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Abstrak 

 
Rangkaian penderiaan kawasan badan tanpa wayar (WBASN) digunakan untuk komunikasi di 

antara nod pengesan pada atau didalam badan manusia untuk memantau parameter dan 

pergerakan. Salah satu aplikasi penting WBASN adalah pemantauan kesihatan penyakit kronik 

seperti serangan epilepsi. Kebiasaannya, data serangan epilepsi elektroensefalograf (EEG) 

dikumpul dan dipadatkan untuk mengurangkan masa penghantarannya. Namun, pada masa yang 

sama, keadaan ini mencemarkan keseluruhan data dan merendahkan klasifikasi kejituaannya. 

Kajian terkini juga tidak mengambil kira data EEG yang besar. Akibatnya, data EEG adalah 

bersifat intensif jalur lebar.  Dengan demikian, tujuan utama kajian ini adalah untuk mereka bentuk 

satu kesatuan rangka kerja mampatan dan klasifikasi data EEG sebagai menangani isu data bersaiz 

besar dengan memampatkannya sebelum penghantaran. Satu lagi matlamat adalah untuk 

menyusun semula data yang telah dimampat dan mengenal pasti kemudiannya. Kerana itu, teknik 

Noise Signal Combination (NSC) dicadangkan untuk pemampatan EEG data yang dihantar dan 

meningkatkan klasifikasi kejituan di sebelah penerimaan dalam keadaan data hingar dan tidak 

lengkap. Rangka kerja yang dicadangkan ini menggabungkan penderiaan mampatan dan 

transformasi konsinus diskret (DCT) untuk mengurangkan jumlah saiz penghantaran data. 

Tambahan itu, model hingar Gaussian juga digunakan dalam rangka kerja tersebut. Di sebelah 

penerima, NSC yang dicadangkan direka bentuk bersandarkan kepada wajaran undian 

menggunakan empat teknik klasifikasi iaitu rangkaian neural buatan, Naïve Bayes, k-Nearest 

Neighbour, dan Support Vector Machine sebagai input kepada NSC. Keputusan eksperimen telah 

menunjukkan bahawa teknik yang dicadangkan melangkaui kejituan tertinggi dari teknik 

konvensional untuk data besar kurang dan tanpa hingar. Tambahan lagi, rangka kerja tersebut 

berjaya melaksanakan peranan penting dalam mengurangkan saiz data dan pada masa sama 

meningkatan kejituan untuk kedua-dua data kurang dan tanpa hingar. Sumbangan utama kajian ini 

adalah kesatuan rangka kerja dan NSC. Keputusan menunjukkan keberkesanan rangka kerja yang 

dicadangkan dan menyediakan beberapa manfaat yang boleh dipercayai termasuk mudah dan 

meningkatkan ketepatan kejituan. Akhir sekali, kajian ini dapat menambah baik maklumat klinikal 

berkaitan bukan sahaja mengenai pesakit yang mengalami epilepsi, tetapi juga gangguan 

neurologi, masalah mental atau fisiologi. 

 

 

Katakunci: Rangkaian Pengesan Kawasan Tubuh Tanpa Wayar, Kejituan Klasifikasi, Pengelas 

Gabungan, Data EEG. 
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Abstract 

The Wireless Body Area Sensor Network (WBASN) is used for communication 

among sensor nodes operating on or inside the human body in order to monitor vital 

body parameters and movements. One of the important applications of WBASN is 

patients’ healthcare monitoring of chronic diseases such as epileptic seizure. 

Normally, epileptic seizure data of the electroencephalograph (EEG) is captured and 

compressed in order to reduce its transmission time. However, at the same time, this 

contaminates the overall data and lowers classification accuracy. The current work 

also did not take into consideration that large size of collected EEG data. 

Consequently, EEG data is a bandwidth intensive. Hence, the main goal of this work 

is to design a unified compression and classification framework for delivery of EEG 

data in order to address its large size issue. EEG data is compressed in order to reduce 

its transmission time. However, at the same time, noise at the receiver side 

contaminates the overall data and lowers classification accuracy. Another goal is to 

reconstruct the compressed data and then recognize it. Therefore, a Noise Signal 

Combination (NSC) technique is proposed for the compression of the transmitted EEG 

data and enhancement of its classification accuracy at the receiving side in the 

presence of noise and incomplete data. The proposed framework combines 

compressive sensing and discrete cosine transform (DCT) in order to reduce the size 

of transmission data. Moreover, Gaussian noise model of the transmission channel is 

practically implemented to the framework. At the receiving side, the proposed NSC is 

designed based on weighted voting using four classification techniques. The accuracy 

of these techniques namely Artificial Neural Network, Naïve Bayes, k-Nearest 

Neighbour, and Support Victor Machine classifiers is fed to the proposed NSC. The 

experimental results showed that the proposed technique exceeds the conventional 

techniques by achieving the highest accuracy for noiseless and noisy data. 

Furthermore, the framework performs a significant role in reducing the size of data 

and classifying both noisy and noiseless data. The key contributions are the unified 

framework and proposed NSC, which improved accuracy of the noiseless and noisy 

EGG large data. The results have demonstrated the effectiveness of the proposed 

framework and provided several credible benefits including simplicity, and accuracy 

enhancement. Finally, the research improves clinical information about patients who 

not only suffer from epilepsy, but also neurological disorders, mental or physiological 

problems. 

Keywords: Wireless Body Area Sensor Network, Classification Accuracy, Ensemble 

Classifier, Bio-signal. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Overview 

Networks of wireless sensor devices are being deployed to collectively monitor and 

disseminate information about a variety of phenomena of interest. A wireless sensor 

device is a battery-operated device, capable of sensing physical measurements. In 

addition to sensing, it is capable of wireless communication, data storage, and a limited 

size of computation and signal processing. Advances in integrated circuit design are 

continually reducing the size, weight and cost of sensor devices, while simultaneously 

improving their resolution and accuracy. A wireless sensor network (WSN) consists 

of a large number of wireless-capable sensor devices working collaboratively to 

achieve a common objective. A WSN has one or more base-stations, which collect 

data from all sensor devices. These base-stations are the interface through which the 

WSN interacts with the outside world [1]. 

A WSN is an infrastructure-less networks that consists of a number of self-configuring 

wireless devices capable of sensing vital signs for characterizing contemporary 

phenomena. A WSN consists of wireless nodes, which measure physical conditions 

using sensors, digitize it and keep or distribute the measured data over the network. 

Typical applications include, but are not limited to, data collection, monitoring, and 

medical telemetry [2]. Several applications have been intended for WSN. These range 

in scope from military applications, environmental monitoring and medical 

applications. For instance, WSNs can form a critical part of military command, 

control, communications, computing, intelligence, surveillance, reconnaissance, and 
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targeting systems. In addition, it can be used in monitoring of friendly enemy forces; 

equipment and ammunition, monitoring; nuclear, and biological, as well as chemical 

attack detection. 

By embedding a wireless sensor network within a natural environment, collection of 

long-term data on a previously unattainable scale and resolution becomes possible. It 

can be able to obtain localized, detailed measurements that are otherwise more difficult 

to collect. Some of these include habitat monitoring, animal tracking, forest-fire 

detection, precision farming, and disaster relief applications. 

Potential health applications abound for WSNs. Imaginably, hospital patients could be 

equipped with wireless sensor nodes that monitor the patients’ vital signs and track 

their location. Patients could move about more freely while still being under constant 

supervision. In case of an accident, the patient trips and falls the sensor could alert 

hospital workers as to the patient’s location and condition. A doctor in close proximity, 

also equipped with a wireless sensor, could be automatically dispatched to respond to 

the emergency [2].  

At the intersection of engineering and medicine stands a new borderline of 

advancement, wireless health, which seeks to make healthcare more personalized and 

proactive [3]. The field of sensor networks encompasses the sensing, signal 

processing, and communications disciplines and has become one of the most active 

areas of research in computing. Reduction of form factor also places physical 

constraints on battery size, which in turn limits the capability of long evaluation. 

Integrated circuit technology scaling has helped to create intelligent sensors that are 
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progressively evolving into smaller, more capable, and less expensive platforms. The 

deployment of numerous networked, coordinated sensors enables wide field 

instrumentation for applications that require a distinct combination of temporal and 

spatial coverage [4]. Vital drivers of this vision are the novel wearable technologies, 

known as wireless body area sensor networks (WBASNs), which capture health data 

on-body, and address fundamental deficiencies in the state of health applications [5].  

By definition, WBASNs consist of two or more interconnected nodes comprising 

sensing and communication capabilities, located on, near, or within a human body. 

WBASNs supporting peoples by providing healthcare services such as medical 

monitoring, enhancement memory control of home appliances, medical data access, 

and communication in emergencies situations. WBASNs instrument the human body 

and its immediate surroundings. It enables constant monitoring of the health 

conditions of people with chronic diseases (CDs) [5, 6]. This initiated a comprehensive 

research effort intended to develop inside a human body biosensors for continuous 

monitoring of multiple biological relevant diseases. In addition, the authors clarify the 

important role of WBASNs in medicine to minimize the need for caregivers and help 

the chronic illness and an independent elderly people live [5, 6]. Specifically, 

WBASNs consists of multiple on-body and ambient sensor nodes, capable of 

sampling, processing, and communicating one or more physiological signs (e.g. Heart 

activity, brain activity, movements, blood pressure and oxygen saturation) over an 

extended period.  Despite, WBASNs making possible a variety of novel applications 

for healthcare, there existing new challenges and opportunities, which also require a 
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unique research prototype that incorporates a comprehensive perspective of both 

engineering and medical realities [5, 7]. 

The sensor data readings are transmitted over a wireless communication channel to a 

base-station that gather raw data from all sensors then send it to a running application 

that analyzes and makes decisions based on these readings. Such readings are 

characterized into physiological signs and measured using different types of sensed 

signals such as the electrocardiogram (ECG) [8], and acceleration, as well as 

electroencephalogram (EEG) [9]. In addition, the base-station is used for 

communication among sensor nodes operating on, or inside the human body in order 

to monitor vital body parameters and movements as well as to enable its user with 

quality of life, assisted living, sports, or entertainment purposes [10].  

The wireless transceiver of raw data consumes the majority of the measured power of 

WBASN applications. Simply transmit the minimum size of data is one way to reduce 

the sensor power consumption by decreasing the time the radio is active [11]. In 

addition, compression techniques focus on reducing the size of physical data traffic 

during communication by transmitting a shorter data stream that the sensor sends over 

the wireless channel. This reducing is to enhance the bandwidth utilization, ultimately 

reduc power consumption, and possibly speed of processing and memory space 

required by the application.  Furthermore, physiological data detection and 

classification is very important to the timely diagnosis and analyze potentially fatal 

and chronic diseases proactively in clinical as well as various life settings [11, 12]. 
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1.2 Research Motivation  

The healthcare industry sector is one of the largest and fastest-growing industries in 

the world, as highlighted in the OnWorld [13]. Consuming more than 10 percent of 

gross domestic product of almost developed countries, healthcare can establish an 

enormous size of a country's economy [12]. Therefore, the need for high performance, 

cost-effective healthcare solutions is one of the crucial strengths for any developing 

country seeking sustainable future advancements. Using wireless sensors in the field 

of healthcare is one of the potential areas which is expected to save $25 billion 

worldwide in the current decade through leveraging cost-effective solutions and 

applications as highlighted in the OnWorld healthcare market report [13] illustrated in 

Figure 1.1.  

 

Figure 1.1. Annual savings, WSN-enabled healthcare solutions 2007–2012 [13] 

In addition, according to the OnWorld mobile health and wellness report in 2013 [14], 

the investment in healthcare technologies towards long-term reduction in healthcare 

costs is dramatically increasing. Thus the mobile health and wellness WSN systems 
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will increase by a 75% compound yearly growth rate and they will make up 57% of 

global shipments worldwide as shown in Figure 1.2. 

 

Figure 1.2. Global Health/Wellness WSN System Shipments by 2012-2017 [14] 

In recent years, WSN has many advantages such as the flexibility, fault tolerance, high 

sensing, self-organization, low-cost and rapid deployment characteristics. These 

advantages of WSN have offered new opportunities in many domains. However, 

WSNs are mostly applied to those cases, which need a long-term surveillance, such as 

observing the humidity of the environment. WBASNs for patient monitoring 

applications have grown significantly and the sampling rate of data acquisition module 

of those nodes is low and constant [15].  

Brain activities have three techniques, namely, functional Magnetic Resonance 

Imaging (fMRI), Magnetoencephalography (MEG), and EEG. fMRI and MEG are 

neuroimaging procedures that measure brain activity by detecting associated changes 

in blood flow and recording magnetic fields produced by electrical currents occurring 

naturally in the brain, respectively [5]. The disadvantages of both of them are that the 



 

 7 

patient should sleep in a tunnel/scanner (motionless), more expensive, and cannot be 

applied on epileptic seizures. These restrict the application of these imaging 

techniques in young children and special populations. While EEG is abnormal 

impulses produced by the brain, which is utilized in epileptic seizure detection. In 

addition, exploiting EEG in epileptic seizure detection allows the patient to move 

freely as in his real daily life, and its process is not expensive [16]. Therefore, mobile 

EEG is more suitable for remote health monitoring.  Moreover, typically, sensors 

(electrodes/channel) can sample up to 300samples/second, each sample is 2 Bytes (16-

bits), which results in the need for an extensive bandwidth required for data 

transmission. For example, for 100 channels, this can lead to traffic of ~500kbps for 

one single user. Let alone, the energy consumed in transmitting such huge data. 

Therefore, reducing the size of data during the transmission using compression of EEG 

data is desirable [5, 6], while taking into consideration the effect of compression on 

the classification accuracy. This constitutes the motivation of this thesis.  

1.3 Problem Statement  

Generally, the 21st century healthcare systems aim to involve citizens and health 

professionals, especially citizens, to take over a higher level of responsibility for their 

own health status. Utilizing contemporary technologies such as internet, tablet, and 

mobile phones enable patients to active participate in treatment and rehabilitation. 

With good WSNs and data processing capabilities, they are a potential part of the 

future wireless health care system. The flexibility, fault tolerance, high sensing 

reliability, low cost, and rapid deployment characteristics of sensor networks create 
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many new and exciting application areas. Indeed, wireless sensors have become an 

excellent tool for sensor-based personal health monitor [16].  

In addition, one of the healthcare applications is seizure due to the abnormal impulses 

produced by the brain, which are sudden temporary physical movements, behavioral 

or sensory changes depending on the origin of the impulse. The most common seizures 

are tonic-clonic and epileptic. The tonic-clonic seizure presents sudden, repeated 

rhythmic muscle movements and many times without warning. While epileptic 

seizures are repeated seizures, they are not related to acute illness or brain injury and 

affect millions of people. Extremely long seizures can lead to neuronal damage, coma 

or death. Therefore, for those who have an epileptic seizure, it is important to wear a 

medical identification bracelet to help responders [17].  

The most commonly used signal detection technique on human healthcare for epileptic 

seizure is the EEG which is a technique of recording electrical impulses produced by 

the brain neurons and detected by electrodes placed on the scalp. Accordingly, clinical 

clinicians can evaluate the conditions of patient's brain from EEG and perform initial 

diagnosis. Therefore, the recognition and analysis of the EEG signals is a very 

important task. This could be difficult, because the size and form of these signals may 

change eventually or be increased and can be noisy. Many tools, methods and 

algorithms from signal processing theory have been proposed, described and 

implemented [18].  

Due to the compression process and channel impairments, EEG data will be distorted 

which may affect the classification accuracy. This thesis is concerned with the 
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development of classification algorithm for compressed and noisy EEG data of 

epileptic patients [1, 6]. The obtained data was contaminated due to the reconstruction 

error and the receiver’s added noise. This will affect the reconstructed data accuracy 

due to the loss of some data. Finally, the problem statement deals with the following: 

1. The EEG is bandwidth intensive, time-varying and space-varying non-stationary 

data.  

2. Current techniques did not estimate the accuracy in the cases of data recovery and 

noisy data. 

3. Based on the conducted literature survey, most of the current research work did 

not consider: 

 Compressing the EEG data before transmission, rather most of the current 

techniques were applied on the raw data.  

 The seizure-free interval subjects (during data collection, the seizure was not 

active). 

 The effect of reconstruction error due to compression and noisy data 

Therefore, the following research questions will be investigated as key research 

problems: 

1. What is the compression ratio leveraging sampling theory that can be used to 

compress the EEG signal to enhance its classification accuracy without losing its 

important features? 

2. Given the epileptic seizure application, the signal can be down sampled with a 

rate less than the sampling rate calculated above, such that can be performed with 

high accuracy in detection and classification within the context of the application 

of interest.  

3. What are the best-selected techniques that are used in the detection and 

classification of EEG epileptic seizure?  
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4. Given wireless channel impairments, a noise-aware classification method has 

been proposed that could achieve high accuracy when reconstructing the EEG 

compressed data. 

1.4 Research Objectives 

The main objective of this research is to improve the compression and classification 

accuracy for noisy EEG-based epileptic seizure. This will be achieved by enhancing 

compression ratio and by introducing enhancements in both signal processing and 

classification techniques. Accordingly, this research will focus on reducing the EEG 

data size by utilizing a Compressive Sensing (CS) technique for sending a short data 

stream over the wireless channel, which ultimately increases the lifetime of batteries 

on the sensor devices as part of the continuance and energy-efficient network. 

Moreover, to achieve higher EEG data classification accuracy, an ensemble 

classification method is proposed.  

Toward this main objective, the following sub-objectives are derived: 

1. To propose a framework for compression and delivery of EEG data across 

wireless channel in order to address the problem of large data size of the 

WBASN’s EEG data during data transmission. Large data size requires longer 

transmission time, which leads to more power consumption.  

2. To develop a noise-aware signal combination (NSC) method that enhances the 

classification accuracy of EEG-epileptic seizure noisy data. 

3. To evaluate the effectiveness of such technique of achieving better EEG 

classification accuracy and compression ratio. 

1.5 Scope of the Research  

The scope of this research considers the following points: 
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1. This work is applied on WBASNs EEG-Based Epileptic Seizure detection. In 

WBASNs, the approaches of sensing and preprocessing as well as detection and 

classification have been investigated at the server side. For EEG-Based Epileptic 

Seizure framework, more emphasize is given to EEG raw data, CS and DCT for 

compression. 

2. EEG data has large data size which requires high bandwidth to send to the server 

side. WBASNs’ EEG will be sent over a channel that may affect the received data’s 

accuracy. On the receiver side, the objective of this work is to retrieve the data with 

the minimum error or highest accuracy. Features of the received data are extracted 

in order to estimate the attributes required in the process of measuring the data 

accuracy. The main advantages of these features are their low computational 

complexity and computation time. They are used to reduce the dimensions of the 

cross-correlation sequences and as inputs into individual classifiers. 

3. Different EEG classes represent different subjects. The objective is to find the 

accuracy percentage of each class. Therefore, the estimated attributes are inputted 

into accuracy classifiers in order to calculate these percentages. In order to improve 

the EEG data classification accuracy, combining different classifiers can be used.  

1.6 Significance of Research 

The significance of this research work is reducing the size of EEG data during the 

transmission by sending less size of data by applying a data compression technique. 

Moreover, the proposed NSC technique provides a better estimation accuracy than the 

classical classifiers, particularly, in the case of the reconstructed and noisy EEG data. 
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The evaluated results show that the proposed method provides several significant 

benefits such as simplicity, and the improvement of the overall classification accuracy. 

1.7 Contributions of the Research  

This research work focuses on the reduction of the size of EEG signals at the 

transmitter side with shorter time. In order to achieve this goal, our research work 

introduces the following main contributions: 

 A unified WBASN framework for compression and classification of noisy EEG-

Based epileptic seizure has been developed. This framework utilizes a 

combination of signal-processing techniques to reduce the size of the data 

transmission. Those techniques include compressive sensing (CS), discrete 

cosine transform (DCT) with random matrix, inverse DCT, additive white 

Gaussian noise (AWGN), and discrete wavelet transform (DWT). 

 Based on the proposed framework, the effect of compression parameters on the 

classification accuracy for different classifiers and feature extraction methods 

have been investigated and analyzed.  

  Develop an ensemble technique for compressed and noisy EEG-based epileptic 

seizure that improves classification accuracy by present Noise-aware Signal 

Combination (NSC) technique. 

 Evaluate the efficiency of the method to achieve better EEG classification 

accuracy for imperfect data. 

1.8 Thesis Outline 

The thesis is organized into five chapters starting by introducing the literature review 

related to this work and ending by presenting the research conclusions and future 

work. The chapters are defined as the following: 
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Chapter 2 presents the literature review of the research work focused on introducing 

the concept of WBASN, sensing and preprocessing. The fundamentals of EEG and 

epileptic seizures, EEG signal classification techniques and its background knowledge 

are discussed. Finally, this chapter focuses on the concept of signal classification and 

ensemble, including its structure and methods.  

Chapter 3 presents the research methodology adopted in carrying out the experiments. 

It’s start with the identification of the main research problems related to the 

compression and classification techniques. Then it defines the selected compression 

technique with the discrete cosine transform, the inverse of DCT as well as discrete 

wavelet transform methods. Finally, this chapter identifies the selected four legacy 

classifiers for EEG classification accuracy and their output will feed our proposed 

ensemble technique. 

Chapter 4 explains in details the proposed compression and classification framework 

and the experiments. In addition, the chapter introduces the proposed technique of 

noise-aware signal combination method for the classification purpose. The aim of the 

proposed technique is to enhance the classification accuracy. 

Chapter 5 measures and analyzes the compression and classification framework 

results. The chapter also explores the results between the desired compression ratio 

and accuracy in the case of noiseless and noisy EEG data.  

Lastly, Chapter 6 concludes the findings of the work on the issues addressed by this 

research. In addition, this chapter proposes outlines of future research directions. 
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CHAPTER TWO 

LITERATURE REVIEW 

In this chapter, the state-of-the-art on Wireless Body Area Sensor Networks 

(WBASNs) is reviewed, discussing the major components of research in this area such 

as physiological sensing and preprocessing, which includes sampling, filtering, and 

compression. The worldwide market in 2010 was worth about $10 billion for home 

health monitoring. According to a report from Berg Insight, an analyst firm estimates 

that the market is growing about 10 percent annually [20]. Berg also mentioned that 

the market for home health monitoring of chronic disease (CD) was worth about $11 

billion in 2008. Berg estimates that some 300 million people in the European Union 

and the United States have at least one or more chronic disease that may benefit from 

home health monitoring. Eventually, Berg listed cardiovascular irregularities, 

respiratory problems and diabetes as examples of conditions where home monitoring 

can become a treatment option [20]. 

2.1 Background 

Wireless body area sensor networks (WBASNs) are still in the early development, 

faced with several technology challenges, of which low power consumption is of top 

priority. Saving energy is a very critical issue in WBASN because batteries typically 

power sensor nodes with a limited capacity. Since the radio is the main cause of power 

consumption in a sensor node, transmission of data size should be limited as much as 

possible. There are four basic components in a sensor network [21]:  

 An assembly of distributed or localized sensors;  

 An interconnecting wireless-based network ;  
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 A central point of information clustering;  

 A set of computing resources at the central point e.g. PC/PDA or beyond in order 

to handle data correlation.  

Power consumption is particularly critical for wireless sensor networks operating on 

limited power reserves, such as batteries or solar cells. Power consumption must be 

controlled due to the limited power supply for a sensor node with small capacity. 

Therefore, the reduction of data rate will affect the reduction of power consumed for 

wireless communication [22]. Hence, this research work will pursue a holistic 

approach to finally reduce the size of data by sending short stream of data, based on 

leveraging compressed sensing (CS) for data acquisition and detection and 

classification techniques. 

 

The healthcare industry is one of the world's largest and fastest-growing industries. 

Consuming over 10 percent of gross domestic product of most developed countries, 

healthcare can form an enormous part of a country's economy [23]. Several factors 

lead to the increasing demand for revolutionary solutions in the healthcare industry, 

including: 

 Increasing number of CD patients; currently more than 860 million [24], the 

World Health Organization (WHO) claims. It is estimated that global health 

expenditure on CDs exceeds 80% of whole health, national funds in the US and 

Europe [24]. 

 Increasing percentage of average of death caused by CDs, e.g. 87% in countries 

with high income per individual [25, 26]. 

 The percentage of elderly people over 60 is on the rise [25]. 
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Due to these factors, traditional healthcare cannot provide the scalability required to 

cope with the growing number of elderly and CD patients, as it requires a physical 

one-to-one relationship between the caregiver and the patient [25]. Therefore, the need 

for high performance, cost-effective healthcare solutions is one of the critical strengths 

for any developing country seeking sustainable future advancements [13].  

 

Mobile and wireless devices are growing rapidly and are estimated at 5 billion devices 

worldwide. A critical issue of using such devices is the energy that can be consumed 

by these devices. These devices operate on limited power reserves, as they are battery-

operated, while sensing physical measures. Energy consumption is a major challenge 

in limiting the mobile device’s form factor by reducing the size of data that will be 

sent over the wireless channels. 

 

Remote monitoring using WBASN has recently emerged to provide real-time patient 

surveillance and to provide CD patients with more autonomy. The conditions most 

commonly treated by these remote monitoring services include diabetes, cardiac 

arrhythmia, sleep apnea, asthma, chronic obstructive pulmonary disease (COPD) and 

Epileptic Seizure through the EEG signal detection technique [20].   

 

In recent years, the interest in the application of Wireless Body Area Sensor 

Network(s) (WBASNs) for patient monitoring applications has grown significantly 

[27]. The WBASN is a wireless network used for communication among sensor nodes 

operating on or inside the human body in order to monitor vital body parameters and 

movements. The WBASNs based on low cost wireless sensor network technologies 
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could greatly benefit patient monitoring systems in hospitals, residential and work 

environments. Such a system allows easy inter-networking with other devices and 

networks, thus offering health care workers easy access to the patient’s critical as well 

as non-critical data. The WBASN based monitoring system can be used to monitor 

athletes’ performance to assist them in their training activities. This system type could 

be seen as a special purpose wireless sensor network with a number of system specific 

design requirements [28]. A WBASN is generally incorporate wearable and 

implantable nodes operating in two different frequencies. An implantable node is most 

likely to operate at 400 MHz using the Medical Implantable Communication Service 

band, whereas the wearable node could operate in an Instrumentation Scientific 

Medical/Ultra Wide Band (ISM or UWB) bands or any other specific bands [29].  

 

WBASNs also enable constant monitoring of the health conditions of people with 

CDs. It consists of multiple on-body and ambient sensor nodes, capable of sampling, 

processing, and communicating one or more physiological signs (PSs) (such as Heart 

activity, oxygen saturation, movements, blood pressure and Brain activity) over an 

extended period. Such physiological signs are measured using different types of 

sensed signals such as the electrocardiogram (ECG) [8], acceleration, and EEG [9]. In 

addition, it is used for communication among sensor nodes operating on, or inside the 

human body in order to monitor vital body parameters and movements as well as to 

enable its user with quality of life, assisted living, sports, or entertainment purposes 

[10].  
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Brain status information is captured by physiological electroencephalogram (EEG) 

signals, which are extensively used for the study of different brain activities. They 

provide particularly important information pertaining to the epileptic seizure disease 

[30, 31, and 32]. Epilepsy is a neurological condition, which disturbs the nervous 

system due to brain damage. Also known as a seizure disorder, epilepsy can be 

diagnosed after one seizure if a person has a condition that places him at high risk of 

having another seizure attack. It is reported in [33] that this disease affects 1% of the 

world’s population. However, visual inspection of EEG signals can be very difficult 

and time consuming. That is due to the difficulty of keeping a high level of 

concentration during a lengthy inspection, resulting in an increase in the false positives 

by the operator [34]. 

 

Compressive sensing (CS) as a compression technique with the discrete cosine 

transform (DCT) and its inverse (iDCT) for data reconstructed to the original size are 

utilized. Discrete wavelet transforms (DWT) are used to get the required feature 

extraction that will be needed for the decision making. Feature extraction, detection 

and classification of human related phenomena as well as ensemble classification 

method are utilized. A comprehensive study and comparisons of sensor technologies 

used in terms of applications, wireless radio technologies, and different detection and 

classification techniques is required to realize the end-to-end WBASNs framework for 

EEG-based epileptic seizure classification. The research framework consists of three 

parts: WBASNs to capture medical phenomena as raw data, data preprocessing such 

as compression technique, and communication medium as well as detection and 

classification at the doctor’s side. 
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2.2 WBASNs General Framework 

Recent improvements in signal processing and wireless communications have 

motivated great interest in application development of wireless technology in 

healthcare and biomedical research, including WBASNs. WBASNs General 

Framework (WGF) consists of three major components for real-time applications, 

namely sensing and preprocessing (SAP), an application-specific WBASN 

communication (AWC), and detection and classification (DAC) to the patient. SAP 

contains a number of sensors for capturing a raw data related to medical phenomena, 

including blood pressure, respiratory rate, ECG, and EEG. Analysis of raw data, 

including, detection and classification of medical anomalies will occur in the DAC 

component, providing strict and accurate criteria for the physician to make 

recommendations that may sometimes feed-back to the patient to provide proactive 

treatment. Figure 2.1 shows a WBASNs General Framework (WGF) in the real life.  

 

Figure 2.1. General WBASNs Framework [11] 
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Figure 2.2 shows the conceptual model that illustrates our WBASNs general 

framework in more details. In sensing and preprocessing stage, data are gathered and 

processed. This includes sampling, filtering, or compression. Next stage shows the 

communication environment, which transfers the processed data to server side.  In the 

last stage, features are extracted from receiving data, which are used to detect and 

classify the seizure type.  

 

Figure 2.2. WGF Conceptual Environment 

2.3 Sensing and Preprocessing 

Sensor platform architecture typically consists of a sensing device, an operating 

system (OS), and a radio frequency environment and power management elements. 

Sensing is the detection of a physical presence of data and the transformation to a 

signal that can be read by an observer or instrument [35]. A well-designed WBASN 

provides doctors with precise real-time and historical information. It is important that 

the patient should be comfortable and accept the system technologies if they are used 

in daily life.  
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WBASNs can be categorized as single-sensor or multi-sensor systems. Single-sensor 

systems use a single unit placed on the human body with one channel of 

communication allocated to it. Multi-sensor systems use multiple units, either of the 

same or different types of sensors, on the patient. The readings from the sensors are 

usually processed together to extract more accurate readings. In this case, each sensor 

can have its own wireless channel or they can be combined all and synchronized into 

one channel [36].  

The following types of sensors in WBASN, which are used in respiration application, 

may be single sensor or integrated multi-sensor platform. The sensors can be 

originated from [37]: 

 ECG/EEG/Electromyography (EMG) sensors are used for monitoring heart 

activities, brain activity, and skeletal muscles. 

 Pulse Oximetry monitors the quantity of oxygen that is being "carried" in a 

patient's blood. 

 Blood glucose level sensor measures the patient’s glucose level in blood.  

 Body temperature sensor is used to measure the temperature. 

To better observe a human’s vital signals, a wide range of commercial sensor 

technologies are used to capture physical data such as, accelerometer, EMG, pulse 

oximetry, respiration rate, heart rate, blood pressure, blood sugar, temperature sensors, 

ECG electrodes, and EEG electrodes, will be deployed. ECG and EEG electrodes are 

manufactured in several types, including disposable electrodes, reusable electrodes, 

headbands or caps, and needle electrodes.  
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For example, an ECG electrode is a device attached to the skin on certain parts of the 

patient’s body, such as arms, legs, and chest to detect electrical impulses produced 

each time the heart beats. Electrode position for a 12-lead ECG is standard, with leads 

placed on both the left and right arm and leg. Another example is the EMG, which 

typically uses four electrodes to measure muscle tension as well as to monitor for an 

excessive size of leg movements during sleep [38].  

In contrast, EEG Neuro-feedback, is a type of bio-feedback that uses real-time displays 

EEG to show brain activity, placing electrodes to gather EEG on approximately 20 

different areas of the scalp [39]. The EEG electrodes are placed according to the 

international 10-20 system and EEG generally uses six "exploring" electrodes and two 

"reference" electrodes, except if a seizure disorder is suspicious, and in which event 

more electrodes will be applied to document the presence of seizure activity. The 

implantation of electrodes is accomplished to exactly localize the seizure generating 

area, which is described as the epileptogenic zone [40].  
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The following, Table 2.1, shows sensors employed in WBASNs systems and their 

typical data rate [41, 42]. 

Table 2.1:  

Common Description of Sensors in WBANs 

Sensor Type 
Signal 

Type 
Measured data description 

Compression 

needed 

Sampling 

Rate 

Accelerometer Body Move Measure the three dimensional acceleration 
Required for 

3D 
100 KHz 

ECG/EEG/ 

EMG 

Skin/ scalp 

Electrodes 

Measure Electrical activity of the heart, 

brain activity, and skeletal muscles 

respectively 

Recommend  
250/250 

2khz 

Pulse Oximetry 
Oxygen 

saturation 

Measure the quantity of oxygen that is being 

"carried" in a patient's blood 
Not required <1 Hz 

Heart rate 

 

Pulse 

oximeter/ 
Frequency the cardiac cycle Not required 60 kHz  

Blood pressure 

 

Arm cuff-

based 

monitor 

Used to measure the systolic and diastolic 

pressures. 
Not required <1 Hz 

Blood glucose 

 

Strip-base 

glucose 

meters 

Measures the quantity of glucose in the 

blood. (type/source of sugar/energy) 
Not required <1 Hz 

Temperature 

probe 

Body 

and/or skin 

temperature 

A measure of the body's ability to generate 

and get free of heat 
Not required < 1 Hz 

 

The wireless sensor node OS plays a fundamental role in the overall capabilities and 

performance of the platform. Early research into the OS for sensor networks lead to 

the development of TinyOS by researchers at UC Berkeley [43]. TinyOS is used in 

the processing of signals captured. A transceiver communication unit allows the 

transmission and reception of data to other devices that connecting a wireless sensor 

node to a network. Power management is provided by the operating system to enforce 
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an optimal way of utilizing energy. Conserving power involves accessing/controlling 

components of the sensor node. The components that expose power management 

interfaces are the processor, battery and radio. The components that can be controlled 

to conserve power are processor and radio. An increasing number of electrodes affect 

the mobility and convenience of the human subject. The more electrodes are used, the 

more accurate the data will be. However, this will affect the mobility of the user 

negatively. 

Preprocessing manifested by the procedures performed on the raw data to be ready for 

analyzes and processing of the application. Preprocessing technique transforms the 

data into a format that will be more easily and processed effectively for the user 

purpose [44]. Kotsiantis et al. in [45] address issues of data pre-processing that can 

have a significant impact on the performance of the data analysis, including feature 

extraction, and classification. Data preprocessing includes sampling, data filtering, 

and compression. They present a well-known algorithm for each step of data 

preprocessing in case if there is much irrelevant and redundant information present or 

noisy and unreliable data. Xu in [46] presented a model of the data preprocessing to 

reduce the energy consumption attribute of communication between the nodes and 

enhance the effectiveness of data transmission of wireless sensor networks by means 

of utilizing independent and intelligent multi-agents. In addition, the model presents 

the algorithm to accomplish data preprocessing and avoids the error of the data 

collection.  

Other research, Ahmad et al. in [47] present a software application that resides in the 

personal digital assistant (PDA) carried by each patient. This application periodically 
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performs an initial assessment of the patient’s condition based on the available data to 

work reducing the level of data. If the parameter were within the normal range of 

health, the input data for that period will be decreased to a few representative values 

only. Otherwise, all the data will be transferred over the wireless network to the central 

database for further analysis. However, before transmitting the digitized EEG-based 

and epileptic seizure data, and as part of preprocessing inside the sensor, three major 

procedures are performed, namely data filtering, data sampling, and data compression.  

One of the important healthcare areas is concerned with the epileptic seizure, which is 

a noninfectious disorder disease of the brain that affects people of all ages. Seizures 

are a symptom of something going on in the brain. Seizures seen in epilepsy are caused 

by disturbances in the electrical activity of the brain. Epileptic seizure refers to one of 

the most common brain disorders. Epilepsy is a neurological condition, which affects 

the nervous system. It is a medical disorder that produces seizures affecting a variety 

of brain and physical functions, also known as a seizure disorder. 

2.3.1 EEG-Based Epileptic Seizure 

The EEG is the most popular technique used to study brain functions and to diagnose 

neurological disorders by physicians and scientists, Adeli et al. [48]. According to the 

World Health Organization (WHO) Fact-sheet No. 999, October 2012, [49] around 50 

million people over the world have epilepsy. EEG is potential measurement of that 

reflect the electrical activity of the human brain. EEG is an easy test available that 

provides a proof of how the brain functions over time.  Brain status information is 

capture by physiological EEG signals, extensively used for the study of different brain 
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activities. One of these states is the epileptic seizure detection.  Epilepsy or epileptic 

seizure refers to the one of the most common brain disorders usually caused by brain 

injury. Approximately, one in every 100 persons is expected to experience a seizure 

disorder in their lifetime [33]. The diagnosis of epilepsy is clinical, however, the scalp 

EEG is the most widely accepted test for the diagnosis of epilepsy [50, 51].  

The EEG is the representation of the electrical activity happening on the surface of the 

brain. This activity will show on the EEG machine screen as waveforms of altering 

frequency and amplitude computed in micro-voltages. Generally the EEG waveforms 

are classified by the frequency, amplitude, and shape in addition to the locations on 

the scalp that are recorded. The most well-known classification techniques are used to 

classify the EEG waveform frequency, such as alpha, beta, theta, and delta [52]. 

Normally, EEG waveforms are defined and depicted using their frequency, amplitude, 

and location [19]. A key characteristic used to describe normal or abnormal EEG 

rhythms is frequency (Hertz-Hz). For the EEG of a wakeful adult, waves of 8 Hz and 

higher frequencies are normal, while waves with seven and less are classified as 

abnormal. In certain situations, EEG waveforms of suitable frequency for age and state 

of wakefulness are considered abnormal because they occur at an unsuitable scalp 

location or determine inequalities in rhythmicity or amplitude [53].  

Generally, the challenge with WBASNs is the power consumption, as they should, 

work continuously in order to keep the monitoring patient’s status.  One of the ways 

to ultimately save power is to reduce the size of EEG data sent over wireless channels 

by using data compression techniques. Due to compression, and during reconstruction 

at the receiver side, some important information may get lost. Additionally, 
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transmitted signals might be influenced by distortion, interference, and noise. In order 

to minimize EEG data size, several techniques have been utilized: sampling, filtering, 

and compression. 

2.3.2 Sampling 

Sampling is a principle that engineers follow in the digitization of analog signals. For 

analog-to-digital conversion that leads to the accurate reproduction of the signal, 

samples of the analog signal must take repeatedly and the number of samples per 

second is called the sampling rate or sampling frequency. Sampling theory, known as 

the Nyquist theorem [54], provides a prescription for the minimal sampling interval 

required to avoid aliasing. It states that a signal must be sampled at least twice its 

highest analog frequency in order to extract all of the information from the bandwidth 

and accurately represent the original acoustic energy. This can be represented 

mathematically in [54] as:  

𝑓𝑠 ≥ 2𝑓𝑐 (2.1) 

where fs is the sampling frequency (samples are taken per unit of time or space), and 

fc is the highest frequency contained in the signal. Hence, a simple way to avoid 

aliasing is always have enough samples to capture the spatial or temporal variations in 

the signal [54]. 

Sampling techniques in the field of sensor networks have been extensively studied in 

the literature. For instance, [55] proposed a novel adaptive sampling technique based 

on Kalman Filter estimation error to adaptive adjust the sensors' sampling rate within 
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a given range; where the sampling rate at each sensor adapts to the streaming-data 

characteristics. This adaptive sampling was found to be desirable not only to preserve 

resources, but also to improve the overall quality of results. To minimize Kalman Filter 

estimation error over all active streaming sensors, the server allocates new sampling 

rates under the constraint of available resources. The system results show performance 

upgrade 3 to 4 times compared to the uniform sampling when input parameters are 

chosen carefully. 

An adaptive sampling approach (ASAp) to energy-efficient periodic data collection in 

sensor networks also has been developed in [56]. In this work, a dynamically changing 

subset of the nodes used as samplers such that the sensor readings of the sampler nodes 

are directly collected. To predict the values of the non-sampler nodes, probabilistic 

models that locally and periodically constructed are used. ASAp approach 

mechanisms are used to minimize the number of messages used to extract data from 

the network and increase the network lifetime while keeping the quality of the 

collected data high in the scenario. This scenario, like a certain size of data quality, 

can be traded off in order to decrease the power consumption of the network. The 

simulation-based experimental results and study present the effectiveness of ASAp 

under different system settings. 

Nodes in wireless sensor networks often suffer from failure, limited storage capacity, 

computing ability, and battery power. Hence, focusing on inaccuracy data and power 

limitation, [22] proposed a sampling frequency control algorithm and a data 

compression algorithm. These algorithms are combined based on features of sensed 

data. The sampling frequency control algorithm adjusts the sampling frequency of the 
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sensed data dynamically while the data compression algorithm is adopted to reduce 

the size of transmitting data to save energy of sensors when the signal frequency 

cannot be controlled. The results of experiments and analysis show that the proposed 

algorithms can decrease sampling times, reduce the size of transmitting data, save 

energy of sensors, and improve the query efficiency. 

In nature, usually WSN communications are multi-hop and multipath; data from a 

source to a sink node is relayed and overheard using several intermediate nodes. Due 

to this multi-hop and multipath communication advantage, each user query may leave 

a trace of collecting data among the communication nodes, which can then be used to 

answer future global aggregation requirements at node level without further 

communication. This mode of data communication by proposing an opportunistic 

sampling method for accumulating global knowledge at the node level can be seen in 

[57]. This global knowledge can greatly improve numerous WSN applications when 

used in data validation, event detection, and query optimization.  

2.3.3 Data Filtering  

Filtering refers to the process of defining, detecting and correcting errors in sensed 

data, in order to minimize the impact of errors generated by external noisy data. Filter 

scans the data for multiples/clones/duplicates of records and inconsistent data to be 

excluded. Whenever unnecessary data occurs, one representative record is chosen or 

constructed. The rest are deleted and data is reduced in size as a result. The output will 

finally be refined data, but still potentially contains errors. An effective energy-saving 

filtering mechanism is proposed in [58] to enhance the energy-efficiency of data 
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gathering. This proposed filtering framework mainly puts emphasis on reducing the 

production of redundant loads at gathering stage to greatly reduced energy cost using 

a self-adaptive filtering scheme. This framework aims to achieve energy saving by 

reducing the redundant communication loads in networks, which is the trade-off 

between data precision and energy-efficiency. Compared to classical data gathering 

approaches, framework in [58] performs better regarding energy-saving effect.  

To reduce the sensor data volume that arises from the use of continually transmitting 

sensors (e.g., EEG, ECG or EMG), [59] proposed a context-aware filtering technique 

in which the relaying mobile device dynamically modifies its processing logic based 

on changes in the user’s context. They implemented the Healthcare-oriented Adaptive 

Remote Monitoring (HARMONI) middleware in order to evaluate this technique, on 

a mobile device, and used it to collect real sensor data from users. HARMONI includes 

a lightweight event engine that runs on the mobile device, and processes incoming 

sensor data streams using rules that are appropriate for the current context. Their 

experiments demonstrate that context-aware filtering can reduce the uplink bandwidth 

requirements of the system by up to 72%. Eventually, given brief information about 

the filter technique, which is one of the sensing preprocessing in the above conceptual 

model, however, the filter technique is out of this research scope.  

2.3.4 Data Compression 

In contrast to filtering, which potentially focuses on reducing errors and unnecessary 

data (such as duplicate data), compression focuses on reducing the size of physical 

data traffic that the sensor sends over the wireless channel, to improve bandwidth 
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utilization, power consumption, and possibly speed of processing and memory space 

required by the application. Data compression can be categorized into two methods: 

lossless, and lossy. The lossless method promotes the reconstruction of the original 

signal after compression with no loss of any type. While preserving all the signal 

characteristics, this method may require excessive bandwidth for communication [60]. 

In addition, depending on the application, signals may not be required in full to be able 

to detect the patient’s anomalies.  

In contrast, the lossy method will not get the original signal accurately after 

compression but may be more bandwidth efficient, while minimizing the effect on the 

application process. A lossy method used two major criteria: The CR that is 

representing the ratio between the original signal and compressed signal; the 

percentage root-mean-square difference (PRD) which is defined as the error criterion 

in estimating signal rebuilt for lossy compression [60]. The error criterion for lossy 

compression techniques to estimate the distortion of the signal rebuilt with respect to 

the original one is very important, especially for an EEG signal, where a slight loss or 

change of information can lead to wrong diagnostics. The controlled transmission 

quality measure PRD for EEG compression is described in Equation 2.2 as [60, 61]: 

𝑃𝑅𝐷 = √
∑ (𝑥(𝑖) − �̂�(𝑖))2𝑁
𝑖=1

∑ (𝑥(𝑖) − 𝜇)2𝑁
𝑖=1

× 100 % (2.2) 

where )(ix and �̂� (i) are the ith  samples of original and reconstructed EEG signals of 

length N respectively, and  μ is the signal mean value.  
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In [62], designed and implemented two lossless data compression algorithms, namely 

entropy encoded codebook compression and pipelined codebook compression.  Both 

of them are built over the codebook compression techniques. After deployment, they 

assumed that each sensor node is stationary and capable of getting its location 

information using GPS using a camera sensor network. The benefit of this technique 

is to reduce the size of memory occupied by the compression and short processing 

time needed. This leads to a reduction of the overall delay of the data packet 

transmission. Other research in [63] proposed quad level vector for ECG signal 

processing to achieve a better performance for both compression flow and 

classification flow, considering low-computational complexity. The classification 

algorithm has been employed for methods of the heartbeat segmentation and the R-

peak detection. The results show that with the proposed compression techniques the 

overall power consumption is reduced by 45.3%.  

In [64] presented a lossless data compression algorithm to perform compression using 

two code options. The data sequence to be compressed is divided into blocks; the 

optimal compression scheme has been applied to each block. The results achieved 

compression performance up to 74.02%. 

In fact, data compression reduces the power consumed during communication by 

transmitting a shorter data stream due to compression. Transmitting single bits of real 

data is equivalent to executing 300 lines of code on a typical processor [29]. One of 

the famous data compression techniques is compressive sensing (CS), it is considered 

an alternative sampling theory, which is, employed to compress the EEG data with 

different values using discrete cosine transform (DCT) technique. Thus, to reconstruct 
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the compressed data back at the receiver side, the inverse DCT (iDCT) technique was 

utilized; the following sub-sections will give more details about the CS, DCT and 

DWT.  

2.3.5 Compressive Sensing 

Compressive sensing (CS) is a new approach of reconstructing a sparse signal much 

below the significant Nyquist rate of sampling [65]. Thus, CS has been considered for 

efficient EEG acquisition and compression in several application contexts since it is 

acquire measurements fast [66, 67]. CS shows that certain signals can be recovered 

from far fewer samples than Nyquist sampling uses [68]. The term sparse indicates 

that most of the signal sets are of zero values. However, spikes in the signal with 

indeterminate distances represent nonzero values. So sparse means that magnitude 

arranged transform coefficients decay quickly, at that the signal is compressed [61, 

69]. 

As the compression process required in the wearable devices, CS has a low 

computational complexity that is potentially suitable for use in wearable computing 

systems as the compression process. The research works in [66, 67] have focused on 

the sparse modeling of EEG signals and evaluating the efficiency of CS-based 

compression in terms of signal reconstruction errors. The work in [61] has tried to 

estimate the low-power potential of CS for portable EEG systems using datasheet-

extracted power consumption figures for the various components. It also estimates the 

required size of processing and wireless transmission.  
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The research works of [70, 71, 72, and 73] demonstrated that a finite-dimensional 

signal having a sparse or compressible representation could be reconstructed from a 

small set of linear, non-adaptive measurements. 

As the sensor is battery operated, the power in wireless body sensor networks 

(WBASNs) is limited. In [74], proposed a compressed sensing framework to 

efficiently compressed EEG signals in WBASNs to minimize the size of data 

transmitted by the sensor. For energy efficiency, they provide a non-adaptive 

compression scheme to compress EEG signals in WBASNs at the sensor node. On the 

other hand, a CS-based reconstruction process has been implemented. This achieves a 

better quality and more energy efficient as compared to the energy-hungry JPEG2000 

[74] compression framework in terms of computation and wireless communication.  

In the tele-medicine applications, the potential of CS in EEG signal compression was 

found in [75, 76]. The research in [75] provides a practical performance of the 

compressive sensing in several implementations when applied to scalp EEG signals. 

They focused on reviewing existing data sparsifying dictionaries and data 

reconstruction algorithms. This has been done for 18 different implementations of the 

CS theory. Consequently, authors in [75] introduced performance results from testing 

different groupings of these elements to determine which one produced the best 

results. The results show the applicability of single-channel CS for EEG signals based 

on the proposed application and acceptable reconstruction error.  

After two years, the same authors in other work [76], focused on the reconstruction 

algorithms, surveying existing sparsifying dictionaries, in order to determine the best 
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results, they tested a different combination of these elements. The results show that 

the limited applicability as a compression technique when applied to single-channel 

CS for EEG signals, authors noticed that this mostly depends on the requirements of 

the application and more precisely on the reconstruction error that is acceptable. 

In the last decade, the Discrete Cosine Transform (DCT) has appeared as the effective 

data transform in most visual systems due to its low complexity at the transmitter side, 

which is very important. DCT is useful since it has been extensively used in image 

and audio compression by modern video coding standards. DCT has a possibility of 

fixed basis data and fast implementations. It involves the use of just cosine functions 

and real coefficients as well as simpler to calculate. DCT is used as the basis to sparsity 

the EEG signal as part of the CS framework. It is similar to a Fourier-related transform 

like the discrete Fourier transform making use of both Sins and Cosines and requires 

the use of complex numbers; however, DCT uses only real numbers and low 

computational complexity at the transmitter side [19]. More detail discussion about 

discrete cosine transform is given in Chapter 4. 

The following section, feature extraction, detection and classification will be 

discussed, which are on the server side. 

2.4 Detection and Classification 

On the other side, in order to analyze EEG data that should be decompressed, 

reconstructed and then extract its features, and finally, the EEG-based epileptic seizure 

classified. 
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2.4.1 Signal Reconstruction  

There are many reconstruction techniques; the well-known traditional approach of 

reconstructing signals or images from compressed data is a Shannon Nyquest theorem 

[42], which indicates, “The sampling rate must be twice the highest frequency”. 

Compressive sensing (CS), compressive sampling or sparse recovery provides a new 

fundamental approach to compress data [70, 73]. CS is a promising technique that 

performs compression below Shannon Nyquest theorem, while obtaining the desired 

reconstruction accuracy. It predicts that a specific signal or images can be recovered 

from what was previously believed to be highly incomplete information. Certainly, in 

order to compress signal 𝑥0 simply one may store the largest k entries. The non-stored 

entries are set to zero for reconstructing 𝑥𝑟 from its compressed version, and 

reconstruction error. At this point, it is highlighted that the procedure of achieving the 

compressed version of 𝑥0 is adaptive and nonlinear since it needs the search of the 

largest entries of x in absolute value. Especially, the location of non-zero is a nonlinear 

type of information. 

On the receiver side, a reconstruction/decompression executes the reverse operations 

to those made by compression to get the original source data. The challenge in this 

process is to retrieve original data, which might be noised or lost.  

2.4.2 Feature Extraction 

EEG Feature Extraction plays a significant role in diagnosing most of the brain 

diseases. Obtaining useful and discriminant features depends largely on the feature 

extraction method.  
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The Discrete Wavelet Transform (DWT) method is widely used [51] due to the nature 

of EEG signals, which are time varying and space varying. It captures both 

frequency and time location information [77, 78, 79 and 80]. The key feature of 

wavelets is the time-frequency localization. It means that most of the energy of the 

wavelet is restricted to a finite time interval [32]. Using multi-resolution wavelet 

analysis, basically, DWT decomposes the EEG signals into different frequency bands. 

The Discrete Wavelet Transform (DWT) is an implementation of the wavelet 

transform using a discrete set of wavelet measures and translations follow some 

defined rules. In other words, this transform decomposes the signal into different 

orthogonal set of wavelets, which is the main difference from the continuous wavelet 

transforming, or its implementation for the discrete time series [79, 80].  

The reconstruction of the signal is concerned, in many cases as far as the information 

was highly redundant. This redundancy requires a significant volume of computational 

time and resources. The DWT provides sufficient information for both analysis and 

assembly of the original signal, with a significant reduction in the computation of time. 

Eventually, DWT is the most popular technique, because the EEG data is time-

frequency domain, this method is capable of capturing valuable time and frequency 

information simultaneously [81]. 

Since EEG signals are time-varying and space-varying non-stationary signals, the 

DWT method is widely used [51, 77, and 78]. The research work in [82] proposed a 

method for seizure detection in Intracranial EEG by using lacunarity with Bayesian 

linear discriminant analysis (BLDA) classifier. They used DWT as an analysis tool for 

EEG feature extraction. Lacunarity is a measure of homogeneity for a fractal. The 
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wavelet transform with the statistical features of lacunarity extracted from the sub-

band are decomposed with EEG signals. These features are inputs for BLDA classifier 

for training and classification. In addition, they used post-processing operations on the 

BLDA outputs to achieve accurate EEG classification and reduce false positive. This 

post-processing includes smoothing, threshold judgment, multichannel integration, 

and collar technique. The experimental results on Freiburg EEG datasets show that the 

proposed method can achieve a better sensitivity and low false detection rate [82]. 

Based on the features used, different techniques can be generally categorized into 

time-domain or frequency-domain-based techniques.  

Time-domain features are easily computed and usually their time complexity is 

manageable. The authors in [83] proposed Time Domain Parameter (TDP) based 

feature extraction. It is a generalized form of the Hjorth parameter and can be 

computed efficiently. The TDP feature is then fed to a Linear Discriminant Analysis 

classifier that is utilized in a Brain Computer Interface application. Five time-domain 

features; namely summation, average, standard deviation, zero crossing and energy 

are proposed in [84]. Subsequently, they are used by a set of classifiers for the purpose 

of epileptic seizure detection. The output of the classifiers was then combined, using 

the Dempster’s rule of combination, for a final system decision. 89.5% of 

classification accuracy was achieved.  

Mirowski et al. in [85] evaluated out-of-sample seizure prediction performance in 

patients with epilepsy EEG, and then compared each combination of feature type and 

classifier. Classification methods and the success of pattern recognition have been 
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given based on machine learning. The Freiburg dataset has been used to evaluate the 

prediction methods for classification of EEG signals in epilepsy.  

SVM logistic regression or convolutional neural networks have been used as machine 

learning-based classifiers to discriminate interictal from preictal patterns of features. 

Results show that the proposed technique is outperformed by the previous seizure 

prediction methods on the Freiburg dataset. However, it only targets two datasets that 

discriminate two interictal from preictal seizure; also, they did not address the 

compressed and noisy EEG data. Other work in [51] has shown some preliminary 

investigations on Best Basis-based wavelet packet entropy as a feature extraction of 

EEG signals for epileptic seizure detection. This work did not consider the time for 

feature extraction, which represents a significant factor of EEG-based detection of 

epileptic seizure, the fast feature extraction is important in a real-time setting. 

However, fast feature extraction might affect identification accuracy.  

Other research work in [86] presents an overview of appropriate signal processing 

techniques requested to investigate sleep EEG signals in both pediatric and adult 

populations. Three key stages needed for the investigation of sleep EEG namely, 

preprocessing, feature extraction, and feature classification. Preprocessing describes 

the signal processing technique that will deal with the preparation of sleep EEG prior 

to further analysis. Feature extraction and classification focus on most commonly used 

signal investigation methods used for characterizing and classifying sleep EEGs.  

Frequency-domain features are usually obtained by transforming the EEG signals into 

their basic frequency components. The characteristics of these components fall 
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primarily within four frequency bands [87]. In [88], a classification system uses a one-

second time window to extract relevant features. The fast Fourier transformation 

(FFT) is used to transform the data within the window into the frequency domains. In 

order to distinguish between several brain states, frequency components from nine to 

28 Hz were studied and presented to a modified version of Khonen’s learning vector 

quantization classifier.  

Other research in [51] has proposed an EEG classification system for epileptic seizure 

detection. It consists of three main stages, namely, 1) the best basis-based wavelet 

packet entropy method, which is used to represent EEG signals by wavelet packet 

coefficients, 2) K-NN classifier with the cross validation method in the training stage 

of Hierarchical Knowledge Base (HKB) construction. Lastly, 3) the top-ranked 

discriminate rules from the HKB will be used in the testing stage to compute 

classification accuracy and rejection rate. They reported a classification accuracy of 

close to 100%, however, their experiments considered only healthy subject which is 

class A and epileptic seizure active subject which is class E data and never considered 

seizure-free intervals which are class C or class D. Trivially, neglecting such classes 

eliminated the main source of difficulty in this classification process. 

Other reported techniques utilize a mix of time and frequency domain features, such 

as in [53]. Using the EEG amplitudes, the first, second, third, and fourth statistical 

moments (i.e., mean, variance, skewness, and kurtosis) were extracted. Along with 

these time-domain features, energy and other frequency domain features were 

extracted. A support vector machine (SVM) was then applied to the obtained features 
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for seizure classification. The following paragraphs provide a brief description of these 

classifiers. More details are given in chapter 3. 

Song and Lio in [89], proposed an approach for epileptic seizure detection based on 

sample-entropy (SampEn) together with an extreme learning machine (ELM) to get 

features for EEG classification. This approach is used to classify different subjects as 

normal subjects, subjects not having an epileptic seizure, or subjects having an 

epileptic seizure. The results show that the proposed approach gives a better 

performance with the accuracy and fast learning speed. However, the value of the 

SampEn falls rapidly during an epileptic seizure. 

Guo et al. in [90] proposed a new feature extraction method based on line length 

feature of the sub-band signals and combined this with an artificial neural network 

(ANN) to detect epileptic EEG signals. This combination has achieved the following 

success: the traditional updating for the back propagation algorithm of ANN, and 

manage to decrease into a local minimum. However, the running speed is very slow 

to fulfill the requirements of clinical and real-time applications. 

Another research in [91] conducted performance analysis of EEG patterns using 

discrete wavelet transform (DWT) and Independent Component Analysis (ICA). 

DWT & ICA have been utilized for feature extraction in the principle of time – 

frequency domain analysis. These features are used as input for the SVM and ANN 

for EEG classification. SVM and Neural Network algorithms have been implemented 

to detect epileptic seizure for classification stage. The methods are then tested on only 

both data sets of EEG data (Sets H and S) for classification between normal and seizure 
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signals with the same dataset. However, they tested only two datasets of EEG that 

easily discriminate between both of them and did not address the noisy EEG data 

problem. 

2.4.3 Classification Techniques 

EEG detection and classification plays an essential role in the timely diagnosis and 

analyzes potentially fatal and chronic diseases proactively in clinical as well as various 

life settings [11]. Liang et al. in [92], proposed a systematic evaluation on EEG by 

combining both complexity analysis and spectral analysis for epilepsy diagnosis and 

seizure detection. Around 60% of the features extracted from the dataset were used for 

training, while the remaining ones were used for testing the performance of the 

classification procedure of randomly selected EEG signals [92].  

The method proposed in [93] uses the features namely, average EEG amplitude and 

average EEG duration, coefficient of variation, dominant frequency, and average 

power spectrum as feature inputs to an adaptive structured neural network. The method 

proposed by Pradhan et al. in [94] uses raw EEG signal as input to a learning vector 

quantization (LVQ) network. The authors in [95] have proposed a new neural network 

model called LAMSTAR network and two time-domain attributes of EEG, namely, 

relative spike amplitude and spike rhythmicity. They have been used as inputs for the 

purpose of epilepsy detection.  

The research work in [34], proposed bag-of-words model used for biomedical time 

series represented as a histogram of the code-words, each entry appeared in the time 

series such as EEG and ECG signals. In this model, both local and global structural 
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information is well utilized to capture high-level information. DWT was employed to 

extract a feature vector from each local segment to characterize the local segment. The 

results of the proposed method are insensitive to the parameters of the bag-of-words 

model and robust to noise.  

Other research in [96] presents numerous classifier systems for classification of EEG 

signals. In the robust manner, they apply several methods to classify motor imageries 

originating from the brain. At each level, DWT decomposition was used as feature 

extraction and reduced the dimension of the feature space by extracting mean, min, 

max and standard deviation parameters of the brain signal. Also, they utilize several 

classic classifiers in order to apply them in the multiple classifier system, such as k-

NN, multilayer perceptron, Naïve Bayes, linear discrimination analysis (LDA), and 

SVM, which outperforms the results of the other proposed methods on the dataset. For 

ensemble, to reduce the classification error, the Bagging, Majority voting, weighted 

majority voting, and Adaboost well-known combination methods were evaluated and 

compared. The results refer to that the ensemble method can work to boost EEG 

classification accuracy. 

Since the EEG signals are non-stationary, the traditional method of frequency study is 

not well effective in diagnostic classification.  The research work in [97] provides 

efficient automatic scheme to support a physician in the detecting process. These 

schemes facilitate the detecting of epilepsy and improve the administration of long-

term EEG recordings. Using wavelet transforms to analyze the EEG signals, and for 

classification, they were using multilayer perceptron neural network (MLPNN) and 

logistic regression (LR). In addition, since the early days of automatic analysis of 
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epileptic EEG signals, demonstrations based on the Fourier transform and parametric 

methods have been applied. These methods are based on previous observations that 

the epileptic seizures give growth to changes in certain frequency bands, such as δ 

(0.4–4 Hz), θ (4–8 Hz), α (8–12 Hz), and β (12–30 Hz) bands. In each sub-band, 

certain conventional statistics over the vectors were used to reduce the interval of these 

vectors, such as average power, mean, entropy and standard deviation of the wavelet 

coefficients. The results show that the MLPNN based classifier was more accurate 

than the LR based classifier.  

Two years later, the author in [32] extended his research to present a mixture of 

experts’ (ME) network method in addition to MLPNN to develop classifiers for 

detecting epileptic EEG signals. DWT coefficients of EEG signals were supplying a 

modular neural network structure. The results of the proposed model ME network has 

some potential in the epileptic seizure detection, and achieve a higher accuracy rate 

than the standalone neural network model. However, these methods are not 

appropriate for the frequency decomposition of these signals because epileptic EEG 

signals are non-stationary and multi-component.  

A collection of methods based on ANN has been utilized in the epileptic seizure 

detection and EEG signal classification [98]. This research in [98] categorizes the 

learning technique for neural networks into two types, supervised learning and 

unsupervised learning. Supervised learning requires previous knowledge of the 

analyzed data. The unsupervised learning paradigm has fewer demands for the 

preceding knowledge of the data. The authors in [98] presented an ANN based 

classification model in the epilepsy treatment as a diagnostic decision support 
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mechanism. In addition, the authors used the most popular technique DWT to 

decompose EEG signals into frequency sub-bands to evaluate the proposed 

classification model by implementing different experiments on different mixes of 

seizure data. Results show the proposed model in satisfactory classification accuracy 

rates. 

Other work in [99] proposed a seizure detection method based on using the higher-

order statistical moments of EEG signals calculated in the empirical mode 

decomposition (EMD) domain, such as variance, skewness, and kurtosis. The purpose 

of these moments is differentiating the EEG signals through an extensive analysis in 

the EMD domain. These moments were used as input features in an ANN classifier, 

where the results demonstrate a higher classification accuracy, sensitivity, and 

specificity values. These values were achieved using different approaches based on 

wavelets, time-frequency analysis, and higher-order statistical analysis in the EMD 

domain.  

The authors in [100] presented Daubechies-4 wavelet transform to decompose the 

EEG into three sub-signals for automatic seizure detection with high sensitivity. The 

three sub-signals were within the range of 16 – 32 Hz (d3), 8 – 16 Hz (d4), and 4 – 8 

Hz (d5). In this method, they utilized DWT for detection of seizures from the long-

term intracranial EEG (iEEG) signals. The proposed sub-band signal method was 

delivered through a feature extraction block to calculate four main features of relative 

energy, relative amplitude, and coefficient of variation and fluctuation index from 

wavelet coefficients. Consequently, these features, construct a feature matrix as input 

for SVM to classify both seizure and non-seizure activities. Results show a sensitivity 
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of 94.46% and a specificity of 95.26% with a false detection rate of 0.58/h by using 

this method on a large dataset of 509hrs from 21 epileptic patients in long-term EEG. 

However, in some previous experiments [100] training data and test data from EEG 

signals almost are obtained from the same cases, which may affect the reliability of 

the clinical classifiers. 

The identification of the epilepsy from EEG signals is difficult, very time consuming, 

and costly [101], taking into consideration the large number of epileptic patients 

registered to hospitals and the huge size of data needed to be recorded. In this regard, 

Ba-Karait et al. in [102] introduced an adaptive particle swarm negative selection 

(APSNS) method based on particle swarm optimization (PSO) algorithm to automate 

the detection of epileptic seizure process in EEG signals. This algorithm belongs to 

random optimization algorithms and is used to find an optimal solution to numerical 

and qualitative problems. In addition, it used DWT to analyze the EEG signal to 

extract some features that are required for decision making using the proposed 

APSNS. These features have been used to investigate the performance of the proposed 

APSNS algorithm in classifying the EEG signals. The results show that this method 

outperforms other techniques in the literature in terms of classification accuracy.  

The research work in [103] presented a topographic brain mapping with wavelet 

transform–neural network method for the classification of epilepsies of EEGs signals. 

They used brain mapping for finding the epilepsy location in the brain. The 

preprocessing was included to remove blinking artifacts, electrode movement and 

used DWT for eyeball movement, in order to enhance the speed and accuracy of the 

processing stage. They categorized EEGs signals to normal, petit mal and clonic 
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epilepsy using an expert neurologist, then confirmed by Fast Fourier Transform 

analysis. Counties Wavelet Transform of EEG recording are used to extract features 

that will be the classifier input. Results show that accuracy of the proposed classifier 

in experimental clinical data was achieved by 80%.  

Other research work in [52] proposed a classification technique for seizure and non-

seizure of EEG signals using empirical mode decomposition (EMD) method. They 

used least square SVM (LS-SVM) technique to classify seizure and non-seizure EEG 

signals. The amplitude and frequency modulation bandwidth of intrinsic mode 

functions (IMFs) are using a feature extraction to feed the LS-SVM classifier. Another 

research, Sharma et al. in [104] presented a classification method of two focal and 

non-focal EEG signals. Data from five epilepsy patients who had longstanding drug 

resistance has been used to test the method. The only base classifier used was the LS-

SVM classifier. Average sample entropy and average variance of the intrinsic mode 

functions (IMFs) was obtained based on EMD of EEG signals. The results show that 

the proposed method gives a classification accuracy of 85%.  

The second-order difference plot method of IMF [105] has been used as a feature for 

epileptic seizure classification. The computed area from the diagnostic signal 

demonstrates that the IMF detection is found to be a significant parameter for analysis 

of both healthy and unhealthy subjects [106]. The mean frequency feature of the IMFs 

has come up as a feature to identify variance between ictal and seizure-free EEG 

signals [107]. Wavelet and multi-wavelet transformations have been included in 

analysis and classification of EEG time-frequency of epileptic seizure [108]. However, 

these methods used noiseless data, while in this research both noiseless and noisy data 



 

 48 

were used. Compared with our methods, these datasets are only using the LS-SVM as 

a base classifier, while in this research four different classifiers were used. Compared 

to [103], the proposed technique in [52] achieves better accuracy and the result is the 

best among the LS-SVM classifiers. 

Recently, numerous research and techniques have been developed for analyzing the 

EEG-based epileptic seizure classification. In addition, feature extraction methods 

have been combined with different individual classifier categories. There are different 

methods for data classification such as Decision Trees (DT) and fuzzy logic 

[31,87,109], artificial neural network (ANN) [97,32,93,110], multilayer perceptron 

neural network (MLPNN) [97,32], Naïve Bayesian (NB), k-nearest neighbor (k-NN) 

[83,19], support vector machines [30,19,109], least square support vector machine 

(LS-SVM) [52], and other signal analysis techniques. The comparison of the 

classifiers and using the most predictive classifier is very important. Each of the 

classification methods shows different efficiency and accuracy based on the kind of 

datasets [51, 53]. In addition, there are various evaluation metrics for comparing the 

classification methods that each of them could be useful depending on the kind of the 

problem.  

Extensive experiments have been conducted to test some classifier on the EEG 

benchmark data to nominate and select the best and most popular of four classifiers. 

The following sub-sections depicting common techniques have been used for data 

classification, such as, ANN, NB, k-NN, and SVM classifiers. 
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2.4.3.1 Artificial Neural Network 

Artificial neural networks (ANNs) are mathematical models that are based on structure 

and functional aspects of biological neural networks. ANNs are highly correlated 

managing elements, ones or neurons that theoretically emulate the structure and 

operation of the biological system. Learning in ANNs is carried out via specific 

developed training algorithms; it is found that the rules of learning are supposed to 

simulate the learning procedures of biological systems. There are several types and 

architectures of neural networks mixed fundamentally in the way they learn. ANN is 

able to estimate the posterior probabilities in order to establish classification rules and 

perform statistical analysis [85, and 97].  

2.4.3.2  Naïve Bayesian 

Naive Bayesian (NB) is a type of statistical classifier. It has been demonstrated to be 

effective in many practical applications, including text classification and performance 

management systems. NB is a simple probabilistic classifier that applies the Bayes' 

theorem. It uses a strong (naïve) assumption of the features that depict the classified 

objects, which are statistically independent of each other. The assumption of the NB 

method makes the calculation of the NB classifiers more efficient than the exponential 

complexity.  

Despite this strong assumption, NB proved very effective in many real world-

applications. The NB approach’s main advantage comes from the learning procedure 

computational efficiency, which shows a linear computational complexity [84, 111]. 

Simply, it works by considering that the presence of certain features of a class is 
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irrelevant to any other features. Based on the presence of the other features, the NB 

classifier considers all features individually contribute in the probability.  

2.4.3.3  K-Nearest Neighbor (k-NN)    

This method, amongst the simplest algorithm of all machine-learning algorithms, 

classifies the example by the majority vote of its neighbors. The k-NN classifier is 

based on learning by comparing a given test class with training classes that are similar.  

This algorithm combines two-steps: the first step, find the k training samples that are 

closest to the invisible sample. Secondly, take the commonly occurring classification 

for these k samples, and find the average of these k values in the regression. It can be 

defined by a distance metric called normalized Euclidean distance between two points 

as equation (2.3), given two points Y1= (y11, y12,…, y1n) and Y2= (y21, y22,…, y2n) [19, 

112]. 

𝑑𝑖𝑠𝑡(𝑌1, 𝑌2) = √∑(𝑦1𝑖 − 𝑦2𝑖)2
𝑛

𝑖=1

 (2.3) 

 

2.4.3.4 Support Vector Machine   

SVM uses nonlinear mapping to transform the original data into a higher dimension 

to realize a linear optimal separated hyperplane. SVM is a classification algorithm of 

both linear and nonlinear data. An SVM learner is a strong classifier based on the 

statistical learning theory. It constructs an ideal hyperplane in order to separate the 

data into two different classes to minimize the risks (“that is, a “decision boundary”). 
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It takes a set of input data and predicts for each given input, where two possible classes 

involves might be the input. It is found that SVM presents a compact description of 

the learned model that can be used for prediction as well as a highly accurate 

classification [85, 111]. Moreover, SVM applies decision combination to practice 

multiclass classification since it is a binary classification. SVM is an integrated 

software and powerful method for both classification and regression as well as 

distribution estimation. SVM operator supports types C-SVC and nu-SVC for 

classification tasks, epsilon-SVR and nu-SVR types for regression tasks. Finally, the 

one-class type is for distribution estimation [19].  

Classification techniques reported above provide satisfactory performance given that 

the EEG data are not contaminated by different factors. Although the raw EEG 

datasets (free of artifacts) were used, the lossy compression will introduce signal 

distortion, which will affect the reconstructed data. Therefore, wireless EEG data often 

are compressed before transmission, which means that some important information 

may get lost during the reconstruction process on the receiver side. Moreover, a 

wireless channel may augment the transmission problem by adding noise artifacts to 

the transmitted data. Therefore, a prospective classification technique should take into 

consideration the uncertainty problem contained in the EEG data to be efficient. 

2.4.1 Classification parameters 

The overall accuracy of the classifier represents the degree of closeness of 

measurement results to the true value. There are two factors that affect accuracy 

classification which are specificity and sensitivity, which are defined as a function of 
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the true and false positives and negatives. First, False Positives (FP) refers to the 

condition in which the results are perceived as positive, when there is no definite 

disease or severe illness. On the other hand, True Positives (TP) is a test that shows 

correct behavior by detecting definite disease or severe illness. Similarly, True 

Negatives (TN) is defined as the correct behavior to detect the normal patient condition 

with no severe illness, while False Negatives (FN) are the incorrect detection of 

normal condition, where the subject suffers a severe disease or illness [113].  

Specificity in diagnostic laboratory refers to the ability of an assessor to measure one 

particular organism or substance [60]. Specificity, also known as a class precision, is 

a medical term defined as a percentage ratio of true negative tests for the total number 

of infected patients tested. Moreover, sensitivity also known as a class recall, in 

diagnostic laboratory testing represents the smallest size of a substance in a sample 

that can be accurately measured by an assessor. Sensitivity is defined as a percentage 

ratio of true positive tests for the total number of affected (positive) patients tested. 

Therefore, specificity, sensitivity, and overall accuracy of the classifier can be defined 

as follows [11]: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(2.4) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2.5) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
× 100 

(2.6) 
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Where TP, FP, TN, FN are true positive, false positive, true negative, and false 

negative, respectively. Both positive and negative terms are denoted the classifier’s 

prediction or expectation, and true and false are referring to whether that prediction 

corresponds to the external judgment/observation or not. Consequently, these terms 

have compared the results under the test of the classifier with trusted external 

judgments. 

These equations show that a test with high specificity has few FPs; where as a test 

with high sensitivity has few FNs. 

A classifier performance depends significantly on the data characteristics need to be 

classified. Several experimental tests have been conducted to find the data 

characteristics that affect the classifier accuracy. The accuracy measures and 

confusion matrices are very popular used to evaluate the quality of classification 

schemes.  

2.5 Ensemble Classification Techniques 

Fundamentally, ensemble technique plays a significant role in the problem of EEG 

signal classification. An ensemble classifier is a set of classifiers whose individual 

decisions combined to classify EEG signals. Ensemble approaches utilize the inputs 

of multiple techniques instead of a single technique. The ensemble method is able in 

dealing with small sample size and high dimensionality [114]. Over the past ten years, 

there is a significant theoretical and experimental research in this area which led to 

many methods such as bagging and boosting in order to solve many real problems. 

The ensemble methods idea is to build a predictive classifier approach by combining 
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different classifiers in order to enhance classification prediction accuracy. Combining 

predictions of an ensemble are almost more accurate than the individual classifiers that 

make them up. Generally, it is true that combining several classifiers leads to increase 

in the classification accuracy [115].  

Recently, ensemble (combination) classification methods have attracted growing 

attention from both academia and industry. The research work in [116], evaluated the 

performance of three popular ensemble bagging, boosting and random subspace 

ensemble methods. These methods were evaluated based on EEG signal classification. 

The dataset used was recorded from normal subjects during three kinds of mental 

imagery tasks such as imagination of repetitive left hand movements, right hand 

movements and generation of different words starting with the same random space 

letter. The experiment was conducted on three subjects for underlying applications 

with K-NN, decision tree, and support vector machine as base classifiers. The work 

was mainly based on the spatially filtered by means of surface Laplacian. The authors 

claim that the capability of ensemble methods is subject to the type of base classifiers, 

particularly the setting and parameters used for each individual classifier. However, 

they did not find the best parameter configuration and adaptive method for each 

subject to improve the classification performance.  

 

Generally, it is known that the ensemble classifiers perform better than each individual 

classifier of which they contain. There is an extensive set of several synthesis rules 

that could be used; the simplest one is taking a majority vote of the classifiers used. 

This technique outperforms individual classifiers; however, a more sophisticated 
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approach was developed in [117]. Bostrom et al. in [117] use ensemble classifier, 

which is composed of a set of classifiers; the ensemble output is dependent on the 

classifiers outputs’. Contrary to most approaches, which implemented a Dempster,’s 

rule of combination, the authors in [117] applied Shafer’s theory of evidence for the 

classifier fusion. The results of this research show that among the evidentiary rules, 

the combined ones appear to have better accuracy than the non- combined. However, 

in general, the evidential combination rule does not perform better than the voting 

rules for this particular ensemble design because the choice of combination rule can 

have a significant impact on the performance for a single dataset. 

In other research, [118] presented an ensemble of Radial Basis Function Neural 

Networks (RBFNs) method to identify the epileptic seizure, by optimizing the 

Differential Evolution (DE) and analyses of the EEG signal. This method was based 

on the bagging approach and using the DE-RBFNs as the base classifier. Discrete 

wavelet transform (DWT) was utilized to decompose EEG into different sub-bands. 

The DWT uses multi-resolution filter banks and special wavelet filters for the analysis 

and reconstruction of EEG signals. They extract some basic statistical features to apply 

them as inputs for the ensemble method. They did three different experiments to get 

the performance of the presented ensemble method in the classifications of normal and 

seizure segments. Results have reported a promising performance and the authors 

assured that the proposed ensemble method is better than the individual classifier. 

Diversity classifiers, which in turn make a final combining instruction, play a critical 

role such as learning scenarios. He and Cao in [110] proposed a signal strength-based 

combining (SSC) method to combine the outputs of multiple classifiers to support 
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decision-making in classification. They assumed that each classifier ensemble is 

accompanied with a decision profile 𝑃𝑑(𝑌𝑖|𝑥𝑡), which is described as the voting 

probability from each hypothesis ℎ𝑗  for each testing instance 𝑥𝑡  through all possible 

class identity labels. The elements in 𝑃𝑑(𝑌𝑖|𝑥𝑡) can be obtained directly from each 

hypothesis output, from the confusion matrix based on the training data or cross-

validation method, depending on the different base learning algorithms. This method 

integrates different classifiers in an ensemble system. Comparisons have been made 

for the proposed method with nine major existing combining rules. In addition, the 

authors discussed the relationship of the proposed method with respect to margin-

based classifiers including the boosting methods (AdaBoost.M1 and AdaBoost.M2) 

and SVMs by margin analysis. The results show that the proposed method is 

competitive when compared to the existing classifiers. 

Other research in [119] presented regularized common spatial patterns (R-CSP) and 

aggregation techniques for EEG signal classification in a small sample setting (SSS). 

An ensemble-based solution was given through an aggregated number of R-CSPs in 

order to tackle the problem of regularization parameter determination. The regularized 

CSP uses two parameters, to lower the estimation variance, and to reduce the 

estimation bias, where the rule of generic learning is applied in the regularization 

process. The cross-validation method was employed to determine the regularization 

parameters of the R-CSP for the EEG signal classification in SSS. The classification 

accuracy rates were promising. The overall performance accuracy was 83.9%. 

As seen in the literature above, further research is required on detection and 

classification, especially on compressed and noisy EEG data with different levels of 
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SNR. In addition, the current techniques did not estimate the classification accuracy 

in the case of noisy data and the effect of reconstruction error due to compression. 

Therefore, a new method is desirable for classifying the compressed and noisy EEG 

data. 

The research gap can be concluded from view of the above literature survey. It has 

been found that there is no previous work that focusses on the compression and 

reconstruction of noisy EEG especially when using the AWGN as the channel model. 

Furthermore, there exists no work on the EEG classification problem due to the noise 

or the reconstruction error. Furthermore, most of the above research works focus on 

two classes representing healthy and unhealthy subjects; they did not work with the 

seizure-free intervals subjects. Therefore, this research will investigate the effect of 

reconstruction error due to compression (e. g, using combination of discrete cosine 

transform (DCT) and random matrix) on the classification accuracy. In addition, four 

statistical features from discrete wavelet sub-bands are extracted to collect 32 

attributes of the EEG signal.  The classification accuracy of noisy compressed EEG 

data has been evaluated using different individual classifiers. Finally, an ensemble 

classifier is proposed to enhance the classification accuracy of the noisy compressed 

EEG data. The following table 2.2 shows that the current works compare with the 

proposed work. 
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Table 2.2:  

Comparisons between current work and the proposed work 

No. Current Works (same dataset) Proposed work 

1 
EEG raw data classes [51, 53, 66, 67, 

83, 84, 92, 94, 116, 117, 118] 
EEG compressed and noisy  

2 

Using only two classes of healthy 

and unhealthy [51-54, 89-94, 100-

106, 110, 118] 

Using three classes of healthy, 

healthy with seizure free interval, 

and unhealthy 

3 

Did not address the compressed and 

noise, working only on undistorted  

EEG data [32, 40, 52, 75, 78, 79,84, 

86, 92, and many others]  

Address the compressed data and 

noisy using AWGN as the channel 

model 

4 

Current techniques did not estimate 

the classification accuracy in the case 

of noisy data [64, 74, 82-84, 88, 102, 

103, 108, and many others] 

Propose an ensemble classifier to 

measure the accuracy of noisy data 

5 

Did not address the effect of 

reconstructed error due to data 

compression [32, 76, 82-84, 88, 102, 

103, 108, and many others] 

Address the effect of reconstruction 

error due to compression 

2.6 Summary  

This chapter introduced and extensively analyzed the WBASNs signal processing and 

compression framework. The framework consists of two major components for EEG-

based epileptic seizure, namely sensing and preprocessing (SAP), detection and 

classification (DAC) of EEG-based epileptic seizure. 

In SAP, EEG raw data was used that are related to medical phenomena. To do so, three 

preprocessing techniques have been surveyed: 1) Sampling to provide a formula for 
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the minimal sampling interval required to avoid aliasing based on Nyquist theorem. 2) 

Filtering to clean and revise the duplicate records and inconsistent data acquisition, 

which ultimately achieve a reduction in the redundancy data. 3) Compression 

technique was used to reduce the size of physiological data traffic that sensors send 

over the wireless channel using lossless and lossy methods. While EEG-based 

epileptic seizure data is representing the brain disorder, which is bandwidth intensive. 

The compression is mainly our interest of this research work.  

In DAC, analysis of raw data, including, possibly, detection and classification of 

medical anomalies will occur to get strict and accurate criteria for the physician to 

make recommendations that are usually feedback to the patient to provide proactive 

treatment. In fact, data feature extraction, detection and classification providing 

efficient tools for enhancing the diagnosis of illnesses in various clinical and life 

settings. Finally, features extraction was achieved by DWT, and classification was by 

four individual classifiers. Due to the impairment channels and EEG data which 

resulting in noise or lost some information a Noise-aware signal combination method 

has been proposed as an ensemble classifier to enhance the classification accuracy.  
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CHAPTER THREE 

RESEARCH METHODOLOGY 

This chapter describes the research methodology used in our work. First, it started with 

a literature review of the research problem. Then, two different frameworks for this 

problem have been designed and developed. Afterwards, a mathematical formula is 

formulated for the computation of the hypothesis with the highest probability, and 

proposes a new ensemble method for non-noised and noised EEG data. To obtain an 

efficient solution, the key significant features of two frameworks applied to numerous 

and various inputs were used.  

The proposed solution through extensive experimental and simulation benchmarks has 

been validated and refined. For compressed and reconstructed EEG data, a simulation 

program to elaborate the proposed framework is developed, in order to find better 

classification accuracy and compression ratio. In addition, a simulation program has 

been developed for the mathematical formula underlying the proposed classification 

technique in order to demonstrate the proposed ensemble method. Finally, the 

framework has been evaluated in terms of compression ratio and classification 

accuracy, the proposed ensemble technique in terms of noisy data, and compared the 

results of the proposed solution to existing methods, in order to verify its efficiency.  

3.1 Background 

Figure 3.1 illustrates the general research procedure and shows the different steps of 

this procedure for EEG-based compression and classification. 
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Figure 3.1. General Research Procedure 

This section presents the developed compression and classification framework to 

efficiently compress and reconstruct EEG signals using combined different methods. 

It describes the compression and classification framework that employs and combines 

many methods, namely; CS and DCT techniques, with a measurement random matrix 

and using AWGN as a channel model for EEG data compression. DWT is used for 

feature extraction, and four classifiers are employed for EEG signal classification. In 

addition, noise-aware signal combination (NSC) technique is proposed for noise EEG 

signal classification. The presented below are different blocks and algorithms that 
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make up our proposed framework. Where discusses the compression, the transmission 

channel model, the reconstruction, the feature extraction, explores four classifiers, and 

briefly reviews the proposed method. Figure 3.2 depicts the block diagram of the 

proposed framework. It shows the different steps of the proposed framework for EEG-

based compression and classification. 

 

Figure 3.2. Proposed framework methods 
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The proposed method of this research is mainly consists of six parts:  

1) Compressive sensing (CS) and DCT methods in addition to the measurement 

random matrix (RM) have been used for EEG data compression.  

2) AWGN a channel model is utilized to simulate the real environment to study the 

effect of noise on the compressed data.  

3) iDCT for data reconstruction to the original EEG data.  

4) DWT is also used in order to extract statistical feature, such as, min, max, mean 

and standard deviation.  

5) Four individual classifiers have been employed for EEG data classification.  

6) Ensemble classification method and how the classification result is enhanced by 

our proposed NSC technique. 

In comparison with traditional communication technologies, it is necessary for 

WBASN in health application context to keep working continuously and gradually for 

a long time. Therefore, effectively decreasing the transmitted size of EEG data during 

the data transmission, this will reduce the transmission time which ultimately reduce 

the power, is a major problem to be addressed.  

Many research works like [120, 69, and 121] strived to reduce the sampling rate below 

the Nyquist rate, without causing significant aliasing. This is obvious, especially when 

the signal is sparse, i.e. has frequency spectrum holes. A sparse signal is a signal that 

contains a small number of dispersed frequency components, higher than zero, in some 

transform domain [69]. This is to motivate the investigation of calculating the optimal 

sampling rate below the Nyquist rate, so that the signal characteristics are preserved, 

the best technique known for this purpose is compressive sensing.  
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3.2 Compressive Sensing Technique 

In the last few years, compressive sensing (CS) is rapidly growing and has attracted 

much attention in the area of signal processing and computer science, by proposing 

that it may be achievable to exceed the limits of traditional sampling theory. In this 

field, researchers have dedicated hundreds of conferences, special sessions, and 

workshops. In addition, thousands of papers were published in this growing area [70]. 

CS developed as a new context for signal acquisition and sensor design to influence 

the transform coding concept. In an appropriate basis, CS constructs upon the fact that 

using a few non-zero coefficients (sparse) yields to represent several signals.  

In the sampling and computation costs for sensing signals, CS enables a significant 

reduction when they have a sparse or compressible representation [71]. While the 

Nyquist-Shannon sampling theorem declares that a certain minimum number of 

samples is required to perfectly capture an arbitrary band-limited signal, the number 

of measurements that need to be stored can be reduced when the signal is sparse in a 

known basis [72]. Accordingly, when sensing signals are sparse, the proposed 

framework is able to perform better than that proposed by traditional methods.  

The basic idea of CS is to find techniques to directly sense the data in a compressed 

form instead of first sampling at a high rate and afterward compressing the sampled 

data, i.e., at a lower sampling rate [73]. The CS goal is to design a stable measurement 

matrix, 𝛷, and allow the reconstruction algorithm to recover a signal 𝑥 of length N 

from 𝑀 <  𝑁 measurements. Compressible signals 𝑀 size are well approximated by 

k-sparse representations.  
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Consider a general linear measurement process that computes M < N inner products 

between 𝑥 and a collection of vectors {𝜙𝑗}𝑗=1
𝑀  as in ⟨𝑥, 𝜙𝑗⟩. The measurements 𝑦𝑗 in 

an M * 1 vector 𝑦 and the measurement vectors 𝜙𝑗
𝑇 as rows in an M *N matrix 𝜙, the 

measurements have: 

𝑦 = Φ𝑥 = ΦΨ𝑠 = Θ𝑠 
 

where Θ = ΦΨ is an M * N matrix. 

For example, the following is given a compressed measurement y at the receiver, the 

signal x can be reconstructed by solving one of the following optimization problems. 

Minimum ∥ 𝑥0 ∥2  Subject to 𝑦𝑖 =< ΦiΨ𝑥0i > (3.1) 

Use a trick of basis Pursuit in order to find the vector 𝑥0 with the lowest L2 norm that 

satisfies the observations made. For N-dimensional EEG signal 𝑥: 

𝑥 =  𝛹 𝛼 (3.2) 

where 𝛹 is a DCT basis and 𝛼 is the wavelet, both are in domain coefficients. While 

CS is used to reduce the size of data required to send from transmitter to receiver, it 

has been considered for efficient EEG acquisition and compression in several 

application contexts [66]. Since the signal acquisition is the critical part in most 

applications, where the acquisition time or the computational resources are limited, 

CS technique has the main advantage that it offloads processing from data acquisition 

until data reconstruction. CS acquires measurements faster due to fewer sizes of 

samples. CS performs the time consuming processing in the recovery, where you 

mostly have more processing time and higher computational capacity.  
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An N-dimensional 4096 samples raw EEG signals x is considered to illustrate the CS 

compression and reconstruction. Assume that this signal is represented by a projection 

on to a different basis set Ψ:  

𝑥0 = ∑ 𝑥𝑖Ψ𝑖
N
𝑖=1      or       𝑥 =  Ψ 𝑥0  (3.3) 

where x is the original signal, 𝑥0 is the sparse of representation of x, and  Ψ is an 𝑁 ∗

𝑁 bases matrix.  

The sparse vector 𝑥0𝑖 can be calculated from the inner product of x and Ψ: 

𝑥0𝑖 = < 𝑥,Ψ𝑖 >    (3.4) 

The basis (Ψ) can be Gabor, Fourier, or DCT, Mexican hat, Linear Spline, Cubic 

Spline, Linear B-spline, or Cubic B-spline basis. In compressive sensing, Ψ is chosen 

such that 𝑥0 is sparse. The vector 𝑥0 is k-sparse if it has k non-zero entries and the 

remaining (N–k) entries are all zeroes.  

In addition to the projection above, it is assumed that 𝑥 can be related to another signal 

𝑦: 

𝑦[𝑀∗1] = Φ[𝑀∗𝑁] × 𝑥[𝑁∗1] (3.5) 

 

where Φ is a measurement matrix (also called sensing matrix) that depends upon the 

sparsity 𝑘 level of the signal, and y is the compressive sensed version of x. The 

measurement matrix is of dimensions M * N, where N represents the original raw EEG 

data and M represents the different compression values. Matrix y has dimensions M*1 

and if M < N, then data compression is achieved. The measurement vectors length is 

also determined by the K sparsity in the signal x. CS can sample the signal by much 
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lesser measurements than those required by the Nyquist sampling theorem. Two major 

concepts are Sparsity and Incoherence, which includes sparse representation, random 

measurements taken and signal recovery via ℓ1 minimization. It can be shown that 

this technique is possible if Φ and Ψ are incoherent. To satisfy this condition, Φ is 

chosen as a random matrix. The Compression Ratio (CR) is then defined as [11]: 

𝐶𝑅 = (1 −
𝑀

𝑁
) ∗ 100 (3.6) 

 

DCT is used as the basis to sparsity of the EEG signal as part of the CS framework. It 

is a Fourier-related transform like the discrete Fourier transform (DFT). However, it 

is using only real numbers, and has a low computational complexity [19]. In order to 

obtain the signal 𝑥(𝑛) in the DCT domain, that will lead to the definition of the 

(𝑁 + 1) ∗  (𝑁 + 1) DCT transform matrix, whose elements are given by: 

[𝐶]𝑚𝑛 = √
2

𝑁
 {𝑘𝑚𝑘𝑛𝐶𝑂𝑆 (

𝑚𝑛𝜋

𝑁
)} ,𝑚, 𝑛 = 0, 1, … ,𝑁 (3.7) 

𝑘𝑖 = 1  for i≠0 or N 

     = 1/√2 for i=0 or N. 

This matrix is unitary and when it is applied to a data vector 𝑥 of length 𝑁 + 1, it 

produces a vector called Xc, where Xc = [C] ∗ x, whose elements are given by, 

Xc(𝑚) = √
2

𝑁
 ∑𝑘𝑚𝑘𝑛𝐶𝑂𝑆 (

𝑚𝑛𝜋

𝑁
)

𝑁

𝑛=0

x(𝑛) (3.8) 

The following section gives brief information about the channel medium that has been 

considered in this research work. 
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3.3 Additive White Gaussian Noise (AWGN) Channel Model 

Several applications containing wireless sensor networks, smart homes and machines, 

automated factories, and remote tele-medicine were developed from research ideas to 

solid systems. When communicate over the wireless channel, there is an impairment 

interfering with the signal from the medium. Several sources of noise can alter the 

data, including, wireless channel fading, path loss, thermal noise at the receiver, etc. 

In this research, without loss of generality, the thermal noise using the AWGN model 

at the receiving side has been considered as the most widely used model for 

representing thermal noise [74, 122, 61 and 88]. The noise level using the signal-to-

noise-ratio (SNR) has been controlled to demonstrate data imperfection, also, to study 

the behavior of the different classification techniques the presence of such noise. The 

transmitted data over the communication channels are impacted by attenuation, 

interference, and thermal noise.  

Additive White Gaussian Noise (AWGN) is one of the models that represents noise 

on the transmission channel that occur in real life situations. Noise effects are formed 

by AWGN with a power spectral density that is based on the channel signal-to-noise 

ratio (SNR). Using AWGN channel, noise has been added to the transmitted 

compressed data based on a specific SNR, therefore, the received data can be 

introduced as: 𝑟(𝑡) = 𝑠(𝑡) + 𝑛(𝑡), where 𝑠(𝑡) is the transmitted data and 𝑛(𝑡) is a noise. 

To use the efficiency of the brainwaves for a particular reason that is built on the 

performance of the wireless system. Certainly, wireless communication provides us 

with more possibilities to employ EEG signals transmission [88]. However, due to the 
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AWGN, the channel capacity could be affected according to the Shannon-Hartley 

theorem, which is expressed as follows [122]: 

𝐶 = 𝐵𝑙𝑜𝑔2 (1 +
𝑆

𝑁
) (3.9) 

where C is channel capacity of maximum error-free and measured in bits per second; 

B is the bandwidth of the channel and measured in hertz; S is the average received 

signal power over the bandwidth; N is the average noise or interference power over 

the bandwidth, measured in watts or 𝑣2. Also, the signal-to-noise-ratio is defined as 

the ratio of signal power to the noise power, often measured in decibels. The decibel 

is a logarithmic unit used to express the ratio between two values of a physical 

quantity, often power or density. Most of the metrics used to evaluate the performance 

of wireless communication algorithm are computed for different SNR levels. The SNR 

is the ratio between the received signal power and the noise power: 

Signal-to-Noise-Ratio (SNR) is given by:  

𝑆𝑁𝑅 =  𝑆/𝑁  (3.10) 

 

And SNR in dBs  

Signal-to-Noise-Ratio (𝑆𝑁𝑅𝑑𝐵) is given by: 

𝑆𝑁𝑅𝑑𝐵 =  10 𝑙𝑜𝑔10 (𝑆/ 𝑁) 𝑑𝐵  
(3.11) 
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Note that as SNR increases, if the noise power is assumed to be constant, this indicates 

that the received signal power increases and vice versa. An 𝑆𝑁𝑅𝑑𝐵=1 dB means that 

the received signal power (S) equals 1.2589 times the noise power (N).  An 𝑆𝑁𝑅𝑑𝐵=5 

dB means that the received signal power (S) equals 3.1623 times the noise power.  An 

𝑆𝑁𝑅𝑑𝐵=10 dB means that the received signal power (S) equals 10 times the noise 

power [68, 74, and 129].  

In other words, the relation between SNR and S is proportional, i.e., as SNR increases, 

the effect of noise in the received signal diminishes [74]. Moreover, the relation 

between SNR and N is inverse proportional, i.e., as SNR decreases, the received signal 

will be more contaminated with noise [75]. We choose to simulate the performance of 

our proposed algorithm at the SNR levels presented earlier, which represents three 

levels of SNR, low: SNR = 1dB, moderate SNR =5 dB and acceptable SNR =10dB 

[75, 76]. 

The motivation of using AWGN is to study the effect of the wireless channel on the 

proposed framework. In addition, it is to study the proposed NSC with different SNR 

levels. In order to study the noise effect on the compressed EEG data, the AWGN 

channel model as a transmission channel has been used. At the receiver side, a data 

reconstructed algorithm has been utilized for getting some features and then doing 

detection and classification.  SNR values are selected based on extensive experiments 

to represent high, moderate, and low noise cases [131, 114]. However, the 

communication environments are outside of our research scope.  
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3.4 Signal Reconstruction  

The well-known traditional approach of reconstructing signals or images from 

measured data is Shannon Nyquest sampling theorem [124], which states that the 

sampling rate must be the double the highest frequency. A fundamental new approach 

has been provided by compressed sensing (CS), or sparse recovery, to data acquisition 

which overcomes this common problem. CS predicts that specific signals or images 

can be recovered from what was previously believed to be highly incomplete 

measurements.  

Certainly, in order to compress a signal x, one may simply store the k largest entries. 

The non-stored entries are set to zero for reconstructing x from its compressed version, 

and the reconstruction error. At this point, it is highlighted that the procedure of 

achieving the compressed version of x is adaptive and nonlinear since it needs the 

search of the largest entries of x in absolute value. Especially, the location of non-zero 

entries is a nonlinear type of information. 

On the receiver side, the basis of the inverse discrete cosine transform (iDCT) has been 

utilized in the CS obtain the reconstructed signal (𝑥𝑟) [125], 𝑥𝑟 =  𝑖𝐷𝐶𝑇 (𝑦) returns 

the inverse DCT of y, i.e., the original signal as follows [114]: 

𝑥𝑟(𝑎) = ∑𝑤(𝑘) 𝑦(𝑘) 𝑐𝑜𝑠 [
𝜋(2𝑎 + 1)𝑘

2𝑁
]

𝑁

𝑘=1

 (3.12) 

where 𝑁 is the length of both time series and cosine transform signals, 𝑎 is the time 

series index (𝑎 = 1, 2, . . . 𝑁), 𝑘 is the cosine transform index (𝑘 = 1,2, . . . 𝑁), and the 

window function 𝑊(𝑘) is defined as,  
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𝑤(𝑘) =

{
 
 

 
 

1

√𝑁
          𝑘 = 1

√
2

𝑁
       2 ≤ 𝑘 ≤ 𝑁

 

After obtaining the contaminated reconstructed signal (𝑥𝑟), then DWT is used as a 

feature extraction and selection techniques. 

3.5 Feature Extraction 

EEG Feature Extraction plays a significant role in diagnosing most of the brain 

diseases. Obtaining useful and discriminant features depend largely on the used feature 

extraction method. The feature extraction stage must reduce the original data to a 

lower dimension that contains most of the useful information included in the original 

vector. It is therefore necessary to find out the key features that represent the whole 

dataset, depending on the characteristics of the dataset. These features are calculated 

from each cross-correlation sequence to create feature vector sets. Since EEG signals 

are time-varying and space-varying non-stationary signals, the DWT method is widely 

used [51]. It captures both frequency and time location information. Using multi-

resolution wavelet analysis, DWT basically decomposes the EEG signals into different 

frequency bands.  

EEG data is generally a non-stationary signal, which is heavily dependent on the 

subject condition. The DWT Daubechies 6 was employed, where the data was sampled 

at a rate of 173.61 Hz. This means that the EEG data frequency is 86.81 Hz, so the 

filter length is long as well; frequency wavelet sub-band is the same as the fundamental 

component of EEG. Hence, the decomposition level 7 is determined based on the EEG 
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frequency. In addition, based on extensive experimental work on the reconstruction 

accuracy for different wavelet families and filter lengths and decomposition levels, in 

this research, Daubechies 6 with different decomposition levels from 1-8 have been 

used. The interesting thing that was found is that the Daubechies 6 with decomposition 

level 7 is the optimum level in terms of the classification accuracy and computational 

complexity of the EEG epileptic seizure category of data. Given the EEG signal 𝑓(𝑥), 

the Wavelet series expansion is depicted in [122] and computed as follows: 

𝑓(𝑥) =∑𝑐𝑗0
𝑘

(𝑘)𝜑𝑗0,𝑘(𝑥) + ∑∑𝑑𝑗(𝑘)

𝑘

ѱ𝑗,𝑘

∞

𝑗=𝑗0

(𝑥) (3.13) 

where 𝑓(𝑥) ∈ 𝐿2(𝑅) and 𝐿2(𝑅) are relative to wavelet ѱ(𝑥) and scaling function 

𝜑(𝑥), 𝑐𝑗0 is the approximation coefficients. 

In the first sum, the approximation coefficients 𝑐𝑗0 can be represented as the outcome 

of the inner product process between the original signal 𝑓(𝑥) and the approximation 

function 𝜑𝑗0,𝑘(𝑥) as expressed [122]: 

In the second sum, a finer resolution is added to the approximation to provide 

increasing details.  The function  𝑑𝑗(𝑘) represents the details coefficients and it can be 

obtained by the inner product between the original signal 𝑓(𝑥) and the wavelet function 

ѱ𝑗,𝑘(𝑥) calculated as: 

𝑑𝑗(𝑘) = ⟨𝑓(𝑥), ѱ𝑗,𝑘(𝑥)⟩ (3.15) 

where j and k represent the scaling and time shifting parameters.  

𝑐𝑗𝟎(𝑘) = ⟨𝑓(𝑥), 𝜑𝑗𝑜,𝑘(𝑥)⟩ (3.14) 
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Generally, combined time-frequency domain features outperform, in terms of 

classification accuracy for frequency domain-based and time domain-based 

independently features [122]. Different implementation choices, including different 

wavelet families; filter lengths, and decomposition levels have been experimented for 

the feature extraction purpose. Accordingly, four conventional statistical features 

minimum, maximum, mean, and standard deviation were extracted from each wavelet 

sub-band composed of 32 attributes. These features represent the statistical 

characteristics of the EEG signal and are recommended for real-time applications. 

They also have been found the most representative parameters that are able to 

distinguish different signals.  

The main advantage of these four features is their low computational complexity and 

computation time. They are the most representative values to describe the distribution 

of the EEG signals. They are used to reduce the dimensions of the cross-correlation 

sequences and as inputs into individual classifiers. The statistical features extraction 

rules that have been implemented on the wavelet sub-band [19, 84, and 122] are:  

Maximum feature: 𝑥𝑘 such that 𝑥𝑘 > 𝑥𝑖 for all 𝑖 ≠ 𝑘,  i=1,…….,n. 

𝑑𝑖(𝑥) = Max
i=1,…,k

{𝑑𝑖(𝑥)}   (3.16) 

 

 

Minimum feature: 𝑥𝑘 such that 𝑥𝑘 < 𝑥𝑖 for all 𝑖 ≠ 𝑘,  i=1,…….,n. 

𝑑𝒊(𝑥) = Min
i=1,…,k

{𝑑𝑖(𝑥)}   (3.17) 
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Mean can be calculated by: 

�̂� =
1

𝑁
∑𝑥𝑖

𝑛

𝑖=1

 (3.18) 

 

Standard Deviation: is a statistical feature, which indicates the distribution of the 

data with respect to the mean. 

𝜎2 =
1

𝑁 − 1
∑(𝑥𝑖 − �̂�)

2

𝑁

𝑖=1

 
 

(3.19) 

The original EEG signal was analyzed for the wavelet sub-bands A7 and D7-D1. 

Eventually, four conventional statistical features are selected from each wavelet sub-

band individually.  As a consequence, 32 attributes are obtained from the whole sub-

bands to be fed to the classifiers. So these features maximum, minimum, mean, and 

standard deviation are contributed to the classification accuracy in this research. In 

this research, it has been found that these features are robust with the dynamic 

environment of the wireless channel [19, 114]. Meanwhile, these features have low 

computational complexity. 

3.6 Classification Methods 

EEG detection and classification play an essential role in the timely diagnosis by 

analyzing potentially fatal and chronic diseases proactively in clinical as well as 

various life settings.  

In this work, four of the common and predictive classification methods have been used 

namely: ANN, NB, k-NN, and SVM. Based on the kind of datasets, each method 

shows separate efficiency and accuracy. Each one of them has special advantage as 

follows: 
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 ANN provides a better result in complex domain because its effectiveness and 

non-parametric and testing is very fast. 

 NB is easy for implementation and computation, it estimates the probability of 

each class using Bayes rule.  

 k-NN is simple, effective and easy to implement.  

 SVM is compact description of the learned model, more capable to solve 

multi-label classification. 

Initially, the classifiers have been implemented to work individually for performance 

comparison purposes. Each classifier belongs to a different family of classifiers, and 

has been shown to be the best classifier in its family. However, since they are using a 

different classification strategy, it is expected that these classifiers may yield different 

classification results. An ensemble method for combining the output of all classifiers 

has been developed in order to reduce the effect of data imperfection, while 

maximizing the classification accuracy.  For more information regarding the 

individual classifiers refer to Chapter 2. The following section will present the 

ensemble-based classification techniques. Then, it will include our proposed noise-

aware signal combination method to enhance the classification accuracy.  

It is worth noting that other classifiers (BayesNet, DecisionTable, IBK, J48, and VFI) 

have been experimented. They also provide a good accuracy for the same data are used 

in the noiseless data and noisy data with SNR= 1, 5, and 10 dB. However, the other 

classifiers are effective and easy to implement.  

3.7 Ensemble-Based Classification  

Several combination techniques have been introduced in the literature and each one 

may offer certain advantages while suffering from certain limitations. One of these 
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well-known combination techniques is the majority vote. The majority voting (MV) 

rule technique collects the votes of all classifiers and investigates the class name that 

is mostly reported by the classifiers. It then chooses that class as a final decision [96]. 

However, MV is based on the idea that the classifiers participating in the voting 

process have the same weight, and it then completely ignores the inconsistency that 

may arise among the classifiers. Thus, the performance of the classification can be 

deteriorated. For this research, a probability-based voting scheme has been adopted, 

in which a combination method should assign a probability value (𝑝) that reflects the 

classifier confidence in the viewpoint of the combination method.  

For instance, a weight (p) of 0.70 has been assigned to the first classifier, while 

assigning only 0.30 as a weight to the second classifier. 

Let 𝑇 be the set of classifiers,  

𝑇= {C1, C2,... ,Cn}, (3.20) 

and 𝐶 be the set of classes, 

{𝑝1 , 𝑝2 ,…, 𝑝𝑛}, 

Let 𝑑𝑖,𝑗 be the decision of classifier 𝑖 defined as follows: 

𝑑𝒊,𝒋 ∈ {0,1}, (3.21) 

where 𝑖 = 1,… , 𝑇, and 𝑗 = 1, … , 𝐶. 

Let pi represent the weight of a classifier i. The probability-based voting decision is 

calculated as: 
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∑ 𝑝𝑖𝑑𝑖,𝑗 =
𝐶
𝑚𝑎𝑥
𝑗 = 1

|𝑇|
𝑖=1 ∑ 𝑝𝑟

|𝑇|
𝑟=1 𝑑𝑟,𝑗, (3.22) 

Considering the weight for each classifier, Equation (3.22) counts the votes coming 

from the participating classifiers. The following sub-section shows the proposed 

Noise-aware Signal Combination (NSC) method. 

3.7.1 The NSC Proposed Ensemble Method 

A number of classifiers (n) built on various hypotheses 𝐻 = {ℎ0, ℎ1, … , ℎ𝑛−1}, are fed 

with input data. Each classifier k built on hypothesis ℎ𝑘, is trained on the data in order 

to predict the label representing the class 𝑐𝑗 that best describes a given set of features 

(𝑓𝑖,0, 𝑓𝑖,1, … , 𝑓𝑖,𝑙), corresponding to observation, 𝑜𝑖.  

At the end of the training of each classifier, a set of multiclass classification 

performance measurements of interest is recorded. More details and information about 

the proposed noise-aware signal combination method and its performance 

measurements are provided in Chapter 4. 

Briefly, the proposed NSC method is fed with the output of the, n trained classifiers. 

The classification decision of a testing sample is obtained by gathering the decisions 

from the corresponding n classifiers at each layer using Noise-aware Signal 

Combination method. A subset of the performance measures of each classifier together 

with the predicted class label 𝑐 ∈ 𝐶 for an observation 𝑜 ∈ 𝑂 provided by each 

classifier with hypothesis  ℎ ∈ 𝐻, are used to construct the confusion matrix for each 

classifier. These confusion matrices form the input to the hypothesis used by this 
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combined classifier. More information about the confusion matrix is available in 

Chapter 4. 

3.7.2 Classifiers settings 

 The ANN has several parameters, in this research the configurations of ANN 

are training cycles=500, learning rate=0.3, and momentum decay=0.2 were 

used. 

 NB; Laplace correction to prevent high effect of zero probabilities is used as 

the default configurations. 

 K-NN; in this research, the default configurations are value of k=10 was used, 

and the mixed measures was selected as the measure type, which makes the 

Mixed Euclidean Distance the only available option. 

 SVM, have several parameters, in this research, SVM configurations are nu-

SVC and radial basis function kernel were used for classification technique. 

3.8 Classification Measurements 

To measure and evaluate the accuracy of this framework, the following subsections 

will be considered. The following section will describe in details the EEG benchmark 

dataset that was used in this research work. 

3.8.1 EEG Datasets Descriptions 

The dataset used in this work is one of the most comprehensive dataset, it is very 

widely used which indicate the correctness of the results; it fits the application that is 

being targeted. The dataset was created by Andrzejak et al. [126], which are widely 
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used for automatic epileptic seizure detection. It contains a benchmark data including 

both normal and epileptic EEG datasets. EEG datasets were collected from five 

patients. The patients passed through a complete seizure control after resection of one 

of the hippocampal formations (identified as an epileptic zone). The datasets consisted 

of five sets and indicated as A, B, C, D, and E. Each set was composed of 100 single 

channel EEG segments of duration of 23.6 seconds.  

Both sets A and B were relaxed in a conscious state with eyes open and eyes closed, 

respectively. Segments of sets A and B were taken from surface EEG recordings that 

were carried out using a standardized electrode placement scheme, performed on five 

healthy subjects. Segments in set C were recorded from the hippocampal formation of 

the opposite hemisphere of the brain. Segments in set D were recorded from within 

the epileptogenic zone. While sets C and D contained only brain activities measured 

during seizure free intervals. Only set E contained seizure activity. All EEG signals 

were recorded with the same 128- channel amplifier system, as stated by Andrzejak et 

al. in [126]: “neglecting electrodes that having strong eye movement artifacts (A and 

B) or pathological activity (C, D, and E)”.  

The data was written continuously to the disk of a data acquisition computer system, 

at a sampling rate of 173.61 Hz. Kumar [127] reported that when the performance of 

set A and E was compared with set B and set E, and it was concluded that set A and 

set E were more efficient [127]. In addition, set A and set B are similar in feature 

properties that are hard for the classifier to distinguish between both sets represent 

healthy patients. It is worth noting that during performance evaluation many 

experiments using different groups of classes (i.e. one group was all five 
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classes, another group was A, C, and E, etc.) have been conducted, and the best 

results were evident for the class group of A, C, and E.  

Therefore, this research uses only three sets: set A to represent healthy subjects, set C 

to represent unhealthy with seizure-free interval subjects, and set E to represent the 

epileptic seizure active subjects. In this case, 300 EEG segments used, each class 100 

segments. Figure 3.3 illustrates the ideal raw EEG signals of sets A, C, and E, 

respectively. 

 

Figure 3.3. EEG signals of three classes taken from different subjects [126] 

3.8.2 Data compression and reconstruction 

For measuring the effect of compression, a compression ratio metric has been used for 

measuring the loss of data information. This can be measured by dividing the 

compressed data size M on the original data size N, and then, computing the difference 
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from 1 and multiply by 100. Therefore, the compression ratio (CR) is defined in 

Equation (3.23), as expressed: 

𝐶𝑅 = (1 −
𝑀

𝑁
) ∗ 100 (3.23) 

where CR is the compression ratio, M is the compressed data value at a time, N is the 

original data value at a time. 

3.8.3 Detection and classification  

The classification accuracy is categorized into specificity and sensitivity, which are 

defined as a function of the true and false of both positives and negatives. Accuracy is 

the degree of proximity of a measurement quantity to that quantity is true [113]. 

Specificity in diagnostic refers to the ability of an assessor to measure one particular 

material. Specificity is defined as a percentage ratio of true negative tests for the total 

number of infected patients tested. It is also, known, as a class precision. Moreover, 

sensitivity in diagnostic testing represents the smallest quantity of material in a sample 

that can be accurately measured by an assessor. Sensitivity is defined as a percentage 

ratio of true positive tests for the total number of affected (positive) patients being 

tested. It is also known as a of class recall.  

Finally, classification accuracy refers to the range to which a testing tool is able to 

strictly classify the certainty and uncertainty data [60]. Therefore, specificity, 

sensitivity, and accuracy can be defined as follows [11]: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100  (3.24) 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100  (3.25) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
× 100  (3.26) 

where TP, FP, TN, FN refer to true positive, false positive, true negative, and false 

negative, respectively. Both positive and negative terms are denoted the prediction of 

classifiers’, and true and false is indicated whether that prediction is reacting with the 

external judgment. These equations show that a test with high specificity has few FPs; 

where as a test with high sensitivity has few FNs. For more information about these 

metrics, please refer to Chapter 2. 

3.9 Summary 

Since the WBASNs are operating on batteries or solar cells, this point is critical. Using 

the most popular compression techniques for data acquisition, compressive sensing 

can reduce the transmitted data size. This chapter presents in details the research 

methodology adopt for the general framework that employs and combines many 

methods. The framework incorporates CS-based energy-efficient compression, and 

noisy wireless channel to study the effect on the application accuracy. This ultimately 

effects the power consumption. In addition, the research method model has been 

highlighted which illustrates and summarizes the proposed framework. This model 

shows several steps of the proposed framework for EEG-based compression and 

classification. It discussed the compressive sensing and showed that the goal of CS is 

to design a constant measurement matrix Φ, and to allow the reconstruction of a signal 
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x of length N from M<N measurements. In addition it covered the DCT as the basis 

used to handle the sparsity of the EEG signal as part of the CS framework. AWGN 

was used as a channel model that represents noise on the wireless channel, occurring 

in real life. iDCT was used to reconstruct the compressed data to the original size at 

the receiver side. DWT was used to extract the number of features necessary for data 

classification. Finally, due to the compressed and decompressed EEG data, usually the 

information is accompanied by noise artifacts, which may hamper the performance of 

EEG-based classification techniques. Moreover, data is compressed in order to reduce 

transmission time and cost. Consequently, some important information may get lost. 

Therefore, it proposed a noise-aware signal combination method as an ensemble 

classifier.  
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CHAPTER FOUR 

COMPRESSION AND CLASSIFICATION MODEL  

This chapter introduces a new compression and classification framework, in addition 

to a new Noise-aware Signal Combination (NSC) method based on four individual 

classifiers, for the classification of three classes of EEG signals. This study aims to 

establish a method to determine an optimal classification scheme and to deduce the 

signs of the extracted features.  

In this chapter, a new algorithm has been proposed which distinguishes EEG segments 

from different pairs of three-class EEG signals in a multiclass EEG dataset. In 

addition, diagnosis differences between neurophysiologists may occur for the same 

EEG recording due to the individual description of the analysis.  

In other words, on the data acquisition side a highly accomplished framework that 

presenting CS technique with high compression ratio has been developed [19]. On the 

detection and classification at the server side, a new combination method for detection 

and classification has been developed [128]. The developed method operates on 

imperfect data and provides acceptable accuracy given EEG-based epileptic seizure 

data compared with previous work in the literature review.  
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4.1 EEG Data  

Despite the fact that EEG signals offer a significant deal of brain activity information, 

classification and evaluation of them are still a major problem of research [129]. 

Nowadays, EEG signal is almost inspected manually by experts, classification 

techniques will help in distinguishing the EEG healthy and non-healthy subjects. 

Therefore, machine intelligence techniques are proposed to diagnose, evaluate, and 

enhance the process of the epileptic seizure detection. The big challenge here is that 

EEG compressed data is noisy and needs to reconstruct it at the server side, also using 

correct classification algorithms to classify properly and efficiently different EEG 

signals of different SNR values. Using the CS framework, measure the classification 

accuracy for an ensemble combination method, in order to reduce the size of data at 

the transmitter.  

At the server side, a detection and classification technique has been developed for the 

recovered EEG data, while keeping the overall classification accuracy for each 

classifier at a satisfactory minimum level of 80% [19].  This chapter focuses on the 

design of an efficient CS-based framework for raw EEG signal acquisition and 

reconstruction.  

The trade-off between CR and classification accuracy is addressed in the chapter. At 

the same time, the major components of research in this area are exposed, including 

physiological sensing and data preprocessing using CS technique. More details are 

provided in Chapter 2. Noisy wireless communication by adding different SNR values 

on the compressed data, DCT, feature extraction using DWT, all detailed are in 

Chapter 3.  
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Finally, classification accuracy of the EEG-based epileptic seizure application is also 

being considered. Accordingly, this research work is intended to compress the raw 

EEG-epileptic seizure of 4096 samples using CS and DCT methods before to 

sending/transmitting it to the other side. The compression process has been developed 

at different values starting from 100s/s up to 1100s/s to investigate at which 

compressed value can get a better accuracy. Extensive experiments have made on each 

compressed value at a certain measure of compression ratio. It has been found that the 

best classification accuracy is reached over 85% at CR = 85.35%, which is equivalent 

to 600 s/s, where the best compression ratio is get a better accuracy over 80% [74, 75]. 

Finally, the proposed framework compresses the raw EEG data, transmits it over the 

wireless channel, showing the effect of channel impairments on the compression 

requirements to achieve target application accuracies.  

Ensemble methods consist of a group of individually trained classifiers with combined 

prediction when classifying different instances. Most research reported in the literature 

[130, 41, 85, and 87] has shown that an ensemble classifier is more accurate than any 

individual classifier in the ensemble. Therefore, the proposed ensemble method, which 

is Noise-aware Signal Combination method, will also be addressed. 

In this research, considering that, the EEG signal is in nature bandwidth hungry, 

several works have considered in-network processing for either compressing EEG data 

[131] or transferring EEG features instead of delivering the raw uncompressed signal 

[114]. Another reason considering that the sensor is battery operated, if the data is 

transmitted without compression, the battery power will be consumed faster.  
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Therefore, we propose unified framework where the EEG data is compressed using 

compressive sensing (CS) and sent using two different types of channels. In the first, 

it was sent over a noiseless channel while the second was sent over the Additive White 

Gaussian Noise (AWGN) wireless channel in three different cases where SNR=1, 5, 

10 dB, more information in Chapter 3. On the other hand, the compressed data was 

reconstructed and statistical features were extracted. To address this scenario, a unified 

framework has been designed, which presents a compressive sensing-based technique 

to send compressed EEG data over AWGN wireless channel, reconstruction, and 

feature extraction using time-frequency domain analysis in preparation of data 

classification. Such framework makes this work more practical because it performs 

classification considering data imperfection due to compression and wireless channel 

transmission. 

4.2 EEG-Epileptic Seizure Framework 

The system model consists of two main parts, the transmitter and receiver. The 

following section presents the background knowledge related to EEG signals and 

introduces some terminologies and related information about its characteristics.  

4.2.1 Overall System Model 

The proposed system model has four phases, namely 1) compressing the raw EEG, 2) 

reconstructing the compressed EEG, 3) cross-validation and training stage for process, 

the obtained optimal values, and 4) testing stage, respectively.  
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There are two main parts representing the system model, the transmitter and the 

receiver. Typically, transmitters are mobile devices, equipped with battery sources; 

hence, huge size of data at the transmitter is the most critical. Therefore, using EEG-

epileptic seizure raw data, CS and DCT methods have been utilized to reduce the size 

of EEG data before transmission, since CS has low complexity for down sampling at 

the transmitter based on the CR, which comes with the cost of higher complexity at 

the receiver side [19].  

Figure 4.1 shows the framework that has compressive sensing and data reconstruction 

as well as the classification processes for EEG-based epileptic seizure [19, 27]. 

 

Figure 4.1. EEG-based epileptic seizure compression framework 



 

 90 

The above system model consists of two main parts, the transmitter and receiver. The 

transmitter has N=4096 samples raw EEG represented by (x), and uses a CS technique 

to down sample the data based on sparse measurement matrix. In this framework, DCT 

and basis 𝜓 have been used for different quantities of M, to get the compressed data �̂� 

that will be transmitted over noiseless and noisy channels (i.e., radio frequency or 

Bluetooth). The measurement matrix size is M * N with random content and it can be 

represented by [128]:  

𝑦[𝑀∗1] = 𝛷[𝑀∗𝑁] × 𝑥[𝑁∗1] (4.1) 

The CS base uses DCT, which is one of the wavelet families. On the other hand, for 

transmitting the same data on noisy wireless channel, an Additive White Gaussian 

Noise (AWGN) to enforce SNR with different values has been added, such as 1 dB, 5 

dB and 10 dB. Extensive experiments have been conducted to find SNR range in order 

to be added to the compressed EEG data that will be used to evaluate the proposed 

framework and ensemble NSC technique [128]. Compress the raw EEG data of size 

N samples to a size M < N samples using a CS technique to compose the transmitted 

data denoted by y. This data is transmitted over an AWGN channel.  

At the receiver side, the received data have been reconstructed using iDCT. Then, 

statistical features of the data have been extracted using DWT. Next, the extracted 

features have been fed to four different classifiers, namely, ANN, NB, k-NN, and 

SVM, to evaluate the classification accuracy. The calculation of the classification 

accuracy is done independently for each classifier.  
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While the receiver, which receives the compressed signal M size, reconstructs back 

the EEG data using inverse DCT (iDCT) and basis pursuit to obtain the reconstructed 

signal (𝑥𝑟). The iDCT reconstruction algorithm is for the DCT or an optimization 

problem with certain constraints is solved for the CS [122, 132, and 133].  

4.2.2 Classification Methods 

EEG detection and classification plays an essential role in the timely diagnosis and 

analyzes potentially fatal and chronic diseases proactively in clinical as well as various 

life settings [11]. In this research work, four different classification methods have been 

used, namely; ANN, NB, k-NN, and SVM. Initially, the classifiers have been 

developed to work individually for performance comparison. However, a data fusion 

method has been developed for combining the output of all classifiers in order to 

reduce the effect of data imperfection, while maximizing classification accuracy.  Each 

classifier belongs to a different family of classifiers and has been shown to be the best 

classifier in its family. However, since each classifier uses a different classification 

strategy, it is expected that each one may yield different classification results [112, 

111, and 97].  

ANNs are a mathematical model that is motivated by the structure and functional 

aspects of biological neural networks. Learning in ANNs is carried out via specific 

training algorithms that are supposed to simulate the learning procedures of biological 

systems. To establish a classification rule and perform statistical analysis, ANN is able 

to estimate the posterior probabilities [97]. 
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NB classifier is a statistical classifier. It has been demonstrated to be effective in many 

practical applications, including text classification and performance management 

systems. The NB approach main advantage comes from the learning procedure 

computational efficiency, which shows a linear computational complexity [111]. 

This method implies an intensive work when given large training sets and widely used 

when computer power is important [78]. The k-NN classifiers are based on learning 

by comparing a given test class with training classes that are similar to it. It can be 

defined by a distance metric called normalized Euclidean distance between two 

vectors as given two points Y1 and Y2 [111], more details in Chapter 2. 

SVM uses nonlinear mapping to transform the original data into a higher dimension 

to construct a linear optimal separating hyperplane. For each given input, SVM takes 

a set of input data and predicts for two possible classes involved the input. SVM found 

that a compact description of learning model could be used for prediction to get high 

classification accuracy [111]. However, SVM applies decision combination to practice 

multi-classes classification since it is a binary classification.  

The classification techniques reported above provide sufficient performance given that 

the EEG data are not contaminated by different factors. However, wireless EEG data 

are often compressed before transmission, which means that on the receiver side, some 

important information may get lost during the reconstruction process.  
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Moreover, a wireless channel may augment the transmission problem by adding noise 

artifacts to the transmitted data. Hence, a prospective classification technique should 

take into consideration the uncertainty problem contained in the EEG data to be 

efficient. 

4.3 Ensemble Classification Methods 

Several combination techniques have been introduced in the literature and each one 

may offer certain advantages and suffer from certain limitations. However, given 

several classifiers, the combination method has to deal with two critical issues: the 

dependency among the potentially combined classifiers, and the consistency of 

information each classifier provides. 

For the first issue, since each classifier consider as a source of information, the 

classifiers have to be independent. This means that each classifier simply works on the 

input feature set independently, meaning in parallel, while the classification is based 

on combining the outcomes of all classifiers simultaneously. In this work, the 

classifiers to be independent will be considered.  

For the second issue, as different classifiers are expected to pose different viewpoints 

of the current system state, classifiers may have conflicting decisions. To compromise 

this anticipated conflict, an effective mechanism that is capable of quantifying the 

assurance of each classifier in their decision is desirable.  
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One of these well-known combination techniques is the majority vote. The MV rule 

technique collects the votes of all classifiers and investigates the class name that is 

mostly reported by the classifiers. It then chooses that class as a final decision [96]. 

However, MV is based on the idea that the classifiers participating in the voting 

process have the same weight. It completely ignores the inconsistency that may arise 

among the classifiers. This of course can cause less capable classifiers to override 

classifiers that are more capable. Thus, the performance of the classification system 

can be deteriorated. Since the classifier models proposed in this work are expected to 

have different discriminant weight, the MV technique is not suitable as a combination 

method, because each classifier has the same weight and the weak classifier will affect 

the powerful classifier.  

On the other hand, in the probability-based voting schemes, the weighted combination 

method should assign a probability value (𝑝) that reflects the classifier confidence in 

its viewpoint. One of these schemes can be based on an accumulated experience. For 

instance, a given classifier is correct in identifying a certain hypothesis 75% percent 

of the time, while another classifier can correctly identify a different hypothesis 30% 

of the time. These values can actually be interpreted as probability assignments.  

If the classifiers happen to yield these different and conflicting hypotheses as an 

explanation to the current system state, then classifiers should not be treated equally 

at the classification stage. Clearly, the first classifier is more confident in its decision 

than the first one. This valuable information should be incorporated in the combination 

process.  
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Assign a weight (p) of 0.75 to the first classifier, while assigning only 0.30 as a weight 

to the second classifier. 

Let 𝑇 be the set of classifiers,  

𝑇= {C1, C2,... ,Cn}, (4.1) 

and 𝐶 be the set of classes, 

{𝑝1 , 𝑝2 ,…, 𝑝𝑛}, 

And let 𝑑𝑖,𝑗 be the decision of classifier 𝑖, and defined as follows: 

𝑑𝒊,𝒋 ∈ {0,1}, (4.3) 

where 𝑖 = 1,… , 𝑇, and 𝑗 = 1, … , 𝐶. 

Let pi represent the weight of a classifier i, then the probability-based voting decision 

is calculated as: 

∑ 𝑝𝑖𝑑𝑖,𝑗 =
𝐶
𝑚𝑎𝑥
𝑗 = 1

|𝑇|
𝑖=1 ∑ 𝑝𝑟

|𝑇|
𝑟=1 𝑑𝑟,𝑗, (4.4) 

Considering the weight for each classifier, Equation (4.4) counts the votes coming 

from the participating classifiers. 
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4.4 Proposed Ensemble System Model 

The proposed model consists of three stages for detecting electroencephalogram 

seizures namely statistical feature extraction, classifier prediction, and the proposed 

noise-aware signal combination (NSC) method. Statistical features extractions were 

discussed in Chapter 2, Section 2.5.2. As for classifier prediction, four popular 

classifiers are utilized in this model. These classification methods are trained using the 

most popular data mining tools, which is an industry standard and widely used for 

research [134]. The training process is conducted on similar data adhering to various 

combinations of SNRs and down sampling rates.   

After exhaustive iterated experiments, the trained models are saved and their averaged 

performances in different scenarios report to the NSC. The NSC is our proposed 

ensemble method using combinations of probability estimates. Eventually, the 

ultimate classification accuracy is obtained through the epileptic seizure detection.  

Having 𝑠 tabular observations  𝑂 = {𝑜0, 𝑜1, … , 𝑜𝑠−1} where, each 𝑜𝑖  is a 𝑡_𝑡𝑢𝑝𝑙𝑒 of 

readings 𝑅𝑖 = (𝑟0, 𝑟1, … , 𝑟𝑡−1).  

These observations fall into 𝑚 different categories of classes = {𝑐0, 𝑐1, … , 𝑐𝑚−1} with 

each of size 
𝑠

𝑚
.  

The DWT is applied to the set of observations 𝑂 to obtain 𝑙_𝑡𝑢𝑝𝑙𝑒 of features 𝐹𝑖 =

(𝑓0, 𝑓1, … , 𝑓𝑙−1) for each 𝑜𝑖 ∈ 𝑂.  In other words, 𝐷𝑊𝑇:𝑂 → 𝐹 such that, 𝐷𝑊𝑇(𝑜𝑘) =

(𝑓𝑘,0, 𝑓𝑘,1, … , 𝑓𝑘,𝑙) where, 𝑓𝑘,𝑗 is an 𝑙_𝑡𝑢𝑝𝑙𝑒 extracted features for the observation 𝑜𝑘 

obtained by DWT.  Figure 4.3, illustrates the feature extraction by DWT. 
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Figure 4.2. Feature Extraction using DWT 

Hence, 𝐷𝑊𝑇(𝑂) = { (𝑓𝑖,0, 𝑓𝑖,1, … , 𝑓𝑖,𝑙)|𝑖 = 0, 1, … , 𝑠 − 1 }  is the training and testing 

tabular, 𝑙_𝑡𝑢𝑝𝑙𝑒 format representing the input data for the classification model in this 

research work. The individual classifiers are supplied with extracted features using 

DWT. Each classifier uses its trained model to predict a class label for each set of 

features obtained from an individual observation in the testing data. The output of the 

classifier is a classifier confusion matrix (CCM) having important performance 

measures of interest such as class prediction label 𝑃𝐿𝑖,𝑗, class precision  𝑃𝑅𝑖,𝑗, class 

recall 𝑅𝐸𝑖,𝑗, and accuracy 𝐴𝐶𝑗. These confusion matrices are supplied to the NSC and 

then transformed into normalized forms. The ensemble classifier will then use its own 

hypothesis to determine the predicted classes for each observation. The normalization 

of CCM and the hypothesis used by the NSC ensemble classifier are described in 

details in Section 4.4.2, while Figure 4.3 shows this general concept of the proposed 

model of NSC. 
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Figure 4.3. Proposed Ensemble Model 

The following section describes the proposed Noise-aware Signal Combination 

ensemble method. 

4.4.1 The NSC Proposed Ensemble Method 

A number of classifiers (n) built on various hypotheses 𝐻 = {ℎ0, ℎ1, … , ℎ𝑛−1}, are fed 

with input data. The input data, 𝐷𝑊𝑇(𝑂), is represented in a tabular 𝑙_𝑡𝑢𝑝𝑙𝑒 format 

as discussed above. Each classifier k built on hypothesis ℎ𝑘, is trained on the data 

aiming at predicting the label representing the class 𝑐𝑗, that best describes a given set 

of features (𝑓𝑖,0, 𝑓𝑖,1, … , 𝑓𝑖,𝑙), corresponding to observation, 𝑜𝑖.  

At the end of the training of each classifier, a set of multiclass classification 

performance measurements of interest is recorded. Table 4.1, represents some 
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classifiers performance measurements. The trained model will then be saved to apply 

it on various categories of testing data. This process is replicated and repeated to 

represent an output that can be averaged to describe model behavior on long run times.  

Table 4.1:  

Classifier’s Performance Measurements 

Measure Description 

𝑃𝐿𝑖,𝑗 Predicted label of 𝑜𝑖 using hypothesis ℎ𝑗. 

𝑃𝐶𝑖,𝑗 Confidence value predicting  𝑐𝑖 using hypothesis ℎ𝑗. 

𝑃𝑅𝑖,𝑗 Precision value of 𝑐𝑖 using hypothesis ℎ𝑗. 

𝑅𝐸𝑖,𝑗 Class recall value of 𝑐𝑖 using hypothesis ℎ𝑗. 

𝐴𝐶𝑗 Accuracy value of applying hypothesis ℎ𝑗. 

 

The proposed ensemble classification method is fed with the output of the n trained 

classifiers. The training data is bundled first in two parts and is used to train the n 

classifiers with the testing part of the bundle.  

Finally, the classification decision of a testing sample is obtained by combining the 

decisions from the corresponding n classifiers at each layer using the Noise-aware 

Signal Combination method. A subset of the performance measures of each classifier 

together with the predicted class label 𝑐 ∈ 𝐶 for an observation 𝑜 ∈ 𝑂 provided by 

each classifier with hypothesis  ℎ ∈ 𝐻 are used to construct the confusion matrix for 

each classifier. These confusion matrices form the input to the hypothesis used by this 

combined classifier. 
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4.4.2 The Classifier Confusion Matrix 

The classifier confusion matrix (CCM) represents multiclass classification 

performance, which is represented the outcomes of each classifier. It has information 

about the actual and predicted classification accuracy reported by the classifier. CCM 

is a common tool used to estimate the goodness approaches of a classifier in the 

unbalanced classes’ scenario. A raw confusion matrix is a square matrix that represents 

the count of a classifier’s class prediction with respect to the actual outcome on some 

labeled learning set [135].  

Classifier performance is usually evaluated by data in the matrix, table view for each 

hypothesis ℎ𝑘, based on the reported performance results of the trained hypothesis hk, 

is calculated using the algorithm shown in Figure 4.6. An entry CCM[i][j] in the matrix 

of reported performance results for hypothesis ℎ𝑘, represents the frequency of 

predicting class j as of being class i. Therefore, CCM [i][j] represents the frequency 

of correct predictions being in class i, while ∑ CCM [𝑖][𝑗] 𝑚
𝑗≠𝑖  is the frequency of wrong 

predictions of other classes as of being class i. 

Hence,  

 PRi represents the class precision of class i calculated by the equation: 

CCM[𝑖][𝑖]

∑ CCM[𝑖][𝑗]𝑚
𝑗≠𝑖

∗ 100% (4.5) 

 REi, represents the class recall of class j calculated by the equation:  

CCM[𝑖][𝑖]

∑ CCM[𝑖][𝑗]𝑚
𝑖≠𝑗

∗ 100% (4.6) 
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Finally; 

 ACi represents the overall classifier accuracy, using hypothesis ℎ𝑘, calculated by 

the averaged classes’ precisions given by: 

∑ 𝑃𝑅𝑖
𝑚
𝑖

𝑚
∗ 100% (4.7) 

For example, it is assumed that there are 300 observations of three different types of 

EEG classes, each EEG class has 100 observations, and the classes are labeled by 1, 

2, and 3 respectively. Table 4.2: illustrates the confusion matrix or multiclass 

classification performance or performance vector for a classifier of three classes. 

Table 4.2:  

Multiclass classification performance/Performance vector 

Accuracy: 83.00% 

 true 1 true 2 true 3 class precision 

pred. 1 89 39 0 69.53% 

pred. 2 11 60 0 84.51% 

pred. 3 0 1 100 99.01% 

class recall 89.00% 60.00% 100.00%  

 

 

To read the above confusion matrix table (classifier outcomes), let us start with column 

2, that is labeled by (true 1) with the three predictions rows (pred.1, pred.2, and 

pred.3). The classifier predicted class 1, by 89 times out of 100 which is called true 

positive (TP), and this prediction are true by 89 times out of 100, also, the same 

classifier predicted the rest 11 to be class 2, which is called false positive (FP), this 11 

out of 100 is false. Finally, the same classifier predicted 0 of class 3, this was false, 

and this is true. Similarly, the values for class 2 and class 3 have the same meaning.  
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On the other hand, from the above table there are three values namely; class precision 

which is known as specificity, class recall also known as a sensitivity, and last one is 

accuracy of classifier for the three classes. A high-class recall means the classifier 

returned most of the important results, while a high-class precision means the classifier 

returned significantly more important results than non-important. A detailed 

information about the calculation and equations of the three values are illustrated in 

Section 2.6.2.  

The three values are calculated as: 

 Class precision (PRi) /Specificity  = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 % = 

89

89+39+0
 % = 69.53%=0.89% 

 Class recall (REi) /Sensitivity  = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 % = 

89

89+11+0
 % = 89.00% 

 Accuracy (ACi) = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  

= 
(89+60+100)+(0+0)

(89+60+100)+(0+0)+(39+1)+(11+0)
 

= 
249

300
× 100 = 0.83 ×100 = 83.00% 

Similarly, the calculation of the other two classes is done in the same manner. 

A normalized form of CCM across all hypotheses is obtained to be used by the 

ensemble classifier, namely, 𝐶𝐶𝑀̅̅ ̅̅ ̅̅ . In this normalized confusion matrix, an entry 

CCM̅̅ ̅̅ ̅̅ [i][j] is the normalized entry of CCM [𝑖][𝑗] on class i recall with respect to all 

hypotheses. That is: 

𝐶𝐶𝑀̅̅ ̅̅ ̅̅ [𝑖][𝑗] =
𝐶𝐶𝑀 [𝑖][𝑖]

∑ 𝐶𝐶𝑀 [𝑖][𝑗]𝑛
𝑖

 (4.8) 

Therefore, ∑ CCM̅̅ ̅̅ ̅̅ [𝑖][𝑗]𝑛
𝑖 = 1.  

 



 

 103 

Hence,  

 The normalized 𝑃𝑅𝑖, across the set of hypotheses H is given by:  

𝑃𝑅̅̅ ̅̅ 𝑖 =
𝑃𝑅𝑖

∑ 𝑃𝑅𝑖
𝑛
𝑗

       therefore,    ∑ 𝑃𝑅̅̅ ̅̅ 𝑖  
𝑛
𝑖 = 1 (4.9) 

 The normalized 𝑅𝐸𝑖 and the normalized ACi across the set of hypotheses H, are, 

𝑅𝐸̅̅ ̅̅ 𝑖 =
𝑅𝐸𝑖

∑ 𝑅𝐸𝑖
𝑛
𝑗

 ,      therefore,    ∑ 𝑅𝐸̅̅ ̅̅ 𝑖  
𝑛
𝑖 = 1 (4.10) 

𝐴𝐶̅̅ ̅̅ 𝑖 =
𝐴𝐶𝑖

∑ 𝐴𝐶𝑖
𝑛
𝑗

 ,      therefore,    ∑ 𝐴𝐶̅̅ ̅̅ 𝑖 
𝑛
𝑖 = 1 (4.11) 

The following example demonstrates how to calculate the normalized CCM from the 

raw classifier confusion matrix across all hypotheses at the target compression ratio of 

85.35%, which resulted from extensive experiments, which is equal to 600s/s with 

noisy data of SNR=1 dB. To calculate the normalization of class precision (PRi), class 

recall (REi), and classifier accuracy (ACi), a raw confusion matrix is the following: 

 

Figure 4.4. Raw Confusion Matrix for CR=85.35% at SNR=1 dB 

True class label True class label

true 1 true 2 true 3 PR true 1 true 2 true 3 PR

pred. 1 80 38 4 0.66 pred. 1 80 40 0 0.67

pred. 2 20 61 2 0.73 pred. 2 20 59 0 0.75

pred. 3 0 1 94 0.99 pred. 3 0 1 96 0.99

RE 0.80 0.61 0.94 RE 0.80 0.59 0.96

ANN Accuracy 0.78 Bayes Accuracy 0.78

True class label True class label

true 1 true 2 true 3 PR true 1 true 2 true 3 PR

pred. 1 92 46 0 0.67 pred. 1 81 30 5 0.70

pred. 2 8 53 7 0.78 pred. 2 19 70 13 0.69

pred. 3 0 1 93 0.99 pred. 3 0 0 82 1.00

RE 0.92 0.53 0.93 RE 0.81 0.70 0.82

k -NN Accuracy 0.79 SVM Accuracy 0.78
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Calculate each normalized class precision (PRi) by dividing it on the sum of all PRi 

for all hypotheses, for each corresponding class. 

 Class 1 (c0) = 0.66 + 0.67 + 0.67 + 0.70 = 2.70. 

 Class 2 (c1) = 0.73 + 0.75 + 0.78 + 0.69 = 2.95 

 Class 3 (c2) = 0.99 + 0.99 + 0.99 + 1.0  = 3.97 

 

Class recall (REi) calculation is done in the same manners of (PRi),: 

 Class 1 (c0) = 0.80 + 0.80 + 0.92 + 0.81 = 3.33. 

 Class 2 (c1) = 0.61 + 0.59 + 0.53 + 0.70 = 2.43 

 Class 3 (c2) = 0.94 + 0.96 + 0.93 + 0.82  = 3.65 

 

Finally, calculate the of overall classifier accuracy (ACi) for all classifiers: 

∑𝐴𝐶𝑖= 0.78 + 0.78 + 0.79 + 0.78 = 3.13 

 

The normalization for each parameter has been calculated below: 

 Normalized  (PRi) for all classes, namely, c0, c1, c2, as: 

Class 1 (c0) = 0.66/2.70= 0.244 for ANN, 0.67/2.70 = 0.248 for NB,  

= 0.67/2.70= 0.248 for k-NN, and 0.70/2.70= 0.259 for SVM. 

 

Simply, the same normalized calculation for the other classes to calculate resting of 

the PRi has been done, and to calculate the all REi, as well as ACi. 
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Figure 4.5. Normalized Confusion Matrix (𝐶𝐶𝑀̅̅ ̅̅ ̅̅ ), for CR=85.35% at SNR=1 dB 

The normalized forms of important performance measures such as, PRi, REi, and ACi 

describe the goodness of these measures with respect to corresponding measures in 

other classifiers. Being normalized that way; such values represent a probability space 

for each performance measure.  

The ensemble classifier NSC considers the probabilities corresponding to these 

performance measures for each hypothesis and uses it to calculate a probability of 

selecting a hypothesis reporting a class k. Therefore, the reported class k by a 

hypothesis is a fourth parameter considered in NSC decision. Since the calculated 

values of class precision and class recall are dependent, they have been grouped as one 

term in the equation leaving the overall accuracy as second term. The two terms have 

direct proportion to the goodness of selecting a classifier predicting class k. However, 

their effect is not necessary to be equal. Hence, a weight 0 < 𝜎 < 1 to control this 

True class label True class label

c0 c1 c2 c0 c1 c2

c0 80 38 4 0.245 c0 80 40 0 0.248

c1 20 61 2 0.248 c1 20 59 0 0.254

c2 0 1 94 0.249 c2 0 1 96 0.249

0.240 0.251 0.258 0.240 0.243 0.263

h 0 =ANN 0.249 h 1 =NB 0.249

True class label True class label

c0 c1 c2 c0 c1 c2

c0 92 46 0 0.248 c0 81 30 5 0.259

c1 8 53 7 0.265 c1 19 70 13 0.233

c2 0 1 93 0.249 c2 0 0 82 0.252

0.276 0.218 0.255 0.243 0.288 0.225

h 2 =k-NN 0.253 h 3 =SVM 0.248
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effect has been introduced. This weight is a long run tuned with Equation 4.12 for 

optimal performance on EEG-based epileptic seizure data.  

 

The prediction of the NSC combination classifier is calculated by the following 

hypothesis with the highest probability defined as: 

𝑃(ℎ𝑗) =
𝜎 × (𝑃𝑅̅̅ ̅̅ 𝑘,𝑗 + 𝑅𝐸̅̅ ̅̅ 𝑘,𝑗) + (1 − 𝜎) 𝐴𝐶̅̅ ̅̅ 𝑗

∑ 𝜎 × (𝑃𝑅̅̅ ̅̅ 𝑘,𝑖 + 𝑅𝐸̅̅ ̅̅ 𝑘,𝑖) + (1 − 𝜎) 𝐴𝐶̅̅ ̅̅ 𝑖
𝑛−1
𝑖=0

 (4.12) 

where, k is the label of predicted class and ∑ 𝑃(ℎ𝑗) = 1
𝑛−1
𝑗=0   

 

Equation 4.12 is used by NSC to calculate the goodness probability of a hypothesis j 

predicting class k by dividing the summation of the 𝜎 weighted terms, described above, 

by the total of goodness for all hypotheses if they were to predict the same class k. The 

resultant value reported the goodness of hypothesis j reporting class k with respect to 

other hypotheses reporting class k.  

 

NSC calculates the probabilities describing the goodness of each hypothesis 

corresponding to its predicted class k in the same manner. Finally, it confirms the 

predicted class of the hypothesis having the highest probability. 
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Pseudo code: NSC 

Preliminaries  

Let 𝑂 = {𝑜0, 𝑜1, … , 𝑜𝑠−1} be the set of observations  

Let 𝐶 = {𝑐0, 𝑐1, … , 𝑐𝑚−1} be the set of class labels 

Let 𝐻 = {ℎ0, ℎ1, … , ℎ𝑛−1} be the set of hypotheses  

Let ℎ𝑛 be the hypothesis of the combined classifier  

Let 𝑃𝐿𝑖,𝑗,  𝑃𝑅𝑖,𝑗, 𝑅𝐸𝑖,𝑗, 𝐴𝐶𝑗 be the 𝑗 predicted class label, class 

precision, class recall, and accuracy of ℎ𝑖 

 

PROCESS 

∀ℎ𝑖|𝑖 = 0,… , 𝑛 − 1 

𝑃𝑅̅̅ ̅̅ 𝑖,𝑗 =
𝑃𝑅𝑖,𝑗

∑ 𝑃𝑅𝑖,𝑗
𝑛−1
𝑗=0

, 𝑅𝐸̅̅ ̅̅ 𝑖,𝑗 =
𝑅𝐸𝑖,𝑗

∑ 𝑅𝐸𝑖,𝑗
𝑛−1
𝑗=0

, 𝐴𝐶̅̅ ̅̅ 𝑗 =
𝐴𝐶𝑗

∑ 𝐴𝐶𝑗
𝑛−1
𝑗=0

  

𝑖𝑓 ∃ 𝑂  /** on receiving a periodical batch of observations*/ 

∀𝑜𝑖| 𝑖 = 0,… , 𝑠 − 1 

𝑊 = 0 

∀ℎ𝑗|𝑗 = 0,… ,𝑚 − 1  

𝑘 = 𝑃𝐿𝑖,𝑗|𝑘 ∈ 𝐶 

𝑤(ℎ𝑗) = 𝜎(𝑃𝑅̅̅ ̅̅ 𝑘,𝑗 + 𝑅𝐸̅̅ ̅̅ 𝑘,𝑗) + (1 − 𝜎) 𝐴𝐶̅̅ ̅̅ 𝑗 

𝑊 +=𝑤(ℎ𝑗)  

∀ℎ𝑖|𝑖 = 0, … , 𝑛 − 1  

𝑃(ℎ𝑖) =
𝑤(ℎ𝑖)

𝑊
  

𝑃𝐿𝑖,𝑛 = 𝑀𝑎𝑥(𝑃(ℎ𝑖)|𝑖=0
𝑛−1) // Record prediction 

Calculate ℎ𝑛 Performance measurements of interest 

Figure 4.6. Noise-aware Signal Combination Pseudo code  

 

The classification results of the individual classifier are displayed in a confusion 

matrix. In the confusion matrix, each cell consists of numbers of vectors classified for 

the corresponding combinations of (true class & predicted class labels) outputs. 
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Figures 4.7-4.10 show the confusion matrices for the four classifiers, which have been 

selected before. These matrices represent the finalized weighted performance of the 

trained classifiers based on noiseless data and three different levels of data noisy, 

SNR= 1 dB, 5 dB, and 10 dB for EEG-based epileptic seizure at 𝑀 = 600, down 

sample value. Also, these figures show that c0, c1, and c2 are representing class A, class 

C, and class E, respectively. 

For example, Figure 4.7 represents EEG noiseless data, classes’ c0, c1, and c2 in 

vertical line are representing the predicted class label; on the other hand, in the 

horizontal line, the true class label has shown. The normalized precision 𝑃𝑅̅̅ ̅̅ , of class 

A in the first row of the four matrices is 0.271, 0.252, 0.227, and 0.250 for ANN, NB, 

k-NN, and SVM respectively. The normalized class recall 𝑅𝐸̅̅ ̅̅  of class A in first four 

matrices is 0.229, 0.245, 0.262, and 0.264 for ANN, NB, k-NN, and SVM, 

respectively. Furthermore, the normalized overall accuracy 𝐴𝐶̅̅ ̅̅ , is 0.253, 0.256, 0.241, 

and 0.250 for the same set of classifiers respectively.  

Also, shown from these figures, is the confusion matrix the normalization of class 

precision, class recall, and the overall classification accuracy for each classifier. Also, 

in Figure 4.10, you can read one table as rows by saying that the classifier prediction 

for class 0 (c0) is 88%, while classifier prediction for class1 (c1) is 12% and classifier 

prediction for class2 (c2) is 0%. This means that the 88% is the overall classification 

accuracy for c0, and so on for the other classes.  

According to the confusion matrix, there are many mis-classifications - occurred using 

the utilized four classifiers and the proposed method. 
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Figure 4.7. Confusion matrix for noiseless data 

 

 

Figure 4.8. Confusion matrix for noisy data (SNR=1 dB) 

True class label True class label

c0 c1 c2 c0 c1 c2

c0 84 12 2 0.271 c0 90 23 0 0.252

c1 16 82 2 0.244 c1 10 75 1 0.259

c2 0 8 96 0.236 c2 0 2 99 0.251

0.229 0.272 0.262 0.245 0.249 0.270

h 0 =ANN 0.253 h 1 =NB 0.256

True class label True class label

c0 c1 c2 c0 c1 c2

c0 96 37 1 0.227 c0 97 19 7 0.250

c1 4 63 9 0.246 c1 3 81 12 0.251

c2 0 0 90 0.256 c2 0 0 81 0.256

0.262 0.209 0.246 0.264 0.269 0.221

h 2 =k-NN 0.241 h 3 =SVM 0.250
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Figure 4.9. Confusion matrix for noisy data (SNR=5 dB) 

 

 

Figure 4.10. Confusion matrix for noisy data (SNR=10 dB) 

 

At the end of each experiment, the algorithm calculates the performance for each 

classifier including the proposed ensemble classifier NSC based on the recorded test 

True class label True class label

c0 c1 c2 c0 c1 c2

c0 84 31 2 0.262 c0 88 36 0 0.251

c1 16 68 3 0.279 c1 12 62 4 0.249

c2 0 1 95 0.249 c2 0 2 96 0.247

0.240 0.264 0.262 0.251 0.240 0.265

h 0 =ANN 0.254 h 1 =NB 0.254

True class label True class label

c0 c1 c2 c0 c1 c2

c0 91 50 0 0.228 c0 87 22 10 0.259

c1 9 50 11 0.225 c1 13 78 8 0.246

c2 0 0 89 0.252 c2 0 0 82 0.252

0.260 0.194 0.246 0.249 0.302 0.227

h 2 =k-NN 0.238 h 3 =SVM 0.254
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results. The NSC achieved the desired improved classification accuracy with noisy 

data: classification accuracies of 80% for SNR=1 dB, 84% for SNR=5 dB, and 88% 

for SNR=10 dB were obtained at CR =85.35%. Moreover, NSC may provide several 

demonstrable benefits, such as simplicity, and NSC improves the overall classification 

accuracy.  

Compared with previous works, the classification accuracy by the proposed NSC of 

noiseless EEG data, is 90% achieved, which is 4.1% higher than the work done in [87] 

(85.9% accuracy), and 0.5% higher than the reported in [84] (89.5% accuracy), 

considering the same dataset.  

In addition, to the best of our knowledge, no similar evaluation approaches for EEG-

based epileptic seizure when considering AWGN with different SNR values. 

4.5 Summary 

In this chapter, in details the compression and classification framework for EEG-based 

epileptic seizure and methods perspectives have been explained. Classification 

accuracy and compression ratio have been employed to evaluate the performance of 

the utilized classifiers. A simulation program has been implemented for data 

compression, using an AWGN wireless model with different values of noise as part of 

this work. DWT is used to extract statistical features that represent values of all-

important information about the original signal data. These features are calculated 

from each cross-correlation sequence to create feature vector sets. EEG classification 

methods have been utilized by using four classifiers. The four individual classifiers 

are ANN, NB, k-NN, and SVM. Another simulation program has been developed to 
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demonstrate a proposed NSC ensemble technique to measure the noisy EEG-based 

epileptic seizure classification accuracy. The outputs of the above classifiers are used 

as input to the proposed combination method. The following parameters classifier 

prediction, class precision, class recall, confidence, and overall classifier accuracy 

have been selected. Finally, the confusion matrix has been used to represent each 

classifier vector performance in terms of the prediction and actual classification.  
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CHAPTER FIVE 

RESULTS AND DISCUSSIONS 

This chapter presents the experimental results of the two proposed approaches, 

namely, the unified sensor-based compression and classification (SCC) framework for 

data delivery and noise-aware signal combination (NSC) method. The EEG-based 

epileptic seizure dataset consists of three different classes that can distinguish the 

epilepsy and non-epilepsy subjects. In this study, all experimental results for the 

dataset are presented based on testing sets. 

Three different experiments have been conducted to evaluate the proposed SCC EEG-

based epileptic seizure framework. First, investigate the effect of compression of the 

EEG data at different values of signal-to-noise-ratio (SNR) at CR=85.35. Second, 

show the measure of classification accuracy for a noiseless as well as a noisy version 

of the compressed EEG data. Specifically, use SNR values equal to 1, 5 and 10 dB. 

We choose to simulate the performance of our proposed algorithm at the SNR levels 

presented earlier, which represents three levels of SNR, low: SNR = 1dB, moderate 

SNR =5 dB and acceptable to high SNR =10dB [75, 76], more informtion refer to 

Chapter 3. Low SNR level represents low data accurcacy, i.e., high noise effect. 

Conseqently, moderate SNR level represents med-level adat accuracy, and so forth for 

the case of acceptable of SNR. Third, measure the classification accuracy against the 

CR in all cases after adding three different noise levels on the transmitted compressed 

EEG data.  
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To do the second and third goals highlighted in the previous paragraph, four different 

classification methods were used. These methods are ANN, NB, k-NN and SVM. 

Initially, the classifiers were developed to work individually.  A more detailed 

description about these four classifiers is presented in Chapter 2 and Chapter 4. As 

each classifier is working independently, an ensemble Noise-aware Signal 

Combination (NSC) method has been proposed to enhance the ensemble classification 

accuracy of EEG-based data.  

The next section reports the obtained results and provides the illustrations and 

discussions relevant to each classifier. In addition to show, the classification accuracy 

of the proposed NSC compared to all other individual classifiers. 

5.1 Classification Accuracy using Four Classifiers 

Using a simulation platform, a framework that represents the transmitter and receiver 

of our proposed technique that combines several methods has been developed. On the 

transmitter side, the compressive sensing (CS) and DCT techniques were utilized. 

DCT uses a measurement matrix to compress the raw EEG-based epileptic seizure and 

send it over the wireless channel. On the other side, it received and reconstructed the 

compressed data back to the original size using iDCT. At the feature extraction stage, 

it extracted statistical features in excel sheets using DWT. These features are used to 

measure the data classification accuracy. The data mining tool is used to study the CS 

complexity-accuracy trade-off.  

For each CR value, a series of ten experiments has been conducted, each of which was 

accomplished with an independent random measurement matrix Φ of size M * N. 
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Then, for each CR value, the classification accuracy has been computed as the average 

of the ten accuracies corresponding to the ten experiments performed for that CR 

value. Concerning execution time, for each classifier (ANN, NB, k-NN, SVM), all the 

CR values considered above were taken. Then, a series of classifications (ten 

experiments per CR value, all CR values per each classifier) were performed and the 

average running times for each classifier were measured.  

The goal of the running time experiments is to decide which of the classifiers is more 

efficient in our context. On average, ANN took around 15 seconds; SVM took 1 

second, while both of k-NN and Bayes took less than 1 second. These timings were 

obtained while the classifier parameters were configured to the default values. ANN 

training cycles were set to 500 and its learning rate set to 0.3. NB used Laplace 

correction to avoid high potential impact zero, so the default is set to true. The type of 

the k-NN is set to radial and parameter k was set to 10. Finally, SVM type was nu-

support vector classification (nu-SVC) and the cache size was defined as 80 

megabytes.  

5.1.1 Cross-validation 

Cross-validation is a nested operator and the most important part in the classification 

method. It is used to estimate a statistical performance of a learning operator. It has 

two sub-processes, namely training and testing. The training sub-process is used to 

provide a training model. Then, the resulting training model is applied in the testing 

sub-process to measure the model performance. A k-fold cross-validation is used to 

compute the classification accuracy, by first dividing the initial dataset into k subsets 
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of approximately equal size, and performing the cross-validation on each of the 

subsets. In each execution, one of the subsets is used as a testing set and the remaining 

k-1 subsets are used as a training set. Using the number of cross-validations k, the 

average accuracy across all k iterations is computed. 

The 10-fold cross-validation procedure has been used to evaluate the performance of 

the classifiers. Classification accuracies have been provided for four individual 

classifiers, namely ANN, NB, k-NN, and SVM for an EEG benchmark dataset. All 

experiments on the dataset are evaluated by 10-fold cross-validation process, which 

indicates the generalizability of the classifier and reliability of the obtained results. In 

contrast, in the proposed NSC method, only considered a 2-fold cross-validation 

procedure to reduce the computation time and the number of experiments. The reader 

shall note that the generalizability term refers to the ability of a model to perform well 

on unseen datasets. 

5.1.2 Performance Evaluation Measures 

Several types of methods for performance evaluation measures are presented. In this 

research study, the compression ratio and the overall classification accuracy are 

measured. The purpose is to evaluate the performance of the used individual 

classifiers. In the proposed technique, the parameters are represented by different 

statistical measures, such as classifier prediction, class precision or specificity, class 

recall or sensitivity, confidence, and overall classifier accuracy. The classification 

accuracy is evaluated based on the measurements of the highest probability of the 
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hypothesis (Chapter 4, eq. 4.12). The sensitivity, specificity, class label and accuracy 

are defined as follows: 

 Specificity (PRi): is the number of true negative decisions divided by the number 

of actual negative cases; 

 Sensitivity (REi): is the number of true positive decisions divided by the number 

of actual positive cases; 

 Classifier class label (PLi): is the classifier prediction field of class labels, which 

contains the class labels of all classes during the historical classification. 

 Classification accuracy (ACi): is the number of correct decisions divided by the 

total number of cases. 

5.2 Experiments and Results 

The following sections will focus on the experiments and results that were obtained in 

this research work.  

5.2.1 Experiment 1: Effect of Compression on Noiseless Data  

The performance of the proposed framework has been evaluated in two ways: (1) by 

dividing EEG epileptic seizure feature set into two groups, as a training and testing 

sets, and (2) by using the 10-fold cross-validation process. This indicates the classifier 

generalization and the reliability of the obtained results. The experiment results are 

shown in the following five graphs in Figures 5.1 - 5.5.  

The coming Figure 5.1 illustrates the classification accuracy in function of the CR in 

the case of a noiseless wireless channel, using the four aforementioned classifiers. 

Figure 5.1 also shows the results for ANN, NB, k-NN, and SVM classifiers accuracy 

for the noiseless wireless channel. The results show that accuracy decreases 
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logarithmically with the increase of CR. The results were divided into three main 

regions: at CR = 75% and CR=85%, respectively. Each point on the graphs, 10 

experiments has been conducted and calculated the average of classification accuracy 

accordingly. While accuracy remains stable above 90% for all classifiers in the first 

region, ANN, and Bayes seem to have a better accuracy of about 5%.  

The decay in the accuracy seems to be reasonable in the second region, showing that 

ANN outperforms all others in high compression values, but it decays exponentially 

in the third region for all classifiers. While ANN consistently outperforms the other 

three classifiers in all regions, the high classification time and complexity of 

implementation makes ANN prohibitive in real-time wirelessly tele-monitoring 

applications.  

 

Figure 5.1. Classification accuracy in function of the CR, noiseless data  
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Hence, the following figures from Figures 5.2 – 5.5 show the results of classification 

accuracy in function of the CR for different SNR classifier values. These results 

include the effect of an additive white Gaussian noise (AWGN) channel model by 

different SNR values of 1 dB, 5 dB, and 10 dB on the transmitted compressed EEG 

data.  

5.2.2 Experiment 2: Effect of Compression on Noisy data 

The aim of this experiment was to show the accuracy of the effect of the compression 

on different EEG data classes. Each figure shows the effect on different data types, 

which are evaluated by each individual classifier.  

 

Figure 5.2. Classification accuracy using ANN classifier, noiseless and noisy data 
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Figure 5.2 corresponds to the use of the ANN classifier. The results show that at 

CR=85%, the accuracy starts to decrease regularly at the classification accuracy of 

93.67% for noiseless data. Similarly, for noisy data, the classification accuracy was 

91.60%, 89.10%, and 84.70%. The decay starts early with the increase of channel 

noise for SNR=10 dB, SNR=5 dB, and SNR=1 dB, respectively.  

 

Figure 5.3. Classification accuracy using NB classifier for noisy data 

In an analogous way, Figure 5.3 shows the usage of NB classifier. The results indicate 

that the classification accuracy decreases consistently, while the exponential decay 

starts early with the increase of channel noise. For example, the exponential decay 

starts at CR≈ 90% of the noiseless channel, while it starts at CR=85% when SNR=1dB. 



 

 121 

 

Figure 5.4. Classification accuracy using k-NN classifier for noisy data 

Figure 5.4 shows k-NN classifier and the results indicate a slightly different behavior 

compared to Bayesian classifier. While the classification accuracy starts to decay 

linearly after CR=75%, the effect of noisy communication is more evident, causing 

the decrease of more than 10% when SNR=10dB. Eventually, Figure 5.5 shows steady 

decrease in function of both CR and SNR, nominating k-NN to be the best tolerable 

classifier to wireless channel noise and changes in CR.  
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Figure 5.5. Classification accuracy using SVM classifier for noisy data 

Figure 5.5 shows the SVM classifier and the results indicate that for all data types the 

accuracy decreases linearly with the increase of CR. In the first region, the accuracy 

remains stable above 84% for all data types with CR=83%, which seems to have less 

accuracy than the noiseless data of 5% approximately. The decay in the accuracy 

seems to be reasonable in this region, showing SVM with high compression values 

above 88% and classification accuracy starts to decrease exponentially in the third 

region for all data types. 

 

Finally, as shown in Figures 5.2 to 5.5, the best compression ratio is 85.35% and gives 

the best classification accuracy around 85%. In addition, the ANN classifier is more 

accurate and gives a better accuracy of 95%. Bayes is less complex and uses only 
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Laplace correction. However, SVM and k-NN give less accuracy than ANN and 

Bayes. This is mainly because these classifier models use different classification 

strategies. For example, the Bayes classifier assumes that the features of the input 

pattern are independent. In the case of ANN, the dependency relationship can be 

learned from data. For the k-NN and SVM models, the default parameters were used.  

From the above results, the best CR for both data types (noiseless and noisy) is 

85.35%, which is equivalent to a compressed data of 600 samples. This CR percentage 

as 100 multiplied by the result of subtracting from 1 the value of M (size 600 s) divided 

by the original data N size (4096 s) as follows: 𝐶𝑅 = (1 −
𝑀

𝑁
) ∗ 100. 

5.3 Ensemble Classifiers Performance  

In this work, all the classifiers by selecting k=2 for the k-fold cross-validation 

procedures have been evaluated individually. This 2-fold cross-validation was used in 

order to reduce the running time of the computation and the number of experiments. 

The advantage of this is that the data is divided into 50% training and 50% testing, so 

each data point is used for both training and validation on each fold. However, in 10-

fold cross-validation which is commonly used, the data is randomly divided into k 

subsamples size. This k is booked as validation data for testing the model and the 

subsamples remaining are used as training. Then repeated k times (the folds) and the 

results from folds could be averaged to obtain a single estimation. 

At this stage, a combined classifier called Noise-aware Signal Combination (NSC) 

technique has been proposed to measure the classification accuracy of certainty and 

uncertainty (noisy) data. In addition, based on the literature review, this study focused 
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on getting more than 80% better accuracy than our target compression ratio of 85.35%. 

The stability of performance of the NSC classifier is assessed based on different 

statistical measurements, such as class prediction, sensitivity, specificity, and 

classification accuracy. Again, as the above mentioned that, for each point on the 

graphs, 10 experiments have been conducted and calculated the average accuracy 

accordingly. 

5.3.1 Confusion matrix for Performance Measures 

In this research work, the EEG-based epileptic seizure data classified for different 

types of data, noiseless and different values of SNR to become noisy data. For each 

point on the graphs, 10 experiments have been conducted and calculated the average 

accuracy and its standard deviation accordingly. The standard deviation describes the 

distribution range, describing how much difference occurs between successful 

computations, which correspond to the data imperfection. In this case, the Standard 

Deviation (SD) is important to show the difference between successive measurements 

to make sure that the classifiers are not affected by data imperfection.  

The calculated performance measures of the studied classifiers with EEG-epileptic 

seizure data compressed with CR= 85.35% for noiseless and add noise of SNR= 1, 5, 

and 10 dB are shown in table 5.1. This figure shows the class precision (𝑃𝑅), class 

recall (𝑅𝐸) and the classification average (𝐴𝑉𝐺) accuracy (𝐴𝐶) and standard deviation 

(𝑆𝑇𝐷) for each classifier for different SNR and noiseless channel conditions. The 

figure represents the confusion matrix of the classifier outputs at the desired 

compression ratio. In addition, it includes most of the parameters that are used in this 
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research, namely specificity, sensitivity, and overall accuracy of all classifiers. This 

table has seen that the NSC enhances the overall accuracy of the EEG data. The NSC 

result shows that for the noiseless data, this classifier achieves 90%, for SNR=1 dB, it 

achieves 80%, for SNR=5 dB, it achieves 84%, and for SNR=10 dB, it achieves 88%. 

The proposed NSC technique achieves a better accuracy than all existing classifiers.  
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Table 5.1:  

Performance of the classifiers with CR=85.35% and SNR= 1, 5, and 10 dB as well 

as noiseless 

 

 

The above table shows the accuracy at CR=85.35% for all classifiers. It indicates that 

that accuracy at SNR=10dB is better than SNR=5dB and SNR=1dB which means that 

at 10dB the EEG characteristics are close to the noiseless data, while SNR=1db is 
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representing high noise in EEG data. The corresponding results for the individual 

classifiers ANN, NB, k-NN (with k=10), and SVM in each SNR case together with 

that of NSC are plotted to illustrate the differences of their performances. Figures 5.6 

- 5.10 illustrate that performance under SNR of 0, 1, 5, and 10 dB respectively. The 

corresponding readings of the accuracy in table 1 are emphasized in figures 5.6 - 5.10 

with the line drawn at CR=85.35%.  

The constraint on the desired accuracy in the case of noiseless data is to achieve 90%. 

The CR of 84.35% was the cutting edge of achieving this desired goal. Therefore, the 

performance of the classifiers is of its highest importance at this CR value. The overall 

accuracy results of all the experiments show that this constraint is met at CR=85.35%, 

while at the same time maintaining a high accuracy of 80% with very noisy data of 

SNR=1 dB. 

5.3.2 Experiment 3: Effect of Compression on Noiseless data for NSC classifier 

The aim of this experiment is to show the accuracies of the effect of the compression 

on different EEG data classes. Each figure shows the effect on noiseless data type, 

which is evaluated by the individual and the proposed NSC classifiers. The purpose 

from the following figures (5.6 - 5.10) is to show that even in a single test, the proposed 

technique still outperforms the others, however, based on average for each point could 

reduce these oscillation through averaging results and this shows the versatility of the 

results. 
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Figure 5.6. Classification accuracy against CR for noiseless 

Figure 5.6 shows the trend of the classification accuracy of NSC increases almost 

linearly with the decrease of CR. The decay in the accuracy seems to be reasonable in 

all regions, showing that NSC outperforms the other classifiers in high accuracy 

values, and then it starts to decay exponentially like all of the other individual 

classifiers. Because the decay of M value gives high CR values, this means that some 

of the data will lose some of its components. Indeed, the model shows an almost 

horizontal linear curve and a moderate decrease in the second region, but in extremely 

CR values, the curve becomes steep. 
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5.3.3 Experiment 4: Effect of Compression on noisy data for NSC classifier 

The experiment aims to show the accuracy of the effect of the compression on different 

EEG data classes. Each figure shows the effect on different data types, which are 

evaluated by each individual classifier and the proposed NSC classifier.  

 

Figure 5.7. Classification accuracy in function of CR for SNR=1 dB 

Figure 5.7 shows that the result is worse for all classifiers due to the quantity of added 

AWGN (SNR=1 dB), which is considered to be the highest noise added in all 

experiments. In this case, the NSC continued to perform consistently better than the 

rest of the classifiers. Bayes classifier still exhibits the poorest performance. The exact 

reported results at CR=85.35% show 80% as classification accuracy and then all 

classifier accuracies moderately decrease. Other results can be seen when for a 

moderate SNR of 5 dB in Figure 5.8.  
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As expected, Figure 5.8 shows that increasing the CR results in decreasing the overall 

accuracy for all classifiers and vise-versa. The results show that a model with high 

classification corresponds to a low compression ratio value. At the desired 

CR=85.35%, the NSC gives a classification accuracy of 84% of SNR=10 dB noised 

data. Also, at CR=90.23% the NSC accuracy is 83% and starts decreasing, and in all 

classifiers accuracy decreases exponentially. 

Eventually, Figure 5.9 shows a slightly different behavior for all classifiers. While the 

classification accuracy of above 90% starts to extremely decay after CR=82.91%. The 

effect of added different SNR values using AWGN is that the noise in this case is 

much less where SNR=10 dB, which is close to the EEG data components. However, 

at those accuracy and CR values, the accuracy curve starts to decrease exponentially. 

This is due to the decrease in the value of M, that will give the high CR, so that the 

data goes a little bit to lose some of the information. Indeed, the model shows a 

decrease in the classification accuracy for all classifiers and an increase in the CR 

values. The curve is going to decay.  
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Figure 5.8. Classification accuracy in function of the CR, for SNR=5 dB 

 

 

Figure 5.9. Classification accuracy in function of the CR, for SNR=10 dB 
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5.3.4 Average Accuracy for all CR with all SNR 

Figure 5.10 shows the relationship between the average classification accuracy and 

the average of all data types (noiseless and noisy) for each classifier. This relationship 

is represented for all individual classifiers and the proposed NSC method. This shows 

the accuracy of the effect of the compression on different EEG data classes. In 

addition, this figure shows the effect on the average of accuracies for different data 

types which are evaluated by each the individual classifier and the proposed NSC 

classifier. 

 

Figure 5.10. Average accuracy for all CR values with noiseless and SNR=1, 5, and 

10 dB 

Finally, overall and regardless of the compression ratio value, Figure 5.12 shows that 

the results for the average classification accuracy of NSC is constantly better than 

other classifiers. This statement is valid for EEG-epileptic seizure data in both 
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noiseless and noisy. Also, this figure shows that the best accuracy average for the 

proposed NSC method is 88%, 80%, 83% and 87% for respectively (noiseless and 

noisy) data with SNR values of 1 dB, 5 dB, and 10 dB, respectively.  

 

Table 5.2 shows the overall accuracy for all individual classifiers at training stage, in 

addition to proposed NSC at our intended compression ratio 85.35%. 

 

Table 5.2:  

Overall classification accuracy for all classifiers at CR=85.35% 

Noise Values ANN Bayes k-NN SVM NSC 

Noiseless 87.00% 88.00% 83.00% 86.00% >90.00% 

SNR=1 78.00% 78.00% 79.00% 78.00% 80.00% 

SNR=5 82.00% 82.00% 77.00% 82.00% 84.00% 

SNR=10 86.00% 85.00% 86.00% 82.00% 88.00% 

 

 

As shown in the above Table 5.2, at different values of SNR, the classification 

accuracy was obtained using four individual classifiers. At the SNR=1 dB the accuracy 

is lower since the noise quantity is high.  At the SNR=5 dB the accuracy is moderately 

and better than the SNR=1 dB. At SNR=10 dB is almost close to or in some of 

classifiers it is better than no noise value, however, this is appeared based on the 

behavior of each classifier where each one is from different families. 
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Compared with previous works, the proposed NSC classification accuracy of noiseless 

EEG data has achieved 90%, which is 5% higher than the accuracy done in Sharma 

[104], 4.1% higher than the work done in Sadati’s [87] (85.9% accuracy) especially 

for sets (A, D, E), 0.5% higher than the reported in Mohamed’s [84] (89.5% accuracy). 

In addition, Liang achieved classification accuracy between 80% and 90% [92]. 

Tzallaz [81] achieved 89% only for noiseless dataset using one classifier. All of these 

approaches considered are using the same EEG dataset. In contrast to these 

approaches, the proposed approach achieved the desired improved classification 

accuracy with noisy data using different SNR values: 80% for SNR=1 dB, 84% for 

SNR=5 dB and 88% for SNR=10 dB. These results were obtained at CR =85.35%. 

Moreover, our approach provides several demonstrable benefits, such as simplicity, 

and improves the overall classification accuracy. In addition, to the best of our 

knowledge, no similar approaches have been evaluated for EEG-based epileptic 

seizure when considering AWGN channel with different SNR values.  

 

The following table 5.3 shows the comparisons between the proposed NSC and others 

reported in the literature, most of literatures were worked only on noiseless data, which 

shows in table 5.3 by Not Available (N/A). In addition, the table shows that the 

proposed technique achieved more than 90% accuracy compared with others on the 

same dataset.  
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Table 5.3:  

Comparison summaries of the previous work 

Authors 
Noiseless 

Datasets 

Noisy 

Datasets 
Classifiers Accuracy 

Proposed Method A, C, E A, C, E 
ANN, NB, k-NN, 

SVM 
>90% 

Sharma 2014, 

[104] 

Two different 

classes 
N/A LS-SVM 85% 

Sadati’s, 2006 

[87] 
A, D, E N/A 

SVM, FBNN, 

ANFIS, and 

proposed ANFN 

85.9% 

Mohamed 2013 

[84] 
A, B, C, D, E N/A 

NB, MLP, k-NN, 

LDA, AND SVM 
89.5% 

Tzallaz 2009 [81] A, B, C, D, E N/A ANN 89% 

5.4 Summary 

In this chapter, the above experiments focused on results and obtaining a better 

classification accuracy of 85% for all reconstructed and noisy data types, noiseless and 

noisy with different values, according to the desired compression ratio of 85.35%. At 

this stage of research, all individual classifiers are evaluated by selecting k=10 as it is 

a common choice for the k-fold cross-validation method in order to achieve the 

classification accuracy. In this section, the results were obtained in two situations, for 

a 10-fold cross-validation and for a 2-fold cross-validation.  
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CHAPTER SIX 

CONCLUSION AND FUTURE WORK 

6.1 Summary and Conclusion 

The electroencephalogram (EEG) signal is the most common measure of brain 

activity, making it used necessary in the diagnosis and treatment of brain 

neurodegenerative diseases and abnormalities. The identification of different types of 

EEG signals is challenging, as it requires the analysis of multiple sets of EEG data. 

The classification of EEG signals is essential in assessing the brain activity. Feature 

Extraction best classifies these signals. 

In this thesis, EEG signal processing and classification techniques have been 

investigated and developed in order to identify different types of EEG signals, through 

the following three main objectives: 

 Develop a unified framework for compression and delivery of EEG data across 

transmission channels. This is essential due to the large data size of the 

WBASN’s EEG data during data transmission. 

 Develop methods for the classification of the reconstructed epileptic EEG noisy 

signals, in order to improve the classification rate with less execution time. 

 Evaluate the efficiency of such technique by achieving better EEG classification 

accuracy and compression ratio. 

 

In order to achieve the above objectives, this research work proposes two significant 

approaches, first: design a unified compression and classification framework. Second: 

propose a noise-aware signal combination (NSC) technique. The framework is used 

to down sample or compress EEG signal and combine both compressive sensing (CS) 
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and discrete cosine transform (DCT) methods to reduce the size of data streaming over 

the channel. On the other hand, an inverse DCT is used to reconstruct the compressed 

EEG signal. For classification, a noise-aware signal combination (NSC) method is 

developed to enhance the accuracy. Ultimately, NSC will affect the sensor battery 

during the data transmission and contribute to the EEG-based epileptic seizure 

classification.  

The proposed framework on a benchmark dataset consisting of three subjects, A, C, 

and E has been applied. Additionally the impact of normal and impaired wireless 

channels on the transmitted compressed EEG epileptic seizures signal has been 

investigated. The data was collected by a pre-surgical diagnosis; it was organized for 

the study to differentiate between the healthy subjects and epilepsy disease-suffering 

ones. More details on the benchmark EEG dataset are provided in Chapter 5. 

The experiments of the framework are concentrated on the classification accuracy that 

gives better compression ratio (CR). The CR and accuracy were determined by 

calculated the CR with an original size of raw data N = 4096 samples and a different 

compressed value M. The compression process has been developed at different M 

values ranging from 100s/s up to 1100s/s. This variation of compressed values has 

been adopted in order to achieve better accuracy. In the SCC, four classifiers ANN, 

NB, k-NN, and SVM have been employed to categorize the reconstructed EEG 

epileptic signals. The performance of these classifiers through the 10-fold cross 

validation procedure was evaluated.  
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The framework has been developed into two stages. In the first stage, different classes 

of raw EEG data have been compressed. The purpose was to reduce the transmission 

cost at the transmitter. Hence, it combined different methods: CS, DCT, and random 

matrix, and then sent the compressed data. The aim of the compression is to evaluate 

the trade-off between the complexity of CS and accuracy in wireless tele monitoring. 

An additive white Gaussian noise (AWGN) was deployed as a wireless channel model 

between the transmitter and receiver. The second stage consists of reconstructing the 

compressed EEG data to the original size using CS and iDCT at the receiver side. The 

iDCT method was utilized for data reconstruction to achieve the low-complexity of 

compression paradigms. Similarly, the discrete wavelet transform (DWT) method was 

used to extract conventional statistical features. Finally, both conventional statistical 

features and the wavelet sub-band were combined to formulate a feature vector of 32 

attributes. These attributes represent the distribution of EEG signals and are used as 

input vectors for a set of classifiers. These features are applied as input to the ANN, 

NB, k-NN, and SVM classifiers to classify three-class EEG signals in both noiseless 

and noisy data.  

The results revealed that ANN has a better accuracy at 95%, which outperforms the 

other three classifiers, namely SVM, k-NN, and Bayes. However, the implementation 

complexity, and classification latency make ANN less preferable for real-time tele-

monitoring applications. The experimental evaluation concluded that the classification 

accuracy is achieved 93.67% with a CR of 85.35% for EEG epileptic data. Therefore, 

the experimental results demonstrated that the SCC is promising for both compression 
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and reconstruction characteristics of EEG signals as well as for the classification of 

EEG signals.  

To reduce the computation time and the number of experiments as well as to improve 

the classification performance, four classifiers through the 2-fold cross-validation 

procedure have been evaluated. Noise is introduced to the data at different levels of 

signal-to-noise-ratio (SNR), 1, 5, and 10 dB. The compression paradigm with low 

complexity is achieved by utilizing the iDCT method for data reconstruction. Some 

features have been extracted from the reconstructed data using DWT. An EEG noise-

aware signal combination (NSC) method for EEG-based epileptic detection has been 

developed (Chapter 4). The NSC method as well as the ANN, Bayes, k-NN, and SVM 

classifiers are tested with different categories of EEG-based epileptic seizure data. The 

proposed NSC combination method constantly performs better than the above four 

classifiers.  

The experimental results show that the proposed NSC technique is efficient with noisy 

data, while satisfying the constraint of 90% accuracy for noiseless data compared with 

85.9% and 89.5%. NSC achieved the desired improved classification accuracy in case 

of noisy data. NSC achieved a classification accuracy of 80% for SNR=1 dB, 84% for 

SNR=5 dB, and 88% for SNR=10 dB, at CR =85.35%. While improving the overall 

classification accuracy, NSC also provides several significant benefits, such as 

structural and computational simplicity.  

Comparing the proposed NSC method results over legacy classifiers, the proposed 

method proved greatly efficient and obtained better accuracy for both noiseless and 
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noisy data. Compared with previous works, the classification accuracy by the 

proposed NSC of noiseless EEG data achieved 90%, which is 4.1% higher that the 

work done in [87] (85.9% accuracy), 0.5% higher than that reported in [84] (89.5% 

accuracy), and finally, Liang achieved classification accuracy between 80% and 90% 

[92] considering the same dataset. In addition, there are no similar evaluation 

approaches for EEG-based epileptic seizure when considering AWGN with different 

SNR values. Moreover, new interesting results could be realized that the thermal noise 

using AWGN clearly affects the classification accuracy. The NSC method consumed 

less time in comparison to the classical legacy classifier techniques and some methods 

reported in the literature. 

This research achieved the objective to reduce the size of EEG signals at the 

transmitter side, which eventually reduces the transmission time and saves the sensor’s 

battery during data transmission. The research work has been made in the following 

main steps: 

 Design and develop a sensor-based compression and classification framework 

for a trade-off between the compression ratio (CR) and classification accuracy 

of the transmitted compressed EEG data. The metrics were CR and accuracy, 

including specificity and sensitivity (Chapter 4). The results show good 

compression ratio that could be attained without affecting the classification 

accuracy for all classifiers. 

 Design and develop a noise-aware signal combination method for data with 

some degree of uncertainty (imperfection) representing the EEG signal. The 

output of four legacy classifiers is fed in the proposed technique (Chapter 4). 

 Devise a mathematical formulation of the prediction of the combined classifier 

to calculate the hypothesis with the highest probability (Chapter 4). The formula 
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calculates the goodness probability of a hypothesis j for predicting class k by 

dividing the summation of the weighted 0 < 𝜎 < 1 terms, by the total of 

goodness for all hypotheses if they were to predict the same class k. The two 

terms of class precision and class recall are dependent and grouped in one term, 

leaving the overall accuracy as second term. These two terms have direct ratio 

to the goodness of selecting a classifier predicting class k. The result value 

represents the goodness of hypothesis j reporting class k with respect to other 

hypotheses reporting the class k. 

 Evaluate the research work on the benchmark EEG dataset of three different 

classes. After comparing our results with previous work [84, 87, 92] using three 

data sets, the results show that our proposed method outperformed other 

classifiers (Chapter 5). 

6.2 Research Contributions 

Thus, the main contributions of this research are,  

1. A unified framework for EEG compression using CS and Additive White 

Gaussian Noise (AWGN) channel transmission has been developed,  

2. A new noise-aware signal combination (NSC) method that supports both types 

of biomedical EEG data for both noiseless and noisy is proposed,  

3. A series of comprehensive experiments were conducted to examine and evaluate 

the effectiveness and robustness of the NSC method for classifying 

contaminated EEG data. 

6.3 Future Work 

Using the proposed framework, it has been verified that regardless of the classifier 

type, classification accuracy would not be affected by signal impairments for 

compression ratios up to 80%, which opens the door for enhancing an energy-efficient 

delivery of medical data over wireless channels. By emphasizing compression, it has 
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been verified that the power consumed for data communication can be reduced 

drastically without affecting the application accuracy, which is a significant 

advantage. 

In addition, seizure detection approaches were studied intensively over the last years, 

and automatic seizure detection is playing a key role in a long-term. This research 

work can be extended to develop a popularized mHealth (m for mobile) system for 

reliable and efficient monitoring of EEG medical data, and leveraging sensors and 

mobile technologies to facilitate the remote connecting of patients with medical 

systems. The system raised a solution for accessible network architecture, active signal 

processing, reliable wireless channel, looking for the energy-efficient communication, 

and analysis for perfect EEG medical diagnosis.  

In order to achieve such extension, the following directions can be addressed:  

 Develop a signal processing technique to leverage a compressive sensing 

method for precise reconstruction of medical data.  

 Leverage communication layers by developing a communication technique to 

deliver energy-efficient transmission of vital signs.  

 Develop a model to demonstrate the classification accuracy for efficient remote 

monitoring of medical conditions, such as seizure detection and detect the 

mental task for real-time brain computer system interface. 



 

 143 

REFERENCES 

[1] M. Hanson, “Wireless Body Area Sensor Network Technology for Motion-Based 

Health Assessment”, A Dissertation presented to University of Virginia, for the 

Degree Doctor of Philosophy, USA, August 2009. 

[2] I. Stojmenovi, “Handbook of Sensor Networks: Algorithms and Architectures”, 

University of Ottawa, John Wiley & Sons, Inc., 2005. 

[3] J. Lach, J. Aylor, N. Merris, M. Hanson, C. Rehorn, "Wearable Gait Data Collection 

for Longitudinal Fall Analysis", International Conference on Aging, Disability and 

Independence, Virginia, USA, 2003. 

[4] D. Culler, D. Estrin, and M. Srivastava, "Overview of Sensor Networks", Journal of 

IEEE Computer Society, Vol. 37, pp. 41-49, August 2004. 

[5] S. Chen, H. Lee, C. Chen, H. Huang, and C. Luo "Wireless Body Sensor Network 

with Adaptive Low-Power Design for Biometrics and Healthcare Applications", 

Journal of IEEE Systems, Vol. 3, December 2009. 

[6] A. Darwish, and A. Hassanien, “Wearable and Implantable Wireless Sensor Network 

Solutions for Healthcare Monitoring,” Journal of Sensors,  ISSN 1424-8220, 2011. 

[7] K. Sohraby, D. Minoli, T. Znati, "Wireless Sensor Networks Technology, Protocols, 

and Applications", by John Wiley & Sons, ISBN: 9780471743002, 2007. 

[8] Wikipedia Electrocardiogram, http://en.wikipedia.org/wiki/Electrocardiogram; 

accessed on Nov.2nd, 2012. 

[9] Wikipedia Accelerometer, http://en.wikipedia.org/wiki/Accelerometer; accessed on 

November 2nd, 2012.  

[10] L. Huang, M. Ashouei, F. Yaziciogl, J. Penders, R. Vullers, G. Dolmans, P. Merken, 

J. Huisken, H. de Groot, C. Van Hoof, and B. Gyselinckx, “Ultra-Low Power Sensor 

Design for Wireless Body Area Networks: Challenges, Potential Solutions, and 

Applications”, Journal of Digital Content Technology and its Applications Vol: 3, 

September 2009. 

[11] K. Abualsaud, M. Mahmuddin, A. Mohamed, "WBASN Signal Processing and 

Communication Framework: Survey on Sensing, Communication Technologies, 

Delivery and Feedback", Journal of Computer Science (JCS), pp:121-132, New York, 

Vol. 8, 2012. 

[12] The Kaiser Family Foundation, http://kff.org/health-costs/issue-brief/ 

[13] OnWorld “Wireless Sensor Networks for Healthcare”, industrial market report, 

http://onworld.com/healthcare/index.html, August 2010. 

[14] OnWorld Inc. provides global business intelligence on smart technology markets, 

California, USA, “Health & Wellness Wireless Sensor Networks”, industrial market 

report, http://ww.onworld.com/healthcare/index.html, 2013. 

[15] C. Chong, S. Kumar, ‘‘Sensor Networks: Evolution, Opportunities, and Challenges”, 

Proceedings of the IEEE, Vol. 91, August 2003. 

[16] C. García-Hernández, P. H. Ibargüengoytia-González, J. García-Hernández, and J. A. 

Pérez-Díaz, "Wireless Sensor Networks and Applications: A Survey", IJCSNS 

International Journal of Computer Science and Network Security, Vol.7, March 2007. 



 

 144 

[17] Epilepsy basics: http://www.healthline.com/health/epilepsy, Atlanta, GA 30333, 

USA. 

[18] W. Xue-qing, Z. Shu-qin, “Research on Efficient Coverage Problem of Node in 

Wireless Sensor Networks”, in the Proceedings of International Conference on 

Industrial Mechatronics and Automation, IEEE ICIMA, Chengdu, China, May 2009. 

[19] K. Abualsaud, M. Mahmuddin, R. Hussein, A. Mohamed, “Performance Evaluation 

for Compression-Accuracy trade-off using Compressive Sensing for EEG-based 

Epileptic Seizure Detection in Wireless Tele-monitoring”, in the proceeding of IEEE 

- IWCMC, Italy, July 2013. 

[20] B. Dolan, Home monitoring: "Berg Insight, Home health monitoring market", 

published on Tuesday - December 21st, 2010. 

[21] C. Raghavendra, K. Sivalingam, T. Eds., “Wireless Sensor Networks: Architectures 

and Protocols”, ISBN: 0849318238, Kluwer Academic, New York, 2004. 

[22] J. Li and J. Li, “Data sampling control, compression and query in sensor networks”, 

International Journal of Sensor Networks, Vol 2, 2007. 

[23] People living with chronic disease http://www.welldocinc.com accessed 07/02/2012. 

[24] Intel Corporation, Reconceiving disease management Steps toward achieving the 

promise. http://www.intel.com/healthcare/pdf/7INCO001_WhitePaper_LO6.pdf, 

November 7th, 2014 

[25] World health organization strategy “Country Cooperation Strategy for WHO and 

Qatar” http://www.who.int/countryfocus/cooperation_strategy/ccs_qat_en.pdf 

accessed on November 1st, 2014. 

[26] Chronic disease report from WHO “The impact of chronic disease in Qatar” 

http://www.who.int/chp/chronic_disease_report/media/impact/en/index.html 

accessed on April 1st, 2014. 

[27] J. Y., Khan, and M. R., Yuce,“Wireless Body Area Network (WBAN) for Medical 

Applications” In: Campolo, D. (Ed.), New Developments in Biomedical Engineering. 

INTECH, ISBN: 978-953-7619-57-2, 2010. 

[28] K. Abualsaud, A. Mohamed and M. Mahmuddin, "Survey on Wireless Body Area 

Sensor Networks for Healthcare Applications: Signal Processing, Data Analysis and 

Feedback", Proceedings of the 3rd International Conference on Computing and 

Informatics, ICOCI2011, 8-9 June, Bandung, Indonesia 2011. 

[29] H. Karl and A. Willig, “Protocols and Architectures for Wireless Sensor Networks”, 

Handbook,  John Wiley & Sons, Ltd. ISBN: 0-470-09510-5, 2005. 

[30] C. Shen, C. Chan, F. Lin, and M. Chiu, “Epileptic Seizure Detection for Multichannel 

EEG Signals with Support Vector Machines”, in the proceeding of the 11th IEEE 

International Conference on Bioinformatics and Bioengineering, 2011. 

[31] I. Güler, E. Beyli, “Adaptive Neuro-Fuzzy Inference System for Classification of EEG 

Signals using Wavelet Coefficients”, Journal of Neuroscience Methods, Elsevier, Vol. 

148, 2005. 

[32] A. Subasi, “EEG Signal Classification using Wavelet Feature Extraction and a 

Mixture of Expert Model”, Journal of Expert Systems with Applications, Elsevier 32,  

2007. 

http://www.healthline.com/health/epilepsy


 

 145 

[33] L. Iasemidis, D. Shiau, W. Chaovalitwongse, J. Sackellares, P. Pardalos, et al. 

“Adaptive Epileptic Seizure Prediction System”, Journal of IEEE Transactions on 

Biomedical Engineering, 50(5), 616–627, 2003. 

[34] J. Wang, P. Liu, M. She, S. Nahavandi, A. Kouzani, “Bag-of-words Representation 

for Biomedical Time Series Classification”, Journal of Biomedical Signal Processing 

and Control Journal, Vol. 8, Elsevier 2013. 

[35] Sensing processing: http://en.wikipedia.org/wiki/Sensing, accessed November 30, 

2014. 

[36] R. Latuske, ARS Software GmbH, “Bluetooth Health Device Profile (HDP)”, ARS 

Software GmbH, Starnberger Str. 22, D-82131 GAUTING/Munich. 2009 

[37] M. Adil, K. Abbasi, and M. R. Ashraf, “Wireless Body Area Networks for Medical 

Applications”, published in CIIT Student Transactions on Radio Communications, 

Vol. 2, June 2013. 

[38] Polysomnography: http://en.wikipedia.org/wiki/Polysomnography  

[39] EEG-Electrodes: http://www.wisegeek.com/topics/eeg-electrodes.htm# 

[40] A. Tzallas, M. Tsipouras, and D. Fotiadis, “Automatic Seizure Detection Based on 

Time-Frequency Analysis and Artificial Neural Networks,” Hindawi Publishing 

Corporation, Computational Intelligence and Neuroscience, Vol. 2007, Article ID 

80510, 13 pages, 2007.  

[41] H. Cao, V. C.M. Leung, C. Chow and H. Chan, “Enabling Technologies for Wireless 

Body Area Networks: A Survey and Outlook” IEEE Communication Magazine, 

December 2009. 

[42] A. P. and N. Bourbakis, “A Survey on Wearable Sensor-Based Systems for Health 

Monitoring and Prognosis”, Journal of IEEE Transactions on Systems, MAN, and 

CYBERNETICS-PART C: Applications and Reviews, Vol. 40, January 2010. 

[43] UC Berkeley, “TinyOS Community Forum, an Open-Source OS for the networked 

sensor regime” http://www.tinyos.net/ accessed on January, 2013. 

[44] Preprocessing: http://searchsqlserver.techtarget.com/definition/data-preprocessing 

October 13, 2012 

[45] S. Kotsiantis, D. Kanellopoulos and P. Pintelas, “Data Preprocessing for Supervised 

Leaning” International Journal of Computer Science, Vol. 1, 2006. 

[46] M. Xu;  “Research and Design of Data Preprocessing of Wireless Sensor Networks 

based on Multi-Agents” in proceeding of IEEE International Conference on Network 

Infrastructure and Digital Content, November 6-8, Beijing, China, 2009. 

[47] N. Ahmad, D. Hoang, and M. Phung, “Robust Preprocessing for Health Care 

Monitoring Framework”, the proceeding in 11th IEEE International Conference on e-

Health Networking, Applications and Services, 2009,  Australia – Dec. 16-18, 2009. 

[48] H., Adeli, Z. Zhou, and N., Dadmehr,“Analysis of EEG Records in an Epileptic 

Patient using Wavelet Transform”, Journal of Neuroscience Methods, Vol. 123, pp. 

69-87, 2003. 

[49] Epilepsy: http://www.who.int/mediacentre/factsheets/fs999/en/ accessed May 26, 

2014  



 

 146 

[50] D. Rivero, V. Aguiar-Pulido, E. Fernández-Blanco, and M. Gestal, “Using Genetic 

Algorithms for Automatic Rrecurrent ANN Development: An Application to EEG 

Signals Classification,” IJDMMM 5(2): 182-191, 2013.  

[51] D. Wang, D. Miao, and C. Xie, "Best Basis-based Wavelet Packet Entropy Feature 

Extraction and Hierarchical EEG Classification for Epileptic Detection," Expert 

Systems with Applications, Elsevier, pp. 14314-14320, Vol. 38, 2011. 

[52] V. Bajaj and R. B. Pachori; “Classification of Seizure and Non-seizure EEG Signals 

Using Empirical Mode Decomposition”; Journal of IEEE Transactions on Information 

Technology in Biomedicine, Vol. 16, November 2012. 

[53] M. Valderrama, C. Alvarado, S. Nikolopoulos, J. Maritnerie, C. Adam, V. Navarro, 

and M. Le Van Quyen, “Identifying an Increased Risk of Epileptic Seizures using a 

Multi-feature EEG-ECG Classification”, Journal of Biomedical Signal Processing and 

Control, Elsevier, pp. 237-244, Vol. 7, May 2012. 

[54] B. Olshausen, “Aliasing, Nyquist sampling theorem", PSC 129 - Sensory Processes, 

October 10, 2000. 

[55] A. Jain and E. Y. Chang, “Adaptive Sampling for Sensor Networks”, proceeding in 

the 1st international workshop on Data management for sensor networks, ACM New 

York, USA, 2004. 

[56] B. Gedik, L. Liu, and P. Yu, “ASAP: An Adaptive Sampling Approach to Data 

Collection in Sensor Networks”, Journal of IEEE Transactions on Parallel and 

Distributed Systems, Vol. 18, December, 2007. 

[57] M. Umer, E. Tanin, L. Kulik, “Opportunistic Sampling in Wireless Sensor Networks”, 

ACM-GIS, Seattle, USA, ACM 978-1-60558-649-6, November 4-6, 2009. 

[58] R. Huang, G. -Huixu, “The Design of Energy-Saving Filtering Mechanism for Sensor 

Networks”, Proceedings of the Ninth International Conference on Machine Learning 

and Cybernetics, China, July 11-14, 2010. 

[59] I. Mohomed, A. Misra, M. Ebling, and W. Jerome, “HARMONI: Context-aware 

Filtering of Sensor Data for Continuous Remote Health Monitoring”, Sixth Annual 

IEEE International Conference on Pervasive Computing and Communications, Hong 

Kong, March 17-21, 2008. 

[60] K. Hua, H. Wang, W. Wang, and S. Wu, "Adaptive Data Compression in Wireless 

Body Sensor Networks", 13th IEEE International Conference on Computational 

Science and Engineering, 2010 

[61] A. Abdulghani, A. Casson, and E. Rodriguez-Villegas, “Quantifying the Feasibility 

of Compressive Sensing in Portable Electroencephalography Systems” in Proc. Int. 

Conf. Foundations Augmented Cognition, Neuroergonomics Oper. Neurosci. FAC, 

pp.319–328, Springer, 2009. 

[62] R. Vidhyapriya and P. Vanathi, “Energy Efficient Data Compression in Wireless 

Sensor Networks”, International Arab Journal of Information Technology (IAIJT), 

Vol. 6, July 2009. 

[63] H. Kim, R. Yazicioglu, P. Merken, C. Hoof, and H. Yoo, “ECG Signal Compression 

and Classification Algorithm with Quad Level Vector for ECG Holter System”, 

Journal of IEEE Transactions on Information Technology in Biomedicine, Vol. 14, 

January 2010. 



 

 147 

[64] J. Kolo, S. Shanmugam, D. Lim, L. Ang, and K. Seng, “An Adaptive Lossless Data 

Compression Scheme for Wireless Sensor Networks", Hindawi Publishing, Journal of 

Sensors, Vol. 2012. 

[65] H. Mamaghanian, N. Khaled, D. Atienza, and P. Vandergheynst, “Compressed 

Sensing for Real-Time Energy-Efficient ECG Compression on Wireless Body Sensor 

Nodes”, Journal of IEEE Transactions on Biomedical Engineering, Vol. 58, 

September 2011. 

[66] S. Aviyente, “Compressed sensing framework for EEG compression,” in Proc. IEEE 

Workshop Statistical Signal Processing (SSP), pp. 181–184, Wisconsin, August 2007. 

[67] S. Senay, L. Chaparro, M. Sun, and R. Sclabassi, “Compressive Sensing and Random 

Filtering of EEG Signals using Slepian Basis,” In Proc. EURASIP Eusipco, 

Switzerland, August 2008. 

[68] W. Chen and I. Wassell, “Energy Efficient Signal Acquisition via Compressive 

Sensing in Wireless Sensor Networks”, IEEE 6th International Symposium on 

Wireless and Pervasive Computing (ISWPC), Hong Kong, 23-25 February 2011. 

[69] J. Tropp, J. Laska, M. Duarte, J. Romberg, and R. Baraniuk, “Beyond Nyquist: 

Efficient Sampling of Sparse Bandlimited Signals”, Journal of IEEE Transactions on 

Information Theory, Vol. 56, January 2010. 

[70] R. Baraniuk, “Compressive sensing”, Lecture Note, Journal of IEEE Signal 

Processing Magazine, Vol. 24, July 2007. 

[71] E. Candès, “Compressive sampling”, in Proceedings of the International Congress of 

Mathematicians, Madrid, Spain, August 2006. 

[72] E. Candes and T. Tao, “Near Optimal Signal Recovery from Random Projections: 

Universal Encoding Strategies”, Journal of IEEE Transactions on Information Theory, 

Vol. 52, December 2006 

[73] D. Donoho, “Compressed Sensing”, Journal of IEEE Transactions on Information 

Theory, Vol. 52, April 2006. 

[74] S. Fauvel and R. Ward, “An Energy Efficient Compressed Sensing Framework for the 

Compression of Electroencephalogram Signals”, Journal of Sensors, 2014. 

[75] A. Abdulghani, A. Casson and E. Rodriguez-Villegas, “Quantifying the performance 

of compressive sensing on scalp EEG signals”, 3rd International Symposium on 

Applied Sciences in Biomedical and Communication Technologies (ISABEL), Rome, 

Italy, November 7-10, 2010. 

[76] A. Abdulghani, A. Casson, and E. Rodriguez-Villegas, “Compressive Sensing Scalp 

EEG Signals: Implementations and Practical Performance”, Journal of Medical and 

Biological Engineering and Computing, 50 (11) P:1137-1145, Springer, 2012. 

[77] J. Proakis, and D. Manolakis, “Digital Signal Processing:  Principles, Algorithms and 

Applications”, Pearson Prentice Hall, 4th edition, 2007. 

[78] D. Tkach, H. Huang, and T. Kuiken, “Study of Stability of Time-domain Features for 

Electromyographic Pattern Recognition”, Journal of NeuroEngineering and 

Rehabilitation, Springer, Vol. 7, 2010. 

[79] S. Sun, and C. Zhang, “Adaptive Feature Extraction for EEG Signal Classification”, 

Journal of Medical & Biological Engineering and Computing, Springer, Vol. 44, 2006 

http://www.citeulike.org/author/Huang:H


 

 148 

[80] P. Durka, H. Klekowicz, K. J., W. Blinowska, and S. Niemcewicz. “A Simple System 

for Detection of EEG Artifacts in Polysomnographic Recordings”, Journal of IEEE 

Transactions on Biomedical Engineering, Vol. 40, 2003. 

[81] A. Tzallas, M. Tsipouras, and D. Fotiadis, “Epileptic Seizure Detection in 

Electroencephalograms using Time-Frequency Analysis,” IEEE Transactions on 

Information Technology in Biomedicine, Vol. 13, September 2009. 

[82] W. Zhou, Y. Liu, Q. Yuan, and X. Li, “Epileptic Seizure Detection Using Lacunarity 

and Bayesian Linear Discriminant Analysis in Intracranial EEG”, Journal of IEEE 

Transactions on Biomedical Engineering, Vol. 60, December 2013. 

[83] C. Vidaurre, N. Kramer, B. Blankertz, and A. Schlogl, “Time Domain Parameters as 

a Feature for EEG-based Brain Computer Interfaces,” Journal of Neural Networks, 

Elsevier, Vol. 22, November 2009. 

[84] A. Mohamed, K. B. Shaban, and A. Mohamed, "Evidence Theory-based Approach 

for Epileptic Seizure Detection using EEG Signals", 12th IEEE International 

Conference on Data Mining Workshops (ICDMW), Belgium, 2013. 

[85] P. Mirowski, D. Madhavan, Y. LeCun, R. Kuzniecky, “Classification of Patterns of 

EEG Synchronization for Seizure Prediction”, Electroencephalography and Clinical 

Neurophysiology, Vol. 120, Elsevier 2009. 

[86] M. Fakhr, M. Moshrefi-Torbati, M. Hill, C. M. Hill, P. R. White, “Signal Processing 

Techniques Applied to Human Sleep EEG Signals—A review Shayan”, Journal of 

Biomedical Signal Processing and Control 10, Elsevier, 2014. 

[87] N. Sadati, H. Mohseni, and A. Maghsoudi, “ Epileptic Seizure Detection using Neural 

Fuzzy Networks,” IEEE International Conference on Fuzzy Systems, Vancouver, BC, 

Canada, July 16-21, 2006. 

[88] M. Pregenzer and G. Pfurtscheller, “Frequency Component Selection for an EEG-

Based Brain to Computer Interface,” Journal of IEEE Transactions on Rehabilitation 

Engineering, Vol. 7, December 1999. 

[89] Y. Song, P. Liò, “A New Approach for Epileptic Seizure Detection: Sample Entropy 

Based Feature Extraction and Extreme Learning Machine”, Journal of Biomedical 

Science and Engineering, Vol. 3, Elsevier, 2010. 

[90] L. Guo, D. Rivero, J. Dorado, J. R. Rabunal, A. Pazos, “Automatic Epileptic Seizure 

Detection in EEGs Based on Line Length Feature and Artificial Neural Networks”, 

Journal of Neuroscience Methods, Elsevier, 2010. 

[91] M. Mercy, “Performance Analysis of Epileptic Seizure Detection Using DWT & ICA 

with Neural Networks”, International Journal of Computational Engineering 

Research, Vol. 2, 2012. 

[92] S. Liang, H. Wang, and W. Chang, “Combination of EEG Complexity and Spectral 

Analysis for Epilepsy Diagnosis and Seizure Detection,” EURASIP Journal Advanced 

Signal Processing, Springer, Vol. 2010, 2010. 

[93] W. Weng, and K. Khorasani, “An Adaptive Structure Neural Network with 

Application to EEG Automatic Seizure Detection”, Journal of Neural Network, 

Elsevier, Vol. 9, 1996. 

[94] N. Pradhan, P. Sadasivan, and G. Arunodaya, “Detection of Seizure Activity in EEG 

by an Artificial Neural Network: A Preliminary Study,” Journal of Computer And 

Biomedical Research, Vol. 29, 1996. 



 

 149 

[95] V. Nigam, and D. Graupe, “A Neural-network-based Detection of Epilepsy”, Journal 

of Neurological Research, Vol.  26, pp. 55–60, 2004. 

[96] A. Ahangi, M. Karamnejad, N. Mohammadi, R. Ebrahimpour, N. Bagheri, “Multiple 

Classifier System for EEG Signal Classification with Application to Brain–Computer 

Interfaces”, Journal of Neural Computer & Applications, Springer, 2012. 

[97] A. Subasi, E. Ercelebi, “Classification of EEG Signals using Neural Network and 

Logistic Regression”, Journal of Computer Methods and Programs in Biomedicine, 

Elsevier, 78, 2005. 

[98] U. Orhan, M. Hekim, M. Ozer, “EEG Signal Classification using the K-means 

Clustering and a Multilayer Perceptron Neural Network Model”, Journal of Expert 

Systems with Applications, Elsevier, 38, 2011. 

[99] S. Shafiul Alam and M. Bhuiyan, “Detection of Seizure and Epilepsy Using Higher 

Order Statistics in the EMD Domain”, Journal of IEEE Journal of Biomedical and 

Health Informatics, Vol. 17, March 2013. 

[100] Y. Liu, W. Zhou, Q. Yuan, and S. Chen, “Automatic Seizure Detection Using 

Wavelet Transform and SVM in Long-Term Intracranial EEG,” Journal of IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, Vol. 20, November 

2012. 

[101] D. Rivero, E. Fernandez-Blanco, J. Dorado, A. Pazos (2011a), “A New Signal 

Classification Technique by Means of Genetic Algorithms and k-NN,” IEEE 

Congress on Evolutionary Computation (CEC), pp: 581–586, 2011.  

[102] N. Ba-Karait, S. Shamsuddin, and R. Sudirman, “EEG Signals Classification Using 

a Hybrid Method Based on Negative Selection and Particle Swarm Optimization”, 

Hournal of Machine Learning and Data Mining in Pattern Recognition, Springer, 

2012. 

[103] M. Arab, A. Suratgar, A. Ashtiani, “Electroencephalogram Signals Processing for 

Topographic Brain Mapping and Epilepsies Classification”, Journl of Computers in 

Biology and Medicine 40, Elsevier, 2010. 

[104] R. Sharma, R. Pachori, and S. Gautam, “Empirical Mode Decomposition Based 

Classification of Focal and Non-Focal EEG Signals”, in the proc. IEEE International 

Conference on Medical Biometrics, Shenzhen, China, 30 May-01 June, 2014. 

[105] R. Pachori and S. Patidar, “Epileptic Seizure Classification in EEG Signals using 

Second-Order Difference Plot of Intrinsic Mode Functions”, Computer Methods and 

Programs in Biomedicine, Vol. 113, Elsevier, February 2014. 

[106] R. Pachori and V. Bajaj, “Analysis of Normal and Epileptic Seizure EEG Signals 

using Empirical Mode Decomposition”, Computer Methods and Programs in 

Biomedicine, Vol. 104, Elsevier, December 2011. 

[107] R. Pachori, “Discrimination between Ictal and Seizure-free EEG Signals using 

Empirical Mode Decomposition”, Research Letters in Signal Processing, Vol. 2008, 

Article ID 293056, 5 pages, Elsevier, December 2008. 

[108] V. Joshi, R. Pachori, and A. Vijesh, “Classification of Ictal and Seizure-free EEG 

Signals using Fractional Linear Prediction”, Biomedical Signal Processing and 

Control, Vol. 9, pp. 1-5, Elsevier, January 2014. 



 

 150 

[109] M. Yu, S. Naqvi, A. Rhuma and L. Chambers, “Fall Detection in A Smart Room by 

Using A Fuzzy One Class Support Vector Machine and Imperfect Training Data,” 

IEEE International Conference on Acoustics, Speech and Signal Processing, 2011. 

[110] H. He, and Y. Cao, “SSC: A Classifier Combination Method Based on Signal 

Strength”, Journal of IEEE Transactions on Neural Networks and Learning Systems, 

Vol. 23, July 2012. 

[111] Y. Yang, X. Liu, “A Re-examination of Text Categorization Methods”, Annual 

ACM Conference on Research and Development in Information Retrieval, USA, 

1999. 

[112] J. Han, M. Kamber, “Data Mining: Concepts and Techniques”, Elsevier, Second 

Edition, 2006. 

[113] D. Rivero L. Guo J.A. Seoane J. Dorado, “Using Genetic Algorithms and K-Nearest 

Neighbor for Automatic Frequency Band Selection for Signal Classification”, IET 

Signal Processing, 2012.  

[114] R. Hussein, A. Mohamed, and M.Alghoniemy, “Adaptive Compression and 

Optimization for Real-Time Energy-Efficient Wireless EEG Monitoring Systems”, 

published in the Biomedical Engineering International Conference (BMEiCON-

2013), 2013. 

[115] J. Peña, “Finding Consensus Bayesian Network Structures”, Journal of Artificial 

Intelligence Research, Vol. 42, 2011. 

[116] S. Sun, C. Zhang, D. Zhang, “An Experimental Evaluation of Ensemble Methods 

for EEG Signal Classification”, Journal of Pattern Recognition Letters, 28, Elsevier 

2007. 

[117] H. Bostrom, R. Johansson, A. Karlsson, “On Evidential Combination Rules for 

Ensemble Classifiers”, 11th International Conference on Information Fusion, June 

30 -July 3 2008. 

[118] S. Dehuri, A. Kumar Jagadev, and S. Cho, “Epileptic Seizure Identification from 

Electroencephalography Signal using DE-RBFNs Ensemble”, Journal of Procedia 

Computer Science 23, Elsevier, 2013. 

[119] H. Lu, H. Eng, C. Guan, K. Plataniotis, and A. Venetsanopoulos, “Regularized 

Common Spatial Patterns with Aggregation for EEG Classification in Small-Sample 

Setting”, Journal of IEEE Transactions on Biomedical Engineering, Vol. 57, 2010. 

[120] C. Chen, “A Survey on Sub-Nyquist Sampling”, Journal on Bioinformatics and 

Systems Biology, 2009. 

[121] J. Haupt, W. Bajwa, M. Rabbat, and R. Nowak, “Compressed Sensing for 

Networked Data”, Journal of IEEE Signal Processing Magazine, - Special Issue on 

Compressing Sensing, Vol.25, pp. 92-101, March 2008. 

[122] S. Mallat, “A Wavelet Tour of Signal Processing”, Handbook, Second Edition 

(Wavelet Analysis & Its Applications), Elsevier, 2009. 

[123] N. Timmons and W. Scanlon, “An Adaptive Energy Efficient MAC Protocol for the 

Medical Body Area Network”, 1st International Conference on Wireless 

Communication, Wireless VITAE, Denmark, May 17-20, 2009. 

[124] M. Unser, “Sampling—50 Years after Shannon”, Proceedings of the IEEE, Vol. 88, 

2000. 



 

 151 

[125] Inverse Discrete Cosine Transform (iDCT): 

http://www.mathworks.com/help/signal/ref/idct.html 

[126] R. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. Elger, 

“Indications of Nonlinear Deterministic and Finite-Dimensional Structures in Time 

Series of Brain Electrical Activity: Dependence on Recording Region and Brain 

State”, Physical Review E Journal, American Physical Society , Vol. 64, 2001. 

[127] S. Kumar, N. Sriraam, P. Benakop, B. Jinaga, “Entropies Based Detection of 

Epileptic Seizures with Artificial Neural Network Classifiers,” Expert System 

Application, 37, 3284–3291, Elsevier, 2010. 

[128] K. Abualsaud, M. Mahmuddin, M. Saleh, A. Mohamed, “Ensemble Classifier for 

Epileptic Seizure Detection for imperfect EEG Signals”, in The Scientific World 

Journal, Hindawi Publishing Corporation, Vol. 2015, Article ID: 945689, 15 pages, 

2015. 

[129] H. Ocbagabir, K. Aboalayon, and M. Faezipour, “Efficient EEG Analysis for 

Seizure Monitoring in Epileptic Patients”, IEEE Long Island Systems, Applications 

and Technology Conference (LISAT), Farmingdale, NY, 3 May 2013. 

[130] P. Khan, M. Hussain, and K. Kwak, “Medical Applications of Wireless Body Area 

Networks”, International Journal of Digital Content Technology and its 

Applications, Vol. 3, September 2009. 

[131] A. Awad, A. Mohamed, A. A. El-Sherif, O. A. Nasr, “Interference-aware Energy-

efficient Cross-layer Design for Healthcare Monitoring Applications”, Elsevier, 

Computer Networks 74 (2014) 64–77, 2014. 

[132] P. Durka and K. Blinowska, “A Unified Time Frequency Parametrization of EEGs,” 

Journal of IEEE Engineering in Medicine and Biology, Vol. 20, pp. 47–53, 

September/October 2001. 

[133] S. Aviyente, E. Bernat, S. Malone, and W. Iacono, “Analysis of Event Related 

Potentials using PCA and Matching Pursuit on the Time-Frequency Plane,” in IEEE 

International Conference of the Engineering in Medicine and Biology Society, Vol. 

3, pp. 424–427, 2006. 

[134] Data Mining, Machine Learning Software, http://rapid-i.com/ 

[135] S. Koco, C. Capponi, "On Multi-Class Classification through the Minimization of 

the Confusion Matrix Norm", JMLR: Workshop and Conference Proceedings 29, 

ACML 2013. 

  



 

 152 

Appendix A 

 

Khalid Abualsaud, Massudi Mahmuddin, Mohammad Saleh, Amr Mohamed, 

“Ensemble Classifier for Epileptic Seizure Detection for imperfect EEG Signals”, in 

The Scientific World Journal, Hindawi Publishing Corporation, Vol. 2015, Article 

ID: 945689, 15 pages, 2015. 

 

 

  



 

 153 

Appendix B 

 

Khalid Abualsaud, Massudi Mahmuddin, Mohammad Saleh, Amr Mohamed 

“Performance Comparison of Classification Algorithms for EEG-based Remote 

Epileptic Seizure detection in Wireless Sensor Networks” in The ACS/IEEE 

International Conference on Computer Systems and Applications (AICCSA), 2014. 

  



 

 154 

Appendix C 

 

Khalid Abualsaud, Massudi Mahmuddin, Ramy Hussein, Amr Mohamed, 

“Performance Evaluation of Compression-Accuracy trade-off Using Compressive 

Sensing for EEG-based Epileptic Seizure Detection in Wireless Tele-monitoring”, in 

the proceeding of The 9th IEEE International Wireless Communications and Mobile 

Computing Conference (IWCMC 2013), Sardinia – Italy, July 1-5, 2013. 

 

  



 

 155 

Appendix D 

 

Khalid Abu Al-Saud, Massudi Mahmuddin, Amr Mohamed, "WBASN signal 

processing and communication framework: Survey on Sensing, Communication 

Technologies, Delivery and feedback", in Journal of Computer Science (JCS), New 

York, USA, vol. 8, Issue 1, 2012. 

  



 

 156 

Appendix E 

 

Khalid Abu Al-Saud, Amr Mohamed and Massudi Mahmuddin, "Survey on Wireless 

Body Area Sensor Networks for healthcare applications: Signal Processing, data 

analysis and feedback", in the Proceedings of The 3rd International Conference on 

Computing and Informatics, ICOCI2011, 8-9 June, 2011 Bandung, Indonesia. 


	Copyright
	Title Page
	Permission to Use
	Abstrak
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations
	CHAPTER ONE: INTRODUCTION
	1.1 Overview
	1.2 Research Motivation
	1.3 Problem Statement
	1.4 Research Objectives
	1.5 Scope of the Research
	1.6 Significance of Research
	1.7 Contributions of the Research
	1.8 Thesis Outline

	CHAPTER TWO: LITERATURE REVIEW
	2.1 Background
	2.2 WBASNs General Framework
	2.3 Sensing and Preprocessing
	2.3.1 EEG-Based Epileptic Seizure
	2.3.2 Sampling
	2.3.3 Data Filtering
	2.3.4 Data Compression
	2.3.5 Compressive Sensing

	2.4 Detection and Classification
	2.4.1 Signal Reconstruction
	2.4.2 Feature Extraction
	2.4.3 Classification Techniques
	2.4.3.1 Artificial Neural Network
	2.4.3.2 Naïve Bayesian
	2.4.3.3 K-Nearest Neighbor (k-NN)
	2.4.3.4 Support Vector Machine

	2.4.5 Classification parameters

	2.5 Ensemble Classification Techniques
	2.6 Summary

	CHAPTER THREE: RESEARCH METHODOLOGY
	3.1 Background
	3.2 Compressive Sensing Technique
	3.3 Additive White Gaussian Noise (AWGN) Channel Model
	3.4 Signal Reconstruction
	3.5 Feature Extraction
	3.6 Classification Methods
	3.7 Ensemble-Based Classification
	3.7.1 The NSC Proposed Ensemble Method
	3.7.2 Classifiers settings

	3.8 Classification Measurements
	3.8.1 EEG Datasets Descriptions
	3.8.2 Data compression and reconstruction
	3.8.3 Detection and classification

	3.9 Summary

	CHAPTER FOUR: COMPRESSION AND CLASSIFICATION MODEL
	4.1 EEG Data
	4.2 EEG-Epileptic Seizure Framework
	4.2.1 Overall System Model
	4.2.2 Classification Methods

	4.3 Ensemble Classification Methods
	4.4 Proposed Ensemble System Model
	4.4.1 The NSC Proposed Ensemble Method
	4.4.2 The Classifier Confusion Matrix

	4.5 Summary

	CHAPTER FIVE: RESULTS AND DISCUSSIONS
	5.1 Classification Accuracy using Four Classifiers
	5.1.1 Cross-validation
	5.1.2 Performance Evaluation Measures

	5.2 Experiments and Results
	5.2.1 Experiment 1: Effect of Compression on Noiseless Data
	5.2.2 Experiment 2: Effect of Compression on Noisy data

	5.3 Ensemble Classifiers Performance
	5.3.1 Confusion matrix for Performance Measures
	5.3.2 Experiment 3: Effect of Compression on Noiseless data for NSC classifier
	5.3.3 Experiment 4: Effect of Compression on noisy data for NSC classifier
	5.3.4 Average Accuracy for all CR with all SNR

	5.4 Summary

	CHAPTER SIX: CONCLUSION AND FUTURE WORK
	6.1 Summary and Conclusion
	6.2 Research Contributions
	6.3 Future Work

	REFERENCES
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E



