agreed with the final results (see Appendix B).

 51

3.7 Summary of Chapter Three

This chapter discusses the research design and methodology in preparation for the

empirical investigation utilizing a qualitative method in the study of discovering the

XP practices in UUM IT. At the same time, it evaluates the proposed conceptual

model. More specifically, the research design and research approach are discussed in

detail. It also describes the methods of data collection, interviews, and data analysis

processes. The findings from the study will help determine if there is lack of use of

XP practices in UUM IT. Also, the current study seeks to shed light on the practices

that need more focus to enhance the performance of UUM IT.

 52

CHAPTER FOUR

DISCUSSION OF RESULTS AND FINDINGS

4.1 Introduction

Chapter 3 states that the primary method of data gathering is individual interviews,

the majority of which were semi-structured. In total, there are 5 semi-structured

interviews conducted with experts to gain the employee‘s viewpoints regarding the

XP practices that harness in the UUM IT. Whilst, the present chapter a subdivided

into three several sections. In the section 4.2, the XP practices were discussed to

achieve the first objective: “To identify the best practices for evaluating the quality

of Extreme Programming (XP) implementation. ―Then based on the first objective,

the researcher visualized the second objective: “To propose the conceptual model for

evaluating the quality of Extreme Programming (XP) implementation.” To achieve

the third objective:“To conduct a case study at UUM IT based on the proposed

model.” As aforementioned, the interview with experts conducted for this purpose.

In the next sections, these objectives debated and presented in more detail.

4.2 XP Best Practices

Nowadays, agile software development has become a common way of developing

software, especially in the information systems domain. According to Pressman

(2009), Abrahamsson, Salo, Ronkainen and Warsta (2002), and Xu, Lin and Foster

(2003), one of the popular agile methods is Extreme Programming (XP). Where,

Extreme programming (XP) embraces both communication and feedback as

interdependent process values which are essential for projects to achieve successful

 53

results. Extreme Programming (XP) is a lightweight software development method

that has got its popularity because of its best practices (Nawrocki, Jasiński, Walter &

Wojciechowski, 2002).

In addition, XP has introduced new way of software development and is efficient,

low risk, welcome changes, predictable, scientific and is different from other

methods because of strong oral communication, pair programming, automated test,

collective code ownership and introduced story telling culture (Beck, 1999). As well

as, Hussain, Lechner, Milchrahm, Shahzad, Slany and Umgeher (2008) show that

most of the practices in the XP methodology can be used directly in the project while

some required little changes according to the environment. According to Beck

(2000) and Jeffries, Anderson and Hendrickson (2001), it can be concluded that the

XP consists of twelve practices as follows:

Table 4.1 XP Best Practices

Xp Best Practices
On-site customer

Planning game

Collective code ownership

Coding standard

Frequent releases

Continuous integration

Pair programming

Test first programming

Sustainable Pace

Simple design

Refactoring

Metaphor

i. On-site customer: a customer needs to be available to determine and

prioritize the requirements. This is one of the few requirements in XP and it

 54

helps to improve the software business value. However, the programmers can

get input from the customer immediately instead of speculating. Quick

changes to the focus of the development can also be made when necessary.

ii. The Planning Game: this practice means a set of rules and moves that may

be used to simplify the release planning process, and it is closed interactions

between customers and programmers.

iii. Collective Code Ownership: everybody in a XP project takes responsibility

for the code in the whole system. Any improvements or new ideas can be

added anywhere in the code, where this can be made partly due to the

automated tests in XP. Moreover, unknown repercussions will be detected by

the automated tests and the programmers can modify the code more freely.

Therefore, this practice increases quality of the code and reduces faults.

iv. Coding Standards: coding rules exist and are followed by the programmers.

Therefore, this practice keeps the code consistent and easy for the entire team

to read. Re-factoring and all the codes in the system look coherent and

harmonious. Furthermore, this practice helps the XP team to understand all

the codes that have been written as basis for the practice of collective

ownership.

v. Frequent Releases: this practice means all releases should be a small as

possible, but with the maximum quantity of business features developed,

whereas short cycles are used to reduce the risk when a project fails to

produce business value to the customer, and also helps in reducing planning

problems and the problem with changing requirements during the

development process. Moreover, frequency is important as well depending on

 55

which kind of software is delivered. At the end of every iteration; software is

visible, and given to the customer.

vi. Continuous Integration: changes to the code are integrated at least once a

day. The pair programmers are responsible for integrating their own code and

automated tests are run to ensure that the system is working at 100 %. If the

tests fail, the pair can undo their changes and start over. Therefore, this

practice keeps the system never far from a production state. Moreover, the

pair should check that their changes do not affect another part of the system

developed by another pair of programmers. In addition, one machine can be

used only for integration issues for one pair of programmers.

vii. Pair Programming: the production of codes is written with two people

using one computer. One of them has control of the keyboard/mouse and

creates the code, and the other is continuously assuring quality by watching,

trying to understand, asking questions, looking for alternative approaches,

and helping to avoid defects. If pairs are switched through the team

knowledge is shared to everyone working in the XP team. Therefore,

individual‘s skills are improved because the pair should switch at least once

per day.

viii. Test first programming: testing is an essential part of XP; especially the

automated tests, a feature without an automated test does not exist. In this

practice the programmers write the unit tests and the customer writes the

functional tests. This practice can be divided in two parts. First: Programmer

Tests: programmers should create the tests first and then code. The first test

should fail, because no codes have been created, and then the programmers

 56

should create the code to pass the test, and then turn the cycle to add one

more test followed by the code. One of the benefits of extreme programming

is that 100% of the code is tested. While, in the second part, Customer Tests:

each user story that represents a feature in the XP development has an

associated acceptance test that is determined by the XP customer and

implemented by the team. Moreover, the correctness of the systems is shown

to the customer when all tests are passed. Consequently the application is

continually growing and evolving.

ix. Sustainable Pace (or 40 hours week): this practice means that the team

members work hard at a pace that they can go along with for the time being.

However, overtime is a symptom of a serious problem in an XP project.

x. Simple Design: the design should be kept simple through the developments,

using the developer‘s test-driven development and refactoring, whereas XP

fits the design for the present system features ready for future changes in an

incremental or iterative way. Therefore, XP design should begin without

thinking of infrastructure, where the right design in XP can run all the tests,

has no redundancies, and has the fewest possible classes and methods

Moreover, XP focus on solving today‘s problems and every piece in the

design must be able to justify its existence.

xi. Refactoring: refactoring is a process of changing a software system in such a

way that it does not alter the system behavior of the code yet improves it

internal structure. Doing design improvement in an XP project is a practice

where the programmers delete duplicate codes. In addition, programmers

should increase cohesion and decrease coupling. Therefore, refactoring

 57

should be made when there is something wrong in the code, such as: classes

that are too long, methods are too long and duplicate codes. Moreover, design

improvement should be done every hour or half hour, followed by testing of

what was done and this is done to keep the design as simple as possible at all

times. Accordingly, the changes of the structure are verified with automated

tests which help the programmers to get feedback on the changes.

xii. Metaphor: both the customer and the programmers share a story based on a

metaphor that guides all development by describing the functionality of the

system. Additionally, the team shares some common understanding from

their past experiences. A metaphor should help everyone on the project to

understand the basic elements and their relationships, where metaphor is

similar to what other people call ―an architecture‖, but with the addition that

requires the XP team to follow some way of cohesion.

4.3 Proposed Conceptual Model

Miles and Huberman (1994) define a conceptual model as a visual or written

product. Meanwhile, Mills (2010) believes that conceptual model uses deductive

research to produce general information about relevant issues of a study (literature

review). Thus, an inductive research is often carried out, and focusing on an in-depth

analysis of these relevant research topics (interviews).

 58

Figure 4.1 Conceptual Model of XP Quality implementation

Based on the best XP practices (see first objective) identified, a conceptual model

was developed as in Figure 4.1. This figure visualized the main twelve practices that

effect on the software quality when exploited XP approach. Most of the prior

literature suggested to study all these practices when need focus on the quality of the

XP approach. In fact, this conceptual model can help the researcher to highlight the

fully adopted practices and also the partial and not adopted practices.In the next

phase, the interviews were analyzed based on each practice (see appendix A).

 59

4.4 Case Study Results at UUM IT with Five Experts

In this study, five experts were participated in order to get in-depth understanding of

XP implementation in UUM IT, Table 4.5 listed the personal information for each

participant. The XP quality implementation was evaluated based on their experts‘

opinion.

Table 4.2 Expert's profile

Experts Position Expert Experience Location
Expert1 System analyst 15 years UUM IT Center

Expert2 System analyst 26 years UUM IT Center

Expert3 System analyst 20 years UUM IT Center

Expert4 Programmer 18 years UUM IT Center

Expeet5 System analyst 12 years UUM IT Center

Figure 4.2 depicts the Nvivo‘s results. In the following sections, the researcher was

analyzed the interview session according to the 12 practices and also the quality of

the XP method.

Figure 4.2 The interview based on the themes (Nvivo 11)

 60

In Figure 4.2 above, illustrates the final outputs for all the participants based on the

XP Practices as a theme. All the participants asked same semi-structure questions

related to each practice. In the follow, will discuss each expert separately based on

twelve practices of XP approach.

4.4.1 Expert 1

In fact, several questions have been asked to the participants related to the main

purpose of the current study. These questions categorized based on the XP practices.

The first group of the questions in fact was related to the “On-site customer”. In this

practice,the customers' job is to write and prioritize requirements, assist with

acceptance testing and be on hand to answer questions from the development team as

they arise. With regard to this issue, our participant (Expert 1) highlighted several

elements pertaining to this practice, such as she illustrated the period for get the

feedback from the customers (or also can called client): “Frankly, we get the

feedback from our clients in some times daily or weekly” this period (daily or

weekly) between the customers and the developer can increase the communication.

 61

Figure 4.3 Expert 1 with XP practices

As well as, the participant (Expert 1) said that: “the modern technologies such as,

„email‟, help us to get the feedback information from the customer ―Besides, and

related to the respond by the customer, the programmers can get customer input

immediately rather than speculate on customer preferences. And this confirmed by

expert 1, who pointed: “our client always give immediate and consistent

feedback”While, regarding to customers change requirements, our participant also

referred that “The client can always change his/her requirements and he/she always

change less than three requirements.” Applied this practice can dramatically

improve both developer productivity and the software‘s business value.

The second practice is the Planning Game (some authors also called Requirements).

This practice closed interactions between customers and programmers. The expert

was asked a number of the issues related to Planning Game to ensure UUM IT apply

this practice or not. Such as, the expert asserted: “we are always discussing the

 62

requirements with our clients to get clear requirements” on top of that, the expert

also mentioned that, the client also is able to write the requirements. Where, she said

that: ―The client can write the user requirements‖ this practice also include negotiate

about the scope and date between the customers and developers based on resources

and business values. And this also stated by expert 1, who said that: “In our work we

always give priority the user requirements based on client need and urgency” and

also she referred that, “I always estimates the time needed to complete the task in

user requirements”.

The third XP practice under investigation was collective code ownership. The goal

of the practice is to ensure that all developers collectively own the code to be able to

make changes and that a loss of a small set of programmers does not lead to project

failure. This character of this practice stated by our participant (Expert 1), who

pointed that, “Any member in my team can change code that he/she did not

originally write but not all the time” While, related to the code repository, the Expert

1 also highlighted that “My team have a code repository and they manage by using

repository in applications ever.” In general, this practice is benefits communication

between developers because, in this way, everybody can learn from each other.

In coding standard, the programmers write all code in accordance with rules

emphasizing communication through the code. Based on this, the researcher asked

the participant several questions related on these issues. Such as, the Expert 1 said

that, “we as a team, always strive to adhere in the code standard” Moreover, the

participants also adds that, “The programmers always worked efficiently in the

 63

presence of proper coding standards because it more systematic.” This illustrates the

adherence to coding standard among developer team.

With regard to continuous integration, the main aim of this practice is to integrate

and build the system many times a day, every time a task in completed. This

corresponds with what our participant mentioned, who referred that “Frankly, I

always try to synchronize and check my code each step from our progress.”

Actually, any XP project is composed of a series of iterations that gradually evolves

an artifact, this called Small release (or some authors called frequent release)

practice. In this practice, the development team needs to release frequent iterative

versions of the system to the customer. Our participant referred to this process

through the interview session, for instance the Expert 1 said that “There are three

releases made before final releases” This is critical in getting valuable feedback in

time to have an impact on the system's development, this also stated by Expert 1,

who also mentioned that “Always the early reviews (release) will help in fixing

better”.

Sustainable pace (also called 40-hour week), means the team have to maintain their

productive in developing system by working only 40 hours per week. Through

interview session, the participant (expert 1) confirmed that this practice fully applied

by developers in UUM IT. The questions for this practice were focus on two issues:

the rate of the hours work and the complete of the project. Our participant she

answered on the first question as “team who work in UUM IT and also the managers

here, strive to do pace maintain work at the same hour rate. ―As well as, according

to complete the project, she referred that “The team always delivered a completed

 64

project at the exact time” However, the 40-hour week (Sustainable pace) is not a

rule, sometimes it is more, and sometimes it is less. Thus, the important point is that

the team must be fresh and creative.

Another XP practice is called pair programming. Briefly about meaning of this

practice, all production code is written with two programmers at one machine. Based

on this concept, several questions were asked for our participants to ensure applied

this practice among the team. Many of the important tasks are not applicable related

to this practice, such as, the Expert 1 said that: “It is not easy to the team members

accept pair programming” In addition, pair programming is a collaborative

approach that makes working in pairs rather than working in individual for code

development. While, our participants stated that “our developers prefer to work

individually rather than as group while writing programs “Also, another character

for this practice, the two programmers switch their roles after some time. Where, pair

programming seems to be dependent upon collocation. However, this feature not

applied among the UUM IT team, and this confirmed by our participant (Expert 1),

who stated that: “The swap between partners always low.” And this asserts this

practice not fully implement properly.

In fact, XP succeeds by making a project resilient. Therefore, in the test first

programming practice, the programmers continually write unit tests, which must run

flawlessly for development to continue. Meanwhile, the customers write tests

demonstrating that features are finished. Based on our participant this practice also

not implemented in UUM IT. Where the Expert 1 referred that “The test cases

developed always applied at the end of project”As well as, she said that "The time to

 65

test-first design really very low." The participant was unable to apply this practice

during the certain project, but actually the UUM IT team applied it well at the end of

the project.

Put simply, design and implement only what is needed today. Therefore, the system

should be designed as simply as possible at any given moment. XP emphasizes

keeping things as simple as possible, this also referred by our participant, who

asserted, “In the center we do the simplest thing that can possibly work, as well as

we used the standard design language such as UML diagrams for better

communication and also for clarify among the team and the managers.” A standard

design methodology such as UML remains a design simplicity that all the team can

understand.

Each practice on the XP depends on each other. Therefore, this qualitative study

focused on all XP practice. As a result, it is important to understand the use of

refactoring in XP Method. During the interview with the expert 1 mentioned for use

this practice thru this statement “The reuse the code always help to speed up the

development process because easy for us no need to recode another code”.

In the last practice, both the customer and the programmers share a story based on a

metaphor that guides all development by describing the functionality of the system.

In addition, the team shares some common understanding from their past

experiences. In this practice actually our participants are conflict about if they use it

or not. For instance, the expert 1 stated that “always classes and methods have good

descriptive name, while other member in the certain team don‟t need often to ask

and refer to understand the architecture” Furthermore, Metaphor is achieved when

 66

the members and client shared common vocabulary to communicate, our participate

also added that, “our client understand and explain that metaphor” In sum up,

based on this Expert 1, two of the XP practices are not fully implemented in the

UUM IT development software team.

4.4.2 Expert 2

This study focused mainly on the expert‘s viewpoint who has experience with

software development in UUM IT (formerly Computer Center). Twelve practices are

the core our objective of the present study. For understanding how the UUM IT team

harness these practices, five expertsparticipated in this empirical study. Expert 2

sheds light on several issues related to XP practices, some of these issues similar to

the previous expert while some different. Figure below depicted the outcome from

Nvivo based on the twelve practices.

Figure 4.4 Expert 2 with XP Practices

 67

The first set of the questions of the interview session was about the ―On-site

customer‖. The answer of our participant (expert 2) was quite similar to the former

participant (Expert1) in respect of this practice. For instance, Expert 2 pointed the

client is considered as an important part during development the software or the

application. Where she stated that “Actually, before started any project, we as the

team strive to get the feedback from our client based on the requirements”

Furthermore, she also indicated to the manner to communicate with the client. As an

example, she said that “we use the traditional manner or the modern technologies to

communicate with the client to get the feedback” This illustrates this center is fully

used this practice this results based on the Expert‘s perspective.

Another practice is Planning Game, or as mentioned earlier some authors also called

―Requirements‖, this is another XP practice associated to our study. The expert 2 and

based on several issues related to this practice stated that “We always seek to write

the user requirements” As well as, this practice focus on the interaction among

clients and the team member, and this confirmed by our participant, who referred

that, “I as the member of the UUM IT‟s team, always discus with our client about

the certain requirements” The expert also stated, “The development team also

estimates the time needed to complete the test based on the requirement” and also

the priority“ according to clients‟ need and urgency” Therefore,based on expert‘s

viewpoint, this practice is a quite adopted in the UUM IT.

With regard to collective code practice, two things relate to this practice, we strive to

concentrate through the interview, change code and code repository. Regard to

change code, the present participant stated “Actually, in sometime the member of the

 68

team has the opportunity to change the code that s/he has not originally typed, but

indeed this process, not always” Meanwhile, she also adds about the second issue

(code repository), “With each project, the UUM IT team has a code repository and

they also manage the repository by using the repository in application server”. In

fact, the key aim of this practice is each member of the team is responsible for all the

code. Thus, means that everybody is allowed to change any part of the code. In turn,

based on our participant (Expert2) this practice not fully adopted among the UUM

team.

For a team to work effectively in pairs, and to share ownership of all the code, all the

programmers need to write the code in the same way, with rules that make sure the

code communicates clearly, this called coding standard. In coding standard

questions, the answers of this Expert were quite similar to the previous participant.

He stated that “regarding to the coding standards is very important and as the

developer I always follow the rules throughout the project” However, this expert

also mentioned to some difficulties sometime when work as the team to follow the

certain rules through development some applications, where he said that “in case

work as the team, faces tracking the code, due to difference in coding standards

between two programmers who working on the same project”. While, use the rules

for naming and formatting code unites is very important to make the system more

consistent so that it is easier to read and understand. Based on this interview, the

UUM IT team adopted this practice partially.

The XP emphasis on continuous integration against a potential loss of configuration

control, therefore our participant stated, integrate and build the system many times a

 69

day, whenever a task is completed. Where, he said that, “when I or my team finish

each feature, we always strive to integrate this feature and check it” this in fact, one

of the XP Characteristics to keep the system fully integrated at all times. Comparing

with previous participant (Expert 1), expert 2 stated that “for this issue <code

integration tool>, I'm particularly not use any tool for this purpose”. Continuous

integration is deemed as a key practice of XP method, and must be introduced as

soon as possible on every software development project. Building on results of this

participant, not all the elements related to this practice are adopted among UUMIT

team, therefore, partial adopted.

The small frequent release cycle help customer to gain confident in the progress of

the project and enable the developer to tracking the progress. This also confirmed by

our participant (expert 2) when he said that “Always, the early release gave the team

an opportunity to improve the project and also following the customer‟s

requirements” In addition, he stated “there are three releases before the final

ones”according to our participant this practice fully adopted among the UUM IT

team when developing any project.

XP advocates that programmers do not tire themselves out by overworking

themselves. Based on the participant, no project appears to have suffered extended

periods of long hours. He said that “As a leader of some software projects, I seek to

not put my team in overworking, because the team will become more creative if they

are rested, and healthy" Meanwhile, related to achieving the projects in the specific

time, he said that “We are always working to finish projects on time” Therefore, this

expert confirmed this practice is fully adopted.

 70

In pair programming, two persons design, code and test software together at one

computer. Related to these concepts, there are several issues was requested from our

participant to answer it. With regard to switch, the switching did not happen between

partners as the participant mentioned, who stated that “really hard to swap between

the partners” As well as, if the team accept to work as pair, he said “It is not easy to

my team accept pair programming” many issues he mentioned affected on use pair

programming such as ―education‖ and ―experience and personality of developers‖ In

fact, this practice not adopted among UUM IT team, according to expert 2.

Another practice of XP method discussed with our participant was tested first

programming. It is a software development practice which has been proposed for

decades. Many issues answered by the participant related to this practice. For

instance, he stated “the final product always testing after the complete” In addition,

he adds that, “As a team, we testing the project, but can‟t call it this a test-first

programming” In fact, Testing is an essential part of XP.

In XP method, the system should be designed only for the current requirements and

not for the future enhancement. Therefore, design must be simple, yet precisely

aligned with the client requirements. This confirmed by Expert 2, who stated that

“Actually, we believe that simplicity is a very subjective idea, especially when there

is a knowledge gap among developers.” In fact, the great importance to keep things

as simple as possible clearly emerged with XP. As well as, he said that “complex

design is more difficult to understand than a simple design” Meanwhile, also stated

“personally, I'm always trying to simplify the work to become understood to team

 71

members” the simple design practice adopted in UUM IT based on the expert‘s

viewpoint.

In this practice (Refactoring), programmers restructure the system without

changing its behavior to remove duplication, improve communication,

simplicity, or add flexibility. Specifically, XP team tries to reuse a coding as much as

possible. Our participant mentioned that “reuse of coding useful in our work, and

actually we are using this technique” through the interview session. This proves the

UUM IT team adopted this practice during designing applications.

With regard to the last XP practice, namely Metaphor, it describes the overall shape

of the system created by mutual understanding between users and developers. The

expert‘s answer was more pronounced, where he said that: “Honestly, we don‟t know

this practice, and based on my knowledge we don‟t use it” Consequently, based on

the expert this practice still not adopted among UUM IT team.

4.4.3 Expert 3

The key goal of this study is to understand, if UUMIT team adopted all or most of

the XP practice. Therefore, this study based on the experts‘ experiences who work in

UUM IT. We asked a series of questions to our participant related to this

phenomenon. In the following the answers of the expert about twelve XP practice.

The first practice in our study is, On-site customer. The expert 3 referred to the

issues pertaining to this practice as “We seek to get the feedback from our clients as

a weekly” In addition, she also stated the manner of communicating with clients to

get the feedback, such as ―In the center, we can get the feedback from the client by

 72

several ways, for instance face-to-face or by email or thru instant chatting‖ Figure

below shown the XP practices based on the expert 3. In the same practice, the expert

adds that, “after get the feedback from the certain client, the client not allow for

them always change the requirements”.

Regarding to Planning game practice, our participant confirmed she adopted this

practice. For instance, she said that “Before all, I am always writing the user

requirements” and also “discuss the requirements with our clients‖ based on the

expert‘s answers this practice fully adopted. Whereas, collective code ownership

practice has not been applied in full among the UUM IT team as mentioned by

expert 3, where she said that “Frankly, it is difficult for my team change certain

code, when they actually not the original writer” In the same vein,she stated about

code repository, where said “My team have a code repository” .

Figure 4.5 Expert 3 with XP practices

 73

With regard to Coding standard, she agreed what the previous experts mentioned and

she stated that “In reality, not all the teams follows the same code standards” with

respect to Continuous integration, her answer was quite similar to the expert 1,

where she confirmed that, “thru the development process, I always check the code”

and also “I use source code control to assess code integration”. As well as, based on

the experience of the expert 3, the frequent releases practice adopted. Where, she

indicated that “the first release in weeks after commencing the project‖ Thus, this

admitted, confirmed there are several releases before the final one.

Additionally, during the interview session, our expert stated some information

related to sustainable pace. She said that “My team implement the requirements in

the fixed time without overworking” and “always my team delivered a complete

project, and not need to work overtime” This emphasizes the UUMIT adopted this

practice. In the same context, among all of the XP practices, one of the key practices

is pair programming. Pair programming is not just one person programming and the

other observing. Instead, it is a dialog between people trying to simultaneously

design, program, analyze, test, and understand together how to program better. The

expert said “It is not easy for the team members accept pair programming, because

we do not have enough staff for pair programming and all the developers set

together in the same room, thus if any member need help can ask direct” but actually

this not achieve the pair programming concept. Therefore, we can assume that, pair

programming not adopted in UUM IT.

Test first programming practice also discussed with our participant (Expert 3).

During the interview, the expert mentioned for many issues confirmed they not

 74

adopted this practice. Such as, she said “We always testing only the final product”

Test-first programming was difficult to implement at first. In fact, the participant

answer (expert3) was quite similar to the previous ones. In contrast, simple design

practice, she stated that, “To make the system or the process simple, very important

for the end-user and for partners, therefore I attempt to simplify things during the

work” and thus attained the objective of this practice, is the simplest possible design

for implementation at the present moment.

Improving the code structure while preserving its function. Reuse code, removing

duplications, improve communication and make the code flexible all these under

refactoring practice. In this issue, our participant indicated that “Actually, reuse the

existing code < such as methods or classes> useful and reduces the time” and she

add that “Of course, we are using the former code from different systems”. Turning

to the last XP practice, namely Metaphor, it‘s a way or tools for description of developer

and client of how the system will work. Based on the expert‘s experience, she

confirmed that “We do not use this concept in UUM IT currently”

4.4.4 Expert 4

XP covers most of the software development life cycle. Therefore, become more

important to understand, if UUM IT center adopted all its practices. Best way to

attain this goal, through carry out the interview with people who have good

experiences with this phenomenon. In the previous sections, we highlight the

experiences of three experts with XP practices, currently, we seek to analyze the

fourth expert interview.

 75

Figure 4.6 Expert 4 with XP practices

He asserted on the importance of the client‘s feedback, where he said that “we

always strive to get feedback from our client whether daily or weekly” as well as, he

mentioned on the manner to get the feedback from the client, he stated “I get

feedback from our clients through using phone” In fact, all these issues that referred

by participant, under the on-site customer practice. Planning game, this practice

improves the communicative between the developers and clients. Thus, several

questions related to this practice have been developed. The expert said that

“Actually, before commencing any project, we attempt to write the user

requirements” and with regard of discussion with client, he indicated that

“discussion with client frequently about their requirement will improve the system

and enhance the final product”.

 76

Collective code ownership, we also discussed it with our expert, to confirm if they

adopted this practice or not. He stated that “Honestly, very difficult for any member

change the good he or she not the person who wrote the original code” while, the

main purpose of this practice is encourages everyone to contribute new ideas to all

segments of the project. However, there is another feature for this practice applied on

the UUM IT, where the participant said “My team has a code repository…” Also we

debated with an expert about coding standard. In fact, they face challenges to fully

adopt this practice, he said “each team has its own style in describing the code” and

also stated “Actually, this difference,make difficult to deal with coding”.

With respect to continuous integration, he stated that “Every now and then, during

period design any project, we check the code” this practice also linked with another

XP practice, called frequent releases. The expert said about this practice that “the

first release in weeks after start the project” Thus, several releases following the

first ones. Quite similar to the previous experts, this participant also mentioned to the

sustainable pace, where he said that “In the work, the developer seek to keep a

normal work schedule to remain productive and interested in the project” Also

confirmed what the previous experts said, he said “Our team always delivered a

complete project” In contrast, the pair programming practice was difficult adopted

by UUM IT team. “Is not easy for the team members accept this concept, maybe in

the present time” the expert said. In the same context, he also stated the Test first

programming. “For me and my team, we always check and test the whole project in

the end” as he refereed.

 77

Another two XP practices (Simple design and Refactoring), our expert mentioned,

they are used these concepts in their work. With respect to simple design practice, it

can facilitate communication between developers and project managers. Our

participant (Expert 4) referred that “We attempt to simplify our process to become

clearer for others” and “always success when we keeping things simple”

Meanwhile, he said that “we can reuse any code, when we needed” this was related

to refectory.However, still metaphor partially among UUM IT team, based on our

expert. He said clearly that “Frankly, our clients understand and explain metaphor”.

4.4.5 Expert 5

For focus in depth, five experts were selected for the current study. Five experts have

a good experience with present phenomena. The last interview was conducted with

Expert 5, who has twelve years experiences with software development and UUM IT

(formerly computer center).

Figure 4.7 Expert 5 with XP Practices

 78

In fact, after interviewing with the Expert 5, we reveal that, there is quite similarity

of some answers with the previous participants. As the former experts, we will

highlight his answer practice-by-practice. With regard to on-site customer practice, it

ensures that the developers stay focused on the requirements. This agreed with our

participants‘ answer, where she said that, “Our clients always help thru give us clear

requirements” ‖ In addition, if developers lose focus, the client is there to help the

developers regain focus in order to satisfy the project requirements. Where, the

Expert said that “I get feedback from the clients through the traditional ways < such

as face-to-face> or by email” In the same vein,she stated about a planning game that

“I am always writing the user requirements” Also, “I am discussing the

requirements with the client” therefore, based on the answers of this expert on these

two practices, they are adopted it.

Turning to collective code ownership, it means every developer has ownership of all

development documents and program code, and can make modifications anywhere

and at any time. In fact, this process, not fully adopt among team of UUM IT as

mentioned by expert 5. Who said that “In fact, sometimes can any member of the

team change the code that they not write it” likewise, the coding standard practice,

he said that “Not all the development team follows the same code standard” the

interviewee also agree that “will become good to have a common code standard”

also “the first release cover most of the functionalities”.

With respect to continuous integration “Actually, this process importance of each

project, we therefore always check the code‖ As well as, “We used VCS tool to assist

source code integration” This analysis is similar to expert 1, 3 and 4. In contrast,

 79

frequent releases practice, the expert agreed with all previous interviewees. She

stated that “In fact, weeks after we start the project, the first released”. Generally

speaking XP works to the times of a normal working week and thus limits the

amount of overtime a team will undertake. This supported what our expert said about

Sustainable pace, who stated that “there was not a change in the number of hours the

developers worked per week” As for thePair programming and Test first

programming practices, our participant (Expert 5) asserted these practice not adopted

among team of UUM IT. Where, she said that “sometimes, the member works alone

about <methods or interface> therefore really difficult sit long time with other team

member just for discussion”, while about the test first programming practice, she

stated that “test first design not applicable”.

As for another two practices the Simple design and Refactoring. The participant

(Expert 5) confirmed on simply design quicker to code and easier to maintain than a

non-simple design. She said that “any system will succeed just when design in a

simple manner” Likewise, she asserted that “we reuse the former code, without

change in the substance” on the contrary, she confirmed ―we are not discuss every

time with the client until complete whole project‖ and “Honestly, I don‟t use this

concept <metaphor> in my work” This expert extremely agree with previous experts

who conducted with them interview about the metaphor practice.

4.5 Discussing of Findings

This section discussed the results after analyzing in the chapter four. In fact, the

discussion depends on the practices. Based on the answers from the experts about

first practice (On-site customer) were referred to how many times that the team

 80

spends with the client to set immediate and continuous feedback when developing

software. According to Koskela and Abrahamsson (2004), the most interesting XP

practice is the on-site customer. The experts confirmed that the UUM IT team gets

feedback from client by email, face-to-face, meeting, or also by phone. This also

supported by Kircher (2001) and Kircher and Levine (2000) and Kircher, Jain,

Corsaro and Levine (2001), who referred adopted instruments such as email to get

the feedback from customer to developer or among the team can increase the

communication. Where, lack of sufficient communication between people can lead

to serious problems in a project. Meanwhile, According to Kircher et al, (2001) one

of the key requirements of Extreme Programming (XP) is strong and effective

communication between the team members.

Furthermore, the results indicated that the client takes all the time when have a

meeting with the developer, as well as, the client helpful to give clear requirements.

Our experts also confirmed that, they get clear requirements mainly from the client,

surfing internet, and ask opinion from expert domain. With regard to times for

feedback, the results also highlighted that, the number of times to get feedback from

the client daily or weekly and based on the requirements and also the client always

give immediate and consistent feedback for the developer. This period to get

feedback also stated by Kircher et al, (2001) who pointed that, daily or weekly

reports with feedback from customer to developer can also increase the

communication, as well as the familiarity, that is the spirit of collaboration and trust

between the stakeholders. Thus, on-site customer practice aimed at encouraging

 81

communication channels to remain open at all times. In fact, on-site customer is fully

applicable among the stockholders in UUM IT.

The second practice focus on the present study was the planning game. Based on the

interviews the results indicated that, this practice adopted among the UUM IT team.

In fact, this XP practice concentrates on the requirements and discusses about it

among clients and developers. The team of the UUM IT discussed the requirements

with the clients before any project related to the client. According to Tian (2009) in

the planning game, customers decide the scope and timing (requirements) of the

release based on estimates provided by the developers. In the same vein, Macholz

(2007) stated that, the planning game is a series of activities between the

programmers and the clients that define what features will be implemented in the

next iteration of the software. Thus, the outcome proved that the UUM IT used this

practice when developing the software.

Twelve XP practices is very important for any software development institute,

whether was private or public. One of the important practices is the collective code

ownership.This practice means that any one of the UUM IT team can improves any

code anywhere in the system at any time if they see the opportunity. The results

pointed out that, not all the developers of the UUM IT team have the opportunity to

change the code anytime s/he need. However, the results also indicated that, the

UUM IT team has server repository to save their code. Thereby, this practice is

applied, but not fully adopted. In fact, collective code ownership is necessary for

software development project. Whereby, Dudziak (1999) asserted that, if there is a

need to edit some code in order to make the changes or to integrate the developer

 82

must be able to do so. Meanwhile, also Gittins, Hope and Williams (2001) stated

that, collective code ownership has many merits, such as, it prevents complex code

entering the system, and developed from the practice that anyone can look at code

and simplify it.

According to Singhal and Banati (2014) during code development, certain standards

must be followed by the entire team as it keeps code simple and understandable by

all team members. Therefore, with regard to coding standards the findings indicated

that, UUM IT development teams are committed to the certain coding standards and

follows the rules thru their work. However, the results also show that, there are

several of the coding standards are applied in UUM IT team, such as “team

standards” and “software development standards” At the same time, the results

based on the expert‘s perspective stated that, there is a difference of the coding

standards between two programmers partners working on the certain project.

Although, Al-Tarawneh (2013) referred, the code should be clear to everybody in the

project, in order that all the team members can make changes to it. Consequently, the

outcome of the coding standards confirmed that this practice is used by UUM IT

team, but need to become more consistent.

Another important practice of XP method is called continuous integration. In fact, it

becoming increasingly common in industry to code, tests, and integrate at the same

time. According to the results of the previous chapter, this practice is done on an

instant basis after developing a number of user stories. Where, implemented

requirements are integrated and tested to verify them. According to Stamelos (2007)

this practice is important for quality. As well as, the findings indicated that, several

 83

tools used among the UUMIT team for this purpose, such as “source code control”

and “VCS tool”. However, some teams not use any tools. While, static analysis tools

could also be applied when doing Continuous Integration (Fowler & Foemmel,

2006). As well as, Ambu and Gianneschi (2003) pointed out that, no doubt,

continuous integration is a key practice of XP. Consequently, the continuous

integration practice is adopted in UUM IT.

Addition to XP practice that earlier discussed, the small releases (frequent release)

also help to conduct the consistency between the requirements and final project. The

results indicated that, there are more than two releases made before the final releases.

This also supported by Maurer and Martel (2002), who referred that, a short release

cycle also helps developers deal with changing requirements and reduces the impact

of planning errors. The findings also asserted that, the first release covers most of the

functionalities in the specification document, furthermore, the early release helped in

fixing bugs better. According to Al-Tarawneh (2013), the idea behind small releases

is to get the system in production on time in order to get constant feedback from the

customer, as well as to avoid risks, and minimize effort necessary to change the

effect, this is exactly what the UUM IT team practiced. Therefore, this proves the

UUM IT is completely adopted this practice.

This practice indicates that the software developers should not work more than 40

hour weeks. The findings from five experts indicated that, they finish any duty or

project without need the overtime or overworking. In addition to that they also stated

that good health and rested will make a creative team. This also agreed with

Zuiderveld (2003). Who referred that, programmers (and people in general) perform

 84

their best work when they are well rested, upbeat, and healthy. As evident in other

values expressed in the XP community, people play an important role, and are not

considered simply robotic programmers. Therefore, this confirmed this practice was

adopted among UUM IT team.

As for pair programming, refers to two programmers can work together as a pair on

the workstation/computer, one is the driver (write code) while the other observer

assist the driver and suggest a solution to the driver. The findings indicated that, this

practice not applicable among UUM IT team. The experts highlighted into several

issues prevent to adopt this pair programming, such as, education, experience and the

personality of the programmers. While, Vanhanen and Korpi (2007) asserted,

everyone should use pair programming for all development tasks from the start to the

end. As well as, pair programming with pair rotation, help increasing the knowledge

level of the individuals and subsequently of the team. The UUM IT center must

strive to adopt this practice among the team, especially among new staff. Because

pair programming, encourage the tacit transmission of knowledge and promote

continuous training (Sfetsos & Stamelos, 2007).

XP covers most of software development life cycle. Therefore, the test first

programming practice is important, because it‘s providing rapid feedback between

customers and developers. The findings indicate that, some applications were tested

only in the end of the project. While, the testing is deem as a one of the major

building blocks of XP (Dudziak, 1999). As well as, Wood and Kleb (2003) stated

that, comprehensive test coverage is the key to XP method. The repeated tests will

assist to ensure that, the system remains intact after changes and that it moves in the

 85

direction the customer wants it to. In fact, the findings also indicate that, there is only

programmer testing. While, Al-Tarawneh (2013) pointed out that, the programmers

write the unit tests and the customer writes the functional tests.

This practice facilitates communication within developers, and between developers

and project manager. The findings shown that, the simple design practice adopted

among the team of the UUM IT. They use a standard design language such as UML

diagrams for better communication in the project. This supported by, Al-Tarawneh

(2013), who stated that, we suggested to use UML to simple design and improve the

communication between the developers from different cultures.

XP programmers improve the design of the software through every stage of

development instead of waiting until the end of the development and going back to

correct flaws. Based on the answer from experts the team always reuses the code if

they need the code. This also stated by, Macholz (2007) who said that XP teams

work toward the ―once and only once‖ principle to coding, and try to reuse as much

as possible. In addition, the experts confirmed that always the reuse code can help to

speed up the development process because not need to rewrite another code and they

still use the code if can use it. Thus, the result shows that, this practice is adopted

among UUM IT team. According to Cao, Mohan, Xu and Ramesh (2004)

refactoring is a way to improve the design and making the system more robust.

While, Metaphor used by the programmers to help communicate ideas and explain

concept to customers. In general, it provides easy understandable communication

platform for developers, project manager and customers. The outcome of interviews

indicates that, most of the experts did not know this practice and they do not use it,

 86

this agreed with Beck (2002), who noted that people have difficulty understanding

Metaphor. In contrast, two of our experts, they sometimes use the metaphor.

Metaphors can provide common vision and feeling to the system (Macholz, 2007).

As well as, he metaphor can be a useful tool to aid in communication among team

members (Siebra, Mozart Filho, Silva & Santos, 2008), especially new staff in this

center. Table below summaries the final finding based on the experts‘ experiences.

Eventually, this study indicated the most XP practices use among UUM IT teams

and those use whether partially or not use, the Table 4.3 depicts summarized the

experts findings. In fact, determine the degree of the used the XP practices (applied,

partially and not applied) based on definition of each practice and compare with

experts‘ interview. In addition, these findings degree also confirmed by the experts,

see the Appendix B.

Table 4.3 Summaries the final XP practices based on the experts

EXPERT 5 EXPERT 4 EXPERT 3 EXPERT 2 EXPERT 1
XP

PRACTICES

Applied Applied Applied Applied Applied On-site client

Applied Applied Applied Applied Applied
Planning

game

partially partially partially partially partially

Collective

code

ownership

partially partially partially partially partially
Coding

standard

Applied Applied Applied Applied Applied
Continuous

integration

Applied Applied Applied Applied Applied
Frequent

releases

Applied Applied Applied Applied Applied
Sustainable

pace

Not applied Not applied Not applied Not applied Not applied
Pair

programming

Not applied Not applied Not applied Not applied Not applied
Test first

programming

Applied Applied Applied Applied Applied Simple design

Applied Applied Applied Applied Applied Refactoring

 87

Not applied Applied Not applied Not applied Applied Metaphor

4.6 The XP Quality Implementation

As for quality implementation, Expert 1 mentioned in the important of the

interaction between the customers and the developers through the project

implementation, and this can effect on the quality of the final product. And she said

that “The communication between the customers and the developers need to focus

more to improve the final applications” While, the expert 4 concentrates of the

coding standard as the important practice to enhance the quality implementation.

Thus, he referred that “When have the same coding standard this will effect

positively on the quality of the software” While, the rest of the experts stressed the

importance of all the XP practices to improve the quality of programs. According to

Sfetsos and Stamelos (2007) the XP practices are aimed at improvement of quality,

this also supported by Xu (2009). Where, XP‘s practices focus on improving

communication between among all project stakeholders (Developers, customers, and

project manager).Therefore, Beck (2000) emphasizes the importance of using every

practice, ―Any one practice doesn‟t stand well on its own. They require other

practices to keep them in balance‖.

 88

Figure 4.8 X Links between practices

However, through conducting the interview with five experts from UUM IT, the

findings revealed that, two out of twelve of the XP practices not adopted.

Furthermore, three are partially adopted, whereas, the rest of these practices were

adopted. The UUM IT center should adopt all the practices one time, because the

shortcomings of the individual practices are compensated by the strengths of the

others (Skinner & CIS, 2001; Alshehri, 2014; Stellman & Greene; 2014). As well

as, XP is considered best practice to improve the software quality by repeated

feedback and changing requirements. By and large, in Table 4.4 below summary the

experts‘ perspective related to XP quality implementation.

 89

Table 4.4 Summary of the XP quality implementation findings based on the Expert's

opinion

XP practices
Degree

adoption
Themes Notes

On-site customer Applied

(get feedback from

the customer),(

daily or weekly)

(clear requirements)

The results based on the

experts‘ experience

indicated that, they applied

this practice through to get

feedback from the

customers sometime daily

or weekly. Actually, by

using this practice can

increase the

communication between

developer and customer,

this will help to set clear

requirements for the certain

project. Furthermore, they

used various manners to

get these requirements

from the clients.

Planning game

Applied

(write the

requirements

),(discuss the

requirements with

customers)

The results also indicated

that, the developers discuss

the requirements with

customers. In fact, based

on literature this process

will enhance the

collaboration between

clients and programmers

by discussing and

understanding the

requirements between

them. Thus improve the

software quality.

Collective code

ownership

Partially

(change the code),

(code repository)

 The former studies stated

that, practice enhance the

communicative among the

developers, by using this

practice the developers can

learn from each other.

However, building on the

findings, not all the teams

on the UUM IT harness

this practice through

building any software

project. Where through

 90

developing any software

project sometime the

member not have the right

to change the code for any

programme under writing.

In the same vein, they

referred to the code

repository.

Coding standard Partially

(code consistent),

(easy for use)

The main purpose of this

practice is to keeps the

code consistent and easy

for the whole the team to

read. Unfortunately, the

findings indicated that,

there are variations in use

this concept among UUM

IT teams. The development

of the software is done

iteratively and phases

sometimes overlap,

therefore the neglected or

omit some practice maybe

affecting the

implementation the system.

Continuous

integration

Applied

(integrate the code)

and (automated

tests)

In fact, this practice

enables the integration of

the changes to the code

very often. Results were

much identical of this

concept. Where, the team

members always integrate

the code and automated

tests to ensure the whole

code is working. Thus,

provides developers with

rapid feedback on the

quality of the code.

Frequent releases

(small release)

Applied

(several releases)

and (Frequent

releases)

The findings have

indicated that, there are

several releases before the

final ones. Actually, in this

case will rapid feedback

between developer and

customers where this has

an impact on the system's

development. In addition,

enhance the sharing

 91

knowledge between

developers.

Sustainable pace Applied (overwork), (same

hour rate),

(complete project)

When there is a fatigue in

the work the developers

may commit more

mistakes. Based on the

findings, no project appears

to have suffered extended

periods of long hours. This

will help the developer to

deliver complete project

with the availability of

suitable work environment.

Pair programming Not applied

(communication

between the

programmers),

(sharing

knowledge)

The goal of this practice is

to give high quality code

and enhance the

relationship and

communication between

the programmers to learn

from each other and also

sharing knowledge

between them. The finding

have shown that, number

of factor effect to harness

this practice among UUM

IT team, such as education,

experience, or also the

personality of the

developers.

Not apply this practice

actually will effect on the

quality of code and also the

communication between

the programmers,

especially the new staff or

programmers.

Test first

programming

Not applied

(tested only in the

end), (the client not

part of it)

It is important to get fast

feedback between customer

and developer and also

give good quality code.

Actually, this different

from the requirements

feedback. However, the

findings indicate that, some

applications were tested

only in the end of the

 92

project. Furthermore, this

testing the customer not

part of it.

Simple design

Applied (UML diagrams)

Based on the findings,

UUM IT team use a

standard design language

such as UML diagrams for

better communication in

the project. And this

supported by previous

studies, who stated that, we

suggested to use UML to

simple design and improve

the communication

between the developers

from different cultures.

Refactoring

Applied

(reuse the code)

The findings indicate that,

the team strives to reuse

the code if they need the

code. This also stated by,

Macholz (2007) who said

that XP teams work toward

the ―once and only once‖

principle to coding, and try

to reuse as much as

possible.

Metaphor

Partially

(Project teams

explains to clients),

(communication

with clients thru the

project)

Important to improve the

communication between

the customer and developer

and it is easy way to

explain how the system

works. This practice

linkage with the previous

practice (test-first

programme). The client is

act as a key element in this

practice.

Based on the findings,

some of UUM IT team

don‘t have the times to

explain and discuss with

client and explain the entire

project. In contrast, have

some teams strive to

explain for clients.

 93

4.7 Summary of Chapter Four

The main purpose of this chapter is to achieve the objectives of the current study.

The literature review and interviews are essential resources for this purpose. In the

two sections, highlighted and illustrated the XP practice based on the previous

studies. While, in the third section, analyzed the interviews to reveal if the UUM IT

team adopt all the XP practices or not. The findings indicated that, more than half of

these practices were adopted by the team of UUM IT.

In fact, most of XP practices, such as pair programming, encourage the tacit

transmission of knowledge and promote continuous training. Therefore, in this study,

we recommended the UUM IT teams to adopt this practice, to help of increase the

knowledge level of the individuals (especially the new staffs) and subsequently of

the team. Meanwhile, to increase the code quality and reduce defects through the

implementation the software. Therefore, this study also recommends that, the UUM

IT team should fully adopt the collective code ownership practice in pair to get

higher quality of code and also increase the trust between the team members. Also,

the constant interaction among the clients and the developers in the UUM IT center

is essential to enhance the software quality. For this purpose, the team of the UUM

IT should fully adopt the Metaphor practice and explain what mean for each team.

Thus, this will help to increase the communication between them and also to find the

right place to put the functionality. Furthermore, we also recommend adopting the

test first programming increase the quality of code productivity, where, when the

team harnesses this practice will helps detect errors in the code before delivered to

the clients. As well as, the XP practice works together and also facilitate transfer the

 94

knowledge among the team member, therefore must there consistence when used the

certain roles or code. Thus, this center should adopt all the characteristics of the

coding standard practice. In fact, to improve the software quality all of the XP

practice must be adopted.

 95

CHAPTER FIVE

CONCLUSION

5.1 Introduction

This chapter discusses the outcomes of the study based on the results of the semi-

structured interviews that were conducted in the UUM IT to assess the quality of

Extreme programming implementation. The research objectives were achieved in the

first section, which discusses each of the objectives of the current study. In the

second section, the limitation of the study was identified. The future work was done

in the third section, and the contribution was highlighted in the fourth section.

5.2 Achievement of Research Objectives

The current study aims to investigate the quality of Extreme programming practices

used among UUM IT developers. In order to achieve this main objective, three sub-

objectives have been identified. Hence, this section attempts to discuss the results

that support the objectives of the current study.

5.2.1 Objective One

The first objective of this study is to identify the best practices for evaluating the

quality of Extreme programming (XP) implementation. XP has been chosen in this

study because it is one of the most prevalent software development methodologies.

The current study identified twelve practices based on the previous studies for

evaluating the XP quality implementation. These practices are: On-site customer,

Planning Game, Collective Code Ownership, Coding standard, Continuous

 96

Integration, Frequent Releases, Sustainable Pace, Pair Programming, Test First

Programming, Simple Design, Refactoring, and Metaphor. Many researchers state

that these practices must be used together and support each other to get high quality

XP implementation. This objective was achieved by reviewing the previous work,

and detailed of explanation of each of the practices has been discussed in chapter two

(see Section 2.4).

5.2.2 Objective Two

The second objective is to propose the conceptual model for evaluating the quality of

Extreme programming (XP) implementation. Based on the first objective, this study

has proposed a conceptual model for evaluating the XP implementation. The

proposed model was used to set the information about the XP practices.

5.2.3 Objective Three

The third objective is to conduct a case study at UUM IT based on the proposed

model. This study used qualitative approach to get more in depth information, and

UUM IT was chosen as a case study. The current study chose five experts who work

in the UUM IT and who have more than ten years experience in software

development. This case study was conducted by using semi-structured interviews to

get more details about the practices used by the UUM IT developers that help to

achieve XP quality implementation.

In general, based on the experts‘ experience, this study has identified seven practices

fully applied by the UUM IT team, which are: On-site customer, Planning Game,

 97

Frequent Releases, Sustainable Pace, Continuous Integration, Simple Design, and

Refactoring. Furthermore, the interviews also showed there are three XP practices

used by software developers in UUM IT that need to be improved; these are:

Collective Code Ownership, Coding standard, and Metaphor. The results also

showed that there are two practices not applied by the UUM IT team: Pair

Programming and Test first Programming.

5.3 Contributions of the Study

This study contributes significantly to the software engineering (SE) body of

knowledge, specifically in the quality implementation of XP practices. Hence, more

clarity has been made to understand deeply the importance of Extreme programming

(XP) in software development. Particularly, a conceptual model is made to give a

clear understanding on the best XP practices. Furthermore, this study showed how

qualitative approach can aid to get in-depth analysis of the Extreme programming

(XP) practices.

Meanwhile, a case study of UUM IT has been conducted to provide some qualitative

evidence on the Extreme programming implementation in UUM IT. This is

important because it will get more information to improve the practices in the

organization.

5.4 Limitations and Future Work Directions

This study carried out only one case study in one computer center in Malaysia; this

center is in University Utara Malaysia under the name UUM IT. This study also

focused on one agile method called Extreme programming, where twelve practices

 98

of XP method were used to evaluate the XP quality implementation t used among

UUM IT developers. As mentioned earlier, the sample size of the study is five

experts to obtain more in-depth information.

Therefore, in the future research directions, more than one case studies

(Universities) can be carried out and the qualitative approach can be employed to

generalize the findings. The next study can also focus on the other agile

methodologies such as Scrum used in other centers to highlight which method

delivers good quality services to the employees and end-users.

Furthermore, a comparison study can be carried out using agile vs. non-agile

methodology to show the effectiveness of methodology used and the best practices

for organization improvement can be proposed.

 99

REFERENCES

Abdullah, M. S., al-Tarawnehb, M. Y., & Alia, A. B. M. (2012). Software process

improvement in small software development firms. Computer Science, 1,

782-787.

Abrahamsson, P. (2003). Extreme programming: first results from a controlled case

study. Paper presented at the Euromicro Conference, 2003. Proceedings.

29th.

Abrahamsson, P., Conboy, K., & Wang, X. (2009). ―Lots done, more to do‖: the

current state of agile systems development research.

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. Agile Software Development

Methods: Review and Analysis. 2002. VTT Publications: Finland.

Abrahamsson, P., Warsta, J., Siponen, M. T., & Ronkainen, J. (2003). New

directions on agile methods: a comparative analysis. Paper presented at the

Software Engineering, 2003. Proceedings. 25th International Conference on.

Abrantes, J. F., & Travassos, G. H. (2011). Common agile practices in software

processes. Paper presented at the Empirical Software Engineering and

Measurement (ESEM), 2011 International Symposium on.

Ackroyd, S., & Hughes, J. A. (1992). Data collection in context: Longman London.

Agarwal, N., & Deep, P. (2014). Obtaining better software product by using test first

 programming technique. Paper presented at the, 2014 5th International

 Conference Confluence The Next Generation Information Technology

 Summit(Confluence).

Aguanno, K. (2004). 101 Ways to Reward Team Members for $20 (or Less!): Multi-

Media Publications Inc.

Ahlemann, F., El Arbi, F., Kaiser, M. G., & Heck, A. (2013). A process framework

for theoretically grounded prescriptive research in the project management

field. International Journal of Project Management, 31(1), 43-56.

Alite, B., & Spasibenko, N. (2008). Project Suitability for Agile methodologies.

Umeå School of Business.

Alshehri, S. A. J. (2014). AHP-Based Methodology for a Complex Decision Support

in Extreme Programming. Faculty of Graduate Studies and Research,

University of Regina.

 100

Al-Tarawneh, M. Y. (2013). Harmonizing CMMI-DEV 1.2 and XP Method to

Improve The Software Development Processes in Small Software

Development Firms. Universiti Utara Malaysia.

Ambu, W., & Gianneschi, F. (2003). Extreme programming at work Extreme

Programming and Agile Processes in Software Engineering (pp. 347-350):

Springer.

Asnawi, A. L., Gravell, A. M., & Wills, G. B. (2012). Emergence of agile methods:

perceptions from software practitioners in Malaysia. Paper presented at the

AGILE India (AGILE INDIA), 2012.

Asnawi, A. L., Gravell, A. M., & Wills, G. B. (2014). Significant aspects in relation

to Agile usage: Malaysian perspective. Paper presented at the Information

and Communication Technology (ICoICT), 2014 2nd International

Conference on.

 Aveling, B. (2004). XP lite considered harmful? Extreme Programming and Agile

Processes in Software Engineering (pp. 94-103): Springer.

Avison, D., Cole, M., & Fitzgerald, G. (2006). Reflections on teaching information

systems analysis and design: from then to now! Journal of Information

Systems Education, 17(3), 253.

Baker, S. E., & Edwards, R. (2012). How many qualitative interviews is enough.

Beck, K. (1999). Embracing change with extreme programming. Computer, 32(10),

70-77.

Beck, K. (2000). Extreme programming explained: embrace change: Addison-

Wesley Professional.

Beck, K. (2002). The metaphor metaphor. Keynote speech-ACM OOPSLA, 2.

Becker, C. H. (2010). Using eXtreme Programming in a Student Environment.

Begel, A., & Nagappan, N. (2008). Pair programming: what's in it for me? Paper

presented at the Proceedings of the Second ACM-IEEE international

symposium on Empirical software engineering and measurement.

Bird, M. (2007). Comprehensive Examination Written Responses Presented in

Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy.

Capella University.

Blokdijk, A. (2014). Planning and design of information systems: Academic Press.

 101

Boehm, B. (2006). A view of 20th and 21st century software engineering. Paper

presented at the Proceedings of the 28th international conference on Software

engineering.

Bowers, J., May, J., Melander, E., Baarman, M., & Ayoob, A. (2002). Tailoring XP

for large system mission critical software development Extreme

Programming and Agile Methods—XP/Agile Universe 2002 (pp. 100-111):

Springer.

Burman, E. (2015). Agile in action: Hybrid methodologies in practice.

Bustard, D., Wilkie, G., & Greer, D. (2013). The maturation of agile software

development presented at the Engineering of Computer Based Systems

(ECBS), 2013 20th IEEE International Conference and Workshops on the.

Principles and practice: observations on successive industrial studies in

2010 and 2012. Paper

Cagle West, M. (2010). Effective Software Engineering Leadership for Development

Programs. ProQuest LLC.

Cano, S. P., González, C. S., Collazos, C. A., Arteaga, J. M., & Zapata, S. (2015).

Agile Software Development Process Applied to the Serious Games

Development for Children from 7 to 10 Years Old. International Journal of

Information Technologies and Systems Approach (IJITSA), 8(2), 64-79.

Cao, L., Mohan, K., Xu, P., & Ramesh, B. (2004). How extreme does extreme

programming have to be? Adapting XP practices to large-scale projects.

Paper presented at the System Sciences, 2004. Proceedings of the 37th

Annual Hawaii International Conference on.

Cao, L., Mohan, K., Xu, P., & Ramesh, B. (2009). A framework for adapting agile

development methodologies. European Journal of Information Systems,

18(4), 332-343.

Chandra Misra, S., Kumar, V., & Kumar, U. (2010). Identifying some critical

changes required in adopting agile practices in traditional software

development projects. International Journal of Quality & Reliability

Management, 27(4), 451-474.

Chung, L., Nixon, B. A., Yu, E., & Mylopoulos, J. (2012). Non-functional

requirements in software engineering (Vol. 5): Springer Science & Business

Media.

Cockburn, A., & Highsmith, J. (2001). Agile software development: The people

factor. Computer(11), 131-133.

 102

Cockburn, A., 2007. Agile Software Development: A Cooperative Game. 2nd Edn.,

Addison Wesley, ISBN: 0-321-48275-1, pp: 504.

Cohn, M. (2005). Agile estimating and planning: Pearson Education.

Conboy, K., & Fitzgerald, B. (2010). Method and developer characteristics for

effective agile method tailoring: A study of XP expert opinion. ACM

Transactions on Software Engineering and Methodology (TOSEM), 20(1), 2.

Creswell, J. (2009). Research design: Qualitative, quantitative, and mixed methods

approaches: SAGE Publications, Incorporated.

Creswell, J. W. (2005). Educational Research: Planning, Conducting and

Evaluating Qualitative and Quantitative Research. New Jersey. Pearson.

Creswell, J. W. (2006). Educational Research: Planning, Conducting and

Evaluating Qualitative and Quantitative Research. New Jersey. Pearson.

Creswell, J. W. (2012). Qualitative inquiry and research design: Choosing among

five approaches: Sage.

Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed

methods approaches: Sage publications.

Creswell, J. W., & Clark, V. L. P. (2007). Designing and conducting mixed methods

research.

Cyganek, B., & Siebert, J. P. (2011). An introduction to 3D computer vision

techniques and algorithms: John Wiley & Sons.

Da Silva Estácio, B. J., & Prikladnicki, R. (2014). A Set of Practices for Distributed

Pair Programming. Paper presented at the ICEIS (2).

Da Silva Estácio, B. J., & Prikladnicki, R. (2015). Distributed Pair Programming: A

 Systematic Literature Review. Information and Software Technology, 63, 1-

 10.

Darwish, N. R. (2011). Improving the Quality of Applying eXtreme Programming

(XP) Approach. The International Journal of Computer Science and

Information Security, 9(11), 16.

Darwish, N. R. (2013). Towards an Approach for Evaluating the Implementation of

eXtreme Programming Practices. International Journal of Intelligent

Computing and Information Sciences (IJICIS), Ain Shams University, 13(3).

Dey, I. (1993). Qualitative Data Analysis: A User Friendly Guide for Social

Scientists, London, Routledge.

 103

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile

methodologies: Towards explaining agile software development. Journal of

Systems and Software, 85(6), 1213-1221.

Douglas, I. (2006). Issues in software engineering of relevance to instructional

design. TechTrends, 50(5), 28-35.

Dubinsky, Y., & Hazzan, O. (2002). Improvement of software quality: Introducing

extreme programming into a project-based course. Paper presented at the

14th International Conference of the Israel Society for Quality.

Dudziak, T. (1999). eXtreme Programming An Overview. Methoden und Werkzeuge

der Softwareproduktion WS, 2000.

Eckstein, J. (2013). Agile software development in the large: Diving into the deep:

Pearson Education.

Elssamadisy, A. (2008). Agile adoption patterns: a roadmap to organizational

success: Addison-Wesley Professional.

Flick, U. (2015). Introducing research methodology: A beginner's guide to doing a

research project: Sage.

Fontana, A., & Frey, J. H. (2005). The interview: From neutral stance to political

involvement. The Sage handbook of qualitative research, 3, 695-728.

Fowler, M., & Foemmel, M. (2006). Continuous integration. Thought-Works)

http://www. thoughtworks. com/Continuous Integration. pdf.

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Software Development,

9(8), 28-35.

Fruhling, A., & Vreede, G.-J. D. (2006). Field experiences with eXtreme

programming: developing an emergency response system. Journal of

Management Information Systems, 22(4), 39-68.

Gable, G. G. (1994). Integrating case study and survey research methods: an

example in information systems. European Journal of Information Systems,

3(2), 112-126.

Ghani, I., Izzaty, N., & Firdaus, A. (2013). Role-based Extreme Programming (XP)

for secure software development. Science International (Lahore), 25(4

(Spe), 1071-1074

Gittins, R., Hope, S., & Williams, I. (2001). Qualitative studies of xp in a medium

sized business. Paper presented at the Proceedings of the 2nd Conference on

 104

eXtreme programming and flexible processes in software engineering,

Cagliari, Italy.

Goldhor, H. (1972). Introduction to scientific research in librarianship: University of

Illinois, Graduate School of Library Science.

Guha, P., Shah, K., Shukla, S. S. P., & Singh, S. (2011). Incorporating Agile with

MDA Case Study: Online Polling System. arXiv preprint arXiv:1110.6879.

Gulla, J. (2011). Seven reasons why information technology projects fail. Paper

presented at the SHARE Conference.

Haider, M. T., & Ali, I. (2011). Evaluation of the Effects of Pair Programming on

Performance and Social Practices in Distributed Software Development.

Haider, M. T., & Ali, I. (2011). Evaluation of the Effects of Pair Programming on

 Performance and Social Practices in Distributed Software Development.

Harrison, N. B. (2003). A study of extreme programming in a large company. Avaya

Labs.

Hass, K. B. (2007). The blending of traditional and agile project management. PM

world today, 9(5), 1-8.

Haughey, D. (2011). The Four Levels of Project Success–The Project Management

Maturity Matrix. URL: http://www. projectsmart. co. uk/four-levels-of-

project-success. html, retrieval on, 20(11).

Hernon, P. (1991). The elusive nature of research in LIS. Library and information

science research: Perspectives and strategies for improvement, 3-14.

 Highsmith, J. (2000). Extreme programming.

Highsmith, J. (2000). Retiring Lifecycle Dinosaurs A look at Adaptive Software

Development, an alternative to traditional, process-centric software

management methods. Software testing and quality engineering, 2, 22-30.

Highsmith, J. (2013). Adaptive software development: a collaborative approach to

managing complex systems: Addison-Wesley.

Hneif, M., & Hock Ow, S. (2009). Review of Agile Methodologies in Software

Development. International Journal of Research and Reviews in Applied

Sciences, 1(1). 1-8.

Hockey, L. (1984) The nature and purpose of research. In Cormack, D.F.S.(ed) The

Research Process in Nursing, (1st edn). London: Blackwell Science, 1-10.

 105

Hummel, M. (2014). State-of-the-Art: A Systematic Literature Review on Agile

Information Systems Development. Paper presented at the System Sciences

(HICSS), 2014 47th Hawaii International Conference on.

Hussain, Z., Lechner, M., Milchrahm, H., Shahzad, S., Slany, W., Umgeher, M., &

Wolkerstorfer, P. (2008). Integrating Extreme Programming and User-

Centered Design. Paper presented at the PPIG‘08: Proceedings of the 20th

annual meeting of the Psychology of Programming Interest Group, Lancaster,

UK

Ishak, I. S., & Alias, R. A. (2005). Designing a strategic information systems

planning methodology for malaysian institutes of higher learning (isp-ipta).

Jeffries, R. (2003). Extreme Programming and Agile Software Development

Methodologies: CRC Press LLC.

Jeffries, R., Anderson, A., & Hendrickson, C. (2001). Extreme programming

installed: Addison-Wesley Professional.

Jun, L., Qiuzhen, W., & Lin, G. (2010). Application of agile requirement

engineering in modest-sized information systems development. Paper

presented at the Software Engineering (WCSE), 2010 Second World

Congress on.

Kalermo, J., & Rissanen, J. (2002). Agile software development in theory and

practice. University of Jyväskylä.

Kaplan, B., & Duchon, D. (1988). Combining qualitative and quantitative methods

in information systems research: a case study. MIS quarterly, 571-586.

Kircher, M. (2001). eXtreme programming in open-source and distributed

environments. Paper presented at the JAOO (Java And Object-Orientation)

conference, Aarhus, Dinamarca.

Kircher, M., & Levine, D. L. (2000). The XP of TAO: extreme programming of

large, open-source frameworks.

Kircher, M., Jain, P., Corsaro, A., & Levine, D. (2001). Distributed extreme

programming. Extreme Programming and Flexible Processes in Software

Engineering, Italy, 66-71.

Kongyai, B., & Edi, E. (2011). Adaptation of Agile Practices: A Systematic Review

and Survey.

Koskela, J., & Abrahamsson, P. (2004). On-site customer in an XP project: empirical

results from a case study Software Process Improvement (pp. 1-11): Springer.

 106

 Kruchten, P. (2013). Contextualizing agile software development. Journal of

Software: Evolution and Process, 25(4), 351-361.

Kumar Srivastava, D., Singh Chauhan, D., & Singh, R. (2011). Square Model A

Proposed Software Process Model for BPO based Software Applications.

International Journal of Computer Applications, 13(7), 33-36.

Kuppuswami, S., Vivekanandan, K., Ramaswamy, P., & Rodrigues, P. (2003). The

effects of individual XP practices on software development effort. ACM

SIGSOFT Software Engineering Notes, 28(6), 6-6.

Lankshear, C., & Knobel, M. (2004). A handbook for teacher research: McGraw-

Hill Education (UK).

Larman, C. (2004). Agile and iterative development: a manager's guide: Addison-

Wesley Professional.

Layman, L., Williams, L., & Cunningham, L. (2004). Exploring extreme

programming in context: an industrial case study. Paper presented at the

Agile Development Conference, 2004.

Leau, Y. B., Loo, W. K., Tham, W. Y., & Tan, S. F. (2012). Software development

life cycle AGILE vs traditional approaches. Paper presented at the

International Conference on Information and Network Technology.

Lee, N. G. F. R. M. (1991). Using computers in qualitative research: Sage.

Leffingwell, D. (2010). Agile software requirements: lean requirements practices for

teams, programs, and the enterprise: Addison-Wesley Professional.

 Lemos, O. A. L., Ferrari, F. C., Silveira, F. F., & Garcia, A. (2012). Development of

auxiliary functions: Should you be agile? an empirical assessment of pair

programming and test-first programming. Paper presented at the Proceedings

of the 34th International Conference on Software Engineering.

Lewins, A., Taylor, C., & Gibbs, G. (2005). What is qualitative data analysis (QDA).

Online QDA. Online: onlineqda. hud. ac. uk/Intro_QDA/what_ is_qda.

php.{Accessed 19 July 2008}.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry (Vol. 75): Sage.

Lindstrom, L., & Jeffries, R. (2004). Extreme programming and agile software

development methodologies. Information systems management, 21(3), 41-52.

Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., . . .

Kähkönen, T. (2004). Agile software development in large organizations.

Computer, 37(12), 26-34.

 107

Lippert, M., Becker-Pechau, P., Breitling, H., Roock, S., Schmolitzky, A., Wolf, H.,

& Heinz, Z. (2003). Developing complex projects using XP with extensions.

Computer(6), 67-73

Macholz, C. W. (2007). XP Project Management. Master of Science, The University

of Montana, United States.

Mannaro, K., Melis, M., & Marchesi, M. (2004). Empirical analysis on the

satisfaction of it employees comparing xp practices with other software

development methodologies Extreme Programming and Agile Processes in

Software Engineering (pp. 166-174): Springer.

Marchesi, M. (2005). Extreme programming and Agile processes in software

 engineering: Springer.

Marrington, A., Hogan, J. M., & Thomas, R. (2005). Quality assurance in a student-

based agile software engineering process. Paper presented at the Software

Engineering Conference, 2005. Proceedings. 2005 Australian.

Marshall, C., & Rossman, G. B. (1999). Designing qualitative research Thousand

Oakes: CA: Sage Publications.

Martin, R. C. (2003). Agile software development: principles, patterns, and

practices: Prentice Hall PTR.

Maurer, F., & Martel, S. (2002). Extreme programming: Rapid development for

Web-based applications. IEEE Internet computing(1), 86-90.

Maxwell, J. A. (2013). Qualitative research design: An interactive approach (Vol.

41): Sage.

McBurney, D., & White, T. Research methods/-Belmont (Calif.):

Thomson/Wadsworth, 2007.–441 p: ISBN 0-495-09208-8.

McConnell, S. (2004). Code complete: Pearson Education.

McMillan, J. H., & Wergin, J. F. (1998). Understanding and Evaluating Educational

Research: ERIC.

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded

sourcebook: Sage.

Miller, J. H., & Page, S. E. (2009). Complex adaptive systems: an introduction to

computational models of social life: an introduction to computational models

of social life: Princeton university press.

Mills, A. J. (2010). Encyclopedia of case study research (Vol. 1): Sage.

 108

Mingers, J. (2001). Combining IS research methods: towards a pluralist

methodology. Information systems research, 12(3), 240-259.

Mohamed, P., Farvin, S., Baharom, F., & Deraman, A. (2014). An Exploratory

Study on Agile based Software Development Practices. International Journal

of Security & Its Applications, 8(5).

Mohammed, H., & Rauf, A. (2015). Agile Project Management: Brief Review.

Lecture Notes on Software Engineering, 3(3), 225.

Munassar, N. M. A., & Govardhan, A. (2010). A comparison between five models of

software engineering. IJCSI, 5, 95-101.

Mushtaq, Z., & Qureshi, M. R. J. (2012). Novel Hybrid Model: Integrating Scrum

and XP. International Journal of Information Technology and Computer

Science (IJITCS), 4(6), 39.

Nawrocki, J., Jasiński, M., Walter, B., & Wojciechowski, A. (2002). Extreme

programming modified: embrace requirements engineering practices. Paper

presented at the Requirements Engineering, 2002. Proceedings. IEEE Joint

International Conference on.

Omar, M., & Abdullah, S. L. S. (2015). The Impact of Agile Methodology on

Software Team‘s Work-Related Well-Being. International Journal of

Software Engineering & Its Applications, 9(3).

Omar, M., Abdullah, S., & Lailee, S. (2013). Agile practices: A cognitive learning

perspective.

Omar, M., Syed-Abdullah, S.-L., & Yasin, A. (2010). Adopting Agile Approach: A

Case in Malaysia.

Omar, M., Syed-Abdullah, S.-L., & Yasin, A. (2011). The impact of agile approach

on software engineering teams. American Journal of Economics and Business

Administration, 3(1), 12.

Päivärinta, T., & Smolander, K. (2015). Theorizing about software development

practices. Science of Computer Programming, 101, 124-135.

Paulk, M. (2001). Extreme Programming from a CMM Perspective. IEEE Software,

18(6), 19-26.

Petersen, K., & Wohlin, C. (2009). A comparison of issues and advantages in agile

and incremental development between state of the art and an industrial case.

Journal of Systems and Software, 82(9), 1479-1490.

Pickard, A. (2012). Research methods in information: Facet publishing.

 109

Pickering, C. (2001). Building an Effective E-project Team. E-Project Management

Advisory Service, Cutter Consortium, 2(1).

Poppendieck, M., & Poppendieck, T. (2003). Lean software development: an agile

toolkit: Addison-Wesley Professional.

Powell, R. R. (1997). Basic research methods for librarians: Greenwood Publishing

Group.

Pressman, R. (2009). Software Engineering: A Practitioner's Approach. (7th ed.).

New York, USA: McGraw-Hill Education.

Pressman, R. S. (2005). Software engineering: a practitioner's approach: Palgrave

Macmillan.

Pressman, R. S., & David Brian, L. (2009). Web engineering:: a practitioner's

approach.

Puvenesvary, M., Rahim, R. A., Naidu, R. S., Badzis, M., Nayan, N. F. M., & Aziz,

N. H. A. (2008). Qualitative Research: Data Collection & Data Analysis:

UUM press.

Qureshi, M. (2011). Empirical Evaluation of the Proposed eXSCRUM Model:

Results of a Case Study. International Journal of Computer Science Issues

(IJCSI), 8(3). 150-157.

Ragin, C. C. (1987). The comparative method: Moving beyond qualitative and

quantitative strategies: Univ of California Pr.

Rejab, M. M., Omar, M., Mohd, M., & Ahmed, K. B. (2011). Pair programming in

inducing Knowledge sharing. Paper presented at the Proceedings of the 3rd

international conference on computing and informatics.

Rittenbruch, M., McEwan, G., Ward, N., Mansfield, T., & Bartenstein, D. (2002).

Extreme participation-moving extreme programming towards participatory

design. Paper presented at the PDC2002 Proceedings.

Roulston, K. (2010). Reflective interviewing: A guide to theory and practice: Sage.

Rumpe, B., & Schröder, A. (2014). Quantitative survey on extreme programming

projects. arXiv preprint arXiv:1409.6599.

Saldaña, J. (2012). The coding manual for qualitative researchers: Sage.

Salo, O., & Abrahamsson, P. (2008). Agile methods in European embedded software

development organisations: a survey on the actual use and usefulness of

Extreme Programming and Scrum. Software, IET, 2(1), 58-64.

 110

Santos, R. P. d. (2014). ReuseSEEM: an approach to support the definition,

modeling, and analysis of software ecosystems. Paper presented at the

Companion Proceedings of the 36th International Conference on Software

Engineering.

Satzinger, J. W., Jackson, R. B., & Burd, S. D. (2005). Object-oriented Analysis and

Design: With the Unified Process: Thomson Course Technology.

Saunders, M., & Lewis, P. (2012). Doing research in business and management: An

essential guide to planning your project: Financial Times Prentice Hall.

Schwaber, K., & Beedle, M. (2002). gilè Software Development with Scrum.

Sekaran, U., & Bougie, R. (2009). Research methods of business: A skill-building

approach (ed.). New York: John Willey & Sons: Inc.

Sekaran, U., & Bougie, R. (2010). Research methods for business: A skill building

approach. Wiley: London.

Senapathi, M., & Srinivasan, A. (2012). Understanding post-adoptive agile usage:

An exploratory cross-case analysis. Journal of Systems and Software, 85(6),

1255-1268.

Sfetsos, P., & Stamelos, I. (2007). Improving Quality by Exploiting Human

Dynamics in Agile Methods. Agile Software Development Quality Assurance,

154.

 Sfetsos, P., Angelis, L., & Stamelos, I. (2006). Investigating the extreme

programming system–An empirical study. Empirical Software Engineering,

11(2), 269-301.

Shore, J., & Warden, S. (2008). The Art of Agile Development O‘Reilly Media Inc:

Shroff Publishers and Distributors Pvt. Ltd.

Siebra, C., Mozart Filho, S., Silva, F. Q., & Santos, A. L. (2008). Deciphering

extreme programming practices for innovation process management. Paper

presented at the Management of Innovation and Technology, 2008. ICMIT

2008. 4th IEEE International Conference on.

Sillitti, A., Succi, G., & Vlasenko, J. (2012). Understanding the impact of pair

 programming on developers attention: a case study on a large industrial

 experimentation. Paper presented at the Proceedings of the 34th International

 Conference on Software Engineering.

 111

Singhal, A., & Banati, H. (2014). FISA-XP: an agile-based integration of security

activities with extreme programming. ACM SIGSOFT Software Engineering

Notes, 39(3), 1-14.

Sinkovics, R. R., & Alfoldi, E. A. (2012). Progressive focusing and trustworthiness

in qualitative research. Management International Review, 52(6), 817-845.

Sison, R., & Yang, T. (2007). Use of Agile Methods and Practices in the Philippines.

Paper presented at the Software Engineering Conference, 2007. APSEC

2007. 14th Asia-Pacific.

Sison, R., Jarzabek, S., Hock, O. S., Rivepiboon, W., & Hai, N. N. (2006). Software

practices in five ASEAN countries: an exploratory study. Paper presented at

the Proceedings of the 28th international conference on Software

engineering.

Skinner, M., & CIS, F. C. I. (2001). Enhancing an Open Source UML Editor by

Context-Based Constraints for Components: University of Berlin, Thesis.

Sliger, M., & Broderick, S. (2008). The software project manager's bridge to agility:

Addison-Wesley Professional.

Solinski, A., & Petersen, K. (2014). Prioritizing agile benefits and limitations in

relation to practice usage. Software Quality Journal, 1-36.

Soundararajan, S., Arthur, J. D., & Balci, O. (2012). A methodology for assessing

agile software development methods. Paper presented at the Agile

Conference (AGILE), 2012.

Stamelos, I. G. (2007). Agile software development quality assurance: Igi Global.

Stellman, A., & Greene, J. (2014). Learning Agile: Understanding Scrum, XP, Lean,

and Kanban: " O'Reilly Media, Inc.".

Stober, T., & Hansmann, U. (2010). Best Practices for Large Software Development

Projects: Springer.

Syed-Abdullah, S. L., Omar, M., Hamid, M. N. A., bt Ismail, C. L., & Jusoff, K.

(2009). Positive affects inducer on software quality. Computer and

Information Science, 2(3), p64.

Syed-Abdullah, S., Holcombe, M., & Gheorge, M. (2006). The impact of an agile

methodology on the well being of development teams. Empirical Software

Engineering, 11(1), 143-167.

Tan, S. (2011). How to increase your IT project success rate: Gartner.

 112

Tessem, B. (2003). Experiences in learning xp practices: A qualitative study Extreme

Programming and Agile Processes in Software Engineering (pp. 131-137):

Springer.

Tian, Y. (2009). Adapting Extreme Programming For Global Software Development

Project.

Tsvara, P. (2013). The relationship between the management strategies of school

principals and the job satisfaction levels of educators. Doctoral dissertation,

University Of South Africa, Pretoria.

Turk, D., France, R., & Rumpe, B. (2014). Assumptions underlying agile software

development processes. arXiv preprint arXiv:1409.6610.

Turk, D., France, R., & Rumpe, B. (2014). Limitations of agile software processes.

arXiv preprint arXiv:1409.6600.

Turk, D., France, R., Rumpe, B. (2002). Limitations of Agile Software Processes. In

Proceeding of the Third International Conference on extreme Programming

and Agile Processes in Software Engineering held on 26-30 May 2002 at

Alghero, Sardinia, Italy (pp. 43-46). New York: ACM.

Unterkalmsteiner, M., Gorschek, T., Cheng, C. K., Permadi, R. B., & Feldt, R.

(2012). Evaluation and measurement of software process improvement—a

systematic literature review. Software Engineering, IEEE Transactions on,

38(2), 398-424.

Valacich, J., George, J., & Hoffer, J. (2009). Essentials of system analysis and

design: Prentice Hall Press.

Vanhanen, J., & Korpi, H. (2007). Experiences of using pair programming in an

agile project. Paper presented at the System Sciences, 2007. HICSS 2007.

40th Annual Hawaii International Conference on.

Wells, D. (2009). Agile process. extreme programming: a gentle introduction.

Williams, L., Krebs, W., Layman, L., Antón, A., & Abrahamsson, P. (2004). Toward

a framework for evaluating extreme programming. Empirical Assessment in

Software Eng.(EASE), 11-20.

Williams, L., Layman, L., & Krebs, W. (2004). Extreme programming evaluation

framework for object-oriented languages. Computer Science TR-2004-18.

Willig, C., & Stainton-Rogers, W. (2007). The SAGE handbook of qualitative

research in psychology: Sage.

 113

Willig, C., & Stainton-Rogers, W. (2008). Qualitative research in psychology: Los

Angeles & London: SAGE Publications.

Wood, S., Michaelides, G., & Thomson, C. (2013). Successful extreme

programming: Fidelity to the methodology or good teamworking?

Information and Software Technology, 55(4), 660-672.

Wood, W., & Kleb, W. L. (2003). Exploring XP for scientific research. Software,

IEEE, 20(3), 30-36.

Wu, B. H. (2011). On software engineering and software methodologies a software

developer's perspective. Paper presented at the Information Science and

Technology (ICIST), 2011 International Conference on.

Xu, B. (2009). Towards high quality software development with extreme

programming methodology: practices from real software projects. Paper

presented at the Management and Service Science, 2009. MASS'09.

International Conference on.

Xu, Y., Lin, Z., & Foster, W. (2003). Agile Methodology in CMM Framework: an

Approach to Success for Software Companies in China. Proceedings of the

GITM.

Yin, R. K. (2011). Applications of case study research: Sage.

Yousef Al-tarawneh, M., Syazwan Abdullah, M., & Bashah Mat Ali, A. (2012).

Comparison of Extreme Programming (XP) method and key process areas of

CMMI-DEV1. 2. Global Journal on Technology, 1.

Zikmund, W. (2003). Business Research Methods the Dryden Press: Harcourt

College Publishers: Fort Worth.

Zuiderveld, N. R. (2003). eXtreme Programming and SCRUM: A Comparative

Analysis of Agile Methods. Paper presented at the Published in the

Proceedings of the International Conference on Software Engineering,

Portland.

	TITLE PAGE
	Permission to Use
	Abstrak
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	CHAPTER ONE: INTRODUCTION
	1.1 Overview
	1.2 Background of Study
	1.3 Problem Statement
	1.4 Research Questions
	1.5 Research Objectives
	1.6 Research Scope
	1.7 Significance of the Study
	1.8 Organization of the Dissertation
	1.9 Summary of Chapter One

	CHAPTER TWO: REVIEW OF LITERATURE
	2.1 Introduction
	2.2 Software Development Practices Methodology
	2.3 Agile Software Development
	2.4 Extreme Programming Practices (XP)
	2.5 The Adoption of Agile Practices
	2.5.1 Small-Medium-Large Scale Project
	2.5.2 Strengths and Weaknesses of XP Method

	2.6 Related Works
	2.7 Summary of Chapter Two

	CHAPTER THREE: RESEARCH METHODOLOGY
	3.1 Introduction
	3.2 Research Design
	3.3 Research Approaches
	3.4 Data Collection
	3.4.1 Sampling
	3.4.2 Research Instrument

	3.5 Data Analysis and Interpretation
	3.6 Validation of Data Collection
	3.7 Summary of Chapter Three

	CHAPTER FOUR: DISCUSSION OF RESULTS AND FINDINGS
	4.1 Introduction
	4.2 XP Best Practices
	4.3 Proposed Conceptual Model
	4.4 Case Study Results at UUM IT with Five Experts
	4.4.1 Expert 1
	4.4.2 Expert 2
	4.4.3 Expert 3
	4.4.4 Expert 4
	4.4.5 Expert 5

	4.5 Discussing of Findings
	4.6 The XP Quality Implementation
	4.7 Summary of Chapter Four

	CHAPTER FIVE: CONCLUSION
	5.1 Introduction
	5.2 Achievement of Research Objectives
	5.2.1 Objective One
	5.2.2 Objective Two
	5.2.3 Objective Three

	5.3 Contributions of the Study
	5.4 Limitations and Future Work Directions

	REFERENCES

