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Abstrak

Penyelesaian sistem kabur linear telah menarik perhatian ramai penyelidik
disebabkan keupayaannya dalam menangani ketidaktepatan maklumat bagi masalah
sebenar. Walau bagaimanapun, terdapat beberapa kelemahan dalam kaedah sedia
ada. Antaranya kebersandaran yang tinggi kepada pengaturcaraan linear, pengelakan
penggunaan hampir sifar bagi nombor kabur, penyelesaian tidak jitu, tumpuan pada
saiz sistem yang terhad, dan pembatasan pada pekali matriks serta penyelesaian.
Oleh itu, kajian ini bertujuan untuk membina kaedah baharu iaitu sistem linear
bersekutu, sistem min-maks dan sistem mutlak dalam teori matriks dengan nombor
kabur segi tiga dalam menyelesaikan sistem kabur linear berasaskan kelemahan yang
dinyatakan. Sistem linear bersekutu yang dibina terbukti setara dengan sistem kabur
linear tanpa melibatkan sebarang operasi kabur. Seterusnya, sistem linear bersekutu
yang dibangunkan adalah efektif dalam memberi penyelesaian tepat berbanding
dengan pengaturcaraan linear, yang tertakluk kepada sebilangan kekangan. Kaedah
ini juga berupaya menyediakan penyelesaian yang jitu bagi sistem yang besar.
Selanjutnya, sistem linear bersekutu ini boleh menyemak kewujudan penyelesaian
kabur dan pengkelasan penyelesaian yang mungkin. Bagi kes sistem linear kabur
penuh hampir sifar, operasi kabur diperlukan untuk menentukan sifat penyelesian
bagi sistem kabur dan untuk memastikan kekaburan penyelesaian. Penyelesaian
terhingga yang merupakan konsep baru bagi ketekalan sistem linear diperoleh
dengan sistem min-maks terbina dan sistem mutlak terbina. Kaedah-kaedah terbina
boleh juga diubah suai bagi menyelesaikan sistem kabur lanjutan seperti persamaan
matriks kabur penuh dan persamaan Sylvester kabur penuh, dan kaedah ini juga
boleh dimanfaatkan untuk jenis nombor kabur yang lain seperti nombor kabur
trapezoidal. Kajian ini menyumbang kepada kaedah menyelesaikan sebarang sistem
kabur linear tanpa batasan pada sistem tersebut.

Kata kunci: Sebarang sistem kabur linear penuh, Sistem kabur bersekutu, Teori
matriks, Nombor kabur segitiga.



Abstract

Solving linear fuzzy system has intrigued many researchers due to its ability to
handle imprecise information of real problems. However, there are several
weaknesses of the existing methods. Among the drawbacks are heavy dependence on
linear programing, avoidance of near zero fuzzy numbers, lack of accurate solutions,
focus on limited size of the systems, and restriction to the matrix coefficients and
solutions. Therefore, this study aims to construct new methods which are associated
linear systems, min-max system and absolute systems in matrix theory with
triangular fuzzy numbers to solve linear fuzzy systems with respect to the
aforementioned drawbacks. It is proven that the new constructed associated linear
systems are equivalent to linear fuzzy systems without involving any fuzzy
operation.

Furthermore, the new constructed associated linear systems are effective in
providing exact solution as compared to linear programing, which is subjected to a
number of constraints. These methods are also able to provide accurate solutions for
large systems. Moreover, the existence of fuzzy solutions and classification of
possible solutions are being checked by these associated linear systems. In case of
near zero fully fuzzy linear system, fuzzy operations are required to determine the
nature of solution of fuzzy system and to ensure the fuzziness of the solution. Finite
solutions which are new concept of consistency in linear systems are obtained by the
constructed min-max-and.-absolute systems. These developed methods can also be
modified to solve advanced fuzzy systems such as fully fuzzy matrix equation and
fully fuzzy Sylvester equation, and can be employed for other types of fuzzy
numbers such as trapezoidal fuzzy number. The study contributes to the methods to
solve arbitrary linear fuzzy systems without any restriction on the system.

Keywords: Arbitrary fully fuzzy linear system, Associated linear system, Matrix

theory, Triangular fuzzy number.



Acknowledgement

I am grateful to the Almighty Allah for giving me the opportunity to complete my
PhD thesis. May peace and blessing of Allah be upon His beloved Prophet
Muhammad (SAW), his family, and his companions.

In completing this thesis, |1 owe a debt of gratitude and thanks to many persons and
institutions that have supported me throughout this difficult and challenging journey.
While being thankful to all of them, | must register my gratitude to some in
particular. First, | would like to express my deepest appreciation to my principal
supervisors, Dr. Nazihah Binti Ahmad and Associate Professor Dr. Haslinda
Ibrahim, who has been very patient in guiding and supporting me from the very
beginning of my first arrival here in Malaysia and throughout the completion of this
thesis. They assisted me immensely in developing a correct focus for my study and
has given me their valuable ideas, insights, comments and suggestions towards
understanding the empirical predicaments | was encountering. Honestly, | considered
both of them not only as my supervisors, but also my friends and my sisters in
Malaysia. | would like to also thank my dear friends in Malaysia for the friendship
rendered and assistance provided during my stay here in Malaysia and UUM in
particular. Also, I would like to thank all academic and administrative staff in the
College of Arts of Sciences.

I would like to express my ending appreciation and gratitude to people in Jordan.
First and foremost, | would like to thank my father who has been a great and wise
teacher in my life and my lovely mother for her infinite patience especially during

my absence, and her sincere flow of love has accompanied me all the way in my

iv



long struggle and has pushed me to pursue my dreams. Last but not least, to my
family, friends, teachers, brothers and sisters, | thank you so much for continuously
giving me the undivided support and eternal prayers. To all of you, I have this to say:

I love you, respect you, pray for you, and May Allah bless you.



Declaration Associated with This Thesis

Malkawi, G., Ahmad, N., & Ibrahim, H. (2013). Revisiting Fuzzy Approach
for Solving System Of Linear Equations, [CD -Rom], ICDeM 2012, 13 - 16
March, Kedah, Malaysia.

Malkawi, G., Ahmad, N., & Ibrahim, H. (2014). A Note On The Nearest
Symmetric Fuzzy Solution For A Symmetric Fuzzy Linear System. An. St.
Univ. Ovidius Constanta.

Malkawi, G., Ahmad, N., & lIbrahim, H. (2014). Solving Fully Fuzzy Linear
System With The Necessary And Sufficient Condition To Have A Positive
Solution. Appl. Math, 8(3), 1003-1019.

Malkawi; G., Ahmad, N., & Ibrahim, H. (2014). On The Weakness Of Linear
Programming To Interpret The Nature Of Solution Of Fully Fuzzy Linear
System.Journal of Uncertainty Analysis and Applications, 2(1), 1-23.

Malkawi, G., Ahmad, N., Ibrahim, H., & Alshmari, B. (2014). Row Reduced
Echelon ' Form For Solving Fully Fuzzy System With Unknown
Coefficients. Journal of Fuzzy Set Valued Analysis, 2014, 1-18.

Malkawi, G., Ahmad, N., & Ibrahim, H. (2014, December). Finite Solutions
Of Fully Fuzzy Linear System. In International Conference On Quantitative
Sciences And Its Applications (ICOQSIA 2014): Proceedings of the 3rd
International Conference on Quantitative Sciences and Its Applications (\Vol.
1635, pp. 447-454). AIP Publishing.

Malkawi, G., Ahmad, N., lbrahim, H., & Albayari, D. J. (2015). A Note On
Solving Fully Fuzzy Linear Systems By Using Implicit Gauss---Cholesky
Algorithm.Computational Mathematics and Modeling, 26(4), 585-592.

Malkawi, G., Ahmad, N., & lIbrahim, H. (2015). An Algorithm For A

Positive Solution Of Arbitrary Fully Fuzzy Linear System. Computational
Mathematics and Modeling, , 26(3), 436-465.

Vi



9- Malkawi, G., Ahmad, N., & lbrahim, H. (2015). Solving The Fully Fuzzy
Sylvester Matrix Equation With Triangular Fuzzy Number. Far East Journal
of Mathematical Sciences, 89(1), 73-55..

10- Ahmad, N., Malkawi, G., & Ibrahim, H. (2015, August). Solution Of LR-
Fuzzy Linear System With Trapezoidal Fuzzy Number Using Matrix Theory.
In Malaysian Technical Universities Conference on Engineering and
Technology (Acepted).

vii



Table of Contents

PerMISSION T0 USE....cuiiiiiieiiieiieeie sttt sttt te e steeneesreesreenee s i
ADSIIAK ..ttt bt e nneane e re e i
ADSTFACT ..ttt i
ACKNOWIBAGEMENL........eiiieiecec et re e esaeeee s iv
TabIe OF CONTENTS ..o e et ae e viii
IS 0 N 1= o] LS SRS Xi
LISt OF FIQUIES ...ttt et re e e enes Xii
LiSt OF APPENAICES .....ovieiiiiccie ettt nre s xiii
CHAPTER ONE INTRODUCTION ..ottt 1
1.0 LINEAT SYSTEIM ..ottt bbbttt b bbbt 1
1.2 LiNEAr FUZZY SYSEIMS ....vvcveeiiecie et ite ettt ste et e e snaesteenaesraenneannenneas 2
1.2.1 FUZZY HINEAT SYSIEM.........iiieeieiiesee et teste e e e sre et etk ennesnn e reennesreenre e 3
1.2.2 Left- Right Fuzzy Linear SYStEM.........c..oiieiiiveiiireneesiee e e sne e, 4
1.2.3 Fully Fuzzy Linear SYSLEMS........cccieeveiienieiisieneneceeiiee e sresne e, 5
1.2.4 Fully Fuzzy MatriX SYSTEMS ........cccooveiiiiececce e 11
1.2.5 Left- Right Trapezoidal Fuzzy Linear System........c...cviimie iiieneesnesnenns 12
1.3 ProbIem STAtEMENT .......oieee et 14
1.4 RESEArCN ODJECLIVES .....cueiiiiiieieiieite sttt 16
1.5 Scope OF the StUAY ....c.eoivieiecc e 17
1.6 Significance of FINAINGS .......c.ooiieiiiiciiee e 17
1.7 OVErVIEW OF the TNESIS ...cveivieieee e ne e 18
CHAPTER TWO LITERATURE REVIEW ... 20
2.1 Fundamental Concepts of Matrix TheOrY .........cccoviiiiiieieies e 20
2.1.1 Elementary Operation of Block or Partitioned Matrices ..............ccccccu...e. 22
2.1.2 Rules for Operation with Kronecker Product and VVec Operator ............... 22
2.2 Types Of FUZZY NUMDEIS .......coiiiiiiiieeee e 23
2.2.1 Triangular FUZzy NUMDET ........cooiiiiieeee e 25
2.2.2 Trapezoidal FUzZzy NUMDET.........ccoiiiiiiieiie e e 30
2.3 LINGAI FUZZY SYSTEIMS .....eeiiiiiieiiieieeie ettt 33



2.3.1 FUZZY LINEar SYSIEIM........couiiieiieeiie ettt 33

2.3.2 Left—Right Fuzzy Linear SYStem..........cccovvvririiiiiiiiiieiicc e 37
2.3.3 Fully FUzzy Linear SYStEM .........ccccoiiiiiiiiiniesieeee e 38
2.3.3.1 Direct methods for SOIVING FFLS .......cccoooveiiiiieiiie e, 39
2.3.3.2 Indirect methods for SoIVING FELS .......ccooooiiiiiiiiiiinieeeeee 42
2.3.4 Fully fuzZzy mMatrixX SYStEMS .....ccveiueeieiieie e e 46

CHAPTER THREE POSITIVE SOLUTION FOR POSITIVE FULLY FUZZY

LINEAR SYSTEM.. ..ottt nae e e e annea e 49
3.1 Fundamental Concepts for Associated Linear SYStem .........cccccceevevireninnnnnenen, 49
3.2 Positive Solution for Positive Fully Fuzzy Linear System ............cccccovvevviinennn. 51
3.3 The Necessary Conditions of Positive Fuzzy Solution............c.ccccceeveieeieiiennn, 65

3.3.1 The Necessary Conditions of Left and Right Hand Side (A and B).......... 65

3.3.2 The Necessary Conditions of Right Hand Side A with an Arbitrary B......73
3.4 The Consistency of Fully Fuzzy Linear SYStem ..........ccceveiuenieiiiiesieneneseeeennen, 79
3.5 Positive Solution of Positive Left Right-Fuzzy Linear System ..............cc.co.... 93
3.6 Conclusion and CONEFIBULION ...ccive.eveiiieiiineeeste e erisee e sbe b 95

FUZZYEINEARSYSTEMIIVE T 218 Miald MNidiaya1da .. 96
4.1 Fundamental Concepts for Associated Linear System ..........ccccccoovvevieiveieiieennnn, 96
4.2 Positive Solution for Near Zero Fully Fuzzy Linear System............ccccceevinenen. 99
4.3 The Consistency of the Fully Fuzzy Linear SyStem .........ccccooeviiiniinniniienenn, 122
4.4 Conclusion and COoNtribBULION ........cveiviieiieiece e 129

LINEAR SYSTEM ..ottt ettt 130
5.1 Fundamental Concept for Min-MaX SYStem ..........ccoovirieieneneneniseseeeeieens 130
5.2 Near Zero Solution for Near Zero Fully Fuzzy Linear System ..........c.ccccevvenee. 135
5.3 Associated Linear Systems of Nero Zero Fully Fuzzy Linear System............... 154
5.4 Conclusion and ContribDULIONS...........ccooiiiiiiiii s 167



6.1 Fundamental Concepts for FFME and FFSE ...........ccccoooiiiiiiccicc e 168

6.2 Solving Fully Fuzzy MatriX EQUALION...........ccccoririiiiieieeese e 172
6.3 Kronecker Product for Solving Fully Fuzzy Sylvester Equation....................... 186
6.4 Conclusion and CoNtribULION .........c.coveiiiiiiiii e 196

ON TRAPEZOIDAL FUZZY NUMBER..........cccciiieie e 197
7.1 FUNdameNtal CONCEPLS .......oovviieiiieieeiieieie e 197
7.2 Solution of Left Right-Trapezoidal Fuzzy Linear System............ccccccovvevivenenne. 199
7.3 The Sufficient and Necessary Conditions for Obtaining A Fuzzy Solution to
L I I SR 212
7.4 The Consistency of the Left Right-Trapezoidal Fuzzy Linear System.............. 220
7.5 Approximate Solution in the Case of Non fuzzy Solution..............cccccevvennnne. 228
7.6 Conclusion and CoNtriDULIONS..........ccoviiiiiie e 241
CHAPTER EIGHT CONCLUSION .....ccote et ctee et cennneeseee e enee e 242
8.1 Conclusion Of the STUAY ............ccuiiiiii sttt 242
8.2 MainfCOmNITRONS ... W A ... W ... BN Y. B 243
8.3 SugQgestions fOr FULUIE WOIK ........c.oieeieiieiieieiiesieeesse s snsesneesesseeseeeneens 245
REFERENGCES ... ... et re e e e e re e e eneas 247



List of Tables

Table 1.1 Summary for FUZZY SYSEEMS .......cceiiiiiiiiierieeeeee e 13
Table 3.1 A comparison between Xg and Xy .....c..ovvverrreiireeiereiiesiseeeeceeieceee 63

Table 3.2a Comparison the conditions on both hand sides between P-ALS method

and  Dehghan et al. (2006)’ mMethod. .........ccoeiiiiiriiiiiiiecee e 78
Table 3.2b Comparison the conditions on left hand side between P-ALS
method and Dehghan et al. (2006)’Method. .........cccovviiiininieieie e 78
Table 3.3 Comparison of the entries for three solution sets of Xg = {Xg1, Xg2Xg3}
aNd @ SOIULION SEL OF K. v.vuveevvieeieiceeieee ettt 85
Table 3.4 Comparison of the solutions set Xg and Xi. ....ccovvvvvvvireeeeeeeeceeeeneeene, 89

Table 4.1 Comparison between the proposed method and Babbar et al.

(2013)’METNOM. ... 114
Table 4.2 Comparison of both solutions Xg and Xo..ee.....ceeeeeeieerecestrnreesseneeeniennns 120
Table 4.3 Comparison of the solutions set Xg and Xi. .......coeueereeseeercrerssreeeesnnnnns 128
Table 6.1 Comparison of the solutions set Xg and Xe.........ccovevrereerrrieeeseeeeesesnnnn, 185

Table 7.1 Comparison between. the proposed method and Nasseri-and Gholami

(2011)¥gethed 5. M NIVErsITL. Ulara . Malaysia...... 210
Table 7.2 Comparison between the proposed method and Allahviranloo et al.
(2012D) MENOM. ... vevieveiieieieeie ettt ans 219
Table 7.3 Comparison between the proposed method and Allahviranloo et al.
(2012D)’ MEAOM. .....eoiiiiiieee e 226
Table 7.4 Comparison between the proposed method and Allahviranloo et al.
(20122) MEROM. ... et 240

Xi



List of Figures

Figure 2.1. Representation of triangular fuzzy number (3,1,2) . cccoevevivevviieieenen, 26
Figure 2.2. Representation of trapezoidal fuzzy number (-2,5,2,13) ....cccoovvvvvvennn 32
Figure 3.1. The values of m] in solution set Xgl. ...................................................... 86
Figure 3.2. The values of m¥in solution set ng. ....................................................... 87
Figure 3.3. The values of m¥ in solution set Xg3. ...................................................... 87
Figure 3.4. The values of m¥ in SOIUtION SEt Xy ...cvoveveviverrerceiiece e 88
Figure 4.1. The values of m¥ in general form solution Xg. ....cccocevveveiereerercrreeennns 127

Figure 5.1. Representation of the fourth absolute value equation as a linear equation.

.................................................................................................................................. 141
Figure 5.2. Representation of the third absolute value equation as a linear equation.
.................................................................................................................................. 142
Figure 5.3. The first solution X, in oa;* € [0,2] and B,* € [0, %] ............................ 144
Figure 5.4. The second solution X, in o;* € [2,9] and B,* € [0, g] ........................ 147
Figure 5.5. Shows the system has no solution.in-o,* € [9,11] and B,* € [O, g] ....149

Figure 6.1 Representation of %,"= (1,2,3) at X, using Otadi and Mosleh
(2012) MEIOA. . ...t 184

Figure 6.2 Representation of X;'=(6,2,3) ,0 € EZ] atX ; using the proposed

Figure 7.1 Comparison between B and symmetric Bs using the proposed method. 239
Figure 7.2 Comparison between B and non symmetric Bns using the proposed
007100 T USSR 239
Figure 7.3 Comparison of B and the Bv in Allahviranloo et al.

(20122)’ aPPIOXIMATION. ..cevveeirieieeeiree e s et e et e e sre e sn e nneeanneennee s 239

Xii



List of Appendices

Appendix A Details of solution of Example 3.2.3.........ccoeiiiiininiceee, 252
Appendix B Details of solution of Example 4.2.3. ..., 258
Appendix C Details of solution of EXamples 7.2.2.........cccccvevevveiiveieiiieieese e 263

Xiii



CHAPTER ONE
INTRODUCTION

1.1 Linear system

In applied mathematics, some fields consist problems of several parts which interact
and affect each other, such as economics, finance, engineering and physics. These
parts can be represented as a set of linear equations. A system of linear equations or
linear system is a collection of linear equations involving the same set of the
equation that deals with all variables at once. A linear system of equations is
considered to be the simplest and the most helpful method to solve these equations.

A general system of linear equations can be written as follows.

Definition 1.1.1. (Hogben, 2006) A linear system is a set of one or more linear
equations with the same set of variables. A general system of m linear equations

with n. unknowns can be written as,

a11X1 + A12Xy + el +a1nxn = bl'
a21x1 + a22x2 + -l +a2nxn = bz,
: (1.1
kamlxl + Xy + o F A Xy = by
This system can be written in matrix form as,
AX =B, (1.2)

where 4 is a m X n matrix, while X and B are column vectors with n and m entries,

respectively.



However, the classical linear system is not well equipped to handle uncertain ties of
information in real life problems, because some values of the coefficients may be
vague and imprecise due to incomplete data. In practice, the data of the mathematical
method are not always exactly known. Moore (1979) declared that exact numerical
data might be unrealistic, but vague data can consider more features of a real life
problem. A natural way to describe vague data is using fuzzy data. Thus, in this case,
fuzzy numbers is a better usage than crisp numbers for modeling uncertain problems.
The concept of fuzzy numbers and arithmetic operations with these numbers were
introduced and investigated by Zadeh (1965), Dubois and Prade (1980), and

Kaufmann and Gupta (1991).

The next section presents background of fuzzy systems and insight of existing

methods for solving them.

1.2 Linear Fuzzy Systems

In the application of fuzzy numbers in a linear system, some crisp entries of the
linear system should be replaced by fuzzy numbers such as particular form of fuzzy
numbers, triangular fuzzy numbers and trapezoidal fuzzy numbers. This results new
categories of linear systems called linear fuzzy system. For instance, if the elements
of the matrix A are crisp numbers and the elements of vector B are fuzzy numbers,
this leads to new systems called fuzzy linear system (FLS), Left- Right fuzzy linear
system (LR — FLS) and Left- Right trapezoidal fuzzy linear system (LR — TFLS).

On the other hand, it is called fully fuzzy linear system (FFLS), if all elements in A



and B are fuzzy numbers. Moreover, if the fuzzy vectors in FFLS are extended to

fuzzy matrices, it is called fully fuzzy matrix equation (FFME).

1.2.1 Fuzzy linear system

FLS is obtained by replacing crisp numbers in B with fuzzy numbers to create B in
Equation (1.1). The most achievable approach of FLS AX = B was obtained by
Friedman, Ming and Kandel (1998). They proposed a generic method for solving
an n Xxn FLS by employing the embedding approach. In this method, they used
fuzzy numbers in a particular form to construct the fuzzy system FLS. The FLS was

replaced by a 2n x 2n crisp linear system to solve the fuzzy system.

In the last few years, some authors have discussed the deficiencies of the
Friedman's method. The main disadvantage was in the definition of fuzzy solution,
in which Friedman's method classified the fuzzy solutions to strong or weak fuzzy
solution. Allahviranloo, Ghanbari, Hosseinzadeh, Haghi and Nuraei (2011a), by
a counter example, showed that the definition of weak fuzzy solution is not always
correct i.e. it does not always vyield a fuzzy number vector. Additionally,
Mansouri and Asady (2011) showed that sometimes the proposed 2n X 2n linear
system in Friedman's method (1998) is singular even if the original coefficient

matrix A is non-singular.

Also, Friedman's method deals with particular form in fuzzy numbers as FLS was
not represented as triangular or trapezoidal in fuzzy vector B. In general, it is easier
to solve the systems using constants instead of variables. For example, Ghanbari,

Mahdavi-Amiri and Yousefpour (2015), Ghanbari and Mahdavi-Amiri (2015),
3



and Allahviranloo, Lotfi, Kiasari and Khezerloo (2013) have attempted to extend
FLS to LR — FLS by replacing the entries of vector B with triangular fuzzy numbers.
Additionally, Nasseri and Gholami (2011), Allahviranloo, Haghi and Ghanbari
(2012a), Allahviranloo, Nuraei, Ghanbari, Haghi and Hosseinzadeh (2012b)
have attempted to extend FLS to LR — TFLS by replacing the entries of vector with

trapezoidal fuzzy numbers.

In the next section, LR — FLS is discussed as an alternative of FSL by changing the

type of fuzzy numbers.

1.2.2 Left- Right Fuzzy Linear System

The LR — FLS is a fuzzy system AX = B where the A is crisp matrix, X and B are
fuzzy vectors including triangular fuzzy numbers, thus, LR — FLS is considered as

an expansion of FLS.

Ghanbari et al. (2010), and Ghanbari and Mahdavi-Amiri (2015) found the solutions
of LR — FLS. They transformed the fuzzy system LR — FLS into a corresponding
crisp linear system and a constrained least squares problem, and they proved that the
LR — FLS has a solution if and only if the corresponding crisp system has a solution
and the corresponding least squares value equaled zero. Thus, to determine the
sufficient and necessary condition to have a solution, it is required to solve the
corresponding crisp linear system and the constrained least squares problem.
Allahviranloo et al. (2013) provided a method that is able to obtain infinitely many
solutions, however this method cannot provide all solution sets for infinitely many

solutions because they used convex set. Moreover, their method cannot determine if

4



the solution is infinite or finite before they get the final solution, this is because the
sufficient and necessary condition to have a solution were not investigated.
Nikuie and Ahmad (2014) found the solution for LR — FLS using a corresponding
linear system. Next, the necessary and sufficient conditions for solving a LR — FLS
was investigated by ranking of corresponding linear system, as a result, they could
not determine the singularity of LR — FLS before constructing or solving the system.
Later, Ghanbari and Mahdavi-Amiri (2015) established some necessary and
sufficient conditions for solving of LR — FLS, an minimization problem was used to

obtain the solution.

Thus, the exact and approximation the solution of LR — FLS can be obtained by
linear system or minimization problem in existing methods. In addition, the existing
methods cannot investigate the necessary and sufficient conditions before obtaining

the solution.

In the next section, the entries for A and B in Equation (1.1) are replaced with fuzzy

numbers in order to construct FFLS.

1.2.3 Fully Fuzzy Linear Systems

In the fuzzy system AX = B, all entries in 4, X and B are fuzzy numbers. The most
common usage of fuzzy numbers in FFLS is triangular fuzzy number. There are
many scenarios of FFLS that depend on the sign of triangular fuzzy numbers
(positive or negative or near zero). On the contrary of FLS, LR — FLS and LR —
TFLS which have only one scenario because the multiplication in FLS, LR — FLS

and LR — TFLS between matrix coefficient A and fuzzy vector X does not depend on
5



the sign, while in FFLS the multiplication between matrix coefficient A and fuzzy
vector X depends on the sign for both. Dehghan, Hashemi and Ghatee (2006),
Dehghan and Hashemi (2006a), and Dehghan, Hashemi and Ghatee (2007) were the
first researchers developed FLS by using particular form of fuzzy numbers in left

hand side to FFLS by using triangular fuzzy numbers in the left and right hand sides.

In establishing FFLS, Dehghan and his colleagues declared that there are many
scenarios that can be derived from a FFLS. The methods of finding a solution for
these scenarios of FFLS create new scenarios of fuzzy systems
(Kumar, Bansal and Neetu, 2010). Moreover, Kumar, Neetu and Bansal (2012),
mentioned that there is infinite number of scenarios that can be derived form a FFLS.
Abbasbandy and Hashemi (2012) questioned as to what occurs in a FLS if all
parameters are replaced by fuzzy numbers, and also what is the solution of this type

of FLS.

Dehghan and his colleagues in Dehghan et al. (2006), Dehghan and Hashemi
(2006a), and Dehghan et al. (2007) found positive solution X when all coefficients of
A and B are positive triangular fuzzy numbers. Scholars like Nasseri, Sohrabi and
Ardil (2008), Nasseri and Zahmatkesh (2010), Nasseri, Behmanesh and Sohrabi
(2012),

Gao and Zhang (2009), Kumar et al. (2012), Abbasbandy and Hashemi (2012),
Ezzati, Khezerloo, Mahdavi-Amiri and Valizadeh (2014), Abdolmaleki and
Edalatpanah (2014) and Radhakrishnan, Gajivaradhan and Govindarajan (2014);

proposed methods for solving FFLS in a similar case to Dehghan and his colleagues,



in which the sign of triangular fuzzy number was restricted to be positive for all

entries in 4, X and B.

However, to date, there is no computational method for solving FFLS without any
constraint on the coefficients (Kumar, Bansal and Neetu (2011a), Kumar, Neetu and
Bansal (2011b) and Babbar, Kumar and Bansal (2013)). Besides, the existing
methods cannot check if the achieved solution is unique, trivial, infinite many

solutions or no solution (Babbar et al. (2013)).

On other hand, several methods were developed in order to solve FFLS which
include o-cuts or particular form of fuzzy number instead of triangular fuzzy
numbers, such as in Allahviranloo and Mikaeilvand (2006), =~ Muzziolia and
Reynaerts (2006), Allahviranloo, Mikaeilvand, Kiani and Shabestari (2008) and
Allahviranloo, Salahshourb and Khezerloo (2011b). In these studies o-cuts were
included in methods, although, some of them included the triangular fuzzy number in
the coefficient of matrix A. In general, it is easier to solve the systems using
constants instead of variables. As such, in the case of FFLS, the computational time
can be reduced by employing the triangular fuzzy numbers, thus allowing
researchers in other fields to use. This is because the triangular fuzzy numbers

consist order of three crisp numbers which is similar to classical linear system.

After reviewing the literature, we can classify the following scenarios of FFLS and

its solutions based on the sign of triangular fuzzy numbers:

e If all entries of A are positives, regardless of the sign of entries in B, it is called

Positive FFLS, abbreviated P — FFLS.



e If A has at least two entries that are negative and positive, regardless of the sign of
entries in B, it is called General FFLS, abbreviated G — FFLS.

e |If at least one entry of A is near zero, regardless of the sign of entries in B, it is
called Near Zero (Arbitrary or Unrestricted) FFLS, abbreviated NZ — FFLS.

e If all entries of X are positives it is called Positive solution, abbreviated P — X.

e If X has at least two entries that are negative and positive it is called General
solution, abbreviated G — X.

e If at least one entry of X is near zero, it is called Near Zero (Arbitrary or

Unrestricted) solution, abbreviated NZ — X.

The researchers tried to generalize methods for dealing with the scenarios of FFLS,
since almost existing methods did not clearly distinguish these scenarios. Many
restrictions were added to FFLS which can be noted by the limitations in the
illustrated numerical examples in their studies. Liu (2010) and Kumar et al. (2011a)
tried to generalize the previous methods P — X for NZ — FFLS, but actually they
restricted the signs of coefficients positive or negative as an attempt to avoid the near
zero triangular fuzzy numbers, such that they found G — FFLS instead of NZ —
FFLS. Using their methods, they obtained exact and infinite many solutions of
P — Xand G — X for G — FFLS. However, the proposed solutions by Liu (2010) is
not accurate since the left hand side is not equal to the right hand side, moreover, his
unique example has a non fuzzy solution. Ezzati, Khezerloo and Yousefzadeh (2012)
found P — X for NZ — FFLS using the corresponding linear systems for exact
solution and linear programming (LP) for getting approximate solution, some

examples are not accurate since the left hand side is not equal to right hand side.
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The exact and infinite P — X for NZ — FFLS was studied by Kumar et al. (2011a)
through a method similar to the technique employed in Dehghan et al. (2006). In
a way this means a strong restriction to employ this method in real life situations.
Otadi, Mosleh and Abbasbandy (2011) found an approximate G — X for G — FFLS,
in which the near zero fuzzy numbers were not included. They proposed a numerical
method by fuzzy neural network denoted by FNN. This method was restricted by
many constraints, where G — FFLS can be solved only when the system has a unique
fuzzy solution and the matrix A has to be squares which prevents an extension of the
method to solve a rectangle matrix. Moreover, Babbar et al. (2013) proposed another
method that depends on Cramer's rule, which also expected the possibility of ‘‘near

zero’’ fuzzy numbers in the solution vector.

In order to extend the methods for dealing with G — FFLS or NZ — FFLS, and
overcoming the shortcomings in previous methods, the researchers relied heavily on
LP and nonlinear programing (NLP) to solve G — FFLS or NZ — FFLS.
Unfortunately, LP and NLP can give answers to the linear system but not to fuzzy
systems. For instance, the FFLS may yield two unique solutions or many infinite
solutions despite of the fact that it is constructed by only one equation which
contradicts with linear system, such as the methods in Kumar et al. (2011b) and

Babbar et al. (2013).

Also, FFLS may have two unique solutions which contradict the uniqueness of

optimal solution that can be obtained through LP and NLP. Moreover, LP and NLP



methods add more restrictions on the final exact solution to obtain the fuzzy solution.

These restrictions cannot detect all solution sets of infinite many solutions.

The exact and infinite of P — X or NZ — X for NZ — FFLS has been studied by
Otadi and Mosleh (2012), Kumar et al. (2011a), and Babbar et al. (2013) using LP
and NLP. They illustrated some examples that have a unique fuzzy solution, while
the systems have two unique fuzzy solutions or infinite many solutions. They added
many restrictions to the systems which required many steps, thus requiring longer
time to reach the ultimate solution. For example, Babbar et al. (2013) method leads
to complicated LP since it has 3n + 2n? of constraints in some cases forn x n
FFLS, so their examples does not exceed fuzzy matrix A of size n = 2. However
almost all examples in literature does not exceed fuzzy matrix A of size n = 3 or 4 if
at least one entry is near zero triangular fuzzy number. Allahviranloo, Hosseinzadeh,
Ghanbari, Haghi and Nuraei (2014) transformed FFLS for two fully interval linear
systems, then the interval systems transformed to three system, 2n linear equations,
4n nonlinear equations and n nonlinear equations, then, the all the equations are
transformed for NLP to compute the optimal solution. Therefore, their method
required a construction more than six different systems. This method cannot provide

more than one solution because the final solution is provided by NLP.

In the next fuzzy system, the FFLS is extended to linear matrix equation where the

fuzzy vector replaced by fuzzy matrix to construct the FFME.
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1.2.4 Fully Fuzzy Matrix Equation

In this fuzzy system, the fuzzy vectors in FFLS is extend to fuzzy matrix to

introduce FFME.

The most recent study on extending FFLS to FFME was done by
Otadi and Mosleh (2012), in which they extend the LP technique to obtain positive
solution for arbitrary FFME which is AX,, = B,,, where the entries of 4, X,,, and B,,
are TENs. This method cannot detect all possible cases of infinitely many solutions
since the ultimate solution for FFME is proposed as equivalent to optimal solution in
LP, they provided the unique solution for an example, where as the solution has

infinite many solutions.

The fully fuzzy Sylvester matrix equation (FFSE) is AX + XB = C, where A,B and
C are given fuzzy matrices and the problem is to find the fuzzy matrix X. The
classical form of this matrix equation plays an important role in control theory,
signal processing, filtering, method reduction, image restoration, and decoupling
techniques for ordinary and partial differential equations (Benner (2004) and
Darouach (2006)). The fuzzy form of Sylvester matrix equation FFSE is considered
as an extension for most fuzzy systems involving fuzzy matrix equation. To date,
there is no method to solve FFSE where the entries of fuzzy matrices 4,B,X and C

are TENSs.

In the next section, a new fuzzy system is discussed with a new type of fuzzy

number. The triangular fuzzy number is replaced in LR — FLS by trapezoidal fuzzy
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number to show the ability for developing all previous fuzzy systems to other type of

fuzzy numbers.

1.2.5 Left- Right Trapezoidal Fuzzy Linear System

In the linear system, the LR — TFLS is a fuzzy system AX = B where the A is a crisp

matrix X and B are fuzzy vectors constructing of trapezoidal fuzzy numbers.

The first development of LR —FLS to LR-—TFLS was obtained by
Nasseri et al. (2011), where they proposed a solution of LR — TFLS. This method
requires an associated triangular fuzzy numbers and a particular form of fuzzy
numbers. Allahviranloo et al. (2012a, b) introduced a metric function to provide an
exact fuzzy solution and nearest approximation solution. The fuzzy system was
transformed into the minimization problem, where the constraints of NLP guarantee
that the solution is a fuzzy number. Unfortunately, the proposed solution from
an example was not corresponding to the fuzzy system, because the left hand side
was not equal to the right hand side after substituting the proposed solution in
AX = B. Moreover, there are many nearer (Symmetric or non symmetric)
approximate solutions as compared to the proposed solution in Allahviranloo et al.

(2012a, b).

Table 1.1 provides a summary for fuzzy systems.
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Table 1.1

Summary for Fuzzy Systems.

Name of  Abbreviation Fuzziness Matrix The first
system achievable
The Left Right Form work
fuzzy
number hand hand
side side
Fuzzy Linear FLS Particular ~ A:crisp matrix B:fuzzy AX =B 1998
System Form vector

X:fuzzy vector

Left Right - LR — FLS Triangular ~ A:crisp matrix B:fuzzy AX =B 2010
Fuzzy linear Fuzzy vector
system number X:fuzzy vector
Positive P —FFLS Triangular  A: fuzzy matrix B:fuzzy AX =B 2006
Fully Fuzzy Fuzzy vector
Linear number Xfuzzy vector
System
Near Zero NZ — FFLS Triangular  A: fuzzy matrix ~ B:fuzzy vector ~AX = B 2011
Fully Fuzzy Fuzzy
Linear number X:fuzzy Vector
System
Fully Fuzzy FFME Triangular A X, fuzzy B,,:fuzzy AX,, 2012
Matrix Fuzzy matrices matrix =B,
Equation number
Fully Fuzzy FFSE Triangular AX,,: fuzzy B,,:fuzzy AX+XB 2015
Sylvester Fuzzy matrices matrix =C
Matrix number
Equation
Left Right- LR —TFLS  Trapezoidal  A:crisp matrix B:fuzzy AX =8B 2011
Trapezoidal Fuzzy matrix
Fuzzy linear number X:fuzzy vector
system
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1.3 Problem Statement

Based on the vast amount of discussion on methods for solving fuzzy systems
(LR — FLS,FFLS,FFME,FFSE, LR — TFLS), it is apparent that these methods have
three main drawbacks: first, the dependence on LP and NLP to obtain exact fuzzy
solution; second, the restriction on the signs of TFNs when dealing with near zero

TFN; third, fuzzy solutions are incompatible with the fuzzy system.

For the first drawback, some existing methods relied heavily on LP and NLP where
both of these can only give answers to the linear system but not for fuzzy systems
such as presented by Kumar et al. (2011b), Babbar et al.(2013), Otadi and Mosleh
(2012), and Allahviranloo et al. (2014). The existence of the FFLS solutions relies
on the existence of the solutions of the LP and NLP. In these studies, the researchers
computed all fuzzy operations to produce linear equations. Next, the artificial
variables were added to each equation. All artificial values were dropped to zero to
get the optimal values. The optimal solution was restricted by more constrains, as a
result the fuzzy solution was preserved and other non fuzzy solution was omitted.
Hence, some solutions for fuzzy systems may be omitted through this approach and
cannot be obtained. Moreover, the possibilities of solutions for fuzzy systems do not
follow the classical linear system i.e. no solution, a unique solution, or infinite many
solutions; however, this possibility can not be applied to linear equations in the
constrains part of optimization problem. In conclusion, these studies could not detect
all possible fuzzy or non fuzzy exact solutions. For instance, Babbar et al. (2013) and
Kumar et al. (2011b) provided a unique solution where the fuzzy system has two

unique solutions (finite solutions and not infinite solutions); whereas, two unique
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solutions are not acceptable for linear systems. Otadi and Mosleh (2012) provided a
unique solution where the system has infinite many solutions.
Allahviranloo et al. (2014) provided a unique solution where the example provided

no fuzzy solution for the system.

Moreover, because of the complicated of optimization problem, the studies only
illustrated limited fuzzy matrices that did not exceed n = 3 or 4 of fuzzy matrices.
This is because when the size increases many steps are required to reach the final
solution, which leads to more computation time. For instance, Babbar et al. (2013)
proposed that the optimization problem may have 3n + 2n? constraints to solve
arbitrates n xn fuzzy system. Meanwhile, Allahviranloo et al. (2014) needed to
solve more than six different linear systems or nonlinear, which comprised of two
fully interval linear systems, three 2n X 2n linear systems, a 4n X 4n nonlinear
equations, and an n X n nonlinear equations, before constructing the optimization

problem.

The second drawback is that many researchers tried to generalize methods for
solving the fuzzy system by including any signs of TFNs while dealing with
constricting the signs of TFNs (positive, negative, near zero). However, by
restricting the signs for positive and negative, the complicated arithmetic fuzzy
operation can be avoided. This is because near zero TFN required more arithmetic
fuzzy operation of positive or negative TFN. For example, Liu (2010) and Kumar et
al. (2011a) restricted the two signs that are, positive or negative fuzzy number of
coefficient.Similarly, Kumar et al. (2012), Kumar et al. (2011b), and Otadi and

Mosleh (2012) restricted the positive solution only, or restricted the negative solution
15



only Kumar, Babbar and Bansal, (2013). Therefore, these methods are unable to

solve arbitrary systems that have near zero TFN in the coefficient.

Lastly, the proposed fuzzy solution in the existing methods is not compatible with
the fuzzy system. Some existing methods are incomplete and have many flaws. Since
the proposed solution is incorrect, this flaw can be easily identified by substituting
the proposed fuzzy solution in the system and concluding that the right hand side is
not equal to the left hand side; its evidence can be found in the studies by Liu,
(2010), Allahviranloo et al. (2012a), Abbasbandy and Hashemi (2012) and

Allahviranloo et al. (2014).

Thus, new methods are deemed necessary to be constructed to resolve
aforementioned drawbacks of solving FFLS, FFME, FFSE and LR — TFLS focusing

on positive and unrestricted parameters for scenarios for FFLS.

1.4 Research Objectives

The crux objective of this study is to propose new algorithms for solving all
scenarios of fuzzy systems. In order to accomplish this main objective, the following

sub-objectives must be considered:

I- To construct new algorithms for solving FFLS, FFME and LR — TFLS.
ii- To develop theoretical background of the new constructed algorithms which
involves the following possibilities of solution:

e Case of no solution, non fuzzy solutions.
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e Unique fuzzy solution, finite fuzzy solution and infinite number of fuzzy
solutions.
1ii- To apply the new constructed algorithms in the following application:
e The simpler fuzzy systems such as LR — FLS.
e Fully Fuzzy Sylvester Equation in control theory.
e The nearest approximated fuzzy solution in the case of non fuzzy solution.

e Fuzzy systems with other type of fuzzy numbers such as trapezoidal fuzzy

numbers.

1.5 Scope of the Study

This study develops computational methods of linear systems and matrix equations

where the coefficients are triangular fuzzy numbers and trapezoidal fuzzy numbers.

1.6 Significance of Findings

The findings of this study will have the following contributions:

i- New constructed methods for solving fuzzy systems without fuzzy operations.

ii- The theoretical development on the existence of fuzzy solution, possibilities of

solution of fuzzy systems.

ili- The methods can be used to solve uncertain problems in the following field:

¢ In optimization problem: To find the nearest approximation fuzzy solution.
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e In fuzzy system with other type of fuzzy numbers as trapezoidal fuzzy

numbers.

e In control theory as Sylvester equation.

1.7 Overview of the Thesis

This thesis has eight chapters. Chapter One provides the introduction of the research.
This chapter discusses the research background and a brief survey of fuzzy systems,
the problem statement, the research objectives, the scope of study and the

significance of the thesis.

Chapter Two presents the selected reviews of matrix theory and fuzzy numbers,

definitions, basic concepts and established results of fuzzy systems.

In Chapter Three, the unique solution of P —X for P — FFLS without fuzzy
operation is obtained. The existence of P — X for P — FFLS is checked and proved
before solving the system. The possibilities of solution are classified. Also, the

general form solution for arbitrary fuzzy vector B is formulated.

In Chapter Four, a new method is formulated to obtain the P — X of G — FFLS or
NZ — FFLS. The coefficients of fuzzy matrix A and the entries of fuzzy vectors B
are represented in a linear system, without either fuzzy operation or min-max system.
The existence of solution for P — X is checked and proved before solving the

system.
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Chapter Three and Four provide the positive solution for FFLS. Meanwhile, in
Chapter Five, unrestricted solution for arbitraries FFLS is provided. The near zero is
included

(NZ — X for NZ — FFLS) by using only arithmetic operations of fuzzy numbers in
order to avoid adding any restrictions to the system. As a result, all possible solutions
for systems are attained. Hence, it is concluded that the nature of solution of classical
linear system (no solution, unique, infinitely many solutions) is not sufficient to
provide all possibility of solutions for FFLS, where the FFLS have more than two

solutions, and not infinite solutions.

In Chapter Six, it is shown that these methods of solving FFLS can be developed to
solve FFME and FFSE. The solution is obtained without any fuzzy operation,

similar to previous chapters.

Chapter Seven, provides a new. approach of fuzzy system by applying other types of
fuzzy number such as trapezoidal fuzzy number. It shows that our approach in
previous chapters can be extended to any type of fuzzy number. In addition, the
nearest approximation fuzzy solution using a minimization problem is provided,
when the exact solution is non fuzzy. It shows that our approach in previous chapters
can be extended to provide approximation solution when the exact solution is non

fuzzy.

Finally, Chapter Eight concludes the whole thesis with a summary of this study and
discuses some insights of the possibilities for further research conducted in this area

of study.
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CHAPTER TWO

LITERATURE REVIEW

This chapter provides some basic concepts of matrix theory, and types of fuzzy
numbers. These concepts will be used to discuss the methods for solving fuzzy

systems at the last section of this chapter.

2.1 Fundamental Concepts of Matrix Theory

The following are basic definitions in matrix theory, will be used in solving fuzzy

systems.

Definition 2.1.1. A matrix A is called non—negative inverse if A > 0 and A1 > 0.

Definition 2.1.2. A matrix A is called a generalized permutation matrix (or

monomial matrix) if each column and each row has exactly one non—zero entry.

Theorem 2.1.1. (Minc, 1988) The inverse of a non negative matrix A is non negative

if and only if A is a generalized permutation matrix.

Remark 2.1.1. (Friedman et al. 1998) The odds of A~! to be non negative is very

small.

Definition 2.1.3. Block or partitioned matrix is a matrix that has been created from

other smaller matrices.

Definition 2.1.4. An upper triangular block matrix is a block matrix, if the diagonal
elements have square matrices of any size (possibly even 1x1), with zero matrices

below the main diagonal.
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Definition 2.1.5. A block diagonal matrix is a block matrix, if the diagonal elements
have square matrices of any size (possibly even 1x1), and the other elements are

Zeroes.

Definition 2.1.6. Let A and B be n X p and m X g matrices respectively. The nm x

pq matrix,

allB b alpB

AQB=(a;B)=| ¢ =~ i |, (2.1)
anlB aan

is called the Kronecker product of A and B, it is also called the direct product or

tensor product.

Definition 2.1.7. The vec operator generates a column vector from a matrix A by

stacking the column vectorsof A = [€1 ¢z ... Cy]as,
€1
C2
vec(A) =1 . (2.2)
CTL

Theorem 2.1.2. (Zhang, 2011) Assuming A4, B, C, and D are matrices with a common

(e o)

If Aand A — BDC are invertible, then the inverse of matrix H is,

size in block matrix H:
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- . (2:3)

<A B>1 (A—BD™1C)! —(A—BD"'C)"'BD?
Hl=
—(D - CA™'B)"'cA™? (D—CA™*B)™!

cC D

2.1.1 Elementary Operation of Block or Partitioned Matrices

Since the techniques used for manipulating block matrices are similar to those for
ordinary matrices, as an application, the elementary row or column operations for

ordinary matrices can be generalized to block or partitioned matrices as follows:

1. By interchanging two block rows or columns.

2. By multiplying a block row or columns from the left or right by a non—singular
matrix of appropriate size.

3. By multiplying a block row or column by a non—zero matrix from the left or

right, then add it to another row or column (Zhang, 2011).
2.1.2 Rules for Operation with Kronecker Product and Vec Operator

The formal rules for operation with Kronecker product are as follows, where the

matrices A, B, and C are approprite size

1. rank(A @ B) = rank(A) rank(B).

2. det(AQ B) = (det(A))™ (det(B))™, if A and B are m and n squre matrices,
respectively.

3. vec(A+ B) = vec(A) + vec(B).

4. vec(ABC) = (CT ® A)vec B. (Abadir and Magnus, 2005)
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2.2 Types of Fuzzy Numbers

The following are basic definitions and results related to fuzzy numbers. Here we
have discussed two types of fuzzy numbers: triangular fuzzy numbers, and

trapezoidal fuzzy numbers (Dubois and Prade (1980),Kaufmann and Gupta(1991)).

Definition 2.2.1. Let Xbe a universal set.Then, we define the fuzzy subset 4 of X by
its membership function pz : X — [0, 1] which assigns to each element x € X a real
number u;(x) in the interval [0, 1], where the function value of u;(x) represents the

grade of membership of x in A. A fuzzy set 4 is written as

A ={(x1z(x)),x € X, uz(x) €[0,1]}.

Definition 2.2.2. A fuzzy subset A of the real line R with membership function

ui(x): R - [0,1] is called a fuzzy number if,

1. gz isupper semi—continuous.

2. pz(x) = 0is outside some interval [c, d].

3. There are real numbers a and b suchthatc < a < b < d and:
i. uz(x) is monotonic increasing on [c, a],
ii. uz(x) is monotonic decreasing on [b, d],

iii. uz(x) =1, fora<x <b.
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Definition 2.2.3. A matrix A = (d;;) is called a fuzzy number matrix, or shortly
fuzzy matrix, if each element of A is a fuzzy number. A matrix 4 is a positive fuzzy
matrix (denoted by A >0), if each element of A is positive. A vector X =

(%1, %,, ..., %,)7 is called a fuzzy vector, if elements of X are a fuzzy numbers.

Definition 2.2.4. Let A=(a;) and B = (Bij) be two mxn and nXxp
respectively. We define A ® B = € = (&;;) which is the m x p matrix where,
o
k=1,.n

The next fuzzy number is a parametric form of fuzzy number which is used in FLS.

Definition 2.2.5. A fuzzy number i is represented in parametric form by an ordered
pair of functions @i = (g(r),a(r)), for 0 <r < 1 which will satisfy the following

conditions:

1. u(r)<u(r) foro<r<1.

2. u(r) is a bounded left continuous non—increasing function on [0, 1].
3. u(r) is a bounded left continuous non—decreasing function on [0, 1].

Among the several fuzzy numbers, the most common one used is triangular fuzzy
number, where particular form of fuzzy number can be represented by triangular

fuzzy number. In the next section, triangular fuzzy number is discussed.
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2.2.1 Triangular Fuzzy Number

Definition 2.2.6. A fuzzy number m = (m,a, ) is said to be a triangular fuzzy

number (TFEN), if its membership function is given by,

‘ m—x
1-— , m—a<x<m, a>0,

'“/T(x):<1—x;m,me§m+ﬁ,B>O, (2.5)
\ 0, otherwise.

We denote the set of triangular fuzzy numbers as G(R). m is called symmetric if
a = B. m is called non fuzzy number if a or S are negative. Figure 2.1. displays

the TEN.

The sign of m = (m, a, f) is classified as follows:

. m Is called Positive (Negative) iff m —a > 0 (f + m < 0).
) m is called Zero if (m =0,a,B = 0).

. m is called Near Zero iff m —a <0 < g + m.

Remark 2.2.1 (Dubois and Prade, 1980) If the spreads a« and [ increase in
m = (m,a,B), m becomes fuzzier and fuzzier. Moreover, it is considered as

non fuzzy (crisp number) when a, 8 = 0.
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&« m B

Figure 2.1. Representation of triangular fuzzy number (m, a, )

TFN can be represented by Definition 2.2.2. as follows:

ur)=ra+m—-—aandu(r) =m+p —rp.

The triangular fuzzy number can be represented in another form; it is derived if we

SUPpPOSE:

a,=m-—a, a, =m, a; =m+f. (2.6)

In this case, it is symbolically written as @ = (a4, a,, a3) or (a, b, ¢).

Then the membership function for this form is,

( X —aq
, a1 <x <Ay,
a; —aq
pa(x) =437 % 4, < x < as, (2.7)
as —dz
\ 0, otherwise.
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Definition 2.2.7. Two TFNs m; = (m4, a4, 3,) and @i, = (m,, a,, B,) are called

equal, iff m; = m,, a; = a, and B; = B;.

For choosing the nearest approximate and more accurate solution, the following
metric distance function which proposed in Allahviranloo et al. (2012a, b) for
trapezoidal fuzzy numbers. This metric function is modified to for triangular fuzzy
number, by supposing the mean value interval in trapezoidal fuzzy number is a

unique value to produce triangular fuzzy number.

Definition 2.2.8. (Allahviranloo et al. 2012a, b) For two fuzzy number A =

(a,aq, B1), B = (b, a3, B), we define the distance between A and B as follows:
d*(4,B) =

[(a = b) = (& = a))* + [(@a = b) + (By = B)]* + 2 (a — b)?
” ,

(2.7)

for two fuzzy vectors X = (%, %,, ..., %), ¥ = (%1, %, ..., X,) we define the distance

between A and B as follows:

D,(X,7) = (Zn: dp(A,§)> . (2.8)

The idea of constructing the concept TFNSs is referred to Dubois and Prade (1980). It
aims at simplifying operations of fuzzy numbers to make the computational formulas

easier and quick. The next definition presents the arithmetic operation of TFNSs.
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Definition 2.2.9. (Dubois and Prade, 1980) The arithmetic operations for two TFN

Fuzzy numbers m = (m, a, ) and @i = (n,y, &) are represented as follows:

Addition:
mep ia= m+na+y,p+06). (2.90)
Opposite:
—-m=—-(m,a,f)=(-—m,pB, a). (2.9b)
Subtraction:
m e i =n-na+ 68 +v). (2.9¢)

Approximated multiplication operation of two triangular fuzzy numbers:

1. Let#mi > 0and# > 0. Then,

mQ i = (mn,my+ na,mé+ np). (2.10a)

2. Letm < O0and# > 0. Then,

m@ = (mnna—monf —my). (2.10b)

3. Letm<O0andqi <0.Then,
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m@ = (mn,—nf —msb, —na —my). (2.10¢)

4., Letm =0or 71 =0.Then,

meE

R

0. (2.10d)

Scalar multiplication:

Let A € R. Then,

(Am, Aa, AB), A1=0,
AQ® (ma,p) = (2.11)

(Am,—2AB,—Aa), A <0.
Some authors discussed the limitations of Dubois and Prade's (1980) approximation
for multiplication on TFNs. Babbar et al. (2013) claimed that this approximation
suitable when the spreads (right and left) of the TEN to be negligible if compared to
the mean. According to Dubois and Prade (1980), when spreads are not small
compared with mean values, other approximation formulas can be used to give the
rough shape. Fortin, Dubois and Fargier, (2008) mentioned that this method for
multiplication is very suitable for a positive TFN only; it can give a closed form

result for the basic arithmetic multiplication of positive numbers.

In fuzzy systems, the mean value m may be too remote of spreads to the right « or
left B. Furthermore, the sign is not required to be positive all time. Thus,
an Approximation for Multiplication was introduced by Kaufmann and Gupta (1991)

is used which depends on the min-max function.
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Definition 2.2.10. (Kaufmann and Gupta,1991) Let 7 = (m, a, B) and @i = (n,y, §),

be two unrestricted TFNSs. Then,

m ® n= (mn, flffZ)l (212)

where,

fi=mn—Min{(m—a) (n-y),(m+p)(n—y),(m+ p)(n+4),

(m—a)(n+98)},

and,

fo=Max{(m—-a)(n=y),(m+B)(n=y),(m+p)@m+6),(m=a)(n+6)}

— mn.

2.2.2 Trapezoidal Fuzzy Number

Trapezoidal fuzzy number (TZFN) is a generalization to triangular fuzzy number by
extended mean value m in TFN to produce interval [m,n] which is presented in the

next definition.

Definition 2.2.11. A fuzzy number A = (m,n, a, 8) is said to be a trapezoidal fuzzy

number (TZFN) if its membership function is given by,
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m-—Xx

(1— , m—a<x<m, a>0,
1, m<x<mn,
pz(x) =+ ‘—n (2.13)
1- 5 , n<x<n+pf,>0,
\ 0, otherwise.

A set of all trapezoidal fuzzy numbers is denoted by T(R). i is called symmetric if
a = . A is called non trapezoidal fuzzy number if a,f is negative or m > n.

Figure 2.2. Displays the TZFN.
The sign of m = (m,n, a, B) is classified as follows:

e 1 is called Positive (Negative) iff m —a > 0,(8 +n < 0).
o miiscalled Zeroif (m,n=0,a,p =0).

o miiscalled Near Zeroiff m —a <0< B +n.

Similarly for TFEN, there is another very advantageous form for TZFN. This form is

derived if we suppose,
a;=m-—a, a, =m, az =n, a,=n+p, (2.14)
which can be symbolically written as @ = (a4, a,, as,a,) or (a, b, c,d).

Then, the membership function for this form is as follows:
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rx—al

, a1 < x < aoy,

4y —a, 1 2

1, a, <x<as,

pa(x) =3 (2.15)

as—x

, A3 S X < Ay,
as —a;

\ 0, otherwise.

B _BER BR1E
B

Figure 2.2. Representation of trapezoidal fuzzy number (m, n, @, §8)).

DEfInItIOI’l 2.2.12. Two TZFNs fﬁl = (ml, nq, al,ﬁl) and ﬁlz = (mz,nz,az,ﬁz) are

called equal, iff m; = m,, ny = n,, a; = a, and By = B,.

Definition 2.2.13. (Dubois and Prade, 1980) The arithmetic operations for two fuzzy

numbers m = (my, ny, @y, f1) and i = (my, ny, @y, B,) is as follows:

Addition:

m+ A= (my +my,ng +ny,a; +ay, B+ Bo). (2.16)
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Scalar multiplication:

Let A € R. Then,

(Am, An, Aa, AB) A=0,

A Q@®mnap)= (2.17)
(An, Am,—AB,—a) A <DO.

Definition 2.2.14. (Allahviranloo et al. 2012a, b) For two fuzzy number A =
(my,ny, aq, B1), B = (my,n,, ay, B,), we define the distance between A and B as

follows:

dZ(A, E): [(m1—mz)—(a1—a2)]2+[(n1—n2):(ﬁ1—ﬁ2)]2+ (ml—m2)2+(n1—nz)2’ (2.18)

for two fuzzy vectors X = (%, %5, ..., %,), ¥ = (%1, %,, ..., %,) We define the distance

between 4 and B as follows:

S

D,(X,Y) = (Z dP(A,§)> : (2.19)

2.3 Linear Fuzzy Systems

In this section a survey of existing methods for solving linear fuzzy systems are
reviewed. Some examples are illustrated to show the problems in the existing

method.
2.3.1 Fuzzy Linear System

We will start with fuzzy linear system in particular form of fuzzy numbers which

considers the simplest fuzzy system, in the definition below.
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Definition 2.3.1. Consider the n x n linear system,

(a11%1 + appX+....... +a,, X, = by,

Ap1Xq + AppXy+... ... +a,, X, = b,
(2.20)

lanlxl + a X+ ... + Ay = by,

where the entries of matrix A = (aij)?j _, are crisp numbers and X = (%) and
B = (Ej) is a column vector with entries of fuzzy numbers in particular form
Ej:((gj(r), Ej(r)),j = 1,...,n. This system is called Fuzzy Linear System (FLS). In
matrix form the system can be represented as,

AQ X =5, (2.21)

In the next section Friedman’s Model (1998) for solving FLS is discussed to indicate

the problem in using parametric form.

Friedman Model

Friedman et al. (1998) created a generic model in order to obtain the solution to

n X n FLS. They wrote the FLS in the following function linear system:

j=1 j=1
m n
Zauxj = Zaux] =y, j=L12,....,m. (2.22)
J=1 j=1

They constructed a crisp 2n X 2n linear system,

SX =Y, (2.23)
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instead of the original n X n FLS, where matrix S is contained in a non—negative

coefficients matrix represented as follows:

s=(¢ 5) ,x=(_)—()_() : Yz(—ZY)

In the above block matrix S, the matrix B comprises the positive coefficients of the
original matrix A along with the absolute values of its negative coefficients C.

Definition 2.3.2. (Friedman et al. 1998) Let vector X = {(gj(r),—fj(r)),l <i<
n} indicated the unique solution to FLS. The fuzzy number vector

0 = {(w@), %)), 1 < i < n}is located by

u; (r) = Min{x;(r), x;(r), x; (1), (D},
() = Max{gj(r),fj(r),fj(l),fj(l)}, (2.24)

as X is the solution of SX = Y, U is the fuzzy solution of original A ® X = Y.

The following type of fuzzy solution,

fort<i<n,

{Ej(r) = x;(r),
u;(r) = x;(r),
is named a strong fuzzy solution. Otherwise, a fuzzy solution is named a weak fuzzy

solution.

Allahviranloo (2004, 2005) and Allahviranloo and Kermani (2006) utilized
Friedman’s model, where he proposed a solution of FLS by using well-known

iterative methods like Gauss Seidel and Jacobi. They illustrated SX =Y by
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a numerical example where the unique solution is either a weak or strong fuzzy
number. Allahviranloo (2005), argued that by using the Gauss—Sidel method, where
the systems are not convergent, he proposed the solution of FLS by using another
iterative method which is called Successive Over Relaxation (SOR). In the same
year, Allahviranloo (2005) completed his work in iterative methods by comparing
the previous result with Adomian decomposition method; in order to enhance his
result in Allahviranloo (2004), he proved that the Jacobi iterative method and

Adomian are equivalent.

As for Dehghan and Hashemi (2006Db), in order to solve FLS, they extend several
numerical algorithms for solving linear systems, such as Extrapolated Richardson,
Richardson, Gaus—Seidel, JOR, Jacobi, SOR, EGS, ESOR, SSOR, AOR, USSOR,
MSOR and EMA. These methods were followed by convergence theorems, and
proved some results that were studied by Allahviranloo (2004). On the other hand,
based on Friedman’s model, many studies used several numerical methods to solve
FLS (Matinfar, Nasseri and Sohrabi, (2008), Dafchahi, (2008), Jafari, Saeidy and
Vahidi, (2009), Lazim, and Hakimah, (2010), Ezzati, (2011), Najafi and

Edalatpanah, (2012) and Amirfakhrian, (2012)).

However, Allahviranloo et al. (2011a) said that “fuzzy linear systems” of Friedman
model (1998) almost never have a genuine solution and hence this research line is
totally barren. Allahviranloo et al. (2011a) have indicated that by a counterexample,
the definition for weak fuzzy solution does not always yield a fuzzy number vector.

It is therefore clear that the definition of weak fuzzy solution by Friedman et al.
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(1998) cannot be used any more. Consequently, Friedman's model for solving fuzzy

linear systems almost never had a genuine solution.

In the next section, a new fuzzy system (LR — FLS) is considered as generalization

of FLS, with triangular fuzzy number, to avoid the limitations in FLS.

2.3.2 Left—Right Fuzzy Linear System

LR fuzzy linear system (LR — FLS) is a linear system whose right hand side B is
a triangular fuzzy number vector. This fuzzy system is simplest linear system

including triangular fuzzy number as definition below.

Definition 2.3.3. (Left—Right fuzzy linear system) Consider the n X n linear system,

allfl + a125€"2+ ....... +a1nfn — El’
a21f1 + azzfz‘l' ....... +a2nin = Bz
7 (2.25)
kanlx1 + appXot... ..., +annX, = En,
it can be written in matrix form,
AR X =8, (2.26)
ay1 Qg2 A1n X1 b1\
ale aszz a?n Q 95:2 — b:2 )
Ap1 QApz2 ° Qpp J?n En/

this system is called a Left—Right fuzzy linear system (LR — FLS) where the
coefficient matrix A = (a;;), 1 <1i,j <n is a crisp matrix, the entries of fuzzy

vectors X, B are TFNs, and X is unknown to be found.
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The interest on LR — FLS has been increasing in the last five years for three main

reasons, namely:

1. In applications, LR — FLS is easier to understand and applied since triangular
fuzzy number does not have parameter r,0 <r <1 as particular form fuzzy
number in FLS, because TFN is a collection of three ordered crisp numbers.

2. Allahviranloo's (2011a) argument on the weak solution of Friedman'model (1998)
has been showed that many cases and examples were wrongly solved LR — FLS.

3. LR — FLS is considered as particular scenarios of FFLS, where all spreads are

zero in left hand side.

For these reasons, LR — FLS is considered as an alternative of FLS.

In next section FFLS is presented as expanding of FLS and LR — FLS, where all the

entries are TENS.

2.3.3 Fully Fuzzy Linear System

The interest in FFLS is due to the needs to widen the scope of FLS and LR — FLS,
as it is found in many applications there is no control to fix coefficients of matrix A

similar to FLS or LR — FLS.

Definition 2.3.4. Consider the n x n linear system,

dllfl + d12f2+ ....... +dlnxn = El’

621.7?1 + azzjz‘l' ....... +d2nxn = EZ
(2.27)

lanlxl + X+ +8pnZy = by,



where V d,;, Ej € G(R). This system is called a Fully fuzzy linear system (FFLS).

. o\ ~ ~\1
The matrix 4 = (aif)i,j=1 and the vector B = (b]-)j=1 can be represented as,

A® X =B. (2.28)

The vector X = (9?]-);;1 is called exact fuzzy solution if V& € G(R), j =1,...,n,

otherwise it is called exact non fuzzy solution.

In the literature, many methods were obtained to solve the scenarios of FFLS, it is
noted the methods for solving FFLS applied the approximations multiplication
operators numbers (Dubois and Prade's or Kaufmann's approximation for

multiplication).

These methods are classified according approximation formula for multiplication,
direct methods which used Dubois and Prade's approximate and indirect methods

which used Kaufmann's approximation for multiplication.
2.3.3.1 Direct methods for solving FFLS

Through direct methods, the solution directly obtained by applying a multiplication
operators from Dubois and Prade's approximate arithmetic and then solving the

associated linear system for FFLS.

For example, if all entries of fuzzy matrices 4 and X are positives TFNs, we need
only Equations (2.9a) and (2.10a) to obtain the associated linear system. Although

the scenarios of FFLS which can be solved by direct methods are very restricted,
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these methods have a wide scientific applications in real life situations, such as
supposing the time as a parameter, then P — X is required for P — FFLS or G —

FFLS.

Next theorem provides the conditions of P — FFLS to have P — X.

Theorem 2.3.1. (Dehghan et al. 2006) Let A = (4,M,N), B = (b,h,g) =0
in FFLS

A® X =B, and:

i- Centric matrix A be a non negative—inverse, i.e. A~1 existand A=* > 0.
ii- h>MA'band g > NA™1h.

iii- (MA™' + Db > h.

Then, the FLLS has P — X.

Dehghan et al. (2006) used the direct methods in solving P — X for P — FFLS to
obtain a technique similar to the classic methods derived in linear algebra, such as
the

LU decomposition and Cramer’s rule (with its explanation to find the approximated
solution of a system). Apart from that, they also proposed a new method using LP in
order to obtain the solution of non—square, square and matrix (over—determined)
fuzzy systems. The iterative techniques like Gauss—Seidel and Jacobi Adomian
decomposition method are also expanded by Dehghan and Hashemi (2006b),
Dehghan, et al. (2007). Similarly, Nasseri, Sohrabi and Ardil (2008), Nasseri and

Zahmatkesh (2010), Nasseri, Behmanesh and Sohrabi (2012), Gao and Zhang
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(2009), and Kumar, Neetu and Bansal (2012), Abbasbandy and Hashemi (2012).
Ezzati, Khezerloo, Mahdavi—Amiri and Valizadeh (2014) and Abdolmaleki and
Edalatpanah (2014) in all their studies proposed new methods for solving P — FFLS
are similar to Dehghan’s method, all the previous studies depended on Theorem
2.3.1. In addition, Kumar et al. (2012) added a contribution in these methods by

investigating the unique and infinite many solutions.

Liu (2010) found P — X for G — FFLS by Homotopy Perturbation Methods (HPM),
in his study, followed the three multiplication operators in Dubois and Prade's
approximate arithmetic, since it is easier to apply in numerical method. However, he
used a small fuzziness a, f# comparing with m. He avoided dealing with near zero

triangular fuzzy number.

The problem in direct methods for solving FFLS

The following limitations are noted in the direct methods:

1. All direct methods depend only on Dubois and Prade's approximate
arithmetic, which means that the direct fuzzy approximation solution will be
obtained without taking into consideration the distance of spreads a and S
about the mean m. The evidence for this, can be seen in most examples in
previous studies that takes the spreads a and S to be very small, as compared
with mean m. For example the fuzziness in fuzzy numbers 8 = (8,0.1,0.2)
and 50 = (50,1,3) are very small, in fact, these fuzzy numbers are very
close to crisp numbers 8 and 50, respectively, based on Remark 2.2.1. if the

spreads a and S increase in m = (m, a, 8), m becomes fuzzier and fuzzier.
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2. The guarantee for existing solution by these methods is very small. For
example, the discussion in Chapter Three indicates that Theorem 2.3.1. is
limited to A= > 0. Until now, there is no numerical example investigated by
Theorem 2.3.1.

3. The guarantee of fuzziness solution must depend on A as well as B. The
evidence for that, until now, there is no numerical example that can guarantee
P — X for an P — FFLS. Moreover some methods provided an P — X where
the system doesn’t have P —X as for P — FFLS such as examples in
Abbasbandy and Hashemi (2012).

4. Some existing methods are incomplete and have many flaws, as shown in the
below examples. Many of these methods provide incorrect examples because
the right hand is not equal to the left hand which is discussed in Chapter
Three such as examples in Abbasbandy and Hashemi (2012) and example in

P — X foran G — FFLS (Liu, 2010).

2.3.3.2 Indirect methods for solving FFLS

Indirect methods can obtain a solution by applying Kaufmann's approximation for
multiplication, but there is no guarantee that the associated system will be
a corresponding linear system for FFLS. Such that, Kumar et al. (2011a), Otadi and
Mosleh (2012) and Babbar et al. (2013) their methods depend on transferring the

fuzzy system to LP or NLP.

Kumar et al. (2011a) found the P — X for G — FFLS. The n x n FFLS is transferred

to a 3n X 3n classical linear system by applying Kaufmann's approximation, they
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calculated all multiplication by fuzzy operation between fuzzy matrices, thus
requiring more computational times. Then, they studied the consistency of the
system. However, this method is unable to treat near zero TEN (neither positive nor
negative). It is noted that in the two examples illustrated in his paper, each system is
neither fully positive nor fully negative TFN. Moreover, all size of FFLS examples

do not exceed n = 2.

Otadi et al. (2011) obtained G — X for G — FFLS using numerical method that
depends on neural network. However, their method is restricted by many constraints,
the method solves FFLS when the system has a unique fuzzy solution only and the
fuzzy matrix 4 has to be square. These constraints prevent the extension of the
method to solve singular or rectangle matrix to provide infinity many solution when

it is available.

Later, Ezzati et al. (2012) proposed method to. find P.— X for NZ — FFLS by
transferring the FFLS into two nxXn and 2n X 2n crisp linear systems, they
employed a least squares problem to find an approximated fuzzy solution. Actually,
his method produced inaccurate solution as shown in the example in Chapter Four,

since the left hand side is not equal to the right hand side.

In addition, Otadi and Mosleh (2012) investigated P — X for NZ — FFLS by
employing LP, which leads to more computational times, their method involves
much arithmetic fuzzy operations. Because of that, they only provided the size of

FFLS that do not exceed n = 2. This method cannot check the possibilities of
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solution since it provides optimal solution only using LP. Moreover this method is

constructed to solve fully fuzzy matrix equation (FFME),

Kumar et al. (2011b) and Babbar et al. (2013) found the NZ — X for NZ — FFLS by
LP, the methods are valid for square and rectangle systems such as n = 3 FFLS. The
solution is obtained in six steps. In the fifth step, where the FFLS was transferred to
equivalent LP in order to solve, the required constraints added to guarantee the fuzzy
solution. This produces complicated LP since it needed 3n + 2n? constraints in
forn X n FFLS, with conditions of obtained solution to be a fuzzy solution. So their
examples do not exceed n = 3. Also, they found G — X for G — FFLS by fuzzy
Cramer's. However they proposed the same consistency in the solution of FFLS and

the equivalent LP.

They introduced Remark 2.3.1, but the contradiction for this remark is located in

Chapter Five by counter example.

Allahviranloo, et al. (2014) transformed FFLS for two fully interval linear systems,
then to LP, this method required to construct more than 6 different systems, the final
solution provided by NLP, moreover their method cannot provide more than one

solution.

The problems in Indirect Methods:
1- It is apparent that the previous methods treating possible ways of solutions

for FFLS is similar to possible ways of solution for linear systems or LP. The
concept of uniqueness of solution for systems produced by applying

Kaufmann's approximation for multiplication. But this approximation can
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provide two different unique solutions (finite solution), unlike the uniqueness
concept in linear system where the uniqueness happens by one solution.
Similarly, the infinite many solutions case may happen through min or max
conditions, unlike the infinite many solutions in linear systems which is
based on the consistency of the system. Moreover, the FFLS may have two
solutions only and not infinity many solutions. The discussion in Chapter
Five is contrary with their following Remark 2.3.1. provided in Kumar et al.

(2011b) and Babbar et al. (2013).

Remark 2.3.1. The existence of the FFLS solutions relies on the existence of the
solutions of the LP which may be no solution, trivial, unique, or infinite many

solutions (Babbar et al. 2012, Kumar et al. 2011b).

2- Many of the methods in Kumar et al. (2011b), Babbar et al. (2013) and Otadi
and Mosleh (2012), Allahviranloo, et al. (2014). relied heavily on LP and
NLP to solve the FFLS without separation in algorithms between exact (X)
and approximate (X') fuzzy solution. To overcome this mixture in
algorithms, they added further constraints on the systems. As stated before, to
solve
n X n FFLS, for example in Babbar et al. (2013) the associated LP must have
3n + 2n? constraints. All provided examples in the previous methods do not
exceeded n = 4, which indicate the insufficiency of these methods to provide
solution for FFLS in more than three parameters, because any example more
than n =4 needs high constraints as (3)(5) + (2)(5%) = 65 for 5 X

5 FFLS, these constrains are computed by fuzzy operations. In addition,
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Allahviranloo, et al. (2014)’s method also has many fuzzy operation since the
final solution gained by solving 6 systems, moreover the proposed solution is
not satisfied the system as it is showed in Chapter Five.

3- Some methods, such as Otadi et al. (2011), required information about the
solution to choose suitable initial data before solving the system. This means
the method is insufficient to solve arbitrary systems, when these date are not

available.

The next remark will be used in indirect methods to solve NZ — FFLS.

Remark 2.3.2. For any variables x and y. Min[x,y] and Max[x,y] denote the

minimum and maximum of x and y, respectively as follows,

Xty
2

ery)+|x;y|. (2.29)

)— |x;y|’ Max[x,y] =( 3

Min[x,y] = (

2.3.4 Fully Fuzzy Matrix Systems

This section is considered as an extension to FFLS scenarios, since all coefficients
are fuzzy numbers. There are many linear matrix equations that can be formed in this
section. The most important two linear matrix equations are fully fuzzy matrix
system as well as fully fuzzy Sylvester equation, where the other fuzzy linear

matrices can be formed by them.

Definition 2.3.5. (Fully Fuzzy Matrix System) Let 4 = (dij):ljzlz(m?j, a?j,ﬁ{‘;)?jzl

B =(5.\" =(mbP o0 pb\" " .
and Bm—(bij)ile—(mi]-,ozij,ﬁi]-)ij=1 are known positive fuzzy matrices,

[~ n _ x x x n . ara -
Xm_(xif)i,j=1_(mif' “ij'ﬁif)i,jzl's an unknown positive fuzzy matrix,
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dll dlZ aln f11 le fln /bll b12 bln
Az dzz .. Ao ® X21 X2 - Xon | _ | by; by, by,

: : . : : : . : - : ’
An1 Gnz * Qpn Xn1 Xpz 0 Xpn \Bnl Enz Enn

is called fully fuzzy matrix Equation (FFME).

The next equation is most important linear matrix equation in Control theory is

named Sylvester equation.

Definition 2.3.6. (Fully Fuzzy Sylvester Equation) Consider the following fuzzy
matrix equation 4,B,X and C where A= (a;) ., X=(%;) ,B=(b;)
and

C = (&), .- The equation below is called fully fuzzy Sylvester equation (/752),
AX+XB'=¢C. (2.31)

The methods of solving fully fuzzy matrix systems is an extension form FFLS, for
that all stated problem in direct and indirect methods for solving FFLS are effective
for solving fuzzy matrix equation such as methods in (Otadi and Mosleh (2012) and
Kargar, Allahviranloo, Rostami-Malkhalifeh and Jahanshaloo (2014). In addition,

there are two further problems:

1. The arithmetic fuzzy matrices multiplication are computed between fuzzy
matrices to produce FFLS, such as, Guo and Shang (2013a,b) which required

many more computational time due to applying fuzzy operation.
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2. Basic definitions and operation in crisp matrices such as identity and
transpose are not developed to fuzzy matrices, where these definitions are
essential to establish required theorems. Such as Kronecker product cannot
be applied between fuzzy and crisp matrices. Because of that, in Guo and Jin
(2014) the fuzzy matrix equations are separated to solve each values m, a and

B, then collected again in one system.

48



CHAPTER THREE
POSITIVE SOLUTION FOR POSITIVE FULLY FUZZY LINEAR

SYSTEM

This chapter develops associated linear system to obtain P — X of P — FFLS. In
order to develop this linear system, block matrix and block vectors will be used to
include all entries of P — FFLS into the associated linear system. A necessary
conditions to ensure P — X are derived. The consistency of the fully fuzzy linear

system is provided.
3.1 Fundamental Concepts for Associated Linear System

This section presents the fundamental definition and main theorem to develop the
new method for solving P — X of P — FFLS, the next definition is used in associated

linear system for P — FFLS.

Definition 3.1.1. A 3n x 3n crisp matrix S consists of n X n zero matrix Z =
(0)nxn and three n x n crisp matrices A= (mf;) M= (af;) and N =

(af;) . offuzzy matrix A = (a;;) = (mfaf;, )  isdefined as,

nxn

(mi‘l mfn> (0 0) (
A Z Z my; o Mgy 0 - 0

alyy ..oal\ /my .. mi,
S=|IN A4 Z|= S S :

a a a
In1 " Opn My 0 Mpp

BYL .. B&. (0 0) <m1 mi%)
(ﬁf}ll ﬁ;;m> 0 - 0 Mpy =+ May

The matrix S is called the associated matrix of fuzzy matrix 4.
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The next theorem shows that the singularity of matrix S depends on the singularity of

matrix A.

Theorem 3.1.1. Block matrix S is non-singular if and only if the matrix A in is non-

singular.

Proof. The crisp matrices A, M and N are square matrices in common order n, So we
can easily make the block matrix S becomes a diagonal matrix, using elementary
operation of partitioned matrices in Section 2.1.1, by subtracting the first row
multiplied by MA~* from the second row, and subtracting the first row multiplied by

NA~1 from the third row, is as follows:

A 0 0 A 0 0
S=IM A 0]-{0 A 0] =§;.
N 0 A 0 0 4

Now, we will expand S; through 3 block matrices of order 3n x 3n, which are,

{E,, E,, E5}where,

A 0 0 I, 0 0 I, 0 0
E1=<0 I, 0),152:(0 A O),E3=<O I, 0).
0 0 I, 0 0 I, 0 0 4

Hence,
S, = ELE,Es.
Clearly,

S| = IS1] = |E1||E2 |1 E5| = 1AJ°.
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Therefore,

|S| # 0 if and only if |A]| # 0. (3.1)

Moreover,
S| = |A]3. (3.2)
O

Next section provides method to obtain the P — X for P — FFLS, using the block

matrix S in Definition 3.1.1.

3.2 Positive Solution For Positive Fully Fuzzy Linear System

The P — X for P — FFLS is obtained in this section. The P — FFLS is transferred to
linear system then to matrix form. The solution of this linear system provides

a vector X is equivalent to P — X.

The solution is obtained in following two steps:

Step 1 Transferring the fuzzy system P — FFLS to crisp matrices and vectors.

Consider A®X =B, where A=(4,MN)>0 and B=@mb a? p?),

X = (m*, a*, B*) = 0, using Equations (2.9a) and (2.10a), we have,

(AQm* =mPl, = Am* = m?,

MQa*=al, = Aa*¥+ Mm* =a?,

o Y

X
>
Il

(3.3)

NQ®pB*=p", = AB*+Nm*=p>
\
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The system in Equation (3.3) is written through its coefficients as follow:

The crisp matrices are,
A= (mgj)nxn’ M= (agj)nxn’ N = (agj)nxn'
The crisp vectors are,

mx = (mJ;) ax = (a);)nxl’ ﬁx = (ﬁJJg)nxl and mb - (ml})nxl’ ab -

nx1’
b b _ (pb
(aj)nxl’ ﬁ o (Bj)nxf
Hence, Equation (3.3) is equivalent to following 3n linear equations,

( (mfimi + mGmg + - +mimi) = my,
(m%af + m&baf + -+ mbal) + (aémf + abmi + - +almd) =a?, (34)
(& BT + mE B3+ ok mi ) + (Bimi + BGms + -+ BLmE) = BY.
Rearranging Equation (3.4) and adding zero terms to make it 3n X 3n linear system,

(mEmE +mém¥ + - +mém¥)+0--0+0--0=m?,

(maf + mhas + -+ mipar)+0--0

X +(afmf + abtmf + -+ alm¥) = a?, (3.5)

(MG BT + mbBE + -+ mfBX) + 00

\ +(BAMT + BEmE + - + BEmE) = B
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Step 2 Assigning 3n x 3n linear system which equivalent to fuzzy system.

» Assign the coefficients of block matrix S = (s;;)

3nx3n’

— —_ — a
(Si,j = Sitnj+n = Si+2n,j+2n = My,
— a
4 Sitn,j = i),

Sit2n,j = ﬁic,lj'
The others s;; are not determined in Equation (3.6) are zero.

o Assign the vectors X = (x;), and B = (b)znx1:

(% =m
Xjyn = a]gc’
|
kxj+2n = ﬁ]x'
_ b
bi =m;
_ b
bivn = aj,
|
b
kbi+2n =B

(3.6)

(3.7a)

(3.7b)

Using Equations (3.6), (3.7a) and (3.7b), we have the following 3n x 3n linear

system,
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| B2
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Btz
B2,

Br2

Min 0
a
Mmon 0
a / \ .
Mpn 0
a
Ain mii
al || m¢
2n 21
a
Onn My1

a
my,

a
oy
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where X and B are called the associated crisp vectors of fuzzy vectors X and

(3.8)

B, respectively. The linear system in Equation (3.8) is called positive associated
linear system (P — ALS), where P — ALS and linear systems in (3.4) are equivalent.
Hence, P — ALS is equivalent to A ® X = B. Using Theorem 3.1.1. the singularity
of matrix A is examined, if |A| # 0 then |S| # 0. Hence the linear system SX = B

has a unique solution if, |A| # 0.

By solving the P — ALS in Equation (3.8) we can find the crisp parameters m, a;*

and g for j=1,..,n, which are equivalent to P—X of P-—FFLS,
% = (mf, o, B;)-

Moreover, in Section 3.4, this method is developed to obtain infinitely many
solutions whenever it exist, where |A| = 0 or A is rectangle. Also, to provide interval

of solution when some coefficients are unknown.

Remark 3.1.1. The Crisp vector X and fuzzy vector X are equivalent if components

m}, a;" and B belong in X and X are equal forall j = 1,.

Theorem 3.2.1. The unique solution of crisp system SX =B and P —X for

P — FFLS is equivalent.

Proof. The proof is straightforward from by Theorem 3.1.1 and Equation (3.8)
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Two examples were in literature are solved, the first example has a unique fuzzy
solution, while the second has a non fuzzy unique solution; which shows that P-ALS
can provide the exact fuzzy or non fuzzy solution. The next example is the same
example in Dehghan et al. (2006) where the fuzzy system has a fuzzy unique

solution. The new method proposed a similar solution for Dehghan et al. (2006).

Examples 3.2.1. Dehghan et al. (2006) consider following P — FFLS,

( (6,1,4) ® (m{,a7,p7) @ (5,2,2) ® (m3,a3,B85) © (3,2,1)
® (m%,a%, p¥) = (58,30, 60),

(12,8,20) ® (m7, a7, 1) @ (14,12,15) ® (m3, a3, B3) @ (8,8,10)
® (m,af, B¥) = (142,139,257),

(24,10,34) @ (Mm%, aZ, ) @ (32,30,30) ® (mf,a, 5¥) @ (20,19, 24)
( ® (m%,a%, p¥) = (316,297,514).

The P — X is obtained using P-ALS.
In matrix form, this become,

(6,1,4) (5,2,2) (3,2,1) \ /(mf,af, )
k (12,8,20) (14,12,15) (8,8,10) ) k(mg, af, ,85‘)) =
(m3, a3, B3)

(24,10,34) (32,30,30) (20,19,24)

(58,30,60)
\(142, 139, 257)).
(316,297,514)
According to Step 1, the crisp matrices A, M and N are,
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6 5 3 1 2 2 4 2 1
A=112 14 8 |, M=(8 12 8 |,N=(20 15 10|

24 32 20 10 30 19 34 30 24
The crisp vectors m*, m?, a*, a?, B* and S are,
my ay Bi 58 30 60
m*=| m3 |, a*=\ a3 |,p*=( B5 |,m’=| 142 |,a’=| 139 |,B"={ 257 |,

mX ak B 316 297 514

Since |A| = 48, |A| # 0, according to Theorem 3.1.1, |S| # 0. Hence, the FFLS has

a unique solution.

According to Step 2, the P-ALS can be constructed by SX = B in (3.8), where S is,

6 5 3 0 0 O 0 0 O
12 14 8 0 0 0 0 0 O
24 32 20 0 0 O 00 O
Ny |-y G dily B 0 0 O
SE\ W\t N /=/| | S g 12 14 8 00 0
N 0 A 10 30 19 24 32 20 0 0 0
niwvers 00 0 6515 3
20 15 10 0 0 O 12 14 8
34 30 24 0 0 O 24 32 20
Also X and B are,
my
m 58
X 142
ms3
316
m* ay mP 30
X = (ax> = ay ||, B=(a? |=1][139
p* af pP 297
X 60
" 257
2 514
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However, using Equation (3.2) our approach in Theorem 3.1.1, can be verified by

computing |S|.
|S| = |AI? = (48)3 = 110592.

The crisp solution can be easily obtained by inversion matrix method, X = S~!B:

my
m3
. 3
aj 1
X = af = (0.5)
af 0.5
x 3
x 2
2 1

Then, the fuzzy solution is,

9?1\ (m7, af,ﬁf)\ (4,1,3) \
X, |=| m3,a5,65) | =1 (505,2) |

X3 (m3, a3, B3) (3,0.5,1)

>
Il

The proposed method obtained similar solution as Dehghan et al. (2006). A
comparison between Dehghan et al. (2006) approach and the proposed method will

be presented in Section 3.3 using Table 3.2a,b.

The next example illustrates our method where the fuzzy system has a unique non
fuzzy solution. This example is the same example as in Abbasbandy et al. (2012).
However, the new method proposes a different solution for Abbasbandy et al.

(2012), because the solutions are different; the verification of solutions are provided.
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Example 3.2.2. Abbasbandy et al. (2012) consider the following P — FFLS,

((4,3,2) @ (mf, a7, ) @ (5,2,1) ® (m3,a3,65) @ (3,0,3) ® (m3, a3, B3)
= (71,54, 76),

) (7,4,3) ® (m{, a7, 1) @ (10,6,3) ® (m3,a5,p7) D (2,1,1) ® (m3, a3, 3)
= (118,115, 129),

(6,2,2) ® (m{, a7, 1) @ (7,1,2) ® (m3, a3, B5) @ (15,5,4) ® (m3, a3, 3)
k = (155,89, 151).

The P — X is obtained using P-ALS.
In matrix form, this becomes,

/(4,3,2) (5,2,1) (3,0,3)\ /(mf,af,ﬁf)\ / (71,54,76)\
k(7,4,3) (10,6,3)  (2,1,1) |®K(m§,a§, ) |k(118,115,129)/|,

(6,2,2)  (7,1,2) (15,5,4) (m%, af, B) (155,89,151)

Aorait
A=1(7 10 2 ], |A] =146,

6 7 15

using Theorem 3.1.1, |A| # 0, then |S| # 0, thus the P-ALS, SX = B, has a unique

solution.

my
4 5 3 0 0 0 0 0 0 X 71
(7 10 2) (0 0 0) (0 0 0) mi 118
6 7 15 0 0 0 0 0 O 3 155
3 2 0 4 5 3 0 0 0 ajy 54
<4 6 1) (7 10 2) (0 0 o) af | [=1115]]
2 1 5 6 7 15 0 0 0 a¥ 89
2 1 3 0 0 0 4 5 3 x 76
(3 3 1) (0 0 0) <7 10 2) ! 129
2 2 4 0 0 0 6 7 15 2 151
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by computing X = S™1B,

g
)

<—16.782

19.608
4.695

)

since By < 0, then the exact unique solution of this system is non fuzzy vector, is as

follows,

(mi‘,af;ﬁ{‘)\‘
Xp=|(m3,a3,B7) | =

(m3, a3, B3)

(42 386)
“ 23
(8 5 451) -
Ia" A 23
(5 . 108)
)+ 23

4,2, —16.782)\
(8,3,19.608) |.

(5,1,4.695)

The verification of solution shows that, the multiplication of two fuzzy matrices

A, X, satisfies B. Also, using Definition 2.2.8. the distance metric function is equal

zero, D;(A ® X, B) = 0. Hence, the solution X,, satisfies the fuzzy system.

While, the original work of Abbasbandy et al. (2012) provided X, as exact unique

fuzzy solution for FFLS,
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(mf, a1, B1) (4,2,2)

Xa = | (mg, a%lﬁ%)) = | (8: 3, 5))

(m3,a3,B3) (5,1,4)

However, X, is not satisfied the system, since A ® X, # B,

/ (71,54,76) \ / (71,54,76) \

A® X, =| (118,115,113) |, while B = | (118,115,129) |.

\ (155,89,151) (155,89,151)

Moreover, the distance metric function is not equal zero,
A vV B) — 1 2 —
D,(A® X4,B) = (;)(16)2 = 8.

As shown, the new method proposed solution X, which is a different solution for
Abbasbandy et al. (2012)’solution X,. Thus, the verification of solutions are

provided for both methods.
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Verification of solution of X g

( (4,32) ® (4,2, ) ® (521 ® (8 3, ) ® (3.03) Q ( 12038>

= (16 20 1360) a5 (40 31, 2439) a5 (15 3, 669) (71,54,76)
N 23 23 23 e

7490 32~ 20)0 @049 0 5351) 9 21 6 52.2)

(28 30, 2426) fas) (80 78, 5062) fas) (10 7, 331) (118,115,129)
23 23 23/ S ’

(6,2,2) ® (4-,2, ) D(7,1,2) ® (8 3, > @ (15,54) ® <5 L 12038)

- (24 20 2132) @ (56 29, 3525) @ (75 40, 2080) (155,89,151)
\\TTTT 23 23 23 e '

Verification of solution of X,

((432) ® (42,2) ® (52,1) ® (8,3,5) @ (3,0,3) ® (51,4)
= (16,20,16) @ (40,31,33) @ (15,3,27) = (71,54,76),

(7,43) ® (4,2,2) ® (10,6,3) ® (83,5 & (2,1,1) ® (5,1,4)
= (28,30,26) B (80,78,74) ® (10,7,13) = (118,115,113),

(622) ® (4,2,2) ® (7,1,2) ® (83,5 ® (15,54) ® (5,1,4)
\= (24,20,20) & (56,29,51) @ (75,40,80) = (155,89,151).

Table 3.1 compares both solutions )?g and X, in terms of accuracy of solution X, the

distance for right hand side vector B and the possibility of unique solution.
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Table 3.1

A comparison between X, and X,,.

X, X,
Accuracy of solution X A®X, =B AR X, +B
Distance metric function 0 8

The possibilities of solution A unique solution is determined. Is not determined

unique or non-unique

solution.

As shown in Table 3.1, the )?g is non fuzzy solution. This means that our method is

able to provide an exact unique solution even it is not P — X. This motivates us to

determine the conditions of P — FFLS to havea P — X in Section 3.3.

This method is able to solve large scale of system as illustrates in Examples 3.2.3,
which indicates the efficiency of the proposed method. The details and verification

of solution are provided in Appendix A.
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Example 3.2.3. Consider the following 10 x 10 FFLS,

(6,3,6)
(4,2,1)
(4,3,2)
(2,2,8)
(7,6,9)
(8,5,6)
(8,7,3)
(4,39)

(5,1,9)

(1,0,4)

(3,1,3)
(3,2,0)
(7,6,4)
(3,04)
(3,1,6)
(4,0,3)
(4,19)
(5,1,6)
(1,1,0)

(8,39

(54,9
(8,7,1)
1,1,4)
(5,3,3)
(1,1,5)
(8,5,5)
(7,2,1)
(6,2,6)
(8,3,5)

(2,0,1)

(5,1,6)
(7,3,3)
(1,19
(6,3,8)
(3,2,4)
(7,1,2)
(8,1,5)
(1,0,4)
(4,1,6)

(7,39

(6,2,1)
3,3,3)
(2,1,0)
2,1,1)
(54,2)
4,1,1)
(84,7)
(5,5,2)
(7,0,0)

(6,2,1)

(m{, a5, B1)
(m3,az,p7)
(m3, a3, B3)
(mg, az,Bx)
(m3, as, Bs)
(Mg, s, Bs)
(m7,a7,B7)
(mg, ag, Bg)
(m3, ag, Bs)
(mio, ato, Bio)

The P — X using the proposed method is

(3,12) (523)
(7,26) (3,1,1)
(3,35) (41,5)
(4,03) (429)
(54,6) (52,7)
(4,29) (6,2.3)
(532) (7,44)
2,13) (1,1,7)
(3,1,8) (7,1,0)
(825 (433)
(499,355,783)
(591,449,509)
(277,270,669)
(414,230,644)

(334,289,784)

(609,324,671)
(493,278,704)

(558,277,601)

(431,273,671)
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(593,381,729)

(6,5,7)
(7,5,3)
(3,3,0)
(6,3,4)
(5,4,9)
(6,6,8)
(3,1,8)
(7,4,3)
(6,2,3)

(8,6,9)

(7,5,2)
(2,1,6)
(4,4,8)
(2,0,6)
(7,49)
(7,39
(7,4,5)
(6,0,2)
(7,6,1)

(3,3,2)

(7,1,1)
(8,0,1)
(8,1,9)
(6,1,9)
(6,1,6)
(1,04)
3,1,7)
(8,5,3)
(2,2,3)

(54,7)
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(mi,af, Br)
(m3,a3,B7)
(m3, a3, B3)
(mi, az, Bi)
(ms, as, B3)
(mg, ag, B&)
(m7,a7,B7)
(mg, ag, Bg)
(m3, as, B3)

(mo, @3, Bio)
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(4,1,4)
(9,6,9)
(37,0,6)
(8.2,2)
(9,2,5)
(8,1,9)
(2,0,4)
(5.1,4)
(8,3,1)

(7,0,9)

Next section provides necessary conditions of solution to be positive fuzzy solution.
3.3 The Necessary Conditions of Positive Fuzzy Solution

A necessary conditions for P — FFLS to has P — X are checked for fuzzy matrix A
and fuzzy vector B. The conditions are provided for both left and right hand side for

(4 and B), then for left hand side A only where B is an arbitrary.
3.3.1 The Necessary Conditions of Left and Right Hand Side (4 and B)

Dehghan et al. (2006) studied the conditions for P - FFLS to have P — X as stated
in Theorem 2.3.1. This theorem determines the fuzzy solution or non fuzzy solution
only when matrix A= > 0. To date, no numerical example is checked whether the

P — FFLS have P — X or not, even in Dehghan et al. (2006). According to Remark

2.1.1 the odds of the matrices which satisfies the condition A~ > 0 is very small.




For that, Theorem 2.3.1. is incompatible to apply in most of FFLS. Thus, the
restriction
A~1 > 0 is demonstrated in P — FFLS by the following corollary, and it is omitted

in our approach.

Corollary 3.3.1. Consider A = (4,M,N) is positive fuzzy matrix and A is
generalized permutation matrix. Then the right spread matrix M is also a generalized

permutation matrix, and must have the same structure of A. In other word,
If ai‘j = O, then mi’j =0in di,j = (ai_j,mi’j,ni’j) Vl,] = 1, e, N

Proof. Suppose m; ; # 0,and a; ; = 0. Then, a; ; —m; ; # 0. This leads to negative

TEN, which contradicts with the hypothesis of positive fuzzy matrix va, ; = 0.

According to Corollary 3.3.1, A= > 0 is only satisfied in P — FFLS when the
entries of the matrices A = (a;;) and M = (m,;) are all zero, except for a single

positive entry in each row and column.

In order to point out numerically the structure of fuzzy matrices which satisfies

A1 > 0, the next fuzzy matrix is presented,

(0,0,0.1) (0,0,0.6) (0,0,0.2) (4,2,0.2)
(11,0,0) (0,0,0.2) (0,0,0.11) (0,0,0.13)
(0,0,0.5) (5,3,0.6) (0,0,09) (0,0,0.17) |
(0,0,0.9) (0,0,09) (2,0.5,0.7) (0,0,0.3)

D
I
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0 = 00

0 0 0 4 P
A= 11000,thenA‘1=I 5 |.
0 50 0 o 0o o

0 020 ) 2
2000

So, in this section, the conditions for P - FFLS to has P — X is proposed without
the condition A™' > 0. The inverse of matrix S and sub-vectors for the solution

m*, a* and B* are required to provide the conditions for P - FFLS to has P — X.

For that, the following lemma provides the inverse of matrix S.

Lemma 3.3.1. If S~ exist it must have the same structure as S, which is

A 0 0
STt=Im A 0}
N 0 A

where,

M =-A"1MA™Y,
N'=—-A"'MA™.
Proof. Let (S : I) be a rectangle block matrix 3n X 6n,

A 0 0:1 0 O
$S:N=(M A 0:0 I 0]
N 0 A:0 0 1[I

Using Theorem 3.1.1, S~ is exist then A~1 is exist. By multiplying each rows by

A—l
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I 0 0:471 0 0
ATIM I 0: At 0 |
0 I:

0
0 0 Al

After that, subtracting the first row multiplied by A=*M and A~1N from the second

row and third row, respectively,

I 0 0: A1 0 0
0 I 0:—-A"1TMA™Y A1 0 )
0 0 I:—-A"INAT o0 A1
then,
A0 0
STt=Im A 0]
N_ 0 A

where A", M’ and N are,

A=A,
M! = —A"TMATY,
N'=-A"'NATT,

The vectors m*, a* and p* are computed in next remark using S~1.

Remark 3.3.1. The sub-vectors m*, a* and 8* are computed by X = S~1B,

m* A0 0\ /mP

a">= M A 0) ab |,

ﬁx NI O AI ﬁb
then,

m* = (A)mP = (A~ Hm?,
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a* = (MImP + (A)a? = (AT MA " H)m? + (A" Da?,

B = (N')mP + (AP = (~A"MA™mP + (A7)p".

Now, in next theorem, a necessary and sufficient conditions for P — FFLS to have

P — X are proposed, without the condition A=* > 0.

Theorem 3.3.1 The P — FFLS has P — X when matrix 4 is invertible, that is if,

i- A7 la? > A7 (MA~Y)m?P.

ii- A71BP > ATINA™tmb.

iii- A"Y(I + MA"Y)m? > A 1a®.

Proof. The spreads a*, f* = 0 can be easily verified using Remark 3.3.1, is as

follows,

a* > 0 is obtained from A~ a? > A='(MA~)m?.

Similarly, B* > 0 is obtained from A= > A"INA™L.

Now, we have to proof m* — a* > 0 without involving A1 > 0.

m* —a* =[A"tmP] - [A"'a? — (A" )M(A~)m?]

=[A7'mP + (A"HM(AHmP] - [A71a’],

but [A7'm? + (A" HMUAY)mP] = A7 [mP + M(A™Y)mP] = A~Y[I + MA~1Im?.

Then,
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m* —a* > 0ifandonly if A71[I + MA™ Im? — A71a® > 0. O

As shown, the condition A~ »0 is omitted in Theorem 3.3.1, so it can apply for
generalized or arbitrary crisp matrix A to check the solution whether fuzzy or non
fuzzy. The previous Example 3.2.2. is checked below by the proposed theorem,
while Theorem 2.3.1. cannot check the example since A~ » 0. However, Theorem
3.3.1. can be determined whether the system has fuzzy or non fuzzy solution. In
addition, the theorem is able to check the fuzzy solution whenever non positive fuzzy

number as Example 3.3.1.

Now, using the proposed method in last section we obtain non fuzzy solution X’g for

Example 3.2.2, while Abbasbandy et al. (2012) proposed solution X,.

Theorem 3.3.1. verifies that Example 3.2.2 originally has non fuzzy solution.

By applying (iii) in Theorem 3.3.1. we get,

175 561 386
23 23 23
1 451
A_lﬁb — A_l(NA_l)mb = ﬁ — _52 = i
46 46 23
177 39 108
46 46 23
Since A~ —A"Y(NA~)mP has negative entry —> then A~lBP

23"’
A"INA'mP, which mean the fuzzy system has non fuzzy solution. This result,

verifies the proposed solution X, which was non fuzzy solution.
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As stated before, Theorem 3.3.1. also able to check the fuzzy solution whenever it is

negative as Example 3.3.1.

Example 3.3.1 Given the following FFLS,

(3.1,0.4,0.1) (2,0.6,0.4) ((mf, af, ﬁ{‘)) (17.3,14.75,7.86)

(8,0.6,0.7) (6.9,0.2,0.1)/ \(m3,a%,B5) (51.6,32.91,22.72)

Since A1 # 0, Theorem 2.3.1. fails to check this system. The inverse of 4 is

-1 —
= (% o) ~(Haeazs “oariose)

By applying (i) in Theorem 3.3.1. we get,

6.64378

AT (I +MAT)m? = (0 152134

)and Algh = ( 6.67069 )

—2.96456

AT (I + MA™Y) mP » A= 'a®, because 6.64378 * 6.67069. Consequently, the

P — FLLS doesn't have P — X.

Furthermore, by solving the example using P-ALS in Equation (3.8), we confirm the

exact and unique solution is negative fuzzy is as follows, SX = B,

G2 GO eV e
((8:2 o) Ci o) (5 o) \I((>\| (3200 |
gty ey e )\

By computing, X = S71B,
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0. 883302 '

0. 126902
2 7833
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X =

<(mf,af,ﬁf)> (3,3.0269,0.126902)

(m%,a%,B%) (4,0.883302,2.7833)

Since m{ — af # 0, based on Definition 2.2.6, (m7, af, B7) is a negative TFN.

Finally, the sub-vectors solution m*,a* and B* in Remark 3.3.1. show the
incompatibility of Theorem 2.3.1. which is not only for the condition A=t > 0, but
also for the further condition (MA™'+1)m? > a® which is used to proof

m* =g =200 ¥ = (m~, a*;B%).

The following alternative proof of m* — a* > 0 shows that (MA™! + Dm? > a? is
unnecessary to proof m* — a* > 0, and must be omitted, because m* — a* > 0 can

be obtained without (MA~=1 + I)m? > a? as follows,

mP>0andA™' >0=>m¥ =A"'mP >0,
m* —a* = (A" 'm?) — (A a? — A" MA'mP)

=A"'ml — A la? + ATIMA Im?,
hence,
m* —a* = A7 (m? — a®) + (MA71b)] = A~ H(m? — a®) + (Mm*)].
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A1>0. (mP—a?)>0 since B=@mbla?p?)>0. (M),(m*) =0 then
(Mm*) = 0. Hence,

m* —a* > 0. O

However, (MA™! + I)mP > a? is already satisfied by the hypothesis A~ > 0,

(MA ™+ Dm?P — a? = (MA™'mP + mP) — a?
= (MA™'mP) + (m? — a?),

A1>0, MmP>0, (m? — a?) > 0.

Hence,

(MA™*+Dm? —a? > 0. O

The next section provides the necessary conditions to have P — X using only left

hand side A. This let the left hand side B, be arbitrary.

3.3.2 The Necessary Conditions of Right Hand Side 4 with an Arbitrary B

The necessary and sufficient conditions in A to have P — X are provided. This let us
provide general solution X, for a given A only, where B is an arbitrary positive

fuzzy vector.

Next lemma provides the conditions on crisp matrices A, M and N to warrant matrix
S is non negative inverse. Because the condition S is non negative, inverse is

required in Theorem 3.3.2. to provide general solution.
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Lemma 3.3.2. The matrix S is an non negative, inverse, if and only if the center
matrix A be an inverse-non negative and the spreads matrices M and N are zero

matrices, in other words,
St >o0ifandonlyifA~* > 0and 4 = (4,0,0).

Proof. By Lemma 3.3.1,

A0 0 A1 0 0
STil=(M A 0])=(-4"1MA"T A1 0 |
1

N 0 A —A"INAT? 0 A
A’ > 0ifandonlyif A=1 > 0.
M’ > 0 ifand only if —ATIMA~! = 0 implies that M = 0.
N’ = 0ifand only if —A"TNA~! > 0 implies that N = 0. i

Now, next theorem provides the conditions on crisp matrices A, M and N to obtain

general form solution for P — FFLS when B is an arbitrary.

Theorem 3.3.2. If A= > 0 and the spreads matrices M and N are zeros, then the
unique solution X of SX = B represents a general form solution P — X, for an

arbitrary positive vector B; in A ® X; = B;.
Proof. B is fuzzy vector implies,
a? and g? > 0.

B is positive fuzzy vector implies,
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Thus, mP,a? and g2 = 0,thenB = | a? |=>0.

Bb

By Lemma3.2.2.if A" >0and M = N = 0, then S~* > 0.

SX=B=X=S5"1'B>0,

hence,

a*, f* = 0.

Since the spreads a* and B* are non negative, the entries of vector X are fuzzy

numbers based on Definition 2.2.6.
The positivity of X is proved as follows,
m*—a*=A""ml —A'a? + A MA 'm?,
m* —a* = A~ (m? — a?), since m? > a?,
m* —a* >0,

since m* — a*, a*, B* > 0, then X is a positive fuzzy vector. O

Unfortunately, the odds of A~! to be non negative is very small according to
Remark 2.3.1. Now, we illustrate an example satisfies the previous conditions in
Theorem 3.3.2. This conditions let a fuzzy system have a general solution X for an

arbitrary B in right hand side, where only 4 is given in left hand side.
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Example 3.3.2. Consider the fuzzy matrix,

(0,0,0) (0,0,0) (3,0,0)

A=1] (4,00 (00,0 (0,0,0)).

(0,0,0) (7,0,0) (0,0,0)

The general positive solution X for an arbitrary positive fuzzy vector B, is obtained

as follows:

Let Bg = (b;) = (by, hy, g), i = 1,...,n is an arbitrary fuzzy vector,

(b1'h1,91)\
§G= (b2, hz, g2) |-

(b3, h3, g3)

Then, the FFLS A ® X; = B can be written as,

f(?), OI 0) (mg’ ag’ ?Q,C) = (bll hll gl):
(4'1 0: O) (mic’ aic' .Bf) = (bZ' hZ' gZ)'

L(7: 0,0)(m3, a3, B3) = (b3, h3, g3).
In matrix form,

(0! 0! O) (0, 0) 0) (3, O, 0)\ /(mic' aic’ :Bf) (blr hll gl)
k(& 0,0) (0,0,0) (0,0, 0)) k(ma‘, a%‘,ﬂé‘)) = k(bz»hbgz))-
(0,0,0) (7,0,0) (0,0,0)/ \(m3, a3, BY) (b3, h3, g3)
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By solving the system using P-ALS in Equation (3.8). The general solution for

an arbitrary fuzzy vector B is,

X X X
(m1, a1, b7

|
XG = | (m3, a3, 53) | =
\(mé‘, as, é‘)/

As an application for Example 3.3.2, consider the particular vector B,,,

(by, hl,gl)\ (5,3,8)
Ep =| (byhy92) | =] 32,1 |,

(b3, hs, g3) (4,3,1)

using the general solution X, the particular solution X, is,
/(mi‘, ai‘,ﬁi‘)\ (2.1

4°2° 4

)?,,=| (ms. a5, 65) | = (3.2.3)

(m3, o, ;f)/ (3.13)

Lastly, a comparison between Dehghan et al. (2006) approach and this study for the
necessary conditions of left and right hand side (4 and B) is presented in Table 3.2a.
While, Table 3.2b compares the necessary conditions of right hand side A where left

hand side B is arbitrary.
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Table3.2a
Comparison the conditions on both hand sides between P-ALS method and

Dehghan et al. (2006) 'method.

P-ALS method Dehghan et al. (2006)’method
A Avrbitrary. Generalized permutation matrix.
B Arbitrary. Arbitrary.

It is noted in Table 3.2a, the matrix A in 4 = (4, M, N) = 0 can be chosen arbitrary
without A= > 0 in this study. While the matrix A should be generalized permutation

matrix in Dehghan et al. (2006).

Table 3.2b
Comparison the conditions on left hand side between P-ALS method and

Dehghan et al. (2006) 'method.

Dehghan et al.
(2006)’method

P-ALS method

A Generalized permutation matrix. Not investigated.

Arbitrary. Not investigated.

=
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It is noted in Table 3.2a, the use of restriction A~1 > 0 in this approach for providing
positive fuzzy using only left hand side. While this case is not investigated in

Dehghan et al. (2006).

In current section, the condition of system to have positive fuzzy solution are
provided, in next section, consistency of general solution is proposed, to classify the
possibilities for the solution (unique solution, infinite number of solution, no

solution).

3.4 The Consistency of Fully Fuzzy Linear System

In this section, the nature of solution of the fully fuzzy linear system are studied. The
consistency of fuzziness of positive solution is checked and the possibilities for the
solution for P — FFLS are classified. Moreover, the proposed method are modified

using row reduced echelon method to find the solution whenever its not unique.

Using P-ALS there are three cases for the solution for n X n P — FFLS, according to
the possibilities for solution of classical linear system (unique solution, infinite many

solutions, no solution):

Case 1: Unique solution.

If |A| # 0. Then P — FFLS has unique solution. Through Theorem 3.1.1, If |A| # 0,

then S is invertible. Hence, SX = B has a unique solution, which is X = S71B.

Case 2: Infinite number of solutions.
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If |A| = 0 then |S| = 0, using Theorem 3.1.1. and if rank(S) = rank (S:B) = m,
m < 3n, then SX = B has infinite number of solutions. Is this case, row reduced
method echelon for classical linear system is modified to provide infinite number of

solutions for fuzzy system.
Case 3: No solution.

If |A] = 0 then |S| = 0 and rank(S) < rank (S:B),the SX = B has no solution.

Thus the fuzzy system doesn’t have a unique solution.

Therefore, using the linear system SX = B, the solution of A ® X = B can be
obtained whenever it is exist. The possibility for fuzzy unique solution is illustrated
in Examples 3.2.1, while the possibility for non fuzzy unique solution is illustrated in

Examples 3.2.2.

The next section provides the fuzzy row reduced echelon method. This method is
obtained the infinity many solutions whenever its exist which happens if |A| = 0 or
A is rectangle. In addition, the interval of solution when some coefficients are

unknown can be obtained using this method.
Fuzzy Row Reduced Echelon Method

In this section, the fuzzy row reduced echelon method is proposed to solve FFLS
where |A| =0 or A is rectangle. So, infinitely many solutions can be provided
whenever it exist, and interval of solution when some coefficients are unknown. The

method is obtained by three steps, where, |A| = 0:
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Step 1 Computing the rank (S) and rank (S:B). Based on Case 2, if

rank(S) = rank (S: B) = m, then the system has infinitely many solutions.

Step 2 Transforming the P-ALS in Equation (3.8) to 3n linear equations. Then,

reducing it to m linear equation.
Step 3 Solving linear equations with positive fuzzy inequalities,

(mi = af,

! af =0, (3.10)

L,BixZO, Vi=1,2,..,n.

The next example illustrates the fuzzy row reduced echelon method where the fuzzy
system has a infinitely many solutions. This example is the same example as in
Kumar et al. (2012). However, using the proposed method, the infinitely many
solutions are provided by a different solution sets for Kumar et al. (2012)’solution
set. Finally, Kumar et al. (2012)’solution set is showed that as subset of a solution set

using the proposed method.

Example 3.4.1. Kumar et al. (2012) consider the following FFLS,

(21,1) ® (m1, a7, B7) ® (41,1) ® (m3, a3, 87) = (10,5,5),

(4,2,2) @ (m{, af, B) © (8,2,2) ® (m3, a3, £7)=(20,10,10).
The P — X is obtained as follows,

In matrix form,
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((2,1,1) (4,1,1)> (m{, a1, B7) ((10,5,5)>
by )

(4,2,2) (8,2,2) (m3, a3, B¥) (20,10,10)
Since |A| = 0, then the fuzzy system don’t have a unique solution.

Using Step 1, rank(S) and rank(S : B) are computed as follows,

2 4 00 0 0 1000 4 8
/480000\ /0100—2—4\
1112400 loo0o12 -1 —21 B
512 2 480 0lloo0oo0o0 o o |rekS=3
110024/ 000000/
2 2 0 0 4 8 0000 0 O
2 400 0 0 10 1000 4 8 5
/48000020\ /0100—2—40\
(S:B)='1124005i—>|0012_1 2 0
2 2 4.8 0 0 10 0000 O 0 0
1100245/ 0000 0O 0 0
Prod 1510 Chmadilil 00 00 0 0 0
rank(S: B) = 3.

Since rank(S) = rank(S : B) = 3, hence m = 3, m < 3n, then, the system has

infinity many solutions.

Using Step 2 the six linear equations of P-ALS is,
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( 2my + 4mj = 10,
4mi + 8mj = 20,
my + mJ + 2af + 4a3 =5,
2my + 2m3 + 4af + 8ay = 10,

my +mJ + 2B +4B5 =5,

2my + 2m3 + 4B + 8B5 = 10,
\

which can be reduced to three linear equations,

(ai = —2a; + By +2B3,
my = 2p7 +4f3,

|

\ mx =5 —4pr — 8B,

Using Step 3, the previous linear equations should be solved with positive fuzzy

inequalities in Equation (3.10) is as follows,

(ai = —2a; + By +2B3,
m; = 2p7 + 43,

mi =5— 4By —8p3.
af = 0,a7 =20,

pT=0,p85 =0,

\ my = af,m} = a;j.

Hence the general form solution X for infinitely many solutions is:
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1
(mi,af, B\ [ (5 - 2265 + 4p1),5 (~4a3 + (265 + 469)). 57)
XG = = .

m¥%, a¥, B
(mz, @z, B2) (2B5 + 4B5, a, BY)

The entries B7, B and a3 provide three different solution set Xs., = {X,,, X,,, X;.}

presented in Table 3.3.

While general solution set X, in Kumar et al. (2012) is,

= = ,u €[0,2];
(mz,a3,B3) (1, 0,0)

i (@) mi, e, D)\ ((5-2u3.5)

As shown, X, represented the infinitely many solutions set by u = m$ € [0,2]. The
general solution set X, is presented in Table 3.3 to compare the sets of infinitely

many solutions using the proposed method and Kumar et al. (2012)’method.
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Table 3.3

Comparison the entries for three solution sets of Xs., = {X,,,X,,. X,,} and
a solution set of X,,.
Solution
- m G B m a3 8
5 1 5 2 X
~ -20f7 -2 +57 267 N
X, +4B5) +2B3 [01]  +4p5 [0,7] _ sﬁ{c]
> L az - B =5
- —2(2BF —2af + Bf 21 B 5 [E( @ ~ B )'1_0(
X X X e —
X,, +46%) +2p3 [01]  +4p3 ( 5 ,8> +2af =5 ﬂ{c)]
; (1 (-5 0= (5 + 2a3
7 -2@py | -2a3+pr o 2BF . o556+ 23
X % 4 — 3 )
- m3 m;
X 5—-2mj 0'7 O,T [0,2] 0 0

However, the solution set of X, can be considered as a subset of X, , because

By supposing a¥ = B¥ = 0 in X;;, we get,

85



1 1
(s-2@sr+05(0+@ar+0).67)\ [ (5-2@p05@80.67)

)

(2B +0,0,0) (281,0,0)
but B € [0,1] in solution set X, , then 2B € [0,2]. Suppose h = 2B, then X,
becomes,

— 2, E )t —2h,2,2
(5-2m.;m)3) _ (5-2n3.3) _ %, where h € [0.2].

(h,0,0) (h,0,0)
The values of m7 are represented by Figure 4.1, 4.2, 4.3 and 4.4, respectively, in

order to compare the vales of m7 wusing the proposed method and

Kumar et al. (2012)’method.

{Xg, m{=5-2(2p; +4B5). a3=0}

Figure 3.1. The values of m{ in solution set X,_.
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- 9
{%ga mi=5-2(287+4) 0=

Figure 3.2. The values of mf in solution set X, .

3 19
{xga. my=5-2(2By + 45§).a§:z}

Figure 3.3. The values of m{ in solution set X,..
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[y, m =5-2u)

0.0 0.5 1.0 1.5 2.0

Figure 3.4. The values of m7 in solution set X,.

The proposed method is compared with Kumar et al. (2012) ’method in Table 3.4 in

terms of solution sets, symmetry, fuzziness and independence between %, and ..
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Table 3.4

Comparison of the solutions set X, and X,,.

X¢ Xy

Solution set Three solution sets. One solution set.

Symmetric or non )
Symmetry . Symmetric.
symmetric.

X, represents only by it mean value
) X, and X, can be ] )
fuzziness based on a crisp humber m% with no
chosen fuzzy.
spreads.

Independence between B af and B3 can be X, and %, depend on chosen values

X, and ¥, chosen independently. u

As shown in Table 3.4, the general form solution shows that the new method
provides three sets Xsor = {X;,, X;,, X,;,}, while the original work of Kumar et al.
(2012) has provided one solution set X,. In addition, the particular solution of X,
can be considered symmetric or non symmetric, while the particular solution X,

should be symmetric because in %, the both spreads equal % and in X, both spreads

equal 0. Also, all fuzzy numbers of particular solution in X, are nontrivial since the
spreads in %, and %, are nonzero, while %, in X, is represented by non fuzzy number
(crisp number) based on Remark 2.2.1, because the both spreads are zero, aj =

5 = 0. Lastly, the entries of ¥; and %, have independent intervals to provide
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infinite many solutions in X;, while all entries of %;, &, depend on one interval

ue [0,2] in Xk'

The next example is solved by the proposed method in Section 3.2 and
Step 3 in this section to provide the interval solution, when some coefficients are

unknown in FFLS.

Examples 3.4.2. Consider § is an arbitrary real valued number in the following

FFLS,

(6,2,1) ® (m7, a1, B1) @ (7,.3,1) ® (m3, a3, B7) = (54,46,54),

(6,1,2) @ (m{,af, B7) @ (4,1,2) @ (m3,a3,p5) = (52,27, 56).
The P — X is obtained based on values of & for the P — FFLS as follows.

The system may be written in matrix form, is as follows,
((6, 2,1) (7,3, 1)) (m1, a1, 1) (54,46, 54)
6,1,2) (41,2) (m3,a3,B3) (52,27,56)

Hence, the P-ALS in (3.8) is given by SX = B,

570000/mf\ 54
{640000\"15 /sz\l
2 368 7 0 0faf|_|46
116 40 0l|ar 27 |
110067/;6 54/
2 2 0 0 6 4/ \pgx 56

The crisp solution X in term of § is,
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74

21—26
x 162 — 266
my - -
21—26
mx
2 989 — 1406
a 2(21 — 26)2
X = =
aF 1992 — 4156 + 2862
2(21 — 26)2
By
668 — 468
Bz (21 — 26)?
2694 — 5986 + 3062

(21 — 26)?2
Using Step 3,

e X, is a positive fuzzy number if and only if my = of, @y = 0and B = 0, then,

(74 9891408 163 — 126,
21—26 ~ 2(21—26)%’ (21—28)2= "
989 — 14068 989 — 1406 989
{ —/————>0, — {———20, {6S—.
2(21 — 26)? (21 — 26)? 140
668 — 468 _ 334238
L (21-26)2° L(21—26)2 =

e X, is a positive fuzzy number if and only if mJ > a3,a3 = 0and 5 = 0, then,
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(162 — 266 1992 — 4156 + 2852

(4812 — 13256 + 7667

>
21-26 —

1992 — 4155 + 28652
2(21 — 26)?

2694 — 5985 + 3052
\ (21 — 26)2

(
<
6_152

—

2(21 — 26)2

(1325 —

1

)

)

)

>
(21 — 26)2 =

1992 — 4156 +288°
(21 — 26)2 =

1347 — 2998 + 1562 -
\ (21 — 26)2 -

V292777),

I
k 6= %299+V858

Hence, the interval solution of § using %;, X, is,

( 5 < 989
~ 140’

152

Thus, P — X,

1
| and 6 > 25 (299 + /8581,

16 < —= (1325 —+/292777), —

6 <7.0642,

6 <5.157 and & =13.054,

— {6 < 5.157.

(

92

(mf, afﬁi‘))

(m3,a3,87)

)

)



( 74 989 — 1405 668 — 466)
{ 21 —26'2(21 — 26)?’ (21 — 26)? \
\ 162 — 268 1992 — 4156 + 286% 2694 — 5988 + 3062
21-26 ' 2(21-28)2 ' (21— 26)?

where, § € [2,5.157].

As a particular solution X, using X; when § = 5.1 is

% (m?, a, BX) (6.851,1.178,3.715)

X, (m3, a3, B%) (2.722,2.588,3.639)

In last section the solution of positive LR — FLS are proposed. To show that the

proposed methods not only for solving positive FFLS, but also positive LR — FLS.
3.5 Positive Solution for Positive Left Right-Fuzzy Linear System

In this section, we will show the P — X for positive LR — FLS can be obtained by

supposing the spreads matrices are zero, i.e. M = N = 0.

Next corollary shows that the relation between the solution of FFLS and the solution

of LR — FLS.

Corollary 3.5.1. The unique solution X of SX = B represents a positive fuzzy vector

X for an arbitrary positive fuzzy vector B if:
i- A1 >0.

Ii- The FFLS is a LR-FLS.

93



Proof. According to Theorem 3.3.2,M =N =0in A = (4,0,0). Then, based on
Remark 2.2.1, the entries of left hand side in FFLS are represented by only non

fuzzy number (crisp numbers), hence the FFLS is LR — FLS. o

In the next example LR — FLS is solved by proposed method for solving FFLS in

Section 3.2.
Examples 3.5.1. Consider following LR — FLS,

{10mf +9m¥ = (120,4,9),
my + 8m3 = (80,1,5).

We can rewrite the LR — FLS as FFLS to obtain P — X,

{(10, 0,0) ® (mf, a1, B1) & (9,0,0) ® (m3,a3,p7) = (120,4,9),
(1,0,0) ® (mi,af,57) B (8,,0,0) ® (m3,a3,B;) = (80,1,5).

Using P-ALS, SX = B is,

X
10 9 0 0 0 0 /M 120
/1 8 0 0 0 0\("1%‘\ /80\
0 0 10 9 0 ol|lai | _| 4 |
0 0 1 8 0 0] af | 7| 1 |
0 0 0 0 10 9/ ﬁf/ 9/
0 0 0 0 1 8 \gr 5

Hence, the positive solution is,

/ 240 23 27 \
3 ((mi‘,ai‘,ﬁf)> 71°71'71
X =

(m3, a3, %)
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3.6 Conclusion and Contribution

In this chapter, we proposed new methods to obtain the P — FFLS for P — X. The
coefficients of A and the entries of fuzzy numbers B were represented in a linear

system.

We can summarize the findings in this chapter by the following contributions:

1- Obtain the P — X to P — FFLS without fuzzy operation.

2- The nature of the solution of P — FFLS is distinguished for fuzziness of P — X
and possibilities of the solution X.

3- Provide the sufficient and necessary conditions for P — FFLS to have a P — X
based on the fuzziness of the solution, where the P — FFLS is examined before
solving the system.

4- Classify the possibilities of the solution (i.e., unique solution, infinite number of
solutions, no solution), in which the existence of for X is examined before solving
the P — FFLS.

5- Formulate fuzzy row reduced echelon method to provide infinite many solutions
P—XtoP — FFLS.

6- Formulate the general form solution for P — FFLS for arbitrary fuzzy vector B.
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CHAPTER FOUR
POSITIVE SOLUTION FOR NEAR ZERO FULLY FUZZY

LINEAR SYSTEM

In the previous Chapter Three, the P — X for P — FFLS is proposed using associated
linear system P-ALS. While in this chapter the P — X is proposed for NZ — FFLS
using a new associated linear system, because the arithmetic operations for near
fuzzy numbers system depend of min-max function. In order to develop this linear
system, min-max system is used to transfer the fuzzy system to linear equations, then
a block matrix and block vectors will be used to include all entries of linear
equations in the associated linear system. The consistency of the fully fuzzy linear

system is provided.
4.1 Fundamental Concepts for Associated Linear System

This section presents the fundamental definitions and the main theorems to develop
the new method for solving P — X of NZ — FFLS. The next definitions are used in

associated linear system for NZ — FFLS.

Definition 4.1.1. Let A be a fuzzy matrix A = (4, M, N), where A = (m{;)  and

nxn

M = (af;) ., define following the matrices:

i- ThematrixC = (¢;;%) =A—-M.

nxn

ii- The matrix P. = (ci'f")
’ nxn

0 Otherwise.
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a
Ci,j’ Ci,j < 0,

iii- The matrix N = (i) =
0, Otherwise.

Definition 4.1.2. Let A be a fuzzy matrix A = (4, M,N), A= (mffj)nxn and

N = (ﬁ{fj)nxn, define the following matrices:

i-The matrix D = (d;;*) =A+N.

d df. =0,

Ljr Lj =
ii- Thematrix P, = (df}) =

nxn i
0, Otherwise.

dij di; <0,
iii- The matrix Ny = (d; /) =

nxn
0 Otherwise.

The next definition and theorem are used in transforming the NZ — FLLS to linear

equations.

Definition 4.1.3. A min-max system (or a system of min-max equation) is a collection

of equations such that at least one of them has min or max equations.

Theorem 4.1.1. Consider two TFNs, @ = (m%,a%,%), ¥ = (m*,a”*,B%), d is an

arbitrary fuzzy number while X is a positive TFN.

i- If @ is positive, then the following inequalities are satisfied for all .
0< (m* —a®*)(m®—a?) < (m* + B*)(m?* — a?), (4.1a)
0<(m* —a*)(m®+ B%) < (m* + B*)(m® + p9). (4.1b)

Ii- If @ is negative, then the following inequalities are satisfied for all X.
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0=>(m* —a*)(m®* —a®) = (m* + B*)(m? — a%), (4.2a)
0=>(m* —a*)(m*+ %) = (m* + p*)(m* + B9). (4.2b)

iii- If @ TFN is near zero, then the inequalities in Equations (4.1b) and (4.2a) are

satisfied for all x.

Proof. Since X is positive then,

0<(m* —a*) <(m* +p%). (4.3)

i- If @ is positive, then (m® + a®) and (m® — %) are positive.

Since 0 < (m®* —B%), the inequality in Equation (4.1a) can be obtained by

multiplying (m® — ) at the inequality in Equation (4.3), to get,

0<(m* —a*)(m® — %) < (m* + p*)(m* = p9).

Similarly, since 0 < (m% + %), the inequality in Equation (4.1b) can be obtained

by multiplying (m® + p%) at the inequality in Equation (4.3),

0< (m* —a*)(m®+ B < (m* + B*)(m?* + B9).

ii- If @ is negative then (m® — %) and (m® + a%) are negative.

Since 0 > (m®* — %), the inequality in Equation (4.2a) can be obtained by

multiplying (m* — %) at the inequality in Equation (4.3),

0> (m* —a*)(m®—a?) = (m* +B*)(m* —a®).

Similarly, since 0 = (m® + %), the inequality in Equation (4.2b) can be obtained

by multiplying (m® + ) at the inequality in Equation (4.3),
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0> (m* —a*)(m®+p%) = (m* + p*)(m" + ).

iii- @ is near zero, then (m® + B%) is positive and (m® — a®) is negative.
Because of 0 < (m® + B%), the inequality in Equation (4.1b) can be obtained by

multiplying (m® + B%) at the inequality in Equation (4.3),

0< (m* —a*)(m®*+ %) < (m* + B*)(m* + B4).

Similarly, since 0 = (m® — a®) the inequality in Equation (4.2a) can be obtained by

multiplying (m® — a®) at the inequality in Equation (4.3),

0=>(m* —a*)(m®* —a®) = (m* + p*)(m? — a?). O

The previous theorem is used in next section to transfer the NZ — FFL to associated

linear system without fuzzy operation.

4.2 Positive Solution for Near Zero Fully Fuzzy Linear System

The P—X for NZ — FFLS is obtained in this section, then NZ — FFLS is
transformed to min-max system. Subsequently using Theorem 4.1.1. the min-max
system is transformed to linear system. The solution of this linear system provides a

vector X which is an equivalentto P — X.

The solution is obtained in following three steps:

Step 1 Transferring the fuzzy system NZ — FFLS to min-max system.

Applying Equation (2.12) for A ® X = B, where 4 = (4, M, N), B(m?, a?, ?) and
X = (m*, a*, B*) = 0, then we have,
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(m?, e, B7) =

thus,
m; = m{;my,
af = mi;mf — Min|(m{; — ail;)(mf -
B = —m¢m} + Max|(m&; + BE)(m¥ —
Hence, Vi =1,..

(ml]m] ymimy

= Min[(mf; — af;)(m} - af), (mi}; — aily) (mj" + BF)], —miym

+ Max|(mf; + Bf;) (m —

af), (md; + B&) (mf + B)] ),

(4.4a)

af), (m; — af;)(my + BF)],  (4.4b)

af), (m&; + ) (m* + BF)].  (44c)

,n, we have three equations m?, a? and BP, where a? and g7 are

functions of fuzzy number @;; = (m{;, ai’;, 5;;) including min and max functions,

respectively. Then we have 3n min-max system.

Step 2 Transferring the min equations a” in Equation (4.4b) and max equations B

in Equation (4.4c) to linear equations.

For a?:

Suppose

£ = Min[(m — af)(mf; — afy), (m; — afy)(mf + BF)]. (4.5)

According to the sign of (

@, B}"), we have two possibilities for f;%:

i-If a@;; is positive, then using Equation (4.1a) in Theorem 4.1.1,

fi& = Min|(m — o) (m; -

af;), (mi; — afy)(mf" + B;°)]
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= (m]x - ]-")(mﬁj - a{’fj). (4.6a)
ii- If @;; is negative or near zero then, using Equation (4.2a),
f# = Min[(mf — of)(m{; — afj), (mf; — ay)(mf" + B}°)]
= (m]x + B}‘)(m{fj - a{’fj). (4.6b)
Hence, Equations (4.6a) and (4.6b) can be written in a piecewise function as follows,

(mi; — al))(mf —af), (mf;—af;) 20,

f&= (4.7)
(mfy = afy)(mf + B7),  (mf; - af;) <0.
Using Definition 4.1.1. ¢/’; = m;’; — &;’;, then,
cif(mf —af), =20,
(4.8)

7

cl-f]-a(mf + ,8]?‘), ci‘fj < 0.
Since, either ¢ = 0 e both
, cii=00rc¢;" =0 (or both),
a __ +a X X —-a X X
&= Cij (m]- —a; ) + ¢ (mj +ﬁj)
= CiJ,rjamf - CiJ,rJq“J?C +eimi + ey

—_ +a —-a X —apx __ +a  x
= (" + cif )M + i B — ciiftey

= (Cic,lj m]x) + (Cijjgﬁ;c —cij'a’),

hence,
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* = (m?,j — afj)mf + (cifjaﬁj‘ —cifaf). (4.9)
Thus, Equation (4.4b) can be written as,

b_ a
a; ml]m] fi

= mffjm}‘ - {mﬁjm] al]m] +cif ,3] — +a "
= (m{m¥ —mim¥) + afymf — c; B + cifaff
= afymf — ;B + ciif'af, (4.10)

Hence, the min equation in Equation (4.4b) is equal to following linear equation for

ali=1,...,n

a) = af;mi = ¢ FBF + ciftaf, (4.11)
For B2:
Suppose
f Max[(ml] + B¢ )(m — ) (m” + B¢ )(m +ﬂf)] (4.12)

according to the sign of (m/, &, B{*), we have two possibilities for i
i-If @;; is positive or near zero, then using Equation (4.1b),
1 = Max[(mf; + py) (mf — o), (mf; + By) (' + 7))

= (mf; + B{) (M + B). (4.13a)
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ii- If @;; is negative, then using Equation (4.2b),

fF = Max[(m$; + B (m} = af), (mf; + BE) (m* + BF)]
= (m; + Bi;) (mf — o). (4.13b)

Hence, Equations (4.13a) and (4.13b) can be written in a piecewise function is as

follows,

, (m; + BE)(mf + BF), mi; + B 20,
R 414
f; a. a. X _ o¥ a. <0 ( )
(ml,] + Bl,j)(m] a; ) mi; + Bij <

Using Definition 4.1.2. d'; = m{; + B, then

dif(m*+BF), di; =0,

fiﬁ i (4.15)
d”(m —a) di; <0,

Since, either d;'/* = 0 or d; * = 0 (or both),
—d+a(m +BF) +dif(mf — af)

=d¢m¥ +df¢pF +d; fmF —d; faf

= (dffmf + difm¥) + (df¢pF —dijfaf
= (dft+d;)mf + (dffBF —difaf
= (diymf) + (d}PBF — d; faff (4.16)
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hence,
= (m; + B)mf + (df}BF — dijaf),
Equation (4.5¢) can be written,
Bt = —mim + £
mim’ +{(mf; + B)mi + (dff B — difef)},

= (—mUm] + ml]m] ) + [)’Um] + (d dl]aa]x) =0+ ijm"

(difBF —difaf).

L] 7

Hence, the max equation in Equation (4.4c) is equal to following linear equation for

ali=1,...,n
Br = Bimi + d BT — di o (4.17)

Step 3 Collecting the linear equations in Equations (4.4a), (4.11) and (4.17) in a

linear system.

The fuzzy system can be written as follows,

@
A@X =B =) (mi)afyhi)) ® (.’ Bf)
j=1

n n
z m; sz ai;m’ —c; i By +C+a x) Z(ﬁumj +d Bi —dijaf) |,

104



Vi=1,..,n, (4.18)
then, the parameters m’, a;* and 5 can be obtained as follows:

e The mean values m; are obtained separately using the following n X n linear
system,

n
me]m]x = ,Vi =1,..,n. (4.19a)

j=1
By solving the n x n linear system in Equation (4.19a), we can find the mean values.

e The spreads values af

* and B are obtained jointly using the following

2n x 2n_linear system, where the values m; are given from Equation

(4.19),

Z((xu mf —c; B +cifal)=al Vi=1,.
j=

. (4.19b)

Z(ﬁum +di{B —dij J) 'BJ’ vi=1,.

By solving the 2n X 2n linear system in Equation (4.19b), we can find spreads
values a;, B;".

The next definition and theorem are used to write the linear systems in Equations

(4.19a) and (4.19b) in matrix form.
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Definition 4.2.1. Let A= (4,M,N) be a fuzzy matrix. B = (m?,a?,B?)and

X = (m*, a*, B¥) are fuzzy vectors. Define the 3n x 3n linear systems as,

. (4.20)

where J1, = J13 = (0) ;-

In this study, the linear system JX = B is called the near zero associated linear

system (NZ — ALS) for NZ — FFLS.

The following theorem shows the relation between the components 3n dimensional
crisp solution m¥*, a* and B* of vector X in Equation (4.20) and the P — X for
NZ — FFLS in Equations (4.19a) and (4.19b), according to equivalent concept

between X and P — X in Remark 3.1.1.

Theorem 4.2.1. The unique solution of crisp system jX =B and P —X for

NZ — FFLS is equivalent.

Proof. The linear system in Equation (4.20) is JX = B,
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Ay - Qin (0 0)
(anl ann) 0 - 0

Mmyy ... My, e oy TRt af ab
oo N : 2 : =] (4.21)
My 0 Mgy e oof, —Cp1 "t —Cpn af af
(Tl}l . n‘1n> _dl_l .. _dl_TL (dfl s dfn>
Np1 ° Mpn <_dr_11 . _d;n> d;{l ves dr-'{n

JX = B is separated into the following three linear systems.

Fori=1,..,n,

then,

by substituting a;; = m{;, we get (4.19a).

Fori=n+1,...,2n,

My1 o Map\ /my ¢ o\ saf
: : N I o I N :
M1 = Man/ \mi/ \cqy o o/ \af
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—C- e X
C11 Ccin\ /B ab
+ . ‘. : : = ,
—Cn1 " TCnn ,Bf af
then,
n
x -a px +a ,x\ _ b .
Z(mi,j m; — ¢ :3]' t ¢ aj) =a;,Vi=1,..,n,
j=1

by rearranging the equation,

n
Z(m"'f mf+cifal —cifBY)=al,vi=1,..,n (4.22)
j=1

Fori=2n+1,...,3n,
3 1|2 gl —df; .. —dT,)\ /af
7/ P 4 [—— : ()
Moy ) \mE) T \dny o —dp \af

diy . dify\ (BT Bt
S BT =
dpy  dan/ \BY r

then,

n

> (g m + difpF — difiad) = B2 Vi=1,..m,

j=1

by rearranging the equation,

n
D (g my = difaF + dif pr) =2 Vi=1,.,m. (4.23)
j=1
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by substituting m; ; = «f; and n; ; = B%;, we get Equations (4.22) and (4.23) are

equivalent to Equation (4.19b). m|

The next theorem investigates the singularity of block matrix which is similar to

structure of block matrix in Equation (4.21).

Theorem 4.2.2. Let F be a 3n X 3n matrix and consists of n X n crisp matrices J; ;

fori,j =1,..,n,where J;, = J13 = Z = (0),,xn and J,, is invertible,

Ju Z Z

F=\|Jn Jaz J2z |
Js1 Ja2 J33

Then,
|FL = a1l 22l [HY, (4.24)

where H = (J33) — (J32) (U22) "1 (J23).

Proof. Consider the matrix F,

Ji1 Z Z\ Ji1 O 0 \‘
F=\Jo1 Jo2 Joza|=|Ja1x Joz2 J23 |,
Js1 Jz2 Ja3 Ja1 Jz2 J33

J»» is invertible, then multiplying column two by —(J,3)(J,,)™! and adding to

column three,
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]11 0 0 ]11 0 0
Jo1 J2z —U23)Ua2)'Uz2) + Uaz)| = Vo1 Jaz 0
Js1 Jaz —(U23)U22) " Us2) + Us3) J31 Jz2 —U23)U22) 7 U32) + Us3)

|]11 0 0 |
=21 Ja2 0 = |K2|,

J31 Jaz  —(U23)U22) " Us2) + U33)

then,
IFl = |Kz| = V11l U2zl 1= Us2) U22) 7 U23) + Jasl-
But,
|=Us2)U22)~" U23) + Uss)l = [(a3) — Us2) U22) "' U2s)| = |H],
hence,

|F| = 1J11]- 221- 1HI. O

Corollary 4.2.1. The unique P —X can be checked for NZ — FFLS by two

approaches according to singularity of P,:

a- If P. is nonsingular, then NZ — FFLS has a unique solution if |A| and
|H| # 0, where H = (Pg) — (Ng)(P)™H(N,).

b- If P, is singular, then the NZ — FFLS has a unique solution if |J| # 0.
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Proof.

a- Since the structure of matrix F is as structure of matrix J, Equation (4.24) in
Theorem 4.2.2. can be applied by supposing that /;; = A, J,, = P. and the
matrix H can be obtained as follows,

H = —=(32)U22) 7" U23) + U33) = ~(=N)(F) "' (=N + (Py) =
—(=N)(P)TH(=N) + (Pg) = (Pg) — (Ng) (P) ™ (N,).
Then, if P, is nonsingular, the linear system /X = B has a unique solution if
|A| and |H| # 0. Thus, NZ — FFLS has a unique solution.

b- If P. is singular, then Theorem 4.2.2. can not be applied. Thus we have to

check the singularity of matrix J in Equation (4.20). Then, NZ — FFLS has a

unique solution if and only if |J| # 0.

Two examples were in literature are solved. The first example has a unique fuzzy
solution while the second one has non fuzzy unique solution, which shows show that
NZ-ALS can provide the exact fuzzy or non fuzzy solution. Example 4.2.1. illustrates
our method where the fuzzy system has a fuzzy unique solution. This example is the
same example as in Babbar et al. (2013). The new method proposed a similar
solution for it. The uniqueness of system is checked using

Corollary 4.2.1a.

Example 4.2.1. Babbar et al. (2013) consider the following FFLS,
(4,6,1) ® (m{,af,p7) ® (42,4 ® (m3,a3,B7) = (24,26,31),
(3.2, ® (m1,af,p7) @ (2,3,1) ® (m3,a3,87) = (14,18,13),

where ¥; = (m;*, a;*, 5;*) = 0,i = 1, 2.
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The system can be written in matrix form,

(4,6,1) (4,2, 4) %\ /(24,26,31)
()

(3,2,1) (2,31 %, (14,18,13)

P — X can be obtained by proposed methods as follows,

=G D =D w=( Y,
A_M=(_12 —21) PC:((; g) NC:(_OZ —01)’
G G wG Y

|P.| = —2, then Corollary 4.2.1a. can be applied, |A| = —4, and |H| = —17, where

H is,

H= o=t ) = (5 8- (00O 27 (2 °)

asit Ma 0 -1
=(; 2

Hence, the NZ-ALS has a unique solution. Thus, the fuzzy system NZ-FFLS has
a unique solution.
Also, the determinate of matrix J is also confirms the result of Equation (4.24) in

Theorem 4.2.2,

4 4 0 0 0 0
32000 0

6 2 0 2 2 of__

=12 3 1 0 0 1|=7136
14005 8
1100 4 3
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and,

|Al. [P:]. [H] = (=4)(=2)(=17) = —136.

The solution can be obtained using NZ-ALS in Equation (4.21),
(G2 GO 6oy
k(? D G0 GG ik
CH 6y ¢l
using inversion matrix method, then the crisp solution is,
mx
i)} /G
|
|

o ) |

which is equivalent to fuzzy solution in Babbar et al. (2013),
f1 (micl aicl ﬁf) (2l 11 1)
X: ( ) B ) .
jZZ (mécr a%C' ,856) (4" 2' 1)

Babbar et al. (2013)’method is compared with the proposed method in Table 4.1.
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Table 4.1

Comparison between the proposed method and Babbar et al. (2013) 'method.

The proposed method Babbar et al. (2013)’method

Fuzzy operation No fuzzy operation. Need to find positive, negative and

near zero fuzzy matrices.

Existence of solution It can be determined After solving the system.
before solving the

system.

The size of system Large system as n = 10. All examples are in size n = 2.

As noted in Table 4.1, the proposed method can determine the uniqueness of solution
of NZ —FFLS before obtaining the solution, while the method in
Babbar et al. (2013) cannot check that before obtaining the fully solution. Moreover,
the proposed method can obtain the solution without fuzzy operation while in Babbar
et al. (2013)’method needs to find three fuzzy matrices; positive, negative and near
zero fuzzy matrices. Additionally, in the proposed method there is no linear or min-
max systems that needs to be solved, all systems are transferred to matrix form and
find the solution with matrix inversion method, while Babbar et al. (2013)’method
needs to construct and solve linear system according to signs of fuzzy matrices. For
that, the proposed method can solve any NZ — FFLS regardless the size of matrix A
as n = 10. In Example 4.2.3, we solve NZ-FLS when the fuzzy matrix n = 10
using the proposed method, while the size of matrix A is not more n = 2 in Babbar

et al. (2013)’method.
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The next example illustrates our method where the fuzzy system has a unique
non fuzzy solution. Note that, this example is negative FFLS since all the entries are
negative TFNs, which indicates the proposed method can provide positive solution
for negative FFLS. This example wuses the same example as in
Ezzati et al. (2012). However, the new method proposed a different solution for
Ezzati et al. (2012). A verification of solution is provided for both solutions. The

uniqueness of the system is checked using Corollary 4.2.1b.

Example 4.2.2. Ezzati et al. (2012) consider the following FFLS

(written in the form (a, b, ¢)),

(=10,=7,=4) (=7,-5,=3) | (-5,-2,-1) (aZ, b%, c¥)
(=6,—4,-2) (-4-3,-1) (—8,—5,—5)\|® (a%‘.b%‘,C%)\‘

IFOHETE S () ) (a%, b, c¥)

(=36,—-36, —33)\
= k(—26,—25,—23)).
(—44,-21,-19)
Because we follow (m, a, 8) form for TFN in this study, this example is converted

to form (m, a, ). We will use 4, X’ and B’ to form (a, b, c), while 4, X and B to

form (m,a, B).

The matrix form AQ X = B becomes, (in the form (m,a, B))
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(=7,33) (-522) (—2,3,1)\ /(mi‘,ai‘,ﬁf)\ /(—36,0,3)\

| (_4!2!2) (_3)1)2) (_5’3’0)) ®| (mg' a%! %)) = | (_25r1r2) )
\(—7,1,4) (-1,10,00 (-2,1,1) \(m%c, af, ) \(—21,23,2)

The positive solution can be obtained as follows,

-7 =5 =2 3 2
A=|-4 -3 -5, M=|2 1
-7 -1 -2 1 10

-10 -7 -5 0 0
A-M=| -6 -4 -—8|thenP.=(0

-8 —-11 -3 0 0

3 3 21
s)v=(z 2 o).

1 4 0 1

0 -10 -7 =5
o). (6 =4 o)
0 -8 —-11 -3

-4 -3 -1 0 0 O -4 -3 -1
A+N=<—2 —1 —5> then Nd=<0 O),Pd=<—2 -1 —5).

y SRS 0 0 O A —1

o

o

Since P. is zero matrix then |P.| = 0, Corollary 4.2.1b. is applied, |[J| = —636768,
then the NZ-ALS has a unique solution. Thus, the fuzzy. system FFLS has a unique

solution.

my
-7 —5 =2 0 00 0 0 0 m¥ —36
<—4 -3 -5 0 0 0 (0 0 0) X (—25)
-7 -1 =2 0 00 0 0 0 3 -21
3 2 3 0 00 10 7 5 a 0
(2 1 3) 0 0 0 <6 4 8) af | | = (1)
1 10 1 0 0 0 8 11 3 a¥ 23
3 2 1 4 3 1 0 0 0 x 3
(220) 2 15 (000) ! (2)
4 0 1 31 1 0 0 0 2 2

by computing X = J~1B,
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235

m 108
| 15 |
m% 4 |
109
mg/ 108
. 197
/ 1\ / 108\‘
5
\e/ | |\
/f”f\ / 127
108
kﬁgl | 3 |
| —7 |
13?/ \ 1
108

Since all spreads in )?g are negative, then the exact unique solution X'g of this system

is non fuzzy vector, is as follows,

(m3, a1, B7)

(235 197 127)
108" 108’ 108

(109 107 1 )
X X PX ' T Toe’ q0a
(m3,as3,P3) 108’ 108’ 108
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Or}?’g:| (a3, b3, c¥

109
(a, b, c§)/ (2% 1)

235
4 — 1
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The verification of solution of X, (in form (m, a, B))

235 197 127
108" 108" 108

(o Jocsve (-1

& ( 231)@(109 107 1)_( 1645 565 83)
= 108’ 108’ 108/ 108 ° 108’ 108

( 75 9 15) ( 109 161 1)_( 36,0,3)

474" 4 54’ 54 '54)

235 197 127) B (=312) ® (15 5 3)

108" 108’ 108 " 4’ 4’ 4

D (=530) & (109 107 1 ) _ ( 235 73 19)
™ 108’ 108’ 108/ 27 27’27

( 45 3 25) ( 545 319 535

444 ©108°108° 108

(-422)Q® (

A

) = (=251,2),

235 197 127
108" 108" 108

(-7,L9) ® ( ) @ (—1,10,0) ® (175 & _5)

4’ 4

& ( 211)@(109 107 1 )_( 1645 781 349>
N’ 108’ 108" 108/ ~\ 108 108’108
( 15 117 5) ( 109 53 1)_( 2123 M

\ 4’ 4" 4 54 '54°'54) e

The verification of solution shows that A ® X, satisfies 5. Also, using
Definition 2.2.8. The distance metric function is equal zero D,(4 ® X,,B) = 0.

Hence, the solution X, satisfies the fuzzy system.

While the solution X', in Ezzati et al. (2012) is

(af, bf, 1) (m{, af, BY)
( \ (1,2,4)\ / \ (2,1,2)
(]

X'o=| (a3, b3, c3) |=| (345

|
orX, = |
(1,1,2)/ k
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The verification of solution of X, (in form (m,a, B))

((=733)® (2,1,2) D (-522) Q@ (4,1,1) & (-2,3,1) ® (1,0,1) =
(—14,26,10) @ (—20,15,11) @ (—2,8,1) = (—36,49,22),

(-4,22) ® (2,1,2) ® (-3,1,2) ® (4,1,1) & (=5,3,0) ® (1,0,1) =
(—8,16,6) @ (—=12,8,9) @ (=5,11,0) = (—25,35,15),

A

(7149 Q212 (-1,1000 @ (41,1) & (-2,1,1) ® (1,0,1) =
\ (-14,18,11) @ (—4,51,1) & (—2,4,1) = (—20,73,13),

the verification of their solution X, shows that, AX, provide B,, thus 4 ® X, # B,

/(—36,49,22)\ / (—=36,0,3) \

B, =| (-25,35,15) |while B =| (=25,1,2) |

\( 20,73,13) (- 21232)/

Also, using Definition 2.2.8. the distance metric function is not equal zero between

B, and B,,

o 1381 1325 2547
D,(A® X, B) = S+t = 40724

As shown, the new method proposed solution )?g which is a different solution for

Ezzati et al. (2012)’solution X,. Thus, both methods are compared in Table 4.2 in

terms of accuracy of solution X, the distance for right hand side vector B and the

possibilities of unique solution.
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Table 4.2

Comparison of both solutions X, and X,.

X, X,
o X, satisfied the system, since X, did not satisfy the system,
Accuracy of solution X o B . o 5
AR X, =B. since A ® X, # B.
Distance metric function 0 40.724
The possibilities of ) L ) ]
A unique solution is determined. Is not determined.

solution

In Examples 4.2.3, we show the efficiency of the proposed method in obtaining a
solution for large systems, where all of the examples in Babbar et al. (2013), Kumar
et al. (2011a) and Ezzati et al. (2012) illustrated where n = 2 or 3. The details of the

proposed method and verification of solution are provided in Appendix B.
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Example 4.2.3. Consider the following 10 x 10 FFLS.

(=3213) (-2211) (-1,09) (027 (145 (-243) G4 (441
(=7310) (1,1,12) (0,,10) (-1,1,8) (0,1,6) (-834) (-252) (3.7,0)
(=327) (029 (3011) (209 (=107 (025  (123)  (241)
(-614) (336) (218 (-51,10) (418 (16) (-234) (152)
(-812) (=623) (305 (=407 (729 (627 (525  (443)
(-921) (821 (612 (334 (616) (938 (836)  (734)
(103,00 (93,00 (8L0) (621 (543) (=825 (-11,47) (1045)
(-11,41) (1021) (-901) (641 (=652) (752) (1034) (1356)
(-123,2) (-612) (812) (=750) (852) (1043) (1143) (-1243)
(423) (303 (-1,23) (-761) (-361) (243) (1434) (-834)

®
® N o T N

(86,211,371)
(~99,373,305)
(50,240,377)
(31,269,329)
(77,354,324)

(186,288,418) |

(11,302,429)
(226,403,410)

R R R R Uﬁ« R R R =

(——————\
s
\_______/

(52,471,371)
(—4,474,292)

(54,3)
(-4,7,2)
(3,6,1)
(2,5,0)
(=3,6,1)
(6,5.2)
(9,4,3)
(4,5,4)
(5,4,5)
(=9,5,4)

The given FFLS can be converted into crisp linear system using (3.20).

Then, the crisp solution can be obtained as,

The fuzzy solution is:

>

X=J 1B

(mi, a1, BT)
(m3,a3,B7)
(m3, a3, B3)
(mg, a3, Bx)
(m3, a5, B3)
(mg, ag, Bg)
(m7,a7,B7)
(mg, ag, B3)
(m3, a3, B5)

(mio, @10, B1o)
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(1,2,3)
(0,2,5)
(0,1,4)
(0,2,8)
(1,4,5)
(5,1,1)
(7,4,1)
(4,4,1)
(5,4,3)
(6,6,5)

(6,6,5)
(=5,7,4)
(4,83)
(3,5.2)
(2,81)
(5,7,0)
(8,6,1)
(11,5,2)
(-8,6,3)
(-6,7,4)




4.3 The Consistency of the Fully Fuzzy Linear System

In this section, the existence and fuzziness of the solution of the fully fuzzy linear
system are checked, and the possibilities for P — X for NZ — FFLS are classified.
Moreover, the proposed method is modified using row reduced method to find the

solution whenever it is not unique.

Using NZ-ALS there are three cases for the solution for NZ — FFLS, according to the
possibilities for solution of classical linear system (unique solution, infinite number

of solution, no solution):

Case 1: Unique solution.

If |J| # 0. Then, J is invertible, thus X = J~'B provides X as a unique solution for

NZ — FFLS.

Case 2: Infinite number of solutions.

If |J| =0 and rank(J) = rank (J: B) < 3n, then JX = B has infinite number of
solutions. In this case, row reduced method echelon for classical linear system is

modified to provide infinite number of solutions for fuzzy system.

Case 3: No solution.

If |J]| =0 and rank(J) < rank (J: B), then JX = B has no solution. Thus the fuzzy

system doesn’t have a unique solution.

Therefore, using the linear system JX = B, the solution of A ®@ X = B can be

obtained whenever it exists. The possibility for fuzzy unique solution is illustrated in
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Examples 4.2.1. While the possibility for non fuzzy unique solution is illustrated in

Examples 4.2.2.

The next section provides the fuzzy row reduced echelon method to obtain the

infinity many solutions whenever they exist.

Fuzzy Row Reduced Echelon Method

In this section, the fuzzy row reduced echelon method is proposed to provide the

infinity many solutions. The method is obtained by three steps, where |J| = 0.

Step 1 Computing the rank (J) and rank (J:B). Based on Case 2, if

rank(]) = rank (J: B) the system has infinitely many solutions.

Step 2 Transforming the NZ-ALS in Equation (4.20) to 3n linear equations. Then,

reducing it.

Step 3 Solving linear equations with positive fuzzy inequalities in Equation (3.10).

The next example illustrates the fuzzy row reduced echelon method where the fuzzy
system has infinite solutions. This example uses the same example as in
Kumar et al. (2011a). However, the new method proposes infinite many solutions
while Kumar et al. (2011a)’solution is a unique solution. Finally,
Kumar et al. (2011a)’solution is revealed as particular solution of solution set using

the proposed method.
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Example 4.3.1. Kumar et al. (2011a) consider the following FFLS,

(-1,1,0) ® (m7, a1, B7) @ (=2,0,1) ® (m3, a3, B7) = (—6,4,2),

(=2,2,0) ® (m{, a7, B7) @ (=40,2) ® (m3, a3, f7) = (=12,8,4).
The system is in matrix form,
(-1,1,0) (=201 (mi, af, B1) (=6,4,2)
<(—2,2,0) (—4,0,2)) ® ((mg, a§,ﬁ§)> ) ((—12,8,4))
Since |J| = 0, then the fuzzy system does not have a unique solution.

Using step 1, rank(J) and rank(J : B) are computed as follows,

<l [ D -\ 0 © 1000 2 2
/—2—40000\ /0100—1—1\

Bl =0E = AL * = B _
J=1 20 0044|0000 o0 o |Tak=3
011100/ 000000/
p—es 2 UM} bl Yiara ijalg

1 -2 000 0 -6

/—2—40000—12\
o110 00 22 4 |
U:B)=| 5 o 0044 8 |

0111002/

0 2 2200 4
1000 2 2 4
0100 -1 -1 1
0011 1 1 1 o
0000 0 o o]|TkU:B)=3
0000 0O 0 O
0000 0 0 O
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Since rank(J) = rank(J : B) = 3, and the number of rows is six, then the system

has infinity many solutions.

Using Step 2 the six linear equations of NZ-ALS are,

( —mj —2mJ = —6,
—1 —2 0 0 0 0\ /M —6 —2my —4mz = —12,
/—2 —4 0 0 0 o\/mé‘\ /—12\ x x x _
1 1 0 0 0 2 zilafl_i 4 i:><m1+231+2,82—4:
2 0 0 0 4 4llaXx| | 8
ko 0 00 4 O/w 5 )7 [ -
1
0 2 2 2 0 0/ \gx 4 mE bt ak =2,

\2m3 + 2af + 2af = 4.
which can be reduced to three linear equations,

(ar =1-a; =Bi = B3,
m; =1+ B+ B3,

|
\ m¥ = 4 — 287 — 287,

Using Step 3, the previous linear equations should be solved with positive fuzzy

inequalities in Equation (3.10) is as follows,
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(af =1-aj - B — B,

mE =1+ 65 + B,

mf = 4267 — 265
af = 0,07 =20,

B = 0,55 =0,

\ m{ > af,m;y > aj.
Hence, the general form solution X; for infinitely many solutions is:

(56'1> (my, af, BT) (4 —2B7 = 2B3, 1 —az = Bi — B3, BT

(m3,a3,63) (1+ B+ B3, a3, B7)
where % € [0,1], 8% € [0,1 — a¥], & € [0,1 — aF — B7].

Let = af, v. = B¥, w = aZ, then X, can be written as follows,

XG:

<9?1) (m{, af, BT) 4—-2v-2w,1—u—v—w,v)
X (m3, a3, %) A+v+wuw)

where, u € [0,1],v € [0,1 —u],w € [0,1 — u — v].

Using this solution, we can obtain Kumar et al. (2011a)’solution where u = 0, v = 1

andw = 01inX;,

(4-2(1)-01-0-1-0,1) (2,0,1)

(1+1+0,0,0) (2,0,0)
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The values of m7 is represented by Figure 4.1 where a7 is fixed % while the value

of m7 represented by a single values in Kumar et al. (2012)’method.

[Xg, my=4-2B1-283)

Figure 4.1. The values of m? in general form solution X,.

To verify the system has more than a unique solution. An particular solution )?p

which is different form X, using the proposed method is illustrated, let u = % v=

NI

1
, w=—, Then,
12
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The verification of the solution X,

(ume(lHocmne(ti)-
10 23 1 81 11 _
(-3%35®(35%)= 6
1
0L Do cmno(lil)-

20 23 1 16 1 11
| (-333)e(-555) =128

Table 4.3 compares both methods in terms of fuzziness of solution, number of

solution and independence between X, and X,.

Table 4.3

Comparison of the solutions set X, and X.

X; X

Fuzzy operation No fuzzy operation. Need to compute 4 ® X.
Number of Infinitely many solutions. Unique solution set.
solution
fuzziness All entries of %¥; and %, can be The fuzziness cannot be provided by

chosen nonzero. X, since the spreads a3, 7 are zero,

so it is represented only by its mean
value as a crisp number mJ.

Independence ai and Bf are independents, Fixed solution.
between %; and and the other entries are
X, dependent for them.
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As noted in Table 4.3, the general form solution shows that the new method provides
infinitely many solutions, while the original work of Kumar et al. (2011a) provides a
unique solution. In addition, the particular solution of X; can be considered
symmetric or non symmetric, while the unique solution X, should be symmetric for
X, because both spreads are equal. Also, all fuzzy number of particular solution in
X are nontrivial since the spreads in %;, ¥, are nonzero, while %, in X, is
represented by non fuzzy number (crisp number) based on Remark 2.2.1, because the
both spreads are zero, a3 = B3 = 0. Lastly, the entries of %, and X, have
independent intervals to provide infinite many solutions in X;, while all entries are
fixed in X,.

4.4 Conclusion and Contribution

In this chapter, we proposed a new method to obtain the P — X of NZ — FFLS. The
coefficients of fuzzy matrix A and the entries of fuzzy vectors B were represented in
a using block matrix, to produce the associated linear system NZ — ALS for

NZ — FFLS. Thus, the solution can be obtained without fuzzy operation and without

constructing or solving min-max system.

We can summarize the findings in this chapter by the following contribution:

1- Obtain the unique solution of P — X to NZ — FFLS without fuzzy operation.

2

Examine the existence of solution for P — X before solving the system.

3

Find the possibilities of P — X for NZ — FFLS.

4

Formulate fuzzy row reduced echelon method to provide infinite many solutions

P —Xto NZ — FFLS.
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CHAPTER FIVE
FINITE SOLUTION OF NEAR ZERO FULLY FUZZY LINEAR

SYSTEM

In Chapter Three and Chapter Four P — X for P — FFLS and for NZ — FFLS are
solved, respectively. Chapter Five provides arbitrary solution for arbitrary FFLS
where the near zero is included (NZ — X for NZ — FFLS). Arithmetic operations of
fuzzy numbers are only used in order to avoid adding any restrictions to the system.
As a result, all possible solutions for systems are detected. Hence we conclude that
the nature of solution of linear system (unique, finite or infinitely many solutions) is
no more sufficient to provide all the possible ways of solutions for FFLS, since

FFLS may have more than two distinct solutions but not infinitely many solutions.

The existing methods of solving FFLS obtained the fuzzy solution is unique or
infinitely many solutions due for determining the final solution of minimization
problem. Thus this study provides an alternative solution for FFLS namely finite
solution of FFLS. The next section presents the fundamental definitions and main

theorems to develop the new method for solving NZ — X of NZ — FFLS.

5.1 Fundamental Concept for Min-Max System

In this section, a new concept for consistency which is called finite solution for
FFLS is defined, then we prove the possibility to find it in solving NZ — FFLS,
where the FFLS have more than two solutions, but not infinite solutions. This

concept will be used to develop the proposed method.
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In Chapter Four, a min-max system was defined while in this chapter the absolute
system will be presented. Both definitions are used for solving NZ —X of

NZ — FFLS.
Definition 5.1.2. An absolute equation is an equation has absolute term.

Definition 5.1.2. An absolute system (or a system of absolute equations) is

a collection of equations such that at least one of them is an absolute equation.

The next definition defines the finite solutions for systems, to add a new possible

way of solutions for fuzzy systems.

Definition 5.1.3. The solution set of a system is called a finite solution or alternative
solutions, whereby the number of solution is more than one and not infinite

solutions.

The relation between min-max systems in Definition 4.1.3. and absolute systems is

investigated in the next theorem.

Theorem 5.1.1. Consider the min-max system for i =1, ..., k,

rl)bl (hll)l(xll : 'ka)’glpl(xlf : "xk)) = d)l(xl'xZ’ : "xk)’

l,bz (hll)z (xll T xk)’ ng (xlf HRN] xk)) = ¢)2 (X1, X2y 0) xk):
< : (5.1)

\lpn (hll)n (xlf iy xk)’ 9y, (X1, T xk)) = d)n (Xl, X250 xk)'

Then, the system can be reduced for an absolute linear system, where,
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e y; for j = 1,..,n is minimum or maximum function.
o hwj,gu,]. and ¢; are linear functions for j = 1,..n.

e x; isvariables for i = 1,..k.

Proof. Since v, (hwj,gll,]_) is @ minimum or a maximum function with just two

variables hw,- and Gpj» the Remark 2.3.2. can be applied.

If ¥; is @ maximum function, then

(X Tvi) | TYi
1/)]' (hll)j'glﬂj) - ( 2 > + ‘ 2 ’ (5'2)
or,
(s, = 9w, | = 25 (g 99,) — (s + 90, (5:3)
but in Equation (5.1), ¥, (hw,-'gwj) = ¢;, then,
|h¢f - g¢j| =2¢; - (hl/)j + g¢j)- (5-4)
Similarly, If 1; is a minimum function,
0y (o) = (2572 - 52 (55)
or,
|y = g0, = (hy, +99,) 2.9 (5.6)
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Then, any equation in Equation (5.1) for j = 1,..n, may be written as Equations

(5.4) or (5.6).

Suppose hu,]. — Gy in Equations (5.4) and (5.6) is one function S
S‘l’j = hl/)] — g‘l’] (57)

Define, 2¢j—(h¢j+g¢j) and (h¢j+g¢j)—2¢>j in Equation (5.4) is one

piecewise function &;,

2¢; — (hd)j + gwj) if; maximum function,
§j = (5.8)
(hwj + gwj) —2.¢; ifyp; minimum function.

Hence, Equation (5.1) can be written as the following absolute linear system using

Equations (5.7) and (5.8),

(lslpl (xlleJ L] xk)' = 51 (xli X250y xk)ﬁ

|Sl,[J2 (xlﬂ X2) ) xk)l = EZ (xl; X250 xk)'

9 (5.9)
Ulsn (xq, X2, -, ) | : §j(x1, X2, -+, X))
O
The next theorem computes the finite solutions for the absolute system.
Theorem 5.1.2 Consider the absolute system,
swj(xl,xz,..,xk) =&i(x, %0, 0,x), j=1,..k. (5.10)
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Then the possible ways of solutions for the system are:

e No solution.
e Unique solution.
¢ Finite or alternative solutions not more than 2".

e Infinitely many solutions.
Proof. Since Sy, = hwj(xl,xz,..,xk) —gwj(xl,xz,..,xk) and hlpj,gll,j are linear
functions, &;(x, x,,..,xy,) is a piecewise function of linear functions, without loss of
generalization, suppose Sy, is a positive function, then Equation (5.10) may be

written as the below n X n classical linear system.
swj(xl,xz,..,xk) = Ej(xl,xz,..,xk), j=1,..,n, (5.11)

hence, the possible ways of solutions are:

e No solution.
e Unique solution.

e Infinite solutions.

The proof is completed when we obtain the finite solution less than 2™. Since
swj(xl,xz,..,xk), ifslpj >0,
sd,j(xl,xz, X)) = (5.12)
—swj(xl,xz,..,xk), z'fswj <0,

then, for every j = 1,...,n we have,

Sll)j(xlleJ . 'lxk) = fj(xll X2, ')xk) or _S‘Ll)]'(xll X2, 'ka) = fj(xll X2, -:xk)'
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Hence, according to counting principles, the likely number of n X n linear systems is
2™ (Weibel, 1967). each of them has three previous possible ways (no solution,

unique solution, infinitely many solutions).

If at least two linear systems have unique solution and the other linear systems have
no solution, then the finite solution is a collection for any linear system that has
unique solution which will not be more than 2™. Hence, the last possible way of

solutions is:

¢ Finite solution. O

The next section provides the method for solving NZ — X for NZ — FFLS. The

discussion of finite solution is extended to possibility of FEFLS using Theorem 5.1.2.
5.2 Near Zero Solution for Near Zero Fully Fuzzy Linear System

The NZ — X for NZ — FFLS is obtained in this section. The method is proposed by
reducing the min-max and absolute systems, to exclude any further restriction in the

process. As a result, we will find out all possible solutions for system.

Consider the following FFLS A ® X = B, where A = (4, M, N), B = (m?,a?, B?)

and X = (m*, a*, £%) are arbitrary.

Then, the n x n FFLS may be written as
®
Zc"iu ® ~j = Ei ,Vl = 1,2,...,7’1.
j=1

The solution is obtained by four steps:
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Step 1 Separating the FFLS for a linear system and a nonlinear system (min-max

linear system).

Step 2 Solving the linear system to obtain the mean values m;*, substituting them in

the min-max linear system and reducing it.

Step 3 Converting the reduced min-max system to absolute system using

Remark 2.3.2.

Step 4 Reducing the absolute linear system, using the following fuzzy inequality,

al >0,

(5.13)
B = 0. Vi=1,2,..,n

Then, Step 4 provides the values of spreads «;° and B/, while the mean values m}

are obtained from Step 2, which completes the component of fuzzy solution NZ — X.

As noted, no restriction is adding to proposed method, we keep reducing the systems

whether its min-max or absolute system to get the NZ — X for NZ — FFLS.

The next corollary computes the finite solution of NZ — X to NZ — FFLS.

Corollary 5.2.1. Consider the NZ — X for m x m NZ — FFLS. Then, the system has

possibility of finite solution less than 22™,

Proof. Applying Equation (2.12) for m X m FFLS to obtain a 3m min-max system.
Hence, 2m min-max equation is produced. Then, using Remark 2.3.2. an absolute

system is constructed. The proof is concluded by recalculating Equation (5.12) for
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each absolute term. Thus according to counting principles, the likely number of the

m X m linear systems is 22™ solutions. o

The next example is used in Kumar et al. (2011b) and we obtain further different
feasible solutions, while the proposed method in Kumar et al. (2011b) only one
solution is obtained. We use geometrical analysis by graphs to verify the further

second solution, and show that the system has finite solution.

Example 5.2.1. Kumar et al. (2011b) consider the following FFLS,

(Written in theform (a,b, c)),

(=2,3,4) ® (a,%, b5, c,%) B (=2,2,3) Q (a,%, b,%,¢c,*) = (—13,8,14),

(1, 2, 2) ® (alx, blx, Clx) @ (4‘, 4‘, 5) ® (azx, bzx, sz) — (_14‘, 8, 14),
where %; = (a;%,b;", ¢;*),i = 1,2 are arbitrary TFN.

The system can be rewritten in matrix form as follows,

(-2,3,49) (=2,2,3) (a;%, by%, %) (—13,8,14)
O3y .
(1! 2; 2) (41 41 5) (azx; bzx; CZx) (_14' 8' 14)

Since we use (m,a, ) form for TFN in this study, the example is converted to
form(m, a, ). We will denote A’, X’ and B’ to the form of (a, b, ), while 4, X and

B to the form of (m, a, ).

In matrix form AQ X = B it becomes, (in form (m,a, 8)),
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(3,51 (2,4,1) (m*, a,%, 515) (8,21,6)
® = .
(2,1,0) (4,0,1) (m,*, ay*, B,*) (8,22,6)

Using Step 1, the FFLS is written as,

( 3m* 4+ 2m,* =8,

—Min[4(m;* — a;), —2(m;* + ﬂ1x)] — Min[3(my* — ay*), —2(my* + ﬁzx)]
+3m1x + Zmzx = 21,

Max[=2(my* — ay®),4(m;* + B, 9)] + Max[—2(m;* — a,¥),3(my* + B,)]
_3m1x - Zmzx = 6,

X (5.14)

Zmlx + 4m2x = 8,

—Min[m;* — a;*,2(m;* — a,¥)] — Min[4(my* — a,*),5(my* — ay,¥)]
+2m1x B 4‘m2x = 22,

Max[my* + 1%, 2(m* + B1)] + Max[4(m,* + B,™), 5(my* + Bo*)]
_Zmlx — 4m2x -

The linear system is,

3m1x + Zmzx = 8,
(5.15a)
2m1x + 4‘m2x = 8.

The nonlinear system is,

(—Min[4(m* — ay*), —2(my* + B, *)] — Min[3(m,* — ay™), —2(m,* + B,7)]
+3m1x + Zmzx = 21,

Max[-2(m;* — a;,*),4(m,* + B )] + Max[-2(m,™ — ay*),3(m* + B, )]
—3m,* — 2m,* = 6,
4 (5.15b)
—Min[m;* — a; %, 2(my* — ay¥)] = Min[4(my* — ay®), 5(my* — ay™)]
+2my* + 4m,* = 22,

Max[m;* + B;*,2(my* + B )] + Max[4(my™ + B,7), 5(my* + B,7)]
—Zmlx - 4'm2x =
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Using Step 2, solving the linear system (5.15a), we get m,;* = 2,m,* =1, then

substituting the values of m;* in the nonlinear system (5.15b),

(8 — Min[4(2 — a1 %), —2(2 + B )] — Min[3(1 — a,¥),—2(1 + B,1)] = 21,

-8+ Max[-2(2 — a;%),4(2 + ;)] + Max[-2(1 — a,%),3(1 + 5,°)] = 6,
4 (5.16)
8 — Min[2 — a;%,2(2 — a;*)] — Min[4(1 — a,¥),5(1 — a,¥)] = 22,

-8+ Max[2 + ;5,22 + ;)] + Max[4(1 + B,%),5(1 + B,¥)] = 6.

According to Step 3, the min and max functions in Remark 2.3.2. produces absolute
system from min-max system in Equation (5.16),

4af +3a5 + 27 + 285 + 2| — 2af + T+ 6]+ | —3af + 2B5 + 5] =31,

2af + 2af + 4B + 3BF + 2|af —2(BF +3)| + | —2aF +3B5 + 5| =23,

. (5.17)
3af +9af + |af — 2| + |aF — 1| = 43,

\ 12 + B %+ |1+ BoF| + 3B, + 98,F = 13.

Now, based on Step 4, the absolute system in Equation (5.17) should be reduced to

find fuzzy solution.

Considering the fourth equation in Equation (5.17),

12+ B,% + |14+ 6| +38," + 98, = 13.

Using Equation (5.13) 8,*,8,* = 0. Then (2 + B,¥), (1 + B,) = 0,

it may be written as,

Q4B+ A +B7)+387 +98," =13,

then,
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—8+2Q+ B, )+50+B,)=1+28,"+5B," =6,

or,
Zﬁlx + 5 ﬁzx = 5
Solving the system,

Zﬁlx + 5 ﬁzx = 5,
(5.18)
Bi*, B = 0.

Then, the fourth equation in Equation (5.17) can be written as one linear equation as

shown in Figure 5.1,

2p,* 5
B =1~- % B € [0,5]. (5.19)
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28,

X X 5
B~ =1~ , B71€[0,—].
2

5

B*1

0.5 1.0 1.5 2.0 2.5

Figure 5.1. Representation of the fourth absolute value equation as a linear equation.

Similarly, by considering the third equation in Equation (5.17),
3af +9ai + |af — 2| + |af — 1| = 43,

because a;*, a,* = 0, we get three linear equations,

1
( c@l-a®), 0<a*<2
1
o = A 5(23 —2a1%), 2<a*¥ <09, (5.20)
1
| ;A1-a®, 9<aF<ilL
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The three linear equations for a,* is showed in Figure 5.2.

r 1 X X
=(21-«a Osa™ <2
Ho1-a%), 0says2
a* = §(23—2axl), 2<a;<9,
~(11-a%),  9<a’y=1L
aX2
4,
3,
2,
N
4
1 A
\\
5 . X
2 4 6 g 10 “1

Figure 5.2. Representation of the third absolute value equation as a linear equation.

Now, the first and second equations are,

4af + 3af + 2BF + 2B5 + 2|-2af + B + 6|
+|—-3af + 285 + 5| = 31,
(5.21)
2af + 2af + 4B + 3B5 + 2|af — 2(B5 + 3)|
+|—2af + 385 + 5| = 23.
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Substituting the values S, in absolute system in Equation (5.21). Then, solving
Equation (5.21) with the three equations of a;* in Equation (5.20) to provide three

possible solutions:
e Forinterval a,* € [0, 2],
1
azx = _(21 - alx).
5
Hence, Equation (5.21) may be reduced to the following system,

(10| — 2af + Bf + 6| + |3af —4(BF + 7)| + 17af + 647 = 82,

Slay — 2Bf — 6| + |af — 3BF — 1| + 4af + 75 = 29,

] 0<aX<2, (5.22a)
5
L 0<pBf< >

consequently,

1 1
e =cQl-a)=cQ1-1) =4,

28" 2(0
B =1- ﬁsl =1—%=1.

Then, we get the first fuzzy solution for FFLS,
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(J?l) (m*, a;”%, ,31x) (2,1,0)

(mzx, a’zx,‘Bzx) (1,4, 1)

Moreover, Figure 5.3, shows that there is an intersection between first and second
equations in Equation (5.22a) in intervals a,* € [0,2], B,* € [0,;],which means

that the system has a fuzzy solution in intersection line:

—2a+B{+6 | +| 3&f—4(ﬁf+7)| +17 af +6 57 - 82

ay-2Bf -6+ | af-3pBf-1|+4af+7B5-

0.0

Figure 5.3. The first solution X, in a;* € [0,2] and B,* [0 ]

e Forinterval a* € (2,9],
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1
afzx = 5(23 - Zalx).

Hence, Equation (5.21) may be reduced to the following system,

{ 2<af £9,

N Ul

0<pi<

After solving the previous system we get,

x_51 « I8
aq —ﬁ' pi” =0,

consequently,

/A siti 51\ | 2
a :g(ZB—ZCZl):g(ZB—ZXﬁ)—?,

2 X
B =1- '851 =1-0=1.

Then, the second fuzzy solution X, for fuzzy system,

() (mea) 5
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(5| = 2af + B{ + 6|+ | —3a7 + 287 + 17| + 7af + 37 = 38,

| — 2af + 3BF + 3| + 5|af — 2(BF + 3)| + 3af + 767 = 27,

] (o))
(my*, @y, B2™) k(l’ g’ 1))

(5.22b)



The verification of solution

(351 ® (2,%,0) D 241)® (1,?,1) _

88 59
(6,7,2) @ (2,7,4) — (8,21,6),

(21,00 ® (2,%,0) D 4,0,1)® (1,?,1) _

(4510@41036—8226
L (#F0)e(+56)= @2s.

Moreover, Figure 5.4. shows that there is intersection between first and second
equations in Equation (5.22b) in intervals a,* € [2,9], B," € [0;] which means

the system has a fuzzy solution in intersection line:
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Figure 5.4. The second solution X, in a;* € [2,9] and B, € [0, g]

For interval a4* € (9,11],

ar* =2 (11 — ay¥).

Hence, Equation (5.21) may be reduced to the following system,
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(20| — 2af + BF + 6] + | — 15af + 887 + 95| + 25a7 + 1287 = 125,

68" 148*
laX — §1—3|+2|ai‘—2ﬁ{‘—6|+af+ fl =09,
) (5.22¢)
9<m* <11,
5
0<B,*<-.
\ A 2

We find that the system in Equation (5.22c) has no solution. Moreover, Figure 5.3.

shows that there is no intersection between first and second equations in
Equation (5.22¢) in intervals a,* € [9,11], B;" € [0, g] which means the system

has no solution in intersection line.

148



(20| -2af+B{+6 |+ | -15af +8B+95 | +25af + 12 B - 125,
: A | 14 g%
icrf—%— i+2iaf—2[3f—6i+o:f+ i

are(9,11], B e[o, g]

_9!

400

200

9.0

Figure 5.5. Shows the system has no solution in a;* € [9,11] and 5,* € [0, g]

The X; and X, are transformed to form (a, b, c) to compare with the solution in

Kumar et al. (2011b).
We find the first solution X, as identical to his solution X, ,

551’ (a,”%, b1x: 1) (1,2,2)

le (ay*, bzx: %) (-3,1,2)
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While, the solution X, represents the further solution %, which cannot be

determined through LP method in Kumar et al. (2011b)’method,

23
fll (alxl blxl Clx) (_ﬁ’z’z)

SQ
Il
Il
Il

X, (ax*,by", c;") (—g, 1,2)

As it is noted, the proposed method can provide second solutions which satisfy the
concept finite solution of FFLS, while Kumar et al. (2011b)’method cannot provide

it.

Next example is used in Allahviranloo et al. (2014), they provided the solution as
unique fuzzy solution. The same example is solved by proposed method, it is noted
the system does not have a fuzzy solution. Moreover the verification of
Allahviranloo et al. (2014)’solution shows that it doesn’t satisfy the left hand side for

the system.

Example 5.2.2. Allahviranloo et al. (2014) consider the following FFLS,

[ (234) ® (af, b7, cf) B (1,1,1) ® (a3, b3, c3) & (1,2,3) ® (a5, b3, cF)
= (=9,2,18),

(51617) ® (a:)f' bf' Cf) @ (_4, _3, _2) ® (a%C' b%' C%C) @ (2,2,2) ® (a?’f' bg’f' Céc)
— (~13,8,34),

(_31 _21 _1) ® (aic, bf' Cf) @ (1,2,3) ® (a%C' b%' C%C) @ (3,3;4) ® (a?’f' bg’f' Céc)
\ = (=3,-10,5).

The system can be rewritten in matrix form as follows,

150



(2,3,4) (1,1,1) (1,2,3)\ /(a;‘, b, cf)\ / (=9,2,18) \
| (567 (—4,-3,-2) (2,2,2)) R | (a;f,b;,c;f)) = | (—13,8,34)).
(-3,-2,-1) (1,2,3) (3,3,4) )

(a3, b3, c% (-3,—10,5)

Familiar to Example 5.2.1, the form of (a, b, ¢) needs to be converted to the form of
(m, a, B) for TFN. We will use A’, X’ and B’ to the form of (a, b, ¢), while 4, X and

B to the form of (m, a, ).

In  matrix form AQX=B it becomes, (inform(m,a,p)),

/(3,1,1) (1,0,0) (2,1,1)\ /(mi‘,ai‘,ﬁf)\ / (2,11,16) \
| (611 (-311) (200) |®]| (m},af,B5) |=]| (821,26)

(&Z1,1) 2 (21,1) (3,0,1)/ \(mg‘,a;‘, 3) \( 102015)/

Using the proposed method,
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( 3my + mf + 2m3 = 2,

—Min[2(m{ — af),4(m] — af)] — Min[m} — af,3(mJ — af)] + 3m{ + 2m3
+af =11,

Max[2(m{ + B),4(mf + BY)] + Max[m3 + BF,3(m3 + BF)] — 3m{ — 2mJ
+55 = 16,

6my —3mj + 2m3 = 8,

—Min[5(m{ — a7),7(my — af)] — Min[—4(m3 + B7), —2(mz + B7)] + 6m7
. —3m3 + 2m3 — 2(m3 —af) = 21,

Max[-4(m3 — a3), —2(m3 — a3)] + Max[5(m{ + B1),7(mi + B7)] — 6m]
+3mJ — 2m3 + 2(m3 + B3) = 26,

—2m{ + 2m3 + 3m3 = —10,

—Min[m3 — a3,3(m3 — af)] — Min[3(m3 — ai),4(m3 — a3)] -
Min[—m{ — By, —3(m{ + B{)] — 2m{ + 2m3 + 3m3 = -7,

Max[-3(m} — af), —m{ + af] + Max[mj + B%,3(m3 + B3] +
. Max[3(m5 + B5),4(m5 + )] + 2mf — 2m3 — 3m% = 15.

Substituting m*, = 2, m*, = 0.and m*; = —2, in absolute system, we get,

( 9+ Min[8 — 4a*;,4 — 2a*] + Min[-2 — a*5,—3(2 + a*3)] = a*,,
Max[2(2 + B*,),4(2 + B*,)] + Max[-2 + p*,,3(—-2 + B*,)| + B*, = 18,
9 + Min[14 — 7a*;,10 — 5a*;] + Min[—4B* , 2% | = 2a*5,

J Max[2a*;,4a*;] + Max[5(2 + B*,),7(2 + B* )] + 2B*, = 38,

3 + Min[—-3a*,, —a*,] + Min[—4(2 + a*3),—3(2 + a*3)]
+Min[-2 — ¥ ,-3(2+ p*)] =0,

Max[-2 + a*;,—6 + 3a*;] + Max[ﬁxz,Sﬁxz]
\ +Max[3(—2+ p*,)4(-=2+ B*,)] = 5.

Transforming the min-max system to absolute system and reducing it, we get,
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( 12 —a*i| + |2 + a*5| + 3a*; + a*, + 2a*; =11,
|2+ % | + -2+ B*,| + 3B, + B*, + 2B*, = 16,

12 — a¥,| + |B%,| + 6ay + 2a*5 + 3B%, = 21,

la®,| + |2 + B*,| + 3a*, + 6% + 2B*, = 26,

16 + 2|la*,| + |2 + a®3| + 2|2 + B* | + 4a™, + Ta*; + 4%, =

L 212 — %] + 2|5, | + |2 + B¥,| + 40y +4B%, + TB¥, = 32

Solving the system provides the non fuzzy solution, since the spreads are negative,

89 50 . 5 1, 232 .
=g B = = = e =g (- -3
ax2=—£5—|2+a 3| = 2a¥3.

17

While, Allahviranloo et al. (2014) provided the following )?a”v' as a fuzzy solution,

/(aicl bl' )\ / (1I2I4) \ /(mic' aic' ﬁf)\ / (2;1,2) \
Xallv _k(az' bz' ):k (_21013) )' Xallv k(mz'az'ﬁg)) k (0;2;3) )
(a3, b3, c3) (—3,-2,-1) (m3, a3, f3) (—2,1,1)
But, actually the verification of solution shows that AQ X, # B,

( (31,1)®(2,1,2)H(1,0,000(0,2,3)P(2,1,1)R( — 2,1,1)=
(6,4,10)D(0,2,3)D( — 4,5,3)=(2,11,16),

6,1,1)Q (21,2 ® (-3,1,1) ® (0,2,3) ® (2,0,0) ® (-2,1,1) =
(12,7,16) @ (0,12,8) @ (—4,2,2) = (8,21,26),

A

(-—21,1D)®(2,1,2)H(2,1,1)®(0,2,3)B(3,0,1)Q( - 2,1,1)=
L (—4,83)D(0,6,9d(— 6,6,3)=(— 10,20,15).
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AS nOted A® Xa”v = gallw Where,

((m{%a{’,ﬁf) / (2,11,16) \ ((a’f,b{’,c{’) / (-9,2,18) \
Eallv: (mlzj'ag'ﬁg) :| (8'21'26) )’Eallv,: (alz’,bé’,cé’) :| (_13'8'34) )

(m2, a2, Bb) \(—10,20,15) (@, b2, c2)/ \(=30,-10,5)

But the left hand side in example is actually

(mf,a{’,ﬁ{’)\ / (2,11,16) \ (af,bf,cf)\ /(—9,2,18)\
§=k(m£’,aé’,ﬁé’) |=k (8,21,26) |, E’:k(alz’,bf,cé’) |=k(—13,8,34) I
(m2, a2, B2 (—10,—7,15)/ (a2, b2, cb (—3,—10,5)/

For that, this example has no fuzzy solution.

In next section, the proposed method is modified after Step 4 to produce all

associated linear systems that may provide compatible solution satisfy the FFLS.

5.3 Associated Linear Systems of Near Zero Fully Fuzzy Linear System
In this section, we show that the possibility of finite solution can be obtained by
Corollary 5.2.1. The method in Section 5.2 will be modified to produce all possible

linear systems, so the modification will be after step 3, is as follows,

Step 4 Considering the Equation (5.13). Then, constructing and solving all possible

linear systems from absolute system, using Equation (5.12).

Step 5 Considering only the solution which satisfies the fuzzy system FFLS, by
deleting the solutions which do not satisfy the absolute system or have negative

spreads (non fuzzy solution).
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The next example is used in Babar et al. (2013). Using the proposed method in this
section, we obtain further different feasible solutions, while the proposed method in
Babar et al. (2013) obtained only one solution. The first and second solutions are

also provided by previous method in Section 5.2 to confirm the result.

Example 5.3.1. Babar et al. (2013) consider the following FFLS,

(3, 2, 3) X (mic’ aic’ {C) D (_21 1, 1) b2 (mgr ﬁéc' %) = (51 16, 17):

(—4,1,2) ® (m{, a1, B7) @© (4,2,1) ® (m3, 53, B85) = (—4,12,22),
where ; = (m;*, a;*, B;*) ,i = 1, 2 are arbitrary triangular fuzzy numbers.

The system may be written in matrix form is as follows,

X2

(3,23)  (=2,1,1) % (5,16,17)
()

(=4,1,2) (4,21 (=4,12,22) )

- (i1> (m*, a1, B1™)
X = = .

(my”, ay”™, ﬁzx)

Then using Step 1,
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3m1x - zmzx = 5,

—Min[m,* — a;*, 6(m;* — a;*)] — Min[-m,* — Bzx, =3(my* + ﬁzx)]
+3m1x - Zmzx = 16,

Max[—3(m,* — ay¥), —my* + a,*] + Max[m* + B,”,6(m,* + B, )]
—3my* +2m,* =17,
—4m* + 4m,* = —4,

—Min[2(my* — a;®), 5(my* — a;™)] — Min[-5(m,* + B %), —2(my* + B17)]
_4'm1x + 4m2x = 12,

Max[-5(m;* — a;*), —2(my* — a;*)] + Max[2(m,* + ﬁzx); 5(my* + ﬁzx)]
+4'm1x - 4m2x == 2

\
Solving the following linear system,

3m;* —2my,* =5,

—4'm1x + 4‘m2x = —4,

Then using Step 2, m;* = 3, m,* =
Hence, the nonlinear system with values on m;* is simplified as follows,

( 5—Min[3 —a;%,6(3 —a;¥)] — Min[-2 — B,%, =32 + B,)] = 16,
-5+ Max[-3(2 — ay*), =2 + a,*] + Max[3 + 5;",6(3 + 5, )] = 17,

—4 — Min[2(2 — a,%),5(2 — a,¥)] — Min[-5(3 + £;),—2(3 + ;)] = 12,

\4 + Max[-5(3 — a;%),—2(3 — a;*)] + Max[2(2 + £,),5(2 + £,°)] = 22.

Using Step 3, the min-max system can be written as absolute system is as follows,
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( 1 1
§|—“f—6(3—ai€)+3|+§|—55€+3(55€+2)—2|

1 1
+§(af—6(3—ai‘)—3)+§(,8§+3(,8§‘+2)+2)+5 = 16,

1 1
§|—“§—3(2—a§)+2|+§|5f—6(ﬁf+3)+3|
1 1

t5laz =32 -a)) -2+ (BT +6(AT +3)+3)—5=17,

312=a3| 3|BF+3| 7 7
2ol S T ap e —4=12

313—af| 3|BF+2| 7 o T
—Z(3- - 2) + 4 =22.
| TS T 3G (B D +

It can be simplified as follows

(7ai +4p5 + 5|la; — 3| + 2|85 + 2| = 35,
4af + 7B + 2|lay — 2| + 5|87 + 3| = 31,

3|12 — af| + 3|p7 + 3| + 7(a3 + B7) = 25,

3|13 —af |+ 35 +2| +7(af ¥+ BF) ='43.
Using Step 4, (85 + 3), (B3 + 2) = 0, then,

(7af + 4B5 + 5|af — 3| + 2(B5 + 2) = 35,

4ay + 767 + 2|ay — 2|+ 5(BF +3) =31,

. (5.23)
312 — af| + 3(BX + 3) + 7(af + BX) = 25,

\3|3 —aj| +3(By +2) +7(ag + B7) = 43.

Since we have four absolute values, we can construct sixteen linear systems, the

solution of sixteen possibly linear systems is as follows,
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(o 17 o 16, 23, 46
1 -0 % 2= 7% = =

15 5P 2715 % 1 T 15

17 16 19 73

X

x —_L x ___ px — _~ N
Fu=tg e ===

. N x_zoﬁx 23 46
17 T3 2T 3P T 1 T g
.5 . 20 _ 19 _ 73
ﬁ 1~ Sla 2 — 3 lﬁ 2 12'(Z 1_24:
. 19 36 23 _ 46
e T R T e TIL ST
. 19 3 _ 19 73
Bi=s35 =5 b= @i =0
. . .23 46
,8121,CZ ZZOIB ZZE'Q 1:Et
i} i} ., 19 73
ﬁ1=1;a 2=0;ﬁ Zzﬁ'a 1=ﬁl
| N 1 w--r; M)
Flu=gpae=g =g =1y
L 17 16 .
ﬁ1=E1a 2=Elﬁ 2=2'a 1=21
g 5 x_zoﬁx_17 . 29
1= T3P 2T P T YTy
X = _ _ X X X
p*, = 50{2—203 =2,a%; =2
1 3’ 3’ 2 ) )
'Bx _2 X _ﬁﬁx _E X _Q
1725 % 2795 2 T 10 Y1 T 1
. 19 36 _ i
ﬁlzﬁ,azzgr 2=2;a 1:2’
. . .17 29
.Blzl,azzo;ﬁ Zzﬁ'a 1=Er

& ﬁxl == 1, axz == O,sz = 2, (le == 2.
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Applying Step 5, we find the below linear systems only are provided fuzzy solutions

for FFLS.

e The first fuzzy solution X; comes from the following linear system,
(53 —a*y) + 7a*; + 4%, +2(2 + p*,) = 35, (B, =1,
2(2 — a¥y) + 4a*, + 7 +5(3 + p*,) =31, a*, =0,

] — <

3(2—a*)) +3(3+ %) +7(a*, +p*,) =25 |F*,=2

3B —a*) +3(2+p%,)+7(a* +p*,) =43, \a¥ =2

Thus the first fuzzy solution X; is,
X, (m,*, 2%, B1™) 3,2,1)
X, (m,”, ay”, ,Bzx) (2,0,2)

e The second fuzzy solution X, comes from the following linear system,

B =1

(=53 — a*y) + 7a*; + 4%, + 2(2 + p*,) = 35, !
lez = O,

2(2 — a¥,) + 4a¥, + 7B%, + 53+ B¥)) = 31,

< —<{ 23
32-a*) +33+ %) +7(a*,+ %) =25 |F:T15
(=33 —a*)) +3(2+B%,) +7(a +B¥,) =43, | x _ 20
ST

Thus the second fuzzy solution X, is,

(ﬂ) (m,*, a1x’ﬁlx)

i (my*, a3, B27) i \(2 0 E)
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The verification for the second fuzzy solution is

(G29®(372,1) 021,00 (2057) =

47 33
(9,?, 15) ® (—4,=,2) = (5,16,17),

(-4,1,2) ® (3,% 1) ®421)Q (2, og) _

( 12837)@<8429>— 4,12,22
\ 113 ,;3 —( y ) )

However, the method in Second 5.2 can be applied as follows:

From first equation in Equation (5.23),
1
B = g(—Slaf — 3| —=7a7 + 31).
Also from second equation,
1
Bii= E(_M — 2a5| — 4aj + 16).

The third equation can be written is as follows,

22a3 + 6|6 — 3a3| — 5|4 — 2a5| = 16,
we get a,* = 0, then B = 1.
The fourth equation can be written as follows,

7af + 8lay — 3| = 22.

46

Then, we get two solutions a;* = 2 or, a;* = =
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Hence, we have fuzzy solutions as follows:

e When a,* = 2 then 5,* = 2,

the first fuzzy solution X is,

3 (’71> (m*, &, %, By ™) ((3, 2, 1))
Xl = = — )
X2 (my™, az™, B2™) (2,0,2)

Which is obtained in Babar et al. (2013).
— %6 x _ 23
e When a;* = " then 5,” = =

the second fuzzy solution X, is

<X1> ¥, a8\ (35 1)

(my", ay™, 3,") (2, 0, g)

In order to enhance the finite solution, an example of FFLS in size n =3 is

illustrated with two unique solutions.
Example 5.3.2. Consider the following 3 x 3 FFLS,
((31 5! 1) ® (mlxﬁ alxt ﬁlx) @ (2’ 4' 1) ® (mZxﬂ aZxﬂ ﬁZx) @ (2, 1) 1)

® (ms*, as*, B3%) = (12,24,11),

{ (2’ 1’ 0) ® (mlx'alx' ﬁlx) @ (41 O' 1) ® (mzx, azx, Bzx) 69 (2, 1, 1)
® (m3*, a3*, B5") = (12,25,11),

(2, 31 1) ® (mle alx' ﬁlx) @ (2' 6’ 1) ® (mZx' aZx' .BZx) 69 (0' 0' 0)
\ ® (ms*, as*, B5*) = (6,17,12),
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where %; = (m;*, a;*, 3;*) ,i = 1,2, 3 are arbitrary TFNs.

The FFLS can be written in matrix form A ® X = B,

/(3, 51 (2,41 (21, 1)\ (mi*, ay*, By /(12 24, 11)\
| (21,00 401 LD |®m" a”B" )\ | (12,25,11) |

(2,3,1) (2,6,1) (0,0, 0)/ (ms*, as*, B3™) (6,17,12)/
Using Step 1,

f 3m1x + Zmzx + 2m3x = 12,

_Min[4(m1x - alx); _Z(mlx + ﬁlx)] - Min[3(m2x - azx)’ —Z(mz'x + ﬁzx)]
—Min[m;* — a3”*, 3(m3* — a3*)] + 3m* + 2m,* + 2m;* = 24,

Max[-2(m* —ay*), 4(m ™ + ,31x)] + Max[=2(my* — ay*),3(m,* + .Bzx)]
+Max[m3x + B3x, 3(m3x eI B3x)] — 3m1x i Zmzx - 2m3x — 11,
2my* +4my* + 2m;* =12,

—Min[m,* — &y %, 2(my* — ;)] — Min[4(m,* — a,%), 5(m,* — a,®)]
< —Min[ms* — a3*,3(m3* — a3*)] + 2m* + 4m,* + 2m3* = 25,

Max[m,* + 8,5, 2(my* + B;)] + Max[4(my* + £,%), 5(my* + £,)]
+Max[mz* + B3, 3(m3* + B3*)] — 2my* — 4my* — 2my* = 11,
2m* + 2m,* =6,

—Min[3(m* — a;),—-m;* — ﬁlx] — Min[3(m;* — ay*), —4(m,”* + ,Bzx)]
+2m1x + Zmzx = 17,

Max[-m;* + a;%,3(m* + B4 )] + Max[—4(m,* — a,”), 3(m,”* + ,Bzx)]
\ —2my* —2m,* = 12.
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The linear system is,

(3mf +2my + 2m3 = 12,
2my + 4mJ + 2mj = 12,

2my + 2mj = 6.

Using Step 2, mg* = 2,m,* =1,m* = 2.

Hence, the nonlinear system can be written as,

( 12 —-Min[42 — af),—22 + BF)] — Min[3(1 — aF),—2(1 + B})]
—Min[2 — a%,3(2 — a¥)] = 24,

=12+ Max[-2(2 — a]), 42 + BH)] + Max[-2(1 — a7),3(1 + BF)]
+Max[2 + 5,32 + )] = 11,

12 — Min[2 — af,2(2 — af)] = Min[4(1 — a3),5(1 — a3)]
—Min[2 —a3,3(2 —af)] =25,

=12 + Max[2 + Bf,2(2 + BY)] + Max[4(1 + B5),5(1 + B)]
+Max[2 + B5,3(2 + BF)] = 11,

6 — Min[3(2 — aX), -2 — BX] — Min[3(1 — aZ), —4(1 + BX)] = 17,

\—6 + Max[-2 + af,3(2 + )] + Max[-4(1 — a3),3(1 + B3)] = 12.
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Using

\

Step 3, the absolute system is,

1 1

§|—“§C - 32 —-af) +2] +§|4(2 —ai) + 2(Bf + 2)|
1 1

+§|3(1 —ay) + 2065 +1)| +§(a§‘ -32—-a3)—2)

+%(2([3{‘ +2)— 42 —ai)) +%(2(ﬁ§‘ +1)—-3(1—aj)) +12 = 24,

1 1

>1=2(2 - af) - 4B + D) + 5 |-2(1 - af) = 3(8F + DI +
1 1
5185 =3B + 2 + 20 + 5 (4 +2) - 22— aD)

+%(3(3§+ 1) —2(1—a§))+%(/3§‘+3(/3§‘+2) +2)—12 =11,

laz = 1|

2
1 1
+§ —a§—3(2—a§‘)+2|+§(af—2(2—af)—2)

1
El—af -2 —-af) +2|+

1
1o (- aP 45 (e -32=af) - D +12 =25

1 1
SIBT = 2085 + ) + 21 +51-p5 — 1
1 1
#3518 = 3(BF + ) + 20 +5 (B + 28T +2)+2)

P D S B3 D 4D~ 12211

1 1
S1BT +3(2 = af) + 2|+ 313(1 — ) + 485 + D)

1 1
+t5 B 32 -ai) +2) +§(4(ﬁ§+ 1)-3(1-ad))+6=17,

1 1
Slat = 3(8F +2) = 2| + 3 |-4(1 — af) = 3(85 + D)

+%(ai‘+ 3(BF +2)—2) +%(3(35‘+ 1)—-4(1-af))—6=12.
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After simplifying it,
( 2|-2af + Bf + 6] + |-3a3 + 285 + 5| + 2|ad — 2|
+4af + 3af + 4af + 207 + 285 = 37,

2|af — 2(BF + 3)| + |—2a3 + 385 + 5| + 2|B5 + 2|
+2af + 2af + 4B + 3BF + 4B5 = 33,

* laX = 2| + |af — 1| + 2|a¥ — 2| + 3af + 9aF + 4a¥ = 49,
B+ 20+ BF + 1] + 2183 + 2| + 367 + 9BF + 465 = 23,

| = 3af + BF + 8| +| = 3aF +4B5 + 7| + 3af +3aj + B +4B5 = 25,

\laf — 3B — 8]+ | — 4ai + 385 + 7| + af + 4a5 + 35 + 35 = 33.
Solving the previous system using Step 4, Step 5, we have two solutions,

e The first fuzzy solution, where,

alx == 1,B1x - 0, azx - 4,ﬁ2x = 1, a3x = 1,’83x = 1,
/fl\ (m*, a%, ﬂl")\ /(2, 1, 0)\|
Xl = kfz) = (mZx' aZx' ,BZx) = k(lrll‘r 1))
X3 (m3x, a3x, ,83x)/ (2,1,1)
The verifications of solution is,

(3,51)®2,1,00(2,41D)® (1L,41D)D(21,1)Q®(2,1,1) =
(6,10,2) @ (2,11,4) ® (4,3,5) = (12,24,11),

(2,,00) ® (2,1,0) D (4,0,) ® (1,41 D (2,1,1) ® (2,1,1) =
(4,3,0) ® (4,19,6) @ (4,3,5) = (12,25,11),

(2,31D)® 21,0261 Q (1,41) @ (0,00 & (2,1,1) =
L (4,6,2) @ (2,11,10) & (0,0,0) = (6,17, 12).
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e The second fuzzy solution, where,

x_17 x_l x_77 x_6 x_21 x_8
' =1gh =ga =g b =gas =55k =1
Then,

17 1

s ()

/3?1\ / 1%, By \ 0%

| |

5 ~ I x| ( 77 6)

X, =\|Xx = , x, = —,=

2 kz/l | (my*, a, ﬁz)i 1205

X3 k . x/ (2 21 8)

(m3 'a3 'ﬁ3) 20 15

The verification of solution is,

(351)®( 5t 5>€9(241)®( 20" 5)69(211)@( 2(1) 185)

(6 52 14)@(2 211 23)@(4 61 18)_ AP
I5P5 :2015 P20I5 _(J ) )r

|e1ve(l Jounone(EYoarne(:t -

(4 37 2)@(4 73 7>@<4 o1 18) = (12,25,11)
)5 141 '2015 - ) )

2,17'9 ® (26181 23 5)69(000)@( 2(1) 185>
13

)@ (2 554 45 ) @ (0,0,0) = (6,17, 12).

5’5

166



5.4 Conclusion and Contributions

In this chapter, we resolved the near zero FFLS without external restrictions in order
to keep the nature of solution for consistency for FFLS. We found a new concept for
consistency which was called finite solution of FFLS. The min-max system and

absolute were applied to obtain the algorithm for solving an arbitrary FFLS.
We can summarize the findings in this chapter by the following contributions.

1- Provide the solution of near zero FFLS.
2- Adding new concept to the possibility of the FFSE.

3- Transfer the mix-max system to absolute system.
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CHAPTER SIX
SOLUTIONS OF FULLY FUZZY MATRIX EQUATION AND

FUZZY SYLVESTER EQUATION

This chapter develops new methods for solving fully fuzzy matrix equation (FFME)
and fully fuzzy Sylvester equation (#75£). In order to develop these methods,
methods where used in the previous chapters are applied, in which the solution is

obtained without any fuzzy operation.

6.1 Fundamental Concepts for FFME and FFSE

This section presents the definitions and theorems to develop methods for solving

FFME and FFSE.

Definition 6.1.1. A vec operator generates a column vector from a fuzzy matrix C by

stacking the column vectors of = (¢; €5 .o Cp) as
1
~ &,
vec(C) = (6.1)
Cn

Definition 6.1.2. Let A = (@;;) _and B = (b;)  be fuzzy matrices. The fuzzy

Kronecker product, is defined as follows

d,,®B d,,®B .. aln®§\
A & E — d21®B d22®B d2n®B ] (6.2)
dn1®g dn2®g ann®g
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Definition 6.1.3. Let A = (dij)nxm be a fuzzy matrix. The transpose fuzzy matrix A"

is defined as follows

AT = (&)

mxn’
Definition 6.1.4. The unitary fuzzy matrix is a square fuzzy matrix defined as
ﬁn - (ﬁij)nxn

(0,0,0) i#j,
uij =
(1,00) i=].

In matrix form, U, = (&;) _is represented as follows,

(1,0,0) (0,00) - (0,,0)
7[00 (100 - (©00))
(0,0,0) (0,0,0) - (1,0,0)

The next theorem investigates the multiplication between fuzzy matrices and unitary

matrix.

Theorem 6.1.1. Let A = (@;;) _ be a fuzzy matrix. Then,

Proof.

i- Assume AU = C,
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a (1,0,0) (0,0,0) - (0,0,0)

aj; Gy 0 Aim
a21 dZZ o dZm (OFOFO) (1!010) o (0,0,0)
é‘i'??’l.l amz o dmm (OFOFO) (0!010) o (11()’0)
611 512 61m
— 521 622 52m
Eml é"mz é"mm
where ¢;; is obtained as follows:
® ®
Cij = z i @ Tyj = z Gy ® iy | © (@i ® ;)
k=1 k#j
®
= [ D 2 ® 000 | @ (a; ® (10,0) = 3y ® (1,00) = a,
i#j
Then, ¢;; = d;;. Hence,
AU =4

Similarly, let UA = C then UA = C = A. Hence,
UA = A.

ii- Since #;; = 1i;; = (0,0,0) Vi # j, then,

ug=10". (6.3)
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Theorem 6.12. Let A=(a;) _ and X=(%;)  be fuzzy

where &;;, %;; are TFNs. U = (aij)nxn is a unitary fuzzy matrix. Then,
Vec(A X) = (TR A)Vec(X).

Proof. Using Theorem 6.1.1.

o)
>
I

o)
>
Q

then
Vec(A X)=Vec(A XU)=(U" RA)Vec(X),
but U7 = U, using Equation (6.3), then

Vec(A X ) = (U R A)Vec(X).

matrices

(6.4)

Theorem 6.1.3. Let A=(a;), ', X'=(%;)  ~where @; and%; are TFNs

U = (@), isaunitary fuzzy matri, then
Vec(XA) = (AT R U) Vec(X).

Proof. Using Theorem 6.1.1,

then,

Vec(XA)=Vec(UXA) = (AT R T) Vec(X).
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6.2 Solving Fully Fuzzy Matrix Equation
In this section, the P-ALS, SX = B, of FFLS in Section 3.2 is developed in order to
obtain the solution for FFME. The vectors X and B are extended to matrices X,,, and

By, respectively.

. - s = i_(~ \' _ a a pa\t
Consider the FFME 4 ® X,,, = B,,,, where 4 = (cli]-)id_=1 = (m§, ozij,[fij)i‘j=1 and
B — (7. \" = (mb b pb\" o .

B, = (bij)i,j=1 = (m}, aij’ﬁij)i,jzl are known positive fuzzy matrices,
= = b b pb b b pb
_ by1 .. bin (mPy,a?y,B01) . (minaln Bin)
Bpn=(: =~ :|= ; ; .
T T b b b b b b
bnl bnn (mn,l' a1, ﬂn,l) (mn,n: Anns ﬁn,n)

i G (=~ _ x x px\" - }
While, X,, = (xij)i,jzl = (m}, aij"Bij)i,j=1 are unknown positive fuzzy matrix,

I\ X113 o Xig (mivaiuPia) ... (Mindinbin)
Xn1 " Xnn (M1 %1, Bra) = (M @nn Ban)
The solution is obtained in three steps:

Step 1 Separating the FFME to FFLSs,

Assume that fuzzy vectors (%,,); and (Em)j, forj=1,..,n,

X1j / 7'211'
Gy =2 | and (Bn), =| P27 |
Jzle En]

Thus, we get the following FFLSs
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A® (xp); = (xpy); for j=1,..n (6.6)
Step 2 Constructing the P-ALSs for all FFLSs.

Assume the crisp vectors (x,); and (by,); forj =1,..,n,

b
mfj my;
. ~b
m:‘ctl mnj
x b
®1j ayj
(Xpm)j = : and (b,); = :
X
Unj an;
Bl Bh
x b
'an ﬁnj

Thus, the solution for all FFLSs in (6.6) can be obtained by the following P-ALSs for

j =Gl

S(xm)j 5 (bm)j;
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m
A1 G\ /0 .. 0 0 .. 0 Y
: '.. : E n'. E S ... E m-x
ap1  *° Qpn 0O - 0 0O - 0 Zl
<m11 m1n><a11 a1n> <0 0) asj
Muy 0 Mpn/ \An1 ** Anp 0o - 0 0(79:]-
ni Nin 0 .. O aj; . Qip x
< : : ) ( ) ( : : ) bia
Np1 * Npn o - 0 an1 = Qnn x
nj

m};

mp;

as;

= : . (6.7)

an;

B

By

Step 3 Collecting the P-ALSs in a matrix form.

The P-ALSs can be collected in one matrix form to obtain the solution of FFME as

follows, assume the crisp matrices X,,, and B,,, are

mi;\ /mi, miy,

L))
ati\ /212 ain

Xm = ((xm)l (xm)z (xm)n) = ( : > ( : )( : )
a;fl “1’162 afm

(ﬁ_ﬁ) (ﬁ_i%) (ﬁ_fn)
gx) \pz)  \gx,

and
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myy \[ M2 Min
b 'b
mnl ng m?m
b b b
a1 25V) A1n
By = ((bm)1 (bp)z - (bipdpn) = b b b
anl anz Ann
b b b
Bll BlZ :Bln

1) \Brz2) \Brn
Hence, the solution of all FFLSs can be obtained by the following matrix form,

SXm = B,

<a11 aln) (0 0) (0 0)
An1. * Qnn 0o - 0 0O - 0
(au a1n> (0 0>
Ap1 0 App 0 -0
<n11 nln) (0 0) <a11 a1n>
Ny s, -l 0 - 0 An1 " Qan

(ﬂ;’l) (ﬁfé) (/3{2)
g \ps) - \Bi

d1in
( : ( : > . (6.8)
aby
(/{ﬂ) (ﬁfz (ﬂfn>
AV ARV

By finding X,,, = S™'B,, we can find the crisp matrix X,,, which is equivalent to

fuzzy matrix X,,, so the solution of 4 ® X,, = B,, is obtained without any fuzzy

operation.
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Also, If the system has infinitely many solutions as in Section 3.4, fuzzy row
reduced method can be applied for each P-ALS in Equation (6.7) instead of using

Step 3.

The next example is solved by matrix form Equation (6.8) in Step 3 when FFME has

unique solution.

Example 6.2.1. Consider the fully fuzzy matrix system A ® X,,, = B,,,,

<(5,1;2) (6,4,3)> (miy,a11,B11) (Mmizaiy Biz)
X

(331) (7,42) (mg,p“%c,pﬁ;,ﬂ (mg,zfag.z'ﬂ%,z)

<(72,77,65) (54,45,71))

(67,82,46) (46,58,49)

The positive solution for FFME can be solved using Equation (6.8),

=G = D= 2)

doy 696D 6
o o]-[E9EHED)
v \EDEHGY

|A| = 17, using Theorem 3.1.1, |A| # 0, then |S| # 0, hence the system has unique

solution,
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then the fuzzy matrix solution X,,, is,

X~m s =
(mg,p 055(,1» 356,1) (mf,z' af,z' ﬁéc,z)

(mfl’ afl’ ﬁf,l) (mfZ' afZ’ Bix,Z) ((61514) (61117)>

(732) (432))
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Next remark shows that the scenarios of FFME which are similar to the scenarios of

FFLS in Chapter Three, Four and Five are solved by same methods.

Remark 6.2.1. The methods of solving FFLS can be extended to solve FFME as

follows:

a- If the matrix A has near zero TFNs, then the positive solution X,,, can be obtained
by replacing the matrix S in the left hand side in Equation (6.7) by the matrix J in
Equation (4.20). Also, if the system has infinitely many solutions, fuzzy row
reduced method can be applied for all FFLSs after Step 2

b- If the matrix A has near zero TFNs, then the near zero solution X,,, can be obtained
by applying Step 1 to produce the FFLSs, then solving them separately using the

method in Section 5.2.

The next example was solved by Otadi and Mosleh (2012), and they obtained a

unique solution. However, the proposed method provides infinitely many solutions.

Example 6.2.2. Otadi and Mosleh, (2012) consider the following FFME,

(2,3,49) (1,2,4) (af1bincfh)  (afaz biacly)
&
(=2,-11) (=2,1,2) (ai‘,p b1, Czj‘c.l) (a{z, b7 056,2)

(5,14,32)  (4,17,36)

(-16,2,13) (—18,1,14)

where ; ; = (a;;%, by ;" ¢;;*) = 0,i,j = 1,2.
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Familiar to Example 5.2.1, because we follow (m, a, 8) form for TFN in this study,
the example is converted to form (m, a,8). We will use 4’, B;, and X, to form

(a,b,c), while 4, X,,, and B,, to form (m, a, 5).

i <(m%1»“il,1'5fl) (m%,z'“fz'ﬁfz)> <(3,1,1) (2,1:2)>
A= = ,
(mgy,aly, Bey) (md, al,, BE,) (-112) (131
_ <(mi’,1,ai’,1,ﬁf’,1) (mlf,z'“fz'ﬁfz)> ((14,9,18) (17,13,19))
Bm: == y
(m31a31,B31) (M32 032 B32) (21811) (1,19.13)

X101 Xip (miyafs,Bfy) (miyais Bi2)
o = .
Xo1. X2 (m3p 31, B51) (M2 032 B32)
Using Remark 6.2.1a, the block matrix J is constructed as follows,

A=y Bpma(] wa(l3)

then,

(e (Gen e
AR RVES



Because |/| = 0, the system is divided for two linear systems in order to obtain the

solution using fuzzy row reduced method in Section 4.3.

() )

(4)

and

CAN (¢
G =| () | em2=] (1) |
PR
(11) (13)
The first linear system is produced as follows

() (e = (b1,

using fuzzy row reduced method in Section 4.3,
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( 3mi, +2m3, = 14,

-mi, +mz, =2,
mii+myq,+2af;, +a3; =9,
mi,+3m3, + 2% + 265, = 18,
mi,+2m3, +4PF, +4B5, = 18,
2mi, + myq + By + 265, = 11,

(lfl Zo,ﬁfl ZO,mfl—afl 20,

Ka;l 2 O,ﬁéc‘l 2 O,mil - a%c'l 2 O,
then X, ; and X, ; are,

%11 (mfp afvﬁﬂ) (22-6,1) i
=3 = ' 0 e [E' 2]
Fee (i) (4,~1 + 26,1)

Similarly, the second linear system-is produced as follows,

() (tm)2 = ()2,

CHED e )

D 6o G2

Using fuzzy row reduced method,
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( 3mi, +2m3 =17,
-mi, + my; =1,

mi, + my +2ai, + a;, =13,
mi, +3m; + 27, + 265, = 19,
mi, +2m3 + 4B5, + 455, = 19,

2mi, + my + B, + 265, = 13,

afz 2 O,ﬁfz Zo,mfz_afz 2 0,

kaéc‘z 2 O,ﬁéc‘z 2 O,mg_a%ﬁz 2 0,

then ¥, , and X, , are,

X12 (mfz' “fz'ﬁfz) B3-1n1)
= - , n €[0,2].
X2 (mg,z' az ) 352) (4,21,1)
Hence, the fuzzy system has infinitely many solutions,
~ ~ ] ] X X X X X X
X1\ [ *1,2 X1 X1,2 (m1,1' ai1, 31,1) (m1,2' ai o, .31,2)
X G = =

~ % X X (mx ax ﬁx ) (mx ax ‘Bx )
X2,1 2,2 21 2,2 2,00 %21,P21 2,20 %22,P22

22-6,1) @GB3-1n1)

>
Q
[

where, 8 € [%, 2],m €10,2].
(4,-1+26,1) (42n,1)

While, X ; in the form (a, b, ¢),
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(al,lx» b1,1x» C1,1x) (az,lx, b2,1x' Cz,1x)

%= _
(al,fo b1,2x’ C1,2x) (az,zx, bz,zx: Cz,zx)
(6,2,3) (m,3,4)

, Where 6 € [%,2] and n € [0, 2].

Otadi and Mosleh (2012) provided the below unique solution as mentioned before,

~1 ~1 x X x x X x

, X111 X1,2 (ay,1%b117,¢11™)  (az1™*, ba1”,c21%)
Xt = =

~1 =1 X X X X x x

X21 X22 (a12%,b1p7,¢12%)  (az2%, by2”,C20")

(1,2,3) (1,3,4)

(3,4,5) (2,4,5)
Which represents in the case of 8 = 1,7 = 1in Xvé as a particular solution,

(al,lx' bl,lx' Cl,lx) (az,lx' b2,1x1 C2,1x)

(a1,2x: b1,2x: C1,2x) (az,zx' bz,zx: Cz,zx)

(1,2,3) m, 3,4) (1,2,3) (1,3,4)

(5—2(1),45) (4-2(1)4,5) (3,45 (24,5))

The first fuzzy solution %," € )?t' and x; € X [ are represented in Figure 6.1. and

Figure 6.2. to compare the interval of solution for FFME.
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1.0

0.8

0.6

0.4

0.2

Figure 6.1. Representation of ;" = (1,2,3) at )?t' using Otadi and Mosleh

(2012)’method.

Figure 6.2. Representation of x; = (6,2,3) ,0 € E 2] at X /; using the proposed

method.

Table 6.1 compares between the proposed method and Otadi and Mosleh

(2012)’method.
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Table 6.1

Comparison of the solutions set X; and X,.

~

Xg

Fuzzy

operation

Number of

solution

Method

No fuzzy operation.

Infinitely many solutions.

Inversion matrix method.

Need to compute 4 ® X,,..

Unique solution set.

LP method.

As noted In Table 6.2, no fuzzy operation is used in proposed method, while Otadi
and Mosleh (2012), required to compute 4 ® X,,. In addition, the general form
solution shows that the new method provides infinitely many solutions, while the
original work of Otadi and Mosleh (2012) provided a unique solution. Lastly, the

proposed method obtains the solution using the inversion matrix method, while Otadi

and Mosleh (2012) found the solution using LP method.

The next section provides the solution for important matrix equation in control

theory, Sylvester matrix equation, all coefficients are replaced by TFN to construct

FFSE.
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6.3 Kronecker Product for Solving Fully Fuzzy Sylvester Equation

This section develops the new method for solving FFSE. The rules of Kronecker

product and vec operator in Section 2.1.2 are used to provide the solution.

Consider the following fuzzy matrices 4 = (a;;) X = (%) . B=(bj)

and € = (Eij)nxm. U is fuzzy unitary matrix.
Step 1 Converting the FFSE to FFLS.
By taking vec operator for both sides A X + X B and C we have,
Vec(AX + X B) =Vec(C),
using Theorem 6.1.2,
Vec(AX) = (UX A)Vec(X),
using Theorem 6.1.3,
Vec(X B) = (BT R U) Vec(X),
then,
Vec(AX+XB)= (TR A)Vec(X)+ (BTRU) Vec(X) =
{(IRA)+(BTRU)}Vec(X) = Vec(C).

Step 2: Solving the FFLS by the proposed methods.
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Since {(T X A) + (BT X U)} is a fuzzy matrix, Vec(X ) and Vec(C) are fuzzy
vectors, the previous methods for solving FFLS can be applied to solve fully fuzzy

Sylvester equation.

The next example provides fully fuzzy Sylvester equation. This FFSE is transferred
to FFLS and solved by associated linear which has been discussed in Section 3.2.

The verification of solution is computed.

Example 6.3.1. Consider the fully fuzzy Sylvester equation,

AX+XB=¢,
where,

(6,6,7) (54,3) (7,2,3)\

(8,4,7) (54,5)
A=< ),B: (9,32) (7,1,7) (5,3,1)

9,6,1)  (7,2,7)
(8,53) (523) (1,1,7)

<(259,316,349) (195,214,253) (193,237,286))
C~_

(241,307,386) (180,230,228) (208,269,274)

_ (mfl, ais 5f1) (mfz, ai 5f2) (mfg,, ais, ﬁfﬁ)
X = .
(m§,1’a§,1’3§,1) (miz’aiz’ﬁiz) (mf,s'af,&ﬁ%)

The positive solution will be obtained without fuzzy operation.

Using, Step 1 the FFSE is converted to FFLS as follows,

187



Vec(AX+XB)=(URA)Vec(X)+ (BTRU) Vec(X)

={(IRA)+ (BTRU)}Vec(X) =Vec(C),

s0, the pervious equation requires the following matrices Us, (T X 4), Vec(X ) ,BT,

U,, (BT X U) and Vec(C).

The unitary fuzzy matrix U, is,

(1,0,0) (0,0,0) (0,0,0)
U; =1 (0,0,00 (1,0,0) (0,0,0) |,
(0,0,0) (0,0,0) (1,0,0)

Kronecker product 75 X A is as follows,

(1,0,0) (0,0,0) (0,0,0) (8,4,7) (5,4,5)
U; XA =1(000) (1,00 (0,0,0) &( )
(0,0,0) (0,0,0) (1,0,0) 9,61) (7,2,7)

<(8,4,7) (5,4,5)) <(0,0,0) (0,0,0)) (0,0,0) (0,0,0))

9,6,1) (7,2,7)) \(0,0,0) (0,0,0)/ \(0,00) (0,0,0)

(0,0,0) (0,0,0)/ \(961) (7,27)/ \(0,0,0) (0,0,0)

<(0,0,0) (0,0,0)) <(8,4,7) (5,4,5)) ((0,0,0) (0,0,0))

<(0,0,0) (0,0,0)) <(0,0,0) (0,0,0)) (8,4,7) (5,4,5))

(0,0,0) (0,0,0)/ \(0,0,00 (0,00)/ \(961) (727

The vec-operator of fuzzy matrix X is
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Vec(X) =

(mfy afs, Bi1)
(M3, a1, B31)
(M3, aia i)
(M35, a3, 3)
(mfs afs Bis)

(m%‘s, “{3'323)

The transpose of matrix B is

/(6,6,7) (9,3,2) (8,5,3)\

BT =| (543) (717 (52,3) |

(7,23) (531) (1,1,7)

The unitary fuzzy matrix U, is

(1,0,0) (0,0,0)
(0,0,0) (1,0,0)

Kronecker product BT X U, is as follows,

(6,6,7)
((0,0,0)
(5,4,3)
((0,0,0)
((7,2,3)

(0,0,0)

(0,0,0)) ((9,3,2)

(6,6,7) (0,0,0)

(0,0,0) (7,1,7)
(5,4,3)) ((0,0,0)
(0,0,0)) ((5,3,1)

(7,2,3) (0,0,0)

189

(0,0,0)) <(8,5,3)

(9,3,2) (0,0,0)

(0,0,0)) <(5,2,3)

(7,1,7) (0,0,0)

(0,0,0)) <(1,1,7)

(5,3,1) (0,0,0)

(0,0,0)
(8,5,3))
(0,0,0)

(5,2,3)) |
(0,0,0))

(1,1,7)




The vec-operator of fuzzy matrix C is,

(259,316,349)
(241,307,386)
5 (195,214,253)
Vec(C) = .
(180,230,228)

(193,237,286)

(208,269,274)
Hence, the Sylvester equation is transferred to the following FFLS.
Based on Step 2, the method in Section 3.2 is applied to solve the produced FFLS.
Vec(AX+XB)= (Us XA+ BT X U,) Vec(X) = Vec(C) =

(14,10,14) (545  (932)  (0,00)  (853) (0,0,0)
961 (13814) (0,000 (932)  (0,00) (853)
(543)  (0,00) (15514) (545 (523) (0,0,0)
000  (543) (961 (14314) (0,00 (523)

(7,2,3) (0,0,0) (5,3,1) (0,000 (9514) (54,5)

(0,0,0) (7,23) (0,00 (31 (961 (83,14)
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(mfy iy, Bi1)
(31, a31,B51)
(mi, afa Bi2)
(M35, a3, )
(mis afs Bis)

(m§,3'“§,3:5§,3)

(259,316,349)
(241,307,386)
(195,214,253)
(180,230,228)
(193,237,286)

(208,269,274)

The P — X for P — FFLS can be obtained, using the P-ALS in Section (3.2),

14 5
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15 0
A_ios
\70
0 7
10 4 3 0.5 0
/680305\‘
|4 0 5 4 2 0
M_046302
2 0 3 05 4
0 2 0 3 6 3
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259
/241
b | 195

180
193
208

316
/307
| 214

230
237
269

\

@

J

b_

B

N~N—  —

349
386
253
228

\286
274

S~—

,then B =

o~ o~ T

259
241
195
180
193

208
316

307
214
230
237

269
349

386
253
228
286
274

|A| = —355455, then using Theorem 3.1.4, |A| # 0, then |S| # 0.

Hence, the solution is obtained by X = S71B,
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14

13

10

14 0 5 O

9

5

9

0 0 14 5

0

14

14

9 14 0 5

5

259
241

195
180
193
208

316
307
214
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269
349

386
253
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286
274
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Hence, the crisp solution X is

~ Py o |
OO~ mMmOo N O own
~_ ~ A 1

— ~
N O — N ¢ AN

X
2,3

B

Biz

B2,
Bis
B2

T q NN om < = RN
- . > N 28 2 — — o o o ™ — — [9\] N [42]
Red RA R RN R RN Red RN R RN R Ry R RN R Ry R
E E &8 &8 &g & S T 8 8 8 3 SN NN .
/lll\ e ———————— /  ————
Il
S
S
O 0] 0~ o (@) D~ N O < o (o]
Il
e SO S SO S S - e “ q
Rd o~ — X\ - N R RN R R
S S £ g g g S 8 .8 S
Il
S

194



Thus, the Vec(X) is,

(mfl» aiy :3f1)

(6,2,7)

(mf'l, “%,1:356,1) (8,6,9)

| (miy afa B7) (7,4,1)
Vec(X) = -

(m32, a3z, B32) (33,5)

(mf3, a3, 3f3) (9.8,4)

(7,5,2)

(m§3, azs, 356.3)

Then, the fuzzy matrix solution X is,

4 (mfl' ata ﬁf1) (mfZ» ais 3f2) (mf3, ais ﬁfﬁ)
42
(m?zc,p “5,1’,356,1) (mg,z'aiz»ﬁiz) (m;sra;&ﬁis)

((6,2,7) (7,4,1) (9,8,4))

(8,6,9) (3,3,5) (7,52)
The verification of solution

) <(88,102,183) (71,87,97) (107,153,140))

AX =
(110,112,188) (84,105,72) (130,175,108)
<(171,214,166) (124,127,156) (86,84,146))
XE == )
(131,195,198) (96,125,156) (78,94,166)
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then,

(259,316,349) (195,214,253) (193,237,286))
=C.

AX+X§:<
(241,307,386) (180,230,228) (208,269,274)

6.4 Conclusion and Contribution

In this chapter, we proposed new methods to solve FFME and FFSE. We showed
the pervious methods developed in Chapters Three, Four and Five for solving FFLS,
can be developed for solving FFME. The vec operator and Kronecker product were

used to transfer FFSE to FFLS.
We can summarize the findings in this chapter by the following contributions.

4- Transfer the FFME and FFSE to equivalent FFLS.
5- Obtain the unique and infinitely many solutions of FFME and FFSE.
6- Examine the existence of solutions for FFME and FFSE before solving the

system, using the pervious discussion for FFLS as Section 4.3.
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CHAPTER SEVEN
SOLUTIONS OF FUZZY LINEAR SYSTEMS BASED ON

TRAPEZOIDAL FUZZY

In all previous chapters the solutions of fuzzy systems are presented with triangular
fuzzy numbers. In this chapter, the solutions of LR — TFLS with trapezoidal fuzzy
numbers are constructed. It shows that the previous developed methods can be
employed on other fuzzy numbers. For this purpose an associated linear system is
established for LR—TFLS. Also, the sufficient and necessary conditions of LR-TFLS
to have a fuzzy solution are investigated based on the fuzziness of the solution. In
addition, the possibilities of the solution are classified (i.e., unique solution, infinite
number of solutions, no solution). Lastly, in the case of non fuzzy solutions,

a minimization problem is proposed to provide the nearest approximation solution.

7.1 Fundamental Concepts

This section presents the fundamental concepts for developing new methods for
solving LR — TFLS with trapezoidal fuzzy numbers.

Definition 7.1.1. Consider the matrix A = (a;;) . The matrices P and N are

defined according to the sign of a;; where,

+
a;j @i =20,
P=(a' =
( bl nxn

0, al-j < 0,

0, al-j = 0,
N=(a5) =

nxn

al-‘j, al-j < 0.
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The next corollary is needed in order to find the structure of the inverse of the block

matrices. It is based on Theorem 2.1.2.

Corollary 7.1.1. Assuming P and N are matrices with a common size. If P and

(P — NP~IN) are invertible in the block matrices F and R:

o))

then the inverse of matrices F and R are

fi f2

F 1= , (7.1a)
fo f
h —f2

R = , (7.1b)
—e] Ja

where f; = (P — NP IN)"Yand f, = —=f; NP1

Proof. Suppose P = A =D and N = B = C in matrix H in Equation (2.3), then

1 (P —NP7IN)! —(P—NP~IN)"INP! i b

T —(P— NPIN)"INP? (P —NPIN)? ) i fi |
Replace matrix N in Equation (7.1a), by matrix - N in f; and f, then
(P=(=N)P7'(=N))"' =(P—NPTIN)"' = f,
—fi(=N)P™' = f NP~ = —f,,
) (P —NP7IN)! (P — NP~IN)"INP~! i —f
o (P —NPIN)INP? (P—NPIN)1 ) - h
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The next section provides method to solve LR-TFLS using an associated linear

system.

7.2 Solution of Left Right-Trapezoidal Fuzzy Linear System

This section discusses the solution of LR fuzzy linear systems with trapezoidal fuzzy
numbers. We introduce new computational method to solve the LR-TFLS using the

equivalent linear system.

Consider the LR-TFLS A® X =B, where A= (a;)nun X = E)nxa and
Ei = (Ei)nxlr
fj = (m}c'n]?c' 6{jx'ﬁ]x) and Ei = (mlb’nlb’alb' lb)

The n X n LR-TFLS can be written as

(5}
Zaij ®i] = E],VL = 1,2,...,”
J=1

@

> ay ® (my,ndj,ar, 7) = (mb,nf,ab, ) Vi=1,2,..,n (7.2)
j=1

The solution is obtained in five steps.

Step 1 Given a;}, a; ;.

Let,

Cl+ aij = 0,
ai_,j, aij < 0.

Clearly, either a;'; = 0 or a;; = 0 (or both).

Then, af'; + a;; = a;j and (a;;) (a;;) = 0.
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Step 2 Assuming m;; and n;; according to the sign of a;;.
m;‘and nj° are written in piecewise function using Equation (7.3).

+ X
ai’jmj , Clij = O,
m = (7.4)
— X
a;n;, a;<0.

Thus,

a _ ,+ X — X
mi; = a; ;m; +a;;n;. (7.5)

Since (ai;m¥)(a;;n}) = 0.
Similarly,

+ X
a; in;, aj =0,
nf = (7.6)
- X
a; ;my, a; < 0,

since (a;;m?")(az;n) = 0, then

i

a __
n;; = aj;

n' +a; mf. (7.7)

Step 3 Assuming a;’; and B;; according to the sign of a;;.
The mean values ajand B are functionalized by piecewise function using
Equation (7.3).

+ X
a; o, a2 0,
al; = (7.8)

—al_']ﬁ]x , aij <0.
Since (—a;;af)(a;; Bf;) = 0, then

a — g

(Il']

+ p—
i'jaf —aj; 3{,1]'- (7.9)

Similarly,
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i,j =
& = (7.10)
al-_‘ja]?‘, a;; <0,
therefore,
Bl = aiiBf—ai;af. (7.11)

Because ( a;;B7)(—a;;af) = 0.

Step 4 Writing aq;; ® X; in Equation (7.1) as piecewise function using
Equations (7.4), (7.6), (7.8) and (7.10):
&5 — a a a a
ai; ® % = (mj, nij, iy, Bi;)

(afymf, aimf, afjaf, afiBf), @i 20,
- (7.12)

— X B X - X - X
(agmf agms, —ag;Bf, —ai;af), @i <0

Using Equations (7.5), (7.7), (7.9) and (7.11), a;; @ %; in Equation (7.12) may be

written by two TZFNs, where at least one of them is zero,

~ (At o X o+ ox o+ X+ px - X =X = pX = X
a;j ® % = (afymf, afmf, afjaf, af ;7))@ (aymf', agmy, —ag 87, —ai ;).

Then using Equation (2.9a),

aij ® fj =
— + X - X + X - X + X - X + X - X
= (ai,jmj +a;ny,a;ing +a; ;my, a; e + —ai,jﬁj, ai'jﬁj + —a;;a; ) (7.13)

Step 5 A4 ® X = B can be represented using Equations (7.1) and (7.13):

n
+ X — 20X + X - X + X - X + X —aT.aX
Z(ai,,-mj +apnf, almf + apmi, afjaf +aiBf af B+ —aaf)
=1

(7.14)
= (m%’,n%’,af’, lb) Vi=1,2,..,n.

We obtain the following linear equations:

201



n

D (atymy +agm) = m?, (7.15a)

j=1

n
Z(“fj"fc +aj;mf) =n?, (7.15b)
j=1

D (aljaf —aipy) = a, (7.15¢)

n
Z(a;jﬁjx_a;ja]x) = Bb. (7.15d)
j=1

Solve the linear system in Equations (7.15a,b,c and d) to find mf,n{;, af and
,B}C,Vj =12, ..,n
The next theorems transform the LR-TFLS for two independence crisp linear

systems.

Theorem 7.2.1.
i. The mean values m* and n* can be obtained using the following independence
2n X 2n linear system:

{me + Nn* = m?,

7.16
Pn* + Nm* = nb, (7.16)

ii. The spread values a* and f* can be obtained using the following independence

2n X 2n linear system:

Pa* — NR* = b'
@ —Np=al (7.17)
PB* — Na* = f°,
where,
— + — -
b= (ai'j)nxn N = (ai'j)nxn'
Proof.
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i. To find the mean values, using Equation (7.15a),

n n n

+ X - X\ + ..X i b P
Z(ai'jmj + ai,jnj) = Z a; ;jm; + Z a;n; =m;,vVi=12,..,n,
j=1 j=1 j=1

then,
P m* + N n¥ = mP.

Similarly, using Equation (7.15b),

n n n
+ X - XY — + x — X — b i —
Z(ai'jnj + ai,jmj) = z a; jn; + Z a; ;m; =mn; ,Vi=1,2,..,n,
]:1 ]=1 ]=1

then,

Pn* + Nm”* =nf’,

which provides the following linear system:

{me+Nnx=mb,
Pn* + N m* = nP.

Hence, the mean values m* and n* are obtained using the above system.
ii. To find the spread values, using Equation (7.15c¢),
n n n
Z( aj;a — ai_,jﬁ]?‘) = Z aijaf — z a;;B; = a?, Vi=1,2,..,n,
j=1 ]=1 ]=1
then,
Pa*—Np* = ab.

Similarly, using Equation (7.154d),

n

n n
Z( a;fjﬁ]?‘—al-_’jaj‘) = Z a{fjﬁf — Z —a; o = B vi=1,2,..,n,
j=1 j=1

j=1
P B* — N a* = P,
then,
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Pa* — N * = a?,
P B* — N a* = BP.
Hence, the spreads values a* and 8~ are obtained using the above system.
The following remark finds the solution of mean values and spread values in matrix

form, independently.

Remark 7.2.1.

i. The solution for the mean values m* and n* of LR-TFLS is obtained using block

(GG

ii. The solution for the spreads values a* and B* of LR-TFLS is obtained using

matrix F as follows:

block matrix R as follows:

P —N\ /a* al
( )( ) . (7.19)
—N P 'Bx ,Bb
Proof. The proof is straight forward from the Theorem 7.2.1.
Using the above discussion, the associated crisp linear system for LR-TFLS is
introduced in the below definition, using the matrices P,N and vectors
m*, n*, a*, B*, mP, n?, a® and SP.

Definition 7.2.1. Consider the following linear system,

= . (7.20)



This linear system is called the associated linear system (LR-ALS) of LR-TFLS.
The following theorem shows the relation between the solution of LR-ALS and

LR-TFLS.

Theorem 7.2.2. The unique crisp vectors solution m*, n*, «* and * of X in LR-ALS
and fuzzy solution X of LR-TFLS is equivalent.
Proof. Equation (7.20) can be written as
(Pm*+ Nn*+0a*+08*=m>,  (Pm*+ Nn*=mb,
Pn* + N m* + 0a* + 08* = n?, Pn* + Nm* =nb,

] — <

0m* + 0n* + Pa* — NB* = a?, Pa* — NB* = a?,

L0 m* + 0n* = Na* + PB* =a?, \ P*— Na* = a?,
which is equivalent to Equations (7.16) and (7.17). Moreover, it is clear that the

system has a unique solution if |T| # 0. O

The next example is obtained in Nasseri and Gholami (2011). The same example is
solved to show the efficiency of the proposed method in the case of unique solution

for LR-TFLS. The similar solution is obtained.

Example 7.2.1. Nasseri and Gholami, (2011) consider the following LR — TFLS,

(1 ® (mic’nic’ af' :Bic) @ 1 ® (m%c,n%, a%C' .Béc) @ -1 ® (m'f’fJ Tl%c, a%c, .B?ic)
= (6,11,4,4),

1 ® (mf, n:JLC’ aic, f) @ -2 ® (m%'l n%l a%:l 56) @ 1 ® (m?)f, n%C’ aéc' ?Q’C)
= (-11,-5,4,7),

2Q@ (mi,ni, a1, B1) ®1Q (mz,n3,a3,p7) @ 3 & (m3,n3,a3, B3)
\ = (_7F 4! 7! 8);
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where &, = (m;*, n;*, «;*, p;*), i =1,..,3 are arbitrary trapezoidal fuzzy
numbers.
The LR-TFLS may be written in the following matrix form:
1 1 -1 (mi,ng, a1, BT) (6,11,4,4)
1 -2 1 \ ® [ (mz,n3, aé‘,ﬁé‘)\ =| (-11,-5,4, 7)\| :
2z 1 3 (m3,n3, a3, B3) (=7,4,7,8)
The crisp matrices P and N are defined using crisp matrix A, as follows:

S Y S,

Lt

The block crisp matrix T is then constructed as follows:

—
= U
~ =
(@) (e]
(@) (o)
_/

o
o
!
=

O 0 -N P

1 1 0 0O 0 -1 0 0 O 0 0 O

(1 0 1) (0 -2 0 ) 0 0 O 0 0 O

2 1 3 0 O 0 0 0 O 0 0 O

0O o0 -1 1 1 0 0 0 O 0 0 O

(0 -2 0 > 1 0 1 0 0 O 0 0 O

_ 0O O 0 2 1 3 0 0 O 0 0 O
0 0 O 0 0 O 1 1 0 0 0 1 ’

<O 0 0) 0 0 O 1 0 1 0 2 O

0 0 O 0 0 O 2 1 3 0 0 O

0 0 O 0 0 O 0 0 1 1 1 0

<O 0 0) 0 0 O 0 2 O 1 0 1

0 0 O 0 0 O 0 0 O 2 1 3

and
|T| =169,

then the system has a unique solution since |T| # 0.
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The crisp vectors m*,n*, a* and B* are made using fuzzy vector X to construct the

crisp block vector X.

The crisp vectors m?, n?, a® and g are made using fuzzy vector B.
m? / 6 \ ny / 11
b= m? ekt b= nk L5

k ), L k /’
ml3’ =7 né’ 4

=

Aol el )
AN WA

thus, the crisp vector B is constructed as follows:

207



1:/7 \“} >~ -~
o = i N ¥ ¥ 0~ ¥ N~ ®

N

D ~ ~ S—

Qe QN Qo Q QN Qm Q QN Qm Q QN Qe

< < g S 3 3 Q Q Q
m m I\m / ~ / e / 2
Il
=
< Q Q Q

- Y
/lll\
I
q

B,

Thus, the original LR-TFLS is equivalent to the LR-ALS, TX

n3

X
1

a;
az

X

1
X

2
X
3

-1 0 0 0 0 0 O

0

0

0 0 00 0O
1 1.0 0 0 1
1 01 0 2 0
21 3 0 0 O

0 01110

3
0
0
0
0
0
0

0 2 01 01

0 0 02 1 3

By computing X = T~1B, the crisp solution for the linear system is
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1
mj
3
m my
x m§ 3
ny 3 _4
nj —2 n3 —2
X=T"'B= = orx = =
(lf 1 af 1
x 2 aéc :
as o 1
1 2
ax
; . (1
2 X
By 1 ; 1
B3
1
B3

By collecting the fuzzy solution X according to the corresponding entries of each
vectors m*, n*, a* and £*in X, X is then given as follows,
(mi,ny, af, Bi) (1,3,1,2)
X=| (m3,n3, a3, é‘)\ = B421) \
(m3,n3, a3, B3) (-4,-2,1,1)

The proposed method is compared to Nasseri and Gholami (2011)’method, as shown

in Table 7.1, in terms of fuzzy operation, the used system and size of systems.
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Table 7.1

Comparison between the proposed method and Nasseri and Gholami (2011) 'method.

The proposed method Nasseri and Gholami (2011)’method

Fuzzy operation No fuzzy operation. Computing associated triangular fuzzy
number and particular form.

The used system Matrix form. The LR-TFLS transformed to FLS.

The size of system Large systemas n = 10. All examples do not exceeded n = 3.

As shown in Table 7.1, in the proposed method, the LR-TFLS is transformed to
associated linear system, where the solution can be obtained by matrix inversion
method, in which no fuzzy operation is used. While Nasseri and Gholami
(2011)’method computed the associated triangular fuzzy numbers and particular
form of fuzzy numbers to provide FLS, then used the Friedman et al.(1998)’method
to provide the solution in particular form of fuzzy number, then develop the solution
for trapezoidal fuzzy number. The proposed method can solve any size of LR-TFLS
regardless of the size of matrix A as n = 10 in Example 7.2.2, while in Nasseri and

Gholami, (2011)’method, the size of matrix A is not more than n = 3.

In Examples 7.2.2, we show that the efficiency of the proposed method in obtaining
a solution for large systems, where all of the examples in Nasseri and Gholami,
(2011), Allahviranloo et al. (2012a,b, 2013) are illustrated where n = 2 or 3. The
details of the proposed method and verification of solution are provided in

Appendix C.
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Examples 7.2.2. Consider the following 10 x 10 LR-TFLS,
(mi,n7, af, B1)
(m3,n3,a3,B7)

(m3,n3, a3, B3)

7 8 4 8 -3 6 7 8 4 4 (mi,ni, az, Bs)
6 7 -8 4 7 9 0 3 2 7 (m3,n3, ag, B3)
7 -3 6 7 -7 1 4 7 9 0 ® (mX,nZ, af, BX)
7 9 0 5 7 5 0 3 3 -7 (m%,n%, aZ, B)

(m3 3, o, B3)

(mg,ns, a3, B3)

-3 —6 5 ' 0 4 =3 7 2 0 4 .
(mio, Ny, @10, Bio)

(=167,23,122,226)
(—136,80,174, 120)
(—177,22,128,199)
(—168,98, 224, 253)
(51,207,216,151)
(=222,13,197,273)
(—83,90,205, 148)
(—145,51,216,184)

(=109, 13,140,167)

(=205, —49,96,231)

then the fuzzy solution, using the proposed method is given as follows:
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(m{,n{,ai, i) (—1,8,9,0)

(m3,n3,a3,B3) (2,3,7,7)

(m3,n3, az, f3) (—10,-9,3,6)

(m3,ng, az, By) (=7,5,3,6)
_ (ms, n3, as, Bs) (0,3,6,1)

) (mg,ng, ag, Bg) ) (0,0,0,0)
(m7,n7,a7,B7) (—4,6,6,1)
(mg,ng, ag, B5) (—6,-6,1,8)
(mg,ng, asg, B3) (=2,0,4,8)

(mio, N10, @10s Bio) (3,5,0,1)

In the next section, the fuzziness of the solution is investigated, since the exact

solution may be a non fuzzy solution.

7.3 The Sufficient and Necessary Conditions for Obtaining A Fuzzy Solution to

LR-TFLS

Sufficient and necessary conditions is constructed to check the fuzziness of solution.
In doing these conditions, the sub-vector solutions m*,n*, a* and g* for LR-TFLS
are required.

The inverse of matrix F in Corollary 7.1.1. is used to provide the sub-vectors

solutions m*, n*, a* and g* for LR-TFLS in the Theorem 7.3.1.
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Corollary 7.3.1. Let P and N be crisp matrices in common size. If P71 and (P —

NP~IN)~1 exist, then:

I- The sub-vectors m* and n* are computed independently as follows:
fim? + fon? =mX, (7.21a)

fom? + fin? =n*. (7.21b)

Ii- The sub-vectors a* and g* are computed independently as follows:
fia? — £,B° = ¥, (7.21c¢)

f1B® = foa® = B*. (7.21d)

Proof.

i- Apply the inverse of matrix F in Equation (7.1a) on the matrix form in

Equation (7.18).
m* P N\ '/mbP fi f2\ /m?
e vies Lo
Hence, m* and n* are obtained as follows,
fim®? + fon? = m?,
form? + fin? =n*.
ii- Similarly, apply the inverse of matrix R in Equation (7.1b),
a* P —N\"'/mP fi —f2\/[ab
<ﬁx> B (—N P ) (nb> B -f fi ) \B® '
hence, a* and B* are obtained as follows,

fia® — f,8° = a*,
fiB? — foa® = B*. O
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Using the sub-vector solutions m*,n*, a* and S*, the necessary and sufficient
conditions to check the fuzziness of solution for LR-TFLS are provided in the next

theorem.

Theorem 7.3.1. The solution of LR-TFLS is a fuzzy solution if and only if the
following conditions are satisfied:

i- (fy — fm? < (fy — fo)n,

ii- fia? > f,B°,

iii- f18° = frab.

Proof. Using Equations (7.21a and b), then

m* <n* & fimP + fon? < fomP + fin® © (f; — fL)m? < (f; — fo)nP.
i- Using Equation (7.21c), then
¥ 20 =if fia’ ~-fL8° 20 fia® = f,5°.
ii- Using Equation (7.21d), then
f*=0s fifP — fLa’ =2 0= fipP = frab. O
The next example is taken from Allahviranloo et al. (2012b). The existence of the
fuzzy solution is investigated using Theorem 7.3.1. Also, our approach are verified

by computing the sub-vectors m*, n*, a* and 8* using Corollary 7.3.1.

Example 7.3.1. Allahviranloo et al. (2012b) consider the following LR-TFLS,

(—1® (mi,nf, a1, 1) @ 2 @ (m3,n3,a3,87) ® 1 & (m3,n3, a3, B3)
=(-6,3,8,9),

3 ® (mf, n:JLC’ aic, f) @ 1 ® (Tnf,nf, (X%C, 56) @ -2 ® (m?)f, n%C’ aéc' ?Q’C)
= (~14,0,14,7),

1 ® (mf, nicr aic, f) @ -1 ® (m%" n%" a%" 56) @ 4 ® (méc' nécl aéc' :;C)
\ = (4,20,7,20),
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where %; = (m;*, n;*, «;*, B;*),i =1,..,3 are arbitrary trapezoidal fuzzy
numbers.

The LR-TFLS may be written in the following matrix form:

-1 2 1\ (mi,n{,af, {‘)\ (—6,3,8,9) \|
3 1 =2|Q®| (m3,n%,a3,B3) |=| (—14,0,14,7) |.

The crisp vectors m?, n?, a® and B? are
N
mP=|mb |=|-14|, nP=[nd]|=
WAV AW
af 8 By 9
=/aé’\l= 14\ ﬁb/ﬂé’\l(A.
SRR WM

The crisp matrices N and P are

-1 0 0 0 2 1
N={(0 0 —-2JandP={3 1 0}
0 -1 O 1 0 4

then the inverse of matrix P is

12 1

pr=| = = -2
25 25 25
1 2 6
25 25 25

According to Corollary 7.1.1, since P~! and (P —NP~IN)™! are exist, the

matrices f; and f, are computed as follows:
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25 191 11
272 544 544

—

141 11 25

=(P—-NPIN) = — - :
fi=( ) 272 544 544
\ 1 25 141
272 544 544

9 47 91
/ 272 544 544 \

| 29 o1 9 |
——f NPl=|_ .
fo=~h 272 544 544 |
33 9 29‘/

272 544 544

Now to apply Theorem 7.3.1, f; — f>, fi mP, o, n?, fi a®, f5 B?, £, B? and f, a® are

computed:
1 7 3
/ 8 16 16
| B | 3 i
f1 fz 3 16 1 |,
1 1 5 /
8 16 16
1209 937
/ 272\ /2 2\
819 3
b | 227 [ b= 2 |
fi 272 f2 272
463 191
272 272

2197 1653 667 123

544 544 544 544

b _ | 1927 b _ | 295 p _ | 1961 » | 873
fra®=| 22| g0 =] 2 landfipr=| 22 | ot = |2 |.

544 544
621 77 2627 451

544 544 544 544

The three conditions in Theorem 7.3.1. are checked as follows

i- (fy — f)m? < (fy — f)n?,
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49

8 -_%5
(fi — f)mP= _%\ and (fy — fo)n’=, \‘

Then,
_» _33
(%) [
11 5
| Y | < | P |
23 47
\z) \2)
- f1 a? = f, ,Bb:
2197 1653
-
1927 295
km | > ka [
L2 Iz
544 544/
iii- fi B” = f a®,
667 123
544 544
1961 873
> )
544 544
2627 451
544 544

Since the three conditions are satisfied, the solution of LR — TFLS is a fuzzy
solution.

Next, our approach is verified, where the sub vector solution m*, n*, a* and g~ are
independently computed and providing similar solution in
Allahviranloo et al. (2012b).

The sub vector solution n* is independently obtained using Equation (7.21a),
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1209 937
[y

819 3
m* = fymP + nb=|—— +| — [=[-3]
h f2 272 272 B
463 191
272 272

The sub vector solution n* is independently obtained using Equation (7.21b),

185 457
/ 272 272 1
173 445|
n* =f,mb + nb=| :
f2 fi 272 272 |
1407/ \ 319
272 272

The sub vector solution a* is independently obtained using Equation (7.21c),

2197 1653
544 544 .
1927 | | 295 |
a* =f al — A N7 | _ = 2
N R 544 544 (1
621 77
544 544

The sub vector solution £* is independently obtained using Equation (7.21d),

667 123
544 544 .
1961 | | 873 |
X=f pb - ab=| o 2|
Br=hE" =1 542 | | 522 | T .
2627 451
544 544

Hence, the fuzzy solution X is as follows,
(mf' n:)lc' aic' f)\ (_1F 1; 1; 1) \
X: (m%‘, n%‘, a%f :856) = (_3: _1; 3; 2) .

(m3,n3, a3, B3) (1,4,1,4)
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Table 7.2 compares the proposed method with Allahviranloo et al. (2012b)’method
in terms of existence of fuzzy solution, possibility of solution, method of solution

and the size of the system.

Table 7.2

Comparison between the proposed method and Allahviranloo et al. (2012b) 'method.

The proposed method Allahviranloo et al.

(2012b)’method

Existence of fuzzy Investigated. Not investigated.

solution

possibility of solution Investigated. Not investigated.

Method of solution Linear system. LP method.

The size of system Large system as All examples don’t exceed

n = 10. n=3.

The solution of LR-TFLS is non fuzzy solution if one of the conditions in
Theorem 7.3.1. is not satisfied. This motivated us to provide the approximation fuzzy
solution. In Section 7.5, the approximated fuzzy solution is provided using
a minimization problem.

The conditions for obtaining a fuzzy solution to LR-TFLS are listed in Theorem
7.3.1. In order to complete the elaboration of the nature of the solution for LR-TFLS,

in the next section, the consistency of the solution (fuzzy or non fuzzy) is
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investigated to list the possibilities for the solution (i.e., unique solution, infinite

number of solutions, no solution).

7.4 The Consistency of the Left Right-Trapezoidal Fuzzy Linear System

In this section, the consistency of the LR-TFLS solution are checked, and the
possibilities of the solution are classified.
Since the solution of LR-TFLS is equivalent to the solution of LR-ALS, three cases
for the solution of LR-TFLS can be studied according to the possibilities of the
solution of the LR-ALS. They are unique solution, infinite number of solutions, no
solution:
Case 1: Unique solution.
If |T| # 0, then T is invertible. Thus, TX = B provides a unique solution X = T™1B,
then LR—TFLS has a unique solution.
Case 2: Infinite number of solutions.
If |T|=0 and m =rank(T) = rank (T:B), m < 4n, then TX = B provides
infinite number of solutions. In this case, fuzzy row reduced echelon method is
applied to provide infinite number of solutions.
Case 3: No solution.
If |IT| = 0and rank(T) < rank (T:B), then TX = B has no solution.
Previous examples in this chapter illustrated the unique solution based on Case 1. In
the next method, we show the efficiency of the LR-ALS in producing a general form

solution based on Case 2, where infinite number of solutions exist.
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Fuzzy Row Reduced Echelon Method

In this section, the fuzzy row reduced echelon method is proposed to solve LR-TFLS
where |T| =0 or T is rectangle. So, infinitely many solutions can be found

whenever it exist. The method consist of three steps:

Step 1 Computing the rank (T) and rank (T:B). Based on Case 2, if

rank(S) = rank (S: B) = m, the system has infinitely many solutions.

Step 2 Transforming the LR-ALS in Equation (7.20) to 4n linear equations. Then,

simplifying it to m linear equation.

Step 3 Solving m linear equations with positive fuzzy inequalities,

af =0, (7.22)

The next example illustrates the fuzzy row reduced echelon method where the fuzzy
system has an infinitely many solutions. This example uses the same example in
Allahviranloo et al. (2013). The proposed method provides a different solution sets
for infinitely many solutions for the original work in Allahviranloo et al. (2013). We
observe that Allahviranloo et al. (2013)’solution set is shown as a subset of a

solution set using the proposed method.
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Example 7.4.1. Allahviranloo et al. (2013) consider the following LR-TFLS,
1®(mf’aic’ﬁf) @ —1®(m§,a§,ﬁ§) = (172;3)'
1® (mf,af, ) @ 1Q® (m3,a3,B5) = (3,3,2).
The system may be written in the following matrix form:
1 _1 551 (1F 21 3)
1 1 X, (3,3,2)

The system may be written in the matrix form A ® X = B in trapezoidal fuzzy

(1 —1> ((mi‘,ni‘,ai‘,ﬁf)> <(1,1,2,3)>
® = -
1 1 (m3,n3, a3, B3) (3,3,3,2)

Using Equation (7.20),

numbers:

1 0 0 -1 0 0 0 0 L 1
11 0.0 0 00 0\|™m 3
0 -1 1 0 0 0 0 Of ™ 1
0 0 110 0 00[|fn|.]3
0 0 0 0 10 0 1]|af 2
0 0 0 0 110 0faf 3
0 0 0 0 011 0f|pgx 3
0 0 0 0 00 1 1 x 2

However, the linear system is reduced to obtain infinite number of solutions.

Using Step 1,
1 0 0 -1 0 0 0 O
1 1 0 0 0 0 0 O
0O -1 1 0 0 O0 0O
T — 0O 0 1 1 0 O0 0O
0O 0 0 0 1 0 0 1
0O 0 0 0 1 1 0 O
0O 0 0 0 01 10
0O 0 0 0 0 0 1 1
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-1 0 0 0 O

1 0 0

,rank(T) = 6,

0 0
0 01 0 -1

0
0

0
0

-1 0 0 0 0 1

0 0
0
1

1

0 0 0 0 3
0 0 0 01
0 0 0 0 3

0
0

o

1 0 0 1 2
1 1 0 0 3
011 0 3
0 01 1 2

1
0
0
0
0

1
0

o O

(T:B)=

-1 0 0 0 O

1 0 0

,rank(T:B) = 6,

2
1

1
-1

0 0 1 0

0

0

rank (T:B) = 6, where 4n =8, 6 < 8. The linear system

because rank(T)

provides infinite number of solutions.

Using Step 2, LR-ALS is transformed to eight linear equations,
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(mi—ny =1,
my +mj =3,
-mjy +nf =1,
ny +nj =3,
a + By =2,
af +ay =3,

a; +pr =3,

\ Bi + 7 = 2.

The eight linear equations can be reduced to six linear equations,
(BT =2-p3,
a; =1+p3,
a =2—p;,
ny =3 —nj,

mj =2 —nj,

\m{ =1+ny
Using Step 3, we reduce the six linear equations using fuzzy inequality for
trapezoidal fuzzy number in Equation (7.22). Hence, the general form solution is
obtained as follows:

(mf' nf’ af’ B]D_C) (ZFZF 9; 9)

)?g=< >= ,6 €[0,2].

(mgl ng' a%' IB%) (1F1F 3 - 9; 2 - 9)

The original system is LR-FLS, so m? = n{ and mJ = nj, then we get,

Xy = .0 €[0,2].

(m{, af, ) (2,6,6)
_< ) (1,3-6,2—-10)

(m3,a3,B7)
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Meanwhile, the interval solution in Allahviranloo et al. (2013) cannot exceed

A € [0, 1] because the solution was constructed through a convex set.

Xaw = =

A2,1, D)+ (1 -1)(2,2,2) ((2,2 -1,2-2)
AL,2,1D)+(1-1)(1,1,0)

), A €]0,1].
(1,1+24,4)

It can be showed the solution set for infinitely many solutions in
Allahviranloo et al. (2012b) is subset of solution set for infinitely many solutions in

the proposed method, is as follows:

Suppose 2 — A = 6, then

(2,6,6) (2,6,6)
( ) = ( > = Xallw 0 e [1, 2]
(1L,1+2-6,2—-0) (13-6,2—6)

Thus, the solution of Allahviranloo et al. (2013) cannot provide all the particular
solutions such as X; where 8 = 0,

(2,0,0)

Xl — .
(1,3,2)

The verifications of solution X,
(D ® (2,00 & (-1)®(1,32) =(2,00) & (-1,23) =(1,2,3),

(D ® (2,00 & (1) ®(1,32) =(2,00) & (1,32) = (3,3,2).
Moreover, the method of Allahviranloo et al. (2013) cannot determine if the solution
is infinite or unique prior to obtaining the final solution.

Table 7.3 shows the comparison between the proposed method and
Allahviranloo et al. (2012b)’method, in terms of existence of fuzzy solution,

possibility of solution, solution set of infinity many solution and method of solution.
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Table 7.3

Comparison between the proposed method and Allahviranloo et al. (2012b) 'method.

The proposed method Allahviranloo et al.

(2012b)’method

Existence of fuzzy solution Investigated. Not investigated.

Possibility of solution Investigated. Not investigated.

Solution set of infinitely 6 €10,2]. 6 €[1,2].

many solution

Method of solution Fuzzy row reduced echelon method. LP method.

The size of system Large system as n = 10. n < 3.

As noted in Table 7.3, the solution set for infinitely many solutions in
Allahviranloo et al. (2012b) is subset of solution set for infinitely many solutions in
the proposed method. In addition, the possibility and existence of fuzzy solution are
investigated in the proposed method before solving the system, which are not being
investigated in Allahviranloo et al. (2012b). Lastly, the proposed methods is able to
solve LR-FLS where the size of matrix A is n =10, while all examples in

Allahviranloo et al. (2012b) do not exceed n = 3.

The next example illustrates Case 3, when the LR-TFLS has no solution.
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Example 7.4.2. Consider the following LR-TFLS:
—1Q® (mf,n%,af, BX) ® —1Q (mf,n%,af, BF) = (2,7,6,6),
—3(m{,n{,af, B1) @ 3 @ (m,nf, a3, B5) = (-7,1,11,11).
The system may be written in the matrix form A ® X = B in trapezoidal fuzzy
numbers:
-1 -1 ((mf, n¥, af, {‘)) (2,7,6,6)
R =

-3 3 (m3,n3,a3,B3) (-7,1,11,11)

Using Equation (7.20),

00 0 -1 -1..0 0 0 O X 2
miy
03 =3 0 0000 p -
mj
-1 -1 0 0 0 0 0 0| nx 7
-3 0 0 3 000 Ofln¥] |1
o /o] O™ ( o || of ’
X
00000330“3{ 11
0 0 0 0 1 1 0 0f\"% 6
o o 0o o 300 3 11
then,
0 0 -1 -1 0 0 0 0
0 3 -3 0 0000
-1 -1 0 0 0 0 0 O
r_|=3 0 0 3 0000
“1lo o 0 0 0 0 1 1
0 0 O O 03 30
0 0 O 0 1100
0 0 O O 3 0 0 3
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100 -1 000 0
010 1 000 O
0 01 1 0O0O0 O
000 0 100 1 ~
~lo 00 0 010 -1 rank(T) = 6,
000 0O 001 1
000 0 0O0O0O O
000 0 0O0UO0O O
0 0 -1 -1 00 0 0 2
0 3 -3 0 00 0 0 -7
-1 -1 0 0 0 0 0 0 7
|l -3 0 0 3 0000 1
B0 0 o 0 0011 6
0 0 0 0 03 3 0 11
0 0 0 O 1100 6
0 0 0 0 30 0 3 11
100 -1 000 0 0
010 1 000 0 0
0 02 1:0 00 0 0
000 0 100 1 O |
0l<o Ut U 1
00 0 0 000 0 O

Given that rank(T) < rank(T: B), according to Case 3, the LR-TFLS contains no
unique solution.

The next section provides the approximation fuzzy solution of LR-TFLS. If the exact
solution is non fuzzy based on Theorem 7.3.1, a minimization problem is proposed

using LP approach.

7.5 Approximate Solution in the Case of Non fuzzy Solution

In this section, an minimization problem is presented to obtain the nearest fuzzy
solution where the exact solution is non fuzzy.

The next lemma is used to provide a minimization function in optimization problem.
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Lemma 7.5.1. If x4, x,, x5 and x, are arbitrary real numbers, then

X912+ x32 + x3% + x42 < EARM ARSI LR EA
4 - 2 '
Proof. Given
(g | + I + I3l + 1xgD? = |xq|* + 2000011 | 4+ 2]z |y | + 2|xglxq | + [x2]* +

|x3|2 + |x4|2 + 2|x5||x3| + 2[xp | [x4] + 2]|x3]|x4],

then
(g |2 + 12212 + |31 + [x412) < (g |+ x| + 23] + 1x4])2,
X2+ 2%+ x® +x,® (lx|? + |xa ] + x]° + [xa]?)
4 - 4
L (g |+ lxz] + [x3] + |x4|)2
< 4 ;
Thus,

\/xlz b bt b Jum T 1] + x| + [xa])2
4 - 4

_ el 4 Toea| + xg] 4 |y
= > _

O

Using the distance metric function in Definition 2.2.14. we provide a function that

will be used in constructing the optimization problem in next theorem.

Theorem 7.5.1. If A= (my,ny,ay,B1),B = (my,ny, a,,(,) are two trapezoidal
fuzzy numbers, then
d(4,B) <Td(4,B),

where
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Td(4,B) =
lmy —m, —ay + az| + |ng —ny + B — 2| + My —my| + [ng —ny

2
Proof.
d*(4,B) =
[(my —my) — (a1 — @) + [(ng — 1) + (B = B)]* + (Mg —my)? + (ng — ny)?
4

[m; —m, —ay + ay]* + [ng —ny + By — Bo]* + (Mg — my)? + (ng — ny)?
2 )

Hence,

d(4,B) =

_ [my —my —a; + az]? + [ng —ny + By — ]2 + (Mg — my)? + (ng — ny)?
2 )
Suppose that

xp =M —my—a; +a3), x, =M —ny,+p;—p) x3=(0m—my;) and

x4 = (n, —ny), then d(4, B).is equal

L X12 + X,% + x22 + x,2
d(A,B):\/l 243 4"

Using Lemma 7.5.1,

D X12+x52+x32+x,°2 [x11+|x21+|x3]+|x4]
d(4,B) = \/ " < .

Thus,
< = m;—m, —a; + a,|+[n —n, + — +Im —my|+[n —n
d(A,B)Sl 1 2 1 2| + Iy 22ﬁ1 B2| + Imy 2| + Iy 2,
hence,
d(4,B) < Td(4,B) o
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Next section provides the optimization problem which can provide the

approximation fuzzy solutions, in case the exact solution is non fuzzy.

Optimization Problem for Non fuzzy Solution

Based on Theorem 7.3.1, if one condition is not satisfied, the solution of LR-TFLS is
a non fuzzy solution. In this case, in this section, we construct an Minimization
problem in order to obtain the nearest approximation fuzzy solution.

If the LR-TFLS has a non fuzzy solution, the Minimization problem is constructed as

follows. Suppose y; = (myi,nyi,ayi,ﬁyi):
the minimization function Z is

Minimize Z = Y7, Td(5;,b;). (7.23)
Using Equations (7.15a), (7.15b), (7.15¢) and (7.15d), the constrains for subject

are provided as follows:

n

Z(aijf +agnf) =my, (7.24a)
j=1

n
Z(“Zj"f +agmf) =ny, (7.24b)
j=1

n

Z( a';,_jajx - ai_,jﬁ]?c) =y, (7.24¢)
=1

n
Z( alj',-jﬁ]?c_ai_,jajx) = Byi’ (724d)
j=1
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|(
!oosprm, (725)
|
\

Solving the minimization problem provides the approximation fuzzy solution
% = (m* n* o% B;), i =1,..,nfor LR-TFLS.

Allahviranloo et al. (2012a) illustrated an example that contains a non fuzzy solution.
They used a minimization problem for symmetric solution only. The existence of
a fuzzy solution is investigated using Theorem 7.2.1 to show that LR-TFLS does not
have an exact fuzzy solution. However, the exact non fuzzy solution is provided
using the equivalent linear system in Equation (7.20). Then, we use the proposed
minimization problem to provide the nearest approximation symmetric and non
symmetric fuzzy solution. The distance metric in Definition 2.2.14. is used to show
that our solution is nearer than that of Allahviranloo et al. (2012a). The verification

solution is provided.

Example 7.5.1. Consider the following LR-TFLS (Allahviranloo et al. 2012a),

(1® (mi,ni, a1, 1) © -2 Q (mz,n3, a3, 87) @ 1 ® (m3,n3, a3, B3)
= (_4I1I5I5)I

—1® (m{,n1,a1,B1) © -1 & (m3,n3,a3,57) © 1 Q (m3,n3,a3,B3)
= (_5; _21414)1

-2 Q@ (m{,n{,af, f7) @ 1 ® (m3,n3,a3,67) @ 1 ® (m3,n3, a3, f3)
L = (=2,—1,6,6).

where &, = (m;*, n;*, «;*, B;*), i =1,...,3are  arbitrary  trapezoidal fuzzy
numbers.
In matrix form AQX = B:
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/1 ~2 1\ /(mi‘,ni“,ai“,ﬁ’{‘)\ / (—4,1,5,5) \
\_2 1 1 \(mgl ngl a%cl éc) \(_zl _1;6;6)
Using Theorem 7.3.1, we check whether or not the solution is fuzzy prior to solving:
0 -2 0 1 0 1 1 -1 0
N = (—1 -1 0) and P = (0 0 1), then P71 = (0 -1 1),
-2 0 0 0 1 1 0 1 0
1 1 \ / 1
3 3 3
) = _1 'y I
Gy \3 3/
0 1 0 1 -2 1

0 -1 1
i—-f2= < 1 -1 0 ),
-1 3 -1

1 3
(fl—fz)nb=<3>and(fl—f2)mb=<1>,
—6 -9

-2
(A= =(fi = fo)mP = < P >
3

)

Given that (f; — f2)n? — (f1 — f,)m? has a negative entry —2, then

(fi = f)mP £ (fy = f)n?,
hence, the exact solution is non fuzzy. We can enhance that using the equivalent

linear system in Equation (7.20), the exact solution is not a fuzzy solution because

(mf,nf,af, f)\ (3111212)\
X=|mjn}ai,p) =] (1311 [

(mg’ n?;' a%c' ﬁéc) (_1l2l1l1)

my £ nf,
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Now, we can find the nearest approximation that is a symmetric and non symmetric

fuzzy as follows,

Minimize
7 =3 (| =, =y, + 6]+ |-my, 48y, = 0] |-y, — ] + 1=y )
b3 ([, =y +2] + [y, + 8, 9]+ [-my, = 5]+ |y, —2]) +
+%(|_ay3 —ny, + 5|+ [-my, + B, ~ 8]+ |-m,, 2|+ |-, ~1]).

The subject is

(mimi-2af = My
my—mj—af = My,
my; +m3 —2my = My,
—2mi4+mi+ai = My
-m{—mi+a; = Ty,
—2mi+af+af = MNyy
| @ EBIH2T = Gy
BE+BE B =
B = Wy
20i + 5+ By = Py
ai +ai + Py = By,
zaéc + ﬁ;c + Bi = .Byl-

\

where, o', Bl @y, B, = 0and mf = nf,n, =m, fori=1,..,3.
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The minimization problem is solved in two cases (symmetric and non symmetric

solution).

Case 1: Symmetric approximate solution X

For the symmetric solution X, we add ay, = ,By yaf =B fori=1,.

.,3, to the
subject. Then,
Z =1,
3 13 3 3 1
my =2,nf =2,af =1,BF =1,mj —Z,ngzx,az =Z,B§=Z,m§=§,n§
1 5 5
= — X = _ X = _
==k =5
19 9 17
m,, 4n, =la, =5F, =5m,, _T’nyz:_Z'ayz:T”ByZ
_17 | 11 _ 1 _21 _21
ST TS s s
(m1,n9, a1, B1) (22,1,1)
\‘ 3 13.3 3
Xe=| min3,a,B7) | = 4 4’4’ 4

;
]

k 1155
(m3,n3, a3, B3) 2 2’2’ 2

and AQ X, = B, where B, is

( 1’ Y 1"81) (4155
e I/( 19 9 17 17>\|

Bs = (myz’nyz’ayz"gyz) 44

|
k 11 121 21/
(myy"%'“wﬁ%) (_T'_Z’T’T>

By comparing the distance metric function in Definition 2.2.14. with the right side

fuzzy vector:
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(—4,1,5,5) \‘

B (—5,—-2,4,4)

(=2,-1,6,6)

2 2

Dz(gs'g) =\/(4\1/§) +<4\/7)

Verification of the solution of X

= 0.559017.

15 5)_( 19 9 17 17)
212;2 e ’ ’

(-4, 422)@(3 1333)@(1155)_( )
. 4’ 4744 2'2°2°2) 4’ 44’ 4)

Case 2: Non symmetric approximate solution X,

To obtain the non symmetrical solution X,,, we omit ay, =By, af = B for

i=1,...,3, then,
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(mE, n¥, o, BF) (25 25 13 11)

12°12°12°12

~ 11 41 11 7
X = mx’nx’ax’ X — (_ s _)
ns ( 2 2 252) 12 12 12 12
3 3 11 9
\mx’nx’ax’ X (_ o - _)
( 3,183 3.83) 4 4 4 4

and AQ X, = B,s, where B, is

-4,1,5,5
| | | ( 19 9 17 17) |
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Using the metric function in Definition 2.2.14, we get

D, (B, B) = \/0 ()2 ()2 = 0586302.

Verification of the solution of X,,
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According to Allahviranloo et al. (2012a), the nearest approximation symmetric
fuzzy solution is
(mi,n{, a1, B1) (2,2,2,2) \
X, =| (m¥,n¥,af, ) | =| (0.8333,3.1667,1,1) |,
(m3,n3, az, é‘)) (0.5,0.5,1,1) )
and AQ X, = B, where B, is
/ (—3.8334,0.8334;5,5) \
B, = | (—4.6667,—2.3333,4,4) |.
(—2.6667,—0.3333,6,6)

Using the metric function in Definition 2.2.14,

D,(B,,B) = /(0.16659)% + (0.33329)2 + (0.6667)2 = 0.763756.
Figures 7.1, 7.2 and 7.3 show the three right-hand sides B,, B, and B, ; which are
obtained from the three solutions Xv, Xs, and Xns, respectively, with the left hand

side B of LR-TFLS.
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Figure 7.1. Comparison between B and symmetric B, using the proposed method.
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Figure 7.2. Comparison between B and non symmetric B, , using the proposed

method.
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Figure 7.3. Comparison of B and the Bv in Allahviranloo et

(2012a)’approximation.
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Table 7.4 shows the comparison between the proposed method and
Allahviranloo et al. (2012a)’method, in terms of distance metric function for
symmetric solution, distance metric function for non symmetric solution, non fuzzy
solution and existence of fuzzy solution and possibility of solution.

Table 7.4

Comparison between the proposed method and Al/lahviranloo et al. (2012a) 'method.

The proposed method Allahviranloo et al.
(2012b)’method

Distance metric function for 0.559017 0.763756

Symmetric solution

Distance metric function for 0.586302 Not proposed.

non symmetric solution

Non fuzzy solution Proposed. Not proposed.
Existence of fuzzy solution Investigated. Not investigated.
possibility of solution Investigated. Not investigated.

As shown in Table 7.4, the proposed method provided more than nearer
approximation symmetric fuzzy solution that of Allahviranloo et al. (2012a). In
addition, the proposed method provides an approximation symmetric fuzzy solution
and the exact non fuzzy solution, which are not provided in Allahviranloo et al.
(2012a). In addition, the possibility and existence of fuzzy solution are investigated
in the proposed method, before solving the system, while, in Allahviranloo et al.

(2012a), these are not investigated.
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7.6 Conclusion and Contributions

This chapter studied the LR-TFLF in trapezoidal fuzzy numbers that is an extension

of FLS in particular form and LR-FLS in triangular fuzzy numbers. An associated

linear system which is equivalent to LR-TFLS was derived.

We can summarize the finding in this chapter by the following contributions:

1- Obtain the fuzzy solution of LR — TFLS without fuzzy operation.

2- The nature of the solution of LR-TFLS is distinguished for fuzziness of solution
and possibilities of the solution.

3- Provide the sufficient and necessary conditions of LR-TFLS needed to have a
fuzzy solution based on the fuzziness of the solution.

4- Classify the possibilities of the solution (i.e. unique solution, infinite number of
solutions, no solution).

5- Obtain the nearest approximation fuzzy solution using a minimization problem

when the exact solution is non fuzzy.
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CHAPTER EIGHT

CONCLUSION

This section presents the summary of this study. A conclusion of the whole study is
introduced. Also, the main contributions are provided. Lastly, the suggestions of

future works are presented.

8.1 Conclusion of the Study

Many researchers have conducted studies on methods for solving fuzzy system but
few studies have attempted to construct methods by associated linear systems,
whereby most methods employed LP technique for solving linear system. Moreover,
the methods avoid dealing with near zero. In addition, because of the complexity of
fuzzy operation in mentioned previous studies, they restricted the systems only for
n=2o0r3.

Thus, this study attempts to develop methods that did not rely on LP, NLP or without
fuzzy operation, no restrictions employed to the developed methods. Most of the
constructed methods in this study can use the classical linear system. Since no
complexity on operation occur, we manage to solve large fuzzy systems such as
n = 10. Besides, in the case of solving non fuzzy exact solution, LP is employed to
obtain approximate fuzzy solution. Fuzzy operations are needed only when
providing the unrestricted solution of unrestricted fuzzy systems in order to consider
the sign near zero fuzzy number.

In next section, the main contributions of the proposed methods are presented.
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8.2 Main Contributions

This thesis mainly focused on the new methods for solving fuzzy systems. The
following contributions are achieved in this study.

e Obtain the P — X without fuzzy operations for P — FFLS and NZ — FFLS

This study proposed the methods of solving P — X for P — FFLS and NZ — FFLS,
using associated linear systems in Chapter Three and Four. Moreover, all
coefficients in P — FFLS and NZ — FFLS are transformed to matrix form by only
rearranging the coefficients in block matrix and crisp vector, which resulted in the

following finding.

1- Solving fuzzy systems without any use of fuzzy operations.

2- Solving large system such as n = 10.

3- The developed methods can be used for developing methods to obtain either
exact fuzzy solution or exact non fuzzy solution.

4- Distinguishing the nature of the solution of these system for fuzziness of solution
and possibilities of the solution:

i- Providing the sufficient and necessary conditions of systems in order to
check fuzziness of the solution. These conditions are used to examine
prior solving the systems.

ii- Classifying the possibilities of the solution (i.e., unique solution, infinite
number of solutions, no solution). These possibilities are used to

classify the solutions prior solving the systems.
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¢ Adding the Finite Fuzzy Concept in FFLS

This study added a finite fuzzy concept in the fuzzy systems, which explained in
Chapter Five. This concept is formulated without external restrictions in order to
keep the nature of solution. Then the theoretical works for finding this concept are
used to construct method for solving NZ — X for NZ — FFLS by using min-max
system, absolute system, and fuzzy operations. It means this method able to obtain

unrestricted solution for unrestricted fuzzy system.

e Transforming the FFMS and FFSE to Equivalent FFLS

In Chapter Six we transfer the FFME and FFSE to FFLS, and solve them using the

proposed methods for solving FFLS.

¢ Replication of Pervious Methods with Other Type of Fuzzy Numbers.

In Chapter Seven, the solution of LR — TFLS with trapezoidal fuzzy numbers was
proposed. We replicated the pervious methods of solving fuzzy systems in triangular

fuzzy number. All above findings can be extended to LR — TFLS.

e Certifying the priority of using LP method in approximation solution only.

The LP method is used in Chapter Seven, to provide the nearest approximation
solution when the exact solution is non fuzzy. We verify the priority of this

technique is able to offer the approximation for LR — TFLS.
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8.3 Suggestions for Future Work

We now turn our attention to comply with future problems that can be done, our

suggestion of the future work are classified according to three opinions; types of

coefficients and operations, solved systems and methods of solution.

e In this thesis we represent the coefficients of fuzzy systems as triangular fuzzy

numbers and trapezoidal fuzzy numbers, it is suggested to use the following

coefficients and operations as future works:

1-

Append fuzzy complex numbers for mean values and spreads values of
triangular fuzzy numbers by using operations of complex fuzzy numbers in

Fu and Shen (2011).

Replace the triangular fuzzy numbers by type-2 triangular fuzzy with
operation in Dinagar and Latha (2013). Also, extend the triangular fuzzy
number which represented by ordered three crisp real numbers to fuzzy
number represents by ordered six real numbers such as hexagonal fuzzy

numbers with operations in Thamaraiselvi and Santhi (2015).

Solve the P — X for P — FFLS by multiple types of fuzzy numbers and
compare the fuzziness and positivity of solution, since they are most used in

application

We follow (m, a, ) form for triangular fuzzy numbers, it is suggested to

formulate methods that can deal directly with the other form (a, b, ¢).
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e This thesis solved FFLS, FFME and FFSE, it is suggested to solve the fully fuzzy

Lyapunov Equation, fully fuzzy Riccati Equation and fully fuzzy Stein Equation.

e In this study, the exact solution is proposed by embedding methods, it is suggested
to solve the previous systems by iterative techniques like Gauss—Seidel and Jacobi
Adomian decomposition methods, Extrapolated Richardson, and followed by
convergence theorems. Also, In this thesis we obtain exact solution whenever
exist, it is suggested to provide Moore—Penrose pseudo inverse for case of no

solution.
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