ADAPTIVE SELECTION OF KLSE STOCKS
USING NEURAL NETWORKS

A project submitted to the Graduate School in partial
fulfillment of the requirements for the degree
Master of Science (Information Technology)
Universiti Utara Malaysia

by
Kok Chee Foong

©Kok Chee Foong, 2002. All rights reserved
Saya, yang bertanda tangan, memperakukian bahawa
(I, the undersigned, certify that)

KOK CHEE FOONG

calon untuk ijazah
(candidate for the degree of) Sarjana Sains (Teknologi Maklumat)

telah mengemukakan kertas projek yang bertajuk
(has presented his/her project paper of the following title)

ADAPTIVE SELECTION OF KLSE STOCKS USING NEURAL NETWORKS

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan,
dan meliputi bidang ilmu dengan memuaskan.
(that the project paper acceptable in form and content, and that a satisfactory
knowledge of the field is covered by the project paper).

Nama Penyelia Pertama
(Name of Supervisor) : Prof. Madya Fadzilah Siraj

Tandatangan
(Signature) :

Nama Penyelia Kedua
(Name of Supervisor) : En. Azizi Zakaria

Tandatangan
(Signature) :

Tanggal
(Date) : 4/8/02
PERMISSION TO USE

In presenting this project in partial fulfillment of the requirements for a post graduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this project in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor(s) or, in their absence, by the Dean of the Graduate School. It is understood that any copying or publication or use of this theses or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my project.

Request for permission to copy or to make other use of materials in this project, in whole or in part, should be addressed to:

Dean of Graduate School
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman
ABSTRACT (ENGLISH)

Stock is becoming a significant investment tools that contributes towards Malaysia economic growth. Thus it is vital to increase investor's confidence in the Malaysia stock market. In this era of Information Age, artificial intelligence is applied to develop sound investment analysis tools in selecting winning Malaysia stocks. Hence in this study, neural network technology is deployed to build an adaptive neural net trading system, specifically adopting the multilayer feedforward network with backpropagation learning algorithm. A 22-18-2-network architecture of a prediction model is derived from the developed network simulator to predict the following quarter stock price change, of twenty publicly traded Malaysian companies. A promising classification competency of 80 percent correctness is recorded after the network is iteratively trained for 6000 epochs. This study also indicates that the neural network generated forecasting model is capable of outperforming the statistical model, as recorded by 80 percent neural network accuracy versus 77.3 percent binary logistic regression accuracy. The findings conclude that the neural forecasting ability could be further enhanced. Future research could incorporate technical analyst approach for a comprehensive stock valuation and also integrates with fuzzy technology to handle imprecise data.
ABSTRACT (BAHASA MELAYU)

ACKNOWLEDGEMENT

Heartfelt thanks are due first to my main supervisor, Associate Professor Fadzilah Siraj for patiently navigating and generously sharing her rich source of knowledge with me. She is indeed a teacher of “open hand, open mind, and open heart”.

Equally thankful to my second supervisor, Mr. Azizi Zakaria for zealously giving a hand to his utmost.

I also sincerely acknowledge the knowledge shared by Mr. Massudi Mahmuddin and Mr. Azizi Abbas

I am most indebted to my parents for all the love and support in giving me the best gift; “Education”- a lifelong priceless present that can never be destroyed by calamities.

My deepest thanks go to my siblings who are most understanding, encouraging and supportive in my endeavor.

Last but not least, let me express my deep appreciation to all who lend a hand in materializing this project.

Good luck and be on your way to be an astute investor!
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERMISSION TO USE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT (ENGLISH)</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT (BAHASA MELAYU)</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF GRAPHS</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF APPENDIXES</td>
<td>xi</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 The Objectives of the Study
1.2 Study Significance
1.3 Scope of Study

CHAPTER 2
LITERATURE REVIEW

2.1 Artificial Intelligence in Finance
2.2 Neural Network in Trading System

CHAPTER 3
NEURAL NETWORKS AND STOCKS

3.1 Neural Networks
 3.1.1 Introduction to Artificial Neural Networks (ANN)
 3.1.2 How to Artificial Neural Networks Work
 3.1.3 Major Concepts of Artificial Neural Networks

3.2 Stock
 3.2.1 Introduction to Stock
 3.2.2 Introduction to Stock Exchange
 3.2.3 Malaysia Security Landscape
 3.2.4 Stock Valuation

CHAPTER 4
SYSTEM ANALYSIS AND DESIGN

4.1 System Analysis
 4.1.1 Requirements Defined
 4.1.2 Functional Requirements Analyzed
 4.1.3 System Modeling

4.2 System Design
 4.2.1 Application Architecture Design
 4.2.2 Database Design
 4.2.3 Interface Design
CHAPTER 5
DEVELOPMENT AND TESTING

5.1 Collect Data

5.2 Data Preparation

5.3 Normalized Data

5.4 Network Structure and Learning Algorithm

5.5 Activating the Learning Phase by Training and Testing the Neural Network

5.6 Activating the Generalization Phase by Testing Prediction Accuracy on New Cases

5.7 A Comparison with Statistical Approach

CHAPTER 6
CONCLUSION AND FUTURE WORKS
LIST OF TABLES

Table 3.1: KLSE Key Indicators as at 18 July 2002
Table 4.1: Economic Independent Variables
Table 4.2: Sectored Distribution of Selected Companies
Table 4.3: Financial Independent Variables
Table 4.4: Other Independent Variables
Table 4.5: Dependent Variables
Table 4.6: Desired Data Realm Allocation
Table 4.7: Neural Network Parameters Setting
Table 5.1: Selected Companies
Table 5.2: Actual Selected Variables for Prediction Model
Table 5.3: Actual Data Realm Allocation
Table 5.4: Example of Original Data
Table 5.5: Example of Normalized Data
Table 5.6: Neural Network Parameters for the Prediction Model
Table 5.7: Target Comparison between Desired Result and Actual Result
Table 5.8: Binary Logistic Regression Model Summaries
LIST OF FIGURES

Figure 2.1: Machine Intelligence: A Core Concept for Grouping Various Advanced Technologies
Figure 2.2: Advanced Trading Analytics
Figure 3.1: Portion of a Network: Two Interconnected Biological Cells
Figure 3.2: Three Interconnected Artificial Neurons
Figure 3.3: Learning Process of a Neural Network
Figure 3.4: The Backpropagation Network
Figure 3.5: Overview of the Investment Process
Figure 4.1: Flow Diagram
Figure 4.2: Network Structure Design
Figure 4.3: Backpropagation Learning Algorithm
Figure 4.4: Flow Chart
Figure 4.5: Structured Diagram
Figure 4.6: Context Diagram
Figure 4.7: DFD Level 0
Figure 4.8: Sub Process of Process 1.0
Figure 4.9: Sub Process of Process 2.0
Figure 4.10: DFD Level 2: Complete Backpropagation Process
Figure 4.11: DFD Level 2: Partial Backpropagation Process
Figure 4.12: Physical Data Flow Diagram
Figure 4.13: Physical Database Schema
Figure 4.14: Output Design for Displaying Datasets Information
Figure 4.15: Output Design for Displaying Network Processing Information
Figure 4.16: Output Design for Learning Phase Information Captured in Database
Figure 4.17: Input Design for Inputting Datasets
Figure 4.18: Input Design for Setting Network Parameter
Figure 4.19: User Interface Design
Figure 5.1: Network Structure of the Prediction Model
LIST OF GRAPHS

Graph 5.1: Percent of Correctness for Number of Hidden Unit Parameter
Graph 5.2: Percent of Correctness for Learning Rate Parameter
Graph 5.3: Percent of Correctness for Momentum Parameter
Graph 5.4: Percent of Correctness for Tolerance Parameter
Graph 5.5: Percent of Correctness for Various Numbers of Epochs
Graph 5.6: Network Performance
LIST OF APPENDIXES

APPENDIX A: User Manual on Building Prediction Model with *Adaptive Selection of KLSE Stocks using Neural Networks*
CHAPTER 1

INTRODUCTION

The gaining popularity of stock as an investment tool in Malaysia is clearly reflected by the concomitant rise of companies listed in the Kuala Lumpur Stock Exchange (KLSE). As at 18 July 2002, 850 companies totaling RM541.56 billion market valuation is recorded as opposed to a mere 262 listed companies in 1973. The influx of both domestic and foreign investors have opened up a golden opportunity for the listed companies to raise fund in a cost effective manner with the purpose of financing their corporate investment and expansion. Increase in investment activities in turn help to propel Malaysia economic development by mobilizing long-term funds from the investing public to finance public development programs and private investment. In hindsight, the ability to attract and sustain investors is the key success factor. By looking at the objective of each investor, be it an individual, a government, a pension fund, or a corporation, to them the end result of the investment activity is a gain in return on investment (ROI).

There is a need to incorporate the latest advances in the field of artificial intelligence in developing the 21st century investment tools and techniques, which range from qualitative assessments of corporate management to quantitative techniques. This direction of thought is prompted by Waite (1998), edited by Bruner (1998) in the wake of addressing the issue of underperformance in active equity portfolio management, that relates the cause of the problem to the lack of credible valuation tools and techniques that befits the Information Age as opposed to the Machine Age. Additional valid evidences are gathered with remarkable performance accomplished that even exceeded
The contents of the thesis is for internal user only
REFERENCES

This is not a paper. KLSE website. Retrieved July 18, 2002 from the World Wide Web:
http://announcements.klse.com.my/

This is not a paper. Yahoo Finance website. Retrieved July 01, 2002 from the World Wide Web:
http://chart.yahoo.com/d

Investor Digest. Kuala Lumpur Stock Exchange

