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Abstrak 

Pepohon pengelasan dan regresi (CART) direkabentuk untuk meramal atau mengelas 
objek dalam kelas yang telah ditentukan daripada suatu set pembolehubah peramal. 
Namun, kewujudan unsur pencilan mampu menjejaskan struktur CART, ketulenan 
dan ketepatan peramalan dalam pengelasan. Sebahagian penyelidik memilih 
melakukan kaedah pra-pencantasan atau pasca-pencantasan pada CART untuk 
mengendali unsur pencilan. Kajian ini mencadangkan algoritma pepohon pengelasan 
terpinda, dikenali sebagai pepohon Winsorize berdasarkan taburan kelas dalam set 
data latihan. Pepohon Winsorize menyiasat semua unsur pencilan yang mungkin 
dalam data dari nod ke nod sebelurn memeriksa ritik pembelahan untuk mendapatkan 
nod dengan ketulenan tertinggi. Batas atas dan batas bawah plot kotak telah 
digunakan untuk mengenal pasti unsur pencilan dengan nilai ekstrem melebihi Q * 
(1.5xJulat antara kuartil). Data pencilan yang telah dikenalpasti akan dineutralkan 
menggunakan kaedah Winsorize manakala indeks Gini Winsorize kemudian 
digunakan untuk menghitung kecapahan dalam kalangan taburan kebarangkalian bagi 
nilai peramal yang disasarkan sehingga kriteria henti ditemukan. Kajian ini 
menggunakan tiga petua henti: nod yang telah mencapai 10% minimum daripada 
jurnlah set latihan, nmi,, nod yang mengandungi 70% atau lebih kehomogenan dan 
indeks Gini Winsorize terhitung antara dan di antara pembolehubah adalah 70% atau 
lebih. Keputusan yang diperolehi daripada tujuh (7) set data sebenar menunjukkan 
bahawa pepohon Winsorize merekodkan kadar ralat yang sama atau lebih rendah 
berbanding pepohon tradisional dan pepohon tercantas dalam semua kes terutamanya 
yang melibatkan pembolehubah yang banyak. Kaedah ini menawarkan proses 
pengelasan yang lebih baik dengan menyiasat dan mengendali unsur pencilan dalam 
semua nod. Justeru, sebarang proses pencantasan akan dihentikan apabila kriteria 
henti dipatuhi. Pepohon Winsorize menghasilkan struktur pepohon paling ringkas dan 
menggunakan bilangan pembolehubah yang sedikit dengan kadar ralat yang rendah. 
Pepohon Winsorize menawarkan sokongan untuk melaksanakan pengelasan kepada 
pengamal baru dan pengamal berpengalaman mungkin mendapati kaedah ini 
memudahkan tugas pra pemprosesan dan analisis. 

Kata Kunci: Pepohon pengelasan, Data pencilan, Indeks Gini Winsorize, Algoritma 
pepohon Winsorize 



Abstract 

Classification and Regression Tree (CART) is designed to predict or classify the 
objects in the predetermined classes from a set of predictors. However, having outliers 
could affect the structures of CART, purity and predictive accuracy in classification. 
Some researchers opt to perform pre-pruning or post-pruning of the CART in 
handling the outliers. This study proposes a modified classification tree algorithm 
called Winsorize tree based on the distribution of classes in the training dataset. The 
Winsorize tree investigates all possible outliers from node to node before checking the 
potential splitting point to gain the node with the highest purity of the nodes. The 
upper fence and lower fence of a boxplot are used to detect potential outliers whose 
values exceeding the tail of Q * (1.5xInterquartile range). The identified outliers are 
neutralized using the Winsorize method whilst the Winsorize Gini index is then used 
to compute the divergences among probability distributions of the target predictor's 
values until stopping criteria are met. This study uses three stopping rules: node 
achieved the minimum 10% of total training set, nmi,, node contains 70% or above of 
homogeneity, and the computed Winsorize Gini purity index within and between 
variables is equal or greater than 70%. The results obtained from seven (7) real 
dataset indicate that the Winsorize tree scores equal or lower error rates than the 
traditional and pruned trees in all cases especially when dealing with many variables. 
This method offers a better classification process by investigating and handling the 
outliers in all nodes. Therefore, it does not require any pruning process as it stops 
once the stopping criteria is met. The Winsorize tree produces the simplest tree 
structure and it typically uses fewer variables with a low error rate. It offers some 
assistance for performing classification to new practitioners and experienced 
practitioners may find this method simplify preprocessing and analysis tasks. 

Keywords: Classification tree, Outliers, Winsorize Gini index, Winsorize tree 
algorithm 
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CHAPTER ONE 

INTRODUCTION 

1.1 Introduction to Classification 

Classification is a scientific process that refers to activities of allocating objects into 

pre-determined classes. Also, it is attempting to identify to which group or class a new 

object should belong to. The classification can be distinguished into two types: 

unsupervised classlJication and supervised classiJication (Gupta, 2006). Unsupervised 

classification refers to the process of defining classes of objects where one usually 

aims at either identifying some explainable structures among objects or looking for 

convenient partitions of the collection of objects. Unlike supervised classification, 

there are no explicit target attribute which associated with the input. Two examples of 

simple classical statistics method of unsupervised classification are clustering and 

dimensionality reduction (Ghahramani, 2004). Often, the number of hypothesized 

number of clusters ahead of time will be set by the users (Duda, Hart & Stork, 2001). 

In contrary, supervised classification is the process of allocating a new object into its 

predefined class. The concept of supervised classification is as follows: a 

classification rule that decides to which class an object should be assigned will be 

constructed based on a set of measurements obtained from the classified objects 

(Cunningham, Cord & Delany, 2008). Then, the constructed classification rule will be 

evaluated in order to ensure that it is suitable to classify (or to predict) the class of a 

future object. The interest of supervised classification is to search for the best possible 

algorithm that will be able to produce a general hypothesis to predict the correct class 

of the future objects (Kotsiantis, 2007; Chaovalit & Zhao, 2005). The challenge in 
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supervised classification is to build a concise and accurate mathematical model that 

can assign future object into a correct class. They are many type of supervised 

classification methods such as decision tree, support vector machines, logistic 

discrimination, nayve Bayes, random forest, neural network, ensembles, perceptron 

and much more. 

This thesis is concerned with the supervised classification thus the discussion 

throughout this thesis will refer classification as supervised classification. 

1.2 Examples of Classification Problem 

In business activities, classification approach can be used to explore the behaviour of 

buyers (brand loyalty) and to determine market segmentation (Miller, 2005, p. 25 & 

26). One may need to understand the buyers' behaviour towards a certain product or 

brand. Some criteria including salary, marital status, gender and types of occupation 

may be used to explain one's preference either interested or not interested to purchase 

a new brand of product. In banking sector, based on the customer profile, the industry 

is using a particular classifier to evaluate the risk of approving loan (Thomas, Oliver 

& Hand, 2005). The well-known classification algorithms were used to investigate the 

credit score data sets accurately (Baesens, Gestel, Viaena, Stepanova, Suykens & 

Vanthlenen, 2003). 

Besides, classification is widely used in medicine. In hospital for example, a doctor is 

assisted by a systematic rule to claim a survival rate of heart plant patients (Gupta, 



2006, p.15). Also, it has been used to classify human chromosomes into its respective 

groups (Cwnow & Franklin, 1973). Different types of classifier have been applied to 

detect anomaly intrusion in system. The classifier can overcome security threats in 

computer network and can be used to identify unauthorized use of computer system 

(Bahrololum & Khaleghi, 2008). In other areas, decision tree (C4.5) technique is used 

in stock management and control (Wu, Lin & Lin, 2006). With the growth of online 

information, Joachims (2005) used Support Vector Machine (SVM) for text 

categorisation where the main goal is to classify documents into fixed number of 

predefined categories. Meanwhile, K-nearest neighbours algorithm is studied to 

diagnose on the Wiscousin-Madison breast cancer (Sarkar & Leong, 2000). 

1.3 Classification Rules 

Many classification rules have been devoted by researchers such as Fisher 

discriminant function, decision trees, neural networks, nearest neighbour approaches, 

logistic discriminant, and nayve Bayes classification. Each rule has its strengths in 

dealing with various structures of the data, among others include distributions of 

population i.e. population's distribution, type of variables and correlation among 

variables. Despite of variety classification rules, the oldest systematic classification 

procedure called decision tree has become a focus of interest in this thesis. Decision 

tree is a logical model which often represented as a binary tree (two-way split). It 

shows how the target variable can be predicted using all independent variables. The 

tree straightforward shows how each independent variable is split, which then lead to 

the prediction of the target variable. Such interesting feature has made this tool unique 



compared to other existing classification tools which commonly explained by 

mathematical formulae. Like continuous development on most classification tools, 

this thesis concentrates to investigate the decision tree, often termed as tree, in an 

attempt to add some values in the methodology of constructing it. 

1.3.1 Elements of Decision Tree 

In classification problem, the goal of a decision tree is to predict the value of a target 

variable, which represented group of objects using some input variables. Figure 1.1 

shows a simple decision tree with two splits. A basic structure of a tree includes (i) 

node and (ii) branch. A tree begins with aparent node (labelled "a") and it splits into 

two non-terminal nodes (labelled "b" and "c"). The binary split from the previous 

node is called "branch". For example, parent node "a" produces a branch that 

contains node "b" and node "c". Each non terminal node will split continuously until 

it cannot be split due to some predetermined constraints. The node that can be split is 

termed as non-terminal node whilst the final node which cannot be split anymore is 

called terminal node or leave, i.e. nodes with labelled "e", "f", "g", "h" and "in. 



Figure I. I. Simple decision tree 

The structure of tree is simple but produces a powerful form of multiple of variable 

analysis. It is a flow chart like structure which split from node into branch like 

segment by its algorithm. There are many types of tree available in practices including 

ID3 (Iterative. Dichomotomiser 3), CHAID (Chi-squared Automatic Interaction 

Detection) and CART (Classification and Regression Tree). The difference about 

these trees lay 'on criteria used in the splitting process. ID3 is a tree based on 

information theory and attempt to minimize the expected number of comparisons. The 

first question asked must divide the search into two large domains while the 

subsequent perform a little division of the space (Dunham, 2003). However, ID3 has 

many disadvantages where it can only deal with nominal variables, unable to deal 

with noisy data as it could lead to overfitting tree structure, incapable to handle 

missing values, always end up with bushy tree and much more. (see Xu, Wang & 

Chen, 2006; Octavian, 201 1). Therefore, C4.5 was devoted to improve the condition 

of ID3. Later, another type of tree called Chi-square Automatic Interaction Detector 



(CHAID) was popularised by Kass in year 1980. It is built for non-binary tree which 

is used for large dataset. 

In comparison to ID3 and C4.5, CHAID performs Chi-square test and F-test for 

classification and prediction purposes. CHAID is normally used in direct marketing 

(Haughton & Oulabi, 1997) and it is said a perfect tool to discover the relationship 

between variable (Gilbert, 2010). Another structure of tree called classification and 

regression tree (CART) has interesting features where it only performs binary split in 

every single split of tree construction. Such structure supports high speed deployment 

and considered by many as the most versatile predictive modelling algorithm which 

produce an accurate prediction. Besides, it may consider various types of variables in 

a single structure hence makes it as a good choice of tree in many real practices (Loh, 

201 1; Breimen, Friedman, Olshen, & Stone, 1984). Therefore, this study sets to focus 

more on this type of tree. 

In general, CART is much simpler than CHAID and C4.5 as it does not split into 

multi-ways. Moreover, it will keep on splitting until the specified threshold is met. 

The splitting process of CHAID might be stopped too early as this method attempts to 

avoid over fitting. Thus, some of unimportant variables might be masked by important 

variables. Meanwhile in C4.5, the pruned tree will be just substituted by a branch 

which caused insufficient of information. And, all errors are treated as equal which in 

practical application, some errors are might be more serious than the others. Although 



decision trees are much easier to be understood, the process of constructing a good, 

accurate and reliable decision tree is influenced by the data. 

1.3.2 Construction of Decision Tree 

Decision tree can be learned by splitting data into subset based on the attribute value 

test. A set of if-then rules is used to improve the human readability. The tree like 

graph is used for inductive inference. It is said to be robust to noisy data and capable 

of learning disjunctive expression. It also provides a highly effective structure where 

it could balance the risks and rewards associated with each possible course of action. 

The data is split randomly into training set and test set where the former set is used to 

construct a tree and the latter is used to evaluate the constructed tree. The use of 

training set and test set will avoid the construction of over-performed tree and will 

provide a reliable tree for hture classification. The tree is built in accordance with a 

splitting rule which divide the data into smaller part where the objects from the same 

class are assigned into the same nodes. This process is repeated on each derived 

subset by top-down induction of decision tree until each leaf consists of a single 

observation (Rokach & Maimon, 2008), and this scenario is referred as maximum 

homogeneity (Breimen et al, 1984). Gini index, Entropy, and Twoing splitting rules 

are commonly used as a splitting algorithm to separate the objects in every node. 

Among these algorithms, Gini index is widely used as it works well for noisy data 

especially in classification tree. This index is computed for each variable and the one 

with the highest Gini purity index (or lowest Gini impurity) will be selected for the 

next variable to be split. 



Specifically, a tree begins with a parent node, t,. The parent node tp will be spilt into 

left (t,) and right (t,) child nodes by using the best splitting value of variable, xf . 

The process of splitting is repeated at both left and right child nodes to produce more 

child nodes. Such processes are repeated until either a tree or every node reaches a 

pre-determined threshold. The maximum tree means only one class in the terminal 

node. However, the maximum tree may turn out to a very huge, complicated and 

bushy which may have hundred levels. Thus, setting a threshold is needed. In this 

case, the splitting is stopped when the number of objects in the node is less than a 

predefined required minimum, nmin. Usually, nmin is set as 10% (Timofeev, 2004) 

of the learning sample size. To get the maximum right size of tree, pruning procedure 

is applied which consider on the optimal proportion between the complexity of tree 

and the error rate. 

1.4 Classification and Regression Tree (CART) 

Classification and regression tree (CART) is among the popular classification 

methods which proposed by Breimen et al. (1984). This type of tree tackles two types 

of variable where a classification tree is suitable for categorical dependent variable 

and regression is suitable when dependent variable is quantitative (Wilkinson, 1992). 

CART algorithm uses a multistage decision process by completing a set of variables 

jointly to make a decision. On top, there is a root of tree or called parent node that 

would split into binary ways (0 for left split and 1 for right split) which associate with 

the internal nodes (child nodes). Decision would be made based on the threshold at 

every level. As depicted in Figure 1.2, objects in the parent node (t,) will be split into 
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either the right internal node (t,) or the left internal node (tl). Let xi be the splitting 

value of the variable Xi at tp .  The split occurs such that objects in the t, will have 

values of Xi greater than the splitting value, xi, and objects in the tl will have values 

of Xi equal or smaller than xi . 

Figure 1.2. Splitting algorithm of CART 

Bertolini (2006) demonstrated how a classification tree can be used as an effective 

tool for quality control practices in oil pipelines. The tree identifies which pipelines to 

monitor and to choose the most suitable monitoring policies for it. His study was 

motivated by Breiman et al. (1984) which suggested that inspection activities and 

spillage can be detected or recognised by operating classification and regression trees 

method. The idea provides a better way to detect the expected spill for cross country 

oil pipelines although different countries face different types of failures. Breimen et 

al. (1984) indicated that digit recognition can also be done by using classification and 

regression tree (CART). Besides, CART has been used to characterize the long-term 

survival after surgery (Valera, Walter, Yokohama, Koyama, Liai & Okamoto, 2006). 

Chen, Wang and Zhang (201 1) used tree in biometric and statistical genetics. CART 
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also applied in medical diagnosis and prognosis. Breimen et al. (1984) used the 

methods to diagnose heart attacks problem. He tried to classify patients into two 

different classes: patients who are at risk of dying within 30 days following heart 

attack (class 1) and the swvivor (class 2). CART is ideally suited for exploring and 

modelling the complexity in ecology data. De'ath and Fabricius (2000) studied on the 

ecology data sets using soft coral survey data from Australian central Great Basrier 

Reef. They analyze three groups of taxa which are Efflatounaria, Sinularia and 

Sinularia Flecibilis. CARTS have been used to analyse the relationship and partition 

the response into homogeneous group. Furthermore, CART is also widely used in 

galaxy classification, financial crisis or defaults, classifying mammals, and so much 

more. 

1.5 Challenges in Constructing a Classification Tree (CART) 

In real practices, there is no specific formula to confirm on how good the constructed 

classification rule is. As the matter of fact, the choice of "good classification rule" 

depends on the perspective, background, intuition or intention of practitioners in 

constructing the rule (Jacobs, 2001). Some practitioners aim to have a rule that will 

give minimum cost of loses rather than a rule with the highest accuracy of classifying 

objects to their correct group. Some would strongly rely on the accuracy indicators 

(e.g. error rate and Brier score) where the rule with the highest accuracy is the best 

choice. Statisticians would evaluate the goodness of classification model based on the 

mean square error and variance of estimator. Sometime, the priority of choosing a rule 

is based on the simplest one and much easier to be understood. Statisticians, 



economists and medical practitioners put much effort to work with a linear base-rule 

due to its straight forward process whilst machine learning groups and engineers 

would prefer on rules that do not rely on any standard assumption such as normality 

of data. Therefore, there is no exactly the best rule but the process of classification 

technically searches for the best possible rule. 

Outliers are extreme data points which have the potential to influence the statistical 

analysis (Evan, 1999; Jacobs, 2001). The occurrence of outliers may due to mistake 

made during data entry or in fact valid. Simply ignoring the outliers would destabilise 

the estimation. Therefore, the whole data must be routinely inspected so that the true 

colour of the outlier can be defined accurately. Although there are many analytical 

calculation and graphical displayed tools to spot the outliers, some type of outliers 

might be masked by several reasons. How if we do not minimise the distortion? And, 

what would happen to the quality of the data if no action to be taken to such outliers? 

How the tree structure would be if the data contains outlier? Unreliable output will be 

generated from the unfiltered data. Outlier may bring a huge effect to some rule's 

construction. For instance, a slightly different value in the data would create a 

different tree classifier. Figures 1.3 to 1.6 are the examples of Kyphosis and Iris data 

sets to demonstrate how the construction of trees can be deviated due to the influence 

of outliers. Ignoring such outlier problem may result in wrong estimated values hence 

producing different structure of trees. At worst, a future object may be allocated to an 

incorrect class. 



In the Kyphosis data set, three variables are used to classify objects into two levels of 

kyphosis (a type of deformation) either absent or present after the operation. The 

constructed trees based on data without outliers (Figure 1.3) and with outliers (Figure 

1.4) indicate that different trees have been constructed due to the influence of outliers 

though the same variables have been chosen in the tree construction. Sometimes, the 

existing of outliers may influence the choice of variable to be split. In the example of 

Iris data set as shown in Figure 1.5 and Figure 1.6, the outliers reflect the changes on 

the parent node. The examples given give a sign that somehow outliers may influence 

the structure of the constructed tree. 

The possible challenge in this problein is that the object might be misclassified into a 

wrong group. Figure 1.3 and Figure 1.4 demonstrate the classification process on 

Kyphosis data set. The data have three independent variables (Age, S t a r t ,  

Number) and a dependent variable (type of deformation) with two states, absent or 

present after the operation. Figure 1.3 shows the constructed tree without outliers 

while Figure 1.4 shows the tree with outliers. Both trees have different structures on 

the left split due to the present of outliers. Although the outlier is small, it may give 

some impacts on the structure of the tree, the splitting points and future classification. 

If a future object has criteria with Age = 36, St art = 1 1, Number = 3, then tree in 

Figure 1.4 will assign such object to group of present but tree as in Figure 1.3 will 

identify it as absent. For this reason there is a need to properly address the occurrence 

of outliers in a tree. 



Commonly, measuring the accuracy of a constructed tree can be done by taking the 

error rate and the cost of error. But, the latter is sometime hard to achieve as prior 

information or expertise knowledge is required. 

Start 14.5 rS 
I I Aue ~1157.5 1 

Figure 1.3. Tree classifier for Kyphosis (without outlier) 

Starl f 12.5 
I 

Figure 1.4. Tree classifier for Kyphosis (with outlier) 
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Figure 1.5. Tree classifier for Iris (without outlier) 
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Figure 1.6. Tree classifier for Iris (with outlier) 

1.6 Problem Statement 

Sections 1.3 and 1.4 have given a general idea about CART and some challenges on 

constructing such type of tree have been highlighted in Section 1.5. Unawareness 

towards the existence of outliers can cause a misguidance to the future cases as the 



constructed model is bias and inaccurate to present the behaviour of actual 

information (Tabia & Benferhat, 2008). Thus, many researches have been carried out 

to solve the problem in classification. The first approach is to depend on the tree itself 

to isolate the outliers from process of splitting the data during tree construction. This 

approach was implemented by Breimen et al. (1984) and Shouman, Turner and 

Stocker (201 1). Then, the tree is pruned accordingly to reduce the complexity of the 

tree classier and hence improves the predictive accuracy by the reduction of 

overfitting. However, using all the data may lead to a bias and bushy decision tree 

(John, 1995; Engels & Theusinger, 1998). Thus, pruning the constructed tree would 

be a good option. Although pruning process could produce an accurate tree with 

balance size of tree, but this method requires pruning knowledge and experience. It 

demands users with some statistical or analytical knowledge, but could be 

troublesome to practitioners. Therefore, some researchers prefer to perform a pre- 

processing before constructing a tree (Reif, Goldstein, Stahl & Breuel, 2008; Kyung, 

June, Dao & Nam, 201 1; Han & Kamber, 2006). In pre-processing phase, graphical 

tools such as Boxplot and probability plot would be used to identify outliers in the 

data. Once the outliers are determined, then the next step is to critically handle them. 

Eliminating the outliers is easy but it produces "clean data set" which will definitely 

provide us a "good classifier". As pictured in Figure 1.3 to Figure 1.6, few outliers 

can cause a tremendous bias split to the whole structure of tree classifier. Sometimes, 

this phenomenon will be even worse when some of the explanatory variables are 

masked by the outliers. It means that the "extreme value" might hide some variables 

to be split. Therefore, this method could be a risk if the tree contains bias split as 



wrong classifier might provide wrong prediction to us. John (1995) has introduced an 

idea of pruning and reconstructing tree. The branches of tree will be pruned at the first 

time to eliminate the outliers. Then, the tree will be reconstructed in order to get the 

fitted tree. Despite of promising and unbiased tree, the idea faces with some 

drawbacks as it demands for double tasks to prune and reconstruct the tree. Besides, 

many data could be lost due to outliers' termination. Wang, Gu and Wang (2004) 

suggested another idea that developing a tree by starting with the most insensible 

attribute (the attribute that give the less important in classification). As the tree 

growth, the most sensible (most important attribute) will be chosen hence the outlier 

will be isolated in some nodes at the bottom of the tree. Yet, this idea has received 

little attention from other researchers 

Considering the weaknesses of earlier idea or approaches, this study initiates the idea 

of reducing the effects of outliers using a method called Winsorize, which commonly 

used to compute robust statistics e.g. mean, standard deviation and etc. The idea of 

winsorizing is to set all the outliers to a specified percentile of the data. However, the 

choice of percentile is subjective. Too low percentile will allow the outliers to be 

included in the tree construction but too high percentile will lead to small variance of 

measurements but high bias to the tree. The idea of when to accommodate outliers is 

another issue to debate. If one performs Winsorize on the data prior to construction of 

a tree, then we will miss out to see the state of outliers in a tree. Such phenomenon 

happen because the outliers have been replaced with the percentile before the 

classification is taken place. To allow a tree that represents the actual data, this study 



proposes to have simultaneous processes of detecting and winsorizing outlier as well 

as nodes splitting. We winsorize the data when the outlier is found so that the splitting 

algorithm namely Gini index can be computed without the influenced of the detected 

outliers. Then, we split the original data using the estimated Winsorize Gini Purity 

Index. This proposed strategy will promise a splitting process that is not biased 

towards skewed data which lead to produce full unbiased structure of tree. This 

structure will explain about the data and will be useful for future data especially when 

the future data also contain outliers. 

Selecting the right variable and the splitting point are important in order to get a 

maximum homogeneity in every single split. The maximum homogeneity of left and 

right child node from previous node is equivalent to the change of impurity 

function,Ai(t) . It means that the objects which have the similar behaviour are 

assigned into their own group. However, the outliers would just affect the purity and 

cause to a bias structure of tree at the end. Therefore, the process of constructing a 

tree that is not sensitive towards outliers needs to be outlined. This study is looking 

for the best possibility to the tree structure. 

Generally, tree is allowed to split as bushy as it could in order to achieve maximum 

homogeneity. Then, the tree is pruned based on the tolerant error rate. However, this 

could lead to time consuming. Alternative to this practice, this study suggests to stop 

the splitting process before over fitting tree is obtained. 



1.7 Research Objectives 

This study proposes a new algorithm of tree that insensitive towards the outliers. 

Therefore, the research objectives of this study are: 

1. To determine outlier in a data prior to construct the branch of tree. 

2. To manage the identified outliers accordingly using Winsorize method. 

3. To integrate the process of determining outlier and identifying outliers with the 

recursive process of constructing a tree 

4. To propose stopping criteria in constructing tree in order to avoid an over-fitting 

tree. 

5 .  To compare the new Winsorize tree with the traditional trees. 

1.8 Significant of Study 

This study provides an alternative classification rule based on decision tree suitable to 

handle the contaminated data. It offers a data cleaning process embedded in the 

classification process, which is better than common practices that clean the data prior 

to the classification. Such simultaneously processes may highlight outliers in the 

classification, identified by the simple information extracted from a box plot at each 

investigated node. Next, the proposed Winsorize Gini purity index offers an unbiased 

way to deal with selection of information variable for splitting. Whilst, the stopping 

criteria suggested in this study may assist on constructing a tree at optimum level 

without waste. 

In practice, sometimes a practitioner may have some doubts with the data in hand 

especially when outliers are detected. Some outliers occur due to mistake in data 
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entry, measurement error or in fact valid. Simply ignoring or terminating the 

suspected values could be a risk which might cause violation to the end result. 

Therefore, this study provides a process which insensitive towards outliers making the 

computed error rate less biased. Overall, the proposed tree construction strategy 

ensures a quality data used for data mining, which will be helpful for practitioners or 

researchers whom are less proficient with tree methods. 

1.9 Scope of Study 

This study focuses on the problem of constructing decision tree for classifying objects 

into one of two groups when a sample is contaminated with outliers. Current practices 

need practitioners to clean the data before a construction of tree. Such practice 

demands a practitioner to master the arts for cleaning the data to avoid over-cleaning 

which may end up with over performance in classification. Besides, the choice of tool 

for identifying outliers may not comply with the aim of classification, to minimize the 

error for future data. In fact, some practitioners might be too relying on the tree itself 

as it could isolate the outliers into separated nodes. However, this scenario might end 

up with a bushy tree and some important variables might be masked. This study aims 

on improving such practices by performing the process of data cleaning and 

construction of a rule simultaneously to offer much convenience and reliable used 

among practitioners. However, detection of outliers was set among the continuous 

variables rather than categorical variables. The continuous data is sorted and the 

suspected value according to the preceding and succeeding values is then examined. 

The detected outlier will be penalised before performing the Gini measurement for 
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splitting. Although there are various types of trees, this study uses the CART which 

performs as binaly split. This tree could perform classification with multi-type of 

variables, thus make it as a convenience tree for practices. 

1.10 Thesis Organization 

This thesis focuses upon the problem of the outliers while constructing the tree to 

obtain a more reliable and accurate tree. This chapter describes the background of tree 

and highlights the problem facing in the method when dealing with outliers. Also, this 

chapter mentions about the contribution towards the body of knowledge in both 

academic and industrial. 

Chapter two of this thesis reveals the parametric and nonparametric models in 

classification. It draws the attention on why the previous classification tree method is 

not performed well when dealing with outliers in the data. Also, the chapter discusses 

some outliers detection and handling methods which have been widely used since few 

decades ago. Besides, tlie research gaps, the benefits and drawbacks of trees are also 

illustrated in details in this chapter. 

The foundation of the proposed method is displayed in chapter three where it 

examines the previous works and improving in the algorithms and arithmetic in 

Winsorize Gini index measurement, which contribute to more accurate and precise 

result in both classification and prediction. These will be the base for the contribution 

of this study. Besides, the data descriptions are also presented. 
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Chapter four shows all the results collected from the designed tree on some existing 

data sets, using the designed research methodology. Comparison between traditional 

trees, traditional pruned tree and the proposed tree were performed to give evidence 

that the proposed tree is comparable, and sometimes better than the established tree 

designs. 

The last chapter gives the summary of the study, contributions, limitations, 

recommendations and possible future works. The successful accomplishments of 

research objectives are also explained. 



CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter overviews some existing classification rules and the outlier identifiers, 

the strengths and weaknesses of each method are highlighted. 

2.2 Classification Rule 

The general term of classification is a process of assigning the objects into their group 

or category. Before the technical specific methods for classification, people classified 

the object based on their intuition. Those having the same behaviour or characteristics 

would be assigned into the same group. However, the intuitive decision would create 

a serious problem as different people have different intuition. Classification rules have 

been successfully implemented to solve the real world problem (Mahat, 2006). 

Freitas (2014) indicated that classification normally uses prediction rules to express 

knowledge. IF-THEN rules are used in prediction rules with the condition to produce 

y, a label given to class or group. If all the condition in antecedent rule are satisfied 

then the prediction of the goal attribute will be satisfied the consequent rules. With a 

few conjunctions of if-then rules, the relation between the attributes can be narrowing 

down. This knowledge is useful and intuitively comprehensive for most users. 



2.3 Parametric Approaches 

Generally, parametric base classifiers are powerful statistical methods that enable to 

produce an accurate and precise estimation providing that normality assumptions are 

satisfied. In contrast, nonparametric methods do not require any normality assumption 

for parameter estimation. 

The parametric test often refers to classical or standard test that makes assumptions 

about the parameter of the population from the selected samples. Some of the 

parametric approaches include: 

2.3.1 Na'ive Bayes Method 

Bayes method is a key technology that has been used for classification purposes after 

it was proposed by Bayes (1702-1 76 1). Bayes approach to statistics attempts to fully 

utilise the available information in order to reduce the uncertainty so that a better 

decision can be made. The uncertainty means unknown outcomes of various 

situations. The expression of "it is probable", "the chances are" and so on are always 

used to deal with the uncertainty condition. When such expressions are quantified, it 

means one is dealing with "probabilities". Let P ( A )  and P ( B )  refer to the probability 

that event A  will occur and event B will occur. P(A1B) is the conditional case which 

refers to the probability A would happen given that B has already happened. Then, the 

Bayes theorem is 

P(A.IB) = P ( B J A ) P ( A ) / P ( B )  (2.1) 

where 



P(A. I B )  = the probability of the object B belonging to class A. 

P ( B  IA) = the probability of obtaining the attribute values B if we know that it belongs 

to class A. 

P ( A )  = the probability of any object belongs to class A without any other information. 

P ( B )  = the probability of obtaining the attribute values B whatever class the object 

belong to. 

This method is not sensitive to irrelevant variable, it can handle real and discrete data, 

more accurate as prior class probability is used and handles stream data well. 

However, this method has been criticised as it requires us to specify a prior 

distribution for all the unknown parameters. In many cases, the prior knowledge is 

vague, unclear, or non existent thus making it extremely hard to specify a value for 

the model (Duda & Hart, 1973). 

2.3.2 Regression 

Regression is a statistical method used to describe the nature of relationship between 

independent variables and a dependent variable. The relationship can be positive or 

negative, linear or nonlinear. Whilst, coi-relation is used to determine the relationship 

between the two variables ( x , y )  (Bluman, 2004, p. 495; Larson & Farber, 2006, p. 

458; Abraham & Ledolter, 2006). A positive relationship means that either variables 

increase or decrease at the same time whereas a negative relationship means one 

variable increases but the other decreases and vice versa (Blurnan, 2004). The simple 

linear regression consists of only one independent variable corresponds to one 
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dependent variable. In the multi-linear regression, there is only one dependent 

variable but several in independent variables. 

The equation of linear regression can be written as 

i. Simple linear regression 

. . 
11. Multiple linear regression 

Y = P I X I  + P 2 ~ 2  + ' ' '+  Pnxn + P O -  

This method can help us to predict the value of one unknown variable through one or 

more predetermined variable(s). When the relationship between the independent 

variables and dependent variable are linear, it shows an optimal result. However, 

linear regression is often inappropriate for non linear relationship. Besides that, the 

output is only limited to numeric value. The implementation of regression for 

classification can be done by discretising the numeric dependent variable such that 

values lower than a threshold belong to class 1, and the remainings to class 2. 

However, such exercise will be troublesome is the classification involves more than 

two classes. Further discussion relating to this idea can refer to (Grop, 2003, p. 33; 

Seber, 1977; Bluman, 2004, p. 495; Larson & Farber, 2006, p. 458). 



2.3.3 Logistic Regression 

Logistic regression is another parametric approach that resembles linear regression. In 

multiple logistic regressions, it describes the relationship between one dependent 

variable and several independent variables (covariate). What distinguishes a logistic 

regression from linear regression is that the output is in binary or dichotomous. 

Individuals whose predicted value probability is more than 0.5 will be assigned to 

group 1; otherwise to another group. The assumption here is each observation, yi 

comes from Bernoulli distribution with E(y)  = P(y = 1). The specified form of 

logistic regression model can be written as 

Logistic regression has several advantages over the linear regression in classification. 

For instance, normal distribution assumption is not required in independent variables. 

It does not assume linear relationship between independent variables and the 

dependent variable. Besides that, independent variables can be in mixed variables. 

Unfortunately, in order to get a meaningful and stable result, it needs more data and it 

might be costly. Other work can be obtained in Hosmer and Lemeshow (2000). 

2.3.4 Linear Discriminant Analysis 

Linear discriminant analysis was devised by Fisher in year 1936 with the main idea of 

finding projection to a line which the samples from different classes can be well 

separated. It also seeks to reduce the dimensionality. Consider assigning an object 

with measurement vectors x consisting p variables to either class G,or G2. A function 
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f (x) of the measurements is used to compare with the threshold to decide which class 

of the object is classifying to, G,if f (x) is greater than the threshold and to G2 

otherwise. 

Seeking a scalar y by projecting the sample x onto a line y = w T x .  Of all the 

possible line from each point to the line, select the one with the maximum 

separability. Measurement of the separability is needed to find the good projection 

vector. If the means of x in Gland G2 are pland p2 then the mean of y in GI and G2 

can be written as wTpl  and wTp2 respectively. Assuming the covariance matrix, C 

from both group are the same then the variance of Y is wTzw in both group and the 

maximum w is 

The parameters pl, p2 and C are usually unknown, thus the estimated parameters are 

used to replace it. For instance, p1 is replaced by T, and C is replaced by S the 

estimated pooled-covariance matrix. Then the distance measure between two groups 

is 

The best value of w is to choose the maximize D (w) which is given by s-'(xl - x2) 

. There, y = wTx can be written as y = (Zl - x~)s-'x. Allocation of an object to 

GI if y is closer to y1 = (Z1 - X ~ ) S - ~ X ~  and to G, with y2 = (xl - X ~ ) S - ~ X ~  

2 7 



otherwise. Further discussion on this topic can be found in Lachenbrunch (1975) and 

Mclachlan (2004). 

2.3.5 Advantages and Disadvantages of Parametric Approaches 

Generally, parametric modelling has been widely applied to solve real world 

problems. It is based on the probability distribution which normal distribution is the 

most common. And, the samples from different groups are independent and the 

variances are equal between groups. If all the assumptions are satisfactorily then 

parametric methods produce high accuracy of estimation. The training sites are 

reusable and it generates information classes. Besides, parametric test is also more 

powerful than non parametric test when dealing with continuous variables. 

However, this approach contains some drawbacks. Parametric is not strong enough 

when particular assumptions are not met or violated. In addition, we need to consider 

the cost and difficulties of selecting the training site and the signature homogeneity of 

information classes might also varies. Moreover, it is only reasonable to apply 

parametric approach if the sample size is large enough; otherwise nonparametric 

approach is recommended for those situations. In fact, in real life, the distribution of 

the data is normally unknown and it is almost impossible to get the data which is 

normal distributed. Christina (2009) commended that data is often lion-normal in the 

biomedical sciences because the sample size is normally small and the data is having 

heavy tail, skewness, multimodality, and extreme asymmetries. She recommended 

that that non-parametric test where it is more appropriate due to the assumptions free 



tests. Altman and Bland (2009) insisted that the importance of t-test diminishes when 

the sample size increases. According to Bridge and Sawilowsky (1999), to evaluate 

the medical literature effectively, statistical test play an important roles on research 

outcomes. However, applying inefficient statistics is not only increases the need for 

resources, but more importantly increases the probability of committing a Type I or 

Type I1 error. In medical field, t-test is considered as the most prevalent tests used 

under the normal curve theory. However, parametric test could be violated especially 

when the assumptions of normality is not met. They suggested non parametric test 

such as Wilcoxon Rank-Sum test to the violation from population normality. Similar 

to classification, implementing parametric classification rules for small data or when 

the true populations' distributions are unknown would be misleading. 

2.4 Nonparametric Approaches 

Nonparametric approach allows a relaxation of assumption which means it does not 

rely on any assumption, parameterised distribution and parametric estimation. We use 

it when the parameter of the variable of interest in the population is unknown. There 

are several nonparametric methods have been widely used in current studies. 

2.4.1 Neural Network 

According Lisboa (1992), neural network is an artificial technique which attempts to 

simulate the neural system. It mimics to the human brain where the neurons are linked 

together via dendrites. Dendrites, hillock zone, axon, cell body and synapses 

constituted a biological neuron. Impulses are transmitted through a strand of fiber 



called axon. Analogous to human brain, an artificial technique (Artificial Neural 

Network) has been created to solve the classification technique. The artificial neuron 

is a simple mathematical model which consists of input nodes and output nodes. 

(Schurmann, 1996). For multilayer artificial neural network, several hidden layers 

(black box) are embedded between input nodes and output nodes. The network will 

use some different types of function such as Sigmoid function, Tanh function, Sign 

function and Linear function. The weighted links are used to strengthen the 

connection between neurons. It continues to grow in the field of business, scientific, 

medical and academic world. Neural network requires less formal statistical training, 

has the ability to detect complex nonlinear relationship between the dependents and 

independents variables. In addition, neural network can be used for both supervised 

and unsupervised learning. It also works well with the huge datasets which consist of 

noisy input data. Sigmoid function makes the data input smooth by handling the 

anomalies, random error and outlier. Neural network has been widely use in recent 

research. For instance, neural network was used for survival analysis for personal 

data. Thus credit scoring pertains to bad or good creditor can be distinguished 

(Bensen et al, 1995). However, neural network causes greater computational burden 

and proneness to over fitting (Tu, 1996). Besides that, neural network is lacking the 

ability to explain its behaviour. 

2.4.2 Decision Tree 

Decision tree is among the popular classification methods. The output resembles a 

flow chart like tree structure (Gupta, 2006). It is designed to assist the decision 



makers to make decision for possible future events. A subsequent decision may occur 

to encourage the decision maker to think beyond the immediate decision (Coles and 

Rowley, 1995). 

Ho (2004) insisted that decision tree is one of the most useful tools in classification 

problems. This predictive model constructs a very powerful model in a view of 'tree'. 

Decision tree consists of a chain of questions. Through the answers to the questions, 

the accurate goals can be clearly discovered via splitting the complex data precisely 

into levels. The root or parent node is on top. It splits into branches and creates the 

child notes until the bottom of node called leaf or terminal' node. Decision tree 

receives much attention because it is easy to generate understandable rule. Decision 

tree algorithms have been proposed in statistical, machine learning and pattern 

recognition. Yet, more and more refinements have been implemented to achieve a 

higher accuracy. 

Decision tree provides an easy understanding and interpreting condition. It can handle 

data which contains mixture type of variables such as continuous and categorical 

variables simultaneously. It presents the data directly and the tree inherent structure is 

based on a procedure which can distinguish the useful and useless variables. 

However, decision trees have some drawbacks such as correlation between the 

attributes are ignored, tree replications, disable to handle the continuous data 

accurately and complicacy of bushy trees. Furthermore, the final classification can be 



deceptive which would lead to misinterpretation. Some variables are not split causing 

the truth to be masked by other variables (Breiman et al., 1984). 

2.4.3 Advantages and Disadvantages of Nonparametric Approaches 

The rapid growth of nonparametric statistical procedures over the past six decades 

was due to its advantages. Hollander and Wolfe (1999) disclose that nonparametric 

methods forgo the traditional assumptions as in parametric methods (population must 

be in normal distribution). Besides that, nonparametric techniques are often easier to 

understand and apply in most of the situations. Furthermore, these techniques are 

relatively insensitive to outlying observations. Further discussion can refer to 

Hollander and Wolfe (1 999). 

Although nonparametric statistical methods contain lots of desirable properties, it 

seems lacking of power compared to the traditional method as the statistical validation 

is quite loose. Moreover, currently the appropriate software for nonparametric method 

is limited. According to Levine (1991) and Simon (1991) in Wilkinson (1992), 

different commercial programs are always produce different output with the same 

data. Some programs even worse by providing no documentation and supporting 

material to explain the algorithm. 

2.5 Evaluating Rules 

All methods aim to produce a good rule for classification. Many researchers may 

choose any method to construct a classification rule which is most suitable to their 



problem. However, which method is the best and reliable? In fact, there is no perfect 

rule for evaluating the performance. Usually, the evaluation of the performance is 

done once the classifier has been constructed. 

Hand (1997) discussed the evaluating rules used in pratices which include (i) 

inaccuracy (ii) imprecision (iii) inseparability and (iv) resemblance. Inaccuracy 

measures the ineffectiveness of the rules in allocating object into the correct groups, 

while imprecision provides the information between the estimated probabilities 

!(xi I x) and f (ni I x). Inseparability measures how similar are the f (ni I x) belongs to 

each group at x ,  average over x .  Gini index, Entropy and Chenoff measure are 

commonly used in inseparability measure where Inaccuracy is equal to the summation 

of imprecision and inseparability. Finally, resemblance measures the differences 

between the true probabilities conditioned on the estimated ones. All these aspects 

have their own strengths, none of them is better criterion than the others but it 

depends on the aims of the study. 

In this research, we are focusing on the inaccuracy measurement due to its simplicity 

in computation and easy to interpret. Besides, it is the most commonly used indicator 

by researchers in classification problem. 

Suppose the learning set, L, and a sample with n objects, n E N where each object 

represented by r ( r  = 1,2,3, ... , n), let g, be the group where the object r comes from 

g, E {1,2,3, ... G) and x, is the vector of measurements of object r where x, E X. The 

learning set is denoted by L = {(xl, g,), ... , (x,, g,)). The basic idea of inaccuracy is 
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to compare between the original groups of an object and the observed group. The 

classification rule is considered good if the inaccuracy rate is small. Inverse to 

inaccuracy is accuracy where the higher rate of accuracy means better classification 

rule. 

The most popular measurement under this umbrella is called misclassification rate or 

error rate. It calculates the proportions of objects that are misclassified from the 

classification exercise. Although error rate has few drawbacks such as the cost 

associated with different kinds of error does not taken into account and the error rate 

does not penalise the large errors, it is the most popular indicator for evaluating the 

performance of completing rules (Wang and Johnson, n.d). Types of error rate are 

discussed in the following sub-section. 

2.5.1 Types of Error Rate 

Let x be the measurement vectors and g be the class. Let f (x) is the overall 

distribution of measurement vector x. Let f (g 1x1 be the probability that a case with 

measurement vector x will belong to class g. 

2.5.1.1 Bayes Error Rate ( e B )  

This error rate aims to obtain minimum error rate given a set of measurements. 

However, this type of error rate can only be obtained i f f  (glx) and the posterior 

probability, f (x) are known. In other words, eB provides a lower bound on any 

possible error rate that may be achieved by a real classification rule. 



2.5.1.2 Achievable Error Rate (eb)  

Researchers usually use a classification rule without actually knowing the 

performance of the rule, even the appropriateness of using the rule. They might try to 

use a rule which they think the best in classifying objects. The error rate computed 

from the rule is called achievable error rate, eb which is greater than e, in general. 

2.5.1.3 Conditional Error Rate (e , )  and Unconditional Error Rate ( e E )  

These two types of error rates define the sample-based classification rule. Let region 

R, is the rules of allocating objects to C and let f ( x )  and f(g1x) be estimated from 

the training set with the assumption of (R ,  U R,) E R .  The conditional rate is 

specified as 

The unconditional error rate also called actual error rate is the conditional on the 

training set which is used for classification rule. 

Unconditional error rate, e, is the expectation of the conditional error rate over all the 

design sets of the same size from the population. It is more suitable to be used before 

seeing the training set (Mahat, 2006). 



Among these error rates, conditional error rate is the most popular type which has 

been widely used by researchers. More information about ec will be discussed in the 

next section. 

2.6 Estimating Conditional Error Rate 

Breimen et al. (1984) pointed out that the used of same data set for both rules 

construction and evaluation leads to bias results. Therefore, splitting the data set into 

training sets and test sets is best to overcome such problem. Hold-out validation is a 

common method where the observations are chosen randomly from the data set to 

form the training and test set. There are many possibilities on splitting the data but 

normally less than one third (no specific theoretical justification has been clarified) of 

the data is used for validation purposes (Breimen, 1984, p. 11). According to Webb 

(19991, there are two main purposes of splitting the data. First, the classifier is trained 

by the training set and is used to provide the estimation of its performance. Second, 

both training set and test set are used in classifier design. The assessment of the model 

will be done through the percentage of the error rate estimation. Random sub- 

sampling method is another method that resembles the hold-out method except that it 

does not rely on a single test set (Gupta, 2006). The estimation is repeated for several 

times then mean is computed to get an accuracy of estimation. However, those 

methods are only suitable for a huge data set. 



Cross validation or rotation estimation is an old method which was pioneered by 

Geisser (1975). There are some types of cross validation to handle the smaller data 

sets. (Goutte, 1997). 

2.6.1 K-fold Cross Validation 

A sample is divided into K subsamples (or sometimes called folders) where each 

subsample contains approximately equal propol-tion. One of the subsamples from K 

will be taken out in turn as a test set and the remaining K - 1 subsamples are used as 

training set to construct a classifier. Then, the constructed classifier is assessed by the 

test set and the error rate is computed. This process is repeated K times until each 

subsample have been taken out. 

2.6.2 Leave One Out Cross Validation 

It is similar to the K fold cross validation but only an object is taken out as a test set 

while the remaining n - 1 are treated as training set. It has the advantage of 

constructing a classification rule using a sample as big as the original one which lead 

to less bias. Unfortunately, the loops of n times give greater variance to the estimate. 

2.6.3 Validation Set 

Data set is divided into three sets which are training set, test set and validation set. A 

validation set is commonly used for estimating parameter in learning algorithms. The 

best accuracy of the value will be used as the final parameter values. 



2.6.4 Jackknife 

Jackknife is a method introduced by Quenoullie (1949) to estimate the bias of an 

estimator. This method resembles leave-one-out method as it also involves the process 

of omitting each subset in turn. The remaining subsets are used to build the rules. 

However, this method is used to reduce the bias of estimator hence evaluating the 

variance of the estimator. Some statistic of interest is computed in each sub set of the 

data. The average of this subset statistics is compared to the statistic computed from 

the entire sample in order to estimate the bias of the latter. 

Let estimate 8 using appropriate algorithm for instance maximum likelihood (ML) or 

least square method (LS) to obtain an estimate 8. Observation from the data is 

deleted and recalculates the estimate for 8 from the remaining n - 1. 8-i denotes the 

estimate. The pseudo value is given by 

si = ne - (n - l)tXi. (2.10) 

The process has to be repeated for all the observations. The jackknife estimate for 6 is 

the mean of the pseudo values, 

- 1 - n-1 A 

6 = -Cn S. = no - '-1 ' 1-1 

2.6.5 Bootstrap 

Efron (1983) conceded that bootstrapping performs better than cross validation. Kardi 

Teknomo (2006) and Chernick (2008) explained that bootstrapping is sampling with 

replacement from a sample. Bootstrapping is sampling within the sample. This 



method is analyzing subsample from the data instead of using subsets of the data like 

cross validation. The sample is picked randomly from the data set. The selected 

number is then replaced again into the data and has the same chances to be chosen 

again. Ultimately, all the selected numbers are used to construct the classifier while 

the unselected samples are used as the test set. Bootstrapping method is not only for 

estimating generalization error; it also provides confidence bounds estimation for 

network output (Efron & Tibshirani, 1993). The .632+ bootstrap is currently popular 

in performing the estimation of generalization enor even though there is a severe 

overfitting. However, this method can run into problem when n < p where n is the 

sample size and p is the features or variables. The .632+ bootstrap is quite biased 

when the sample size is small (Molinaro, Simon & Pfeiffer, 2005). Thus, adjusted 

bootstrap method has been built to solve this problem. The robustness of this method 

across the situation provides a least bias comparing to leave-one-out bootstrap and the 

.632+ bootstrap. (Jiang Wenyu & Simon, 2007). 

Each of the discussed procedures for estimating the conditional error rate has its own 

advantages. The advancement of computer has assisted bootstrap and jackknife 

procedures, but considering these procedures in this study will require excessive 

computation time. Similarly, the leave-one-out demands for great computation time 

2 with big variance. Therefore, this study chooses the hold out validation ( 3 of training 

set and $ of test set) to evaluation the error rate, following the suggestion of Breiman 

(1 984). 



Nowadays, the number of machine learning applications is increasing. Therefore, pre- 

processing stage seems vital to constitute an obligatory step before constructing a 

model. This step for sure brings a solution to knowledge discovery in databases 

problem (Engels, 1996; Engels & Theusinger, 1998). In fact, pre-processing is data 

cleansing, altering the dimensionality of the data and altering the data quantity 

(Engels & Theusinger, 1998). This study is focusing on data cleansing process which 

related to treatment of outliers. Therefore, the following section will discuss about 

several techniques of outliers detection and outliers handling. 

2.8 Outliers 

Outliers often refer to the value that is beyond bounds or distributions which are 

inevitable and drastically effects on data analysis (Young, Valero-Mora & Friendly, 

2006). In strict term, outliers are the observation which have a substantially 

difference from what it supposed to be (Hair et al., 1992). The data that appear 

surprisingly far away from the main group has been concerned as "unpresentative", 

"rogue", "spurious", "maverick" or "outlying" observation (Barnett, 1978). Hawkins 

(1980) defines an outlier as an observation that is distinguish further from other 

observations and arouse suspicious that it could be generated by different mechanism. 

The issue? of outliers have been discussed widely since it is unnoticed and invisible in 

real data, but the advance of computer process may discover some erratic behaviour 

with these contaminated data. Simply ignoring contaminated outlier can lead to 



inaccurate estimation (Chambers, Hentges & Qiang, 2004; Gentleman and Wilk, 

1975; Rousseeuw & Leroy, 2003) and at worst such distortion can produce unreliable 

output and the cost of handling the bad data can be enormous (De Veaux & Hand, 

2005). 

However, the outliers' value must be investigated further since they can be due to data 

entry error or in fact valid (Chambers et al., 2004). Iglewicz and Hoaglin (1993) 

mentioned that outliers can be caused by several reasons. Some'possible sources are 

gross recording, incorrect distributional assumption, data contain more structure and 

unusual observation. Sometime, outliers provide useful information which can help us 

to improve the quality of the data gathering process and to identify an appropriate 

model for statistical inferences. Some applications attempt to measure the abnormal 

behavior (outliers) which apart from the norm (Bolton & Hand, 2002). For instance, 

credit card and telecommunication fraud can be detected through the suspicious or 

unusual behaviour in the record. In recent year, hacker will try different ways to 

penetrate the computer system. Unauthorized value in the data can be used to discover 

the computer attack or intrusion (Bahrololum & Khaleghi, 2008). Koufakou et al. 

(2008), outlier can provide information of patients who exhibit abnormal symptoms 

due to their specific disease or ailment. 

Johnson (1998) insisted that no statistician or statistical technique can accurately tell 

the experimenter what to do with the outliers. Own expert opinion can well inform 

how to deal with the outlier. The inappropriate representation or the errors may be 



discounted or even eliminated from the analysis (Hair, Anderson, Tathem & Black, 

1992; Johnson, 1998). However, simply deleting or removing the peculiar data can 

result bias outcome. The investigation of Bessel and Baeuer (1838) tliat discussed by 

Barnett (1978) claimed that outliers are nature and should not be rejected. Barnett 

(1978) indicated that rejection or retention should base on the intention or aim, and 

how the distortion could influence the analysis. Evans (1999) asserted that we should 

explore reasons why some of the respondents behaved atypically. Those who behave 

dishonestly but responded honestly must be included in the data set whereas 

individuals admit intentionally provide dishonest responses should be deleted from 

further analysis. Pre-modification of the data by changing the substantial data can also 

seriously destabilize the estimation. The model created by the "clean data" will 

definitely provide an "overconfident" classifier which might lead to high significant 

error. In classification, it is not only referring to the extreme value, it also concerns if 

a point of a class is misclassify in the middle of another class. 

2.8.1 Outliers Detection 

Outliers in univariate data has been investigated extensively by many researchers 

however the term "outlier" would never have the precise and exact definition (Barnett 

& Lewis, 1984). 

Iglewicz and Hoaglin (1993) distinguished three issues in outlier which are outlier 

labelling, outlier accommodation and outlier detection. Outlier labelling means the 

potential outlier in the data is flagged for further investigation whereas outlier 



accommodation refers to the use of statistical techniques which will not be unduly 

affected by outliers. And, outlier detection is the formal test on the outliers. 

Ben Gal (2005) described those outliers detection can be divided into two fields 

which are univariate method and multivariate method. Univariate is proposed in the 

earlier works whereas multivariate is mostly used in current body of research. The 

taxonomy fundamental of outlier detection are parametric method and non parametric 

method. 

Statistical parametric method can be applied for a known underlying distribution or 

statistical estimate unknown distribution. Those value deviates from the model 

assumption are assumed as outlier. The drawbacks of parametric method are that it is 

not suitable for high dimensional data sets or the data sets which the prior knowledge 

of the data distribution is unknown. IVon parametric method is a distance based 

method which is based on the measurement of local distance. Clustering technique is 

also used to detect outlier which a small of cluster can be considered as outliers 

(Kaufman & Rousseeuw, 1990; Ng & Han, 1994; Acuna & Rodriguez, 2004). Non 

parametric can deal with huge data set and is reliable when the distribution of the data 

is unknown. And, it also does not rely on assumption of the distributions. 

For normality assumption, normal probability plot can be applied. The lower and 

upper tails of the plot can be a useful graphical technique to identify potential outliers. 



Also the plot such as boxplot, stem and leaf and histogram can help us to determine 

whether it is single outlier or multiple outliers. 

Among the existing mathematical formulation in identifying outliers, one of the 

easiest ways to identify outliers can be done using the boxplot. The main ingredients 

for the boxplot are lower (Q1) and upper (Q3) quantile, median and the cut off point 

called fences, lie at the interval of [(Q, - I.S(IQR)), (Q, + ~.s(IQR))]  where IQR 

stands for inter-quantile range obtain from the the difference between Q j  and Q1. 

Observations beyond the fences are considered as outliers. The extreme outlier 

happened when the data lie at the interval of [(Q, - ~.o(IQR)) ,  (Q3 + ~.o(IQR))] .  

Histogram is another bar like graphical tool that is widely used in estimating the 

distribution of data. It can also be used to figure out the outlier. The data is said to be 

an outlier when a distribution is different from the bulk of data. 

Kurtosis and skewness are methods which are used to characterise the location and 

variability of the data. Skewness is a measure of the distribution of the data. The value 

is considered zero when the distribution is normal. Positive value indicates that the 

data is skewed to the right and vice versa. 

where ? is mean, s is the standard deviation and N is number of data points. 



Kurtosis is used to measure the peak or flat distribution. There are variety type of 

peak distribution which are platykurtic (<3), mesokurtic (=3) and leptokurtic (>3). 

Positive distribution indicates a peak distribution whereas negative distribution 

indicates a flat distribution. 

c ~ = ~ ( Y ~ - F ) ~  Kurtosis = (N-lls4 . 

where is mean, s is the standard deviation and N is number of data points. 

Skewness and kurtosis are also used for outlier detection. The rule of thumb says that 

a data is considered as outlier when skewness and kurtosis is fall outside the range of 

normal which is between -1 and 1 (Hildebrand, 1986). 

Another simple method is simply converting the data point to z score and screen the 

absolute values (Donzenis & Rakow, 1987 studied by Jacobs, 2001). They suggested 

that z score of plus or minus 2.7 should be considered as outliers as the value is 1.5 

times the interquartile range. In turn, if the z score of plus or minus 4.72, it should be 

considered as "far out" or in other word, it is called "contaminated outlier". 

x i - f  zi = - 
S 

(2.14) 

cy=l(xi-,)z 
where s = ( n-l )T. 

However, z score method is unsatisfactory especially for a small sample size because 

the 2 and s are not resistant since it is not unduly affected by a few unusual 

observations. Therefore Iglewicz and Hoaglin (1 993) recommended modified z-score. 



This method is more robust to the outliers as it relies on the median for calculating the 

z-score. 

M A D  = mediani(l xi - XI) 

0.6745(xi-2) 
1 M'= MAD 

Barnett and Lewis (1984) discussed about the "most extreme observation" in 

detecting the outliers. Extreme studentised deviate statistic test (ESD) is applied to 

detect the outliers in a random sample. 

T, = rnaxux, - 1 s]. (2.17) 

where i = 1,2, ..., n ,  s and F denote standard deviation and mean respectively. 

Assume xi to the outliers. If the Ts exceeds the critical value, the x, need to be taken 

out and process will be repeated for the rest of sample. Otherwise, the procedure is 

terminated. However this method might hide some extreme observations. This 

phenomenon is called "masking" in identifying the outliers. Details of discussion and 

illustrations are given by Iglewicz and Hoaglin (1 993). 

All the methods mentioned above focusing solely on univariate robust estimators and 

the extension version to multivariate problems is rarely discussed for several reasons. 

The huge size of data set, the complexity of the sample with many variables and the 

possibility of having missing value are among the obstacles where the univariate 

methods are capable to deal with. 



Davies and Gather (1993) revealed tliat the outlier identification can be done through 

the specified lower bound, L ( X N , a N )  and upper bound, ( X N , a N )  where X N  is the 
. . 

random sample, XN = ( X I ,  X 2 ,  ... , XN) and aN represent the number of outliers. All 

points either less than the lower bound or more than the upper bound are considered 

lying in the outlier region, out (a,, y ,02)  which can be written as follows: 

Outlier region, OR 

(X,,aN ) =  (-w,L(XN,aN)]u[R(XN,aN),m). (2.18) 

The statistics lower bound, L ( X N ,  a,) and upper bound, R ( X N ,  aN) were proposed as 

below: 

1. Mean and Standard Deviation 

c ~ ~ ( x ~ - x ~ ) ~  
Let X, denotes the mean and let S N  = ( 

N - 1  
); denotes the standard deviation 

of the sample, XN. For some g (N ,  N,), we can identify all x satisfying to be ocN 

outliers by the outlier identifier as 

Ix-FNl > s N g ( ~ , a N )  

Thus, region of the outliers are 

L(X,,a, = X, - S,"g(N,a,") and 

R(X,,a,) = X N  + S,g(N,a,) 

where a,  = 1 - (1 - a,)", 



2. Median(MED) and Median Absolute Deviation(MAD) 

Hampel identifier yield as the follows 

M E D  = ( X  N+l + X[$]+l:N ) / 2  and (2.23) kl:~ 
M A D ( X N )  = M E D ( ( ( X l  - M E D ( X N ) I ,  ..., IXN - M E D ( X N ) I ) .  (2.24) 

We can define an outlier identifier by having all x satisfying 

Ix - M E D ( X N ) I  2 M A D ( X N ) S ( N , ~ N ) ,  (2.25) 

Following these, region of the outliers are 

L ( X N ,  a,) = MED(X,)  - M A D ( X N ) $ ( N ,  a,) and (2.26) 

R ( X N ,  a,) = M E D  ( X N )  + M A D  ( X N ) S ( N ,  a,). (2.27) 

It has been shown by Hampel identifier that the latter provide a better identification of 

outliers. The distance measures between entities also used by many researchers to 

identify outliers. The famous Mahalanobis distance is 

1 

MDi = Di (X, S )  = { ( x i  - X ) T S - l  (xi - X ) ) ;  (2.28) 

where i = 1,2,3 ... n 

is used by estimating the location and scatter a bulk of data where outliers are 

identified based on huge value (Hadi, 1992; Beguin & Hulliger, 2004). However, the 

problem of masking and swamping may arise. Small cluster of outliers can attract X 

and will inflate S in its direction and cause small value for MDi . This is called as 

masking problem. Conversely, not all the observations with large A4.Q value are 

necessary outliers. Small cluster of outliers can attract X and will inflate S away from 

some other observations which belong to the pattern suggested by the majority of 
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observations. This is called as swamping problem. Penny (1996) comment on the 

critical value that use in MD, and she proposed a better way when searching for a 

single outlier. Penny found that Wilks's method that recommended 

(P(n - 1) l(n - p)} l  F,,,, is unsuitable and p(n - I)' F,,,,-, I n(n - p - 1 + pF,.-,-, ) 

are correct critical value. 

Koufakou at a1 (2008) proposed a new approach named MapReduce-AVF (MR-AVF) 

to detect the outliers for categorical dataset. MR-AVF is a parallel outlier detection 

method that is used to identify the outliers in a huge dataset. The user is not forced to 

devise a parallelization strategy for the task at hand but just require adapting it to a 

MR-AVF model. The map and reduce function are as below 

m a ~ ( k ~ ,  VI) + (k2) v2)[1 (2.29) 

reduce(kz)vz>[]) (k,,v3>[1. (2.30) 

First, the user defines key-value pairs, k,and v2 as input files. Then the user specifies 

what to do with the keys and values. A new output is produced with another set of k ,  

and v2. The reduced function sorts the key value pairs by k2. Finally, all the associated 

values w2are reduced and emitted as valuev3. 

Hadi and Simonoff (1993) created the first automatic method named forward search 

to deal with the multiple outliers in the data. The distance from the observed value y, 

to fitted values can be calculated by 



where X(,)denotes the matrix of X, A, = 1 if the observation i is in the subset and A, = 

-1 otherwise. 

For the dimension, p = 1, Hadi and Simonoff (1993) suggested that the forward 

search should be stopped when the distance of (m + 1) th  order is greater than 

1 - a / 2 ( m  + 1) quantile o f t  distribution on m - q degree of freedom. 

In much larger dimension size of data where p > 1,  Hadi (1994) used the square 

Mahalanobis distance 

D2i(m) = 0 1 i  - 9i(m))'S-1(m101i - Ei(m)). (2.32) 

where j,(,, denotes the fitted value for y, which generated from estimate linear 

equation models. The estimate covariance matrix of the errors 

= (m - q ) - ' C ( ~ i  - E i ( m ) ) ( ~ i  - ~i(m))'m (2.33) 

Hadi (1994) suggested that this method should be stopped when it achieves (1 - 

a l n )  quantile of the x 2  -distribution with degrees of freedom, p .  The remaining 

n  - m observations are declared as outliers. 

Grubbs (1950) categorized the causes of outliers as measurement errors, execution 

faults or intrinsic variability. Gross errors of measurement can yield outliers in a data 



set. No statistical method is required for that; such outliers can be weeded out without 

controversy. However, some outliers can be caused by unrecognized or execution 

error which cannot simply weeded out. Grubbs found that some initial model F should 

be specified in order to examine the outliers. If the outlier is discordant then model F 

must be abandoned as a homogenous model. 

Chambers, Hentges and Zhao (2004) use the robust tree modeling to detect the 

presence of outliers for univariate and multivariate problems. WAID regression tree 

algorithm was used. There is no attempt to get the optimal trees. The splitting process 

of heterogeneity node was based on weighted sum of square residuals 

WSSRk = C. w, (y,  - 9 ,  ) 

The weight wik is 

where ry(x) denotes the influence function. 

For multivariate y,  Chambers, Hentges and Zhao (2004) proposed 3 options for 

building the regression tree for ap-dimensional response variable y which are average 

heterogeneity, average weight, and full multivariate. In the first option, WAID builts a 

tree by using the heterogeneity measure for a particular node, h at stage k where j and 

i represented the response variable and the case respectively. 
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w;.'lk' denoted the weight 

where 

By using WAID toolkit, these weight are based on robust influence function, the 

outliers' weight will be closely to 0 while the non-outliers' weight is approximately to 

1. The proportion of error-generated outliers can be calculated by WAID. The optimal 

threshold value is 

w * = arg max[R, (w) (1 - R, ( w ) ) ]  (2.39) 
W 

where 

RI (w) = nerror(w>INerror and (2.40) 

R2 ( w )  = nnon-errors(w)INout~iers(w>~ (2.41) 

When two approaches (forward search and regression trees) are compared, the 

regression trees performed better than forward search. 

Dynamic graphic seems has major potential. In future, this method will be ubiquitous. 

Becker, Cleveland and Wilk (1987) insisted that dynamic graphic methods have two 

important properties which are direct manipulation and instantaneous change of 

element. Haslett et al. (1991) discovered this concept for exploring and analyzing 

spatial data. This method can be used to examine local variability or so called 
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anomalies in geochemical data. Identification of new tools in dynamic graphics is 

already recognized as for multivariate data analysis which seems to have major 

potential for spatially referenced data. In short, this method reflected the importance 

of map view. Map view has been overlaid on the schematic sketch of major 

components of stream network that has given rise to the data. The data of stream 

geochemistry (at region of Spain) contained 99 multivariate observations are 

available. The metals of Pb, Zn, und Cu are focused here. Variogram cloud and 

histogram have been used to identify regions of interesting variation in map view. 

Local anomalies are detected by using the scatter plot and variograrn cloud. 

Outlier detection has become an important topic in real world. Plenty type of outlier 

detection techniques have been created in order to trace the anomalies. Some 

practitioners prefer graphical methods or visual inspection; some practitioners opt to 

use data distribution. In fact, there is no the best techniques, it depends on the 

suitability of the case. 

In this research, lower fence and upper fence in box plot are used to detect the errant 

observations by conveying location and variation information in data sets, particularly 

for detecting and illustrating location and variation changes between different groups 

of data. Every single point beyond the upper or lower fence is considered as outliers. 



2.8.2 Outlier Handling 

Dealing with the outliers is important part in an analysis. Discard or accommodate 

the outlier is a vital decision that should be made by the researchers. Simply ignoring 

the suspicious values could cause a huge influence in statistical analysis. Orr, Sackett 

and Dubois (1991) and Evans (1999) indicated that the outlier can be deleted 

straightforward when the individuals admit inattention during data collection or 

committed dishonesty responses. However, when the misappropriation cannot be 

justified, the techniques of handling must be applied for dealing with the outliers 

(Jacobs, 2001). The following section will discuss about several outlier handling 

methods. 

Osborne (2002) suggested that outliers should not be removed. But, the outlier must 

be accommodated which could be done using transformation. This method is not only 

can reduced the skew and variance, it also keeps the extreme value in the data 

(Hamilton, 1992). However, transformation could alter the relationship between the 

original variables and the model. As a consequence, the scores might be hardly to 

interpret (Newton & Rudestam, 1999). 

In particular, the researchers should consider the concept of robust method. Trimmed 

means and Winsorize means are among the popular estimators which are used to 

reduce the extreme value in the data (Barnett & Lewis, 1994; Jacobs, 2001). Both are 

less sensitive to outliers and give a reasonable estimate of central tendency. 



1. Trimmed means 

T = -  EX,, . 
TI - 2r ,=,.+I 

2. Winsorize means 

Confidence interval is 

Tw + t(l -a /2)Sw, in which t(1- a / 2) comes from t distribution with n - 2r - 1. 

In this research, we use the concept of Winsorize (Dixon, 1960) which the p% of data 

is simply removed from bottom and top of the elements and replaced by the remaining 

highest and lowest values. Wilcox (2005) recommended that 20% is the most suitable 

percentage in Winsorize process. However, the percentage, p can be determined by 

the researchers based on their own requirement or experience. This method has been 

chosen due to its less sensitivity towards the outliers but still provide a reasonable 

penalization on the data by replacing the given parts at the high and low end with the 

most extreme remaining values. At least, no outliers are excluded during the 

construction of tree model. Moreover, this method can reduce the magnitude of 

deviation and retaining its direction. 



Sample: 

Winsorizep% (let say p = 5%) 

Beginning Sample: 

Winsorize Sample: 

2.9 Classification Tree 

Classification and regression tree (CART) was introduced and popularised by 

Breimen et al. in year 1984 based on a recursive partitioning method suitable to 

categorical and continuous variables. This method has been widely improved and 

implemented due to its simplicity and transparency. The choice of this method in this 

study has been elaborated in Chapter 1. 

Classification tree is a predictive modeling that has been widely used nowadays to 

predict the memberships of objects in the class of categorical dependent variable 

rather numerical value. The pseudo code is easy where 

1. Start at a node (first node is called parent node). 

2. For each X, find the set which minimize the sum of impurity in two nodes. 

3. Find the split. 
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4. The tree is recursively partitioned into two child nodes until a stopping criterion is 

reached. 

In order to get the best splitter, Gini index, Twoing and Entropy are generally used in 

CART for its impurity function in learning dataset. 

i. Gini impurity index 

Gini(t) = 1 - Cj[p(jlt)12 (2.45) 

GiniSplit = C"Gini(i) [=I, (2.46) 

where p(jI t) is the relative frequency of class j at node t, k is the number of children 

nodes, n i  is the number of records at child i and n is the number of record at node p. 

. . 
11. Twoing 

P L P R  
-(Ci(Ip(iIt~) 4 - P ( ~ I ~ R ) I ) ) '  (2.47) 

where L and R are left and right sides and p(i It) is relative frequency of class i at 

node t and pLand p,represent the probability in left node and right node respectively 

(Breimen, 1996). 

. . . 
111. Entropy 

- Ci ~ i l o g ~ ~ i  

where pi is the relative frequency of class i at node t.  



Twoing is resembles Gini index if the target group is binary. However, for multi-class 

problem, it prefers attributes with evenly divided splits. In comparison between Gini 

and entropy, Gini is intended for continuous and categorical attribute whereas entropy 

intended for categorical only but some modification have been done so that it can also 

be used for continuous attribute. Gini tried to get the largest class instead of finding 

groups that make up 50% of data as in entropy. It does not involve any logarithm 

computation as in entropy. Also, Gini tends to gain the minimize error but entropy is 

an exploratory analysis where it summarises main characteristic (often visual methods) 

which can tell us beyond the formal modeling or hypothesis testing. Gini is opting to 

be performed in CART whereas entropy (info gain) is more favorable in C4.5 and ID3 

(Zambon, Lawrence, Bunn & Powell, 2006; Apte & Weiss, 1997; Raileanu & Stoffel, 

2004). 

In fact, it is not obvious which of them produce the best decision tree. Large amount of 

empirical tests were conducted by Raileanu and Stoffel (2004) to determine which 

measurement produces better result. However, there is no conclusive result as only 

about 2% differences between them. But due to the suitability with the proposed 

algorithm, Gini index has been used in this research. Some modification on Gini index 

measurement is implemented in order to find the best splitting point when confront the 

existence of outliers in the data. 

One of the advantages of tree is it can isolate the outliers without the need of taking of 

the outliers in the data. However, many researches have been proved that tree should 



go through a pre-processing stage. In other word, outlier must be handled well before 

constructing it so that the accuracy of tree is not affected. Also, handling outlier can 

avoid tree to become too bushy which might produce an unrealistic tree. Besides, 

based on the examples given in Chapter 1, it can be seen that the outliers affect the 

sensitivity of tree. It means that some of the useful variables might be masked by the 

useless variables due to the influence of outliers. In fact, outliers affect the Gini index 

measurement; the cutting point could be shifted due to the heavy tail in the data. 

To evaluate the performance of tree, cross validation or hold out validation are 

commonly used to estimate the error rate. Of course, looking at the error rate itself is 

insufficient to measure the performance of a constructed tree hence the structure of 

tree, number of leaves, number of splits and other criteria must be also taken into 

account. A tree with a very low error rate but having a bushy tree is considered 

unsatisfactory. 

2.10 Pruning Methods 

Overfitting is a common issue in tree. It happens when the learning algorithm 

continues to develop the branches of tree to its maximum. If the tree is fully grown 

then it loses out its generalization capability. There are few causes of overfitting tree. 

For instance, it is caused by the presence of noise in data, lack of representative 

instances, failure to compensate for algorithms that explore a large number of 

alternatives and so forth. Therefore, pre-pruning or post-pruning approaches should be 

used to avoid overfitting tree. 



Pre-pruning means the tree will stop growing before it is fully grown. Generally, the 

method is more likely to be implemented in CHAID which is done from top to 

bottom. The stopping criteria are vital to stop the condition for a node. In more 

restrictive conditions, the tree stops growing when it reaches user-specified threshold 

or it stops when the class distributions of instances are independent of the available 

features. 

Meanwhile, post-pruning means the tree is growing to its maximum. Then, the 

pruning process (Breimen et al., 1984) was developed to cut back the branch of tree 

either bottom-top or top-down transversal of the nodes which the removed branches 

are not contributing to the generalization accuracy. There are many studies have been 

carried out and proved that pruning process can reduce the effect of noisy domain and 

increase the accuracy (Bratko & Bohanec, 1994). The followings describe some 

popular pruning techniques. 

i. Cost-Complexity Pruning 

This technique is commonly used in CART where the error error of a tree based on 

the test set plus a penalty factor for the size of the tree (Breimen et al., 1984; Rokach 

& Maimon, 2008). The more leaves contain in the tree means that the higher 

complexity in the tree due to more partitioning of the data into smaller pieces and 

more possibilities for fitting the training set. Generally, the basic idea of cost 

complexity pruning is only consider those with the "best of their kind" in the sense 

below instead of consider all pruned sub trees. Total cost-complexity measure, R, ( T )  

of tree T is defined as R ( T )  + alP(, where R ( T )  is the fraction of validation that 
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misclassified by tree, a is complexity parameter which is adjustable and (71 is the 

number of leaf in node T. 

Initially the maximum tree has no error, but replacing the sub trees with leaves 

increase the errors. The idea of this method is to calculate the number of errors for 

each node if collapsed to leaf compare to the leaves which taking into account more 

nodes used. The a is calculated for each node and the node with smallest a branch 

will be pruned. Repeating the process for the sequence of trees To, TI ,  T,, ... , Tk then 

pick the one with the minimum error error on the test set. 

Most of the traditional tree applied this method in pruning method as it is the state of 

art in CART which introduced by Breimen et a1 (1 984). 

ii. Reduce Error Pruning 

This method was proposed by Quinlan in year 1987. During the pruning process from 

bottom to top, the procedure is to check the accuracy of tree when it is replaced by a 

most frequent class. If reduced tree does not reduce the accuracy the node can be 

pruned. The process is repeating till the pruning process decrease the accuracy. At the 

end, the tree produces a smallest version with accurate subtree. 

iii. Rule Post-pruning 

This approach is commonly used in C4.5. This method converts the tree into rule (one 

for each path) and then examines the rules with the purpose of simplying them 

without losing any accuracy. The rule will be removed if the error rate on the test set 
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does not decrease. Finally, sort the final rule into desired sequence for use (Bramer, 

2013). 

iv. Critical Value Pruning 

Critical value pruning was proposed by Minger (1987) where it is also a bottom-up 

pruning technique which tries to collect the information gain during the growing of 

tree. Recall that the splitting criteria during the growing of tree, information gain has 

been used for the measurement so that the purer subset can be obtained. The 

measurement reflects how good the selected attribute split the data between the 

groups in the data. This technique specifies a critical value and prune those nodes that 

do not reach the critical value unless further along the branch reach it. When the 

subtree is considered to be pruned, the value of splitting criteria needs to compare to 

the threshold and if the value is small then replace the tree by a leaf. 

In fact, there are still many pruning approaches such as minimum descriptive length 

(MDL) pruning, optimal pruning, minimum error pruning (MEP), pessimistic 

pruning, error based pruning (EBP) and so forth (Rokah & Maimon, 2008; Frank, 

2000). 

2.11 Pre-processing and Its Drawback 

Current practice on the process of outliers' detection and missing value imputation are 

normally gone through separately with the process of constructing the classifier. This 

means that initially the contaminated data will be sorted, filtered, and solved in order 



to get the "pure" (without outliers) data. Then, the "pure" data will be used to 

construct the classifier. The test set will be used to evaluate how accurate the model 

is by considering the error rate. Finally the model is used for prediction. However, the 

current method is not protecting outliers especially when it contains outliers due to its 

rejection from the early stage. Once the data is removed, it will no longer used in the 

data. According to Engel and Theusinger (1998), having a clean data clearly is too 

academic and not realistic especially in real world application (Engel, Evans, 

Hermann & Verdenius, 1997). As we know that outliers can be legitimate or 

illegitimate. If it is illegitimate, removing the outliers can produce desirable outcome. 

In contrast, if legitimate outliers are removed then it is considered bias as it is unlikely 

to be representative to the whole population (Orr, Sackett, & DuBois, 199 1). 

In fact, outlier is considered too important in certain field such as in computer 

networking, medical field, banking and so forth. The application of current 

mechanism is not suitable to them as no protection is given to the data once the 

classifier is developed. Let us look at some examples here. 

In medical field, despite health profession are well developed over the last few 

decades, the case of medical error is still a serious issue that keep happening. 44,000 

to 98,000 of the Americans die every year due to the medical errors based on a report 

to Err Is Human -- Building a Safer Health System (Kohn, Corringan & Donaldson., 

2000). And, the cost of injury due to the medical errors is about 17 billion dollars 

(Thomas et al., 1999). In this case, outliers or anomalies are vital as they can be used 
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to monitor the data driven and alert the framework based on the patient clinical 

record. Hauskrecht et al. (2010) developed a data driven approach from electronic 

health record (EHR) to detect the unusual patient management decision which can 

lead to true alert rates without constructing alerting model from the experts. 

Besides, network intrusion is another issue that received a lot of attention from all 

fields especially computer network security. The malicious activity is performed, 

trying to hack and spread viruses, Trojans and worms into the local and remote 

machine. To detect various type of attacks, outliers is the vital information to protect 

the network whilst to reduce the false alarm rate. Therefore, outlier is too powerful in 

solving the real world problem. Removing them during the pre-processing stage will 

produce a pure classifier but is it reliable to be used for future classification or 

prediction? So, creating a natural technique which resist to outlier itself from level to 

level is extremely important in order to create an accurate classifier for prediction. 

In the past two decades, many works have been done by researcher to refine the issue 

of handling outlier in tree. John (1995) showed a new approach which was to rebuild 

the tree using the reduced training set. The reduced training set means that the original 

training set minus the pruned sub tree. The pruned sub tree was considered as un- 

informative records or outliers. Then, retrain it to construct a new tree. This method is 

good as all records were included and fewer nodes can be produced with high 

accuracy. However, it might create an extremely bushy tree and might be wasting 

time to examine the difference in number of nodes between a tree built with and 
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without the set of points. Moreover, some of the outliers could be meaningful too. 

Removing the outliers could bring an inaccurate model for prediction. To generate a 

good decision tree, pre-processing is vital to improve the data description. Terabe, 

Katai, Sawaragi, Washio and Motoda (1999) commented that most of the pre- 

processing takes mush running times. And all based on logic programming with a 

need of priori knowledge. They proposed an association rules which can perform even 

better and priori knowledge can be neglected. By having the antecedent (if) and 

consequent (then), new attribute can be generated. Then, it is used to construct a tree. 

According to the result, decision with pre-processing showed more effectiveness than 

the decision tree with original data. Rajendren, Madheswaran and Naganandhini 

(2010) applied this idea on brain tumor diagnosis from CT scan brain image for 

tissues abnormalities detection, sharp analysis and so forth. The process of CT scan 

brain image was called shape priori technique. The general idea of shape priori 

technique is to evolve a curve of the image for the shape segmentation which has 

given the efficient features to be stored in transactional database. Then, association 

rule is used to mine the featuses which were acceptable for classification task. Finally 

decision tree was used for classification and categorization. The proposed method 

(association rule mining (ARM) + decision tree) showed a better performance 

compared to traditional association rules and neural network. As we know, it is not 

easy to discover interesting relations between variables especially dealing with a 

small data set. Besides, it takes time to merge the attribute. Some information could 

be also masked when new attributed is generated. As in shape priori technique, the 



prior knowledge of the shape of curve is required which might be the constraint to the 

practitioners. 

Nowadays, dealing with a large collection of spatial data is inevitable and it is crucial 

to index them to support the process of query. R*-tree has implemented into 

commercial system and performed quite well. However, improving R*-tree is still 

needed in outliers identification and storage at higher levels of the spatial tree index. 

R'-tree is the one to be used to improve the performance of R*-tree where outliers 

were stored at higher levels with smaller minimum bounding rectangles at lower-level 

nodes which performs much more better. There are 5 spatial query were implemented 

and the results showed that R'-tree were significantly outperforms in all cases (Xia & 

Zhang, 2005). 

Muniyandi, Rajeswari and Rajaram (201 1) used k-means clustering to partition the 

training instances into k-cluster using Euclidean distance similarity. T h s  method is 

implemented to solve the intrusion problem in network environment. The separation 

of normal and anomaly region are used to build C4.5 and this method performs the 

best among classifier. This method is performed well as it leads to the highest 

precision and accuracy rate. Decision tree based on the idea of clustering that 

resembles this method has also been used in HMM-based speech synthesis techniques 

with the criterion of maximum likelihood (IVIL) or minimum description length 

(MDL). However, due to the sensitive of ML or MDL towards the outliers 

(discrepancies), the trees performed poorly where optimal clusters are not achievable. 



Kyung, June, Dao and Nam (201 1) proposed an algorithm which outliers must be 

detected and removed. By comparing between 'conventional', 'no preference' and 

proposed' method, the proposed method performed the best which mean in a 

sentence, the proposed decision tree based clustering with outlier removal produced a 

well-balanced speech quality. Using clustering is good but the practitioner should 

have to know what the clustering is all about. Moreover, outlier might be sometime 

meaningful; simply removing is not a good way as it brings to bias classifier. Time 

consuming is one of the problems too in this method. 

In other away round, decision trees and data pre-processing also been used by Parisot, 

Ghoniem and Otjacques (2014) to help clustering interpretation. This study proposed 

an evolutionary algorithm to pre-process the data using transformation of data so that 

the transformed data can be more easily to be interpreted and yield a simpler tree. The 

clustering of tsansformed data set lead to a smaller size in tree with lower error rate. 

Even though this method showed good enough in the end result but some potential 

variables might be masked during clustering. Even some features have been mixed to 

form the cluster which might uninformative during the construction of tree. 

Local outlier factor (LOF) has been used to measure the local diversity by using 

distance to calculate the density. Fawagrh, Gaber and Elyann (2015) has proposed an 

out performed method named LOFB-DRF to improve the random forests in pruning 

level. This method selects the diverse trees in RF then used the trees to form a pruned 

ensemble of the original one. And, it showed that LOFB-DRF perform high accuracy 



to 99%. This idea is superb as it balanced up the size of tree too. This method is great 

but again, the knowledge of clustering is required during the selection of highest 

weighted LOF value. This could bring some troubles to the practitioner who is not 

from classification background. 

To avoid noise data, Wang, Gu and Wang (2014) have introduced another way to get 

a more robust ID3 tree by using insensible attributes as priority instead of sensible 

attributes. The results from few data showed that the accuracy of insensible method is 

higher compared to sensible method. Therefore, decision tree induced by insensible 

tree is more robust than others. However, by selecting the "most unimportance" 

attribute as priority could create a big size of tree. Moreover, tree has its transparent 

nature, it explicit all the possible alternatives so that we can easily traced back the 

entire useful attribute along the process. However, using the insensible attribute could 

increase the ambiguity in decision making. 

After discussing some previous research, we found that some methods can really 

perform well but some are not realistic in real world application. Most of the methods 

are not really accomodating the outliers but focusing more on the end result of the 

tree. High accuracy of tree from a pure data is seemed like too common in many 

studies. The data will be scanned in the pre-processing stage. It means that all the 

contaminated data will be detected and penalized before entering to the next stage. 

Obviously, we can definitely get a "clean" or "pure" data which will be used for 

constructing the tree. And, the tree created by the "clean data" will surely provide an 



"overconfident" estimation that might lead to high significant error. Consequently, the 

constructed model for prediction will definitely bias no matter how good the final 

result is. Outliers must be investigated further since it can be due to data entry error, 

incorrect distribution assumption, in fact valid or other factors. It is meaningless if the 

tree constructed by excluding all the inevitable outliers. 

Substantially, in hospital, outlier is vital for diseases diagnosis or any pattern 

recognition. However, doctor has limited time to go through the huge historical 

profile of all patients. Some studies seem unreliable as it takes a long time for a doctor 

to go for sorting, inspecting, analysing and interpreting. In banking, the variety task of 

customer profiles is increasing rapidly. The powerful automated decision support 

system is needed not only for prediction but it must be able to identify the fraudulent 

based on the anomaly in the data. Besides, the information of outlier is also vital to 

help the sector to decide whether to approve the credit card application since the 

number of bankruptcy is increasing recently. Some of the company would even hire 

an expertise to handle millions of data by sorting out all the anomalies. But this 

method demands expensive processing time and the cost of handling the bad data can 

be enormous. Even, when all the data have been filtered, the ultimate data will 

provide us a very pure dataset which might provide us an unsubstantial estimation. 

Thus, they need an extremely reliable way to handle the outliers, model construction 

and prediction simultaneously without removing any of the outliers in the data. This 

study proposes a new mechanism on constructing a tree that penalising the occurrence 

of outliers during Gini purity measurement. It offers better way for practitioners for 



using the tree without burden too much on the occurrence of outliers. Details of the 

study will be elaborated extensively in Chapter 3. 



CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

Classification and regression tree (CART) has been proven works satisfactorily in 

some classification problems where some given studies have been discussed in 

Chapter 2. However, the successful process of classifying objects using tree is 

influenced by the structure of data. CART is very powerful and suit for data mining 

tasks as straight forward relationship between the variables that goes unnoticed can be 

revealed instead of using much complex methods. A series of if-then statement 

manages to classify observations in a particular manner especially in business 

problem. However, one of the challenges in dealing with continuous variables is the 

possibility of the occurrence of outliers. The used of data with outliers may lead to the 

constructed of bias CART hence end with misleading results. 

This study initiates on constructing a CART that is able to accommodate wisely the 

occurreilce of outliers along the construction process in order to achieve an unbiased 

classification process. The proposed CART is believed to give a better offer to 

practitioners in analysing huge data and small data sets when the process of cleaning 

is impractical to be done due to some constraints such as limited time for analysis, 

shortage manpower knowledge, expertise and etc. This chapter discusses extensively 

the idea on constructing a CART that insensitive towards the occurrence of outliers. 



3.2 Framework of Study 

The proposed CART offers an alternative method for practitioners in classification 

problems when the data is believed contaminated with true outliers. The idea of this 

proposed CART lays on the strategy that simultaneously handles and accommodates 

the outliers during the process of constructing the tree. It gives an advantage to 

practitioners to directly use the method rather than taking a preamble analysis to clean 

the data prior to constructing the tree. In general, the framework of the classification 

as proposed in this study are mainly separated into 5 parts which are 

i. Data inspection - The data is investigated for the existence of outlier. 

ii. Outlier handling - The detected outlier will be handled by using Winsorize 

method. 

iii. Gini purity measurement and tree construction - Each variable is computed to 

identify for goodness of split. The selected variable will be used as the splitting 

attribute. 

iv. Stopping rules - Three stopping rules have been introduced in this study to stop 

the tree from being too bushy. 

v. Evaluation - Error rate and tree size are used to measure the performance of tree. 

3.2.1 Data Inspection 

Most methods for identifying outliers as discussed in Chapter 2 are focusing on 

penalising the values so that it leads to the lowest variance and other statistics 

measures. Such aims may not be practical in classification problems when the whole 

focus is to ensure that the constructed rule is capable to allocate a future object to its 



correct group, i.e. minimise the error rate and not directly focus to the statistics. Thus, 

a careful selection of method for outlier penalisation must be consistent with the aim 

for constructing a CART. This study has considered lower and upper fences in a 

constructed boxplot as the indicator to identify outliers in the data. This strategy 

would enable us to determine which objects with particular variables are potential 

outliers. A boxplot is constructed for each variable j, for j=1,2, . . . ,p,  by sorting the 

values in ascending order. Then, we determined the median of variable j at the 50"' 

percentile of the data, the point at 25"' percentile, the point at 75th percentile and the 

range between the 25'h and 75th percentiles of the variable. Thus, the lower fence of 

variable j is obtained by the following equation 

Lower fence: L,= Qlj - a x IQR, (3.1) 

and the upper fence of variable j is 

Upper fence: U, = Q3j + a x IQRj (3.2) 

where QIj is the first quartile (or 251h percentiles) of variable j ,  Q3, is the third 

quartile (or 75Ih percentiles) of variable j ,  IQR, is the different between Q a j  and Qlj 

and a is a constant that set the wide of these fences. 

The fence points as given in (3.1) and (3.2) give us information about limitation of 

points under the "normal" of data and indirectly highlight possible outliers in each 

variable j. We mark a value of variable j as outlier if it is less than the lower fence,L,, 

or if its value is greater than the upper fence, U,. 



3.2.2 Outlier Handling 

Generally, it is easy to handle the outlier by simply removing the identified value. 

However, such action is arguable as it may alleviate the actual behaviour of the 

variable. Eliminating outliers can only be considered if there is evidence that the value 

is recorded wrongly. Therefore, this study has considered a wise method called 

Winsorize method which the outlier is penalised and retained in the data without 

removing them. 

Winsorize is a method that replaces the lowest and highest values (outliers) with 

observations closest to them. Instead of eliminating the outlier, the observation is 

altered, allowing for a degree of influence. Let n be the number of observation of a 

2 1 
training set. Generally, the training set and the test set are set to be -n and -n 

3 3 

respectively. Let X k  = (xlk, X2k, ... , rink) be a variable that has been identified having 

outliers using the boxplot as described in section 3.3.1 and 10% (based on own 

suitability) be the percentage of penalisation to the training set of variable X k .  Then, 

the number of object on the both side of tail that needs to be Winsorized is determined 

via 

Xk = (XI, ~ 2 ,  ~ 3 ,  ~ 4 ,  xgr r n S m  xn-3, xn-2, ~ n - 1 ,  x,) (3.4) 

If for example, a = 3, then we altered the data such that the Winsorize data Xwk = 

( x4, x4, x4, x4, x5, ... , x,+, x,-~, x,-~, x,-~, x,-~} is obtained. The Winsorize data is 

used to compute a splitting point of the variabIe. 



Figure 3.1 showed an example of data in the process of detecting and winsorizing. 

Based on the computation, for PA500, 0.05 is considered as lower fence. Therefore, 

all the values below 0.05 are considered as outliers which Winsorize method needs to 

be carried out. 

Lower 

fence 

PA500 PA 500 (Winsorize) 
(Original) 

Group 

adi 

fad 1 

con 

fad 

adi 

fad 

fad 

mas 

con 

adi 

mas 

con 

gla 

Figure 3.1. Arrangement of data before and after winsorizing 



3.2.3 Gini Purity Measurement and Tree Construction 

CART involves the process of partitioning the data sets into levels. Every single split 

will be based on the splitting criteria. In order to determine the best variable for 

splitting .the data, some measurements are needed that would allow us to compare the 

variables on some scales and choose the highest among the other. We used Gini purity 

index as our measurement which means that we are focusing on the highest purity 

level (lowest impurity). 

Once the data has been inspected and handled, the data in each variable will be sorted 

for Winsorize Gini purity index is computation. The splitting point is chosen based on 

the class of paired that hold greater number of objects. The splitting point (SP) which 

provides a maximum homogeneity (highest Gini purity) for the node will be selected 

as the splitting variable and splitting point. 

Following Gini purity index by Breiman et al. (1984), we used the function on the 

Winsorize data. Therefore, we obtained Winsorize Gini purity index as 

cw = Cj[~O'lt>12 (3.5) 

where p(j1 t) is the relative frequency of class j at node t. Then, the weighted average 

of Winsorize Gini purity index is 

The highest Gini purity between the variables will be selected for that particular node. 
. . 

Figure 3.2 shows an example of Gini purity measurement after winsorizing. 



Figure 3.2. Winsorize Gini purity computation 

Goodness of split criteria is the decrease in impurity: 

The maximum purity measure is 

Ai, (6, t) = 1 - [i, (t) - P,i(t,,) - P,i(t,,)] 



AiW(6*, t )  = maxAi,(6, t )  (3.10) 
6 E S  

where ~ i , ( 6 * ,  t) is the goodness of split and split is denoted as 6.  Such an ongoing 

process will solve the maximization problem at each node. 

Let t, be the parent node and will be separated into. left, tl and right, t, nodes 

respectively based on the selected variable, xkw and splitting point. The maximum 

homogeneity of left and right nodes will be equivalent to maximum decrease of 

impurity as shown in Figure 3.3. 

Figure 3.3. Goodness of split 



3.2.4 Stopping Rules 

The growing of tree continues until a stopping rule is triggered. This study uses three 

rules to avoid from creating a bushy tree. A post-pruning method which is used to 

handle the loosely stopping criteria can also be avoided. The node stops splitting 

when it reaches one of the following thresholds: 

1. The node contains 70% or above of homogeneity. 

2. The node meets the minimum observation, nmi, , which being set as to have 10% 

or 15% of total observations, N. 

3. If the computed Winsorize Gini purity index within and between variables are 

equal or greater than 70%, the node will have its final split called terminal nodes. 

In fact, the proportional of the thresholds can be adjusted based on the 

practitioner's needs. The higher the proportional set, the higher the accuracy of the 

tree classifier. However, bushy tree could be produced in the end. In contra, 

setting too low on the proportional could be a risk to classify the future objects. 

Threshold 2 is set following Rokach and Maimon(2008), while thresholds 1 and 3 

innovated the idea of Breimen (1984) and Kantardzic (2011). Small study was 

conducted and presented in Section 4.2 in an attempt to identify the stopping 

percentage. 

All the child nodes or non-terminal nodes need to be inspected using the threshold 1 

and threshold 2. If the non-terminal node contains 70% of homogeneity or meets the 

minimum number of observations, then we can stop the process of splitting and 

assume the node as terminal node (final node). 



During the splitting process, Gini purity index is computed in order to choose the best 

splitting variable and splitting point. If the variable gains 70% or above of the Gini 

purity index measurement within and between the variables as in threshold 3, then we 

can conclude that the splitting point has been successfully split of group up to its 

maximum homogeneity which considered as its final split. More details are explained 

in Chapter 4. 

3.2.5 Evaluation 

The true error rate, R* ( d )  is used to estimate the accuracy of a classifier. In this study, 

test sample estimation is used which the observations from the learning set, L are 

divided into two sets L, and L2. The observations in L, are used to construct the 

model, d. The observations in L2 are used to estimate the error rate, R * ( d ) .  If nz is 

the number of observations in L2,  then the test sample estimate, R t s ( d )  is defined by 

where L,  is training set and L2 is test set. 

Then the error rate is merely the proportion objects being misclassified by the 

constructed tree. Lower error rate indicates good performance of the tree. 

3.3 Tree Algorithm 

The outlines for the whole processes as discussed in Sub-sections 3.2.1 to 3.2.5 is 

summarised in an Algorithm 3.1 : 



Algorithm 3.1 

Winsorize Tree Algorithm 

Step 1 Get the data ready. Split the data into two mutually sets called training 

set and test set. Let 70% of the data in the training set and 30% of the 

data in the test set for inspection. 

Step 2 Based on the training set, construct a Boxplot. Then, use upper fence 

and lower fence of the Boxplot to check on the present of outliers for all 

the variables respectively. 

Step 3 Arrange the identified continuous variables with outliers fiom step 2, in 

order. 

Step 4 Winsorize each variable as follow: 

Step 4.1: Determine the splitting point by measuring the Gini purity 

index. 

Step 4.2: Compute the Gini purity index using Winsorize Gini purity 

index at each splitting point. 

Step 4.3: Choose a splitting point on the class of paired that hold greater 

number of objects. 

Step 5 Compare the highest Winsorize Gini score between the variables: 

Step 5.1: Choose the variable that scores the highest Winsorize Gini. 

This is called the goodness of split which provides the highest 

homogeneity. 

Step 5.2: Check for stopping rules. 

5.2.1: If the computed Winsorize Gini purity index within and 
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between variables are equal or greater than 70%, the node will 

have its final split called terminal node. 

5.2.2: Else if, the split nodes is still considered as non terminal 

node unless the node reaches 70% or above of homogeneity or 

it reaches its minimum observation, nmi, . 

5.2.3: Else, repeat from Step 2. 

Step 6: Use the test set to compute for the error rate. 

Step 7: Print the error rate. 

For easy view, Algorithm 3.1 is presented in a flowchart form as in Figure 3.4. 



Input data, L z7 

_I Evaluation & 
Result 

Figure 3.4. Flow chart of Winsorize algorithm 



3.4 Data 

Seven real data sets have been chosen for this research. The selected data are 

categorised as small, medium and big data sets from different background. The 

purpose of applying different size of data is to get evidence how the proposed is 

comparable to the traditional tree. For example, people used tree in prognosis scoring 

for cancer outcome predictions. Besides, it is also allowing decision-makers to apply 

evidence-based medicine to make objective clinical decisions when faced with 

complex situations. To prove that our propose method is comparative to the 

traditional tree in all areas; we also try some data from other fields such as life and 

archaeology. Data that we used are named Breast Tissues (Jossinet, 1996; Silva, 

Marques & Jossinet,2000), Egyptian Skull (Egyptian Skull Development. (n.d.). 

StatLib and Story Library. Retrieved June 2014, from 

http://lib.stat.cmu.edu/DASL/Stories/EgyptianSku11Development.html), Pima Indians 

(Smith, Everhart, Dickson, Knowler & Johannes, 1988), Iris (Fisher, 1936; Duda & 

Hart, 1973), Bumpus Sparrow (Bumpus, 1898), Indians Liver Patients Data (ILPD) 

(Jayakrisharan, Rajan, Jagdish & Sanjay, 2014) and Kyphosis (Chamber & Hastie, 

1992). Bumpus Sparrow and Kyphosis are considered as small data sets while 

Egyptian Skull, Iris and Breast Tissues are considered as medium data sets. And, 

Pima Indians and ILPD are considered as big data sets. More descriptions of the data 

are given in Chapter 4 where the details and results are explained according to each 

case. 



Table 3.1. 

Data Description 

Data Size Number Number Total number 
of group of of observations - 

variables 

1. Burnpus Small 2 6 49 

2. Kyphosis 2 4 8 1 

3. Breast Tissue Medium 6 9 106 

4. Egyptians Skull 2 5 150 

5. Iris 3 5 150 

6. ILPD Big 2 11 583 

7. Pima Indians 2 9 768 

All the computation for completing the whole process are performed using Windows 

7 Home Premium with processor of Intel (R) Core (TM) i5-2450M CPU @2.5GHz 

and 4GB of RAM. R software version R 2.12.0 has been used to run the whole 

analysis. 



CHAPTER 4 

ANALYSIS 

4.1 Introduction 

This chapter discusses on the analyses of the proposed Winsorize tree carried on some 

real data sets. As have been outlined in Chapter 3, the proposed tree starts by 

screening a data set using the box plot in order to identify any possibility of outliers. 

Then, the variable with the identified outliers is Winsorized so that the computation of 

Winsorized Gini purity index would not be affected by the outliers. We chose the 

variable with the highest Winsorized Gini purity index to be split, which led to new 

branches. These processes are repeated until one of the three stopping rules is met, as 

discussed in sub-section 3.2.4. We investigated the performance of the proposed 

classification (Winsorize tree), on seven well known data sets namely Breast Tissue 

(Jossinet, 1996; Silva, Marques & Jossinet, 2000), Egyptian (Hand, Daly, Lunn, 

McConway & Ostrowski, 1994), Sparrow Bumpus (Bumpus, 1898), Pima Indians 

(Smith, Everhart, Dickson, Knowler & Johannes, 1988), Iris (Fisher, 1936) and 

Indians Liver Patient Dataset (ILPD) (Ramana, Babu & Venkateswarlu, 2012) and 

Kyphosis (Chamber & Hastie, 1992). All the data stated above can be retrieved from 

UCI machine learning repository. Each data was investigated following three stages: 

(i) we conducted preamble analyses based on descriptive statistics and univariate 

groups comparison test in order to get an early information about the behaviour of the 

data, i.e. existence of outliers, distribution of the data and behaviour of variables 

which include an ability of variables to discriminate the groups, (ii) we constructed 



the proposed Winsorize tree using a training set and finally (iii) we used a test set to 

evaluate the constructed tree in order to measure its performance. 

Also, we performed traditional tree and pruned tree to allow for performance 

comparison purposes based on the computed error rate. The traditional tree and 

pruned tree is following the idea of Breimen (1984) which details on these trees have 

been outlined in Chapter 2, Section 2.9 and Section 2.10 respectively. Besides of 

giving full concentration of the performance of the trees based on the error rate, our 

discussion also focuses on each component used in constructing a tree. The discussion 

touches on the effectiveness of the box plot used for identifying the outliers in 

multivariate case, the usefulness of the Winsorize approach in estimating the purity of 

the data in each node (Gini purity) for splitting process and the workable of the 

proposed stopping criteria for stopping the tree recursive process from being bushy. 

4.2 Identifying Percentage of Homogeneity for Stopping Rules 

In fact, choosing a significant percentage in stopping rules is vital so that the tree is 

neither under fitting nor over fitting. As discussed in Section 3.2.4, there are three 

stopping criteria to stop the tree from further splitting. The splitting stops when the 

relative node reaches the relative decrease in impurity (increase in purity). Suppose 

the tree will stop when there is a single observation in each child node or all the 

observations within each node are identical distribution of predictor variable. 

However, these thresholds seem hardly to be achieved in real life data set. Therefore, 

the limit of thresholds can be determined by the users (Breimen, 1984; Quinlan, 1993). 
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In this study, to determine the significant percentage for the third threshold, few 

experiments were carried out. Three ranges of percentage were tested which are less 

than 70%, 70% or more than and more than 80% to discover which range is the best 

to make the final splitting. Based on the studies that we performed, we strongly 

recommended the range of 70% or more than as the most suitable percentage to be 

applied in this research. We presented the average purity from three selected data to 

prove that the range attained is sufficient to stop the tree from further splitting. 



Table 4.1 

Percentage Selection for Stopping Rule 

Data 

Iris 

Range of 
percentage 

> 80% 

< 70% 

Pima 
Indians 

Node 

Node 3 
Node 4 
Node 5 

Bumpus 
Sparrow 

Node 1 

< 70% 

2 70% 

2 70% 

[n Table 4.1, we investigated the percentage of stopping rules by using three ranges 

Gini 
purity 

index for 

0.8983 
0.9571 
0.9619 

> 80% 

< 70% 

> 80% 

(less than 70%, equal or more than 70% and more than 80%) using three famous data 

sets which are data Iris, Pima Indians and Bumpus Sparrow. From the result, we 

found that at least 70% is the most reliable cutting point for a node to have its final 

split. Of course, the higher Gini purity index we gained, the greater homogeneity the 

node could achieve. However, this may procures a bushy tree and it does not 

Node 1 

Node 3 

Node 3 

Left node 

splitting I 

0.8400 
1 .OOOO 
0.5556 

Node 6 

Node 1 
Node 2 

Node 5 
Node 7 

0.5016 0.6521 

0.6315 

0.7362 

0.7714 

Right 
node 

0.7,"" 1 .OOO 

0.9400 
0.6250 
1 .OOOO 

0.8233 

0.5852 
0.6049 

0.8058 
0.8000 

. Average 
puritv 

*0.8900 
0.8125 
0.7778 

0.5997 

0.7500 

1.0000 

0.6689 

0.5062 
0.5556 

0.5556 
1 .OOOO 

0.6859 

0.5900 

0.7551 

0.6 

"0.6700 

0.6459 

0.6800 
0.6543 

"0.8776 

1.0000 
0.7025 

0.6574 

0.593 1 
0.6050 

. *0.7778 
0.8513 



guarantee that the subsequence child nodes could produce a lower overall purity index 

compare to the previous node. More over, pruning process is required to cut the 

unfitted sub tree. As mentioned before, this study does not require any post-pruning 

process since the tree algorithm is taking full protection and accommodation to the 

data. And, we need to find a significant stopping percentage which could stop the tree 

from further splitting once it accomplishes the sufficient percentage of homogeneity. 

In data Iris, coincidentally, there is no Gini index falls in the range of 70% to 80%. 

But it does not a matter as the node has already achieved a higher percentage of more 

than 80% in node 3. Node 4 and node 5 are the subsequence nodes of node 3. 

Although node 4 and node 5 gained a higher Gini purity index for splitting with the 

value of 0.9571 and 0.9619, the average purity gained is still lower than the one in 

node 3. For the group of less than 70%, the average purity is only 0.7508 which is 

considered not sufficient to stop the tree. Thus, we could say that the tree should stop 

splitting once it has achieved the Gini purity index for equal or more than 70%. In this 

case, the node 3 sufficiently creates the final terminal nodes. Besides, in Pima Indians 

data set, node 6 is the child node of node 3. We found that node 3 contains 0.7362 of 

Gini purity index which split into two child nodes (node 6 and node 7). Since node 7 

has gained the minimum number of objects, it stops automatically (as the rule in 

threshold 2) whereas node 6 is having the potential to split into its subsequence nodes. 

We computed the Gini purity index for node 6 and we found that node 6 produce even 

a higher Gini purity index with the splitting value of 0.8233. However, the average 

purity in its consequence nodes are lower than the one in node 3 (0.67). Therefore, it 

is clear to prove that 70% or above is sufficient to become the most significant 



percentage for a node to split into its final nodes rather than taking those in above 

80%. We also investigate on the other data called Bumpus Sparrow. In Table 4.1, the 

group of less than 70% is still unfit to stop due to its low average purity in. Node 5 

and node 7 are the child nodes of node 3. Should it be the final split in node 3 or 

further splitting is needed in node 5 and node 7? Based on the result we gained, node 

3 gained the average pwity of 0.8776 with its Gini pwity index for splitting of 0.7714 

(>70%) whereas node 5 and node 7 gained a lower average purity of 0.7778 and 

0.8513 respectively although both of them gained a higher Gini purity index for 

splitting (>80%). Therefore, we can conclude that the percentage of 70% or above is 

the most significant percentage for a tree to partition into its terminal nodes. In Figure 

4.1, we present an example (a path from Pima Indians data set) of this investigation. 

Figure 4.1 shows a part of the binary splitting child's nodes from its prior non 

terminal nodes 1, 3 and 6. To determine which node is the best node to be the final 

splitting node, Gini purity measurement is carried out. It is a fact that higher Gini 

purity measurement means that greater purification of the node could produce. In 

other words, the maximum homogeneity could achieve in its subsequence nodes. 

However, we have to consider a few criteria such as the size of tree and the accuracy 

of the tree in particular nodes. Investigating in depth in every node is vital in order to 

measure the maximization homogeneity the node can produce for the following 

nodes. 



= 0.6315 (<70%) 
Average purity can be gained for 
node 2 and node 3 = 0.6428 

= 0.7362 (170%) 
Average purity can be gained for 

Average purity can be gained for 

Figure 4.1. Percentage selection for stopping criteria (a path of tree) 

We try on the path of node 1, node 3 and node 6 as these paths gone through all the 

ranges that we set. In node 1, the most potential variable to be chosen is PGC with 

the splitting point of 154. It successfully divides the observations into the 

subsequence nodes (node 2 and node 3) with the average purity index of 0.6428 by 

using Gini purity index of 0.6315 (<70%). Further splitting from node 3 with Gini 

purity index of 0.7362 (270%) to produce node 6 and node 7 which gained the 

average purity of 0.6700. Then, further split has been carried out from node 6. In this 

node, SERUM has been selected with the splitting point of 249 as it gained the 

highest Gini purity index (0.8233) among all the variables. The average purity could 

be gained for its subsequence nodes (node 8 and node 9) is 0.6574. In this test, we 



have proven that the node can have its final split once the Gini purity index achieves 

the percentage of at least 70% (threshold). In this path, we assumed that node 2, node 

7 and node 9 are terminal nodes. Only node 1, node 3 and node 6 are inspected for the 

stopping percentage. 

4.3 Case 1: Classification in Breast Tissue Data 

The breast tissue data set is a sample of data that explain about breast cancer 

diagnosis, analysed and reported by some researchers including Jossinet (1996) and 

Silva, Marques and Jossinet (2000). The measurements in the data are based on 

Electrical Impedance Spectroscopy (EIS) which are used to measure the complex 

impedance properties of a material. In medical practices, the EIS measurement of 

breast tissue can be used as pre screening for cancerous tissue. Therefore, historical 

data of EIS gives opportunity to researchers to investigate further about the potential 

patients of breast cancer hence some early pre-cautions can be taken to minimize its 

implications on the patients. 

Figure 4.2. Cancer tissue and normal tissue 



Breast tissue data set contains nine variables to discriminate 6 classes of tissue namely 

car  (carcinoma), fad (fibro-adenoma), mas (mastopathy), gla (glandular), con 

(connective) and a d i  (adipose). The variables that are able to discriminate the groups 

are based on EIS: impedivity (ohm) at zero frequency (10), phase angle at 500 KHz 

(PA50 O), high-frequency slope of phase angle (HFS), impedance distance between 

spectral ends (DA), area under spectrum (AREA), area normalized by DA (ADA), 

maximum of 'the spectrum (MaxIP), distance between I 0  and real part of the 

maximum frequency point (DR), and length of the spectral curve (p). 

This data set was used by Jossinet (1996) to investigate the variability of impedivity 

in normal and pathological breast tissue. Overall, the data consists of 106 patients, 

where 80 of them were used as a training set and the balance is used for assessment. 

Distributions of patients in each class of tissue are summarized in Table 4.2. 

4.3.1 The Statistical Background of Breast Tissue Data 

The distribution of patients in each class of tissue is displayed in Table 4.2 and we 

summarise some statistics about each variable of Breast Tissue in Table 4.3. In this 

sample, the number of patients in each type of tissue varies across the tissues and all 

variables have big spread of values as shown by the standard deviation except for 

PA500 and HFS. Table 4.3 gives some signal of potential outliers in some variables 

as the recorded skewness value, based on common rule of thumb, is outside the [- 

2.00, 2.001. Detail investigation has found that object 64th of variable AREA scores 



174480.48, quite distinct from the centre point 8142.09 hence could be considered as 

an outlier. 

Table 4.2 

Frequency Table of Breast Tissue Data Set 

Class o f  adi Car con fad gla mas  Total 
tissue 

Number of 16 16 10 9 14 15 80 
patients 

Table 4.3 

Statistical Description of Breast Tissue Data Set 

Variables lMean Median Std. Variance Skewness Kurtosis 
Deviation 

I 0  

PA500 

HFS 

DA 

AREA 

ADA 

MaxIP 

DR 

P 

Further analysis using graphical presentation as in Figure 4.3 to Figure 4.8 can 

explain the behaviours recorded in Table 4.2 and Table 4.3. The big spread of data as 

given by the standard deviation is related to the distinction of classes of tissue which 

later will be useful for classification purposes as the classes can be identified easily. 
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Meanwhile, the skewness and kurtosis of Area may indicate about the existence of 

outliers and Figure 4.5 (a) and Figure 4.6 (a) is able to highlight the outlier in the 

display. 

We investigated in details each variable of the breast tissue data to ensure that the data 

somehow contaminated with outliers. We plotted the distribution of each class of 

tissues for each variable and spot the separation of the class in a set of displays in 

Figure 4.4(a), Figure 4.5(a), Figure 4.6(a), Figure 4.7(a) and Figure 4.8(a). Also, we 

plotted the distribution of the data after the outliers was handled using Winsorize 

approach in a set of displays from Figure 4.4(b) to Figure 4.8(b). The idea is to spot 

on the separation between classes of tissue. 

CI,%S 

Frrqurnoy Frequency Frequency Frequency F r e q u m ~ y  Frequency 

Figure 4.3(a). Original data of 
variable P 

Figure 4.3(b). Winsorize data of 
variable P 



110 101  1L 0 I1 100 l l l l  l i j  $0 1 10 ' > >  !I*' lW0 50 0 10 lil: ! lo 

frtqvemy Fnquanry F~vqutnty fnquanq  fnqutnty Fnqwloq  

Figure 4.4(a). Original data of 
variable MaxIP 

class 

Figure 4.4(6). Winsorize data of 
variable MaxIP 
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Figure 4.5(a). Original data of 
variable ADA 
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Figure 4.6(a). Original data of 
variable Area 

~m 

Figure 4.5@). Winsorize data of 
variable ADA 

Pmrr 

Figure 4.6(b). Winsorize data of 
variable Area 
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Figuve 4.7(a). Original data of 
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Figure 4.7(b). Winsorize data of 
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Figure 4.8(a). Original data of Figure 4.8(b). Winsorize data of 
variable DR variable DR 

Based on the plot of original data set (Figure 4.3 to Figure 4.8), we discovered the 

variables that could be selected are P, 10, Max1 P and ADA. These variables may 

well explain the classes of breast tissue as the redundancy of distribution among the 

classes is minimal. We mark a single outlier each at Figure 4.5 (a) to Figure 4.8 (a) 

which may influence the fitted classifier. 



We also test for the data normality based on Kolmogorov-Smimov and Shapiro-Wilk 

test. According to the result in Table 4.4, we can conclude that all variables are not 

normally distributed as their p-values are less than 0.05. 

Table 4.4 

Normality Tests 

Variables Kolmogorov-Smirnova 
Statistic Df Sig. 

PGC 0.058 512 0.000 

Numqreg 0.156 512 0.000 

DBP 0.171 5 12 0.000 

TRICEP 0.192 512 0.000 

SERUM 0.250 512 0.000 

BMI 0.05 1 512 0.003 

DPF 0.126 512 0.000 

AGE 0.150 5 12 0.000 

Shapiro-Wilk 
Statistic df Sig. 

0.969 512 0.000 

4.3.2 The Construction of Winsorize Tree for Breast Tissue Data 

We begin the discussion on breast tissue data set by looking at the earlier stage of tree 

construction, investigation at the parent node. Using the box plot, 34 outliers have 

been detected at the node and the number of detected outliers in each variable is 

tabulated in Table 4.5. 



Table 4.5 

Outliers in Parent Node 

Variables I0 PA500 HFS DA Area ADA M a f l  DR P 

Number of 0 1 2 6 7 4 8 6 0 
outliers 

Next, each variable has gone through a winsorization process at 10% of the both left 

and right sides of the ordered data. Then, we computed the Winsorize Gini purity 

index on each variable and chose the variable with the highest score as a splitting 

variable. For example, PA500 recorded an outlier (see Table 4.6) but the 10% 

winsorization at the left side of the arranged data of this variable lead to replacement 

of original values 0.01, 0.02,.., 0.04 with 0.05. The computed Winsorize Gini purity 

index for values less than 0.05 is 0.2444 and values greater than 0.05 is 0.1924, which 

give the weighted average at this cutting point as 0.2022. This value indicates that the 

Gini purity index is still low. The classes are still not clearly separated. Winsorize 

Gini purity index need to be calculated in order to get the highest weighted average or 

called Gini purity measurement. 



Table 4.6 

Example of Winsorize Data and Gini Purity Index for Variable PA500 

PA500 PA 500 
(Original) (Winsorue) 

PA500 
(Winsorize) 

0.01 ad i 0.05 

0.02 fad 0.05 

0.03 con 0.05 

0.04 con 0.05 

0.04 con * 0.05 

0.04 fad 0.05 

0.04 fad 0.05 

0.05 fad 0.05 

0.05 mas 0.05 

0.05 con 0.05 

0.05 adi 0.05 

adi I 

con 1 3 1 0 1 5 1 4 1 1 1 2 1  
fad 

> 0.05 

con 

fad Gini purity (50.05): 
fad 4 

+ ($12 + (A12 + (;;I2 + (+12 + 
mas 

adi 

2 

con (&'= 0.2444 

adi Gini purity (>0.05): 

con car 

0.06 mas 5 5 
mas (g)2+(z)2+(z)2+(z)2+(z)2+ 

0.06 con 

0.06 gla 0.06 gla 
Weighted average: 

Table 4.7 summarises computed the highest Gini purity index among eight variables 

of breast tissue data set at the parent node. Among these variables, P records the 

highest among the variables with 0.3554 at the splitting point 1428.84. It means P will 

be used as a variable that split the parent node into left node and right node where the 

former contains all observations (patients) that score P less or equal than 1428.84, 
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while the right node consists of observations with P greater than 1428.84. Based on 

this cutting point, 63 observations are in the left node and 17 observations are in the 

right node (node 3). 

Table 4.7 

Splitting Point in Parent Node 

Variable I0 PA500 HFS DA Area ADA MaxW DR P 

Highest 0.3467 0.3 1 13 0.2158 0.3031 0.3243 0.3096 0.33 17 0.2846 0.3554 
weighted 
average 

Location 5 1th 14th 13th 22th 5gLh 35th 54th 20th 
of split 

62th 

SP: 

SP: Splitting point 

Once the parent node has been split, the purification of each terminal node is needed 

to be measured. If the overall Gini purity index in non terminal node achieved more 

than 0.7, then the node will be considered as leaf or terminal node and no splitting 

process is necessary to be further carried out. We have discussed earlier that the split 

of P leads to 63 observations in left node (node 2) and 17 observations in right node 

(node 3). The similar calculation of Winsorize Gini purity index was performed on 

each variable of each node and ended with purification of node 2 is about 0.21 14 and 

the purification of node 3 is 0.8892 (see Figure 4.9). Between these two nodes, the 

node 3 is almost pure with 0.8892 (achieved one of the threshold) and detail of 

investigation has found out that the node contains 16 observations from the group 

ad i  and only 1 observation from con (see Table 4.8). Since the threshold is met, 

node 3 is considered as terminal node. 
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Gini purity = Gini purity = 

Figure 4.9. Splitting of parent node 

Table 4.8 

Number of Observations in Node 2 and Node 3 

Car Con fad gla mas 

Node 2 0 16 9 9 14 15 

Node 3 16 0 1 0 0 0 

Node 2 scores low Gini purity index as the node consists of complexity of group 

memberships. Group domination is not clear at this stage hence more splitting 

processes need to be considered. In node 2, the process of splitting as in node 1 is 

repeated where outliers must be inspected in all variables by using the original data 

available at node 2. There are 29 outliers are found from 63 observations. Again, 

Winsorize method is applied to neutralised the heavily tails before performing Gini 

measurement. Table 4.9 showed the result of Gini purity index in node 2. 



Table 4.9 

Splitting Point in Node 2 

Variable I0 PA500 HFS DA Area ADA MaxW DR P 

Highest 0.3657 0.3930 0.2754 0.3601 0.3674 0.3838 0.3495 0.3538 0.3407 
weighted 
average 

Location 45th 14th 24th 32th 44th 37th 23th 31th 
of split 

b.18 

At node 2 (see Figure 4.1 O), the computed Gini indexes showed that PA5 0 0 is the 

best splitting variable with the splitting point 0.18. By using this information, we split 

the observations accordingly which led to 48 observations at node 4 (less or equal to 

0.18) and 15 observations to node 5 (more than 0.1 8). Careful assessment of both 

nodes 4 and 5 found out that node 5 achieved purity score 0.871 1 (more than 0.7) 

hence it was flag as pure and no fbrther splitting process is necessary. 

Purity = 

Purity = Purity = 

Figure 4.10. Child nodes from node 2 



Table 4.10 

Number of Observations in Node 4 and Node 5 

adi car Con fad gla mas 

. 
Node 4 0 2 9 9 14 14 

Node 5 0 14 0 0 0 1 

Table 4.10 shows the distribution of observations at node 4 and node 5. Node 4 

contains observations in all classes of tissue except adi, while node 5 is dominated 

by observations from car. This distribution explains well the purity index recorded 

by node 4 and node 5 as previously discussed. 

In the identification process of outliers, winsorization of values on the detected 

variables with outliers and determination of best split were performed at each node 

until each node meets its terminal based on one of the three thresholds. Once each 

node has met the final terminal, then we obtained a full constructed tree which 

summarises the whole process of classification. 

In comparison to the proposed Winsorize tree, the traditional tree may isolate real 

outliers in any terminal node. However, keeping the outliers throughout the process of 

tree construction may increase time for analysis purposes and produce a tree with 

many branches. Such phenomenon called bushy tree is not helpful in assisting 

practitioners to predict the group of future observations. Therefore, a pruning process 

can be considered so that an acceptable size of tree can be structured. But, as we have 



discussed in Chapter 2, the pruning process is merely for an expert rather than 

practitioners. 

We constructed both traditional tree and pruned tree to be compared to the Winsorize 

tree. The Winsorize tree is as depicted in Figure 4.1 1, traditional tree can be seen in 

Figure 4.12 and the pruned tree in Figure 4.13. By using naked eyes, we can detect 

small differences among these three trees. The Winsorize tree shows great branches 

on the left side and it uses variable P as a splitting variable in the parent node. 

Meanwhile, both traditional tree and pruned tree show similar structure with variable 

10 as a splitting variable. As the matter of fact, the pruned tree has the similar 

structure as the traditional tree but with fewer leaves. The next section will discuss 

about the overall assessment of these trees. 

0011 

HFS < 0.13 

Figure 4.11. Winsorize tree of Breast Tissue 



Figure 4.12. Traditional tree of Breast Tissue 

fad Wi.8 

Figure 4.13: Pruned tree of Breast Tissue 



4.3.3 The Evaluation of Winsorize Tree for Breast Tissue Data 

We evaluated the constructed tree based on several criteria: (i) structure of tree, (ii) 

error rate and (iii) number of outliers detected. The summaries of each constructed 

tree are given in Table 4.1 1. 

Table 4.1 1 

Comparison between Traditional Tree, Pruned Tree and Winsorize Tree 

BREAST TISSUE: 

i. Number of 
splitting 

ii. Number of leaves 

iii. Number of 
variable used 

iv. Name of variables 
used 

v. Error rate 

vi. Outliers detected: 

a. First node 

b. Second node 

c. Forth node 

d. Sixth node 

e. Ninth node 

f. Tenth node 

g. Thirtieth node 

Traditional Tree 

7 

8 

6 

1. P 

2. I0 

3. ADA 

4. DR 

5. MaxIP 

6. DA 

0.3846 

- 

- 

- 

- 

- 

- 

- 

Pruned Tree 

6 

7 

5 

1. P 

2. I0 

3. ADA 

4. DR 

5. MaxIP 

0.423 1 

- 

- 

- 

- 

- 

Winsorize Tree 

7 

8 

5 

1. P 

2. PA500 

3. I0 

4. PR 

5. HFS 

*0.2308 

3 4 

29 

4 1 

10 

2 

1 

0 



In term of structure, pruned tree uses the fewest number of leaves and split. Although 

the proposed Winsorized tree has similar tree structure to the traditional tree and 

number of variables, the former uses different variables for classifying the breast 

cancer patients except for P (length of the spectral curve) and I0 (impedivity (ohm) at 

zero frequency). These results indicate that both variables are important in explaining 

the differences between the six classes of tissue. Many researchers believed that the 

tree itself can isolate the outliers without affecting the classification, but our results 

show that ignoring the outliers can produced an inaccurate tree. Many outliers have 

been detected in different nodes. The suspicious values affected the Gini index 

measurement and the cutting points. As a consequences, many insensible branches 

could be produced which lead to bias result. 

The result has proven that Winsorize tree produced the lowest error (0.2308) 

compared to the traditional tree and the pruned tree. We believe that such result can 

be explained by the process of detecting and handling the outlier, skewness of data 

caused by outliers has been solved. Due to the impurity of the data are reduced, the 

Gini index measurement becomes more accurate. This means real sensible variables 

with best split will be selected to construct tree. In short, Winsorize tree produces a 

comparative tree with no pruning process and low error rate. In addition, all outliers in 

all nodes are well treated and only true attributes are selected as the splitting attribute. 



4.4 Case 2: Classification in Egyptian Skull Data 

Four measurements were made of male Egyptian skull from five different time period 

ranging from 4000B.C to 150 A.D. The changes of skull sizes were recorded between 

the time periods. The researchers theorize that the change in skull size is due to the 

interbreeding of the Egyptians with immigrant population over the years. (Egyptian 

Skull Development. (n.d.). StatLib and Story Library. Retrieved June, 2014, from 

http://lib.stat.cmu.edu~DASL/Stories/EgyptianSkul1Development.html). Egyptian 

skull data set contains 150 number of cases which 113 cases are used as training set 

and the rest are used as test set. Four measurements of male Egyptian skull which are 

m b  (maximal breadth of skull), bh  (basibregmatic height of skull), bl (basialveolar 

length of skull ) and nh (nasal height of skull) from 5 different time periods (negative 

= BC, positive = AD) (epoch)  are recorded. Tree is used to categorise the skull size 

over the time period. 

4.4.1 The Statistical Background of Egyptian Skull Data 

The distribution of 113 skulls of the training set based on five time periods is 

tabulated in Table 4.12. The training set consists of the similar number of sample of 

skull across the period of time. Meanwhile, Table 4.13 summarises some descriptive 

statistics in order to give an overview about the behavior of each measured variables 

namely mb, bh,  bl and nh. The estimated mean and median for all variables seem 

similar hence none of the variables may consist outliers. The values of kurtosis and 

the values of skewness do not indicate the sign of having outliers. Therefore, we may 



conclude that the empirical evidences of Egyptian skull data set are free from outliers 

and could have symmetry distributions. 

Table 4.12 

Frequency Table of Egyptian Skull Data Set 

Epoch C1850BC C200BC C3300BC C4000BC cAD150 Total 

Frequency 2 1 23 26 22 2 1 113 

Table 4.13 

Statistical Description ofEgyptian Skull Data Set 

Variables Mean Median Std. Variance Skewness Kurtosis 
Deviation 

Further investigation was carried out on each variable according to the period of time. 

Figure 4.14 and Figure 4.15 display the bar charts of each class (period of time) 

against two selected variables, nh and b l .  Both displays attempt to highlight 

separation between classes and the sign of outliers in the variables. 



Figure 4.14(a). Original data of 
variable nh 

epoch 

s3JWBC c4WOBC 

Frequency Frequency Frequency Frequency Frequenw 

Figure 4.15(a). Original data of 
variable bl 

epoch 
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Figure 4.14@). Winsorize data 
variable nh 
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Figure 4.15(b). Winsorize data 
variable bl 

The spread of observation as in circle in Figure 4.14 (a) can be regarded as potential 

outlier. Egyptian skull data set is a complicated classification case as most of the 

classes are greatly redundant onto each other. None of the display in Figure 4.14 and 

Figure 4.15 show a clear cut between classes. Another investigation on the other two 

variables, m b  and bh, based on scatterplot as in Figure 4.16 discover the swamp of 

observations hence separation lines between classes are hardly to be spotted too. Few 

potential outliers can be observed as in circles. However, when Winsorize method is 
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performed, the extreme values are replaced by where the floor and the ceiling of the 

observations are dragged to the range from 126 to 138 as in Figure 4.16 (b). 

0 ..OX , . , a  . 
0 0 0  . o n .  

* 0. "m W U  
A m .00 0 
i .a+ . 
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0 .  
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5- 

0 0 

+c.D1I0 * a .  

Figure 4.16(a). Scatterplot of bh against mb Figure 4.16(6). Scatterplot of bh against mb 
using Winsorize method 

Table 4.14 

Normality Tests 

Variables 

Numqreg 
PGC 
DBP 
TRICEP 
SERUM 
BMI 
DPF 
AGE 

Kolmogorov-Smirnov 

Statistic d f Sig. 

0.16 512 0.00 
0.06 512 0.00 
0.17 512 0.00 
0.19 512 0.00 
0.25 512 0.00 
0.5 1 512 0.00 
0.13 512 0.00 
0.15 512 0.00 

Shapiro-Wilk 

Statistic d f Sig. 

0.91 512 0.00 
0.97 512 0.00 
0.8 1 512 0.00 
0.91 512 0.00 
0.71 512. 0.00 
0.95 5 12 0.00 
0.82 512 0.00 
0.87 5 12 0.00 

According to the result of normality test in Table 4.14, both tests (Kolmogorov- 

Smirnov and Shapiro-Wilk) show that all the variables are not normal distributed as 

the p-value is less than 0.05. 



4.4.2 The Construction of Winsorize Tree for Egyptian Skull Data 

The boxplot is capable to identify some outliers from each variable of the skull data. 

Table 4.1 5 

Outlier in Parent Node 

Variable mb bh bl nh 

Number of outliers 1 2 1 1 

All these suspicious values have been Winsorize at lo%, followed by the computation 

of the Gini purity index to determine the most potential variable to be used as a split 

variable in the parent node. Among these variables, bl gives the highest weighted 

average hence it is chosen in the first split with the spitting value, 96. The table of 

Gini purity index is showed below. 

Table 4.16 

Splitting Point in Parent Node 

Variable Mb bh bl nh 

Highest weighted average 0.2299 0.2291 0.2408 0.2143 

Location of split 8' 2th 8th 8th 
SP: 96 

For the splitting process, those observations with the bl less than or equal to 96 will be 

assigned to the left node, t l ,  and the remaining observations will be assigned to the 



right node, t,. There are 57 observations and 56 observations of the original data are 

split into left (node 2) and right node (node 3) respectively as shown in Figure 4.1 7. 

n= 57 
Purity = 

0.22 19 

n= 56 
Purity = 

0.24 17 

Figure 4.17. Child nodes from node 1 

Table 4.17 

Number of 0bserval.ions in Node 2 and Node 3 

Group C1850BC C200BC C3300BC C4000BC cAD1SO 2A . 
Node 2 13 16 6 8 14 

Node 3 8 7 20 14 7 

Based on Figure 4.17, total overall purity measurement in each node 2 and node 3 are 

considered low, where both are below than 0.25. The purity rate has not reached the 

target of threshold, 0.70 or the minimum value of n. This phenomenon is due to the 

complexity of group causing the data are hardly to be cut. Therefore, further splitting 

is needed in order to gain a purer node. 

In the second node, the process was repeated where outliers were inspected again in 

all variables using the original data set. In the left node (node 2), 3 outliers have been 
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detected from each variable except bh (Table 4.18). In contra, the right node (node 3) 

contains 5 outliers (Table 4.19). Again, Winsorize method is applied in both nodes to 

neutralise the heavy tails before performing Gini purity index computation. 

Table 4.18 

Outliers in Node 2 

Variable mb bh bl nh 

Number of outliers 1 0 1 1  

Table 4.19 

Outliers in Node 3 

Variable mb bh bl nh 

Number of outliers 1 . 2  2 0 

Table 4.20 

Gini Index of Winsorize Tree in Node 2 

Variable Mb bh bl nh 

Highest weighted average 0.2580 9 ' 0.261 1 0.2420 

Location of split 1 lth 8 th gth 
SP: 129 



Table 4.21 

Gini Index of Winsorize Tree in Node 3 

Variable mb Bh bl nh 

Highest weighted 0.2688 0.2607 0.2696 0.2741 
average 

Location of split 1 st 1 st I st 5th 
SP:49 

According to Table 4.20 and Table 4.21, Gini purity index shows that bh is the best 

splitting variable with the splitting point 129 in node 2 (0.2689) while nh is the best 

splitting variable with the splitting point 49 in node 3 (0.2741). In node 2, 18 

observations are moved to node 4 and the remaining are assigned to node 5 ;  17 

observations and 39 observations are move to the node 6 and node 7 respectively. The 

details of splitting process in second level are displayed in Figure 4.1 8. 

n= 57 
Purity = 

0.22 19 
Purity = 

0.2417 

n= 18 
Purity = 

0.3457 L n= 39 
Purity = 

0.21 10 

Figure 4.18. Child nodes from node 2 and node 3 
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The splitting process at the second level as depicted by Figure 4.1 8 and the summary 

of number of observations in Table 4.22 shows that node 6 has reached it terminal 

node. The distribution of classes in node 6 reveals that the number observations in this 

node is less than or equal to the set up threshold, nmi, = 15% x n which is 17. 

Therefore, node 6 is the terminal node. In contrary, further splits are conducted on 

node 4, node 5 and node 7. The process is repeated recursively until the nodes achieve 

one of the three thresholds. 

Table 4.22 

Number of Observations in Node 4, Node 5, Node 6 and Node 7 

Group C1850BC C200BC C3300BC C4000BC cADl50 

Node 4 1 5 2 1 9 

Node 5 12 11 4 7 5 

Node 6 2 0 10 4 1 

Node 7 6 7 10 10 6 

The final structure of the Winsorize tree on the Egyptian skull data set is displayed in 

Figure 4.19. Also, Figure 4.20 and Figure 4.21 is a traditional tree and a pruned tree 

constructed on the Egyptian skull data set. Discussions on the comparisons among the 

three trees are given in the next subsection. 



Figure 4.19. Winsorize tree of Egyptian Skull 

Figure 4.20. Traditional tree of Egyptian Skull 



Figure 4.21. Pruned tree of Egyptian Skull 

4.4.3 The Evaluation of Winsorize Tree for Egyptian Skull Data 

In this section, detail discussion is carried out to compare on these three types of 

constructed tree. Some performances of interest of these trees are displayed in Table 

Table 4.23 

Comparison between Traditional Tree, Pruned Tree and Winsorize Tree 

ii. Number of leaves 

EGYPTIAN SKULL: 

i. Number of splitting 

iii. Number of variable 
use 

iv. Name of variable 
used 

1 v. Error rate 1 0.8108 1 *0.7568 1 *0.7568 I 

Traditional 
Tree 

14 

Pruned Tree 

9 

Winsorize Tree 

1 1  



All constructed trees used all the measured variables (bh, b l ,  mb & nh), which 

tell us that all these four variables may discriminate the skull size according to period 

of time. Despite of this similar behavior, traditional tree records the highest error rate 

which is 0.8108. Besides, it has a bushy structure with greatest number of leaves and 

splits compared to the pruned tree and Winsorize tree. In contrast, pruned tree 

produces the smallest tree with nine splits. Winsorize tree produces medium size tree 

with error error rate 0.7568 which is at the same performance to the pruned tree. 

Although Winsorize tree has bigger size of tree compared to pruned tree, it might be 

the most reliable tree as all the outliers are successfully been detected and handled. 

Moreover, no pruning process is required as the tree stopped splitting when one of our 

thresholds is met. 

EGYPTIAN SKULL: 

vi. Extreme value 
detected: 

a. First node 

b. Second node 

c. Third node 

d. Forth node 

e. Fifth node 

f. Seventh node 

g. Tenth node 

h. Thirteenth node 

i. fourteenth node 

j . sixteenth node 

k. twenty-first node 

Traditional 
Tree 

--- 
- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

Pruned Tree Winsorize Tree 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 

5 

3 

5 

1 

3 

6 

3 

0 

3 

2 

2 



4.5 Case 3: Classification in Pima Indians Data 

The Pima Indians diabetes database was donated by Vincent Sigillito in year 1990 

from a population of Phoenix, Arizano, USA. The data set contains the collection of 

medical diagnosis report of 768 observations and 9 variables with two dependent 

variables on the status of diabetes, either Positive (P) or Negative (N) of getting 

diabetes. There are 500 patients from the Negative group and the remaining are from 

Positive group being tested with positive for diabetes in the 2 hours post-load plasma 

glucose was at least 200mg/dl. In particular, the patients are female at least 21 years 

old from Pima Indians heritage (Smith, Everhart, Dickson, Knowler and Johannes, 

1988). The variables used for distinguishing those suffer with diabetes are as below: 

1. Number of times pregnant [Num - preg] 

2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test [PGC] 

3. Diastolic blood pressure (rnrn Hg) [DBP] 

4. Triceps skin fold thickness (mm) [ T r  icep] 

5.2-Hour serum insulin (mu U/ml) [SERUM] 

6. Body mass index (weight in kg/(height in m)"2) [BMI] 

7. Diabetes pedigree function [DPF] 

8. Age (years) [Age] 

9. Class variable (0 or 1) [ C l a s s  P o r  N] 



4.5.1 The Statistical Background of Pima Indians Data 

The Pima Indians data set consists of patients diagnosed positive or negative with 

diabetes. Table 4.24 displays the distribution of the sample of patients of these two 

groups. 

Table 4.24 

Frequency Table of Pima Indians Data Set 

Class variable Positive Negative Total 

Frequency 185 327 512 

Table 4.25 

Statistical Description of Pima Indians Data Set 

Variables Mean Median Std. Variance Skewness Kurtosis 
Deviation 

Numqreg 

PGC 

DBP 

TRICEP 

SERUM 

BMI 

DPF 

AGE 



Some basic statistics measurements are tabulated in Table 4.25. The value of standard 

deviation is high especially in PGC and SERUM indicates that the data points are 

wide spread from the data. And, the distribution of data is skewed, probably due to the 

occurrence of outliers. Besides, these variables have high degree of peakness (called 

leptokurtic distribution). To confirm the distribution of these variables, further 

inspection and investigation need to be carried out. 

We plotted the graphs which can help us to over view the distribution of the data. 

Suspicious values also can be detected. Here, we displayed three population pyramid 

graphs to show that the present of outliers and perform Winsorize towards the 

outliers. The graphs are shown in Figure 4.22 to Figure 4.25. 

CLASS 

Frequency Frequency 

Figure 4.22 (a). Original data 
of variable SERUM 

Frequency Frequency 

Figure 4.22 (b). Winsorize data 
of variable SERUM 
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Figure 4.24 (a). Original data 
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Figure 4.24 (6). Winsorize data 
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Based on the Figure 4.22 (a), obviously, SERUM has a very long tail. The mark of 

circle highlights the possibility of outliers, which are then Winsorize to norm as 

shown in Figure 4.22 (b). Since all the classes are overlapping onto each other, the 

clear cutting point is hardly to be identified. Roughly, the potential point is at the 

splitting point of 154 in variable PGC . 

Pirna Indiansfraining 
Pima Indians-Training 

AGE 

Figure 4.26(a). Scatterplot of 
original Pima Indians training 
data set 

AGE 

Figure 4.26(b). Scatterplot of 
Winsorize Pima Indians training 
data set 

Due to its complexity, variable PGC against variable AGE is drawn using scatter plot 

(see Figure 4.26). The figure shows that both classes are swamped together especially 

when AGE is less than 38 and PGC is less than 150. We highlight the potential outliers 

in circles. Therefore, Winsorize the data is necessary to reduce the effect of outliers 

while constructing tree. 

4.5.2 The Construction of Winsorize Tree for Pima Indians Data 

Based on boxplot in Figure 4.27, 109 outliers have been detected in Pima Indians data 

set where the greatest number of outliers were in DBP with 31 outliers and followed 



by SERUM with 25 outliers. Details on the recorded number of outliers for each 

variable are given in Table 4.26. 

Nungreg DBP SERUM DPF AGE 

Figure 4.27. Outliers detection using boxplot 

Table 4.26 

Outliers in Parent Node 

Variable Num-preg PGC DBP TRICEP SERUM BMI DPF AGE 

Number of 4 5 3 1 0 25 15 19 10 
Outliers 

The process of handling outliers is similar to the one discussed in subsection 4.1.2 

where those identified outliers have to be Winsorize prior to the computation of the 

Gini purity measurement. 



Table 4.27 

Splitting Point in Parent Node 

Variable Numgreg PGC DBP TRICEP SERUM BMI DPF AGE 

Highest 0.5603 
weighted 
average 

Location of 7th 69th 19th 25th 68th 49th 263th 6th 
split SP: 154 

The computed Gini purity measurement as in Table 4.27 indicates that PGC recorded 

the highest weighted average with the value of 0.6135 at the splitting point 154. It 

means that this variable is the best variable to be split at the parent node. Following 

this, 430 objects are assigned to the left node, which consist of 31 1 patients from 

negative class and 119 patients are from positive class. In contrary, 82 patients are 

assigned to the right node which consists of 16 patients from negative class and 66 

patients from positive class. The structure of the first split and the total number of 

patients are shown in Figure 4.28 and Table 4.28. 

Purity = Purity = 

Figure 4.28. Child nodes from parent node 
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Table 4.28 

Number of Patients in Node 2 and Node 3 

Node 2 31 1 119 

Node 3 16 66 

In node 2, the overall Gini purity is approximately 0.6. Node 3 is purer as it gains a 

higher Gini index which is 0.6859. Since both nodes are still below the threshold 

(Gini purity index more than 0.7), further splitting process is needed. 

In node 2 and node 3, the process of identifying outliers is repeated as in node 1. 

There are 109 outliers and 14 outliers found in node 2 and node 3 respectively. In 

node 2, DBP consists the highest number of outliers which is 28 while TRICEP has 

no outlier at all. No outlier is detected in variable PGC, TRICEP and AGE in node 3. 

Details can refer to Table 4.29 and Table 4.30. 

Table 4.29 

Number of Outliers in Node 2 

Variable Num-preg PGC DBP TRICEP SERUM BMI DPF AGE 

Number of 15 6 28 0 19 12 14 15 
Outliers 



Table 4.30 

Number of outlier-s in Node 3 

Variable Num-preg PGC DBP TRICEP SERUM BMI DPF AGE 

Number 1 0 3 0 3 3 4 0 
of outliers 

Table 4.3 1 

Splitting Point in Node 2 

Variable Num-preg PGC DBP TRICEP SERUM BMI DPF AGE 

Highest 0.6123 0.6326 0.6050 0.6110 0.6133 0.6371 0.6098 0.6309 
weighted 
average 

Location 4th 19th 19th 25th 77th 
of split 

Table 4.3 1 shows that the Gini purity index in node 2. Gini purity index are about the 

same in all variables. The highest Gini among all the variables are BMI with the value 

of 0.6371 where it is slightly higher than PGC (0.6326). The patients are split into 

node 4 and node 5 with the splitting point 26.2. 

Table 4.32 

Splitting Point in Node 3 

Variable Num- PGC DBP TRICEP SERUM BMI DPF AGE 
P"% 

Highest 0.6929 0.6907 0.6889 0.6908 0.6930 0.7189 0.7192 "^'^ 

weighted 
average 

Location 2th 12th 5th 27th 22th 6th 17th 34th 
of split SP: 59 





TRICEEO DPFS 0.512 

Figure 4.30. Winsorize tree of Pima Indians 
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Figure 4.31. Traditional tree of Pima Indians 



PGC < 13.5 

AGE 255 AGE < 21.5 

Figure 4.32. Pruned tree of Pima Indians 

4.5.3 The Evaluation of Winsorize Tree for Pima Indians Data 

After the completion of the trees, Comparison between trees is conducted to examine 

the performances of each tree. 

Table 4.33 

Comparison between Traditional Tree, Pruned Tree and Winsorize Tree 

PIMA INDIANS:  

i. Number of splitting 

ii. Number of leaves 
iii. Number of variable use 

iv. Name of variables used 

Traditional Tree 

13 

14 
8 

1. PGC 
2. BMI 
3. AGE 
4. Numqreg 
5. SERUM 
6. TRICEP 
7. DPF 
8. DBP 

Pruned Tree 

8 

9 
5 

1. PGC 
2. BMI 
3. AGE 
4. SERUM 
5. TRICEP 

Winsorize Tree 

8 

9 
5 

1. PGC 
2. BMI 
3. AGE 
4. SERUM 
5. DPF 



Based on the result in Table 4.33, the number of splitting, the number of leaves and 

the variables used in pruned tree and Winsorize tree are similar which is far lower 

than the traditional tree. Although pruned tree and Winsorize tree are having same 

number of variable used, one of the variables used is different. For instance, pruned 

tree used SERUM but Winsorize tree used DPF as potential variables. Obviously, 

Winsorize tree perform better with lower error rate which is only 0.1758 compared to 

traditional tree and pruned tree. 

Winsorize tree produced protection to all the potential outliers instead of removing or 

ignoring them. At least, the effect of outliers can be reduced to the minimum during 

the construction of tree. Moreover, time can be saved by not going through the 

process of pre-processing and pruning. In short, we have confident to say that 

Winsorize tree is more reliable in real life compared to the current tree even in big 

data set such as Pima Indians data set. At least, it is comparable to the traditional tree 

and pruned tree. 

Winsorize Tree 

"0.1758 

109 
109 
14 
62 
3 8 
10 
22 
15 

PIMA INDIANS: 

v. Error rate 
vi. Extreme value detected: 

a. First node 
b. Second node 
c. Third node 
d. Fifth node 
e. Ninth node 
d. Tenth node 
e. Eleventh node 
f. Fourteenth node 

Traditional Tree 

0.2188 

- 
- 
- 
- 
- 
- 
- 
- 

Pruned Tree 

0.2656 



4.6 Case 4: Classification in Iris Data 

Perhaps iris flower data set is one of the best and prominent case of study in pattern 

recognition literature. The Iris data was collected by Edgar Anderson in which the 

flowers were classified into 3 different species (Iris Setosa, Iris Virginica and Iris 

Versicolor). The data consists of 50 examples from each species and four variables 

were used in measurements which are the length and the width of Sepal and Petal. 

The data was popularised by Fisher in year 1936 as he developed the linear 

discriminant model to distinguish the species (Fisher, 1936; Duda & Hart, 1973). 

There are four variables of iris data set namely SepalLength (sepal length), 

Sepalwidth (sepal width), PetalLength (petal length) and Petalwidth (petal width) to 

discriminate 3 classes which are Iris-setosa (Iris Setosa), Iris-versicolour (Iris 

Versicolour) and Iris-Virginica (Iris Virginica). 

Figure 4.33. Iris flower 



4.6.1 The Statistical Background of Iris Data 

Table 4.34 

Frequency Table oflris Data Set 

Class of Iris Iris-setosa Iris- Iris- Total 
versicolour Virginica 

Frequency 30 3 3 37 100 

Table 4.35 

Statistical Descriptioii of Iris Data Set 

Variables Mean Median Std. Variance Skewness Kurtosis 
Deviation 

Sepalwidth 3.07 3 .OO 0.46 0.22 0.40 -0.18 

Petalwidth 1.24 1.30 0.76 0.57 -0.17 -1.28 

Iris data set consists of 150 samples of iris flowers. Two third of the observations are 

used for training set and the remaining are used for test set. In 100 training set 

selected randomly, 30 from the group of Iris-setosa, 33 from Iris-versicolour and the 

rest from Iris-Virginica. Table 4.36 summarises some estimated statistics from the 

training set, in which the mean and the median values are not much difference. 

Meanwhile, both skewness and kurtosis reflect that the distribution of each variable is 

somewhat symmetric hence the data may not badly be affected by the occurrence 

outliers. 



To investigate the detail of the Iris data especially outliers, we plotted the distribution 

of class for each variable, distribution and separating point. If outlier is detected, then 

Winsorize method will be used to normalise the data. 
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Figure 4.35. Original data of 
variable PetalLength 

Since most of the classes are overlapping onto each other, it might be very hard to get 

a good splitting point. Thus, the Gini purity index is expected will be very low. Figure 

4.35 shows a good cutting point (dotted line), where that cutting point can clearly 

separate three groups. However, the result is just based on our naked eye and personal 



judgment. In the following section, we will test again the outlier using boxplot and 

calculate the Gini purity index to get the best splitting criteria. 

Table 4.3 6 

Normality Tests 

Variables Kolmogorov-Smirnova Shapiro-Wilk 

Statistic d f Sig. Statistic d f Sig. 

SepalLength 0.086 100 0.065 0.973 100 0.037 

Sepalwidth 0.103 100 0.010 0.982 100 0.183 

Petal Width 0.157 100 0.000 0.912 100 0.000 

To test whether the variable is normal distribution, Kolmogorov-Smirnov and 

Shapiro-Wilk test are carried out. We found that only thep-value in SepalLength and 

SepalWidth in Sharpiro-Wilk test are greater than 0.05, the rest are less than 0.05. 

Therefore, we can define that SepalLength and SepalWidth are probably normally 

distributed. 

4.6.2 The Construction of Winsorize Tree for Iris Data 

To ensure the occurrence of outliers, boxplot is plotted as in Figure 4.35. There are 

three outliers found in variable of SepalWidth which are objects 55, 24 and 91. 

Therefore, Winsorize need to be carried out before performing Gini purity index. 

Table 4.37 shows the total outliers found in each variable. 



Figure 4.36. Outlier detection using boxplot 

Table 4.37 

Outliers in Parent Node 

Variable SepalLength Sepalwidth PetalLength Petalwidth 

Number of 
outliers 

10% of the data from SepalWidth has been Winsorize. Then, all the data must be 

sorted for measuring the Gini purity. The highest Gini purity index within and 

between the variable is chosen as potential variable for splitting with the cutting point. 

The process of calculation can referred to case I (Breast tissue). Table 4.38 shows 

Gini purity index between variable and their location of split in parent node. 

Table 4.38 

Splitting in Parent Node 

Variable SepalLength Sepalwidth PetalLength Petalwidth 

Highest weighted 0.5305 0.461 9 0.6521 0.65 1 1 
average 

Location of split 10th 9th jth 5th 
SP: 1.9 



Gini purity measurement shows that PetalLength scores the highest weighted average 

among all the variables with the index of 0.6521. The location of splitting is on the 9th 

with the splitting point of 1.9. Tree picture of parent node is displayed in Figure 4.37. 

Purity = 1. 

Figure 4.3 7. Child nodes from parent node 

Table 4.39 

Number of Observations in Node 2 and Node 3 

Setosa Versicolor Virginica 

Node 2 30 0 0 

Node 3 0 33 3 7 

In node 2, the overall Gini index is fully pure as only has one group in it. In contra, 

node 3 has 70 observations in it where 33 of Versicolor and 37 of Virginica. The 

overall Gini index in node 3 is 0.5016. Since node 3 has not reached the thresholds, 

further split is needed using the original data set. 

In node 3, no outlier has been detected which means that all the data are under the 

acceptable range. Gini purity index is performed again for the next split. 
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Table 4.40 

Splitting Point in Node 3 

Variable SepalLength Sepalwidth PetalLength Petalwidth 

Highest weighted 0.633 1 0.5356 0.89 
average 

Location of split 12th 9th 14th 7th 
: SP: 4.8 

The next potential of splitting points is either PetalLength or PetalWidth with Gini 

purity index of 0.8983. Practitioner can choose any one of them if the Gini purity 

index is equal. In this case we choose PetalLength with the splitting 4.8. Due to the 

Gini purity index has achieved the threshold (Gini purity index within variable is 

more than 0.7), we considered node 3 is having the last split with node 4 and node 5 

as terminal nodes. This is the splitting rule that we introduced in this study. Tree 

structure is displayed in Figure 4.38. 

n= 30 
Purity = 1 1 

n= 35 
Purity = 

n= 70 
Purity = 

Figure 4.38. Child nodes from node 3 

n= 35 
Purity = 



Table 4.41 

Number of Observations in Node 4 and Node 5 

Setosa Versicolor Virginica 

Node 4 0 3 2 3 

Node 5 0 1 3 4 

In Table 4.41, there are 35 observations in both node 4 and node 5 respectively. Node 

4 contains 0 Setosa, 32 Versicolor and 3 Virginica while node 5 contains 0 Setosa, 

only 1 Versicolor and 34 Virginica. 

Winsorize tree produced a tree which resembles the traditional tree. The different is 

the first splitting point as traditional tree used the midpoint of each consequence point. 

But, it does not affect much on the result. Due to the size of tree, pruning tree is not 

allowed. Therefore the pruned tree will be the same as the original tree. The structures 

of trees are depicted in Figure 4.39, Figure 4.40 and Figure 4.41. 

Figure 4.39. Winsorize tree of Iris 
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Figure 4.40. Traditional tree of Iris 

Figure 4.41. Pruned tree of Iris 

4.6.3 The EvaIuation of Winsorize Tree for Iris Data 

The structure showed that there are no different between the trees. Only the cutting 

point in Winsorize tree is slightly different from the traditional tree. The details of 

comparison between trees are shown in Table 4.42. 



Table 4.42 

Comparison between Traditional Tree, Pruned Tree and Winsorize Tree 

In fact, there is no different between the trees. We purposely try only this data set to 

show that when the data consist one or few outliers or even no outlier at all, the 

proposed Winsorize tree is still stay stable which the result is comparative to the 

traditional tree and pruned tree. Moreover, at least some potential outliers have been 

found and penalised using Winsorize tree instead of ignoring them. The same score on 

error rate perhaps is best explained by the fact that only a variable was used to 

discriminate the classes. It means, regardless of different type of trees (e.g. CHAID, 

ID3 etc.) use for such like this case, the error rate will be the same, and this error rate 

is the lowest. 

IRIS: 

i. Number of splitting 

ii. Number of leaves 

iii. Number of variable 
use 
iv. Name of variable 
used 

v. Error rate 

vi. Extreme value 
detected 

. a. First node 

b. Second node 

Traditional Tree 

2 

3 

1 

1. PetalLength 

0.06 

- 

- 

Pruned Tree 

2 

3 

1 

1. PetalLength 

0.06 

- 

- 

Winsorize Tree 

2 

3 

1 

1. PetalLength 

0.06 

3 

0 



4.7 Case 5: Classification in Bumpus Sparrow Data 

In year 1898, a severe winter storm near Providence happened causing some of the 

local sparrow died and some survive. H e q a n  Bumpus decided to investigate on 

theory of evolution based on some physical characteristics such as total length of 

humerus, length of bead and head, alar length, total length, and keel of sternum. The 

response variable is either survives or died. Total observations collected are 49 where 

33 observations are used as training set. We purposely try on this small data set to see 

that whether the new model is comparative to the traditional one. The independent 

variables used in this data are Length - humerus (length of humerus), 

Length - bead - head (Length of bead and head), A l a r  - l e n g t h  (Alar length), 

T o t a l  - l e n g t h  (Total length) and Length - k e e l  - s t e r n u m  (length of keel and 

sternum) and the response variable are either S (survive) or D (died). 

4.7.1 The Statistical Background of Bumpus Sparrow Data 

Table 4.43 

Frequency Table ofBurnpus Sparrow Data Set 

Class of Iris S D Total 

Frequency 13 20 33 

Bumpus sparrow data has a very small number of observations which the training set 

is only 33 where 13 from the group of survive and 20 from the group of died. 



Table 4.44 

Statistical Description of Bumpus Sparrow Data Set 

Variables Mean Median Std. Variance Skewness Kurtosis 
Deviation 

Length-bead- 31.56 31.50 0.79 0.63 0.46 -0.45 
head 

Length - hu~ner 18.57 18.60 0.59 0.35 -0.06 -0.20 
US 

Length-keel-s 20.88 20.80 0.96 0.93 0.30 -0.62 
ternum 

According to Table 4.44, the skewness of all the variables is in the range of -1 and 1 

which mean that the curve is symmetry (approximately 0 skewness). Besides, we also 

gain negative values in kurtosis for all the variables. The value gains are just slightly 

shifted from 0. It means that the distribution is flatter. Alar length produces the 

highest variance where the value is 26.45. To ensure whether the data contains outlier 

or not, we plotted distribution graph. Through the graph, we can also spot the 

separation of the class of "S" and "D". 
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Based on the graph, Figure 4.42(a), Figure 4.42(c) and, Figure 4.42(e) clearly show 

that the data has no outliers. However, Figure 4.42(b) and Figure 4.42(d) show that 

there are some potential outliers located on the floor of the data. However, further 

analysis need to be done to ensure whether the seen outliers are true. 

Table 4.45 

Normality Tests 

Variables Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Total-length 0.096 33 0.200 0.966 33 0.381 

Lengtkhumerus 0.089 33 0.200 0.986 33 0.936 

Table 4.45 shows the normality test. All the variables in both test show that the p- 

values are more than 0.05. Therefore, we can conclude that the data is normal. 



4.7.2 The  Construction of Winsorize Tree for Bumpus Sparrow Data 

Due to some suspicious value displayed in Figure 4.42(b) and Figure 4.42(d), boxplot 

has been conducted to investigate the existing outlier. 

Figure 4.43. Outlier detection using boxplot in parent node 

Table 4.46 

Outliers in Parent Node 

Variable Total-length Alar-length Length-bead- Length-h Length-keel- 
head umerus sternum 

Number of 0 
outliers 

According to the boxplot measurement as in Figure 4.43 and the result in Table 4.46, 

no outlier is detected. It means that all the values are in the bound. Therefore, the 

Winsorize process can be skipped in this stage. Next, Gini purity measurement is 

performed after sorting all the values. 



Table 4.47 

Splitting Point in Parent Node 

Variable Total-length Alar-length Length-bead- Length-hum Length-keel 
head erus sternum 

Highest 0.5688 0.5759 0.5852 0.5535 0.5653 
weighted 
average 

Location 10th 6th 11th 12th 18th 
of split SP: 3 1.5 

Based on Table 4.47, all the variables are comparative where the weighted average is 

about 0.55. However, the variable of Length-bead-head gains the highest weighted 

average among all the variables with the index of 0.5852 with the splitting point of 

3 1.5. Tree picture of parent node is displayed in Figure 4.44. 

Purity = 

Figure 4.44 Child nodes from parent node 



Table 4.48 

Number of Observations in Node 2 and Node 3 

Node 2 10 8 

Node 3 3 12 

In Table 4.48, Node 2 shows that the group of S is slightly higher than the group of D 

whereas in node 3, the number of group D is 4 times higher than the group of S. Since 

the purity in both nodes is still not approaching the thresholds, further split is 

necessary. 

In node 2 and node 3, the original data is again to be investigated for the existence of 

outlier. 

Figure 4.45. Outlier detection using boxplot in node 2(left) and node 3(right) 



From the boxplot (in Figure 4-45), we can only see roughly about the presence of 

outliers. Based on the calculation in both nodes, node 2 has 2 outliers while node 3 

has 4 outliers as shown in Table 4.49 and Table 4.50 respectively. Therefore, 

Winsorize method needs to be performed to neutralise the heavy tail before measuring 

the Gini purity index. The result of Gini purity index is shown in Table 4.51 and 

Table 4.52. 

Table 4.49 

Outlier in Node 2 

Variable Total-length Alar-length Length-bead Length- Length-keel 
head - humerus - sternum 

Number of 0 1 0 1 0 
Outliers 

Table 4.50 

Outlier in Node 3 

Variable Total-length Alar-length Length-bead Length-hu Length-keel 
- head merus - sternum 

Number of 1 1 0 2 0 
outliers 



Table 4.5 1 

Splitting Point in Node 2 

Variable Total-length Alar-length Length-bead Length- Length-keel- 
- head humerus sternum 

Highest 0.6049 0.5259 0.5425 0.5278 0.5852 
weighted 
average 

Location of 1 St 1 st 7th 11th 
split 

Based on the highest weighted average in Table 4.51, the potential variable to be 

chosen in node 2 is Total-length with the splitting point 155. Therefore, the objects 

are split to node 4 and node 5.  There are 9 objects assigned to node 4 where 3 are 

survival and 6 are dead. 9 objects are assigned into node 5 where 7 from the group of 

survival and 2 from the group of dead. The total purity in node 4 and node 5 are 

0.5556 and 0.6543 respectively. Since the thresholds are still unachievable, further 

split is needed. 

Table 4.52 

Splitting Point in Node 3 

Variable Total-length Alar-length Length-bead Length-hu Length-keel 
- head merus - sternum 

Highest 0.6929 0.7000 0.7200 0.7333 0.7714 
weighted 
average 

Location 3rd 2nd 3 rd 2nd 1 st 
of split SP: 20 



In Table 4.52, we can spot that all the variables are about 0.7. The highest weighted 

average is Length-keel-sternum which is 0.7714. Since the value has already 

achieved the threshold(> 0.7), the last split is allowed from node 3 to split into node 

6 and node 7 before stop splitting. There are only one object in node 6 which is 

survival and 14 objects in node 7 (12 from the group of dead and 2 from the group of 

survival). The splitting point is 20. Second level of split is displayed in Figure 4.46. 

Lenath-bead head 1 31.5 
I 

n =  18 
Purity = 

0.5062 n 
Purity = 

0.5556 
Purity = 

Figure 4.46. Child Nodes from Parent Node 2 and Node 3 

Since node 4 and node 5 haven't reached the threshold so further split need to be run. 

In node 4, no outlier is detected. However, in node 5 there is one outlier found in 

variable Alar-length. Therefore, Winsorize method has to carry out to neutralise the 

heavy tail. Table 4.54 shows the number of outlier detected in node 5. 



Table 4.53 

Number of Observations in Node 4, Node 5, Node 6 and Node 7 

Node 4 6 3 

Node 5 2 7 

Node 6 0 1 

Node 7 12 2 

Table 4.54 

Outlier in Node 5 

Variable Total-length Alar-length Length-bead- Length- Length - keel - 
head humerus sternum 

Number 0 1 0 0 0 
of 
outliers 

Table 4.55 

Splitting in Node 4 

Variable Total-length Alar-length Length-bead Length-hu Length-keel 
- head merus - sternum 

Highest 0.7333 0.6190 0.6667 0.6667 0.5833 
weighted 
average 

Location 3rd 2nd 3 rd 5th 7th 
of split SP: 153 

Table 4.55 shows the Gini purity index in node 4. The variable of Totallength gains 

the highest weighted average with the value of 0.7333 and the splitting point is 153. 

According to the threshold, due to the Gini purity index has reached above 0.7; node 4 



is only allowed to split for the final nodes, which are node 8 and node 9. Node 8 

contains 4 objects (2 from survival and 2 from dead) whereas node 9 contains 5 

objects which all only 1 from the group of survival and the rest are the group of dead. 

Table 4.56 

Splitting Point in Node 5 

Variable Total-length Alar-length Length-bea Length-hume Length-kee 
d-head rus 1-sternum 

Highest 0.7778 
weighted 
average 

Location 3 rd 6th 1 st 3 rd 1 st 
of split SP: 238 

According to the result in Table 4.56, the highest weighted average is Alar - length 

with Gini purity index 0.8058. The splitting point is 238. Since the value has achieved 

the threshold (above 0.7); the next split from node 5 will be the terminal nodes (node 

10 and node 11). There are 2 objects from the group of survival and 1 object from the 

group of dead in node 10. Therefore, node 10 is classified as group D. In contra, 6 

objects are assigned in node 11 which all are the group of dead. Full Winsorize tree 

can be referred to Figure 4.47. 



Figure 4.47. Child nodes from node 4 and node 5 

Table 4.57 

Number of Observations in Node 8, Node 9, Node 10 and Node 1 1 

Node 8 2 2 

Node 9 4 1 

Node 10 1 2 

Node 11 6 0 
- - - - 

Comparison between three types of tree is shown in Figure 4.48 to Figure 4.50. 



Total-Length 5 155 L.ength-ke~-stemm S 20 

total-length 2 153 Alar-length 5 238 1 I 

Figure 4.48. Winsorize tree of Burnpus Sparrow 

Figure 4.49. Traditional tree of Bumpus Sparrow 

Figure 4.50. Pruned tree of Bumpus Sparrow 



4.7.3 The Evaluation of Winsorize Tree for Bumpus Sparrow Data 

Table 4.58 shows the comparison of the performance between traditional tree, pruned 

tree and Winsorize tree. 

Table 4.58 

Comparison between Traditional Tree, Pruned Tree and Winsorize Tree 

Based on the result we gain from the analysis, once again Winsorize tree surmount 

between the trees. Traditional tree and pruned tree contain the same result as the 

traditional tree is too small to be pruned. Both are having 3 number of splitting with 4 

BUMPUS 
SPARROW: 
i. Number of 

splitting 
ii. Number of 

leaves 
iii.Number of 

variable used 
iv. Name of 

variables used 

4. Error rate 
5. Outliers 

detected: 
a. First node 
b. Second 

node 
c. Third node 
d. Fourth 

node 
e. Fifth node 

Traditional 
Tree 

3 

4 

3 

1. Length-b 
ead-head 

2. Total 
length 

3. Length-h 
umerus 

0.6875 

- 

- 

- 

- 

- 

Pruned Tree 

3 

4 

3 

1. Length bea 
d-head- 

2. Total 
length 

3. Length - hu 
merus 

0.6875 

- 

- 

- 

- 

- 

Winsorize Tree 

5 

6 

4 

1. Length bea 
d-head- 

2. Total length 
3. Lengthkeel 

sternum 
4. Alar-length 

"0.5625 

0 

2 

4 

0 

1 



leaves. The numbers of variables used are only 3. In contrary, Winsorize tree contains 

one level more than traditional tree with 5 numbers of splitting and 6 numbers of 

leaves. Beside, Winsorize tree used four variables to construct the tree and it gains the 

lowest error rate which is 0.5625 compared to the others. According to our 

observation, we found that the high error rate in traditional tree is due to the masking 

variable. For instance, Alar-length is not used in traditional tree but this variable is 

vital to separate the class of objects as in Winsorize tree. In node 5 (Figure 4-46), this 

variable can successfully separate the objects into pure node as in node 11 (all are 

group D). In addition, the effect of outliers all are neutralized which produces a more 

precise and accurate tree for classification. 

4.8 Case 6: Classification in Indians Liver Patient Dataset (ILPD) 

Nowadays, patients with liver disease are increasing due to drugs, contaminated 

foods, alcohol consumption, inhalation of harmful gases and so forth. Therefore many 

classification techniques have been widely used in medical field to diagnose this 

problem (Jayakrisharan, Rajan, Jagdish & Sanj ay, 20 1 4). 

Indians Liver Patient Dataset (ILPD) was collected from north east of Andhra 

Pradesh, India. Many research conducted used this data for comparative analysis and 

trying to improve in prediction accuracy (Ramana, Babu & Venkateswarlu, 2012). 

The data of ILPD is taken from UCI repository where the data contains 583 

observations. The data has 10 independent variables and a dependent variable with 

two groups. There are 441 male patients and 142 females in record. 416 of the 

160 



patients have liver problem and 167 have no liver patients in the group. Below are the 

data descriptions. 

1. A g e  (Age of the patient) 

2. G e n d e r  (Gender of the patient) 

3. TB  (Total Bilirubin) 

4. DB (Direct Bilirubin) 

5. A l k p h o s  (Alkalinephosphotase) 

6. S gp t (Alamine Aminotransferase) 

7. S go t (Aspartate Aminotransferase) 

8. T P (Total proteins) 

9. ALB (Albumin) 

10. A/G (Albumin and Globulin ratio) 

11. C l a s s  

i. L P (liver patient) 

. . 
11. NLP (non liver patient) 

From the data, 390 training set are selected randomly from the data and the remaining 

193 data are selected as test set. As previous cases, preamble analysis has been carried 

out for better understanding about the data. Figure 4.51 shows the picture of Indian 

Liver Patient. 



(a) (b) 

Figure 4.51. Indians Liver Picture where a) patient and b) control 

4.8.1 The Statistical background of ILPD 

Table 4.59 and Table 4.60 show the statistical background of the data 

Table 4.59 

Frequency Table of Indians Liver Patient Dataset 

Class LP NLP Total 

Number of patients 416 167 583 

Table 4.60 

Statistical Description of Indians Liver Patient Dataset 

Variable Mean Median Std. Variance Skewness Kurtosis 
Deviation 

DB 1.20 0.30 2.18 4.76 3.39 12.46 

Alkphos 295.44 209.00 246.19 606 1 1.05 3.85 18.88 

Sgpt 87.07 35.00 2 12.22 45037.46 5.98 40.04 

Sgot 115.64 39.00 340.42 1 15882.77 9.54 1 16.58 
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Variable Mean Median Std. Variance Skewness Kurtosis 
Deviation 

TP 6.46 6.50 1.11 1.23 -0.2 1 0.19 

ALB 3.20 3.20 0.80 0.65 -0.03 -0.45 

AG 0.97 1 .OO 0.29 0.08 0.41 0.22 

According to Table 4.60, there are big spread of the standard deviation in the data 

except ALB, TP and AG. The skewness of variable TB, Sgpt and Sgot are considered 

high skewed to the right as the positive value is quite high. Leptokurtic happened in 

TB, DB, A l k p h o s ,  S g p t  and S g o t  as the value is exceeded 3. Thus, the 

information indicated about the existence of outliers in most of the variables. 

We also plot the distribution of each class to spot the behaviour of the class as in 

Figure 4.52, Figure 4.53 and Figure 4.54 so that we get an idea on the potential 

cutting point which produces a good separation between the classes of the patients. 

Class 

LP NLP 
I 

? c.! 

-0 a0 no t o o  o roo  x l o  no 

Frequency Frequency Frequency Frequency 

Figure 4.52(a). Original data of Figure 4.52(6). Winsorize data of 
variable Alkphos variable Alkphos 



Class LP 
MNLP 
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Frequency Frequency 

Figure 4.53(a). Original data of 
variable Sgpt 
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LP NLP 
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Figure 4.54(a). Original data 
variable TP 
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Dw 
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Frequency Frequency 

Figure 4.53(b). Winsorize data of 
variable Sgpt 
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Frequency Frequency 

Figure 4.54(77). Winsorize data 
variable TP 

Three original data distribution histograms are plotted in Figure 4.52(a), Figure 

4.53(a) and Figure 4.54(a). Based on the distribution in Figure 4.52(a) and Figure 

4.53(a), we can identify that the data are having a long tails and there are probably 

consist outliers in the data. Winsorize method is applied to penalise those heavy tails 

so that the value are dragged to the acceptable range. Another problem can be seen in 

the Figures are the redundancies of group making it hard to be separated clearly. 



Table 4.6 1 

Normality Tests 

Kolmogorov-Smirnova 

Statistic d f Sig. 

Age 0.055 390 0.007 

TB 0.309 3 90 0.000 

DB 0.307 3 90 0.000 

Alkphos 0.260 390 0.000 

Sgpt 0.354 390 0.000 

Sgot 0.372 3 90 0.000 

TP 0.049 390 0.023 

ALB 0.063 390 0.001 

AG 0.125 3 90 0.000 

Shapiro-Wilk 

Statistic d f Sig. 

0.989 3 90 0.006 

0.519 3 90 0.000 

0.541 3 90 0.000 

0.597 3 90 0.000 

0.329 390 0.000 

0.269 390 0.000 

0.993 390 0.060 

0.991 3 90 0.016 

0.948 390 0.000 

According to normality test, the result in both test shows that all the variables are not 

normally distributed as all the p-value are less than 0.05 except T P  in Sharpiro-Wilk 

test which 0.06 is slightly higher than 0.05. 

4.8.2 The Construction of Winsorize Tree for ILPD 

*oe lB DB PWEj  s3a Sgd lP PIE AG 

Figure 4.55. Outlier detection using boxplot 



According to Figure 4.55, 267 outliers have been detected in this data where DB 

contains the highest number of outliers which is 57 outliers in it. Sgot has the 

longest tail where the highest value is 4929. It means that this value is shifted extreme 

far from the mean, 120.21. Such result explains why Table 4.61 showed that the 

standard deviation of Sgot is the highest (340.42) among all the variables. In contra, 

no outliers are detected in variable Age and ALB . Details on the number of outliers 

for each variable are recorded in Table 4.63. 

Table 4.62 

Outliers in Parent Node 

Variable Age T B  DB Alkphos Sgpt Sgot TP ALB AG 

Number of 0 56 57 47 50 4 5 5 0 7 
Outliers 

The process of handling outliers using Winsorize method is similar to the one 

discussed in subsection 4.1.2 where those identified outliers have to be Winsorize 

prior to the computation of the Gini purity measurement. 

Table 4.63 

Splitting Point in Parent Node 

Variable Age TB DB Alkphos Sgpt Sgot TP ALB AG 

Highest 0.607 
weighted 
average 

Location of 22 1 oth 10 52 15 44 16 23 2 1 
split SP: 1.3 



The result displayed in Table 4.63 shows that variable TB has the highest Gini purity 

index (0.6331) where the splitting location is located at the tenth. The splitting point 

of TB is 1.3. Objects less than or equal to 1.3 is assigned to the left node whereas the 

rest is assigned to the right node. Left node contains 227 objects where 136 are from 

the group of LP and 91 from the group of NLP while right node contains 163 objects 

where about 88% of the objects come from the group of LP. The structure of the first 

split and the total number of patients are shown in Figure 4.56 and Table 4.65. 

Purity = Purity = 

Figure 4.56. Child nodes from parent node 

Table 4.64 

Number of Patients in Node 2 and Node 3 

\Group LP NLP 

Node \ 
Node 2 136 91 

Node 3 143 20 

The overall Gini purity index of node 2 and node 3 are 0.5 196 and 0.7847. Due to the 

overall Gini purity index in node 3 is exceeding 0.7 (threshold), node 3 is considered 

as terminal node. 

167 



In Node 2, the process above is repeated in second level using the original data to get 

for the next binary nodes (node 4 and node 5). There are 170 outliers are found. 

However, no outlier is detected in variable Age and ALB. In contra, DB contains the 

highest number of outliers which is 94 outliers. The details are shown in Table 4.65. 

Table 4.65 

Number of Outliers in Node 2 

Variable Age TB DB Alkphos Sgpt Sgot TP ALB AG 

Number of 0 7 94 16 2 1 25 3 0 4 
Outliers 

Table 4.66 

Splitting Point in Node 2 

Variable Age TB DB Alkphos Sgpt Sgot TP ALB AG 

Highest 0.5389 0.5259 0.5210 0.5409 0.5428 0.5388 0.5272 0.5326 0.5281 
weighted 
average 

Location of 15 5 1 42 17th 38 1 19 16 
split SP: 26 

According to the Gini purity index in node 2, the highest one is Sgpt  which as 

shown in Table 4.66. With the splitting of 26, node 2 split the data into node 4 and 

node 5. There are 105 objects assigned to node 4 where 57 are come from the group 

of LP and 48 from the group of NLP. The overall purity index in that node is 0.5037. 

Since no threshold has been met, future splitting is needed. Besides, node 5 contains 

122 objects where 79 and 43 from the group of LP and NLP respectively. The overall 



purity index in it is 0.5435. Again, the node needs to be process for the next level due 

to unachievable of any of the thresholds. 

n = 163 
Purity = 

0.7847 

Purity = Purity = 

Figure 4.57. Child nodes from node 2 

Table 4.67 

Number of Observations in Node 3, Node 4 and Node 5 

Group LP NLP A 
Node 3 143 20 

Node 4 

Node 5 

The process is repeated recursively until one of the threshold is reached. The final 

structure of Winsorize tree is shown in Figure 4.58. And, traditional tree and pruned 

tree are shown in Figure 4.59 and Figure 4.60. The overall assessments of all trees 

are discussed in the Table 4.68. 



Figure 4.58. Winsorize tree of ILPD 

Figure 4.59. Traditional tree of ILPD 



Figure 4.60. Pruned tree of ILPD 

4.8.3 The Evaluation of Winsorize Tree for ILPD 

To evaluate the performance of Winsorize tree, all trees are compared to determine 

whether Winsorize tree is able to compete with the traditional tree. 

Table 4.68 

Comparison between Traditional Tree, Pruned Tree and Winsorize Tree 

Winsorize 
Tree 

8 

9 

ILPD: 

i. Number of splitting 

ii. Number of leaves 

Traditional 
Tree 

13 

14 

Pruned Tree 

10 

11 



According to the result, Winsorize tree is having the least split which is only 8 splits 

compared to traditional tree and pruned tree which are 13 splits and 10 splits 

respectively. Besides, the variables used are fewer in Winsorize tree compared to the 

other trees. Only 4 variables are chosen during the construction of tree which these 4 

variables are able to produce a better tree with lower error rate and simpler tree. In 

addition, all outliers are screened from level to level to make sure the data is in the 

accepted fence. In short, Winsorize tree performed even better in all forms compared 

to traditional tree and existing tree. 

Winsorize 
Tree 

4 

1. Age 
2. TB 
3. Alkphos 
4. Sgpt 

"0.3109 

267 
170 
68 
103 
16 
42 
35 
12 

Pruned Tree 

6 

1. Age 
2. DB 
3. Sgpt 
4. Sgot 
5. Alkphos 
6. TI3 

0.3316 

- 
- 
- 
- 
- 
- 
- 
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iv. Name of variable used 
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vi. Extreme value 
detected: 
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7 
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2. DB 
3. Sgpt 
4. Sgot 
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7. ALB 

0.3316 

- 
- 
- 
- 
- 
- 

- 
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4.9 Case 7: Classification in Kyphosis Data 

Kyphosis is called round back or Kelso's hunchback. This data contains 81 

observations with 4 variables that representing the children who had corrective spinal 

surgery (Chamber & Hastie, 1992). In fact, this disease can be happened at any age 

even children. There are many factors that causing the curving of spine making the 

exaggerated rounding of the back. 

Kyphosis data set includes 3 predictors which are Age, Number and S t  a r t .  The 

target groups are whether " a b s e n t "  or " p r e s e n t "  indicate the type of deformation. 

According to information in rpart package in R, the variable A g e  is measured in 

months and variable Number represent the number of vertebrate involved. And the 

variable S t a r t  shows the number of the first vertebra operated on. The data has been 

split into training and test set where 54 observations are selected randomly to be the 

training set and the rest are used as test set. Figure 4.61 shows the picture of normal 

spine and kypho spine. 

Figure 4.61 (a). Normal spine Figure 4.60(b). Kypho spine 



4.9.1 The Statistical Background of the Kyphosis Data 

The distribution of 54 training set is tabulated in Table 4.68. There are 43 from the 

group of absent and the rest from the group of present. Meanwhile, Table 4.69 

summarises some descriptive statistics in order to give an overview about the 

behavior of each measured variables namely Age, Number, and Start. The 

standard deviation in variable of A g e  is extremely high and it may reflect the 

existence of outlier. However, the value of kurtosis and the value of skewness in A g e  

and S t a r t  do not indicate any sign of having outlier as the values are in the range 

of [-2.00,2.00]. In contra, the value of kurtosis in Number is slightly high, therefore 

we suspects that Number may have few outliers in it. In short, the empirical 

evidences of Kyphosis shows that the distribution of the data is quite symmetry. 

Further information is tabulated from Table 4.69 to Table 4.70. 

Table 4.69 

Frequency Table of Kyphosis Data Set 

Class of absent present Total 
Kyphosis 

Frequency 43 11 54 

Table 4.70 

Statistical Description of Kyphosis Data Set 

Variables Mean Median Std. Variance Skewness Kurtosis 
Deviation 



Variables Mean Median Std. Variance Skewness Kurtosis 
Deviation 

Number 4.13 4.00 1.71 2.91 1.33 2.345 

Start 11.59. 13.00 4.61 2 1.23 -1.02 0.19 

Boxplot and bar chart are also used for further investigation on the existence of outlier 

and the attempt to highlight the separation between classes. Figure 4.62 and Figure 

4.63 display the diagram of boxplot and bar chart respectively. 

I I 

Age Number Stan 

Figure 4.62. Outlier detection using boxplot 
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Figure 4.63(a). Original data of Figure 4.63(b). Winsorize data of 
variable Number variable Number 



According to Figure 4.63(a), it is clear to see that the variable of Number contain 

outliers. Therefore, Winsorize need to be carried out to neutralise those outliers. 

Kyphosfs 
Kyphorir Uabrant  

absant present k2prersot 

Fraquency Frequency 

I:ypho.iis 
Kyphoris Oabstnl  

absent prcrmnt k2prese.1 

l 0D  8 0  61U 4 0  II Q 1O 4.0 6.0 9.0 1O.I 

Frequency Frequency 

Figure 4.64. Original data of Figure 4.65. Original data of 
variable Age variable Start 

According to Figure 4.63(b), Figure 4.64 and Figure 4.65, there are few possible 

potential cutting points. However, searching for the highest maximum homogeneity of 

group is put as priority. In variable Age, there are two clear splitting points which are 

about 175 or 40. Conversely, the possible splitting points of variable Start are about 

8.5 or 14.0. The splitting point of variable of Number is unclear as both groups are 

overlapping to each other. The only clearest splitting point is about 2.5. 

Table 4.71 

Normality Tests 

Variables Kolmogorov-Smirnov Shapiro-Wilk 
Statistic d f Sig. Statistic d f Sig. 

Age 0.12 54 0.05 0.95 54 0.02 
Number 0.20 54 0.00 0.87 54 0.00 
Start 0.19 54 0.00 0.87 54 0.00 



Based on the normality test in Table 4.70, both Number and Start are not normally 

distributed as the p-value is less than 0.05. However, A g e  is approximately normal in 

Kolmogorov-Smimov test as the value is exactly 0.05. 

4.9.2 The Construction of Winsorize Tree for Kyphosis Data 

The boxplot is capable to identify some outliers from each variable of the Kyphosis 

data (see Table 4.72). 

Table 4.72 

Outliers in Parent Node 

Variable Age Number Start 

Number of 0 2 0 
outliers 

Table 4.72 shows that only 2 outliers are found in variable Number. The suspicious 

values have been winsorized at 10% before computing the Gini purity index to 

determine the most potential variable to be used as a split variable in the parent node. 

Among these variables, Start with the splitting point of 8 gives the highest 

weighted average hence it is chosen in the first split. The table of Gini purity index is 

showed as in Table 4.73 



Table 4.73 

Splitting Point in Parent Node 

Variable Age Number Start 

Highest weighted 0.7046 0.7098 - - - 5 8  
average 

Location of split 13th 3 th 4th 
SP: 8 

For the splitting process, those observations with the Start less than or equal to 8 will 

be assigned to the left node, t l ,  and the remaining observations will be assigned to the 

right node, t,. There are 11 observations and 43 observations of the original data are 

split into left (node 2) and right node (node 3) respectively as shown in Figure 4.66. 

Q *Gini: 0.8158 

Start 1 8 

n= 11 
Purity = 

0.6033 n 
Figure 4.66. Child nodes from node 1 

Table 4.74. 

Number of Observations in Node 2 and Node 3 

absent present 

Node 2 3 8 

Purity = 

Node 3 40 3 



Due to the Gini purity index within variable in node 1 has already achieved the 

threshold (> 0.7), the node is allowed to be split into the final nodes (node 2 and node 

3). In node 2, there are 3 in the group of absent and 8 in the group of present. And, in 
. . - . . . . 

node 3, there are 40 objects and only 3 objects in the group of absent and present 

respectively. In short, node 3 is much pure than node 2 as it has achieved its 

maximum homogeneity. The final structure of traditional tree, pruned tree and 

Winsorize tree are shown in the following Figures. 

Start < 8.0 Start 5 8.5 

Present Absent Present Absent 

Figure 4.67. Winsorize tree of Figure 4.68. Traditional tree of 
Kyphosis Kyphosis 

Start 5 8.5 

Present Absent 

Figure 6.69. Pruned tree of Kyphosis 



In this case, the pruned tree cannot be pruned as the original tree has only 2 terminal 

nodes. Therefore, both tree produced the same result of tree. Winsorize tree is also 

similar to traditional tree; the only different is the splitting point which is 8.0 

compared to traditional tree (8.5). 

4.9.3 The Evaluation of Winsorize Tree for Kyphosis Data 

After the completion of the trees, we examined each tree to check for their similarities 

and differences. All structured of trees are recorded and tabulated in Table 4.75. 

Table 4.75 

Comparison between Traditional Tree, Pruned and Winsorize Tree 

Table 4.75 showed the result of traditional tree, pruned tree, and Winsorize tree. All 

trees have the same structure of tree with similar splitting point from variable of 

Start. Due to the small data set, only one split produced with final error rate of 

0.2963. However, 2 extreme values have been detected which are from variable of 

Number. Even though there is no difference between these three types of tree, but at 
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11. Number of leaves 

iii. Number of variable use 
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0.2963 

- 

Pruned Tree 

1 

2 

1 
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0.2963 



least we know that the Winsorize tree is produced as good as traditional tree when 

dealing with small data sets. Moreover, it is capable to spot and to tolerate with 

outliers though the size of data is limited. 



CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Introduction 

Based on the results presented extensively in Chapter 4, our proposed algorithm has 

been proven workable and comparable to the traditional trees. In various fields, our 

results are always showing as good as the traditional tree or even better with the 

balance size. We surnmarise the investigation on the seven data sets as previously 

discussed in chapter 4 in Table 5.1. 



Table 5.1 

Overall Results of Seven Cases 

Data size 

Cases 

I I Pruned tree 1 3 1 1 I 6 I 9 1 2 1 1 0 1  8 

Area 

Total Observations 

Data Name 

Number of 
splitting 

Small 

Life 

49 

Bumpus 

*0.5625 

0.6875 Error rate 

Case 5 

Winsorized tree 

Traditional tree 

Winsorized tree 

Traditional tree 

Number of 
leaves 

1 I Winsorizedtree 1 Yes I Yes I Yes I Yes I y e s  I yes I Yes 

Case 7 

Medium 

Medicine 

8 1 

Kypbosis 

*0.2963 

*0.2963 

Number of 
variable used 

Case 1 
Big 

5 

3 

Winsorized tree 

Traditional tree 

Case 6 

Medicine 

106 

Breast Tissue 

*0.2038 

0.3846 

Winsorized tree 

Traditional tree 

Outliers I detected 

Case 2 Case 3 

1 

1 - 

6 

4 

Pruned tree 

Case 4 

Archeology 

150 
Egyptians 

skull 

*0.7568 

0.8108 

4 

3 

Traditional tree 

7 

7 

2 

2 

No 

Life 

150 

Iris 

*0.06 

*0.06 

1 

1 

I I I I I I 

No 

11 

14 

5 

6 

No 

Medicine 

583 

ILPD 

*0.3 109 

0.3316 

5 

6 

No 

Medicine 

768 

Pima Indians 

*0.1758 

0.21 88 

2 

2 

12 

15 

No 

4 

4 

No 

8 

13 

3 

3 

No 

8 

13 

1 

1 

No 

9 

14 

No 

9 

14 

4 

7 

No 

5 

8 

No 

No 

No 

No 



From the table presented, no matter how small or how big the data is, Winsorize tree 

is always producing a balance size and low error rate. We gained the lowest error rate 

in case 1, case 2, case 3, case 5 and case 6; we also gained the same result compared 

to the traditional and pruned trees in case 4 and case 7. In term of tree size, Winsorize 

tree showed a comparable or even smaller size compared to the traditional tree. 

However, the size is slightly bigger in case 1, case 2 and case 5 compared to the 

pruned tree. 

Overall, Winsorize tree is more reliable as all the outliers are inspected and penalised 

in every single node. In the nutshell, taking good care along the process is vital in 

order to gain a more accurate and balance size of tree. 

5.2 Achievement of Stopping Rules 

Constructing a bushy or overfitting tree is sometime unrealistic. It causes time 

consuming. Moreover, the practitioner needs to do double tasks: constructing the tree 

and pruning the tree. In Winsorize tree, we introduce an easy stopping rule to assist 

the users to construct an acceptance tree. We set some thresholds in every single node 

so that the node can stop from continuing splitting once one of the thresholds is met. 

As mentioned in Chapter 3, the flexibility of thresholds are decided by the practitioner 

based on the background of the data or certain level of practitioners' knowledge. 

There are three types of stopping rules to stop the tree from growing. Firstly, when the 

node achieved the minimum 10% of total training set, n,i,. In case 1, for instance, 

node 14 (gla) is considered terminal node although the purity index is only as low as 
184 



0.28 13 due to the minimum number (8) which is less than nmin (16). Secondly, if the 

node exceeds 0.7 of the overall Gini purity measurement then we considered the node 

as the terminal node. For example, since node 3 in case 1 gains the Gini purity index 

of 0.8892, we considered the purity of the node is sufficient enough to stop splitting. 

The last threshold achieved if one of the Winsorize Gini purity indexes between and 

within the variables is more than 0.7 during the variable splitting selection, the node 

will be split for the final nodes. The phenomenon is shown in case 3 (node 3), case 

4(node 3), case 5 (node 3, node 4, and node 5) and case 7 (node 1). 

Overall, if the data is having a very clear cutting point to separate the groups, the first 

and the third stopping rules are normally workable. However, if the data is 

complicated which all the groups are swamped together, normally second stopping 

rule is used to stop the tree. To achieve the minimum number of observations nmin is 

not an easy task especially for big or complicated data, therefore, we expect that the 

final tree in this case would be bushy. 

5.3 Conclusion of Study 

Classification tree has been widely studied for more than three decades for various 

aims. As part of contribution to the continuous development on this tool for 

classification, this study has focused on developing a tree which is insensitive towards 

the occurrence of outliers using Winsorize method. The idea of developing this tree is 

to replace a common strategy in handling bad data. Often, one has to validate a data 

prior to the construction of a classifier, which a strategy that best used by experts. Or, 



pruning process is implemented after the construction of tree is done. Thus, the 

proposed work embedded the strategy of handling outliers during the construction of a 

tree in an attempt to assist practitioners in general fields of studies. 

The primary objectives of this study are: (i) to determine outlier in a data prior to 

construct the branch of tree, (ii) to manage the identified outliers accordingly using 

Winsorize method, (iii) to integrate the process of determining outlier and identifying 

outliers with the recursive process of constructing a tree and (iv) to propose Winsorize 

stopping criteria in constructing tree in order to avoid an over-fitting tree. In order to 

understand whether the proposed Winsorize tree is difference to traditional tree, some 

comparisons were made. 

The stage of pre-constructing tree is vital such that all the data has to be screened and 

investigated to detect possible outliers. Each variable has to go through the outliers 

identification process by using boxplot. Boxplot is a simple yet powerful tool that has 

been widely used in exploratory data analysis. Any value falls outside the bound of 

the tolerance range, [Q f 1.5 x IQR] will be classified as extreme value or outliers. It 

can be used to detect even an individual outlying data point. In our study, detecting 

each potential outlier is vital to us so that we know which objects are significantly 

distorted. Then, the values need to be neutralised by Winsorize method to minimise 

the variability in Gini purity measurement. Based on the results that we have gained 

from the seven investigated cases, Winsorized tree is comparable to traditional tree, 

and sometimes even better. The Winsorize tree produced a simpler tree which 



insensitive variables are excluded. Moreover, since outliers are handled in every node, 

the final tree does not require pruning process. 

According to the results presented in chapter 4, Winsorize tree is much precise and 

finally produces a high quality and accurate tree. The recorded error rate of Winsorize 

tree is lower compared to the traditional tree. The structure of Winsorize tree might be 

smaller but reliable as all splits are based on Gini purity index where all the 

contaminated data have been handled before the measurement. All the data are 

protected as no data is terminated. And, once the Gini purity index measurement is 

computed in a node, the original data will be reused for the following nodes. In short, 

the initial behavior of the data is in fact remains unchanged from the beginning till the 

end of the process. Since deep care has been implemented in all nodes, pruning 

process can be excluded once the Gini purity index has achieved the threshold (Gini 

purity index is more than 0.7). 

In this study, three thresholds in stopping criteria have been set from creating a bushy 

tree. The aim is for time saving by the practitioners with a reliable tree classifier with 

pruning process is avoided. First, when the node contains 70% or above of 

homogeneity then the node will stop spitting. Secondly, when the node meets the 

minimum observation, n,i, , which being set as to have 10% or 15% of total 

observations, n. However, this is depending on the practitioners' requirement. The 

lower the percentage of observation set, the bushy the tree it will be. Last but not 

least, computed Gini index between and within variables is greater than 70% or higher 

is absolutely vital as this process indicated whether the tree should stop before 
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overfitting. Taking good care in this process can avoid a complicated tree. Therefore, 

cost complexity pruning process can be excluded. The findings given in Chapter 4 

showed that the proposed method produces a simpler structure of tree with high 

accuracy output. In short, the new proposed method is comparative to the existing one 

or even better. 

Throughout the thesis, we provide a better way in constructing a tree classifier 

especially in dealing with data which contains outliers. All outliers are investigated 

and handled during the process on creating a new binary branch. Thus, the structure of 

tree and the outcomes are strongly reliable. This phenomenon could bring an 

alternative way in classification for data mining. This method could be another 

potential tool in tree classification when the data contains outliers. 

5.4 Contribution of Study 

The practitioners do not have to pre-process the data, they proceed with the 

classification. Our proposed algorithm allows the practitioners to process during the 

construction of tree. Moreover, in real life, not all the practitioners are experts in 

dealing with the data. Or maybe the practitioners do not have time to go through all 

the historical data. Therefore, what they need is a trustable and reliable method with 

the method itself could be able to resist the abnormal data set and protecting the 

original information of the data. This study produces Winsorize tree algorithm which 

provides simultaneous data cleaning and model construction using Winsorize method 

along the tree growing process. It automatically investigates, detects, penalises and 



accommodates the suspicious value in all nodes to reduce the effect of contaminated 

data before performing Gini purity measurement. The Winsorize Gini purity index 

gained is able to resist to outliers while performing data splitting process. Besides, the 

proposed stopping criteria are able to stop the tree at the right time with the right size. 

Therefore, pruning process is not required in this study. In the nutshell, Winsorized 

tree algorithm is capable to produce a comparable or even better tree called Winsorize 

tree with no data are excluded along the construction of tree. 

5.5 Limitation 

However, this work has not yet answered the entire problem due to its limitation. For 

instance, outlier detection is limited to continuous variables instead of mixed 

variables. Also, this method is implemented to classification tree which means that the 

target group is categorical. 



5.6 Future Works 

Therefore, future work is necessary to fill on some gaps so that the tree can be widely 

applied in all fields such as marketing segmentation, banking loan credibility, risk 

analysis, logistic, supply chain management, medical diagnostic, sales analysis and so 

forth. Extending to this study, we may try on a huge, massive and more complex 

data set in future. In addition, dealing with missing value is another challenge that we 

should pay the focus on. Perhaps more questions may arise from real problem; 

therefore more studies on the application should be made'to refine the method fi-om 

time to time. 
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Appendix A 

Breast Tissue (Training and Test) 

Training 

Class I0 PA500 HFS 

mas 172.52 0.13 0.04 

con 650.00 0.04 0.15 

mas 195.00 0.14 0.21 

mas 544.65 0.06 0.00 

adi 2329.840.07 0.35 

con 1461.750.04 0.05 

con 1647.940.08 0.09 

fad 272.00 0.09 0.00 

con 1535.850.09 0.00 

con 691.97 0.03 0.09 

car 423.00 0.22 0.26 

adi 1850.000.07 0.23 

car 500.00 0.23 0.05 

adi 2400.000.08 0.22 

car 470.00 0.21 0.23 

car 438.78 0.21 0.06 

fad 200.00 0.04 0.12 

con 649.37 0.1 1 0.02 

car 269.50 0.21 0.04 

adi 1700.000.04 0.1 1 

mas 260.28 0.08 0.03 

gla 152.00 0.17 0.23 

fad 211.00 0.05 0.09 

mas 327.00 0.14 0.08 

gla 185.00 0.15 0.09 

car 410.00 0.32 0.30 

gla 502.00 0.07 0.03 

gla 250.00 0.09 0.09 

DA Area ADA 

37.54 192.22 5.12 

216.81 427.53 1.97 

37.46 328.38 8.77 

100.79 1189.291 1.80 

377.25 25369.04 

39 1.85 5574.00 14.22 

576.77 11852.49 

63.79 718.95 11.27 

637.35 10814.05 

190.68 304.27 1.60 

172.37 6108.1 135.44 

325.19 8644.9826.58 

219.30 98 19.4544.78 

596.04 37939.26 

184.59 81 85.3644.34 

120.90 4879.5040.36 

42.32 220.81 5.22 

207.1 1 3344.43 16.15 

80.4 1 1963.6 124.42 

120.65 12331.10 

58.82 277.26 4.71 

34.22 94.35 2.76 

30.75 151.98 4.94 

76.21 1664.6721.84 

39.89 361.75 9.07 

255.82 10622.55 

53.24 834.27 15.67 

29.64 180.76 6.10 

20 1 



mas 

adi 

car 

con 

adi 

mas 

car 

fad 

gla 

fad 

fad 

fad 

car 

adi 

adi 

con 

mas 

gla 

mas 

gla 

adi 

car 

car 

mas 

con 

gla 

mas 

car 

gla 

adi 

adi 

mas 

adi 

gla 



gla 197.00 0.13 0.07 33.46 409.65 12.24 26.99 19.77 231.78 

car 325.00 0.22 0.29 229.22 5705.3324.89 35.60 227.26 462.70 

adi 1949.120.05 0.02 170.33 3212.0818.86 101.46 136.82 1941.37 

adi 

adi 

car 

adi 

mas 

car 

gla 

mas 

gla 

car 

fad 

mas 

fad 

g la 

con 

Test 

fad 

ad i 

con 

fad 

ad i 

fad 

mas 

car 

con 

con 

fad 

car 

car 

con 



fad 

adi 

gla 

adi 

ad i 

car 

fad 

gla 

adi 

car 

mas 



Appendix B 

Egyptian Skulls (Training and Test) 

Training 

epoch mb bh bl nh 

c200BC 141 128 95 5 3 

c1850BC 138 137 94 51 

c1850BC 129 135 92 SO 

c3300BC 130 129 105 47 

c1850BC 130 127 99 45 

c3300BC 131 128 98 45 

CADI SO 134 124 91 5 5 

c1850BC 138 133 100 55 

c200BC 138 140 100 52 

c33OOBC 132 130 104 50 

c4000BC 128 134 103 50 

c4000BC 136 143 100 54 

c1850BC 130 134 106 50 

c1850BC 133 131 96 49 

c4000BC 131 134 102 51 

c3300BC 135 132 98 54 

c3300BC 135 136 98 52 

c200BC 131 142 95 53 

c3300BC 134 139 101 49 

c200BC 134 137 93 52 

c200BC 133 120 91 46 

c3300BC 131 139 98 51 

c3300BC 133 136 103 53 

c4000BC 129 138 95 5 0 

c200BC 129 135 95 47 

c200BC 140 137 94 60 

c1850BC 136 135 94 53 

c1850BC 136 126 101 50 







Test 

epoch mb 

c200BC 

c1850BC 

CAD 1 50 

c4000BC 

cADl50 

c l850BC 

c1850BC 

cAD150 

cAD150 

cAD150 

c1850BC 

c4000BC 

c1850BC 

c4000BC 





Training 

Numqreg 

6 148 

1 85 

8 183 

1 89 

0 137 

5 116 

3 7 8 

10 115 

2 197 

8 125 

4 110 

10 168 

10 139 

1 189 

5 166 

7 100 

0 118 

7 107 

1 103 

1 115 

3 126 

8 99 

7 196 

9 119 

11 143 

10 125 

7 147 

1 97 

Appendix C 

Pima Indians (Training and Test) 

PGC DBP TRICEP SERUM BMI 

72 35 0 33.6 0.627 

66 29 0 26.6 0.351 

64 0 0 23.3 0.672 

66 23 94 28.1 0.167 

40 35 168 43.1 2.288 

74 0 0 25.6 0.201 

50 32 88 31 0.248 

0 0 0 35.3 0.134 

70 45 543 30.5 0.158 

96 0 0 0 0.232 

92 0 0 37.6 0.191 

74 0 0 3 8 0.537 

80 0 0 27.1 1.441 

60 23 846 30.1 0.398 

72 19 175 25.8 0.587 

0 0 0 30 0.484 

84 47 230 45.8 0.551 

74 0 0 29.6 0.254 

30 38 83 43.3 0.183 

70 30 96 34.6 0.529 

88 41 235 39.3 0.704 

84 0 0 35.4 0.388 

90 0 0 39.8 0.451 

80 35 0 29 0.263 

94 33 146 36.6 0.254 

70 26 115 31.1 0.205 

76 0 0 39.4 0.257 

66 15 140 23.2 0.487 

DPF 

50 

3 1 

32 

2 1 

3 3 

30 

2 6 

29 

5 3 

54 

3 0 

34 

5 7 

59 

5 1 

32 

3 1 

3 1 

3 3 

3 2 

27 

5 0 

4 1 

29 

5 1 

4 1 

43 

22 

AGE CLASS 

positive 
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Test 

1 199 

0 198 

2 197 

6 195 

6 190 

4 189 

0 188 

5 187 

7 187 

3 187 

8 186 

6 183 

4 183 

1 18 1 
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3 173 
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3 169 
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Appendix D 

Iris (Training and Test) 

Training 

SepalLength 

4.7 3.2 

7.2 3 

6.7 3.1 

5.1 3.3 

5.7 2.8 

5.4 3.9 

7.4 2.8 

6.5 3 

6.6 3 

5.7 2.9 

5.6 2.5 

5.1 2.5 

5 3.4 

6 2.2 

7.7 2.6 

5 3.5 

5.7 2.5 

5.1 3.8 

7 3.2 

6.9 3.1 

6 2.2 

5.6 3 

7.3 2.9 

5.7 4.4 

5.1 3.8 

5.7 2.6 

5.8 2.7 

6 3 

Sepalwidth 

1.6 0.2 

5.8 1.6 

4.4 1.4 

1.7 0.5 

4.1 1.3 

1.3 0.4 

6.1 1.9 

5.8 2.2 

4.4 1.4 

4.2 1.3 

3.9 1.1 

3 1.1 

1.5 0.2 

4 1 

6.9 2.3 

1.3 0.3 

5 2 

1.5 0.3 

4.7 1.4 

4.9 1.5 

5 1.5 

4.5 1.5 

6.3 1.8 

1.5 0.4 

1.9 0.4 

3.5 1 

4.1 1 

4.8 1.8 

PetalLength Petalwidth Class 

Iris-setosa 

Iris-virginica 

Iris-versicolor 

Iris-setosa 

Iris-versicolor 

Iris-setosa 

Iris-virginica 

Iris-virginica 

Iris-versicolor 

Iris-versicolor 

Iris-versicolor 

Iris-versicolor 

Iris-setosa 

Iris-versicolor 

Iris-virginica 

Iris-setosa 

Iris-virginica 

Iris-setosa 

Iris-versicolor 

Iris-versicolor 

Iris-virginica 

Iris-versicolor 

Iris-virginica 

Iris-setosa 

Iris-setosa 

Iris-versicolor 

Iris-versicolor 

Iris-virginica 







Test 

6.7 3 5 1.7 

6.4 2.7 5.3 1.9 

7 . 2 .  3.2 6 1.8 

6 2.9 4.5 1.5 

4.8 3.4 1.9 0.2 

4.4 3.2 1.3 0.2 

7.7 2.8 6.7 2 

5.4 3.7 1.5 0.2 

5.6 2.9 3.6 1.3 

5 3.4 1.6 0.4 

4.8 3.4 1.6 0.2 

4.4 2.9 1.4 0.2 

4.5 2.3 1.3 0.3 

6.5 2.8 4.6 1.5 

6.3 2.5 4.9 1.5 

6.8 3 5.5 2.1 

5 3 1.6 0.2 

6.4 2.8 5.6 2.1 

4.4 3 1.3 0.2 

6.2 3.4 5.4 2.3 

5 3.5 1.6 0.6 

7.6 3 6.6 2.1 

5.6 3 4.1 1.3 

4.8 3 1.4 0.3 

6.1 2.9 4.7 1.4 

6.2 2.2 4.5 1.5 





Appendix E 

Bumpus Sparrow (Training and Test) 

Training 

ID total-length Alar-length Length-bead-head Length-humerus Length-keel-sternum S/D 

10 158 238 31 18.8 22 S 

4 8 162 245 32.5 18.5 21.1 D 

11 158 240 31.3 18.6 22 S 



Test 

3 8 159 242 30.8 18.2 20.5 D 





Appendix F 

ILPD (Training and Test) 

Training 

Age TB 

70 2.7 

35 26.3 

40 3.9 

3 2 25 

3 7 0.8 

3 3 2.1 

10 0.8 

3 8 1.7 

32 23 

66 15.2 

74 1.1 

49 2 

48 3.2 

24 1 

53 0.8 

5 5 0.8 

48 0.7 

3 5 1 

3 8 0.7 

49 3.9 

42 0.7 

60 0.5 

7 27.2 

47 3 

42 1 

60 2 

7 8 1 

42 8.9 

Alkphos 

365 62 

108 168 

350 950 

560 41 

205 31 

205 50 

395 25 

180 18 

300 482 

356 321 

214 22 

209 48 

257 33 

189 52 

193 96 

155 21 

208 15 

805 133 

152 90 

189 65 

152 35 

Sgpt Sgot 

5 5 6 

630 9.2 

1500 6.7 

88 7.9 

36 9.2 

3 8 6.8 

75 7.6 

34 7.2 

275 7.1 

562 6.5 

30 8.1 

3 2 5 -7 

116 5.7 

3 1 8 

57 6.7 

17 6.9 

30 4.6 

103 7.9 

2 1 7.1 

181 6.9 

8 1 6.2 

34 5.9 

1050 6.1 

67 5.6 

2 1 6.8 

104 6 

70 6.3 

6 1 5.8 

TP ALB AG Class 

2.4 0.6 LP 

2 0.3 LP 

3.8 1.3 LP 

2.5 2.5 LP 

4.6 1 NLP 

3 0.7 LP 

3.6 0.9 LP 

3.6 1 LP 

3.5 0.9 LP 

2.2 0.4 LP 

4.1 1 LP 

3 1.1 NLP 

2.2 0.62 LP 

4.8 1.5 LP 

3.6 1.16 LP 

3.8 1.4 LP 

2.1 0.8 NLP 

3.3 0.7 LP 

4.2 1.4 NLP 

3 0.7 LP 

3.2 1.06 LP 

1.6 0.37 NLP 

2 0.4 LP 

1.8 0.47 LP 

3.9 1.3 NLP 

2.1 0.53 LP 

3.1 0.9 LP 

2 0.5 LP 



13 74 7 2.4 0.52 LP 

110 176 7.2 3.9 1.1 LP 

382 330 7.5 4 1.1 LP 

5 6 111 6.8 3.9 1.85 NLP 

17 15 7 3.6 1 NLP 

1350 1600 5.6 2.8 1 LP 

85 231 8.5 4.3 1 LP 

2 5 47 6.1 2.3 0.6 NLP 

35 44 4.9 2.9 1.4 LP 

56 48 6 3 1 LP 

30 58 5.2 2.8 1.1 LP 

60 1.4 0.7 159 10 12 4.9 2.5 1 NLP 

48 1.6 1 588 74 113 7.3 2.4 0.4 LP 

27 1.2 0.4 179 63 39 6.1 3.3 1.1 NLP 

58 1 0.5 158 37 43 7.2 3.6 1 LP 

60 19.6 9.5 466 46 52 6.1 2 0.4 LP 

13 1.5 0.5 575 29 24 7.9 3.9 0.9 LP 

75 0.8 0.2 188 20 29 4.4 1.8 0.6 LP 

5 1 0.8 0.2 230 24 46 6.5 3.1 0.9 LP 

63 0.5 0.1 170 21 2 8 5.5 2.5 0.8 LP 

53 19.8 10.4 238 39 221 8.1 2.5 0.4 LP 

66 16.6 7.6 315 233 384 6.9 2 0.4 LP 

29 1.2 0.4 160 20 22 6.2 3 0.9 NLP 

60 5.7 2.8 214 412 850 7.3 3.2 0.78 LP 

27 1 0.2 205 137 145 6 3 1 LP 

72 1.7 0.8 200 28 37 6.2 3 0.93 LP 

49 0.6 0.1 218 50 53 5 2.4 0.9 LP 

26 1.7 0.6 210 62 56 5.4 2.2 0.6 LP 



6.6 2.4 0.5 LP 

7.3 4 1.2 NLP 

6.9 3.8 1.2 NLP 

6.2 1.9 0.4 LP 

7 3.5 1 NLP 

8 4 1 LP 

5.6 2.4 0.7 LP 

6 2.1 0.5 NLP 

5.6 2.5 0.8 LP 

7.8 3.2 0.69 LP 

4.9 2.8 1.3 LP 

4.7 1.6 0.5 LP 

6.4 3.2 1 NLP 

6.1 2.9 0.9 NLP 

7.9 4 1 LP 

5.8 2.7 0.87 LP 

7.3 4.1 1.2 NLP 

6.1 2.7 0.7 LP 

6.3 2.8 0.8 NLP 

7.2 3.7 1 LP 

6.1 2.8 0.8 LP 

6 2.9 0.93 LP 

7.2 4 1.2 LP 

7.5 4.6 1.58 LP 

6.3 2.1 0.5 LP 

6.4 2.3 0.5 LP 

5.2 1.8 0.52 NLP 

6.6 3.3 1 LP 

6.8 3.1 0.8 LP 

5 2 0.6 LP 

7 3.5 1 LP 

4.9 1.9 0.6 NLP 
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LP 

LP 

LP 

NLP 

LP 

I'LP 

LP 

Imp  

LP 

LP 

LP 
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LP 

LP 

LP 
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LP 
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LP 

LP 
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LP 

LP 
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LP 

NLP 
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LP 

LP 

NLP 

LP 

LP 

NLP 

LP 

LP 

NLP 

LP 

LP 

LP 

NLP 

NLP 

LP 

LP 

LP 

LP 

LP 



28 0.9 0.2 316 25 23 8.5 5.5 1.8 LP 

3 3 0.7 0.2 256 21 30 8.5 3.9 0.8 LP 

45 0.8 0.2 140 24 20 6.3 3.2 1 NLP 

5 3 0.9 0.4 238 17 14 6.6 2.9 0.8 LP 

33 7.1 3.7 196 622 497 6.9 3.6 1.09 LP 

45 2.4 1.1 168 33 50 5.1 2.6 1 LP 

48 0.7 0.2 165 32 30 8 4 1 NLP 

60 4 1.9 238 119 350 7.1 3.3 0.8 LP 

73 1.8 0.9 220 20 43 6.5 3 0.8 LP 

2 1 0.8 0.2 183 33 57 6.8 3.5 1 NLP 

3 2 25 7.6 4.3 1.3 NLP 

45 25 3.9 1.7 0.7 NLP 

55 92 7.4 4.3 1.38 NLP 

13 2 1 6 3.2 1.1 NLP 

23 27 7.6 4 1.1 LP 

74 141 7.8 4.9 1.6 LP 

25 66 6.1 3.7 1.5 LP 

25 26 5.1 2.9 1.3 LP 

69 48 6.8 3.1 0.8 LP 

8 5 78 6.4 2.7 0.7 LP 

32 32.6 14.1 219 95 235 5.8 3.1 1.1 LP 

55 3.3 1.5 214 54 152 5.1 1.8 0.5 LP 

60 1.9 0.8 614 42 38 4.5 1.8 0.6 LP 

7 0.5 0.1 352 28 5 1 7.9 4.2 1.1 NLP 

62 0.7 0.2 162 12 17 8.2 3.2 0.6 NLP 

2 5 0.7 0.2 185 196 401 6.5 3.9 1.5 LP 
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3 1 34 6.4 3.8 1.4 NLP 

425 511 7.7 3.5 0.8 LP 

509 623 3.6 1 0.3 LP 

12 15 6.8 3.7 1.1 NLP 

30 25 6 3.1 1.06 IV-LP 

18 28 5.8 2.5 0.75 NLP 

59 126 4.3 2.5 1.4 LP 

37 29 5.1 1.8 0.5 LP 

60 186 6.9 2.8 2.8 LP 

12 32 5.7 2.4 0.75 LP 

50 30 5.9 2.6 0.7 LP 

38 24 7.3 4.3 1.4 LP 

22 0.8 0.2 300 57 40 7.9 3.8 0.9 NLP 

5 0 5.8 3 661 181 285 5.7 2.3 0.67 NLP 

4 0 0.7 0.2 176 28 43 5.3 2.4 0.8 NLP 

42 2.7 1.3 219 60 180 7 3.2 0.8 LP 

75 0.9 0.2 162 25 20 6.9 3.7 1.1 LP 

39 0.6 0.2 188 28 43 8.1 3.3 0.6 LP 

17 0.7 0.2 145 18 36 7.2 3.9 1.18 NLP 

32 0.7 0.2 189 22 43 7.4 3.1 0.7 NLP 

66 0.8 0.2 165 22 32 4.4 2 0.8 LP 

5 1 0.9 0.2 280 21 30 6.7 3.2 0.8 LP 

26 7.1 3.3 258 80 113 6.2 2.9 0.8 LP 

12 0.8 0.2 302 47 67 6.7 3.5 1.1 NLP 

3 2 12.7 6.2 194 2000 2946 5.7 3.3 1.3 LP 

37 0.8 0.2 147 27 46 5 2.5 1 LP 

3 2 0.6 0.1 176 39 28 6 3 1 LP 

68 0.7 0.1 145 20 22 5.8 2.9 1 LP 



2 8 1 0.3 90 18 108 6.8 3.1 0.8 NLP 

2 5 0.8 0.1 130 23 42 8 4 1 LP 

4 5 2.8 1.7 263 57 65 5.1 2.3 0.8 LP 

36 0.8 0.2 650 70 138 6.6 3.1 0.8 LP 

25 0.6 0.1 183 91 53 5.5 2.3 0.7 NLP 

72 0.7 0.2 185 16 22 7.3 3.7 1 NLP 

55 0.9 0.2 116 36 16 6.2 3.2 1 NLP 

41 0.9 0.2 169 22 18 6.1 3 0.9 1YLP 

4 5 0.7 0.2 170 21 14 5.7 2.5 0.7 LP 

3 2 22.7 10.2 290 322 113 6.6 2.8 0.7 LP 

3 8 2.2 1 310 119 42 7.9 4.1 1 NLP 

3 8 0.6 0.1 165 22 3 4 5.9 2.9 0.9 NLP 

46 10.2 4.2 232 58 140 7 2.7 0.6 LP 

75 0.9 0.2 282 25 23 4.4 2.2 1 LP 

60 2.4 1 1124 30 54 5.2 1.9 0.5 LP 

5 5 0.8 0.2 225 14 23 6.1 3.3 1.2 NLP 

28 0.8 0.2 309 55 23 6.8 4.1 1.51 LP 

49 0.8 0.2 198 23 20 7 4.3 1.5 LP 

39 6 2.2 0.5 I\TLP 

4 1 7.7 4.3 1.2 NLP 

23 7 4 1.3 NLP 

1050 5.4 2.6 0.9 LP 

367 7.8 2.6 0.5 LP 

23 8.2 4.1 1 LP 

48 6.8 3.4 1 LP 

37 3 1.5 1 LP 

65 0.7 0.1 187 16 18 6.8 3.3 0.9 LP 

60 1.5 0.6 360 230 298 4.5 2 0.8 LP 

50 1.2 0.4 282 36 32 7.2 3.9 1.1 LP 

22 2.7 1 160 82 127 5.5 3.1 1.2 NLP 

26 2 0.9 157 54 68 6.1 2.7 0.8 LP 

4 8 1 0.3 310 37 56 5.9 2.5 0.7 LP 
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3 6 1.7 0.5 205 36 34 7.1 3.9 1.2 LP 

7 5 0.8 0.2 205 27 24 4.4 2 0.8 LP 

26 2 0.9 195 24 6 5 7.8 4.3 1.2 LP 

22 0.9 0.3 179 18 2 1 6.7 3.7 1.2 NLP 

3 0 1.6 0.4 332 84 139 5.6 2.7 0.9 LP 

46 14.2 7.8 374 38 77 4.3 2 0.8 LP 

65 1.9 0.8 170 36 43 3.8 1.4 0.58 NLP 

6 5 0.8 0.2 201 18 22 5.4 2.9 1.1 NLP 

33 2.1 1.3 480 38 22 6.5 3 0.8 LP 

70 0.9 0.3 220 53 9 5 6.1 2.8 0.68 LP 

74 0.9 0.3 234 16 19 7.9 4 1 LP 

62 1.2 0.4 195 38 54 6.3 3.8 1.5 LP 

20 1.1 0.5 128 20 30 3.9 1.9 0.95 NLP 

50 0.8 0.2 152 29 3 0 7.4 4.1 1.3 LP 

50 0.9 0.3 901 23 17 6.2 3.5 1.2 LP 

42 7.4 3.6 298 52 102 4.6 1.9 0.7 LP 

3 5 2 1.1 226 33 135 6 2.7 0.8 NLP 

5 0 1 0.5 239 16 3 9 7.5 3.7 0.9 LP 

1.4 0.8 178 13 2 6 8 4.6 1.3 NLP 

0.8 0.2 168 25 18 6.2 3.1 1 LP 

1 0.3 212 41 80 6.2 3.1 1 LP 

11 4.9 750 140 350 5.5 2.1 0.6 LP 

1 0.3 216 21 24 7.3 4.4 1.5 NLP 

0.9 0.2 190 25 2 0 6.4 3.6 1.2 NLP 

0.8 0.2 130 24 2 5 7 4 1.3 LP 

1.8 0.8 196 25 22 8 4 1 LP 

45 3.5 1.5 189 63 87 5.6 2.9 1 LP 

60 0.8 0.2 286 21 27 7.1 4 1.2 LP 

2 1 18.5 9.5 380 390 500 8.2 4.1 1 LP 

24 0.7 0.2 188 11 10 5.5 2.3 0.71 NLP 

6 5 0.8 0.1 146 17 29 5.9 3.2 1.18 NLP 
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7.3 4.1 1.2 NLP 

7.1 3.4 0.9 LP 

5.6 2.4 0.7 LP 

8.6 4.3 1 LP 

5.4 2 0.5 LP 

6.3 3.5 1.2 LP 

7.1 2.1 0.4 LP 

5.4 2.7 1 LP 

5.1 2.6 1 NLP 

5.9 2.6 0.8 LP 

7.8 4.3 1.2 NLP 

6.7 3.2 0.9 LP 

8 4 1 NLP 

5.4 2.6 0.9 LP 

7.1 3.3 0.8 LP 

7.2 4.5 1.66 LP 

7.2 4.1 1.3 NLP 

8 4 1 NLP 

8 4 1 LP 

4.8 2 0.7 NLP 

6.6 3.6 1.2 NLP 

5 2.7 1.1 LP 

7 3.9 1.2 NLP 

6.9 3.7 1.1 LP 

3.3 0.89 LP 

2 0.5 LP 

3.5 0.9 NLP 

3 0.7 LP 

3.9 1.5 NLP 

1.5 0.35 LP 

3.8 1.4 LP 

3.8 1.3 NLP 

3.2 1 LP 



72 0.6 0.1 102 31 3 5 6.3 3.2 1 LP 

46 0.8 0.2 182 20 40 6 2.9 0.9 LP 

68 0.6 0.1 1620 95 127 4.6 2.1 0.8 LP 

45 0.6 0.2 245 22 24 7.1 3.4 0.9 LP 

74 1 0.3 175 30 32 6.4 3.4 1.1 LP 

3 3 1.5 7 505 205 140 7.5 3.9 1 LP 

34 0.8 0.2 192 15 12 8.6 4.7 1.2 LP 

4 5 2.3 1.3 282 132 368 7.3 4 1.2 LP 

50 1 0.3 191 22 31 7.8 4 1 NLP 

60 2.1 1 191 114 247 4 1.6 0.6 LP 

62 10.9 5.5 699 64 100 7.5 3.2 0.74 LP 

26 1.9 0.8 180 22 19 8.2 4.1 1 NLP 

4 5 1.3 0.6 166 49 42 5.6 2.5 0.8 NLP 

22 2.4 1 340 25 2 1 8.3 4.5 1.1 LP 

5 0 7.3 3.6 1580 88 64 5.6 2.3 0.6 NLP 

75 1.8 0.8 405 79 50 6.1 2.9 0.9 LP 

48 0.8 0.2 150 25 23 7.5 3.9 1 LP 

54 5.5 3.2 350 67 42 7 3.2 0.8 LP 

49 0.6 0.1 218 50 53 5 2.4 0.9 LP 

2 6 6.8 3.2 140 37 19 3.6 0.9 0.3 LP 

50 2.6 1.2 4.15 407 576 6.4 3.2 1 LP 

13 0.6 0.1 320 28 56 7.2 3.6 1 NLP 

Test 

11 0.7 0.1 592 26 29 7.1 4.2 1.4 Male NLP 

45 0.6 0.1 270 23 42 5.1 2 0.5 Feinale NIP  

60 0.7 0.2 174 32 14 7.8 4.2 1.1 Male NLP 

32 0.9 0.3 462 70 82 6.2 3.1 1 Male LP 

24 0.9 0.2 195 40 35 7.4 4.1 1.2 Female NLP 

60 5.8 2.7 599 43 6 6 5.4 1.8 0.5 Male LP 
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Training 

Age Number 

36 4 13 

42 7 6 

120 2 13 

26 7 13 

157 3 13 

178 4 15 

11 3 15 

206 4 10 

87 4 16 

127 4 12 

158 5 14 

15 5 16 

18 4 11 

159 4 13 

195 2 17 

17 4 10 

118 4 16 

118 3 16 

8 1 4 1 

114 7 8 

130 4 1 

Appendix G 

Kyphosis (Training and Test) 
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8 

11 absent 

16 absent 

13 absent 

11 absent 

16 absent 

16 absent 

16 absent 

14 absent 
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absent 
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