AN IMPROVED FAST SCANNING ALGORITHM BASED ON DISTANCE MEASURE AND THRESHOLD FUNCTION IN REGION IMAGE SEGMENTATION

MASTERS OF SCIENCE (INFORMATION TECHNOLOGY)
UNIVERSITI UTARA MALAYSIA
2016
Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely available for inspection. I further agree that permission for the copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences
UUM College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Abstrak

Keywords: Segmentasi imej, Algoritma Pengimbasan Cepat, ukuran jarak, fungsi ambangsuai adaptif, Peak Signal to Noise Ratio.
Abstract

Segmentation is an essential and important process that separates an image into regions that have similar characteristics or features. This will transform the image for a better image analysis and evaluation. An important benefit of segmentation is the identification of region of interest in a particular image. Various algorithms have been proposed for image segmentation and this includes the Fast Scanning algorithm which has been employed on food, sport and medical image segmentation. The clustering process in Fast Scanning algorithm is performed by merging pixels with similar neighbor based on an identified threshold and the use of Euclidean Distance as distance measure. Such an approach leads to a weak reliability and shape matching of the produced segments. Hence, this study proposes an Improved Fast Scanning algorithm that is based on Sorensen distance measure and adaptive threshold function. The proposed adaptive threshold function is based on the grey value in an image’s pixels and variance. The proposed Improved Fast Scanning algorithm is realized on two datasets which contains images of cars and nature. Evaluation is made by calculating the Peak Signal to Noise Ratio (PSNR) for the Improved Fast Scanning and standard Fast Scanning algorithm. Experimental results showed that proposed algorithm produced higher PSNR compared to the standard Fast Scanning. Such a result indicate that the proposed Improved Fast Scanning algorithm is useful in image segmentation and later contribute in identifying region of interesting in pattern recognition.

Keywords: Image segmentation, Fast Scanning algorithm, Distance measure, Adaptive threshold function, Peak Signal to Noise Ratio.
Acknowledgement

First of all, I would like to thank God, for having made everything possible by giving me strength and courage to do this work.

I would like to express my appreciation to staff of SOC and CAS in UUM, lecturers and administrator, thanks for giving me the opportunity to complete my study in master degree program.

Special thanks to my supervisor Dr. Yuhanis Yusof for her time, patience, and support me during the development of the ideas in this thesis, it has been an honor for me to work with her.

I would like also to thank my parents, my brother, my wife and all of my relatives for their love and support. My goal would not have been achieved without them. I dedicate this work to my parents, my brother Mohammed, my wife Rawaa and my son Mohammed.

Finally, I would like to thank all of my friends for their encouragement during my study.
Table of Contents

Permission to Use .. ii
Abstrak ... iii
Abstract ... iv
Acknowledgement ... v
Table of Contents ... vi
List of Tables ... viii
List of Figures ... ix
List of Appendices ... xi
List of Abbreviations ... xii

CHAPTER ONE (INTRODUCTION) ... 1
1.1 Background ... 1
1.2 Problem Statement ... 3
1.3 Research Questions .. 4
1.4 Research Objectives ... 5
1.5 Research Scope ... 5
1.6 Research Significance ... 5

CHAPTER TWO (LITERATURE REVIEW) .. 6
2.1 Introduction ... 6
2.2 Image Segmentation .. 6
 2.2.1 Region Techniques .. 8
 2.2.2 Edge Detection Techniques ... 23
 2.2.3 Hybrid Techniques .. 24
2.3 Image Segmentation applications .. 27
2.4 Distance Measure in Image Segmentation ... 30
 2.4.1 Euclidean Distance ... 33
 2.4.2 City Block Distance ... 33
 2.4.3 Dice Distance ... 34
 2.4.4 Sorensen Distance ... 35
2.5 Evaluation of Image Segmentation Algorithms ... 36
CHAPTER THREE (METHODOLOGY) ... 42
3.1 Introduction .. 42
3.2 Data Collection .. 43
 3.2.1 Dataset 1 .. 43
 3.2.2 Dataset 2 .. 44
3.3 Determine Suitable Distance Measure ... 45
3.4 Formulate Threshold Function for Fast Scanning Algorithm 46
3.5 Evaluation .. 47
3.6 Summary ... 49

CHAPTER FOUR (RESULTS AND DISCUSSION) ... 50
4.1 Introduction ... 50
4.2 Results of Distance Measure for Standard Fast Scanning 50
4.3 Results of Adaptive Threshold Function For Fast Scanning 53
4.4 Results of Improved Fast Scanning for Image Segmentation 57
4.5 Summary ... 60

CHAPTER FIVE (CONCLUSION) .. 61
5.1 Introduction ... 61
5.2 Achievement .. 61
5.3 Recommendation for Future Works .. 62

REFERENCES ... 63
APPENDIX:A ... 71
APPENDIX:B ... 96
List of Tables

Table 2.1: Comparison of Algorithms ..21
Table 2.2: Principal Contrast between Major Segmentation Techniques26
Table 4.1: Average Values of 25 Pixels Paires for Dataset 1...............................51
Table 4.2: Average Values of 25 Pixels Paires for Dataset 2...............................52
Table 4.3: Comparison of Adaptive Threshold Function PSNR for Dataset 1........54
Table 4.4: Comparison of Adaptive Threshold Function PSNR for Dataset 2.......56
Table 4.5: Comparison PSNR of IFSA for Dataset 1..58
Table 4.6: Comparison PSNR of IFSA for Dataset 2..60
List of Figures

Figure 2.1: Image processing phases...6
Figure 2.2: Categorization of image segmentation techniques8
Figure 2.3: Region based image segmentation techniques and algorithms9
Figure 2.4: Start of grown region and process after iterations10
Figure 2.5: Region growing process ...10
Figure 2.6: (a-f): Pixels by fast scaninig algorithm representation (part1)16
Figure 2.6: (g-i): Pixels by fast scanning algorithm representation(part2)17
Figure 2.7: Flow chart of fast scanning algorithm ...19
Figure 2.8: Simply algorithm process ..28
Figure 2.9: Experiments results ...29
Figure 2.10: RGB color double domain ...32
Figure 2.11: RGB color unit 8 domain ..32
Figure 3.1: Research methodology ...42
Figure 3.2: Examples of images in dataset 1 ..43
Figure 3.3: Examples of images in dataset 2 ..44
Figure 3.4: Experimental design for distance measure of fast scanning algorithm45
Figure 3.5: Experimental design for objectives 2 and 346
Figure 3.6: Flow chart for calculate PSNR ...48
Figure 4.1. Samples of images of Fast Scanning with Sorensen distance measure50
Figure 4.2: Samples results for four distance measures51
Figure 4.3: Samples results of adaptive threshold function for dataset 153
Figure 4.4: Samples results of adaptive threshold function for dataset 255
Figure 4.5: Samples results of IFSA for dataset1. …………………………………………….. 57

Figure 4.6: Samples results of IFSA for dataset2. ……………………………………………... 59
List of Appendices

Appendix A Distance Measure for 25 Pixels’ Pairs of Dataset 1 Images………………..81
Appendix B Distance Measure for 25 Pixels’ Pairs of Dataset 2 Images………………..106
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>URG</td>
<td>Unseeded Region Growing</td>
</tr>
<tr>
<td>UUM</td>
<td>Universiti Utara Malaysia</td>
</tr>
<tr>
<td>SRG</td>
<td>Seeded Region Growing</td>
</tr>
<tr>
<td>SAR</td>
<td>Synthetic Aperture Radar</td>
</tr>
<tr>
<td>LOG</td>
<td>Laplacian of Gaussian</td>
</tr>
<tr>
<td>1 D</td>
<td>One Dimensions</td>
</tr>
<tr>
<td>2 D</td>
<td>Two Dimensions</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>OCR</td>
<td>Optical Character Recognition</td>
</tr>
<tr>
<td>RGB</td>
<td>Red, Green and Blue</td>
</tr>
<tr>
<td>IDE</td>
<td>Integrated Development Environment</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver operating characteristic</td>
</tr>
<tr>
<td>SEM</td>
<td>Structural Equation Model</td>
</tr>
<tr>
<td>PSNR</td>
<td>Peak Signal to Noise Ratio</td>
</tr>
<tr>
<td>MAE</td>
<td>Mean Absolute Error</td>
</tr>
<tr>
<td>GCE</td>
<td>Global Consistency Error</td>
</tr>
<tr>
<td>RI</td>
<td>Rand Index</td>
</tr>
<tr>
<td>VoI</td>
<td>Variation of Information</td>
</tr>
<tr>
<td>PRM</td>
<td>Precision Recall Measure</td>
</tr>
<tr>
<td>BDE</td>
<td>Boundary Displacement Error</td>
</tr>
<tr>
<td>LCE</td>
<td>Local Consistency Error</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle Swarm Optimization</td>
</tr>
<tr>
<td>MAP-ML</td>
<td>Maximum and Posterior Maximum Likelihood</td>
</tr>
<tr>
<td>JPEG</td>
<td>Joint Photograph Experts Group</td>
</tr>
</tbody>
</table>
CHAPTER ONE
INTRODUCTION

1.1 Background

There has been a substantial increase in the attention given to the challenges brought by image processing throughout the last twenty years. This attention has generated a growing demand for theoretical approaches as well as application of computer hardware with appropriate software in the design of image processing systems (Wang, 2010).

Image segmentation is one of the basic steps of the image processing and machine vision. It segments images for accurate boundaries that transform the image’s representation for detail (Tawfeeq & Tabra, 2014). Its key point is: the image is divided into a number of sets that do not mutual overlapping zones; these zones either have meaning to currently mission or help to explain correspondence between them and the actual object or some parts of object (Lakshmi, 2010). Therefore, it is a process in which divide the image into disjoint regions that are meaningful with feature section and removes that relevant objects.

Image segmentation is a very interesting area in image processing field due to images are one of the most important medium to convey information in the field of computer vision (Wang, Guo, & Zhu, 2007). Yet, verifying the segment boundaries automatically remains a big challenge. Image segmentation have a wide range of applications in practice, such as: industry automation, product online detection, manufacturing and process control, remote sensing image processing, biomedical image analysis, etc (Agrawal, 2014).
The contents of the thesis is for internal user only
REFERENCES

Computational Intelligence and Communication Networks (CICN), (pp. 386–391). Bhopal, India.

Kee, Y., Souiai, M., Cremers, D., & Kim, J. (2014). Sequential Convex Relaxation for Mutual Information-Based Unsupervised Figure-Ground Segmentation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, (pp. 4082–4089). Columbus, Ohio.

