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Abstrak 

Kekurangan jururawat, ketidakhadiran yang tidak menentu dan stres mengundang 
persekitaran kerja yang tidak sihat di hospital. Isu ini memberi impak ke atas 
kehidupan sosial jururawat dan kesilapan dalam pemberian ubat yang boleh 
mengancam keselamatan pesakit. Impak ini telah menyumbang kepada peletakan 
jawatan para jururawat dan perkhidmatan kejururawatan yang berkualiti rendah. 
Bagi menangani isu ini, pengagihan jururawat yang sedia ada secara maksima 
melalui penjadualan kerja jururawat adalah alternatif terbaik. Namun, terdapat 
masalah pembinaan jadual kerja yang tidak memuaskan dan tidak stabil. Justeru, 
kajian ini mengintegrasikan komponen penjadualan dan penjadualan semula 
jururawat yang lazimnya diselesaikan secara berasingan dalam kajian lepas. Namun, 
bila mana perubahan spontan terhadap jadual dan bilangan kekangan yang perlu 
dipatuhi, didapati terdapat kekurangan unsur fleksibiliti dalam sebahagian besar 
kaedah penjadualan dan penjadualan semula. Dengan menerapkan unsur fleksibiliti, 
ia memberi satu platform yang berpotensi untuk menambah baik Algoritma Evolusi 
(EA), yang juga dikenal pasti sebagai kaedah penyelesaian. Demi meminimumkan 
pelanggaran kekangan dan membuat perubahan minimum yang berkesan ke atas 
jadual yang dipostulatkan semasa gangguan berlaku, model EA dengan kaedah 
Carian Kedasih (CS) dicadangkan. Suatu konsep enzim sekatan telah disesuaikan 
dalam CS. Sejumlah 11 model varian EA dibina dengan tiga operator pemilihan 
induk baharu, dua operator penyilangan baharu dan satu operator pembaikan 
berasaskan penyilangan, yang kesemuanya adalah sumbangan teoretikal. Keputusan 
kajian mendapati model EA dengan Penyilangan Pertandingan Kadar Penemuan dan 
Titik Enzim Sekatan Carian Kedasih (D,T-CSREP) adalah paling berkesan dalam 
menghasilkan 100% jadual mampu berfungsi dengan nilai penalti paling minimum. 
Tambahan pula, semua gangguan jadual yang diuji telah berjaya diselesaikan melalui 
operator pra-pembaikan dan operator Pembaikan Titik Enzim Sekatan Carian 
Kedasih (CSREP,). Hasilnya, model EA yang dibina mampu memenuhi kehendak 
para jururawat, menawar jadual atas panggilan yang adil, penjadualan semula yang 
lebih berkualiti dalam pertukaran syif, dan kefahaman tentang kebergantungan dua 
hala antara penjadualan dan penjadualan semula dengan mengambil kira keseriusan 
gangguan dalam penjadualan. 

Kata Kunci: Algoritma evolusi hibrid, Carian Kedasih, Enzim sekatan, Masalah 
penjadualan dan penjadualan semula jururawat, Pengurusan penjagaan kesihatan. 



Abstract 

Nurse shortage, uncertain absenteeism and stress are the constituents of an unhealthy 
working environment in a hospital. These matters have impact on nurses' social lives 
and medication errors that threaten patients' safety, which lead to nurse turnover and 
low quality service. To address some of the issues, utilizing the existing nurses 
through an effective work schedule is the best alternative. However, there exists a 
problem of creating undesirable and non-stable nurse schedules for nurses' shift 
work. Thus, this research attempts to overcome these challenges by integrating 
components of a nurse scheduling and rescheduling problem which have normally 
been addressed separately in previous studies. However, when impromptu schedule 
changes are required and certain numbers of constraints need to be satisfied, there is 
a lack of flexibility element in most of scheduling and rescheduling approaches. By 
embedding the element, this gives a potential platform for enhancing the 
Evolutionary Algorithm (EA) which has been identified as the solution approach. 
Therefore, to minimize the constraint violations and make little but attentive changes 
to a postulated schedule during a disruption, an integrated model of EA with Cuckoo 
Search (CS) is proposed. A concept of restriction enzyme is adapted in the CS. A 
total of 11 EA model variants were constructed with three new parent selections, two 
new crossovers, and a crossover-based retrieval operator, that specifically are 
theoretical contributions. The proposed EA with Discovery Rate Tournament and 
Cuckoo Search Restriction Enzyme Point Crossover (D,T-CSREP) model emerges 
as the most effective in producing 100% feasible schedules with the minimum 
penalty value. Moreover, all tested disruptions were solved successfully through pre- 
retrieval and Cuckoo Search Restriction Enzyme Point Retrieval (CSREP,) operators. 
Consequently, the EA model is able to fulfill nurses' preferences, offer fair on-call 
delegation, better quality of shift changes for retrieval, and comprehension on the 
two-way dependency between scheduling and rescheduling by examining the 
seriousness of disruptions. 

Keywords: Hybrid evolutionary algorithm, Cuckoo search, Restriction enzyme, 
Nurse scheduling and rescheduling problem (NSRP), Healthcare management. 
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CHAPTER ONE 

INTRODUCTION 

Nursing is a noble and respectable profession. It is a profession that is acknowledged 

worldwide due to its significant contribution to the societal well-being. However, this 

profession brings considerable challenges that affect the nurses' performance. Hence, 

a scientific investigation to improve their performance is timely. 

1.1 Background of the Study: Nurses' Working Environment 

Nurse scheduling and schedule readjustment in real time operation has become a 

challenging global issue. This calls for a critical attention as nurses generally make 

up approximately 60% of employees in hospitals worldwide (Chiaramonte, 2008; 

Eastaugh, 2007), which also denotes a sizable amount of financial allocation (Dunton, 

Gajewski, Klaus & Pierson, 2007). In Malaysia, the Ministry of Health received a 

national budget of 7.66% in 2013 (Ministry of Health Malaysia, 2013). However, 

despite such allocation, a survey carried out by the Ministry for Healthcare Services 

during the year 2006-2008 found that government hospitals as opposed to their 

private counterparts incurred the highest number of complaints (Ministry of Health 

Malaysia, 2008). The survey revealed an increment of more than 67% (i.e. 150-250 

cases) during this period. The level of complaints received clearly signifies the 

unsatisfactory quality of the nursing services, which can affect patient safety. As 

Tang and Ghani (2012) reported that working conditions was one of the main factor 

to determine job satisfaction. The situation is worsened when there is a shortage of 

nurses (Ministry of Health Malaysia, 2004; Missouri State Board of Nursing, 2008). 



In addition to the nursing shortage, there are other work-related aspects that affect 

the unsatisfactory quality of the nursing services or inferior engagement of nurses at 

work. They are nurse demands, absenteeism, burnout and pressure. These aspects are 

discussed as follows. 

1.1.1 Nurse Demand 

"The whole care system is currently facing the huge challenge of 

delivering care at a time of increased demand and scant stafS 

resource. This is the reality which nurses face in every working 

day. " Peter Cater, Chief Executive of Royal College of Nursing 

(Ford, 20 1 3) 

Nurses displeased with overloaded demands of over 8-hour shift length was reported 

(Ingersoll, Olsan, Drewcates, DeVinney, & Davies, 2002). The stress had to certain 

extent intensified the likelihood of leaving among nurses (Hayes et al., 2006; 

Tourangeau & Cranley, 2006), which in turn leads to a crisis in nurse shortages 

(Judith, 2006). 

Malaysia is no exception to such problem. Indeed, many nurses had left their 

profession or retired each year (Hayes et al., 2006). Over 70% of Malaysian hospitals 

were facing insufficient nursing staff, therefore, nursing programs were increased to 

elevate the nursing profession to professional status (Bernama, 201 1; Ministry of 

Health Malaysia, 2012). In fact, the insufficiency was still involved with a great 

number of nurses. Statistically, government hospitals obtained 50,063 nurses and 

private hospitals obtained 24,725 nurses, as Ministry of Health Malaysia (2012) 



reported. In addition, many trained nurses had gone to foreign countries for more 

attractive working environment and remuneration (Ministry of Health Malaysia, 

2004; Missouri State Board of Nursing, 2008). Currently, approximately 20% of 

Malaysia's 84,000 nurses are estimated to be working overseas (Riot, 2012). For 

example, many skilled nurses from Malaysia were recruited by hospitals in 

Singapore to fill the shortage there (Barnett, Namasivayam, & Narudin, 2010). 

Nurse turnover is a widely acknowledged problem worldwide. Such phenomenon is 

also observed among nurses in the western pacific countries such as China, Malaysia, 

Philippines, Republic of Korea, and Thailand (Malaysia Health System Review, 

2013). Figure 1.1 shows the ratio of nurses per 1000 population in the period of 

1996-2010 provided by the WHO Regional Office (Malaysia Health System Review, 

2013). As shown, besides a slight improvement of nurse-to-population ratio in the 

Republic of Korea (from 3:1000 [I9971 to 5.6:lOOO [2010]), other countries, such as 

China and Thailand, still witnessed a more severe nurse shortage. 

Figure I. 1. Ratio of nurse-to-population 
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In Malaysia, the ratio of nurse-to-population was slightly better during a ten-year 

period between 1996 and 2006. Table 1.1 shows a noticeable increase of 27586 

nurses during this period (Malaysia Ministry of Health, 2007). The statistics showed 

some improvement in the nurse-to-population ratio from 1 : 1055 in 1996 to 1559 in 

2006. 

Table 1.1 

Malaysia Nurse Employment in Year 1996 to 2006 from Ministry of Healtlz (2007) 

Total no. 4 n u n s  
(Jurumwat Dew) 

Nurse : 
popdarion 

In another survey by the Ministry of Health Malaysia (2013), the nurse-to-population 

ratio improved to 1:345 in 2012 compared to the 1:410 ratio in 2010 (Health 

Indicators, 2010). Though the improvement suggests that shortage crisis over the 

years is being addressed, the ratio is still lagging behind the World Health 

Organization's standard ratio of 1 :200 (Ministry of Health Malaysia, 2013). 



Despite the shortage, turning to external aids such as recruiting a new cadre of nurses, 

temporarily enlisting help from nurse agency services, and obtaining overseas 

expertise are not desirable because these measures can cause long-term problems 

(Barnett, Namasivayam, & Narudin, 2010), as they may lead to unqualified nurse 

issue (Barnett et al., 2010) and increase hospitals' operation cost due to expensive 

recruitment (Maenhout & Vanhoucke, 201 1). 

Given the difficulty to attain a balanced nurse demand-supply, optimizing the use of 

the existing nursing resources is the best alternative but requires effective nurse 

scheduling. 

1.1.2 Nurse Absenteeism 

Absenteeism is defined as a state of being unavailable for a job, at a particular time 

(Clark & Walker, 201 1). Incidence whereby an employee who is pre-planned to 

carry out a specific task but is not available due to unplanned absences or staff 

turnover, is considered a disruption in a personnel schedule (Maenhout & Vanhoucke, 

201 1). Some of these instances are when leaves are taken due to personal obligations 

to accommodate sick family (McMenamin, 2010), unexpected own illness 

(Maenhout & Vanhoucke, 201 I), maternity leave (Maenhout & Vanhoucke, 201 I), 

unexpected outpatient cares, training programs and urgent meetings (Barnett, 

Namasivayam, & Narudin, 2010), all of which forcing nurses to leave their duty. 

Beside these, another factor that disrupts the nursing schedule is the issue of 

absenteeism amongst nurses (Moz & Pato, 2007) which greatly jeopardizes staffing 

budget of hospitals (Maenhout & Vanhoucke, 2011). The study of Maenhout and 



Vanhoucke (201 1) pointed out that schedule disruptions due to absenteeism has 

incurred a budget loss of 4% off the total resources allocated for staffing. In another 

instance, a survey by the Press Association (2011) reported budget waste of 

approximately £290 million in National Health Service (NHS) due to junior nurse 

sickness absence crisis. 

Besides nurse understaffing, taking of sick and emergency leave amongst nurses also 

affect nurses' performance (Al-Ahrnadi, 2009). The out-of-normal counts of sick 

leaves by nurses also reflect poor health among nurse (Barnett et al., 2010; Ford, 

2013; The Press Association, 2013). 

Not only absenteeism gives rise to nurse understaffing issue, it further causes 

schedule sustainability problem (Moz & Pato, 2007; Bard & Purnomo, 2005). Yet, 

initiating considerably frequent change to address schedule disruption due to 

uncertain events can be problematic in nurse management. This view is evident in 

past studies which revealed the preference of minimizing retrieval change among 

hospitals (Moz & Pato, 2007; Maenhout & Vanhoucke, 2011). Further, it is also 

noted that making radical change to a postulated schedule may be less problematic 

compared to addressing frequent imminent changes (Clark & Walker, 2011). 

According to Gutjahr and Rauner (2007), it is vital to improve the current-day 

decisions from a perspective of long-run advantages. Therefore, any attempt to 

improve the nurse scheduling should be swift enough to cater for the unexpected 

change, particularly those of the imminent. 



1.1.3 Nurse Fatigue 

Work-related fatigue or burnout is defined as an emotional exhaustion that shows 

lack of personal accomplishment (Vahey, Aiken, Sloane, Clarke, & Vargas, 2004). 

There are several reasons how fatigue amongst nurses is associated with the 

understaffing climate in hospital. Kalisch and Aebersold (2010) revealed that every 

nurse was bound to at least 34% of highly complex multi-tasking work time. Besides, 

unexpected on-call duty (Banyal, 201 1) and irregular or unpredictable working hours 

such as night and weekend works also give rise to stress and burnout among nurses 

(Horrocks & Pounder, 2006; Landro, 2008). There were also times where nurses 

were forced to work between wards and even worked to the extent of sacrificing their 

break (Ford, 2013; Tang, Sheu, Yu, Wei, & Chen, 2007). Frequent disruption in the 

nurse work schedule (e.g., increase in the nurses' workload) and long shifts basis (e.g. 

ten hours shift and above) can lead to nurse burnout (Cohen & Golan, 2007; 

Shahriari, Shamali, & Yazdannik, A, 2014; Stimpfel, Sloane, & Aiken, 2102). 

The discussion above clearly demonstrates that fatigue could be one of the key 

factors that jeopardize nurses' ability and willingness to be engaged in their job. As 

pointed out by Gormley (201 I), nurse burnout is closely related to low level of nurse 

engagement. In fact, low engagement has also been noted to affect satisfaction in 

patient care (Aiken, Clarke, Sloane, Sochalski, & Silber, 2002; Needleman et al., 

201 1). These altogether would mean poor nursing services. Poor service, according 

to Tang et al. (2007), include such incompetence as long waiting time, low 

consciousness of patient hygiene, uncomfortable ward environment, and impatient 

attitudes amongst nurse. 



Studies have also reported that nurse fatigue led to the increase of work-related 

injuries risk (Querstret & Cropley, 201 1 ), high patient mortality, morbidity and 

adverse event rates (Dunton et al, 2007; Needleman et al, 2011), as well as 

medication errors (Johari, Shamsuddin, Idris, & Hussin, 2013). The more severe 

impact of fatigue could be imagined in that it risks patient's life during critical 

periods where attentive patient care is needed. 

Specifically, Tang et ale's (2007) study pointed out that heavy workload, personal 

neglect, and fresh nurse as three prominent reasons of medication error. According to 

Kalisch and Aebersold (2010), an error prone of 1.5 errors per hour was reported for 

hospitals. Such indication has critical implication for hospitals in Malaysia. As 

highlighted by Johari et al. (2013), there were 2572 adverse cases reported in 2009. 

The Malaysian hospital was portrayed as having a high probability of making 

medical error. 

Building on the above points, a practically effective scheduling model should 

therefore seriously consider the effect of fatigue amongst nurses so that their 

competency would not be hampered. 

1.1.4 Nurse Personal Pressure 

Nurse pressure affects adversely nurse engagement. The Point of Care Foundation 

(2014) reported only 27% of nurses surveyed were actively engaged in their nursing 

work. The Nursing Board of Malaysia has long emphasized caring and teamwork, 

respect for human dignity, and community participation to reduce the pressure nurses 

face at work but to little avail (Ministry of Health Malaysia, 2008). Majority of 



nurses felt unappreciated for their voice was not heard (Ford, 2013, September; 

Gormley, 201 I), hence demolishing their expectations (Stephenson, 2014; Valouxis 

et al., 2012). They also reported to being treated unfairly (Kane-Urrabazo, 2006) and 

did not engage in a decision-making process (Bard & Purnomo, 2005). These all 

contribute to work pressure resulting in burnout and depression that could jeopardize 

their marital life. Indeed, this occupation often sees a high divorce rate at 28% 

(McCoy & Aamodt, 2010). 

Without the support from the head nurse, nurses may find it difficult to balance their 

work schedule and family commitments (McEachen & Keogh, 2007). This difficulty 

is exacerbated by the timely-off duty's preferences such as compensation off duty, 

requested off day, weekend off duty, and public holiday, an issue that lacks scientific 

investigation (Chiaramonte, 2008). Given that many nurses prefer their weekly off is 

scheduled providentially on some particular days such as weekend or other personal 

significant days like anniversary, birthday etc. (Chiaramonte, 2008). Though this is 

highly preferred, the chances of getting timely off on these days are small, which 

may lead to divorce and depression. Compensation pay rather than off day as a 

reward to those who had been on consecutive night shifts or on-call duty may 

exacerbate further the physically and mentally depressed. This is because the night 

duty requires that nurses remain awake (Horrocks & Pounder, 2006) and remain alert 

to on-call duty though they are not scheduled to work on that day (McEachen & 

Keogh, 2007), when they are supposed to be resting. 

Besides that, nurse gets unmotivated when they have to endure internal enforcement 

while undertaking busy workload (Clark & Walker, 201 1; Maziah, Wichaikhum, & 



Nantsupawat, 2012). There is a relational aggression to the generational changes of 

old nurses with new nurses. For instance, over reliance on a senior nurse by a newly 

graduated nurse (Barnett et al., 2010) inevitably leads to internal strife such as 

horizontal or vertical bully (Dellasega, 2009) where the same nurse may end up 

working often to an on-call duty or late night duty. When the unfair delegation 

happens, respect for the head nurse is lost (Banyal, 2011; Clark & Walker, 201 1; 

Kane-Urrabazo, 2006). Perhaps, many head nurses today are rather seeking for a 

quick-fix solution with little consideration to the long-term consequences when they 

make decision about nurse allocation (Kane-Urrabazo, 2006). These aggravations of 

bureaucracy conceivably enforce a less harmonious working environment, which 

affect the personal lives of nurses (Barnett et al., 2010). 

When the nurses feel that they are not treated fairly and do not receive the necessary 

support from the head nurse, pressures build up, leading to medication errors (Tang, 

Sheu, Yu, Wei & Chen, 2007) and high turnover (Flynn, Mathis, & Jackson, 2007; 

Gormley, 201 1; Hayes et al., 2006; Heinrich, 2001; Tourangeau & Cranley, 2006), 

which in turn worsen the already critical shortage of nurses (Aiken, Clark, Sloane, 

Sochalski, & Silber, 2002; Buchan & Calman, 2004; Cohen & Golan, 2007, 

Eastaugh, 2007; Heinrich, 2001). 

Figure 1.2. Unhealthy working environment for nurses 
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In sum, the inter-connectedness of the four major conditions discussed above creates 

an unhealthy working environment for nurse (refer to Figure 1.2), which pressures on 

nurses' quality service. To address the issue of low quality in nursing services, an 

effective schedule of staffing is suggested. This study thus aims to fill this void by 

developing a nurse scheduling and rescheduling model that is able to produce 

desirable and re-adjustable schedule in real time, as illustrated in Figure 1.3. Having 

pinpointed the impact of uncertainty, nurse capacity, and nurse preference earlier, 

this model tackle the nurse scheduling and rescheduling problem (NSRP) by 

considering the factors. 

Planning phase 
Disruption 
ocqu~ed  Real-time implenzerztation 

S ,i phase 

Figure 1.3. A process of nurse scheduling and rescheduling 
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rescheduling problem (NRP). Over the years, several approaches or techniques have 
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(Aickelin & Dowsland, 2004; Baumelt, Sucha, & Hanzalek, 2007; Suman & Kumar, 

2006) and NRP (Maenhout & Vanhoucke, 201 1); and (4) knowledge-based in NSP 

(Akihiro, Chika, & Hiromitsu, 2005; Kumara & Perera, 201 1) and NRP (Beddoe, 

Petrovic, & Berghe, 2002). However, one limitation of these approaches is that 

because they focus on a specific technique alone they are not able to solve complex 

requirements of nurse's real personal preferences. For NSP and NRP, nurse 

preferences are always the offset point whenever nurse coverage is challenged by 

demand fluctuation or incompetent scheduling (Chiaramonte, 2008; 

Punnakitikashem, 2007). Although nurse preferences have been less considered, the 

hybridization of the four approaches to some extent would tackle complex nurse 

requirements and preferences (Goodman, Dowsland, & Thompson, 2009; He & Qu, 

2012; Winstanley, 2004). This situation implies that a hybridization approach could 

provide a better solution for the NSRP. 

A nurse scheduling problem is often complicated by large numbers of constraints and 

required to be solved quickly in a polynomial time, which is a NP-hard problem 

(Cheang, Li, Lim, & Rodrigues, 2003). However, there is no single approach that can 

possibly fully solve such problem quickly when a big problem is involved (Horio, 

2005; Winstanley, 2004). In fact, the amount to a search space for NSP can be 

counted by s ~ * ~ ,  where S denotes the types of shifts, n denotes the total of nurse, and 

d denotes the scheduling period (Winstanley, 2004). As such, this is a big 

enumeration where 1 3 ( ~ ' * ' ~ ) = 1 3 ~ "  is formed by a fortnight schedule with 39 

nurses and 13 shift types. But, the amount is reduced slightly by decreasing the 

domain size. For that reason, the static mathematical optimization based techniques 

and knowledge based techniques alone may be not suitable to be used, whereas 



approximation algorithm rooted in flexible attribute has more potential for 

hybridization, such as, the Evolutionary Algorithm (EA). 

Moreover, in order to minimize retrieval change in NRP (Moz & Pato, 2007; 

Punnakitikashem, 2007), some further considerations are unnoticed by previous NRP 

techniques. For instance, there is lack of sensitivity for giving suitable 

recommendation because past and current shift attentions are considered but not 

future attention (Clark & Walker, 201 1; Punnakitikashem, 2007). Also, rescheduling 

by Clark and Walker (201 1) takes the original schedule into account but not vice- 

versa. All of these show that the short-sided retrieval approaches are suitable to 

address the disruption that occurs on that day (e.g. current impromptu condition) but 

do not take into account the long term consideration. By considering NSP and NRP 

in this scheduling problem, a schedule that considers both weaknesses can be 

developed. 

Technically, a rescheduling phase has a smaller search space than a scheduling phase 

(Clark & Walker, 201 I), so it is supposed to be an effortless search in rescheduling. 

However, with some additional restrictions, the difficulty of searching an optimal 

one might not be lesser than that in the scheduling phase. For that reason, an 

approach that is able to make changes while sustaining the restricted space is needed. 

Indeed, Cohen, Stuenkel, and Nguyen (2009) noted the lack of flexibility in 

scheduling and rescheduling approaches in a condition that requires frequent changes 

and a relatively big number of constraints that need to be satisfied. This gives EA a 

potential approach to employ because its flexibility can enhance the exploration and 

exploitation search. 



Essentially, EA's strength lies in searching for a variety ways with a degree of 

sophistication. It produces more than one solution at a time and then obtains a better 

one which predominantly serves the dilemma point of pursuing schedule stability but 

changes due to disruption. However, EA challenge has never ended because slow 

convergence could appear and even affect an output's feasibility while exploration is 

dominant. In contrast, a severe loss of population diversity situation leading to 

premature convergence shall occur while exploitation is dominant with respect to 

exploration. To balance both, these conditions have led to more technical challenges 

to the modus operandi of EA and enhanced EA's operators (e.g., initialization, parent 

selection, crossover, mutation, and regeneration) caused by hybridization. Essentially, 

for a more flexible search we accept uncertain individuals' attribute in a population. 

Therefore, by balancing between exploration and exploitation, a flexible search can 

give further insight into our new selection operator and recombination operator. 

1.3 Problem Statement 

There are issues of nurses leaving the service due to undesirable work schedule 

(Aiken et al., 2002; Chiaramonte, 2008). The unsatisfactory schedule is worsened 

when the nurses are absent on the day, prompting the head nurses to rectify the 

impromptu schedule. Such problem will never end since the well-being of nurses and 

ward operating requirements are vital elements that need to be taken into account 

concomitantly, even in such situation. Therefore, generating a more flexible schedule 

system that involves scheduling and rescheduling is valuable for the head nurse. 

Literatures indicate a substantial work of nurse scheduling or rescheduling has been 

conducted but the integration of nurse scheduling and rescheduling is very limited. 

To the researcher's knowledge, Chiaramonte (2008) was the only one who carried 



out a research that had considered the integration of nurse scheduling and 

rescheduling problem (NSRP), but overlooked nurse time preferences (Chipas & 

McKenna, 2011), fair on-call delegation (Clark & Walker, 2011), quality and 

quantity change of retrieval (Clark & Walker, 201 I) ,  and lack of examination on how 

scheduling and rescheduling are interrelated in determining the seriousness of 

disruption (Maenhout & Vanhoucke, 2013). Even though these elements were 

recommended to be considered, they have never been actually executed. Hence, our 

research aims to incorporate both the scheduling and rescheduling aspects, which 

additionally require flexibility of search. 

Nevertheless, the randomness strength of evolutionary algorithm (EA) is in excess of 

exploration (Grosan & Abraham, 2007). Though EA is capable to search larger 

search space but it has less effective in identifying local optima in term of 

computational time and the quality of solutions (Aickelin & Dowsland, 2004). 

Perhaps, cuckoo search algorithm (CS) that obtains a good balance of intensive local 

search strategy (Yang & Deb, 2010) may well fit to the limitation of EA. To our 

knowledge, the combination of genetic algorithm and cuckoo search is very limited. 

It has only been used to solve runway dependent aircraft landing problem (Zheng, 

Zhou, & Guo, 2013), job shop scheduling problem (Abu-Srhahn & Al-Hasan, 2015; 

Singh, Kurmi, & Tiwari, 2015), and traveling salesman problem (Ala'a Abu-Srhan & 

A1 Daoud, 2013). However, there are no studies that utilized the hybrid evolutionary 

algorithm with cuckoo search algorithm on nurse scheduling problem, even to any 

personnel scheduling problems. In the only one work of NSRP, Chiaramonte (2008) 

employed the agent based technique. Therefore a hybridization of EA and CS has 

motivated this research. 



In order to solve this complex NSRP, an enhancement of flexibility attribute in 

evolutionary algorithm (EA) is urged. EA consists of multi-stage operations which 

are initialization, parent selection, crossover, mutation, and replacement. In order to 

introduce the flexibility attribute in EA, potential improvements in parent selection 

operator is still possible with regards to binary tournament parent selection of 

Sharrna and Mehta (2013) from the elite perspective. This elite act focuses mostly on 

exploitation in parent selection. On the flipside, the selection pressure of dissimilarity 

relationship (Yang & Deb, 2010) between parents in an uncertain population 

circumstance (Heizer & Render, 2006) could be introduced as part of a partner 

selection strategy. This could be another substance to increase exploration to release 

it from the control of population diversity, as studied by Lim and Ramli (2014). 

In crossover operator, two improvements of permutation by different types of cross- 

points in terms of size division and direction can be targeted to further enhance the 

crossovers with nurse-based cross-point of Moz and Pato (2007) and row-wise 

crossover of Ramli (2004). These two strategies considered as fixed horizontal cross- 

point behavior could limit the permutation as well as exploration, though their large 

size of crossing division is promising to reduce constraints disruptions. Moreover, as 

for repairing purpose in our NSRP, the partial concept of cuckoo search is possible to 

enhance the Maenhout and Vanhoucke's (2008a, 201 1) crossover that regards the 

deliberate cross-point. As a result of their approach, fast convergence was obtained 

due to lack of exploration by crossing only to case-specific constraint violations, 

though this specific crossover is able to remain a good sub-solution. For these 

reasons, an integration of vertical and horizontal cross-points as well as a direct type 

of crossing point with flexible crossing sizes are studied to balance exploration and 



exploration in crossover operator. Thus, investigating a higher degree of permutation 

for crossing over is the aim of our research. 

1.4 Research Questions 

This study is endeavored to answer the following questions: 

1. What constraints are considered necessary in the scheduling and rescheduling 

model? 

2. What is the methodology needed to generate an efficient schedule? 

3. How does nurse rescheduling system adjust nurses' shift to solve daily 

fluctuations? 

4. What operators of the selected methodology shall be improved? 

5.  How do we evaluate the effectiveness of the proposed models? 

1.5 Research Objectives 

Essentially, the aims of this research are to develop a nurse scheduling and 

rescheduling model by looking into a hybridization of evolutionary algorithm and 

cuckoo search technique for solving real-time scheduling instances. In essence, the 

final outcome is a priory prepared best-so-far nurse schedule that involves 

impromptu decision making to produce a feasible nurse schedule, in case of 

rescheduling. Minimizing constraint violation is targeted to solve a particular 

uncertain nurse scheduling and rescheduling problem (NSRP). 

The enhanced technique of evolutionary algorithm and cuckoo search for NSRP is 

identified and used to accomplish the specific objectives as below: 



1. To identify all relevant constraints and parameters that make up all hard rules and 

nurses preference as far as possible within appropriate nurse skills and staffing 

size. 

2. To determine the change of adjustment that gives a low impact on other nurses in 

a rescheduling problem 

3. To construct newly modified parent selection operators to acclimatize population 

diversification. 

4. To construct new modified crossover operators for a scheduling problem and 

present it as a repair operator for the rescheduling problem. They are to promote 

a more flexible way of crossing over and enhance the exploitation element to 

evade slow convergence. 

5. To evaluate the performance of several evolutionary models and the proposed 

nurse scheduling and rescheduling model with what-ifanalysis 

In conclusion, the hybrid EA reinforces the desire for the equilibrium between 

exploration and exploitation in order to search for the best-so-far solution that 

satisfies the identified hard, semi-hard and soft constraints in nurse a scheduling and 

rescheduling problem. 

1.6 Research Contributions 

Basically there are two main contributions of this research. They are theoretical 

contributions of Evolutionary Algorithm-based hybridization and practical 

contribution to a nurse management system. 



Firstly, this research constructed a new hybrid evolutionary algorithm and a cuckoo 

search approach by looking into parent selection and crossover operators. Three 

enhanced parent selection operators for manipulating population diversity are named 

as below : 

a) Maxirnax and Maximin parent selection 

b) Discovery Rate parent selection 

c) Discovery Rate Tournament parent selection 

Two modified matrix crossover operators that achieved a more flexible way of 

crossing over are named as below: 

a) Two-factor Blockwise crossover 

b) Cuckoo Search Restriction Enzyme Point crossover 

One noticeable point is that the cuckoo search-based crossover operator can be 

applied to a rescheduling problem due to an integration of Restriction Enzyme Point 

strategy. Hence, the concept of restriction enzyme in DNA has first been practically 

implimented in crossover. In all, these are to enrich the exploitation element to evade 

slow convergence for the sake of over flexibility. Besides that, an enhanced fitness 

calculation approach with regards to hard, semi-hard, and soft constraint strategy is 

applied in this research. It is suitable for organizing and handling the priority of a 

vast number of constraints as well as the complexity level of a constraint. The semi- 

hard constraint strategy is newly introduced to link between the scheduling and 

rescheduling. 

As the second main contributions, this research provided an advancement of 

computerizing the combination of nurse scheduling and rescheduling to improve 

nurse productivity and services. The final tested model is able to produce desirable 



and adjustable schedules that utilize the available nurses without neglecting their 

preferences. In particular, the integration of nurse scheduling and rescheduling 

problem (NSRP) focused on solving timely nurse preferences, fair on-call delegation, 

quality and quantity change of retrieval, and two-way dependency between 

scheduling and rescheduling by examining the seriousness of disruption. 

1.7 Scope of the Research 

The present research is about a shift assignment which integrates nurse scheduling 

and nurse rescheduling into a model for a ward in a hospital environment. Nurse task 

assignment is, however, not within the scope of our research because it is the final 

stage of nurse management system (see Table 2.1). Furthermore, nurse task 

assignment involves nursing care knowledge and head nurse decision after the doctor 

has diagnosed a patient (e.g., clinical knowledge on medication treatments and 

injections, patient condition). 

The final model can be operated by any ward user (head nurse) of any hospital. For 

the purpose of illustrating the application of scheduling and rescheduling model in a 

critical ward such as an Emergency Department, a Cardiac Rehabilitation Ward was 

also chosen since cardiothoracic needs require more complex care and nurse's 

commitment. As 25.4% diseases of the circulatory system are the number one cause 

of death in hospitals, approximately 63% of that mortality rate was cardiac patients 

by year 2010, according to Ministry of Health (Health Indicators, 2010). 

Matrons, head nurses and staff nurses were interviewed to gather data on some real 

elements to be incorporated into the model. For example, data were collected nurses' 



availability, their work environment in an ordinaly period or uncertain period, their 

preferences and specific needs, and skill requirements of a particular ward. 

1.8 Definition of Key Terms 

Below are the key terms that used in this research: 

Artificial intelligence is a field of computer science, which is study on the 

automation of intelligent behavior (making a computer reason in a manner 

similar to humans) regarding perception, reasoning, action and computation. 

Continued service is delivering 24 hours, 7 days a week service. 

Coverage is a number of nurses who are taking ON duty in a ward. 

Disruption of schedule is changes upon schedule in an occurrence when a nurse 

is unavailable to work in a shift as scheduled due to unplanned absences or other 

nurse turnover. 

Feasible solution or feasible schedule is an acceptable output that satisfies all 

hard constraints which apply to all nurses. 

Integrated Request OfS concept is the off day which is authorized by a head 

nurse to complement the off day with off day requested by a staff nurse. 

Mutual respect is pursuing a harmonious working condition by searching a 

tolerable point between a head nurse and staff nurses in shift allocation, 

especially in a particular day off duty. 

Nurse assignment is assigning nurses to individual shifts based upon caseload 

method that ensures each nurse is charged with an equal number of patients with 

certain nursing skill required. 

Nurse management systern is the four stages of managing the nursing personnel. 

The stages nurse planning, scheduling, rescheduling, and assignment. 



Operntiorzs researclz is a scientific approach to decision making sought on a 

quantitative and rational basis, usually dealing with the allocation of scarce 

resources. 

Plaiznirzg period or lzorizon is the long-term temporal period for which 

personnel staffing is done, e.g., determining and scheduling the number of 

personnel needed during a year. 

Premature convergence is where population soon loses its diversity resulting in 

a search confined into a suboptimal solution that causes an optimizer to be stuck. 

Quality of sclzedule has a minimum fitness achievement corresponding to the 

satisfaction of ward coverage and nurses' preference. 

Reactive scheduling, rescheduling and real-time scheduling are synonymous. 

They refer to a process of revising the set of scheduled nurses for a shift that 

signifies the dailylhourly adjustment of nurses. 

Real-time is a time of implementing or executing a planned schedule. It strongly 

corresponds to changes. 

Schedule or roster is a set of work shift, off day, and tasks arrangements where a 

personnel is assigned to a particular shift in a particular day. 

Scheduling is a process of creating a personnel schedule. It is a subset of a 

planning period and normally scheduled on a weekly, fortnightly or monthly 

basis. 

Slow convergence is a situation where an algorithm spends time exploring 

uninteresting regions of search space. 

Unfair nurse on call delegation is a situation where some nurses get no changes 

but others are required to change the number of shifts by a head nurse during 

rescheduling. 



Work shift is a period of time within a day for which a nurse will perform work. 

Work stretch is a continuous chain of work shifts. 

1.9 Thesis Organization 

This research started by showing a backdrop of the present nursing situation, which 

revealed the gap that needed to be filled. 

Chapter Two provides an in-depth understanding of the present nurse scheduling and 

rescheduling problem. It also reviews some techniques that have been implemented 

to address the nurse scheduling and rescheduling problems. 

Chapter Three reviews related literatures on search techniques. This chapter 

highlights some strengths and weaknesses of the present EA and CS pertaining to 

their fundamental principles, hinting how the techniques can be improved. 

Chapter Four describes the overall construction of the models as well as the nurse 

scheduling and rescheduling prototype. The evaluation strategy to validate the 

models is shown in the next chapter. 

Chapter Five discusses the implementation of the models with several experimental 

testing. By then, some objectives of the research have been achieved. 

The last chapter, Chapter Six, gives an overall conclusion based on the findings. 

Moreover, limitations of the present study and recommendations for future research 

are highlighted. 



CHAPTER TWO 

REVIEW OF NURSE SCHEDULING AND RESCHEDULING 

PROBLEMS 

Developing a nurse schedule is a complicated task that requires consideration of staff 

nurses and head nurse. This chapter starts by introducing the fundamental problem of 

scheduling and rescheduling, following which the need for an amalgamation of nurse 

scheduling and rescheduling is discussed. The chapter also sheds light on the factors 

a head nurse should take into consideration whilst developing, formulating and 

implementing a nurse schedule. h addition, the objective function and constraint 

which formed by three main factors (i.e., nurse capacity, preferences and uncertainty) 

are also reviewed. Subsequently, nurse scheduling and rescheduling techniques that 

have been applied are reviewed. 

2.1 Nurse Management System 

At planning stage, a good planner focuses on identifying what, when, how and who 

to assign a particular task whilst keeping the available resources in hand for its 

responsive completion (Billings, 1985). Next, scheduling intends to match those 

identified elements of what, when, how and who to achieve effective job completion. 

Bradley and Martin (1990) asserted that in a nurse management system, three inter- 

related nursing human resource decision phases are involved. They are nurse 

planning, nurse scheduling, and nurse allocation. However, some scholars suggested 

that nurse management system could be specifically divided into four stages which 

are budgeting, scheduling, rescheduling, and task assignment (Azaiez & A1 Sharif, 

2005; Punnakitikashem, 2007; Punnakitikashem, Rosenberger, Behan, Baker, & 



Goss, 2006; Chiaramonte, 2008). In the last stage, nurse rescheduling and task 

assignment are the separations from nurse allocation. In table 2.1, time horizon 

attribute provides a clear understanding for classifying the various stages of nurse 

management system. In each stage, decision is made within its time horizon to 

address certain types of areas, problems or concerns. A summary of the nurse 

management classification is shown in Table 2.1. 

Table 2.1 

ClassiJication of Nurse Management System 

3 stages of nurse 4 stages of nurse 
Time 

management management TypesIExamples 
Horizon 

system system 
1. Staffing 1. Nurse Long term Making plans and decisions to meet 

process/nurse budgeting1 (annually) available budgets; predicting patients' 
planning Staffing care, monitoring regulations by 

decisions nursing union and forecasting nurse 
hiring. 

2. Nurse 2. Nurse Mid term Identifying minimum number of 
scheduling scheduling (several nurses required per shift; Developing 

weeks) schedules; specifying availability and 
unavailability of nurses and assigning 
duties to nurses whilst ensuring peak 
and off peak operating hours. 

3. Nurse 3. Nurse Short term Recruiting additional nurses to 
allocation rescheduling (1-3 days or facilitate in absenteeism and patient 

hours) classification systems 

4. Nurse task Short term Workload balance consideration, 
assignment (30 intuitive judgment or caseload method 

minutes) 

At the start, 'Staffing Process' is the first level of nurse management system. It is 

also known as nurse planning, staffing decisions, or nurse budgeting. This stage 

primarily focuses on forecasting to determine the total number of nurses needed 

during a year in order to finalize the required budget. The second stage is 'Nurse 

Scheduling', which deals with formulating schedule of nurses based on the predicted 

number of patients whilst keeping the number of available nurses beforehand. Lastly 



is 'Nurse Allocation' which includes nurse rescheduling and nurse task assignment 

and deals with allocation and management of personnel to actual work sites. 

The difference between the nurse rescheduling and nurse task assignment is that the 

former revises a set of nurses scheduled for a shift within approximately 90 minutes 

(Punnakitikashem, 2007; Punnakitikashem et al., 2006) before each shift. The nurse 

task assignment decision, however, assigns nurses to individual shifts based on the 

caseload method (Azaiez & A1 Sharif, 2005). This ensures that each nurse is 

allocated the same number of patients. However, the nurse task assignment is not 

explored in this research since it involves taking the complicated and unpredictable 

individual patient's health condition into consideration. Therefore, the literature 

review discusses the first three levels of nurse management system which are 

planning, scheduling and rescheduling. 

2.1.1 Planning in the Nurse Management System 

Planning is one of the basic functions of management (Billings, 1985). McEachen 

and Keogh (2007) and Eastaugh (2007) noted that the core aim of planning is to 

provide higher output with lesser input and efforts. This clearly outlines the core 

vitality of nurse planning and its significance in balancing all factors such as 

managing the number of available nurse per shift in a ward whilst providing an 

optimal level of quality care beforehand. 

Besides the size of ward or department, good planning and allocation of skilled 

resources are crucial tasks to be performed by the nurse manager. In the past, 



Billings (1985) used traditional management terms to describe nursing administration 

which including planning, organizing, directing and controlling. 

Typically, a nurse manager typically fulfils the role of a department manager or a 

unit manager. The nurse manager is responsible for long term planning in terms of 

cost control, nurse regulations control, nurse recruitment and handling of daily 

operations of a ward(s) 24 hours a day 7 days a week. In this manner, nurse 

scheduling and rescheduling are developed to form a competent team to accomplish 

the planning goal(s) of the nurse management system, which is to provide 

exceptional care services to patients with higher productivity. 

2.1.2 Scheduling in Nurse Management System 

Scheduling is defined as the allocation of resources in a defined pattern for the 

responsive performance of specific activities (Baker, 1976; Pinedo, 2002). Wren 

(1996) claimed that nurse scheduling in reality is personnel scheduling (Heizer & 

Render, 2006) with a decision making process (Morton & Pentico, 1993) that 

scheduling seeks to optimize in meeting the personnel allocation objectives. Quite 

often resources rotate throughout a schedule. As personnel scheduling deals with 

managing and monitoring the staffing needs over a specific time period (Heizer & 

Render, 2006) to balance customer demand, personnel work needs to be profitable 

(Ramli, 2004; Thompson, 1998). Thus, nurse scheduling can also be described as 

allocating a certain number of nurses to each shift over a certain time period subject 

to a set of constraints. These constraints are usually the working practice regulations 

and working preferences of nurses (Bai, Burke, Kendal, Li, & McCollum, 2007). 



Burke, De Causmaecker, Berghe, and Landechem (2004) and Ernst, Jiang, 

Krishnamoorthy, and Sier (2004) asserted that personnel scheduling management 

should take several individual factors into account such as staff demand and 

availability, staff capability, staff desire to work, and labour costs to maintain 

appropriate customer-service levels. This is in line with Yano (2005), who suggested 

that scheduling also covers issues such as holiday and over time requests and various 

other rules related to the number of working hours, shift patterns, and nurse-to- 

patient ratio. 

A nurse schedule provides a blue print of the working days and shifts, off days and 

holidays over a period of time. However, it is normally prepared on a weekly basis to 

avoid any uncertainty. As noted by Burke et al. (2004), it is a short term timetabling 

of staff with a typical horizon of not more than a few weeks. A more specific time 

horizon is suggested by Brusco and Showalter (1993), who suggested that scheduling 

could be for a period ranging from 1 to 8 weeks. In a nutshell, nurse scheduling is a 

nurse allocation process within particular periods of work. 

The nurse scheduling procedure (Bellanti, Carello, Croce, & Tadei, 2004; Burke et 

al., 2007; Goodman, Dowsland, & Thompson, 2009; Gutjahr & Rauner, 2007; He & 

Qu, 2012; Rarnli, 2004) is relevant to other sectors that deal with personnel service 

allocation such as transportation (Goel, Archetti, & Savelsbergh, 2012; Maenhout & 

Vanhoucke, 2010; Peters, Matta, & Boe, 2007; Weide, Ryan, & Ehrgott, 2010), 

hospital (Ahmed & Alkhamis, 2008; Augusto, Xie, & Perdomo, 2010; Wang et al., 

2007), bank (Chandra & Conner, 2006), university (Abdul-Rahman, Burke, Bargiela, 

McCollum, bzcan, 2014; Abdul-Rahman, Sobri, Omar, Benjamin, & Ramli, 2014; 



Burke, Mccollum, Meisels, Petrovic, & Qu, 2007; Burke, Petrovic, & Qu, 2006; De 

Causmaecker, Demeester, & Berghe, 2009; Kahar & Kendall, 2010), policing service 

(Engku Muhammad Nazri, 2001; Vila, Morrison, & Kenney, 2002), manufactory 

(Bhadury & Radovilsky, 2006), postal service (Qi & Bard, 2006), and hospitality 

(Burke & Soubeiga, 2003). The implementation of scheduling will also lead to 

rescheduling even in other industries. Therefore, it is important to understand 

rescheduling in the nurse management system. 

2.1.3 Rescheduling in Nurse Management System 

Rescheduling is synonymous with reactive scheduling (Bard & Purnomo, 2005a), 

real-time scheduling or re-allocation (Chiaramonte, 2008; Moz & Pato, 2007). The 

real-time nurse allocation is basically adjusting and implementing the nurse schedule 

to meet the demand of nurses between the units based on the number and acuity of 

patients (Brusco & Showalter, 1993). Research in the area of nurse rescheduling was 

started in 2003 by Moz and Pato. In commercial business sectors such as in 

manufacturing (Vieira, Herrmann, & Lin, 2000), airline (Ahmad-Beygi, Cohn, & 

Lapp, 2010; Bratu & Barnhart, 2006; Kakas, 2000; Rosenberger, Johnson, & 

Nemhauser, 2003; Thengvall, Bard, & Yu, 2000), railroad (Huisman, 2007; Potthoff, 

Huisman, & Desaulniers, 2010; Rezanova & Ryan, 2010) and healthcare (Clausen, 

Hansen, Larsen, & Larsen, 2001; Maenhout & Vanhoucke, 201 1; 2013; Moz & Pato, 

2007), the rescheduling application is more common. Nurse rescheduling is an 

important issue to be attended to as it has a direct impact on patient care and safety. 

Unexpected events that cause schedule disruption include nurse(s) calling in sick or 

other urgent personal matters, assisting other understaffed units, handling impromptu 



outpatient care visitation, engagement of nurses in different health-related campaigns 

on a short-time notice, and other unanticipated events (Bard & Purnomo, 2005a; 

Chiaramonte, 2008; Clark & Walker, 201 1; Moz & Pato, 2007). If these problems 

are not resolved in a collective manner, then such disruptions in the schedule may 

occur on a regular basis. 

Notably, these disruptions may change the nurse management system which triggers 

rescheduling and hence affects the schedule performance (Dutta, 1990). Importantly, 

previous researches have argued that the change in the number of nurses due to 

disruptions often result in the deterioration of performance and therefore leads to the 

development of new schedules with little or major changes to the one formulated 

initially (Bard & Purnomo, 2005a; Chiaramonte, 2008; Maenhout & Vanhoucke, 

201 1; Moz & Pato, 2007). However, crisis gains opportunity, provided that quality 

change is implemented. According to Clark and Walker (2011), instead of small 

changes, radical changes to a postulated schedule maybe less problematic in the 

upcoming days due to the fact that short-lived actions and long-lived actions of 

Pinedo (2002) are judged differently and the nurse rescheduling may address 

numerous constraints so that the effective solutions for unexpected disruptions can be 

found. 

Practically, short-lived actions are implemented to address minor disruptions placing 

minute effect on the service (Pinedo, 2002). For instance, the rescheduling involving 

short-lived actions may include recalling personnel from break, extending length of 

an individual's shift (overtime), or asking personnel to perform some additional tasks 

for a while (Engku Muhammad Nazri, 2001). On the other hand, long-lived actions 



are implemented due to major disruption(s) that result in substantial changes in the 

nurse schedule. These changes may consume more hours for processing and 

reassigning nurses with additional usage of resources (Pinedo, 2002). Such retrieve 

actions in rescheduling often result in additional work for some of the staff members, 

revocation of personnel leave(s) and reassigning of personnel to different jobs or 

shifts (Engku Muhammad Nazri, 2001; Thompson, 1999). 

Bard and Purnomo (2004b) claimed that rescheduling some scheduled nurses must 

consider their previous shift's working condition. In emergency situations where 

nurse is required to work an impromptu shift, cost is not the foremost consideration 

but nurse coverage availability which abides in a ward regulation during 

rescheduling (Bard & Purnomo, 2004b, 2005a; Tang & Ghani, 2012). For instance, a 

nurse who is rescheduled to continually work right after hislher working shift (e.g., 

night shift followed by morning shift which no 8 hours difference), is more likely to 

be working with low vigour or absent for calling in sick. Thus, the head nurses may 

readjust the schedule again or head nurse has to work extra hours to cover the 

shortfall in such extreme situations. In this context, rescheduling results in little 

achievement in meeting the set objectives. 

As the later part of rescheduling, nurse task assignment is considering a census 

matrix or patient classification system. Patient classification system is the most 

sophisticated technology for nurse rescheduling to determine patients' categories, 

which is based on the patients' health condition and severity of illness, and the 

estimated time required to care for a particular patient (Punnakitikashem et al., 2006). 



Therefore, the patient should be given a new classification when hislher health or 

illness condition changes. 

In a nutshell, rescheduling happens when an unexpected event occurs that mandates a 

scheduler to change the primary generated schedule with a minimum number of shift 

swaps to obtain an optimally workable nurse schedule. Thus, without rescheduling 

phase, it implicates a devoid of impromptu retrieval or replacement strategy to the 

nurse allocation in real-time. This interruption may give domino effect to the 

insufficient nurse coverage and unsatisfied nurse preferences while delivering service. 

As Dutta (1990) stated, the purposes of having rescheduling are: (a) to minimize any 

confusion and misappropriation from the working rota; and (b) to control and ensure 

that the needs of patients and care concerns are responsively addressed; and 

2.2 Amalgamation of Nurse Scheduling and Rescheduling 

The relationship between scheduling and rescheduling is supported by Vieira, 

Herrmann, & Lin (2003) and Pinedo (2002), who suggested that both functions are 

not independent of each other in real time. Although nurse scheduling is more of 

estimation and rescheduling is an implementation issue, this does not mean that they 

are separate issues. As mentioned earlier in Section 1.1, both require similar matters 

of consideration. This is further agreed by Pinedo (2002), who asserted that most of 

the time, scheduling process is actually a rescheduling process. Schedule may not run 

as planned because of the disruptions discussed above and other changes in the staff 

and patient forecasts. No schedule can be implemented entirely smoothly in the 

practical world without any changes made, which suggests that scheduling and 

rescheduling go hand in hand. 



By combining nurse scheduling and rescheduling, nurse allocation can be made more 

comprehensively. With respect to handling and managing important ward covering 

problems, it is pivotal that the previous shift duties of nurses and their preferences 

are taken into account. In reality, mending or revising an impracticable schedule is 

tougher than building a new schedule in totality (Clark & Walker, 201 1 ; Maenhout & 

Vanhoucke, 201 1; Moz & Pato, 2007). Given that, restricting schedule changes may 

be affected by the postulated workforce coverage (Bard & Purnomo, 2005b; 

Chiaramonte, 2008; Moz & Pato, 2007) and cost (Bard & Purnomo, 2005a). 

Secondly, schedule should also act as an additional buffer to cover any unexpected 

influences so that the total additions could be minimized and no other high-priority 

job gets delayed (Pinedo, 2002). Hence, overstaffing in schedules and cross-trained 

personnel are formerly safe side plans in scheduling (Thompson, 1999). However, 

understaffing condition is occurred in nursing working environment. Therefore, the 

preparation aspect of scheduling especially for real time implementation is still in a 

development phase. This dilemma of nurse coverage prompts this research to explore 

the linkage between nurse scheduling and rescheduling. 

Furthermore, despite the difference of recovery time, short-lived actions would result 

in minimum changes or little impact on the original schedule compared to long-lived 

actions. Nevertheless, short-lived actions are usually handled manually by a nurse 

manager and are practically disregarded in nurse rescheduling problem, as others 

mostly go for impulsive retrieval (Bard & Purnomo, 2005b; Maenhout & Vanhoucke, 

2011; McEachen & Keogh, 2007; Moz & Pato, 2007). Indeed, without 

comprehending the seriousness of the disruption to the postulated schedule before 



retrieval has clearly highlighted the weakness of rescheduling without leaning upon 

scheduling. However, this mutually dependency remains obscure. 

Though the benefit of integrating scheduling and rescheduling has been emphasized 

in the theoretical arena (Clark & Walker, 201 1; Vieira et al., 2003; Punnakitikashem, 

2007) and empirical discussions (Chiaramonte, 2008), such integration has received 

little attention (Clark & Walker, 201 1; Vieira et al., 2000). To date, there has been 

one most identical NSRP research so far out, that studied by Chiaramonte (2008). 

However, the pioneering study of Chiararnonte (2008) gave little attention on nurse 

preferences during rescheduling and addressed light disruptions using agent-based 

approach (AB). 

As a whole, the combination of nurse scheduling and rescheduling is needed to 

overcome the less stringent work of scheduling which needs flexibility to match the 

nurses7 capacity and preferences even in the period of uncertainty. Undoubtedly, a 

significant and responsive nurse scheduling with rescheduling system essentially 

facilitates and eases the supervisory work of a nurse manager. 

2.3 Decisive Attentiveness of Head Nurse in Scheduling and Rescheduling 

A head nurse holds a critical role in supporting and nurturing nurses to build a strong 

teamwork climate for effective patient care and assistance (Fletcher, 2001; Shirey, 

Ebright & McDaniel, 2008). But, hetshe also is one the major factor that pushes 

nurses to leave (Taunton, Boyle, Woods, Hansen, & Bott, 1997). The head nurse has 

the authority to make changes based on the work priorities and areas requiring urgent 

support and assistance. As a result, such power and authority over nurses in 

connection to allocation and delegation have incurred serious complains. However, a 



nurse manager such as the head nurse has the responsibility in creating, formulating 

and amending a schedule because a quality nurse schedule potentially promotes a 

healthy working environment and hence good delivery of services (Aiken, Clarke, 

Sloane, Lake, & Cheney, 2009; Bellanti et al., 2004; Burke et al., 2004; Cohen & 

Golan, 2007; Eastaugh, 2007; Ford, 2012; Shahriari et al., 2014; Stimpfel et al., 

2102). The following reviews the responsibility of a head nurse. 

2.3.1 Attentiveness on Nurse Coverage 

Nurse coverage relates to the number of nurses that are servicing a particular shift of 

a ward (Rarnli, 2004). This includes the number of outsourced nurses from an agency 

or other third parties, although such practice does not promote a motivating working 

environment for quality patient care (Aiken, 2010; Dellasega, 2009; Ford, 2012). The 

head nurse should identify the appropriate levels of staffing in each shift to know 

whether the ward(s) has an ideal staffing, just-enough staffing or less-than-enough 

staffing condition (e.g., non-survival level). 

Typically, nurse coverage and the total number of nurses required in each shift may 

vary. For instance, U.S. Bureau of Labor Statistics (2008) reported that a night shift 

duty has the least workforce demand compared to the morning shift and evening shift, 

as shown in Figure 2.1. 
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Figure 2.1. Percentage of average workload on a workday 

Operations during the night play an important part towards providing a 

comprehensive 24-hour service to patients in every hospital. Indeed, hospitals go 

quiet at night as the patients mostly rest. In this situation, only a few staff members 

and nurses are required during the night shift (Horrocks & Pounder, 2006). Moreover, 

due to rising medical costs and shortage of nurses, hospitals are in short of staff 

during the weekends and late evening shifts (Landro, 2008). Therefore, using the 

night shift staffing as a basis, the head nurse may set guidelines or staffing 

benchmark to address the specific needs of nurses on a daily basis. 

2.3.2 Attentiveness on Nurse Preference 

The head nurse should also be well aware of each nurse's timelshift preferences to 

enable them to work responsively. By doing so, the nurses are being treated fairly. 

The head nurse should also ensure that the work life balance of the nurses is not 



affected which could potentially decrease nurse retention, as Cohen et al. (2009) 

argued. 

2.3.2.1 High Preferences 

A nurse preference in a schedule generally includes a consecutive shift pattern, 

equally divided shifts and workload amongst all nurses and little or no allocation of 

night shifts (Glass & Knight, 2010; Moz & Pato, 2007; Valouxis et al., 2012). But, 

nurse preference that regards to off days is seldom executed such as on-call 

compensation off days, constant off at the weekends, and request for off days. These 

off days are generally preferred by the nurses so that they can have quality rest time 

or be with their spouse and family members. Indeed, the off days are one of the 

significant factors impacting nurse depression (Chipas & McKenna, 201 1; Murray, 

2012) as well as spouse relationship ending up prematurely (McCoy & Aamodt, 

2010; U.S. Centre for Disease Control and Prevention, 2009). 

Nurse preferences are found to be of a less important consideration in understaffing 

especially when uncertainty is involved (Punnskitikashem, 2007). However, the head 

nurse should give support and consideration at all time (Gormley, 201 1; Stephenson, 

2014) as a sign of mutual respect towards staff nurses (AbuAlRub, 2004). For 

instance, the head nurse should plan the schedule by finding ways that complement 

ward regulations and nurse preferences. This is the reason why nurse preference is 

given a higher priority in this research. This is a vital consideration. As AbuAlRub 

(2004) argued, the importance of good interpersonal relationships between the staff 

and supervisors may potentially enhance security, mutual respect, and positive 

feelings which ultimately results in reducing stress. From the information technology 



(IT) perspective, granting timely off days (e.g., nurse requested off duty, weekend off 

duty, days off during the public holidays, night shift compensations, and on-call 

compensations off day, etc.) depends on how smart the scheduling approach is used. 

It is ideal that a mutually acceptable schedule is developed. Kane-Urrabazo (2006) 

suggested that employees should be allowed to have their say in the creation of a 

schedule. 

2.3.2.2 Fair Delegation 

A head nurse is also expected to lead with fairness. The head nurse ought to 

formulate a just and balanced schedule, allocating justified shifts to every nurse so 

that potential disruptions, arguments, or disagreements from nurses in the future can 

be avoided (Azaiez & A1 Sharif, 2005; Horio, 2005). However, fairness may be 

difficult to achieve when a disruption suddenly occurs (Clark & Walker, 201 1). 

Though fairness is very subjective, allocating an equal chance of duty shifts and on- 

call duties as much as possible is important in (re)scheduling. This is because as 

Kane-Urrabazo (2006) remarked, trust and confidence in the head nurse and 

motivation to work in team can only be achieved through advocating fairness and 

consistency in the management and reward system. 

2.3.3 Attentiveness to Nurse Uncertainty 

A head nurse should also be aware of any changes in schedule due to uncertainty. 

Pamela (2007) stated that predictability and innovative scheduling model are 

essential components to increase nurse retention. Even though, practically speaking, 

it is difficult to run a postulated schedule, social network amongst nurses has proven 

to be the most important factor to support change and cover uncertainty in the work 



environment (Garrett & McDaniel, 2001). Even though the number of scheduled 

changes required to accommodate absenteeism changes is comparatively small, at 

times the nurses feel they are being unfairly treated because they to sacrifice their job 

preferences. 

A supportive working climate may prevent nurses from being dissatisfied in their job. 

This requires partly that there is a good nurse schedule because the Queensland 

Nursing and Midwifery Office (2012) has underlined the risks of on-call disruption, 

as shown in Table 2.2. Hence, when making a schedule decision, it is vital that the 

head nurse consider the seriousness of the disruption (Maenhout & Vanhoucke, 

2013), the impact of the radical change or non-radical change (Clark & Walker, 

201 l), and the quantity of changes in comparison to the original/postulated schedule 

(Moz & Pato, 2007). Constant on-calls give rise to patients' complains (Ministry of 

Health Malaysia, 2008), and the nurses can also suffer from exhaustion due to the 

tiring work schedule and unhealthy personal life. This also disturbs the social life of 

individuals which frequently result from disruptions (Cohen & Golan, 2007; Stimpfel 

et al., 2102). 

Table 2.2 

Risk Guide for Coizsecutive On-call Duties 

Consecutive Risk level Controls on-call shifts 
< 2 Acceptable No immediate controls 

2 or 3 Minor Assess fatigue levels 

4 High Assess fatigue level and request support from other 
nurses and midwives to cover the on-call 

> 4  Very High No nurse will be scheduled for this number of shifts 



In conclusion, a nurse manager plays an important role in influencing job satisfaction 

of nurses. If indeed the nurse manager's leadership styles affect the nurses' wellbeing, 

measures can be taken to develop mutually beneficial relationship that would lead 

towards efficiency, productivity and job satisfaction. 

2.4 Appraisal of the Scheduling and Rescheduling Objectives 

Over the years researchers have been trying to improve the problem solving parity 

related to nurse scheduling and rescheduling. In post 2000, total workforce size 

(Soubeiga, 2003), consecutive working days and off days (Bellanti et al., 2004), 

nurse labour cost (Wright, Bretthauer, & Cote, 2006) and unnecessary overtime cost 

(Azaiez & A1 Sharif, 2005) are the key components that have been of a concern in 

the NSP. Moreover, due to absenteeism, NRP studies have considered the total 

workforce size to cover a ward operation, where schedule dissimilarity between the 

original schedule and the adjusted schedule is also evaluated (Moz & Pato, 2007; 

Punnakitikashem, 2007). 

Given the above scenarios, cost-related objectives have become little less important 

areas of concern in scheduling and rescheduling. Instead, quality of a schedule is 

becoming increasingly more important (Clark & Walker, 201 1). This is because pay- 

for-performance program is not a well-built strategy to increase quality of care in 

nursing, given that performance has been majorly defined in terms of staffing 

(Briesacher, Field, Baril, & Gurwitz, 2009). All of these reflect the displeasure of the 

nurses toward the work schedule (Chiaramonte, 2008; Wright et al., 2006). Hence 

nurse scheduling and rescheduling objectives are reviewed. 



2.4.1 Objectives Based on Capacity 

In order to let a ward operating at full capacity (i.e., power to produce nursing 

service), previous objective functions of personnel scheduling are evaluated by 

personnel cost of handling shortages (Bard & Purnomo, 2005c), unnecessary 

overtime cost (Azaiez & A1 Sharif, 2005), and penalty on nurse coverage's constraint 

violations (Glass & Knight, 2010). In fact, capacity has not merely subject to nurse 

coverage, i.e. the number of nurses in a shift of a ward (Azaiea & A1 Sharif, 2005; 

Bard & Purnomo, 2005a, 2005b, 2007; Bellanti et al., 2004; Brucker et al., 2009; 

Burke et al., 2007; Chiaramonte, 2008; Clark & Walker, 201 1; Glass & Knight, 2010; 

Gutjahra & Rauner, 2007; Ramli, 2004; Valouxis st al., 2012), but also nurse 

competency which regards to the continuality of previous shift and current shift 

(Glass & Knight, 2010), and qualification and substitution of related skills (Azaiea & 

A1 Sharif, 2005; Bard & Purnomo, 2005b). Pinedo (2002) and Lin et al., (2000) 

claimed scheduling and rescheduling processes are mutually related. To seek 

schedule quality, apparently, nurse coverage and nurse competency affect the 

effectiveness of capacity arrangement in the scheduling phase (Azaiea & A1 Sharif, 

2005; Bard & Purnomo, 2005a, 2005b, 2007; Bellanti et al., 2004; Brucker et al., 

2009; Burke et al., 2007; Glass & Knight, 2010; Gutjahra & Rauner, 2007; Ramli, 

2004) and rescheduling phase (Bard & Purnomo, 2005b; Punnakitikashem, 2007; 

Valouxis et al., 2012) respectively. Given that Pinedo (2002) and Vieira et al., (2003) 

claimed scheduling and rescheduling processes are mutually related, thus, nurse 

coverage and competency are the vital elements in capacity objective during the 

integration of NSRP. 



In-depth study, covering signifies the difference between the minimum numbers of 

nurses required against the scheduled number of nurses (Warner, 1976). With regards 

to the objective of coverage, the least number of nurses needed in a ward was 

typically considered as hard constraint (Bellanti et al., 2004; Ramli, 2004). This is 

because nurse coverage objective that associated with constraints and regulations 

may denote the idea of utilizing the available nursing staff to avoid using extra 

staffing. Azaiea and A1 Sharif (2005) suggested that nurse coverage could be 

adjusted according to nurse demand (e.g. number of nurse required differently in day 

shift and night shift). However, some studies have dealt nurse coverage with 

overtime factor, agency temporary staff, and pool nurse (Bard & Purnomo, 2005a, 

2005b, 2007; Burke et al., 2007; Gutjahra & Rauner, 2007). 

Bard and Purnomo (2005b) considered extra staffing to balance the contractual 

agreements and the managers' right to outsource outside nurses (primarily floaters 

and agency nurses). This was used to survive the operation of a ward during 

understaffing though it was costly. On the flipside, the numbers of staff for each shift 

could be maximized at all time in order to utilize the available staff, as overstaffing. 

In other words, they intended to constitute their regular basis of nurse coverage to an 

ideal coverage condition (Engku Muhammad Nazri, 2001; Ramli, 2004). However, 

the ideal coverage had been managed softly and even less achievable. Hence, 

targeting an intermediate stage of nurse coverage may be practical to real-world 

working condition. However, there is limited attention to intermediary coverage 

which resists survival coverage condition and further up to ideal coverage condition. 

As a whole, nurse coverage in scheduling and rescheduling is an important element 

for readying or coping real time crisis. 



In the capacity that based on nurse competency, a nurse's nursing skill and vigour are 

counted-in when evaluating nurse performance. Nurse who works with renewed 

vigour depends on the rest given between hislher previous shift and current shift. 

Therefore, to seek quality schedule, the continuity in between the assigned shifts is 

constrained. For example, continuity that studied by Glass and Knight (2010) 

specified on connecting the last shift of a previous schedule with the first shift of the 

new current schedule. Next, another way of reflecting nurse competency in a 

schedule is taking nurse qualification into account, which in terms of nursing 

experiences and skills. Therefore, given a nursing shortage, supervision of senior 

nurse (Azaiea & A1 Sharif, 2005) and skill-related substitution (Bard & Purnomo, 

2005b) are constrained to achieve nurse competency. 

2.4.2 Objectives Based on Preferences 

Preferences in a schedule are generally based on shifts ordering preferences, personal 

desire or request on particular day, and fair treatment on shift assignment 

(Chiaramonte, 2008; Clark & Walker, 2011; Valouxis et al., 2012). In an objective 

function, these preferences is basically formed by calculating the total preference 

cost (Aickelin & Dowsland, 2004; Bard & Purnorno, 2007; ~ o u b e i ~ a ,  2003) or soft 

constraint violations (Burke et al., 2006; Burke et a]., 2007; Li, Lim, & Rodrigues, 

2003; Ramli, 2004; Valouxis et al., 2012). Although preferences do not necessariIy 

have to be considered in nurse scheduling, it plays a significant role in the nurse 

scheduling and even in rescheduling research. 

Generally, several studies have included preferences into nurse scheduling problem 

(Aickelin and Dowsland, 2004; Bard and Purnomo, 2007; Bellanti et al., 2004; Li et 



al., 2003; Gutjahra and Rauner, 2007) and nurse rescheduling problem (Bard and 

Purnomo, 2005a; Clark & Walker, 201 1; Moz & Pato, 2004). In 1976, Miller et al. 

were the first to formally address the nurse preferences scheduling problem. 

Chiaramonte (2008) also concluded that the preferences challenge has been gaining 

more research attention since 2000s. Especially in early 2000, Bard and Purnomo 

(2005a) presented a robust methodology to solve the preferences scheduling problem 

that can accommodate both the quantitative and qualitative details that nurse 

managers needed. Gutjahra and Rauner (2007) optimized the static assignment of 

nurses to demand on each single planning day by considering the nurses' preferences 

for hospitals and the hospitals' preferences for nurses. Additionally, the principal 

components of cyclic and preference scheduling were combined into one single 

model by adding preference constraints and demand constraints to work out the 

staffing shortage problem (Bard & Purnomo, 2007). 

Nurse preference could be the offset point whenever nurse demand fluctuates. This 

problem gets worse in rescheduling that needs to endure frequent changes in the 

working environment. As nurse preference is often included in scheduling, it is not 

necessarily accounted in rescheduling (Chiaramonte, 2008; Punnakitikashem, 2007). 

Such working principle in rescheduling is to prevent any change that may deviate 

from the original schedule at a greater level (Moz & Pato, 2007), as the little change 

is more crucial than an ideal change. This is to reduce the outcome of unstable 

schedule, but undesirable schedule is intensified. 

A non-preferable work schedule turns out to be a frustrating outcome (Valouxis et al., 

2012). Generally speaking, nurses tend to prefer consecutive onloff workdays and 



dislike shift types such as night shifts. Therefore, such nurse preferences were then 

managed by constraint violation with some weighted penalty value (Choy & Cheong, 

2012; Bellanti, 2004; Azaiez & A1 Sharif, 2005, Bard & Pumomo, 2005a, 2007; 

Chiaramonte, 2008). In the terms of highly desirable preferences such as getting a 

timely off duty, previous studies have never explored the toleraizce aspect between 

head nurse and staff nurses. Hence, very little evidence is available that effectively 

addresses a number of requests for 'off shifts' at the scheduling stage (Bellanti et al., 

2004, Valouxis et al., 2012) and more so at the rescheduling stage (Chiaramonte, 

2008; Punnakitikashem, 2007). This is because it is common practice not to involve 

staff nurse authority in the schedule making process, as highlighted by Bard and 

Purnomo (200%). 

Fairness, one of the preferred elements in scheduling, is defined as equal shift 

distribution among the available nurses particularly with regards to weekend shifts 

and night shifts (Choy & Cheong, 2012; Valouxis et al., 2012). Fairness in on-call 

nurse delegation has not practically considered in rescheduling problem. Perhaps, it 

is a difficult task to establish fair on-call delegation whilst satisfying higher 

preferences of nurses in producing fast retrieval solution (i.e. schedule). As affirmed 

by Clark and Walker (201 1) that given small space to change in a postulated 

schedule during rescheduling is a hard task ever due to additional restrictions. In all, 

perseveringly reinforcing the preferences aspects (i.e., nurse preference and fairness) 

are needed for the sake of maximizing schedule's quality. 



2.4.3 Objectives Based on Uncertainty 

Most past studies have excluded real-time problems whilst developing their nurse 

scheduling approaches in the recent decades (Azaiea & Al Sharif, 2005; Bellanti et 

al., 2004; Gutjahra & Rauner, 2007; Li et al., 2003; Soubeiga, 2003). Perhaps, the 

complexity of scheduling problem is based on uncertainty (Burke et al., 2004). Once 

a schedule is implemented, adjustments are regularly made due to fluctuations in 

demand, absenteeism, equipment failures, and other unforeseen circumstances (Bard 

& Purnomo, 2005; Moz & Pato, 2007). Thus, uncertainty problem due to 

absenteeism can be denoted as imbalance between nurses required capacity versus 

the available numbers. As Punnakitikashem, Rosenberger, Behan, Baker and Goss 

(2006) argued that hospitals need to create a schedule that could help them manage 

critical understaffing situations by recruiting outsource nurses (e.g., part-time nurses 

or temporary agency nurses) and reassigning internal nurses (e.g., off duty nurses). 

In these manners, the objective functions of previous rescheduling researches were 

minimizing the expected excess workload of nurse (Punnakitikashem, 2007), the 

dissimilarity between old schedule and new schedule (Chiaramonte, 2008; Moz & 

Pato, 2007), and the cost of overtime wage (Bard & Purnomo, 2005b). 

One imperative work of Moz and Pato (2007) in nurse rescheduling problem 

provides thorough details of various disruption instances that require handling the 

constraint violation effectiveness and time efficiency. Thus, we partially adopt the 

instances of uncertainty that may fit into our context of fortnight schedule for further 

recovery testing. 



Importantly, a schedule might change frequently due to uncertain real-time problems. 

In this frequent change condition, a schedule becomes unpredictable and thus lost 

nurses' trust or not reliance on the postulated schedule. Therefore, scholars 

controlled the quantity of change to a postulated schedule during retrieval in 

rescheduling (Bard & Purnomo, 2005b; Moz & Pato, 2007). In fact, to achieve little 

changes of schedule adjustment, several aspects could be focused which are the 

dependency between scheduling and rescheduling, level of schedule disruption, and 

level of changes. Chiaramonte (2008) considered both scheduling and rescheduling 

problem, however, he showed less dependency upon both stages' decision where his 

rescheduling took the original schedule (output of scheduling) into account during 

making any retrieval decision, but not vice-versa. Perhaps, schedule's readiness for 

absenteeism problem could be optimized during scheduling as suggested by Clark 

and Walker (201 1). 

Next, the profundity of disruption level which is as the impact of a disruption to a 

postulated schedule could be considered. This is because by understanding how 

severe a schedule is disrupted, scheduler may not make impulsive retrieval decision 

during rescheduling (e.g., pre-retrieval or retrieval). Sometime, a postulated schedule 

might be able to endure a slight disruption. Lastly, level of changes in the retrieval 

process (i.e., radical change or non-radical change) has not been studied, though it is 

important in obtaining desirable schedule. Given that, retrieve accordingly such as 

abandon the spoiled postulated schedule and recreate a new one might be a pleasant 

plan (Clark & Walker, 201 1). This aspect is used to pursue a quality retrieved 

schedule instead of only minimizing quantity change. Therefore, our research 

attempted to fulfil these three aspects of uncertainty objective. 



In sum of the above appraisal objectives, besides the technique comparison (Brucker 

et al., 2010; Burke et al., 2007; Glass & Knight, 2010), capacity (Azaiea & A1 Sharif, 

2005; Bard & Purnomo, 2005b, 2007; Bellanti et al., 2004; Cai & Li, 2000) and 

preferences (Bard & Purnomo, 2007; Gutjahra & Rauner, 2007; He & Qu, 2012; Li 

et al., 2003) are two major research objective' focuses in static scheduling problems. 

The objective of personnel capacity and preferences were jointly targeted with 

partiality (Bard & Purnomo, 2005a; Clark & Walker, 201 1;  Gutjahra & Rauner, 2007; 

Valouxis st al., 2012) or separately targeted (Azaiea & A1 Sharif, 2005; Chiaramonte, 

2008; Li et al., 2003) in the nurse scheduling context. On the flipside, nurse 

rescheduling studies have been weaker in coalescing and adapting nurse capacity and 

preferences into uncertainty issue. Preference is a less profound objective in 

rescheduling and always assumed it has already accomplished in scheduling stage, 

thus can be ignored (Chiaramonte, 2008; Moz & Pato, 2007; Punnakitikashem, 2007). 

The preferences which subject to an approval of timely requested shift and 

compensated shift as well as its fairness are highly appreciated but rare to be 

accomplished. Moreover, lack of empirical efforts discussed the profundity of 

schedule disruption such as the dependency of scheduling and rescheduling, level of 

disruption impacts to a schedule, and level of schedule adjustment which subject to 

quality and quantity change. For that reasons, Figure 2.2 shows a vital facet of nurse 

scheduling and rescheduling problem (NSRP). 
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Figure 2.2 

Facets of nurse scheduling and rescheduling problem 

Figure 2.2 gives a glimpse on several criteria, we believe, that should be treated 

appropriately to formulate the objective function of nurse scheduling and 

rescheduling. The criteria are based on three main elements such as nurse capacity 

(Flynn et al., 2007; McEachen & Keogh, 2007), nurse preferences (Cheang, Li, Lim, 

& Rodrigues, 2003; Gordon, 2002), and nurse uncertainty such as absenteeism (Bard 

& Purnomo, 2005b; Chiaramonte, 2008). Based on the findings of the previous 

studies, we found that the core capacity is a subset of preferences and uncertainty. By 

fulfilling it, preferences are then followed. Uncertainty is a superset of preferences 

and capacity, whereby both are vital criteria for inclusion in the uncertainty. 

2.5 Constraint Classifications 

Generally, modelling constraints have been classified into two groups which are hard 

constraints and soft constraints. Hard constraint is designed to conform to strict 

policies; hence it always has to be satisfied. On the other hand, soft constraints are 

designed to conform to subjective personnel desires; hence it is not necessarily to be 

satisfied. To these extreme conditions, there is an awkward predicament which a 



semi-hard constraint can be relieved a bit from the over strictness (i.e., hard 

constraint), but has to be satisfied. In other words, the restriction has slightly 

loosened, though it is still important. This is because the extreme of restriction in 

hard constraints may be difficult to control the complexity of changes in real time 

working environment. 

Therefore, additional classification with three different groups of constraints (i.e., 

hard, semi-hard, and soft) may seem to provide a better overview and control over 

the operation. Such line of thinking has been triggered by few researches (Muntz & 

Wang, 1990; Grandoni, Konemann, Panconesi, & Sozio, 2005) and also 

implemented by Kelemen, Franklin, and Liang (2005) and Abdallah and Jang (2014). 

Muntz and Wang (1990) suggested that timing controls was managed in both hard 

constraint and also soft constraint where cost is the aim of the study. Salido (2003) 

studied constraint satisfaction problem that separately gave ordering classification 

into each hard and soft constraint groups to improve efficiency check on the 

constraints. However, Muntz and Wang (1990) and Salido (2003) were unable to 

provide empirical evidence on implementing the semi-hard constraints and failed to 

provide a clear linkage between hard and soft constraints, though the need of semi- 

hard is emphasized. 

In a study of constraint satisfaction, Kelemen et al. (2005) implemented semi-hard 

constraint as setting a flag to caution the deliberation element. Given that, semi-hard 

constraint had to be satisfied but eligibility could be earned before the sailor's new 

assignment whereas hard constraint must not violated but eligibility could not be 

earned before the sailor's new assignment. Moreover, soft constraint was countering 



sailors' preferences which could be violated, even if desired. Yet, there was an 

ambiguity on implementing the concept of semi-hard constraint, mainly no separate 

or definable code for semi-hard constraints but merely a plan of warns. 

In nurse scheduling context, hard constraint basically reflects to obey organization's 

regulation and individual contractual agreements such as upholding nurse coverage 

(Clark & Walker, 201 1; Gutjahra & Rauner, 2007) whereas soft constraint reflects 

some less jmportant requirements that could not suspend a ward operation such as 

upholding nurse preferences (Moz & Pato, 2007). As a whole, hard constraints 

decisively influence a schedule's feasibility. However, due to lack of clear stance on 

semi-hard constrains, as far as research is concerned, no nurse scheduling or 

rescheduling problem has been solved with semi-hard constraint strategy. 

2.6 Constraint Appraisal 

Scheduling approaches have mostly included individual work constraints, staff 

preferences and hospital business rules in order to enhance roster acceptance and 

personnel job satisfaction at the workplace. Over the decades, the management of 

shift-work operations has become more complex. According to Coleman (1996), 

apart from the key issues of wages and benefits, workers generally have three main 

desires: better days off, better health, and more predictability in their schedule. So, 

there are various types of constraints while scheduling and rescheduling, as shown in 

Table 2.3. 



Table 2.3 

Suminary of Constraints Tjpes 

No. Constraints types Sources 
1 Basic schedule rule Soubeiga, 2003; Li et al., 2003; Bard & Purnomo, 2005; Burke 

et a]., 2003; Clark & Walker, 201 1; Valouxis et al., 2012 

2 Nurse worWoad Burke et al., 2003; Azaiez & Al Sharif, 2005; Gutjahra & 
Rauner, 2007; Moz & Pato, 2007; Valouxis et a]., 2012 

3 Overtime Li eta]., 2003; Bellanti et al., 2004; Bard & Purnomo, 2005 

4 Covering constraint Bellanti et a]., 2004; Azaiez & A1 Sharif, 2005; Clark & 
Walker, 201 1; Valouxis et al., 2012 

5 Nurse skill classification Soubeiga, 2003; Aickelin & White, 2004; Aickelin & 
Dowsland, 2004; Gutjahra & Rauner, 2007; Valouxis et a]., 
2012 

6 Shift (types) Li etal., 2003; Aickelin & White, 2004; Aickelin & Dowsland, 
2004; Bellanti et a]., 2004; Clark & Walker, 201 1; Valouxis et 
a]., 2012 

7 Work consecutive/stretch Bellanti et al., 2004; Burke et al., 2003; Azaiez & A1 Sharif, 
2005; Valouxis et a]., 2012 

8 Day off constraint Li et a]., 2003; Moz & Pato, 2007; Burke et a]., 2003; Azaiez & 
Al Sharif, 2005; Clark & Walker, 201 I; Valouxis et a]., 2012 

9 Shift ordering constraint Bellanti etal., 2004; Azaiez & Al Sharif, 2005; Gutjahra & 
Rauner, 2007; Moz & Pato, 2007; Clark & Walker, 201 1 ; 
Valouxis et a]., 2012; Valouxis et al., 201 2 

10 Working weekend Burke et a]., 2003; Veen, Hans, Post, & Veltman, 2012; 
Valouxis et a]., 2012 

11 Daily adjustment rule Bard & Purnomo, 2007; Clark & Walker, 201 1; Chiaramonte, 
2008; Moz & Pato, 2007; Maenhout & Vanhoucke, 201 1 

Constraints that are commonly set for creating a schedule are divided into two 

classes such as hard constraints and soft constraints. Nurse demand per day, per shift 

type, and per skill category are all usually hard constraints, while soft constraints are 

usually those involved with time requirements on personal schedules (Cheang et al., 

2003). The goal is always for the scheduler to meet the hard constraints, while also 

aiming at meeting soft constraints. A brief explanation on each type of constraints is 

given below. 



2.6.1 Basic Rule of Schedule 

All full-time nurses must be assigned either 72 or 80 hours within a two-week 

planning period, depending on their contract. However, if a nurse is assigned fewer 

hours than specified in the contract, she must still be paid a full weekly salary (Bard 

& Purnomo, 2007). Therefore utilizing the available workforce to the fullest is 

important to reduce waste. For this, there are some basic rules. Hospital work 

requirements are basic rules to consider when making a schedule. For instance, no 

shifts must be left unassigned; each nurse must work exactly in only one shift-pattern 

per day. This means that a nurse should not work more than one shift. This is to 

ensure that the nurses (i.e. workforce resources) are able to fulfil the nurse demand 

reasonably. 

2.6.2 Nurse Workload Constraint 

Different labour contracts (full time nurses, part time nurses or floating nurses) may 

specify different work regulations, resulting in different agreed workloads. Nurse 

workload is either counted as the number of working hours or number of working 

days. In general, a full time nurse has to work six days in a week with one off day, or 

five workdays with two off days. In terms of work hour constraint, each nurse has to 

work on an 8-hour shift in 5 working days or 12-hour shift in 3 working days; no 

nurse may work more than 75 hours within a fortnight. Each nurse has to work at 

least 176 hours per schedule (4 weeks) which is equivalent to 14.67 days per 

schedule. The maximum labour time per week is around 36 hours. Due to the diverse 

work regulations in real problem, a nurse may have to work between 36 and 48 hours 

per week. However, this constraint does not include the special night shift's benefits 

and some other special days off in the particular week. 



2.6.3 Overtime Constraint 

This constraint is determined as an overload capacity, exceeding the amount of 

regular work times. For example, any additional working hours above 176 hours 

(regular working hours) in a fortnight schedule are considered to be overtime. In 

addition, a nurse is allowed up to four hours to exceed the number of hours for which 

they are available for their ward. This means that the maximum number of overtime 

periods that can be assigned to a nurse is denoted by the maximum number of 

overtime periods permitted. However, an overtime strategy may not be the best way 

to handle the understaffing problem. Scheduling models that consider a user's 

defined overtime constraints tend to focus on costs and not schedule quality or shifts 

arrangement. Moreover, Bard and Purnomo (2005a) strongly argued that more 

problems are created when nurses scheduled to work overtime, either voluntarily or 

mandatorily, call-in sick in a later shift. 

2.6.4 Working Weekend Constraint 

Weekend constraints have a greater impact on personnel satisfaction than other off 

days. When nurses take their weekend off, they can devote their time to their family. 

They may become upset when scheduled to work during the weekend. In some 

instances, the earliest weekend shift starts at 7 p.m. on Friday and the latest weekend 

shifts end at 4 p.m. on Monday, which becomes a problem for few. However, night 

shifts on Sunday are not considered as weekend shifts. As per general regulations, 

each nurse is to be given at least 4 days off during weekends in each 4-week 

schedule; at least 2 weekends off duty per 5-week period. This means that they 

should be given at least two weekend shifts in every two weeks. This constraint can 

be met in a rotation manner if and only if there is a large capacity of nurses. This is 



because of all nurses must have taking turn to claim the weekend off duty, 

conversely, number of available nurses who assigned on the weekends is decreased. 

This constraint violation may be exacerbated in rescheduling. Therefore, this 

constraint is rarely considered by the head nwse even though both parties know it is 

a highly preferred constraint. 

2.6.5 Nurse Skill Classification Constraint 

Nurses can be classified based on their qualification and experience. Apparently, 

nurses with higher skills and expertise are required to handle patients requiring 

critical care. For instance, nursing staff with a certain ski11 set is required in a ward. 

Or, nurses can be assigned to all shifts based on their qualifications and preferences. 

Or, a shift which requires certain proficiency can only be assigned to a nurse who has 

that skill. Therefore, the head nurse has more expectations from senior nurses, who 

are given more responsibilities. In this case, maximum capacity of available senior 

nurses is an important consideration for the head nurse. 

Nurse substitution requirements ideally fall upon the nurse with higher skills and 

experience to work as a replacement. Therefore, experienced nurses have higher 

probability of temporarily replacing or aiding with personnel shortages in different 

units. Sometimes nurses with different skill categories may also be asked to 

substitute. This flexibility is applied in practice because of the work requirements in 

real time. Therefore, the head nurse should always plan to enhance the skills and 

abilities of herlhis nursing staff. 



2.6.6 Covering Constraint 

Nurse coverage refers to the number of nurses needed in a shift of a ward which is 

also called nurse demand. Hence, nurse covering constraint is defined as the required 

number of nurses in each shift. The number can be exactly specified or it can be 

within a specific range. However, the number of nurses required daily may differ. 

Thus a robust scheduling approach is required to figure out the daily range of nurse 

demand in each work shift to allocate the available nurses across different wards. 

The covering constraint is considered as hard constraint and reflects the research 

objectives. As shown in Table 2.3, in previous works the covering constraints have 

specified the decision variables that included the upper bound on the number of 

agency and on-call nurses. That is, a deviation of a maximum of one nurse is 

acceptable from the requested number of nurses in the night shifts (if four nurses are 

requested in a night shift, at least three nurses must be assigned for smooth 

operations). Other decision variables include limiting the total number of undesirable 

patterns to no more than a user-supplied parameter (Pmax); coverage on each shift 

must range between lower bounds and upper bounds for each skill level; and 

discouraging the use of on-call nurses. However, some studies have highlighted 

flexible ways to distribute the available number of senior nurses evenly to each work 

shift especially to the night shift duty. Ramli (2004) fixed a number of nurses to 

handle night shift duty. Such approach may not necessarily work while planning in 

real time because the number of available nurses changes every day. 

The issue of coverage in each work shift (by row in schedule) is as important as the 

daily coverage. These covering constraints intend to control each nurse's work 



pattern to make it parallel across a scheduling period, especially when allocating 

night shifts to each nurse. With regards to night shift constraints, the number of night 

shift per nurse can be represented either by a fix integer or a proportion of the nurse's 

total workload. For instance, the number of consecutive night shifts is at most 3, so 

each nurse must work at least 1 night shift per week. The maximum number of night 

shifts is 3 per period for 5 consecutive weeks; or night shifts must constitute at least 

25% of total workload of each nurse. Each nurse must work one night shift per week 

and there must be at least n numbers of consecutive night shifts assigned to each 

nurse's schedule. 

Moreover, each nurse is likely to be covering an equal number of work shifts (e.g., 

morning shifts (M), evening shifts (E), night shifts (N), and on-call duties etc.) to 

signify fair distribution. Indeed, fewer studies have focused on managing effective 

rotation of on-call duty. Expectedly, the difference in the number of nurses covering 

on-call duties may raise discomfort and frustration among the staff nurses and head 

nurse. In all, these constraints are mostly aggregated as shift arrangement issues. 

2.6.7 Shift Type Constraint 

Shift constraints depend upon how effectively or ineffectively a mix of various shifts 

is assigned to a nurse in a schedule. Practically, a shift can be categorized as multi- 

shifts set with variable start and finish time (Isken, 2004; Williams, 2008), strictly 

specifying as only one single shift (either day on or day off) (Narasimhan, 1996), day 

shift and night shift (Bard & Purnomo, 2005a), three different shifts (e.g., morning 

shift (M), evening shift (E), night shift (N)) (Li et al., 2003), or more than three shifts 

in a rotating manner. The variable start and finish time that has no generalized work 



time is also called isregular shifts. The shift times and durations are variable, which 

means there are no determined night-time or daytime shift. As a result, they are less 

likely to be used (Williams, 2008). Among these, it is also common to consider three 

different shift types in nurse scheduling (Burke et al., 2004; Wong, Xu, & Chin, 2014) 

in terms of work stretch constraints, work off constraints, and shift ordering 

constsaints. All these restrictions and arrangements are important elements that need 

to be taken into account to generate an effective schedule. 

2.6.7.1 Work Stretch Constraint 

This type of constraint is restricting the number of consecutive working days with the 

range of between 2 consecutive workdays and 6 consecutive workdays. In other 

words, a single workday is not preferred. Unnecessary or extended work stretch 

becomes an issue in the nurse scheduling. As nurses become exhausted due to the 

extra work stretch violation, they may become less engaged in their duty. Hence, 

they are normally given free days or rest time after working consecutively. Besides 

restricting the overwork stretch assignment, pursuing an equilibrium distribution of 

different types of work shift (e.g., morning shift, evening shift, night shift) in a 

stretch is also observed by this constraint. 

2.6.7.2 Off-day Constraint 

Work off can be categorized into two groups: mandatory off days (public holidays, 

requested annual leaves, weekday off, weekend off) or permitted off days such as 

compensation off after a number of night shifts, on-call duty or consecutive 

workdays. The following are some work off violations stressed by previous studies 

on nurse scheduling. There are 2 off days for those with a 35-hour week, or only one 



off day for a 42-hour week. Officially, therefore, the mandatory number of off days 

given depends on the weekly workload. However, previous studies in table 2.3 had 

less perseverance to grant favoured off constraint. For instance, only 1 request for off 

day can be applied by a nurse in a fortnight schedule, with or without the assurance 

of approval. This is because the approval for the requested off days (e.g., off days on 

public holidays, annual leaves, and weekend off) depends on the sufficiency of the 

total number of nurses and their seniority in a ward. This issue has exacerbated nurse 

turnover. 

Despite the optional wage benefit and mileage reimbursement, an off day is used as 

compensation when nurses are required for on-call duty, outpatient care duty and 

others while they are on leave. One extra off day (without pay) is given to reimburse 

one on-call duty when they are supposed to be off duty. Nevertheless, no empirical 

study has been conducted on on-call compensation. Besides that, nurses must be 

given at least a number of off days after a set of night shifts or after consecutive work 

time. For example, a 42-hour rest is required after a series of at least 2 consecutive 

night shifts, or 2 consecutive days off (at least 14 hours) to compensate 3 consecutive 

night shifts. However, there are some advance considerations for off duty 

preferences. For instance, no P.M./night shift before the requested off day and no 

A.M./day shift after the requested off day. The night off is significantly different 

from the requested off days because night shifts are often to be more tiring, leaving 

little energy and enthusiasm to spend and enjoy the following off day. 



2.6.7.3 Shift Ordering Constraint 

Shift sequence or shift ordering is combining different types of shifts in a sequential 

order. This ordering constraint is usually determined by mandatory break time rules, 

forward clockwise direction rule and some night shift concerns 

The mandatory break time rule is to provide nurses with rest time from a heavy 

workload. This is the foundation of shift ordering constraint, such that 8-hour break 

shall be ordered between work shifts, or at least 16-hourrest between two consecutive 

shifts, or at least 11 hours of rest during any period of 24 consecutive hours. 

Typically, in 12-hours shifts basis, two work shifts are not allowed to be put in order. 

This is because it is against the labour law to impose 24hours of continuous working 

shifts. For example, no nurse can be assigned a shift from 7:00 a.m. to 7:00 p.m. and 

from 7:00 p.m. to 7:00 a.m. (day shift until night shift) or from 7:00 p.m. to 7:00 a.m. 

and from 7:00 a.m. to 7:00 p.m. (night shift to day shift). 

With reference to 8-hour shifts, the sequence of assigning shifts is generally based on 

M<E<N<Off circadian rhythm (Ramli, 2004). This forward clockwise direction rule 

is to provide more rest time for nurses before they start the new day. For example, 

E+N work sequence is unfavourable than M-N work sequence. Furthermore, it is 

used to support a logical shift replacement for fine tuning purpose in rescheduling. 

For example, a nurse in an evening shift cannot aid a nurse in a morning shift of the 

same day (Ed+Md). 

With regards to the mandatory night shift rules, nurses are not allowed to work N 

shift with a mandatory scheduled M shift the next day. Previous studies have stressed 



that such order needs to be considered as hard constraint (Clark & Walker, 2011; 

Ramli, 2004). Consideration of these set of constraints is to establish fairness in shift 

arrangement among nurses so that they receive sufficient rest time. 

2.6.8 Daily Adjustment Constraint 

Essentially, cyclical schedules are generally not effective in understaffing situations 

because of the regular changes (unexpected absences) of nurses. Use of external 

resources such as outside agencies and use of internal resources for on-call duties or 

for overtime are some of the common practices to address understaffed ward. 

Therefore, hospitals should develop a system to ensure nurses availability in order to 

avoid restriction rules of rescheduling when handling such uncertainties. For instance, 

nurses are not assigned to tasks on the days they are absent; head nurse is allowed to 

fine-tune at any day of a schedule; and isolated off day is unfavourable (Chiaramonte, 

2008; Maenhout & Vanhoucke, 201 1; Moz & Pato, 2007). These constraints are to 

be taken into account whilst repairing an ineffective schedule with considerable 

changes. 

In resolving critical nurse coverage conditions, majority of researchers have focused 

on fairness perception of nurses being called, nurse's health condition, and the 

clockwise scheduling rule during shift replacement (Bard & Purnomo, 2007; 

Chiararnonte, 2008). 

2.7 Nurse Scheduling and Rescheduling Techniques 

Previous studies have shown significant results in addressing nurse scheduling 

problems by identifying 28 different categories of tools and techniques (e.g., Burke 



et al., 2004; Cheang et al., 2003; Ernst et al., 2004; Yi, 2005; Van den Bergh, Belien, 

De Bruecker, Demeulemeester, & De Boeck, 2013). These techniques include 

optimization approaches (i.e. mathematical programming), constraint logic 

programming, constructive heuristics, expert systems, genetic algorithms, set 

coveringlpartitioning, simple local search, simulated anneaIing, tabu search, 

knowledge based systems, artificial neural networks and hybrid systems. Ln 

reviewing NSP from 1990 to 2000, Rarnli (2004) clustered those techniques into four 

categories: optimization, search, constructive heuristics, and hybrid techniques. Since 

early 2000, knowledge-based approaches have gradually started to address 

rescheduling problem. This chapter reviews studies conducted after the year 2000, as 

shown in Table 2.4. 



Table 2.4 

Class ificatiorz of Nurse Scheduling a id  Rescheduling Model by Solution Approaches 

Authors MO H MH KB HB D P 
(1976) Miller et al. MP S 

(1 996) Berrada MIP, IP TS s 
(1998) Nonobe & Ibaraki TS s 
(2000) Aickelin & Dowsland GA+H S 

(2000) Cai & Li GA S 

(2000) Dowsland & Thompson TS+W s 
(2000) Valouxis & Housos P+TS+LS s 
(2001) Brusco & Jacobs ILP s 
(2001) Burke et al. E A s 
(2002) Berghe M A+TS s 
(2002) Burke et al. VNS s 
(2002) Cowling et a]. HH S 

(2003) Burke et al. HH s 
(2003) Dias et al. TS,CA s 
(2003) Gutjahr & Rauner ACO s 
(2003) Ikegarni & Niwa TS+B&B+H I S 

(2003) Inoue & Furuhashi EA+H S 

(2003) Li et al. FCA+LS+TS s 
(2003) Soubeiga S 

(2003) Yat & Hon s 
(2004) Aickelin & Dowsland S 
(2004) Aickelin & Li LP S 

(2004) Aickelin &White S 
(2004) Bellanti et al. s 
(2004) Isken IP s 
(2004) Ramli S 

(2004) Topaloglu & Ozkarahan GP s 
(2004) Winstanley s 
(2004a) Bard 1p s 
(2004b) Bard M 1P S 

(2005) Akihiro et al. NN S 

(2005) Azaiea & A1 Sharif GP S 

(2005) Brucker et al. I S 

(2005) Fung et al. GCSlSimplex S 

(2005) Horio S 

(2005) Matthews LP s 
(2005) ijzcan GA+H S 

(200%) Bard & Pumomo CGB+P+H s 
(2006) Bard & Purnomo IP (B&P) S 

(2006) Belien MIP (B&P) 1 S 

(2006) Belien & Demeulemeester P(B&P) s 
(2006) Bhadury & Radovilsky H s 
(2006) Ozcan GA+H s 
(2006) Suman & Kumar S A s 
(2007) Aickelin et al. EDA S 

(2007) Bai et al. GA+SA HH S 

(2007) Bard & Pumomo I S 

HH 

CP 

IGA 



Table 2.4 coiltinued 

(2007) Baumelt et al. 
(2007) Beddoe & Petrovic 
(2007) Bester et al. 
(2007) Brucker et al. 
(2007) Gutjahra & Rauner 
(2007) Kelemci & Uyar 
(2007) Thompson 
(2008) Belie & Demeulemeester Mp7B&P(CGB) 
(2008) Burke et al. 
(2008a) Maenhout & Vanhoucke 
(2008b) Maenhout & Vanhoucke BLP 
(2008) Oughalime et al. 
(2009) Goodman et al. 
(2010) Brucker et al. 
(2010) Burke et al. 
(201 0) Glass & Knight 
(201 1) Kumara & Perera 
(20 1 2) He & Qu 
(201 2) Lu & Hao 
(2012) Valouxis et a]. 
(20 12) Veen et al. 
(201 3) Rocha et al. MIP 

(20 14) Burke & Curtois DP(B&P) 

(2015) Wu et al. 
(2002) Beddoe et al. 
(2004) Moz & Pato B LP 

(2005a) Bard & Purnomo LP(B&P) 
(2005b) Bard & Purnomo IP 
(2006) Beddoe & Petrovic 
(2007) Moz & Pato 
(2007) Punnakitikashem 
(201 1) Clark & Walker GP(CGB) 

(201 1) Maenhout & Vanhoucke 
(201 3) Baumelt et a1 
(201 3) Maenhout & Vanhoucke 
(2008) Chiaramonte 

Abbreviation: 
MO= mathematical optimization 
H= heuristics 
MH= meta-heuristics 
KB= knowledge-based 
HB= hybridization 
D= decomposition strategy: /(applied) 
P= problems: S(scheduling), R(rescheduling), 

+(scheduling and rescheduling) 

AB= Agent based 
AC= Adaptive construction 
ACO= Ant colony optimization 
ALS= Adaptive local search 
B&B= Branch-and-bound 
B&P= Branch-and-price 
BLP= Binary linear progra~nming 
CBR= Case-based reasoning 
CGB= Column generation based 
CH= Constructive heuristics 
CLP= Constraint logic programming 

GC 
CP+CGB 

ALS 
P+LS I 

H I 
I 

PSO 
CBR 

EA 

GPU 
EA+IP 

AB 

FCA=forward checking algorithm 
GA= Genetic algorithm 
GC= Graph colouring 
GCS= Guided Complete Search 
GL= Adaptive heuristics-Greedy Local Search 
GP= Goal programming 
GPU= Graphics processing unit 
GRASP= Greedy random adaptive search 
procedure 
HH= Hyper-heuristics 
HO= Heuristics ordering 
IGA= Indirect genetic algorithm 
ILP= Integer linear programing 
LP= Integer programming 
L= L-shaped method 
LP= Linear programming 
LS= Local search 
MA= Memetic algorithm 
MIP= Mixed-integer linear programming 
MP= Mathematical programming 



Table 2.4 continued 

CP= Constraint programming NN= Binary neural networks 
DP= Dynamic programming SA= Simulated annealing 
DSS= Decision support system SS= Scatter search 
EA= Evolutionary algorithm TS= Tabu search 
EDA= Estimation of distribution algorithm VNS= Variable neighbourhood search 

2.7.1 Mathematical Optimization 

Mathematical optimization is a selection of the best element from some set of 

available alternatives according to a number of particular needs or constraints 

(Azaiez & A1 Sharif, 2005; Van den Bergh et al., 2013). Generally, there are various 

types of mathematical optimization techniques such as integer programming, linear 

programming, mixed-integer programming, and goal programaing which all are 

applied to maximize or minimize a single objective or multiple objectives' problems, 

respectively. Mathematical optimization techniques with set covering formulation in 

scheduling problems are able to achieve the lowest cost solutions (Azaiez & A1 

Sharif, 2005; Jaumard, Semet & Vovor, 1998; Matthews, 2005; Van den Bergh et al., 

2013; Wright et al., 2006). On the other hand, nurse rescheduling problems are 

mostly handled by optimization techniques (Bard & Purnomo, 2005a, 2005b; Clark 

& Walker, 201 1; Moz & Pato, 2004). Though they merely support minor changes, 

these techniques may face a heavy computational burden due to complex retrieval 

consideration with flexibility formation involved in rescheduling. 

Previous single-objective mathematical programming (MP) studies had employed 

integer programming (IP) (Bard & Purnomo, 2005a, 2005b; 2007; Isken, 2004), 

linear programming (LP) (Brusco & Jacobs, 2001; Matthews, 2005; Moz & Pato, 

2004), nonlinear programming for outline staffing ratio (Wright et al., 2006), and 



mixed-integer programming (MIP) (Bard, 2004b; Rocha et al., 2013) that only 

helped achieve one goal. Essentially, single-objective MP techniques have been used 

preferably in NSP since 1970s and 1980s (Cheang et al., 2003). Nevertheless, they 

involved more requirements when nurse tour scheduling problem was thoroughly 

studied. 

Therefore, multi-objective mathematical programming (Azaiez & A1 Sharif, 2005; 

Clark & Walker, 201 I ; Topaloglu & Ozkarahan, 2004) and decomposition strategies 

were used (Bard & Purnomo, 2007; Belien, 2006; Belian & Demeulemeester, 2008; 

Punnakitikashem, 2007; Rocha et al., 2013). Multi-objective MP is known as 

multiple criteria decision making that simultaneously optimizes more than one 

objective function. In comparing single-objective MP, the multi-objective MP 

considers more realistic aspects and has flexible objectives with priorities by 

weighting them (Cheang et al., 2003; Ernst et al., 2004). 

Linear programming (Aickelin & Li, 2004; Matthews, 2005; Glass & Knight, 2010; 

Brusco & Jacobs, 2001) and integer programming (Isken, 2004; Bard, 2004a; 

Maenhout & Vanhoucke, 2008b) have been used extensively in NSP. When Aickelin 

and Li (2004) used linear programming that involved Bayesian optimization, they 

obtained a fairly close result as in optimal integer programming. Besides, the branch- 

and-bound method of linear integer programming is the well-known exact algorithm 

because the lower bounds can be found by linear programming relaxations or 

Lagrangian relaxations (Emst et al., 2004). Ernst et al. showed that branching on 

constraints was more efficient than branching on single variables. However, the 

method has a lesser impact on exploration since it needs to be terminated once a few 



feasible solutions are found (Jaumard et al., 1998). Perhaps, this limitation has not 

hindered researchers in addressing a nurse rescheduling problem (NRP) which 

essentially can be thought as a matter of exploitation, or a repair function. Moz and 

Pato (2004) was the pioneer researchers in NRP who proposed binary linear 

programming founded on multi-commodity network flow formulations and tested it 

with real data. The integer programming of Bard and Purnomo (2005a) was tested on 

nurse skill considerations and more than one absenteeism day problem. Then, the 

branch-and-price method was employed by Bard and Purnomo (2005b) to upgrade 

the problem complexity by involving shift ordering preferences. Yet, computational 

time eventually turned out to be the usual drawback of these exact techniques. In 

other words, it is difficult to obtain solutions when larger instances are involved. 

The branch-and-price (B&P) method has emerged as a powerful technique to aid a 

larger scale of integer programming (Bard & Purnomo, 2005a, 2006; Belien & 

Demeulemeester, 2008) and large scale of mixed integer programming (Belien, 2006; 

Belien & Demeulemeester, 2008). For instance, Belien and Demeulemeester (2008) 

used column generation technique to solve two different pricing problems repeatedly. 

The first one involved the generation of the individual roster lines which used 

dynamic programming. Mixed integer programming was then used for the second 

pricing problem to search for a surgery schedule, with a corresponding workload 

pattern that appropriately fit the generated set of schedule lines. Basically, rnixed- 

integer programming (MIP) that mixed real-valued with integer-valued is used to 

tackle real complex problems (Bard, 2004b; Belian, 2006; Belian & Demeulemeester, 

2008; Choy & Cheong, 2012). Despite the computational efficiency of the branch- 

and-price technique, it is less efficient in facilitating the integer variable when 



generating large numbers of integer variables. In Choy and Cheong's (2012) study, 

the MIP did perform well as it merely produced sub-optimal solutions. Their study 

focused on nurse staffing with consideration on skill and two fairness preferences of 

night shift duties and consecutive off days. 

Azaiez and A1 Sharif (2005) used 0-1 linear goal programming (GP) to resolve 

multiple objectives or priority issues in NSP. The objectives were regarding 

continuous service of nursing skills, staffing size, and fair considerations in the night 

shift duties, and isolated ON duty and weekend offs. However, they did not focus on 

the nurse preference element as it was categorized as a soft constraint. For nurse 

rescheduling, GP has lesser flexibility on schedule changes whilst tackling NSP 

(Azaiez & A1 Sharif, 2005) and NRP (Clark & Walker, 201 1). Clark and Walker 

(201 1) showed the inflexibility of GP in approving late requested off days and other 

unexpected request for schedule change. Despite this, typical nurse preference was 

tackled by column generation in Clark and Walker (201 I), even though the column 

generation was merely used to consider a relatively limited set of shift patterns. 

In all, GP allows convenient sensitivity analysis because it is able to incorporate a 

few priorities with regards to nurse preferences; however, it places a significant 

burden on a decision maker to adjust selectively for a new non-dominated solution 

(Azaiez & A1 Sharif, 2005; Clark & Walker, 201 1; Topaloglu & Ozkarahan, 2004). 

2.7.2 Heuristics 

Heuristics is a problem solving approach based on discovering information and 

learning experience. It seems likely to search efficiently and produce approximate 

solutions in some optimization problems (Blum & Roli, 2003). Heuristics do not 
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ensure the found solution is the optimality but guarantee best-so-far solution. Due to 

personnel scheduling is a NP-hard problem, heuristics were the most preferred 

approaches to addressing nurse scheduling problems in 1990s and they remain 

popular in the arena (Bhadury & Radovilsky, 2006; Burke et al., 2002; Lu & Hao, 

2012). Berghe (2002) stated that in NSP basic heuristics are like shuffling 

neighbourhood, greedy shuffling neighbourhood, and core shuffling neighbourhood, 

which are good in healing the worst schedule. This is because they are all about 

exchanging some parts of a schedule with other parts of the schedule. 

Besides, constructive heuristics approach is a step-by-step technique which 

constructs a solution based on a set of rules defined before hand. Hence, it has no 

initialization solution but consist of constructive phase and iterative phase that 

variables are managed in trial-and-error manner in order to satisfy every requirement 

(Burke et al., 2004). Horio (2005) developed a general project schedule based on the 

framework of Resource-Constrained Project Scheduling Problem (RCPSPIz) that can 

be applied to various types of scheduling problems. Generally, RCPSPIz had three 

main features. The first feature was the competency of the resources within a 

schedule horizon that varied at unit time. The next feature was the consumption of 

the activity within its duration time that varied at the unit level. The last feature was 

the generalized precedence constraints. This study managed to solve the 3-shift nurse 

scheduling problem (NSP) and satisfied all constraints. 

Adaptive heuristics are boundedly rational strategies or a large class of simple rules 

of behaviour that lead to movement in apparently good directions (Hart, 2005). 

Adaptive heuristics have been applied to the nurse scheduling problem (Brucker et 



al., 2007; Brucker et al., 2010) and rescheduling problem (Chairamonte, 2008). They 

were a decentralize problem solving. An adaptive construction technique was used 

by Brucker, Burke, Curtois, Qu, and Berghe (2007) that enhanced the simple 

heuristics of Brucker, Qu, Burke, and Post (2005). Then, Brucker et al. (2010) 

decomposed NSP for the construction of shift sequences, schedule per nurse, and 

roster. Only high quality sequences and schedules were considered and selected 

accordingly. Later on, a greedy local search was carried out to improve the overall 

roster. The adaptive selections of Brucker et al. (2005) and Brucker et al. (2010) 

were applied to address Roster Boaster Instance problems and both managed to 

efficiently resolve not too complex requirements. 

Chairamonte (2008) developed a real-time system that used an agent-based model for 

scheduling and retrieval purposes. However, a pool of nurses was needed in the study. 

This constructive heuristics merely tackled the modest schedule disruptions caused 

by more than three consecutive days' of absences and proved to be less effective in 

handling preference issues in terms of fair duty shift distribution, consecutive off 

days and requested off duty. One important outcome of this study was the need to 

amalgamate nurse scheduling and rescheduling. Ln a later study, Clark and Walker 

(201 1) also were not able to fully address the problem. 

2.7.3 Meta-heuristics 

Meta-heuristics is a class of heuristics that combine basic heuristics in a higher level 

procedure to guide and search for reasonable solutions (Blum & Roli, 2003). Meta- 

heuristics are intended to deal with complex optimization problems that other 

optimization techniques have failed to be either effective or efficient (Van den Bergh 



et al., 2013). Even though hyper-heuristics are typically a higher level strategy than 

meta-heuristics, they are still heavily dependent on meta-heuristics as their input. 

Both have been used extensively to solve various nurse scheduling problems. Meta- 

heuristics techniques such as tabu search, simulated annealing, genetic algorithms, 

scatter search, constraint programming, and ant colony optimization are usually used 

to solve nurse scheduling problems and nurse rescheduling problems. In the late 

19907s7 tabu search (Nonobe & Ibaraki, 1998), genetic algorithm (Aickelin & 

Dowsland, 2000) and simulated annealing (Bailey, Garner, & Hobbs, 1997) have 

been proven to be sufficient in obtaining near optimal solutions for general nurse tour 

scheduling problems. Furthermore, the ORTEC benchmark instances of nurse 

scheduling problem were currently explored by modem meta-heuristics such as 

particle swarm optimization (Wu, Yeh, & Lee, 2015). In all, problem characteristic 

and complexity may be the factors to consider in determining which technique suits 

the best. 

2.7.3.1 Tabu Search 

Tabu search (TS) is a type of metaheuristic employing local search method. It moves 

iteration from one solution to another by searching and modifying some objective 

priorities in a neighbourhood space with the assistance of adaptive memory (Cheang 

et al., 2003; Berrada, Ferland, & Michelon, 1996). Based on previous studies of 

nurse shift scheduling and off days scheduling problems, tabu search-based 

technique was effectively exchanging day off cells with other work day cells for a 

particular nurse (Baumelt et al., 2007; Bellianti et al., 2004; Bester, Nieuwoudt, & 

Vuuren., 2007; Burke et al., 2006; Dias, Ferber, Souza, & Moura, 2003; Dowsland, 

1998; Nonobe & Ibaraki, 1998). A list of prohibited moves was proclaimed tabu 



when the nurse was not available for the required category or when the shift was 

already assigned. Generally, the tabu list was updated throughout every iterations to 

avoid cycling the previous solution, which was in contrast with hill climbing. 

According to Bester et al. (2007), although TS-based nurse scheduling is 

implemented in hospitals, the final schedule is still determined manually especially 

when some unpredictable absences arise. Thus, very little attention is paid to nurse 

rescheduling problem. Tabu search technique had found more accepted solutions in 

solving nurse scheduling problems by improving initial neighbourhood solutions 

(Bellanti et al., 2004; Dias et al., 2003; Oughalime, Ismail, & Liong, 2008), or tabu 

moves by adaptive memory strategy (Bester et al., 2007). For example, a slightly 

better performance of iterated local search in Bellanti et al. (2004) was noticed to 

prevent infeasible solution by means of greedy procedure in the neighbourhood. 

Their study was about handling parametric coverage requirements on consecutive 

working days and night shifts. 

Studies have compared multi-objective mathematical programming with TS (Berrada 

et al., 1996) and meta-heuristics called genetic algorithm with TS (Dias et al., 2003), 

and local search with TS (Bellanti et al., 2004). Ln terms of computational time, 

mathematical programming was far much faster than TS in dealing with the nurse off 

days scheduling problem (Berrada et al., 1996) since TS is a heavy experimental 

implementation. Bellanti et al. (2004) took less than 8 hours for 60 coverage 

requirements. But, TS was more time efficient than genetic algorithm (Dias et al., 

2003) even though it was slightly inferior in producing better fitness solutions 

(Bellanti et al., 2004; Dias et al., 2003). 



2.7.3.2 Simulated Annealing 

Simulated annealing (SA) is basically the generalization of Monte Carlo method for 

examining the equations of state and frozen states of N-body systems. According to 

Metropolis et al. (1953), the SA technique was inspired by the physical process of 

annealing that freezes liquids and metals into crystals. The slower the cooling 

schedule (rate of decrease) the nearer the direct algorithm to optimal solution will be. 

Kirkpatrick, Gelatt, & Vecchi (1983) claimed that SA was used to solve vasious 

optimization problems and was particularly effective in resolving circuit design 

problems. Bailey et al. (1997) used SA to resolve staff continuity. 

SA is simple to formulate, requires less memory, and efficient. Thompson (2007) 

investigated the effectiveness of SA and local search-based meta-heuristics 

techniques. He found that they generally produced suitable nurse schedules, which 

could be evaluated by a weighted cost function that segregated the importance of 

each objective. Thompson tested the Sawing method and Noising method with SA. 

He demonstrated that Noising searched better schedules when the weight of 

constraints was set. In an in-depth study of SA, Suman and Kumar (2006) presented 

three SA-based techniques such as SA, SA with TS, and chaos simulated annealing 

(CSA) to search for a single objective optimization and multi-objective optimization. 

In sum, SA is more time-consuming than TS. However, SA is less successful in 

finding a feasible solution when dealing with complicated problems, though this 

point-based methodis basically easy to use when handling mixed discrete and 

continuous problem. 



2.7.3.3 Genetic Algorithms 

John Holland invented genetic algorithms (GA) that was inspired by natural selection 

in the early 1970s. Processes observed in natural evolution were guided by the idea 

of survival of the fittest to overcome optimization problems. Typically, GA was 

applied to nurse scheduling problems (Aickelin & Dowsland, 2004; Burke, Cowling, 

De Caumaecker, & Berghe, 2001; Cai & Li, 2000; Dias et al., 2003) and further 

hybridized for sub-problems (Aickelin & Dowsland, 2000; Aickelin & White, 2004; 

Bai et al., 2007; Beddoe & Petrovic, 2006; Burke, Curtois, Post, Qu, & Velman, 

2008; Inoue & Furuhashi, 2003; Kelemci & Uyar, 2007; Maenhout & Vanhoucke, 

201 1; Moz & Pato, 2007). GA hybridization such as evolutionary algorithms (EA) 

and memetic algorithm (MA) were embarked on slightly different ways of search 

within the construction of GA. Typically, EAs could be a potential enhancement 

technique of the traditional GA, given that GA alone has only used to tackle simple 

shifts scheduling problems (Aickelin & Dowsland, 2004; Cai & Li, 2000;), and slight 

complex tour nurse scheduling problems (Burke et al., 2008; Dias et al., 2003). 

NSP of Aickelin and Dowsland (2004) was solved by indirect encoding based on 

permutations of nurses. In order to balance between solution quality and feasibility, it 

transformed the original problem into other rule-based problem then constructed the 

schedule step-by-step based on pre-defined rules. The indirect GA performed better 

than the tabu search. The results of the parameterized uniform order crossover (PUX) 

operator experiment suggested that more disruptive operators may practise better 

feasibility, but it may also affect the solution quality if it causes too much disruption. 

Hence, this appears as a question of balance between disrupting long sub-strings and 

inheriting absolute positions from parents. 



Typically, a problematic search condition of GA was slightly infeasible but proved to 

be a highly suitable solution. In view of the fact that the role of penalty function was 

to avoid infeasible solution, it did not guarantee success when searching for 

appropriate feasible solutions. Mostly, the penalty weight setting was used merely as 

a rough guide that implicitly determines the quality of the final schedule at last. 

Burke et al. (2008) set the weights accordingly that enabled to define the importance 

of all required constraints. Likewise Dias et al. (2003) amended certain constraints' 

weight for further attention as repair unsatisfied constraint. Therefore, weight setting 

was a vital influence over a satisfactory or infeasible schedule. h all, repair 

intentions in fitness evaluation and operators were to transform arbitrary infeasible 

solutions into feasible solutions. However, as pointed out by Aickelin and Dowsland 

(2004), a simple and prompt repairing approach was difficult to find. 

Next, three simple operators were developed to improve GA (Aickelin & Dowsland, 

2004; Burke et al., 2008; Cai & Li, 2000). One advantage of GA is that it is not 

heavily dependent on any specific problem but focuses on the adaptive learning 

procedure via a number of phases, such as when Burke et al. (2008) employed two 

crossovers and three mutations to handle varying requirements. For the sake of 

careful exploration, Aickelin and Dowsland (2004) evaluated three different 

decoders (cover decoder, contribution decoder, and combined decoder) with four 

well-known crossover operators (e.g., PMX, uniform order based crossover, C1 

crossover, and order-based crossover). Cai and Li (2000) tried to maintain diversity 

and avoid infeasible solution by using Hamming distance's crossover mask. As a 

matter of exploitation, repairing violated constraint at the end part of GA (Burke et 

al., 2008; Cai & Li, 2000) or even filtering initial search space to a feasible region 



were commonly worked in optimizing GA's solutions (Dias et al., 2003; Ramli, 

2004). All this outlined the awareness for balance between exploration and 

exploitation in each operator. While more exploration added feasibility, it affected 

the solution optimality. In all, hybridization GA was then taken into account. 

Based on the above discussion, constraint handling strategies could be undertaken by 

GA alone that are resolved by its representation (encoding), penalty functions, and 

operators. According to Aickelin and his colleagues, there is no pre-defined way of 

embedding constraints into GA (Aickelin & Dowsland, 2000, 2004; Aickelin & 

White, 2004). While feasibility could not be guaranteed, the results also showed that 

the randomness nature of GA led difficulties in constrained optimization in terms of 

constraint consistency. Thus, these shed light to some GA enhancements by 

hybridization, as discussed in Section 2.7.6. 

While reviewing computational time, GA was not fast but it still provided feasible 

solutions within a reasonable time (e.g., about 10 minutes (Cai & Li, 2000)) since it 

is a suspicious search technique in generating (by operators) and filtering solutions 

(by fitness evaluation). In comparison between the search techniques, GA proved to 

be quite reliable in constructing work schedules with more flexible implementation 

(Cai & Li, 2000) but less time efficient compared to TS (Aickelin & Dowsland, 2004; 

Dias et al., 2003). However, GA and SA both turned out responsive in terms of 

computational time response. Though both were unable to produce optimal solutions 

in every run, they did provide good enough solutions (Bailey et al., 1997). 



2.7.3.4 Scatter Search 

Scatter search (SS) is a bit similar to memetic algorithms (MA) except the random 

decisions are replaced with intelligently designed rules and solutions are created by 

more than one parent (Burke, Curtois, Qu, & Berghe, 2010). To our knowledge, only 

one SS study was conducted to solve NSP. Burke et al. (2010) used scatter search to 

test previously published nurse scheduling benchmark instances and compared them 

with techniques such as constructive technique (Brucker et al., 2007) and memetic 

algorithm (Burke, Cowling, Caumaecker, & Berghe, 2001). 

To compete with constructive heuristics of Brucker et al. (2007) and MA of Burke et 

al. (2001), the scatter search used variable depth search as an improvement method 

for the former and hill climber improvement method for the latter. The SS produced 

better solutions within less computational time. This may prove to be a robust and 

effective technique to solve related practical workplace instances. 

2.7.3.5 Constraint Programming 

Constraint programming is a programming paradigm where relations between 

variables that are stated in the form of constraints. In the 1990s, Cheng, Lee, and Wu 

(1997) and Weil, Heus, Francois, and Poujade (1995) noticed a number of studies 

using constraint programming (CP) to model the complicated rules associated with 

nurse schedules that involved cyclic and non-cyclic scheduling. This was because 

constraint programming (CP) had the propensity to work on highly constrained 

problems. Yat and Hon (2003) stated that CP can be a backtrack search technique, 

problem reduction with a vast numbers of constraints, and ordering heuristics that 

include value and variable ordering as developed in the graph theory. Nevertheless, 



meta-level reasoning is required in constraint generation to improve the search for a 

simplified NSP set (Yat & Hon, 2003). 

Technically, constraint logic programming (CLP) is a systematically looped 

procedure that includes logic programming concepts for constraint satisfaction 

problem. Winstanley (2004) stated that high-level nature of logic programming was 

augmented by the seamless integration of one or more constraint solvers, thus 

making it easy to model the problem as well as constraints effectively. Although it is 

easy to express complex constraints and construct sufficient feasible solutions using 

constraint logic programming, it is not practically optimal (Cheang et al., 2003; 

Emst, et al., 2004). Lack of effectiveness in finding an optimal or near optimal 

solution from a vast number of feasible solutions is a major drawback. As a result, 

Ernst et al. (2004) suggested to hybrid the flexibility of constraint logic programming 

with optimization techniques to conquer CP7s weakness. 

2.7.3.6 Hyper-heuristics 

Hyper-heuristics is a high-level heuristics approach that adaptively chooses low-level 

heuristics (e.g., meta-heuristics techniques) to solve a problem. This generic method 

can also be applied to address problems of other domains. Only a few studies have 

employed hyper-heuristics in a nurse scheduling problem (Burke, Kendall, & 

Soubeiga, 2003; Cowling, Kendall, & Soubeiga, 2002; Soubeiga, 2003). Perhaps, the 

readied low-level heuristics was not necessarily the best algorithms but still 

performed well as per Soubeiga (2003) that pursued well-enough, soon-enough, and 

cheap enough solution across a wide-range of problems and domains. 



Tabu search and genetic algorithm have always been in competition despite both 

being hyper-heuristics approach (Burke et al., 2003; Cowling et al., 2002; Soubeiga, 

2003). Soubeiga (2003) applied choice function hyper-heuristics that compared tabu 

search and genetic algorithms for NSP with problem-specific information. Cowling 

et al. (2002) also conducted a comprehensive work, comparing hyper-heuristics with 

three meta-heuristics and integer programming. Both results proved that the choice 

function hyper-heuristics was more practical and offered more reliable solutions than 

direct and indirect genetic algorithms and tabu search. Unfortunately, Soubeiga 

(2003) affirmed that the hyper-heuristics only included a series of simple low-level 

heuristics. 

Burke et al. (2003) proposed tabu-search hyper-heuristics for highly-constrained real 

world nurse scheduling problems. The high-level heuristics outperformed GA on 

feasibility rate but not to the highest optimality, since GA was exploited for problem- 

specific information. In all, hyper-heuristics can be a competitive technique with 

low-level heuristics due to its core vitality and usage to solve diverse scheduling 

problems. 

2.7.4 Knowledge-based Approach 

Knowledge-based approache relies on knowledge management activities to collect 

data on related experiences, and solutions are obtained by retrieving the data 

connected to the problem (Hsia, Lin, Wu, & Tsai, 2006). The whole idea behind this 

is to support and enhance the organizational processes of knowledge creation, 

storage, transfer, and application. It has been extensively used in the health care 

industry. 



Neural network (NN) inspired from an intelligence of reproducing types of physical 

connections that occur in animal brains. Akihiro et al. (2005) used Hopfield neural 

network with binary neurons whereby the output took either the value of 0 or 1 as the 

new procedure for solutions which satisfied the indispensable requirements of a 

nurse scheduling problem. Even though combinatorial optimization problem such as 

traveling salesman problem can be solved by plane structured neural networks, NN 

was difficult to be applied to NSP because some NSP require a three-dimensional 

allocation. Therefore, they attempted to extend the plane structured neural network to 

the one that could take three dimensional structures in NSP and the result suggested 

that the constraints were limited to basic requirements. 

To solve NSP, another similar kind of neural network technique is graph colouring 

(GC). Graph colouring of graph theory was applied by Kumara and Perera (201 1) to 

typical nurse shift scheduling whilst considering the seniority factor. They divided 

shift groups via graph theory which was then expressed in an adjacency matrix. 

Different colours of vertices denoted different groups of nurses in the graph. Even 

though the allocation of resources was completed, the typical soft constraints that 

merely pursued better quality were completely excluded. 

Generally, case-based reasoning (CBR) observed and stored scheduling matters in 

order to retrieve and perform repair moves whenever a similar situation occurs again. 

Hence, it was more likely to be used for rescheduling problem (Beddoe et al., 2002; 

Beddoe and Petrovic, 2006). Beddoe et al. (2002) tested case-based reasoning with 

complex real-world data collected from a hospital in United Kingdom. The core aim 

was to imitate how an expert human scheduler could produce a substantially smart 



schedule instead of following evaluation functions in other techniques. Beddoe and 

his colleagues further suggested hybridization of CBR by combining it with meta- 

heuristics techniques to resolve nurse scheduling (Beddoe & Petrovic, 2007) and 

rescheduling problems (Beddoe & Petrovic, 2006). 

2.7.5 Decomposition Approach 

Decomposition strategy is the design of algorithm wherein decompose a problem 

into various sub-problems. It is mostly needed for problems that are more 

complicated, or to tackle specific objectives, such as retrieval problem 

(Punnakitikashem, 2007), two stage problems with off days problem and shift types 

problem in cyclic tour scheduling (Rocha et al., 2013; Valouxis et al. 2012), 

Lagrangian relaxation of preference constrains followed by relaxation of demand 

constrains (Bard & Purnomo, 2007), and weekend shifts assignment (Veen, Hans, 

Post & Veltman, 2012). Generally, these decomposition strategies divided the 

problems into various sub-problems and then worked to resolve them through 

various techniques. In a nurse scheduling problem, the techniques incorporated were 

integer programming-based techniques (Bard & Purnomo, 2007; Belien, 2006; 

Lkegami & Niwa, 2003; Punnakitikashem, 2007; Rocha et al., 2013; Valouxis et al. 

2012), and heuristics (Brucker et al., 2007; Brucker et al., 2010; Brucker et al., 2005; 

Veen et al., 2012). 

Specifically, decomposition approach divides some sub-schedules in sub-periods of 

the scheduling horizon then solving them by assigning the highest priority activities 

to the highest priority employees. Furthermore, it also used to combine acceptable 

parts or remove drawbacks that associated with any individual approach (Emst et al., 



2004). Perhaps, the sub-problems division concept in decomposition is likening to a 

technique that consists of multi-level of operators, which each operator responds to a 

particular sub-problem. Thus, as we believe, evolutionary algorithm could also be 

explored for a flexible search by tackling different sub-problems. 

2.7.6 Hybrid Techniques 

More complex requirements ensue when amalgamating a nurse scheduling and a 

rescheduling problem in our research work and this has certainly pushed the study 

towards the superiority of hybridization technique. Since each technique has its pros 

and cons, the combination may perhaps produce better outcomes. As Burke et al. 

(2004) contended, there is a possibility of hybridizing early approaches (or some 

features of early approaches) with more sophisticated modern techniques to produce 

even better solutions. Hence, hybrid techniques are generally perceived to be more 

efficient to solve NSP. 

2.7.6.1 Hybridization of Mathematical Optimization and Meta-heuristics 

Essentially, mathematical programming (MP) is widely hybridized to solve 

numerous combinatorial problems (Cheang et al., 2003) particularly with regards to 

NSP (Aickelin & White, 2004; Bard & Purnomo, 200%; Dowsland & Thompson, 

2000; He & Qu, 2012; Ikegami & Niwa, 2003; Oughalime et al., 2008; Valouxis & 

Housos, 2000). Dowsland and Thompson (2000) and Valouxis and Housos (2000) 

attempted to solve a nurse scheduling problem by hybridizing classical integer 

programming (IP) with tabu search (TS). Dowsland and Thompson (2000) found that 

this hybridization considerably decreased the head nurse's burden from lnanually 

handling a time-consuming administrative task. In fact, when simple local search was 



used with tabu search, Valouxis and Housos (2000) further improved the solutions 

that were initially produced by integer linear programming. 

Instead of producing provisional solution at the starting point, several studies that 

used mathematical programming and tabu search managed to exploit a global 

feasible region (Ikegarni & Niwa, 2003; Nonobe & Ibaraki, 1998; Oughalime et al., 

2008). Oughalime et al. (2008) hybridized tabu search and goal programming that 

used smart intensification to precisely aim for more fitting and faster output for shift 

ordering work and weekend preferences. Similarly, after a branch-and-bound integer 

programming had generated positive output for shifts scheduling problem, Ikegami 

and Niwa (2003) required heuristics to speedup the algorithm. However, sub- 

problems decomposition was needed to aid the LP which repeatedly satisfied 

constrains of nurse skill level, general nurse preferences and shifts balance 

distribution. 

However, without tabu search, simple local search with different types of 

mathematical programming has also proved to work for nurse scheduling problems 

(Bard & Purnomo, 200%; Valouxis et al., 2012) as well as rescheduling problem 

(Punnakitikashem, 2007). To deal with retrieval problem, Punnakitikashem (2007) 

integrated nurse rescheduling and assignment problems based on trade-offs between 

excess workload on nurses and staffing cost. He presented Benders' decomposition 

in stochastic integer programming for patient assignment followed by optimal greedy 

technique to solve recourse sub-problems. By using the same hybrid technique, 

Valouxis et al. (2012) won the INRC-2010 competition. Local search was 

incorporated into integer programming to tackle the first decomposed phase as off- 



days scheduling problem. Later, he employed integer programming to solve the last 

shift scheduling phase. However, Lu and Hao's (2012) result slightly outperformed 

Valouxis et al.'s when they attempted to solve the INRC-2010 instances by using 

adaptive local search techniques. Two unified neighbourhoods were implemented 

based on intensive search, intermediate search and diversification search. 

Bard and Purnomo (2005~)  added column generation based (CGB) to the hybrid IP 

and heuristics and formed a set of covering type problems by utilizing available 

nurses to quantify the benefits. In the study, the nurse preferences problem was 

modelled by integer programming and was resolved using the CGB technique that 

relied on intelligent heuristics for skill-related downgrading substitution option to 

identify better candidate solutions. As another hybrid CGB study, He and Qu (2012) 

took part in the ORTEC benchmark instances' competition with constraint 

programming based column generation (CP-CG). Firstly, it modelled problems by 

developing a column generation scheme following to which, CP paradigm took 

responsibility in pricing sub-problems as weighted constraint optimization problem. 

This hybridization was compared with four other hybrid techniques such as 

hybridized GA with LS, hybrid variable neighbourhood search (VNS), hybridized 

integer programming with VNS, and hybridized CP with VNS. CP-CG was found to 

be highly competitive with the hybrid LP. However, it had no diverse schedule 

produced and more computational time was required to derive optimal integer 

solutions at each tree node. 

Fung, Leung, and Lee (2005) presented a hybrid constructive heuristics technique 

namely GCSISimplex solver. This technique allowed Simplex method to be 



incorporated into the Guided Complete Search (GCS) framework to solve difficult 

nurse scheduling instances. This hybrid technique was a general constraint 

satisfaction problem resolver which addressed issues in terms of both computation 

time and number of failures. A special pattern occurred in the linear relaxed solution 

that allowed the Simplex method to determine a better value order for guiding the 

primary tree search solver in GCS towards a solution. Hence, GCSISimplex solver 

was viable to solve different and cardinal constraints effectively. 

Winstanley (2004) integrated constraint logic programming (CLP) and agent-based 

(AB) to solve nurse shift scheduling problems with partly self-scheduling. CLP- 

based hybridization included a high degree of user interaction and heuristics pre- 

processing. Nurses to be scheduled were denoted as semi-autonomous agents in the 

pre-processing. Hence, self-schedule was required before it could communicate with 

a global constraint solving CLP agent. Ln that case, schedule fairness might be 

affected by some aggressive agents since each took the responsibility to construct an 

individual initial assignment. However, the assumption of a collective and possibly 

negotiated agreement might not be valid in a real working environment. 

2.7.6.2 Hybridization of Heuristics and Meta-heuristics 

To achieve a balance between feasibility and optimality, Burke et al. (2008) and 

Goodman et al. (2009) worked on the construction and improvement of heuristics 

hybridization. Goodman et al. (2009) employed a look-ahead strategy based on 

knapsack GRASP model to ensure that the solutions constructed by the construction 

heuristics were easy to repair through local search. The variable in the knapsack 

model formed the basis of a feedback mechanism intended for diversification. Burke 



et al. (2008) employed heuristics ordering (HO) with variable neighbourhood search 

(VNS) for shift un-assignment and repair task. The HO method was applied to 

explore the search space. High quality schedules were found when they were 

combined with VNS. They also discovered that back-tracking was very useful in 

finding quick and better solutions by reducing poor quality solutions. However, it 

required a long computational effort that took more than one hour running time. 

Indirect genetic algorithm was studied by Moz and Pato (2007) to overcome a nurse 

rescheduling problem. They tested real-life data instances by using hybrid 

constructive heuristics (CH) with several versions of genetic algorithms (GAS). The 

data instances were adopted and modified in order to test a two-week schedule. 

Technically, the CH was encapsulated by GA. The iterative reassignment of shift list 

(various way of task-to-nurse) was the responsibility of CH. GAS produced a new 

population that regarded two permutations of encodings such as list of tasks 

permutation and list of nurse permutation in order to perform a random shift list. 

Several GAS were experimented with different genetic operators for each encoding. 

Overall, the hybrid GA successfully solved the nurse rescheduling problem. 

However, in addition to the long computational time needed, another drawback was 

that it greatly failed to satisfy soft constraints. 

Several studies mixed EA-based technique with other meta-heuristics in initial 

population of EA to solve a nurse scheduling problem (Aickelin & Dowsland, 2000; 

Aickelin & White, 2004; Bai et a]., 2007; Ramli, 2004) and a nurse rescheduling 

problem (Maenhout & Vanhoucke, 2011; Moz & Vaz Pato, 2007). Also, some 



hybridization worked into mutation operator (Aickelin & Dowsland, 2000; Ramli, 

2004) or after mutation operator (Bai et al., 2007; Kelemci & Uyar, 2007). 

As the foundation of EA, GA is capable in searching a large search space. However, 

its limitation is less effective in identifying local optima which could affect 

computational time and quality of solutions. Therefore, several researchers have 

proposed GA hybridization to address this drawback. It was proposed that GA is 

hybridized with classical heuristics (local search, and variable neighbourhood search 

(VNS) etc.) (Aickelin & Dowsland, 2000; Inoue & Furuhashi, 2003; Kelemci & 

Uyar, 2007; ~ z c a n ,  2005; ~ z c a n ,  2006; Ramli, 2004), tabu search (Burke et al., 2001; 

Berghe, 2002), ant colony optimization (Aickelin, Burke, & Li, 2007), and simulated 

annealing (Bai et al., 2007). 

Aickelin and Dowsland (2000) and Ramli (2004) both employed memetic algorithm 

(MA) (i.e. hybridization of GA and local search) where they tried to exploit sub- 

solutions to meet specific aspects of nurse scheduling problems. Ramli (2004) 

incorporated local search to meet nurse demand in the initial population and improve 

schedule quality through directed mutation. However, the nurse coverage 

requirements from each works shifts were low and timely nurse preferences were 

given little attention. Meanwhile, Aickelin and Dowsland (2000) applied nurse 

grade-based structure to define a hierarchy of sub-populations to build a partial 

solution into population. Then, a hill-climber in mutation was used to improve the 

solution. However, a heavy detection of problem specific knowledge was needed. 



Few years after Aickelin and Dowsland (2000), Aickelin and Dowsland (2004) 

proposed an Indirect Genetic Algorithm with statistical comparison method. It 

primarily condensed results to a single value, even managed infeasible solutions 

through ranking method. In their study, Aickelin and Dowsland opted for indirect 

coding based on permutation of the nurses and a heuristics decoder that built 

schedules by these permutations. They found that an indirect GA proved to be more 

flexible and robust compared to Dowsland's Tabu Search in 1998. Nevertheless, the 

indirect learning technique of Aickelin and Dowsland was implicit and thus restricted 

the weight adjustment in the schedule building rules. Therefore, in 2007, Aickelin et 

al. embedded estimation distribution algorithm (EDA) in which an ant-miner 

technique was performed as a local search to emphasize high quality nurse-rule pairs. 

This was to identify building block directly and get better solutions. Because this 

technique was not fixed coded to certain instances, flexibility was enhanced. 

Additionally, there were common ways of hybridizing within GA's operators. 

Kelemci and Uyar (2007) and Bai et al. (2007) added their intelligent paradigms after 

mutation procedure for further technique enhancement. Kelemci and Uyar study 

applied hill climbing to repair infeasible solutions in order to increase their success 

ratio and adjusted the weight of hard constraints which was difficult to be resolved, 

such as, days between two consecutive night shifts constraint. On the other hand, Bai 

et al. used multi-objective optimization techniques that needed stochastic ranking and 

selection system to deal with some constraints after mutation. Instead of the 

constraint handling capability, simulated annealing (SA) aided in its initial 

population to locate local optima. 



The GA hybridization of Maenhout and Vanhoucke (201 1) were highlighted on an 

initial population and crossover operator. In the initialization procedure, constructive 

heuristic was assisted by non-dominated Pareto optimality to diversify some high- 

quality provisional solution in a search space. Moreover, this evolutionary algorithm 

(EA) employed a crossover operator as a repair mechanism. It used network flow 

techniques and dynamic programming as improvement methods which revised and 

re-optimized a group of heterogeneous nurses. However, they disregarded the 

randomization principle in their crossover operator which basically only repaired the 

violation in order to maintain the original schedule in rescheduling problem. 

The above review of EA hybridization shows that whether the hybrid techniques 

were dominated by other than EA (Beddoe & Petrovic, 2007) or encapsulated by EA 

(Berghe, 2002; Burke et al., 2001; Inoue & Furuhashi, 2003; Kelemci & Uyar, 2007; 

Moz & Pato, 2007; Ozcan, 2005, 2006), we found EA to be a responsive operator. 

This conceptual optimization framework that consists of few operators can be 

implemented in a variety of ways with some degrees of sophistication. Conceivably, 

different effects ensue as a result of different combination types of technique as well 

as different order of a hybrid technique. According to Maenhout and Vanhoucke 

(2011), a skilled hybridization can produce higher flexibility due to different 

behaviours involved in it. In sum, the review pinpoints toward EA-based 

hybridization for tackling the complex amalgamation of nurse scheduling and 

rescheduling problem. The use of hybrid EA is considerably challenging in this 

regard because it was implemented to solve a nurse scheduling problem or a nurse 

rescheduling problem separately. 



2.7.6.3 Hybridization of Knowledge Based and Meta-heuristics 

In 2000s, hybrid case-based reasoning (CBR) was intended to work as a repair 

function for handling constraints violation in scheduling problems (Beddoe & 

Petrovic, 2007). However, they were not truly meant for rescheduling because the 

violations of rescheduling could be dynamic and not as static as in scheduling. 

Basically, CBR was used to repair those violated hard constraints through capturing 

and storing the scheduling knowledge and cases that had experienced by experts. The 

soft constraints of nurse preferences were not defined explicitly. Thus, to endure the 

implicit condition and increase the quality of solution produced by CBR, some meta- 

heuristics were integrated with tabu search (Beddoe & Petrovic, 2007) or genetic 

algorithm (Beddoe & Petrovic, 2006). 

Beddoe and Petrovic (2007) implemented a tabu list of forbidden repairs in tabu 

search that reduced the search that was trapped in a 'loop' of repeating violations and 

repairs. But earlier, Beddoe and Petrovic (2006) developed GA to weigh and select 

the most important one from a large number of violating features when scheduling. 

Both studies showed significant improvement in the accuracy of CBR and reduced 

the number of features which needed to be stored for each problem. Nevertheless, the 

setting of chromosome weigh in GA must have well signified during fitness 

evaluation. 

Li et al. (2003) used hybrid artificial intelligence (AI) for a class of over-constrained 

NSP. They used forward checking algorithm with variable ordering, non-binary 

constraint propagation, random value ordering and compulsory back jumping to 

handle hard constraints and then worked to improve nurse preference rule by tabu 



search and local search. This combination succeeded to produce solutions that 

satisfied all hard and preference rules to a greater extent within responsive 

computational time. This hybrid approach was based on a neighbourhood structure 

for vertical exchange of shifts. 

Not much work had been done by using ant colony optimization (ACO) to solve 

nurse a scheduling problem. Theoretically, ACO was developed by Marco Dorigo in 

1960. It was inspired by the ant behavior of finding food. Gutjahr and Rauner (2007) 

integrated ACO and decision support system (DSS) to solve high constrain problems. 

DSS was integrated to cover and balance unforeseen peaks of nurse demands by 

considering different preferences and costs. The result of the integration technique 

which consisted of simulation and optimization elements showed better improvement 

than the simple greedy technique. However, the shift scheduling problem was 

regarded as a static optimization problem and not dynamic. This implies that quick 

response to impromptu assignment was not considered. 

2.8 Discussion and Summary 

The above review suggests three main factors that have been investigated in the 

nurse scheduling and rescheduling problems. They are nurse capacity, preference, 

and uncertainty. Each has included many significant elements that can contribute to a 

higher quality of schedule using different techniques. Yet, there are still areas that 

require further study and attention. As Cohen et al. (2009) stressed, there is lack of 

flexibility in scheduling approaches. Following his recommendation, we focused on 

issues such as high nurse preferences, on call delegation issues, the dependency 

decision between scheduling and rescheduling that considers the seriousness of 



disruption, and the quality and quantity of change of retrieval. In order to cater for 

schedule flexibility with the addition of several constraints, meta-heuristics 

hybridization is a potential technique. As stated by Maenhout and Vanhoucke (201 l ) ,  

higher flexibility can be obtained by a skilled hybridization of different meta- 

heuristics behaviours. 

MP approaches are effective in finding optimal solutions but there are still a number 

of difficulties with them. Besides the drawback of big numbers in integer variables' 

generation (Ernst et al., 2004), MP formulations is not friendly in expressing 

constraints and objectives. Hence, it is more commonly applied with simplified 

versions of the real-world scheduling problem or with few complications in the 

original problem. For instance, pricing problem usually becomes a real challenge if 

much of the problem complexities in the definition of the columns are ignored by a 

column generation method. In the case of involving flexibility and complexity that 

involves 2-dimension considerations in the scheduling and rescheduling problem, the 

advantage of using an exact method in the major problem may be lost. 

Another limitation of mathematical optimization is its time consuming since 

personnel scheduling problem is a NP-hard problem. IP solver with integer 

constraints requires much more computational time. The amount of time to solve a 

family of related problems goes up exponentially as the size of the problem grows 

(Engku Muhammad Nazri, 2001; Pierce & Winfree, 2002). Thus, it can be assumed 

that mathematical optimization approaches may have the risk of failure in defining 

any feasible solutions even after a long computational time. 



After reviewing a wide range of complex techniques in scheduling and rescheduling, 

EA-based hybridization seems to be outstanding. This is because EA is a stochastic 

search technique that can perform optimization by relying less on gradient 

information. This interest is driven mainly by the inadequacy of linear programming 

and other rule based systems while solving complex resource scheduling and 

rescheduling problems. Moreover, this population-based meta-heuristics tend to be 

relatively robust. It can produce reasonably good feasible (not optimal) solutions for 

any condition changes by merely incorporating certain problem specific information. 

At last, it is easy to be used in dealing complex objectives such as penalties for 

constraints violation. Therefore, EA could be a suitable pre-processing method of 

choice of hybridization to overcome the difficulty of identifying local optima. 



CHAPTER THREE 

EVOLUTIONARY ALGORITHM AND COOPERATION CONCEPT 

This chapter considers the relevant theoretical basis of evolutionary algorithm (EA) 

and cuckoo search (CS). The taxonomy of EA and its principles are mentioned in 

Section 3.1 and Section 3.2, respectively. The structural components of EA are 

discussed in Section 3.3. Section 3.4 and Section 3.5 explain several types of 

hybridization structure and the rationale behind the hybridization. Since cuckoo 

search is applied to enhance evolutionary algorithm, Section 3.6 and Section 3.7 

explain cuckoo search and its advantages. Lastly, a summary of the chapter is given. 

3.1 Taxonomy of Evolutionary Algorithm 

Evolutionary algorithm (EA) can be defined as a meta-heuristics which was inspired 

by the natural evolution processes (Maenhout & Vanhoucke, 201 1). In the late 

1990's, there was no precise identification of EA (Back, Hammel & Schwefel, 1997; 

Hertz & Kobler, 2000). The vagueness was probably due to two reasons: lack of 

powerful computer platforms at that time (Fogel, 1995) and some methodological 

shortcomings of the early approaches (Back et al., 1997). Back et al. (1997) noted 

that EA emerged in the late 1950s. After a few decades, this evolutionary 

computation had already started to attract attention in solving combinatorial 

optimization problems (Hertz & Kobler, 2000). But, hybridization of EA was 

encouraged to handle some difficult problems after EA failed to get an optimal 

solution (Grosan & Abrham, 2007). Later, hybridization was used to improve the 

performance of EA and quality of its solution (Sudholt, 2009; Zhang, Xu, & Gen, 

2013). Earlier EA hybridizations are discussed in Section 3.5. 



Evolutionary algorithms were originally developed from genetic algorithms, 

evolution strategies, evolutionary programming, and genetic programming (Back et 

al., 1997; Hertz & Kobler, 2000). Through various evolutionary computations, the 

four major approaches were independently developed by John Holland in 1975, 

Rechenberg and Schwefel in 1981, Lawrence J. Fogel in 1962, and John Koza in 

1994, respectively (Grefenstette, 1986; Whitley, 2001; Yao, Liu, & Lin, 1999). Their 

problem solving from nature was so parallel that eventually in the early 1990 the 

different approaches were synthesized (Back et al., 1997), resulting in the 

introduction of EA, which was used in future studies (Ashlock, 2005; Burke et al., 

2001; Grosan & Abraham, 2007; Maenhout & Vanhoucke, 201 1; Zhang et al., 2013). 

EAs implement self-adaptation and cooperation in each generation of population 

(Hertz & Kobler, 2000). The former indicates individuals evolving independently 

and the latter regards information exchange among individuals. Self-adaptation may 

dominate the classic evolutionary programming. According to Back and Schwefel 

(1993) and Yao et al. (1999), evolutionary programming with self-adaptive mutation 

typically is superior to evolutionary programming without self-adaptive mutation. 

Although they have slight differences in genetic algorithm, self-adaptation and 

cooperation are both essential. Indeed, a mutation operator of genetic algorithm can 

be implied as a self-adaptation process, while parent selection and crossover are the 

cooperation procedures. The operators of GA have a common conceptual base of 

producing individuals, to be discussed in Section 3.3. In this respect, GA remains the 

most renowned form of EA (Whitley, 2001). Hence, EA with GA-based is employed 

in this research. 



Technically, evolutionary algorithm has emerged to combine classic heuristics in 

higher level frameworks since Blum and Roli (2003) acknowledged that this 

algorithm is a kind of meta-heuristic. Thus, several neighborhood local search 

algorithms could have involved, especially during the self-adaptation phase. 

Moreover, population-based method is another identity of EA (Hertz & Kobler, 

2000). There are seven main features of EA in order to understand the philosophy of 

the population-based method. Hertz and ~ o b l e r  (2000) summarized them as follows: 

1. Individuals. They are problem specific where parts or sets of solutions can 

be initially formed as infeasible solutions or feasible solutions. 

2. Evolution process. For the sake of survival of the fittest, a fixed size of 

population is evolved through steady state replacement (e.g., partly 

changes the population) or generational replacement (e.g., totally changes 

the population). In implementing evolutionary algorithm, parallel 

programming allows asynchronous evolution. Practically, create new 

individuals, select individuals to keep for next generation, and select 

individuals to thrown out from the current population are the actions in an 

iteration during the evolution process. 

3. Neighborhood. Information exchange can be based on unstructured or 

structural population. 

4. Information sources. The number of parents needed to create new 

individuals must be specified. New individuals can also be created on the 

basis of the history of the population. 

5. Infeasibility. Infeasibility can be dealt with by several ways such as 

rejecting, penalizing, or repairing an infeasible individual. 



6.  Irztensificatiorz. It is also named exploitation. In this self-adaptation phase, 

improved algorithm such as local search can be applied to each individual 

in the population. 

7. Diversificatiorz. It is also named exploration. It is a noise procedure that 

randomly perturbs individuals to prevent premature convergence. The 

exploration has unexpected results that do not necessarily improve an 

individual. 

Overall, evolutionary algorithm searches population-based problem solving solutions 

via learning process, randomizes information exchange process, and evaluates 

individual process (Whitley, 2001). The advantages of EA can be attributed to few 

factors such as population-based good enough solutions, machine learning, 

robustness, feasibility that gives quick approximate solutions, constraint handling 

and multi-objective optimization (Grosan & Abraham, 2007; Maenhout & 

Vanhoucke, 201 1; Ramli, 2004). Additionally, flexibility and adaptability to the task 

at hand are both the most significant advantages of EA (Back et al., 1997). Therefore, 

with the aim of efficiently and effectively exploring a search space, EA can be 

considered as a generate-and-test search process pertains to exploration and 

exploitation. 

3.2 Exploration and Exploitation 

Fundamentally, exploration and exploitation are the two powerful elements in the 

search process of EA. Previous studies have referred to these elements differently. 

Exploration is also called diversification, while exploitation is known as 

intensification (Blum & Roli, 2003; Grosan & Abraham, 2007; Hertz & Kobler, 2000; 



Sorensen & Sevaux, 2006). Exploitation is essentially searching neighborhood search 

space to get higher quality solutions. On the contrary, exploration moves to 

unexplored areas of the search space. Its purpose is to examine unvisited regions and 

generate solutions that differ in various ways from earlier ones. Hence, in our point 

of view, the main difference between exploration and exploitation is all about 'wide' 

search and 'deep' search. 

Both are important because they may converge, leading to inaccurate solutions. 

Adaptive evolutionary algorithms have been built based on the principle of 

exploitation and exploration to avoid a premature convergence problem and optimize 

the final results (Blum & Roli, 2003; Grosan & Abraham, 2007). But, convergence 

speed can also be used as a form of feedback to alternate between the two modes. As 

pointed out by Al-Naqi, Erdogan and Arslan (2010), 'explore' mode occurs if the 

convergence speed is too slow. In contrast, 'exploit' mode occurs if the convergence 

speed is too high. Convergence is observed for the sake of tracking the domination of 

exploration or exploitation as well. 

Therefore, a good search technique must find a good trade-off between exploration 

and exploitation in order to find a global optimum (Al-Naqi et al., 2010; Razali & 

Geraghty, 2011). A balance between exploring the search space and exploiting the 

best solution is a must. The balancing effort can be executed in various ways. For 

instance, in exploration, poor solutions must have a chance to go to the next 

generation, and in exploitation good solutions go to the next generation more 

frequently than poor solutions. This balancing effort is probably common in selection 

(Burke et al., 2001; Dias et al., 2003; Razali & Geraghty, 201 1; Sharma & Mehta, 



2013). Although evolutionary algorithm has operators to decrease or increase the 

diversity of population, most lack the means to control exploration of the population 

(Sorensen & Sevaux, 2006). 

Additionally, the balancing effort involves the interplay of evolutionary operators 

with local search such as mutation and selection work in memetic algorithm (Inoue 

& Furuhashi, 2003; Sorensen & Servaux, 2006; Sudholt, 2009). However, the 

balancing effort did not work well when operating crossover. Slow convergence 

occurred when too much exploration that crossover creates randomness search points 

(Sudholt, 2009), or premature convergence occurred when too much exploitation that 

merely guides search point for repairing purpose (Maenhout & Vanhoucke, 201 1). h 

all, these imply insufficient flexibility and adaptability to the crossing over tasks at 

hand. Back et al. (1997) noted that both flexibility and adaptability attributes are the 

most significant advantage of EA. 

3.3 Construction of Evolutionary Algorithm 

Generally, the fundamental concept of Evolutionary Algorithm (EA) is an imitating 

evolutionary process by combining solutions to produce better solutions thriving on 

the survival of the fittest. The construction of EA is illustrated in Figure 3.1 and 

Figure 3.2 shows the pseudo code of an EA. 



Initialization Termination 

survivor /'I, pop"'ati0" \ Parent 
selection selection 

offspring Uy2)=' 

Figure 3.1. General construction of Evolutionary Algorithm 

t:= 0 ;  
initializeP(0) := {iil(0), . . . ,ZP(0)) E I @ ;  
evaluateP(0) : {(@(G1(0)), . . . , (@(ZP(0)));  
while (i(P(t)) # true) do 

recombine: Pr(t) := d r ( P ( t ) )  ; 
mutate: Prr(t) := me,Pr(t)); 
evaluateP"(t): {(@(;;'(t)), . . . , (@(Gy(t))};  
select: P(t + I):= se,(P"(t)uQ); 
t:=t+ 1 ;  

end 

Figure 3.2. Pseudo code of Evolutionary Algorithm 

Back and Schwefel (1993) outlined the evolutionary algorithm shown in Figure 3.2. 

In this formula, the evaluation process yielded a multi-set of fitness values. 

Moreover, QE (B,P(t) j is a set of individuals that are additionally taken into account 

during the selection step for next generation. The following subsections explain in 

detail the incorporation of EA with problem-specific information. 



3.3.1 Individual Representation 

In EA, individual representations and the coding of the individual representations are 

devised in the form of a solution (i.e. Individual). Precise representation may provide 

better information. There are a few ways of structuring individuals such as by 

performing string representation (Grefenstette, 1986) and matrix representation 

(Ramli, 2004). The individual's coding called as data structure often indicated the 

gene of the evolutionary algorithm (Ashlock, 2005). Some of the general types of 

encoding are binary encoding, non-binary encoding, and permutation encoding. 

Among them, binary encoding is the simplest and initially used approach to represent 

the characteristics of a solution (Back et al., 1997; Grefenstette, 1986). It is simple 

because it only obtains two types of bits in a chromosome (e.g., 1 101 101, xxyyxxy, 

+--+-+-). However, due to its simplicity, it does not represent a real life problem. 

This is important because the processes of selection, crossover and mutation depend 

on the perceived performance of the individual structures as defined by the problem 

(Grosan & Abraham, 2007). 

On the other hand, non-binary encoding uses real numbers or characters (e.g., 

1234567, ABCDEF) to form chromosomes. Thus, a detailed representation of genes 

to a real problem is more likely (Deep, Singh, Kansal, & Mohan, 2009; Maenhout & 

Vanhoucke, 201 1; Ramli, 2004; Whitley, 2001). This encoding may overcome the 

weakness of binary encoding because it represents reality to some degree. 

Permutation encoding is stressed once the gene's position of a string chromosome is 

taken into account such as in a sequential manner (e.g., 3412567). Therefore, besides 

string representation, permutation encoding has been stressed in edge representation 



for ordering matter such as a salesman traveling problem (Al-Dulaimi & Ali, 2008) 

or ordering task problem (Gupta & Dhingra, 2013). 

3.3.2 Initial Population 

At this stage, a population of candidate solutions is randomly initialized. Basically, 

this is the earliest stage of incorporating other heuristic techniques to produce better 

fitness solution (Khaji & Mohammadi, 2014; Whitley, 2001). In fact, randomization 

should be the focus in constructing evolutionary algorithms. Nevertheless, there 

exists non-random initial population study that obtained efficient evolution. For 

instance, Lin (2009) presented evolutionary algorithm with non-random initial 

population to plan the manipulator configuration along a path in its former stage. 

Once the optimal configuration is obtained by the evolutionary algorithm, the 

optimal chromosomes should be reserved as the initial population. Though the 

planned path is smoother than traditional GA, the drawbacks of the initial solution 

are that it depends much on unambiguous problem-specific information, which 

results some unexplored domains being lost. For these reasons, initial population 

with randomness attribute is much reliable to pursue diversification. To understand 

more about population initialization, the work of Kazimipour, Li, and Qin (2014) can 

be referred to. 

3.3.3 Evaluation of Fitness 

Evolution is the result of survival of the fittest (Ashlock, 2005; Grosan & Abraham, 

2007). Hence, a fitness function rates the potential solutions by maximizing or 

minimizing their fitness. It judges the quality of evolved individuals and determines 

which individuals are fitter and better to bring to the next generation. This is an 



iteration procedure in which fitter individuals may soon approach to the optimal 

solutions. Thus, setting a penalty value (the input of fitness function) plays an 

important role here. 

3.3.3.1 Foundation of Fitness Setting 

Individual representation and fitness function are correlated. A fitness function must 

reflect a relevant measure towards a suitable representation to man an effective EA. 

Michalewicz and Fogel (2002) considered the interaction of the representation with a 

suitable selection strategy or search operators in light of the evaluation function. For 

example, the fitness of a given string is the number of positions at which it agrees 

with a reference string (Ashlock, 2005). Giving a penalty value to some violated hard 

and soft constraints is also a kind of an evaluation of fitness and it has widely been 

used in a nurse scheduling problem (Burke et al., 2004; Clark & Walker, 201 1; 

Grosan & Abraham, 2007; Moz & Pato, 2007; Rarnli, 2004). There is no one general 

standard set of penalty value, previous researches merely set the penalty value 

relatively based on the importance of the constraint. Perhaps the weights set are 

determined subjectively, thus leading to an incomparable condition as different nurse 

scheduling researches may have different sets of penalties. Besides, a schedule 

should be fair-enough (workload balance) to everyone and less disruptive to nurses' 

health, families or social lives (Azaiez & A1 Sharif, 2005; Horio, 2005). However, 

being fair-enough is very subjective. According to Chen and Yeung (1992), as cited 

in Burke et al. (2004), the quality evaluation for shift work scheduling is based upon 

psychological adjustment, well-being, health, personnel and social problems, and 

performance and accidents. 



In fact, setting up a penalty value for constraints violation based on its relative 

importance is an ever changing process. Kelemen et al. (2005) noted that situation 

changes may require frequent tuning of constraint satisfaction in order to compare 

effectiveness. Likewise, in some real time condition when a nurse demand of a ward 

is grown but nurses are limited, monitoring a nurse schedule becomes more restricted 

and con~plicated. This condition can be revealed by exanlining the schedule's fitness 

value. 

3.3.3.2 Fitness Evaluation of Quality Schedule 

Based on the above reasons, setting a more precise penalty value for evaluating a 

schedule quality is critically needed. Indeed, this constraint restriction strategy may 

signify fairness among nurses. Thus, as shown in Figure 3.3, the interaction between 

quality of life and quality of schedule is almost alike. Basically, the quality of life is 

engaged by Maslow's hierarchy of need theory. 

Life 

value in range of fijk <I000 
stage of quality achievement 

6 . . . . . . . . . . . . / Esteem \ Ac,,p&ce Penalty value in range of 10005 fGr<l 000000 
L~~~ & ~ ~ l ~ ~ ~ i ~ ~  i ..........> Y'standard stage of quality achievement 

Safety Needs 
Hard 

\ Penalty value in range of fIjk 1 1000000 
Sustenance stage of quality achievement 

Maslow's Hierarchy of Needs Theory Hierarchy Constraints 

Figure 3.3. Interaction of Maslow's hierarchy of needs and hierarchy of constraints 

for quality schedule evaluation 



Figure 3.3 illustrates how Maslow's theory inspires us in determining the three 

ranges of penalty value for each classification of constraint that results in a quality 

schedule. Essentially, Maslow's theory is a guide on how we develop and live our 

life better in reaching a state of 'optimal' mental health (Heylighen, 1992). Likewise, 

constraints aid to restraint a model in order to achieve an optimal solution. The five 

hierarchically organized levels of needs in Maslow's theory start with physiological 

needs, followed by safety needs, love and belongingness, esteem, and lastly self- 

actualization. The needs move to a higher level once the lower level needs are 

satisfied. As each level supports the next level, the most important class of 

constraints would fall at the bottom position as root, where the heaviest penalty 

values are set. Certainly, the peak position would get the lightest penalty value for 

violating soft constraints. This may explain 'why' and 'how' fitness calculation is 

handled in our minimization objective. 

Furthermore, Mathes (1981) argued that the aim of each level of needs could be 

discussed and simplified into three main classifications whereby clarified the quality 

of life. The three classifications of quality living are started with a survival life, 

acceptance life, and lastly an ideal life (refer Figure 3.3). Basically, physiological 

and security needs in Maslow theory represent survival life. Likewise, in nurse 

scheduling and rescheduling context, the primary need is satisfying nurse regulations 

and operations of a ward even during an unpredicted understaffing condition. 

Secondly, people need family, friendships and work companions. Such social 

interactions induce a sense of belonging, mutual respect, self-esteem, acceptance and 

also strength for competence. The consideration of semi-hard constraints aims to 

achieve an acceptable schedule, which satisfies the preferences of majority of nurses. 



It is deemed compatible to the ward's operation to achieve work expectation. A 

person who lacks a sense of belonging and esteem may be perceived as being 

helpless and weak. Correspondingly, a 'weak' schedule can be addressed by 

satisfying a nurse demand by paying attention to the need of the nurses that many 

people take for granted. When social needs are satisfied, staff nurses can encounter 

work challenges and stresses effectively. 

Lastly, self-actualization is about growth need (Heylighen, 1992) where people wish 

to improve their overall personality by capitalizing on their potential. The need is 

specific and depends strongly on each people's desire to become an ideal role model. 

This need is achieved when the last class of soft constraints is not violated. In other 

words, ideally this is achieved when nurses can satisfy their preferences without 

going against the hospital regulations. Nurse retention might be achieved as a result. 

3.3.4 Parent Selection 

At this stage, EAs do not create new individuals. Parent selection operator is 

concerned with the way of selecting some kinds of individuals from the initial 

population that can potentially produce a good child for the next generation. The 

selection work resembles a search path in a search space. In other words, parent 

selection is deliberately made considering population diversity, selective pressure, 

problem space or population size, and convergence. Logically, higher selection 

intensity can be an advantage for large problem spaces (Legg & Hutter, 2005). 

However, small population size might lower the probability of enlarging population 

diversity. As a result, selection intensity may be compromised. In low diversity, 



ineffectively managing a small size of population and high selection pressure may 

lead to fast convergence (fast stuck in local optima). 

Moreover, the question of how different the selected parents has been ignored in a 

mating strategy. In other words, does a pair of diverse parents have more potential to 

produce varying offspring than parents who look alike? This might be an important 

key of exploration in parent selection operator because it compromises flexible 

reproduction operators since most studies categorized a selection operator in an 

exploitation mode (Ashlock, 2005; Al-Naqi et al., 2010; Veerapen, Maturana, & 

Saubion, 2012). However, some studies overlooked its importance where merely 

copy a number of individuals to a mating pool without any selecting strategies (Tsai 

& Li, 2009; Yang & Wu, 2012). In fact, a parent selection operator is responsive to 

provide some potential permutation space for reproduction operators. Therefore, 

handling diversity of population is a significant task that has not only generally 

preserving by replacement strategy, but adapting the population diversity by parent 

selection. To control or manage a diversity search, this gives room to understand and 

enhance a parent selection operator. 

Several well-known parent selection operators of evolutionary algorithms are 

discussed in the following subsections. They are tournament parent selection, 

roulette wheel parent selection, rank-based parent selection, and others. The basic 

concept is skewed towards elite parents, which act in exploit mode. 



3.3.4.1 Tournament Parent Selection 

Tournament parent selection is picking two most fit individuals each from different 

small groups that compete to become parents (Ashlock, 2005; Burke & Smith, 2000; 

Razali & Geraghty, 201 1). The competition is intended to get better fit individuals 

who inherit from their parent for further exploitation. However, a selection too 

devoted to some subsets that appear to be promising, it may give negative effect 

(Hutter & Legg, 2006; Razali & Geraghty, 201 1). As producing a variety of feasible 

offspring but which are less diverged from the potential parents. In fact, this type of 

selection has been used classically for solving some personnel scheduling problems 

such as nurse scheduling problem (Burke et al., 2001) and battalion rescheduling 

problem (Younas et al., 20 13). 

3.3.4.2 Roulette Wheel Parent Selection 

Roulette wheel parent selection (RWS) is also known as proportional selection or 

fitness-based selection. This parent selection chooses parents in direct proportion to 

their fitness. In principle, a smaller fitness value deserves a smaller selected area and 

vice versa. RWS is quite a classic selection operator that proposed in year 1975, still, 

this type of selection operator has been applied favourably in recent nurse scheduling 

problem (Burke et al., 2008; Kim, KO, Uhmn, & Kim, 2014; Moz & Pato, 2007). 

However, this selection method is not suitable if the characteristic of a population is 

ambiguous akin to big dissimilarity of negative fitness values (Mitchel, 1996; Deb, 

2000). 



3.3.4.3 Rank-based Parent Selection 

Rank-based parent selection is similar to roulette wheel selection in that the 

individuals are differentiated before being selected arbitrarily as parents. In addition, 

parents are selected by ranking their fitness value (Cai & Li, 2000). Basically, 

ranking the individuals implies that an individual's chance of being selected 

gradually gets smaller or larger (Mithchel, 1996). The main purpose is to highly 

support the extreme elite parents to proceed with the mating process. Rank-based and 

tournament selections possibly outperformed proportional selection by maintaining 

steady pressure toward convergence (Razali & Geraghty, 201 1). Hence, in order to 

solve nurse scheduling problem, this classical type of parent selection operator has 

been employed by Aickelin and Dowsland (2004) and Cai and Li (2000). 

3.3.4.4 Others Parent Selection 

There are other parent selection operators which merely studied theoretically, such as, 

fitness uniform selection strategy (FUSS) (Legg et al., 2004), Boltzmann selection 

(Mahfound, 20001, fitness uniform deletion (FUDS) (Hutter & Legg, 2006; Legg & 

Hutter, 2005), and adaptive selection (Veerapen et al, 2012). Basically, these 

approaches aim to preserve the diversity of population by clustering or managing the 

population individuals before they get selected. With the same intention, Maenhout 

and Vanhoucke (201 1) applied pareto-optimal selection for solving nurse rerostering 

problem. 

3.3.5 Crossover 

Crossover is defined as combining or exchanging some useful groups of genes to 

produce new and fitter offspring than the preceding generations (Lewis & Paechter, 



2004; Hertz & Kobler, 2000). There are various types of crossover and mating 

strategies formed in evolutionary algorithms that act as an exploration. This is 

because a crossover operator is highly trusted in EA performance. 

Before studying some crossover strategies, crossover rate should be determined. The 

essence of crossover rate (PC) is the intensity of introducing new solutions to the 

population. Srinivas and Patnail (1994) claimed that the higher the value of PC the 

quicker the new solutions are introduced to the population. Therefore, PC is defined 

as the probability of applying the crossover operator. Nevertheless, there are 

researches that attempted to maintain an acceptable level of population productivity 

throughout the process of evolution by setting PC that approximately equalizes the 

probability of non-surviving individuals in a population (Pendharkar & Rodger, 2004; 

Lin, Lee & Hong, 2003). The non-surviving individuals are then replaced by 

offspring constructed by a crossover operator. The partial population (1 -PC) kept for 

the next generation is maintaining the diversity of population in order to prevent 

premature converges. 

Basically, PC is set based on the characteristics and complex interrelations with other 

aspects in the overall algorithm such as fitness value of both parent solutions 

(Srinivas & Patnail, 1994; Montgomery & Chen, 2010; Lin et al., 2003), population 

size (Montgomery & Chen, 2010; Lin et al., 2003), mutation rate and selection 

operator (Miki et al., 2000). Likewise, algorithm that is strongly elitist that frequently 

preserves superior sol.utions has more incentive to employ crossover to search more 

broadly. In this context, it sets the crossover probability at 1.0 (Montgomery & Chen, 

2010; Eskandari & Geiger, 2008). Besides, Srinivas and Patnail (1994) suggested a 



solution whose fitness value is lesser than or equal to average fitness to be 

compulsorily undergo crossover (Pc=l.O). This is to escape from local optima. In 

other words, the extreme values of a crossover rate may be beneficial to the 

exploratory behaviour that focuses on the directionality of a search (Zaharie, 2009). 

In fact, this is a proper setting for some directed elements such as repair purpose. 

To appraise a crossover strategy, different forms of data structures or representations 

and parents mating strategies are considered when deciding a well suit crossover 

(Maenhout & Vanhoucke, 2008a) such as string crossover operators, matrix 

crossover operators (Lewis & Paechter, 2004; Ramli, 2004), multi-parent crossover 

operators (Eiben et al., 1995; Porumbel et al., 2009; Ting & Buning, 2003) and 

parent-centric crossover operators (Ballester & Carter, 2005; Deep & Thakur, 2007; 

Garcia-Martinez, Lozano, Herrera, Molina, & Sanchez, 2008; Lozano, Herrera, 

Krasnogor, & Molina, 2004; Raghuwanshi & Kakde, 2006). Since our solution is a 

two-dimensional matrix representation, matrix crossover operators are the main 

center of attention here. In general, two orders of crossover which are either 

horizontal (cross-point cuts between numbers of row) or vertical (cross-point cuts 

between numbers of columns) are commonly used for a matrix chromosome. Besides 

the orders, the position of genes changed by some type of crosspoint is another vital 

consideration. For example, single point crossover, multiple point crossover, and 

uniform crossover are well-known conservative approaches to matrix representation. 

3.3.5.1 Single Point Crossover 

Essentially, a single point crossover is the simplest type of crossover. Since it is done 

by one cut point, only one side of the cross point (e.g., left or right, above or below) 



is swapped between parents, as shown in Figure 3.4. Apart from the order of crossing, 

this crossover operator has been specifically named as C1 (Reeves, 1996), IPX 

(Holland, 1992; Kellegoz, Toklu, & Wilson., 2008), NBOP (Aickelin, 2000), and 

DBOP (Inoue & Furuhashi, 2003). There are cross points which are chosen at 

random (Bai et al., 2007; Kellegoz et al., 2008) and by purpose (Ramli, 2004; 

Aickelin & Dowsland, 2000). In row-wise crossover (Ramli, 2004) and grade-based 

crossover (Aickelin & Dowsland, 2000), only the representation structure either in a 

string form or a matrix fonn differentiates these two single point crossovers. 

3.3.5.2 Multiple Point Crossover 

A multiple-point crossover or n-point crossover is the natural extension of a single 

point crossover, where two or more cross points are chosen at random and the 

segments between them are exchanged (Eshelman, Caruana, & Schaffer, 1989). 

Based on previous studies, a multiple-point crossover is known as 2PX (Murate & 

Ishibuchi, 1994), and OBX (Syswerda, 1996). The researchers showed that multiple- 

point crossovers are more compatible in long length chromosomes. Apparently, they 

produce more variety of offspring that might be active in exploration as well. Figure 

3.4 illustrates the formation of offspring done under two factors, i.e. the number of 

crosspoint (e.g., single point or multiple points) and the direction of crosspoint (e.g., 

horizontal or vertical) in a matrix crossover. 



Figure 3.4. Types of single and multi-point matrix crossover 

3.3.5.3 Uniform Matrix Crossover 

Basically, uniform crossover that mixes at the gene level works more flexible and 

effective than a single or two-point crossover that mixes at the segment level. Cai 

and Li (2000) affirmed it to be a multipoint crossover. This is because of the random 

construction of a binary vector (e.g., 1001010). It indicates an equal chance (standard 

setting is 0.5 probability) of bits swapping as well as eliminating the problem of 

representational bias (Ashlock, 2005). Conceptually, the uniform crossover is a 

building block destroyer and the extra random numbers needed are computationally 

expensive. However, Aickelin and Dowsland (2004) believed in uniform crossover 
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because it maintains a higher proportion of absolute positions of genes. But still, it 

shall not cross in large block since improvement may be gained by flexible 

disruption as well. In previous researches, uniform crossovers are named as PMX 

(Aickelin & Dowsland, 2004), UOX and PUX (Syswerda, 1996), hamming distance 

based on differ genes of strings (Cai & Li, 2000), and randomly selected nurse-based 

crossover (NBRS) (Aickelin, 2000; Burke et al, 2001; Dias et al., 2003). Figure 3.5 

illustrates the general formation of each offspring during a uniform matrix crossover. 

Figure 3.5. Types of Uniform Matrix crossover 
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3.3.5.4 Other Matrix Crossover 

There are other unordinary matrix crossovers such as specific crossover operators 

(Maenhout & Vanhoucke, 2008a) and sector-based crossover (Lewis & Paechter, 

2004). The specific crossover operators attempt to select cross points deliberately 

with respect to some case-specific constraint, or allow the construction of the feasible 

individual by exchanging or removing the worst or best genes between parents. Such 

crossovers examples are single parent specific crossover (Jan, Yamamoto, & Ohuchi, 

2000), and nurse-based crossover with tournament selection (NBTS) or named as 
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best placed events crossover (Burke et al., 2001; Dias et al., 2003). Though this 

fastidious exploiting problem-specific concept is able to remain promising sub- 

solution, it would also easily cause earlier convergence due to the loss of exploration 

in producing new child. 

Lewis and Paechter (2004) proposed a sector-based crossover for a university course 

timetabling problem. Offsprings are produced by randomly selecting a sector of 

parent 2 and inserting them into parent 1, with the condition of placing the same gene 

position as in parent 2. This crossover technique transfers a larger number of genes 

per crossing over which signify larger steps in the search space than the other 

conservative crossover operators. However, the fixed position comportment may 

force an unfit situation that gives insignificant disruption to parent 1. Furthermore, 

the offspring might have unbalanced heritage from both parents, where the center of 

attention mostly fall upon one parent rather than the other parent. Although it allows 

randomly wrap around the sector to prevent bias genes' selection and tends to offer 

greater flexibility throughout future generations. 

As a conclusion, exploration has been stimulated by crossover operator. A more 

disruptive operator may help enhance feasibility, but it also may affect solution 

quality if there is too much disruption (Aickelin & Dowsland, 2004). Without 

disregarding the diversity of a mating strategy, an attempt to inherit good genes from 

parents is focused at this stage (Maenhout & Vanhoucke, 2008a, Cai& Li, 2000). 

This might be a good way to lessen unnecessary disruption that causes infeasibility. 

However, less exploration may result premature convergence because randomization 

is still the core principle of a crossover operator. In that sense, a difficulty of a 



crossover in a two-dimensional representatjve chromosome is pressed on the less 

effectiveness of exploitation that an ideal search should able to flexibly move around 

feasible and infeasible domains. The difficulty was faced by Ramli (2004) in a nurse 

scheduling problem and Moz and Pato (2007) in a rescheduling problem. Since 

randomness of a crossover operator could violate hard constraints easily, Moz and 

Pato (2007) could only use a nurse-based cross point in a crossover operation. 

Meanwhile, Rarnli (2004) applied a row-wise crossover based on the nurse skill level. 

Given that both fixed horizontal cross point behavior had limited the exploration, a 

more flexible way of crossing over with regard to various cross point strategies are 

needed. 

3.3.6 Mutation 

Crossover and mutation operators are called variation operators or reproduction 

operators or secondary search operators. Both have the same objective which is to 

produce new solutions. However, mutation is slightly different from crossover 

operators is that mutation operators are applied at the self-adaptation phase. Mutation 

intends to alter an individual itself with small changes by a swapping strategy, k-opt 

neighborhood strategy and others (Hertz & Kobler, 2000; Rice, 2004). It makes some 

noise or bulk by increasing the variety of genes to an individual in order to enlarge 

the searching scope for next generation (Li et al., 2008; Rice, 2004). Therefore, the 

small changes are able to increase the diversity which prevents individuals from a 

premature convergence towards local optima. Mutation operator is also known as a 

fine local tuning operator. Deep and Thakur (2007) stated that the proportion of 

population undergoing mutation and the strength of mutation are two paramount 

issues in mutation operator studies. 



Grosan and Abraham (2007) claimed that the mutation rates (P,,) may be adapted to 

prevent premature convergence and to speed up optimization. Thus, the mutation rate 

is one of the concerns to drive the convergence toward the best solution. Reeves 

(1993) agreed that mutation is typically applied to lower probability ( ~ 0 . 0 1 )  than 

crossover probability since too small a value of crossover probability is associated 

with a loss of diversity and premature convergence. However, Grosan and Abraham 

(2007) recommended adjusting the mutation rates at P,= 0.6 (if convergent) and P, 

= 0.05 (if not convergent). Haupt and Haupt (2004), and Bremermann (1958), as 

cited in Michalewicz and Fogel (2002) claimed that the mutation rate may depend on 

a number of binary variables. In a nutshell, the mutation rate may not be held 

constantly because the mutation rates recommended based solely on experimental 

evidence. 

Apart from the mutation rate, there are a few types of mutation in evolutionary 

algorithms. In encoding, there are binary encoded mutation (e.g., 0-1) and 

permutation encoded mutation (e.g., a real number gene is swapped with another real 

number gene). Essentially, there are merely changing positions in between the same 

individual. However, the permutation encoded mutation which directly aims at 

altering positions changes less the child than the binary encoded mutation does 

(Wagner, 2004). Perhaps, binary EA is just changing a bit from a 0 to 1 and vice 

versa (Cai & Li, 2000; Haupt & Haupt, 2004). Therefore, the binary encoded 

mutation is more free or random in inverting selected bits. 

In ways of perturbation, basically there are random (uniform) mutations and non- 

uniform mutations (light and heavy mutation) as directed mutations. A random 



mutation is when a gene is replaced with a random value between its lower and upper 

bounds. On the other hand, in a non-uniform mutation, the step size decreases as the 

generations increase. This makes a random search in the initial space and very little 

at the later stage (Haupt & Haupt, 2004; Ramli, 2004; Michalewicz & Fogel, 2002). 

The existence of directed mutation is probably due to a drawback that a new solution 

which generated by the conventional mutation has closed to its parent but may be far 

from better solutions. Since a uniform mutation does not utilize any global 

information extracted from a current population (Zhang et al., 2005), therefore, 

directed mutations probably have their own way of mutating guidance rather than 

relying solely on randomization. Readers may refer to Berry and Vamplew (2004), 

Danciu (2003), Ramli, (2004), Temby, Vamplew, and Berry (2005), and Zhang, Sun, 

and et al. (2005) for their proposed directed mutation. 

3.3.7 Replacement Strategy 

The objective of replacement is to maintain the same population size for each 

generation. Studies have focused on a number of individuals being replaced in each 

generation. In the early research, generational reproduction was normally used. There 

were enough amount pairs of selected parents to replace the entire population 

(Ashlock, 2005). However, the drawback of generational reproduction is that it may 

ignore or miss out some potential individuals after one extreme replacement. For that 

reason, steady-state reproduction is more likely to be used since it counts each single 

act of selecting parents and placing the children in the population as the next 

generation. 



With regards as who shall be replaced, there are a few replacement techniques that 

are commonly used. They are absolute fitness replacement and elitism. Absolute 

fitness replacement is replacing the least fit individuals of the population with better 

fit children (Michalewicz & Fogel, 2002). On the other hand, elitism is exhibited 

when the individuals of a population with the highest fitness are guaranteed to 

survive in an evolutionary algorithm. Those guaranteed individuals are called elite 

(Ashlock, 2005). In fact, elitism guarantees a population with a fixed fitness function 

that cannot slip back to a smaller maximum fitness in later generations. This affects 

the current elite to be more likely to have more of his children in the future, causing 

their genes to dominate the population. For not undergoing any of the extreme 

elimination, there is a median or mod elimination in which eliminating individuals 

who are too close to an existing individual of the population (Lacomme, Prins, & 

Ramdane-Cherif, 2005; Porumbel et al., 2009; Ramli, 2004). This may preserve 

unbiased diversity. 

3.3.8 Stopping Criterion 

This stage of evolutionary algorithm involves a decision to either proceed with or 

terminate a searching process. Basically, the termination conditions stop after a fixed 

number of trails (Lacornme et al., 2005), when the search has plateau (Aytug & 

Koehler, 2000; Ramli, 2004), or when a fitness threshold has achieved which an 

expected solution is found (Ashlock, 2005). The fixed number of trails is set 

accordingly by a model user. Typically the parameter has to undergo a bunch of 

experimental testing. On the other hand, a plateau condition is a state of slight or no 

change following in a number of generations, such as three consecutive generations 

(Ramli, 2004) and 10 consecutive generations (Aytug & Koehler, 2000). Next, the 



generating process can be terminated when an expected solution is found. Mostly, 

this type of stopping criteria is used to search or fix an individual's fitness value 

according to a fitness threshold (Ashlock, 2005), making it appropriate for a 

repairing function. In general, the last two types of stopping criteria (i.e., plateau and 

expected fitness threshold) are basically suitable for searching within a boundary due 

to their termination depends on the achievement of an incumbent solution. 

3.4 Hybridization Architectures of Evolutionary Algorithm 

Basically, there are three essential types of hybridization architectures which are 

concurrent architecture, transformational hybrid architecture, and cooperative 

architecture (Grosan & Abraham, 2007). These three types of problem solving are 

illustrated in Figure 3.6. 

Technique 1 
(e.g., EA) 

(a) Concurrent (b) Transformational (c) Cooperative 
hybrid 

Figure 3.6. Three types of processes in general hybridization architectures 

Concurrent architecture involves the whole components of a technique and other 

technique (which to be hybridized) required for proper functioning in line with the 

hybridization model, as shown in framework (a) of Figure 3.6. In this architecture, 

the second technique involves fine-tuning the solution formulated by the first 

technique, also named as preprocessing method. Here, EA can be the preprocessing 
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method when the fine tuning technique is in a concurrent hybridization model. For 

instance, evolutionary algorithm is applied at the first stage then followed by a 

mathematical programming employed at the second stage (Till, Sand, Engell, 

Emmerich, & Schonemann, 2005; Urselmann, Emmerich, Till, Sand, & Engell, 2007; 

Tometzki & Engell, 2009). Previous hybridization studies that employed concurrent 

architecture were such as particle swarm optimization hybrids with geometrical place 

evolutionary algorithm (Grosan, Abraham & Nicoara, 2005); ant colony optimization 

with genetic programming (Abraham & Ramos, 2003). In all, concurrent architecture 

may be the most well-known hybridization architecture. 

Transformational hybrid architecture is a circular system involving exchanges of 

information between two techniques during a problem solving process. This circular 

process is illustrated as framework (b) in Figure 3.6. EA is fine-tuned by the 

performance of other technique while the technique is optimizing the performance of 

EA. This means that both techniques are working in coordination at the same time. 

For instance, Toledo, da Silva Arantes, De Oliveira and Almada-Lobo (2013) used 

simulated annealing to intensify the search for solutions in the neighborhood of the 

best individuals found by the genetic algorithm, while the cavity heuristic determined 

quickly the values for a relevant decision variable of the processing speed of each 

machine. Beddoe and Petrovic (2006) used case-based reasoning to store and retrieve 

constraint violations whilst genetic algorithm improved the accuracy of case-based 

reasoning and reduced the features of storing amount by selecting and weighting 

them. 



Framework (c) in Figure 3.6 illustrates cooperative architecture. It is a minor 

hybridizing system where the hybrid technique is not required for proper functioning 

of the system. In fact, the two techniques are intricately entwined. For instance, part 

of technique 2 may aid in parameters determination or initialization phase of 

technique 1 .  To our knowledge, little is explored on cooperative architecture 

hybridization. However, Grosan and Abraham (2007) argued that although 

cooperative architecture is merely a small part of hybridization, it is flexible and 

simple in incorporating the advantages of different techniques. For that reason, our 

proposed model is the cooperative model. 

3.5 Reasons for Hybrid Evolutionary Algorithm 

Based on previous studies discussed in Section 2.7, the hybridization of EA may be a 

suitable technique to cope with the nurse scheduling and rescheduling problem since 

the exact methods involve heavy computation while solving a NP-hard problem due 

to enormous search spaces (Belien & Demeulemeester, 2008; Choy & Cheong, 2012; 

Clark & Walker, 201 1; Maenhout & Vanhoucke, 2008b). Moreover, while meta- 

heuristics method as evolutionary algorithm alone may be less effective in coping the 

dynamic and uncertain nature of modern problems, EA hybridization may not have 

the same problem. As stated by Grosan and Abraham (2007), hybridization of EA 

has the potential to challenge real world problems which consist of uncertainty, 

complexity and vagueness. Thus, the hybridization method offers a realistic way of 

tackling difficult and challenging problems. 

In fact, the key advantage of this technique lies in its limitation. EA is capable in 

searching large search space but it is less effective in identifying local optima 



(Whitley, 2001). For the sake of balancing the exploitation and exploration, a 

hybridization strategy is used to address this drawback. Some well-known 

cooperation that hybridize EA with local search are memetic algorithm (Martinez- 

Estudillo, HervBs-Martinez, Martinez-Estudillo, & Garcia-Pedrajas, 2006; KoroSec, 

Bole, & Papa, 2013; Lacomme et al., 2005; Ramli, 2004; Sorensen & Sevaux, 2006; 

Sudholt, 2009) and differential evolution (Wang & Li, 2010). For example, Wang 

and Li's (2010) quantum-inspired evolutionary algorithm (QEA) used quantum gate 

rotation in qubit-based hyperspace to search for good search space direction, but it 

lacked certain ability for local exploitation. On the other hand, differential evolution 

(DE) performed evolutionary search by using differential operator and one-to-one 

competition scheme in space of real value, but it lacked certain mechanisms for 

global exploration. Therefore, they used DE to cover the exploitation weakness of 

QEA. As a whole, EA hybridization studies had experienced better balancing 

between exploration and exploitation. As TuSar and FilipiE (2007) claimed pure GA 

was inferior to the balancing work especially on multi-objective optimization 

problems. 

Essentially, improving and repairing certain functions of EA are the major purpose 

for forming various EA hybridizations. To improve EA, hybridization has been 

focusing on initial population (Khaji & Mohammadi, 2014; Rahnamayan, Tizhoosh, 

& Salama, 2007; Maaranen, Miettinen, & Makela, 2004). In order to increase the 

convergence speed due to the problem of high computation time, Rahnamayan et al. 

(2007) employed opposition-based learning to generate initial population. Khaji and 

Mohammadi (2014) integrated heuristic into initial population to cover many cavities 

for generating promising search space. They simplified some equations of a complex 



function in addition to some random individuals. Moreover, for the sake of 

disregarding convergence speed, quasi-random initial population of Maaranen et al. 

(2004) can increase the solution quality as well. This means that initializing the 

population individuals guided by heuristics is an act in favor of searching only 

towards some feasible regions. 

Besides improving initial population, clustering population individuals also seeks to 

search potential solutions from the population. In the clustering algorithm of 

Martinez-Estudillo et al. (2006), clustering process was employed by EA and a local 

search responded to the evolutionary design of neural networks. EA allowed the 

selection of individuals representing different regions in the search space. Thus, the 

optimized individuals were more likely to converge towards different local optima. 

Furthermore, hybrid EA which used a population with fixed features of local optima 

was a discrete optimization method used to solve permutation optimization problem 

(Bozejko & Wodecki, 2005; Rogalska, Bozejko, & Hejducki, 2008). 

With regards to individual representation, solutions may be represented in an indirect 

way as decoding algorithm maps any genotype to a corresponding phenotypic 

solution. h this mapping, the decoder can exploit problem-specific characteristics 

and thus apply heuristics (Aickelin & Dowsland, 2004; Lin, Gen & Wang, 2009; 

Moz & Pato, 2007). Lin et al. (2009) employed an extended priority-based encoding 

hybrid EA by combining local search and fuzzy logic control (FLC) to enhance the 

search ability of EA. Moz and Pato (2007) hybridized constructive heuristics with 

genetic algorithm on specific encoding of permutations and permutation-based 

operators used for each encoding in a sequencing problem. In that, Moz and Pato 



(2007) claimed that the fitness function offers great possibilities for hybridization 

because it can be used as a decoder that decodes the indirect represented genotype 

into feasible solution. 

There are EA hybridization techniques hybridized after the operation of parent 

selection (Kumar, Tyagi, & Sharma, 2013; Malim & Wessberg, 2010). The parents 

selected by roulette wheel selection in Kumar et al. (2013) were then used as the 

initial search point of hill climbing local search. This hybrid genetic and hill 

climbing algorithm (HGHCA) were used to increase exploitation. Malim and 

Wessberg (2010) proposed a memetic algorithm for feature selection in volumetric 

data containing spatially distributed clusters of informative features in neuroscience 

application. Consequently, making small moves within a defined search area and 

thus amplifying its search performance were the improvement of hybridization of 

selection. 

Furthermore, a hybridized technique could aid EA's recombination operations (i.e. 

crossover and mutation) to improve offspring (Sorensen & Sevaux, 2006; Lacomme 

et al., 2005; Lin, 2010; Mashwani & Salhi, 2012; Prodhon, 201 1) or repair infeasible 

individual (Aickelin & Dowsland, 2000; Bureerat & Sriworamas, 2013; Salcedo- 

Sanz, 2009; Wu, Yeh, & Lee, 2015; Zhong & Yang, 2004). Mostly, these studies are 

multi-objective evolutionary algorithm (MOEA). The hybridized techniques were 

used to exploit the search from the diffusion search of recombination. For example, 

Mashwani and Salhi (2012) implemented multiple crossover operators to improve 

evolutionary optimization. They selected the ideal crossover since different crossover 

operators were suitable for different problems. However, the multi crossovers 



separation procedure was problematic due to lack of flexibility in tackling 

restrictions during crossing over in a crossover operator. The hybridization of Lin 

(2010) was a combination of differential evolution (DE) with real-valued genetic 

algorithm (RGA) that specifically used the main perturbation of differential vectors 

and the minor perturbation of mutation. The differential vector perturbation replaced 

RGA7s crossover by taking excellent individuals as the base vectors. Again, this 

deepened the search as recombination operations were yearning for exploitation. In 

improving the production of GA7s crossover operator, Lacomme et al. (2005) applied 

local search with a fixed probability on either one of the offsprings whereas the other 

one was discarded randomly. The hybridized local search with a fixed probability 

was used to improve the offspring as well as to keep the diversity of next generation. 

Perhaps, the exploitation act of local search was ineffective since their study needed 

a fixed probability parameter and median eliminated replacement strategy to escape 

from achieving premature local optima. 

Repair technique should be a simple refinement procedure that works on 

contemporary solutions to ensure feasible solutions. In recent researches, Wu et al. 

(2015) presented particle swarm optimization (PSO) with mutation and refinement 

procedure to address the fairness of average number of nurse for each shifts. The 

mutation of GA and local search refinement procedure were the repairing and 

improving actions upon any infeasibility to the constraints. The hybridization of real 

code population-based incremental learning with differential evolution (RPBIL-DE) 

was proposed by Bureerat and Sriworamas (2013). The differential evolution was a 

network repairing technique that used to tackle multi-objective topological design 

problems. KoroSec et al. (201 3) employed memetic algorithm with problem-specific 



reproduction operators and local search to fine-tune infeasible solutions. In all, local 

search with some simple swapping procedures were used mostly as the repair 

technique in hybridization. Noted that the repair technique in permutation encoding 

is needed to avoid infeasibility which caused by the exploration of crossover operator 

(Salcedo-Sanz, 2009). Hence, the repair technique is meant to be used after the 

implementation of EA recombination operators (Salcedo-Sanz, 2009; Wu et al., 

2015). This is also alluding to a need of restriction for the unbounded and explosive 

crossing over. 

In conclusion, hybridization may be the key to solve practical problems. Grosan and 

Abraham (2007) and Eiben and Smith (2003) contended that the hybridizations that 

incorporated evolutionary algorithm have mostly improved the performance of the 

evolutionary algorithm in terms of convergence speed and the quality of solution 

produced. In 1990s, local neighborhood search or extensions such as simulated 

annealing could be imbedded in genetic algorithm to enhance performance (Reeves, 

1993). However, the present EA hybridization has not only hybridized with local 

search series, but also has been expanded to particle swarm optimization (PSO) 

(Grosan et al., 2005), artificial bee colony (Xiang, Ma, & An, 2014), case based 

reasoning (CBR) (Beddoe & Petrovic, 2007), ant colony optimization (ACO) 

(Aickelin, Burke, & Li, 2007) and others. In view to the cooperative architecture 

perspective that involves a small part of hybridization, meta-heuristics that have 

simplicity characteristic shall be mainly considered. Thus, our cooperative model 

focuses on cuckoo search to obtain simplicity. 



3.6 Restriction Enzyme 

Restriction enzyme is an enzyme that cuts DNA after recognizing a specific 

sequence of DNA (Pingoud, Alves, & Geiger, 1993; Roberts, 1976; Vincze, Posfai, 

& Roberts, 2003). Restriction enzymes were named for their ability to limit or 

restrict the number of strains of bacteriophage (Lederberg & Meselson, 1964). Thus, 

the biological role of restriction enzyme is to protect cells from foreign DNA. 

The DNA sequence can be recognized by a restriction enzyme where these stretches 

of DNA are named as recognition sequences. Different bacterial species make 

restriction enzymes that recognize different nucleotide sequences (Kessler & Manta, 

1990). Therefore, restriction enzymes contribute to genetic engineering applications 

(Barrangou et al., 2007; Horvath & Barrangou, 2010; Umov, Rebar, Holmes, Zhang, 

& Gregory, 2010). Restriction enzymes rearrange genes to create new combinations 

of DNA to achieve the goal of genetic engineering, which is changing the genetic 

makeup of an organism. 

In all, restriction enzyme is normally used to identify DNA rearrangement whereby 

we adopted this concept into recombination strategy of hybrid evolutionary 

algorithm and cuckoo search. This Restriction Enzyme Point has first been 

practically used in crossover operator. 

3.7 Cuckoo Search Concept 

Cuckoo search is inspired by the brood parasitic behavior of some cuckoo species. 

This nature-inspired metaheuristic was developed by Yang and Deb in 2009. 

Standard Cuckoo Search (CS) rules are simplified as below (Yang & Deb, 2010): 



1) Each cuckoo lays one egg at a time, and dumps it in a randomly 

chosen nest. 

2) The number of available host nests is fixed, and a host can discover an 

alien egg with a probability Pa E [0, 11. Once discovered, the host bird 

can either throw the egg away or abandon the nest so as to build a 

completely new nest in a new location. 

3) The best nest with high quality of eggs (solutions) will cany over to 

the next generations. 

Based on these rules, the implementation of cuckoo search has been transformed to 

pseudo code as shown in Figure 3.7. In that, Yang and Deb (2009) experienced the 

random walk via levy flights in cuckoo search. Generally, a random walk is a 

Markov chain in which the next location should merely depend on the current 

location and transition probability. 

Start 
Objective function f(x), x=(xl, . . a ,  ~ d ) ~  

Generate initial population of n host nests xi (i  = 1, 2;.., n) 
While(t< MaxGeneration) 

Get a cuckoo randomly by pet$ormiag randomwalk 
Fitness F; quality evaluation 
Choose a nest among n (say, j)  randomly 

If (F;>F,) 
Replace j by the new solutions 

End 
A fraction (P,) of worst nests are abandoned and new ones are built 
Keep the nests with quality solutions 
Rank the solutions andjind the current best 

End 
Postprocess results and visualization 

End 

Figure 3.7. Pseudo code of Cuckoo Search algorithm 
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Additionally, two phases of mimicry feature inspired by the natural brood parasitism 

of cuckoo breeding behavior are technically not involved in cuckoo search algorithm. 

They are the behaviors before hatch and after hatch. Before the hatching behavior, 

some female parasitic cuckoo species are specialized in imitating egg color and 

pattern of host species, whereas host species evolve different strategies as host 

defenses in order to recognize their own eggs. The interactions between species can 

be remarkably sophisticated that presents a beautiful example of evolution and 

adaptation. Practically, mimicry of host egg has not been applied to cuckoo search. 

This is because a subjective perception of mimicry gives lack of diversification in 

reproduction strategy which is against the aim of having massive searching approach. 

However, Yang and Deb (2010) asserted that the intention of this mimicry in color 

and pattern is to prevent cuckoo eggs from being abandoned so as to increase their 

reproduction. Furthermore, another significant trick of mimicry feature after hatching 

behavior is that cuckoo chicks are able to mimic the call of the host chicks 

(Marichelvarn, Prabaharan, & Yang, 2014; Yang & Deb, 2010). The reason for 

cuckoo chicks to catch attention from the host bird is to gain access for more feeding 

opportunities. This move may aid the cuckoo chick to stay longer and survive in the 

communal nest. 

3.7.1 Advantage of Cuckoo Search 

A good balance of intensive local search strategy and an efficient exploration of the 

whole search space may usually lead to a more efficient algorithm. Yang and Ded 

(2010), the creators of cuckoo search, stated that there are several advantages of 

applying cuckoo search. Previous studies (Brajevic, Tuba, & Bacanin, 2012; 

Marichelvam et al., 2014; Rodrigues et al., 2013; Yang & Deb, 2010; Yang, 2014) 



tested that cuckoo search was efficient than particle swarm optimization (PSO) in 

terms of global convergence requirements because PSO may converge prematurely 

to a local optimum. 

For hybridizing improvement, cuckoo search and genetic algorithm can be compared 

as follows. Firstly, cuckoo search can be a population-based algorithm that has its 

global-search ability (Marichelvam et al., 2014). This is quite alike to genetic 

algorithm. Secondly, the randomization is more efficient because the step length is 

heavy-tailed, and any large step is possible (Tuba, Subotic, & Stanarevic, 201 1). It is 

also able to have a wide exploration or deep exploitation by controlling the stepsize. 

Thirdly, a parameter used to be tuned is lesser than genetic algorithm since the latter 

obtains several operators. Thus, cuckoo search can be adapted to wider optimization 

problems (Yang & Deb, 2010). Lastly, although each nest is denoted as one solution 

in the standard cuckoo search (Yang & Deb, 2010), it also can be represented as a set 

of solutions. To this regard, cuckoo search is easy to be extended to the type of meta- 

population algorithm. In sum, Brajevic et al. (2012) pointed out that efficiency and 

simplicity are the superiorities of cuckoo search. Therefore, by considering the 

advantages, cuckoo search may have the potential to be adapted into a population- 

based condition of genetic algorithm. 

Although cuckoo search is simple, it does not have any matter with problem solving 

ability. Cuckoo search has addressed several theoretical problems. For instance, 

traveling salesman problem was solved by discrete cuckoo search (DCS) where its 

population was restructured (Ouaarab, Ahiod, & Yang, 2014). Besides that, because 

the parameters of cuckoo search were constant, Marichelvam (2012) developed an 



improved hybrid cuckoo search (LHCS) to overcome the inefficiency. In his study, 

permutation flow shop scheduling was solved successfully by the LHCS. 

Marichelvam et al. (2014) employed improved cuckoo search (ICS) which 

incorporated constructive heuristic to the initial solutions for solving multistage 

hybrid flow shop scheduling problem in furniture manufacturing. Additionally, Tuba 

et al. (2011) modified the random walk with a sorted function in order to solve 

unconstrained optimization problems. Binary cuckoo search (BCS) measured 

optimum-path forest classifier was studied by Rodrigues et al. (2013) for the 

optimization problem of feature selection. Cuckoo search was also applied to address 

k-dimensional optimization problem. It searched the feasibility of maximizing 

entropy criterion for multilevel image thresholding selection (Brajevic et al., 2012). 

For more review on the achievements of cuckoo search, Yang and Deb's (2014) 

work can be consulted. Although the applications of cuckoo search are rapidly 

expanding recently, there are rooms for other industrial applications especially to a 

nurse scheduling problem in healthcare services. After all, cuckoo search is a new 

search technique that still has great potential. 

3.8 Summary 

Overall, evolutionary algorithm can produce more than one solution at a time. This is 

because the technique explores different regions of search space to gradually enhance 

performance. The search operators are always surrounded by the population's 

selective pressure, convergence issue, randomization and diversity, which are all 

committed to balancing exploration and exploitation even though these two 



principles are contradictory. Therefore, harmonizing or employing a balanced 

approach is essential in hybridization to achieve effective search. 

Furthermore, the origin concept of restriction enzymes can flexibly amend the 

genetic makeup of an organism to control and recombine another new DNA. On the 

others hand, efficiency of search and simplicity of implementation are the 

superiorities of cuckoo search. These aspects may be suitable to complementary the 

exploitation lack of evolutionary algorithm. 

In sum, for solving a complex nurse scheduling and rescheduling problem, a 

cooperative hybridization is suggested. Evolutionary algorithm is the preprocessing 

method of choice, the concept of restriction enzyme and cuckoo search component 

are the cooperative approach. Specifically, the cooperative approaches are 

incorporated as an enhancement of parent selection and crossover operator 

performance in order to produce high quality solutions (schedules). The purpose is to 

improve the overall performance of evolutionary algorithm with flexible attribute 

when vast numbers of constraints involved. It is envisioned that the hybrid 

evolutionary algorithm is possible to diversify the search and lessen the high 

probability of producing an infeasible solution, while at the same time inheriting 

most properties of their parents. 



CHAPTER FOUR 

METHODOLOGY OF NURSE SCHEDULING AND RESCHEDULING 

Previous chapters discussed the problem of nurse scheduling and rescheduling and 

identified potential hybrid search techniques. This chapter discusses the research 

design used to accomplish our research objective to develop an effective nurse 

scheduling and rescheduling model. 

4.1 Research Design 

This research is to develop a model for integrating nurse scheduling and rescheduling 

problem (NSRP) that concurrently considering nurse capacity, preferences, and 

uncertainty. A nurse schedule with minimum constraint violations is aimed, as 

similar as in producing a readjusted schedule. Next, this research involves primary 

data and secondary data. The data were gathered by interviewing the field experts 

and collecting relevant reports such as rules and regulations of wards, implemented 

past schedules, and literature review. In that, all constraints are identified whereby 

develop and formulate our model for NSRP. The model is developed by a 

cooperative architecture hybridization that based on Evolutionary Algorithm (EA) 

and Cuckoo Search (CS), in which three new parent selection operators and two new 

crossovers operators are proposed. Lastly, quantitative analysis is used in our model 

evaluation and validation. A number comparison experiments carried out on each the 

proposed technique, which these results altogether were later used to find out the 

most fitting operators. In models comparison, two classical models are used for 

benchmarking the proposed models comprising the earlier identified fitting operators, 

to select the best model. Moreover, what-if analysis is employed in rescheduling 



context and the result validated with Moz and Pato's (2007) retrieval result. Overall, 

an overview of the research process is illustrated in Figure 4.1. 

Defining problem nurse scheduling and 
rescheduling problem 

Gathering data and information for 
mathematical formulation 

Developing Evolutionary Algorithm-based 
models 

I I + 
. Evaluating and validating the models 

I I + 
End 

Figure 4.1. Research process 

The first three phases are dealt within this chapter whereas the next chapter is 

devoted to explaining the fourth phase. In order to plan and structure a more 

thorough research process, the flow of research activities that detail the 

implementation to attain the specific objectives are shown in Figure 4.2. 
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Collecting voice of experts 

I 

4 I Collecting data: 

Phase 2: 
Information 

gathering and 
mathematical 
formulation 

I 

1 , 1 Using MATLAB language 

- Interviewing the experts (e.g., matron, 
head nurses, nurses) 

- A yearly schedule of two different 
wards 

- Constraints identification 
Developing mathematical objective 
function and constraints for the 

Phase 3: 
Models 

development 

Comparing the models (e.g., effectiveness, 
efficiency, accuracy, reliability) 
Comparing the models with two well- 

and validation known EA models 

Developing nine models through EA 
operators enhancement and integration 
of CS to solve NSRP 

Using what-ifanalysis in rescheduling 
context and comparing it with Moz and 
Pato's (2007) retrieval result 

The specific objectives are: 

Research Questions 

'What' are the 
Objective 

characteristics of a 
nurse schedule 
'What' are the 
constraints Specific 

'What' is the Objective 

methodology needed 
for model 
formulation 

'How' is the Specific 

scheduling and Objective 

rescheduling models 
proposed 
'What' operators 
need to be improved 
'How' are the models 
evaluated Specific 

Objective 
'What' and 'Why' is 
the best model 
selected 

1.  T o  identify all relevant constraints and parameters that makes up all rules and nurses 
preference as far as possible within appropriate levels of nurse skills and staffing size. 

2. T o  determine the degree of adjustment that will give low impact on other nurses in the 
rescheduling problem (with regards to schedule disruption, quality retrieval, fair on-call 
delegation, and high nurse preferences as Integrated Requested Off days). Controlling for 
nurse coverage and high nurse preferences were not only aimed at scheduling but also during 
rescheduling to obtain a win-win situation in a schedule that complements the nurses' 
contract and their personal request. 

3. To  construct new modified parent selection operators to acclimatize population 
diversification. 

4. T o  construct new modified crossover operator for a scheduling problem and present it as  a 
repair operator for a rescheduling problem by promoting a more flexible way of crossing over 
and adding little exploitation element to avoid a slow convergence. 

5 .  To evaluate the performance of several evolutionary models and the wlzat-ifanalysis. 

Figure 4.2. Details of research activities 

4.2 Problem Description 

A nurse schedule comprises work-related activities and home-related activities that 

lead to different nurse preferences. Moreover, the schedule frequently changes due to 
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uncertainties. This research intends to offer a well-planned and well-executed nurse 

schedule by developing a nurse scheduling model as well as integrating rescheduling 

components for real-time scheduling instances. Notably, in case of rescheduling, it 

needs to reproduce a feasible retrieved schedule, in that, the original schedule is not 

ignored. 

Scheduling and rescheduling are mutually exclusive. Controlling for nurse coverage 

and high nurse preferences are vital in scheduling and rescheduling to obtain a win- 

win situation in a schedule that complements the nurses' contract and their personal 

request. Objective 2 stresses some rescheduling aspects. 

4.3 Gathering of Information 

This research employed two types of data, i.e. primary data via a series of interviews 

with experts and secondary data. The interviewees were the matron and head nurses 

at two different wards at Hospital Sultanah Bahiyah (HSB). They talked about their 

experiences, opinions, preferences and organizational processes. We adopted the 

questionnaire of Ramli's (2004) and restructured it to suit the current nurse 

scheduling and rescheduling conditions. Also, secondary data were collected such as 

schedule records, official publication, and annual reports. As a result, we obtained a 

yearly record of implemented schedules from the Cardiac Rehabilitation Ward 

(CRW) and the Emergency Department (ED) ward. 

HSB was selected because it was considered a large general hospital whose 

scheduling problems were typically representative of the problems in other hospitals 

such as private hospitals or teaching hospitals throughout Malaysia. CRW and ED 

wards of HSB were studied because both wards behaved differently from each other, 
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hence had different changes in shifts. Data collected showed that nurse demand in 

CRW could represent a typical ward while the ED ward was more likely to employ a 

rescheduling strategy than CRW because of uncertain number of outpatients. ED 

involved impromptu incidents more than routine workload. However, both had 

common nurse scheduling and rescheduling characteristics. They were considerably 

large wards in terms of size, but were still facing staff shortages in real-time, had 

various types of shifts, involved different skills of nurses, and had high frequent shift 

adjustment. In this respect, our model could mirror a real-time situation more 

comprehensively and could offer an acceptable benchmark. 

4.3.1 Types of Data 

Three types of data were collected. They were the number of nurses and their skill 

level, the duration of schedule in term of days, and shift types. In addition, a number 

of constraints the nurses faced were collected to develop a quality schedule. 

4.3.1.1 Number of Nurse 

Each ward had a different total number of nurses. Despite this, the skill level was 

also an important consideration. Basically, there were a small number of senior 

nurses and a bigger number of junior nurses in a ward. The senior nurses were 

assigned evenly to each slot of the ON duty shift. This condition would change once 

the junior nurses were able to enhance their skill under a senior nurse's supervision. 



4.3.1.2 Duration of Schedule 

Head nurses were responsible to plan a fortnight schedule, which might change due 

to unexpected circumstances. In fact, head nurses who plan the schedule manually 

might face difficulty while malung the change. Practically, a schedule could be 

classified as weekly period and weekend period to cater for the needs of the nurses. 

4.3.1.3 Shift Types 

The mentioned irregular shifts manner in chapter 2.6.7 has rarely been used in 

Malaysia's hospitals. It introduces no fixed temporal pattern. Thus, this erratic shift 

pattern gives lease control of work schedule and may lose the consistence patient 

care which given by different nurses (Williams, 2008). Therefore, this research 

implemented several types of shifts within a fixed period of time, especially in 

Malaysia context. As shown in Table 4.1. The types of shifts considered were ON 

duty shifts and OFF duty shifts. 

Table 4.1 

Types of Shifts in Each Duty Shift Classijication 

Duty shift 
Types of shifts classification 

ON duty shifts Morning shift (i.e. 7 a.m. to 2 p.m.) 

Evening shift (i.e. 2 p.m. to 9 p.m.) 

Night shift (i.e. 9 p.m. to 7 a.m.) 

OFF duty shift Weekly day off 

Weekend day off 

Public holiday leave 

Request off day as annual leave 

Integrated Request off (i.e. requested weekly off day, 
requested weekend off day, requested public off day) 
Compensation off duty (i.e. Night duty compensation off, 
and on-call compensation off) 

Unexpected leave 



ON duty shifts consisted of morning shift which started from 7 a.m. to 2 p.m., 

evening shift from 2 p.m. to 9 p.m., and night shift from 9 p.m. to 7 a.m.. Each slot of 

ON duty shift required a certain level of nurse coverage with different skill levels to 

run the ward. On the other hand, OFF duty shift was more complicated with regards 

to weekly day off, weekend day off, public holiday leave, requested annual leave, 

compensation off duty (either for night shift duty or on-call duty), and unexpected 

leave. Unexpected leave was defined as being not available in the position such as 

delivering outpatient care, attending training, taking sick leave, and taking personal 

emergency leave. Each leave had its own rules and regulations. 

To get an annual leave, the following list should be met: who are eligible to apply, 

when (i.e. on which day) the leave is to be taken, and how many ofSdays requested. 

Regarding the features of disruption, the information needed was the number of 

absent nurses, the day of absence, and the number of consecutive days with absences. 

In practice, it is difficult to concurrently fulfil nurse coverage and satisfy a bunch of 

necessary off-duties within a little period of time. Therefore, our new Integrated 

Request OfS concept was an off day authorized by the head nurse which 

complemented the off day requested by a staff nurse (e.g., a head nurse can 

intelligently schedule a weekly off day to the day which a nurse requests an off). By 

doing so, a harmonious working environment could be achieved as a result of 

consideration from both sides. 

4.3.2 Constraints Identification 

Based on the data collected, a list of constraints had to be considered to produce a 

quality schedule. Generally, there are more attentions given to a hard constraint than 



a soft constraint. Hard constraint regards to the alignment of hospital regulations 

whereas soft constraint regards to nurse preferences. Nevertheless, the 

complementary of head nurse' preference (i.e., regulations) and nurses' preference 

was crucial because the highest quality of schedule could only be attained by the 

extent to which constraints were fulfilled. In a complex problem like combining 

scheduling and rescheduling, it was insufficient to use hard and soft constraints only. 

This research executed three classes of constraint which were hard constraints, semi- 

hard constraints, and soft constraints (refer to Section 3.3.3.2). In our point of view, 

semi-hard constraints are important in linking the scheduling phase and the 

rescheduling phase. Clark and Walker (2011) contended that some typical 

preferences included in a scheduling phase should not be disregarded in a 

rescheduling phase. Therefore, we maintained all constraints in the initial scheduling 

till the rescheduling, so that the rescheduling phase adhered to the same restrictions 

to develop a quality schedule after disruption. Essentially, a hard constraint is 

regarded as the root that determines the feasibility of a schedule. A hard constraint is 

considered at the survival stage. A semi-hard constraint, on the other hand, is 

considered at the enduring stage that utilizes the available nurses. Lastly, a soft 

constraint is considered at the ideal and satisfactory stage. 

Generally, this research consists of nine types of constraints that discussed in Section 

4.3.2.1 until Section 4.3.2.9. In all, the hard constraints of this research were 

certainly applied to Basic rules, Nurse workload, Skill classification, and Daily 

adjustment rules. Moreover, Weekend duty was certainly classified as semi-hard 

constraint. However, the classification of the others four types of constraints (i.e. 

Nurse coverage, Work stretch, Day off constraint, and Shift ordering constraint) were 



slightly complicated which involved all three classifications in one fell swoop. Each 

of the four constraints types have partly fallen into hard, semi-hard, and soft 

constraints that corresponding to the importance of each specific items or constraint. 

All these constraints classifications were clearly listed in Section 5.1's Figure 5.1. 

4.3.2.1 Basic Rules 

Hospital rules and regulations are important to be noted in scheduling as well as in 

rescheduling. It is a basic requirement of a schedule for assigning nurses to each ON 

and OFF duty shifts, every day. Necessarily, each nurse only worked one shift per 

day. This means that overtime was not permitted in our context. 

4.3.2.2 Nurse Workload 

A nurse workload was defined as a total number of days worked within a week. 

Nurses were required to work a total of six days a week and given a rest day (6DlF). 

The hospital regulation was applied to both scheduling and rescheduling phases. 

Hence, a workload involving more than six consecutive days for each nurse was not 

allowed in our context. 

4.3.2.3 Weekend Duty 

In an effort to promote work life balance and supportive work environment, a 

weekend off duty was necessary. In this context, at least 1 weekend off duty must be 

given to each nurse in a fortnight. This constraint was considered in our scheduling 

and rescheduling context. Weekend was defined as day 6Ih and day 7Ih of the week. 

The challenge here was that the head nurse should monitor the nurse coverage while 

putting in place this constraint at the same time. This is because all nurses were to 



rotate in taking the 4 days in the weekend in a fortnight schedule (i.e. day 6'h' 7'h, 13'~,  

and 14Ih). 

4.3.2.4 Skill Classification 

Assigning a senior nurse to supervise a junior nurse was considered in the scheduling 

phase and the rescheduling phase. As a constraint, nurses with higher skill could 

undertake jobs carried out by lower skilled nurses but not vice versa; a junior nurse 

was hardly upgraded to a senior nurse. As a result, with fewer number of senior 

nurses, the head nurse emphasized that at least 1 senior nurse should be on duty in a 

ward in each working shift. The same condition applied to rescheduling. 

4.3.2.5 Nurse Coverage 

To meet the need of a ward, covering constraints were considered. There were two 

aspects of nurse coverage: coverage for each work shift in a day (by column in the 

schedule), and coverage for each work shift per nurse (by row in the schedule). Both 

were accounted for in the scheduling and rescheduling phases. 

In a day, at least a minimum and maximum percentage of nurse coverage for each 

ON duty shift (e-g., morning shift, evening shift, and night shift) should be met. 

Therefore, three stages of nurse coverage were formed: lower bound, ideal coverage, 

and tolerable coverage (within the lower bound and ideal coverage). Generally, nurse 

coverage was aimed to plan ideally in scheduling and adjusted accordingly in 

rescheduling due to uncertain disruption. In fact, the number of available nurses in 

each day was not static and varied by ward. The nurse coverage's requirement might 

be adjusted accordingly depending on the number of nurses available each day. For 



instances, based on the interview, the number of nurses needed for each ON duty 

shift in CRW and ED is summarized in Table 4.2. 

Table 4.2 

Daily Nurse Coverage of CRW and ED 

In terms of nurse on shift, the covering constraints signified fair allocation especially 

to night shift duty and on-call duty. For each nurse, the night shifts must constitute 

approximately 25% of their total workload within a fortnight. So that, each nurse 

must work a night shift per schedule. In other words, there must be at least n number 

of consecutive 'N' shifts assigned to each nurse. The complexity of nurse coverage 

was increased when seniority involved. Particular for night shift purpose, head nurse 

Total No. of Nurse 

Morning Shift 

Evening Shift 

Night Shift 

Senior Nurse per Shift 
On-call nurse 
(standby) per Day 

would like to distribute the available number of senior nurses evenly and sufficiently. 

Also, at least one senior was assigned in each ON duty shifts of a day. This was to 

avoid a condition that has no senior nurse assisted the junior nurses during the 

working shifts. 

CRW ED 

Lower bound 

24 
4 

4 
3 

Lower bound 

34 
5 
5 
5 

Ideal 

24 
5 

5 
4 

Ideal 

34 

7 

7 

7 

> 1 

1 

> 1 

1 



In the rescheduling stage, asking the same nurse to fulfil on-call duty while ignoring 

the others was discouraged. Thus each nurse having an equal chance of being 

assigned to an on-call duty was considered in the research. 

4.3.2.6 Work Stretch 

Two aspects were considered to prevent the nurses from experiencing fatigue. These 

constraints were important to be taken into consideration in the scheduling phase and 

rescheduling phase. Firstly was with regards to the number of a stretch. A nurse was 

not allowed to take more than 6 consecutive ON duty shifts. Also, a single work day 

was discouraged since most nurses preferred consecutive off duty shifts. For that 

reason, split off days were violated unless the nurse himlherself requested to be off 

duty on that particular day. 

Secondly was about the type of ON duty shifts in a stretch (i.e., a number of 

consecutive empty cells). In the process of filling a stretch, an approximate equal 

number of two ON duty shifts (i.e., 'M' and 'E') in a stretch was assigned. This was 

to ensure that each nurse (i.e., by row) had an equal number of morning shifts 'M' 

and evening shifts 'E'. Based on the data collected by Ramli (2004)' Table 4.3 

illustrates the concept of the preferred combinations of morning shift (M) and 

evening shift (E). 



Table 4.3 

Work Stretch Coizcept 

Size of work stretch Work stretch 

For 6 days work stretch A combination of 21M<4 and 2<E54 

For 5 days work stretch A combination of  2-W13 and 2iE13 
For 4 days work stretch An equal balance of  2M 2E assignment 

For 3 days work stretch Same type of shift either 3M or 3E 

For 2 days work stretch Same type of shift either 2M or 2E 

4.3.2.7 Day Off Constraint 

Different types of off duties are preferable to be arranged together in order to 

construct a consecutive off days. This was giving more resting time to the nurses. 

Hence, this was not that hard to understand why split off day pattern (0-1-0 case) was 

not preferred. Besides the mandatory regulation of off day, Day off constraints was 

mainly focusing on nurse preferences as a retention strategy that fights against 

turnover crisis. Therefore, the perseverance of approving off duty in a consecutive 

manner or in a timely manner (e.g., requested off day and compensated off day) has 

been continually taken up in the rescheduling stage, not merely for scheduling stage. 

On the other hand, there were constraints which used to forbid nurse overworked and 

give timely rest. In this research, a certain number of off duty days was given to the 

nurse who was assigned to three consecutive night shifts. Besides, off day was most 

likely to be used to compensate on-call duty, if and only if the selected nurse was 

originally assigned to off duty shifts. The on-call compensation constraint was 

stressed in the rescheduling phase. 



4.3.2.8 Shift Ordering Constraint 

A nurse was not allowed to work two shifts continuously in a day. The order of 

assigning adjacent ON duty shifts for each nurse generally follows the rule of 

circadian rhythm, M<E<N. For instances, assigning M followed by E, or E followed 

by N, or M followed by N. These ordering were to longer a nurse' rest time during 

hislher shift transition. In this respect, a nurse who worked in a night shift must not 

be assigned a morning shift the next day. This shall be obeyed even during 

rescheduling. During the implementation period, shift ordering was even more 

restricted. As in rescheduling, the previous shift of the day was considered past 

(static); hence only little alteration can be made towards the adjacent shift. Next, any 

compensation off duty shift could be claimed right after the work was done, with no 

compromise. In sum, the whole idea was to provide sufficient rest time for nurses 

before they start a new shift. 

4.3.2.9 Daily Adjustment Rules 

To overcome uncertainty, rescheduling was carried out cautiously because it 

involved additional constraints. When a sudden fine tuning had to be done, this had 

some impact on the original schedule. The impact that rendered the original schedule 

unpredictable or unreliable was discouraged in our study. For that reason, this 

research added pre-retrieval before retrieval to avoid such circumstance. 

In pre-retrieval, retrieval decision was made in accordance with how worse a 

disruption could be and how well a schedule was ready. In our context, the readiness 

of a schedule basically aimed at having an ideal coverage with high nurse 

preferences. Thus schedule disruption on hard constraint violations and number of 



manoeuvred nurse on hand are needed to be understood before retrieval was decided. 

Each nurse may not simply change her shift for a replacement duty unless it was 

necessary. Disruption that caused an infeasible schedule was prerequisite for the 

retrieval process. As a result, daily adjustment constraint had to be considered. 

In retrieval, a schedule must fine-tuned by retrieval operator when there was still an 

infeasible disrupted schedule after pre-retrieval. The retrieval abides by the 

mentioned types of constraints as well as some additional principles that comply with 

human rights and forward clockwise direction rule. The head nurse was 

responsibility to be fair in allocating nurse to on-caI1 duty. The on-call delegation 

should not consider nurses who took unexpected leave on that day. Additionally, 

rescheduling could restart or tune at any shift period in a day of a week. The 

replacement of shifts should obey the forward clockwise direction rule. That is, M < 

M/E/N/Off < EINlOff < NIOff < Off. This is because when implementing a schedule, 

past, present and future shifts are identified. For instance, when an evening shift was 

disrupted because of absenteeism (present shift), the gap must not be replaced by a 

nurse who had worked in the morning shift (past shift). In other words, the nurse who 

had done hislher duty should not be considered. Thus, a backward order was not 

allowed in shift replacement. 

Minimizing the differences in the original schedule and a retrieved schedule is a 

general aim of rescheduling. Thus, a total number of changed cells was considered 

and denoted as quantity change in this research. Nevertheless, in order not to 

overlook quality change as Clark & Walker (2011) concerned; this research 

considered both quantity and quality changes in the retrieval operator. The quality 



change was denoted by two types of schedule adjustment. They were non-radical 

change and radical change in order to produce best retrieval fitness. Non-radical 

change was re-adjusting the schedule due to disruption that occurred on the day 

whereas radical change was re-adjusting the whole schedule which radically changed 

the remaining shifts in the original schedule. 

As a conclusion, in all the nine types of constraints, basic rules, nurse workload, skill 

classification, weekend duty, nurse coverage, work stretch, and shift ordering 

constraint have been implemented comprehensively in previous studies (refer to 

Table 2.3 in Section 2.6), also, Van den Bergh et al. (2013) gave a thorough review 

on that as well. Nevertheless, this research advanced the constraint of daily 

adjustment rules in rescheduling phase of NSRP due to ensure low impact on other 

nurses after schedule disrupted and uphold fair on-call delegation (refer to h ( s )  and 

&(s) of objective functions in Equation 4.2). Moreover, the day off constraint was 

advanced in this research in terms of nurses' requested off days due to fulfil timely 

nurse preferences. This type of constraint embedded in f2(s) objective function (refer 

to Equation 4.2 in Section 4.4). 

4.4 Model Formulation 

In this research, an optimal schedule was achieved when the smallest number of 

fitness or no constraint violations occurred. It means that a schedule, s or an 

individual performance was evaluated by minimizing the penalty function, F(s) that 

violated hard and soft constraints. Particularly, greater penalty values were given to 

constraints which were more important. As shown by Soubeiga (2003) and Ramli 

(2004), the essential objective function is as follows: 



F(s) = min P, C, (s) 

In Equation 4.1, Pk is the penalty value (weight) of violated constraint-type k in t 

kinds of constraints, C~(S) is the number of violated constraint-type k in schedule s. 

The purpose was to satisfy the constraints as many as possible. Hence, in our case, a 

schedule with a high function value was not preferred when compared with the 

schedule which had a lower function value. 

Our research integrated reactive scheduling in a nurse scheduling problem. Hence, 

our penalty function may consist of two main parts of function structured by several 

sub-penalty functions. Basically, the first part of fi(s) and fi(s) was used in 

scheduling and rescheduling which stressed quality of shift arrangements and the last 

part was used in the rescheduling phase by adding h ( s )  and h ( s )  to evaluate the 

performance. In all, Equation 4.2 represents the sum of all penalties caused by the 

constraints violation. 

Min F(s) = fi (s) + fi (s) + f3(s) + fq(s) (4.2) 

For our objective function in Equation 4.2, 

fi(s): minimize the violation of nurse work regulations with the number of nurses 

assigned to each shift in each skill level 

f2(s): minimize nurse's dislike of the shift arrangements to fulfil nurse preferences 

f3(s): minimize the deviation of shift changes after reactive scheduling to ensure low 

impact on other nurses 

f4(s): minimize the deviation of the same nurse assigned to on-call duty to keep fair 

on-call delegation during rescheduling 



4.5 Evolutionary Algorithm Modelling for NSRP 

Our study proposed a hybridization technique to solve a nurse scheduling and 

rescheduling problem. Evolutionary algorithm is a suitable pre-processing method of 

choice. Specifically, our proposed technique attempted to enhance the parent 

selection operator and crossover operator performance in order to provide a better 

solution. MATLAB R2010a language with Intel@ CoreTM i5-2410M CPU @ 2.30 

GHz and RAM 8GB was used to program the hybrid evolutionary algorithm. The 

detail of EA modelling is explained in the following sections. 

4.5.1 Representation Structure 

An individual or chromosome in NSRP was defined as a schedule that consists of 

three main elements. They are Nurses (senior and junior), Days (weekly days and 

weekend), and types of slzift. The chromosome representation is devoted to non- 

binary matrix representation. Here, a general structure of a schedule (i.e. Individual) 

is presented in Figure 4.3. 

Shift Symbol Types of Shift 
M Morning Shift (7 a.m. - 2 p.m.) T Requested weekly off 
E Evening Shift (2 p.m. - 9 p.m.) Q Requested weekend off 
N Night Shift (9 p.m. - 7 a.m.) B Requested public off, 
U Weekly off 0 Night shift's compensation off 
W Weekend off C On-call's compensation off 
P Public off L Unexpected leave 
R Request off 

* Given that Requested weekly off, Requested weekend off, and Requested public oflare in a group 
of Integrated Requested OfS 

Figure 4.3. A simple structure of a schedule 



4.5.2 Generate an Initial Solution 

By considering some restricted conditions of scheduling, partial random initial 

population was activated in a sequence by inserting some basic types of ON duty and 

OFF duty shifts, in a row-by-row manner. The sequence is listed in Figure 4.4. 

1) Generating an initial individual 
i. Inputting night shift 'N' and its night compensation off '0' in each row, named as 

NStretch 
ii. Entering a list of  requested off duty 'R' 
iii. Randomly entering a weekend off 'W' for each nurse in the weekend columns, which 

are in column 6Ih, 7Ih, 1 3Lh , and 14Ib 
iv. Randomly entering a weekly off 'U' for each nurse in the 14 days schedule 
v. Randomly entering a public off 'P' in the weekly or  weekend columns 
vi. Randomly entering a stretch of morning shift 'M' and evening shift 'E' into the 

remaining null cells of a row 
2) Repeat step 1 until a number of individuals is created 

Figure 4.4. Steps of generating initial population 

Population size is a number of individuals in a population. By repeating a specific 

number of times to generate individuals, an initial population was formed. In this 

research, the population size of 12 is found to be the most potential size for better 

performance for the overall models. The experiment is discussed in Section 5.2. 

i. Allocation of Night Shift 

With regards to NStretch, nurses worked a schedule involving three consecutive 

night shifts and were then given two off days as compensation in the order of 

{ 'N' 'N' 'N' '0' '0'). This arrangement was to provide sufficient rest time for 

nurses to revert back to a normal sleep cycle. In this study, we started the first 

NStretch randomly in each staff level (Senior and Junior). A staggered pattern 

was formed after a number of NStretch was continually allocated. If NStretch 

rolled to the end row (nurse), the next NStretch must be given at the start of the 



same nurse level, which was then repeated until the end of column. Figure 4.5 

shows how NStretclz was inserted to an individual. 

Figure 4.5. A sample of night shift allocation 

ii. Allocation of Requested Off 

The allocation of Requested Off was based on a list of Requested Off 'R' 

planned by the nurses themselves. At first, the nurses were free to apply as many 

'R' as needed without exceeding the allocated annual leave. Here, a list of 'R' 

for each row (nurse) was randomly set as ROINursei, StartDay,:EndDay,] for 

modal testing. For example, R0[3, 1 1 : 121 denotes that nurse 3 had requested 2 

consecutive off days from day 1 l t h  till day 12Ih . 

iii. Allocation of Weekend Off 

For each nurse, a Weekend Off 'W' was randomly placed into column 6Ih, 

column 71h, column 1 3 ' ~  or column 141h. However, a Request Off shall be 

replaced by Weekend Off signified as 'Q' in a condition where the planned 

Request Off was coincidently dropped from the weekend columns. If there was 

more than one Request Off dropped from the weekend columns, the replacement 
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was randomly picked. The reason for such arrangement was to devise a tolerable 

schedule that considered both parties' (head nurse and staff nurses) need and 

preference. 

iv. Allocation of Weekly Off 

For each nurse, Weekly Off 'U' was randomly placed in a null cell of the 

schedule. However, a Requested Weekly Off 'T' was given priory to be inserted 

if and only if the row (nurse) consisted of a planned Request Off. Given that this 

was used to encourage the head nurse to boost up timely nurse preferences. 

v. Allocation of Public Off 

By giving a Public Off to each nurse, a condition where the total number of 

Request Off has more than or equal to one (R21) shall require the Public Off 'P' 

to be inserted into either one of the planned Request Off cell, as Requested 

Public Off 'By. Due to some coverage restriction in a given day, not every nurse 

was able to take off days on the exact public holiday. Thus, we encouraged the 

given Public Off to be allocated into a null cell placed next with any one of the 

off shifts. This arrangement was to increase nurse preference in taking longer 

consecutive off days. It was an ideal option unless there was no null cell placed 

aside. In that case, Public Off shall be allocated randomly into a null cell of the 

row. 

vi. Allocation of Morning Shift and Evening Shift 

First, we identified the size of consecutive empty cells located in between any 2 

Off shifts. Then, we randomly chose a Morning and Evening work stretch 



pattern to be inserted according to the identified size. We continually inserted 

the Morning and Evening work stretch till all null cells of rows and columns 

were filled. Table 4.4 shows the choices of Morning and Evening work stretch 

pattern for a particular size in a null cell. This list of stretch was employed in the 

scheduling and rescheduling phases. 

Table 4.4 

List of M E Stretch Regards to the Size of A Consecutive Null Cells 

Size of a null 
cell stretch 

Morning and Evening work stretch 

MM, EE 

MMM, EEE 

MMMM, MMEE, EEEE, EEMM 

MMMMM, MMMEE, MMEEE, EEEEE, EEEMM, EEMMM 

MMMMMM, MMMMEE, MMMEEE, MMEEEE, EEEEEE, EEEEMM, 
EEEMMM, EEMMMM 

MMMMMEE, MMMMEEE, MMMEEEE, MMEEEEE, EEEEEMM, 
EEEEMMM, EEEMMMM, EEMMMMM 

MMMMMMEE, MMMMMEEE, MMMMEEEE, MMMEEEEE, 
MMEEEEEE, EEEEEEMM, EEEEEMMM, EEEEMMMM, 
EEEMMMMM, EEMMMMMM 

MMMMMMMEE, MMMMMMEEE, MMMMMEEEE, MMMMEEEEE, 
MMMEEEEEE, MMEEEEEEE, EEEEEEEMM, EEEEEEMMM, 
EEEEEMMMM, EEEEMMMMM, EEEMMMMM, EEMMMMMM 

MMMMMEEEEE, EEEEEMMMMM 

Finally, we accepted all surviving (feasible) solutions and non-surviving (infeasible) 

solutions in the initial population. The non-surviving solution might be capable of 

initializing a new direction of exploration and escape from being stuck at a local 

optimum. 



4.5.3 Fitness Evaluation 

Determining a representative penalty value with the different spectrums of 

constraints is inevitably desired. As discussed in Chapter 3, we concluded that three 

classifications of constraints are needed in NSRP. Here, we adopted Maslow's 

Hierarchy of Needs' principle that constitutes the constraints by understanding their 

objective and importance, and thus setting a penalty value to achieve quality 

schedule, as shown in Figure 4.6. The objective function was formulated as in 

Equation 4.3. 

Highest 
quality 

Fitness 1000000 1000 O schedule 

I I 

Non-surviving Accepted schedule Ideal schedule 
schedule (Infeasible (Feasible (Feasible 
chromosome) chromosome) chromosome) 

Figure 4.6. Structure of fitness values toward quality schedule 

Altogether, we segmented the constraints into 3 main classes by setting up 3 ranges 

of penalty value to achieve a quality schedule. Based on the importance of each class 

of constraints, there are at least 1000000 penalty values weighted for a hard 

constraint, at least 1000 penalty values weighted for a semi-hard constraint and lastly 

at least 1 penalty value weighted for a soft constraint. Soft constraints by themselves 

never achieved 0 fitness value because achieving even 1 fitness value was practically 

impossible (Kelemen et al., 2005). At this point, "how great" a quality schedule may 

respond to fitness evaluation relied on constraints violation in each class. 

The advantage of this computation was that it could aid tracing and identifying a 

quality schedule. For example, despite a larger value showing larger violation, a 
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fitness of 2005034 indicates that the schedule violated two hard constraints that 

caused infeasibility, violated five semi-hard constraints and at most thirol-four marks 

of penalty due to violating soft constraints. Therefore, we can easily trace a schedule 

problem as well as comparing schedules, by selecting the one that has the minimum 

fitness value. 

Decision variables: 

1 If nurse i of skill level v is assigned to shift p in day j 
x .  . =  

V l P l  

(0 otherwise 

1 If a scheduled duty shift p of nurse i in day j is changed 
D.. = 

LIP 
0 otherwise 

1 If constraint type k for skill level v in each day j is violated 

0 otherwise 

1 If constraint type k for each nurse i is violated 

0 otherwise 

Notations: 

I = number of nurse i 

V= number of skill levels v 

J = number of days j in scheduling period 

P= number of possible shifts patterns p 

K= number of constraint types k 

Wijp= weightage or penalty cost for the relative constraints Dijp  

Wvjk= weightage or penalty cost for the relative constraints Cvjk  

Wik = weightage or penalty cost for the relative constraints Cik 



4.5.4 Parent Selection 

For the sake of acclimatizing different levels of population size, preserving the 

population diversity for exploring and exploiting its solution space was our focus. 

Besides keeping some dissimilar individuals in the population, our proposed mating 

strategies involved two common factors: selection pressure of distance measured in 

the search space, and complementary characteristic of a selected pair that involved 

elite behavior to promising solution space. In other words, how close the relationship 

between the selected pair, and who to be selected were important considerations to 

produce better offspring for the next generation. 

To understand further, we experimented with five parent selection operators in EA. 

Besides Binary Tournament parent selection and Rank-based parent selection, three 

were our new proposed parent selection operators called Maximax and Maximin 

parent selection (MM), Discovery Rate parent selection (D,), and Discovery Rate 

Tournament parent selection (D,T). They were the expansion of the elite selection 

behavior of Tournament parent selection and Rank-based parent selection because 

they were developed based on the competing principle. Indeed, superior genes are 

likely to construct more endurable new generation to the nature (Zhong, Hu, Gu, & 

Zhang, 2005). Thus, in order to execute an in-depth analysis of the elite selections, 

these 2 classical operators (i.e., Binary Tournament and Rank-based parent selections) 

were chosen as the benchmark to verify the performance of three newly modified 

parent selection operators (i.e., MM, D,, and D,T parent selections). 
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4.5.4.1 Maximax and Maximin Parent Selection 

Maximax is defined as maximizing the maximum outcome from every alternative. It 

was known as an 'optimistic' decision criterion. On the other hand, maximin is a 

notion of finding an alternative that maximizes the minimum outcome from every 

alternative, known as a 'pessimistic' decision criterion. Maximax and Maximin 

parent selection (MM) was inspired by the concept of maximax and maximin which 

was a decision making approach under uncertainty (Heizer & Render, 2006). MM 

was suitable to be applied in an uncertain population pool with varying characteristic 

of individuals. This implied that no filtering operator was needed in generating initial 

population. 

Overall, the centre of attention in this operator was on better fit individual without 

overlooking any type of group that was either in the best fit group or worst fit group. 

In this sense, a slight distance between the complementary parents was ensured to 

uphold diversity in search. Figure 4.7 shows the procedure of MM parent selection in 

detail. 

i. Randomly group half of the total number of individuals from the population 
into a sub-population 

ii. Rank amongst the sub-population 
iii. Classify the sub-population into two outcomes which are individuals who 

have better fitness (maximum outcome) and individuals who have poorer 
fitness (minimum outcome) 

iv. The best (lowest fitness value) of the two outcome groups is then selected 
v. The two chosen individuals are then defined as Parent1 (Maximax) and 

Parent2 (Maximin) 

Figure 4.7. Procedure of Maximax and Maximin parent selection 



4.5.4.2 Discovery Rate Parent Selection 

Discovery rate is a probability pa€ [0, 11 of host bird used to discover alien egg so as 

to build a completely new nest in a new location. The host bird generates a new 

individual once a suspicious cuckoo egg is discovered while referring to a certain 

probability (Random>Discovery rate). Thus, discovery rate parent selection (Dr) is 

injecting relative difference into discovery concept in order to determine who shall 

be paired to proceed to the next recombination strategy. This operator was adapted 

from Yang and Deb (2010). Through the alien egg discovery process, discovery rate 

parent selection (Dr) was able to study the impact of dissimilarity between selected 

parents. 

With regards to premature convergence that generally pressures elite behavior, a 

controllable selection pressure mechanism is suitable. To our knowledge, the 

difference between selected parents has been ignored in parent selection study 

although it might be an important key to provide a diverse permutation space for 

reproduction operators. Therefore, D, parent selection was proposed. The detail is 

shown in Figure 4.8. 

i. Randomly select two individuals from a population 
ii. Set a probability rate of discovery Pd and calculate the Relative difference 

(RD), where the reference number falls on the individual who has a bigger 
fitness value 

Re lativeDrfference(x, y) = 
lx - 

m (4.4) 

. . . 
111. Discovery verification by comparing RD with Pd. 

Discovered if RD 2 Pd, accept the two selected individuals as parents1 and 
parent2 to next recombination purpose 
Not discovered if RD I Pdr return the two individuals into the population and 
repeat (i) to ( i i i ) .  

Figure 4.8. Procedure of Discovery Rate parent selection 
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4.5.4.3 Discovery Rate Tournament Parent Selection 

Besides the dissimilarity between the selected parents described in D, parent 

selection (Yang & Deb, 2010), an additional focus of the elite element was integrated 

into this selection intensity. Hence, discovery rate tournament parent selection (D,T) 

is a selection operator which consists of tournament and discovery rate 

characteristics (as disccussed in Section 4.5.4.2). This integration was inspired by 

tournament parent selection that most likely gives reliable performance upon a 

promising solution. 

The tournament was used to select better fit individual as potential parents. The 

dissimilarity concept gives a practical advantage to D, and D,T parent selections. 

Both acclimatize to a population's condition which regardless of the whole 

population's diversity whereby may reduce some heavy computation. In sum, the 

similarity procedure of D, parent selection can be referred to Section 4.5.4.2. The 

detailed procedure of D,T Parent Selection is shown in Figure 4.9. 

i. Randomly select two individuals from a population 
ii. Set a probability rate of discovery Pd and calculate the Relative difference 

(RD), where the reference number falls on the individual who has bigger 
fitness value . . . 

HI. Discovery verification by comparing RD with Pd. 
Discovered if RD 2 Pd, proceed to (iv) 
Not discovered if RD 5 Pd, return the two individuals into the population and 
repeat (i) to (iii) 

iv. In a tournament among the two, select the lower fit individual as parent I .  
The other is sent back to the population 

v. Repeat (i) to (iv) to get parent 2 

Figure 4.9. Procedure of Discovery Rate Tournament parent selection 



4.5.4.4 Rank-based Parent Selection 

A predominantly intensification is stimulated in this rank-based selection scheme as 

suggested by Maenhout and Vanhoucke (201 1). Rank-based parent selection (Rk) is 

a selection based on position in the individuals rank. Individuals in the population 

were sorted according to their fitness. Then two individuals were in a highly ranked 

position were selected. Generally, rank-based selection can maintain a constant 

pressure in the evolutionary search where it introduces a uniform scaling across the 

population. Ranking does not influence super-individuals or the spreading of fitness 

values. Due to elite element involved, rank-based parent selection was implemented 

for our model validation purpose. Figure 4.10 shows the procedure of rank-based 

selection. 

i. Rank individual in the population according to their fitness 

ii. Select two high ranked individuals (elite behavior) as parent1 and parent2 

Figure 4.10. Procedure of Rank-based parent selection 

4.5.4.5 Binary Tournament Parent Selection 

Binary tournament parent selection (T) is a tourney of two or above randomly 

selected individuals from a population. The implementation of binary tournament 

selection is simple and does not involve fitness sorting. Although all individuals have 

the chance to be selected in order to preserve diversity, the tournament activity has 

its bias toward elite individual. In fact, tournament may influence the convergence 

speed. Thus, tournament parent selection adopted from Burke and Smith (2000) was 

used to validate the performance of the three newly proposed techniques. Figure 4.1 1 

shows the procedure of binary tournament selection in detail. 



- - 

i. Randomly pick two individuals from a population 
i i .  Compare them against their fitness value 

ii i .  The fitter (lower fitness value) is selected as parent 
ill. Return the worse fit individual back to the population 
v. Repeat (i) - (iv) to get the second better parent 

Figure 4.11. Procedure of Binary Tournament parent selection 

4.5.5 Crossover Operator 

The definition of various matrix crossovers and their drawbacks are discussed in 

Section 3.3.5. By understanding their limitations, Two-factor Blockwise crossover 

and Cuckoo Search Restriction Enzyme Point crossover were created in this research 

to ensure their suitability to our nurse scheduling and rescheduling context. Based on 

the promising performance of the crossover occurrence rate (Cr = I )  (Adamopoulos, 

Hannan & Hierons, 2004; Eskandari & Geiger, 2008; Kelemci & Uyar, 2007; Miki, 

Hiroyasu, Yoshida, & Ohmukai, 2000; Srinivas & Patnail, 1994), we adopted Cr = 1 

in our context that provides us (1)  a strong elitist setting that always input offspring 

that inherited from elite parents to next iteration by cooperating with parent selection 

operators; (2) not to ignore a large number of infeasible solutions in the initial 

population. With a constant occurrence of crossover, the search occupied surviving 

fitness individuals and non-surviving fitness individuals and thus spread the search 

space for the region that contains a global optimum; (3) a compulsory fine-tuning. 

The proposed Cuckoo Search Restriction Enzyme Point crossover obtains directed 

elements for fine-tuning purpose; (4) an in-depth investigation on the randomization 

strategy which merely look into the permutation strategy of each proposed crossover 

operators. 



4.5.5.1 Single Point Crossover 

Crossover attempts to explore a search space by exchanging genetic information and 

recombining it from selected parents. In the process of crossing over, randomization 

is a vital challenge for a complex constraints handling problem. As in our NSRP, 

randomly change a cell may violate some constraints. For this reason, row-wise 

crossover of Ramli (2004) is basically upholding some sub-solutions away from 

excessive disturbance. Basically, row-wise crossover is also analogous to a 

horizontal single-point matrix crossover. Therefore this single point crossover was 

adopted and applied to validate the performance of the proposed crossover operators. 

Generally, a schedule (chromosome) consists of two parts due to the differences in 

nurse skill levels (senior group of nurse and junior group of nurse). A detailed 

procedure of a single point crossover operator is illustrated in Figure 4.12. 

i. Segregate nurses in groups based on their skill levels 
ii. Put a fixed cross point in between the group of senior nurse and the group of 

. . . junior nurse to identify two blocks of rows 
111. Swap the block of junior group between the two selected parents. Hence, two 

complete children are formed 
iv. Calculate the fitness of child1 and child 2 
v. Update current fitness value 

Figure 4.12. Procedure of Row-wise crossover 

4.5.5.2 Two-factor Blockwise Crossover 

Two-factor Blockwise crossover (2Fblockwise) is a matrix form crossover operator 

which readjusting the chromosome by predetermined blocks. The blocks were cut 

based on two factors (i.e., horizontal factor and vertical factor). In this research, the 

classical single point crossover was adopted. To increase the conservative disruption 



of row-wise crossover from Rarnli (2004), 2Fblockwise crossover enhances 

exploration without excessively messing up some promising sub-solutions. 

Figure 4.13 indicates 2Fblockwise crossover with regards to two factors in a two- 

dimension schedule, which was set apart by one horizontal cross point and vertical 

cross point. The two factors were the segregation of nurses based on skill levels (e.g., 

senior group and junior group) and segregation of days based on number of weeks 

(e.g., 1st week and 2nd week). Therefore, the whole schedule consisted of four (e.g., 

2x2) big blocks where the 2"d week of senior group and lSt week of junior group 

were both swapped in between two selected parents throughout the whole 

generations. 

Parent l 

Weekl , Week2 

Parent 2 

Weekl , Week2 

I 

Vertical 
cross point 

Horizontal 
Cross point 

I 

Vertical 
cross point 

Offspring 2 

I 

Figure 4.13. 2Fblockwise crossover 



4.5.5.3 Cuckoo Search Restriction Enzyme Point Crossover 

Basically, Cuckoo Search Restriction Enzyme Point crossover (Max[4x4]CSREP) is 

defined as a matrix form crossover operator that crossing over various patterns of 

blocks or sectors between the selected chromosomes to search a better fit 

chromosome. From the work of Yang and Deb (2010), the acts of generating egg by 

randomwalk in cuckoo search and a nature of cuckoo mimicry behaviour are adopted 

in the crossover. Indeed, these acts are intended for searching suitable blocks of 

crossing over. Figure 4.14 illustrates a simple concept of Max[4x4]CSREP crossover. 

In order to reduce unnecessary disruptions, restriction enzyme point (REP) 

participates in a randomwalk process to crossing over flexibly (see Equation 4.5). As 

shown in Figure 4.14, REP has no predetermined blocks for crossing over but it leads 

a cut accordingly at any cell. In our NSRP, REP is a cut after a number of cells are 

recognized in accordance with hard constraint violation. Based on that, a block is 

formed by the particular hard violated cell and a group of cells, in other words 

unreserved shifts patterns. The unreserved shifts patterns involve ON duty shifts and 

OFF duty shifts, such as morning shift, evening shift, night shift, weekly off shift, 

weekend off shift, and public off shift. 

Futhermore, stepsize is set by random number that relates to the scale of problem of 

interest (Yang & Deb, 2010). Once a size of block is formed, an imitating process is 

started by mimicry feature. The mimicry feature is mainly implemented through the 

shift pattern and blocksize pattern. Again, REP leads the foremost cell according to 

the unreservedly shifts. Moreover, a size of maximum [4row x 4colurnn] block is 

compounded by various unreservedly shifts that are joined together at first. 



Parent 1 Parent 2 
Restriction 
enzyme + 
cross point 

Offspring 1 Offspring 2 

Figure 4.14. A simple concept of CSREP 

Essentially, the aim of hybridizing CS is to generate the best child of each parent. For 

exploration purpose, CS is slightly modified to observe the performance of a child 

generated from different types of breeding behaviour. Therefore, nearly all Cuckoo 

Search is hybridized in EA's crossover apart from the discovery rate since Yang and 

Deb (2010) indicated that this parameter was insensitive to convergence rate. A 

detailed procedure of this crossover operator and the CSREP, retrieval operator are 

illustrated in Figure 4.15. 



i. Scrutinize parent 1 in relation to hard constraints violation, 
ii. Randomly generate a cuckoo egg of the parent by performing RandornWalk 

iii. Calculate Randomwalk with mimicry feature (shift pattern, block pattern) 

l t+l )  - 
X j  -<'+s (4.5) 

Where X,"'= vector of PI 
Xi('+') = vector of P2 
S = Stepsize in a random manner 

iv. Identify cuckoo egg of PI with mimicry host egg feature 
v. Verify the host egg of P2 by mimicry feature: 

a. Similar bock pattern of Pland P2 is met 
AND 

b. Permissible shift pattern of Pland P2 by restriction enzyme point is 
met 

vi. Repeat (ii) to (v), if (v) if no success 
vii. Swap between host egg of P2 and cuckoo egg of P1 

viii. Repeat (ii) to (vii) until a fixed number of restriction enzyme cross points 
are met. In that, a complete cuckoo chick with attentive care and host chick 
are formed 

ix. Calculate and compare the fitness of cuckoo chick and host chick (F,vs. Fh) 
x. Keep the better chick as child derived from Parent 1 

xi. Scrutinize parent 2 to repeat the same process from (i) to (x) where now 
parent 2 is denoted as P 1 

xii. Keep the better chick as child derived from Parent 2 
xiii. Repeat (i) to (xii) until a fixed number of generation is met 
xiv. Rank and find the current best-so-far child derived from Parent 1 and Parent 

2. The best child derived from Parent 1 is denoted as child 1 and the best 
child derived from Parent 2 as child 2 

Figure 4.15. Procedure of Max[4x4]CSREP crossover 

4.5.5.4 Cuckoo Search Restriction Enzyme Point Retrieval Operator 

To the extent of Max[4x4]CSREP crossover, Cuckoo Search Restriction Enzyme 

Point Retrieval (CSREP,) was employed for fine tuning purpose in addressing the 

rescheduling problem. CSREP, that engaged with restriction enzyme point and 

mimicry approach involves evolution and adaptation. CSREP, is the repair function 

in rescheduling that should equip with flexibility, sophisticate change and efficiency. 

In that, having some parameters changed in Max[4x4]CSREP may be pointed to 

certain level of flexibility that befits retrieval condition. 



h CSREP,., three parts were altered from Max[4x4]CSREP Crossover. Based on the 

Figure 4.15, stopping criteria (refer to Section 4.5.8), unreserved shift pattern of REP 

(refer to Section 4.3.2.9) and stepsize which depend on the disruption conditions (i.e., 

number of days absent, number of absent nurse, and number of consecutive days 

with absences) shall be amended for repairing purpose in rescheduling. This is as 

complex as searching in a smaller search space that exploration is restricted. In short, 

a feasible solution with less possible changes made is the vital concern during 

rescheduling problem. 

For instance, with regard to the parameter of unreserved shift pattern in REP, a 

principle of cyclical rhythm ought to be obeyed during rescheduling. Figure 4.16 

illustrates a simple example of shift adjustment in rescheduling phase. Given that the 

disruption condition is Junior nurse 4 take 1 emergency leave on 9Ih June 2015. As 

for a day when the evening shift had a lack of nurses, the scarcity shall mend by 

night shift nurse or off duty nurse but not by morning shift nurse of the day (see the 

alternative shifts in Figure 4.16). This is because the morning nurse had already 

completed her duty. On the other hands, simple adjustment is considered in a 

condition where the ward operation of the absent day is not disrupted (e.g., no hard 

constraints violated) such as readjust the absent nurse' schedule with any of hisher 

ON or OFF shifts in others day, or no shift adjustment will do for other nurses. This 

means that the absent nurse may take his own responsibility for hislher unexpected 

leave. Therefore, the well thought-out for repairing cell in rescheduling increases the 

complexity. 



Figure 4.16. An example of shift adjustment in rescheduling 
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4.5.6 Mutation Operator 

Generally, mutation operator is used to randomly bit-flipping the selected cell. 

However, the randomness may easily violate the hard constraints which cause an 

infeasible solution. Therefore, directed mutation operator is employed to perform 

little tuning capabilities for the intricacy of highly constraint-based nurse scheduling 
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9 9 9 

Morning shift(;, ,i+d) 

Evening shift(;, j+dl 

Night shift(;, j+d-,) 

Public off duties(;, j+d.,, 

Weekly off duties(;, j+d-l, 

Weekend off duties(;, ,+d-,) 

i = any nurse who may change his roster 
j = the disrupted day 
d = number of days that have not been 

implemented in the schedule 



problem (NSP). Hence, mutation rate has neither not a stressed matter nor pre- 

determined in the operator. Directed mutations used by Ramli (2004) were adopted 

and slightly modified with delete-and-insert strategy in this research. Here, the 

conventional swapping strategy and new delete-and-insert strategy were applied to 

each mutating operation. Swapping strategy exchanged the position of two selected 

cells, whereas delete-and-insert strategy deleted the content of a selected cell by 

inserting a new content into the cell. In addition, 2-dimensional considerations (i.e., 

columns and rows) were concurrently taken into account in some mutating 

operations. In all, a sequence of directed mutations was applied to this research. 

There are called Offfol Mutation, 0-1-0 Mutation, MEBalance Mutation, EN 

Mutation, NM Mutation, ReqFit Mutation, and WU Mutation. 

Offfol Mutation deleted weekend off and weekly off that were not within the 

weekend area and weekday area, respectively. Here, the operator aimed at assigning 

equally the number of weekend off duty, weekly off duty, and public off duty for 

each nurse. The four remaining mutations are 0-1-0 mutation, MEBalance mutation, 

EN mutation, and NM mutation. They aimed to disrupt the chromosome by row but 

yet partially guided to avoid further constraint violations. Briefly, in 0-1-0 mutation, 

a 14-day schedule avoided a single ON duty shift by swapping the only ON duty 

shift with the next OFF duty shift. Thirdly, MEBalance mutation reduced the 

imbalance of the total of morning shift and evening shift for each nurse. This 

operator randomly replaced M with E if the total number of M was lesser than E in a 

row and vice versa. 



Next, EN mutation operator disallowed night shift to be assigned after an evening 

shift. This mutation randomly swapped E with any M of the row. Fifth, the head 

nurse was not allowed to assign a morning shift to the nurse who had just finished 

hidher night shift duty. Hence, NM mutation operator swapped the order N and M in 

a row with each other. 

Sixth, ReqFit mutation aimed to disrupt the M and E gene in a column in 

consideration of ward coverage daily. It randomly replaced an M with E if the 

column (per day) had less evening shift coverage and vice versa. OFF duty as 'RO' 

shall be replaced with the lack coverage of 0 1 V  duty shift, if and only if both 'M' and 

'E' of the day were in a scarce condition (refer to Table 4.2). Finally, WU mutation 

randomly swapped weekend W gene with weekly U gene in order to effect some 

changes for global optimal purpose. 

Overall, these mutations operated over each chromosome, which in a partial random 

manner for a segment of a chromosome, corresponding to some constraints. In sum, 

the key reason for constructing directed mutation is to ensure that the constraints of a 

chromosome are less violated for the next generation (Ramli, 2004; Wang, Sun, Jin, 

Fu, Liu, Chan, & Kao, 2007). 

4.5.7 Steady-state Replacement 

Individuals were forced to be eliminated at this stage in order to maintain a constant 

population size after the evolution. This research implemented a steady-state 

replacement by replacing the selected parents with their offspring. Hence, the 

evolutionary process could at a snail's pace. 



4.5.8 Stopping Criterion 

Based on the discussion in Section 3.3.8, two effective stopping criteria are 

recommended by Ashlock (2005). They are termination based on a fixed number of 

generations and terminated once the expected solution achieved. The hybrid 

evolutionary algorithm of this research adopted the two stopping criteria. The 

stopping criterion of a fixed number of generations was mainly applied in 

evolutionary algorithm to address our scheduling and rescheduling problem. The 

second stopping criterion was collectively involved in the cuckoo search retrieval 

operator to avoid hard constraint violation. For instance, stop retrieving once the 

infeasible solution is solved as well as stop once a numbers of retrieved solutions are 

generated in the retrieval operator. 

As a whole, Figure 4.17 illustrates the structure of hybrid evolutionary algorithm for 

nurse scheduling and rescheduling problem. Dotted rectangle highlights the newly 

proposed operators of the research. 
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Figure 4.17. Structure chart of Hybrid Evolutionary Algorithm for nurse scheduling 

and rescheduling problem 



Based on the structure of EA shown in Figure 4.17, there are a few ways of selecting 

individuals as parent and crossing over to generate offspring. The variations of the 

proposed models are listed in the following. 

i. Modify the EA with Rank-based parent selection and 2FBlockwise crossover 

ii. Modify the EA with Tournament parent selection and 2FBlockwise crossover 

iii. Modify the EA with Tournament parent selection and Max[4x4]CSREP 

crossover 

iv. Modify the EA with Maximax and Maximin parent selection and 

2FBlockwise crossover 

v. Modify the EA with Maximax and Maximin parent selection and 

Max[4x4]CSREP crossover 

vi. Modify the EA with Discovery Rate parent selection and 2FBlockwise 

crossover 

vii. Modify the EA with Discovery Rate parent selection and Max[4x4]CSREP 

crossover 

viii. Modify the EA with Discovery Rate Tournament parent selection and 

2FBlockwise crossover 

ix. Modify the EA with Discovery Rate Tournament parent selection and 

Max[4x4]CSREP crossover 

4.6 Model Evaluation 

In this research, the listed nine proposed models were evaluated in terms of 

effectiveness, efficiency, accuracy, and reliability. Besides that, two classical models 

were then compared to validate the performance of all nine proposed models (refer to 



Section 5.5). In sum, the performances of all total eleven models were evaluated. 

Originally, we tested all combinations of each parent selections and crossovers. 

However, some combinations seemingly performed drearily commonplace or 

predictably and produced infeasible solution need not be chaotic, and thus 

disregarded in the model comparison experiments. 

A model is said to be effective when it is able to produce the best-so-far solution 

with the least constraint violation and lowest schedule disruption. Hence, infeasible 

solution is defined as a schedule has not fulfilled all the hard constraints. Deep and 

Thakur (2007) described three components for model evaluation: reliability, 

efficiency and accuracy. The basic analysis for model reliability is the percentage of 

success in generating a feasible solution. Model efficiency can be defined by 

evaluating the average number of function evaluations and average computational 

time, while model accuracy is justified by the mean of objective function value after 

a number of experiments. 

Furthermore, what-if analysis was conducted to evaluate rescheduling. A few 

incidents of uncertainty created by Moz and Pato (2007) were tested. The features of 

the incidents tested were number of days absent, number of absent nurse, and number 

of consecutive days with absences. In addition, three groups of bi-weekly disruptions 

adapted from Moz and Pato (2007) were examined. They were Group I disruption 

during the second week, Group I1 disruption during the first week, and Group V 

disruption during the whole week. Of all, Group V disruption was the largest 

dimension of disruption with the most number of consecutive absence days. Group 

I11 and Group IV disruptions of Moz and Pato (2007) were excluded in this research 



because the third and fourth week disruption incidents were not suitable in our 

biweekly schedule. 

4.7 Summary 

This chapter explained thoroughly the research design used specifically in the first, 

second, and third phase. In addressing a nurse scheduling and rescheduling problem, 

a few models were developed to address the problem. In the next chapter, evaluation 

and validation of the models, which was the fourth phase, will be presented. 



CHAPTER FIVE 

EXPERIMENTS AND RESULTS 

This chapter explains the ways to achieve two research objectives. These two 

objectives are (1) To construct an appropriate model for rescheduling purpose such 

that it can adjust the changes that give low impact to other nurses; and (2) To 

evaluate the performance of the proposed nurse scheduling and rescheduling model 

and the quality of the output (schedule). Toward these objectives, this chapter begins 

by deploying the boundary of NSRP, followed by a number comparison experiments 

carried out on each the proposed technique, which these results altogether were later 

used to find out the most fitting operators. Next, this chapter further elaborates on 

models comparison from among the models comprising the earlier identified fitting 

operators, to select the best model. Further, model validation and sensitivity analyses 

on disruptions are highlighted. A summary of the findings concludes this chapter. 

5.1 Model Setting 

As mentioned in Section 4.3, the head nurse obtained essential data on daily nurse 

coverage in each shift. Based on the data collected and previous studies, a lower 

bound number and ideal number of nurse needed for CRW and ED ward is shown in 

Table 5.1 below. 



Table 5.1 

Setting of Nurse Coverage in Daily Basis 

" Total number of nurse slightly varies in each department 

' T o t a l  No. of 
Nurse 

MorningShift,M 

Evening Shift, E 

Nightshift, N 
Senior Nurse per 

Shift 
On Call nurse 

(standby) per Day 

Due to nurse shortage, the total number of available nurse varies throughout the year, 

so, we show an ideal nurse coverage rate in percentage form as well for each On 

Duty shift. The On Duty shifts are classified as Morning shift 'M', Evening shift 'E', 

and Night shift 'N'. We adjusted the coverage percentages by calculating the average 

percentage of nurse needed in each On Duty shift as our model's benchmark. 

CRW 
(No. of nurse needed) 

ED 
(No. of nurse needed) 

Lower 
bound 

Model 's Benchmark 
(No. of nurse needed) 

L I 

1 

Ideal 

24 

4 

4 

3 

24 

5 

5 

4 

Lower 
bound 

100% 

17% 

17% 

13% 

> 1 

1 

100% 

21% 

21% 

17% 

34 

5 
5 

5 

Ideal 
Lower 
bound 

2 1 

1 

100% 

15% 

15% 

15% 

34 

7 
7 

7 

39 

6 

6 

5 

Ideal 

100% 

21% 

21% 

21% 

100% 

16% 

16% 

14% 

39 

8 
8 

7 

100% 

21% 

21% 

19% 



Next, a list of model constraints has to be obeyed for the NSRP is discussed in 

Section 4.3.2. The classifications of constraints involved are listed and shown in 

Figure 5.1. 

Hard constraints: 
1. 1 nurse only works 1 shift per day [Basic rules] 
2. Nurses are required to work 6 days a week (6D1 F) [Nurse Workload] 
3. At least 16% of total nurse should be available in each M & E shift, meanwhile 14% of total 

nurse should be available in N shift [Nurse coverage] 
4. At least 1 senior nurse is assigned to each work shift in a ward [Skill classij7catiorz] 
5. Work more than 6 consecutive workdays is disallowed for each nurse [Workstretch] 
6. For each nurse, 2 off days are given to compensate for 3 consecutive Night shift duties. Hence, 

NNNOO shifts pattern is assigned in block according to turns and rotations [Day off colutraint] 
7. For each nurse, 1 off day is given to compensate for 1 on-call duty, if the shift of the selected 

nurse is originally scheduled as OFF duty shift [Day off corutraint] 
8. N-M shift forbidden in any adjacent work shifts [Shifi ordering constraint] 
9. Each compensation off day is ordered after its undertaking [Slzift ordering constrair~t] 
10. The reassignment of shifts must respect to the forward clockwise direction rule 

(M<M/E/N/Off<N/E/Off<OffN<Off) during the implementation [Slzifi ordering corzstraint] 
1 1. Nurse may not change her shift for replacement duty unless the disruption has caused the 

original schedule to be infeasible [Daily adjustmerzt rule] 
12. The delegation of on call duty shall not consider nurses who are absent with unexpected leave 

on that day [Daily adjustment rule] 

Semi-Hard Constraints: 
1. Total number of nurses considered as within tolerable coverage in each M & E shift should be 

within the range of 16% - 2 1 %, meanwhile the total number of nurse as within tolerable 
coverage in N shift should be within 14%-19O/0 range [Nurse coverage] 

2. Split off days or single work day is discouraged for each nurse, unless the nurse has required the 
day off [Work stretch] 

3. At least 1 weekend off duty is given to each nurse in a 2-week schedule. Weekend is defined as 
the 6th and day 7th of the week [Weekend d u y ]  

Soft Constraints: 
1. 21% of total number of nurses should be ideally assigned to each M & E work shift and 19% of 

total number of nurses is ideally needed in N shift. In this case, ideally a total of 8 nurses should 
be available in each M and E shift, and 7 nurses in N shift [Nurse coverage] 

2. Each nurse should have an equal chance to execute on-call duty to avoid unfair assignment 
[Nurse coverage] 

3. Equivalent total number of M and E shifts ((M+E)/2* (lor2)) is practiced in a personnel 
schedule of a nurse (by row) [Work stretch] 

4. A roughly equivalent number of M and E shifts in a combination of  M and E work stretch, with 
no N shifts. For 6-day work stretch, the preferred combinations of M and E are 2 1 M 3  and 
2 S 3 ;  a combination of  2-53 and 2 S 5 3  for 5-day work stretch; an equal balance of 2M 2E 
assignment for 4-day work stretch. For 2 and 3 day work stretch, it is preferred that those days 
have the same type of shift either 2M or 2E, and 3M or 3E [Work stretch] 

5 .  The arrangement of consecutive off days shift is preferred in a personnel schedule of a nurse (by 
row) [Day off constraint] 

6. Each nurse's request off application should be approved to satisfy hislher personal need [Day off 
constrairzt] 

7. Assigning continuous shifts may respect the forward clockwise direction rule (M, E, and N in 
order) in scheduling [Shift ordering constraint] 

Figure 5.1. Constraints considered 
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Also, a list of penalty value was set based on the importance of the considered 

constraints (refer to Chapter 4.3 and Figure 4.6) and the opinion of head nurses. 

Table 5.2 shows the detail. 

Table 5.2 

Penalty Value of Constraints Violatiorz 

No Constraints violation, ( I F )  Penalty value, {THEN) 
1 reqFitMj<l 6% 1000000 
2 reqFitEj< 1 6% 1000000 
3 reqFitNj<l 4% 1 000000 
4 16%< reqFitMj [I] <21% 1001 
5 16%1 reqFitM, [2] <21% 1002 
6 16%1 reqFitMj [3] <21% 1005 
7 16%1 reqFitMi [4] <21% 1010 
8 16%1 reqFitMi [5] <21% 1020 
9 16% reqFitEj [ l ]  <21% 1001 
10 16%1reqFitEj[2]<21% 1002 
1 1 16%1 reqFitEj [3] <21% 1005 
12 16%1 reqFitEj [4] <21% 1010 
13 16%1 reqFitEj [5] <21% 1020 
14 14%1 reqFitN, [I] <19% 1001 
15 14%1 reqFitNj [2] 4 9 %  1002 
16 14%1reqFitNj[3]<19% 1005 
17 14%1 reqFitNj [4] <19% 1010 
18 14%1 reqFitNj [5] <19O/0 1020 
19 SeniorNursej (M)=O 1000000 
20 SeniorNurssej (E)=O 1000000 
21 SeniorNursej (N)=O 1000000 
22 SingleWorkDayi (e.g., Off-MEN-Off) 1000 
23 MEbalanceil:ll I] 1 
24 MEbalancei 1:121] 2 
25 MEbalancei [>I311 10 
26 Ordering[OEIi 1 
27 Ordering[OMIi 2 
28 Ordering[MNIi 1 
29 Ordering[ENIi 5 
30 Ordering[NMIi 1000000 
3 1 WeekendOff,=O 1000 
32 ConsecutiveWorkdaysi>6 1000000 
33 CellDi~similarity~ 5 
34 OnCallDelegati~n~ 10 
35 ROdisapprovalij 10 
36 UntolerableROii 1 

There are some specific terms used in the table above. For instance, reqFitMj 

signifies the requirement for 'M' shift per day. reqFitMj[l] signifies 1 nurse away 



from the required 'M' shift coverage. MEbalancei[lll] signifies 1 shift difference 

between total 'M' and total 'E' shifts per nurse. CellDissimilarity signifies the 

different shifts types between the original schedule and the retrieved schedule. 

OnCallDelegation signifies unfair assignment to the same nurse for on-call duties. 

ROdisapproval signifies that the nurse's request for off duty is not 

UnTolerableRO signifies a number of Lntegrated Request Off that has not granted 

successfully 

5.2 Experimental Result of Population Size 

The fitting of each operator is a vital part to illustrate the design of hybrid EA. If EA 

has taken more precise consideration in the structural exploration and exploitation, it 

may perform superior. The following experiments were implemented to test the 

fitting of the new proposed parent selections and crossovers. The population size 

parameter was determined for further experiments. 

Table 5.3 

Output of DzfSerent Population Sizes 

Population 
size 10 12 14 16 18 20 30 40 

Best 4041 2046 4038 3046 3063 3049 4041 5043 
Fitness 

Average 5051 4046 5048 6048 5050 4050 5051 6048 
Fitness 

STD ('000) 0.58347 1.63479 0.5395 1 I SO539 1.88714 1.1877 0.693 18 1 .01497 

Feasible % 4/20 6/20 8/20 11/20 8/20 15/20 7/20 20120 

Best 4040 3041 4044 3044 3045 3048 2062 4046 
Fitness 

Average 5051 4047 5045 6050 5049 4050 6050 6052 
Fitness &! 

STD ('000) 1.16397 0.91464 0.54791 1.78417 0.98651 0.99038 1.1 1732 1.36122 

Feasible % 3/20 8/20 6/20 12/20 12/20 15/20 13/20 16/20 



Based on Table 5.3, larger population size may give higher success rate of feasibility 

but lack effective optimal solution. Given that, in a comparison that starting with 10 

sizes difference ahead (i.e., 10, 20, 30, 40), population size of 20 was relatively the 

best parameter among the four groups of size. This provisional best population size 

of 20 obtained the same result of best average fitness 4050 and slight high feasible 

rate ((15/20)*100) =75% in MM-2F and Dr-2F. Also, it produced the best fitness 

3049 in MM-2F but second best fitness 3048 in Dr-2F. Among the groups of 10 

sizes difference, overall, a clear improvement occurred from size of 10 to size of 20 

(e.g., getting lower the best fitness and average fitness) whereas inferior from size of 

20 to size of 40 (e.g., getting higher the best fitness and average fitness), though 

Dr-2F obtained best fitness 2062 in size of 30. Due to this reason, this experiment 

executed more precisely for the output between population sizes of 10 to 20 (i.e., 10, 

12, 14, 16, 18, and 20). 

In all, this table illustrates eight groups of population size parameter each were tested 

by two proposed parent selection approaches. They were size of 10, 12, 14, 16, 18, 

20, 30 and 40, with 100 generations. For MM2F, the population size of 12 had the 

lowest fitness at 2046 as well as lowest average fitness at 4046. Although the 

population size of 12 was the second best fitness with 3041 fitness value in Dr2F, it 

produced the lowest average fitness at 4047. Therefore, since we wished to search for 

the optimal (lowest fitness) schedule among all population sizes, the population size 

of 12 was determined for the following experiments. 



5.3 Experimental Result of Proposed Parent Selection 

There was a need to determine the most suitable relative difference between parents 

in discovery rate parent selection series in order to proceed with further comparisons. 

Figure 5.2 presents the different levels of discovery rate dr experimented by 

Discovery Rate Tournament Parent Selection. 

- - - -Avrg Fi t  

- -- ~es t  Fit 

Figure 5.2. The best fitness and average fitness at different levels of discovery rate d, 

in D,T parent selection 

Selective pressure may supply or preserve population diversity. Relative differnce 

rate is denoted as a selective pressure with the aim of determining an acceptable 

pressure during a selection. As Figure 5.2 reveals the fittest discovery rate dr was 0.4, 

which means that the difference of the selected parents (in terms of fitness) should be 

at least 40%. This level of pressure found 1033 best fitness and 2038 average fitness 



(2 semi-hard constraints violated and 37.6 penalty marks from soft constraints) over 

20 runtimes. 

From the experiment, a suitable d, may produce better fitness and diversity for the 

offspring. Approximately 40% of relative difference between the two selected 

parents for a small population size was suggested and applied to the following 

experiments. In fact, d,. =0.6 had produced fast convergence. The technique may be 

void because it was unable to counter the excessive high selective pressure. Hence, 

this outcome might be caused by lower diversity in the population due to the small 

size of the population used. Thus in our case a high difference of selected parent at 

60% was considerably negligible in this experiment. 

5.3.1 Comparison of Parent Selection Operators 

For a fair parent selection comparison, the experiment was implemented with the 

same Two-factor blockwise crossover, directed mutation, steady-state replacement 

strategy, and fixed parameters (e.g., 100 Generations, 12 Population size, and 30 

Runs). 

Table 5.4 

Output of EAs with Five Different Parent Selectioizs 

Parent Selection MM Rk T Dr DJ 
Best Fitness 2046 4062 3040 3041 2033 

Time (Seconds) 193.55 124.55 129.77 135.23 153.07 
Convergence level 97 8 15 93 39 

Average Fitness 5050 605 1 5049 5050 5046 

STD ('000) 1.783 16 1.64026 1.783 16 1.06 143 1.55575 

Feasible rate 9130 5/30 12/30 10130 10130 



Overall, two parent selections (i.e. Binary Tournament T, and Rank-based Rk) and 

the newly proposed parent selections (i.e. Maximax and Maximin MM, Discovery 

Rate D,., and Discovery Rate Tournament D,T) were able to produce a best-so-far 

solution within 100 generations. Among all, D,.T parent selection achieved the best 

accuracy by obtaining the lowest 5046 average fitness and 2033 best fitness. Its 

created schedule (solution of 2033 best fitness) was able to grant all requested off 

days. Perhaps, the superiority of D,T parent selection pointed toward to selecting 

elite parents as well as diverse characteristic of the selected parents. 

As the advancement of Rk parent selection, MM parent selection was able to reduce 

the fast convergence of Rk parent selection and thus its feasible rate increased from 

16.7% (i.e., 5/30*100) to 30% (i.e., 9/30*100). In this case, the increment- signifies 

that the performance of offspring production depended very much on the lower 

selective pressure of competing number. Though, MM parent selection was weak in 

time efficiency (i.e. 193.55 seconds of computational time) and lower feasibility rate 

than T parent selection. 

On the other hand, D,parent selection produced mediocre results. Although D, parent 

selection was superior to Rk parent selection in all facets, it was slightly inferior in 

terms of best fitness to T parent selection (i.e. 3041-3040, D, was defeated by 1 

penalty value of soft constraint violated or ((40-41)/41)= 2.4% loss of soft constraint) 

and the proposed MM parent selection (i.e. 3041-2046, D, was defeated by 1 semi- 

hard constraint violated but ((46-41)/41)= 12.2% slightly performed better on soft 

constraint). Possibly, the mating strategy that merely emphasized the diversity of 

parental gene was not enough. 



Nevertheless, one common drawback of these five different parent selection models 

was lack of reliability. The small feasible rates (e.g., at least 16.7% (i.e., 5/30*100) 

to at most 40% (i.e., 12/30*100)) indicate that they were less reliable in generating 

feasible solution successfully in each runs. This condition could be improved when 

suitable recombination operators were further taken into consideration. 

5.4 Experimental Result of Proposed Crossover 

Based on the population size experiment with an occurrence rate of 1.0, 0.2 pair of 

the total chromosomes was selected from the current population. Their corresponded 

components were crossed over which then went for mutation operation. In fact, this 

low rate was acceptable in our study. According to Montgomery and Chen (2010), in 

a condition if crossover rate Cr is a percentage of resultant offspring being carried to 

the next generation, low value of Cr may result in a search that is not just aligned 

with a small number of search space axes, and also behave in slow, gradual and 

robust. This may prevent premature convergent by gradually searching many 

competing optima that may then not be thoroughly explored. Thus, this could reduce 

our anxiety as well as Montgomery and Chen' (2010) that consistent high acceptance 

rate might indicate premature convergence. 



Table 5.5 

Setting of CSREP Crossover 

Best Fitness 1035 2034 2036 2033 
Average Fitness 3039 3040 3040 3036 
STD ('000) 0.84468 0.99465 0.70 103 0.5 1635 
Feasible rate 100% 100% 100% 100% 

R3, C3 (3,3,5)45 (3,3,9)81 (3,3,30)270 (3,3,39)351 
Best Fitness 2033 3034 2037 1040 
Average Fitness 2038 3039 3039 3042 

STD ('000) 0.69930 0.70153 0.94962 1 .I9605 

Feasible rate 100% 100% 100% 100% 

R3, C4 (3,4,5)60 (3,4,7)84 (3,4,23)276 (3,4,30)360 
Best Fitness 1035 2035 2032 1038 
Average Fitness 3038 3042 4041 3042 

STD ('000) 0.94969 0.94675 1.0775 1 1.41557 

Feasible rate 100% 100% 100% 100% 

R4, C3 (4,3,5)60 (4,3,7)84 (4,3,23)276 (4,3,30)360 
Best Fitness 2030 2035 1036 2032 
Average Fitness 3037 3038 3040 3038 

STD ('000) 1.06159 1.05473 1.17646 0.87743 

Feasible rate 100% 100% 100% 100% 

R4, C4 (4,4,5)80 (4,4,5)80 
Best Fitness 3034 3034 
Average Fitness 3036 3036 

STD ('000) 0.00153 0.001 53 

Feasible rate 50% 50% 

In this experiment, the behavioral characteristics of cells in a block which allowed 

REP to tackle the accessible shift patterns were on-duty shifts (e.g., morning shift 

and evening shift) and off-duty shifts (e.g., weekly off, weekend off, and public off). 

Different blocksize (Row, Column) with a total numbers of cell Tc (i.e., R*C*k) as 

well as crosspoints k were tested in the hybrid evolutionary algorithm. Initially, the 

crosspoint started at 5. Table 5.5 indicates 17 different combinations of blocks 

(BlockSize(R,C), Crosspoint k)Tc for crossing over the offspring. 



Based on the output, the best fitness fell upon 5 crosspoints in which each blocksize 

was generated by vector 3Rows x 4Colurnns. Also, a matrix with vector 2x2 and 5 

crosspoints had the same best fitness at 1035, but still little high in average fitness. 

Apparently, a bigger size of block was more difficult to be generated as only 50% of 

a feasible solution was obtained in vector 4x4. Next, by excluding the consideration 

of total cell Tc, a matrix with vector 3x4 stood out the most among all others in terms 

of producing the best fitness. Thus, 3x4 vector of blocksize with 5 crosspoints was 

applied to Max[4x4]CSREP for these reasons. 

5.4.1 Comparison of Crossover Operators 

For a fair crossover operators' comparison, the experiment was implemented with 

the same Tournament parent selection, directed mutation, steady-state replacement 

strategy, and fixed parameters (e.g., 100 Generations, 12 Population size, and 30 

Runs). 

Table 5.6 

Output of EAs with Three DifSerent Crossovers 

Rowwise ZFBlockwise 
Best Fitness 3033 3040 
Time (Seconds) 114.35 129.77 
Convergence level 98 15 
Avrg Convgn rate 54 60.42 

Average Fitness 4039 5049 
STD ('000) 1.09946 1.7831 6 
Feasible rate 5/30 12/30 

Table 5.6 shows that 2FBlockwise crossover had greater feasibility than row-wise 

crossover, the one-point crossover, which was 40% (i.e., 12/30*100) over 16.7% (i.e., 

5/30"" 100). It found that high probability of producing an acceptable solution is vital 



in determining the reliability of a technique, which leads to better exploration in 

crossing over. This was proven by 2FBlockwise that had slower average 

convergence rate of 60.42 but higher feasible rate. Perhaps for that reason, 

2FBlockwise had rather high 5049 average fitness. 

Even so, according to the output of best fitness and average fitness, Row-wise 

crossover that cooperated with tournament parent selection operator performed 

slightly better than 2FBlockwise crossover. The difference of the best fitness was 

merely 7 penalty value of soft constraints violated (3040-3033=7). Thus, 

2FBlockwise may be a competing model with the one-point crossover. Moreover, 

Max[4x4]CSREP obtained the greatest output of the best fitness (i.e. 2033) and 

average fitness (i.e. 3038) than row-wise crossover,the one-point crossover. 

Therefore, integrating cuckoo search in EA's crossover operator had improved 

exploitation skill by having flexible crossing points, which compromised the 

explored EA. 

In essence, 2FBlockwise crossover operator was able to produce the approximately 

best fitness. The absolute blocksize of crossovers intended for matrix representation 

suited well in the nurse scheduling problem (NSP) but not in nurse scheduling and 

rescheduling problem (NSRP). For instance, in an uncertain change's condition, the 

need for crossing over with unshaped blocks had hindered 2FBlockwise crossover 

operation. Therefore, Max[4x4]CSREP was then proposed intended to fit the NSRP 

problem and explore a more flexible crossing over strategy. 



Interruption on genes' position led to more diverse exploration and prevented 

premature convergence. However, some column's constraints violations were a 

hindrance to make more interruptions in Row-wise and 2FBlockwise. These two 

crossovers could be losing their flexibility and exploration search but not 

Max[4x4]CSREP. Table 5.6 shows 80% (i.e., 24/30*100) of the feasible rate was 

obtained by Max[4x4]CSREP. It strongly outperformed the one-point crossover 16.7% 

(i.e., 5/30*100) and even 2FBlockwise crossover 40% (i.e., 12/30*100). Also, it 

offered the longest search due to slower average convergence rate than that in 

2FBlockwise which was 60.42 and Row-wise which was 54. 

Furthermore, Max[4x4]CSREP was able to gain a fairly better result than others in 

terms of best fitness, better accuracy through lower average fitness and standard 

deviation, and highest feasibility. Yet, it was less efficient than the fastest operator of 

Row-wise crossover with merely 114.35 seconds needed. Max[4x4]CSREP needed 

approximately 210.52 seconds of computational time, which was 96.17 seconds and 

80.75 seconds slower than Row-wise and 2FBlockwise, respectively. Thus, more 

times would be needed when executing a better exploration and exploitation search. 

In sum, Max[4x]CSREP crossover was implemented by increasing the exploration 

and exploitation elements, 2FBlockwise was another comparable technique in terms 

of feasibility. 

5.5 Models Comparison 

The hybrid EA with three newly proposed parent selections and two newly proposed 

crossovers were applied to the complex nurse scheduling problem with other 



remaining operators staying the same. Additionally, two classical EAs (T-Row 

model and Rk-Row) models were implemented as the benchmark for model 

comparison. In all, the eleven models were: 

1. T-Row : The EA with Tournament parent selection and Row-wise 

crossover 

2. Rk-Row : The EA with Rank-based parent selection and Row-wise 

crossover 

3. Rk-2F : The EA with Rank-based parent selection and 2FBlockwise 

crossover 

4. T-2F : The EA with Tournament parent selection and 2FBlockwise 

crossover 

5. T-CSREP : The EA with Tournament parent selection and 

Max[4x4]CSREP crossover 

6. MM-2F : The EA with Maximax and Maximin parent selection and 

2FBlockwise crossover 

7. MM-CSREP: The EA with Maximax and Maximin parent selection and 

Max[4x4]CSREP crossover 

8. D,2F : The EA with DiscoveryRate parent selection and 2FBlockwise 

crossover 

9. D,CSREP : The EA with DiscoveryRate parent selection and 

Max[4x4]CSREP crossover 

10. D,T-2F : The EA with Discovery Rate Tournament parent selection and 

2FBlockwise crossover 

1 1. DrT-CSREP : The EA with Discovery Rate Tournament parent selection and 

Max[4x4]CSREP crossover 



Table 5.7 

Output of All Eleven EA Models' Comparison 

T- Rk- Rk- T- T- MM- MM- D L  DL DrT- DrT- 
Row Row 2F 2F CSREP 2F CSREP 2F CSREP 2F CSREP 

Best Fitness 

UnTolerableRO 

NoDisapprovalRO 

Time (Seconds) 

Convergence level 

Average Fitness 

STD ('000) 

Feasible rate 



I No. of 
s Generations 

rlrHrMWIUW- - 
Figure 5.3. A convergence graph of all eleven EA models for comparison 

Based on previous results, D,T was found to be the finest parent selection operator 

and Max[4x]CSREP the finest crossover. For model effectiveness, D,T-CSREP's 

best fitness 1033 was the lowest value among all models, as shown in Table 5.7. 

This fitness value indicated that none of the hard constraint was violated; however, 

at 1 semi-hard constraint was violated and 33 penalty value was given for soft 

constraint. D,T-CSREP was the most accurate model with the lowest 2038 average 

fitness and a standard deviation 1.06696. MM-CSREP was found to rank the second, 
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given its best fitness 1041. However, MM-CSREP obtained higher average fitness 

3037, higher standard deviation 1.13679, and lower feasible rate, which reduced its 

accuracy and reliability. Additionally, with 95% of confidence interval, there was a 

significant difference in average fitness (penalty value) across the different EA 

hybrid models, F(l0, 150) = 9.518, p-values of 0.000. Tukey HSD test was used to 

further determine the difference. It was found that the best model D,T-CSREP was 

significantly different from other models (i.e. Rk_2F, T-2F, MM-2F, DL2F, and 

D,T_2F). The homogeneity of variance assumption with p-value 0.04 (P > 0.05) was 

little violated. In fact, the ANOVA test was still statistically relevant due to only 

malt variation from the assumption. Hence, any interpretation of the main effect 

must be undertaken with caution. 

To confirm the models' reliability, Rk - Row was less likely to produce an acceptable 

solution since it had the lowest feasible rate of 3.33%, followed by T-Row and 

Rk-2F (16.67%). It concluded that these two classical models, especially Rk-Row, 

were weak in exploration search thus hard to support the recent complex NSP. At 

the other end of the continuum, DLCSREP and D,T-CSREP obtained 100% feasible 

rate. This was even superior to T-Row and Rk-Row models. Even so, the 2F-based 

models such as T_2F, MM_2F, D,2F, and D,T_2F attained a fairly better feasible 

rate than the two classical EAs. Besides Rk-2F, the other models' feasible rates 

were in between 30% and 40%. In sum, it can be concluded that CSREP is a 

promising model in terms of reliability capable for producing a feasible solution. In 

other words, the hybrid EA worked effectively. 



Based on the performance of model T-2F and model Rk-2F in terms of the best 

fitness and average fitness, these classical parent selection and 2FBlockwise 

comprised models were inferior to the benchmark model T-Row. Table 5.7 shows 

the best fitness of T - 2F and Rk - 2F are 3040 and 4062 which higher than T-Row's 

3033. There was also similar condition to the average fitness where T-2F's 5049 

and Rk-2F's 6051 were higher than T-Row's 4039. However, there is also room for 

improvement to the 2FBlockwise-based models since they obtained greater 

feasibility rate (e.g., (12/30*100)=40% > (5/30*100)=16.7%). Therefore, the 

2FBlockwise-based models could be improved by replacing classical parent 

selection with new proposed parent selections. This was due to new proposed 

selections experienced with dissimilarity relationship. The new 2FBlockwise-based 

models MM_2F, D,T-2F, and D,2F produced high average fitness 5050, 5046, and 

5050 with big value of standard deviation 1783.16, 1555.75 and 1061.43, 

respectively. Though big value of standard deviation was said to have unstable 

performance, yet, the instability or the big value was also alluding to the dispersion 

of all feasible fitness values from the average fitness. Therefore, in the big gap of 

standard deviation, these three 2F-based models eventually produced lower best 

fitness value (i.e., 2046, 2033, and 3041), which respectively better than or 

comparable with T-Row's 3033 best fitness. As a conclusion, MM-2F and D,T-2F 

were superior to T-Row, Rk_2F, and T-2F. The slight underperformance of D,-2F 

was because of the essence of D, parent selection and 2FBlockwise crossover, both 

of which skewed more to exploration principle. Thus, lack of exploitation in this 

model made hard to identify local optimal. 



In minimization problem, the complex NSP which required higher nurse coverage 

with timely preferences was successfully achieved, except R k 2 F .  All requested off 

days were approved, as indicated by the value '0' in NoDisapprovalRO. Also, each 

model was able to produce at least one acceptable schedule that was free from hard 

constraint violations, at most 4 semi-hard constraint violations, and less than 62 

penalty value of soft constraint violations. Of all, the optimal solution of Rk-Row, 

D,CSREP, and DrT-CSREP had attained the Integrated Request Off concept 

completely (i.e., unTolerableRO= 0). They were simultaneously fulfilled both head 

nurse and nurses' desires on timely off duty. It is ideal if the solution had a lower 

value of best fitness with zero value of unTolerableR0. Thus, DrT-CSREP stood out 

among the three. 

With regards to computation time, T-Row was the fastest with approximately 2mins 

and the slowest model was T-CSREP with approximately 3.5mins. The difference 

in the execution time was just about 1 minute 36 seconds. However, time evaluation 

for NSP was not as important as in NRSP because NRSP involved unplanned 

aspects. 

Based on Figure 5.3 that shows the best solution of each model, Rk-2F and Rk-Row 

had premature convergence that was stuck during early generation runs. A little 

slower convergence but better solution than Rk-2F and Rk-Row were DrT-2F and 

T 2 F .  Despite having fast convergence, they obtained a weak solution. T-Row, 

MM-2F and D,2F had slow convergence at around generation 97 and produced 

fairly weak solutions. On the other hand, DrT-CSREP which obtained the lowest 

fitness solution had converged at generation 78. MM-CSREP, D,CSREP, and 



T-CSREP which had a similar range of convergent rate with DrT-CSREP produced 

mediocre results. They obtained fairly low average fitness, as show in Table 5.7. In 

our case, the model that converged at the middle of the generations had a balance of 

exploration and exploitation. 

As a conclusion, high selective pressure towards elite parents may probably result in 

premature convergence and hence losing population diversity since EA with Rank- 

based parent selection had a great impact on fast convergence, as indicated at 8th 

generation runs. In that sense, more exploration produced better performance. To 

note, D,T-CSREP stood out by obtaining the best feasible rate, least average fitness 

and excellent in timely preferences. 

5.6 Retrieval Validation 

Uncertain absenteeism occurs at work. Thus, sensitive analysis was conducted with 

CSREP retrieval operator for the following rescheduling validation. As mentioned in 

Section 4.6, several biweekly disruption instances adapted from Moz and Pato (2007) 

has are in Table 5.8. Note that the J.I.1-32 and V . 3 3 2  instances of Moz and Pato 

(2007) were excluded in this test because they had similar instances as 11.2-32 and 

V. 1-32. 



Table 5.8 

Features of tlze Disruption l~wtances 

The first day of No. of absent No. of consecutive Instances absence nurses days with absences 
1.1-32 13 2 2 
1.2-32 12 2 3 
1.3-32 10 3 5 
1.4-32 8 1 1 
1.5-32 10 4 5 
1.6-32 11 9 4 
1.7-32 12 10 3 
11.2-32 6 1 1 
n.3-32 5 I 3 
LI.4-32 2 1 8 
11.5-32 3 8 12 
11.6-32 6 6 9 
11.7-32 4 4 8 
11.8-32 2 3 8 
V. 1-32 1 9 14 
V.2-32 1 10 14 
V.4-32 1 15 14 

For the NSRP, this research focused upon decision making during disruptions, 

quality change of schedule adjustment and reducing quantity change for retrieval. 

Table 5.9 shows the output of all the disruption instances. Several evaluation items 

for a retrieved schedule are below: 

NonRetrieval: Rescheduling due to uncertain absenteeism in a nurse's 

schedule through pre-retrieval. Generally, it is suitable for 

some small disruption cases. 

Retrieval: Rescheduling due to uncertain absenteeism that involves the 

absented nurse and other nurses, by using retrieval operator. 

Generally it is suitable for serious disruption cases. 



RO resolver: Estimated successful rate that employs requested nurses on 

off days to fill in for insufficient coverage during disruption 

xRTolerc: Number of unsuccessful Integrated Request Off during 

disruption that continues from unTolerableR0 during 

scheduling phase. 

Rdisappv: Number of disapproval of requested off duties in 

rescheduling during disruption that continues from 

noDisapprovalROin scheduling phase. 

TotClzgCell: Total number of cells changed 

XFairDelg: Total number of unfair on-call delegation 

Tiine (Seconds): Computation time 



Table 5.9 

Output of All tlze Disruption Iizstances 

GROUP I 11-32 12-32 13-32 14-32 15-32 16-32 17-32 
Scheduling Best Fitness 1033 1037 3038 3035 2034 204 1 1033 

unTolerableR0 1 2 2 3 2 3 5 
noDisapprovalR0 0 0 0 0 0 0 0 

Rescheduling Retrieval (Oh) 43% 20% 50% 3 Oh 60% 100% 93% 
Best Fitness 3039 3043 4047 4045 504 1 4078 5042 

xRTolerc 1 2 2 3 2 3 5 
Rdisappv 0 0 0 0 0 0 0 
TotChgCell 3 3 4 2 5 14 1 1  
XFairDelg 0 0 0 0 0 0 0 
Time (Seconds) 0.916763 2.581827 0.873508 1.913535 0.906276 4.255609 3.412228 

AvrgRFitChg 201 1 101 1 3012 1010 4015 7047 5057 
STD(Rf1tChg) 799.27 89 1.98 1099.90921 - 1350.85 928.05 1351.345 

oriSchedule 2032 1034 3038 1036 2036 2035 
Best nonRetrieva1 Fitness 303 1 2035 3049 2036 3036 7038 

Time (Seconds) 2.148416 0.180973 0.486191 0.177628 0.523539 0.28395 
Feasible rate (%) 100% 100% 100% 100% 100% 100% 100% 
RO resolver success rate (%) 100% 1 00% 100% 100% 100% 70% 8 7 '10 

GROUP I1 112-32 113-32 114-32 115-32 116-32 117-32 118-32 
Scheduling Best Fitness 504 1 3040 2039 4037 1037 303 1 2034 

unTolerableR0 2 4 3 3 1 2 2 
noDisapprovalR0 0 0 0 0 0 0 0 

Rescheduling Retrieval (Oh) 7% 13% 1 3 '10 100% 100% 60% 43% 
Best Fitness 5046 3045 2044 13140 6104 5047 3045 
xRTolerc 2 4 3 3 1 2 2 
Rdisappv 0 0 0 0 0 0 0 
TotChgCell 2 2 2 19 13 5 5 

XFairDelg 0 0 0 0 0 0 0 
Time (Seconds) 1.118648 2.333321 0.996036 2.13493 5.019985 1.086927 0.9424 12 





5.6.1 Disruption Impact on Preferences 

Output in Table 5.9 was produced after 30 run times to show the best solution of 

each group of disruption instances, named as Group I, Group I1 and Group V. What- 

if analysis of the disruptions was required to observe the schedule performance in 

terms of high nurse preferences and fairness in on-call delegation during uncertainty. 

Overall, the retrieval operator had performed well in Group I disruption, Group 11 

disruption, and Group V disruption. Based on the output, all requested off duties 

were fully granted as well as in a manner of not degenerated the Integrated Request 

Off which was highly preferred. Rescheduling could remain the Integrated Request 

Off as similar as planned in scheduling phase, except case V4-32. Only one 

Integrated Request Off failed with separation (i.e. xRTolerc - unTolerableR0 =2-1 

=I). However, the Rdisappv for all cases in the three groups were equal to zero and 

the number of xRTolerc was similar to that of unTolerableR0. In the combination of 

scheduling and rescheduling, this can be concluded that the schedule stability of the 

nurse preferences was achieved even during rescheduling. 

Furthermore, fairness in nurse delegation for on-call duty almost achieved a zero 

defect in the three groups of disruptions, except case V4-32 of Group V. The value 

of 2 in XFairDelg indicated that two nurses were assigned to on-call duties more 

than the average. However, the retrieval operator was capable to give fair delegation 

to most of the disruption cases since the overall outputs of XFairDelg in all other 

cases were equal to zero. 

Based on the above assessment, V4-32 was a bit challenging to the retrieval operator 

because of several nurses concurrently took long consecutive absences from work. 



The result shows that the head nurse needs to be aware of two high preferences 

which are fair on-call delegation and Integrated Request Off during a larger 

dimension of uncertain disruption. Although this case V4-32 had went through the 

most severe retrieval process among all cases which obtained the highest penalty 

value of best retrieved fitness 25537 when its original schedule's best fitness was 

1032, the feasibility which is a vital concern in rescheduling was achieved. 

Besides investigating the impact on preferences, the contingency adjustments of 

rescheduling (i.e., pre-retrieval and retrieval) also considered to the seriousness level 

of an uncertain disruption. It was studied next. 

5.6.2 The Seriousness of Disruption 

The seriousness of various disruptions adopted from Moz and Pato (2007) on the 

original schedules can be observed by the retrieval percentage and fitness changes, as 

shown in Table 5.9, Figure 5.4, Figure 5.5, and Figure 5.6. These figures show 

before and after rescheduling under various disruption incidences (i.e. Group I, 11, 

and V). Fitness change, an output of rescheduling, explains the adjustment (i.e., the 

difference between the original schedule and the retrieved schedule) during 

uncertainty. The graph of fitness change clearly shows the impact of disruption to an 

original schedule in terms of semi-hard and soft constraint violations, in which the 

adjustment was dealt as at the pre-retrieval process or retrieval operator process. In 

the graph, the runs before an arrow ' 4 ' is the rescheduling that dealt by retrieval 

operator. On the flipside, starting from the arrow to the end of the runs is the 

rescheduling that dealt as at pre-retrieval process. 
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Figure 5.4 continued 
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Figure 5.4 illustrates the overall rate of retrieval and fitness changes in Group I 

disruption (i.e.11-32, 12-32, 13-32, 14-32, 15-32, 16-32, and 17-32). Group I 

disruptions is a disruption occurred at the end week of a schedule. This limits the 

rescheduling within a smaller search space. In these disruptions, our rescheduling 

model determined the seriousness of a schedule disruption through pre-retrieval (i.e., 

process before retrieval) in order not to retrieve the schedule impulsively, and thus 

preserved the original schedule. It was an effective contingency move. As shown in 

the seven graphs of fitness changes in Figure 5.4, the output of rescheduling that 



dealt as at pre-retrieval (i.e., after an asrow) were mostly better (i.e., lesser constraint 

violations) than the output that dealt by CSREP, retrieval operator (i.e., before the 

arrow). Particularly, cases 11-32, 13-32> and 15-32 depicted the result clearly. 

However, this does not mean that CSREP, was underperforrning; it reflects that the 

schedule was ready for any serious disruptions, given that some light disruptions 

could be solved as at pre-retrieval. 

14-32 case was considered the lightest disruption among the cases of Group I. It took 

only 1/30 run (i.e. 3% retrieval rate) that used retrieval operator for rescheduling. 

The second lightest disruption case was 12-32 that took 6/30 runs (i.e. 20% retrieval 

rate) by CSREP, retrieval operator. In these cases of light disruption, there were a 

few fitness changes in semi-hard and soft constraint violation. The output shows low 

average fitness change of 1010 and 101 1 when tackling 14-32 case and 12-32 case, 

respectively (see Table 5.9). 

On the other hand, 16-32 case was the worst disruption in Group I as it obtained 100% 

retrieval rate (i.e. 30130 runs) and the highest average fitness change 7047 (see 

Figure 5.4 and Table 5.9). In this case, approximately 2 to 15 semi-hard constraints 

and 14 penalty values to 85 penalty values of soft constraints were violated. 

Subsequently, the disruption of 17-32 case had almost the same seriousness as 16-32 

case which obtained 93% retrieval rate. Ln these cases of serious disruption, there 

was a bigger fluctuation of soft constraints violation but quite a constant semi-hard 

constraints violation. However, the retrieval did not ignore nurse timely preferences 

(i.e. Rdisappv = 0) and fair assignment of on-call duty (i.e. XFairDelg= 0), as shown 

in Table 5.9. 
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Figure 5.5 continued 
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Figure 5.5 illustrates Group I1 disruptions that occurred in the first week of the 

schedule in terms of retrieval and fitness changes (i.e.112-32, 113-32, 114-32, 115-32, 

116-32, 117-32, and 118-32). In this group, 112-32 case, I1332 case, and 114-32 case 

were considered as light disruptions which were mostly solved as at pre-retrieval 

with lower fitness changes. Cases as 115-32 and 116-32 had the most critical 

disruptions in Group I1 in which both were retrieved in all runs with high average 
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fitness changes 14091 and 7052 respectively (see Figure 5.5 and Table 5.9). The 

fitness change graph shows that 11532, which was the worst case among Group I 

and 11, showed approximately 10 to 20 of semi-hard constraints and 30 to 250 

penalty value of soft constraints were violated. Yet, the feasibility of 115-32 case was 

not disappointing; 115-32 case in Figure 5.5 depicted a minimum fitness value of 

retrieved schedule at 13140 and its maximum fitness value at 22165 with the overall 

feasible rates of 100% (i.e. 30130 runs). 

Note that Group I disruption was more critical than Group 11's in terms of the overall 

retrieval rate. This might be due to the total number of absent nurses in all cases. In 

Group I, there were 31 absent nurses, which was higher than Group I1 (i.e. 24 absent 

nurses), as shown in Table 5.8. Even though Group I1 had greater disruption effect 

than Group I in terms of average fitness change (see outputs of AvrgRFitChg in 

Table 5.9), when comparing 15-32 case and 117-32 case, both had the same number 

of absent nurse disruption (i.e. 4 absent nurses). In addition, 15-32 case had a higher 

retrieved rate than 117-32 despite the fact that the overall disruption of 15-32 case 

was less severe than 117-32 case. Apparently, retrieval was less needed in Group I1 

when compared to Group I that had smaller search space. 

As a conclusion, for Groups I and 11, by observing the fitness changes before and 

after the arrow, the fitness changes of pre-retrieval (after arrow) were mostly lower 

than the retrieval change (before arrow), as evidenced in 11-32,I2-32,I3-32,14-32, 

15-32,114-32,117-32 and 118-32. Additionally, even some soft constraint violations 

were reduced after rescheduling and these can be noticed at pre-retrieval in 11-32, 

12-32, 13-32, 14-32, 15-32, LI2-32, 113-32, 114-32, II7-32 andII8-32. The result 



revealed the advantages of having pre-retrieval to scrutinize the seriousness of the 

disruption before retrieval was conducted. In this way, the schedule stability could be 

maintained by involving pre-retrieval. Furthermore, retrieval operator was meant to 

overcome more serious disruption. 





Figure 5.6 illustrates Group V disruptions (i.e.Vl-32, V2-32, and V4-32) in terms 

of retrieval and fitness changes in view of soft and semi-hard constraints violation. 

The fitness changes in semi-hard constraint violation were shown in the last column. 

Group V had a larger dimension of disruption. These worst disruption conditions can 

be real as several nurses will be on maternity leave. The long absent days can have a 

great impact on the schedule. This is reflected by the approximately 100% retrieval 

rate for the three disruption instances. 

Figure 5.6 shows that the fitness of retrieved schedule had a positive relationship 

with the number of absent nurse. The best fitness of retrieved schedule for V1-32, 

V2-32, and V4-32 cases were 121 16, 151 15, and 25537 when tested with 9, 10 and 

15 absent nurses, respectively (see Table 5.8). In all runs of the three cases, the 

fitness of the retrieved schedule was constantly higher than the original schedule. 

The graphs of the fitness change show that the number of semi-hard constraint 

violations in V1-32, V2-32, and V4-32 were approximately 10 to 19, 13 to 21, and 

22 to 34, respectively, whereas soft constraint violations arose with 20 to 200, 50 to 

420, and 300 to 650 penalty values. 

Even though schedule feasibility is vital in rescheduling for a ward operation, the 

result showed that retrieval causes higher fitness. Therefore, the criticality of 

searching optimal solution in rescheduling is not less than those in scheduling. 

As a conclusion to the seriousness of disruption in Group I, I1 and V, the fitness 

change in retrieval and pre-retrieval indicated that not all disruptions shall be 

retrievable. Thus, unstable schedule can be improved by making the schedule ready 



for disruption. As rescheduling involves retrieval, this will produce few changes to 

the schedule. Furthermore, rescheduling considers real-time conditions in the original 

schedule which involves past, current, and future shifts. In all, these show that the 

combination of scheduling and rescheduling is needed. In addition, Group I 

disruption in the second week was slightly difficult to be solved than Group I1 

disruption in the first week. This means that retrieving process within a smaller 

search space is more difficult. The challenge, therefore, is producing quality schedule 

adjustment and not simply the number of changed cell in retrieval. 

5.6.3 The Quantity and Quality Changes of Disruption 

As mentioned in Section 4.3.2.9, Table 5.10 shows the quantity and quality change to 

the original schedule during disruption. It shows the computational output of Moz 

and Pato (2007) and our retrieval operator, as well as the result between non-radical 

change and radical change. 



Table 5.10 

Conzputational Result of Moz and Pato (2007) Model and CSREP, Model 

d loo z 
90 

Moz and Pato (2007) 

Best Worst Time 

Instances 
(Cell) (Cell) (Seconds) 

11-32 5 5 186.77 

12-32 5 5 229.67 

13-32 8 8 360.87 

14-32 3 3 508.67 

15-32 10 10 367.44 

16-32 15 15 326.51 

17-32 10 10 244.74 

II2-32 5 5 635.1 

LI3-32 7 7 710.68 

114-32 13 13 939.87 

LI5-32 20 20 894.63 

116-32 24 24 724.12 

II7-32 I0 10 778.75 

II8-32 11 11 929.45 

V1-32 14 14 2167.46 

V2-32 27 27 2587.85 

V4-32 144 166 4616.67 
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CSREP, 
Non-radical Radical 

Best Worst Time change of change of 
(Cell) (Cell) (Seconds) retrieval retrieval 

3 7 0.916763 11/13 711 3 

3 9 2.581827 516 216 

4 11 0.873508 12/15 611 5 

2 2 1.91 3535 111 111 

5 14 0.906276 17/18 511 8 

14 26 4.255609 7/30 12/30 

11 25 3.412228 7/28 14/28 

2 6 1.118648 212 112 

2 3 2.333321 314 314 

2 17 0.996036 414 3 I4 

19 52 2.13493 10130 7130 

13 44 5.019985 22/30 5/30 

5 33 1.086927 16/18 6/18 

5 41 0.942412 11/13 511 3 

21 78 5.18206 10130 8/30 

20 80 1.758692 9/30 7/30 

94 114 20.16189 11/30 6/30 

Figure 5.7. Quantity change of disruption instances 



Based on the best solution of total number of changed cell, CSREP, retrieval operator 

performed better than Moz and Pato (2007)'s genetic algorithm hybridization. Table 

5.10 shows that CSREP, had lesser changed cells in most of the disruption instances, 

though there were slightly inferior to 17-32 and V1-32. Ln some light disruption 

incidents such as 11-32 to 15-32 and 112-32 to 114-32, the worst solution of CSREP, 

was approximately close to the worst solution of Moz and Pato's (2007) (see Figure 

5.7). In the heaviest disruption, the best retrieval of V4-32 involved 94 cells changed 

and the worst retrieval 114 cells changed. Though little change to the original 

schedule was achieved, it would be meaningless if the original schedule was not 

planned well. 

In fact, this experiment might less compare squarely since Moz and Pato (2007) had 

a different set of assumptions in a rescheduling problem. The key difference was the 

different original schedules that had uncertain reaction to the disruption instances, as 

shown in Section 5.4.2. Moz and Pato formulated the rescheduling problem in a 

multi-level directed network. Therefore the solution was counted by the number of 

arcs swap between a set of disjoint paths. However, since both models focused on the 

quantity change which essentially calculated the cell dissimilarity between the 

original schedule and the retrieved schedule, we could make a comparison between 

them. Moreover, the feasibility problem of Moz and Pato (2007) was constrained to 

no day off is assigned in a sequence of seven days. As such, both models were 

capable in producing a feasible solution for the disruption incidents. However, 

CSREP, was superior in terms of computation time, clocking less than 20 seconds for 

each disruption instance, as shown in Table 5.10. Hence, CSREP, can be said to be 



an efficient retrieval operator. This is a significant consideration since computation 

time is another important element in rescheduling. 

In order to consider both quality and quantity change of retrieval, the output of the 

non-radical change and radical change in Table 5.10 were gained by concurrently 

obtained the lowest fitness value and lowest total number of changed cell. In all, non- 

radical change of retrieval was outperformed in many types of disruption. Note that 

radical change method stood out in 16-32 and 17-32 with 40% (i.e. 12/30*100) and 

50% (i.e. 14/28*100), respectively. This suggests that radical change of retrieval may 

be a good resolution when experiencing a heavy disruption on a smaller search space 

condition. 

5.7 Summary 

In this research, nurse scheduling and nurse rescheduling were integrated by hybrid 

evolutionary algorithm. The former was strategic while the latter was operational. 

Output of scheduling was the input for rescheduling, and vice verse. In other words, 

the output of each stage had mutually generated and applied as each stage's input 

data. Specifically, objective two and five were then completed by evaluating and 

validating a few models. The models were T-Row, Rk-Row, Rk_2F7 T-2F, 

T-CSREP, MM-2F, MM-CSREP, D,-2F, DLCSREP, D,T-2F, and D,T-CSREP. 

Of all, DrT parent selection and CSREP crossover were the best among the operators. 

Also, DrT parent selection complemented well CSREP crossover whereby only 1033 

best fitness solution was obtained in scheduling. This means that a balance of 



exploitation and exploration can improve search. Extreme exploitation can lead to 

premature convergence and intense exploration can make the search ineffective. 

In addition to the data analysis, discussions about rescheduling response towards 

disruption instances were presented in this chapter. The vital concern of rescheduling 

was achieved in the pre-retrieval and retrieval process that obtained 100% success 

rates of feasible solutions in each disruption instance. Overall, CSREP, retrieval was 

a robust operator. To ensure quality change of schedule retrieval, non-radical change 

and radical change were introduced and implemented. Besides that, CSREP, also 

repaired a disrupted schedule with a few changed cells quickly. 



CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

This chapter summarizes the achievement of all five objectives, highlights the 

contributions to the body of knowledge on hybrid EA and its benefits to the nurse 

management. Finally, limitations of the present research and suggestions for future 

work are highlighted. 

6.1 Summary of Nurse Scheduling and Rescheduling Problem 

A nurse scheduling and rescheduling problem (NSRP) looks into the matters of nurse 

capacity, preferences and uncertainty in order to run a ward effectively. To tackle 

NSRP, the hybridization of evolutionary algorithm (EA) and cuckoo search (CS) was 

employed to utilize the available nurses by considering high nurse preference, 

fairness, and quality and quantity changes of disruption. Preference was sustained 

even in rescheduling process. Also, the integration of scheduling and rescheduling 

was considerably explored. 

6.1.1 Achievement of Research Objectives 

All five objectives were successfully met in solving a nurse scheduling and 

rescheduling problem by minimizing constraint violations. The first objective was 

met by reviewing the relevant literature and expert opinions, all relevant constraints 

and parameters that made up the rules and nurses preference in relation to nurse 

skills and staffing size were considered. In the second objective, adjustment or 

change for giving low impact to other nurses in rescheduling problem were discussed 

and accomplished in Section 4.3.2 and Section 5.6. The principles of pre-retrieval 



and retrieval were particularly reported in Section 4.3.2.9. As a whole, nurse 

coverage and high nurse preferences were not merely achieved in scheduling but also 

in rescheduling. The aspect of pursuing little schedule disruption with quality 

retrieval, fair on-call delegation, and highly desired nurse preferences such as 

Integrated Requested Off days were all involved. In that, a win-win situation's 

schedule was produced which attained nurse contractual request and nurse personal 

request. 

Enhancing the operators of evolutionary algorithm in parent selection and crossover 

was stated in the third and fourth objective. In the third objective, Maximax and 

Maximin parent selection, Discovery Rate parent selection, and Discovery Rate 

Tournament parent selection were constructed as the newly modified parent selection 

operators to acclimatize population diversification. This third objective was 

accomplished with detailed procedures presented in Section 4.5.4 and the 

implementation result in Section 5.3. 

The fourth objective was accomplished with detailed procedures presented in Section 

4.5.5. It was to construct newly modified crossover operators for the scheduling 

problem and presented as a repair operator for the rescheduling problem. Several 

experiments of the newly crossover operators were tested in Section 5.4. Basically, 

the idea of Two-factor Blockwise crossover and Max[4x4]CSREP crossover were to 

enhance the flexibility of crossing over and enrich little exploitation element to avoid 

slow convergence. With these improvements, Max[4x4]CSREP was capable in 

transforming itself into a repair operator named CSREP,. 



In evaluating the performance of several evolutionary models and what-if analysis 

for NSRP, the last objective was achieved, as shown in Section 5.5 and Section 5.6. 

To conclude, hybridization of evolutionary algorithm and cuckoo search formed the 

basis for DrT-CSREP and CSREP,. In that, they were promising in terms of model 

effectiveness, efficiency, accuracy, and reliability. 

6.2 Research Contributions and Benefits 

By using our enhanced cooperative hybridization (i.e., evolutionary algorithm with 

cuckoo search), the amalgamation of nurse scheduling and rescheduling problem 

(NSRP) can be solved, hence enhancing nurse management. Hence, the present 

research contributes mainly to EA's body of knowledge and nurse management 

system. Consequently, several groups of people can be benefited from the findings of 

this research. They are the head nurses, nurses, and patients. 

6.2.1 Contribution to the Body of Knowledge 

Essentially, EA's exploration and exploitation are having a contradictory nature. 

Each of them resulting to the extreme act of convergence, either it is fast or slow. 

Hence, EA intends to commit on a better balancing point to these principles. For this 

reason, our EA hybridization had watched over the population diversification, 

selective pressure, randomization principle and convergence issue through enhancing 

parent selection operator and crossover operator. 

Mainly, to the best of our knowledge, this research is the first to construct a 

hybridization of evolutionary algorithm with cuckoo search in coorperative 

architecture to solve the integration of nurse scheduling and rescheduling problem. 



The enhanced EA-based hybridization technique was found to be flexible in its 

search with numerous constraints involved. Based on the outstanding result of 

DrT-CSREP model, this hybrid evolutionary algorithm with cuckoo search technique 

was said to have balanced the contradictory nature of exploration and exploitation 

successfully. The accomplishment has highlighted the capability of modern 

heuristics in hybridization, thought they are simple. 

Next, two newly modified matrix crossover operators were created and named as 

Two-factor Blockwise crossover (2F Blockwise) and Cuckoo Search Restriction 

Enzyme Point crossover (Max[4x4.]CSREP). They contributed to achieving a more 

flexible way of crossing over and enhancing permutation, hence, enlarging the 

exploration search. In addition to cuckoo search, the restriction enzyme point was a 

concept adopted from the principle of microbiology on DNA. The cooperative 

cuckoo search with Restriction Enzyme Point was firstly integrated in the proposed 

crossover operator (i.e., Max[4x4]CSREP). One noticeable point is that the 

superiority of hybridizing Cuckoo Search in CSREP crossover operator was able to 

produce best-so-far offspring for the scheduling problem and a better fit retrieved 

solution for the rescheduling problem. Overall, CSREP is used to enrich little 

exploitation to an over exploration search in order to evade slow convergence matter. 

Three newly modified parent selection operators were created in this research. They 

were Maximax and Maximin parent selection, Discovery Rate parent selection, and 

Discovery Rate Tournament parent selection. These dissimilarity relationship 

selections were created to manipulate population diversity, without adding any 

filtering heuristics to an initial population. Essentially, the selections concerned some 



'rare search area' throughout a population as well as prevented premature 

convergence. In all, this research found that elite parents and relative difference 

between them were vital elements in designing parent selection operator. 

With regards to population size, small size of population was said not favorable 

because might lost population's diversity. In fact, this research showed that smaller 

population size could benefit to a problem that is low permutation in an initial 

population which restricted by numerous of constraints. In this case, large population 

size may take a risk of producing quite similar initial individuals (i.e., low diversity). 

Note that, one stipulation is that flexibility is needed in order to reduce the risk of 

getting premature convergence, which means small size population with flexible 

search in selection operator could also cover a solution space effectively. 

Lastly, this research introduced a systematic way in settinga penalty value to each 

level of constraint violation (i.e. hard, semi-hard, and soft constraint). Particular to 

the semi-hard constraint, it can be a linkage of hard and soft constraint whereby 

effectively handling the integrated scheduling and rescheduling problem. Fitness 

calculation was able to prioritize the constraints. Therefore, by examining the penalty 

value, it is able to direct operators to tackle certain level of constraints violation. 

6.2.2 Contribution to the Nurse Management 

Based on the enhancement of fitness calculation, this research was able to handle a 

vast number of constraints by determining their priority as well as the complexity 

level of the constraints. The semi-hard constraint strategy was introduced to handle 

the nurse coverage and nurse preference in the scheduling and rescheduling problem. 



Uncertain absenteeism that had resulted in different levels of shortage severity 

suggests that the handling of the disruption could be managed by considering the 

different levels of coverage and nurse preference. 

The combination of nurse scheduling and rescheduling is the advancement to one 

part of nurse management system. This model (i.e., the integrated scheduling and 

rescheduling model) can be helpful in adjusting the demand for nurses' services in 

light of disruptions or without disruptions. The model also fully utilizes the nurses by 

considering their availability and preferences to improve their productivity and 

services. This integrated scheduling and rescheduling model has been stepping 

further ahead to befit to real-world condition. 

This model strictly considers shift continuity arrangements when retrieving a 

schedule using the cyclical rhythm principle involving past duty, current duty, and 

future duty. For example, nurses who already did the morning shift duty were 

excluded when the disruption happens in the evening shift of the same day. The 

impact of changing current shift that could affect future duty was considered as well. 

Essentially, this complexity was solved when scheduling and rescheduling were 

integrated and resulting a trustable schedule. In the previous studies, these types of 

constraints were lack considered in scheduling stage alone although scheduling and 

rescheduling stages face understaffing problem. This is because scheduling is a 

planning process; it only subjects to postulating a schedule, yet rescheduling is an 

implementing process; its point of view only subjects to current reality real-time 

issue. Therefore, the separation stages were hard to mull over the continuity 

arrangements of past, current and future shifts. 



Nurse fairness and preferences elements which intended to reduce internal conflict 

amongst nurses, were included in the scheduling and rescheduling model. This 

accomplishment has resulting a better chances of having significant Integrated 

Request Off day among nurses; equivalent delegation of on-call nurse among the 

nurses of a ward; equivalent chances of having significant weekend off day among 

nurses; and equal balance number of Morning shift and Evening shifts for each nurse. 

Whereby, the fairness of average number of nurses for each type of shifts was 

advocated. To note, the first two preferences (i.e., Integrated Request Off and 

equivalent on-call delegation) were newly implemented in nurse scheduling problem. 

They were classified as highly desired preferences in our NSRP. 

Our rescheduling was able to provide contingency arrangements that were pre- 

retrieval and retrieval alternatives in light of the risk (i.e., level of disruption) due to 

uncertainty. The pre-retrieval scrutinized the seriousness of a disruption based on a 

schedule readiness. Pre-retrieval could examine the current nurse coverage condition 

and hard constraints violation whereby readjusted the current absent nurse's schedule 

or suggest other nurses who are assigned off duty but still willing to assist if an 

emergency cases happened on that day. Certainly, head nurse must have good 

relationship with the nurses to gain nurses' willil~gness and corporation; that could be 

earned through the success of fulfilling highly desired preferences. Essentially, this 

rescheduling was to preserve the original schedule when the schedule disruption was 

not tremendously serious. 

In a non-survival condition which a ward could not operate with serious 

understaffing problem, this integrated model offers more than one choice of retrieval 



strategy. There are two considerations which are seeking higher quality retrieved 

schedule and lower quantity of changes. Retrieval operator could recreate a new 

schedule accordingly (i.e., retrieval but with radically restructuring the remaining 

days) or retrieve with few adjustments (i.e., retrieval but no radical change to keep 

the original schedule in tact as much as possible). By then, quality change and 

quantity change were both taking into consideration automatically during 

rescheduling. 

The compensation off-day for nurses who were assigned the on-call duty was 

completed in our model. To the best of our knowledge, this has not been 

implemented in a nurse rescheduling model. Despite giving the compensation off at 

the right ti me, the model also attempts to adjust the off days in a consecutive manner. 

This is meant for comforting the on-call nurses by giving them significant rest times 

as well as showing gratitude for their cooperation. 

Last but not the least, this computerized model is flexible enough to be modified to 

suit other industries. By including more detailed data estimation, a robust model for 

manufacturing manpower scheduling, airline task-based crew recovery problem, and 

railway tour-of-duty rescheduling problem can also be constructed. 
I 

6.2.3 Head Nurses' Benefit 

For the head nurse, most of them create a schedule manually, therefore scheduling 

and rescheduling is time consuming. The integration of nurse scheduling and 

rescheduling model aids the head nurse in responding to sudden changes to nurse 

allocation. This human-like model also improves fair distribution of nurses' 



assignment and advocate of humanitarian management (e.g., tolerance between head 

nurse and nurses). When the work environment is perceived as fair and desirable, the 

nurses' intention to leave the organization may be reduced. 

6.2.4 Nurses' Benefit 

An efficient and effective management of manpower through scheduling and 

rescheduling can enhance nurse engagement to their job. This is because the nurses 

can meet their work preferences in terms of on-duty and off-duty assignment. 

Particularly, those highly desired preferences (e.g., timely requested off, weekend off, 

and consecutive compensation off days) and trusted/predicted schedule can be 

achieved. By doing so, the nurses will be able to balance their work and life 

simultaneously, hence reducing internal conflict, and enhance their health as well as 

quality marital life. 

6.2.5 Patients' Benefit 

When there are readily available nurses, better patient safety can be achieved. In 

addition, because the schedule is prepared fairly and by considering their preferences, 

the work environment is enhanced. So, when they are satisfied with such 

arrangement, this spills over to the patients' safety and recovery. 

6.3 Research Limitations 

Patient safety can be more assured if nurse task assignment is taken into account. 

Nurse task assignment involves matters of workload balance which regards to equal 

nursing time provided to each patients as well as same number of patients that need 

to be taking care of. In fact, the on floor nursing care is complicated to be caught up 



in the research due to the variation of patient health condition in which mainly 

compromises with doctor's diagnosis. For that reason, shift continuity elements in 

nurse task assignment (e.g., particular nurse is required to take up shift due to 

particular patient care) and patient classification system are excluded in this research. 

The nurse coverage in our research was determined from on the data gathered. 

However, another alternative is to deal with patient classification system, which 

classifies patients into several categories based on the severity of their illness. 

Therefore, more precise nurse demand and their allocation can be estimated during 

rescheduling since the patients' condition changes from time to time. Perhaps, search 

technique may not be a well fit gadget to support this data inputting matter. 

In this research, we excluded temporary nurses, such as, part-time nurses, volunteer 

helpers, agency nurses and etc. who work to fulfill the shortage within a short period 

of time. This group of nurses was excluded because the use of such nurses is not 

commonly practiced in Malaysia due to financial limitation. 

6.4 Future Work 

For future work, some suggestions are offered in light of the limitations highlighted 

above. 

Ln order to manage the manpower effectively in health care organizations, it is 

suggest that an effective patient information system is developed to support the nurse 

management system. For example, information such as the condition of the patient, 

the duration of hislher medical treatment and bed capacity should be made available. 



In doing so, determining accurately the level of the nurses' skills can be achieved, 

hence effectively deploying human resource. 

In addition, some subjective data such as nurse's experiences and expertise, personal 

goals, and a mixture of nurses in a shift can be considered in NSRP specifically in 

on-call allocation. By doing so, better teamwork and thus better work environment 

can be achieved. In this way, the decision support system can be developed in such a 

way to mimic a real problem. 

Even though penalty value is used to evaluate fitness to satisfy constraints, one may 

fall short of fair techniques comparisons amongst scholars because of different 

weighted values. To this matter, future work can take remedial measures against the 

variation of fitness evaluation such as setting a standard benchmark by distance. 

The hybridization search techniques are the most commonly used and effective 

approach to nurse scheduling. In this research, the simplicity of cuckoo search had 

drawn us to this cooperative architecture. Nevertheless, there are some others modern 

heuristic (e.g. African Wild Dog Algorithm) can be explored as well as compared 

with our cuckoo search integration model. We hope that this research may shed light 

to the modem heuristic hybridization. 

Integrating cuckoo search at crossover operator was shown to be a viable 

hybridization in solving both the scheduling and rescheduling problem. Its ability 

may further improve evolutionary algorithm by applying it to the parent selection 



operator in larger population sizes. Besides, it is suggested that cuckoo search is 

integrated into the direct mutation operator since exploration and exploitation search 

can be flexibly adjusted by considering some constraints. 
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Appendix A 

A random sample of a list of nurses' requested off day in a schedule 

R0[1, 71; 
R0[2,11] ; 
R0[4,61; 
R0[32,5] ; 
R0[20,10] ; 
R0[31,1]; 
R0[4,13] ; 
R0[4,14] ; 
R0[5,121; 
R0[23,14] ; 
R0[24,2] ; 
R0[3,81; 
R0[6,31; 
R0[7,21; 
R0[11,21; 
R0 [12,6] ; 
R0[16,121; 
R0[27,3]; 
R0[28,11; 
R0[29,4] ; 
R0[30,3] ; 
R0[17,81 ; 
R0[18,11] ; 
R0[19,9] ; 
R0[33,4]; 
R0[34,6] ; 
R0[35,4]; 
R0[13,1] ; 
R0[14,2] ; 
R0[8,12] ; 
R0[37,7]; 
R0[38,2]; 
R0[9,14]; 
R0[10,5]; 
RO [15,6] ; 
R0[21,10] ; 
R0 [25,13] ; 
R0[22,12] ; 
R0[26,1] ; 
R0 [39,7] ; 
R0 [36,5] ; 
%UNTITLED2 Summary of this function goes here 
% Detailed explanation goes here 



Appendix B 

Output of One Way ANOVA Test for the comparison of eleven models 

ONEWAY 

DataSetO] D:\PhD infor- compaq\HT Presentation & Writeup\NSRP final output-30 data.sav 

Descriptives 

NSRPFitness 

I I 95% Confidence Interval 
for Mean I 

I 1 I I Std. I Std. I Lower I Upper I Minimu I Maximu I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Total 

Test of Homogeneity of Variances 
NSRPFitness 

Levene Statistic I df 1 I df2 I Sig. 
2.043 1 9 1 150 1 ,038 

Groups with only one case are ignored in computing the test of 
homogeneity of variance for Fitness. 

ANOVA 
NSRPFitness 

Between Groups 
Within Groups 
Total 

Sum of Squares 
1.396E8 
2.203E8 
3.598E8 

Mean Square 
13977050.1 62 
1468447.244 

df 
10 

150 
160 

F 
9.518 

Sig. 
,000 



Appendix C 

A sample of the best schedule with 1033 best fitness 

1 3 9  I P ( E I M I M I M I E I Q I E I E I U I M I M I N I N I  
* The best schedule: 1033 fitness value 



Appendix D 

Pseudo code of Matlab for calculating fitness in NSRP 

tic 
tot_nurse=39; 
no_sen=14; 
no-day=14; 
Dr=O. 4 ; 

popl=f 1(39,14, no-day) ; popl=f2 (popl) ; 
pureTRO=O; 
for 11=1:39 
for kl=1:14 

if popl (11, kl) =='R1 
pureTRO=pureTRO+l; 

end 
end 

end 
pureTRO; 

popl=f 3 (popl, no-day) ; 
popl=f 4 (popl, no-day) ; 
popl=f 5 (popl, no-day) ; 
popl=f 6 (popl, no-day) ; 

% calculate fitness for new chrom after some change 
cl=reqfitm(popl, no-day) ; 
c2=reqfite (popl, no-day) ; 
c3=sm (popl, no-day) ; 
c4=se (popl, no-day) ; 
rl=rowfitono (popl, no-day) ; 
r2=rowfitmebalance(poplIno~day); 
r3=afteroe (popl, no-day) ; 
r4=rowfitwe (popl, no-day) ; 
r5=rowfitemnk (popl, no-day) ; 

col fit (ind) =O; 
req? itm-sum (ind) =O; 
reqf ite-sum (ind) =O; 
sm-sum (ind) =0 ; 
se-sum (ind) =O; 

for j=l:no-day 
reqfitm sum (ind) =reqf itm-sum (ind) +cl (j ,ind) ; 
req£ iteIsum (ind) =reqf ite-sum (ind) +c2 (j, ind) ; 
sm-sum (ind) =sm-sum (ind) +c3 (j A d )  ; 
se - sum (ind) =se-sum (ind) +c4 (j ,ind) ; 

end 
col - fit (ind) =reqf itm-sum (ind) +reqfite-sum (ind) +sm-sum (ind) +se-sum (in 
d) ; 

row fit (ind) =O; 
row? itono-sum (ind) =O; 
row£ itmebalance-sum (ind) =O; 
afteroe-sum (ind) =O; 
row£ itwe-sum (ind) =O; 
rowf itemnk - sum (ind) -0; 



for i=1:39 
rowfitono-sum (ind) =rowfitono-sum (ind) +rl (1, ind) ; 
rowfitmebalance sum (ind) =rowfitmebalance-sum (ind) +r2 (it ind) ; 
af teroe-sum (indy=af teroe-sum (ind) +r3 (i, ind) ; 
rowfitwe-sum (ind) =rowfitweesum (ind) +r4 (i, ind) ; 
rowfitemnk-sum (ind) =rowfitemnkksum (ind) +r5 (i, ind) ; 

end 
row fit (ind) =rowf itono sum (ind) +rowfitmebalance-sum (ind) tafteroe-sum 
(ind) +row£ itwe-sum (ind)+rowf itemnk-sum (ind) ; 

totRQTB (ind) =O; 
for 11=1:39 
for kl=1:14 
if popl (11, kl,ind)=='Q1 I I popl (11, kl,ind)=='B1 1 I 

popl (ll,kl,ind)=='T' 1 I popl (11, kl,ind)=='R' 
totRQTB (ind) =totRQTB (ind) +l; 

end 
end 

end 
RDisappv (ind) =pureTRO-totRQTB (ind) ; 

xRTolerc-sum (ind) =0; 
for ll=l:tot-nurse 

Rrow (11, ind) =O; 
Offrow (11, ind)=O; 
xRTolerc (11, ind) =O; 

for kl=l:no-day 

if popl (11, kl, ind)=='R1 
Rrow (11, ind)=Rrow (11, ind) t1; 

end 

if popl (11, kl,ind)=='W' I I popl (11, kl,ind)=='Pr 1 1 
popl(ll,kl,ind)=='U'l I popl(ll,kl,ind)=='F'l I popl(ll,kl,ind)=='Z' 

Of £row (11, ind) =Of £row (l1,ind) +l; 
end 

end 

if Of frow (11, ind) >O & &  Rrow (11, ind) >O 
if (Offrow (11, ind) -Rrow (11, ind) ) >=0 

xRTolerc (11, ind) =Rrow (l1,ind) ; 
else 

xRTolerc (11, ind) =Offrow (l1,ind) ; 
end 

end 
end 

xRTolerc(:,ind); % show 39 nurses' total of RO disapproved 
xRTolerc-sum (ind) =sum (xRTolerc ( : ,ind) ) ; % xRTolerc-sum for 1 

indv@ table 

fitness (ind) =col-f it (ind) trow-fit (ind) + (xRTolerc~sum (n) *I) t (RDisappv 
(n) *20) ; % % %  rescheduling: + (no cell*5) t (no c*20) ; 

% rowf itono-sum, rowf itmebalanc<sum, afteroe-sum, rowf itwe-sum, 
rowfitemnk-sum 
% reqfitm-sum, reqfite-sum, sm-sum, se-sum 
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