
The copyright © of this thesis belongs to its rightful author and/or other copyright

owner. Copies can be accessed and downloaded for non-commercial or learning

purposes without any charge and permission. The thesis cannot be reproduced or

quoted as a whole without the permission from its rightful owner. No alteration or

changes in format is allowed without permission from its rightful owner.

REACTIVE APPROACH FOR AUTOMATING EXPLORATION AND

EXPLOITATION IN ANT COLONY OPTIMIZATION

 RAFID SAGBAN

DOCTOR OF PHILOSOPHY

UNIVERSITI UTARA MALAYSIA

2016

 i

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the Universiti Library may make it

freely available for inspection. I further agree that permission for the copying of this

thesis in any manner, in whole or in part, for scholarly purpose may be granted by

my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate

School of Arts and Sciences. It is understood that any copying or publication or use

of this thesis or parts thereof for financial gain shall not be allowed without my

written permission. It is also understood that due recognition shall be given to me

and to Universiti Utara Malaysia for any scholarly use which may be made of any

material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

 ii

Abstrak

Pengoptimuman koloni semut (ACO) boleh digunakan untuk menyelesaikan masalah

sukar polinomial tidak berketentuan. Penerokaan dan eksploitasi adalah mekanisme

utama bagi mengawal carian dalam ACO. Carian reaktif adalah satu teknik alternatif

untuk mengekalkan kedinamikan mekanisme ini. Walau bagaimanapun, teknik

carian reaktif berasaskan ACO mempunyai tiga (3) masalah. Pertama, model

memori yang merakam kawasan carian yang terdahulu telah tidak memindahkan

struktur sekitaran secara lengkap kepada leleran berikutnya yang akan membawa

kepada permulaan semula dengan sewenang-wenangnya dan carian setempat yang

pramatang. Kedua, penunjuk penerokaan adalah tidak teguh disebabkan oleh

perbezaan magnitud dalam matriks jarak bagi populasi semasa. Ketiga, teknik

kawalan parameter yang menggunakan penunjuk penerokaan dalam proses maklum

balas telah tidak mempertimbangkan masalah keteguhan penunjuk. Satu algoritma

pengoptimuman koloni semut reaktif (RACO) telah dicadangkan untul mengatasi

kekurangan carian reaktif. RACO terdiri daripada tiga komponen utama. Komponen

pertama adalah satu algoritma max-min ant system reaktif untuk merakamkan

struktur sekitaran. Komponen kedua adalah satu mekanisme pembelajaran mesin

berstatistik yang dinamakan ACOustic untuk menghasikan penerokaan yang teguh.

Komponen ketiga adalah algoritma pemilihan parameter mudah suai berasaskan

ACO untuk menyelesaikan masalah pemparameteran yang bergantung kepada

kualiti, penerokaan dan kriteria berpadu untuk memberi ganjaran kepada parameter

yang berpotensi. Prestasi RACO dinilai menggunakan masalah jurujual kembara dan

umpukan kuadratik dan dibandingkan dengan lapan (8) teknik metaheuristik

berdasarkan kadar kejayaan, pangkat tanda Wilcoxon, Chi-square dan relatif

peratusan sisihan. Hasil kajian menunjukkan prestasi RACO adalah lebih baik dari

lapan (8) teknik metahuristik dan ini mengabsah keberkesanan RACO boleh

digunakan sebagai satu hala baru bagi penyelesaian masalah pengoptimuman. RACO

boleh digunakan untuk menyediakan mekanisme penerokaan dan eksploitasi yang

dinamik, menetapkan nilai parameter yang membolehkan carian yang cekap,

menerangkan jumlah penerokaan yang dilaksanakan oleh algoritma ACO, dan

mengesan keadaan genangan.

Kata kunci: Pengoptimunan koloni semut, Carian reaktif, Dinamik penerokaan dan

eksploitasi, Polinomial tidak berketentuan, Max-min ant system.

 iii

Abstract

Ant colony optimization (ACO) algorithms can be used to solve nondeterministic

polynomial hard problems. Exploration and exploitation are the main mechanisms in

controlling search within the ACO. Reactive search is an alternative technique to

maintain the dynamism of the mechanics. However, ACO-based reactive search

technique has three (3) problems. First, the memory model to record previous search

regions did not completely transfer the neighborhood structures to the next iteration

which leads to arbitrary restart and premature local search. Secondly, the exploration

indicator is not robust due to the difference of magnitudes in distance matrices for

the current population. Thirdly, the parameter control techniques that utilize

exploration indicators in their feedback process do not consider the problem of

indicator robustness. A reactive ant colony optimization (RACO) algorithm has been

proposed to overcome the limitations of the reactive search. RACO consists of three

main components. The first component is a reactive max-min ant system algorithm

for recording the neighborhood structures. The second component is a statistical

machine learning mechanism named ACOustic to produce a robust exploration

indicator. The third component is the ACO-based adaptive parameter selection

algorithm to solve the parameterization problem which relies on quality, exploration

and unified criteria in assigning rewards to promising parameters. The performance

of RACO is evaluated on traveling salesman and quadratic assignment problems and

compared with eight metaheuristics techniques in terms of success rate, Wilcoxon

signed-rank, Chi-square and relative percentage deviation. Experimental results

showed that the performance of RACO is superior than the eight (8) metaheuristics

techniques which confirmed that RACO can be used as a new direction for solving

optimization problems. RACO can be used in providing a dynamic exploration and

exploitation mechanism, setting a parameter value which allows an efficient search,

describing the amount of exploration an ACO algorithm performs and detecting

stagnation situations.

Keywords: Ant colony optimization, Reactive search, Dynamic exploration and

exploitation, Nondeterministic polynomial, Max-Min ant system.

 iv

Acknowledgement

In the Name off Allah, Most Gracious and Most Merciful

All praise and thanks go to the Almighty Allah SWT for giving me the guidance,

good health and the strength to pursue my PhD. It is only with His Blessings finally

this Ph.D journey could be finished. Alhamdulillah!

At the beginning of the Ph.D journey, I was always thinking about its end, but

paradoxically I am now thinking about its beginning! My Ph.D has definitely its

usual ups and downs, but thank you Prof. Dr. Ku Ruhana Ku Mahamud, for the

continuous support, insight and patience during this long journey. Thank you for

encouraging my research and for allowing me to grow as a research scientist. You

have been a tremendous mentor and great supervisor. Your advice on both research

as well as on my career have been priceless. I would also like to thank my co-

supervisor for his brilliant comments and suggestions. Thanks to you Dr. Muhamad

Shahbani Abu Bakar for being there to support me. Prof. Dr. Ku Ruhana and Dr.

Muhamad Shahbani, without your constant trust and, sometimes, gentle prodding,

this manuscript would not have been completed. Besides my supervisors, I would

like to thank the thesis committee members, Prof. Dr. Rosni Abdullah, Prof. Dr.

Suhaidi Hasan and Dr. Yuhanis Yusof, for every moment they have spent for reading

my thesis and providing useful feedback.

To my parents, I hope you are proud to have me as your son. Mum and dad, I believe

your consistent prayers, encouragement, and support over the years have made all of

this possible. Needless to say, I’m indebted to my beloved wife, Ikhlas, for leaving

Iraq to follow and to support me into my personal dream of getting a Ph.D in Swarm

Intelligence. Thank you, with all my heart, for everything. Your unconditional love

was what sustained me thus far. To my lovely children, Maryam, Zahraa, Hasanein

and Rand, thank you baba for your love, understanding and patience. It goes without

say, words cannot express how grateful I am to my brothers, Nahudh, Muqdad,

Mushriq, Mohammed and Ali, for all of the sacrifices that you’ve made on my

behalf.

 v

I am deeply thankful to the management of University of Babylon for the study leave

granted to me to finalize my Ph.D. Next, I am thankful for all units of Universiti

Utara Malaysia for their kind help and endless support. Thanks to all collagenous in

Internetworks Research Lab and IEEE UUM Student Branch who have become good

friends for all scientific input, in the form of presentations and discussions. Over the

years, this group has included; Dr. Adib M. Monzer Habbal, , Dr. Naseer Ali,

Mohammed Alsamman, Abdullahi Ibrahim, Shivaleela Arlimatti, Sushank

Chaudhary, Swetha Goudar, Ikram Ud Din and Walid Elbreiki. I will definitely miss

all of you. Heartfelt thanks to Prof. Dr. Saad Talib, Prof. Dr. Wesam Bhaya, Dr.

Mustafa Muwafak, Dr. Shafinah Farvin bt. Packeer Mohammed, Dr. Hanaa Kadum,

Dr. Ashwak Alabaichi, Dr. Ahmed Talib and Dr. Ghassan Nashat who have incited

me to strive towards my goals.

To my friends, Atheer Flayh, Raaid Alubady, Haydar Abdulameer Marhoon, Haydar

Gubashi, Mehdi Ebadi, Emad Al-Anbari, Wissam Abdul Adheem, Salam Ghanim,

Salih Glood, Zaid Khudir, Azhar Witwit and Bayadir Abbas, Hussain Mehdi, Abo

Obaida Al-Sa’doon, Ali Ibrahim and Shaimaa Ali, Ahmed Gazi, Moheimen

Mohomed, Ahmed Sheet, Khalid Al-Khafaji, Atyaf Sami, Samara Raheem, Emad

Qasim, Alaa Ahmed and many more, thanks to all of you for making me feel like

home and bring Iraq to me here. You all made my stay in Malaysia nicer and funnier,

thank you all, hope we will stay in touch. The moments with you will not be

forgotten ever.

 vi

Table of Contents

Permission to Use ... i

Abstrak ... ii

Abstract ... iii

Acknowledgement .. iv

Table of Contents .. vi

List of Tables ... x

List of Figures .. xii

List of Appendices ... xv

List of Abbreviations .. xvi

 INTRODUCTION ... 1

1.1 Problem Statement ... 7

1.2 Research Questions .. 8

1.3 Research Objectives ... 8

1.4 Significance of the Research .. 9

1.5 Scope of the Research .. 9

1.6 Thesis Organization ... 11

 LITERATURE REVIEW .. 13

2.1 Introduction .. 13

2.2 Combinatorial Optimization Problems .. 13

2.3 Ant Colony Optimization ... 19

2.3.1 Biological Inspiration ... 19

2.3.2 Problem Representation ... 20

2.3.3 The ACO Metaheuristic ... 21

2.3.4 The First Ant Algorithm: Ant System ... 24

2.4 The Max-Min Ant System ... 29

2.4.1 Pheromone Trail Update .. 29

2.4.2 Pheromone Trail Limits ... 30

2.4.3 Pheromone Trail Restart .. 30

2.4.4 Pheromone Trail Smoothing .. 31

2.4.5 Pheromone Trail Learning ... 32

 vii

2.4.6 Hybridizing with Local Search .. 32

2.5 Memory-based Strategies for Exploration and Exploitation 33

2.5.1 Quality-Dependent Strategy ... 34

2.5.2 Quality-Independent Strategy .. 35

2.5.3 Elitist Strategy .. 36

2.5.4 Rank-Based Strategy .. 38

2.5.5 Trail Learning Strategy .. 39

2.5.6 Online-Offline Update Strategy ... 40

2.5.7 Best-Worst Strategy ... 42

2.5.8 Bounding Strategy ... 43

2.5.9 Restarting/Smoothing Strategy .. 44

2.5.10 Colony-Level Interaction Strategy ... 45

2.5.11 Population-Based Strategy ... 46

2.5.12 Hybridizing Strategy .. 47

2.6 Exploration Measures in ACO ... 48

2.6.1 Distance of Solutions ... 49

2.6.2 Average Lambda-Branching Factor ... 49

2.6.3 Entropy ... 50

2.6.4 Convergence Factor ... 50

2.6.5 Acceptance Criteria .. 51

2.6.6 Exploration Measure/ Similarity Ratio .. 51

2.7 Reactive-based Parameters’ Selection ... 53

2.7.1 Pre-Scheduled Approach.. 57

2.7.2 Adaptive Approach .. 58

2.7.3 Search-Adaptive Approach .. 61

2.7.4 Self-Adaptive Approach .. 63

2.8 Discussion on Reactive-based ACO .. 64

2.9 Summary .. 71

 RESEARCH FRAMEWORK AND METHODOLOGY . 73

3.1 Introduction .. 73

3.2 The Research Framework .. 73

 viii

3.3 Research Methods .. 77

3.3.1 Developing the Memory Model ... 77

3.3.2 Enhancing the Exploration Measurement .. 78

3.3.3 Proposing Adaptive Parameters’ Selection Method 78

3.4 Evaluation of the Proposed Approach ... 79

3.4.1 The Traveling Salesman Problem .. 81

3.4.2 The Quadratic Assignment Problem .. 83

3.4.3 Benchmark Methods .. 86

3.4.4 Comparative Measures ... 86

3.5 Summary .. 88

 MEMORY MODEL DEVELOPEMENT AND ITS

APPLICATIONS ... 89

4.1 Introduction .. 89

4.2 Memory Model Development .. 89

4.2.1 Identifying Restart Mechanism .. 90

4.2.2 Formulating Reactive Heuristics .. 91

4.2.3 The Application to QAP .. 94

4.2.4 Experimental Design for Developing Reactive Heuristics 96

4.2.5 Results of Applying Reactive Heuristics ... 98

4.2.6 Recursive Local Search Development ... 105

4.2.7 Experimental Design for Developing RLS Technique 108

4.2.8 Results of Applying RLS Technique ... 108

4.3 Summary .. 114

 EXPLORATION MEASUREMENT AND ADAPTIVE

PARAMETERS’ SELECTION .. 116

5.1 Introduction .. 116

5.2 ACOustic for Exploration Measurement .. 116

5.2.1 The Biological Schema .. 118

5.2.2 Modeling ACOustic.. 121

5.2.3 ACOustic Implementation .. 124

5.3 Experimental Design for Developing ACOustic .. 126

 ix

5.4 Results of ACOustic’s Application .. 127

5.5 ACO-based Adaptive Parameters’ Selection ... 136

5.6 Parameters’ Selection Strategy .. 139

5.7 Reward Assignment Strategies .. 140

5.7.1 Quality-based Reward Assignment .. 141

5.7.2 Exploration-based Reward Assignment ... 141

5.7.3 Unified Reward Assignment .. 142

5.8 Experimental Design for Developing APSACO ... 144

5.9 Results of APSACO’s Application ... 145

5.10 Summary .. 149

 PROPOSED REACTIVE APPROACH FOR AUTOMATING

EXPLORATION AND EXPLOITATION IN ACO ... 151

6.1 Introduction .. 151

6.2 Proposed Reactive Approach ... 151

6.3 Experimental Design for RACO Evaluation .. 154

6.4 Results of the TSP Experiments ... 156

6.5 Results of the QAP Experiments.. 158

6.6 Summary .. 162

 CONCLUSION AND FUTURE WORK 164

7.1 Research Contributions .. 165

7.2 Future Work ... 167

REFERENCES ... 170

 x

List of Tables

Table 1.1: The Basic E&E Components in Metaheuristics .. 3

Table 2.1: Artificial Ants versus Real Ants ... 19

Table 2.2: Amount of Exploration and Exploitation in ACO Algorithms 66

Table 2.3: Schematic Description of the Literature on ACO-based Reactive Search 68

Table 2.4: Abbreviations of the Reactive Characteristics .. 69

Table 3.1: Description of Some TSP Instances .. 83

Table 4.1: Results of Identifying Effective Reaction using SRM and CTM Tests 98

Table 4.2: Results of Identifying Effective Reaction using QSM Tests 99

Table 4.3: Results of Evaluating the Effectiveness of RHs in TSP without Local Search

using QSM Tests .. 100

Table 4.4: Results of Evaluating the Effectiveness of RHs in QAP with Local Search using

QSM Tests ... 104

Table 4.5: Results of Evaluating the Effectiveness of RHs in QAP with Local Search using

Chi-Square Test ... 105

Table 4.6: Results of Evaluating the Effectiveness of RLS in QAP using QSM Test for

Short-Run ... 113

Table 4.7: Results of Evaluating the Effectiveness of RLS in QAP using QSM Test for

Long-Run ... 113

Table 5.1: Conceptual Comparison between APSACO and Other Adaptive Parameters’

Selection Methods .. 138

Table 5.2: The TSP and QAP Instances used in the Evaluation .. 145

Table 5.3: The Results of Evaluating APSACO (QRA) against Other Parameters’ Selections

Methods in TSP and QAP using RPD Test .. 147

Table 5.4: The Results of Evaluating APSACO using QRA, URA and ERA in TSP and QAP

using RPD Test .. 147

Table 6.1: Results of Comparing RACO with ACS, EP, SA, GA, PSO and ABC Algorithms

in Small Size TSP Instances using RPD Test .. 157

Table 6.2: Results of Comparing RACO with MMAS Variants, ACS+3-opt and ILS+3-opt

Algorithms in Medium Size TSP Instances using RPD Test 157

Table 6.3: Results of Comparing RACO with MMAS Variants, ACS+3-opt and ILS+3-opt

Algorithms in Large Size TSP Instances using RPD Test 158

 xi

Table 6.5: Results of Comparing RACO with Ro-TS, RTS, SA, GH, HAS-QAP and

MMAS-QAP3-opt Algorithms in Real-Life QAP Instances for Short Run using

RPD Test .. 159

Table 6.6: Results of Comparing RACO with Ro-TS, RTS, SA, GH, HAS-QAP and

MMAS-QAP3-opt Algorithms in Real-Life QAP Instances for Long Run using

RPD Test .. 160

Table 6.7: Results of Comparing RACO with Ro-TS, RTS, SA, GH, HAS-QAP and

MMAS-QAP3-opt Algorithms in Real-Life like QAP Instances for Short Run

using RPD Test .. 161

Table 6.8: Results of Comparing RACO with Ro-TS, RTS, SA, GH, HAS-QAP and

MMAS-QAP3-opt Algorithms in Real-Life like QAP Instances for Long Run using

RPD Test .. 162

Table 6.9: Results of Comparing RACO with OG-ACO and HAFSOA Algorithms in

Random Generated QAP Instances using RPD Test .. 162

 xii

List of Figures

Figure 2.1. Classical Optimization Methods .. 15

Figure 2.2. The Exploration and Exploitation Frame .. 17

Figure 2.3. The Conceptual Framework of ACO ... 22

Figure 2.4. The ACO Metaheuristic Pseudocode... 23

Figure 2.5. The Evolution of ACO Algorithmic Framework ... 27

Figure 2.6. Reactive Search Optimization ... 54

Figure 2.7. Variance of Exploration and Exploitation Behaviour in ACO 65

Figure 3.1. High-level Research Framework ... 74

Figure 3.2. Low-level Research Framework .. 76

Figure 3.2. Performance Evaluation of Metaheuristic Algorithm .. 79

Figure 3.3. Sample Structure of TSPLIB File .. 82

Figure 3.4. High Level Description of QAP .. 84

Figure 3.5. A Graph Model for QAP Relaxation ... 85

Figure 3.6. Sample Structure of QAPLIB File ... 85

Figure 4.1. The Process for Memory Model Development ... 90

Figure 4.2. The CBM Scheme in Memory Model Development ... 91

Figure 4.3. The Pseducode for RMMAS Algorithm .. 93

Figure 4.4. Results of Evaluating the Effectiveness of RHs in TSP with Local Search using

QSM (Mean) Test .. 99

Figure 4.5. Results of Evaluating the Effectiveness of RHs in TSP with Local Search using

QSM (SD) Test .. 103

Figure 4.6. Results of Evaluating the Effectiveness of RHS in QAP with Local Search using

Wilcoxon Test .. 104

Figure 4.7. The PBM Scheme in Memory Model Development ... 106

Figure 4.8. The Pseducode for RMMAS Algorithm with RLS Technique.......................... 107

Figure 4.9. Results of Evaluating the Effectiveness of RLS on Various ACO Algorithms

using QSM Test ... 110

Figure 4.10. Results of Evaluating the Effectiveness of RLS in TSP using QSM Test 112

Figure 5.1. The Process of the Modeling and the Implementation of Acoustic 117

Figure 5.2. The Ants- Parasites System ... 119

Figure 5.3. (a) The Trophallaxis and Antennation between Ants (b) Trophallaxis between

Ants and Parasites .. 119

 xiii

Figure 5.4. The Morphology (Upper Part) and Sounds (Lower Part) of the Acoustical Organs

of (a) Parasites Queen and (b) Ant Queen ... 120

Figure 5.5. The Scheme of Acoustical Indication in Nature .. 121

Figure 5.6. The Pseudocode of Acoustic Algorithm .. 125

Figure 5.7. The Initialization Procedure .. 125

Figure 5.8. The Pseudocode of Findsimilarities Algorithm ... 125

Figure 5.9. The Pseudocode of DetermineRelatedness Algorithm 126

Figure 5.10. Results of Comparing Acoustic with other Exploration Measures in TSP with

Nearest Neighborhood Threshold = 8 .. 129

Figure 5.11. Results of Comparing Acoustic with other Exploration Measures in TSP with

Nearest Neighborhood Threshold = 7 .. 129

Figure 5.12. Results of Comparing Acoustic with other Exploration Measures in TSP with

Nearest Neighborhood Threshold = 6 .. 129

Figure 5.13. Results of Comparing Acoustic with other Exploration Measures in TSP with

Nearest Neighborhood Threshold = 5 .. 130

Figure 5.14. Results of Comparing Acoustic with other Exploration Measures in TSP with

Nearest Neighborhood Threshold = 4 .. 130

Figure 5.15. Results of Comparing Acoustic with other Exploration Measures in TSP with

Nearest Neighborhood Threshold = 3 .. 130

Figure 5.16. Results of Comparing Acoustic with other Exploration Measures in QAP with

Nearest Neighborhood Threshold = 8 .. 131

Figure 5.17. Results of Comparing Acoustic with other Exploration Measures in QAP with

Nearest Neighborhood Threshold = 7 .. 132

Figure 5.18. Results of Comparing Acoustic with other Exploration Measures in QAP with

Nearest Neighborhood Threshold = 6 .. 132

Figure 5.19. Results of Comparing Acoustic with other Exploration Measures in QAP with

Nearest Neighborhood Threshold = 5 .. 132

Figure 5.20. Results of Comparing Acoustic with other Exploration Measures in QAP with

Nearest Neighborhood Threshold = 4 .. 133

Figure 5.21. Results of Utilizing Acoustic (a) against Branching Factor (b) to Evaluate

Various Exploration Behaviours in TSP .. 133

Figure 5.22. Results of Utilizing Acoustic (left) against Branching Factor (right) to Evaluate

the Effect of pheromone intensity (alpha) (a-b), pre-heuristic effect (beta) (c-d), evaporation

rate (rho) (e-f) and the number of ants (m)(g-h) in TSP .. 135

Figure 5.23. The Process of Developing the APSACO .. 137

 xiv

Figure 5.24. The General Scheme for APSACO Method ... 138

Figure 5.25. The Pseudocode of APSACO Algorithm ... 143

Figure 5.26. The Results of Evaluating APSACO using QRA, URA and ERA against Other

Parameters’ Selections Methods in TSP using RPD Test .. 148

Figure 5.27. The Results of Evaluating APSACO using QRA, URA and ERA against Other

Parameters’ Selections Methods in QAP using RPD Test ... 148

Figure 6.1. The General Scheme of RACO ... 152

 xv

List of Appendices

Appendix A Technical Details of the TSPLIB Files .. 185

Appendix B Statistical Details of the QAPLIB Files ... 190

 xvi

List of Abbreviations

ABC Artificial Bee Colony

ACO Ant Colony Optimization

ACOustic Acoustic Mimicry Based Exploration Indicator

ACS Ant Colony System

AFSA Artificial Fish Swarm Algorithm

AI Artificial Intelligence

ANISM Average Number of Iterations to a Solution Measure

ANTabu Ant Colony Based Tabu Search Algorithm

AntNet Ant-based network routing algorithm

Ant-Q Ant-Q-Learning

ANTS Approximate Nondeterministic Tree Search

APC Adaptive Parameter Control

APSACO ACO-based Adaptive Parameter Selection

AS Ant System

RAS Ranked Ant System

ATSP Asymmetric Traveling Salesman

Beam-ACO Beam search based ACO

BWAS Best-Worst Ant System

CbM Components-based Memory

CG Construction Graph

CO Combinatorial Optimization

CTM CPU Time Measure

DPL Differential Path Length

E&E Exploration and Exploitation

EAS Elitist Ant System

EC Evolutionary Computation

EP Evolutionary Programming

GA Genetic Algorithm

GH Genetic Hybrid

HAFSO Hybrid Artificial Fish-School Optimization

HAS Hybrid Ant System

HCF Hyper-Cube Framework

LB Lower Bounds

MACO Multiple Ant Colony Optimization

MMAS Max-Min Ant System

MWVC Minimum Weight Vertex Cover

MWVCP Minimum Weight Vertex Cover Problem

NOG Nonobjective Function Guided

NP-hard Nondeterministic polynomial hard problems

OG Objective Function Guided

OG-ACO Object-Guided Ant Colony Optimization

PACO Population Based ACO Approach

 xvii

PbM Population-based Memory

PSO Particle Swarm Optimization

PTS Pheromone Trail Smoothing

QAP Quadratic Assignment Problem

QSM Quality Solution Measure

RACO Reactive Ant Colony Optimization

RH’s Reactive Heuristics

RL Reinforcement Learning

RLS Recursive Local Search

RMMAS Reactive Max-Min Ant System

Ro-TS Robust Tabu Search

RPD Relative Percentage Deviation

RTS Reactive Tabu Search

SA Simulated Annealing

S-ACO Simple-Ant Colony Optimization Algorithm

SI Swarm Intelligence

SRM Success Rate Measure

TS Tabu Search

TSP Traveling Salesman Problem

VRP Vehicle Routing Problem

1

INTRODUCTION

In the field of Artificial Intelligence (AI), significant numbers of mathematical

problems are of practical and theoretical importance. An example of these problems

is the combinatorial problem where we try to find the values for discrete variables.

This is done particularly to satisfy certain specific conditions. The combinatorial

problem can be further categorized into optimization and satisfaction problems.

The optimization problem is aimed to find an optimal set of discrete objects. This set

is known as the optimal solution of other candidate solutions (i.e., solution space).

The objects of each of these solutions are called solution components (Bertsimas,

Brown, & Caramanis 2011; Fletcher, 1997). On the other hand, the satisfaction

problem is aimed to find a solution whose state satisfies a number of constraints or

limitations. A problem is a scenario needed to be solved. An instance is a specific

case of that scenario. For many combinatorial problems, the solution space for a

given instance is large. As a result, it is not possible to be searched because of the

functional dependency required between the size of any instance and the time and

space to solve it. This is defined as the complexity of the problem (Carterette, 2011;

Garey & Johnson, 1979).

In the complexity theory, there are two classes of problems: polynomial and

nondeterministic polynomial (Korte & Vygen, 2006). A problem that is as hard as

any problem in the non-polynomial class is called NP-hard. There is no exact

algorithm that can be used to find an optimal solution for NP-hard problems in

 2

polynomial time. This objective has been replaced with finding good solutions in a

reasonable time by the use of heuristic algorithms. This class of algorithms can be

classified into constructive or iterative methods. This classification is done according

to its way of generating solution. Heuristic algorithms can be further classified into

stochastic or deterministic methods, based to its way of search.

A constructive method always builds solution components from an empty set until it

finds one candidate solution. An iterative method takes an arbitrary solution as an

initial solution and modifies it iteratively. Both constructive and iterative methods

employ the stochastic and deterministic methods. A stochastic method utilizes

randomization to traverse the search space, while a deterministic method does not

use randomization in its function. Moreover, deterministic search repeats its

procedure each time it is applied to the same problem instance, but stochastic search

may perform it differently (Hoos & Stützle, 2005; Rothlauf, 2011). However, the

heuristic methods are restricted by the environment of the problem at hand. And this

basically allows the search to be trapped in local optima, which is not the global

optimal solution in search space of the CO problem under tackle.

To address the problem of local optima, new search methods have emerged which

allow robust diversification to be performed in the search space. These methods are

called metaheuristics. They basically combine heuristic methods in higher-level

metaphors. Examples of these metaphors are annealing, memory, evolution, and ant

foraging behavior. The metaheuristics that are inspired from the stated metaphors

are: simulated annealing (SA), tabu search (TS), evolutionary computation (EC), and

ant colony optimization (ACO) respectively (Gendreau & Potvin, 2010).

 3

A metaheuristic method is defined as “an iterative generation process which guides a

subordinate heuristic by combining intelligently different concepts for exploring and

exploiting the search space, learning strategies are used to structure information in

order to find efficiently near-optimal solutions” (Osman & Laporte, 1996; Zufferey,

2012). Metaheuristics are divided into local search and population-based techniques.

The local search technique manipulates single solution by exchanging segments of

its components to produce better solutions while the population-based technique uses

more than one solution. SA and TS algorithms belong to the former class, while GA

and ACO belong to the later one. The search behavior differs from one metaheuristic

to another based on the metaphor that the specific algorithmic components belong to.

These components are exploration and exploitation (E&E) components as shown in

Table 1.1.

Table 1.1

The Basic E&E Components in Metaheuristics

Metaheuristic E&E component

1.SA Acceptance criterion + cooling schedule

2.TS Neighbor choice (tabu lists) aspiration criterion

3.EC Recombination + mutation + selection

4.ACO Pheromone update + probabilistic construction

Exploration refers to the probing of unvisited regions within the search space, while

exploitation refers to the search around good solutions in the current problem space

regions. The dynamic balance between exploration and exploitation is essential in

order to find new regions quickly and to reduce the search time in regions that have

already been explored (Beer, Hendtlass, & Montgomery, 2012).

 4

In other words, any metaheuristic algorithm should be designed in a way that

considers the E&E balance role in its search behavior. The single-solution based

metaheuristics are more exploitation-oriented, whereas the basic population-based

metaheuristics are more exploration-oriented (Boussaïd, Lepagnot, & Siarry, 2013).

In this light, ACO is grown as a population-based, metaheuristic, stochastic and

constructive method for solving Combinatorial Optimization (CO) problems

(Baghel, Agrawal, & Silakari, 2012). ACO is a popular framework in Swarm

Intelligence (SI) (Merkle & Middendorf, 2005). SI utilizes the collective behavior of

social insects to design algorithms or distributed problem-solving devices. In SI,

swarms (i.e., agents) adapt quickly to the problem’s environment without

reprogramming. This flexibility and robustness motivate several successful

applications of ant algorithms (Mohan & Baskaran, 2012).

ACO is inspired by the food foraging behavior of real ants. Once an ant finds a food

source, the ant returns to its nest, depositing a chemical substance called pheromone

to and from the nest. This trail will now guide other workers from the nest to the

food source. The other ants return to the nest and deposit their own pheromone along

the trail to reinforce their path. Therefore, the trail construction is a result of a

positive feedback mechanism, the main component of the self-organization in the

social insects (Bonabeau, Dorigo, & Theraulaz, 1999). It expresses that: the more

these ants use a trail, the more attractive the trail becomes. A large number of

foragers will quickly assemble around a food source. This cooperation also enables a

colony to find the shortest path leading to a food source, and if the reinforcement

 5

becomes too low after some time, the trail will disappear (Martens, Baesens, &

Fawcett, 2011).

The second ingredient of the self-organization in social insects is the negative

feedback which uses to counterbalance the positive feedback: it may take the form of

food exhaustion or saturation (Garnier, Gautrais, & Theraulaz, 2007). The type of

indirect communication between ants is known as Stigmergy. This was originally

proposed by Grasse in 1950s (Bonabeau et al., 1999). Grasse opined that the

building activity depends on the colony and not on the workers ants themselves

(Theraulaz & Bonabeau, 1999). Notably, there were some experiments performed

with real ants. These experiments showed how the Stigmergy mechanism can find

the shortest path between the ant nest and the food source (Deneubourg, Aron, Goss,

& Pasteels, 1990). This mechanism played a main role in designing the first ACO

algorithm, namely ant system (AS), which is the base of subsequent ACO

algorithmic frameworks (Dorigo, Gambardella, Middendorf, & Stützle, 2002).

In ACO, a colony is a set of artificial ants which cooperates to find the best solution

to a CO problem. These ants generally modify a sequence of numeric values

associated with different states of the problem. This sequence is known as the

artificial pheromone trail. The pheromone trail is the sole means of communication

among artificial ants (Dorigo & Socha, 2007). Several ACO extensions have been

proposed to solve new combinatorial optimization problems and to reach a balance

point between exploration and exploitation as well. The max-min ant system

(MMAS) algorithm is a prominent extension of ACO framework which presents

 6

high quality solutions, together with the proof of convergence to the optimal

solutions (Dorigo & Stützle, 2004).

Generally, the exploration and exploitation balance is achieved by the proper

management of a probabilistic memory model, i.e. the pheromone trail. This can be

achieved using two complementary processes: probabilistic solution construction

and pheromone update (Blum & Roli, 2003). An optional process of local search

might be inserted to improve the quality solutions produced by probabilistic solution

construction. In this way, the search concentrated quickly around high quality

regions of search space which lead to premature convergence especially with large

search spaces. One of the generic strategies to avoid the premature convergence is

restarting the search based on some exploration triggers.

Other exploration and exploitation components are the strategic parameters to be

adjusted by the designer or the practitioner of the algorithm, by the algorithm itself,

or by other adaptation algorithms (Dorigo, Maniezzo, & Colorni, 1991; Lopez-

Ibanez, 2010). These components are recruited to avoid convergence because of the

sensitivity of ACO search to the parameters’ selection. Reactive search is a

framework (Battiti, Brunato, & Mascia, 2008) that integrates machine learning

techniques with local searches together with online parameters’ selection and

restarting the search when the premature convergence occurs. An exploration

indicator is harnessed as a trigger for restarting the search and as evidence for

parameters adaptation. Overall, the ability of reactive search as a new technique to

maintain the dynamism of the exploration and exploitation mechanics entails

 7

integrating it with ant colony optimization to produce powerful approach for

nondeterministic problem solving.

1.1 Problem Statement

The exploration versus exploitation dilemma arises when promising regions of

search space need to be quickly identified without spending too much time in poor

regions (Talbi, 2009). MMAS, the prominent ACO variant, has a relatively long

initial exploration to avoid the quick convergence toward local optimum, where the

algorithm is not able to generate new global solutions as run time passes (Maur,

Stützle, & López-Ibáñez, 2010). Subsequently, the current memory model that

records previous search regions is not able to completely transfer the neighborhood

structures of current iteration to the next iterations which leads to an arbitrary restart

and premature local search. Reactive search is a technique for automating

exploration and exploitation using memory features and machine learning

approaches for exploration indication (Battiti et al., 2008). The exploration

indication (Pellegrini & Favaretto, 2012) in ACO-based reactive search is suffering a

problem of robustness: Different circumstances entail assigning new value to the

neighborhood threshold. The instability in threshold value assignment gets worse as

fitness landscape flatten or local search procedure changed. Moreover, the

performance of parameter adaptation methods is worsen if the standard CO problems

are used or if more parameters are adapted (Pellegrini, Stützle, & Birattari, 2012).

This is the result of involving poor indication schemes to evaluate the effect of the

adaptive parameters’ selection on the search. Therefore, solving problems in the

combination of successful local search and restarting procedures with the aid of

 8

advanced memory features, together with adaptive parameters’ selection procedures

and robust indication is an approach for effective ACO-based reactive search in

order to automate the exploration and exploitation balance.

1.2 Research Questions

This research tries to answer the following questions:

 How does the scheme of memory improve the restart and local search

mechanisms in MMAS?

 How can the exploration indicators perform more robustly in ACO

algorithm?

 How can a robust exploration indicator contribute in online parameter

selection?

 Does the combination of those reactive procedures improve the exploration

and exploitation balance within the ACO algorithm?

1.3 Research Objectives

The main objective of this study is to propose a reactive approach for automating

exploration and exploitation in ACO. The specific objectives are:

 To develop a memory model for improving restart and local search

mechanisms.

 To enhance the exploration measurement in ACO in terms of robustness of

indication.

 To propose an adaptive parameters’ selection method based on robust

indication.

 To evaluate the performance of the proposed approach.

 9

1.4 Significance of the Research

The exploration and exploitation balance is crucial for better ACO performance.

Reactive search is a technique for automating that balance by integrating machine

learning and optimization in an online manner ("learning while optimizing"). The

proposed approach improves the abilities of ACO in problem solving and addresses

the circumstances that emerged from the ACO-based reactive search integration by:

 Defining a new memory model for ACO.

 Developing more effective ACO variants.

 Improving the exploration indication in ACO.

 Solving the parameterization problem by the intelligent tuning of parameters.

 Providing a well-balanced exploration and exploitation mechanism for ACO

method.

The proposed approach can be applied for real-world applications when domain-

specific knowledge is available. The applications include industry applications such

as industrial vehicle routing, car sequencing, power distribution applications such as

voltage control and electric power distribution, telecommunications applications

such as traffic grooming in optical networks and biological applications such as

bioinformatics. All of the applications require optimal solutions that would benefit

from the balance between exploration and exploitation.

1.5 Scope of the Research

This research proposes a new algorithmic approach for controlling the

exploration/exploitation behavior in the standard ACO that is designed to solve

single-objective, static, combinatorial optimization problems. To achieve such goal,

 10

the optimization problem of traveling salesman problem (TSP) and the quadratic

assignment problem (QAP) have been chosen as test-beds for the experiments of this

research. There are several ant algorithms not fitting into the standard ACO

metaheuristic framework, e.g. Fast Ant System algorithm. This research concentrates

on the standard approach and omitted other approaches because they differ from

ACO algorithms mainly in some aspects.

For optimization problems to be solved by ACO, they have to be encoded in several

ways. In this research, the feasible solutions are encoded using the concept of

construction graphs. For most problems, there are alternative ways of encoding these

solutions. Finding out which one is the best is out of the scope of this research. The

solutions are constructed by the walk of ants through the construction graph. The

dynamic problem-solving, i.e. changing the graph of the problem during the run, is

also not considered.

The parameters’ selection in ACO is problem independent. One of the disciplines for

solving the problem is by following multiobjective optimization through operating

more than objective functions: one for the problem under solving and one for the

parameters’ selection problem. This approach is limited to the single-objective

handling. However, it is easy to extend it to a multiobjective function by separating

the objective function for the second problem from the one of the problems to be

solved. The proper parameter values that are involved in the search process are

changed during the run. Parameter tuning is not part of the scope of this research

because it is trying to address the problem in an offline way, i.e. before the run.

 11

1.6 Thesis Organization

The remainder of this thesis is organized as follows. Chapter Two defines the

concept of combinatorial optimization and the methods used to solve it. The chapter

also outlines the biological inspiration and problem representation of ACO

metaheuristic together with the prominent ACO algorithms as exemplified by

MMAS. The rest of the chapter is divided into three divisions which focus on

memory-based E&E strategies, exploration indication strategies and reactive-based

parameters’ selection strategies. Chapter Three addresses the experimental

methodology used in implementing this research. After presenting high level

abstraction of research framework, the summaries of three proposed memory model

development, exploration indication enhancement and the proposal of adaptive

parameters’ selection are provided. Descriptions on TSP and QAP are presented

followed by explanation of benchmark methods and comparative measures. Chapter

Four introduces the development of memory model based on the component-based

and population-based schemes. The chapter starts by identifying the optimal point to

start through experimental analysis for several ACO models. In addition, this

Chapter introduces reactive heuristics and recursive local search technique based on

component-based and population-based memory schemes respectively. Chapter

Five presents twofold of E&E components: the exploration measurement and the

adaptive parameters’ selection in ACO. For the first method, it describes the

definition, modelling and implementation of a nature-inspired exploration indicator

called ACOustic. It was done by combining clustering information with statistical

information gathered during the run. It has been analyzed and compared to the state-

of-the art indicators in ACO literature. For the second component, this chapter

 12

presents the development and evaluation of three variants of ACO-based adaptive

parameters’ selection algorithm by which the parameters’ selection problem in ACO

is addressed. The performance of reactive ant colony optimization approach, namely

RACO is described in Chapter Six. The evaluation was done based on the

experimental comparison approach to look into the impact of combining the

proposed exploration and exploitation components in the above mentioned chapters.

Chapter Seven concludes and outlines future directions of research. The chapter

recalls the developed algorithmic components in the thesis and highlights the

contributions made throughout the research. Finally, the thesis ends with suggestions

for future works if any researchers wanted to embark on this kind of research.

 13

LITERATURE REVIEW

2.1 Introduction

This chapter provides the background of the problem of this research and surveyed

what have been done to solve the problems of E&E in ACO. A description about CO

problems and their solving approaches; a more in-depth description about ACO and

its various aspects; and the main E&E strategies in MMAS, are highlighted are in

Sections 2.2 - 2.4. The background and perspective related works about each of the

three E&E aspects are provided in this chapter as follows. Firstly, the memory-based

E&E strategies in ACO are discussed in Section 2.5. Secondly, the exploration

measurement tools needed for controlling E&E are presented in Section 2.6. Thirdly,

the adaptive parameter’s selection approaches in ACO are presented in Section 2.7.

Section 2.8 provides a unified review about the abovementioned related works, i.e.

the memory-based models, the exploration measures and parameter adaptation

methods, while the chapter is summarized in Section 2.9.

2.2 Combinatorial Optimization Problems

Combinatorial (i.e. discrete) problems in AI can be classified as either optimization

or satisfaction problems (Bertsimas et al., 2011; Fletcher, 1997). This research is

focused on combinatorial problems in terms of optimization. To concentrate on

optimization problems and not satisfaction problems is not a limitation, because any

satisfaction problem can be formulated as an optimization problem. A CO problem is

either a maximization problem or a minimization problem with an associated set of

 14

instances (Korte & Vygen, 2006). This research focuses on minimization problems,

as a maximization problem can easily be converted into a minimization problem.

Each instance of CO problems can be represented as a tuple (S, f, Ω), where S is a

set of candidate solutions and f is the objective function which is assigned to every s

∈ S a value of f (s). The goal of optimization then is to find a solution (s) with a

minimal f(s) (i.e. minimal cost). This solution called the globally optimal solution to

the problem (S, f, Ω), and denoted by f (sopt). Ω is a set of constraints (e.g. in TSP

route, each city has to be visited exactly once and that route has to start and end at

the same city. Finding that route with a minimal cost is the task of artificial ants

during the optimization process. This route is the globally optimal solution to the

problem of TSP which is denoted by f (sopt)). The way to solve (S, f, Ω) problems is

by enumerating all set of solutions (S) and picking the one with minimal cost.

Following the complexity of the problem, it is infeasible for many problems as the

size of the search space, denoted by |S|, grows exponentially with instance size

(Carterette, 2011; Garey & Johnson, 1979). Hence, the kind of trade-off between the

quality of solution and the computational efforts has to be considered. Several

optimization methods are proposed in order to find the (near-) optimal solution to the

problems based on the mentioned considerations.

The optimization of the problem solves exactly or approximately based on the

complexity of the problem as in Figure 2.1. The exact methods guaranteed the

optimality of their solutions. For NP problems, finding the exact solutions is

intractable. The approximate methods generate high quality solutions in a limited

 15

amount of time, but they are not guaranteed the optimality of solutions (Russell &

Norvig, 2010).

Figure 2.1. Classical Optimization Methods

Exact methods can be applied for CO problems of small size and simple structure.

Following the size or the structure alone may not give much effect for applying the

exact method. For example, some problems have a small size but their structure is

very complex and vice versa. Another option is to implement this method in a large

network of workstations (e.g. grid computing platform). In all cases, the exact

methods must enumerate all the solutions of the search space and generate the

optimal solution at the end.

Optimization
methods

Exact methods

Branch and X

Branch and
bound

Branch and cut

Branch and price

Constraint
programming

Dynamic
programming

Iterative
Deepening

Approximate
Methods

Problem-specific
heuristics

Metaheuristics

Local search

Simulated
Anealing

(1983)

Tabu Search
(1986)

Greedy
Randomiz ed

Adaptive Search
Procedure

(1989)

Variable
Neighborhood

Search
(1995)

Guided Local
Search
(1997)

Iterated Local
Search
(1998)

Population-based

Evolutionary
Computing

Evolution
Strategy (1965)

Evolutionary
Programming

(1966)

Genetic
Algorithm (1970)

Genetic
Programming

(1990)

Other
Evolutionary
Algorithms

Coevolutionay
Algorithms

(1990)

Cultural
Algorithms

(1994)

Estimation of
distribution
algorithms

(1996)

Differential
Evolution (1997)

Scatter Search
(1997)

Swarm
Computing

Artificial
Immune Systems

(1986)

Ant Colony
Optimization

(1992)

Particle Swarm
Optimization

(1995)

Bee Colony
(1996)

Bacterial
Foraging

Optimization
(2002)

Artificial Bee
Colony
(2005)

Biogeography-
based

Optimization
(2008)

 16

In the class of exact methods, one can classify them according to their development

community or their way of solving problems. Following the first division, dynamic

programming and branch and X are developed in operations research community.

While iterative deeping and constraint programming are developed in artificial

intelligence community (Russell & Norvig, 2010). On the other side, following the

second division, dynamic programming divides recursively the problem into

subproblems based on the the principle that says “the subpolicy of an optimal policy

is itself optimal”. Another way of problem solving is by representing the problem as

a search tree (e.g. branch and X; and iterative deeping methods). The root of the tree

is the problem itself and the leaf nodes are its solutions. Finally, the optimization

problem can be modeled as a set of variables connected by a set of constraints. This

way of problem solving is called constraint programming. With large size or

complex problem instances, the optimality of solutions, guaranteed by exact

methods, will be sacrificed by finding (near-) optimal solutions.

In approximate methods, the general principle of applying this class of methods is to

find good solutions for large size/complex problem instances in reasonable cost.

They are classified according to their applicability into specific heuristic and

metaheuristic methods. Unlike metaheuristics, the specific heuristic methods are

designed to solve specific problems. Moreover, in practice, they are not useful for

real life problems due to their way of guiding the search. They are more likely to fall

in local optima, when the algorithm wastes the run time in unpromising regions of

search space. In contrast, metaheuristics are general purpose methods. They are

designed to escape from the local optima by using high level mechanisms.

 17

Metaheuristics are algorithms designed to solve approximately a wide range of hard

optimization problems without having to deeply adapt to each problem (i.e. general

purpose algorithms). Indeed, the Greek prefix ‘‘Meta ’’, present in the name, is used

to indicate that these algorithms are ‘‘higher level’’ heuristics, in contrast with

problem-specific heuristics. They are classified, based on whether they manipulate a

single solution or a collection of solutions at each stage, into local search

metaheuristics and population-based metaheuristics (Boussaïd et al., 2013). In local

search-based metaheuristics, a single solution is manipulated during the search,

while in population-based ones, a whole population is involved.

These two metaheuristics’ families have complementary characteristics. These are

the local search methods which tend to intensify the search in local regions; they are

exploitation-oriented. The population based methods allow diversifying the whole

search space; they are exploration-oriented. Blum and Roli (2003) proposed a

generic frame to understand how exploration versus exploitation is managed in

metaheuristics (see Figure 2.2).

Figure 2.2. The Exploration and Exploitation Frame

 18

Each component can be located somewhere on or in between the three corners of

that frame, namely OG= objective function guided, NOG= nonobjective function

guided, and R=randomness. For example, the basic exploration and exploitation

components in ant colony optimization are pheromone update and probabilistic

construction, while in tabu search, it is the neighbor choice (tabu lists) aspiration

criterion. In the first example, the pheromone update is the exploitation component

that is guided by an objective function. This component is influenced by an

evaporation mechanism. The pheromone update component can be found on the line

between NOG and OG. In the second example, when the tabu list (a NOG

component) is long, the search will be exploration-oriented, i.e. close to the corner

R.

The popularity of metaheuristics has been increased through their successful

application to a large number of domains such as: engineering design, topology

optimization and structural optimization in electronics, aerodynamics, fluid

dynamics, telecommunications, automotive, and robotics; machine learning and data

mining in bioinformatics and finance; system modeling, simulation and

identification in chemistry, physics, and biology; control, signal, and image

processing; planning in routing problems, robot planning, scheduling and production

problems, logistics and transportation; and supply chain management (Talbi, 2009).

The growing complexity of real-world problems has motivated metaheuristic

designers to search for efficient problem-solving methods. Divide and conquer

techniques are one way to solve large and difficult problems. Division of large work

 19

into smaller parts and combining the solution of small problems to obtain the

solution of large ones have been a practice in computer research since long ago.

Swarm also exhibits the behavior of division of work and cooperation to achieve

difficult tasks. Swarm intelligence metaheuristics are outstanding examples which

show that nature has been an unending source of inspiration (Manju & Kant, 2013).

In particular, ants have inspired a number of methods and techniques among which

the most studied and the most successful is the general purpose optimization

technique known as ant colony optimization (Dorigo & Stützle, 2010).

2.3 Ant Colony Optimization

Ant colony optimization (ACO) takes inspiration from the foraging behavior of some

ant species. These ants deposit pheromone on the ground in order to mark some

favorable path that should be followed by other members of the colony. Ant colony

optimization exploits a similar mechanism for solving optimization problems.

2.3.1 Biological Inspiration

A colony of artificial ants and its characteristics are inspired by the real ants’

foraging behavior. Real ant foragers are traveling all the time to find food sources.

Table 2.1 represents an emulation of the food foraging behavior and how it can be

transformed to a CO problem (e.g. TSP).

Table 2.1

Artificial Ants versus Real Ants

Real Ant Artificial Ant

1. Food sources Problem solutions (the routes in TSP).

 20

2. Foraging to find and exploit the

nearest food sources to the nest.

Searching: exploring and exploiting the best

solutions of the combinatorial problem.

3. Lives on the ground environment

where the time not considered.

Associated with bi-dimensional grid termed

construction graph.

4. Pheromone is a chemical substance

that ants lay it on the ground during their

foraging. Its density is directly

proportional to the quality of food.

Artificial Pheromone is a numerical values

assigned to the problem states during search. Its

value inversely proportional to the quality of

solution (the shortest distance).

5. Stigmergy or multirenewal: indirect

communication among ants when one of

them changes the environment (laying

pheromone) and the others make use of

this change later (following that

pheromone).

Multiple communications: several artificial ants

iteratively search based on the traveling salesman

route. Each one behaves separately to construct

its own route. At the end of the iteration, all ants

have to finish constructing their own route.

6. Mass Recruitment (or Pheromone

trail) is a chemical trail of pheromone.

Artificial Pheromone Trail is a vector of

numerical values. Each trail represents a

particular solution.

7. Food Recruitment is the process

whereby the ants are influenced by each

other through using pheromone.

Trail Reinforcement is the process whereby the

artificial ants learn from each other.

8. Autocatalytic behavior (i.e. positive

feedback) is a collective behavior where

the more ants follow the trail, the more

attractive that trail becomes.

Apply the following stochastic rule: the

probability that an edge in a construction graph is

included into the ant route is proportional to its

pheromone value and heuristic value.

9. Negative feedback is the process of

limiting the positive feedback. It may

result from the limited number of ants,

the food source exhaustion, and the

evaporation of pheromone or a

competition between paths to attract

foragers.

Using evaporation rule to avoid stagnation. The

evaporation should not be fast to prevent

forgetting the previous experience and break

down the cooperative behavior of artificial ants.

10. No memory Has some memory called tabu list.

11. No visibility Visibility is a static quantity derived from the

distance between cities. It represents the heuristic

desire to visit the next city.

2.3.2 Problem Representation

The ACO metaheuristic is based on a generic problem representation and the

definition of the ants’ behavior (Dorigo & Stützle, 2004). Given this formulation, the

 21

ants in ACO build solutions to the CO problem by moving concurrently and

asynchronously on a predefined construction graph. Considering the CO problem

(i.e. TSP) as defined in Section 2.1, there are some aspects that need to be

characterized: i) a finite set of components of the problem: C= {c1, c2,…, cn}, where

n is the number of components of the TSP problem; ii) a sequence of the states of the

problem over the elements of C, such that each sequence is S=<ci, cj,…, ch,…>, and

the set of all sequences is denoted by S; iii) a set of candidate solutions S* is a subset

of S; iv) a set of feasible solutions N is a subset of S; v) a non-empty set of optimal

solutions; and vi) a cost g (s, t) is associated with each candidate solution.

TSP (S, f, Ω) has to be mapped to a complete connected graph called construction

graph CGTSP = (C, L), where C is the set of nodes of the graph and L is the

connections of those nodes. The artificial ants will walk randomly on CGTSP to build

solutions of the TSP problem. The pheromone trail value τ and heuristic value can be

associated with C or L.

2.3.3 The ACO Metaheuristic

ACO has been formalized into a metaheuristic for solving CO problems (Dorigo, Di-

Caro, & Gambardella, 1999; Dorigo & Di-Caro, 1999). A series of generic

guidelines allows a boost in the use of ACO methodology for problem solving

(Monteiro, Fontes, and Fontes, 2012). Firstly, a finite set C of solution components

needs to be derived. This set C is used to assemble solutions for the CO problem.

Next, a set of pheromone values τ is defined. The set τ is called the pheromone

model and is commonly recognized as a parameterized probabilistic model. The

 22

pheromone model is probabilistically used to generate solutions based on the

solution components. To achieve this, the model associates the solution components

to the pheromone values τi ∈ τ which forms the central components of the ACO

metaheuristic. In general, the ACO approach attempts to solve an optimization

problem by iterating the following two steps: i) construct candidate solutions by

using the pheromone model. The pheromone model, as mentioned earlier, is a

parameterized probability distribution over the solution space; and ii) modify the

pheromone values by using candidate solutions in a way that it is deemed to bias

future sampling towards high quality solutions (Blum, 2005a). The interaction

between the two steps is presented in Figure 2.3 which illustrates a conceptual

abstraction about how the ACO metaheuristic solves the CO problems.

Figure 2.3. The Conceptual Framework of ACO

The ACO metaheuristic defines the way of the solution construction, the pheromone

update, and possible daemon actions. These are used to implement specific problems

or centralized actions that cannot be performed by a single ant (Cordon, Herrera, &

 23

Stützle, 2002). An informal high-level description about ACO metaheuristic

functionality is given in Figure 4.2.

Figure 2.4. The ACO Metaheuristic Pseudocode

Parameter initialization: At the start of the algorithm, parameters are set and all

pheromone variables are initialized to a value τi=0, which is a parameter of the

algorithm.

Ants’ generation and activity: The ants build solutions to the CO problem by

traversing nodes of the construction graph one after another until it finishes

constructing complete solutions. Each ant, to move to the next node, applies a

stochastic mechanism, which is biased by the pheromone and heuristic values.

Optionally, an ant deposits/releases some pheromone at the visited nodes stepby step

(online step-by-step pheromone update) or delays it until it constructs the current

solution (online delayed pheromone update).

Pheromone evaporation: The aim of this activity is to decrease the pheromone

values associated with all solutions. This mechanism is triggered by the environment

 24

and it refers to the food exhausting in nature, while in the algorithm, it is used to

allow the ants to explore new space regions.

Daemon actions: This part contains all the centralized procedures, which cannot be

performed by a single ant such as global pheromone update. Usually, the daemon

action replaces the online delayed pheromone update with the offline delayed

pheromone update.

According to the way of updating pheromone, three algorithms have been

developed: ant-density, ant-quantity and ant-cycle (Dorigo et al., 1991). The former

two algorithms used the online update while the later used the offline update.

Preliminary experiments run on a set of benchmark problems have shown that ant-

cycle’s performance was much better than that of the other two algorithms. This is

the AS algorithm (Dorigo, Maniezzo, & Colorni, 1996; Dorigo, 1992). It was the

basic model for subsequent successful ant algorithms. The other two algorithms (i.e.

ant-density, ant-quantity) were abandoned.

2.3.4 The First Ant Algorithm: Ant System

This algorithm was the result of several experiments on the real ant foraging

behavior. The experiments were conducted by Deneubourg et al. (1990). In AS, the

main algorithmic components are outlined as follows:

Construct ant solutions. Solutions assemble as a sequence of solution components

C= {c1,…,cn}, which is derived from the problem under consideration. In the case of

TSP, each edge of the TSP graph represents a solution component. Ant (k), moving

 25

from its current city (i) to the next city (j), will construct one step in its own solution.

This solution starts with an empty sequence s = ‹ › and will be extended in each

construction step, by adding new feasible solution components from the set N (sp) ⊆

C \ s. In each construction step, an ant chooses the next city stochastically through

the following probabilistic decision (i.e. state transition) rule (Dorigo & Stützle

(2010).

𝑝𝑖𝑗
𝑘 = {

𝜏𝑖𝑗
𝛼 . 𝜇𝑖𝑗

𝛽

∑ 𝜏𝑖𝑙
𝛼 . 𝜇𝑖𝑙

𝛽
𝑐𝑖𝑙∈𝑁(𝑆𝑃)

 𝑖𝑓 𝑐𝑖𝑙 ∈ 𝑁(𝑆𝑃)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , (2.1)

where τij is the pheromone value adjusted by the parameter α and μij is the heuristic

value, which is given by: 1/distance (i, j). μ is adjusted by the parameter β. The

specification of N (sp) depends on the solution construction mechanism. In TSP, the

solution construction mechanism restricts the set of traversable edges (i.e. N (sp)) to

the set of untraversed edges by ant (k).

Update pheromones. After the ants have built their tours and before the ants start to

deposit pheromone, pheromone evaporation on all arcs is triggered. The main role of

evaporation is to avoid too rapid convergence of algorithm (i.e. stagnation). It

implements a useful form of forgetting the past history and focusing on new

promising areas in the search space. Then, the ants deposit pheromone on

pheromone trail variables associated to the visited arcs to make the visited arcs

become more desirable for future ants. The updating phase is conducted through the

following rules (Dorigo & Stützle, 2010).

𝜏𝑖𝑗 = (1 − 𝜌). 𝜏𝑖𝑗 + ∑ ∆𝜏𝑖𝑗
𝑘

𝑚

𝑘=1
 , (2.2)

 26

where the ∆τij
k is determined by:

∆𝜏𝑖𝑗
𝑘 = {

𝑄 𝐿𝑘⁄
0

 𝑖𝑓 𝑎𝑛𝑡 (𝑘)𝑢𝑠𝑒𝑑 𝑒𝑑𝑔𝑒 (𝑖, 𝑗)𝑖𝑛 𝑖𝑡𝑠 𝑡𝑜𝑢𝑟,

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (2.3)

where, Q is a constant and Lk is the length of the tour constructed by ant (k), while

parameter ρ ∈ [0, 1] is a pheromone trail decay coefficient (i.e. evaporation rate).

Once the ants finish the pheromone updating, they will die (i.e. current iteration has

been finished).

The amount of pheromone trail τij (t) associated to the arc (i, j) is intended to

represent the learned desirability of choosing city j when the ant is in city i. The

pheromone trail learning changes during the problem solving to reflect the ants’

experience with the problem search space. The pheromone amount deposited (∆τij
k)

is inversely proportional to the quality of solutions (i.g. the shortest paths in TSP) the

ants produced. This will direct the search toward good solutions.

The memory of each ant is represented by what is called the tabu list, which contains

the already visited cities. The memory is used to define, for each ant (k), the set of

cities that an ant located on city i (i = 1, 2, 3,…, n) still has to visit. By exploiting the

memory, an ant k can build feasible solutions (in the TSP, this corresponds to

visiting a city exactly once). Furthermore, the memory allows the ant to cover the

same path and apply online delayed pheromone update.

The stochastic way in which the pheromone update prevents ants from ever reaching

the optimum solution because it makes them reproduce the same solution, which

 27

known as the stagnation problem. Even though the original AS algorithm achieved

encouraging results for the TSP problem, it was later found to be inferior to state-of-

the-art algorithms for the TSP as well as for other CO problems. Therefore, several

variants of AS have been proposed in order to improve its performance. Figure 2.5

shows the chronological development of ACO metaheuristic framework over the

years as drawn for this research.

 Figure 2.5. The Evolution of ACO Algorithmic Framework

The first improvement in ACO, called the elitist ant system (EAS), consists in

depositing additional pheromone using the best-so-far tour. Other improvements

were ant based Q-learning algorithm (Ant-Q), ant colony system (ACS), MMAS,

and rank-based ant system (RAS). The Ant-Q was intended to create a link between

ACO and reinforcement learning. The pheromone update rule of Ant-Q has been

simplified to produce ACS algorithm. It is for this reason that Ant-Q was abandoned

while ACS was restrained. In MMAS, the pheromone trail strength has been

bounded to the interval [tmin, tmax]. The pheromone update in MMAS and ACS are

Ant Colony
Optimization

AS
1991

EAS
1992

Ant-Q
1995

ACS
1996

MMAS
1996

ASrank

1997
ANTS
1998

AntNet
1998

BWAS
2000

PACO
2002

Beam-
ACO
2004

 28

performed using the elitist strategy. ASrank extends the elitism by using ranking

strategy: it sorts the solutions according to their quality and the high ranked and

elitist solution utilized in the pheromone update. The approximate nondeterministic

tree search algorithm (ANTS) exploits the idea of lower bounds (LB) on the

completion of a partial solution which is derived from branch-and-bound. The

heuristic information, by means of lower bounds, will be computed to be used by

each ant during the solution costruction. The objective function is more dynamic

because it depends on the difference between LB and the ant’s solution qualities.

The heuristic information in the ACO algorithm for data network routing, denoted as

AntNet, is more reactive than ANTS. It depends on the instantaneous state of the

node’s queues (i.e. the queue waiting time). The reinforcement learning of AntNet is

based on the functions of the goodness of the ant’s path (i.e. ant’s trip time) and of

the goodness of some relative measures which depends on the traffic conditions. In

best-worst ant system (BWAS), while the best ant is utilized again to deposite

pheromone (the elitisim), the worst ant also allows to subtract the pheromone. For

dynamic optimization, population-based ACO (PACO) has been proposed. While the

algorithm stems the max-min bounding from MMAS, it proposes a new pheromone

deposite/subtract mechanism called FIFO-Queue. In beam search-based ACO

(beam-ACO), the beam saerch stems the lower bound concept as in ANTS. Beam-

ACO uses parallel exploration by taking n nodes of search tree and expanding them

in m direction based on the LBs; this results n*m partial solutions.

According to Dorigo and Stützle (2010), the substantial difference among ACO

variants is in the way of guiding the search. In other words, it is due to the way of

 29

managing the exploration of the search space and the exploitation of the best

solutions found.

2.4 The Max-Min Ant System

The MMAS algorithm is achieved by the strongest improvement over ACO variants

for the TSP and it is among the best available algorithms for the QAP (Stützle &

Hoos, 2000). The main modifications of MMAS are the continued use of elitist

strategy; limiting the stagnation of the search by τmax and τmin bounds ; using τmax to

initialize the trails, and finally smoothing (or restarting) the trails to stop the

stagnation and to increase diversification feature (Stützle & Hoos, 1998). The

modifications are discussed in more detail as follows.

2.4.1 Pheromone Trail Update

The MMAS uses only one ant to update the pheromone. This ant is called the best

ant. For this choice, there are two possibilities: use the iteration-best ant or the

global-best ant. The first technique is the best for long-term runs where the

diversification aspect will be high. On the contrary, the second one is useful in short-

term runs with the risk of entering a stagnation situation. Allowing more ants to

update the trails is the major following in ACO (e.g. ranking and generalized elitism

strategies) (Stützle & Hoos, 1998). The modified updating rule relies on several

feedback measures. At the start of the algorithm, the iteration-based update rule is

used more often, while during the run of the algorithm, the frequency with which the

global-based update is used increases. Following this technique will not guarantee

 30

that the same solution components will not be reproduced by Equation (2.1) (Dorigo

& Blum, 2005). In such situation, if it occurs for all nodes, the search stagnates.

2.4.2 Pheromone Trail Limits

The MMAS algorithm involves the pheromone trail limits to avoid the worst case of

this phenomenon; it introduces pheromone trail limits to influence the selection

probability of the respective solution component. The selection probability is

determined by pheromone trails and heuristic information. Limiting the extreme

values of pheromone trail can be denoted by τmin ≤ τij ≤ τmax. The parameter τmin has

the main influence in avoiding the stagnation. The parameter τmax is still useful in the

initialization phase. Initializing the pheromone trails with maximum values allows

high exploration (Dorigo & Stützle, 2004). According to Dorigo, Birattari, and

Stützle (2006); and Stützle and Hoos (2000), both τmin and τmax values are typically

obtained empirically and tuned on the specific problem at hand. Nonetheless, some

guidelines have been provided for defining τmin and τmax on the basis of analytical

considerations. In particular, using the lower trail bounds improves the performance

of MMAS compared with the quality of solutions of MMAS without using these

limits.

2.4.3 Pheromone Trail Restart

The MMAS algorithm uses the restart, or so called re-initialization, whereby the

pheromone trail by MMAS sets the value of pheromone deposited on all arcs to the

maximum possible trail strength, i.e. to the quantity τmax. This type of setting will

increase the initial exploration of the algorithm. To illustrate the usefulness of this

 31

setting, the following situation will be considered. In the first iteration, the

pheromone trails will be decreased according to the evaporation factor as follows: τij

(t+1) = ρ. τij (t). Hence, the relative difference among pheromone trails will be as

follows: ρ, ρ2, etc. On the contrary, if the lower pheromone trail is utilized for

initialization, the difference among pheromone trails will increase more strongly.

Thus, the selection probabilities according to Equation (2.1) will evolve more slowly

when initializing the trails to τmax and, hence, the exploration of solutions is favored.

2.4.4 Pheromone Trail Smoothing

The pheromone trail smoothing (PTS) mechanism is designed in MMAS to increase

the robustness of using these limits, especially the lower trail limits. This mechanism

is known by smoothing the trails and is used to counteract the stagnation of search

for long term running. This mechanism can be interpreted as an urgent update in

order to produce new tours by influencing the probabilistic distribution for the tour

construction stage in the next iteration. When MMAS has converged or is very close

to convergence (as indicated by the average branching factor), this mechanism

increases the pheromone trails proportionally to their difference to the maximum

pheromone trail limit. The proposed mechanism has the advantage that for δ < 1, the

information gathered during the run of the algorithm (which is reflected in the

pheromone trails) is not completely lost, but merely weakened. For δ = 1, this

mechanism corresponds to a re-initialization of the pheromone trails, while for δ = 0,

PTS is switched off (Stützle & Hoos, 1998, 2000).

 32

2.4.5 Pheromone Trail Learning

After each iteration, the pheromone trail level on all arcs will be decreased. On the

other side, the good arcs crossed by the best ants will be maintained to keep the high

level of trail strength according to the reinforcement rule. Distinction between the

good arcs and bad arcs during the run is interpreted in MMAS as a learning process

(Favaretto, Moretti, & Pellegrini, 2009; Pellegrini, Favaretto, & Moretti, 2006;

Stützle & Hoos, 1998). The evaporation rate ρ is played as the main rule in this

process. The speed of learning depends on the value of ρ. There are two possibilities

to assign ρ’s value: high and low values. With the high values, the speed of learning

will be slow, so the algorithm needs to spend more iterations (i.e. more time to learn

which arc is good) to do that. While with low values of ρ, the learning speed will

increase, so that, with long and short-term runs, the low values of ρ are more

preferable.

2.4.6 Hybridizing with Local Search

Although MMAS can be applied without coupling with local search procedures, very

often its solutions’ quality is greatly improved if it is extended to include it. The first

step in applying local search is the definition of a neighborhood structure over the set

of candidate solutions. One common way of defining neighborhoods is via k-

exchange moves that exchange a set of k components of a solution with a different

set of k components. This kind of local search called k-opt neighborhood. Three k-

opt heuristics have been implemented to improve the quality of solutions, they are 2-

opt, 3-opt and 2.5-opt (Johnson & McGeoch, 2007). The 2-5-opt is a restricted

 33

version of 3-opt, where the segment of solutions that contains only one component is

considered to check whether the exchanges result in an improved solution or not.

From the exploration and exploitation point of view, the pheromone trail

management plays the main role in changing the probabilistc distribution of search

space (Dorigo & Stützle, 2010). If the pheromone concentration is high, then the

probabilistic construction will tend to be aggressive and the exploration amount will

be low. Both probabilistic construction and pheromone update components in ACO

are guided by memory-based strategies.

2.5 Memory-based Strategies for Exploration and Exploitation

The rationale work for managing E&E in ACO is about how a memory model called

pheromone is managed. The E&E remains the base for problem solving by search

algorithms. According to Beer et al. (2012), “exploration refers to how widely an

algorithm surveys the search space”. Beer et al. also defined the exploitation as “the

speed at which the algorithm converges to a local minimum and is related to

pheromone.” The study also showed that if exploration takes precedence, the

algorithm will explore unproductive areas of the search space before reaching a

solution; if exploitation is too strong, the algorithm may converge prematurely and

produce a poor result (Beer et al., 2012). Dorigo (1992), in his Ph.D thesis, discussed

different ways to achieve such balance. One of them is by sampling a good solution

with the probability of one, while the bad solution with zero. This way of

representation reflects the main drawback, which is the early stagnation.

Alternatively, a simple way to do that is by exploiting the quality of solution of each

 34

ant as a function of updating pheromone (Dorigo, 1992). Several memory-based

E&E forms exist in the literature which can be classified as follows.

2.5.1 Quality-Dependent Strategy

This strategy first appeared in the AS algorithm as a solution to prevent stagnation

(Dorigo et al., 1996). In this strategy, some measures utilize the quality of solution

generated to calculate the amount of pheromone that should be deposited by ants.

The main drawback of this strategy is its poor performance. As a result, the need to

seek alternative ways to enhance the performance of ant algorithms arises. Talbi,

Roux, Fonlupt, and Robillard (2001) extends this strategy in a similar way by

allowing all ants to deposit pheromone, where the difference between the current

solutions F(S) and the worst ones F(S-) and its proportionality to the best solution

F(S*) represent the amount of pheromone to be used in the reinforcement process. It

is also similar to the best-worst strategy in BWAS (Cordon, Herrera, & Moreno,

2000) in exploiting the best and worst ants. The pheromone quantity laying on the

solution components in this strategy may formulate differently. Following the

Hyper-Cube Framework proposed by Blum, Roli, and Dorigo (2001), Blum and

Blesa (2005) proposed an ACO algorithm to solve edge-weighted k-cardinality tree

problems, where the pheromone reinforcement uses the convergence factor to

calculate the quantity of deposited pheromone instead of using the objective

function. Shyong, Pengyeng, and Bertrand (2004), in their ACO method to solve the

minimum weight vertex cover problem (MWVC), proposed another formulation to

derive the objective function, which is by using total weight of the nodes in the

solution to calculate the quantity of the deposited pheromone in each iteration.

 35

Solimanpur, Vrat, and Shankar (2005) used a scaling factor λ to adjust the amount of

pheromone laid on the componenets of solutions F(Sk) that are closest to the global

best solution F(S*). This method clearly avoids full convergence and encourages

search along the vicinities of the global best solution in the hope that a better one can

be found nearby. Bin, Zhongzhen, and Baozhen (2009) and Zhongzhen, Bin, and

Chuntian (2007) have proposed a new strategy to update the increased pheromone,

called ant-weight strategy, by which all ants are allowed to update their paths locally

and globally. A solution is only entirely defined when all routes constructed are

assembled. There are also two kinds of pheromone increments: local and global. The

local pheromone increment uses the contribution of each arc to the prespective tour,

which increases when a specific indicator decreases. The global one uses the total

length of solution and the number of tours. Since the solution quality is the only

trigger to decide how much the solution should be awarded, its effectiveness in

dynamic environment needs to be improved. For example, in dynamic TSP some of

the components of current solution may vary before the solution is evaluated. This

mislead the way in calculating its award on the assumption that its quality will be

improved.

2.5.2 Quality-Independent Strategy

This strategy is applied in geographically distributed problems, like network

problems, where the pheromone deposited by ants is equal to constant as in the

simple-ant colony optimization algorithm (S-ACO). As in the case of real ants,

autocatalysis and differential path length (DPL) are at work to favor the emergence

of short paths (Dorigo & Di-Caro, 1999). Di-Caro and Dorigo (1998), in AntNet

 36

algorithm, depended on this autocatalysis property. In network communication,

where AntNet is applied, the environment changed so the pheromone amount

deposited by the ant is switched off. Shyong et al. (2004), in their ACO method to

solve the minimum weight vertex cover (MWVC) problem, stated that the solution

does not necessarily constitute a path or a tree on the underlying graph; the objective

function is a constant value (τ0). This fomula is equivalent to the local pheromone

edupdate in ACS algorithm (Dorigo & Gambardella, 1997). In short, evaluate the

solutions independently of their quality of solutions is more analogous to the

behaviour found in real ant colonies. However, it is not a recurring theme in ACO

research especially in static environments where the quality-based evaluation is the

dominant theme as it can accelerate the convergence of ants toward optimal or near

optimal solutions.

2.5.3 Elitist Strategy

A first improvement over AS was obtained by the elitist ant system (EAS) (Dorigo,

1992). The basic idea of this strategy is to provide an additional reinforcement to the

best-so-far solutions. This strategy is hereby to increase the exploitation by

introducing a strong bias towards the solution components of the best-so-far

solutions. Another elitist variation has been studied in MMAS and ACS, where

either of the iteration-best solution or the best-so-far are used for elitist

reinforcement. Maniezzo (1999), in ANTS algorithm, proposed a new formula to

calculate the pheromone amount to be used in the reinforcement process and to

determine the elitist solutions (Lavg). Lavg is the moving average of the last l

solutions, that is, it is the average length of the l most recent tours generated by the

 37

algorithm. If an ant’s solution is worse than the current moving average, the

pheromone trail of the arcs used by the ant is decreased; if the ant’s solution is better,

the pheromone trail is increased.

Blum (2002) proposed a list (Lelite) to record the elite solutions found during the

search (i.e. iteration-best solutions, best-so-far soluions and restarting best solutions)

to be used in reinforcement. Following this work, Blum and Blesa (2005) proposed

an ACO algorithm to solve edge-weighted k-cardinality tree problems, where the

pheromone reinforcement uses three kinds of weighted solutions: best iteration

solution Sk
ib, best global solution Sk

gb and best restart solution Sk
rb. In a different way,

Rappos and Hadjiconstantinou (2004) developed a new approach considering the

nature of the designing flow networks problem. The objective function for each edge

consists of a fixed component and a variable component. Consequently, the authors

decided to use two kinds of pheromone trails to be deposited: fixed trail Te (ij) and

variable trail Tf (ij). There are also two kinds of ants: reliable ant and flow ant. Only

flow ant is allowed only to reinforce both trails. Whereas the second ant is used to

add a reliability arc to that solution produced by the flow ant.

Ku-Mahamud and Alobaedy (2013) used two kinds of trail reinforcement during the

run of the algorithm: pheromone reinforcement and heuristic reinforcement, where

the second one is triggered to reflect the first one. The concept is that when the best-

so-far ant globally updates their trail, the environment will be changed, and thus a

new heuristic value will be obtained. This enhancement affects the convergence

behavior of ACS in its application to two NP-hard problems: TSP and Job

 38

Scheduling in Grid computing and produced good results. Alaya, Solnon, and

Ghedira (2004) calculated the objective function such that the pheromone amount

deposited on the solution components is inversely propositional to the difference

between iteration-best solution and the best-so-far solution. Therefore, the closer the

solution is to the global best solution, the higher the quantity of pheromone is

deposited.

The concept of elitism is inspired from the genetic algorithm (GA), where the best

solution is found in the current iteration corresponding to the fittest individuals of the

current generation (Goldberg & Holland, 1988). The main drawback of this strategy

is that the local search aspects represented by exploitation will be more important

than the global search aspects represented by exploration, and that contrasts with the

idea of inventing metaheuristics.

2.5.4 Rank-Based Strategy

Another improvement over the elitist strategy is the rank-based strategy, which was

first proposed in RAS algorithm (Bullnheimer, Hartl, & Straub, 1997). The idea of

ranking is inspired also from the genetic algorithm field: first, the population is

sorted according to fitness, and then the probability of being selected depends on the

rank of an individual. The ranking strategy is used to counteract the shortcoming of

the elitist strategy. The contribution of ASrank is obtained by sorting tours constructed

by m ants by their lengths and to be weighted then according to their rank in that

sorted list. The pheromone amount will be deposited according to the rank of the ant,

while only the m* best ants are considered for reinforcement. With ranking

 39

strategies, the balance between exploration and exploitation can be achieved.

Comparing with elitist versions of ant systems, rank-based version is slightly better

results. However, it likely to stuck in local optima which demonstrates the stagnation

behaviour especially with large scales environments.

2.5.5 Trail Learning Strategy

The trail learning strategy allows stronger exploitation to be achieved by applying

the new aggressive decision rule of ACS algorithm (Dorigo & Gambardella, 1997)

and by applying Q-learning of Ant-Q (Gambardella & Dorigo, 1995). An important

contribution in ACS is in the decision rule used by the ants during the construction

process; so-called pseudo random proportional rule. In which, the probability for an

ant to move from city i to city j depends on a random parameter q, which is

uniformly distributed over [0, 1], and a parameter q0. Where, if q ≤ q0, then j =

argmax cij∈N (sp) {πij
α

. ηij
β} (i.e. a biased exploitation: intensifies the knowledge

available about the problem πij
α

 and ηij
β), otherwise (if q > q0), the decision rule

which operates the transaction rule in AS is used (i.e. a biased diversification).

Tuning q0 allows to modulate the degree of diversification and to choose whether to

concentrate the activity of the system on the best solutions or to explore the search

space.

Blum and Blesa (2005) introduced some changes to the probability distribution rule

defined for ACS (Dorigo & Gambardella, 1997) in order to solve k-minimum

spanning tree problems. An ant starts its solution by randomly choosing the first arc

to enter the solution tree. Then, at each step of the construction, the next solution

 40

component is chosen deterministically if q ≤ 0.9, and probabilistically if q > 0.9.

This rule assigns equal weight to the pheromone and the heuristic values by

eliminating parameters α and β from the exponents of the pheromone and heuristic

values respectively. Given that the probabilistic rule is only triggered whenever a

random number q > 0.9, the search for solutions in 90% of the cases usually

concentrated on relatively good areas.

In Altiparmak and Karaoglan (2007), if the global best solution has not changed after

50 iterations, then 10% of the solutions reconstruct randomly to increase the

diversification. Afshar (2005) proposed a new probability distribution rule for ACO

algorithms. The strategy is defined to prevent a domination of the pheromone trails

in the ants’ decision, by incorporating an additive form instead of the usual

multiplicative form. This way, the author expects both pheromone and heuristic

information to have an active role in the decision. This new probability distribution

rule comes with a modification of the heuristic value, which is a simple normalizing

procedure in which every heuristic value will be between zero and one regardless of

the problem size. The major drawback of this stratgey is that its aggressive

exploitation entail a loss in effeciancy of exploration even when the

exploration/exploitationan is configured fairly, e.g. assigning 50% to parameter q0 in

ACS.

2.5.6 Online-Offline Update Strategy

To balance the strong exploitation of pseudo random proportional rule, ACS

introduced the local pheromone update (i.e. online update). It is performed by all the

 41

ants after each construction step. Each ant applies it only to the last edge traversed.

The main goal of the local update is to diversify the search performed by subsequent

ants during iteration: by decreasing the pheromone concentration on the traversed

edges, ants encourage subsequent ants to choose other edges and, hence, to produce

different solutions. This makes it less likely that several ants produce identical

solutions during one iteration.

The offline pheromone update is applied at the end of each iteration by only one ant,

which can be either the iteration-best or the best-so-far. However, the update formula

is slightly different. The parallel local update and stochastic global update rules

increase the cooperation rule among agents and maintain the balance between local

search and the global one (i.e. exploitation and exploration respectively). The global

search is maintained by local rule: the pheromone amount concentrates on the arc (i,

j) because the aggressive construction rule (i.e. pseudo random proportional rule)

will be eaten by the respective ant using the local update rule. On the other hand, the

local search is maintained by the global search: the pheromone amount is reinforced

on the arc (i, j) that only belongs to the global best solution to encourage other

foraging ants to search near the good solutions (Dorigo & Gambardella, 1997;

Dorigo, 2007)

The online-offline update is recurred strategy in most ACO literature, not only ACS.

Shyong et al. (2004) used the local update in each construction step. Similarly,

Eswaramurthy and Tamilarasi (2009) have also used the global and local updating

rule, but considered arcs instead of nodes. They applied their approach on Job Shop

 42

Scheduling Problem. This strategy can cause oscillations during the costruction of

solution leading to a large fluctuations in its performance.

2.5.7 Best-Worst Strategy

This strategy is epitomized in BWAS (Cordon et al., 2000) as another improvement

of that one in AS. It incorporates evolutionary computing concepts where it uses the

same probability distribution rule and evaporation mechanism. BWAS is

characterized in its best-worst pheromone trail updating rule, where the arcs

belonging to the best solution is reinforced and the ones that belonged to the worst

solution and not present before in the best solution is penalized. BWAS is further

characterized by using pheromone trail mutation, where the diversity in the search

process is introduced. Each pheromone trail associated with each arc is mutated with

the probability Pm by adding or subtracting the mutation rate τthreshold in each

iteration. This rate is less strong in the early stages of the algorithm and stronger in

the latter ones where the stagnation is stronger. Maniezzo (1999), in ANTS

algorithm, used the best-worst concept as well. In his method, the pheromone trails

that belong to a particular solution is increased or decreased based on the degree of

best or worst of that solution compared with the average solution quality of the last k

solutions. Guntsch and Middendorf (2002), in FIFO-queue ACO algorithm, utilized

implicitly the best-worst idea to propose a fast pheromone update rule. After each

iteration, the best-or-worst solutions need to be added or removed from the

population solution, then only the pheromon trails that belong to them will increase

or decrease. However, this model still suffers from the slow convergence and low

 43

searching efficiency (Dorigo & Stützle, 2004). The good solutions may not be

produced by the reinforcement learning of ants.

2.5.8 Bounding Strategy

In this strategy, bounding the small values of the pheromones in the components of

the solution by a minimum bound (τmin) and the extremely large values by a

maximum bound (τmax), was investigated. The minimum bound is used to avoid

prohibiting the choice of those arcs with small values of pheromone, while the

maximum bound is used to avoid choosing the extremely big values for pheromone

which will lead to the construction of the same solution, over and over again.

The first application to this strategy was proposed by Stützle and Hoos (2000) in

MMAS. The author defines the pheromone maximum bound based on the

evaporation rate ρ and the cost of the best-so-far solution while the minimum bound

is calculated based on maximum bound τmax and the number of arcs (i.e. solution

components) and the probability of finding a best solution. Therefore, whenever a

new global best solution is found, τmin must also be updated. The bounding strategy

can be denoted by τmin ≤ τij ≤ τmax. Experiments have shown that the τmin has the main

force to avoid stagnation, while the τmax is still useful to derive τmin and is used in

pheromone initialization. Both parameters τmin and τmax are adaptively changed

during the run of the algorithm. Once a new solution is found by the ants, their

values will be updated. The important thing is how to manage their values update

during the run. The author found a strong relation among the two parameters and

their influence on the E&E balance (Stützle & Hoos, 1999). A better balance can be

 44

provided by controlling the tightness of the trail limits by introducing the parameter

min-factor: τmin = τmax/ min-factor. Venables and Moscardini (2006) and Altiparmak

and Karaoglan (2007) both used the same formula as in MMAS to find τmax, but

changed the way to find τmin. It is easy to see that τmax and τmin are adaptively changed

when a new best solution is found.

Blum and Blesa (2005) defined another limitation schema, where [τmin, τmax] =

[0.001, 0.999], and re-initializing schema, when the convergence factor becomes

closer to 1. Bin et al. (2009) reformulated the two bounds according to the distance

between the depot and the other customers which are denoted by d0i in vehicle

routing problem (VRP), where bounds have to initialize when the algorithm starts. It

is worth to mention that this strategy recurred in several ACO approaches and not

only in the standard ACO. For example, in PACO approach, the pheromone values

are never zero because of the minimum limitation used (Guntsch & Middendorf,

2002). The shortcoming of this strategy is that the scope of its impact appears only in

the final phase of search making it ineffective in short-run application such as

querying.

2.5.9 Restarting/Smoothing Strategy

This adaptive strategy entail increase the exploration of search by redistributing the

pheromone amount among the incident arcs. It relies on changing the pheromone

distribution by resetting pheromone values when some triggers are reactivated. It is

applied successfully to guide the search of ant colony based on tabu search algorithm

(ANTabu) (Talbi et al., 2001), and MMAS algorithm. Blum (2002) introduced a

 45

new re-initializing scheme for MMAS in his Hyper-Cube Framework (HCF) (Blum

& Dorigo, 2004). Venables and Moscardini (2006) proposed a new restarting

mechanism. If the percentage of τmin arcs exceeds 50%, then all arcs in the

pheromone matrix will reset to τmax and bounds have to be updated according to the

global best solution. Bui and Zrncic (2006) developed an approach for helping ants

to recognize the bad arcs and the good arcs. They proposed a new way to calculate

the initial pheromone τ0, τmin and τmax and then used the value of (τmax - τ0) to reset the

arcs that exceed τmax, and the value of (τ0 + τmin) to reset arcs values that go under τmin.

The pheromone amount can be redistributed by smoothing strategy: increasing the

pheromone trails proportionally to their difference to the maximum pheromone trail

limit (Stützle & Hoos, 1998, 2000). Experimental results showed that applying this

strategy can lead to high quality solutions, especially in the long run of MMAS.

However, its performance is highly dependent on parameterization. When its

intermediator (δ) < 1, the information gathered during the run of the algorithm

(which is reflected in the pheromone trails), is not completely lost, but merely

weakened. For δ = 1, this mechanism corresponds to restarting the pheromone trails,

while for δ = 0, the pheromone trail smoothing strategy is switched off.

2.5.10 Colony-Level Interaction Strategy

This strategy is used explicitly for parallel implementations and multiobjective

optimization (Middendorf, Reischle, & Schmeck, 2000). However, its implicit goal

is to achieve a fine-tuned balance between intensification and diversification by

multiple colonies and interaction between them in some way (Blum, 2002).

 46

Kawamura, Yamamoto, and Suzuki (2000) developed the first multi ant colony

optimization algorithm, where several colonies work in multi-E&E levels and share

their experience by exchanging information. Aljanaby, Ku-Mahamud, and Norwawi

(2010) proposed interacted multi ant colony optimization algorithm (IMACO) based

on ACS. This work exploited the ACS built-in E&E strategies from one side and

benefited from MACO’s (multi ant colony optimization algorithm) advantages over

ACO. Rahmani, Dadbakhsh, and Gheisari (2012) enhanced this strategy by adding

the repulsion mechanism to reduce the likelihood that all colonies’ exchanging

information uses only the optimal solution. The dependency on the number of ants

which is the principle shortcoming of this way entails two major issues. First, the

computational efforts will be increased to produce one population. Second, this

approach will not perform efficiently when applied in stochastic local search

algorithms considering that local search is fundamental for finding high quality

solutions.

2.5.11 Population-Based Strategy

This strategy is designed for dynamic optimization problems by using the population

to facilitate a faster pheromone update process than the standard way. Utilizing the

population concept entailed keeping track of the good solutions (i.e. exploitation)

and omitting the visited solutions by removing them from the pheromone matrix (i.e.

exploration). Guntsch (2004) is the first to propose a population-based ACO

approach (PACO) in his Ph.D thesis. Guntsch and Middendorf (2002) developed the

first PACO algorithm which is known as FIFO-queue ACO algorithm. This strategy

keeps the stronger options of the previous strategies, such as the trail learning, the

 47

bounding and the best-worst, in the standard ACO. Despite that the real benefit of

population-based strategy was postulated to dynamic optimization it opens the way

for applying a new diversity preservation technique called niching. It is used in the

PACO algorithm, particularly to solve multiobjective problems in a multiple area

search space. Niching generally aims to achieve diversity of search focus (Angus,

2008). However, two disadvantages can be recognized in this strategy. Its

pheromone update will follow the quality-independent approach and its design is not

well suited for static optimization.

2.5.12 Hybridizing Strategy

This strategy places ACO in relations with other approximation methods to produce

algorithms with new hybrid E&E mechanisms. For example, the hybridization of

MMAS algorithm with local search (Stützle, 1999) and that of ACO with beam

search (Blum, 2005b). The vast literature on ACO verifies obtaining high quality

solutions when local search algorithms are coupled with ACO. For example, the

implementation of k-opt heuristics with MMAS. The experiments (Stützle, 1999)

showed that the quality improvement returned by 3-opt is better than that of 2-opt

and 2.5-opt. However, the extra computational time required for 3-opt was not worth

the small quality improvement yielded unless speedup techniques are included. The

speedup techniques that are involved in the early implementation of ACO are

avoiding the redundancy in search space, restricted neighbor list and don’t-look bits.

The recent implementations of ACO concern on how better integration between local

search procedures and construction solutions is achieved (Gambardella,

Montemanni, & Weyland, 2012).

 48

Blum, Puchinger, Raidl, and Roli (2011) justified this hybridizing technique by

saying, “Research in metaheuristics for CO problems has lately experienced a

noteworthy shift towards the hybridization of metaheuristics with other techniques

for optimization. At the same time, the focus of research has changed from being

rather algorithm-oriented to being more problem-oriented. Nowadays, the focus is on

solving the problem at hand in the best way possible, rather than promoting a certain

metaheuristic.” However, they cautioned the use of this type of strategy without

clear guidelines by mentioning, “The research community should make an effort to

move towards a sound scientific methodology consisting of theoretical models for

describing properties of hybrid metaheuristics and using an experimental

methodology as done in natural sciences.” The exploration amount, therefore, is

automated in a history-sensitivity way, i.e. automated exploration: the exploration is

changed only when there is evidence that more or less exploration is needed. The

amount of exploration is increased or decreased based on a feedback scheme.

2.6 Exploration Measures in ACO

Several existing techniques can be used to determine the amount of exploration and

exploitation needed in an ACO algorithm. These techniques can also be applied to

aid the balance between exploration and exploitation. Battiti et al. (2008) stated that,

“An automated heuristic balance for the “exploration versus exploitation” dilemma

can be obtained through feedback mechanisms, for example, by starting with

intensification, and by progressively increasing the amount of diversification only

when there is evidence that diversification is needed.”

 49

2.6.1 Distance of Solutions

This is the simplest indication that can utilize the calculation of the number of arcs

contained in one solution but not in the other. This indicator focuses on the

duplicated arcs between two solutions, and if the degree of similarity is high, then

the exploration amount is low (Dorigo & Stützle, 2004). A disadvantage of this

measure is that it is computationally expensive. There are O(n2) possible pairs to be

compared and each single comparison has a complexity of O(n).

2.6.2 Average Lambda-Branching Factor

This measure, introduced in Gambardella and Dorigo (1995), depends directly on the

pheromone trail values, and it makes it more suitable for tracking the ant behavior

while the computation is going on. This technique measures the diversity of the

pheromone trail values more directly and it does not change much from iteration to

iteration (Stützle, 1999). The branching factor is the first proposed indicator in ACO

algorithms, and can be defined as follows. Let ph_max (i, j) and ph_min (i, j) be the

maximum and minimum pheromone amount respectively of all the arcs that exit

from node i, and let d be the difference between two amounts, i.e., ph_max (i, j) and

ph_min (i, j). The branching factor of node I is the number of arcs that is greater than

λ*d + ph_min (i, j), where 0 ≤ λ ≤ 1. The average of lambda branching factor of all

nodes gives an indication of the amount of exploration conducted by each ant. The

disadvantage of this factor is its dependency on the value of parameter λ.

 50

2.6.3 Entropy

In information theory, uses to measure the confusion degree based on the probability

of random events (Wang, 2013). Entropy is recurring theme in parameter tuning of

metaheuristics (Eiben & Smit, 2011). This diversity indicator firstly introduced by

Pellegrini (2006) to analyze the behaviour of some ant algorithms against the change

in parameters’ values. Colas and Monmarch (2008) have applied this concept during

the solution construction in order to adapt the search of ACO as follows. At each

node, the ant will calculate the selection probabilities of all other nodes, i.e. entropy,

according to the following rule. 𝜀𝑖 = − ∑ 𝑝𝑖𝑗
𝑙
𝑗=1 log 𝑝𝑖𝑗 where pij is the probability of

choosing arc (i, j) when being in node i, and l, 1 ≤ l ≤ n-1, is the number of possible

choices. Therefore, finding the average of all entropies will be in the same way.

Nevertheless, recruiting this formula in constructing solution is not efficient because

it will complicate the calculations inside the colony.

2.6.4 Convergence Factor

The convergence factor was introduced by Blum (2002) to be used in hyper–cube

framework. It is used for tracking what is called as the extent of keep stuck, which is

the converging phase of all ants. Dorigo and Stützle (2004) mentioned it as a good

way to calculate the amount of exploration using the rule: ∑ 𝑚𝑖𝑛{𝜏𝑚𝑎𝑥 −𝜏𝑖𝑗𝜖 𝑇

 𝜏𝑖𝑗 , 𝜏𝑖𝑗 − 𝜏𝑚𝑖𝑛}/ 𝑛2, where T is the pheromone matrix, and τij is the pheromone trails.

Seo (2009) recruited this measure in calculating how close the pheromone values on

the updated arcs from the maximum and minimum threshold of pheormone. The

major drawback of this measure is in its applicable for only max-min ant colony

framework, which can be considered as a loss of generality.

 51

2.6.5 Acceptance Criteria

Acceptance criterion is the condition under which the new local optimum can be

considered satisfy to be replaced with the current one (Boussaïd et al., 2013). This

tool has been used with the restart strategy to increase the exploration amount in

MMAS and BWAS algorithms. It has been firstly introduced in ACO by Stützle

(1999) in his thesis: if the ilast be the iteration counter i in which the best iteration

solution has been found, and then restarting can be modeled by the acceptance

criteria 𝑅𝑒𝑠𝑡𝑎𝑟𝑡(𝑠′′ , 𝑠′′′, ℎ𝑖𝑠𝑡𝑜𝑟𝑦) where it equals to 𝑠′′ 𝑖𝑓 𝑓(𝑠′′) < 𝑓(𝑠);

𝑠′′′ 𝑖𝑓 𝑓(𝑠′′) ≥ 𝑓(𝑠) 𝑎𝑛𝑑 𝑖 − 𝑖𝑙𝑎𝑠𝑡 > 𝑖𝑟 or S otherwise. Based on the formula

above, the value of s’’’ is generated randomly by a new initial solution which

corresponds to a restart of the algorithm. This formula is typically used in MMAS

and BWAS. The amount of exploration will be increased without guarantee that the

same regions are not visited again. Another weakness is the difficulty of decision-

making during the run, i.e. whether to use extreme acceptance criteria (preferring

exploitation) or to accept any criteria (preferring exploration).

2.6.6 Exploration Measure/ Similarity Ratio

It refers to simple possibilities that indicate how much the solutions are similar, i.e.,

how much the search is exploitive. This can be done by finding the final solutions

generated by ants, and then apply some statistics tools such as the standard deviation

and the variation coefficient. One example of these statistics is the standard deviation

of the objective function of solutions constructed after each iteration, e.g., the length

of the tours in TSP. The exploration amount will be high if the standard deviation is

near to one, and low if near to zero.

 52

Because of the dependency of the standard deviation on the scale of the problem, a

better option is to use the variation coefficient. It is the quotient of the standard

deviation and the average of the objective function of the generated solutions

(Dorigo & Stützle, 2004). This measure is firstly utilized in the constraint

satisfaction solver, as proposed by Solnon and Fenet (2005), in order to control the

E&E balance.

This moves away from the previous tools in literature. Its aim is quantifying the

exploration of the search space. Pellegrini, Favaretto, and Moretti (2009) have

defined it as follows. Let a graph G= (N, A) represent a CO problem, where N is the

set of nodes and A is the set of arcs, and |N| = n and |A| = a. Each solution S to this

problem is denoted by S1= {x1, x2,…, xa} and S2= {y1, y2,…, ya}. Each xi represents

the probability, denoted by Pi, of selecting this arc during the construction of

solution S. The distance D between S1 and S2 is 𝐷(𝑆1, 𝑆2) = √∑ (𝑑𝑖)2
𝑖∈𝐴 where di=xi

- yi if xi.yi=0 and di=0 otherwise.

Based on this definition, S1 and S2 can be clustered, if they are the closest solutions,

using appropriate data clustering procedure. An agglomerative hierarchical

procedure in data mining (Rajaraman & Ullman, 2012) is considered here.

Iteratively, the maximum distance between the new cluster and the other solutions

keep calculating until the stopping criteria. The stopping criteria stop when the

distance between the two closest clusters is greater than a predefined threshold.

Pellegrini et al. (2009) defined the quantity of exploration by the number of clusters

built.

 53

A new technique for measuring the effect of parameter variation based on this tool

has been proposed by Favaretto et al. (2009). The study emphasized on using this

tool due to its accuracy in indicating the actual behavior of the procedure. This

technique may also serve as an indicator for defining parameter adaptation strategies.

However, the technique restricts the parameter adaptation with offline approach. The

online parameter adaptation may represent the first step in the direction of

exploration and exploitation automation in ACO.

2.7 Reactive-based Parameters’ Selection

The problem of parameter selection arises when an algorithm needs to select optimal

values for its parameters from a relatively large search space of values. The balance

between two opposing processes, namely, exploration and exploitation, has to be

maintained in this selection. The parameters’ selection differs not only from problem

to problem, but also from region to region in the same search space. The situation is

more complex and more sensitive with stochastic algorithms. The question is what is

the methodology to handle this situation? According to Battiti et al. (2008), reactive

search advocates the integration of subsymbolic machine learning techniques into

search heuristics for solving complex optimization problems with an emphasis on

opportunities for learning and self-tuning strategies (Figure 2.6).

 54

Figure 2.6. Reactive Search Optimization

The word reactive hints at a ready response to events during the search through an

internal feedback loop and dynamic adaptation. In reactive search, the history of the

search and the knowledge accumulated while moving in the configuration space is

used for self-adaptation in an autonomic manner; the algorithm maintains the

internal flexibility needed to address different situations during the search.

The next important question is how the exploration and exploitation in ACO are

controlled based on reactive search? According to Lopez-Ibanez and Stützle (2014),

ACO algorithms are just an example of problem-solving methods, which often have

several parameters that allow the user to control the balance between exploration of

new solutions and exploitation of the best solutions found. The study of the impact

of various parameters on the behavior of ACO algorithms has been an important

subject since the first articles of Colorni et al. (1991). However, a default parameter

configuration is often used in practice, without taking into account differences in

computational environment or termination criteria. This practice frequently leads to

suboptimal results. Lopez-Ibanez and Stützle further stated, “One way to address this

 55

issue is to not rely on default parameter settings, but instead to automatically

configure the parameter settings.” Pellegrini, Stützle, and Birattari (2010) justified

using the automatic configuration by saying “to alleviate algorithm designers from

the tedious and error-prone task of hands-on parameter adaptation”. To date, proper

management of control-parameter settings allowed the E&E balance to be achieved.

However, which control-parameter setting to which yield the best result has

remained to be answered. The parameters setting of metaheuristics are problem

dependent and there is no optimal parameter setting which will work with every

problem (Eiben, Michalewicz, Schoenauer, & Smith, 2007).

One possibility for automatic configuration task is following the offline parameter

tuning approaches (Stützle & Lopez-Ibanez, 2013). Examples of offline approaches

are F-Race (Birattari, Stützle, Paquete, & Varrentrapp, 2002), I/F-Race

(Balaprakash, Birattari, & Stützle, 2007), CALIBRA (Adenso-Diiaz & Laguna,

2006), and ParamILS (Hutter & Leyton-brown, 2009). The main cost associated to

offline algorithm configuration is the expensive use of resources in the priori

experimental phase. Moreover, any search algorithm needs to be applicable for the

vast domain of combinatorial problems, which entails that the amount of E&E needs

to be changed dynamically with the optimizing process. Realizing this, the need for

automating E&E balance, during the run, is imperative. It is foreseeable that better

results can be achieved and faster convergence will occur when intelligent control is

applied.

 56

Another possibility is to change the parameter setting during the algorithm runtime,

i.e. online approach, which is called parameter control. It is a radically different

method. Pellegrini, Stützle, and Birattari (2010b) explained the difference: “In

online tuning, no additional resource is necessary before actually tackling an

instance and a high flexibility is achieved by adapting the configuration to an

instance, depending on the specific phase of the search. This flexibility is paid for in

terms of design complexity: the online method must be incorporated in the

implementation of the optimization algorithm. Thus, a very good understanding of

all different features of the algorithm is necessary for obtaining an effective online

method. Hence, an online method must be designed for a specific algorithm, and it

cannot directly be exploited on different ones.”

Following the online approach, and according to Eiben et al. (2007) and Stützle, et

al. (2012), there are four general questions need to be answered: i) what are the

parameters that need to be changed during the search process?; ii) how will the

change be made? (i.e., pre-scheduled, adaptive, search-adaptive and self-adaptive);

iii) what is the evidence upon which the change is made? (e.g., quality of solutions,

diversity of solutions, or the entropy of pheromone); and iv) what is the level of the

change (i.e., ant level or colony level)?

Parameter control strategies modify the parameters during the run in different

manners: pre-schedule, adaptive and self-adaptive. The first manner assumes that all

CO problems are the same in their global characteristics, which is not true. The

second manner adapts to the local characteristics of the regions of the search space

through a feedback. It has the advantage of no augmentation in the complexity of the

 57

problem. On the other hand, it suffers limitations: a complexity of implementation

and presenting new hyper-parameters which also need to be tuned. The third manner

has the advantage of tuning parameters “for free”, where its implementation is

simple and there are no hyper-parameters which need to be tuned. Besides increasing

the complexity of the problem, it is linked to the structure of the algorithm.

2.7.1 Pre-Scheduled Approach

In this approach, the problem is observed from an offline perspective: static

parameters are substituted by (deterministic or randomized) functions depending on

the computational time or on the number of algorithm iterations. There is

surprisingly little work on pre-scheduled parameter variation for ACO algorithms,

where an algorithm tunes itself by scheduling its parameter variations with their

iterations. Merkle and Middendorf (2001) were the first to study the effect of

parameter variation during the run of the algorithm. They considered the ACO

algorithm for the resource-constrained project scheduling problem. Their

contribution was in decreasing the value of the parameter β linearly over the run of

an algorithm due to concentrating the individual influence of β on the first iterations

of the algorithm. Merkle, Middendorf, and Schmeck (2002) also considered the same

problem and proposed to modify the parameter β, and the evaporation rate ρ. For β,

they proposed a schedule as described before. For ρ, they proposed to start at a small

value for increasing the initial diversification of the search space and to later set the

evaporation rate to a high value for having an intensive search around the best

solutions found by the algorithm. Meyer (2004) proposed another schedule for α (i.e.

the pheromone influence parameter). The author exploited annealing scheduling in

 58

simulated annealing method (Kirkpatrick, Gelatt, & Vecchi, 1983) to schedule the

increase of the values of this parameter. Maur et al., (2010) examined two

deterministic MMAS variants. In the first one, the parameter of the number of ants

(m) starts with (1) and then increases by one every (10) iterations until the value

becomes equal to the number of variables (n). In the second variant, the parameter of

exploration/exploitation, denoted by (q0), decreases starting from (0.99) until (0.0).

Both variants showed good results in context of anytime behavior and quality of

solutions. The same strategy is followed by Liu and Yang (2011) by considering

more parameters. Alobaedy and Ku-Mahamud (2015) applied the strategic

oscillation concept to control the exploration/exploitation parameter (q0) after fixing

the oscillation step size. The approach has been implemented on the colony level

with positive results. The problem with such deterministic assignment of parameter

values is that the number of iteration needed for convergence is unknown. In fact,

devising proper values for parameters must be adapted based on the search progress.

2.7.2 Adaptive Approach

In adaptive approach, parameters are modified according to either the diversity of the

pheromone trails or the quality of solutions. The searching behavior of the algorithm

is considered. To determine this behavior, some measurement tools have been

proposed, such as branching factor (Gambardella & Dorigo, 1995), entropy-based

measure (Yancang & Wanqing, 2007) or exploration measure (Pellegrini et al.,

2009).

 59

The first adaptive approach in ACO was introduced by Yancang and Wanqing

(2007). They varied the parameters α and β over time using the information entropy

theory (i.e. the uncertainty of probability). They succeeded in adapting α and β

values according to the searching algorithm. During the early stages of the search,

the value of α is small to allow an extensive diversification of the search space; the

value of α increases over time to improve the local search ability of the algorithm.

They suggested the opposite adaptation for β. Zhiyong, Yong, Jianping, Youjia, and

Xu (2008) proposed a variant of ACS that uses the cloud model proposed by Deren,

Kaichang, and Deyi (2000) for electing the solution to be used to determine the

amount of deposited pheromone. As in Yancang and Wanqing (2007), this work also

exploits the entropy measurement tool to control parameter q0 by decreasing it once

much more by the pheromones concentrated on minority edges. Chusanapiputt,

Nualhong, Jantarang, and Phoomvuthisarn (2006) proposed a method to solve the

unit commitment problem using a variant of AS. Three of the algorithm’s parameters

are adapted using two modules for reducing the search space. The first module is for

recording the infeasibility of some solutions to be avoided later, while the other is for

recovering high-quality candidate path neighbors.

Zhaoquan, Han, Yong, and Xianheng (2009) and Zhifeng, Han, Yong, and Ruichu

(2007) proposed a variant of ACS for TSP. They introduced a clear relation between

the parameter ρ and the amount of pheromone associated with arcs. The main idea is

that good ants have the higher pheromone. Amir, Badr, and Farag (2007) added a

fuzzy logic controller module to the ACS algorithm for TSP for adapting the value

of β and q0. The adaptive approach uses two performance measures: i) the difference

 60

between the optimal solution and the best one found; and ii) the variance among the

solutions visited by a population of ants. Kov and Skrbek (2008) described a simple

and effective approach to treat the colony as castes. Each caste of ants uses a

different parameter setting. They indicated that a decreasing schedule for β can give

a good performance. In addition, the number of ants m is adapted according to the

improvement of the solution quality obtained by each caste. This approach

successfully improves the convergence of the standard MMAS. Experimentally, the

results are promising. However, they did not mention more details about their

methodology.

In this approach, the adaptation rule can be applied when the measure being

monitored hits a previously set threshold. For example, decreasing the diversity

under a given value, the statistics and fuzzy rules can be considered as forms of

evidence to apply the adaptation. Neyoy, Castillo, and Soria (2013, 2015)

implemented fuzzy logic controller to adjust the pheromone concentrate parameter,

denoted by (α). The rule of adaptation relied on λ-branching factor as an exploration

indicator. Various fuzzy systems are proposed to control the diversity of solutions in

order to maintain exploration and exploitation in ACO (Olivas, Valdez, & Castillo,

2015). Collings and Kim (2014) augmented the use of fuzzy controller for the

adaptation-based, stagnation detection and control. Two fuzzy controllers were

proposed by Liu et al. (2011) to adjust the parameters of the number of ants and the

evaporation rate dynamically. The problem with such adaptation rules is that the user

must determine the threshold values for triggering the rule activation. The users do

 61

not have such intuition, whereas the algorithm itself has the ability to do that

implicitly.

2.7.3 Search-Adaptive Approach

Search-Adaptive is a way to implicit-adapting the parameters of ACO algorithm, in

which, the algorithm utilizes other search methods for adapting its parameters. Pilat

and White (2002) used the GA method for adjusting some ACS parameters, namely,

β, q0, and ξ. At each iteration, crossover and mutation operators are used to tune four

of the ants’ parameters before constructing solution. In the same way, Gaertner and

Clark (2005) used ants to communicate with the environment and produce new

solutions, while GA was chosen to exchange the new generations with the old ones.

Ants are initialized with a random parameter setting within predefined ranges. The

authors studied the parameter dependencies among β, q0 and ρ and conclude there

was no statistically significant correlation to be found when the TSP problem is

considered. Zhifeng, Ruichu, and Han (2006) did not present the relation between

the parameters in their proposed self-adaptive approach for ACS in TSP. The

parameters named β, q0 and ρ have been adapted using a Particle Swarm

Optimization method (PSO) (Zhifeng et al., 2006), which selects the best values

within a predefined range of parameters value. While in Weixin and Huanping

(2007), Artificial Fish Swarm Algorithm (AFSA) has been used for the same

purpose and focused on α, ρ and Q in a variant of ACS. As previous studies, the

former method considered the ant’s level, while the latter considered the colony level

in the parameters variation. Garro et al. (2007) proposed another mechanism to adapt

α, β and another specific parameter. They used crossover and mutation in GA to

 62

evolve the generation of parameters to each kind of ant. In the crossover, the best

explorer and worker ants’ parameters are combined to generate a new offspring, and

then one of the parameters is mutated. Anghinolfi, Boccalatte, Paolucci, and

Vecchiola (2008) used local search to self-adapt two of variant ACS parameters

named β and q0, and then applied the enhanced method to solve single machine total

weighted tardiness scheduling problem. The proposed method firstly increases and

decreases the current parameter values by a fixed amount to produce the parameter

space of the current setting. The neighbors of the current setting are locally searched

by an ant that belongs to a different colony. Finally, the best iteration ant is allowed

to exchange its setting with the old one. The multicolonies with multisetting

paradigm is conducted in this approach, which is repeated in Melo, Pereira, and

Costa’s research (2010), which considered the following ACS parameters: α, β, ρ

and q0. The distinction between the two approaches is that the latter used mutation

operator for exchanging the best setting with the worst one. The proposed

mechanism has contributed a new measurement tool to indicate the disturbance of

parameters, and then each parameter to be disturbed will be substituted by the best

one in the best colony.

Following this approach requires encoding parameter settings so that the search-

adaptive mechanisms can find the optimal adaptation. However, extending the

solution size obviously increases the search space and makes the search process

more time-consuming.

 63

2.7.4 Self-Adaptive Approach

This is another way to implicit-adapting for ACO parameters, in which, the

algorithm utilizes itself instead of using other search methods for adapting its

parameters. The first work was introduced by Randall (as cited by Gaertner & Clark,

2005 and Stützle et al., 2010). He suggested evolving parameters based on an extra

pheromone matrix which are maintained solely for this purpose known by

parameters matrix. This mechanism is tested by adapting the parameters β, q0, ρ, and

ξ for ACS applied to TSP and the quadratic assignment problem. The comparison of

the results to the default parameter settings is somehow inconclusive. As in

Randall’s study, Forster, Bickel, Hardung, and Gabriella (2007) applied a parameter

matrix to adapt parameters, where each column represents a parameter and each row

represents a different value to that parameter. Each ant has to construct a tour of its

own parameter setting. In the two previous approaches, there are no dependencies

between parameters. In contrast, Martens, Backer, Haesen, Vanthienen, and Snoeck (

2007) proposed a self-adaptive approach based on the interdependent relation

between α and β. In his ACO method, which is conducted as a classification task,

each parameter value varied through a new vertex group in the construction graph.

Khichane, Albert, and Solnon (2009) proposed two methods for tuning parameters α

and β during the run of his ACO algorithm to solve constraint satisfaction problem.

The two methods defined parameter setting for the colony and not for each ant.

Similar to the work by Forster et al. (2007), Gaertner and Clark (2005), and Stützle

et al. (2010), the method did not consider the interrelation between the parameters.

However, the methods in Khichane et al. (2009) focused on learning the parameters

 64

during the construction solution phase in two ways: a new parameter setting in each

construction step, or a new parameter setting for all construction steps.

According to Battiti and Protasi (2001), these approaches adapt typically very few

(often only one) key parameters of an algorithm and require substantial insight into

the algorithm’s behavior for their development. The challenge, however, is that the

E&E balance in ACO is implicit, and as such, controlling it directly is difficult.

Therefore, gaining a better understanding of the E&E balance requires knowing how

to measure it.

2.8 Discussion on Reactive-based ACO

The rationale works in terms of E&E in ACO are the combination of pheromone

management with local search procedures, auxiliary memories or local heuristic

information and parameter adaptation (Battiti et al., 2008). This section discusses

these categories together in order to reach a unified proposal for the exploration and

exploitation problem.

For the pheromone management, several strategies have been reviewed in this

chapter. From the E&E perspective, the difference of E&E behavior is based on the

amount of exploration promoted by these strategies. The findings of the various

published research papers on AS extensions indicate that the best performing

variants are MMAS and ACS. The aggressive exploitation in ACS produces good

solutions for very short-term runs. Conversely, MMAS starts with a long exploration

so that its early quality solutions are poor. Nevertheless, the final solution quality of

 65

MMAS is the best among other ACO algorithms especially for long-term runs. The

relative good performances of ACS in short-runs and MMAS in long runs are

interpreted by the difference in their exploration/exploitation behavior. Figure 2.7

provides a clear picture about the behavior’s difference among some well-known

ACO algorithms.

Figure 2.7. Variance of Exploration and Exploitation Behaviour in ACO

These experiments have conducted by Dorigo and Stützle (2004) on the symmetric

TSPLIB instance kroA100 where the percentage deviation from optimum refers to

the quality of solutions and the average lambda branching factor refers to the

exploration behavior. It can be concluded that although the search strategy of MMAS

enables finding high quality solutions it tends to be over-explorative comparing with

other algorithms. To ensure this point of view, Table 2.2 provides a comprehensive

conceptual comparison between E&E search strategies in ACO. This comparison can

be generalized for other ACO algorithms such as ANTS and Beam-ACO by adding

one point for each ACO variant based on its specific search strategy. For example,

the best-worst and online-offline strategies will score one points for ANTS as they

are part of its structure while hybridizing with local search will score one point for

 66

all ACO algorithms as its generic-exploitation purpose (Gambardella et al., 2012;

Perez-Caceres, Lopez-Ibanez, & Stützle, 2014).

Table 2.2

Amount of Exploration and Exploitation in ACO Algorithms

Exploration and Exploitation

in ACO Algorithms

AS EAS

AS-

rank

MMAS

ACS

BWAS PACO AntNet MACO

Quality-dependent √ √ √ √ √ √ √ - √

Quality-independent - - - - - - - √ -

Elitist - √ √ √ √ - - - -

Rank-based - - √ - - - - - -

Trail learning - - - √ √ - - - -

Online-offline update √ - - - √ - - - -

Best-worst - - - - - √ - - -

Bounding - - - √ - - - - -

Smoothing - - - √ - - - - -

Restarting - - - √ - - - - -

Colony-level interaction - - - - - - - - √

Population-based - - - - - - √ - -

Hybridizing √ √ √ √ √ √ √ √ √

Score points 3 3 4 7 5 3 3 2 3

The total score of MMAS was seven (7) comparing with others. For this end, the

MMAS outperforms others experimentally and conceptually. Consequently, MMAS

has been selected in the present study to be the base for more advanced exploration

and exploitation components.

For more advanced improvements on the top of MMAS other than the hybridization

with local search, a population memory vector, denoted by (P), for deriving new

pheromone management models is added (Oliveira, Stützle, Roli, & Dorigo, 2011).

The amount of pheromone added/dropped relies on the size of the memory P which

is denoted by |P|. This approach contributes in faster pheromone updates (Oliveira et

al., 2011) and motivates the invention of more advanced structural features (Lin &

Middendorf, 2013). However, the local search may become time-consuming when

 67

the running time is tight or the computation of solution evaluation is high. Additional

weakness in that the population memory vector is not able to transfer neighborhood

structures that are formed either by construction solution procedure or by local

search procedure from current iteration to future iterations.

Another recurring theme in terms of exploration and exploitation is the harnessing of

pre-heuristic information for the selection of solutions’ components. This E&E

component plays a profound role in improving the internal behaviour of any ACO

variant other than MMAS (Ku-Mahamud & Alobaedy, 2013). However, its priori

availability is not guaranteed in problem-solving which may restrict its application

and increase its limitation. Another shortcoming is that the formulation of heuristic

functions is difficult and required deep knowledge about the CO problem under

tackle which indeed will impose additional burden on the algorithm designer. These

gaps entail building new kinds of internal heuristics in on-the-fly fashion which

induce adapting reactive search characteristics (Battiti et al., 2008) based on the

concept of “learning while optimizing”. Toward building effective ACO-based

reactive search methods, Solnon (2010) stressed on learning more ACO parameters

and using exploration indicators, such as the similarity ratio betweeen the solutions

of current population, in parameter adaptation. A schematic description about the

distribution of reactive characteristics in the literature is provided in Tables 2.3 and

2.4.

Among several exploration measures reviewed in this study, there are three recurring

exploration indicators used for parameter adaptation. Those are the entropy, λ-

branching factor and similarity ratio.

 68

Table 2.3

Schematic Description of the Literature on ACO-based Reactive Search

Authors
Number of

Parameters

Exploration

Indicator

Reactive

Characteristic

ACO

Model

CO

Problem

Merkle et al.(2002) m, q0 deterministic
LAC, LHP, SI,

ASI
AS scheduling

Meyer (2004) m deterministic LAC, LHP, SI,

ASI
AS TSP

Maur et al.(2010) α , β deterministic LAC, LHP, SI,

ASI
MMAS TSP, QAP

Liu and Yang (2011) q0 deterministic LAC, LHP, SI,

ASI
MMAS VRP

Alobaedy and Ku-Mahamud (2015) q0 deterministic LAC, LHP, SI,

ASI
ACS scheduling

Yancang and Wanqing (2007) α , β entropy
AGC, ALC,

ASI
AS TSP

Zhiyong et al.(2008) q0 entropy
AGC, ALC,

ASI

variant

of ACS
TSP

Chusanapiputt et al.(2006)
specific

parameters
deterministic AGC, ALC,

LAC, ASI

variant

of AS
industry

Zhaoquan et al. (2009) ρ deterministic AGC, ALC,

LAC, ASI

variant

of ACS
TSP

Zhifeng et al.(2007) β , q0 deterministic AGC, ALC,

LAC, ASI

variant

of ACS
TSP

Amir et al.(2007) β , q0 entropy
AGC, ALC,

ASI
ACS TSP

Kov and Skrbek (2008) β, m deterministic
AGC, ALC,

LAC, ASI
MMAS TSP

Neyoy et al.(2013) α
branching

factor

AGC, ALC,

LAC, ASI
RAS TSP

Collings and Kim (2014) α , β, ρ
branching

factor

AGC, ALC,

LAC, ASI
RAS TSP

Liu et al. (2011) ρ ,m deterministic
AGC, ALC,

LAC, ASI
AS

Feature

selection

Olivas et al. (2015) α , ρ
Similarity

ratio

AGC, ALC,

LAC, ASI
RAS TSP

Gaertner and Clark (2005) β, q0 , ρ Relative
AGC, LHP, SI,

GM
ACS TSP

Weixin and Huanping (2007)
specific

parameters
Relative AGC, LHP, SI,

GM

variant

of ACS
TSP

Zhifeng et al.(2006) β, q0 , ρ Relative AGC, LHP, SI,

GM
ACS TSP

Garro et al. (2007)
specific

parameters
Relative AGC, LHP, SI,

GM

variant

of AS

path-

planning

Anghinolfi et al.(2008) β , q0, Relative AGC, LHP, SI,

GM

variant

of ACS
scheduling

Melo et al. (2010) α, β, ρ , q0 Relative AGC, LHP, SI,

GM
MACO

Node

placement

Randall (2004) β, q0, ρ, ξ Relative AGC, LHP, SI,

GM
ACS TSP

Martens et al.(2007) and Förster et

al. (2007)

specific

parameters
Relative AGC, LHP, SI,

GM

variant

of

MMAS

Feature

selection

Khichane et al. (2009) α , β Relative AGC, LHP, SI,

GM

variant

of

MMAS

Car

sequencing

 69

Table 2.4

Abbreviations of the Reactive Characteristics

Reactive Characteristic Abbreviation

Adapted with global characteristics AGC

Adapted with local characteristics ALC

Less augmented complexity LAC

Less hyper parameters LHP

Simple implementation SI

Algorithm structure independent ASI

Follow a general methodology GM

For applications of entropy (Yancang & Wanqing, 2007; Zhiyong et al., 2008; Amir

et al., 2007), they associated with high augmented complexity as it complicates the

calculations inside the colony. For the applications of λ-branching factor (Collings &

Kim, 2014; Neyoy et al., 2013, 2015), the disadvantage is the dependency of

branching factor on the value of its lambda parameter. Moreover, it is ineffective for

analyzing the exploration behavior for CO problems other than TSP.

For the similarity ratio, Olives et al. (2015) utilize the concept of fuzzy logic to

schedule the value of parameters which can be considered as implicit deterministic

approach. The problem with deterministic way is that the parameter adaptation is

pre-scheduled according to a function of variation in the number of iterations.

In exloration measurement literature, Pellegrini and Favaretto (2012) quantified the

exploration as the number of clusters of solution visited. So far, this indicator,

namely exploration measure has not applied in parameter adaptation. This indicator

utilizes machine learning procedures to provide online heuristic information during

the search. From reactive search point of view, the process of learning parameters,

either offline (Lopez-Ibanez & Stützle, 2011; Pellegrini, Stützle, & Birattari, 2010a)

 70

or online (Neyoy et al., 2013, 2015; Stützle et al., 2012), it must be coupled with

machine learning procedures.

Following this methodology, the integration of exploration measure with reactive-

based parameter adaptation methods may improve their performance. However, the

exploration measure has a robust problem in its functionality to find the similarity

between two clusters which can be concluded when the distance between them is

greater than a predefined threshold ϵx where x% of their arcs does not exist in the

cluster. In TSP, ϵx = 7.8 in MMAS without local search, ϵx = 17.5 in MMAS with 2-

opt local search and ϵx = 35.8 with 3-opt local search. The situation changes with the

change of circumstances. This definition needs to be reconsidered in terms of

robustness against the abovementioned situation which leads to an unstable

measurement, especially when flat fitness landscape needs to be analysed.

For the applications of relative indication, the adaptation relies on the improvement

in quality of solutions produced by outer optimization scheme, i.e. the ACO

algorithm itself as exemplified in the works of Anghinolfi et al. (2008), Förster et al.

(2007), Khichane et al. (2009), Martens et al. (2007) and Randall (2004). Among

them Khichane et al. (2009) and Randall (2004) have built their adaptation on the top

of MMAS and ACS respectively. Following the implementation of these two

methods, a critical analysis of parameter adaptation methods in ACO has been

conducted in a comparison with MMAS by Pellegrini et al. (2012) showing the

superiority of MMAS in standard benchmark CO problems such as TSP and QAP.

Although Randall (2004)’s method succeeded in improving the performance of the

standard ACS it does not provided any insights about MMAS. These empirical

 71

results confirm that MMAS is eligible to be a base paradigm for building success

reactive parameters’ adaptation methods. This selection not only justified by the

E&E strategies included in MMAS (see Table 2.2), but because of the fact that

MMAS is very sensitive for adapting its parameters. From parameter adaptation

search point of view, existing self-adaptive approaches in ACO are a good candidate

if they adhere well to reactive methodology by utilizing more robust exploration

indication in parameter learning.

2.9 Summary

The exploration versus exploitation dilemma is resident in ACO. Due to its

importance, several strategies have been proposed to address it. The differences

among ACO algorithms can be identified from their way of addressing this problem.

For the self-contained background, AS algorithm, as the first proposed ACO

algorithm, and MMAS algorithm, as one of the best-performing variants of AS, have

been highlighted in this chapter. A conceptual comparison with other AS variants

has been provided as well. Reactive framework is designed to achieve a proper E&E

balance. The main aspects of reactive search to be applied in ACO are the memory

model, the exploration measure, i.e. the feedback and the on-the-fly scheme for

parameters’ selection. By the feedback scheme, a track of an exploitative search

using local search is performed in order to promote exploration only as needed using

restart. The feedback is the core of adaptive parameters’ selection methods. The

abovementioned aspects have been detailed separately in their perspective sections.

Finally, unified insight and interrelation among the various E&E aspects in related

 72

studies have been provided at the end of this chapter. In Chapter 3, the methodology

used to undertake the research is presented.

 73

RESEARCH FRAMEWORK AND METHODOLOGY

3.1 Introduction

This chapter presents the framework and methodology of this research. It starts with

Section 3.2 that depicts the research framework and the methods used to achieve the

objectives of the research. Based on the research objectives, the proposed methods

are presented in Section 3.3, which briefly explains the roles of each method and the

experimental design and the selected benchmarks for evaluating each method

separately and the whole approach. Finally, this chapter is summarized in Section

3.4.

3.2 The Research Framework

The high-level focus of this research is to propose a reactive approach that addresses

the exploration and exploitation in ACO. The approach comprises of four steps;

memory model development, exploration measurement enhancement, adaptive

parameters’ selection and evaluation as in Figure 3.1. The first step to maintain this

balance is changing the principle of “later aggressive exploitation” in MMAS

memory model to “minimal exploration only if needed” and the principle of “long

initial exploration first” in the same model to “exploitation is first”. This goal is

achieved by twofold processes. Firstly, developing reactive heuristics as local

heuristics in the transition probabilistic rule of construction solution function where

ants’ experience can be transferred over restarts. Secondly, developing recursive

 74

local search technique based on the scheme of population-based memory where

previous population is archived and then improved by local search.

The second step of exploration and exploitation balance concerns the feedback from

the current search process in terms of population distribution. A machine learning

indicator has been developed to characterize the over-exploitation state in general,

not restricted to MMAS model only. For the state, it triggers the restart of search

with the aid of local heuristics that recorded in terms of reactive heuristics. As

opposed to this state, over-exploration is rare due to the role of recursive local

search.

Figure 3.1. High-level Research Framework

In step three, the adaptive parameters’ selection provides automatic control of

algorithmic parameters while solving the problem to improve the search efficiency.

In order to do so, one needs to define the reward assignment scheme which rewards

parameters based on the feedback from current search process. Different reward

assignment schemes have been proposed to calculate the amount of reward to given

Adaptive

Parameters’

Selection

Exploration

Measurement

Enhancement

Memory Model

Development

Experimental

Performance Evaluation

 75

to the promising parameters. These are based on quality of solutions and/or diversity

of solutions.

The fourth step describes the experimental approach conducted to validate each of

the above mentioned steps developed together or separately. In all existing

metaheuristics, the experimental research was the main guide to design and develop

any novel algorithm (Barr, Golden, Kelly, Resende, & Stewart, 1995). This

methodology is useful for characterizing and understanding the complex behavior of

the metaheuristic algorithms (Talbi, 2009). ACO metaheuristic is a history of

experimental research (Dorigo & Stützle, 2004). This research follows the same

methodology of designing the most successful ACO algorithms. The ultimate goal of

parameter optimization and diversity strategies in this research is to improve

algorithm performance, which results in better convergence behavior. Figure 3.2

extends the aforementioned steps in detail and gives a conceptual view about the

proposed approach.

76

Figure 3.2. Low-level Research Framework

Stages Methods Outputs

1. Unified adaptive

parameters’ selection

methodology

2. APSACO algorithms

3. Final RACO algorithm

1. New reactive heuristics

2. New recursive local

search technique

3. Reactive max-min ant

system algorithm

4. New results

1. Robust exploration

indication mechanism

2. ACOustic algorithms

3. New results

New results in the context

of quality of solutions &

exploration behavior of

RACO

Defining the E&E

metrics based on

biological schema

Modeling ACOustic

based on the defined

E&E metrics

Implementing &

evaluating ACOustic

measure: TSP & QAP

Defining the parameters’

selection strategy

Defining the feedback

collection strategy

Defining the rewards’

assignment strategy

Developing APSACO algorithm Evaluating APSACO: TSP &QAP

Designing

experiments

Determining

Benchmark: TSP &

QAP

Conducting computational

& statistical tests

Identifying restart

mechanism

Formulating reactive

heuristics
The application to QAP

Evaluations:

TSP & QAP

Evaluations: TSP &

QAP

Developing recursive local

search technique

Evaluating the

performance of the

proposed approach

Proposing an adaptive

parameters’ selection

method based on robust

indication

Enhancing the exploration

measurement in ACO in

terms of indication’s

robustness

Developing a memory

model for improving

restart and local search

mechanisms

77

3.3 Research Methods

This section presents the proposed methods and draws the roadmap for

understanding the proposed approach. The memory development method is

presented in Subsection 3.3.1. The exploration measurement and the online

parameter’s selection methods are highlighted in Subsection 3.3.2 and Subsection

3.3.3 respectively.

3.3.1 Developing the Memory Model

An auxiliary memorizing feature is added to control the probabilistic distribution

after restart and to concentrate the search around the neighborhood of solutions

produced by local searches. The memory model development includes two

algorithmic components: reactive heuristics and recursive local search. The first

component is defined before the search starts: RH =def [RH0]. The size of RH is

equal to the pheromone model size. In the evaporation update, the arcs with a small

pheromone amount are recorded in the model: rhi,j= {1, 0}. RH is reactivated when

the stagnation occurs, i.e. at the point of restart. Then, it will be considered as a new

input to the transition state rule: TourConstructionSolution (Τ, C, RH), where T is

the pheromone information, and C is the heuristic information. Therefore, the ants

will select the insignificant arcs that are neglected before to increase the exploration

behavior.

The recursive local search technique, the second algorithmic component, is designed

to solve the premature exploitation where the current neighborhood structure is not

transfered to next iterations using current local search procedures. A population

 78

vector called P is designed to track the best-so-far solutions, the best-iteration

solutions, and the old-best solutions. The first two solutions are the output of current

local search, while the third solution is just a dropped solution from the vector P.

The old-best solution is added again and again to the population if and only if the

best-so far solution is not improved by local search. More details about this phase are

discussed in Chapter Four.

3.3.2 Enhancing the Exploration Measurement

In this phase, the current exploration measurement is enhanced. Three criteria are the

main proxies for this measurement: the variation in quality of solutions (∆OG), the

variation in diversity of solutions (∆R) and the combination of both of them. The ∆R

and ∆OG are analogies to exploration and exploitation respectively. Among several

exploration measures in ACO literature, a few of them are compatible with the

reactive search framework, while the rest are suffering a robust problem where the

distance matrices that determine the diversity of solutions are in a different

magnitude. Nature-inspired solutions to the problem are proposed. Both the

biological and computational schemes are detailed in the first part of Chapter Five.

3.3.3 Proposing Adaptive Parameters’ Selection Method

Parameter adaptation is a high level control of exploration and exploitation balance.

In this phase, three methods of adaptive parameters’ selection are proposed based on

the feedback from the optimization process, i.e. the evidence that the current

parameter values have succeeded in improving the quality of solutions. Here, the

three exploration measures will be used as proxies to indicate the improvement.

 79

Subsequently, good parameter values need to be awarded in an online reinforcement

learning fashion. Three reward assignment strategies can be found in the second part

of Chapter Five.

3.4 Evaluation of the Proposed Approach

In this stage, the algorithmic components of the proposed approach and the overall

algorithm are evaluated. The evaluation links to all the above-listed stages and gives

more flexibility to revise any stage for better performance. The performance

evaluation of metaheuristics is very complex, and hence, Talbi (2009) listed three

steps to conduct it in a fair manner. These are experimental design, measurement and

reporting as shown in Figure 3.2.

Figure 3.2. Performance Evaluation of Metaheuristic Algorithm

As the experimental methodology has matured in the metaheuristic area, there have

been increasing demands for a more careful evaluation using a good experimental

design. To achieve this goal, two methodological aspects need to be conducted,

which are defining the goals of the experiments and selecting the instances. The

main goal of designing the experiments is to evaluate the quality of solutions and the

robustness of the proposed methods. There are three kinds of solutions, namely the

 80

optimal solutions, the iteration-best solutions and the bestso-far solutions. In terms of

robustness, the design of experiments can show both the robustness of CO problem

instances and the robustness of the algorithms’ parameters.

According to Johnson (2001), achieving meaningful and publishable results is harder

than the coding of an algorithm in the benchmarking analysis. Hence, a lot of efforts

have to be channeled in assessing the results and investigating the behavior of the

new algorithmic components. For the TSP coding, the implementation of Stützle

(2004), i.e. ACOTSP.V1.3 software, is used. The c code has been released in the

public domain and is available for free download on http://www.aco-

metaheuristic.org/aco-code/. For the QAP coding, the implementation of Taillard

(2010), i.e. FANTQAP software, is used. The c code is available for free download

on http://mistic.heig-vd.ch/taillard/codes.dir/fant_qap.c. Because of the similarity in

the structures of TSP and QAP, the ACOTSP.V1.3 software has been extended to fit

the QAP modeling for other ACO variants based on the implementation of Taillard.

The validation for solving the QAP problem called tai10b.dat with the value five (5)

for parameter R and the value hundred (100) for number of iterations gives the

similar output as of Taillard (2010).

The performance of any proposed algorithm can be determined statistically if it is

compared to other algorithms when solving the same problem instances (Lafayette,

2001). Therefore, and after defining the experiment’s goals, the selection of

instances has been selected carefully. The test-beds will be two of the combinatorial

problems, which are traveling salesman problem (TSP) (Lawler, Lenstra, Kan, &

 81

Shmoys, 1985) and quadratic assignment problem (QAP) (Lawler, 1963). The

following subsections provide detailed descriptions about the problems and how they

can be modelled in ant colony optimization.

3.4.1 The Traveling Salesman Problem

The importance of TSP arises because of the extensive studies and the high

recommendations by computer scientists to be used in the evaluation of new

optimization algorithms. This problem has been proven as an NP-hard problem. It

can be described as follows. An agent has to visit N nodes exactly once and return to

the starting node with minimum cost, i.e. the shortest distance or the lowest visiting

time. A cost matrix C = [cij] is searched to find a permutation 𝜋 ∶ {0, … , 𝑁 − 1} →

{0, … , 𝑁 − 1}, where cij represents the cost of visiting node (j) from node (i). The

goal is to minimize an objective function denoted by 𝑓(𝜋, 𝐶) as follows.

𝑓(𝜋, 𝐶) = ∑ 𝑑(𝑐𝜋(𝑖),𝑁−1
𝑖=0 𝑐𝜋(𝑖+1)) + 𝑑(𝑐𝜋(𝑁), 𝑐𝜋(1)) (3.1)

where 𝜋(𝑖) represents the ith node in permutation 𝜋, d is the distance between nodes

and cij = cji ∀ i, j and the position of city (i) can be determined using the values of x-

axes, y-axes, i.e. xi and yi respectively, Hence, the cost matrix is calculated as

follows.

𝑐𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 (3.2)

The dataset instances are taken from TSPLIB (Reinelt, 1991) benchmark library.

TSP instances used in the experiments are classified according to their sizes (n):

 82

small size where n=50-100 (such as eil51, berlin52, st70, eil76, pr76, gr96, rat99,

kroA100, kroB100, kroC100, kroE100 and rd100), medium size where n=100-800

(such as d198, lin318, pcb442, att532 and rat783), and large size where n> 800 (such

as pcb1173, d1291 and fl1577). Figure 3.3 simplifies one type of TSP instances

extracted from TSPLIB (see Appendix A for more detailed discretion).

Figure 3.3. Sample Structure of TSPLIB File

Selecting different structures of instances gives more understanding to the behavior

of the proposed algorithmic components when tackling the TSP problem. In all

instances, the n nodes represent specific locations in specific cities, e.g. Burma. The

first five lines include some information about the problem being tackled, such as the

data type, whether Euclidean, geographical or other types. The TYPE keyword

specifies the type of data, e.g. symmetric, asymmetric or a collection of tours. The

 83

keyword DIMENSION is the number of nodes for the TSP instances. The keyword

EDGE_WEIGHT_TYPE specifies how the edge weight is defined, e.g. the keyword

EUC_2D is the Euclidean distance in the plane, while the keyword GEO is

geographical distance. The keyword NODE_COORD_ SECTION starts the node

coordinates section. Each line is made of the node identifier, x and y coordinates.

The node identifier is a unique integer ≥ 1. The statistics about several TSP

instances are summarized in Table 3.1.

Table 3.1

Description of Some TSP Instances

File name Location

att532.tsp Padberg/Rinaldi

berlin52.tsp Berlin (Germany)

bier127.tsp Juenger/Reinelt

burma14.tsp Burma (Myanmar)

d198.tsp Reinelt

eil51.tsp Christofides/Eilon

fl1577.tsp Reinelt

gil262.tsp Gillet/Johnson

gr96.tsp Europe

kroA100.tsp Random

lin318.tsp Lin/Kernighan

pcb442.tsp Groetschel/Juenger/Reinelt

pr299.tsp Padberg/Rinaldi

rat783.tsp Pulleyblank

rd100.tsp Reinelt

st70.tsp Smith/Thompson

3.4.2 The Quadratic Assignment Problem

QAP is the hardest NP-hard problem. It has an important theoretical value in the

study of the behavior of high performance algorithms. It can be described as a

problem of assigning economic facilities to locations while minimizing costs as in

Figure 3.4. A set of facilities (n) needs to be assigned to a set of locations (n) with

given distances between the locations and given flows between the facilities.

 84

Figure 3.4. High Level Description of QAP

The flows and locations are two n × n matrices dented by W and R respectively,

where 𝑤𝑝𝑞 is the flow between facility p and q and 𝑟𝑖𝑗 is the distance between

location i and j. The objective is to place the facilities on locations in such a way that

the sum of the product between flows and distances is minimal. The objective

function denoted as 𝑓(∅) can be formulated as follows (Stützle, 1999).

𝑓(∅) = ∑ ∑ 𝑤𝑝𝑞𝑟∅𝑝∅𝑞

𝑛

𝑞=1

𝑛

𝑝=1

 (3.3)

Let the flows and distances matrices complete undirected graphs whose edges will be

valued after the assignment as designated in Figure 3.5. A QAPLIB instance file

contains the size of matrices and the seed for random generated instances followed

by facilities and locations matrices as in Figure 3.6, which describes the QAPLIB

file, namely tai10b.qap.

 85

Figure 3.5. A Graph Model for QAP Relaxation

 Figure 3.6. Sample Structure of QAPLIB File

The QAP instances with their feasible solutions are listed in alphabetical order by the

names of their authors in Appendix B. The instances are taken from QAPLIB

benchmark library (Burkard, Cela, Karisch, & Rendl, 1997). The QAP instances can

be classified according to their structure into real-life instances (such as bur26a,

bur26b, bur26c, bur26d, chr25a, els19 and kra30b), real-life-like instances (such as

tai20b, tai25b, tai30b, tai35b, tai40b and tai80b), and random-generated instances

(such as nug30, ste36b, tai30a, tai40a, tai50a, tai60a, tai80a and tai100a). Besides

 86

the theoretical importance of QAP, it can be derived practically from various

engineering designs, e.g. integrated circuit wiring, job scheduling, the typewriter

keyboard design, and hospital layout.

3.4.3 Benchmark Methods

The main goal of the thesis is to build exploration and exploitation components that

improve ACO-based reactive search, which result in better algorithm performance.

To determine if the goal is achieved, the components introduced in this thesis are

compared with distinguished benchmark methods. For each of the three

contributions, the achieved results are compared against the benchmark methods

which correspond to that contribution. Benchmark methods are described in the

experimental design of each contribution chapter. Thereafter, the three contributed

components are combined in a unified algorithm to evaluate the overall performance

of the proposed reactive approach. The results of the unified algorithm are compared

with several metaheuristics approaches for solving TSP and QAP. The description

about the algorithms with which the proposed approach is compared is presented in

the experimental design of Chapter Six.

3.4.4 Comparative Measures

As a stochastic method, ACO is not expected to give repeated or exact results, but

approximate results. In order to measure and compare the performance of two or

more methods, an accurate evaluation has to be executed. The computational

performance of algorithms can be assessed by CPU Time Measure (CTM) to

evaluate the speed of convergence. However, CTM is inconsistent with the principal

 87

of accuracy (Moret, 2001). Eiben and Jelasity (2002) explained how the results may

vary based on the programmer’s experience, the compiler, and the operating system.

Johnson (2001) provides the Success Rate Measure (SRM), which is the suitable

method to evaluate the convergence behavior after applying the new methods. SRM

is the percentage of runs that terminate with success (i.e., finding the optimal

solution). Therefore, it has been used in the first experiments in Chapter Four.

Another suitable way to measure the computational performance is to use the Quality

Solution Measure (QSM) (Aleti, 2012; Hooker, 1995). It is the mean of the best-so-

far solutions over the number of allowed iterations. This way of measurement is used

frequently in the experiments conducted in Chapters Four, Five and Six. To restrict

the randomness effect, each experiment runs 10-30 times. The cost results are

reported as the relative percentage deviation (RPD) from the best known solution

cost. This is calculated as follows (Lopez-Ibanez & Stützle, 2014).

 ((the result cost − the best known cost) the best known cost ⁄) × 100 (3.1)

Note that “min”, “med” and “max” represent the minimum, median and maximum

RPD respectively.

Non-parametric statistical tests, such as Wilcoxon signed-rank (Wilcoxon, 1945) and

Chi-square (Battiti & Birattari, 2013), are used to confirm the significance of

obtained results at the 95% confidence level. The expected results produced from the

previous steps will be interpreted using the predefined goals of experiments. The

 88

results will be reported in a graphical way so that the means is distinct and the

performance is distinguishable.

3.5 Summary

This research aims to develop a metaheuristic algorithm that is able to manage the

exploration versus exploitation dilemma in ACO. This entails a methodology that

can guide the understanding of the complex exploration/exploitation behavior of the

ACO algorithm. This research follows the experimental methodology which is used

in the development of the most successful metaheuristics. It is impossible to omit the

experimental approach from the metaheuristic algorithm development. To complete

this aim satisfactorily, the three principles that should govern the experimental

research methodology: generalizability, performance measures, and reproducibility

have been covered. The experimental approach used to evaluate the performance of

metaheuristics in a fair manner has been discussed and considered as a guide in the

development of the proposed methods. The first proposed method, namely memory

model development, is detailed in Chapter 4.

 89

MEMORY MODEL DEVELOPEMENT AND ITS

APPLICATIONS

4.1 Introduction

This chapter describes the proposed memory model to improve the restart and local

search strategies in max-min ant system, the prominent ACO variant. The reactive

heuristics and recursive local search technique are the two algorithmic components

that are added to MMAS. A new MMAS variant is proposed based on MMAS,

which is the reactive max-min ant system (RMMAS), and an exploitation

mechanism called recursive local search (RLS). Section 4.2 shows the process of

developing the proposed memory model. It includes the formulation of new reactive

heuristics, their application to QAP, the experimental design for evaluating RMMAS

algorithm, and the results of evaluation then followed by the development and the

experimental design for evaluating of the RLS technique and the results of

evaluation. Section 4.3 summarizes the chapter.

4.2 Memory Model Development

This section draws the roadmap to the development of the proposed memory model

as shown in Figure 4.1. It includes two memory schemes; the component-based

memory scheme and the population-based memory scheme, to address respectively

the problems with restarts and local searches within the MMAS. Two algorithmic

components have emerged, which are reactive heuristics and recursive local search

technique. The components are evaluated as they are the underlines of RMMAS.

 90

Two well-known combinatorial problems are used in evaluation, namely QAP and

TSP.

Figure 4.1. The Process for Memory Model Development

4.2.1 Identifying Restart Mechanism

Restart is a generic exploration mechanism. In order to address the problem of

arbitrary restart, where the ants re-explore the same regions again and again, it is

important to identify how the restart point can be determined effectively. To achieve

this goal, let us consider an ACO algorithm suffers stagnation problem where the

algorithm is not available for the quality of solutions by time. The said algorithm

needs to restart the search so as to escape this situation. The critical issue is to

indicate the best moment for restart. This can be done using exploration measures as

feedback from the optimization process. The combination of two exploration

indicators, the acceptance criteria with branching factor, is identified to perform the

restart. For the acceptance criteria, it is calculated as follows.

𝑅𝑒𝑠𝑡𝑎𝑟𝑡(𝑆𝑔𝑏 , 𝑆𝑘 , ℎ𝑖𝑠𝑡𝑜𝑟𝑦) = {
−𝑟𝑠 𝑖𝑓 𝑓(𝑆𝑘) < 𝑓(𝑆𝑔𝑏)

+𝑟𝑠 𝑖𝑓 𝑓(𝑆𝑘) ≥ 𝑓(𝑆𝑔𝑏) 𝑎𝑛𝑑 𝑖 − 𝑖𝑙𝑎𝑠𝑡 > 𝜖

 (4.1)

 91

where +rs indicates that the convergence happened when the solutions Sk since last

best restart ilast did not improve for last ϵ iterations (e.g. 250 iterations). For the the

average branching factor, it counts the number of factors greater than τmin + ϒ (τmax-

τmin) in the current node in the construction graph, and then counts the average of all

the counted factors.

4.2.2 Formulating Reactive Heuristics

Here is the second phase of solving the arbitrary restart in MMAS. The idea is to add

new memories to help search agents, i.e. the artificial ants to record the history of

their visited neighborhood structures. The ants in this way have two searching states,

before and after restart point. In the first state, the ants’ search experience is

memorized by the proposed component-based memory (CbM) scheme. Figure 4.2

illustrates how the scheme works.

Figure 4.2. The CbM Scheme in Memory Model Development

 92

For some components of solution s produced by ant k, the pheromone intensity is

decreased because of the evaporation influence. The CbM scheme helps in detecting

these components to be considered as local heuristics in the probabilistic distribution

after restart. Results (see Subsection 4.2.5) showed that this reactive heuristics

guides the search for new regions in the search space, and hence improve the

exploration behavior of restart strategies. During the optimization process, for some

solutions’ components, the pheromone intensity is decreased below the predefined

threshold (in MMAS denoted by 𝜏𝑚𝑖𝑛) because of the evaporation model influence.

These are the unvisited solutions’ components. On-demand heuristics are defined to

record the unvisited solution components; these are reactive heuristics (RHs). In

particular, the evaporation formula in in Equation 4.2 (Stützle, 1999) is reformulated

in the present research to include the ability of memorizing the current search as in

Equation 4.3.

𝜏𝑖𝑗 = (1 − 𝜌). 𝜏𝑖𝑗 ∀ 𝜏𝑖𝑗 ∈ 𝑇 (4.2)

𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑒 (𝑅𝐻, 𝑇, 𝜏𝑚𝑖𝑛) = {
𝑅𝐻 ← 𝑟ℎ1 𝑖𝑓𝜏𝑖𝑗 < 𝜏𝑚𝑖𝑛

𝑅𝐻 ← 𝑟ℎ0 𝑖𝑓𝜏𝑖𝑗 ≥ 𝜏𝑚𝑖𝑛
 (4.3)

Before the search process is started, RH is initialized to zero (0). The search progress

continues together with recording the unvisited components until the next restart

point. In this way, unexplored regions in the current search are shifted to the next

search.

Once the restart occurs, an improved formula is developed (based on the

probabilistic distribution in ACO solution construction function) as described in

Equation 4.4, in which the reactive heuristics 𝑟ℎ𝑖𝑗 is used in the present research.

 93

𝑝𝑖𝑗
𝑘 = {

𝜏𝑖𝑗
𝛼 . 𝜇𝑖𝑗

𝛽
. 𝑟ℎ𝑖𝑗

∑ 𝜏𝑖𝑙
𝛼 . 𝜇𝑖𝑙

𝛽
. 𝑟ℎ𝑖𝑙𝑐𝑖𝑙∈𝑁(𝑆𝑃)

 𝑖𝑓 𝑐𝑖𝑙 ∈ 𝑁(𝑆𝑃)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , (4.4)

Hence, the ability of ants to remember their previous search influences their future

decisions through utilizing three sources of information, which are pheromone trail

(τij
α), pre-heuristics (μij

β
) and reactive heuristics (rhij), instead of using only

 τij
α, and μij

β
. As a result of the aforesaid actions, the proposed RMMAS algorithm is

emerged as depicted in Figure 4.3.

Algorithm 4.1: RMMAS

 InitializeParameters ()

 Initialize_T_Memory ()

 Initialize_RH_Memory () // CbM scheme

 while (not terminate) do

 for k ≔ 1 to m do

 if (no stagnation) do

 ConstructSolutions (T, C)

 else

 ReactiveRestart (Sgb, Sk, History)

 ConstructSolutions (T, C, RH)

 end-else

 end-if

 Sgb ← argmin{f(Sgb), f(Sk | k≔1 to m)}

 Evaporate (RH, Τ, τmin)

 DepositPheromone (Τ, Sgb)

 end-for

 end-while

 end-algorithm

Figure 4.3. The Pseducode for RMMAS Algorithm

This alternative way of restart is important because of the following reasons. Firstly,

the availability of pre-heuristic information is not given in advance for some

combinatorial optimization problems such as QAP. Secondly, even if the pre-

heuristic information is given, its significant will be decreased subsequently because

of the increasing influence of pheromone trail. Thirdly, upon restart and when the

ants start to be biased toward high pheromone intensity, the search will stagnate.

 94

Fourthly, comparing the pre-heuristic information which is useless with local search,

the results in this chapter verified that the reactive heuristic can play a crucial role in

improving the quality of solutions. With the risk of stagnation, together with the

ineffectual restart, the reactive heuristic rhij will be a very useful alternative

solution.

4.2.3 The Application to QAP

This section discusses new circumstances in the application of reactive heuristics to

combinatorial optimization algorithms with rugged fitness landscape such as QAP. It

concerns the situation when local search routines are coupled with RMMAS. For the

application, there are two cases: when pre-heuristics information is given in advance

such in AS-QAP and ANTS-QAP implementations, and when it is ignored such as in

MMAS-QAP implementation (Dorigo & Stützle, 2004). It is well known for the

ACO community that the pre-heuristic information is useless with local search.

Therefore, it will be omitted in the following implementation.

The QAP can best be described as the problem of assigning a set of facilities (n) to a

set of locations (n) with given distances between the locations and given flows

between the facilities. The flows and locations are two n × n matrices dented by A

and B respectively, where 𝑎𝑖𝑗 is the flow between facility i and j, and 𝑏𝑟𝑠 is the

distance between location r and s. The objective is to place the facilities on locations

in such a way that the sum of the product between flows and distances is minimal.

When RMMAS is applied to QAP, like other ACO algorithms, the way the solutions

are constructed has to be defined first. The way of MMAS in formulating QAP is

 95

followed by RMMAS. It is by assigning facilities in some order to locations. Thus,

the pheromone trail 𝜏𝑖𝑗 refers to a specific location for facilities, that is, 𝜏𝑖𝑗

represents the desirability of assigning facility i to location j. The ants are used to

construct valid solutions for QAP, assigning every facility to exactly one location

and not using a location by more than one facility. In this way, a facility is randomly

chosen among the still unassigned ones. Then, this facility is put on some free

location according to the following probability distribution rule (Dorigo & Stützle,

2004).

𝑝𝑖𝑗 = {

𝜏𝑖𝑗

∑ 𝜏𝑖𝑙𝑙 𝜖 𝑈(𝑘)
, 𝑖𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 𝑖𝑠 𝑠𝑡𝑖𝑙𝑙 𝑓𝑟𝑒𝑒

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.5)

where U(K) denotes the set of unassigned items. The intuition behind this rule is to

prefer the high 𝜏𝑖𝑗 values, which are the promising location j for facility i.

Following the application of MMAS to QAP, RMMAS utilizes the pseudo-random

proportional rule (one of the important features in ACS) (Dorigo & Stützle, 2004).

𝑗 = {
arg 𝑚𝑎𝑥𝑙 ∈𝑈 (𝑘) {𝜏𝑖𝑙} 𝑖𝑓 𝑝 ≤ 𝑝0 (𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛)

𝑆 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛)
 (4.6)

where p is a random number uniformly distributed in [0, 1] and S is a random

variable with probability distribution given by Equation 4.7. The parameter p0

controls the exploitation of the accumulated experience reflected in the pheromone

trail matrix versus the biased exploration of new solutions.

 96

In the following sections, the performance of RMMAS compared with the original

performance of MMAS is presented. The results show that RHs are positively

affected by the quality of solutions generated by RMMAS since it outperformed

MMAS for short/long execution time on small/large scale instances of QAP.

4.2.4 Experimental Design for Developing Reactive Heuristics

The main goals of the experiments conducted in the development of RHs are: i)

identifying effective reaction using various restart strategies; ii) evaluating RHs

without local search; and iii) evaluating RHs when RMMAS is coupled with local

search. To achieve these goals, TSP and QAP are used in the experiments. Six ACO

variants, they are AS and EAS from Dorigo (1992), RAS (Bullnheimer et al., 1997),

BWAS (Cordon et al., 2000), ACS (Dorigo & Gambardella, 1997) and MMAS (Stützle

& Hoos, 2000), are used in the comparisons for TSP experiments, while only MMAS

is used in the comparisons for QAP experiments, as MMAS is better than the other

five ACO variants in solving QAP. The 3-opt local search algorithm is used

wherever the local search is coupled with ACO in the experiments. CTM, SRM and

QSM (see Chapter Three) are used as comparative measures in the evaluation.

Wherever the results are indecisive, the non-parametric statistical tests, Wilcoxon

and Chi-square, are used to verify the significance of such results. Ten experiments

are conducted for each of the TSP and QAP instances. The running time for each

experiment is set to 10 seconds. The execution times are proportional to the size and

the structure of the instance. The same approach is applied in the work of

Gambardella, Taillard, and Dorigo (1999). These time durations are for short-

execution. The experiments are conducted on a Windows 8 64-bit operating system,

 97

processor Intel Core i3-3217U with CPU @ 1.80GHz, RAM 4GB. The proposed

algorithm is coded in C language. The QAP and TSP instances are selected from

QAPLIB (Burkard et al, 1997) and TSPLIB (Reinelt, 1991) repositories respectively.

The parameter settings are selected from Dorigo and Stützle (2004) when ACO

variants are coupled with local search for TSP, while the following configuration is

followed when local search is excluded. The parameter settings are based on the

literature of each ACO variant. The number of ants (m) is equal to the number of

cities, except ACS where m is equal to 10. The pheromone intensity (α) and pre-

heuristic distance (β) are equal to 1 and 2 respectively for all variants. Evaporation

rate (ρ) is 0.5 for AS and EAS; 0.1 for RAS, BWAS and ACS; and 0.02 for MMAS.

Some ACO variants have several additional parameters. The settings for these

parameters are: RAS: number of ranks (r) are 6; ACS: q0 is 0.9; local update

parameter is 0.1; number of nearest neighbor cities is 20 for all ACO variants. The

initial pheromone (τ0) is set to 1 𝜌 ∗ 𝐶𝑛𝑛⁄ in MMAS and to 1 𝑛 ∗ 𝐶𝑛𝑛⁄ in ACS. In the

original papers of AS, EAS, and RAS, it did not exactly define the value of τ0.

Hence, it is set to 1 𝜌 ∗ Cnn⁄ .

ACO variants are tested with and without restart (+rs and –rs respectively). Those

with restarts used in the experiments are as follows: i) using acceptance criteria with

∈ = 250 and initial pheromone is set to τ0; ii) using the same setting for acceptance

criteria but with initial value equal to τmax; and iii) using acceptance criteria and

lambda branching factor with initial value equal to τmax. The parameter settings are

selected from the literature of MMAS-QAP where the number of ants (m) is equal to

 98

5; the pheromone intensity (α) is equal to 1; evaporation rate (ρ) is 0.8 and the

exploration/exploitation parameter q0 is equal to 0.5.

4.2.5 Results of Applying Reactive Heuristics

The results of applying RHs to ACO are reported. The results are divided into three

parts; these are the results of identifying effective reaction in ACO, the results of

evaluating RHs without local search, and the results of evaluating RHs when coupled

with local search.

The first part of results reports the impact of RHs of restart reaction. The results

showed that the SRM test for AS is worsened with restarts unlike elitist variants that

tend to be more exploitative. The best performance with restarts was obtained by

MMAS, while BWAS was the worst without restarts as illustrated in Tables 4.1 and

4.2.

Table 4.1

Results of Identifying Effective Reaction using SRM and CTM Tests

ACO

variant

SRM CTM

-rs

+rs

-rs

+rs

τ0 τmax τ0 τmax

Acceptance

criteria

Acceptance

criteria

Branching

factor +

Acceptance

criteria

Acceptance

criteria

Acceptance

criteria

Branching

factor+

Acceptance

criteria

AS 0/10 0/10 0/10 - - - - -

EAS 0/10 2/10 0/10 - - 3 - -

RAS 1/10 2/10 3/10 - 0.1 0.2 0.13 -

BWAS 0/10 0/10 0/10 - - - - -

ACS 1/10 1/10 1/10 - 0.19 8.6 1.03 -

MMAS 2/10 6/10 4/10 8/10 0.67 1.7 2 0.64

It is worth mentioning that the quality of solutions is highly influenced if restarts are

used. Using dual feedback criteria (i.e. branching factor and acceptance criteria), the

 99

pheromone model of MMAS outperforms the others. The CTM test using dual

feedback criteria in MMAS shows some improvement using restarts (0.64 sec). It

can be concluded that the way of managing pheromone in the pheromone model is

the key for a successful restart. The restart mechanism in these experiments is a

straightforward example for reaction. The optimal solution for eil51.tsp is 426 and

successful runs equal to the number of tries which are terminated with optimal

solution/ number of tries, and the effect of the restarting mechanism in several ACO

variants on the way of managing pheromone in the pheromone model is evaluated.

The best effect is selected.

Table 4.2

Results of Identifying Effective Reaction using QSM Tests

ACO

variant

QSM (Best) QSM (Mean)

-rs

+rs

-rs

+rs

τ0 τmax τ0 τmax

Acceptance

criteria

Acceptance

criteria

Branching

factor +

Acceptance

criteria

Acceptance

criteria

Acceptance

criteria

Branching

factor+

Acceptance

criteria

AS 429 430 431 - 434 436 437 -

EAS 428 426 427 - 433 430 431 -

RAS 426 426 426 - 430 428 428 -

BWAS 450 427 429 - 468 431 435 -

ACS 426 426 426 - 428 430 427 -

MMAS 426 426 426 426 427 427 427 426

The second part of results is reported in Table 4.3, which displays the results of

evaluating RHs in RMMAS without local search. The evaluation is comparison-

based where RMMAS is compared with MMAS in TSP. Excluding local search

entails testing RH impact under high explorative environment. The quality of

solutions measured by QSM in RMMAS is better than RMMAS. The best solutions,

the mean of the best solutions within the ten tries are obviously superior to the

 100

MMAS ones. The results show the stability in the performance of RMMAS because

of the incorporating RHs.

Table 4.3

Results of Evaluating the Effectiveness of RHs in TSP without Local Search using

QSM Tests

TSP

Optimum

MMAS RMMAS

instance
QSM

(Mean)

QSM

(SD)
QSM (Best)

QSM

(Mean)

QSM

(SD)
QSM (Best)

berlin52 7542.0 7542.0 0.00 7542.0 7542.0 0.00 7542.0

st70 675.0 677.1 1.85 675.0 676.9 2.88 675.0

Eil76 538.0 538.6 0.52 538.0 538.4 0.52 538.0

pr76 108159.0 108265.0 285.81 108159.0 108173.9 47.12 108159.0

gr96 55209.0 55671.8 74.00 55601.0 55560.9 71.02 55434.0

rat99 1211.0 1211.9 0.88 1211.0 1211.1 0.32 1211.0

KroA100 21282.0 21342.0 52.14 21282.0 21334.4 47.96 21282.0

KroB100 22141.0 22301.9 30.26 22237.0 22294.1 23.29 22237.0

KroC100 20749.0 20797.0 69.12 20749.0 20789.1 68.57 20749.0

KroE100 22068.0 22337.2 148.60 22068.0 22268.8 137.21 22068.0

rd100 7910.0 7922.5 16.21 7910.0 7919.9 12.49 7910.0

In fact, results of Table 4.3 reflect the impact of RHs under explorative environment

as this experiment is without local search, the exploitation component and the

population diversity is high as the TSP fitness landscape is rugged. The effectiveness

of RHs is proportional to such ruggedness as more local optima entail more restart

recalls. At each restart, the use of RHs as local heuristics provides the transition

probabilistic rule of construction solution function (see Equation 4.4) with a sketch

of local optima in terms of one’s values (see Equation 4.3). In this way, the arbitrary

behavior of restart mechanism to escape the stuck in local optima has become

steadier resulting in high quality solutions.

The third part of results is reported in Figures 4.4 and 4.5. The y-axis visualizes the

quality of solutions measured by QSM (mean), while the x-axis presents each of the

MMAS and RMMAS algorithms.

 101

 (a) (b)

 (c) (d)

 (e) (f)

Figure 4.4. Results of Evaluating the Effectiveness of RHs in TSP with Local Search

using QSM (Mean) Test

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

d198

Q
SM

 (
m

e
an

)

TSP Instance

MMAS+LS(3-opt)

RMMAS+LS (3-opt)

50840

50850

50860

50870

50880

50890

50900

50910

50920

pcb442

Q
SM

 (
m

e
an

)

TSP Instance

MMAS+LS(3-opt)

RMMAS+LS (3-opt)

57840

57860

57880

57900

57920

57940

57960

57980

58000

58020

pcb1173

Q
SM

 (
m

e
an

)

TSP Instance

MMAS+LS(3-opt)

RMMAS+LS (3-opt)

42010
42020
42030
42040
42050
42060
42070
42080
42090
42100
42110

lin318

Q
SM

 (
m

e
an

)

TSP Instance

MMAS+LS(3-opt)

RMMAS+LS (3-opt)

8850

8855

8860

8865

8870

8875

8880

rat783

Q
SM

 (
m

e
an

)

TSP Instance

MMAS+LS(3-opt)

RMMAS+LS (3-opt)

390650

390700

390750

390800

390850

390900

390950

391000

391050

391100

pr2392

Q
SM

 (
m

e
an

)

TSP Instance

MMAS+LS(3-opt)

RMMAS+LS (3-opt)

 102

The said algorithms are coupled with 3-Opt local search to solve large TSP

instances. This adherence to the 3-Opt way of local search (exploitation component)

is to investigate the interrelation between RHs and stochastic local search in large

search space. The overall performance of RMMAS outperforms one of MMAS in

solving all TSP instances except rat732.tsp. However, the RMMAS is not a well-

tuned algorithm compared to MMAS.

Again, the effectiveness of RHs has been verified in large search space under the 3-

Opt local search circumstance where ants explores distant neighborhoods of the

current incumbent solution by conducting three moves from there to a new one if and

only if an improvement was made. Using the local heuristics of RHs will help the

ants to escape the local optima, if the improvement was not made. It further suggests

steady movement to another untraversed neighborhood structure.

In Figure 4.5, the y-axis visualizes the quality of solutions measured by QSM (SD)

of the best solutions found during the ten runs conducted to solve TSP instances. The

x-axis presents each TSP instance in the performance of MMAS and RMMAS

algorithms when coupled with the 3-opt local search. The results showed that the

proposed RMMAS has produced good solutions for all TSP instances.

 103

Figure 4.5. Results of Evaluating the Effectiveness of RHs in TSP with Local Search

using QSM (SD) Test

For QAP, the results of evaluating RHs in QAP with local search are reported in

Table 4.4. The results showed that RHs are useful for solving QAP, especially when

pre-heuristics information is not given in advance. However, the results were

inconclusive. Therefore, to verify the improvement in a more formal way, the

Wilcoxon signed-ranks and Chi-Square statistical tests are performed as in Figure

4.6. Wilcoxon test is performed with 0.05 significance level and one-tailed

hypothesis. It is based on the positive and negative ranks of the compared

algorithms. The statistical results showed the outperformance of RMMAS over

MMAS in the number of ranks. In the comparison of means, MMAS collects (37),

while RMMAS collects (135). The p-value is 0.001659. The result is significant at p

≤ 0.05. In the comparison of standard deviations, MMAS collects (89), while

RMMAS collects (101).

2.53

57.82

40.13
29.73

158.9

2.52

54.93

39.52

22.31

93.77

d198 lin318 pcb442 rat783 pcb1173

MMAS+LS(3-opt) RMMAS+LS(3-opt)

 104

Table 4.4

Results of Evaluating the Effectiveness of RHs in QAP with Local Search using QSM

Tests

QAP
Best known

Solution
Seconds

MMAS-QAP RMMAS-QAP

instance
QSM

(Mean)

QSM

(SD)

QSM

(Best)

QSM

(Mean)

QSM

(SD)

QSM

(Best)

bur26a 5426670 8 5427097 636 5426670 5427083 453 5426670

bur26b 3817852 8 3817935 73 3817852 3817914 47 3817852

bur26c 5426795 8 5426893 107 5426795 5426906 113 5426795

bur26d 3821225 8 3821255 48 3821225 3821305 102 3821232

bur26e 5386879 8 5387074 185 5386879 5386983 136 5386879

bur26f 3782044 8 3782048 6 3782044 3782048 4 3782044

bur26g 10117172 8 10117324 182 10117172 10117642 329 10117208

bur26h 7098658 8 7098708 103 7098658 7098757 163 7098658

chr25a 3796 4 4562 172 4304 4547 197 4258

els19 17212548 2 17241610 43635 17212548 17247256 43395 17212548

kra30a 88900 8 95609 224 95145 95600 313 94960

kra30b 91420 9 92298 217 91900 92248 277 91910

tai20b 122455319 3 122667105 172642 122455319 122577869 184990 122455319

tai30b 637117113 9 638804383 580656 637743822 638791883 447120 637893225

tai35b 283315445 15 284997173 371182 284180375 284723472 372055 284166043

tai40b 637250948 24 639646179 677314 638452551 639486444 641417 638610455

tai50b 458821517 50 461287056 853848 459959918 461197868 637008 459972346

tai60b 608215054 90 612310940 960895 611081614 612127094 1104145 610575173

tai80b 818415043 225 828968489 3493073 822936304 828329508 2059747 824542441

Figure 4.6. Results of Evaluating the Effectiveness of RHS in QAP with Local

Search using Wilcoxon Test

The p-value is 0.40517. The result is not significant at p ≤ 0.05. In the comparison of

best solutions, MMAS collects (40), while RMMAS collects (26). The p-value is

 105

0.26763. The result is not significant at p ≤ 0.05. In the number of ranks for the best

solutions, RMMAS did not outperform MMAS, but the overall improvement is not

affected. To verify the overall performance, the statistical Chi-square test (see Table

4.5) for frequencies is performed. The significance level used is equal to 0.05. The

result is significant at p < 0.05 because the p-value is < 0.00001.

Table 4.5

Results of Evaluating the Effectiveness of RHs in QAP with Local Search using Chi-

Square Test

Number of ranks RMMAS ranks MMAS ranks Row Totals

Ranks of the means 135 (105.29) 37 (66.71) 172

Ranks of the SD's 101 (116.31) 89 (73.69) 190

Ranks of the best solutions 26 (40.40) 40 (25.60) 66

Column Totals 262 166 428 (Grand Total)

So far, the advantage of RHs is to traverse the neighborhood structures drawn by

ants. It may be dominated by the neighborhood structures drawn by local search

procedures. In this way, the influence of RHs is significant only when local search is

not applied. In fact, local search is one of the successful applications for improving

the quality of solutions within ACO. Therefore, the recursive local search (RLS)

technique has been used to avoid sacrificing neither the RHs nor local search. Its

idea is based on reinforcing the influence of local search by solving its

incompleteness in transferring the promising solutions found in previous generations

of ants to the future generations.

4.2.6 Recursive Local Search Development

In the memory model development, the population-based memory (PbM) scheme is

designed to promote continuous aggressive exploitation. This can be done using the

 106

proposed RLS technique. It is designed to intensify the search inside the

neighborhood structure. After ants generate their solutions, the local search

procedures will be used to improve each solution before they enter a fixed size

population vector, denoted as P. At the same time, the best solutions in the current

iteration will be added into the P. While the number of added solutions does not

exceed the maximum size of P, the addition process will continue. Once P is full, the

old added solution, denoted by best_old solution, will be temporarily removed from

P and entered into local search again. If the quality of the just removed solution is

improved by the local search, then it will be added again into the P vector; otherwise

it will be totally removed. Figure 4.7 depicts the scheme of this functionality.

Figure 4.7. The PBM Scheme in Memory Model Development

The RLS technique is designed to overcome the limitation in local search procedures

in ACO, where they suffer a premature exploitation because of the incompleteness in

transferring neighborhood structures found in the previous search to the next

iterations. Figure 4.8 shows the pseducode of the RMMAS algorithm when coupled

with the RLS technique. The problem occurs because of the reliance on the current

neighborhood structure with ignoring previous structures. In addition to the current

 107

neighborhood structures, this mechanism exploits the old-best solutions that are the

good solutions in previous structures. The local search procedures are the successful

algorithms to traverse the neighborhood structures. Apart from using local search,

the ants have their own way to search the neighborhood. Whether the best solution is

the best so-far/iteration solution or the old best one, it has to enter a population

vector. This recursive way of search neighborhood contributes in a more complete

exploitation and is able to produce high quality solutions.

Algorithm 4.2: RMMASRLS

 InitializeParameters ()

 Initialize_T_Memory ()

 Initialize_RH_Memory () // CbM scheme

 Initialize_P_Memory () // PbM scheme

 while (not terminate) do

 for k ≔ 1 to m do

 if (no stagnation) do

 ConstructSolutions (T, C)

 else

 ReactiveRestart (Sgb, Sk, History)

 ConstructSolutions (T, C, RH)

 end-else

 end-if

 Sib ← argmin{f(Sk | k≔1 to m)}

 if (f(Sib) < f(Sgb))

 Sgb ← argmin{f(Sgb), f(Sib)}

 S’gb ← LocalSearch(Sib)

 Sgb ← argmin{f(Sib), f(S’ib)}

Add (Sgb)

 if (P = |P|)

 Sob ← Drop ()

 S’ob ← RLS (Sob)

 Sob ← argmin{f(Sob), f(S’ob)}

 else

 if(f(Sob) < f(Sgb))

 Add(Sob)

 else

 Add(Sib)

 Evaporate (RH, Τ, τmin)

 DepositPheromone (Τ, Sgb)

 end-for

 end-while

end-algorithm

Figure 4.8. The Pseducode for RMMAS Algorithm with RLS Technique

 108

4.2.7 Experimental Design for Developing RLS Technique

To test the influence of the RLS technique on ACO-based local search algorithms,

two parts of experimental comparisons need to be conducted. These are to test the

influence of RLS on the behavior of the several stochastic local search algorithms

when solving the same CO problem, and to test the influence of RLS when solving

different CO problems. Five ACO-based local search algorithms are used in the first

type of experiments in TSP, while two CO problems are used in the second

experiment. The results extend the findings of the previous sections. Ten tries of

experiment are conducted for each instance of QAP used in the experiment. The stop

condition is proportional to the size and the structure of the instance. The same

approach is applied in the work of Gambardella, Taillard, and Dorigo (1999) for

long/short execution time. The parameter settings are selected from the literature of

MMAS-QAP, where the number of ants (m) is equal to 5; the pheromone intensity

(α) is equal to 1; evaporation rate (ρ) is 0.8, and the exploration/exploitation

parameter q0 is 0.5. The metrics that are needed to be tested are the average and

standard deviations for finding the best quality of solutions for the ten independent

runs, therefore, QSM tests are used as a comparative measure.

4.2.8 Results of Applying RLS Technique

The influence of the RLS technique on the optimization process is reported into two

parts. These are the evaluation against various ACO’s performances in one CO

problem and the evaluation against various CO problems in one ACO variant.

Figures 4.9 (a)-(f) present the first part, while the second part is reported in Figures

4.10 (a)-(f) for TSP, and in Tables 4.6 and 4.7 for QAP.

 109

For the first part of results, the y-axis visualizes the quality of solutions measured by

QSM of the mean of the best solutions found during the ten runs. The x-axis

represents five standard stochastic local search algorithms, namely ASLS, EASLS,

RASLS, ACSLS, BWASLS. The experiments covered three sizes of TSP instances:

small, medium and large.

 (a) (b)

 (c) (d)

15776

15778

15780

15782

15784

15786

15788

d198

Q
SM

 (
m

e
an

)

TSP Instance

AS+LS(3-opt)

EAS+LS(3-opt)

RAS+LS(3-opt)

ACS+LS(3-opt)

BWAS+LS(3-opt)

RMMAS+RLS(3-
opt) 41950

42000

42050

42100

42150

42200

42250

lin318

Q
SM

 (
m

e
an

)

TSP Instance

AS+LS(3-opt)

EAS+LS(3-opt)

RAS+LS(3-opt)

ACS+LS(3-opt)

BWAS+LS(3-opt)

RMMAS+RLS(3-
opt)

50700

50800

50900

51000

51100

51200

51300

pcb442

Q
SM

 (
m

e
an

)

TSP Instance

AS+LS(3-opt)

EAS+LS(3-opt)

RAS+LS(3-opt)

ACS+LS(3-opt)

BWAS+LS(3-opt)

RMMAS+RLS(3-
opt)

8700

8750

8800

8850

8900

8950

9000

rat783

Q
SM

 (
m

e
an

)

TSP Instance

AS+LS(3-opt)

EAS+LS(3-opt)

RAS+LS(3-opt)

ACS+LS(3-opt)

BWAS+LS(3-opt)

RMMAS+RLS(3-
opt)

 110

 (e) (f)

Figure 4.9. Results of Evaluating the Effectiveness of RLS on Various ACO

Algorithms using QSM Test

For the small sized instances, the performance of the tested ACO algorithms started

equally, except in AS algorithm, which was bad due to the early conference problem

(see Figure 4.9 (a)). When the size is increased by using lin318.tsp, the performance

of the tested algorithms starts to be disparate. In Figure 4.9 (b), the results confirmed

the outperformance of the proposed algorithm. The proposed technique is beneficial

in solving small scale instances for the TSP problem.

For the medium sized instances, the outperformance of the proposed algorithm

continues (see Figure 4.9 (c)-(d)). Therefore, the proposed technique is still

beneficial in solving this size of instances for the TSP problem. For the large sized

instances, the proposed algorithm showed small outperformance (see Figure 4.9 (e)-

(f)). The proposed technique is still beneficial in solving large sized instances for the

TSP problem, except in pcb1173.tsp instance, in which the results were competitive,

but not better than BWASLS. As for the overall performance which is collected and

56800

57000

57200

57400

57600

57800

58000

58200

58400

58600

pcb1173

Q
SM

 (
m

e
an

)

TSP Instance

AS+LS(3-opt)

EAS+LS(3-opt)

RAS+LS(3-opt)

ACS+LS(3-opt)

BWAS+LS(3-opt)

RMMAS+RLS(3-
opt)

389000

389500

390000

390500

391000

391500

392000

pr2392

Q
SM

 (
m

e
an

)

TSP Instance

AS+LS(3-opt)

EAS+LS(3-opt)

RAS+LS(3-opt)

ACS+LS(3-opt)

BWAS+LS(3-opt)

RMMAS+RLS(3-
opt)

 111

evaluated by this part of experiments, the proposed RLS mechanism is beneficial in

solving all sizes of TSP even with tight run time.

For the second part of results, the previous experiments are extended by considering

various CO problems on one hand, and by the comparison with one ACO variant on

the other hand. MMAS is considered in the comparison with RMMAS in TSP and

QAP. In Figure 4.10, the y-axis visualizes the quality of solutions measured by QSM

(mean) of the best solutions found during the ten runs conducted to solve TSP.

 In Figures 4.10 (a)-(f), the results showed that the proposed technique outperforms

MMASLS in all TSP instances. In the pcb442.tsp instance, the proposed algorithm

did not profit from the RLS mechanism. It can be seen from the results that coupling

different local search procedures with the MMAS algorithm did not affect the

outperformance of the proposed algorithm. That is because of the aggressive

exploitative behavior of RMMASRLS throughout the searching period with the ability

to turn to exploration when it is needed.

(a) (b)

0

5000

10000

15000

20000

d198

Q
SM

 (
m

e
an

)

TSP Instance

MMAS+LS(3-opt)

RMMAS+LS (3-opt)

RMMAS+RLS (3-opt)

42000

42020

42040

42060

42080

42100

42120

lin318

Q
SM

 (
m

e
an

)

TSP Instance

MMAS+LS(3-opt)

RMMAS+LS (3-opt)

RMMAS+RLS (3-
opt)

 112

 (a) (b)

 (c) (d)

 (e) (f)

Figure 4.10. Results of Evaluating the Effectiveness of RLS in TSP using QSM Test

For the QAP, the results are reported in Tables 4.6 and 4.7. The results showed that

that RMMASRLS performs better than the original MMAS for the short-runs. The

insight that can be concluded is the effectiveness of RLS technique as an exploitation

component when coupled with RMMAS for short and long runs.

50840

50850

50860

50870

50880

50890

50900

50910

50920

pcb442

Q
SM

 (
m

e
an

)

TSP Instance

MMAS+LS(3-opt)

RMMAS+LS (3-opt)

RMMAS+RLS (3-opt)

8780
8790
8800
8810
8820
8830
8840
8850
8860
8870
8880
8890

rat783

Q
SM

 (
m

e
an

)

TSP Instance

MMAS+LS(3-opt)

RMMAS+LS (3-opt)

RMMAS+RLS (3-
opt)

57000

57200

57400

57600

57800

58000

58200

pcb1173

Q
SM

 (
m

e
an

)

TSP Instance

MMAS+LS(3-opt)

RMMAS+LS (3-opt)

RMMAS+RLS (3-opt)

389200
389400
389600
389800
390000
390200
390400
390600
390800
391000
391200

pr2392

Q
SM

 (
m

e
an

)

TSP Instance

MMAS+LS(3-opt)

RMMAS+LS (3-opt)

RMMAS+RLS (3-opt)

 113

Table 4.6

Results of Evaluating the Effectiveness of RLS in QAP using QSM Test for Short-Run

QAP
Best known

Solution
Seconds

MMASLS RMMASRLS

instance
QSM

(Mean)

QSM

(SD)

QSM

(Best)

QSM

(Mean)

QSM

(SD)

QSM

(Best)

bur26a 5426670 8 5427097 636 5426670 5426670 0 5426670

bur26b 3817852 8 3817935 73 3817852 3817852 0 3817852

bur26c 5426795 8 5426893 107 5426795 5426795 0 5426795

bur26d 3821225 8 3821255 48 3821225 3821225 0 3821225

bur26e 5386879 8 5387074 185 5386879 5386879 0 5386879

bur26f 3782044 8 3782048 6 3782044 3782044 0 3782044

bur26g 10117172 8 10117324 182 10117172 10117172 0 10117172

bur26h 7098658 8 7098708 103 7098658 7098658 0 7098658

chr25a 3796 4 4562 172 4304 4177 99 3984

els19 17212548 2 17241610 43635 17212548 17212548 0 17212548

kra30a 88900 8 95609 224 95145 94372 157 94130

kra30b 91420 9 92298 217 91900 91523 120 91420

tai20b 122455319 3 122667105 172642 122455319 122455319 0 122455319

tai25b 344355646 5 345428471 762772 344653810 344379559 75620 344355646

tai30b 637117113 9 638804383 580656 637743822 637218046 258852 637117113

tai35b 283315445 15 284997173 371182 284180375 283768905 241686 283315445

tai40b 637250948 24 639646179 677314 638452551 637375646 133920 637250948

tai50b 458821517 50 461287056 853848 459959918 459293938 126779 459121468

tai60b 608215054 90 612310940 960895 611081614 608922672 297495 608387539

tai80b 818415043 225 828968489 3493073 822936304 822384964 1731411 820317326

Table 4.7

Results of Evaluating the Effectiveness of RLS in QAP using QSM Test for Long-Run

QAP
Best known

Solution
Seconds

MMASRL RMMASRLS

instance
QSM

(Mean)

QSM

(SD)

QSM

(Best)

QSM

(Mean)

QSM

(SD)

QSM

(Best)

bur26a 5426670 50 5426670 0 5426670 5426670 0 5426670

bur26b 3817852 50 3817853 4 3817852 3817852 0 3817852

bur26c 5426795 50 5426796 2 5426795 5426795 0 5426795

bur26d 3821225 50 3821225 0 3821225 3821225 0 3821225

bur26e 5386879 50 5386879 0 5386879 5386879 0 5386879

bur26f 3782044 50 3782044 0 3782044 3782044 0 3782044

bur26g 10117172 50 10117172 0 10117172 10117172 0 10117172

bur26h 7098658 50 7098658 0 7098658 7098658 0 7098658

chr25a 3796 40 4154 116 3946 4042 144 3796

els19 17212548 20 17212548 0 17212548 17212548 0 17212548

kra30a 88900 76 94588 151 94340 94239 148 93930

kra30b 91420 86 91517 88 91420 91434 29 91420

tai20b 122455319 27 122455319 0 122455319 122455319 0 122455319

tai25b 344355646 50 344496014 122804 344355646 344355646 0 344355646

tai30b 637117113 90 637612929 440084 637152585 637128942 11091 637117113

tai35b 283315445 147 284231012 101855 284027477 283378972 134301 283315445

tai40b 637250948 240 638153448 381309 637598806 637259823 19516 637250948

tai50b 458821517 480 460204146 349142 459529895 459036877 59112 458923553

tai60b 608215054 855 610393364 462570 609780832 608563150 104995 608387539

 114

The importance of the proposed technique is achieving the desired balance between

RHs as an exploration contributor to the last phase of search and RLS as an

exploitation contributor to the initial phase of search. Without RLS technique, the

RMMAS algorithm tends to be more explorative and produces suboptimal solutions

in short run. Without RHs, the algorithm RMMAS got stuck in some runs as it tends

to be more exploitative. The balance is most evident on bur26x instances in which

RMMAS succeeded in solve all instances to the optimality in short-run (see Table

4.6). The same concern goes to the application of RMMAS to large instances where

exploration and exploitation are needed decisively. The high quality solutions that

produced by RMMAS for tai30b, tai35b, tai40b, tai50b and tai60b instances are

another evident on the well E&E balance. Without this balance, the problem of

premature exploitation induced by the incompleteness of traversing the

neighborhood structures impedes the production of high quality solutions.

4.3 Summary

The memory is an essential component in reactive search. This chapter discussed the

combination between additional memory features and the distributed computation of

ACO. The component-based and population-based memory schemes are two sides of

the same coin, which is the memory model. This help in addressing the problems of

arbitrary restarts and premature exploitation in local search by the proposal of

RMMAS, the new ACO variant. The E&E components of RMMAS, i.e. the reactive

heuristics and recursive local search with the help of the memory model, have been

evaluated independently using the experimental comparison approach. Different

experimental designs have been used to ensure a fair comparison. Empirical and

 115

statistical results have verified the significant improvements in the quality of

solutions produced by RMMAS as the exploration and exploitation balance is the

profound implication of this high performance. As the exploration versus

exploitation is a dynamic strategy, the upcoming chapter elaborates on when and

how this dynamism undertakes.

 116

EXPLORATION MEASUREMENT AND ADAPTIVE

PARAMETERS’ SELECTION

5.1 Introduction

This chapter discusses the exploration measurement and the parameters’ selection in

ACO. Sections 5.2-5.4 propose the so-called ACOustic exploration indicator for the

exploration measurement; its experimental design and results. It is important for

reactive-based ACO search, tuning an ACO algorithm, online parameter values

selection; describing the amount of exploration an algorithm performs, and detecting

stagnation situations. Section 5.5 describes the parameters’ selection problem.

Section 5.6 proposes the strategy of the selection of parameter values during the run.

Section 5.7 proposes the strategy of rewarding the promising values. The proposals

verified by experiments and results are described in Sections 5.8 and 5.9

respectively. The chapter is summarized in Section 5.10.

5.2 ACOustic for Exploration Measurement

The process of enhancing the exploration measurement is introduced by proposing

the ACOustic indicator. The idea of indication is inspired from the acoustical

mimicry in the ants-parasites systems. The schema of this iterative process in nature

is modeled as shown in Figure 5.1.

 117

Figure 5.1. The Process of the Modeling and the Implementation of ACOustic

The ACOustic mechanisms are implemented and evaluated within the ACO

algorithm. ACOustic is a statistical machine learning tool inspired by the acoustic

reaction in nature. So far, utilizing traditional measures, such as acceptance criteria,

average λ-branching factor, entropy-based measures (Colas & Monmarch, 2008), or

similarity ratio (Solnon & Fenet, 2005) do not satisfy the requirements of reactive

search. They are simply not machine learning methods, except the exploration

measure developed by Pellegrini et al., (2009). It utilizes agglomerative clustering to

quantify the exploration as the number of clusters of solution visited as follows.

𝐸 (𝐵, 𝐼, 𝑅, ℎ) = | 𝐿(𝐵, 𝐼, 𝑅, ℎ)| (5.1)

where, L is the set of clusters resulting from the solutions visited by the algorithm B

when solving the instance I using the resources R and the seed h. Given such

definition, two closest clusters can be concluded when the distance between them is

greater than a predefined threshold ϵx where x% of their arcs does not exist in the

cluster. However, the definition needs to be reconsidered in terms of robustness

against various circumstances.

 118

According to Pellegrini and Favaretto (2012), such threshold must be coherent with

the magnitude of the distance matrix. In TSP, ϵx = 7.8 in MMAS without local

search, ϵx = 17.5 in MMAS with 2-opt local search and ϵx = 35.8 with 3-opt local

search. The situation changes with the change of circumstances. For example, ϵx =

1.003 when it is applied to genetic algorithms with no local search, ϵx = 16.56 with

2-opt local search, and ϵx = 46.5 with 3-opt local search. Therefore, this situation

leads to an unstable measurement, especially when more rugged CO problem’s

instances, such as QAP, need to be solved by algorithm B. This problem has been

solved in ACOustic. To present the overall idea, the following subsections discuss:

the biological schema; modeling ACOustic, the implementation and evaluation.

5.2.1 The Biological Schema

Rapid and effective communication between ants is a key attribute that enables them

to live in dominant, fiercely protected societies. Myrmica ant colonies, in particular,

are exploited by social parasites called Maculinea butterflies (Barbero et al., 2012).

The process of Trophallaxis (i.e. distributing liquid food from the 'social stomach')

between attendance worker and other nest-mates is the main process in the food

foraging behavior of ants. The worker ants produce acoustics during the process. The

Maculinea larvae interfere with the Myrmica system and produce similar acoustics to

that of the colony. The high number of worker ants leads to a low relatedness

between nest-mates. A greater variance in nest-mates’ acoustic signals leads to a

higher likelihood of being infested (Barbero, Thomas, Bonelli, Balletto, &

Schönrogge, 2009). Through this indicator, the larva can decide the optimal point to

leave the colony before it is discovered by other ants.

 119

Figure 5.2. The Ants- Parasites System

This given social membership in ants-parasites system, i.e. the Myrmica-Maculinea

system, includes sharing resources such as the process of regurgitating and

distributing liquid food in their 'social stomach' to other hungry nest-mates as

illustrated in Figures 5.3 (a) and (b).

 (a) (b)

Figure 5.3. (a) The Trophallaxis and Antennation between Ants (b) Trophallaxis

between Ants and Parasites

 120

Myrmica workers frequently stridulate during the trophallaxis process. The

stridulatory signal is simple and contains one type of massage, such as “food is

exhausted”. Myrmica queens can generate distinctive sounds to reinforce their

supreme social status. The Maculinea larva interferes with this system and produces

similar sounds to that of the queen (Barbero et al., 2012) as shown in Figure 5.4.

Figure 5.4. The Morphology (Upper Part) and Sounds (Lower Part) of the Acoustical

Organs of (a) Parasites Queen and (b) Ant Queen

The larva is able to evaluate the situation inside the nest whether to leave or stay. If

the relatedness between nest-mates becomes high, then the likelihood of being

clustered around the larva will become low. This is an indication to the larva to

explore another nest before being killed; otherwise the larva will continue to exploit

the current nest until further notice. The acoustic reaction in this process can be

simplified in three basic components as shown in Figure 5.5.

 121

Figure 5.5. The Scheme of Acoustical Indication in Nature

In ACO modeling, the characteristics of artificial ants’ are inspired from the real

ants’ foraging behavior. The construction graph simulates the environment that ants

and larvae agents are moving on. For larvae agents, the interaction with the new

environment is highly related with the state of penetration, i.e. the learning process.

The agents can decide whether to continue with the current exploitation or to explore

another environment. To simulate the process of characterizing the state of

penetration, statistical analyzing and the agglomerative clustering algorithms are

developed in this chapter.

5.2.2 Modeling ACOustic

In this subsection, the way of characterizing the state of penetration is used as a

didactic tool to explain the idea behind the ACOustic’s proposal. The behavior of the

ACO algorithm describes in terms of the exploration and exploitation processes.

According to the scheme described in Figure 5.5, the natural scheme in parasites-ants

system translates into problem-solving models as follows.

Let a construction graph G = (N, A) represent a CO problem, where N is the set of

nodes; A is the set of arcs; |A| = a and |N| = n. The fitness landscape of the given CO

 122

problem is defined by: P is a population set which includes all solutions to the CO

problem, where each solution 𝑠 ∈ 𝑃 is assigned a fitness value f(s); and has a

structure of neighborhood 𝑁 ⊆ 𝑃 × 𝑃. A colony of artificial ants performs a biased

walk in this landscape with the goal of finding low f(s) (in the case of minimization

problems). The set Cp(t) represents the collection of acoustics (sounds) that emanates

from the landscape traversed by the ants of a perspective colony at time t where Cp(t)

⊆ P(t) × P(t) where ci and ci+1 are two acoustics belonging to Cp(t) where ci = {x1,

x2,…, xa}; ci+1= {y1, y2,…, ya} where the long signal of each acoustic is equal to a.

The relatedness between two nest-mates is defined by the similarity between their

acoustics. Two acoustics ci+1 and ci are considered as similar if their similarity

neighborhood SN is below a predefined threshold X.

𝑆𝑁 (𝑐𝑖+1, 𝐶𝑝(𝑡)) = min 𝑑(𝑐𝑖+1, 𝑐𝑖) (5.2)

𝑠 ∈ 𝐶𝑝(𝑡), 𝑡 = 0. . 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑐𝑖+1 ≠ 𝑐𝑖

𝑆𝑁 (𝑐𝑖+1, 𝐶𝑝(𝑡)) > 𝑋 exploration (5.3)

𝑆𝑁 (𝑐𝑖+1, 𝐶𝑝(𝑡)) ≤ 𝑋 exploitation (5.4)

where d is the Euclidian distance between two acoustics in Cp(t) within Euclidian

space Rn. Exploration occurs when SN of the two acoustics is greater than the

boundary of the neighborhood threshold (X), otherwise, it is identified as

exploitation.

A population-based memory scheme is used to record the best-iteration solutions

produced by the algorithm during the run. An agglomerative clustering procedure is

applied to the recorded population every ten iterations. This is to determine the

similarity features of the population through its acoustics during the past ten

 123

iterations. A matrix of distances is defined to conduct the clustering, and then to

detect the number of clusters. The Euclidean distance d between ci and ci+1 is a

common way for finding similarity as follows.

𝑑(𝑐𝑖 , 𝑐𝑖+1) = √∑(𝑥𝑗 − 𝑦𝑗)
2

𝑎

𝑗=1

 (5.5)

The quantity d may have different magnitudes so that it is normalized to the size of

the population.

𝑑𝑛𝑜𝑟𝑚 = 𝑑 |𝑃|⁄ (5.6)

Three statistic medians (mean, variance and standard deviation) are derived in (5.7),

(5.8) and (5.9) respectively.

𝑚𝑟(𝑡) = ∑ ∑ 𝐷𝑖𝑗

𝑚𝑎𝑥

𝑗=𝑖+1

𝑚𝑎𝑥−1

𝑖=1

((𝑚𝑎𝑥2 − max)/2)⁄ (5.7)

𝑣𝑟(𝑡) = ∑ ∑ (𝐶 𝑖𝑗 − 𝑚𝑟)2

𝑚𝑎𝑥

𝑗=𝑖+1

𝑚𝑎𝑥−1

𝑖=1

 (5.8)

𝑠𝑡𝑑𝑟(𝑡) = √𝑣𝑟 (𝑚𝑎𝑥 − 1)⁄ (5.9)

where Dij is the normalized distance between two acoustics and max is the maximum

size of the distance matrix. In order to minimize the computational efforts and keep

the algorithm non-weights the size of matrix fixes to ten, the agglomerative

hierarchical technique is used for calculating the number of clusters as follows.

𝐶𝑁𝑢𝑚 (𝐶𝑝(𝑡)) = | 𝐿 (𝐶𝑝(𝑡))| (5.10)

 124

where L is the set of clusters resulting from the solutions that are visited by the ants.

The statistics and clustering information are combined. The relatedness between ants

can be calculated by finding the difference between the mean of distances and the

number of clusters by the standard deviation of distances as follows.

𝑟𝑙𝑡𝑑𝑛𝑠𝑠 = (𝑚𝑟 − 𝐶𝑁𝑢𝑚) 𝑠𝑡𝑑𝑟⁄ (5.11)

The definition of exploration and exploitation in (5.3) and (5.4) can be reformulated

based on the relatedness between acoustics (𝑟𝑙𝑡𝑑𝑛𝑠𝑠) as follows.

𝑟𝑙𝑡𝑑𝑛𝑠𝑠 > 𝑋𝑟𝑙𝑡𝑑𝑛𝑠𝑠 (𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛) (5.12)

𝑟𝑙𝑡𝑑𝑛𝑠𝑠 ≤ 𝑋𝑟𝑙𝑡𝑑𝑛𝑠𝑠 (𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛) (5.13)

where 𝑋𝑟𝑙𝑡𝑑𝑛𝑠𝑠 denotes the lowest degree of relatedness. It is detected by capturing

the first value of 𝑟𝑙𝑡𝑑𝑛𝑠𝑠 within the first ten iterations. For instance, when 𝐶𝑁𝑢𝑚 is

decreased from 10 to 8, this indicates that what is occurring at this moment is

exploitation. In contrast, if 𝐶𝑁𝑢𝑚 stays as it is, this indicates the exploration is high.

The assignment of 𝑋𝑟𝑙𝑡𝑑𝑛𝑠𝑠 has to be complete within the first ten iterations.

Hereafter, each new value of 𝑟𝑙𝑡𝑑𝑛𝑠𝑠 will be characterized as either exploration or

exploitation accordingly.

5.2.3 ACOustic Implementation

This subsection walks through the implementation of the ACOustic algorithm. The

pseudocode of the algorithm is illustrated in Figure 5.6. The nearest neighborhood

threshold X is entered, the vector of acoustics clusters Ci is defined and other

 125

variables such as miniDist,𝐶𝑁𝑢𝑚, 𝑋𝑟𝑙𝑡𝑑𝑛𝑠𝑠 and max are initialized as in Figure 5.7.

Following the biological way of finding similarities between acoustical signals made

by individual queens and workers (Thomas, Schonrogge, Bonelli, Barbero, &

Balletto, 2010), findSimilarities algorithm generates the matrix of Euclidean

distances between artificial acoustics. Next, the statistical medians are calculated as

in Figure 5.8.

Algorithm 5.1: ACOustic ()

initialization()

 while (not terminate()) do

 {mr, stdr}=findSimilarities ()

 rltdnss = determineRelatedness (mr, stdr)

end- while
return rltdnss

end- algorithm

Figure 5.6. The Pseudocode of Acoustic Algorithm

procedure initialization()

Input: X

Define: C = {C1, C2,.., C|a|} = {{c1}, {c2},.., {c|a|}}

Initialize: miniDist, 𝐶𝑁𝑢𝑚, max

end- procedure

Figure 5.7. The Initialization Procedure

Algorithm 5.2: findSimilarities ()

foreach Ch, Ck ∈ C do

 𝐷 = 𝑑𝑐ℎ ,𝑐𝑘
= √∑ (𝑥𝑖

ℎ − 𝑥𝑖
𝑘)2𝑎

𝑖=1

end-foreach

 𝑚𝑟 = (∑ ∑ (𝐷𝑖,𝑗/𝑚)𝑚𝑎𝑥
𝑗=𝑖+1

𝑚𝑎𝑥−1
𝑖=1 ((𝑚𝑎𝑥2 − 𝑚𝑎𝑥)/2)⁄

𝑣𝑟 = ∑ ∑ (𝐶 𝑖𝑗 − 𝑚𝑟)2𝑚𝑎𝑥
𝑗=𝑖+1

𝑚𝑎𝑥−1
𝑖=1

𝑠𝑡𝑑𝑟 = √
𝑣𝑟

𝑚𝑎𝑥 − 1

end- algorithm

 Figure 5.8. The Pseudocode of Find similarities Algorithm

 126

In determineRelatedness, the minimum distance miniDist is calculated from the

distance matrix that is generated earlier (Figure 5.9). The nearest two clusters are

united, the distance matrix is recalculated, and finally miniDist and the number of

clusters 𝐶𝑁𝑢𝑚 are updated. In Figure 5.9, the number of clusters and the statistics

collected earlier are combined and returned as a relatedness quantifier denoted as

rltdnss.

Algorithm 5.3: determineRelatedness ()

miniDist = min
𝑐ℎ,𝑐𝑘 ∈ 𝐶

𝑑𝑐ℎ ,𝑐𝑘

repeat

 𝐶ℎ = 𝐶𝑘 ∪ 𝐶ℎ

 𝐶 = 𝐶 \{𝐶𝑘}
 foreach Cw ∈ 𝐶 \{𝐶ℎ} do

 𝑑𝑐ℎ ,𝑐𝑤
= 𝑑𝑐𝑤,𝑐ℎ

= min{𝑑𝑐ℎ,𝑐𝑤
, 𝑑𝑐𝑘,𝑐𝑤

}

 end- foreach

 miniDist = min
𝑐ℎ,𝑐𝑘 ∈ 𝐶

𝑑𝑐ℎ ,𝑐𝑘

 nc = | 𝐶 |
until (miniDist ≤ X)

rltdnss ← mr – 𝐶𝑁𝑢𝑚/ stdr

return rltdnss

end- algorithm

Figure 5.9. The Pseudocode of Determine Relatedness Algorithm

5.3 Experimental Design for Developing ACOustic

In this Section, ACOustic is applied for several standard ACO algorithms under

various conditions. The implemented algorithms are AS, EAS, ACS, RAS, MMAS,

BWAS. The aim of the application is: i) to examine the ability of ACOustic for

monitoring the exploration behavior of ACO algorithms when searching two

different fitness landscapes: TSP and QAP; and ii) to evaluate its performance

against the state-of-the-art measurement tool in ACO. Its performance is reported to

be compared with average λ-branching measure for TSP and with exploration

measure for TSP and QAP. In the former comparison, the effect of the parameters of

 127

MMAS algorithm on the exploration and exploitation mechanisms is analyzed.

Several scenarios have been considered. In the latter comparison, the effect of the

raggedness of fitness landscape is analyzed. The shape of the landscape of TSP

versus the one of QAP is considered.

The experimental setting follows the literature. The parameters analyzed are α, β, ρ

and m. The parameter setting suggested by Pellegrini et al., (2012) has been

considered. The stopping criteria considered is either the completion of 350sec (only

the first 3000 iterations are reported) for large instances or finding the optimal

solution for small instances. Using restarts and local search are denoted by +rs and

+ls respectively. Using the same symbols with the minus sign gives the opposite

meaning. The C coding is used in the implemented algorithms. The experiments are

conducted on a Windows 8 64-bit operating system, processor Intel Core i3-3217U

with CPU @ 1.80GHz, RAM 4GB. Each experiment is executed ten times to avoid

the stochastic behavior. The main results of this application are figured as below.

The TSP instances used in the experiments are selected from TSPLIB repository and

from the 8th DIMACS challenge. Following the TSPLIB format, d198 instance is

selected. Following the DIMACS format, one random instance is generated using

portgen, the instance generator adopted in the 8th DIMACS TSP challenge. It is

generated with size = 2000 and seed = 39200. The kra30a.qap instance used in the

experiments is selected from the QAPLIB repository.

5.4 Results of ACOustic’s Application

The general performance of ACOustic is analyzed. The computational results are

twofold. The first part of results reported the robustness of the proposed tool against

 128

the difference in the raggedness of fitness landscapes (Figures 5.10-5.20). The

second part of results reported the ability of the proposed tool to analyze the

convergence behavior of ACO algorithms against different CO problems (Figure

5.21) and different parameter settings (Figure 5.22).

In Figures 5.10-5.15, the y-axis visualizes the exploration while the y-axis represents

the number of objective function evaluations in TSP. The ability of ACOustic to

provide the same exploration insights of the λ-branching measure and the

exploration measure is tested. Results showed that ACOustic is able to draw the same

shape of these measures. Since the neighborhood threshold is mutual characteristic

between ACOustic and exploration measure, it will act as a mirror to reflect the

robustness of each of them against the change in the value of the threshold and the

change the ruggedness in the fitness landscape. For the neighborhood threshold of

ACOustic, the statistical information gathered (mr and stdr of relatedness, see

Equation 5.11) are combined with the number of clusters produced by the

agglomerative clustering procedure included in ACOustic algorithm. With high

ruggedness landscape, both parts of the Equation 5.11 give the same contribution.

Therefore, one cannot find a slight difference between ACOustic and exploration

measure. The comparison with λ-branching measure follows the same concern as it

is statistical indicator.

 129

Figure 5.10. Results of Comparing Acoustic with other Exploration Measures in

TSP with Nearest Neighborhood Threshold = 8

Figure 5.11. Results of Comparing Acoustic with other Exploration Measures in

TSP with Nearest Neighborhood Threshold = 7

Figure 5.12. Results of Comparing Acoustic with other Exploration Measures in

TSP with Nearest Neighborhood Threshold = 6

 -

 2

 4

 6

 8

2
5

2
7

5
2

1
2

5
2

1
7

5
2

2
2

5
2

2
7

5
2

3
2

5
2

3
7

5
2

4
2

5
2

4
7

5
2

5
2

5
2

5
7

5
2

6
2

5
2

6
7

5
2

7
2

5
2

7
7

5
2

8
2

5
2

8
7

5
2

9
2

5
2

9
7

5
2

1
0

2
5

2
1

0
7

5
2

1
1

2
5

2
1

1
7

5
2

1
2

2
5

2
1

2
7

5
2

1
3

2
5

2
1

3
7

5
2

1
4

2
5

2
1

4
7

5
2

Ex
p

lo
ra

ti
o

n

Objective function evaluations

Acoustic measure

Exploration measure

Branching Measure

 -
 2
 4
 6
 8

 10

2
5

2
7

5
2

1
2

5
2

1
7

5
2

2
2

5
2

2
7

5
2

3
2

5
2

3
7

5
2

4
2

5
2

4
7

5
2

5
2

5
2

5
7

5
2

6
2

5
2

6
7

5
2

7
2

5
2

7
7

5
2

8
2

5
2

8
7

5
2

9
2

5
2

9
7

5
2

1
0

2
5

2
1

0
7

5
2

1
1

2
5

2
1

1
7

5
2

1
2

2
5

2
1

2
7

5
2

1
3

2
5

2
1

3
7

5
2

1
4

2
5

2
1

4
7

5
2

Ex
p

lo
ra

ti
o

n

Objective function evaluations

Acoustic measure

Exploration measure

Branching Measure

 -

 2

 4

 6

 8

2
5

2
7

5
2

1
2

5
2

1
7

5
2

2
2

5
2

2
7

5
2

3
2

5
2

3
7

5
2

4
2

5
2

4
7

5
2

5
2

5
2

5
7

5
2

6
2

5
2

6
7

5
2

7
2

5
2

7
7

5
2

8
2

5
2

8
7

5
2

9
2

5
2

9
7

5
2

1
0

2
5

2
1

0
7

5
2

1
1

2
5

2
1

1
7

5
2

1
2

2
5

2
1

2
7

5
2

1
3

2
5

2
1

3
7

5
2

1
4

2
5

2
1

4
7

5
2

Ex
p

lo
ra

ti
o

n

Objective function evaluations

Acoustic measure

Exploration measure

Branching measure

 130

Figure 5.13. Results of Comparing Acoustic with other Exploration Measures in

TSP with Nearest Neighborhood Threshold = 5

Figure 5.14. Results of Comparing Acoustic with other Exploration Measures in

TSP with Nearest Neighborhood Threshold = 4

Figure 5.15. Results of Comparing Acoustic with other Exploration Measures in

TSP with Nearest Neighborhood Threshold = 3

 -

 2

 4

 6

 8

2
5

2
7

5
2

1
2

5
2

1
7

5
2

2
2

5
2

2
7

5
2

3
2

5
2

3
7

5
2

4
2

5
2

4
7

5
2

5
2

5
2

5
7

5
2

6
2

5
2

6
7

5
2

7
2

5
2

7
7

5
2

8
2

5
2

8
7

5
2

9
2

5
2

9
7

5
2

1
0

2
5

2
1

0
7

5
2

1
1

2
5

2
1

1
7

5
2

1
2

2
5

2
1

2
7

5
2

1
3

2
5

2
1

3
7

5
2

1
4

2
5

2
1

4
7

5
2

Ex
p

lo
ra

ti
o

n

Objective function evaluations

Acoustic measure

Exploration measure

Branching measure

 -

 2

 4

 6

 8

 10

2
5

2
7

5
2

1
2

5
2

1
7

5
2

2
2

5
2

2
7

5
2

3
2

5
2

3
7

5
2

4
2

5
2

4
7

5
2

5
2

5
2

5
7

5
2

6
2

5
2

6
7

5
2

7
2

5
2

7
7

5
2

8
2

5
2

8
7

5
2

9
2

5
2

9
7

5
2

1
0

2
5

2
1

0
7

5
2

1
1

2
5

2
1

1
7

5
2

1
2

2
5

2
1

2
7

5
2

1
3

2
5

2
1

3
7

5
2

1
4

2
5

2
1

4
7

5
2

Ex
p

lo
ra

ti
o

n

Objective function evaluations

Acoustic measure

Exploration measure

Branching measure

 -

 2

 4

 6

 8

 10

2
5

2
7

5
2

1
2

5
2

1
7

5
2

2
2

5
2

2
7

5
2

3
2

5
2

3
7

5
2

4
2

5
2

4
7

5
2

5
2

5
2

5
7

5
2

6
2

5
2

6
7

5
2

7
2

5
2

7
7

5
2

8
2

5
2

8
7

5
2

9
2

5
2

9
7

5
2

1
0

2
5

2
1

0
7

5
2

1
1

2
5

2
1

1
7

5
2

1
2

2
5

2
1

2
7

5
2

1
3

2
5

2
1

3
7

5
2

1
4

2
5

2
1

4
7

5
2

Ex
p

lo
ra

ti
o

n

Objective function evaluations

Acoustic measure

Exploration measure

Branching measure

 131

In Figures 5.16-5.20, the y-axis visualizes the exploration while the y-axis represents

the number of objective function evaluations in QAP. The robustness of ACOustic

against two circumstances of reading the exploration behavior is compared to the λ-

branching measure and the exploration measure is tested. Results showed that using

different values of neighborhood threshold ACOustic gives different insights than

other measures. For the λ-branching, when the fitness landscape flattens, the

statistical analysis becomes fruitless because of the high similarity ratio between the

solutions. For exploration measure, the neighbourhood threshold will be of decisive

importance in the comparison (see Figure 5.19). In contrast, ACOustic dedicates the

first 10 iterations to calculate automatically the relatedness value (see Equations 5.12

and 5.13). In this sense, it can adapt easily for the change in the ruggedness, which

means it is able to indicate the diversity of population regardless of similarity ratio

between the solutions. The results showed significant robustness against the

difference in the value of neighborhood threshold with flatten fitness landscape.

Figure 5.16. Results of Comparing Acoustic with other Exploration Measures in

QAP with Nearest Neighborhood Threshold = 8

 -
 2
 4
 6
 8

 10
 12

5
1

5
5

1
1

0
5

1
1

5
5

1
2

0
5

1
2

5
5

1
3

0
5

1
3

5
5

1
4

0
5

1
4

5
5

1
5

0
5

1
5

5
5

1
6

0
5

1
6

5
5

1
7

0
5

1
7

5
5

1
8

0
5

1
8

5
5

1
9

0
5

1
9

5
5

1
1

0
0

5
1

1
0

5
5

1
1

1
0

5
1

1
1

5
5

1
1

2
0

5
1

1
2

5
5

1
1

3
0

5
1

1
3

5
5

1
1

4
0

5
1

1
4

5
5

1

Ex
p

lo
ra

ti
o

n

Objective function evaluations

Acoustic measure

Exploration measure

Branching measure

 132

Figure 5.17. Results of Comparing Acoustic with other Exploration Measures in

QAP with Nearest Neighborhood Threshold = 7

Figure 5.18. Results of Comparing Acoustic with other Exploration Measures in

QAP with Nearest Neighborhood Threshold = 6

Figure 5.19. Results of Comparing Acoustic with other Exploration Measures in

QAP with Nearest Neighborhood Threshold = 5

 -
 2
 4
 6
 8

 10
 12

5
1

5
5

1
1

0
5

1
1

5
5

1
2

0
5

1
2

5
5

1
3

0
5

1
3

5
5

1
4

0
5

1
4

5
5

1
5

0
5

1
5

5
5

1
6

0
5

1
6

5
5

1
7

0
5

1
7

5
5

1
8

0
5

1
8

5
5

1
9

0
5

1
9

5
5

1
1

0
0

5
1

1
0

5
5

1
1

1
0

5
1

1
1

5
5

1
1

2
0

5
1

1
2

5
5

1
1

3
0

5
1

1
3

5
5

1
1

4
0

5
1

1
4

5
5

1

Ex
p

lo
ra

ti
o

n

Objective function evaluations

Acoustic measure

Exploration measure

Branching measure

 -
 2
 4
 6
 8

 10
 12

5
0

1
1

0
0

1
1

5
0

1
2

0
0

1
2

5
0

1
3

0
0

1
3

5
0

1
4

0
0

1
4

5
0

1
5

0
0

1
5

5
0

1
6

0
0

1
6

5
0

1
7

0
0

1
7

5
0

1
8

0
0

1
8

5
0

1
9

0
0

1
9

5
0

1
1

0
0

0
1

1
0

5
0

1
1

1
0

0
1

1
1

5
0

1
1

2
0

0
1

1
2

5
0

1
1

3
0

0
1

1
3

5
0

1
1

4
0

0
1

1
4

5
0

1
1

5
0

0
1

Ex
p

lo
ra

ti
o

n

Objective function evaluations

Acoustic measure

Exploration measure

Branching measure

 -

 5

 10

 15

5
0

1
1

0
0

1
1

5
0

1
2

0
0

1
2

5
0

1
3

0
0

1
3

5
0

1
4

0
0

1
4

5
0

1
5

0
0

1
5

5
0

1
6

0
0

1
6

5
0

1
7

0
0

1
7

5
0

1
8

0
0

1
8

5
0

1
9

0
0

1
9

5
0

1
1

0
0

0
1

1
0

5
0

1
1

1
0

0
1

1
1

5
0

1
1

2
0

0
1

1
2

5
0

1
1

3
0

0
1

1
3

5
0

1
1

4
0

0
1

1
4

5
0

1
1

5
0

0
1

Ex
p

lo
ra

ti
o

n

Objective function evaluations

Acoustic measure

Exploration measure

Branching measure

 133

Figure 5.20. Results of Comparing ACOustic with other Exploration Measures in

QAP with Nearest Neighborhood Threshold = 4

In Figures 5.21 and 5.22, the y-axis visualizes the exploration using ACOustic

measure comparing with λ-branching measure. The y-axis presents the number of

iterations. The general performance of five ACO algorithms, namely AS, EAS, RAS,

ACS and BWAS, is reported in Figure 5.21. In Figure 5.22 the effect of parameters

on MMAS behavior is reported.

 (a) (b)

Figure 5.21. Results of Utilizing ACOustic (a) against Branching Factor (b) to

Evaluate Various Exploration Behaviours in TSP

In Figure 5.21, the results of analyzing using the proposed measure showed that AS

tends to be a very explorative algorithm. The rest of the tested algorithms either start

 -
 2
 4
 6
 8

 10
 12

5
0

1
1

0
0

1
1

5
0

1
2

0
0

1
2

5
0

1
3

0
0

1
3

5
0

1
4

0
0

1
4

5
0

1
5

0
0

1
5

5
0

1
6

0
0

1
6

5
0

1
7

0
0

1
7

5
0

1
8

0
0

1
8

5
0

1
9

0
0

1
9

5
0

1
1

0
0

0
1

1
0

5
0

1
1

1
0

0
1

1
1

5
0

1
1

2
0

0
1

1
2

5
0

1
1

3
0

0
1

1
3

5
0

1
1

4
0

0
1

1
4

5
0

1
1

5
0

0
1

Ex
p

lo
ra

ti
o

n

Objective function evaluations

Acoustic measure

Exploration measure

Branching measure

0

5

10

15

20

25

1
0

2
9

0

5
7

0

8
5

0

1
1

3
0

1
4

1
0

1
6

9
0

1
9

7
0

2
2

5
0

2
5

3
0

2
8

1
0

Ex
p

lo
ra

ti
o

n
(A
C
O

u
st

ic
)

Iterations

acs ras bwas

eas as

0

1

2

3

4

1
0

2
8

0

5
5

0

8
2

0

1
0

9
0

1
3

6
0

1
6

3
0

1
9

0
0

2
1

7
0

2
4

4
0

2
7

1
0

Ex
p

lo
ra

ti
o

n
(λ

-B
ra

n
ch

in
g)

Iterations

acs ras bwas

eas as

 134

with a very short exploration phase followed by a very aggressive exploitation phase

(e.g. EAS and RAS) or skip the initial exploration phase (e.g. ACS and BWAS).

This is mainly achieved by a stronger emphasis given to the best tours found during

the search.

In general, when compared with λ-branching measure, the proposed measure draws

the same shape for TSP. The same insights are gathered when the exploration

behavior is influenced by parameter tuning.

 (a) (b)

 (c) (d)

0

5

10

15

1
0

2
9

0

5
7

0

8
5

0

1
1

3
0

1
4

1
0

1
6

9
0

1
9

7
0

2
2

5
0

2
5

3
0

2
8

1
0

Ex
p

lo
ra

ti
o

n
(A

C
O

u
st

ic
)

Iterations

α = 0.5 α = 1.0 α = 1.5

α = 2.0 α = 3.0

0

1

2

3

4

5

1
0

2
9

0

5
7

0

8
5

0

1
1

3
0

1
4

1
0

1
6

9
0

1
9

7
0

2
2

5
0

2
5

3
0

2
8

1
0

Ex
p

lo
ra

ti
o

n
(λ

-B
ra

n
ch

in
g)

Iterations

α = 0.5 α = 1.0 α = 1.5

α = 2.0 α = 3.0

0

5

10

15

1
0

3
1

0

6
1

0

9
1

0

1
2

1
0

1
5

1
0

1
8

1
0

2
1

1
0

2
4

1
0

2
7

1
0

Ex
p

lo
ra

ti
o

n
(A

C
O

u
st

ic
)

Iterations

β = 1.0 β = 2.0 β = 5.0

β = 5.0 β = 10.0

0

2

4

6

1
0

2
9

0

5
7

0

8
5

0

1
1

3
0

1
4

1
0

1
6

9
0

1
9

7
0

2
2

5
0

2
5

3
0

2
8

1
0

Ex
p

lo
ra

ti
o

n
(λ

-B
ra

n
ch

in
g)

Iterations

β = 1.0 β = 2.0 β = 5.0

β = 5.0 β = 10.0

 135

 (e) (f)

 (g) (h)

Figure 5.22. Results of Utilizing Acoustic (left) against Branching Factor (right) to

Evaluate the Effect of pheromone intensity (alpha) (a-b), pre-heuristic effect (beta)

(c-d), evaporation rate (rho) (e-f) and the number of ants (m)(g-h) in TSP

In Figure 5.22, the effect of varying the main parameters on the explorative and

exploitative behavior of the MMAS +rs +ls algorithm is characterized. The proposed

measure can detect the relationship between parameter values and local search.

Figure 5.22 (a) shows clearly that the higher the value of pheromone intensity, the

lower the exploration. The value (α = 1.0) is the ideal value to achieve a moderate

behavior. In Figure 5.22 (c), the influence of pre-heuristics about the instance of the

0

5

10

15

20

1
0

2
4

0

4
7

0

7
0

0

9
3

0

1
1

6
0

1
3

9
0

1
6

2
0

1
8

5
0

2
0

8
0

2
3

1
0

Ex
p

lo
ra

ti
o

n
(A

C
O

u
st

ic
)

Iterations

rho = 0.1 rho = 0.2

rho = 0.3 rho = 0.5

rho = 0.7

0

2

4

6

1
0

2
4

0

4
7

0

7
0

0

9
3

0

1
1

6
0

1
3

9
0

1
6

2
0

1
8

5
0

2
0

8
0

2
3

1
0

Ex
p

lo
ra

ti
o

n
(λ

-B
ra

n
ch

in
g)

Iterations

rho = 0.1 rho = 0.2

rho = 0.3 rho = 0.5

rho = 0.7

0

5

10

15

1
0

2
4

0

4
7

0

7
0

0

9
3

0

1
1

6
0

1
3

9
0

1
6

2
0

1
8

5
0

2
0

8
0

2
3

1
0

Ex
p

lo
ra

ti
o

n
(A

C
O

u
st

ic
)

Iterations

m=5 m=10 m=25

m=50 m=100

0

2

4

6

1
0

2
4

0

4
7

0

7
0

0

9
3

0

1
1

6
0

1
3

9
0

1
6

2
0

1
8

5
0

2
0

8
0

2
3

1
0

Ex
p

lo
ra

ti
o

n
(λ

-B
ra

n
ch

in
g)

Iterations

m=5 m=10 m=25

m=50 m=100

 136

problem to be tackled is tested. The higher value of parameter (β), the more greedy

behavior is recorded to become at its peak when (β = 10). The evaporation ratio as a

trail learning factor has distinct impact on the way of search. Increasing the value of

(rho) results in the slow learning of pheromone trail parameters, and thereby, the

chance of forgetting the previous search experience will increase. In this way, the

value of (rho = 0.7) leads to the increase of the exploitation. The value of (rho = 0.5)

seems ideal (Figure 5.22 (e)). Figure 5.22 (g) reports that the exploration is

decreasing with respect to the number of ants. The greater the number of ants, the

lower the number of iterations performed in a run, consequently, the lower the

number of different probability distributions used. A high value of m implies that the

likely edges are often the same. These insights are compatible with the common

believes among ACO researchers.

As shown, ACOustic measure is a very convenient tool for characterizing the

diversity of population. This conclusion came as a result of its robustness against the

state-of-the art measures in ACO and of effectiveness as a statistical machine

learning indicator. Besides, the role of the PbM scheme (presented in Chapter Four)

is exist as the statistical and clustering information of ACOustic is extracted from the

population vector.

5.5 ACO-based Adaptive Parameters’ Selection

The state-of-the-art methods for parameters’ selection in ACO are self-adaptive

methods (Pellegrini et al., 2012). They play a key role in solving several CO

problems. However, they did not improve the performance of ACO in TSP and QAP,

 137

except the work of Randall (2004) which has shown, explicitly, good results for TSP

and QAP. There is an emphasis on adopting successful methodologies such as those

in evolutionary metaheuristics.

In this thesis, the process of developing reactive method denoted as APSACO for

solving the problem of parameters’ selection in ACO adheres to the typical

methodology in the field of parameters’ selection of evolutionary algorithms. The

process of proposing APSACO for solving the problem of parameters’ selection in

ACO is illustrated in Figure 5.23.

Figure 5.23. The Process of Developing the APSACO

Following the works of Failho (2010) and Aleti (2012), new insights for parameters’

selection in ACO are obtained and motivate the proposal of APSACO. Table 5.1

shows the pros and cons of proposing APSACO compared with other adaptive

parameters’ selection methods.

The only disadvantage of the proposed method is its complex implementation. It is,

for this context, similar to adaptive methods, while it differs in being free of the

hyperparameters. It is able to adapt with the global and local characteristics of the

 138

CO being tackled. These results from the robust indication for the exploration

behavior, i.e. using ACOustic, of the algorithm applied.

Table 5.1

Conceptual Comparison between APSACO and Other Adaptive Parameters’

Selection Methods

Considerations

Classical adaptive parameters’

selection methods in ACO Proposed

APSACO Pre-schedule Adaptive Self-

adaptive

Adapted with global characteristics - √ √ √

Adapted with local characteristics - √ - √

Less augmented complexity √ √ - √

Less hyper parameters √ - √ √

Simple implementation √ - √ -

Algorithm structure independent √ √ - √

Follow a general methodology - - √ √

Total scores 4 4 4 6

The most important feature of APSACO is its automatous search due to the

independent pheromone matrix for parameters and values. Figure 5.24 depicts the

general scheme of the proposed method.

Figure 5.24. The General Scheme for APSACO Method

 139

In Figure 5.24, the ACO algorithm asks APSACO which of the parameters can be

applied for the current iteration/s. The parameter selection strategy selects a

parameter according to its empirical quality (Section 5.6 includes further details)

during the last iterations. The selected parameter is applied and its impact is

transformed into a reward, using reward assignment strategy, to be used in updating

the quality of parameters. The reinforcement learning process in APSACO is guided

by those two strategies.

5.6 Parameters’ Selection Strategy

In this strategy, the desirability of selecting the given parameter values V is affected

proportionally by its empirical quality Q = {𝑞(𝑣11), 𝑞(𝑣12), … , 𝑞(𝑣1𝑚1
)

, … , 𝑞(𝑣𝑘𝑚𝑘
)} where k is the number of parameters and m is the number of values for

the kth parameter. Each parameter is associated with a range of values. The bounds of

the ranges are set based on Dorigo and Stützle (2004). The jth parameter value for the

ith parameter, i.e. the value vij, is selected as follows.

𝑠(𝑣𝑖𝑗) = 𝑙𝑖 +
𝑝(𝑣𝑖𝑗)

𝑚
 (𝑢𝑖 − 𝑙𝑖) 1 ≤ 𝑖 ≤ 𝑘 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑚 (5.14)

𝑝(𝑣𝑖𝑗) = 𝑞(𝑣𝑖𝑗) ∑ 𝑞(𝑣𝑖𝑙)
𝑛

𝑙=0
⁄ (5.15)

where li is the lower bound value of ith parameter; ui is the upper bound value of ith

parameter; m is the number of values; and p is the proportional selection probability

for value the vij. At the first application, the value of each parameter is chosen as the

halfway point in its range. After that, the values are selected proportionally. If the

 140

application is performed badly, then the application’s desirability of the parameter

has to be decreased, otherwise it will be rewarded. This is by firstly evaluating the

effect of the selected values and then updating the empirical quality of the selected

values.

5.7 Reward Assignment Strategies

In this strategy, the empirical quality of each parameter gains rewards only if the

application of the parameter achieves impact for the optimization process. The

impact determined by the feedback collection strategy is translated into rewards

denoted as 𝑟(𝑣𝑖𝑗). The reward will be added to the previous quality of the perspective

value as follows.

 𝑞(𝑣𝑖𝑗) = (1 − 𝜌) . 𝑞(𝑣𝑖𝑗) + 𝜌 . 𝑟(𝑣𝑖𝑗) (5.16)

The value of ρ is automatically assigned within the recommended range. Based on

this formula, there is another instance of exploration versus exploitation: the best

values are extensively used, while other values which need to be tried from time to

time are not considered yet. In finding a good balance of the two processes, the

bounding strategy is involved where the quantity 𝜏𝑚𝑖𝑛 represents the minimum

selection probability for all the parameter values.

𝑞(𝑣𝑖𝑗) = (1 − 𝛾) . 𝑞(𝑣𝑖𝑗) + 𝛾 . 𝜏min (5.17)

where the value of 𝛾 is automatically assigned by the proposed APSACO method

itself.

 141

Through this strategy, the effect of parameter value choices on the search is

transformed into rewards. It involves the exploration state, the quality of solutions or

both for rewards’ calculation. To achieve this goal, three strategies are proposed,

namely the Quality-based Reward Assignment (QRA), the Exploration-based

Reward Assignment (ERA), and the Unified Reward Assignment (URA).

5.7.1 Quality-based Reward Assignment

This QRA strategy relies on the improvement in the quality of solutions in assessing

the effect of the current population. The median of the objective functions of the

current population is used as an effect proxy for the application of selected parameter

values. The value of rewards is calculated as follows.

𝑟(𝑣𝑖𝑗) = 1
𝑔𝑙𝑜𝑏𝑎𝑙_𝑎𝑣𝑔⁄ (5.18)

 The value of global_avg is the median of the objective function for the solutions

that are recorded in the population-based memory.

5.7.2 Exploration-based Reward Assignment

In the ERA strategy, exploration is identified in terms of the relatedness amount

between ants produced by ACOustic as follows.

𝑓(𝑟𝑙𝑡𝑑𝑛𝑠𝑠) = {
𝑒𝑥𝑝𝑙𝑟 = 𝑒𝑥𝑝𝑙𝑟 + 1 𝑖𝑓 𝑟𝑙𝑡𝑑𝑛𝑠𝑠 > 𝑋𝑟𝑙𝑡𝑑𝑛𝑠𝑠 (𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛)

𝑒𝑥𝑝𝑙 = 𝑒𝑥𝑝𝑙 + 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛)
 (5.19)

where the value of 𝑋𝑟𝑙𝑡𝑑𝑛𝑠𝑠 is the first relatedness value captured when the number of

clusters decrease. It is worth mentioning that this characterization function is

 142

deactivated during the stagnation of the search. The stagnation is flagged when the

solutions 𝑆𝑘 since the last best restart ilast did not improve for the last 𝜖 iterations (e.g.

250 iterations), i.e. if f (Sk) ≥ f (Sgb) and i - ilast > ϵ. The rewards amount is derived

from the impact of the application of parameter values which is calculated as

follows.

𝑟(𝑣𝑖𝑗) =
𝑒𝑥𝑝𝑙𝑟 2

𝑒𝑥𝑝𝑙
 (5.20)

It is worth mentioning that the values of the exploration/exploitation quantifiers, i.e.

explr and expl, are very sensitive to the value of the nearest neighborhood threshold.

The higher the threshold is, the more sensitive the quantifier becomes. In the

beginning of the search, the amount of exploration starts higher than the exploitation

one. With this property, the behavior of the algorithm is automated in various phases

of the search. This automates the balance between exploration and exploitation in

response to the current state of the search.

5.7.3 Unified Reward Assignment

The URA strategy relies on the quality of solutions and the diversity of solutions in

assessing the effect of the current parameter values. The rewards are calculated as

follows.

𝑟(𝑣𝑖𝑗) = 𝐶𝑛𝑢𝑚 𝑔𝑙𝑜𝑏𝑎𝑙_𝑎𝑣𝑔⁄ (5.21)

where the Cnum is the number clusters. Based on this equation, the exploration

behavior plays a fundamental role in determining the amount of rewards. The higher

 143

the number of clusters is, the higher the reward becomes. The contributed strategies

are emerged in the body of the ACO algorithmic framework as shown in Figure 5.25.

In initialization, the probability and the quality vectors are initiated. In select_param,

the parameter values are either selected as the halfway point in their ranges, if that is

the first application, or selected proportionally to be involved in the search. The ants

construct their solutions and update the memory of pheromone. The effect of the just

applied parameter values is transformed into rewards by assign_rewards. It is based

on the feedback collected from the search, and updates on the quality of the current

parameter values. The amount of rewards assigned depends on the way of feedback

collected whether it focuses on the improvement in quality, the improvement in

exploration behavior, or the relative improvement in both of them.

Algorithm 5.5: APSACO

Set the number of parameters to k

Set the number of values to m

Set the maximum and minimum ranges of parameter values

Discretize the ranges R based on value of m

for i = 1 to k do

 vi ← ri

d ← m/2

for i = 1 to k do

for j = 1 to m do

 qij ← τmin // It can be set to τ0 if another ACO variant is applied

 except the MMAS

 sij ← vid

while (not termination_condition()) do

 select_param ()

 construct_solutions ()

 update_ pheromone ()

 assign_rewards ()

end-while

end-algorithm

Figure 5.25. The Pseudocode of APSACO Algorithm

 144

5.8 Experimental Design for Developing APSACO

The goal of the empirical analysis is to evaluate the proposed APSACO against the

state-of-the-art adaptation methods proposed for ant colony optimization. The

implementation of four self-adaption methods is based on the work of two groups.

The works of Randall (2004) and Forster et al. (2007) are in the first group, while the

works of Martens et al., (2007) and Khichane et al. (2009) are in the second group.

To capture the contribution of the groups independently of the problems or the

algorithms for which they have proposed, the works of Randall and Khichane et al.

are followed. In the first group, namely RandallG, the parameter values are selected

online based on Randall’s way (Randall, 2004), where the parameters are

independent, e.g. the parameters β, ρ, γ and q0. In the second group, namely

KhichaneG, the parameter values are selected online based on Khichane’s way

(Khichane et al., 2009), where the parameters are interdependent, e.g. the parameters

α and β. The search space for the parameter values must be known in advance and

discretized in both groups, except in the second group where the values are

optimized a priori. Both groups are in the same level at which they manage

parameters. The rewards given to the parameter values selected during the run are

based on the best-so-far ant in colony-level rather than the ant-level. The ant-level

setting is omitted because most of the parameters are colony-wise, so that they

cannot be adapted to multiple settings in each iteration. The number of parameter

values m remains constant at 20. The ranges for the parameters q0, ρ and γ are bound

between the constant values of 0 and 1; for the parameter β is bound between the

constant values of 5 and 1 and for the parameter α is bound between 1 and 2.

 145

The MMAS algorithm is involved as a test-bed. It is used for solving TSP and QAP.

For solving TSP, the MMAS is included in ACOTSP.V1.3 software (Stützle, 2004).

The implementation of MMAS for QAP is based on the work of Stützle and Hoos

(2000) and follows the general algorithmic framework of ACOTSP.V1.3. The

pseudo-random proportional rule that is used in ACS is used in MMAS as well to

gain high performance by default. A 2-opt local search procedure is used with

MMAS for all QAP instances.

The experiments are conducted on a Windows 8 64-bit operating system, processor

Intel Core i3-3217U with CPU @ 1.80GHz, RAM 4GB. Each experiment is

executed ten times to avoid the stochastic behavior. A maximum of 10 seconds is

used as a termination condition for the run of particular algorithms. The QAP and

TSP instances are selected from the QAPLIB and TSPLIB repositories as in Table

5.2.

Table 5.2

The TSP and QAP Instances used in the Evaluation

TSP QAP

Name Size Best-Known Cost Name Size Best-Known Cost

eil51 51 426 nug15 15 1150

st70 70 675 nug20 20 2570

eil76 76 538 tai25a 25 1167256

gr96 96 55209 tai35a 35 2422002

rd100 100 7910 ste36a 36 9526

bier127 127 118282 tho40 40 240516

d198 198 15780 sko49 49 23386

5.9 Results of APSACO’s Application

The adaptive parameters’ selection method has been applied to automate the

exploration and exploitation during the run. In order to report the results of

 146

application, non-parametric descriptive statistics are used. This is because the

distribution of results is non-normal. The cost results are reported using RPD as a

comparative measure. In order to track the RPD values at any time, CTM test has

been utilized. Table 5.3 reports the results of the conducted experiments in which

APSACO algorithm succeeded in accelerating the convergence to high quality

solutions produced by the ACO algorithm. At the first iterations, APSACO assigns

initial values to the perspective ACO parameters. Next, the values are selected

proportionally according the quality of solutions. The desirability of selecting one

parameter relies on its empirical quality (see Equation 5.16). Since the parameters of

ACO algorithm are the main player in adjusting exploration and exploitation, their

values will be selected automatically. This automation entails the direct projection on

the exploration/exploitation behavior.

In Table 5.3, the results reveal that APSACO with QRA shows very good results on

QAP and less in TSP compared with other state-of-the-art methods. In TSP, while

occasionally RandallG finds the best quality solutions (such as st70, gr96 and d198),

the overall behavior of APSACO with QRA is better for small TSP problems without

local search. In QAP, KhichaneG sometimes finds the best solution (such as tai35a).

However, the overall performance of the proposed method is better.

In Table 5.4, the comparison of the three proposed strategies of reward assignment is

depicted. The QRA strategy was the best performance, while the ERA showed less

performance and the URA came in the last.

 147

Table 5.3

The Results of Evaluating APSACO (QRA) against Other Parameters’ Selections

Methods in TSP and QAP using RPD Test

TSP/QAP

Problem

RandallG KhichaneG APSACO (QRA)

 cost runtime cost runtime cost runtime

min med max med min med max med min med max med

eil51 0.23 0.77 2.11 1.80 0.46 0.86 1.17 4.40 0.0 0.11 0.46 2.41

st70 0.14 1.51 3.25 6.52 0.74 2.28 4.14 4.26 0.44 0.91 2.37 6.49

eil76 0.18 1.41 2.97 3.77 0.92 1.89 2.60 4.86 0.0 0.29 0.92 5.70

gr96 0.33 1.39 4.68 4.22 1.91 3.08 4.76 5.61 0.57 1.13 1.55 4.73

rd100 0.05 1.10 3.53 5.27 1.01 2.64 6.11 6.91 0.32 0.76 1.87 8.24

bier127 1.61 2.96 5.24 8.20 2.80 3.76 4.98 3.39 1.53 2.48 3.61 4.99

d198 1.96 4.21 6.82 7.74 3.07 4.96 6.84 8.89 2.20 3.94 5.48 6.14

nug15 0.0 0.0 0.0 0.22 0.0 0.0 0.0 0.19 0.0 0.0 0.0 0.05

nug20 0.0 0.04 0.15 2.75 0.0 0.01 0.15 2.64 0.0 0.0 0.0 1.76

tai25a 1.4 2.2 2.7 4.77 1.68 2.24 2.61 5.54 1.21 1.88 2.55 4.50

tai35a 2.98 3.22 3.6 4.5 2.58 3.12 3.51 6.13 2.61 3.02 3.38 3.77

ste36a 2.45 3.3 4.2 6.14 1.61 3.14 4.42 4.13 0.92 2.26 3.19 3.71

tho40 1.52 1.88 2.11 5.31 1.39 1.98 2.32 6.33 1.05 1.73 2.08 4.92

sko49 1.08 1.38 1.75 6.06 0.95 1.32 1.54 4.51 0.85 1.18 1.40 5.44

Table 5.4

The Results of Evaluating APSACO using QRA, URA and ERA in TSP and QAP using

RPD Test

TSP/QAP

Problem

APSACO (QRA) APSACO (URA) APSACO (ERA)

 cost runtime cost runtime cost runtime

min med max med min med max med min med max med

eil51 0.0 0.11 0.46 2.41 0.23 0.37 0.7 4.94 0.0 0.28 1.17 2.63

st70 0.44 0.91 2.37 6.49 0.44 1.20 3.25 4.35 0.29 0.90 1.92 5.80

eil76 0.0 0.29 0.92 5.70 0.0 0.44 1.11 5.70 0.0 0.61 0.92 4.65

gr96 0.57 1.13 1.55 4.73 0.36 1.03 3.28 5.01 0.38 0.98 2.82 8.12

rd100 0.32 0.76 1.87 8.24 0.05 1.18 2.98 5.91 0.01 0.13 0.91 6.63

bier127 1.53 2.48 3.61 4.99 1.61 2.75 4.57 6.35 2.14 3.20 4.22 6.08

d198 2.20 3.94 5.48 6.14 2.74 4.40 6.36 7.79 5.15 8.79 7.43 3.51

nug15 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.22 0.0 0.0 0.0 0.27

nug20 0.0 0.0 0.0 1.76 0.0 0.04 0.15 3.93 0.0 0.01 0.15 3.52

tai25a 1.21 1.88 2.55 4.50 1.21 2.01 2.42 3.67 1.3 1.9 2.3 5.7

tai35a 2.61 3.02 3.38 3.77 3.13 3.34 3.72 5.09 2.6 3.10 3.4 5.36

ste36a 0.92 2.26 3.19 3.71 2.09 3.0 3.82 5.96 1.4 2.9 4.0 4.11

tho40 1.05 1.73 2.08 4.92 1.26 1.77 2.15 5.45 0.9 1.84 2.3 5.97

sko49 0.85 1.18 1.40 5.44 1.06 1.39 1.71 5.54 1.23 1.41 1.63 4.67

The design of each of the proposed strategies determines the suitable situation to

apply any of them. For example, when a restart mechanism is applied, the URA will

be the promising choice because of its tendency to increase current exploration.

 148

Figure 5.26. The Results of Evaluating APSACO using QRA, URA and ERA against

Other Parameters’ Selections Methods in TSP using RPD Test

In Figure 5.26, the overall performance of the proposed strategies outperforms the

state-of-the-art methods for TSP instances. With small size instances, the three

methods are the best. The QRA strategy was the best among all. In some cases, the

ERA strategy outperforms (such as gr96 and rd100). However, when the size of the

problem increases, the ERA has a worse performance because of its additional

computations. The URA strategy is more robust.

Figure 5.27. The Results of Evaluating APSACO using QRA, URA and ERA against

Other Parameters’ Selections Methods in QAP using RPD Test

0

2

4

6

8

10

eil51 st70 eil76 gr96 rd100 bier127 d198

R
P

D

TSP instances

Quality-based PSACO

Unified PSACO

Exploration-based PSACO

RandallG

KhichaneG

0

0.5

1

1.5

2

2.5

3

3.5

4

nug15 nug20 tai25a tai35a ste36a tho40 sko49

P
R

D

QAP instances

Quality-based PSACO

Unified PSACO

Exploration-based PSACO

RandallG

KhichaneG

 149

In Figure 5.27, the overall performance of the proposed strategies outperforms the

state-of-the-art methods for QAP instances. With small size instances, the URA does

not much improve the quality of solution comparing with QRA, ERA and

KhichaneG. The QRA strategy produced the best average quality of solutions in all

experiments.

5.10 Summary

The exploration measurement and the adaptive parameters’ selection in ACO are

discussed in this chapter. For the exploration measurement, the problem of

robustness in machine learning-based indicators has been solved by emerging simple

statistics about current exploration to the design of those indicators. The results

illustrated that the proposed indicator, denoted by ACOustic as inspired from the

acoustic mimicry in nature, is more informative and more robust.

For the adaptive parameters’ selection, the general schema of parameter adaptation is

adopted based on successful methodologies in the field of evolutionary algorithms.

Two independent issues are highlighted in the schema: the parameters’ selection

strategy and the reward assignment strategy. Four parameter adaptation algorithms

are implemented into two groups: RandallG and KhichaneG implementations. For

the parameters’ selection, the implementation of the first group is followed. For the

reward assignment, three contributed strategies, denoted by QRA, ERA and URQ,

are proposed for improving the performance of the existing parameter adaptation

methods in ACO. Three variants of APSACO algorithm are produced by varying the

proposal of the perspective strategy. In the design of QRA, the general improvement

 150

in the quality of solutions used a proxy for the impact of the selected parameters,

while in ERA and URQ, the feedback collected via ACOustic is alternately the first

proxy. By the said contribution, the parameters’ selection problem in ACO is

addressed. The effectiveness of the proposed APSACO variants is evaluated against

each other and against the state-of-the-art methods. Results showed that APSACO

with QRA is the best among all. As the automation of exploration and exploitation

has been implemented, Chapter 6 discusses projection of the proposed exploration

and exploitation components on top of RMMAS algorithm to develop a more

advanced reactive approach.

 151

PROPOSED REACTIVE APPROACH FOR AUTOMATING

EXPLORATION AND EXPLOITATION IN ACO

6.1 Introduction

The development of the proposed reactive ant colony optimization approach is

presented. This chapter summarizes the final performance of RACO. Through the

previous chapters, several exploration and exploitation components have been

proposed and tested separately, whereas in this chapter, the components are merged.

Section 6.2 depicts the general scheme of the proposed approach, namely RACO.

Section 6.3 presents the experimental design of the RACO evaluation. The results

and analysis for TSP and QAP are presented in Sections 6.4 and 6.5 respectively.

The summary of the chapter is presented in Section 6.6.

6.2 Proposed Reactive Approach

The general scheme of RACO is presented in Figure 6.1. RACO starts solving CO

problems by iterating two activities, namely ants’ activity and queen’s activity. An

example of the ants’ activity is the probabilistic solution construction where each ant

is able to take individual decisions. An example of the queen’s activity is every

central decision can be taken to change the current search status. CO problems (such

as TSP and QAP) are assembled as a finite set of solution components. Next, a set of

pheromone values called the pheromone model is defined. The set of pheromone

values is parameterized probabilistically to be used then in generating solutions

 152

based on the solution components. Two reactive memory schemes, CbM and PbM,

are defined in Chapter Four. CbM is derived from the solution components, while

PbM is derived from the overall population of solutions. The candidate solutions are

constructed using the pheromone model. The pheromone values are updated by the

queen in such a way that it is biased in future towards high quality solutions.

Figure 6.1. The General Scheme of RACO

There are two different neighborhood structures; one is framed by the local search

procedures, and the other one is framed by the ants. For this part of RACO, there are

two basic E&E mechanisms: the reactive restart mechanism and the RLS

mechanism. In the former mechanism, the neighborhood drawn by ants is traversed

before the restart just to record the unpromising regions. The regions are simply

characterized using τmin threshold where the components of solutions below this

threshold will be recorded in the CbM scheme in terms of reactive heuristics. After

 153

restart, the reactive heuristic will be used as guidance for ants to decide the next

component in the constructed solution. A high priority of selections is given to

components associated to the reactive heuristics. In the latter mechanism, i.e. RLS,

relies on the neighborhood structure drawn by local search procedures. An old-best-

so-far solution will be recorded in the PbM scheme to be used in future iterations as

a reference for improvement in the quality of solutions. If the new produced solution

is better than the old-best-so-far solution, it will be recorded in the memory;

otherwise, the old-best-so-far solution will be recorded again in the memory.

The second part of the queen’s activity is the exploration measurement. Using

several exploration measures and absolute triggers, the queen characterizes the

current state of search whether it is exploration or exploitation, then promotes a

suitable reaction. The queen in this way controls the reinforcement learning process

inside the colony by forcing other ants for being exploitative agents or being

explorative ones. In the former choice, they keep searching around the structure of

the neighborhood of good solutions, whereas, in the latter choice, they shift the

search to another neighborhood structure. Several exploration indicators used within

RACO in order to redirect the current search state from exploitation to exploration

directly using the reactive restart mechanism. Traditional exploration indicators

(such as λ-branching factor and acceptance criteria) are involved. A machine

learning mechanism of indication called ACOustic (detailed in Chapter Five)

emerges in this part. Using this indication mechanism, the exploration and

exploitation can be absolutely quantified, put in relation with the quality of solutions

in a unified way or relied on the quality of solutions only in a relative way.

 154

The last part of the queen’s activities is the APSACO mechanism, in which the queen

controls the way of the search based on the feedback collected from the search

process. The mechanism automates the exploration and exploitation during the run

based on the feedback collected. Internal reinforcement learning process is involved

to learn the parameter values during the run. Through two strategies of parameters’

selection and reward assignment, the process is maintained. In the first iteration, the

values are selected from the midway of their perspective ranges. Hereafter, they are

selected in a proportional way to their approximate effect on the optimization

process. The effect transforms into a reward to be assigned to the parameter values

producing good quality solutions, good exploration/exploitation behavior, or good

balance between the both of them.

6.3 Experimental Design for RACO Evaluation

The performance of RACO is evaluated by the comparison with other metaheuristics

approaches to solve TSP and QAP. The evaluation metric is reported using the RPD

test. The maximum number of iterations is equal to the same number of tours for the

algorithms with which RACO is compared. An average of ten trails for the results is

reported. For RACO parameter settings, the neighborhood threshold is fixed to (0.8)

without tuning. The number of ants (m) is equal to (5), while the rest of the RACO

parameters are configured adaptively using the ERA strategy. Hence, the RACO

variant used in the experiments is denoted as RACOERA.

For TSP, the instances are taken from TSPLIB (Reinelt, 1991), and then categorized

into small, medium, and large sizes. Burma14, Dantzig42, Oliver30, Eil51, Eil76,

 155

KroA100 and Eil101 are categorized as small, d198, lin318, att532 and rat783 as

medium, and pr1002, u1060, pcb1173, d1291 and fl1577 as large sizes. The

configuration of experiments is dictated based on the availability of the published

results. Numerical experiments are executed to regenerate the results of other

algorithms; otherwise, their performance is taken from the literature. The results of

ACS and six MMAS variants are based on the implementation included in

ACOTSP.V1.3 (Stützle, 2004), while the results of the iterated local search (ILS) are

from Stützle (1998). Other algorithms with which RACO is compared are simulated

annealing (SA), evolutionary programming (EP), genetic algorithm (GA), particle

swarm optimization (PSO), and artificial bee colony (ABC). The results of SA and

EP are from Dorigo and Gambardella (1997). The results of GA and PSO are from

Çunkaş and Özsağlam (2009) and the results of ABC are from Kocer and Akca

(2014).

For QAP, the benchmarking data are taken from QAPLIB (Burkard et al., 1997), and

then classified into real-life, real-life-like and random-generated categories. These

are bur26a, bur26b, bur26c, bur26d, bur26e, bur26f, bur26g, bur26h, chr25a, els19,

kra30a and kra30b for the real-life category, tai20b, tai25b, tai30b, tai35b, tai40b,

tai50b, tai60b and tai80b for the real-life-like category, and Nug30, Ste36b, Tai30a,

Tai40a, Tai50a, Tai60a, Tai80a and Tai100a for the random-generated category.

The configurations of long-run and short-run are conducted on real-life and real-life-

like instances. Different sizes of instances are tackled. The results of the algorithms

used in the comparison are taken from the literature. The performance of MMAS,

robust tabu search (Ro-TS), reactive tabu search (RTS), SA, genetic hybrid (GH),

 156

and hybrid ant system (HAS-QAP) are from Stützle and Hoos (2000) and Stützle

(1999), while the performance of object-guided ant colony optimization (OG-ACO)

and hybrid artificial fish-school optimization (HAFSO) are from Ziqiang and Yi

(2014). The run length is dynamic and is based on Gambardell, Thallard and Dorigo

(1997) for the real-life and real-life-like instances, while for the random-generated

instances; it is based on Ziqiang and Yi (2014).

6.4 Results of the TSP Experiments

RACO is applied to small-, medium- and large-sized TSP instances as shown in

Tables 6.1, 6.2 and 6.3. In the small-sized instances’ experiments, the proposed

algorithm achieved a 100% success rate by reaching the known optimum at the first

four turns. The rate was 99% and 92% for the fifth and sixth turns. It was observed

that RACO ended with 0% margin of error in small-sized TSP problems. The results

confirmed that the combination of RH heuristics, RLS technique and QRA controller

produce high quality solutions.

In the medium-sized instances of experiments, the obtained RPT rates in the medium

size were competitive. As it can be clearly seen in Table 6.2, the solutions of test

problems d198, lin318, pcb442, att532 and rat783 through RACO produced the

smaller error rate than others, except in MMAS-w algorithm, which was similar with

lin318 and rat 783. Sometimes, the difference in performance is not very noticeable

(such as d198 and lin318) between RACO and MMAS variants, but RACO

monopolized its outperformance in all turns. In addition, the competitive results were

produced by different MMAS variants and this is not the case with RACO. Some

 157

TSP instances (such as lin318) contain several local minima, and to escape from

those, the algorithm must change its behavior accordingly and in an online manner,

which is the case with RACO. In general, this result gives an indicator that the

quality of solutions produced by RACO is better due to the impedance of its search

to be stagnated.

Table 6.1

Results of Comparing RACO with ACS, EP, SA, GA, PSO and ABC Algorithms in

Small Size TSP Instances using RPD Test

TSP instance ACS EP SA GA PSO ABC RACO

Burma14 - - - 0.92 1.14 0.33 0.00

Oliver30 0.00 0.00 0.95 - - - 0.00

Dantzig42 - - - 2.05 2.08 0.71 0.00

Eil51 0.51 0.24 4.24 2.11 2.45 1.89 0.09

Eil76 1.71 1.31 8.41 2.56 3.16 6.31 0.13

KroA100 1.17 - - 2.68 3.71 2.16 0.82

Table 6.2

Results of Comparing RACO with MMAS Variants, ACS+3-opt and ILS+3-opt

Algorithms in Medium Size TSP Instances using RPD Test

TSP

instance

MMAS-

w

MMAS-

wnh

MMAS-

wnts

MMAS-

t

MMAS-

tnh

ACS+3-

opt

ILS-3-

opt

RACO

d198 0.003 0.002 0.003 0.000 0.002 0.002 0.002 0.000

lin318 0.000 0.011 0.078 0.005 0.02 0.17 0.085 0.000

pcb442 0.26 0.25 0.24 0.25 0.24 0.26 0.28 0.010

att532 0.079 0.091 0.082 0.15 0.096 0.17 0.086 0.040

rat783 0.095 0.14 0.12 0.20 0.22 0.28 0.34 0.095

In the large-sized instances of experiments, the results reported in Table 6.3 can be

used to evaluate the scalability in addition to the quality of solutions because of the

vast landscape of the tested TSP instances. Only MMAS-w and MMAS-wrnt were

 158

considered in this part of comparison. It is observed that RACO performs well in

terms of solution qualities and naturally in scalability because of the utilization of

long-term exploration and exploitation dynamics. With large sized instances, the

importance of reactive heuristics becomes less because the lower number of restart

triggers. This observation suggests exchanging those traditional triggers (such as λ-

branching factor) with machine learning triggers (such as ACOustic).

Table 6.3

Results of Comparing RACO with MMAS Variants, ACS+3-opt and ILS+3-opt

Algorithms in Large Size TSP Instances using RPD Test

TSP

instance
MMAS-w MMAS-wnts ACS ILS-3-opt RACO

pr1002 0.30 0.18 0.41 0.21 0.14

u1060 0.34 0.36 0.29 0.14 0.26

pcb1173 0.11 0.095 0.37 0.24 0.001

d1291 0.041 0.055 0.14 0.15 0.037

fl1577 0.28 0.10 0.35 0.65 0.022

6.5 Results of the QAP Experiments

RACO is applied to real-life, real-life-like and random-generated QAP instances as

shown in Tables 6.5-6.9. The results of the experiments on real-life and real-life-like

instances are reported for short and long runs. The results confirmed that the quality

of solution produced by the RACO algorithm is better than others for QAP.

From Table 6.5, where the RACO behavior is under strong time constraints, it is

clear that RACO is well adapted to the real-life instances of QAP. For the bur26x

instance, the results can show that the population-based methods (such as RACO,

GH and HAS-QAP) perform better than the local search-based (SA and Ro-TS). In

fact, Ro-TS and SA are not really competitive for these kinds of problems. For the

 159

els19 instance, the ant-based metaheuristics are the better. For kra30a, HAS-QAP,

GA and SA seem to be the best methods, whereas RACO produced the worse

solutions. It is known that the performance of competitive algorithms rely on the

type of QAP problems.

Table 6.5

Results of Comparing RACO with Ro-TS, RTS, SA, GH, HAS-QAP and MMAS-

QAP3-opt Algorithms in Real-Life QAP Instances for Short Run using RPD Test

QAP

instance

Best-Known

Solution
Ro-TS RTS SA GH

HAS-

QAP

MMAS-

QAP3-opt

RACO

real-life instances:

bur26a 5426670 0.208 — 0.185 0.060 0.027 0.010 0.000

bur26b 3817852 0.441 — 0.191 0.090 0.106 0.000 0.000

bur26c 5426795 0.170 — 0.137 0.004 0.009 0.000 0.000

bur26d 3821225 0.249 — 0.379 0.003 0.002 0.000 0.000

bur26e 5386879 0.076 — 0.228 0.003 0.004 0.000 0.000

bur26f 3782044 0.369 — 0.224 0.006 0.000 0.000 0.000

bur26g 10117172 0.078 — 0.139 0.006 0.000 0.000 0.000

bur26h 7098658 0.349 — 0.368 0.003 0.001 0.000 0.000

chr25a 3796 15.969 16.844 27.139 15.158 15.690 20.18 9.53

els19 17212548 21.261 6.714 16.028 0.515 0.923 0.170 0.000

kra30a 88900 2.666 2.155 1.813 1.576 1.664 7.551 6.068

kra30b 91420 0.478 1.061 1.065 0.451 0.504 0.964 0.180

From Table 6.6, where the run is longer, the results obtained with RACO were

competitive to other ant-based algorithms for some instances, while it was better for

most of the instances. For the bur26x instance, all the runs of RACO, MMAS-QAP3-

opt and HAS-QAP succeeded in finding the best solution known. The behavior of

RACO and HAS-QAP is equivalent, except that RACO produced the best solution

for the kra30b instance, whereas HAS-QAP was the best in solving the chr25a

 160

instance. For the kra30a instance, the iterative methods such as GH are the best,

while RACO and MMAS-QAP3-opt are the worst. From this table, the same

conclusions for shorter runs can be drawn. In general, the behavior of RACO relies

on the shape of the fitness landscape of QAP.

Table 6.6

Results of Comparing RACO with Ro-TS, RTS, SA, GH, HAS-QAP and MMAS-

QAP3-opt Algorithms in Real-Life QAP Instances for Long Run using RPD Test

QAP

instance

Best-Known

Solution
Ro-TS RTS SA GH

HAS-

QAP

MMAS-

QAP3-opt

RACO

real-life instances:

bur26a 5426670 0.0004 — 0.1411 0.0120 0.000 0.000 0.000

bur26b 3817852 0.0032 — 0.1828 0.0219 0.000 0.000 0.000

bur26c 5426795 0.0004 — 0.0742 0.000 0.000 0.000 0.000

bur26d 3821225 0.0015 — 0.0056 0.0002 0.000 0.000 0.000

bur26e 5386879 0.000 — 0.1238 0.000 0.000 0.000 0.000

bur26f 3782044 0.0007 — 0.1579 0.000 0.000 0.000 0.000

bur26g 10117172 0.0003 — 0.1688 0.000 0.000 0.000 0.000

bur26h 7098658 0.0027 — 0.1268 0.0003 0.000 0.000 0.000

chr25a 3796 6.9652 9.8894 12.4973 2.6923 3.0822 9.43 7.48

els19 17212548 0.000 0.0899 18.5385 0.000 0.000 0.000 0.000

kra30a 88900 0.4702 2.0079 1.4657 0.1338 0.6299 6.40 7.01

kra30b 91420 0.0591 0.7121 0.1947 0.0536 0.0711 0.11 0.020

The results of the experiments on the real-life-like instances are reported in Tables

6.7 and 6.8. For short runs, the results showed that RACO has succeeded in finding

the best solutions for all instances. It can be concluded from the short run

experiments that RACO produces high quality solutions earlier than other methods.

Therefore, it is suitable to deal with anytime applications. For long runs, the results

confirm the robustness of the proposed approach. On the other side, other

 161

population-based methods (such as GH, HAS-QAP and MMAS-QAP3-opt) showed

better behavior than local-search methods (such as Ro-TS and SA) for the instances

of taixxb type. The reason behind the outperformance of the population-based

algorithms is that they were of higher exploration. Yet, the role of reactive heuristics

dominates the role of other exploration components of RACO.

Table 6.7

Results of Comparing RACO with Ro-TS, RTS, SA, GH, HAS-QAP and MMAS-

QAP3-opt Algorithms in Real-Life like QAP Instances for Short Run using RPD Test

QAP

instance

Best-Known

Solution
Ro-TS RTS SA GH

HAS-

QAP

MMAS-

QAP3-opt

RACO

real-life like instances:

tai20b 122455319 6.700 — 14.392 0.150 0.243 0.170 0.000

tai25b 344355646 11.486 — 8.831 0.874 0.133 0.316 0.006

tai30b 637117113 13.284 — 13.515 0.952 0.260 0.262 0.001

tai35b 283315445 10.165 — 6.935 1.084 0.343 0.591 0.040

tai40b 637250948 9.612 — 5.430 1.621 0.280 0.382 0.004

tai50b 458821517 7.602 — 4.351 1.397 0.291 0.545 0.146

tai60b 608215054 8.692 — 3.678 2.005 0.313 0.673 0.136

tai80b 818415043 6.008 — 2.793 2.643 1.108 1.292 0.592

The results of the experiments on the random-generated instances show that RACO

is better than other methods with all the scales of this type of QAP instances. This

superiority to the modern swarm intelligence methods, i.e. OG-ACO and HAFSOA,

confirms the harmony in combining the exploration and exploitation components of

RACO.

 162

Table 6.8

Results of Comparing RACO with Ro-TS, RTS, SA, GH, HAS-QAP and MMAS-

QAP3-opt Algorithms in Real-Life like QAP Instances for Long Run using RPD Test

QAP

instance

Best-Known

Solution
Ro-TS RTS SA GH

HAS-

QAP

MMAS-

QAP3-opt

RACO

real-life like instances:

tai20b 122455319 0.000 — 6.7298 0.000 0.0905 0.000 0.000

tai25b 344355646 0.0072 — 1.1215 0.000 0.000 0.04 0.000

tai30b 637117113 0.0547 — 4.4075 0.0003 0.000 0.08 0.000

tai35b 283315445 0.1777 — 3.1746 0.1067 0.0256 0.32 0.061

tai40b 637250948 0.2082 — 4.5646 0.2109 0.000 0.14 0.000

tai50b 458821517 0.2943 — 0.8107 0.2142 0.1916 0.30 0.093

tai60b 608215054 0.3904 — 2.1373 0.2905 0.0483 0.36 0.049

Table 6.9

Results of Comparing RACO with OG-ACO and HAFSOA Algorithms in Random

Generated QAP Instances using RPD Test

QAP

instance

Best-Known

Solution
OG-ACO HAFSOA RACO

 Number of

Iterations

random generated instances:

Nug30 6124 0.294 0.291 0.007 1500

Ste36b 15852 1.336 0.804 0.000 1800

Tai30a 1818146 1.864 1.772 1.567 1500

Tai40a 3139370 2.597 2.306 1.943 2000

Tai50a 4941410 2.934 2.685 2.328 2500

Tai60a 7208572 2.904 2.669 2.533 3000

Tai80a 13557864 2.666 2.169 2.081 4000

Tai100a 21125314 2.517 2.233 2.035 5000

6.6 Summary

The concern that the E&E components of RACO: reactive heuristics, recursive local

search, and the quality-based reward assignment within the APSACO parameter

controller, may interdependently conflict each other when they run together, are

refuted. The schema of how the components interconnect has been figured in this

 163

chapter. Results showed that the said components are operating harmoniously as

RACO has superior to sixteen metaheuristic algorithms. The generality of RACO as

an effective method for combinatorial optimization enables further extensions as

explained in the next chapter.

 164

CONCLUSION AND FUTURE WORK

Ant colony optimization metaheuristic solves, stochastically, optimization problems

by transforming a biological approach of real ants for finding food into a

computational approach for finding high quality solutions. Traversing the search

space of the problem challenged by a dilemma called the exploration versus the

exploitation. Many previous studies have addressed important aspects of the

dilemma, such as the role of memory models in learning while optimizing, the way

in which those models are managed, e.g. pheromone model management, and the

parameter setting. The problem with those studies is that they tried to solve the

exploration and exploitation problem by focusing on one of the perspectives while

neglecting the others as concluded in Chapter Two.

Reactive search is a technique to improve the internal behavior metaheuristics by

automating the exploration and exploitation states of search in online and offline

manners. The feedback collected during the search reports to the user, in offline

approaches, or reports to the algorithm itself, in online approaches, to evaluate the

current state of the search and performs the suitable reaction to adjust it.

Unfortunately, in reactive-based ACO methods, the online approaches are premature

compared with offline ones. There are no general guidelines for adopting reactive

search in improving the exploration and exploitation balance within ACO. Chapter

Three proposes a unified methodology for improving the three aspects of reactive-

based ACO: memory, exploration indication, i.e. feedback, and parameterization.

 165

7.1 Research Contributions

This thesis presented a new ACO-based reactive approach for automating

exploration and exploitation of ant colony optimization algorithms during the

optimization process. The main contributions of the thesis are new reactive-based

memory models, new nature-inspired exploration indicator, and new adaptive

parameter selection strategy.

In the first contribution, two memory-based components are provided: reactive

heuristics (RHs) and recursive local search (RLS) (see Subsections 4.2.2 and 4.2.6)

respectively. The arcs that their pheromone amount became below a predefined

threshold are recorded in the CbM scheme in terms of reactive heuristics. RHs are

deactivated until some events trigger them such as the occurrence of stagnation. The

trigger activates the use of these heuristics after restarting the current search. The

proposed heuristics improved the behavior of the restart mechanism and produced

good results. Next, the problem of premature exploitation has addressed by the

proposal of RLS, the exploitation mechanism. RLS records a population of solutions

instead of arcs using the PbM scheme, which is a fixed size vector of the high quality

solutions found in current and previous iterations. The imperial results showed that

solving small and medium TSP instances are more profitable from RHs than larger

instances. For all sizes of QAP instances, the RLS mechanism gives a higher impact

than applying it to TSP. Two variants of MMAS, they are RMMAS and RMMASRLS

(refer to Figures 4.3 and 4.8 respectively), are applied to TSP and QAP, and are

proposed based on these contributions. The improvements are confirmed

computationally and statistically.

 166

In the second contribution, a more robust indication is achieved using the machine

learning based indicator denoted as ACOustic (see Section 5.2). The idea of

inventing this indicator is mitigated from the acoustic mimicry phenomena in natural

ants-parasites systems. Using ACOustic, the exploration process is redefined using

the number of clusters as a metric. The amount of exploration is measured by the

degree of relatedness between artificial ants. In spite of the computational cost of the

application of ACOustic, it has shown empirically to be a more robust indicator. The

significance of this proposal is not only in the improvement in the robustness of the

indication, but also in the attempt of modeling the sounds of ants. The development

of ACOustic can be invested in different ways and lead to propose more advanced

E&E components not for ACO algorithms only, but for other metaheuristics.

The third contribution concerns the proposal of three rewards assignment strategies

for adaptive parameters’ selection. There are the quality-based, the exploration-based

and the unified strategies (see Subsections 5.7.1, 5.7.2 and 5.7.3 respectively). After

a proper value for a particular parameter is selected proportionally, it is applied to

the optimization process. The impact of the application is transformed into numerical

rewards. One of the proposed strategies can be applied to calculate the rewards based

on the reported impact. The experimental results showed that the quality-based

reward assignment strategy has the more impact than others.

The three contributions are merged, in the unified RACO (see Chapter Six), and are

empirically assessed to ensure that the quality of solutions produced does not

worsen. The results showed that the contributed components operate more

 167

harmoniously. The final algorithmic approach has been compared with eight

algorithms in the application of TSP and six algorithms in the application of QAP.

7.2 Future Work

Automating the exploration and exploitation is promoted by the RACO proposal.

RACO is assembled from several methods which are combined with the standard

version of MMAS. Several more efficient and faster converging ACO variants exist,

such as the PACO algorithm. Recent empirical studies confirmed that the pheromone

evaporation in MMAS took a long time because of the need to divide every arc in the

pheromone matrix in every iteration. This situation does not exist in PACO.

Emerging RACO with the PACO approach in the near future can achieve better

results than when combined with the standard algorithm.

Coming back to the individual methods combined with RACO, some of the methods

are designed in a very independent way, and it can be considered that the application

to any of the ACO variants is just as a baseline. For the RLS proposal, it can be

applied for any local search algorithm whether it is a stand-alone or hybridized with

another algorithm. If this idea were to be implemented, there are several

considerations need to be taken such as the criteria under which the solutions will be

added/deleted to/from the population vector.

For the ACOustic proposal in reporting the performance of ACO algorithms, it is

important to examine more fitness landscapes for other CO problems such as vehicle

routing problem (VRP) and car sequencing problem (CSP). It is suspected that new

 168

insights can be discovered from analyzing such landscapes using the relatedness

concept to indicate the amount of exploration. On the other hand, ACOustic can be

used for controlling the dynamic transformation between exploration and

exploitation for other metaheuristics such as the Artificial Bee Colony (ABC)

algorithm. For ABC, ACOustic can be utilized as a machine learning trigger for

controlling the dynamic for the transformation between the onlookers and the scouts,

or can be used to determine the optimal point to immigrate the current neighborhood

structure.

Another path for further work is the application of the APSACO strategy for other

ACO variants such as ACS or other swarm intelligence algorithms. The Particle

Swarm Optimization (PSO) algorithm is a good candidate due to the similar number

of parameters used for adjusting the exploration and exploitation within PSO. Along

the same line, there are other strategies for deriving the numerical rewards in relation

with the size of population memory referring to the pheromone management in the

PACO approach.

A major drawback of the final recommended RACO method is that its application

remains limited. It will be very useful to apply general enough adaptive parameter

selection methods such as the ones applied in evolutionary algorithms. With the aid

of ACOustic, the fitness improvement used in assessing the impact of the

parameters’ application can be put in relation to the diversity of population in order

to efficiently tackle multimodal problems especially when PSO is utilized as an

underline algorithm or the adaptive operator selection (AOS) paradigm in

 169

evolutionary algorithms, when it is used as a meta-optimization algorithm for the

parameters’ selection problem, particularly, in RACO and, generally, in ACO. In

order to generalize the scientific contributions proposed in this thesis, there is

intention to prepare freely available source codes with well-designed interface of the

proposed approach. More and more combinatorial optimization problems, e.g. VRP

and CSP, can be modeled based on the construction graph concept.

 170

REFERENCES

Aleti, A. (2012). An adaptive approach to controlling parameters of evolutionary

algorithms. Unpublished doctoral dissertation. Swinburne University of

Technology, Melbourne Australia.

Adenso-Diiaz, B., & Laguna, M. (2006). Fine-tuning of algorithms using fractional

experimental designs and local search. Operations Research, 54(1), 99–114.

Afshar, M. (2005). A new transition rule for ant colony optimization algorithms:

Application to pipe network optimization problems. Engineering Optimization,

37(5), 525–540.

Alaya, I., Solnon, C., & Ghedira, K. (2004). Ant algorithm for the multi-dimensional

knapsack problem. In B. Flipic & J. Silic (Eds.), Proceedings of BIOMA'2004:

The International Conference on Bioinspired Optimization Methods and Their

Applications (pp. 63–72). Ljubljana, Slovenia: Jozef Stefan Institute.

Aljanaby, A., Ku-Mahamud, K. R., & Norwawi, N. M. (2010). Interacted multiple

ant colonies optimization framework: An experimental study of the evaluation

and the exploration techniques to control the search stagnation. International

Journal of Advancements in Computing Technology, 2(1), 78–85.

Alobaedy, M. M., & Ku-Mahamud, K. R. (2015). Strategic Oscillation for

Exploitation and Exploration of ACS Algorithm for Job Scheduling in Static

Grid Computing. In 2015 Second International Conference on Computing

Technology and Information Management (ICCTIM) (pp. 87–92). Johor: IEEE.

Altiparmak, F., & Karaoglan, I. (2007). A genetic ant colony optimization approach

for concave cost transportation problems. In Proceedings of CEC 2007: The

IEEE Congress on Evolutionary Computation (pp. 1685–1692). Stamford,

Singapore: IEEE.

Amir, C., Badr, A., & Farag, I. (2007). A fuzzy logic controller for ant algorithms.

Computing and Information Systems, 11(2), 26–34.

Anghinolfi, D., Boccalatte, A., Paolucci, M., & Vecchiola, C. (2008). Performance

evaluation of an adaptive ant colony optimization applied to single machine

scheduling. In L. Xiaodong, M. Kirley, M. Zhang, D. Green, V. Ciesielski, H.

Abbass, … S. Yuhui (Eds.), Lecture Notes in Computer Science: Simulated

Evolution and Learning (Vol. 5361, pp. 411–420). Heidelberg, Germany:

Springer.

Angus, D. J. (2008). Niching ant colony optimisation. Unpublished doctoral

dissertation.Swinburne University of Technology Melbourne, Australia.

 171

Baghel, M., Agrawal, S., & Silakari, S. (2012). Survey of metaheuristic algorithms

for combinatorial optimization. International Journal of Computer

Applications, 58(19), 21–31.

Balaprakash, P., Birattari, M., & Stützle, T. (2007). Improvement strategies for the

F-Race algorithm: Sampling design and iterative refinement. In T. Bartz-

Beielstein, M. J. B. Aguilera, C. Blum, B. Naujoks, A. Roli, G. Rudolph, & M.

Sampels (Eds.), Lecture Notes in Computer Science: Hybrid Metaheuristics

(Vol. 4771, pp. 108–122). Heidelberg, Germany: Springer.

Barbero, F., Patricelli, D., Witek, M., Balletto, E., Casacci, L. P., Sala, M., &

Bonelli, S. (2012). Myrmica ants and their butterfly parasites with special focus

on the acoustic communication. Psyche: A Journal of Entomology.

Barbero, F., Thomas, J., Bonelli, S., Balletto, E., & Schönrogge, K. (2009). Queen

ants make distinctive sounds that are mimicked by a butterfly social parasite.

Science, 323(5915), 782–785.

Barr, R. S., Golden, B. L., Kelly, J. P., Resende, M. G. ., & Stewart, W. R. (1995).

Designing and reporting on computational experiments with heuristic methods.

Journal of Heuristics, 1, 9–32.

Battiti, R., & Birattari, M. (2013). The LION way. Machine Learning plus Intelligent

Optimization. Los Angeles: Lionsolver Inc.

Battiti, R., Brunato, M., & Mascia, F. (2008). Reactive search and intelligent

optimization. U.S.A.: Springer.

Battiti, R., & Protasi, M. (2001). Reactive local search for the maximum clique

problem. In R. Battiti & M. Protasi (Eds.), Algorithmica (Vol. 29, pp. 610–637).

Heidelberg, Germany: Springer.

Bertsimas, D., Brown, D. B. D., & Caramanis, C. (2011). Theory and Applications

of Robust Optimization. SIAM Review, 53(3), 464–501.

Beer, C., Hendtlass, T., & Montgomery, J. (2012). Improving exploration in ant

colony optimization with antennation. In 2012 IEEE Congress on Evolutionary

Computation. Brisbane, Australia. Retrieved from

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6252923

Bin, Y., Zhongzhen, Y., & Baozhen, Y. (2009). An improved ant colony

optimization for vehicle routing problem. European Journal of Operational

Research, 196(1), 171–176.

Birattari, M., Stützle, T., Paquete, L., & Varrentrapp, K. (2002). A racing algorithm

for configuring metaheuristics. In W. B. Langdon, E. Cantü-Paz, K. E. Mathias,

R. Roy, D. Davis, R. Poli, … N. Jonoska (Eds.), Proceedings of GECCO’02:

 172

The Genetic and Evolutionary Computation Conference (pp. 11–18). San

Francisco, CA, USA: Morgan Kaufmann.

Blum, C. (2002). ACO applied to group shop scheduling: A case study on

intensification and diversification. In M. Dorigo, G. Di-Caro, & M. Sampels

(Eds.), Lecture Notes in Computer Science (LNCS): Ant algorithms (Vol. 2463,

pp. 14–27). Heidelberg, Germany: Springer.

Blum, C. (2005a). Ant colony optimization: Introduction and recent trends. Physics

Of Life Reviews, 2(4), 353–373.

Blum, C. (2005b). Beam-ACO—hybridizing ant colony optimization with beam

search: An application to open shop scheduling. Computers & Operations

Research, 32(6), 1565–1591.

Blum, C., & Blesa, M. J. (2005). New metaheuristic approaches for the edge-

weighted k-cardinality tree problem. Computers & Operations Research, 32(6),

1355–1377.

Blum, C., & Dorigo, M. (2004). The hyper-cube framework for ant colony

optimization. IEEE Transactions on Systems, Man, and Cybernetics, 34(2),

1161–1172.

Blum, C., Puchinger, J., Raidl, G. R., & Roli, A. (2011). Hybrid metaheuristics in

combinatorial optimization: A survey. Applied Soft Computing, 11, 4135–4151.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Computing Surveys, 35(3), 268–

308.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From

natural to artificial systems. New York, USA: Oxford Univ. Press.

Boussaïd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization

metaheuristics. Information Sciences, 237(2013), 82–117.

Bui, T. N., & Zrncic, C. M. (2006). An ant-based algorithm for finding degree-

constrained minimum spanning tree. In M. Keijzer, J. A. Foster, D. V. Arnold,

A. Hernández-Aguirre, V. Babovic, G. S. Hornby, … D. Thierens (Eds.),

Proceedings of GECCO’06: The 8th Annual Conference on Genetic And

Evolutionary Computation (Vol. 1, pp. 11–18). New York, USA: ACM Press.

Bullnheimer, B., Hartl, R. F., & Straub, C. (1997). A new rank based version of the

ant system - A computational study (working paper no.1 ed.). Vienna: Institute

of Management Science, University of Vienna.

 173

Burkard, R. ., Cela, E., Karisch, S. E., & Rendl, F. (1997). QAPLIB - A quadratic

assignment problem library. Journal of Global Optimization, (10), 391–403.

Retrieved from http://www.opt.math.tu-graz.ac.at/qaplib/.

Carterette, B. (2011). An analysis of NP-completeness in novelty and diversity

ranking. Information Retrieval, 14(1), 89–106. doi:10.1007/s10791-010-9157-1.

Chen, W., Bian, W., & Zeng, R. (2013). Research on convergence of ACO subset

algorithms. COMPEL: The International Journal for Computation and

Mathematics in Electrical and Electronic Engineering, 32(2), 649–660.

Chusanapiputt, S., Nualhong, D., Jantarang, S., & Phoomvuthisarn, S. (2006).

Selective self-adaptive approach to ant system for solving unit commitment

problem. In M. Keijzer, J. A. Foster, D. V. Arnold, A. Hernández-Aguirre, V.

Babovic, G. S. Hornby, … D. Thierens (Eds.), Proceedings of GECCO ’06:

The 8th Annual Conference on Genetic and Evolutionary Computation (Vol. 2,

pp. 1729–1736). New York, USA: ACM Press.

Colas, S., & Monmarch, N. (2008). Artificial ants for the optimization of virtual

keyboard arrangement for disabled people. In N. Monmarché, E.-G. Talbi, P.

Collet, M. Schoenauer, & E. Lutton (Eds.), Lecture Notes in Computer Science

(LNCS): Artificial Evolution (Vol. 4926, pp. 87–99). Heidelberg, Germany:

Springer.

Collings, J., & Kim, E. (2014). A distributed and decentralized approach for ant

colony optimization with fuzzy parameter adaptation in traveling salesman

problem. In 2014 IEEE Symposium on Swarm Intelligence (SIS) (pp. 1– 9).

Florida, U.S.A. doi:10.1109/SIS.2014.7011805

Colorni, A., Dorigo, M., Maniezzo, V., Elettronica, D., & Milano, P. (1991).

Distributed optimization by ant colonies. In Proceedings of ECAL91: The

European Conference on Artificial Life (pp. 134–142). Paris, France: Elsevier

Publishing.

Cordon, O., Herrera, F., & Stützle, T. (2002). A review on the ant colony

optimization metaheuristic: Basis, models and new Trends. Mathware and Soft

Computing, 9(2-3), 141–175.

Cordon, O., Herrera, I. F. de V. F., & Moreno, L. (2000). A new ACO model

integrating evolutionary computation concepts: The best-worst ant system. In

M. Dorigo, M. Middendorf, & T. Stützle (Eds.), Preceedings of ANTS’2000:

From Ant Colonies to Artificial Ants: A Series of International Workshops On

Ant Algorithims (pp. 22–29). Brussels, Belgium: IRIDIA, Universite Libre de

Bruxelles.

 174

Çunkaş, M., & Özsağlam, M. Y. (2009). A Comparative Study on Particle Swarm

Optimization and Genetic Algorithms for Traveling Salesman Problems.

Cybernetics And Systems, 40(6), 490–507. doi:10.1080/01969720903068435.

Deneubourg, J.-L., Aron, S., Goss, S., & Pasteels, J. M. (1990). The self-organizing

exploratory pattern of the argentine ant. Journal of Insect Behavior, 3(2), 159–

168.

Deren, L., Kaichang, D., & Deyi, L. (2000). Knowledge representation and

uncertainty reasoning in GIS based on cloud models. In The 9th International

Symposium On Spatial Data Handling. Beijing, China. Retrieved from

http://shoreline.eng.ohio- state.edu /dkc/SDH2000_Li_Di.pdf

Di-Caro, G., & Dorigo, M. (1998). AntNet: Distributed stigmergetic control for

communications networks. JAIR: Journal of Artificial Intelligence Research,

9(1), 317–365.

Dorigo, M. (1992). Optimization, learning and natural algorithms. Unpublished

doctoral dissertation. Politecnico di Milano, Italy.

Dorigo, M. (2007). Ant colony optimization. Scholarpedia, 2(3), 1–12.

Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey.

Theoretical Computer Science, 344(2-3), 243–278.

Dorigo, M., & Di-Caro, G.. (1999). The ant colony optimization meta-heuristic. In

C. David, M. Dorigo, & F. Glover (Eds.), New Ideas in Optimization. London:

McGraw-Hill.

Dorigo, M., Di-Caro, G., & Gambardella, L. M. (1999). Ant algorithms for discrete

optimization. Artificial Life, 5(2), 137–172.

Dorigo, M., & Gambardella, L. M. (1997). Ant colony system : A cooperative

learning approach to the traveling salesman problem. IEEE Transactions on

Evolutionary Computation, 1(1), 53–66.

Dorigo, M., Gambardella, L. M., Middendorf, M., & Stützle, T. (2002). Special

section on ant colony optimization. IEEE Transactions on Evolutionary

Computation, 6(4), 317–319.

Dorigo, M., Maniezzo, V., & Colorni, A. (1991). Positive feedback as a search

strategy (Tech. Rept. 91-016). Milano, Italy: Laboratorio di Calcolatori,

Dipartimento di Elettronica, Politecnico di Milano.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a

colony of cooperating agents. IEEE Transaction on Systems, 26(1), 29–41.

 175

Dorigo, M., & Socha, K. (2007). Ant colony optimization. In T. F. Gonzalez (Ed.),

Handbook of approximation algorithms and metaheuristics (pp. 1–25). Boca

Raton, Florida: Chapman & Hall/CRC.

Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge, MA, USA:

MIT Press.

Dorigo, M., & Stützle, T. (2010). Ant colony optimization: Overview and recent

advances. In M. Gendreau & J. Potvin (Eds.), Handbook of Metaheuristics

(Vol. 146, pp. 227–263). New York, USA: Springer US.

Eiben, A., Michalewicz, Z., Schoenauer, M., & Smith, J. (2007). Parameter control

in evolutionary algorithms. In F. G. Lobo, C. F. Lima, & Z. Michalewicz (Eds.),

Studies In Computational Intelligence (SCI): Parameter Setting in Evolutionary

Algorithms (Vol. 54, pp. 19–46). Heidelberg, Germany: Springer.

Eiben, A., & Jelasity, M. (2002). A critical note on experimental research

methodology in EC. In Proceedings of CEC’02: The 2002 Congress on

Evolutionary Computation (Vol. 2, pp. 582–587). Washington, DC, USA: IEEE

Computer Society.

Eiben, A., & Smit, S. K. (2011). Parameter tuning for configuring and analyzing

evolutionary algorithms. Swarm and Evolutionary Computation, 1(1), 19–31.

doi:10.1016/j.swevo.2011.02.001.

Eswaramurthy, V. P., & Tamilarasi, A. (2009). Hybridizing tabu search with ant

colony optimization for solving job shop scheduling problems. The

International Journal of Advanced Manufacturing Technology, 40(9-10), 1004–

1015.

Failho, A. R. S. (2010). Adaptive Operator Selection for Optimization. Unpublished

doctoral dissertation. Ecole Doctorale d’ Informatique, Universite Paris, Paris,

France.

Favaretto, D., Moretti, E., & Pellegrini, P. (2009). On the explorative behavior of

MAX–MIN ant system. In T. Stützle, M. Birattari, & H. H. Hoos (Eds.),

Lecture Notes in Computer Science (LNCS): Engineering Stochastic Local

Search Algorithms (Vol. 5752,, pp. 115–119). Heidelberg, Germany: Springer.

Fletcher, R. (1997). Practical methods of optimization. Chichester, England: Weley

& Sons Ltd.

Forster, M., Bickel, B., Hardung, B., & Gabriella, K. (2007). Self-adaptive ant

colony optimisation applied to function allocation in vehicle networks. In D.

Thierens, H.-G. Beyer, J. Bongard, J. Branke, J. A. Clark, D. Cliff, … I.

Wegener (Eds.), Proceedings of GECCO 2007: The 9th Annual Conference on

 176

Genetic And Evolutionary Computation (pp. 1991–1998). London, UK: ACM

Press.

Gaertner, D., & Clark, K. (2005). On optimal parameters for ant colony optimization

algorithms TSP classifications. In H. Arabnia & R. Joshua (Eds.), Proceedings

of IC-AI 2005: The International Conference on Artificial Intelligence (Vol. 2,

pp. 83–89). Las Vegas, Nevada, USA: CSREA Press.

Gambardella, L. M., & Dorigo, M. (1995). Ant-Q: A reinforcement learning

approach to the traveling salesman problem. In A. Prieditis & S. J. Russell

(Eds.), The Morgan Kaufmann Series in Machine Learning: Proceedings of The

12th International Conference on Machine Learning (pp. 252–260). California:

Morgan Kaufmann.

Gambardella, L. M., Montemanni, R., & Weyland, D. (2012). Coupling ant colony

systems with strong local searches. European Journal of Operational Research,

220(3), 831–843. doi:10.1016/j.ejor.2012.02.038

Gambardella, L. M., Taillard, E. D., & Dorigo, M. (1999). Ant Colonies for the

Quadratic Assignment Problem. The Journal of The Operational Research

Society, 50(2), 167. doi:10.2307/3010565

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the

theory of NP-completeness. San Francisco, CA, USA: Freeman.

Garnier, S., Gautrais, J., & Theraulaz, G. (2007). The biological principles of swarm

intelligence. Swarm Intelligence, 1(1), 3–31.

Garro, B. A., Sossa, H., Vázquez, R. A., Juan, A., Batiz, D. D., & Othon, M. De.

(2007). Evolving ant colony system for optimizing path planning in mobile

robots. In Proceedings of CERMA 2007: The 4th Congress of Electronics,

Robotics and Automotive Mechanics (pp. 444–449). Morelos, México: IEEE

Computer Society Press.

Gendreau, M., & Potvin, J.-Y. (2010). Handbook in metaheuristics. New York,

USA: Springer.

Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning.

Machine Learning, 3(2), 95–99.

Guntsch, M. (2004). Ant algorithms in stochastic and multi-criteria environments.

Unpublished doctoral dissertation. Universität Fridericiana zu Karlsruhe,

Karlsruhe, Germany.

Guntsch, M., & Middendorf, M. (2002). A population based approah for ACO. In S.

Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, & G. R. Raidl (Eds.), Lecture

 177

Notes in Computer Science: Applications of Evolutionary Computing (Vol.

2279, pp. 72–81). Heidelberg, Germany: Springer.

Hooker, J. N. (1995). Testing heuristics: We have it all wrong. Journal of heuristics,

1(1), 33–42.

Hoos, H. H., & Stützle, T (2005). Stochastic local search: Foundations and

applications. U.S.A.: Elsevier Inc.

Hutter, F., & Leyton-brown, K. (2009). ParamILS : An Automatic Algorithm

Configuration Framework. Journal of Artificial Intelligence Research, 36, 267–

306.

Johnson, D. S. (2001). A Theoreticians guide for experimental analysis of

algorithms. In M. H. Goldwasser & C. C. McGeoch (Eds.), Data Structures,

Near Neighbor Searches, and Methodology: Proceedings of The 5th and 6th

DIMACS Implementation Challenges (Vol. 59, pp. 215–250). U.S.A.: American

Mathematical Society.

Johnson, D. S., & McGeoch, L. A. (2007). Experimental Analysis of Heuristics for

the ATSP. In G. Gutin & A. P. Punnen (Eds.), The Traveling Salesman Problem

And Its Variations (pp. 445–487). Springer. doi:10.1007/b101971.

Kawamura, H., Yamamoto, M., & Suzuki, K. (2000). Multiple ant colonies

algorithm based on colony level. IEICE TRANSACTIONS On Fundamentals of

Electronics, Communications and Computer Sciences, E83(2), 371–379.

Khichane, M., Albert, P., & Solnon, C. (2009). An ACO-based reactive framework

for ant colony optimization : First experiments on constraint satisfaction

problems. In T. Stützle (Ed.), Lecture Notes in Computer Science (LNCS):

Learning and Intelligent Optimization (Vol. 5851, pp. 119–133). Heidelberg,

Germany: Springer.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated

Annealing. Science, 220(4598), 671–80.

Kocer, H. E., & Akca, M. R. (2014). an Improved Artificial Bee Colony Algorithm

With Local Search for Traveling Salesman Problem. Cybernetics and Systems,

45(8), 635–649. doi:10.1080/01969722.2014.970396.

Korte, B., & Vygen, J. (2006). Combinatorial optimization: Theory and algorithms.

Heidelberg, Germany: Springer.

Kov, O., & Skrbek, M. (2008). Ant Colony Optimization with Castes. In V.

Kůrková, R. Neruda, & J. Koutník (Eds.), Lecture Notes in Computer Science

(LNCS): Artificial Neural Networks (ICANN 2008): Proceedings of the 18th

 178

International Conference (Vol. 5163, pp. 435–442). Heidelberg, Germany:

Springer.

Ku-Mahamud, K. R., & Alobaedy, M. M. (2013). New heuristic function in ant

colony system algorithm for optimization. In A. Kanarachos (Ed.), Proceedings

of MAMECTIS ’13: The 15th International Conference on Mathematical

Methods, Computational Techniques and Intelligent Systems (pp. 13–18).

Lemesos, Cyprus: WSEAS.

Lafayette, W. (2001). Experimental evaluation of heuristic optimization algorithms:

A tutorial, 304, 261–304.

Lawler, E. L. (1963). The quadratic assignment problem. Management Science, 9(4),

586–599

Lawler, E. L., Lenstra, J. K., Kan, A. H. G., & Shmoys, D. B. (1985). The travelling

salesman problem. New Jersey, U.S.A.: John Wiley & Sons.

Lin, Y., & Middendorf, M. (2013). Simple probabilistic population based

optimization for combinatorial optimization. In SIS: IEEE Symposium on

Swarm Intelligence (pp. 213–220). Singapore: IEEE.

doi:10.1109/SIS.2013.6615181

Liu, X., & Yang, C. (2011). Optimization of Vehicle Routing Problem Based on

Max-Min Ant System with Parameter Adaptation. In 2011 Seventh

International Conference on Computational Intelligence And Security. China,

Hainan: IEEE.

Liu, Y., Ang, G., Chen, H., Zhao, Z., Zhu, X., & Liu, Z. (2011). An adaptive fuzzy

ant colony optimization for feature selection. Journal Of Computational

Information Systems, 4(7), 1206–1213.

Lopez-Ibanez, M. (2010). Ant Colony Optimization. In M. Pelikan & J. Branke

(Eds.), Proceedings of GECCO’10: The 12th Annual Conference Companion

On Genetic and Evolutionary Computation (pp. 2353–2384). New York, NY,

USA: ACM.

Lopez-Ibanez, M., & Stützle, T. (2011). The automatic design of multi-objective ant

colony optimization algorithms. IEEE Transactions on Evolutionary

Computation, 16(6), 861 – 875. doi:10.1109/TEVC.2011.2182651.

Lopez-Ibanez, M., & Stützle, T. (2014). Automatically improving the anytime

behaviour of optimisation algorithms. European Journal of Operational

Research, 235(3), 569– 582.

 179

Maniezzo, V. (1999). Exact and approximate nondeterministic tree-search

procedures for the quadratic assignment problem. INFORMS: Journal on

Computing, 11(4), 1–22.

Martens, D., Backer, M. De, Haesen, R., Vanthienen, J., & Snoeck, M. (2007).

Classification with ant colony optimization. IEEE Transactions on Evolutionary

Computation, 11(5), 651–665.

Martens, D., Baesens, B., & Fawcett, T. (2011). Editorial survey : swarm intelligence

for data mining. Machine Learning, 82(April 2010), 1–42. doi:10.1007/s10994-

010-5216-5.

Maur, M., Stützle, T., & López-Ibáñez, M. (2010). Pre-scheduled and adaptive

parameter variation in MAX-MIN Ant System. In 2010 IEEE Congress on

Evolutionary Computation (CEC) (pp. 1 – 8). Spain, Barcelona: IEEE.

doi:10.1109/CEC.2010.5586332.

Melo, L., Pereira, F., & Costa, E. (2010). MC-ANT: A multi-colony ant algorithm.

In P. Collet, N. Monmarché, P. Legrand, M. Schoenauer, & E. Lutton (Eds.),

Lecture Notes in Computer Science: Artifical Evolution (Vol. 5975, pp. 25–36).

Heidelberg, Germany: Springer.

Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony optimization for

resource-constrained project scheduling. IEEE Transactions on Evolutionary

Computation, 6(4), 333–346.

Merkle, D., & Middendorf, M. (2001). Prospects for dynamic algorithm control:

Lessons from the phase structure of ant scheduling algorithms. In GECCO

2001-Genetic and Evolutionary Computation Conference Workshop Program.

San Francisco, California, USA.

Merkle, D., & Middendorf, M. (2005). Swarm intelligence. In E. K. Burke & G.

Kendall (Eds.), Search Methodologies (pp. 401–435). U.S.A.: Springer.

Meyer, B. (2004). Convergence control in ACO. In M. Keijzer (Ed.), Proceedings of

GECCO’04: Genetic and Evolutionary Computation Conference, seattle,

washington, late-breaking paper available on CD. X-CD Technologies.

Retrieved from http://www.cs.bham.ac.uk/~wbl/biblio/gecco2004/LBP035.pdf

Middendorf, M., Reischle, F., & Schmeck, H. (2000). Information exchange in multi

colony ant algorithms. In J. Rolim (Ed.), Lecture Notes in Computer Science

(LNCS): Parallel and Distributed Processing (Vol. 1800, pp. 645–652).

Heidelberg, Germany: Springer.

Mohan, B. C., & Baskaran, R. (2012). A survey : Ant Colony Optimization based

recent research and implementation on several engineering domain. Expert

Systems with Applications, 39(4), 4618–4627. doi:10.1016/j.eswa.2011.09.076.

 180

Monteiro, M., Fontes, D., & Fontes, F. (2012). Ant colony optimization: A literature

survey (working paper, no. 474). Retrieved from FEP- Faculty of Engineering,

University of Porto:

http://www.fep.up.pt/investigacao/workingpapers/wp474.pdf

Moret, B. M. E. (2001). Algorithms and experiments: The new (and old)

methodology, 7(5), 434–446.

Neyoy, H., Castillo, O., & Soria, J. (2013). Dynamic fuzzy logic parameter tuning

for ACO and its application in TSP problems. In O. Castillo, P. Melin, & J.

Kacprzyk (Eds.), Studies in Computational Intelligence (SCI): Recent Advances

On Hybrid Intelligent Systems (Vol. 451, pp. 259–271). Heidelberg, Germany:

Springer.

Neyoy, H., Castillo, O., & Soria, J. (2015). Fuzzy logic for dynamic parameter

tuning in ACO and its application in optimal fuzzy logic controller design. (O.

Castillo & P. Melin, Eds.). Springer. doi:10.1007/978-3-319-10960-2_1

Olivas, F., Valdez, F., & Castillo, O. (2015). Dynamic parameter adaptation in Ant

Colony Optimization using a fuzzy system for TSP problems. In 16th World

Congress of The International Fuzzy Systems Association (IFSA) and The 9th

Conference of The European Society for Fuzzy Logic and Technology

(EUSFLAT) Dynamic (pp. 765–770). Gijón, Asturias, Spain: Published by

Atlantis Press.

Oliveira, S., Stützle, T., Roli, A., & Dorigo, M. (2011). A Detailed analysis of the

population-based ant colony optimization algorithm for the TSP and the QAP.

In Proceedings of GECCO’11: Genetic and Evolutionary Computation

Conference (pp. 13–14). doi:10.1145/2001858.2001866

Osman, I., & Laporte, G. (1996). Metaheuristics: A bibliography. In I. Osman & G.

Laporte (Eds.), Annals of Operational Research (Vol. 63, pp. 513–628).

Baarn/Kluwer, Netherlands: Baltzer Science Publishers.

Pellegrini, P. (2006). ACO : parameters , exploration and quality of solutions.

Unpublished doctoral dissertation. Universit`a Ca’ Foscari Venezia, Venezia,

Italy.

Pellegrini, P., & Favaretto, D. (2012). Quantifying the exploration performed by

metaheuristics. Journal of Experimental & Theoretical Artificial Intelligence,

24(2), 247–266. doi:10.1080/0952813X.2012.656327

Pellegrini, P., Favaretto, D., & Moretti, E. (2009). Exploration in stochastic

algorithms : An application on MAX-MIN ant system. In N. Krasnogor, M. B.

Melián-Batista, J. A. M. Pérez, J. M. Moreno-Vega, & D. A. Pelta (Eds.),

Studies in computational intelligence (SCI): Nature Inspired Cooperative

 181

Strategies for Optimization (NICSO 2008) (Vol. 236, pp. 1–13). Heidelberg,

Germany: Springer.

Pellegrini, P., Stützle, T., & Birattari, M. (2010a). Off-line vs . on-line tuning : A

study on MAX – MIN ant system for the TSP (TR/IRIDIA/2010-009). Bruxelles,

Belgium: IRIDIA, Universite Libre de Bruxelles.

Pellegrini, P., Stützle, T., & Birattari, M. (2010b). Tuning Max-Min ant system with

off-line and on-line methods (TR/IRIDIA/2010-009). Bruxelles, Belgium:

IRIDIA, Universite Libre de Bruxelles.

Pellegrini, P., Stützle, T., & Birattari, M. (2012). A critical analysis of parameter

adaptation in ant colony optimization. Swarm Intelligence, 6(1), 23–48.

Perez-Caceres, L., Lopez-Ibanez, M., & Stützle, T. (2014). Ant colony optimization

on a budget of 1000. In M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. M.

de Oca, C. Solnon, & T. Stützle (Eds.), Lecture Notes in Computer Science

(LNCS): Swarm Intelligence (Vol. 8667, pp. 50–61). Springer Berlin

Heidelberg. doi:10.1007/978-3-319-09952-1_5

Pilat, M. L., & White, T. (2002). Using genetic algorithms to optimize ACS-TSP. In

M. Dorigo, G. Di-Caro, & M. Sampels (Eds.), Lecture Notes in Computer

Science: Ant Algorithms (Vol. 2463, pp. 282–287). Heidelberg, Germany:

Springer.

Rahmani, P., Dadbakhsh, M., & Gheisari, S. (2012). Improved MACO approach for

grid scheduling. In Proceedings of ICIII 2012: The International Conference on

Industrial and Intelligent Information (Vol. 31, pp. 135–142). Singapore:

IACSIT Press.

Rajaraman, A., & Ullman, J. D. (2012). Mining of massive datasets. U.S.A.:

Cambridge University Press.

Rappos, E., & Hadjiconstantinou, E. (2004). An ant colony heuristic for the design

of two-edge connected flow networks. In M. Dorigo, M. Birattari, C. Blum, L.

M. Gambardella, F. Mondada, & T. Stützle (Eds.), Lecture Notes in Computer

Science (Vol. 3172, pp. 270–277). Heidelberg, Germany: Springer.

Reinelt, G. (1991). TSPLIB-A traveling salesman problem library. ORSA Journal On

Computing. Retrieved from http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/

Rothlauf, F. (2011). Design of modern heuristics: Principles and application. Mainz,

Germany: Springer.

Russell, S. J., & Norvig, P. (2010). Artificial intelligence: A modern approach. New

Jersey, U.S.A.: Prentice Hall.

 182

Seo, M. (2009). Applications of the ant colony optimization algorithm in

combinatorial optimization. Unpublished doctoral dissertation. Pennsylvania

State University, Pennsylvania State, U.S.

Shyong, J. S., Pengyeng, Y., & Bertrand, M. T. L. (2004). An ant colony

optimization algorithm for the minimum weight vertex cover problem. In J. S.

Shyong, Y. Pengyyeng, & M. T. L. Bertrand (Eds.), Annals of Operations

Research (Vol. 131, pp. 283–304). U.S.A.: Kluwer Academic Publishers.

Solimanpur, M., Vrat, P., & Shankar, R. (2005). An ant algorithm for the single row

layout problem in flexible manufacturing systems. Computers & Operations

Research, 32(3), 583–598.

Solnon, C. (2010). Ant colony optimization and constraint programming. U.S.A.:

Weley & Sons Ltd. doi:10.1002/9781118557563

Solnon, C., & Fenet, S. (2005). A study of ACO capabilities for solving the

maximum clique problem. Journal of Heuristics, 12(3), 155–180.

Stützle, T. (1999). Local search algorithms for combinatorial problems: Analysis ,

improvements , and new applications. Unpublished doctoral dissertation.

Technische Universit, Darmstadt, German.

Stützle, T. (2004). ACOTSP, Version 1.03. Retrieved from http://www.aco-

metaheuristic.org/aco-code

Stützle, T., & Hoos, H. (1999). MAX-MIN ant system and local search for

combinatorial optimization problems. In S. Vob, S. Martello, I. H. Osman, & C.

Roucairol (Eds.), Meta-Heuristics (pp. 313–329). U.S.A.: Springer.

Stützle, T., & Hoos, H. H. (1998). Improvements on ant-system: Introducing MAX-

MIN ant system. In T. Stützle & H. H. Hoos (Eds.), Artificial Neural Nets and

Genetic Algorithms (pp. 245–249). Vienna: Springe.

Stützle, T., & Hoos, H. H. (2000). MAX-MIN ant system. FGCS: Future Generation

Computer Systems, 16(8), 889–914.

Stützle, T., & López-Ibáñez, M. (2013). Automatic (offline) algorithm configuration.

In GECCO’13: The Fifteenth Annual Conference Companion on Genetic and

Evolutionary Computation Conference Companion (pp. 893–918). New York,

USA: ACM.

Stützle, T., López-Ibáñez, M., Pellegrini, P., Maur, M., Oca, M. M. De, Birattari, M.,

& Dorigo, M. (2012). Parameter adaptation in ant colony optimization. In Y.

Hamadi, E. Monfroy, & F. Saubion (Eds.), Autonomous Search (pp. 191–215).

Heidelberg, Germany: Springer.

 183

Taillard, E. (2010). FANT, Retrieved from http://mistic.heig-

vd.ch/taillard/codes.dir/fant_qap.c.

Talbi, E.-G. (2009). Metaheuristics from design to implementation. U.S.A.: Wiley.

Talbi, E.-G., Roux, O., Fonlupt, C., & Robillard, D. (2001). Parallel ant colonies for

the quadratic assignment problem. Future Generation Computer Systems, 17(4),

441–449.

Theraulaz, G., & Bonabeau, E. (1999). A brief history of stigmergy. Artificial life,

5(2), 97–116.

Thomas, J. A., Schonrogge, K., Bonelli, S., Barbero, F., & Balletto, E. (2010).

Corruption of ant acoustical signals by mimetic social parasites. Communicative

and Integrative Biology, 3(2), 169–171.

Venables, H., & Moscardini, A. (2006). An adaptive search heuristic for the

capacitated fixed charge location problem. In M. Dorigo, L. M. Gambardella,

M. Birattari, A. Martinoli, R. Poli, & T. Stützle (Eds.), Lecture Notes in

Computer Science: Ant Colony Optimization and Swarm Intelligence (Vol.

4150, pp. 348–355). Heidelberg, Germany: Springer.

Wang, Y. (2013). Adaptive Ant Colony Algorithm for the VRP Solution of Logistics

Distribution. Research Journal of Applied Sciences, Engineering and

Technology, 6(5), 807–811.

Weixin, L., & Huanping, L. (2007). An adaptive parameter control strategy for ant

colony optimization. In CIS ’07: The International Conference on

Computational Intelligence and Security (pp. 142–146). Harbin: IEEE.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics

Bulletin, 1(6), 80-83.

Yancang, L., & Wanqing, L. (2007). Adaptive ant colony optimization algorithm

based on information entropy. Fundamenta Informaticae, 77(3), 229–242.

Ziqiang, L., & Yi, Y. (2014). A hybrid artificial fish-school optimization algorithm

for solving the quadratic assignment problem. In 2014 10th International

Conference on Natural Computation (ICNC) (pp. 1099–1104). China, Xiamen:

IEEE. doi:10.1109/ICNC.2014.6975994.

Zhaoquan, C., Han, H., Yong, Q., & Xianheng, M. (2009). Ant colony optimization

based on adaptive volatility rate of pheromone trail. International Journal Of

Communications, Network And System Sciences, 02, 792–796.

Zhifeng, H., Han, H., Yong, Q., & Ruichu, C. (2007). An ACO algorithm with

adaptive volatility rate of pheromone trail. In Y. Shi, G. Albada, J. Dongarra, &

 184

P. Sloot (Eds.), Lecture Notes in Computer Science: Proceedngs of ICCS2007-

The 7th International Conference in Computational Science (Vol. 4490, pp.

1167–1170). Heidelberg, Germany: Springer.

Zhifeng, H., Ruichu, C., & Han, H. (2006). An adaptive parameter control strategy

for aco. In Proceedings of ICML 2006: The Fifth International Conference on

Machine Learning and Cybernetics (pp. 203–206). China, Dalian: IEEE Press.

Zhiyong, L., Yong, W., Jianping, Y., Youjia, Z., & Xu, L. (2008). A novel cloud-

based fuzzy self-adaptive ant colony system. In ICNC 2008: The 4th

International Conference on Natural Computation (pp. 460–465). Jinan, China:

IEEE Computer Society.

Zhongzhen, Y., Bin, Y., & Chuntian, C. (2007). A parallel ant colony algorithm for

bus network optimization. Computer-Aided Civil and Infrastructure

Engineering, 22(1), 44–55.

Zufferey, N. (2012). Metaheuristics: Some Principles for an Efficient Design.

Computer Technology and Application, 3(2012), 446–462.

 185

Appendix A

Technical Details of the TSPLIB Files

A.1: TSPLIB File Format

1- TSPLIB File Specification Section:

* NAME : <string> Identifies the data file.

 * TYPE : <string> Specifies the type of data. Possible types are

 * TSP Data for a symmetric traveling salesman problem

 * ATSP Data for an asymmetric traveling salesman problem

 * HCP Hamiltonian cycle problem data.

 * HPP Hamiltonian path problem data (not available in TSPLIB)

 * COMMENT : <string> Additional comments (usually the name of the contributor or the creator of

the problem instance is given here).

 * DIMENSION : < integer> the number of nodes.

 * EDGE_WEIGHT_TYPE : <string> Specifies how the edge weights (or distances) are given. The

values are:

 * ATT Special distance function for problem att48 and att532

 * CEIL_2D Weights are Euclidean distances in 2-D rounded up

 * CEIL_3D Weights are Euclidean distances in 3-D rounded up

 * EUC_2D Weights are Euclidean distances in 2-D

 * EUC_3D Weights are Euclidean distances in 3-D

 * EXPLICIT Weights are listed explicitly in the corresponding section

 * GEO Weights are geographical distances in kilometres (TSPLIB). Coordinates are

given in the form DDD.MM where DDD are the degrees and MM the minutes

 * GEOM Weights are geographical distances in meters (used for the world TSP).

Coordinates are given in decimal form

 * GEO_MEEUS Weights are geographical distances in kilometres, computed according

to Meeus' formula. Coordinates are given in the form DDD.MM where DDD are the degrees and

MM the minutes

 * GEOM_MEEUS Weights are geographical distances, computed according to Meeus'

formula. Coordinates are given in decimal form

 * MAN_2D Weights are Manhattan distances in 2-D

 * MAN_3D Weights are Manhattan distances in 3-D

 * MAX_2D Weights are maximum distances in 2-D

 * MAX_3D Weights are maximum distances in 3-D

 * EDGE-WEIGHT_FORMAT : <string> Describes the format of the edge weights if they are given

explicitly. The values are

 * FULL_MATRIX Weights are given by a full matrix

 * UPPER_ROW Upper triangular matrix (row-wise without diagonal entries)

 * LOWER_ROW Lower triangular matrix (row-wise without diagonal entries)

 * UPPER_DIAG_ROW Upper triangular matrix (row-wise including diagonal entries)

 * LOWER_DIAG_ROW Lower triangular matrix (row-wise including diagonal entries)

 * UPPER_COL Upper triangular matrix (column-wise without diagonal entries)

 * LOWER_COL Lower triangular matrix (column-wise without diagonal entries)

 * UPPER_DIAG_COL Upper triangular matrix (column-wise including diagonal entries)

 * LOWER_DIAG_COL Lower triangular matrix (column-wise including diagonal

entries)

 * EDGE_DATA_FORMAT : <string> Describes the format in which the edges of a graph are given,

if the graph is not complete. The values are

 * EDGE_LIST The graph is given by an edge list

 * ADJ_LIST The graph is given by an adjacency list

 186

* NODE_COORD_TYPE : <string> Specifies whether the coordinates are associated with each node

(which, for example may be used for either graphical display or distance computations. The values are

 * TWOD_COORDS Nodes are specified by coordinates in 2-D

 * THREED_COORDS Nodes are specified by coordinates in 3-D

 * NO_COORDS The nodes do not have associated coordinates

* DISPLAY_DATA_TYPE : <string> Specifies how a graphical display of the nodes can be

obtained. The values are

 * COORD_DISPLAY Display is generated from the node coordinates

 * TWOD_DISPLAY Explicit coordinates in 2-D are given

 * BO_DISPLAY No graphical display is possible.

The default value is COORD_DISPLAY if node coordinates are specifies and NO_DISPLAY

otherwise. In the current implementation, however, the value has no significance.

2- TSPLIB File Data Section:

Depending on the choice of specifications some additional data may be required. These data are given

corresponding data sections following the specification section. Each data section begins with the

corresponding keyword. The length of the section is either explicitly known form the format

specification, or the section is terminated by an appropriate end-of-section identifier.

 * NODE_COORD_SECTION: Node coordinates are given in this section. Each line is of the form

<integer> <real> <real> if NODE_COORD_TYPE is TWOD_COORDS or <integer> <real> <real>

<real> if NODE_COORD_TYPE is THREED_COORDS. The integers give the number of the

respective nodes. The real numbers are the associated coordinates.

 * EDGE_DATA_SECTION: Edges of the graph are specified in either of the two formats allowed in

the EDGE_DATA_FORAT entry. If a type is EDGE_LIST, then the edges are given as a sequence of

lines of the form <integer> <integer> each entry giving the terminal nodes of some edge. The list is

terminated by a -1. If the type is ADJ_LIST, the section consists of adjacency list for nodes. The

adjacency list of a node x is specified as <integer> <integer> ... <integer> -1 where the first integer

gives the number of node x and the following integers (terminated by -1) the numbers of the nodes

adjacent to x. The list of adjacency lists are terminated by an additional -1.

 * FIXED_EDGES_SECTION: In this section, edges are listed that are required to appear in each

solution to the problem. The edges to be fixed are given in the form (per line) <integer> <integer>

meaning that the edge (arc) from the first node to the second node has to be contained in a solution.

This section is terminated by a -1.

 * DISPLAY_DATA_SECTION:

 * If DISPLAY_DATA_TYPE is TWOD_DISPLAY, the 2-dimensional coordinates from which a

display can be generated are given in the form (per line) <integer> <real> <real> the integers specify

the respective nodes and the real numbers give the associated coordinates. The contents of this

section, however, have no significance in the current implementation.

 * TOUR_SECTION: A tour is specified in this section. The tour is given by a list of integers giving

the sequence in which the nodes are visited in the tour. The tour is terminated by a -1. Note: In

contrast to the TSPLIB format, only one tour can be given in this section. The tour is used to limit the

search (the last edge to be excluded in a non-gainful move must not belong to the tour). In addition,

the Alpha field of its edges is set to -1.

 * EDGE_WEIGHT_SECTION: The edge weights are given in the format specifies by the

EDGE_WEIGHT_FORMAT entry. At present, all explicit data are integral and is given in one of the

(self-explanatory) matrix formats, with explicitly known lengths.

* EOF Terminates input data. The entry is optional.

A.2: TSPLIB File Reading Implementation

void read_tsp(void)

/*

 FUNCTION: read TSP instance file

 INPUT: instance name

 OUTPUT: list of coordinates for all nodes

 187

 COMMENTS: Instance files have to be in TSPLIB format, otherwise procedure fails

*/

{

 struct point {

 double x;

 double y;

 };

 FILE *tsp_file;

 char buf[LINE_BUF_LEN];

 long int i, j;

 struct point *nodeptr;

 tsp_file = fopen("burm14.tsp", "r");

 if (tsp_file == NULL) {

 fprintf(stderr,"No instance file specified, abort\n");

 exit(1);

 }

 assert(tsp_file != NULL);

 printf("\nreading tsp-file %s ... \n\n", "burm14.tsp");

 fscanf(tsp_file,"%s", buf);

 while (strcmp("NODE_COORD_SECTION", buf) != 0) {

 if (strcmp("NAME", buf) == 0) {

 fscanf(tsp_file, "%s", buf);

 TRACE (printf("%s ", buf);)

 fscanf(tsp_file, "%s", buf);

 strcpy(tsp_instance.name, buf);

 TRACE (printf("%s \n", tsp_instance.name);)

 buf[0]=0;

 }

 else if (strcmp("NAME:", buf) == 0) {

 fscanf(tsp_file, "%s", buf);

 strcpy(tsp_instance.name, buf);

 TRACE (printf("%s \n", tsp_instance.name);)

 buf[0]=0;

 }

 else if (strcmp("COMMENT", buf) == 0){

 fgets(buf, LINE_BUF_LEN, tsp_file);

 TRACE (printf("%s", buf);)

 buf[0]=0;

 }

 else if (strcmp("COMMENT:", buf) == 0){

 fgets(buf, LINE_BUF_LEN, tsp_file);

 TRACE (printf("%s", buf);)

 buf[0]=0;

 }

 else if (strcmp("TYPE", buf) == 0) {

 fscanf(tsp_file, "%s", buf);

 TRACE (printf("%s ", buf);)

 fscanf(tsp_file, "%s", buf);

 TRACE (printf("%s\n", buf);)

 if(strcmp("TSP", buf) != 0) {

 fprintf(stderr,"\n Not a TSP instance in TSPLIB format !!\n");

 exit(1);

 }

 buf[0]=0;

 }

 188

 else if (strcmp("TYPE:", buf) == 0) {

 fscanf(tsp_file, "%s", buf);

 TRACE (printf("%s\n", buf);)

 if(strcmp("TSP", buf) != 0) {

 fprintf(stderr,"\n Not a TSP instance in TSPLIB format !!\n");

 exit(1);

 }

 buf[0]=0;

 }

 else if(strcmp("DIMENSION", buf) == 0){

 fscanf(tsp_file, "%s", buf);

 TRACE (printf("%s ", buf););

 fscanf(tsp_file, "%ld", &n);

 tsp_instance.n = n;

 TRACE (printf("%ld\n", n););

 assert (n > 2 && n < 6000);

 buf[0]=0;

 }

 else if (strcmp("DIMENSION:", buf) == 0) {

 fscanf(tsp_file, "%ld", &n);

 tsp_instance.n = n;

 TRACE (printf("%ld\n", n););

 assert (n > 2 && n < 6000);

 buf[0]=0;

 }

 else if(strcmp("DISPLAY_DATA_TYPE", buf) == 0){

 fgets(buf, LINE_BUF_LEN, tsp_file);

 TRACE (printf("%s", buf););

 buf[0]=0;

 }

 else if (strcmp("DISPLAY_DATA_TYPE:", buf) == 0) {

 fgets(buf, LINE_BUF_LEN, tsp_file);

 TRACE (printf("%s", buf););

 buf[0]=0;

 }

 else if(strcmp("EDGE_WEIGHT_TYPE", buf) == 0){

 buf[0]=0;

 fscanf(tsp_file, "%s", buf);

 TRACE (printf("%s ", buf););

 buf[0]=0;

 fscanf(tsp_file, "%s", buf);

 TRACE (printf("%s\n", buf););

 if (strcmp("EUC_2D", buf) == 0) {

 distance = round_distance;

 }

 else if (strcmp("CEIL_2D", buf) == 0) {

 distance = ceil_distance;

 }

 else if (strcmp("GEO", buf) == 0) {

 distance = geo_distance;

 }

 else if (strcmp("ATT", buf) == 0) {

 distance = att_distance;

 }

 else

 fprintf(stderr,"EDGE_WEIGHT_TYPE %s not implemented\n",buf);

 strcpy(tsp_instance.edge_weight_type, buf);

 189

 buf[0]=0;

 }

 else if(strcmp("EDGE_WEIGHT_TYPE:", buf) == 0){

 /* set pointer to appropriate distance function; has to be one of

 EUC_2D, CEIL_2D, GEO, or ATT. Everything else fails */

 buf[0]=0;

 fscanf(tsp_file, "%s", buf);

 TRACE (printf("%s\n", buf);)

 printf("%s\n", buf);

 printf("%s\n", buf);

 if (strcmp("EUC_2D", buf) == 0) {

 distance = round_distance;

 }

 else if (strcmp("CEIL_2D", buf) == 0) {

 distance = ceil_distance;

 }

 else if (strcmp("GEO", buf) == 0) {

 distance = geo_distance;

 }

 else if (strcmp("ATT", buf) == 0) {

 distance = att_distance;

 }

 else {

 fprintf(stderr,"EDGE_WEIGHT_TYPE %s not implemented\n",buf);

 exit(1);

 }

 strcpy(tsp_instance.edge_weight_type, buf);

 buf[0]=0;

 }

 buf[0]=0;

 fscanf(tsp_file,"%s", buf);

 }

 if(strcmp("NODE_COORD_SECTION", buf) == 0){

 TRACE (printf("found section containing the node coordinates\n");)

 }

 else{

 fprintf(stderr,"\n\nSome error occurred finding start of coordinates from tsp file !!\n");

 exit(1);

 }

 if((nodeptr = malloc(sizeof(struct point) * n)) == NULL)

 exit(EXIT_FAILURE);

 else {

 for (i = 0 ; i < n ; i++) {

 fscanf(tsp_file,"%ld %lf %lf", &j, &nodeptr[i].x, &nodeptr[i].y);

 }

 }

 TRACE (printf("number of cities is %ld\n",n);)

 TRACE (printf("\n... done\n");)

}

 190

Appendix B

Statistical Details of the QAPLIB Files

B.1: Burkard QAPLIB Files

 Name N Feasible Solution Permutation/Bound Gap

 Bur26a 26 5426670 (OPT) (26 15 11 7 4 12 13 2 6 18 1 5 9 21 8 14 3 20 19 25 17 10 16 24 23

22)

 Bur26b 26 3817852 3753198 1.69 %

 Bur26c 26 5426795 5361204 1.21 %

 Bur26d 26 3821225 3758687 1.64 %

 Bur26e 26 5386879 5334780 0.97 %

 Bur26f 26 3782044 3733941 1.27 %

 Bur26g 26 10117172 10055637 0.61 %

 Bur26h 26 7098658 7045690 0.75 %

B.2: Christofides QAPLIB Files

 Name N Feasible Solution Permutation/Bound Gap

 Chr12a 12 9552 (OPT) (7,5,12,2,1,3,9,11,10,6,8,4)

 Chr12b 12 9742 (OPT) (5,7,1,10,11,3,4,2,9,6,12,8)

 Chr12c 12 11156 (OPT) (7,5,1,3,10,4,8,6,9,11,2,12)

 Chr15a 15 9896 (OPT) (5,10,8,13,12,11,14,2,4,6,7,15,3,1,9)

 Chr15b 15 7990 (OPT) (4,13,15,1,9,2,5,12,6,14,7,3,10,11,8)

 Chr15c 15 9504 (OPT) (13,2,5,7,8,1,14,6,4,3,15,9,12,11,10)

 Chr18a 18 11098 (OPT) (3,13,6,4,18,12,10,5,1,11,8,7,17,14,9,16,15,2)

 Chr18b 18 1534 (OPT) (1,2,4,3,5,6,8,9,7,12,10,11,13,14,16,15,17,18)

 Chr20a 20 2192 (OPT) (3,20,7,18,9,12,19,4,10,11,1,6,15,8,2,5,14,16,13,17)

 Chr20b 20 2298 (OPT) (20,3,9,7,1,12,16,6,8,14,10,4,5,13,17,2,18,11,19,15)

 Chr20c 20 14142 (OPT) (12,6,9,2,10,11,3,4,15,18,7,13,16,5,14,17,19,1,8,20)

 Chr22a 22 6156 (OPT) (15,2,21,8,16,1,7,18,14,13,5,17,6,11,3,4,20,19,9,22,10,12)

 Chr22b 22 6194 (OPT) (10,19,3,1,20,2,6,4,7,8,17,12,11,15,21,13,9,5,22,14,18,16)

 Chr25a 25 3796 (OPT) (25,12,5,3,18,4,16,8,20,10,14,6,15,23,24,19,13,1,21,11,17,2,22,7,9)

B.3: Elshafei QAPLIB Files

 Name N Feasible Solution Permutation/Bound Gap

 Els19 19 17212548 (OPT) (9,10,7,18,14,19,13,17,6,11,4,5,12,8,15,16,1,2,3)

B.4: Eschermann QAPLIB Files

 Name N Feasible Solution Permutation/Bound Gap

 --

 Esc16a 16 68 (OPT) (2,14,10,16,5,3,7,8,4,6,12,11,15,13,9,1)

 Esc16b 16 292 (OPT) (6,3,7,5,13,1,15,2,4,11,9,14,10,12,8,16)

 Esc16c 16 160 (OPT) (11,14,10,16,12,8,9,3,13,6,5,7,15,2,1,4)

 Esc16d 16 16 (OPT) (14,2,12,5,6,16,8,10,3,9,13,7,11,15,4,1)

 Esc16e 16 28 (OPT) (16,7,8,15,9,12,14,10,11,2,6,5,13,4,3,1)

 Esc16f 16 0 (OPT) (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

 Esc16g 16 26 (OPT) (8,11,9,12,15,16,14,10,7,6,2,5,13,4,3,1)

 191

 Esc16h 16 996 (OPT) (13,9,10,15,3,11,4,16,12,7,8,5,6,2,1,14)

 Esc16i 16 14 (OPT) (13,9,11,3,7,5,6,2,1,15,4,14,12,10,8,16)

 Esc16j 16 8 (OPT) (8,3,16,14,2,12,10,6,9,5,13,11,4,7,15,1)

 Esc32a 32 130 88 32.31 %

 Esc32b 32 168 100 40.48 %

 Esc32c 32 642 506 21.18 %

 Esc32d 32 200 152 24.00 %

 Esc32e 32 2 (OPT) (1,2,5,6,8,16,13,19,9,32,7,22,24,20,4,12,3,

 17,29,21,11,25,27,18,30,31,23,28,14,15,26,10)

 Esc32f 32 2 (OPT) (1,2,5,6,8,16,10,7,9,28,30,4,32,31,22,12,3,

 17,26,18,13,25,29,21,23,24,19,20,14,15,27,11)

 Esc32g 32 6 (OPT) (14,15,16,12,11,26,30,10,25,8,29,22,31,28,

 13,1,19,9,17,32,24,18,4,2,20,5,21,3,7,6,23,27)

 Esc32h 32 438 352 21.00 %

 Esc64a 64 116 47 59.49 %

 Esc128 128 64 2 96.86 %

B.5: Krarup QAPLIB Files

Name N Feasible Solution Permutation/Bound Gap

Kra30a 30 88900 (OPT)

(26,24,23,16,20,19,6,10,11,2,22,18,7,30,15,21,25,29,12,9,5,17,1,8, 13,28,14,3,4,27)

Kra30b 30 91420 (OPT) (23,26,19,25,20,22,11,8,9,14,27,30,12,6,28,

24,21,18,1,7,10,29,13, 5,2,17,3,15,4,16)

B.6: Nugent QAPLIB Files

 Name N Feasible Solution Permutation/Bound Gap

 Nug12 12 578 (OPT) (12,7,9,3,4,8,11,1,5,6,10,2)

 Nug14 14 1014 (OPT) (9,8,13,2,1,11,7,14,3,4,12,5,6,10)

 Nug15 15 1150 (OPT) (1,2,13,8,9,4,3,14,7,11,10,15,6,5,12)

 Nug16a 16 1610 (OPT) (9,14,2,15,16,3,10,12,8,11,6,5,7,1,4,13)

 Nug16b 16 1240 (OPT) (16,12,13,8,4,2,9,11,15,10,7,3,14,6,1,5)

 Nug17 17 1732 (OPT) (16,15,2,14,9,11,8,12,10,3,4,1,7,6,13,17,5)

 Nug18 18 1930 (OPT) (10,3,14,2,18,6,7,12,15,4,5,1,11,8,17,13,9,16)

 Nug20 20 2570 (OPT)

(18,14,10,3,9,4,2,12,11,16,19,15,20,8,13,17,5,7,1,6)

 Nug21 21 2438 (OPT)

(4,21,3,9,13,2,5,14,18,11,16,10,6,15,20,19,8,7,1,12,17)

 Nug22 22 3596 (OPT)

(2,21,9,10,7,3,1,19,8,20,17,5,13,6,12,16,11,22,18,14,15)

 Nug24 24 3488 (OPT)

(17,8,11,23,4,20,15,19,22,18,3,14,1,10,7,9,16,21,24,12,6,13,5,2)

 Nug25 25 3744 (OPT)

(5,11,20,15,22,2,25,8,9,1,18,16,3,6,19,24,21,14,7,10,17,12,4,23,13)

 Nug27 27 5234 (OPT)

(23,18,3,1,27,17,5,12,7,15,4,26,8,19,20,2,24,21,14,10,9,13,22,25,6,16,11)

 Nug28 28 5166 (OPT)

(18,21,9,1,28,20,11,3,13,12,10,19,14,22,15,2,25,16,4,23,7,17,24,26,5,27,8,6)

 Nug30 30 6124 (OPT)

(14,5,28,24,1,3,16,15,10,9,21,2,4,29,25,22,13,26,17,30,6,20,19,8,18,7,27,12,11,23)

 192

B.7: Skorin-Kapov QAPLIB Files

 Name N Feasible Solution Permutation/Bound Gap

 Sko42 42 15812 14934 5.56 %

 Sko49 49 23386 22004 5.91 %

 Sko56 56 34458 32610 5.37 %

 Sko64 64 48498 45736 5.70 %

 Sko72 72 66256 62691 5.38 %

 Sko81 81 90998 86072 5.41 %

 Sko90 90 115534 108493 6.10 %

 Sko100a 100 152002 142668 6.14 %

 Sko100b 100 153890 143872 6.51 %

 Sko100c 100 147862 139402 5.73 %

 Sko100d 100 149576 139898 6.47 %

 Sko100e 100 149150 140105 6.07 %

 Sko100f 100 149036 139452 6.43 %

B.8: Taillard QAPLIB Files

 Name N Feasible Solution Permutation/Bound Gap

 Tai12a 12 224416 (OPT) (8,1,6,2,11,10,3,5,9,7,12,4)

 Tai12b 12 39464925 (OPT) (9,4,6,3,11,7,12,2,8,10,1,5)

 Tai15a 15 388214 (OPT) (5,10,4,13,2,9,1,11,12,14,7,15,3,8,6)

 Tai15b 15 51765268 (OPT) (1,9,4,6,8,15,7,11,3,5,2,14,13,12,10)

 Tai17a 17 491812 (OPT) (12,2,6,7,4,8,14,5,11,3,16,13,17,9,1,10,15)

 Tai20a 20 703482 (OPT) (10,9,12,20,19,3,14,6,17,11,5,7,15,16,18,2,4,8,13,1)

 Tai20b 20 122455319 (OPT) (8,16,14,17,4,11,3,19,7,9,1,15,6,13,10,2,5,20,18,12)

 Tai25a 25 1167256 1016213 12.94 %

 Tai25b 25 344355646 (OPT) (4,15,10,9,13,5,25,19,7,3,17,6,18,20,16,2,22,23,8,11,21,

24,14,12,1)

 Tai30a 30 1818146 1529135 15.90 %

 Tai30b 30 637117113 40947945 93.58 %

 Tai35a 35 2422002 1951207 19.44 %

 Tai35b 35 283315445 32611838 88.49 %

 Tai40a 40 3139370 2492850 20.60 %

 Tai40b 40 637250948 46143753 92.77 %

 Tai50a 50 4941410 3854359 22.00 %

 Tai50b 50 458821517 40296004 91.23 %

 Tai60a 60 7208572 5555095 22.94 %

 Tai60b 60 608215054 50113782 91.77 %

 Tai64c 64 1855928 896398 51.71 %

 Tai80a 80 13557864 10329674 23.82 %

 Tai80b 80 818415043 89169828 89.11 %

 Tai100a 100 21125314 15824355 25.10 %

 Tai100b 100 1185996137 174687926 86.28 %

 Tai150b 150 498896643 63007151 87.37 %

 Tai256c 256 44759294 41291996 7.75 %

	Copyright Page
	Title Page
	Permission to Use
	Abstrak
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations
	CHAPTER ONE: INTRODUCTION
	1.1 Problem Statement
	1.2 Research Questions
	1.3 Research Objectives
	1.4 Significance of the Research
	1.5 Scope of the Research
	1.6 Thesis Organization

	CHAPTER TWO: LITERATURE REVIEW
	2.1 Introduction
	2.2 Combinatorial Optimization Problems
	2.3 Ant Colony Optimization
	2.3.1 Biological Inspiration
	2.3.2 Problem Representation
	2.3.3 The ACO Metaheuristic
	2.3.4 The First Ant Algorithm: Ant System

	2.4 The Max-Min Ant System
	2.4.1 Pheromone Trail Update
	2.4.2 Pheromone Trail Limits
	2.4.3 Pheromone Trail Restart
	2.4.4 Pheromone Trail Smoothing
	2.4.5 Pheromone Trail Learning
	2.4.6 Hybridizing with Local Search

	2.5 Memory-based Strategies for Exploration and Exploitation
	2.5.1 Quality-Dependent Strategy
	2.5.2 Quality-Independent Strategy
	2.5.3 Elitist Strategy
	2.5.4 Rank-Based Strategy
	2.5.5 Trail Learning Strategy
	2.5.6 Online-Offline Update Strategy
	2.5.7 Best-Worst Strategy
	2.5.8 Bounding Strategy
	2.5.9 Restarting/Smoothing Strategy
	2.5.10 Colony-Level Interaction Strategy
	2.5.11 Population-Based Strategy
	2.5.12 Hybridizing Strategy

	2.6 Exploration Measures in ACO
	2.6.1 Distance of Solutions
	2.6.2 Average Lambda-Branching Factor
	2.6.3 Entropy
	2.6.4 Convergence Factor
	2.6.5 Acceptance Criteria
	2.6.6 Exploration Measure/ Similarity Ratio

	2.7 Reactive-based Parameters’ Selection
	2.7.1 Pre-Scheduled Approach
	2.7.2 Adaptive Approach
	2.7.3 Search-Adaptive Approach
	2.7.4 Self-Adaptive Approach

	2.8 Discussion on Reactive-based ACO
	2.9 Summary

	CHAPTER THREE: RESEARCH FRAMEWORK AND METHODOLOGY
	3.1 Introduction
	3.2 The Research Framework
	3.3 Research Methods
	3.3.1 Developing the Memory Model
	3.3.2 Enhancing the Exploration Measurement
	3.3.3 Proposing Adaptive Parameters’ Selection Method

	3.4 Evaluation of the Proposed Approach
	3.4.1 The Traveling Salesman Problem
	3.4.2 The Quadratic Assignment Problem
	3.4.3 Benchmark Methods
	3.4.4 Comparative Measures

	3.5 Summary

	CHAPTER FOUR: MEMORY MODEL DEVELOPEMENT AND ITS
	4.1 Introduction
	4.2 Memory Model Development
	4.2.1 Identifying Restart Mechanism
	4.2.2 Formulating Reactive Heuristics
	4.2.3 The Application to QAP
	4.2.4 Experimental Design for Developing Reactive Heuristics
	4.2.5 Results of Applying Reactive Heuristics
	4.2.6 Recursive Local Search Development
	4.2.7 Experimental Design for Developing RLS Technique
	4.2.8 Results of Applying RLS Technique

	4.3 Summary

	CHAPTER FIVE:
	5.1 Introduction
	5.2 ACOustic for Exploration Measurement
	5.2.1 The Biological Schema
	5.2.2 Modeling ACOustic
	5.2.3 ACOustic Implementation

	5.3 Experimental Design for Developing ACOustic
	5.4 Results of ACOustic’s Application
	5.5 ACO-based Adaptive Parameters’ Selection
	5.6 Parameters’ Selection Strategy
	5.7 Reward Assignment Strategies
	5.7.1 Quality-based Reward Assignment
	5.7.2 Exploration-based Reward Assignment
	5.7.3 Unified Reward Assignment

	5.8 Experimental Design for Developing APSACO
	5.9 Results of APSACO’s Application
	5.10 Summary

	CHAPTER SIX: PROPOSED REACTIVE APPROACH FOR AUTOMATING EXPLORATION AND EXPLOITATION IN ACO
	6.1 Introduction
	6.2 Proposed Reactive Approach
	6.3 Experimental Design for RACO Evaluation
	6.4 Results of the TSP Experiments
	6.5 Results of the QAP Experiments
	6.6 Summary

	CHAPTER SEVEN: CONCLUSION AND FUTURE WORK
	7.1 Research Contributions
	7.2 Future Work

	REFERENCES
	Appendix

