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Abstrak 

Penggugusan teks digunakan oleh enjin carian untuk meningkatkan recall dan 

precision dalam bidang capaian maklumat. Memandangkan enjin carian beroperasi 

menggunakan kandungan Internet yang selalu berubah, maka satu algoritma 

penggugusan yang menawarkan pengumpulan item secara automatik tanpa 

maklumat awal berkenaan koleksi berkenaan adalah diperlukan. Kaedah 

penggugusan sedia ada menghadapi masalah untuk menentukan bilangan gugusan 

yang optimal dan gugusan yang padat. Dalam penyelidikan ini, satu algoritma 

penggugusan teks hierarki yang adaptif  telah dicadang berdasarkan algoritma 

Firefly. Algoritma Firefly Adaptive (AFA) yang dicadangkan mempunyai tiga 

komponen: penggugusan dokumen, pembaikan gugusan dan penggabungan 

gugusan. Komponen pertama memperkenalkan algoritma Weight-based Firefly 

(WFA) yang berupaya untuk mengenal pasti pusat awalan dan gugusannya secara 

automatik bagi sesuatu koleksi teks. Bagi memperbaiki gugusan yang telah 

diperolehi, algoritma kedua iaitu Weight-based Firefly dengan Relocate (WFAR) 

telah dicadangkan. Kaedah ini membolehkan penempatan semula dokumen yang 

telah ditempatkan ke dalam gugusan yang baharu terhasil. Komponen ketiga, 

Weight-based Firefly Algorithm dengan Relocate dan  Merging (WFARM),   

bertujuan mengurangkan bilangan gugusan yang terhasil dengan menggabungkan 

gugusan bukan asli ke dalam gugusan asli. Eksperimen telah dilaksanakan untuk 

membandingkan  algoritma yang dicadangkan dengan tujuh kaedah sedia ada. 

Peratusan kejayaan memperolehi bilangan gugusan yang optimal oleh AFA  ialah 

100% dengan mendapat purity dan f-measure  83% lebih tinggi daripada kaedah 

penanda aras. Bagi ukuran entropy, AFA menghasilkan nilai terendah (0.78) apabila 

dibandingkan dengan kaedah sedia ada. Keputusan ini memberi indikasi bahawa 

Algoritma Firefly Adaptif  boleh menghasilkan gugusan yang padat. Penyelidikan 

ini menyumbang kepada domain perlombongan teks memandangkan penggugusan 

teks hierarki membantu pengindeksan  dokumen dan proses pencapaian maklumat.  
 

Kata kunci: Perlombongan teks, Penggugusan teks hierarki, Swarm Intelligence, 

Firefly Algorithm 
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Abstract 

Text clustering is essentially used by search engines to increase the recall and 

precision in information retrieval. As search engine operates on Internet content that 

is constantly being updated, there is a need for a clustering algorithm that offers 

automatic grouping of items without prior knowledge on the collection. Existing 

clustering methods have problems in determining optimal number of clusters and 

producing compact clusters. In this research, an adaptive hierarchical text clustering 

algorithm is proposed based on Firefly Algorithm. The proposed Adaptive Firefly 

Algorithm (AFA) consists of three components: document clustering, cluster 

refining, and cluster merging. The first component introduces Weight-based Firefly 

Algorithm (WFA) that automatically identifies initial centers and their clusters for 

any given text collection. In order to refine the obtained clusters, a second algorithm, 

termed as Weight-based Firefly Algorithm with Relocate (WFAR), is proposed. Such 

an approach allows the relocation of a pre-assigned document into a newly created 

cluster. The third component, Weight-based Firefly Algorithm with Relocate and 

Merging (WFARM), aims to reduce the number of produced clusters by merging non-

pure clusters into the pure ones. Experiments were conducted to compare the 

proposed algorithms against seven existing methods. The percentage of success in 

obtaining optimal number of clusters by AFA is 100%   with purity and f-measure of 

83% higher than the benchmarked methods. As for entropy measure, the AFA 

produced the lowest value (0.78) when compared to existing methods. The result 

indicates that Adaptive Firefly Algorithm can produce compact clusters. This 

research contributes to the text mining domain as hierarchical text clustering 

facilitates the indexing of documents and information retrieval processes.  
 

Keywords: Text mining, Hierarchical text clustering, Swarm Intelligence, Firefly 

Algorithm 
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CHAPTER ONE 

INTRODUCTION 

Adaptation in computer science is the process of a system. Adaptive system adapts 

its behavior to users depending on the information that can be collected from users 

and the environment. An adaptive system is a set of entities that interact between 

them and change their behavior in response to their environment. The aim of 

adaptive change is to achieve the goal. Artificial systems, such as robots, can adapt 

with the environment by sensing the new condition through the use of feedback 

loops (i.e. the output of the system becomes input). Furthermore, it can adapt a 

parameter from the environment based on the change of the conditions; for example, 

a new adaptive parameter (speed) changes based on the color of the agent added in 

the adaptive flocking algorithm (Folino, Forestiero, & Spezzano, 2009), and the 

value of pheromone at each location introduced in the picking and dropping 

probability functions of the adaptive ant colony clustering algorithm, and it also 

improves the similarity scaling factor by automatic adoption (El-Feghi, Errateeb, 

Ahmadi, & Sid-Ahmed, 2009). The adaptive system utilizes machine learning to 

adapt its behavior over time (Glass, 2011). Swarm Intelligence provides a useful 

paradigm for implementing adaptive systems (Kennedy & Eberhart, 2001). 

Swarm Intelligence or Swarm Computing is “the emergent collective intelligence of 

groups of simple agents” (Bonabeau, Dorigo, & Theraulaz, 1999). It is useful to 

solve some problems that cannot be processed using traditional methods. It is used to 

find optimal solutions in hard problems, such as Travelling Salesman Problem (TSP) 
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(Dorigo & Gambardella, 1997), sound processing (Muñoz, Llanos, Coelho, & Ayala-

Rincon, 2011), and text clustering (Feng et al., 2010).  

An example of Swarm Intelligence algorithms is the Firefly Algorithm (FA). FA is 

developed by Xin-She Yang in 2007 at Cambridge University. Firefly algorithm has 

two important issues, the light intensity and the attractiveness. For maximum 

optimization problems, the light intensity I of a firefly at a particular location x, 

termed as I(x), can be determined by objective function f(x). On the other hand, the 

attractiveness β is relative where the change depends on the distance between two 

fireflies (Yang & He, 2013; Yang, 2010a, 2010b). Firefly algorithm has been used in 

many applications, such as economic emission load dispatch problem 

(Apostolopoulos & Vlachos, 2011; Yang, Hosseini, & Gandomi, 2012), speech 

recognition (Hassanzadeh, Faez, & Seyfi, 2012), image segmentation (Hassanzadeh, 

Vojodi, & Moghadam, 2011; Horng & Jiang, 2010), reliability-redundancy 

allocation problem (dos Santos Coelho, de Andrade Bernert, & Mariani, 2011), 

semantic web service composition (Pop et al., 2011), data classification (Nandy, 

Sarkar, & Das, 2012), anomaly detection (Adaniya, Abr˜ao, & Proenc¸a Jr., 2013), 

and parallel and distributed systems (Falcon, Almeida, & Nayak, 2011). 

The main idea of text analysis is to extract valuable information from various 

resources on the Internet, such as web text, social media and blogs. The obtained 

information is later converted into numerical values which can be combined with 

other structured data before being analyzed using one of the data mining techniques. 

Hence, text analytics involves seven different areas, which are document 

classification, document clustering, information extraction, natural language 
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processing, concept extraction, information retrieval, and web mining. These seven 

areas are related with six fields, such as statistics, computational linguistics, data 

mining, databases, artificial intelligence and machine learning, and information 

sciences. Figure 1.1 shows the text analytics techniques and external disciplines 

involved (Miner et al., 2012, p.31). 

 

 

 

 

 

 

 

 

Figure 1.1. Text analytics techniques and external disciplines  

Resource. Miner et al., (2012, p.31). 
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process will require some time to map the submitted words (i.e. query) against 

indexing databases. The larger the amount of documents uploaded in the web, the 

larger the indexing database would be. Hence, efficient clustering techniques are 

beneficial in creating a better structure of the indexing database. 

Existing text clustering techniques suffer from drawbacks such as the determination 

of the number of clusters as initial value and random of initial centers, that later 

produce poor clustering results. Hence, many researchers have integrated existing 

text clustering techniques with Swarm Intelligence (SI) algorithms; for example, 

divisive clustering framework was integrated with Particle Swarm Optimization 

(PSO) and the result validates the effectiveness of this integration (Feng et al., 2010). 

On the other hand, there is an FA that is successful in many domains including 

numerical data clustering (Banati & Bajaj, 2013; Senthilnath, Omkar, & Mani, 

2011). In addition, it is also noted that FA has a higher capacity to find an optimal 

solution compared to PSO (Yang, 2010a). Nevertheless, it has yet to be reported on 

work that utilizes FA in text clustering. Hence, this study extends the existing work 

of FA by adapting it into hierarchical text clustering. 

1.1 Research Background 

This study focuses on text clustering based on the behavior of Firefly Algorithm. In 

particular, this study looks into the adaptive characteristic of the Firefly Algorithm 

(FA) in grouping text documents.  
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1.1.1 Clustering 

Cluster analysis refers to the process of grouping un-labelled patterns or objects into 

multi-groups depending on their similarity. Each group is called a cluster, which 

contains objects that are similar between them and dissimilar from objects in 

different cluster (Das, Abraham, & Konar, 2009; Yin, Kaku, Tang, & Zhu, 2011). 

Clustering is unsupervised learning that does not need training data and does not 

assign target class for each instance in the dataset (Jensi & Jiji, 2013). Various 

clustering algorithms have been proposed by many researchers. In general, these 

algorithms are classified into five categories (Zhang, Cao, & Lee, 2013; Zhang & 

Cao, 2011): partitional clustering, hierarchical clustering, density-based clustering, 

grid-based clustering, and model-based clustering. 

Partitional clustering algorithms attempt to split a dataset into a set of dissimilar 

clusters. The splitting process depends on the objective function that confirms the 

data local structure. The objective function attempts to minimize the summation of 

square error between the center of a cluster (centroid point) and all points in a cluster 

(Anitha Elavarasi, Akilandeswari, & Sathiyabhama, 2011). Clusters that are 

produced must include at least one object and the object must not belong to another 

cluster; this is called hard clustering. Another type is called soft clustering, where an 

object belongs to multiple clusters with membership degree (Bordogna & Pasi, 2012; 

Youssef, 2011).  

The hierarchical clustering algorithm constructs a hierarchy of clusters. There are 

two approaches of this method (Das, Abraham, & Konar, 2009). The first approach 

is agglomerative hierarchical clustering which operates from the bottom to the top, 
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where every object is located in a single cluster, and merges them based on similarity 

between clusters (Gil-Garicia & Pons-Porrata, 2010; Wilson, Boots, & Millward, 

2002). The second approach is divisive hierarchical clustering which starts from the 

top to the bottom, where all objects are initially being assigned in one cluster, and 

splits them using one of the partitional clustering approaches (Bordogna & Pasi, 

2012). The advantage of hierarchical clustering is that it does not require the number 

of k clusters which is the drawback of the partitional clustering. Hierarchical 

clustering is a very suitable method for text clustering (Feng et al., 2010; Zhu, Fung, 

Mu, & Li, 2008). Hierarchical clustering methods build a hierarchy of nested quality 

clusters (Murugesan & Zhang, 2011a, 2011b; Wilson, Boots, & Millward, 2002).  

Density-based clustering is a method to build clusters based on dense regions of 

objects in high-dimensional space that are isolated by low density areas. The idea of 

this algorithm is to detect the area of high density and the area of lower density (Das, 

Abraham, & Konar, 2009). The features of density-based algorithm are noise 

tolerate, the ability of handling arbitrary shaped clusters, and requires only a single 

scan on the input dataset. Additionally, it also requires the initialization of density 

parameters (Anitha Elavarasi et al., 2011). 

The grid-based clustering algorithms split the space into finite numbers of 

rectangular cells at a high level. Then, in the next lower level, each cell is divided 

into a number of smaller cells (Zhao, Cao, Zhang, & Zhang, 2011). Every small cell 

contains parameters that are calculated like count, mean, min, and max. Higher level 

cells can easily access into parameters in the lower level. There are several methods 
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such as STING (Wang, Yang, & Muntz, 1997), CLIQUE (Agrawal, Gehrke, 

Gunopulos, & Raghavan, 1998), OptiGrid (Hinneburg & Keim, 1999). 

On the other hand, the model-based clustering method tries to optimize the fit 

between some mathematical models and data. In addition, it characterizes the 

description of data groups. Hence, each group appears with a class or concept. The 

Neural Networks (NN) (Wang et al., 2011) and Self Organizing Map (SOM) 

(Kohonen, 1998) are two types of model-based clustering (Zhang, Cao, & Lee, 2013; 

Zhang & Cao, 2011). 

1.1.2 Text Clustering 

Text clustering or document clustering organizes text documents as clusters; similar 

documents are in one group and dissimilar ones in another group (Xinwu, 2010). 

Document clustering is applicable in document organization and browsing which the 

hierarchical approach can be very beneficial for documents to browse systematically. 

It also has been applied in document summarization. Document clustering 

summarizes a large quantity of documents using the key concepts that are extracted 

from the documents. In addition, it discovers a hidden pattern based on the 

similarities between the documents (Aggarwal & Zhai, 2012).  

In text clustering, the documents are represented as a vector in a vector space model 

(VSM). Each document is treated as a bag of words which represents the document 

features (Guan, Shi, Marchese, Yang, & Liang, 2011). Most of the existing texts 

clustering algorithms use the similarities between the texts in the text clustering 

process. Similarity means points, features, or details that are alike in two documents. 
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There are many similarity functions, such as Cosine similarity, Jaccard similarity and 

Hamman similarity (Yin, Kaku, Tang, & Zhu, 2011), that can be used in determining 

the similarity between documents. 

The performance of text clustering algorithms is measured by using statistical 

mathematical functions. These functions are based on the similarity or dissimilarity 

between the documents, such as Davies Bouldin Index (DBI) (Davies & Bouldin, 

1979), Dunn Index (DI) (Dunn, 1974), Entropy (Shannon, 1948), F-measure 

(Meghabghab & Kandel, 2008), purity (Murugesan & Zhang, 2011a, 2011b), and 

Average Distance between Documents and Center (ADDC) (Murugesan & Zhang, 

2011a, 2011b). The lower value of DBI, high value of DI, lower value of Entropy, 

high value of F-measure, high value of purity, and lower value of  ADDC, means 

good quality cluster (Das, Abraham, & Konar, 2009). For example, Murugesan and 

Zhang (2011a) produced low quality clusters where the result of Entropy was 1.41, 

F-measure was 0.29 and purity was 0.49 for TR11 dataset. 

There exist various reported works on text clustering. Some of them utilize classical 

text clustering algorithms (Gupta & Sharma, 2010; Xinwu, 2010; Zhang, Yoshida, 

Tang, & Wang, 2010) and the more recent works introduce meta-heuristics 

algorithms for text clustering (Feng et al., 2010; Wang, Shen, & Tang, 2009).  

The meta-heuristics text clustering has been applied to achieve global optimal 

solutions or nearly optimal without the need for prior knowledge about the data set 

(Das, Abraham, & Konar, 2009). Meta-heuristics algorithms, such as Firefly 

Algorithm (FA) (Yang & He, 2013; Yang, 2010a, 2010b), Particle Swarm 
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Optimization (PSO) (J. Kennedy & Eberhart, 1995), and Ant Colony Optimization 

(ACO) (Dorigo, 1992), have been used in many clustering works.  

1.2 Problem Statement 

The problem of text clustering has been studied widely, especially using clustering 

techniques such as partitional (Yao, Pi, & Cong, 2012) and hierarchical (Gupta & 

Sharma, 2010). Agglomerative clustering does not work well with high dimensional 

data (Zhu, Fung, Mu, & Li, 2008), on the other hand, divisive clustering is efficient 

and useful in document clustering and information retrieval (Feng et al., 2010; 

Kashef & Kamel, 2009). However, existing works on divisive hierarchical clustering 

produced clusters with less quality (Bordogna & Pasi, 2012; Gupta & Sharma, 

2010).  

Recently, there exist hybrid works of hierarchical approaches that combine the 

divisive and agglomerative clustering approaches and produced better clusters 

(Murugesan & Zhang, 2011a, 2011b; Zhu, Fung, Mu, & Li, 2008). Unfortunately, 

the divisive techniques that were utilized in existing hybrid hierarchical approaches, 

such as partitional clustering (Zhu, Fung, Mu, & Li, 2008) and Bisect K-means 

(Murugesan & Zhang, 2011a, 2011b), have drawbacks in determining an optimal 

number of k clusters (Hassanzadeh & Meybodi, 2012; Xu, 2005; Youssef, 2011; 

Zhong, Liu, & Li, 2010). Such a problem arises as there is no prior knowledge on the 

utilized datasets. The works in Bisect K-means fall into local optima because of the 

random initialization of the centroids (Chen et al., 2005; Hassanzadeh & Meybodi, 
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2012; Rana, Jasola, & Kumar, 2010; Tang, Fong, Yang, & Deb, 2012). Different 

initial centers will produce different clusters, and hence, generate different qualities. 

In addition, in divisive hierarchical clustering such as Bisect K-means, documents 

which are assigned to a cluster cannot be re-assigned to another cluster (Forsati, 

Mahdavi, Shamsfard, & Meybodi, 2013; Murugesan & Zhang, 2011a, 2011b; Xu, 

2005). This means that a document in a higher level of hierarchy cannot be relocated 

into another cluster (at a lower hierarchy) even though it is identified to be more 

similar to the center of the newly created cluster. On top of that, the divisive 

approach produces a large number of clusters. This later affects the performance 

quality (Murugesan & Zhang, 2011a, 2011b). 

1.3 Research Questions 

i. How to adapt the standard FA in clustering to identify the initial number of 

clusters and its centroids? 

ii. How to design an approach that allows the re-location of an item once it has 

been grouped in a particular cluster?  

iii. How to merge between two similar clusters? 

iv. How to evaluate the proposed algorithms? 

1.4 Research Objectives 

The main objective of this thesis is to construct an adaptive hierarchical clustering 

algorithm based on the Firefly Algorithm (FA) for text documents. In order to 

achieve the main objective, the following sub-objectives must be addressed: 
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i. To design a divisive algorithm based on the firefly algorithm to identify the 

initial centroids. 

ii. To design an algorithm for the re-location of a document upon the creation of 

a new cluster at a lower hierarchy to improve cluster quality. 

iii. To construct an enhanced cluster merging algorithm based on the clusters 

obtained from Objective (2) in order to obtain the optimal clusters.  

iv. To evaluate the proposed algorithms based on the performance metrics. 

1.5 Research Significance 

In this research, an algorithm for hierarchical text clustering will be developed based 

on the Firefly Algorithm. The importance of the developed algorithm is 

demonstrated in the three objectives as described in Section 1.4, where the first 

objective provides means in identifying the initial centroids. The benefit of the 

second objective is in improving the cluster quality as the assigned document can be 

relocated (if required) into a newly created cluster. Additionally, the third objective 

contributes in identifying the number of clusters and enhances the performance 

quality. 

The proposed hierarchical text clustering algorithm can be realized in a search 

engine that represents and organizes documents in a structured manner. A well-

structured indexing database would contribute to a better retrieval process, and 

hence, facilitate users in decision making.  
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1.6 Scope and Limitations of the Research 

This study focuses on text clustering based on the behavior of Firefly Algorithm. In 

particular, this study looks into the adaptive characteristic of the Firefly Algorithm 

(FA) in grouping text documents.  

In addition, this study focuses on text documents which are obtained from different 

resources; UCI machine learning repository (Bache & Lichman, 2013) and 20 

Newsgroup website (20NewsgroupsDataSet, 2006). The datasets are of two types: 

balanced (the number of documents in each class is equal) and un-balanced. The 

20Newsgroups dataset (20NewsgroupsDataSet, 2006; Bache & Lichman, 2013) and 

Reuters-21578 dataset (Lewis, 1999) are balanced datasets as each class in the 

datasets includes the same number of documents. Each document in the Reuters-

21578 database contains only one topic that means every document refers to only 

one class. On the other hand, TR11, TR12, TR23 and TR45 were retrieved from 

CLUTO toolkit (Karypis, 2002), and have already been pre-processed by Zhao and 

Karypis (2001), and they were derived from Text Retrieval Conference (TREC) 

collections (TREC, 1999), is an un-balanced dataset. However, the number of terms 

in each resource was less than 10,000. 

Furthermore, in this research, the focus is on the quality of the produced clusters 

rather than the consumed computational effort (time and resources).  

1.7 Organization of the Research 

This thesis is organized in eight chapters. Chapter One contains the introduction that 

discusses Swarm Intelligence, text analytics, and information retrieval. Furthermore, 
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this chapter also includes problem statement, research questions, research objectives, 

significance and research scope.  

The second chapter presents a proposed taxonomy of clustering methods. Existing 

literature on different categories of text clustering techniques are discussed and the 

utilization of the swarm approach in text clustering is focused.  

Chapter Three provides the methodology used in conducting this research. It 

includes the architecture of the proposed hierarchical text clustering that includes: 

data acquisition, clustering using Weight-based Firefly Algorithm, cluster refining, 

and cluster merging.  

Chapter Four presents the realization of the proposed clustering using Weight-based 

Firefly algorithm. The Weight-based Firefly algorithm is tested on the standard 

benchmark dataset that is mostly used in text clustering. 

Chapter Five presents the Document Re-locating algorithm combined with Weight-

based firefly algorithm. The proposed Document Re-locating algorithm changes the 

location of documents (if necessary) when new clusters are constructed.  

Later, in Chapter Six the elaboration on the proposed merging algorithm is 

presented. Evaluation is performed based on external and internal metrics and 

compared against static and dynamic methods. 

Chapter Seven includes experimental results; the evaluation and analysis of the 

proposed implementation of the adaptive FA that includes the entire prior proposed 
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algorithm (WFA, re-locating, and merging algorithm). The adaptive algorithm is 

evaluated using balanced and un-balanced datasets.  

Finally, Chapter Eight gives the concluding remarks on the proposed hierarchical 

text clustering. It includes the research contribution and recommendations for future 

research work relating to Firefly algorithm. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Currently, there exist various methods on text clustering. These include the 

development of enhanced algorithms and hybridization of existing clustering 

algorithms. Diverse clustering algorithms have been presented over the years. 

Algorithms that are based on the initial information of a data collection (for example, 

the number of clusters) can be categorized into two approaches: static and dynamic 

(Gil-Garicia & Pons-Porrata, 2010). Furthermore, traditional methods are divided 

into five types: Partitional clustering, Hierarchical clustering, Density-based 

clustering, Model-based clustering and Grid-based clustering (Han et al., 2011; 

Zhang, Cao, & Lee, 2013). Figure 2.1 illustrates the proposed taxonomy of 

clustering methods. The following sections review the state of the art in text 

clustering based on the figure. 
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2.2 Clustering Methods 

In clustering, various clustering methods have been presented over the years to help 

optimize the field. These methods can be sighted in two separate types of groups: a) 

static methods, and b) dynamic methods, with their respective approaches from 

traditional methods to evolutionary ones. This chapter includes the elaboration on the 

description of several clustering methods categorized as a static or dynamic 

approach. 

2.2.1 Static Approach 

Clustering involving static approach requires information on the number of clusters 

(i.e. the value of k) prior to the clustering process. The static approach can further be 

categorized as either using the traditional clustering or optimization methods.  To 

date, various optimization methods have been utilized to overcome issues that arise 

while using the traditional methods. 

2.2.1.1 Traditional Methods 

Traditional methods include five types of clustering: Partitional clustering (Jain, 

2010), Density-based clustering (Sander, 2010), Grid-based clustering (Ilango & 

Mohan, 2010), Model-based clustering (Ding & Fu, 2012; Zhang & Cao, 2011), and 

Hierarchical clustering (Jain, 2010; Vijayalakshmi, MCA, & Devi, 2012). Details on 

these five types of methods are as presented in Sections 2.2.1.1.1 to 2.2.1.1.5. 
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2.2.1.1.1 Partitional Text Clustering 

Partitional clustering algorithms divide a dataset into groups based on the inter-

similarity between documents. The most popular and efficient partitional clustering 

algorithm is K-means (Hartigan & Wong, 1979; Hu, Zhou, Guan, & Hu, 2008; Jain, 

2010) which was first introduced in 1957 by Hugo Steinhaus and was first utilized 

by James MacQueen in 1967. The K-means steps are shown in Figure 2.2. 

K-means algorithm 

Step 1: Select an initial partition with k clusters; repeat Steps 2 and 3 until cluster 

membership is stabilized. 

Step 2: Generate a new partition by assigning each pattern to its closest cluster center. 

Step 3: Compute new cluster centers. 

 

Figure 2.2. Steps of K-means algorithm  

Resource. Jain (2010) 

The implementation of K-means generates problems that include the randomly 

selected initial centroids. Existing studies (Gu, Zhou, & Chen, 2009; Hu, Zhou, Guan 

& Hu 2008; Mishra, Nayak, Rath, & Swain, 2012; Poomagal & Hamsapriya, 2011; 

Singh & Bhatia, 2011; Yao, Pi & Cong, 2012) indicate that different initial centroids 

produce different quality of clusters. Hence, this indicates that it is important to 

accurately determine the initial centroids. 

With this, researches have been improving the standard K-means for text clustering 

by selecting initial cluster (Xinwu, 2010; Yao, Pi & Cong, 2012). A work by Xinwu 

(2010) used the sampling method (random sampling) on online datasets to validate 

the proposed algorithm. The results on F-measure scattered from 0.60 and 0.75 in the 
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standard K-means; while in the improved K-means, the F-measure results scattered 

from 0.75 and 0.85, which are better than the one obtained using the standard K-

means. The obtained results were similar to the findings by Yao, Pi and Cong (2012) 

which were performed on Chinese corpus from Sogou news site and used isolated 

texts. Nevertheless, the number of k cluster was assumed. 

The modified K-means algorithm for document clustering was presented by 

Poomagal and Hamsapriya (2011), and Singh and Bhatia (2011). Singh and Bhatia 

(2011) proposed that the highest frequency of points has the highest probability to be 

included as the centroid. Their approach reduced the computational time and 

minimized the complexity, but the work was not implemented on a real dataset and 

clustering measurements were absent to validate the proposed algorithm. This differs 

with the work by Poomagal and Hamsapriya (2011), who calculated the midpoint for 

each term. The researchers utilized 200 results that were selected from Yahoo, 

Google and Bing. The experimental result demonstrated less intra-cluster and high 

inter-cluster than the other two algorithms of Snippets and URL and tag contents. 

However, the drawbacks of these two works are the number of k clusters which was 

assumed. 

A novel partition-based algorithm for text clustering to solve the initial centers of 

cluster was presented by Hu, Zhou, Guan and Hu (2008), and Wang, Liu, Chen, and 

Tang (2011). A constrained K-means clustering method, named S3-Kmeans, 

integrates prior knowledge of documents (pairwise constraints ML terms must link) 

into Euclidean distance function of K-means (Hu, Zhou, Guan & Hu, 2008). In the 

evaluation, they used two metrics: normalized mutual information (NMI) and 
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corrected rand coefficient (CRC). The proposed methods of S3-Kmeans performed 

better than K-means, Single Linkage and improved Single Linkage. However, the 

shortcoming is in determining the number of k clusters and this is similar to the 

weakness presented by Wang, Liu, Chen and Tang (2011), in which they calculated 

the document average similarity of document k, then, found the document similarity 

list based on average similarity, and later, they ordered the list and retrieved the 

largest value as centroids. The F-measure result of the proposed algorithm is better 

than Agglomerative, Bisect K-means and Graph-based in CLUTO (Karypis, 2002). 

Existing researches on k-means are based on initial point and this leads to coverage 

local minima. This problem was solved by Yang (2010), who proposed a fast greedy 

k-means algorithm. In the experiment, they used a dataset that includes 33,409 web 

documents gathered from the Waterloo University website. The precision result 

compares k-means against the fast greedy k-means and it is learned that the proposed 

method has better precision result than K-means. However, the shortcoming of the 

work is the pre-defined value for k. 

To minimize the processing complexity for text document clustering, Guan et al. 

(2011) introduced two contributions: i.e. a similarity formula and a new Seed 

Affinity Propagation (SAP). A similarity formula is based on three feature sets: co-

feature set represents the feature in two objects; unilateral set represents the feature 

in one object not belonging to another object; and significant set represents the most 

important feature in one object belonging to another object. In the experiment 

conducted, the researchers used the Reuters-21578 dataset with three measurements: 

Entropy, F-measure and CPU time. The results of the proposed SAP outperformed 
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the original Affinity Propagation AP(C), SAP(C) and K-means(C) that used cosine 

similarity and AP that used Tri-set similarity in F-measure with 0.599 and in Entropy 

with 0.472. However, in CPU execution time, the Affinity Propagation AP(C) has 

the best time of 12.6 ms. and yet, the evaluation was only based on external 

measurement and does not include the compactness of the clusters. 

The problem of initial cluster centers was solved using various methods in numerical 

datasets (Gu, Zhou & Chen, 2009; Mishra, Nayak, Rath & Swain, 2012). In the first 

work, Gu, Zhou and Chen (2009) proposed to refine the initial centers of the K-

means method by utilizing the partition algorithm twice. In the evaluation phase, two 

datasets are employed: breast cancer and Iris from the UCI repository. The results 

indicated that the proposed refined K-means is better than the standard K-means in 

CPU-time, but the clusters’ quality performance is absent. This is different than the 

work of Mishra, Nayak, Rath and Swain (2012), who selected the farthest distance 

between two pairs and found that the computational time of standard K-means is 

better than the proposed far efficient K-means. In addition, the result of Dunn’s 

index (DI) in the proposed far efficient K-means is 0.047 and Bouldin’s index (DBI) 

is 0.688 which is better than the standard k-means. However, the number of k cluster 

is provided by the user. 

The aforementioned researches contribute in random initial centroids selection in K-

means algorithm, but the quality of the clusters can still be improved (Hu, Zhou, 

Guan, & Hu, 2008; Mishra, Nayak, Rath, & Swain, 2012; Poomagal & Hamsapriya, 

2011; Singh & Bhatia, 2011; Yang, 2010; Yao, Pi & Cong, 2012). There is still a gap 

in the existing literature which is the determination of the number of k clusters and 
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initial centers in which this research tries to solve them. Table 2.1 presents the 

summary of existing works in partitional text clustering. 

Table 2.1 

Summary of existing researches in partitional text clustering. 

Authors Contribution Problem Solved Dataset Weakness 

Hu, Zhou, 

Guan, & Hu 

(2008) 

 

A constrained K-

means clustering 

method, S3-

Kmeans 

Random initial 

centroids selection 

in k-means 

algorithm 

TREC, Reuters-

21578, Newsgroup-

20 and WebACE. 

Predefine k 

clusters 

Xinwu 

(2010) 

Improved K-means 

sampling method  

Initial selection of 

centers 

Used online 

datasets to validate 

the algorithm 

Predefine k 

clusters 

Yang (2010) 
A fast greedy K-

means algorithm 

Existing researches 

for K-means not 

scaled to large data 

point numbers and 

are slow depending 

on initial point 

which lead to 

coverage local 

minima 

33,409 web 

documents gathered 

from Waterloo 

University website 

Predefine k 

clusters 

Poomagal & 

Hamsapriya 

(2011) 

Determination of 

initial centroids by 

calculating the 

midpoint using 

optimized K-means  

Random initial 

centroids selection 

in K-means 

algorithm 

Used 200 queries in 

Yahoo, Google and 

Bing  

Predefine k 

clusters 

Singh & 

Bhatia 

(2011) 

Modified K-means 

algorithm 

Initial center of 

clusters 
No real dataset  

Predefine k 

clusters. 

Wang, Liu, 

Chen, & 

Tang (2011) 

 Partition algorithm  

Sensitivity of 

partition algorithm 

for initial centroids 

20 Newsgroups, 

Reuters-21578 and 

two Chinese 

datasets 

Predefine k 

clusters 
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Table 2.1 continued 

Guan, Shi, 

Marchese, 

Yang, & 

Liang (2011) 

A new similarity 

formula, Seeds, and 

a new Seed Affinity 

Propagation (SAP) 

Minimized the 

processing 

complexity  

Ruters-21578 

Only the 

external 

evaluation are 

conducted and 

not measured 

the 

compactness 

of clustering 

Yao, Pi, & 

Cong (2012) 

Improved K-means 

for Chinese text 

clustering 

Improved initial 

centers by isolated 

text 

Corpus from Sogou 

news site 

Predefine k 

clusters 

 

Table 2.2 

Summary of existing researches in partitional numerical clustering. 

Authors Contribution Problem Solved Dataset Weakness 

Gu, Zhou, & 

Chen (2009) 

K-means with 

refined initial center 

algorithm. 

The members of 

clusters are unstable 

for a large sample 

data, besides, the 

initial selection of 

seed points 

Breast cancer and 

Iris 

Only measures 

computational 

time, but 

clusters 

quality 

performance is 

absent 

Mishra, 

Nayak, Rath, 

& Swain 

(2012) 

Far Efficient K-

means algorithm  

Finding initial 

cluster centers 

UCI (Iris, Wine and 

Abalone) 

Predefine k 

clusters 

2.2.1.1.2 Density-based Text Clustering 

Density-based clustering algorithm is a technique to construct clusters based on the 

dense regions of objects in high-dimensional space that are isolated by low density 

areas. Density-Based Spatial Clustering of Application with Noise (DBSCAN) is the 
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most known density-based method used for data clustering (Ester, Kriegel, Sander, 

& Xu, 1996). It randomly selects points and finds the neighborhood by using query. 

A cluster is constructed based on these points and each neighbor examined to see if it 

can be included in the cluster (Chehreghani, Abolhassani, & Chehreghani, 2008). 

This type of clustering is useful for this study in constructing clusters which is based 

on similarity threshold.  

A new density-based clustering method for web data was proposed by Chehreghani, 

Abolhassani, and Chehreghani (2008). The proposed method included three stages: 

the insertion stage, the extraction stage and the combined stage. It solved the 

shortcoming of density-based methods to cluster web data. Three datasets were used 

from DMOZ collection, News collection and Reuter’s documents. The results of the 

proposed method were better than K-means, Single Linkage and improved Single 

Linkage in two measurements; purity and F-measure. The result of the number of 

examined data items was compared with DBSCAN (Ester, Kriegel, Sander, & Xu, 

1996).  

Improving clustering solution by assigning weight to documents and studying the 

density-based functions’ performance in three parts, internal, external and hybrid, 

was proposed by Aliguliyev (2009a, 2009b). The researcher developed weighted 

clustering functions and un-weighted clustering functions, and they used a modified 

differential evolution algorithm to optimize these functions. In the evaluation stage, 

five datasets were used, namely Reuters-21578, WebACE, TREC-5, 20Newsgroups 

and WebKb. The result showed that all twelve criterion functions produced 

accuracies of 80% and 77%, except for one weighted function which was most 
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sensitive. The sensitive function produced 42.17% for inter cluster, 71.65% for intra 

cluster, 0.40% for purity, 0.18% for Entropy, 7.47% for Mirkin, 4.16% for F-

measure, 15.36% for variation information, and 0.02% for V-measure. 

A review on existing document clustering methods that used frequent patterns and a 

method called Maximum Capturing was presented by Zhang, Yoshida, Tang, and 

Wang, (2010). The researchers developed three Maximum Capturing methods that 

depend on three similarity measures. The researchers solved three problems; the first 

one was the similarity between two documents, the second determines the 

appropriate number of clusters, and the third was achieving clustered documents 

exactly the same as natural clusters. The experimental result showed that Maximum 

Capturing performed better than CFWS, CMS, FIHC and FTC in F-measure value 

on two benchmark datasets, Reuters-21578 and Chinese corpus. 

To sum up the foregoing research (Aliguliyev, 2009a, 2009b; Chehreghani, 

Abolhassani, & Chehreghani, 2008; Zhang, Yoshida, Tang, & Wang, 2010), it can 

be concluded that Aliguliyev (2009a, 2009b) improved the clustering solution by 

designing weight clustering functions and validating performance. Furthermore, the 

work of Chehreghani, Abolhassani, and Chehreghani (2008) improved web pages 

hierarchical clustering using density-based methods. A part from that, Zhang, 

Yoshida, Tang, and Wang (2010) succeeded in solving the problem of similarity 

between two documents. However, the number of k clusters is predefined in all the 

previous researches. 
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2.2.1.1.3 Grid-based Text Clustering 

The grid-based clustering approach uses a multi-resolution grid data structure. It 

divides data space into several levels of cells. The process of clustering is performed 

inside these cells. The parameters of higher level cells can be computed using lower 

level cells. The quality of clustering is based on the number of cells in lower level 

cells. If it is too coarse, this will lead to the quality of cluster being reduced (Han & 

Kamber, 2006). In addition, grid clustering does not have a relationship between 

neighbors, which means there are no children and parent cells to be represented 

hierarchically. There are various recognized grid-based approaches such as STING 

(Wang, Yang, & Muntz, 1997), CLIQUE (Agrawal, Gehrke, Gunopulos, & 

Raghavan, 1998), and OptiGrid (Hinneburg & Keim, 1999).  

The advantage of grid clustering is that it does not require input parameters and this 

solved the problem of parameter sensitivity in hierarchical clustering (Yue, Wei, 

Wang, & Wang, 2008). An approach of grid clustering was built based on the 

combined idea of divisive and agglomerative hierarchical clustering GGCA. The 

approach bisects the grid into two grids that are equal in size. This process is the 

same process of divisive clustering. The output of this process is the optimal grid 

size and the determination of core grid. The core grids are later merged. The merging 

process is the same as implemented in agglomerative clustering. The proposed 

approach was tested on eight datasets, five artificial and three real datasets. The 

researchers measured the robustness of the clustering, runtime, error and 

determination of cluster number and compared them against three approaches, HCM, 

Clique and Shift. For artificial datasets, HCM is learned to be not suitable. Shift is 
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appropriate to determine the cluster number, but produced high error rates. Clique 

divides the dataset into many clusters that are meaningless. The proposed approach, 

GGCA, outperformed in CPU runtime and cluster number and obtained less errors 

compared to the other methods. On the other hand, for real datasets, GGCA produces 

clusters that are the same as the original clusters, but with less CPU time. The 

proposed approach was robust in clustering two types of datasets, but their research 

was not evaluated on text datasets. 

The problem of high dimensionality data in density-based clustering and 

computational time was solved by suggesting a grid-density clustering for large 

datasets (Zhao, Cao, Zhang, & Zhang, 2011). The suggestion included four features: 

dealing with objects as atomic units; dealing with neighbors as a couple of groups; 

density compensation; and finally minimal subspace distance. During 

experimentation, they used synthetic and public data. The result of the proposed 

AGRID+ approach using synthetic data was compared with AGRID in terms of 

density (that is based on threshold) and compared with NAIVE, IORDER and 

AGRID in terms of accuracy and CPU time. Whereas, the result of the proposed 

AGRID+ approach using public data was compared with Random Projection and 

IORDER in terms of Conditional Entropy (CE) and Normalized Mutual Information 

(NMI). For density comparison, AGRID+ is better than AGRID because the 

proposed approach detected more objects. The accuracy in AGRID+ was 93.7%, 

IORDER was 85.3%, AGRID was 83.1% and NAIVE was 95.0%. This means that 

NAIVE is more accurate than the proposed AGRID+ despite the CPU time for the 

proposed AGRID+ was 4.60, less than NAÏVE’s 44.21. The CE in AGRID+ was 
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0.466, less than IORDER’s 0.517 and Random Projection’s 0.706. Moreover, NMI 

in the proposed AGRID+ was 0.845, which is higher than IORDER’s 0.822 and 

Random Projection’s 0.790. This means the proposed AGRID+ approach is a high 

quality clustering, but is not implemented on document clustering. 

From the aforementioned researches that solved the problem of parameter sensitivity 

in hierarchical clustering (Yue, Wei, Wang, & Wang, 2008), and the problem of high 

dimensionality of data in density-based clustering and computational time (Zhao, 

Cao, Zhang, & Zhang, 2011), It can be concluded that the two approaches were 

robust and accurate in the clustering of datasets, but do not measure the robustness in 

text datasets. 

2.2.1.1.4 Model-based Text Clustering 

Model-based clustering is the method that tries to optimize the fit between some 

mathematical models and data. The Self Organizing Map (SOM) is a type of model-

based clustering and Neural Network which was presented by Kohonen (1998, 

2001). The SOM algorithm has been used in many applications, like semantic map, 

clustering, and so on (Yin, Kaku, Tang, & Zhu, 2011). Model-based clustering is 

sensitive to the initial selection of weight vector, as well as to its different 

parameters, such as the learning rate and neighborhood radius (Rokach & Maimon, 

2005). 

The problem of text clustering with high dimensional features was solved by Liu, 

Wu, and Liu (2011). The researchers used two processes to maintain the text 

clustering system with high efficiency, which are semantic quantization and feature 
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extraction. These processes work in the offline stage. The online stage used fast 

similarity and incremental clustering. In the conducted experiment, the researchers 

used two datasets, which are 20Newsgroups and news web documents, retrieved 

from the Internet. For measuring the performance of fast SOM, F-measure is used in 

the 20Newsgroups dataset, while accuracy and CPU time is used in news web 

documents (because the datasets were large). The accuracy and CPU time result of 

fast SOM were compared with another method that used vector space model (VSM). 

Furthermore, the F-measure result is compared with clustering system, GHSOM. 

CPU time for fast SOM was 0.13, less than the method that used vector space model 

which was 4.70 in 50,000 documents. When the document number was increased, 

the time also increased. The accuracy of text clustering in both datasets produced 

best results of 0.85 and 0.82 when the documents that were used in clustering were 

85% and 80% from all the datasets and the documents that were used in incremental 

clustering were 15% and 20%. This work is very efficient in large datasets using 

SOM, but needs more improvement by the implementation with other methods.  

Ding and Fu (2012) constructed two maps using Self Organizing Maps (SOM) to 

solve the problem of easily retrieved relevant documents in search engines and 

enhance the search process combining word map with document map. The first map 

is word map that clusters the words which appear in one document into one neuron. 

The second one is document map that clusters similar documents into one neuron. 

Similar documents are measured depending on similar words between documents. 

The research finds that integrating two maps will increase the retrieval of relevant 

documents by word search. The disadvantage of this work is that it does not use any 
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real or synthesis dataset and also does not use any measurements to evaluate the 

work. 

The researches that have been addressed in this section have several weaknesses and 

advantages in work and findings (Ding & Fu, 2012; Liu Wu & Liu, 2011). Liu Wu 

and Liu (2011) stated that the advantage of their work was that it is very efficient in 

large datasets using SOM, but needs more improvement by implementing it in other 

methods. Ding and Fu (2012) identified the advantage of their proposed approach as 

the increase of the retrieval of relevant documents by word search, but the 

shortcoming is the proposed approach not realized in any real or synthesis datasets 

and is also not evaluated or compared with other researches. 

2.2.1.1.5 Hierarchical Text Clustering 

Hierarchical clustering constructs a hierarchical structure for text documents. There 

are two types of hierarchical clustering: agglomerative clustering and divisive 

clustering (Rafsanjani, Varzaneh, & Chukanlo, 2012).  

Agglomerative Clustering 

Agglomerative clustering starts with multi-clusters; each cluster includes one 

document or more in which two clusters are later merged using the merging 

algorithms. There are three agglomerative clustering merging algorithms: The Single 

Linkage Hierarchical Clustering (SLHC), the Complete Linkage Hierarchical 

Clustering (CLHC) and the Average Linkage Hierarchical Clustering (ALHC) or 
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called UPGMA (Manning, Raghavan, & Schütze, 2008; Yin, Kaku, Tang, & Zhu, 

2011).  

The Single Linkage Hierarchical Clustering (SLHC) is a simple agglomerative 

clustering that depends on the similarity between two objects. SLHC merges two 

objects that have a high similarity or have the least amount of distance. The two 

clusters are merged based on a single link between the two elements in different 

clusters that have the shortest distance or highest similarity. SLHC is sensitive in 

dealing with noise and outliers (Tan, Steinbach, & Kumar, 2006). Figure 2.3 

illustrates the Single Linkage Hierarchical Clustering (SLHC). 

 

 

 

 

 

 

 

Figure 2.3. The Single Linkage Hierarchical Clustering (SLHC)  

Resource. Manning, Raghavan, and Schütze (2008) 

SLHC for merging two clusters is evaluated based on the similarity between objects 

where the maximum similarity will be chosen. The formula of merging is based on 

cosine similarity as shown in Equation 2.1.  

𝑆𝐿𝐻𝐶𝐷𝑖,𝐷𝑗
= 𝑀𝑎𝑥𝑖,𝑗 ∈𝐶𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐷𝑖, 𝐷𝑗) (2.1) 

 

 

Cluster 

A 

Cluster 

B 



 

 31 

Where: Di, Dj are documents in two different clusters i and j, C is all of the clusters. 

The formula of merging is based on distance similarity as shown in Equation 2.2. 

𝑆𝐿𝐻𝐶𝐷𝑖,𝐷𝑗
= 𝑀𝑖𝑛𝑖,𝑗 ∈𝐶𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐷𝑖, 𝐷𝑗) 

 
(2.2) 

On the other hand, the Complete Linkage Hierarchical Clustering (CLHC) merges 

two objects with minimum similarity or with maximum distance which is a reverse 

of SLHC (Manning, Raghavan, & Schütze, 2008). The two clusters are merged 

based on all links between any two elements in different clusters and the highest 

distance or lower similarity is chosen. CLHC is less vulnerable to noise and outliers, 

but it can break large groups and prefers spherical shapes (Tan, Steinbach, & Kumar,  

2006). Figure 2.4 illustrates the Complete Linkage Hierarchical Clustering (CLHC). 

 

 

 

 

 

 

 

 

Figure 2.4. The Complete Linkage Clustering Hierarchical (CLHC)  

Resource. Manning, Raghavan, and Schütze (2008) 

For merging two clusters, CLHC is evaluated based on the similarity between 

objects and the farthest distance is chosen. The formula of merging is based on 

cosine similarity as shown in Equation 2.3. 
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𝐶𝐿𝐻𝐶𝐷𝑖,𝐷𝑗
= 𝑀𝑖𝑛𝑖,𝑗 ∈𝐶𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐷𝑖, 𝐷𝑗) 

 

(2.3) 

The formula of merging is based on distance similarity as shown in Equation 2.4. 

𝐶𝐿𝐻𝐶𝐷𝑖,𝐷𝑗
= 𝑀𝑎𝑥𝑖,𝑗 ∈𝐶𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐷𝑖, 𝐷𝑗) 

 

(2.4) 

The Un-weighted Pair Group Method with Arithmetic Mean (UPGMA) is one of the 

most popular agglomerative clustering algorithms that is used for merging two 

clusters (Manning, Raghavan, & Schütze, 2008; Yujian & Liye, 2010). UPGMA is 

based on the average similarity between all elements in two clusters. The advantage 

of this method is that it can transact with dynamic data sets and does not allow for 

overlapping (Gil-Garicia & Pons-Porrata, 2010). However, the weakness of UPGMA 

is the time complexity (Murugesan & Zhang, 2011a, 2011b). Figure 2.5 illustrates 

the UPGMA clustering method. 

 

 

 

 

 

 

 

Figure 2.5. The Un-weighted Pair Group Method with Arithmetic Mean (UPGMA) 

Resource. Manning, Raghavan, and Schütze (2008) 
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The formula of merging two clusters based on cosine similarity is shown in Equation 

2.5. 

𝑈𝑃𝐺𝑀𝐴𝑖,𝑗 =
∑ ∑ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐷𝑖 , 𝐷𝑗)𝑗 ∈𝐶𝑖 ∈𝐶

𝑁𝑖𝑁𝑗
 

 

(2.5) 

Where: Ni is the number of documents in cluster i, Nj is the number of documents in 

cluster j. The formula of merging two clusters based on distance similarity is shown 

in Equation 2.6. 

𝑈𝑃𝐺𝑀𝐴𝑖,𝑗 =
∑ ∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐷𝑖, 𝐷𝑗)𝑗 ∈𝐶𝑖 ∈𝐶

𝑁𝑖𝑁𝑗
 

 

(2.6) 

Yujian and Liye (2010) presented an improved Un-weighted Multiple Group Method 

with Arithmetic Mean (UMGMA) to solve the problem of tie trees (two or more 

trees created from analyzing related populations) in UPGMA. The result enhances 

UPGMA and produces a unique tree. However, this process needs high 

computational time. Murugesan and Zhang (2011a, 2011b) proposed to utilize 

UPGMA to refine the clusters that are generated by Bisect K-means and to reduce 

the time complexity of UPGMA. The result of the proposed method outperformed 

Bisect K-means in three performance metrics. In CHAMELEON (Karypis, Han, & 

Kumar, 1999), two phases of clustering were proposed; the first phase groups the 

data based on the graph partition algorithm, the second phase utilizes the 

agglomerative clustering algorithm to detect the real clusters.  
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Recently, several researches integrated partitional clustering with hierarchical 

clustering to produce better clusters, and at the same time, solve the problem of time 

complexity of hierarchical clustering. Hybrid partitional with hierarchical 

agglomerative for document clustering method utilizes the feature of partitional 

clustering to handle large datasets efficiently and the feature of agglomerative to 

construct a hierarchical structure for documents ( Murugesan & Zhang, 2011a, 

2011b; Zhu, Fung, Mu, & Li, 2008). 

Zhu, Fung, Mu, and Li (2008) grouped the document collection into specific clusters 

based on function that maximizes the sum of average pair-wise similarities between 

documents, and then splits the lower average pair-wise similarities into the same 

specific clusters until the last cluster includes the limited document. Then, the 

merging is performed based on internal closeness and internal inter-connectivity 

which are adopted from Kalman (1960). The result of the proposed approach showed 

lower entropy (0.261) and higher purity (0.7860) and F-measure (0.789), for the 

TR12 dataset, and the merging is better than UPGMA. However, the number of 

clusters is predefined. 

In conclusion, there is no doubt that the aforementioned researches (Murugesan & 

Zhang, 2011a, 2011b; Yujian & Liye, 2010; Zhu, Fung, Mu, & Li, 2008) contribute 

to clustering, yet there is room to improve the cluster quality and to predict the 

cluster number.  
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Divisive Clustering 

Divisive text clustering starts with a single cluster that contains all documents and 

splits them into a number of clusters. The Principal Direction Divisive Partitioning 

(PDDP) is one of the important divisive hierarchical methods (Boley, 1998). PDDP 

builds a binary tree where the root contains the entire set of documents and the leaf 

contains the output clusters. The root is divided into two partitions; the right partition 

is for cluster more than 0 and the left partition is for less than 0. The results using the 

PDDP algorithm on 185 documents retrieved from the World Wide Web in two 

scaling norms and TFIDF were compared with the ones from the agglomerative 

algorithm. The Entropy result for PDDP was 0.69 in norm scale, which is better than 

the agglomerative algorithm. In addition, the CPU execution time is better in PDDP.  

Bisect K-means is a well-known divisive hierarchical clustering and is a variant of 

K-means (Kashef & Kamel, 2009; Murugesan & Zhang, 2011a, 2011b). In this 

algorithm, at each level of constructing a hierarchy, Bisect K-means selects one 

cluster C (initially C represents the whole dataset) and classifies the objects in C into 

two partitions (C1 and C2) by randomly choosing two centers and assigning objects 

to the closest centers (using the K-means algorithm). This process continues until it 

reaches the stopping condition of either the number of iterations or specific number 

of clusters. At each step of classifying, the chosen cluster is tested by some criteria: 

a) minimum intra similarity; b) larger cluster size (cluster includes higher number of 

objects); or c) size of cluster and similarity (Kashef & Kamel, 2009; Murugesan & 

Zhang, 2011a, 2011b). Figure 2.6 shows the step-by-step process of Bisect K-means. 
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Bisect K-means algorithm 

Step 1: Randomly choose two cluster centers. 

Step 2: Cluster using K-means. 

Step 3: If number of clusters is not reached, choose the cluster that has smallest intra 

similarity. 

Step 4: Repeat Step 1 until number of clusters is reached. 

 

Figure 2.6. The process of Bisect K-means  

Resources. Kashef and Kamel (2009), and Murugesan and Zhang (2011a, 2011b) 

Bisect K-means requires a refinement step to re-cluster the resulting solutions at each 

level of constructed tree. This drawback attracts researchers to combine Bisect K-

means with K-means. In the work of Kashef and Kamel (2009, 2010), the clustering 

solution of Bisect K-means (also known as BKM) and K-means at each level is 

cooperated between them by cooperative and merging metrics, named CBKM, for 

clustering text, artificial and gene datasets. The result from BKM was revised using 

K-means (KM) at every stage of the construction of the binary tree. In each level, the 

process of CBKM includes three stages: general clustering by K-means and BKM, 

the cooperation or intersection stage between K-means and BKM, and the merging 

stage. For documents dataset, the quality percentage result of F-measure for the 

proposed approach on the SN dataset was 31.05%, correspondingly, the result of 

Entropy was 37.13% on the UW dataset, the result of Purity was highest in 20NG 

dataset, which was 39.25%, the result of NMI was highest in the 20NG dataset, 

which was 51.48%, and the result of SI was also highest in the 20NG dataset, 

38.41%. In addition, the time complexity of the proposed CBKM was better than the 
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SL algorithm. This proposed approach improved the quality of clusters; nevertheless, 

the number of k cluster is still pre-defined.  

UPGMA (a type of agglomerative clustering) merges the obtained clusters from 

Bisect K-means (where, Bisect K-means generates clusters larger than k) until it 

reaches the k number of clusters (Murugesan & Zhang, 2011a, 2011b). In the Bisect 

K-means stage, the document collection groups into a cluster greater than the 

predefined cluster. Then, the created centroids are passed from the first stage to 

UPGMA stage to merge them and produce k clusters. The result produced an 

average Entropy of 1.410, average F-measure of 0.29 and average purity of 0.49 for 

the Reuters dataset. Such a result is better than the ones obtained by Bisect K-means. 

However, Bisect needs a refinement to re-cluster the resulting solutions and needs to 

define k number of clusters. 

Bordogna and Pasi (2012) constructed a divisive hierarchical clustering using Fuzzy 

technique to solve the problem of diversification of topics in information retrieval. A 

cluster is split into sub-clusters based on multi dimensions evaluation such as 

cohesion, mass cardinality and fuzziness. In the undertaken experiment, two datasets 

were used (20 Newsgroup and Reuters RCV1) and the measurements were the MC 

index and Rand Index (RI). The proposed Fuzzy clustering was compared with EM, 

FCM and hierarchical Bisect K-means. The result on the average MC index was 0.77 

using the Reuters RCV1. The result of Rand Index was 0.93 using the 20Newsgroup. 

The proposed Fuzzy approach outperformed other methods and is suitable for large 

datasets because of faster convergence. However, the result of this work may contain 

irrelevant information retrieved to users. 
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The determination of the number of clusters was proposed in two different ways 

(Gupta & Sharma, 2010; Ye, Gauch, Wang, & Luong, 2010). A map between 

documents and concepts was constructed, and then five methods which are already 

implemented in CLUTO (Ye, Gauch, Wang, & Luong, 2010) are used. These 

methods are repeated bisection, optimized RB, direct clustering, agglomerative and 

graph. These methods are utilized with different numbers of cluster from (1-10) with 

three tasks (each task is based on the CiteSeer database with known categories of 

numbers). The best cluster quality is chosen to compare the predicted number of 

cluster with the original number. The result demonstrated that direct clustering has a 

better value of maximum Purity and minimum Entropy compared to other methods. 

However, most methods used require the number of k cluster. Gupta and Sharma 

(2010) selected the first document as the cluster center and identified documents that 

are similar to it. Later, the similar document takes the role of the first document to 

find more similar documents until there are no more similar documents and the 

cluster is completed. Such an approach consumes time, as the numbers of clusters 

increases, the execution time of the algorithm will also increase. In addition, the 

proposed algorithm has weaknesses in evaluation measurements and was not 

implemented on real datasets. 

In 2010, two dynamic clustering algorithms were also proposed, which are the 

dynamic hierarchical compact (DHC) that created disjoint clusters, and the dynamic 

hierarchical star (DHS) that produced overlapping clusters (Gil-Garicia & Pons-

Porrata, 2010). The two proposed algorithms were evaluated using fifteen 

benchmark dataset collections. In the evaluation phase, the researchers used overall 
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F-measure and average BCubed metrics which were proposed by Amigo, Gonzalo, 

Artiles, and Verdejo (2009). The results of the two new algorithms were compared 

against UPGMA and BKM. The results indicated that the overall F-measure for 

DHC was 0.631, 0.662 for DHS, 0.677 for BKM and 0.678 for UPGMA in all 

collections. Hence, such a result indicates that UPGMA is a better method than the 

others. Furthermore, the result of average BCubed for DHC was 0.426, DHS was 

0.340, BKM was 0.236 and UPGMA was 0.038 in all collections. This result 

indicated that the proposed method DHC was the best method compared to the other 

methods. Nevertheless, the weakness is in validation as the stability of the algorithm 

was not determined.  

Cao and Yang (2010) proposed a k-medoids that depends on CF-tree, termed as 

CFK. The research solved the problem of k-medoids with scalability of large dataset 

and time complexity. It employs the idea of radius or diameter of cluster to control 

the cluster boundary. In the experimental work, the DSI dataset, used in 

CHAMELEON hierarchical clustering (Karypis, Han, & Kumar, 1999) was utilized. 

The result indicated that run time of CFK is better than the standard k-medoids and it 

also produces better clustering quality. However, the weakness lies in the tree 

structure as the CF-tree does not work well when the cluster shape is not spherical. 

Lahane, Kharat, and Halgaonkar (2012) proposed a divisive approach for educational 

data clustering. The approach includes two phases: the first phase splits the original 

cluster into two clusters and then measures the homogeneity (based on intra-cluster 

and inter-cluster homogeneity). The second phase checks for the stability of the 

cluster by changing the location of one member of a cluster to another. If the quality 
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(homogeneity) produced from changing the members is better than the existing 

homogeneity, the change is performed, or else it remains in the same cluster. The 

experimental result showed high quality clusters were created. However, changing 

the members from one cluster to another in each split partition is time consuming 

and generates memory overflow. 

Concluded from previous researches (Bordogna & Pasi, 2012; Gil-Garicia & Pons-

Porrata, 2010; Gupta & Sharma, 2010; Kashef & Kamel, 2009; Murugesan & Zhang, 

2011a, 2011b), existing works have drawbacks in the evaluation of the proposed 

algorithms. On the other hand, Boley’s work (1998) has problems in relocating 

documents. Additionally, Forsati, Mahdavi, Shamsfard, and Meybodi (2013) 

mentioned that existing hierarchical clustering methods do not relocate documents. 

Hence, such approach will affect the clustering quality, especially the ones on the 

higher level. Table 2.3 and Table 2.4 present the summary of existing researches in 

hierarchical text clustering and hierarchical numerical clustering. 

Table 2.3  

Summary of existing researches in hierarchical text clustering. 

Authors Contribution Problem Solved Dataset Weakness 

Boley 

(1998) 

A new divisive 

algorithm called PDDP 

The large data 

scalability 

185 documents 

from WWW 

Fixed clusters – 

cannot re-locate 

Zhu, Fung, 

Mu, & Li 

(2008) 

Hybrid partition with 

agglomerative 

Agglomerative 

clustering has 

problems with high 

dimensionality data 

space 

Used three 

datasets: TR12, 

Re1 and WAP 

Predefined k 

cluster 

Kashef & 

Kamel 

Cooperative approach 

between Bisect K- 

To enhance the 

Bisect K-means 

Nine different 

datasets: two 

Predefined k 

cluster 
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Table 2.3 continued 

(2009) 
means and K-means 

named CBKM 

BKM to construct 

and refine better 

cluster result 

artificial, four 

documents and 

three gene 

expression 

 

Ye, Gauch, 

Wang, & 

Luong 

(2010) 

Construct map between 

documents and 

concepts. Then utilize 

five methods to predict 

the number of clusters 

for CiteSeer 

Most existing 

works not include 

construct mappings 

between concepts 

and documents and 

also the time and 

precision 

CiteSeer 
Predefined k 

cluster 

Gil-García 

& Pons-

Porrata 

(2010) 

Two dynamic 

clustering algorithms 

were proposed, which 

are dynamic 

hierarchical compact 

DHC and dynamic 

hierarchical star DHS 

Created disjoint 

clusters and 

produced 

overlapping 

clusters 

Fifteen 

benchmark text 

collections 

obtained from 

Karypis 

Calculation of 

the algorithm 

stability 

Gupta & 

Sharma 

(2010) 

Partitional algorithm to 

split the documents to 

clusters and applied the 

proposed clustering 

algorithm in 

hierarchical clustering 

Large size of index 

file  
No real dataset 

High 

computational 

time 

Murugesan 

& Zhang 

(2011) 

Bisect K-means 

clustering algorithm 

combined with 

UPGMA  

Bisect K-means 

generates better 

clusters. Second 

problem is the time 

complexity of 

UPGMA 

Ten datasets 

from Karypis 

datasets 

Bisect K-means 

needs a 

refinement to 

re-cluster the 

resulting 

solutions and 

needs to define 

k number of 

clusters 

Bordogna 

& Pasi 

Construct a divisive 

hierarchical clustering 

Diversification of 

topics in 

20 Newsgroup 

and Reuters 

Low retrieval 

result 
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(2012) using Fuzzy information 

retrieval 

RCV1  

Table 2.4 

Summary of existing researches in hierarchical numerical clustering. 

Authors Contribution Problem Solved Dataset Weakness 

Yujian & 

Liye (2010) 

Improving Un-

weighted Multiple 

Group Method with 

Arithmetic Mean 

UMGMA. 

 

Tie trees in 

UPGMA that 

produced two or 

more tree from 

analyses related 

populations 

Drosophila_Adh.

meg and mtDNA 

haplotypes. 

High 

computational 

time 

Cao & Yang 

(2010) 

A k-medoids 

depending on CF-tree. 

Scalability of 

large dataset and 

time complexity 

DS1 dataset 

which was used in 

CHAMELEON 

hierarchical 

clustering 

CF-tree does 

not work well 

when the 

cluster shapes 

are not 

spherical 

 

 

Lahane, 

Kharat & 

Halgaonkar 

(2012) 

Proposed divisive 

clustering for education 

data 

Clustering high 

dimensional 

categorical data 

Educational Data 

contains 50 

instances 

Time 

consuming 

and memory 

overflow 

2.2.1.2 Optimization Methods 

Optimization can be defined as the identification of the optimal or near optimal 

solution (best solution) from all appropriate solutions. Finding the best solution is 

identified by formulating an objective function (minimum or maximum function), 

where, the objective function is designed depending on the problem in-hand 

(Rothlauf, 2011). Optimization problems include two categories based on the 

variables whether discrete or continuous. When the variable is discrete, the 
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optimization problem is called a combinatorial optimization problem. In a 

combinatorial optimization problem, searching for the best object is from a finite set 

in dimensional space (object such as integer or graph). To find the optimal solution 

for the system, we must design an objective function (fitness function). The objective 

function is the minimizing or maximizing value. This function needs parameters 

which can be included in the analysis of the problem. From these parameters, the 

function returns values which makes the system response optimal (Das, Abraham, & 

Konar, 2009).  

Optimization algorithms (as in Figure 2.7) are divided into Traditional Methods 

(exact) and Modern Heuristics (approximate).  

 

 

 

 

 

 

 

 

 

Figure 2.7. The taxonomy of optimization algorithms  

Resource. Das, Abraham, and Konar (2009, p.27)  

 
Optimization Algorithm 
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Direct analytical and 

work on complete 

solutions 

Deterministic Probabilistic Construct Solutions 

Population-

based solution 

Single-based 

solution 

Tabu 

Search 

Evolutionary 

Computing Techniques 

Linear 

Programming 

Local search 

Newton’s 

Method 

Gradient 

Methods 

Branch and 

Bound 

Dynamic 

Programming 

Divide and 

conquer 
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Exact search algorithms include two classes: the first constructs solutions during the 

search in which it can find the optimal solution in the bounded time for a finite 

problem such as branch and bound, dynamic programming and divide and conquer. 

Another class of exact search works on a complete solution which is split into two 

subclasses as linear programming and local search. On the other hand, the heuristic 

search algorithms identify a good solution, but are non-optimal in less execution 

time.  

Modern heuristic search algorithms (meta-heuristics) are divided into two classes: 

deterministic and probabilistic. Deterministic approach includes Tabu search 

(Glover, 1986), while probabilistic approach can be categorized as either single-

based meta-heuristics solution or population-based meta-heuristics (Boussaïd, 

Lepagnot, & Siarry, 2013; Das, Abraham & Konar, 2009; El-Abd & Kamel, 2005). 

Over the years, meta-heuristic approach has proven successful to find the best 

solution in many disciplines (Beasley, Bull, & Martin, 1993; Cui, Potok, & 

Palathingal, 2005; Glover, 1986; He, Hui, & Sim, 2006; Kirkpatrick, Gelatt, & 

Vecchi, 1983). The current meta-heuristic approach can be classified into two 

categories: single meta-heuristic solution and population meta-heuristic solution 

(Boussaïd, Lepagnot & Siarry, 2013). Single meta-heuristic solution operates with a 

single solution and keeps trying to enhance it, for example, the two popular 

algorithms: Simulated Annealing (Kirkpatrick, Gelatt & Vecchi, 1983), and Tabu 

Search (Glover, 1986). On the other hand, population meta-heuristic solution 

operates with a set of solutions and evaluates them (using objective function) to 

select the best one, such as Genetic Algorithm (Holland, 1992; Beasley, Bull, & 
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Martin, 1993), Evolutionary Programming (Fogel, 1994), Differential Evolution 

(Aliguliyev, 2009a, 2009b), and nature-inspired algorithms (Bonabeau, Dorigo, & 

Theraulaz, 1999; Boussaïd, Lepagnot, & Siarry, 2013; Das, Abraham & Konar, 

2009). 

In meta-heuristic algorithms, there are two important components: exploration 

(diversification) and exploitation (intensification). The balance between these 

components is the key for success of any optimization algorithms to solve any 

problems. The exploration process explores the search space globally and generates 

diverse solutions. Meanwhile, exploitation focuses the search on local region and 

exploits information in a current good solution found in this region (Boussaïd, 

Lepagnot, & Siarry, 2013; Yang & He, 2013). Single-based meta-heuristic solution 

contributes in exploitation and population-based meta-heuristic is more exploration 

(Boussaïd, Lepagnot & Siarry, 2013). 

Meta-heuristic or modern heuristic algorithms are used to discover the optimal 

solution by exploring the search space, and at the same time, avoiding local 

optimality (Aljanabi, 2010; Rothlauf, 2011). Meta-heuristics are generally applied to 

hard optimization problems. Hard problems can be continuous or discrete, 

constrained or unconstrained, static or dynamic, and mono or multi objective 

functions (Boussaïd, Lepagnot & Siarry, 2013). In clustering, the aim is to achieve 

high similarity among objects in a cluster and less similarity between clusters. Such a 

situation can be considered as an optimization problem (Banati & Bajaj, 2013). This 

research focuses on the population-based meta-heuristic, in particular, investigating 

the swarm intelligence algorithm in the area of text mining.  
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Nature-inspired algorithm (also named Swarm Intelligence) studies the behaviors of 

social insects or animals in nature to be mimicked by converting them into heuristic 

rules to find solutions for problems faced by humans (Rothlauf, 2011). Examples of 

Swarm Intelligence algorithms include Particle Swarm Optimization (PSO) 

(Kennedy & Eberhart, 1995), Ant Colony Optimization (ACO) (Dorigo, 1992), and 

Firefly Algorithm (Yang, 2010b). These algorithms have proved to be a success in 

complex optimization problems. In this section, researches that integrate clustering 

techniques with swarm are reviewed (Cui, Potok, & Palathing, 2005; Feng et al., 

2010; Forsati, Mahdavi, Shamsfard, & Meybodi, 2013; Hassanzadeh & Meybodi, 

2012; Rana, Jasola, & Kumar, 2010; Tang, Fong, Yang, & Deb, 2012; Youssef, 

2011). 

2.2.1.2.1 Particle Swarm Optimization  

Particle Swarm Optimization Algorithm (PSO) is a computational method and a type 

of population-based algorithms. The idea of PSO comes from social behaviors of 

swarm groups to reach a goal. Swarm groups include schools of fish, flocks of bird 

(Kennedy & Eberhart, 1995). PSO offers advantages such as simple structure, 

convergence rate and strong optimization. This leads researchers to apply it in many 

applications such as clustering (Cui, Potok, & Palathing, 2005; Feng et al., 2010; Lu, 

Wang, Li, & Zhou, 2009; Rana et al., 2010; Youssef, 2011). 

Particle Swarm Optimization (PSO) has been presented in partitional document 

clustering (Cui, Potok, & Palathing, 2005; Lu, Wang, Li, & Zhou, 2009). Cui, Potok, 

and Palathing (2005) worked on the hybridization of PSO with K-means and applied 
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it on document datasets. The result demonstrated that the proposed hybrid PSO 

outperformed K-means and PSO. The step-by-step process of PSO clustering is as 

shown in Figure 2.8.  

Particle Swarm Optimization algorithm 

Step 1: Each particle, randomly choose k cluster centers. 

Step 2: For each particle. 

Step 3: Assign each document to the closest center. 

Step 4: Compute the fitness value based on average distance between documents and 

center (ADDC). 

Step 5: Update the velocity and position of particle. 

Step 6: Repeat Step 2 until one of the stop conditions is reached; the maximum number is 

reached or the average change in the center is less than the threshold (predefined 

value). 

Figure 2.8. The step-by-step process of PSO clustering  

Resource. Cui, Potok, and Palathing (2005) 

Lu, Wang, Li, and Zhou (2009) proposed an objective function for PSO that 

maximized the document similarity in a cluster. This objective function was based 

on the extended Jaccard coefficient. The result indicated that the proposed approach 

outperformed K-means, agglomerative, Bisect K-means and Graph based. However, 

the number of k cluster was pre-assigned in the two approaches (Cui, Potok, & 

Palathing, 2005; Lu, Wang, Li, & Zhou, 2009). 

Particle Swarm Optimization (PSO) was also utilized in partitional clustering for 

numerical datasets (Rana, Jasola, & Kumar, 2010; Toreini & Mehrnejad, 2011; 

Youssef, 2011). Rana, Jasola, and Kumar (2010) combined PSO with K-means to 

solve the problem of trapping in local optima in K-means and solve the problem of 
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slow convergence of PSO. They used the Artificial I, Artificial II classification 

datasets which were used by Van der Merwe and Engelbrecht (2003), and they used 

two real datasets: Wine and Iris. The result of the proposed approach was not better 

than PSO, but was positive for Wine and Iris datasets. However, the weakness was 

on the number of clusters which was predetermined. This problem was solved by 

Youssef (2011) by combining PSO with evolutionary based (EFPSC). In synthetic 

datasets, EFPSC has lower fitness indicator 7.45, larger Dunn Index (DI) value 1.46, 

and lower Davies Boulden Index (DBI) values 0.41 than K-means, modify ant and 

PSDC techniques. The lower fitness indicator, larger DI and lower DBI values mean 

better performance. In real data sets, EFPSC performs better than other methods, but 

in time execution, it is worse than others. Toreini and Mehrnejad (2011) utilized the 

work of Van der Merwe and Engelbrecht (2003) and proposed to improve PSO with 

FCM fitness function. The result indicated that PSO with FCM function improved 

the quality performance and time. 

A novel hierarchical divisive clustering combined with discrete Particle Swarm 

Optimization (FPDC) was proposed by Feng et al. (2010). It solved the problem of 

the difficulty of getting a better trade-off between clustering performance and 

computational execution time. The experiment was implemented in documents 

clustering, numerical clustering and image clustering. It used eight document 

datasets from different resources and also used six numerical datasets from UCI 

machine learning repository. In document datasets, the result of average entropy for 

the proposed algorithm FPDC was the lowest value in six datasets out of eight. For 

example, in the RE0 dataset, the average entropy was 0.379, less than in Bisect K-
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means (BKMS) which was 0.388, Hybrid Genetic K-means (HGKA) was 0.387 and 

Canonical Particle Swarm Optimization (PSOC) was 0.450. In numerical datasets, 

the result of average adjusted rand index for the proposed algorithm FPDC was the 

highest in four datasets out of six. For example, in the Zoo dataset, the average 

adjusted rand index was 0.710 in FPDC, 0.632 in BKMS, 0.611 in HGKA, and 0.515 

in PSOC.  

It can be concluded from the previous researches (Cui, Potok, & Palathing, 2005; 

Feng et al., 2010; Lu, Wang, Li, & Zhou, 2009; Rana, Jasola, & Kumar, 2010) that 

they have drawbacks in the number of clusters which was determined in the input of 

the algorithm. Youssef's (2011) study has a weakness in the execution time. Tables 

2.5 and 2.6 clarify the summary of existing researches in the hybridization of 

clustering techniques and Particle Swarm Optimization in text clustering and 

numerical clustering. 

Table 2.5 

Summary of existing researches in Particle Swarm Optimization in text clustering. 

Authors Contribution Problem Solved Dataset Weakness 

Cui, Potok, 

&Palathing 

(2005) 

Hybrid PSO with 

K-means 

The local optima in 

K-means 
TREC collections 

Predefined k 

cluster 

Lu, Wang, Li, 

& Zhou 

(2009) 

Objective 

function for PSO 

which was 

extended from 

PSOVW 

The problem of text 

clustering 

20 Newsgroup 

and text datasets 

from CLUTO 

Predefined k 

cluster 

Feng et al., 

(2010) 

An improved 

discrete particle 

swarm optimizer  

The difficulty of 

getting a better trade-

off between  

Eight document 

datasets and six 

numerical   

Predefined k 

cluster 
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Table 2.5 continued 

 
for divisive 

clustering 

clustering 

performance and 

computational 

execution time 

datasets from UCI  

 

Table 2.6 

Summary of existing researches in Particle Swarm Optimization in numerical 

clustering. 

Authors Contribution Problem Solved Dataset Weakness 

Rana, Jasola, 

& Kumar 

(2010) 

A hybrid K-

Means with 

Particle Swarm 

Optimization 

algorithm 

Trapping in local 

optima of K-means 

and slow 

convergence of 

Particle Swarm 

Optimization  

Artificial I, 

Artificial II, Wine 

and Iris. 

Predefined k 

cluster 

Youssef 

(2011) 

A new hybrid 

evolutionary-

based data 

clustering using 

Fuzzy Particle 

Swarm 

Optimization 

The number of k 

clusters in large 

datasets  

Used synthetic 

datasets and Iris, 

Wine, Breast 

cancer and Glass 

High 

execution time 

Toreini & 

Mehrnejad 

(2011) 

Improved PSO 

with FCM fitness 

function 

The problem of 

fitness functions of 

PSO in Vender 

Merwe and 

Engelbrecht (2003) 

approach 

Iris, Glass and 

Wine 

Predefined k 

cluster 

2.2.1.2.2 Ant Colony Optimization  

Ant Colony Optimization (ACO) is a type of swarm intelligence algorithm that 

imitates the behavior of ants in searching for the optimal solution and the shortest 
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path in space which is proposed by Marco Dorigo (1992). The advantages of ACO 

attracted researchers to implement it in many optimization problems, such as 

classification (Martens et al., 2007), and clustering (He, Hui, & Sim, 2006; Wang, 

Shen, & Tang, 2009; Zhang, Cao, & Lee, 2013; Zhang & Cao, 2011). 

The Ant Colony Optimization solved the problem of combinatorial optimization 

clustering in document clustering (He, Hui, & Sim, 2006) and solved the problem of 

higher number of clusters and slow convergence (Wang, Shen, & Tang,  2009). He, 

Hui, and Sim (2006) tested the 20Newsgroups dataset and found that the F-measure 

was higher than ant-based method and K-means. Wang, Shen, and Tang  (2009) 

integrated Ant Colony Optimization with agglomerative clustering algorithm. They 

tested it on the Wine dataset and real documents gathered from the Internet. The 

result of F-measure is not better than the ACO algorithm, but the CPU time is better. 

However, the quality performance needs more improvement.  

The clustering of numerical dataset using Ant-based clustering was proposed by 

Zhang and Cao (2011) and Zhang, Cao, and Lee (2013). The proposed method 

changed the random object projection in the initial running by two ways. Firstly, it 

was integrated with kernel method (ACK) which was also integrated in the feature 

space to calculate the distance for similarity measure between objects. The results of 

the proposed algorithm (ACK) took more time than K-means, kernel based K-means, 

LF algorithm, ATTA, ant clustering with PCA, ACP-F and ACK-I, but in clustering 

quality, it outperformed the other algorithms (Zhang & Cao, 2011). Secondly, it was 

integrated with Kernel Entropy Component Analysis (KECA) and used Renyi 

Entropy to determine the object movement after a new object is added to a dataset. 
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The proposed NAC-RE was efficient only in the DI metric (Zhang, Cao, & Lee, 

2013). However, the weakness is in the quality performance. 

To sum up the foregoing researches (Zhang, Cao, & Lee, 2013; Zhang & Cao, 2011), 

it can be concluded that the time cost is very high in both researches; Zhang and Cao 

(2011) focused only on the basic process of ACK, while Zhang, Cao, and Lee (2013) 

had a weakness in the quality performance of their algorithm. Both researches 

focused only on the numerical datasets. Wang, Shen, and Tang (2009) had a 

weakness in quality performance which needs more improvement. Tables 2.7 and 2.8 

summarize the existing researches in the hybridization of clustering techniques and 

ACO in text clustering and numerical clustering. 

Table 2.7 

Summary of existing researches in Ant Colony Optimization in text clustering. 

Authors Contribution Problem Solved Dataset Weakness 

He, Hui, & 

Sim (2006) 

A novel Ant 

Colony 

Optimization for 

document 

clustering 

The problem of 

combinatorial 

optimization 

clustering 

4 subsets (each set 

includes 300 

documents) from  

20Newsgroup 

Experiment 

conducted on 

small datasets 

Wang, Shen, 

& Tang 

(2009) 

Combined Ant 

Colony 

Optimization with 

Agglomerative 

clustering 

The too high 

number of cluster 

and slow 

convergence 

Wine dataset and 

real documents 

gathered from the 

Internet 

The weakness 

in quality 

performance 

which needs 

more 

improvement 
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Table 2.8 

Summary of existing researches in Ant Colony Optimization in numerical clustering. 

Authors Contribution Problem Solved Dataset Weakness 

Zhang & 

Cao (2011) 

The Kernel method 

combined with ant-

based clustering 

ACK for data 

clustering 

The improvement 

of the algorithm’s 

efficiency and the 

algorithm’s quality 

Five synthetic 

datasets (square, 

ring, line, moon 

and 2D3C).Five 

real datasets 

(Wine, Iris, Zoo, 

Wisconsin and 

Yeast) 

The time cost 

was very high 

and the 

research 

focused only 

on the basic 

process of 

ACK and only 

on numerical 

datasets 

Zhang, Cao, 

& Lee 

(2013) 

Ant clustering 

algorithm using 

Kernel Entropy 

Component 

Analysis and Renyi 

Entropy 

The proposed 

algorithm solved 

three problems: the 

algorithm’s 

efficiency, the 

algorithm’s 

adaptability with 

special datasets 

structure and the 

parameters’ 

simplification 

Four synthetic 

datasets (square, 

ring, line, and 

moon), and four 

real datasets 

(Wine, Iris, Zoo, 

Wisconsin) 

The weakness 

of the 

proposed 

algorithm was 

in quality 

performance. 

Efficiency in 

DI when 

Kernel 

Entropy 

Component 

Analysis 

(KECA) is 

used 

2.2.1.2.3 Firefly Algorithm  

Fireflies are winged beetles which produce short and rhythmic flashes. The flashing 

light is generated by the bioluminescence process. Firefly uses bioluminescence to 

attract mates or prey. The firefly flashing characteristics have three idealized rules 

(Yang & He, 2013; Yang, 2010a, 2010b): 
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1. All fireflies are unisex as well one firefly attracters to other.  

2. Attractiveness is directly proportional to their brightness, so that the flashing 

for any two fireflies, the brighter one will be attractive than the less bright 

ones.  

3. The firefly brightness is determined by the search space of objective function. 

The Firefly Algorithm (FA) was developed by Xin-She Yang in 2007 at Cambridge 

University. FA has two important issues: light intensity and attractiveness. For 

maximum optimization problems, the light intensity I of a firefly at a particular 

location x, termed as I(x), can be determined by objective function f(x). The 

attractiveness β is relative. It changes depending on the distance between two 

fireflies. The pseudo code of the Firefly Algorithm is shown in Figure 2.9 (Yang & 

He, 2013; Yang, 2010a, 2010b).  

In Step 8 in Figure 2.9, the movement of less brighter firefly towards brighter one is 

calculated based on Equation (2.7) (Yang, 2010b).  

 𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝛽 ∗ (𝑋𝑗(𝑡) − 𝑋𝑖(𝑡)) + 𝛼𝜀𝑖 (2.7) 

where, Xi(t+1) is a new position of firefly, α is a randomization parameter between 

(0, 1) (Yang, 2010b), εi is a vector of random numbers drawn from a Gaussian 

distribution or uniform distribution (Yang & He, 2013; Yang, 2010a). In Step 9 in 

Figure 2.9, the attractiveness between two fireflies is calculated using Equation (2.8) 

(Yang, 2010b).  
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Firefly Algorithm  

Step 1: Objective function f (x), x = (x1 , … , xd)
T
  

Step 2: Generate initial population of firefly randomly xi where i=1, 2, .., n, n=number of 

fireflies. 

Step 3: Initial Light Intensity I at xi is determined by f(x). 

Step 4: Define light absorption coefficient γ. 

Step 5: While (t< Max Generation) 

Step 6: For i=1 to N all n fireflies 

Step 7: For j=1 to N all n fireflies (inner loop) 

Step 8: If (Ii < Ij ) { Move firefly i towards j; end if } 

Step 9: Vary attractiveness with distance r via exp[-γ r] 

Step 10: Evaluate new solutions and update light intensity. 

Step 11: End for j 

Step 12: End for i 

Step 13: Rank the firefly and find the current global best g*. 

Step 14: End while 

Step 15: Post process results and visualization. 

Figure 2.9. Pseudo code of Firefly Algorithm 

Resource. Yang (2010b, p.82) 

𝛽 = 𝛽0𝑒𝑥𝑝(−𝛾𝑟𝑖𝑗
2) (2.8) 

where, β0 is the initial attractiveness, γ is the light absorption coefficient and in most 

application sets to 1, rij is the distance between two documents i and j that is 

calculated using Cartesian distance (Yang, 2010b) as shown in Equation 2.9. 

𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑋𝑗, 𝑋𝑖) = √(𝑋𝑗 −  𝑋𝑖)22
 

 

(2.9) 
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where, Xi, Xj is the position of two fireflies. In Step 10 in Figure 2.9, the new 

solution is evaluated using objective function and updates the value of light intensity 

that is related with objective function. 

Firefly Algorithm has two main advantages over other algorithms. The first 

advantage is automatic subdivision which is related with the fact that the whole 

population can automatically subdivide into subgroups. The second advantage is the 

ability to deal with multimodality and this is related with the fact that each group can 

swarm around each mode or local optimum. From all these modes, the best global 

solution can exist (Fister, Jr, Yang, & Brest, 2013; Yang & He, 2013). 

Firefly Algorithm has been implemented in many optimization problems in different 

topics, such as speech recognition (Hassanzadeh, Faez, & Seyfi, 2012), image 

segmentation (Hassanzadeh, Vojodi, & Moghadam, 2011; Horng & Jiang, 2010), 

reliability-redundancy allocation problems (dos Santos Coelho, de Andrade Bernert, 

& Mariani, 2011), discrete optimization problems (Sayadi, Hafezalkotob, & Naini, 

2013) , semantic web service composition (Pop et al., 2011), data classification 

(Nandy, Sarkar, & Das, 2012), anomaly detection (Adaniya Abr˜ao & Proenc¸a Jr., 

2013), parallel and distributed systems (Falcon, Almeida, & Nayak, 2011), mobile 

network (Bojic, Podobnik, Ljubi, Jezic, & Kusek, 2012), and  economic dispatch 

problems (Yang, Hosseini, & Gandomi, 2012). In all of the previous fields, Firefly 

Algorithm has successfully solved the problems and identified the optimal solution. 

The Firefly algorithm has also been studied in numerical clustering (Abshouri & 

Bakhtiary, 2012; Hassanzadeh & Meybodi, 2012; Senthilnath, Omkar, & Mani, 
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2011; Tang, Fong, Yang, & Deb, 2012). The algorithm has been represented to 

improve the performance of supervised clustering (Senthilnath, Omkar, & Mani, 

2011). The goal of the algorithm is to find the center of clusters that minimizes the 

sum of distance from the center to each object in the same cluster. In the evaluation 

phase, 13 benchmark datasets were used, which are Balance, Cancer, Cancer-int, 

Credit, Dermatology, Diabetes, E.Coli, Glass, Heart, Horse, Iris, Thyroid and Wine. 

The result was compared with Particle Swarm Optimization (PSO), Artificial Bee 

Colony (ABC), and nine other methods. It is noted that FA was efficient, robust, and 

reliable for generating optimal cluster centers. Banati and Bajaj (2013) presented a 

new approach of Firefly Algorithm for unsupervised clustering. They used trace 

within criteria and variances ratio criteria to evaluate the solutions. The results 

indicated that the proposed approach performed better than PSO and DE.  

Furthermore, Firefly Algorithm was also integrated into two different clustering 

techniques, one with K-means (KFA) and one with K-harmonic (Abshouri & 

Bakhtiary, 2012; Hassanzadeh & Meybodi, 2012). Both methods solved the problem 

of local optima for K-means and K-harmonic and the identification of the center of 

clusters. The proposed hybrid, KFA, has the ability to minimize the intra-cluster 

distance in five datasets and has been compared against K-means, PSO and KPSO 

(Hassanzadeh & Meybodi, 2012). However, the validation of the proposed algorithm 

is only based on intra-cluster which determines the similarity between objects and 

does not use inter-cluster measurement. The result of the proposed hybrid K-

harmonic (Abshouri & Bakhtiary, 2012) on four datasets indicated that F-measure is 

the highest value and KHM is the least value in all datasets compared to KHM, 
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PSOKHM, and Genetic PSO-KHM. The weakness of the proposed methods is 

random initialization of the centers of clusters. 

Due to the random initial centroids, K-means is always caught in the trapping in 

local optima, this problem has attracted researchers to hybrid K-means with five 

nature-inspired optimization algorithms; Firefly, Cuckoo, Bat, Ant, and Wolf (Tang, 

Fong, Yang, & Deb, 2012), termed as C-firefly, C-cuckoo, C-bat, C-Ant, and C-

wolf. The pseudo code of the hybrid Firefly with K-means is shown in Figure 2.10. 

Hybrid Firefly with K-means Algorithm  

Step 1: Determine the number of k clusters; initialize the population of fireflies N, and 

related parameters. 

Step 2: Randomly assign k clusters for each N firefly. 

Step 3: For each firefly, Select k objects from S data objects as initial centroids, by taking 

the mean values of the attributes of the objects within their given clusters. 

Step 4: Calculate the fitness of the centroid in each firefly, and find the best solution that is 

represented by the total fitness values of centroid in a firefly. 

Step 5: For each firefly, update its light intensity according to its fitness value (objective 

function). 

Step 6: For each firefly, update its attractiveness that varies with distance. 

Step 7: Merge the fireflies by allowing the less bright one to be attracted by the brighter 

one. 

Step 8: Are there no brighter fireflies than the given firefly, if yes continue, else go to 

Step11. 

Step 9: The firefly will move randomly. 

Step 10: Update centroids in each firefly according to their latest positions. 

Step 11: Rank the fireflies and find the current best. 

Step 12: Reassign the clusters according to the best solution. 

Step 13: Output the best cluster configuration that is represented by the firefly that has the 

greatest fitness. 

Step14: Are the exit criteria met yet? If yes end, or else return to Step 5. 

 

Figure 2.10. Pseudo code of integrated Firefly with K-means clustering algorithm 

Resource. Tang, Fong, Yang, and Deb (2012) 

In the experiment, five datasets from the UCI repository were employed. For the 

evaluation, the squared error function was used to measure the objective function 
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and measure the execution time for each algorithm. The experiment results compared 

five proposed algorithms with the benchmark K-means algorithm and indicated that 

C-cuckoo, C-bat, and C-wolf performed the best objective values compared with C-

firefly and C-ant. Furthermore, C-bat requires less time for execution, hence, C-bat is 

indicated as the fastest algorithm for finding the optimal solution. However, the 

drawback with these proposed algorithms was the number of k clusters which was 

determined in the initial part of the clustering. The pseudo code of the hybrid Bat 

algorithm with K-means is shown in Figure 2.11. 

Hybrid Bat with K-means Algorithm  

Step 1: Determine the number of k clusters, initialize the population of bats N, for each bat 

define the frequency factor Q and loudness A. 

Step 2: Randomly assign k clusters for each N bat. 

Step 3: For each bat, select k objects from S data objects as initial centroids, by taking the 

mean values of the attributes of the objects within their given clusters. 

Step 4: Calculate the fitness of the centroid in each bat, and find the best solution that is 

represented by the total fitness values of centroid in a bat. 

Step 5: Generate a new solution by adjusting the frequency, updating the velocity and 

creating new centroid values. 

Step 6: If random (0, 1) > pulse rate R 

Step 7: For each bat, select a solution among a set of best solutions from the other bats, and 

generate a new local solution around the selected best solution. 

Step 8: If random (0, 1) < A and f(xi) < f(x*) 

Step 9: Accept the new solution, increase r and reduce A. 

Step 10: Reassign the clusters. 

Step 11: Output the best cluster configuration represented by the bat that has the greatest 

fitness. 

Step 12: End if. 

Step 13: End if. 

Step 14: Are the exit criteria met yet, if yes end, else return to Step 4. 

 

Figure 2.11. Pseudo code of integrated Bat with K-means clustering algorithm  

Resource. Tang, Fong, Yang, and Deb (2012) 

Rui, Fong, Yang, and Deb (2012) applied the previous work of Tang, Fong, Yang, 

and Deb (2012) of hybrid K-means with four nature-inspired optimization 
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algorithms: Firefly, Cuckoo, Bat and Wolf on web intelligence data. The results 

demonstrated that this hybridization outperformed hybrid PSO with K-means (C-

PSO) and K-means. However, C-Firefly requires high CPU time to execute. Further 

experiment has been reported by Fong, Deb, Yang, and Zhuang (2014) by testing the 

combined four optimization algorithms named ACO, Bat, Cuckoo, and Firefly with 

K-means on real-life datasets and image segmentation.  

Demir and Karci (2015) used golden ratio method to set the parameters of Firefly 

algorithm. They tested their proposed clustering method on breast cancer data. The 

result of Firefly algorithm with golden ratio shows better success rate compared to 

the standard Firefly algorithm. 

For detecting the brain tumor, Alsmadi (2014) proposed a dynamic clustering 

method that is based on hybrid model of Firefly algorithm and Fuzzy c-means 

(FCM). The use of the Firefly algorithm is to overcome the drawbacks of the FCM 

which has slow convergence rate, trapped in local optima, and is sensitive to initial 

centers. The hybridization method was able to detect the number of clusters and the 

location of the points. It shows better results than state-of-the-art methods such as the 

hybridization between harmony search and FCM, and combination between Genetic 

algorithm and point symmetry-based index. 

It can be concluded that in the validation part of Hassanzadeh and Meybodi (2012), 

the weakness is in measuring the inter-cluster (Abshouri & Bakhtiary, 2012; 

Hassanzadeh & Meybodi, 2012; Senthilnath, Omkar & Mani, 2011; Tang, Fong, 

Yang & Deb, 2012). Moreover, Tang, Fong, Yang, and Deb (2012) tested only the 
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proposed algorithm, but did not measure the validation of the clusters’ output from 

each algorithm. Abshouri and Bakhtiary (2012) had a weakness in the proposed 

method, which is the random center of clusters. Senthilnath, Omkar, and Mani 

(2011) studied the firefly algorithm for supervised clustering for numerical data set. 

Table 2.9 and Table 2.10 present the summary of existing researches in Firefly 

Algorithm in web intelligent data and numerical clustering. 

Table 2.9 

Summary of existing researches in Firefly Algorithm in web intelligent data. 

Authors Contribution Problem Solved Dataset Weakness 

Rui, Fong, 

Yang, & 

Deb (2012) 

Adopting work of 

Tang, Fong, Yang, 

and Deb (2012) and 

testing on web 

intelligent data 

Testing nature 

optimization 

algorithms in web 

data clustering 

Page Blocks, Ipod 

Auctions on eBay, 

Internet Usage 

and Spam base 

C-Firefly 

requires high 

CPU time to 

execute 

 

Table 2.10 

Summary of existing researches in Firefly Algorithm in numerical clustering. 

Authors Contribution Problem Solved Dataset Weakness 

Senthilnath, 

Omkar, & 

Mani (2011) 

Studied the Firefly 

Algorithm 

performance in 

clustering 

Studied the 

performance of 

the Firefly 

Algorithm in data 

clustering 

Balance, Cancer, 

Cancer-int, 

Credit, 

Dermatology, 

Diabetes, E.Coli, 

Glass, Heart, 

Horse, Iris, 

Thyroid and Wine 

Implemented only 

on  numerical data 

set 

Hassanzadeh 

& Meybodi 

(2012) 

Hybrid Firefly 

Algorithm and K-

means for data 

clustering KFA  

Initial centroid for 

K-means and 

local optimal 

convergence 

UCI (Iris, Wdbc, 

Sonar, Glass and 

Wine) 

Used only intra-

cluster which 

determines the 

similarity between  
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Table 2.10 continued 

    

objects in one 

cluster, but did 

not used inter-

cluster 

measurement 

which determines 

the differences 

between clusters 

Tang, Fong, 

Yang, & 

Deb (2012) 

Hybrid Firefly, 

Cuckoo, Bat, Ant 

and Wolf with K-

means 

K-means trapped 

in local optima 

due the random 

initial centroids 

Five datasets from 

UCI 

Testing only the 

proposed 

algorithm, but did 

not measure the 

validation of the 

clusters’ output 

from each 

algorithm 

Abshouri & 

Bakhtiary 

(2012) 

Hybrid Firefly with 

K-harmonic means 

algorithm 

 

Local optima 
Iris, Glass, Wine 

and contraceptive 

Predefined  k 

cluster  

Banati & 

Bajaj (2012) 

Firefly algorithm 

for data clustering 

Clustering 

problem 

Iris, Wine, Cancer 

and Thyroid 

Predefined  k 

cluster 

Fong, Deb, 

Yang, & 

Zhuang 

(2014) 

Extensive 

experiments on 

Hybrid Firefly, 

Cuckoo, Bat, and 

Ant with K-means 

Testing nature 

optimization 

algorithms  

real life 

datasets and 

image 

segmentation 

Predefined  k 

cluster 

Demir & 

karci (2015) 

Golden ratio 

method to set 

parameters of 

firefly algorithm. 

Heuristic 

algorithm find 

only near optimal 

solutions.  

Breast cancer data 

Not compare the 

result with others 

in same data 

2.2.1.2.4 Hybrid of Clustering Techniques and other Search Optimization 

Hybridization integrates different data mining techniques or meta-heuristic 

algorithms in one approach to construct a clustering model (Stahlbock, Crone, & 
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Lessmann, 2010). Many researchers suggest to hybrid partitional clustering with an 

optimization algorithm to enhance the quality performance of partitional clustering 

(Forsati, Mahdavi, Shamsfard, & Meybodi, 2013; Hatamlou, Abdullah, & 

Nezamabadi-pour, 2012; Luo, Li, & Chung, 2009; Mahmuddin, 2008; Zhong, Liu, & 

Li, 2010). 

A new approach for text document clustering was proposed by Luo, Li, and Chung 

(2009) and Forsati, Mahdavi, Shamsfardand, and Meybodi (2013). The problem of 

similarity measure between documents was solved based on mixed cosine and link 

functions (Luo, Li, & Chung, 2009). This approach determines the initial cluster 

centers based on document ranks. The split between clusters is based on heuristic 

function which depends on neighbors. The researchers used thirteen datasets from 

different resources and used two quality metrics: F-measure and Purity. The 

proposed method acquired the best result of F-measure 0.75 on MED1 and Top1 

datasets. Furthermore, the purity value was 0.8 in the CACM1 dataset and 0.818 in 

the Top1 dataset.  

In addition, the problem of randomly selecting initial centers was solved by the 

hybridization of k-means with Harmony search (HS) in three different versions, 

based on the stage of k-means during execution (Forsati, Mahdavi, Shamsfard, & 

Meybodi, 2013). The versions are sequential hybrid, interleaved hybrid and one step 

of HS hybrid. The quality results of one step of HS are better than K-means, 

HSCLUST, Sequential hybrid, interleaved hybrid and GA. However, this version is 

not suitable for large datasets due to the increasing execution time when the number 

of documents increases (linear relation). 
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A hybrid K-means with optimization algorithm to solve the problem of trapping in 

local optima in numerical datasets was presented in Hatamlou, Abdullah, and 

Nezamabadi-pour (2012), and Mahmuddin (2008). A hybrid Bee’s algorithm with K-

means algorithm to find the optimum cluster centers for un-labelled data was 

proposed by Mahmuddin (2008). A hybrid gravitational search algorithm (Rashedi, 

Nezamabadi-pour, & Saryazdi, 2009) with K-means GSA-KM for data clustering 

was proposed (Hatamlou, Abdullah, & Nezamabadi-pour, 2012). The hybridization 

is useful to speed up the convergence of GSA. The GSA-KM is learned to be the 

best in intra-cluster distance and fitness function compared to K-means, GA, SA, 

ACO, HBMO, PSO, and GSA. However, the initial cluster number is determined in 

GSA-KM. 

Zhong, Liu, and Li (2010) solved the weakness of the FCM algorithm for outliers’ 

sensitization and determination of exact cluster number. They presented Fuzzy C-

means (FCM) algorithm for clustering that depends on gravity, which identifies the 

initial centers and isolates outliers by calculating the force between two point 

masses. One point mass is represented as the number of objects around point mass, 

so the bigger the mass is represented, the larger the density is. In addition, a novel 

FCM merged the produced clusters to obtain an appropriate cluster number. The 

result of the proposed FCM improves the standard FCM, where the average recall 

improvement was 1.34% in the Iris dataset and 1.72% in the breast cancer Wisconsin 

dataset. Furthermore, the average precision was 1.03% in the Iris dataset and 0.12% 

in the breast cancer Wisconsin dataset. However, the number of k cluster is 

identified and the algorithm is also tested on small datasets. Tables 2.11 and 2.12 
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contain the summary of existing researches in the hybridization of clustering 

techniques and other search optimization in text clustering and numerical clustering. 

Table 2.11 

Summary of existing researches in the hybridization of clustering techniques and 

other search optimization in text clustering. 

Authors Contribution Problem Solved Dataset Weakness 

Luo, Li, & 

Chung 

(2009) 

A new approach for text 

documents clustering. The 

determination of initial 

cluster centers depending 

on document ranks, the 

similarity between 

documents based on mixed 

cosine and link functions 

and lastly the splitting of 

the clusters based on 

heuristic function which 

depends on neighbors 

Similarity measure 

between documents 

when using cosine 

function 

Thirteen 

datasets from 

different 

resources such 

as Reuters -

21578, 

MEDLINE,CA

CM, CISI and 

TREC 

Predefined 

k cluster 

Forsati, 

Mahdavi, 

Shamsfard, 

& 

Meybodi 

(2013) 

A new approach of 

Harmony search 

optimization 

method for document 

clustering, and hybrid 

Harmony Search 

optimization with K-means 

K-means randomly 

selected  initial 

cluster centers 

Politics, 

Trec,Dmoz,20 

Newsgroup and 

WebAce 

Computati

onal cost is 

high 

 

Table 2.12 

Summary of existing researches in the hybridization of clustering techniques and 

other search optimization in numerical clustering. 

Authors Contribution Problem-Solved Dataset Weakness 

Zhong, 

Liu, & Li 

(2010) 

A novel Fuzzy C-means 

FCM depending on gravity 

The weakness for 

FCM algorithm for 

outliers’ sensitization  

Iris, and Breast 

cancer 

Wisconsin 

Predefined 

k cluster 

and the  
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Table 2.12 continued 

  
and determination of 

exact cluster number 
 

algorithm 

is tested on 

small 

numerical 

datasets 

Hatamlou , 

Abdullah, 

&  

Nezamaba

di-pour 

(2012) 

Hybrid gravitational search 

algorithms with K-means 

K-means is trapped in 

local optima and 

convergence of GSA 

Wine, Iris, 

CMC, Cancer 

and Glass 

Predefined 

k cluster 

2.2.2 Dynamic Approach 

In contrast to the static approach of clustering, dynamic clustering has an ability to 

automatically identify the number of clusters. Hence, the literature covering this 

matter is categorized into two approaches: estimation and population-based.  

2.2.2.1 Estimation Approach 

Estimation clustering is initialized by identifying a range of k value (minimum and 

maximum) and using one of the validity indices. Clustering is undertaken for 

identifying the number of clusters and clusters with the best quality (best value of 

validity indices). Bayesian Information Criterion (BIC) has been proposed as a 

solution for K-means problem (the number of cluster), where it can estimate the best 

k (Pelleg & Moore, 2000). BIC is used to measure the improvement of the cluster 

structure between a cluster and its two children clusters. The result shows that the 

use of BIC can reveal the actual number of classes and it outperforms K-means. The 

number of clusters in a dataset has been estimated by integrating a modified K-
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means and Bees algorithm. The purpose of using Bees algorithm is to identify the 

possible optimal or near optimal centroids, whilst, the aim of utilizing K-means is to 

detect the best cluster (Mahmuddin, 2008). 

In the work of Sayed, Hacid, and Zighed (2009), the agglomerative hierarchical 

clustering with validity index (VI) has been presented. VI for two closest clusters is 

measured before and after the merging step, where the merging of these two clusters 

occurs if the VI improves after merging. The process of merging continues until the 

optimal clustering solution is reached.  

Besides that, the combination between K-means and Particle Swarm Optimization 

has been proposed for dynamic data clustering, named as KCPSO (Kao & Lee, 

2009). KCPSO has the capability to identify the optimal number of clusters without 

any information given before performing the clustering process. The aim of using 

PSO is to optimize the number of clusters, while the aim of using K-means is to 

identify the best clustering result. The results indicated that KCPSO can obtain the 

best or equal clustering results with less time compared with two dynamic clustering 

algorithms: Dynamic Clustering using Particle Swarm Optimization (DCPSO) and 

Genetic Clustering for Unknown K (GCUK). 

Another automatic clustering method has been proposed by Kuo and Zulvia (2013), 

termed as Automatic Clustering using Particle Swarm Optimization (ACPSO). In 

this method, Particle Swarm Optimization is used to identify the number of clusters 

and K-means to adjust the clustering centers. ACPSO initializes by determining a 

range of cluster numbers [2, Nmax]. The experimental results indicated that ACPSO 



 

 68 

outperforms Dynamic Clustering Genetic algorithm (DCGA), Dynamic Clustering 

using Particle Swarm Optimization (DCPSO) and Dynamic Clustering using Particle 

Swarm Optimization and Genetic Algorithm (DCPG) in producing better accuracy 

and less CPU time.  

It is learned from previous studies (Kao & Lee, 2009; Kuo & Zulvia, 2013; 

Mahmuddin, 2008; Pelleg & Moore, 2000; Sayed, Hacid, & Zighed, 2009) that the 

estimation approach is appropriate to find solutions for problems (i.e. determining 

the number of clusters that requires little or no knowledge of datasets). However, 

there exists a difficulty to identify the range of clusters (lower and upper values of 

cluster numbers). 

2.2.2.2 Population-based Approach 

This approach can be classified into two sub-approaches: evolutionary clustering 

methods and swarm-based methods. Evolutionary clustering methods are such as 

Evolution Strategies (Lee & Antonsson, 2000), Evolutionary Programming (Sarkar, 

Yegnanarayana, & Khemani, 1997), Differential Evolution Algorithm (Das, 

Abraham, & Konar, 2008) and Genetic Algorithms (Kuo, Syu, Chen, & Tien, 2012), 

while, Swarm-based methods are such as Flocking-based approach (Cui, Gao, & 

Potok, 2006; Picarougne, Azzag, Venturini, & Guinot, 2007) and Ant-based 

clustering (Tan, Ting, & Teng, 2011a, 2011b).  

Lee and Antonsson (2000) developed an Evolution Strategy (ES) to overcome the 

problem of static number of clusters in partitional clustering. ES effectively searches 

for both the optimal center and optimal number for clusters by performing variable 
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length genomes. Evolutionary programming-based clustering algorithm for 

discovering the number of clusters and cluster centers has been proposed by Sarkar, 

Yegnanarayana, and Khemani (1997). They used two object functions (minimization 

functions) in the algorithm; Davies Bouldin Index (DBI) for global view (i.e. to give 

the optimum number of clusters) and the overall sum of the squared errors between 

objects and cluster center for local view (i.e. to determine which object belongs to 

which cluster). The result demonstrated the usefulness of the proposed Evolutionary 

Programming to avoid local minima and generate proper numbers of clusters.  

A genetic-based clustering method (Liu, Wu, & Shen, 2011) has been proposed for 

automatically identifying the number of clusters. In the design, a balance between 

selection and variety of the solution was retained by implementing two operations: 

noising selection and division absorption mutation. The Davies Bouldin Index was 

used for evaluating the fitness of individuals. The experimental results indicated that 

the genetic-based clustering method has the ability to construct the number of 

clusters and obtain the clustering solution automatically.  

The integrating between Particle Swarm Optimization (PSO) and Genetic Algorithm 

(GA), termed as the DCPG method, has been proposed by Kuo, Syu, Chen, and Tien 

(2012). It operates without any knowledge of the k number of clusters (a dynamic 

approach). As presented in Figure 2.12, the DCPG method initially selects cluster 

centroids M from a set of dataset Z, and randomly determines the position and 

velocity. The length of particle is equal to the number of cluster centroids M, where 

if the bit in M is equal to 1, then the point is centroid, otherwise, it will not be 

selected as a centroid. 
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Integrating Particle Swarm Optimization & Genetic Algorithm  

Step 1: Generate the initial cluster centroid, position and velocity randomly. 

Step 2: While not reach the pre-specified number of iterations does. 

Step 3: Calculate the fitness value of each particle. 

Step 4: Select personal best (Pid) and a global best (Pgd). 

Step 5: Update the position and velocity of each particle. 

Step 6: Perform Steps 6.1 and 6.2 for the updated parent. 

Step 6.1: copy all particles to generate population one. 

Step 6.2: perform a two point crossover for Pid and Pgd in Step 4 and mutation for 

Pgd to generate population two. 

Step 7: Combine populations one and two and calculate the fitness value of each particle.  

Step 8: Perform an elitist selection for populations one and two. 

Step 9: Do while not reach pre-specified number of iterations, return to Step 3.  

Step 10: Perform K-means algorithm.  

Step 11: Resolved the optimal center of clusters. 

Step 12: End While. 

Figure 2.12. Pseudo code of integrating Particle Swarm Optimization with Genetic 

Algorithm (DCPG) 

Resource. Kuo, Syu, Chen, and Tien (2012) 

 The calculation of the fitness function for each particle is performed by constructing 

the clusters of each particle, and calculating the sum of Euclidean distance between 

objects and centroids. Then, a personal best (Pid) and a global best (Pgd) are 

selected, followed by updating the position and velocity of each particle by two 

steps: 1) Copy all particles to generate population one and perform a two-point 

crossover for Pid and Pgd and mutation for Pgd to generate population two; 2) 

Combine these two populations and calculate the fitness for each particle. The next 

iterative population is generated by performing an elitist selection for the two 

populations. The previous processes continue until the number of iterations is 

satisfied. After that, the K-means algorithm is applied to adjust the number of 
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clusters. The result indicates that the DCPG algorithm can generate the right number 

of clusters and can realize the best clustering results compared to DCPSO, 

ACMPSO, and DCGA algorithms. 

Swarm-based methods utilize swarm like agents to group data directly without the 

need to define the number of clusters. The dynamic swarm-based approach can 

automatically discover the appropriate number of clusters, in a given data collection, 

without any support. Hence, it offers a more convenient cluster analysis. Dynamic 

swarm-based approach adapts the mechanism of a specific insect or animal that is 

found in the nature and converts it to heuristic rules. Each swarm is treated like an 

agent that follows the heuristic rules to carry out the sorting and grouping of objects 

(Tan, 2012). In literature, there are examples of such approach in solving clustering 

problems such as flocking-based approach (Cui, Gao, & Potok, 2006; Picarougne, 

Azzag, Venturini, & Guinot, 2007) and ant-based clustering (Tan, Ting, & Teng, 

2011a, 2011b).  

The flocking-based approach is related with the behaviors of swarm intelligence 

(Bonabeau, Dorigo, & Theraulaz, 1999) where a group of flocks of swarm move in a 

2D or 3D search space following the same rules of flocks; get close to similar agents 

or far away from dissimilar agents (Picarougne, Azzag, Venturini, & Guinot, 2007).  

In general, the flocking model includes three rules of behavior: separation, cohesion 

and alignment. In separation, the agent has the ability to maintain a specific distance 

from other agents; while in cohesion, the agent has the ability to associate with other 

nearby agents. In the alignment rule, the agent aligns with closer characters. Folino, 
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Forestiero, and Spezzano (2009) presented the adaptive flocking algorithm that is 

based on the simple flocking model. They introduced a new adaptive parameter 

(speed) that changes based on the color of the agent, and the new position of the 

agent is based the position of other agents (red and white agents). This approach is 

computationally expensive as it requires multiple distance computations.  

On the other hand, the ant-based approach deals with the behaviors of ants, where 

each ant can perform the sorting and corpse cleaning. This approach works by 

distributing the data object randomly in the 2D grid search space, then determining a 

specific number of ants (agents) that move randomly in this grid to pick up a data 

item if it does not hold any object (item) and drop the object (item) if it finds a 

similar object. This process continues until it reaches a specific number of iterations 

(Deneubourg et al., 1991). 

El-Feghi, Errateeb, Ahmadi, and Sid-Ahmed (2009) proposed an adaptive ant colony 

clustering algorithm, termed as AACA, which improved the picking and dropping 

probability functions of standard ant-based clustering. The improvement is done by 

adding a new parameter which represents the value of pheromone at each location on 

the grid search space. Additionally, it improves the similarity scaling factor by 

automatic adoption (by reflecting the frequency of the agents’ successful picking and 

dropping processes). The AACA performs K-means and agglomerative hierarchical 

clustering in terms of accuracy and obtained number of clusters. 

A practical General Stochastic Clustering Method (PGSCM) that is a simplification 

of the ant-based clustering approach has been proposed (Tan, Ting, & Teng, 2011a). 
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PGSCM is used to cluster multivariate real world data. The pseudo code of PGSCM 

is illustrated in Figure 2.13. The input of PGSCM is a dataset, D, that contains n 

objects and the output is the number of clusters discovered by the PGSCM method, 

without any prior knowledge.  

Practical General Stochastic Clustering Method  

Step 1: Input the dataset D with n objects. 

Step 2: The dissimilarity threshold is calculated for all n objects. 

Step 3: Each object in the dataset is allocated to a bin. 

Step 4: Do while iteration <= Max iteration 

Step 5: Choose two objects from dataset D randomly and they must not be equal. 

Step 6: If the distance between two selecting objects < minimum dissimilarity threshold of 

two objects. 

Step 7: Store the comparison outcome. 

Step 8: If the level of support (first object) < level of support (second object)  

Step 9: Move first object to second object. 

Step 10: Else move second object to first object. 

Step 11: End If 

Step 12: End While 

Step 13: Output a set of clusters that represent all non-empty bins. 

Figure 2.13. Pseudo code of practical General Stochastic Clustering Method 

(PGSCM)  

Resource. Tan, Ting, and Teng (2011a) 

In the initialization of PGSCM, the dissimilarity threshold for n objects is estimated. 

Then, it creates n bins where each bin includes one object from the dataset D. 

Through the work of PGSCM, it selects two objects randomly from a dataset; if the 

distance between these two objects is less than the dissimilarity threshold of them, 

then the level of support of the two objects is compared. If object i has less support 

than j, then the lesser one is moved to the greater one and vice versa. At the end of 
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the iterations, a number of small and large bins are created. The large bins are 

selected as output clusters, while the small bins are reassigned to large bins (objects 

in small bins are assigned to similar centers in large bins). The selection process of 

large bins is based on the threshold of (50, n/20) (i.e. the threshold is 5% of the size 

of dataset, n), this threshold is based on the criterion used in Picarougne, Azzag, 

Venturini, and Guinot (2007). The result of the PGSCM method performs well 

compared to the state-of-the-art methods. However, randomly selecting two objects 

in every iteration may create other issues. There is a chance that in some iterations, 

the same objects are selected or some objects are not selected at all. Furthermore, the 

selection process initially requires a large number of iterations to increase the 

probability of selecting different objects. 

2.3 Research Gap 

Partitional clustering such as K-means suffers from local optima due to the random 

initial centers (Wang Liu, Chen, & Tang, 2011; Yang, 2010). It needs to define the 

number of k clusters as the initial value. Density-based clustering has a weakness in 

clustering documents which is usually of high dimensionality data (Chehreghani, 

Abolhassani, & Chehreghani, 2008; Zhao, Cao, Zhang, & Zhang, 2011). Grid-based 

clustering needs to determine the number of cells as the initial value (Han & 

Kamber, 2006). Model-based clustering, such as SOM and NN, is sensitive to the 

initial selection of weight and needs to set the parameters of the learning rate and 

neighborhood radius (Rokach & Maimon, 2005). All of the previous approaches 

produce a flat clustering which present users with single level clusters. On the other 

hand, hierarchical clustering organizes the documents in a hierarchical structure 



 

 75 

(Murugesan & Zhang, 2011a, 2011b; Zhu, Fung, Mu, & Li, 2008). It is an efficient 

method for clustering documents in information retrieval which can create taxonomy 

of structure set of clusters. 

Hierarchical clustering includes two approaches: divisive and agglomerative (Das, 

Abraham, & Konar, 2009). Agglomerative is not efficient with large datasets (Zhu, 

Fung, Mu, & Li, 2008). On the other hand, the divisive approach such as Bisect K-

means needs to refine the cluster result and needs to determine the initial centers 

(Kashef & Kamel, 2009; Murugesan & Zhang, 2011a, 2011b). 

The existing works of hybrid hierarchical clustering which merges partitional and 

agglomerative methods, such as in Murugesan and Zhang (2011a, 2011b), and Zhu, 

Fung, Mu, and Li (2008) still suffer from local optima in partitional steps and needs 

to define k clusters.  Many researchers attempted to solve these problems by utilizing 

meta-heuristic optimization algorithms such as harmony search (Forsati, Mahdavi, 

Shamsfard, & Meybodi, 2013), gravitational search (Hatamlou, Abdullah, & 

Nezamabadi-pour, 2012) and swarm algorithms (Feng et al., 2010; Lu, Wang, Li, & 

Zhou, 2009; Wang, Shen, & Tang, 2009). All of the pervious solutions still need to 

determine the number of k clusters as the initial value. 

Over the years, the problem of determining the number of k clusters has been solved 

by two approaches: estimation approach and swarm-based approach. From the 

literature (Kao & Lee, 2009; Kuo & Zulvia, 2013; Mahmuddin, 2008; Pelleg & 

Moore, 2000; Sayed, Hacid, & Zighed, 2009), the first approach (estimation 

approach) is appropriate to identify a solution for problems (i.e. determining the 
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number of clusters that requires little or no knowledge of datasets). However, there 

exists a difficulty to identify the range of clusters (lower and upper values of cluster 

numbers). In the second approach, the swarm-based approach, such as ant-based 

clustering, generates too many clusters and it is possible that the objects are still 

carried by ants or left alone in the 2D grid when the stopping condition is reached 

(He, Hui, & Sim, 2006). In the flocking approach, the computational process is 

expensive as it requires multiple distance computations. 

2.4 Summary 

Many resources are available on the Internet and they are of various areas, such as 

sports, news, science articles, etc. These resources need a technique that is able to 

organize them in a structural form. The most significant technique is the hierarchical 

text clustering.  

From previous researches, it can be concluded that hierarchical text clustering is an 

efficient method to organize text documents. However, in divisive hierarchical text 

clustering, there exists a problem in relocating documents when it has been assigned 

to one cluster. Furthermore, the divisive hierarchical clustering utilizes partitional 

clustering techniques that require the determination of k number of clusters. Previous 

researches have been suggested to solve the problem of local optima by integrating 

clustering techniques with swarm intelligence algorithms such as Ant Colony 

Optimization, Particle Swarm Optimization, Bees Algorithm, etc. These algorithms 

are efficient in finding the optimal solution. A new swarm intelligence algorithm 

called Firefly Algorithm (FA) which was presented by Yang (2007) has been 
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efficient in finding the global optimal solution. There exist researches in utilizing 

Firefly Algorithm to improve the performance of clustering in numerical datasets, 

but works on text documents have yet to be reported. 

Additionally, previous works have been suggested a pre-defined value for k which 

represents the number of clusters, but this is not appropriate for text clustering as 

there is no prior knowledge about the datasets. 
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CHAPTER THREE 

RESEARCH METHODOLOGY  

This chapter includes the methodology that was utilized to undertake the research. It 

is based on the experimental methodology which was widely used in computer 

science fields such as NP-hard problems, games, neural network, and machine 

learning (Doding, 2002). The utilized experimental research steps are as illustrated in 

Figure 3.1.  

 

 

 

 

 

 

 

 

 

Figure 3.1. The experimental research steps 

 
 

Research 

Design 

 

Implementation 

of Algorithms 

 

Evaluation 

 Data Acquisition Phase: 

 Data Collection 

 Data Preprocessing 

 Clustering Phase (Weight-based Firefly Algorithm (WFA)) 

 Cluster Refining Phase (Document Re-locating algorithm) 

 Cluster Merging Phase (Cluster Merging Algorithm) 

 

Implement the designed algorithms and implement benchmark 

algorithms (if required): 

 WFA 

 WFA + Re-locating  algorithm (WFAR) 

 WFA + Re-locating  algorithm + Merging algorithm (WFARM) 

 

 K-means 
 Hybrid Bat algorithm with K-means 

(BatK-means) 

 PSO 
 Practical General Stochastic Clustering 

Method (PGSCM)    

 Bisect K-means 
 Dynamic Hybrid Genetic algorithm with 

Particle Swarm Optimization (DCPG) 

 Hybrid Firefly Algorithm with 

K-means (FAK-means) 
 

 

 Analyze the performance of the proposed Adaptive FA using  

o Benchmark performance measurements. 

o Benchmark clustering algorithms. 

 

 Analyze the statistical significance of the proposed Adaptive FA using T-test. 
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3.1 Research Design 

This research suggests a hierarchal text clustering algorithm based on Firefly 

Algorithm. Figure 3.2 shows the components of the proposed Adaptive Firefly 

Algorithm for hierarchical text clustering. 

 

 

 

 

 

 

 

 

 

Figure 3.2. The components of the proposed Adaptive Firefly algorithm for 

hierarchical text clustering 

The proposed algorithm merges two approaches: divisive and agglomerative. For the 

divisive approach, this research proposes a divisive algorithm using a new objective 

function based on the standard FA and a re-locating algorithm. The re-locating 

algorithm changes the location of documents between clusters based on an identified 

similarity measurement. The re-locating algorithm helps to enhance the performance 

metrics (i.e. purity) that happen in the early stage of clustering. On the other hand, 

the Un-weighted Pair Group Method with Arithmetic Mean (UPGMA) is adapted as 

Adaptive Firefly Algorithm 

 Document Clustering 

 Weight-based Firefly Algorithm (WFA) 

Cluster Refining (WFAR) 

WFA + Re-locating Algorithm  

Cluster Merging (WFARM) 

WFAR + E-UPGMA 
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the agglomerative approach. An alternative mean of merging clusters is introduced to 

merge two similar clusters. The enhanced UPGMA reduces the number of k clusters 

which later contributes to the performance of text clustering.  

The proposed hierarchical text clustering contains four main phases: Data 

Acquisition, Clustering, Cluster Refining, and Cluster Merging. Figure 3.3 illustrates 

the phases of the proposed hierarchical text clustering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. The phases of proposed hierarchical text clustering  

3.1.1 Data Acquisition Phase 

Data acquisition includes two steps: data collection and data pre-processing. 
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3.1.1.1 Data Collection 

In this research, six benchmark datasets from different resources are employed. The 

datasets include 20Newsgroups (20NewsgroupsDataSet, 2006; Bache & Lichman, 

2013), Reuters-21578 (Lewis, 1999), and TREC collection (Karypis, 2002).  

Samples of the datasets are presented in Appendix A. The 20Newsgroups and 

Reuters-21578 datasets are balanced datasets, where each class in the datasets 

includes the same number of documents, while the TREC collection datasets 

represent the un-balanced datasets as the numbers of documents in each class are 

different. Table 3.1 summarizes the characteristics of these datasets.  

Table 3.1 

Description of Datasets. 

Datasets Resources 

Number 

of 

documen

ts 

Number 

of 

classes 

Minimum 

number of 

documents 

in class 

Maximum 

number of 

documents 

in class 

Number 

of terms 

20Newsgroups 
20 Newsgroup 

datasets 
300 3 100 100 2275 

Reuters Reuters-21578 300 6 50 50 1212 

TR11 
TREC 

Collection from 

CLUTO toolkit  

414 9 6 132 6429 

TR12 313 8 9 93 5804 

TR23 204 6 6 91 5832 

TR45 690 10 14 160 8261 

       

 

The first dataset which is denoted by 20Newsgroups (Bache & Lichman, 2013) was 

extracted from the UCI machine learning repository and is available online 

(http://archive.ics.uci.edu/ml). The 20Newsgroups dataset contains 300 documents 
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that it distributed in three different classes, which are: hardware, baseball and 

electronic. Each class includes 100 documents and the number of terms involved is 

2275. 

The second dataset, Reuters, comes from Reuters-21578 (Lewis, 1999), and was also 

obtained from the UCI machine learning repository. It includes 300 documents with 

six different classes, which include: earn, sugar, trade, ship, money-supply and gold. 

Each class contains 50 documents and the number of terms is 1212.  

The four remaining datasets are TR11, TR12, TR23 and TR45, and were retrieved 

from CLUTO toolkit (Karypis, 2002). These datasets have already been pre-

processed by Zhao and Karypis (2001), and they originated from the Text Retrieval 

Conference (TREC) collections (TREC, 1999). TR11 includes 414 documents from 

nine different classes and the number of terms is 6429. TR12 contains 313 

documents from eight different classes with 5804 terms. TR23 includes 204 

documents distributed in six classes and the number of terms is 5832. The last 

dataset, TR45, contains 690 documents from ten classes and consists of 8261 terms.  

3.1.1.2 Data Pre-processing 

The data pre-processing phase is a significant phase in text mining, where it extracts 

features from large documents and represents them in the form of a database. This 

phase contains two steps:  
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Step 1: Data Cleaning 

Figure 3.4 shows an example of document source code from the Reuters database. In 

this step, documents are entered as source code. Later, the text will be extracted from 

them which are the tags that contain title and body. 

 

 

 

 

 

 

Figure 3.4. An example of document from the Reuters dataset 

The selected text is cleaned from special characters and digits. Upon the completion 

of data cleaning, the output will be such as in Figure 3.5. 

 

 

 

 

Figure 3.5. An example of a cleaned document 
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The second step is to split the cleaned text into words. Figure 3.6 shows an example 

of the output.  

 

 

 

 

 

 

 

 

Figure 3.6. An example of extracted terms 

In the third step, all of the words in each document are analyzed for their length. 

Words with a length of at least three are left for further processing. Figure 3.7 shows 

an example of words with the length greater than two. 

 

 

 

 

 

 

Figure 3.7. An example of words with the length more than two 
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Later, the word is removed if it is listed as stop words, as shown in Appendix B. 

Examples of stop words are the, they, that, etc. Figure 3.8 shows an example of the 

removed stop words. 

 

 

 

 

 

 

Figure 3.8: An example of the removed stop words. 

The fifth step is stemming all the words by returning them to their original form such 

as “running” becomes “run”, and “evaluated” becomes “evaluate”. Finally, the 

frequency of the words is calculated as shown in Figure 3.9. 

 

 

 

 

 

 

Figure 3.9. An example of word frequency 
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Step 2: Data Representation 

Vector Space Model (VSM) is widely used in text mining to represent the words in 

documents. In VSM, let D = {D1, D2, …, Dn} be a document collection and n 

represents the number of documents in the collection. Let T = {T1, T2, …, Tm} be the 

terms in each documents and m represents the number of terms. In vector space 

model, the document D is represented as a vector in the m dimensional space 

(Aliguliyev, 2009a, 2009b). The vector D is related with the terms by a degree value. 

This degree is the occurrence of the term in the document; this relation is called term 

frequency (TF). Figure 3.10 shows the term frequency matrix. 

 Documents D = {D1, D2, …, Dn} 

T
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m
s 
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=
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} TF11 TF 12 ……………. TF 1n 

TF 21 TF 22 ……………. TF 2n 
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. 
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. 

 

TF m1 TF m2 ……………. TFmn 

 

Figure 3.10. The term frequency matrix  

When the number of documents increases, the term frequency matrix will also 

increase. This can cause high dimensionality of dataset. There are some benefits of 

dimensionality reduction: 1) The clustering algorithm works better in lower 

attributes; 2) The model can understand in fewer attributes; 3) Data can visualize 

easily; and 4) The time of execution and memory can be reduced in lower 

dimensionality (Tan, Steinbach, & Kumar, 2006). In this research, data 



 

 87 

dimensionality will be reduced by removing the terms that appear in all documents. 

These terms are not useful to discriminate the documents (Aggarwal & Zhai, 2012). 

The Euclidean Normalized database, known as EN, is the second step in creating a 

vector space model. Where, the occurrence of terms is normalized to the value 

between (0, 1) through, initially calculating the document length using Equation 3.1 

(Manning, Raghavan, & Schütze, 2008). 

𝐿𝑒𝑛𝑔𝑡ℎ = √∑ 𝑇𝐹𝑖(𝑑)2

𝑚

𝑖=1

 (3.1) 

where, TF is the term frequency and d is the document. Later, term frequency is 

divided over document length using the Equation 3.2 (Manning, Raghavan, & 

Schütze, 2008). 

𝐸𝑁 =
𝑇𝐹

𝐿𝑒𝑛𝑔𝑡ℎ
 (3.2) 

The weight of every term in the document is calculated using TFIDF (Term 

Frequency-Inverse Document Frequency). The inverse documents frequency, idf, is 

calculated using Equation 3.3 (Manning, Raghavan, & Schütze, 2008). 

𝑖𝑑𝑓 =  log 𝑁 𝑑𝑓𝑡⁄  (3.3) 

where, N is the number of documents in the collection, and dft is the number of 

documents containing a term in the collection. Then, the weight of the term is 

calculated using Equation 3.4 (Manning, Raghavan, & Schütze, 2008). 
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𝑡𝑓𝑖𝑑𝑓𝑡,𝑑 = 𝑡𝑓𝑡,𝑑 ∗ 𝑖𝑑𝑓𝑡 (3.4) 

TFIDF is one of the most famous techniques that is used to represent documents as 

numerical weights in the search space. Figure 3.11 illustrates the TFIDF matrix. 

 Terms  
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𝑡𝑓𝑖𝑑𝑓𝑛,1 𝑡𝑓𝑖𝑑𝑓𝑛,2 ……………. 𝑡𝑓𝑖𝑑𝑓𝑛,𝑚 

Figure 3.11. TFIDF matrix  

3.1.2 Clustering Phase 

This section includes the flow of the proposed Weight-based Firefly Algorithm 

(WFA) (refer to Figure 3.12). As mentioned previously, each document has a 

relation with terms, which is term weight, TFIDF. Documents that include large term 

weights have a higher probability to be represented as the center of clusters. As 

learned in the literature, whenever the term frequency increases in one document and 

appears in a small number of documents, then, this term will be more discriminative 

for splitting the documents. The increase of term frequency in one document leads to 

the increase of the total weight of the document. The total weight of a document is 

the summation of term weights in that document. The total weight of each document 

is calculated using Equation 3.5. 
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Figure 3.12. Flow of Hierarchical Text clustering using Weight-based Firefly 

Algorithm (WFA) 

𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑒𝑔ℎ𝑡 (𝑑𝑗) = ∑ 𝑡𝑓𝑖𝑑𝑓𝑡𝑖,𝑑𝑗

𝑚

𝑖=1

 (3.5) 

where, j is the number of documents, i is the number of the terms. Figure 3.13 shows 

an example of the total weight matrix. 

In the standard firefly algorithm (Yang, 2010b), it has two important factors: light 

intensity and attractiveness. The brighter firefly has a higher probability to become a 

center and attract other fireflies. In the proposed WFA algorithm, each document is 

represented by a single firefly. The total weight of each document represents the 

initial value of brightness, I0, in WFA.  
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Figure 3.13. An example of the total weight matrix 

The attractive, 𝛽, of a firefly as shown in Equation 2.8 varies based on the distance 

between two fireflies (Yang, 2010b), where, 𝛽0 is the initial attractiveness, in this 

research, it sets to 1, 𝛾 is the light absorption coefficient and set to 1, 𝑟𝑖𝑗 is the 

distance between two documents i and j. The setting of the initial attractiveness and 

the light absorption coefficient to 1 make the attractiveness mostly related with the 

changing of distance between two fireflies and this setting is based on suggestion of 

Banati and Bajaj (2013), and Yang (2009).  

The distance between two documents is calculated using the real position of the 

documents, where the initial position is the position of the document in the datasets. 

The distance is calculated using Cartesian distance (Yang, 2010b) as shown in 

Equation 2.9, where, Xi, Xj is any two documents in the data set. The Weight-based 

Firefly Algorithm (WFA) compares between two lights (two documents). The 

brightest light will attract the less bright, then, the position of the less bright finally 

will change based on Equation 2.7 (Yang, 2010b), where, Xi(t+1) is a new position 

of firefly, α is a randomization parameter between (0, 1) (Yang, 2010b), εi is a vector 
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of random numbers drawn from a Gaussian distribution or uniform distribution 

(Yang & He, 2013; Yang, 2010a). Later, the brightness of the wining firefly will be 

increased based on β value as shown in Equation 3.6. 

L𝑖𝑔ℎ𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐼 (𝑑𝑗)(𝑡 + 1) =  𝐼 (𝑑𝑗)(𝑡) +  𝛽 (3.6) 

In Weight-based Firefly Algorithm (WFA), a firefly with the brightest light is used 

as a centroid (i.e. center of a cluster). Documents that are similar to the centroid will 

be identified using the most widely applied similarity measurement in text mining, 

which is the cosine similarity. Formula 3.7 represents the equation of cosine 

similarity (Luo, Li, & Chung, 2009). 

𝐶𝑜𝑠𝑖𝑛𝑒_𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐶𝑗) =  ∑(𝑑𝑗 ∗ 𝑂𝑗

𝑚

𝑗=1

) 

 

(3.7) 

where, dj is a document in cluster Cj, Oj is the center of cluster Cj, and j is the 

number of terms in the collection. The value of dj and Oj is taken from the Euclidean 

Normalized database. If the similarity is greater than the pre-defined threshold, the 

document is assigned into the first cluster, otherwise into another cluster. Later, the 

documents in the second cluster undergo the same process, which is finding a new 

centroid by sorting the brightness of fireflies (documents). Figure 3.14 shows the 

introduced process in Weight-based Firefly Algorithm (WFA).  

WFA will evaluate the output cluster by measuring the average distance between 

each center and documents of clusters using the Euclidean distance function 

(Hassanzadeh & Meybodi, 2012) which is shown in Equation 3.8. 
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Figure 3.14. The process of Weight-based Firefly Algorithm (WFA) 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂𝑗, 𝑑𝑗) = √∑(𝑑𝑗,𝑖 −  𝑂𝑗,𝑖)2

𝑚

𝑖=1

2

 
 

 

 

 

(3.8) 

where, Oj is the center of the cluster j, dj is the documents in the cluster. The value 

of Oj and dj is derived from TFIDF. A detail of the proposed WFA is presented in 

Chapter Four. 
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3.1.3 Cluster Refining Phase  

This phase includes re-locating algorithm. Re-locating refers to the process of 

changing the location of a document from one cluster to another. An example of the 

process is illustrated in Figure 3.15. 

 

 

 

 

 

Figure 3.15. Process of document re-locating 

The proposed document re-locating starts to operate once the construction of the 

second cluster is completed (using the Weight-based Firefly Algorithm (WFA)). 

When the second cluster is constructed, the document re-locating algorithm is 

invoked to check the similarities between the centroids of the second cluster (newly 

constructed) and the content (documents) of the first cluster. Whenever a new cluster 

is created, the process of document re-locating is repeated. Figure 3.16 shows the 

comparison in document re-locating. 

For example, assume k=3, so Figure 3.16 includes three clusters. Assume Cluster 1 

contains five documents (D1, D3, D5, D7 and D9) and the center is D5.   

 

Dissimilar Similar 

Cluster 2 Cluster 1 

Datasets 

Dissimilar 

Cluster 2 

Dissimilar 
Similar 

Relocate 

Cluster 

1 

Similar 

Cluster 3 
Similar 

Cluster 4 Cluster 3 

Cluster 

2 

Cluster 1 

Similar Dissimilar 

Dissimilar Similar 

Relocate 



 

 94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. Comparison between clusters for document re-locating  

Further, assume Cluster 2 contains six documents (D2, D8, D10, D12, D13 and D16) 

and the center is D10. A newly constructed cluster is Cluster 3 that contains six 

documents (D4, D6, D11, D14, D15 and D17) and D6 is the center. The document 

re-locating algorithm will check the similarity between D6 (center of Cluster 3) 

firstly with all documents in Cluster 1 (D1, D3, D7 and D9) excluding the center D5. 

If the similarity of D6 with any document in Cluster 1 is higher than the similarity of 

D5 with any document in Cluster 1, then the location of the particular document is 

changed from Cluster 1 to Cluster 3. Later, the document re-locating algorithm will 

check the similarity between D6 (center of Cluster 3) and all documents in Cluster 2, 
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where the same process with Cluster1 is repeated. A detailed explanation on the 

document re-locating algorithm is presented in Chapter Five. 

3.1.4 Cluster Merging Phase  

In the cluster merging phase, this research proposed an enhanced Un-weighted Pair 

Group Method with Arithmetic Mean (eUPGMA). It includes two steps: merge 

clusters and refine merged clusters. 

The proposed merge clusters step is based on the Un-weighted Pair Group Method 

with Arithmetic Mean (UPGMA) (Manning, Raghavan, & Schütze, 2008; Yujian & 

Liye, 2010) and starts to operate after the clustering and refining phases are 

completed. Figure 3.17 illustrates the structure of the merging similar clusters 

process introduced in eUPGMA. 

The refine merged clusters step chooses clusters that exceed an identified threshold. 

Experientially, in this research two threshold (values are utilized; (50, n/20) and (50, 

n/40), where n represents the number of documents in dataset). The first threshold is 

based on the criterion used by Tan et al. (2011a) and the idea of refine merging 

clusters is adopted from Picarougne et al. (2007). The first threshold (50, n/20) is 

proposed to be used on balanced datasets, while the second threshold (50, n/40) is 

used on un-balanced datasets. Once the clusters are selected, a new center for the 

cluster is identified. This is followed by assigning the un-selected clusters to the 

nearest centers. 
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Figure 3.17. Process of merging similar clusters in enhanced Un-weighted Pair 

Group Method with Arithmetic Mean (eUPGMA) 

The process of merging similar clusters in eUPGMA algorithm is illustrated in the 

following steps: 

Step 1: Check to merge the first cluster in the output clusters with the remaining 

clusters in the output clusters, if no merge, eliminate the first cluster from the 

output clusters (not included in the merge process), then the second cluster 

becomes the first cluster. The process of Steps 2-10 continues until the last 

cluster becomes the first cluster, so the merge process is stopped. 

Step 2: Suppose that C1 and C2 are two clusters that want to merge, and suppose that 

P1 and P2 are the numbers of documents in the two clusters respectively. 

Suppose that CSim is the Cosine similarity matrix between the two clusters 

C1 and C2. The documents in C1 are represented by the row and the 
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documents in C2 are represented by the column. The value of the CSim 

matrix is equal to 1 if the document in C1 is similar to the document in C2, 

else it equals 0. The similarity between the two documents is based on the 

threshold. 

Step 3: If (the number of documents in cluster C1 >= 2 and the number of documents 

in cluster C2 >= 2) OR If (the number of documents in cluster C1 >= 3 and the 

number of documents in cluster C2 == 1) OR If (the number of documents in 

cluster C2 >= 3 and the number of documents in cluster C1 == 1) then 

Step 4: Calculate the average similarity between the two clusters as in Equation 3.9. 

1

𝑃1
∑ ∑

𝐶𝑆𝑖𝑚 (𝐶𝑖, 𝐶𝑗)

𝑃2

𝑃2

𝑗=1

𝑃1

𝑖=1

 (3.9) 

where, P1is the number of document in the first cluster,P2is the number of document 

in the second cluster, 𝐶𝑖 is the first cluster, 𝐶𝑗is the second cluster. 

Step 5: Calculate the merge threshold as in Equation 3.10 below. 

MergeThreshold  (𝑀𝑇) =  𝑓𝑙𝑜𝑜𝑟 (
𝑟𝑜𝑢𝑛𝑑(

𝑃1∗𝑃2
2

)−1

𝑃1∗𝑃2
∗ 10) /10 (3.10) 

Step 6: If Equation 3.9 passed the merge threshold in Equation 3.10 as shown in 

Equation 3.11, then, combine two clusters C1 and C2 into one cluster. 

1

𝑃1
∑ ∑

𝐶𝑆𝑖𝑚 (𝐶𝑖, 𝐶𝑗)

𝑃2

𝑃2

𝑗=1

𝑃1

𝑖=1

>=  𝑀𝑒𝑟𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑀𝑇) (3.11) 

Step 7: If (the number of documents in cluster C1 >= 2 and the number of documents 

in cluster C2 >= 1) OR If (the number of documents in cluster C2 >= 2 and the 

number of documents in cluster C1 >= 1) 
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Step 8: Combine C1 and C2, if Equation 3.11 is true using Equation 3.12 to obtain 

merge threshold. 

MergeThreshold  (𝑀𝑇) =  
𝑟𝑜𝑢𝑛𝑑(

𝑃1∗𝑃2
2

)

𝑃1∗𝑃2
 (3.12) 

Step 9: If (number of documents in cluster C1 >= 1 and the number of documents in 

cluster C2 >= 1) 

Step 10: Combine C1 and C2, if CSim (C1, C2) equals to 1. 

3.2 Implementation of Algorithms 

The three proposed algorithms are developed as follows: 

1- The Weight-based Firefly algorithm (WFA) is implemented on text datasets 

that have been mentioned in Section 3.1.1.1. The results are extracted in 

order to compare them with the state-of-the-art methods as presented in 

Chapter Four. 

2- The Weight-based Firefly algorithm (WFA) that includes the document re-

locating algorithm denoted as WFAR is executed on text datasets. The results 

are extracted in order to compare them with state-of-the-art methods as 

presented in Chapter Five. 

3-  As for the Weight-based Firefly algorithm (WFA) that includes the 

document re-locating algorithm and cluster merging algorithm denoted as 

WFARM, the results are extracted in order to compare them with the state-of-

the-art methods as presented in Chapters Six and Seven. 
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In addition, Particle Swarm Optimization (PSO), K-means, Bisect K-means, FAK-

means, BatK-means, PGSCM and DCPG have been implemented in the simulation 

program for a fair comparison with the proposed algorithms on the same text 

datasets. The implementations of the algorithms were carried out using Matlab 

version R2008a under Windows 8.  

3.3 Evaluation 

This section discusses the evaluation of the proposed algorithms. The evaluation 

includes two parts: based on performance metrics and Independent T-test. These 

evaluations are conducted in three parts as shown in the following. 

1- Comparison between the Weight-based Firefly algorithm (WFA) against 

Particle Swarm Optimization (PSO), K-means, Bisect K-means and FAK-

means as reported in Chapter Four. 

2- Comparison between WFAR against Particle Swarm Optimization (PSO), K-

means, Bisect K-means and FAK-means as reported in Chapter Five. 

3- Comparison between the proposed WFARM against Particle Swarm 

Optimization (PSO), K-means, Bisect K-means, FAK-means, BatK-means, 

PGSCM and DCPG as reported in Chapters Six and Seven. 

The evaluation is based on clustering performance metrics that are presented in the 

following section. 
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3.3.1 Performance Metrics 

The metrics involved in the evaluation of the clustering performance are of internal, 

external and relative quality metrics. The average distance between documents and 

center (ADDC) is used as the internal metrics, while the Davies-Bouldin Index 

(DBI) and Dunn Index (DI) are as the relative metrics. On the other hand, F-

measure, Entropy and Purity are used as the external metrics. 

3.3.1.1 Internal and Relative Quality Metrics 

Average Distance between Documents and Centers (ADDC) (Cui, Potok, & 

Palathingal, 2005; Forsati, Mahdavi, Shamsfard, & Meybodi, 2013) evaluates the 

compactness of the clustering solution, where a smaller ADDC value indicates a 

more compact solution. Equation 3.13 illustrates the ADDC metric. 

ADDC =  ∑
∑ Ec(Oi,Di)ni

i=1
ni

K

K
j=1  (3.13) 

where, K is the number of clusters, ni is the number of documents in cluster i, Oi is 

the center of cluster i and di is the document in cluster i, and Ec is the Euclidian 

distance (Murugesan & Zhang, 2011a, 2011b) that can be calculated by Equation 

3.8. 

Davies-Bouldin Index (DBI) measures the ratio with the cluster and between the 

average distances for the cluster (Davies & Bouldin, 1979). The DBI is calculated as 

shown in Equation 3.14. 
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𝐷𝐵𝐼 =  
1

𝑘
 ∑ 𝑚𝑎𝑥𝑖≠𝑗

𝛿𝑖 + 𝛿𝑗

𝑑(𝑖, 𝑗)

𝑘

𝑖=1

 

 

(3.14) 

where, k is the number of clusters,δi, δj are the average distance of all objects in 

cluster i and j, d(i, j) is the distance between the center of cluster i and center of 

cluster j. The good cluster algorithm has a lower value of DBI. 

Dunn Index (DI) measures the ratio between the minimum inter cluster distance and 

the maximum intra cluster distance (Dunn, 1974). DI is calculated as shown in 

Equation 3.15. 

𝐷𝐼 = 𝑚𝑖𝑛1≤𝑖≤𝑛  {𝑚𝑖𝑛1≤𝑗≤𝑛,𝑖≠𝑗 {
𝑑(𝑖, 𝑗)

𝑑(𝑘)1≤𝑘≤𝑛
𝑚𝑎𝑥 }} 

(3.15) 

where, d(i, j) is the distance between cluster i and cluster j. d(k) is the maximum 

intra cluster between any two objects in cluster k. The high value of DI means good 

cluster quality. 

3.3.1.2 External Quality Metrics 

The goodness of a cluster is measured using three external measures: Entropy, F-

Measure, and Purity (Kashef & Kamel, 2010; Murugesan & Zhang, 2011a, 2011b). 

Entropy is a measure of goodness and randomness (Murugesan & Zhang, 2011a, 

2011b; Shannon, 1948). The entropy of output cluster C j is in Equation 3.16. 

𝐻(𝑗) =  − ∑
|Θ𝑘  ∩ 𝐶𝑗|

|𝐶𝑗|

𝐶

𝑘=1

𝑙𝑜𝑔
|Θ𝑘  ∩ 𝐶𝑗|

|𝐶𝑗|
 

 

(3.16) 
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where, Cj is the output clustering from the clustering algorithm, |Cj| represents the 

number of document in cluster Cj, Θk is known class and c is the number of known 

classes, |Θk ∩ Cj| represents the number of document in a class Θk, in a cluster Cj and 

in both class Θk and cluster Cj respectively. The entropy value for a clustering 

algorithm is calculated using Equation 3.17. 

𝐻 =  ∑
𝐻𝑗 ∗ |𝐶𝑗|

𝑁

𝑘

𝑗=1

 

 

(3.17) 

where, N is the number of documents in the collection. 

F-Measure measures the accuracy (Murugesan & Zhang, 2011a, 2011b) as it 

depends on the recall and precision values (Meghabghab & Kandel, 2008). The 

recall measure formula is shown in Equation 3.18 while Equation 3.19 represents the 

precision. 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑅(Θ𝑘 , 𝐶𝑗) =  
|Θ𝑘  ∩ 𝐶𝑗|

|Θ𝑘|
  (3.18) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃(Θ𝑘 , 𝐶𝑗) =  
|Θ𝑘  ∩ 𝐶𝑗|

|𝐶𝑗|
  (3.19) 

where, |Θk| represents the number of document in a class Θk. The F-measure formula 

is shown in Equation 3.20. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 ∗ 𝑅(Θ𝑘 , 𝐶𝑗) ∗ 𝑃(Θ𝑘 , 𝐶𝑗)

𝑅(Θ𝑘 , 𝐶𝑗) + 𝑃(Θ𝑘 , 𝐶𝑗)
 (3.20) 

The total F-measure is the summation average of F-measures for all classes. It 

depends on the maximum value of F-measure for all of the classes as Equation 3.21 

shows the maximum value of F-measure. 
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𝐹(Θ𝑘) =  
𝑚𝑎𝑥

𝐶𝑗 ∈ {𝐶1, … , 𝐶𝑘} (𝐹(Θ𝑘, 𝐶𝑗)) 

 

(3.21) 

The equation for total F-measure is shown in Equation 3.22. 

𝑇𝑜𝑡𝑎𝑙 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  ∑
|Θ𝑘|

𝑁

𝐶

𝑘=1

∗ 𝐹(Θ𝑘) (3.22) 

Purity is a measure of cluster quality (Murugesan & Zhang, 2011a, 2011b). It 

depends on the maximum number of documents in class Ω k and in cluster Cj 

respectively. The formula of purity is shown in Equation 3.23. 

𝑃(Θ𝑘, 𝐶𝑗) =  𝑀𝑎𝑥𝑘  |Θ𝑘  ∩ 𝐶𝑗| (3.23) 

The cluster purity is calculated as in Equation 3.24. 

𝑃𝑢𝑟𝑖𝑡𝑦 =  ∑
𝑃(Θ𝑘 , 𝐶𝑗)

𝑁
Θ𝑘 ∈{Θ1,…,Θ𝑐}

 (3.24) 

3.3.2 Statistical Analysis 

The T-test is a statistical hypothesis test which “is a function of the sample data and 

critical region” (Ross, 2010). There are two types of hypotheses; the null hypothesis 

that is denoted as H0 and the alternative hypothesis that is called H1. The null 

hypothesis (H0) tests if the test statistic value (p-value) falls in the critical area or not, 

if it falls in the critical area, the null hypothesis is rejected, otherwise not, while the 

alternative hypothesis is accepted if the null hypothesis is rejected. The probability to 

reject the null hypothesis is based on the identified value α, named as the 

significance level of the test. The values of the significance level are α=0.10, α=0.05, 

and α=0.01, where, α=0.05 is the most common used value. 
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The hypotheses for Independent Samples T-test can be expressed in mathematical 

equivalents. 

H0: Mean (WFARM) = Mean (any static methods) 

H1: Mean (WFARM) ≠ Mean (any static methods) 

 

Where, Mean (WFARM) and Mean (any static methods) are the means of the 

population for WFARM and any static methods. The null hypothesis is rejected if (P-

value < 0.05) and the alternative hypothesis is accepted, otherwise, if (P-value > 

0.05), the null hypothesis is accepted. 

3.4 Summary 

The main objective of this research is to design a hierarchical clustering algorithm 

for text documents based on Firefly Algorithm. The three main phases in the 

proposed hierarchical clustering algorithm design includes: clustering using Weight-

based Firefly Algorithm, refining using document re-locating algorithm, and 

merging using eUPGMA algorithm. In the clustering phase, this research proposes 

an objective function for the firefly algorithm that is based on the total weight of 

documents. The objective function used in WFA will increase the light of a 

document (initial total weight) based on the distance between two documents. In this 

research, the goal of WFA is to determine the center of clusters by identifying the 

one with the brightest light (i.e. document with the highest total weight). 

In the cluster refining phase, this research proposes a document re-locating 

algorithm, known as WFAR, which changes the location of documents between 
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clusters when a new cluster is constructed. The aim of WFAR is to produce more 

compact clusters which lead to enhancement of the quality performance (i.e. purity).  

On the cluster merging phase, this research proposes an enhanced Un-weighted Pair 

Group Method with Arithmetic Mean (eUPGMA). It includes two steps: merge 

clusters and refine merged clusters. The goal of eUPGMA is to obtain the optimal 

clusters. 

The proposed Firefly Algorithm is later compared against existing state-of-the-art 

clustering algorithms, such as Particle Swarm Optimization (PSO), K-means, Bisect 

K-means, Hybrid Firefly algorithm with K-means, Hybrid Bat algorithm with K-

means, General Stochastic Clustering method and Hybrid Genetic algorithm with 

Particle Swarm Optimization. The evaluation of the proposed algorithm is based on 

performance metrics, namely internal, external and relative metrics, using text 

datasets. Furthermore, the evaluation is also based on T-test statistical hypotheses. 
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CHAPTER FOUR 

DOCUMENT CLUSTERING  

4.1 Weight-based Firefly Algorithm (WFA) 

Weight-based Firefly Algorithm (WFA) is designed based on Firefly Algorithm 

which was introduced to solve the problem of optimization. In WFA, the number of 

k clusters is not pre-determined, but will be automatically identified. The proposed 

WFA operates through two (2) stages: initialization of parameters and data 

clustering. 

4.1.1 Initialization of Parameters 

In order to operate WFA, the required input includes the total weight of each 

document which represents the initial light of a firefly, the initial position for each 

firefly and a distance matrix that represents the distance between all fireflies.  

In WFA, the initial light of a firefly is represented by the total weight of the 

document using Equations 4.1 and 4.2. 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑖𝑔ℎ𝑡 𝐼(𝑑𝑗) = 𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑒𝑔ℎ𝑡 (𝑑𝑗) (4.1) 

𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑒𝑔ℎ𝑡 (𝑑𝑗) = ∑ 𝑡𝑓𝑖𝑑𝑓𝑡𝑖,𝑑𝑗

𝑚

𝑖=1

 
(4.2) 

 

Upon obtaining the total weight of a document, the search space reduces to one 

dimension as shown in Figure 4.1.  
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Figure 4.1. One dimension search space 

The initial positioning of a firefly in the search space is represented by two 

coordinates, X and Y. In this study, the value of Y is fixed as (0.5) (because the 

search space is one dimension), while the value of X can be obtained using the 

normalization method, where the search space is represented between (0, 1). For 

example, the firefly that represents a document may be positioned at (0.7, 0.5) or 

(0.2, 0.5) or any number between (0, 1). Figure 4.2 shows an example of normalized 

positioning. 

 

 

 

 

 

 

 

Figure 4.2. An example of normalized positioning  

In this thesis, the initial positioning is normalized in the range of (0, 1) using a 

sample normalization process which is called Rescaling Method (Yunrong & 

Liangzhong, 2009). Equation 4.3 illustrates the Rescaling Method. 
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𝑋° =
(𝑋 − min(𝑋))

(max(𝑋) − min(𝑋))
 

 

(4.3) 

Where, Xº is the normalized positioning, X is the current positioning. 

The third parameter required for the operation of WFA is the distance between 

fireflies. It is the distance between two positions which is calculated using the 

Cartesian distance (Yang, 2010b) as shown in Equation 4.4. 

𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑋𝑗, 𝑋𝑖) = √(𝑋𝑗 − 𝑋𝑖)22
 (4.4) 

where, Xj is the position of first firefly and Xi is the position of second firefly.  

4.1.2 Data Clustering 

The data clustering phase in WFA includes two processes: identification of center 

and construction of clusters. These two processes are repeated until all data 

(documents) are clustered. The second process starts after the first center has been 

identified and it will return to the first process once the first cluster is created. 

In the standard Firefly Algorithm (FA) (Yang, 2010b), every firefly needs to be 

compared (in terms of the brightness) with all other fireflies. Figure 4.3 illustrates an 

example of the competition between fireflies. Assume, the triangle symbol represents 

Class 1 and the circle symbol represents Class 2. Further, assume firefly A has the 

total weight of 20. It will need to compete with all other fireflies. Such a process 

requires high computational effort (i.e. processing time). So, in the WFA algorithm, 

the exploration of the firefly is improved by introducing a condition that permits the 

comparison of brightness if and only if the documents are similar. Figure 4.4 shows 
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an example of the competition between fireflies in WFA. Firefly A that has a total 

weight of 20 will only need to compete with five similar fireflies. 

 

 

 

 

 

 

 

 

Figure 4.3. An example of competition in standard Firefly Algorithm (FA) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. An example of competition in Weight-based Firefly Algorithm (WFA)  

In detail, the process of center identification in WFA is based on two conditions: the 

first condition is based on the brightness of fireflies, and the second condition relies 

on the similarity (i.e. cosine similarity) between two documents. If there exists a 

document that passed the specified similarity threshold (the setting of similarity 

threshold is illustrated in Table 4.1), then, the movement of the less bright firefly 
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towards the brightest firefly is executed using Equation 2.7 (Yang, 2010b), and the 

light intensity of the brightest firefly is updated (i.e. increased) using Equation 4.8. 

In Equation 2.7, Xi is the position of the less bright firefly and Xj is the position of 

the brighter one. α is a randomization parameter between (0, 1) (Yang, 2010b). In 

this study, experimentally, α is set to 0.2, while, β (the attractiveness between two 

fireflies) is obtained using Equation 2.8 (Yang, 2010b), where, β0 is the initial 

attractiveness and in this algorithm sets to 1, Y is the absorption coefficient and also 

sets to 1. The rij is the distance between document i and document j which is 

computed by Equation 4.4.  

The value of εi in Equation 2.7 is a vector of random numbers drawn from a 

Gaussian distribution or uniform distribution (Yang & He, 2013; Yang, 2010a). For 

example, the simplest form of εi can be replaced by (rand - ½) where rand refers to 

the random number uniformly distributed in [0 and 1] (Yang, 2010b). In this study, 

the εi value is an adaptive value that is computed using Equations 4.5, 4.6 and 4.7. It 

is in the range between the minimum TFIDF of two documents and the maximum 

TFIDF of the same documents.  

𝜀𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚 (𝑀𝑖𝑛 𝑇𝐹𝐼𝐷𝐹, 𝑀𝑎𝑥𝑇𝐹𝐼𝐷𝐹) (4.5) 

𝑀𝑖𝑛 𝑇𝐹𝐼𝐷𝐹 = 𝛼 ∗ 𝑀𝑖𝑛 (𝑇𝐹𝐼𝐷𝐹𝑖, 𝑇𝐹𝐼𝐷𝐹𝑗) (4.8) (4.6) 

𝑀𝑎𝑥 𝑇𝐹𝐼𝐷𝐹 = 𝛼 ∗ 𝑀𝑎𝑥 (𝑇𝐹𝐼𝐷𝐹𝑖, 𝑇𝐹𝐼𝐷𝐹𝑗) (4.7) 

Finally, the light of the brighter firefly increases based on the value of attractiveness 

β which depends on the distance between two fireflies as shown in Equation 4.8. 
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𝑙𝑖𝑔ℎ𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐼 (𝑑𝑗)(𝑡 + 1) =  𝐼 (𝑑𝑗)(𝑡) +  𝛽 (4.8) 

The competition between fireflies continues until it reaches the predefined number of 

iteration. Then, the fireflies are ranked based on their brightness, where the brightest 

firefly is identified as a centroid. Once this is done, clusters can be constructed, 

where documents that have a high similarity value with the centroid (using cosine 

similarity) are assigned to the same cluster with the centroid (first cluster). On the 

other hand, the ones with lower values will be assigned in another cluster (second 

cluster). Such an approach requires a pre-defined threshold value; in this study, each 

dataset has a different threshold value (the best setting is chosen experimentally) and 

are shown in Table 4.1.  

Table 4.1 

Parameters setting in WFA. 

Datasets 
Similarity threshold in 

identifying centers 

Similarity threshold in 

constructing clusters 

20Newsgroups 0.2 0.15 

Reuters 0.2 0.15 

TR11 0.3 0.3 

TR12 0.4 0.25 

TR23 0.3 0.3 

TR45 0.3 0.25 

 

The process of clustering construction repeats on the second cluster where the 

fireflies carrying documents in cluster two is sorted to identify the one with the 

brightest light. The formulation of cluster two continues by identifying similar 
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documents and the process is completed once all documents are grouped into 

clusters.  

On the other hand, the cosine similarity is as defined in Equation 4.9 (Luo, Li & 

Chung, 2009). The value of cosine similarity is in the range between (0, 1); when the 

value of cosine similarity approaches 1, this means the two documents are identical, 

and when it approaches 0, this means the two documents are far away and are not 

identical. Equation 4.9 displays the formula to calculate the Cosine similarity. 

𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑑𝑖, 𝑑𝑗) =
𝑑𝑖 ∗ 𝑑𝑗

||𝑑𝑖 || ∗ ||𝑑𝑗 ||
 

(4.9) 

In this thesis, the Cosine similarity is based on the normalized term frequency (term 

frequency is normalized to the length of documents), hence Equation 4.9 becomes 

the following Equation 4.10 (Luo, Li & Chung, 2009). 

𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑑𝑖, 𝑑𝑗) =  ∑(𝑑𝑖,𝑡 ∗ 𝑑𝑗,𝑡

𝑚

𝑡=1

) 
(4.10) 

where, m is the number of terms in the collection, dj and di are two different 

documents. The proposed WFA algorithm is presented in Figure 4.5.  

The outcome of a clustering process is the constructed clusters and their centroid. In 

order to measure the quality of the produced clusters, performance metrics such as 

the average distance between center and documents in clusters (ADDC), DBI, DI, 

Purity, F-measure and Entropy, which are explained in the previous chapter in 

Section 3.3.1, are employed. 
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Weight-based Firefly Algorithm (WFA)  

Step 1: Generate initial population of firefly randomly x
i
 where i=1, 2... n, 

n=number of fireflies (documents). 

Step 2: Initial Light Intensity, I=total weight of document using Equations 4.1 and 

4.2. 

Step 3: Define light absorption coefficient γ, initial γ=1. 

Step 4: Define the randomization parameter α, α=0.2. 

Step 5: Define initial attractiveness𝛽0 = 1.0. 

Step 6: While t < Maximum number of iteration (t= number of iteration) 

Step 7: For i=1 to N 

Step 8: For j=1 to N 

Step 9: IF (Light Ii < Light Ij) (Light=total weight)  

Step 10: IF (CosineSimilarity (i, j) >= Threshold (CosineSimilarity using Equation 

4.10) 

Step 11: Calculate distance between i,  j using Equation 4.4. 

Step 12: Calculate attractiveness using Equation 2.8. 

Step 13: Calculate random parameter εi using Equations 4.5, 4.6 and 4.7. 

Step 14: Move document i to j using Equation 2.7. 

Step 15: Update light intensity using Equation 4.8. 

Step 16: End For j 

Step 17: End For i 

Step 18: t=t+1 

Step 19: End While 

Step 20: Rank the Light List to find best document (brightest light) and represent as 

center. 

Step 21: Find document similar to center using Equation 4.10 and construct cluster 

Step 22: Remove produced clusters from Light List. 

Step 23: Return to Step 20 until remains one document in Light List. 

Step 24: Output clusters. 

 

Figure 4.5. Weight-based Firefly Algorithm (WFA) for hierarchical text clustering 
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Example 

The following elaboration is on the process of applying the proposed WFA. The 

dataset that is used for this example includes thirty documents obtained from the 

20Newsgroups dataset. It contains of three topics: Comp.sys.mac.hardware, 

Rec.sport.baseball and Sci.electronic. Figure 4.6 shows an example of TFIDF for the 

particular dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. An example of TFIDF for 20Newsgroups 

The proposed WFA first calculates the cosine similarity between documents using 

Equation 4.10. Figure 4.7 shows an example of the cosine similarity table. For 

example, the value of similarity between document 1 and document 2 can calculate 

as follows: 

Cosine Similarity (d1, d2) = [(first term)d1* (first term)d2] +[(second term)d1* (second 

term)d2] + …. + [(m term)d1* (m term)d2] 
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Figure 4.7. An example of cosine similarity table for 20Newsgroups dataset 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.8. An example of Euclidean distance table for 20Newsgroups dataset 
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Then, the Euclidean distance is calculated; Figure 4.8 shows the Euclidean distance 

table. The total weight (initial light for each firefly) for each document also 

determines the initial position of each document (firefly) and the Cartesian distance 

between these positions. In Figure 4.9, the table includes the information on the total 

weight (initial light for each firefly) for each document. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. An example of total weight for 20Newsgroups dataset 

The initial positioning of each document (firefly) is represented randomly between 1 

and 30, which is later normalized between 0 and 1 as shown in Figures 4.10 and 

4.11.  
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Initial positioning between 1 and 30 

 

Normalized positioning between 0 and 1 

 

Figure 4.10. An example of normalized initial positioning for 20Newsgroups dataset 

 

 

 

 

 

 

Figure 4.11. Graphical representation of initial document positioning for 

20Newsgroups dataset 

When WFA operates, document 1 will compete with documents 2 until 30. In this 

example, the light for document 1 is (5.7950) and it is lesser than the light for 

document 11 which is (6.2443). The cosine similarity between document 1 and 

document 11 is (0.2420) and this value exceeds the threshold (in this experiment, it 

is set to 0.15). Hence, document 1 will be moved towards document 11. The amount 

of attraction, β, is equal to (0.7921) and is obtained using Equation 2.8 (in Step 12 of 

the proposed WFA). The initial attraction β0 is 1 and the absorption coefficient γ 
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equals to 1. The distance between the position of document 1 and document 11 is 

equal to (0.4828). The position of document 1 is changed using Equation 2.7, where 

it becomes (0.3555). In addition, the light of document 11 increases based on 

Equation 4.8 and it becomes (7.0364). 

After 20 iterations, the brightest document will be chosen as the centroid. In this 

example, document 10 has (348.49), which is the brightest light, and it becomes the 

centroid for the first cluster. Similar documents in the dataset are grouped with the 

centroid into this cluster. Cluster 1 later includes 21 documents including the center. 

The second center has document 25 as the center with seven other documents. The 

last cluster includes only one document which is the center. A graphical 

representation of the final position of the documents is illustrated in Figure 4.12. 

Cluster1 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30] 

Cluster2 [21, 22, 23, 24, 25, 26, 27, 29] 

Cluster3 [28] 

 

 

 

 

 

 

Figure 4.12. An example of graphical representation of final document positioning 

for 20Newsgroups dataset 
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4.2 Evaluation  

The proposed WFA is later evaluated to study the effectiveness of WFA in 

automatically producing clusters without prior information on the dataset. A 

comparison is later made against Particle Swarm Optimization (PSO) (Cui, Potok, & 

Palathingal, 2005), K-means (Jain, 2010), Hybrid Firefly algorithm with K-means 

(FAK-means) (Tang, Fong, Yang, & Deb, 2012) and Bisect K-means (Murugesan & 

Zhang, 2011a, 2011b), which they require a predefined k number of cluster. Tables 

4.2 and 4.3 include the results of the five algorithms: WFA, PSO, K-means, FAK-

means and Bisect K-means. Each algorithm was executed thirty times and the 

average values of the metrics were calculated. Figure 4.13 includes a graphical 

representation of the results.  

As shown in Table 4.2, the WFA algorithm generates the highest average purity and 

smallest average Entropy and DBI in all iterations compared with PSO, K-means, 

FAK-means and Bisect K-means, while PSO produces a higher average F-measure, 

and K-means generates a smaller ADDC and the highest average DI. The purity 

results of five methods, namely WFA, PSO, K-means, FAK-means and Bisect K-

means, are compared and represented graphically as shown in Figure 4.13.a. It is 

noticed that the purity of WFA is generated the highest value in all iterations, while 

K-means produced a smaller purity. Furthermore, it is noticed that Bisect K-means 

has a higher purity than K-means, FAK-means and PSO. As learned from the 

literature, (Forsati, Mahdavi, Shamsfard, & Meybodi, 2013; Luo, Li, & Chung, 

2009; Murugesan & Zhang, 2011a, 2011b), a higher value of purity (approaching to 

1) indicates that it is a better clustering solution.  
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Table 4.2 

External quality metrics of clustering: WFA vs. PSO vs. K-means vs. FAK-means vs. 

Bisect K-means. 

External 

Metrics 
Algorithms 

Iterations 

 

1 2 5 10 20 

Purity 

WFA 
0.6150 

(0.0335) 

0.5928 

(0.0161) 

0.5898 

(0.0258) 

0.5934 

(0.0186) 

0.5230 

(0.0137) 

PSO 
0.3823 

(0.0432) 

0.3861 

(0.0643) 

0.3726 

(0.0433) 

0.3731 

(0.0403) 

0.3772 

(0.0516) 

K-means 
0.3468 

(0.0242) 

0.3451 

(0.0226) 

0.3531 

(0.0414) 

0.3561 

(0.0575) 

0.3459 

(0.0258) 

FAK-means 
0.3658 

(0.0133) 

0.3701 

(0.0150) 

0.3738 

(0.0138) 

0.3719 

(0.0147) 

0.3731 

(0.0132) 

Bisect K-means 
0.3759 

(0.0300) 

0.3806 

(0.0397) 

0.3872 

(0.0446) 

0.3939 

(0.0601) 

0.4031 

(0.0818) 

External 

Metrics 
Algorithms 

Iterations 

 

F-measure 

WFA 
0.4533 

(0.0220) 

0.4499 

(0.0053) 

0.4495 

(0.0053) 

0.4488 

(0.0038) 

0.4639 

(0.0025) 

PSO 
0.4947 

(0.0188) 

0.5062 

(0.0414) 

0.4907 

(0.0118) 

0.4951 

(0.0110) 

0.4986 

(0.0237) 

K-means 
0.4910 

(0.0213) 

0.4935 

(0.0138) 

0.4975 

(0.0196) 

0.4999 

(0.0316) 

0.4954 

(0.0081) 

FAK-means 
0.3656 

(0.0134) 

0.3692 

(0.0140) 

0.3747 

(0.0155) 

0.3723 

(0.0143) 

0.3737 

(0.0132) 

Bisect K-means 
0.4698 

(0.0297) 

0.4757 

(0.0284) 

0.4775 

(0.0336) 

0.4785 

(0.0567) 

0.4908 

(0.0644) 

External 

Metrics 
Algorithms 

Iterations 

 

Entropy 

WFA 
1.1275 

(0.0724) 

1.1966 

(0.0215) 

1.1989 

(0.0194) 

1.1964 

(0.0137) 

1.2328 

(0.0237) 

PSO 
1.5350 

(0.0393) 

1.5230 

(0.0858) 

1.5403 

(0.0513) 

1.5309 

(0.0619) 

1.5276 

(0.0691) 

K-means 
1.5782 

(0.013) 

1.5794 

(0.0100) 

1.5722 

(0.0341) 

1.5636 

(0.072) 

1.5755 

(0.0215) 

FAK-means 
1.5782 

(0.0042) 

1.5770 

(0.0059) 

1.5751 

(0.0054) 

1.5750 

(0.0067) 

1.5754 

(0.0056) 

Bisect K-means 
1.5620 

(0.0223) 

1.5571 

(0.0285) 

1.5466 

(0.0914) 

1.5325 

(0.0841) 

1.5150 

(0.1193) 

Note: the best value is highlighted in ‘bold’, standard deviation in (). 
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Table 4.3 

Internal and relative quality metrics of clustering: WFA vs. PSO vs. K-means vs. 

FAK-means vs. Bisect K-means.  

Internal & 

Relative 

Metrics 

Algorithms 

Iterations 

 

1 2 5 10 20 

ADDC 

WFA 
0.8063 

(0.0481) 

0.7819 

(0.0469) 

0.8289 

(0.0514) 

0.8159 

(0.0348) 

0.6694 

(0.0884) 

PSO 
1.7630 

(0.2124) 

1.7775 

(0.2738) 

1.8053 

(0.2751) 

1.9379 

(0.1862) 

1.8736 

(0.0430) 

K-means 
0.7547 

(0.2978) 

0.7041 

(0.2861) 

0.6783 

(0.2396) 

0.6367 

(0.2511) 

0.7056 

(0.3190) 

FAK-means 
1.4434 

(0.0010) 

1.4436 

(0.0007) 

1.4436 

(0.0009) 

1.4432 

(0.0009) 

1.4436 

(0.0007) 

Bisect K-means 
1.3238 

(0.1874) 

1.2545 

(0.2808) 

1.2633 

(0.2378) 

1.3332 

(0.2318) 

1.3494 

(0.1817) 

Internal & 

Relative 

Metrics 

Algorithms 
Iterations 

 

DBI 

WFA 
1.3452 

(0.0217) 

1.3369 

(0.0235) 

1.3631 

(0.0358) 

1.3527 

(0.0222) 

1.3249 

(0.0460) 

PSO 
1.7069 

(0.0261) 

1.6100 

(0.2168) 

1.5559 

(0.2303) 

1.6092 

(0.1732) 

1.6472 

(0.2269) 

K-means 
2.8159 

(3.5419) 

2.3565 

(3.1847) 

2.4741 

(3.1267) 

1.9649 

(3.1855) 

1.9090 

(2.5369) 

FAK-means 
14.2277 

(0.2063) 

14.2834 

(0.2025) 

14.2549 

(0.3551) 

14.2637 

(0.2862) 

14.2158 

(0.2801) 

Bisect K-means 
8.1636 

(3.0869) 

7.3146 

(3.0355) 

6.9485 

(3.0605) 

7.8287 

(2.8864) 

7.7189 

(2.7763) 

Internal & 

Relative 

Metrics 

Algorithms 
Iterations 

 

 

DI 

WFA 
0.9312 

(0.0195) 

0.9236 

(0.0129) 

0.9208 

(0.0185) 

0.9273 

(0.0074) 

0.9040 

(0.0364) 

PSO 
1.0162 

(0.0950) 

1.0331 

(0.0574) 

1.0357 

(0.0650) 

1.0119 

(0.0583) 

0.9908 

(0.0899) 

K-means 
2.3413 

(2.3505) 

2.9315 

(2.4566) 

2.9671 

(2.5302) 

3.7363 

(2.3653) 

3.4078 

(2.4518) 

FAK-means 
0.1380 

(0.0026) 

0.1372 

(0.0027) 

0.1377 

(0.0039) 

0.1374 

(0.0035) 

0.1382 

(0.0035) 

Bisect K-means 
0.2393 

(0.1483) 

0.2876 

(0.2299) 

0.2998 

(0.1887) 

0.2715 

(0.2178) 

0.2698 

(0.2008) 

Note: the best value is highlighted in ‘bold’, standard deviation in (). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e)  

 

(f)  

 

Figure 4.13. Graphical representation of quality metrics of WFA vs. PSO vs. K-

means vs. FAK-means vs. Bisect K-means; a) Purity, b) F-measure, c) Entropy, d) 

ADDC, e) DBI, and f) DI. 
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Standard Deviation measures how much variation or dispersion from the average 

exists. A small value of standard deviation indicates that the documents tend to be 

very close to the mean (center). Based on the observation, the overall standard 

deviation of WFA algorithm is smaller than PSO, K-means, Bisect K-means in most 

iterations (refer to iterations 2, 5, 10 and 20) which indicates it is more reliable and 

more robust. 

Table 4.2 also includes the average F-measure of thirty executions for each WFA, 

PSO, K-means, FAK-means and Bisect K-means. F-measure tries to capture how 

well the groups of the investigated partition best match the groups of the reference. 

A high F-measure (near to 1) means perfect clustering (Forsati, Mahdavi, Shamsfard, 

& Meybodi, 2013; Luo, Li, & Chung, 2009; Murugesan & Zhang, 2011a, 2011b). F-

measure is based on two important metrics, precision and recall, which are widely 

used in information retrieval for evaluation. Precision measures the accuracy of a 

cluster that produces a specific class, while recall measures the completeness of a 

specific class. As shown in Table 4.2, the PSO algorithm generates the highest 

average F-measure in iterations 1, 2 and 20 compared to all the algorithms, while K-

means generates the highest average F-measure in iterations 5 and 10. The F-

measure of the WFA algorithm is only is better than FAK-means in all iterations. In 

addition, the overall standard deviation of the WFA algorithm is smaller than other 

algorithms (refer to iterations 2, 5, 10 and 20) which indicates it is more reliable and 

more robust. Figure 4.13.b presents the F-measure result of five algorithms: WFA, 

PSO, K-means, FAK-means, and Bisect K-means.  
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Table 4.2 involves the average Entropy of thirty executions for each WFA, PSO, K-

means, FAK-means, and Bisect K-means. Entropy measures the distribution of 

various classes in each cluster. The smallest Entropy (near to 0) indicates a better 

clustering solution (Forsati, Mahdavi, Shamsfard, & Meybodi, 2013; Murugesan & 

Zhang, 2011a, 2011b). As shown in Table 4.2, the average Entropy that is produced 

by WFA is the smallest than other algorithms in all iterations. On the other hand, 

PSO produces a smaller Entropy compared to FAK-means, K-means, and Bisect K-

means in most iterations. Furthermore, the standard deviation of the WFA algorithm 

is smaller than PSO, K-means, and Bisect K-means in most iterations (refer to 

iterations 5 and 10) which indicates it is more reliable and more robust. This result 

implies that WFA is best to produce clusters with single class than others. Figure 

4.13.c illustrates the result of the average Entropy in a graphical representation of 

five methods: WFA, PSO, K-means, FAK-means and Bisect K-means.  

Table 4.3 includes the quality performance results of internal metrics, which are 

ADDC, DBI and DI for five algorithms: WFA, PSO, K-means, FAK-means and 

Bisect K-means. All algorithms are implemented in the same environment and are 

run thirty times for different iterations. The average values of ADDC, DBI and DI 

are calculated. As shown in Table 4.3, K-means generates a smaller average ADDC 

in most iterations (refer to iterations 1, 2, 5 and 10) compared against WFA, K-

means, FAK-means, and Bisect K-means, while WFA produces a smaller average 

ADDC in iteration 20 against other methods. Furthermore, the standard deviation of 

FAK-means is the smallest value against others, followed by the proposed WFA 

algorithm which is better than PSO, K-means, and Bisect K-means. This result 
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indicates that WFA obtains more compact clusters. The ADDC values of the five 

techniques, namely WFA, PSO, K-means, FAK-means, and Bisect K-means, are 

illustrated in Figure 4.13.d.  

In Table 4.3, the average DBI of thirty executions for each WFA, PSO, K-means, 

FAK-means, and Bisect K-means are reported. DBI measures the validation of how 

well the output clusters are done (minimum intra distance of clusters and maximum 

inter distance) using quantities and features inherent to the dataset. Whereby, the 

summations of the maximum ratio between the average distances of two clusters (not 

similar) over the distance between the centers of the same two clusters are calculated 

for all of the produced clusters. The smallest DBI means a more compact clustering 

solution (Das, Abraham, & Konar, 2009). As shown in Table 4.3, WFA generates 

the smallest average DBI in all iterations. Furthermore, the standard deviation of 

WFA is the smallest in all runs, which shows that the solutions are more reliable. 

Figure 4.13.e illustrates the result of the average DBI in a graphical representation.  

Table 4.3 also involves the average DI of thirty executions for each WFA, PSO, K-

means, FAK-means, and Bisect K-means. DI measures the ratio of the smallest 

distance between observations not in the same cluster to the largest intra cluster 

distance. DI has a value between 0 and ∞ and the largest value of DI means a more 

compact clustering solution (Das, Abraham, & Konar, 2009). As shown in Table 4.3, 

WFA generates the largest average of DI against FAk-means and Bisect K-means in 

all iterations, while K-means produces the best DI value against all other methods, 

followed by PSO. In addition, it is noticed that the value of standard deviation in 

WFA is smaller than PSO, K-means, and Bisect K-means in all iterations, which 
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shows that the solutions in WFA are more reliable. Figure 4.13.f illustrates the result 

of the average DI in a graphical representation.  

Table 4.4 displays the average number of clusters that are automatically generated by 

WFA and without any prior knowledge about the dataset. As seen in Table 4.4, the 

number of clusters produced by WFA is higher than the number of clusters in other 

methods.  

Table 4.4 

Average number of clusters of WFA vs. PSO vs. K-means vs. FAK-means vs. Bisect 

K-means. 

Iterations 

Number of clusters of algorithms 

WFA PSO K-means FAK-means 
Bisect  

K-means 

1 19.30 ≈ 19 3 3 3 3 

2 18.73 ≈ 19 3 3 3 3 

5 17.57 ≈ 18 3 3 3 3 

10 17.80 ≈ 18 3 3 3 3 

20 14.80 ≈ 15 3 3 3 3 

  

 

The obtained results indicate that WFA generates betters clusters as it is the best in 

two of the external metrics, purity and entropy; meanwhile in internal metrics DBI, it 

obtained the best value. Table 4.5 illustrates the results of different quality 

performance metrics in five algorithms. 
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Table 4.5 

Results of quality performance of WFA vs. PSO vs. K-means vs. FAK-means vs. 

Bisect K-means. 

Algorithms External Metrics Internal Metrics 

Purity F-measure Entropy ADDC DBI DI 

WFA          

PSO        

K-means         

FAK-means       

Bisect K-

means 

      

       

 

In the upcoming chapters, the performance of WFA will be improved by integrating 

the algorithm with document re-locating algorithm and merging algorithm. 

4.3 Summary 

This chapter presentes text clustering using one of the swarm intelligence algorithms, 

known as Weight-based Firefly Algorithm (WFA). Experiments were conducted on 

the 20Newsgroups dataset and a comparsion of the proposed WFA was made against 

the other algorithms (PSO, K-means, FAK-means, and Bisect K-means).  

It is learned that WFA generates better results in Purity, Entropy and DBI metrics. 

WFA has not only generated a better reading in the measures, but it also does not 

rely on a pre-determined k number of clusters. Such a result indicates the rival of 

WFA in text clustering. Furthermore, the result was obtained without initial 

information on the dataset. 
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CHAPTER FIVE 

CLUSTER REFINING  

5.1 Introduction 

The construction of clusters in the proposed WFA (Chapter Four) is based on a static 

threshold, where documents that are similar to the centroid are assigned to the first 

cluster. However, there is a possibility that these documents are more similar to one 

of the upcoming centroids. Such a situation will lead to poor cluster purity. Hence, it 

is proposed that WFA allows the re-location of an assigned document.   

In this chapter, a document re-locating algorithm is introduced. Later, it will be 

combined with the Weight-based Firefly Algorithm. Empirical studies will be 

conducted on the combinations to measure the performance evaluation of the 

proposed algorithm. 

5.2 Document Re-locating  

Documents re-locating can be introduced when every new cluster in Weight-based 

Firefly Algorithm (WFA) is constructed starting from the second cluster. It operates 

by identifying the similarity between the newly identified centroid (the center of the 

new cluster) and documents that have been assigned in the previous clusters. If the 

similarity is higher, then the document is moved from the original cluster to the 

newly created cluster. The pseudo code of documents re-locating is shown in Figure 

5.1. 
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Document Re-locating  

Step 1: Initial m=number of clusters. 

Step 2: If m>=2 

Step 3: For K=1 to (m-1) 

Step 4: If length (current cluster (K))>1 

Step 5: For Z=1 to length (current cluster (K)) 

Step 6: If current document (Z) not equal to center (K) 

Step 7: If similarity(center(m), current document (Z)) > similarity(center(K), current 

document (Z)) 

Step 8: Move (Z) from current cluster to recent cluster 

Step 9: End for Z 

Step 10: End for K 

 

Figure 5.1. The pseudo code of Document Re-locating 

In a further attempt to improve the solutions produced by WFA, another variant of 

FA that is termed as Weight-based Firefly Algorithm with Relocate (WFAR) is 

proposed. WFAR includes the relocating mechanism as illustrated in Figure 5.2. 

 

 

 

 

 

 

Figure 5.2. The process of WFAR 

 

Identification of Centers 

Construction Clusters 

 

Document Re-locating Algorithm 

Obtained Clusters 
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The steps of WFAR are shown in Figure 5.3. 

Weight-based Firefly Algorithm with Relocate (WFAR) 

Step 1: Generate initial population of firefly randomly x
i
 where i=1, 2... n, 

n=number of fireflies (documents). 

Step 2: Initial Light Intensity, I=total weight of document using Equations 4.1 and 

4.2. 

Step 3: Define light absorption coefficient γ, initial γ=1. 

Step 4: Define the randomization parameter α, α=0.2. 

Step 5: Define initial attractiveness𝛽0 = 1.0. 

Step 6: While t < Maximum number of iteration (t = number of iteration) 

Step 7: For i=1 to N 

Step 8: For j=1 to N 

Step 9: IF (Light Ii < Light Ij) (Light=total weight)  

Step 10: IF (CosineSimilarity (i, j) >= Threshold (CosineSimilarity using Equation 

4.10) 

Step 11: Calculate distance between i,  j using Equation 4.4. 

Step 12: Calculate attractiveness using Equation 2.8. 

Step 13: Calculate random parameter u using Equations 4.5, 4.6 and 4.7. 

Step 14: Move document i to j using Equation 2.7. 

Step 15: Update light intensity using Equation 4.8. 

Step 16: End For j 

Step 17: End For i 

Step 18: t=t+1 

Step 19: End While 

Step 20: Rank the Light List to find best document (brightest light) and represent as 

center. 

Step 21: Find document similar to center using Equation 4.10 and construct cluster 

Step 22: Remove produced clusters from Light List. 

Figure 5.3. Steps of the WFAR algorithm 
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Figure 5.3 continued 

 

Step 23: Initial m=number of clusters. 

Step 24: If m>=2 

Step 25: For K=1 to (m-1) 

Step 26: If length (current cluster (K))>1 

Step 27: For Z=1 to length (current cluster (K)) 

Step 28: If current document (Z) not equal center (K) 

Step 29: If similarity(center(m), current document(Z)) > similarity(center(K), 

current document (Z)) 

Step 30: Move (Z) from current cluster to recent cluster 

Step 31: End for Z 

Step 32: End for K 

Step 33: Return to Step 20 until remains one document in Light List. 

Step 34: Output clusters. 

 

 

Example 

The process involved in the proposed WFAR is explained using the same example 

presented in Chapter Four. Upon completing the construction of the second cluster 

by WFA (in the previous example), then only, the process of relocating documents 

will be started. Initially, WFA produced the following clusters: 

Cluster1 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30] 

Cluster2 [21, 22, 23, 24, 25, 26, 27, 29] 

 

The document re-locating algorithm compares the center of the second cluster 

(cluster 2) with all documents in cluster 1. If the cosine similarity between the center 

of cluster 2 and the document in cluster 1 is greater than the cosine similarity 

between the center of cluster 1 and the document in cluster 1, then this document is 
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assigned to cluster 2 and is removed from cluster 1. Upon checking all documents, 

two documents D2 and D30 are assigned to cluster 2 and removed from cluster 1. 

The newly produced clusters are as shown below. 

Cluster1 [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] 

Cluster2 [21, 22, 23, 24, 25, 26, 27, 29, 2, 30] 

Then, WFAR constructs cluster 3, where there exists only a single document in 

cluster 3 (i.e. 28). Later, the last cluster (i.e. cluster 3) is compared against 

documents in cluster 1 and documents in cluster 2. Since there is no change, the 

clusters remain the same.  

5.3 Evaluation  

This section includes two evaluations; the first evaluation is on the comparison 

between WFAR and WFA, and the second between WFAR and state-of-the-art 

methods. 

5.3.1 Comparison between WFAR and WFA  

For comparison purposes, the evaluation on Purity, F-measure and Entropy is 

presented in Table 5.1, while Table 5.2 includes the results on ADDC, DBI and DI in 

the form of average, best, worst, and standard deviation of the two methods (WFAR 

and WFA). Figure 5.4 includes the graphical representation of the obtained results.  
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Table 5.1 

External quality metrics: WFA vs. WFAR. 

Iterations 

 
Algorithms 

Purity Metric 

Average 

Purity 

Best 

Purity 

Worst 

Purity 

Standard 

Deviation 

1 
WFA 0.6150 0.7500 0.5467 0.0335 

WFAR 0.8300 0.9467 0.7967 0.0255 

2 
WFA 0.5928 0.6233 0.5467 0.0161 

WFAR 0.8258 0.8700 0.8100 0.0095 

5 
WFA 0.5898 0.5966 0.4933 0.0258 

WFAR 0.8177 0.8233 0.7900 0.0058 

10 
WFA 0.5934 0.6033 0.4933 0.0186 

WFAR 0.8182 0.8267 0.8100 0.0036 

20 
WFA 0.5230 0.5300 0.4933 0.0137 

WFAR 0.7868 0.8100 0.7433 0.0129 

 

 

Iterations 

 
Algorithms 

F-measure Metric 

Average  

F-measure 

Best  

F-measure 

Worst 

F-measure 

Standard 

Deviation 

1 
WFA 0.4533 0.5693 0.4481 0.0220 

WFAR 0.5199 0.6625 0.4930 0.0339 

2 
WFA 0.4499 0.4659 0.4481 0.0053 

WFAR 0.5145 0.5423 0.4983 0.0126 

5 
WFA 0.4495 0.4694 0.4481 0.0053 

WFAR 0.5194 0.5657 0.5080 0.0174 

10 
WFA 0.4488 0.4694 0.4481 0.0038 

WFAR 0.5295 0.6589 0.5034 0.0365 

20 
WFA 0.4639 0.4694 0.4628 0.0025 

WFAR 0.6186 0.6589 0.5551 0.0426 

 

 

Iterations 

 
Algorithms 

Entropy Metric 

Average  

Entropy 

Best  

Entropy 

Worst 

   Entropy 

Standard 

Deviation 

1 
WFA 1.1275 0.8906 1.2382 0.0724 

WFAR 0.6676 0.2806 0.7250 0.0830 

2 
WFA 1.1966 1.1042 1.2382 0.0215 

WFAR 0.6921 0.5299 0.7396 0.0345 

5 
WFA 1.1989 1.1830 1.2727 0.0194 

WFAR 0.7282 0.7008 0.7453 0.0135 

10 
WFA 1.1964 1.1855 1.2686 0.0137 

WFAR 0.7315 0.6587 0.7453 0.0206 

20 
WFA 1.2328 1.2195 1.2828 0.0237 

WFAR 0.7244 0.6587 0.8381 0.0328 

Note: the best value is highlighted in ‘bold’. 
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Table 5.2 

Internal and relative quality metrics: WFA vs. WFAR. 

Iterations 

 
Algorithms 

ADDC Metric 

Average 

ADDC 

Best 

ADDC 

Worst 

ADDC 

Standard 

Deviation 

1 
WFA 0.8063 0.6992 0.9629 0.0481 

WFAR 1.4282 1.3688 1.4557 0.0233 

2 
WFA 0.7819 0.7047 0.9232 0.0469 

WFAR 1.4228 1.3640 1.4557 0.0156 

5 
WFA 0.8289 0.7373 0.9232 0.0514 

WFAR 1.4171 1.3683 1.4413 0.0130 

10 
WFA 0.8159 0.7373 0.8578 0.0348 

WFAR 1.4085 1.1994 1.4488 0.0408 

20 
WFA 0.6694 0.6152 0.9122 0.0884 

WFAR 1.2222 1.1569 1.3949 0.0744 

 

 

Iterations 

 
Algorithms 

DBI Metric 

Average 

DBI 

Best 

DBI 

Worst 

DBI 

Standard 

Deviation 

1 
WFA 1.3452 1.2832 1.4143 0.0217 

WFAR 1.6585 1.6313 1.6740 0.0117 

2 
WFA 1.3369 1.3198 1.4317 0.0235 

WFAR 1.6562 1.6386 1.6828 0.0092 

5 
WFA 1.3631 1.3079 1.4317 0.0358 

WFAR 1.6514 1.6386 1.7012 0.0128 

10 
WFA 1.3527 1.3079 1.4157 0.0222 

WFAR 1.6508 1.5967 1.7104 0.0153 

20 
WFA 1.3249 1.2971 1.4209 0.0460 

WFAR 1.6176 1.5744 1.7104 0.0427 

 

 

Iterations 

 
Algorithms 

DI Metric 

Average 

DI 

Best 

DI 

Worst 

DI 

Standard 

Deviation 

1 
WFA 0.9312 0.9602 0.8582 0.0195 

WFAR 0.9017 0.9415 0.8522 0.0290 

2 
WFA 0.9236 0.9358 0.8828 0.0129 

WFAR 0.9167 0.9287 0.8522 0.0215 

5 
WFA 0.9208 0.9510 0.8828 0.0185 

WFAR 0.9064 0.9287 0.8808 0.0170 

10 
WFA 0.9273 0.9289 0.8879 0.0074 

WFAR 0.8946 0.9016 0.8495 0.0118 

20 
WFA 0.9040 0.9510 0.8490 0.0364 

WFAR 0.9156 0.9264 0.8495 0.0202 

Note: the best value is highlighted in ‘bold’. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f)  

 

Figure 5.4. Graphical representation of quality metrics between WFA & WFAR; a) 

Purity, b) F-measure, c) Entropy, d) ADDC, e) DBI, and f) DI 



 

 136 

As shown in Table 5.1, the WFAR algorithm generates the highest average purity in 

all iterations compared to the WFA algorithm. The best purity value is 0.9467 which 

is generated by WFAR in iteration 1, while WFA generates 0.7500 in the same 

iteration. In addition, the overall standard deviation of the WFAR algorithm is 

smaller than WFA in all iterations, which indicates it is more reliable and high in 

robustness. From this result, it can be concluded that the document re-locating 

algorithm has an impact on clustering. WFAR is better than WFA in producing pure 

subsets of documents. Figure 5.4.a illustrates the result of purity in a graphical 

representation of these methods. It shows that the purity curve of WFAR is higher 

than the curve of WFA in all iterations.  

Table 5.1 illustrates the average F-measure results of two different algorithms, WFA 

and WFAR. As shown in Table 5.1, the WFAR algorithm generates a higher average 

F-measure in all iterations. Furthermore, it is observed that the best F-measure 

produced is 0.6589 in iterations 10 and 20 by WFAR, while WFA generates the best 

F-measure value is 0.5693 in iteration 1. The previous observations mean that the 

document re-locating algorithm affects the result of F-measure in WFA, despite the 

overall standard deviation of WFA is smaller than WFAR in all iterations, which 

indicates it is more reliable and high in robustness. Figure 5.4.b demonstrates the 

result of average F-measure in a pictorial representation of WFA and WFAR. It 

shows the F-measure curve of WFAR increases when the iteration increases, and 

rises in all iterations compared to the curve of WFA.  

The average Entropy of thirty executions for each WFA and WFAR algorithm which 

includes the best, worst Entropy and standard deviation is reported in Table 5.1. As 
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shown in the table, the average Entropy of WFAR is smaller than WFA in all 

iterations. Additionally, the best Entropy value is 0.2806 which is generated by 

WFAR in iteration 1, while WFA generates 0.8906, better Entropy in the same 

iteration. Furthermore, the standard deviation of WFAR is smaller than WFA only in 

iteration 5, while WFA is the smaller in the remaining iterations that means the 

solutions are nearer to the average Entropy and contains less abnormal solutions. 

This result indicates that WFAR is best for producing more pure clusters. Figure 5.4.c 

shows the result of average Entropy in a graphical representation of WFA and 

WFAR.  

Table 5.2 includes the average ADDC of thirty executions for each WFA and WFAR 

algorithm and also includes the best ADDC, worst ADDC and standard deviation. As 

shown in Table 5.2, the average ADDC that is produced by WFA is smaller than 

WFAR in all iterations. The best ADDC value is 0.6152 which is generated by WFA 

in iteration 20, while WFAR generates 1.1569 in the same iteration. Based on 

previous observations, WFA outperforms WFAR, regardless of the overall standard 

deviation of WFAR that is smaller than WFA, which means the solutions that are 

generated by WFAR are more robust and do not contain abnormal solutions. The 

ADDC result of WFA and WFAR is illustrated in a graphical representation in Figure 

5.4.d. It shows that the ADDC of WFA has the smallest value 0.6152 in iteration 20, 

while WFAR is 1.1569 in the same iteration. From this result, it can be concluded 

that the document re-locating algorithm does not affect the ADDC result in WFA.  

Table 5.2 includes the average DBI of thirty executions for each WFA and WFAR 

algorithm and also includes the best, worst DBI and standard deviation. As shown in 
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Table 5.2, WFA generates the smallest average DBI in all iterations compared 

against WFAR. In spite of the standard deviation of WFAR that is the smallest in 

most runs, this shows that the solutions are more reliable. The best DBI values are 

1.2832 and 1.2971 that are generated by WFA in iterations 1 and 20, while WFAR 

generates 1.5744 in iteration 20. From previous results, it can be concluded that the 

document re-locating algorithm does not make any changes on the DBI value on 

WFA. Figure 5.4.e illustrates the result of the average DBI in a graphical 

representation between WFA and WFAR.  

Table 5.2 reports the average DI of thirty executions for each WFA and WFAR 

algorithm and also includes the best, worst DI and standard deviation. DI measures 

the ratio of the smallest distance between observations not in same cluster to the 

largest intra cluster distance. DI has a value between 0 and ∞ and the largest value of 

DI means a more compact clustering solution. Examining Table 5.2, it is clear that 

WFA generated the largest average DI in most iterations (refer to iterations 1, 2, 5 

and 10), while WFAR produced the largest average DI on the last iteration 20. In 

addition, it is noticed that the value of standard deviation in WFA is the smallest in 

some iterations (refer to iterations 1, 2 and 10) and larger in the remaining iterations 

(5 and 20). The best DI value is 0.9602 that is generated by WFA in iteration 1, 

while WFAR generates 0.9415 in the same iteration. These results demonstrate that 

the document re-locating mechanism enhances the DI metrics in WFA only in the 

last iteration 20. Figure 5.4.f illustrates the result of the average DI in a graphical 

representation. It presents that the curve of DI is highest in WFA than WFAR, but it 

falls only in iteration 20 where WFAR increases in this iteration.  
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For an easy comparison between the number of clusters from WFA and WFAR, in 

Table 5.3, it reports the average number of clusters produced by the WFA and WFAR 

algorithms. As seen in Table 5.3, the number of clusters of the two algorithms is 

equal. It can be concluded that document re-locating mechanism did not affect the 

number of produced clusters in WFA. 

Table 5.3 

Average number of clusters: WFA vs. WFAR. 

Iterations 
Number of clusters of algorithms 

WFA WFAR 

1 19.30 ≈ 19 19.80 ≈ 20 

2 18.73 ≈19 19.06 ≈ 19 

5 17.57 ≈ 18 18.03 ≈ 18 

10 17.80 ≈ 18 17.63 ≈ 18 

20 14.80 ≈ 15 14.36 ≈ 14 

 

Table 5.4 presents the summary of comparison between WFA and WFAR.  

Table 5.4 

Summary of quality performance: WFA vs. WFAR. 

Performance 

Metrics 

Algorithms 

WFA WFAR 

Purity    

F-measure    

Entropy    

ADDC 
   

DBI    

DI    

Number of clusters     
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As depicted in Table 5.4, the document re-locating mechanism improves the results 

of external metrics: Purity, F-measure and Entropy. However, the mechanism does 

not affect the number of obtained clusters which are still large and need to be 

improved. 

5.3.2 Comparison between WFAR and Other Methods  

From the previous sections, it is learned that the results of external metrics of the 

Weight-based Firefly Algorithm with Relocate (WFAR) is better than the WFA 

algorithm. This section includes the comparison between WFAR and the selected 

state-of-the-art methods: Particle Swarm Optimization (PSO) (Cui, Potok, & 

Palathingal, 2005), K-means (Jain, 2010), Hybrid Firefly algorithm with K-means 

(FAK-means) (Tang, Fong, Yang, & Deb, 2012), and Bisect K-means (Murugesan & 

Zhang, 2011a, 2011b). The purpose of this comparison is to investigate the 

effectiveness of WFAR in producing quality clusters, even though it has not been 

provided with the same support (i.e. number of clusters) as the other methods.  

Table 5.5 includes the results of external metrics, while Table 5.6 includes the results 

on internal and relative metrics. Figure 5.3 includes a graphical representation of 

quality metrics obtained by WFAR and the state-of-the-art methods. All algorithms 

are implemented in the same environment and are executed thirty times on different 

iterations, and the average values for each metric are calculated.  

As shown in Table 5.5, the WFAR algorithm generates the highest average Purity in 

all iterations compared against PSO, K-means, FAK-means, and Bisect K-means, 

while PSO produced the smallest purity.  



 

 141 

Table 5.5 

External quality metrics: WFAR vs. PSO vs. K-means vs. FAK-means vs. Bisect K-

means. 

External 

Metrics 
Algorithms 

Iterations 

1 2 5 10 20 

Purity 

WFAR 
0.8300 

(0.0255) 

0.8258 

(0.0095) 

0.8177 

(0.0058) 

0.8182 

(0.0036) 

0.7868 

(0.0129) 

PSO 
0.3823 

(0.0432) 

0.3861 

(0.0643) 

0.3726 

(0.0433) 

0.3731 

(0.0403) 

0.3772 

(0.0516) 

K-means 
0.3468 

(0.0242) 

0.3451 

(0.0226) 

0.3531 

(0.0414) 

0.3561 

(0.0575) 

0.3459 

(0.0258) 

FAK-means 
0.3658 

(0.0133) 

0.3701 

(0.0150) 

0.3738 

(0.0138) 

0.3719 

(0.0147) 

0.3731 

(0.0132) 

Bisect K-means 
0.3759 

(0.0300) 

0.3806 

(0.0397) 

0.3872 

(0.0446) 

0.3939 

(0.0601) 

0.4031 

(0.0818) 

 

 

External 

Metrics 
Algorithms 

Iterations 

1 2 5 10 20 

F-measure 

WFAR 
0.5199 

(0.0399) 

0.5145 

(0.0126) 

0.5194 

(0.0174) 

0.5295 

(0.0365) 

0.6186 

(0.0426) 

PSO 
0.4947 

(0.0188) 

0.5062 

(0.0414) 

0.4907 

(0.0118) 

0.4951 

(0.0110) 

0.4986 

(0.0237) 

K-means 
0.4910 

(0.0213) 

0.4935 

(0.0138) 

0.4975 

(0.0196) 

0.4999 

(0.0316) 

0.4954 

(0.0081) 

FAK-means 
0.3656 

(0.0134) 

0.3692 

(0.0140) 

0.3747 

(0.0155) 

0.3723 

(0.0143) 

0.3737 

(0.0132) 

Bisect K-means 
0.4698 

(0.0297) 

0.4757 

(0.0284) 

0.4775 

(0.0336) 

0.4785 

(0.0567) 

0.4908 

(0.0644) 

 

 

External 

Metrics 
Algorithms 

Iterations 

1 2 5 10 20 

Entropy 

WFAR 
0.6676 

(0.0830) 

0.6921 

(0.0345) 

0.7282 

(0.0135) 

0.7315 

(0.0206) 

0.7244 

(0.0328) 

PSO 
1.5350 

(0.0393) 

1.5230 

(0.0858) 

1.5403 

(0.0513) 

1.5309 

(0.0619) 

1.5276 

(0.0691) 

K-means 
1.5782 

(0.013) 

1.5794 

(0.0100) 

1.5722 

(0.0341) 

1.5636 

(0.072) 

1.5755 

(0.0215) 

FAK-means 
1.5782 

(0.0042) 

1.5770 

(0.0059) 

1.5751 

(0.0054) 

1.5750 

(0.0067) 

1.5754 

(0.0056) 

Bisect K-means 
1.5620 

(0.0223) 

1.5571 

(0.0285) 

1.5466 

(0.0914) 

1.5325 

(0.0841) 

1.5150 

(0.1193) 

Note: the best value is highlighted in ‘bold’, standard deviation in (). 
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Table 5.6 

Internal and Relative quality metrics: WFAR vs. PSO vs. K-means vs. FAK-means vs. 

Bisect K-means. 

Internal 

& 

Relative 

Metrics 

Algorithms 

Iterations 

1 2 5 10 20 

ADDC 

WFAR 
1.4282 

(0.233) 

1.4228 

(0.0156) 

1.4171 

(0.0130) 

1.4085 

(0.0408) 

1.2222 

(0.0744) 

PSO 
1.7630 

(0.2124) 

1.7775 

(0.2738) 

1.8053 

(0.2751) 

1.9379 

(0.1862) 

1.8736 

(0.0430) 

K-means 
0.7547 

(0.2978) 

0.7041 

(0.2861) 

0.6783 

(0.2396) 

0.6367 

(0.2511) 

0.7056 

(0.3190) 

FAK-means 
1.4434 

(0.0010) 

1.4436 

(0.0007) 

1.4436 

(0.0009) 

1.4432 

(0.0009) 

1.4436 

(0.0007) 

Bisect K-means 
1.3238 

(0.1874) 

1.2545 

(0.2808) 

1.2633 

(0.2378) 

1.3332 

(0.2318) 

1.3494 

(0.1817) 

External 

& 

Relative 

Metrics 

Algorithms 

Iterations 

1 2 5 10 20 

DBI 

WFAR 
1.6585 

(0.0117) 

1.6562 

(0.0092) 

1.6514 

(0.0128) 

1.6508 

(0.0153) 

1.6176 

(0.0427) 

PSO 
1.7069 

(0.0261) 

1.6100 

(0.2168) 

1.5559 

(0.2303) 

1.6092 

(0.1732) 

1.6472 

(0.2269) 

K-means 
2.8159 

(3.5419) 

2.3565 

(3.1847) 

2.4741 

(3.1267) 

1.9649 

(3.1855) 

1.9090 

(2.5369) 

FAK-means 
14.2277 

(0.2063) 

14.2834 

(0.2025) 

14.2549 

(0.3551) 

14.2637 

(0.2862) 

14.2158 

(0.2801) 

Bisect K-means 
8.1636 

(3.0869) 

7.3146 

(3.0355) 

6.9485 

(3.0605) 

7.8287 

(2.8864) 

7.7189 

(2.7763) 

External 

& 

Relative 

Metrics 

Algorithms 

Iterations 

1 2 5 10 20 

 

DI 

WFAR 
0.9017 

(0.0290) 

0.9167 

(0.0215) 

0.9064 

(0.0170) 

0.8946 

(0.0118) 

0.9156 

(0.0202) 

PSO 
1.0162 

(0.0950) 

1.0331 

(0.0574) 

1.0357 

(0.0650) 

1.0119 

(0.0583) 

0.9908 

(0.0899) 

K-means 
2.3413 

(2.3505) 

2.9315 

(2.4566) 

2.9671 

(2.5302) 

3.7363 

(2.3653) 

3.4078 

(2.4518) 

FAK-means 
0.1380 

(0.0026) 

0.1372 

(0.0027) 

0.1377 

(0.0039) 

0.1374 

(0.0035) 

0.1382 

(0.0035) 

Bisect K-means 
0.2393 

(0.1483) 

0.2876 

(0.2299) 

0.2998 

(0.1887) 

0.2715 

(0.2178) 

0.2698 

(0.2008) 

Note: the best value is highlighted in ‘bold’, standard deviation in (). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e)  

 

(f)  

 

Figure 5.5. Graphical representation of quality metrics of WFAR vs. PSO vs. K-

means vs. FAK-means vs. Bisect K-means; a) Purity, b) F-measure, c) Entropy, d) 

ADDC, e) DBI, and f) DI. 
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Furthermore, it is noticed that Bisect K-means has a higher purity than K-means, 

FAK-means, and PSO. In addition, the overall standard deviation of the WFAR 

algorithm is smaller than others in most iterations (refer to iterations 2, 5, 10 and 20), 

which indicates it is more reliable and high in robustness. From these results, it can 

be concluded that the document re-locating algorithm highly affect the result of 

performance (purity) in WFAR which is the best than other methods. Figure 5.5.a 

shows the purity results of five methods: namely WFAR, PSO, K-means, FAK-

means, and Bisect K-means, in graphical representation.  

For the F-measure metrics as can be seen in Table 5.5, WFAR has a higher F-

measure result compared to the other methods, while FAK-means has a smaller F-

measure result compared to the other methods. For the overall standard deviation, the 

WFAR algorithm’s value is smaller only than Bisect K-means in iterations 2, 5, 10 

and 20. It can be concluded that the document re-locating algorithm highly affects 

the result of performance (F-measure) in WFAR, which is the best than other 

methods. Figure 5.5.b presents the F-measure result of five algorithms: WFAR, PSO, 

K-means, FAK-means, and Bisect K-means. 

Table 5.5 reports the Entropy result of five methods: WFAR, PSO, K-means, FAK-

means, and Bisect K-means. It is observed that the Entropy of WFAR is smaller than 

FAK-means, K-means, Bisect K-means, and PSO. The best Entropy values are 

0.6676 and 0.6921 that are generated by WFAR in iterations 1 and 2. On the other 

hand, Bisect K-means is the best method after the proposed method which produced 

1.5150 in iteration 20 that it is a smaller Entropy value compared than FAK-means, 

K-means, and PSO. Furthermore, the standard deviation of WFAR is smaller than 
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PSO, K-means, and Bisect K-means only in iterations 5 and 10 that means the 

solutions are more nearer to the average Entropy and contains less abnormal 

solutions. This result indicates that WFAR is best for producing more pure clusters. 

Figure 5.5.c shows the Entropy result in a graphical representation of five methods: 

WFAR, PSO, K-means, FAK-means, and Bisect K-means. 

The ADDC values of the five techniques, WFAR, PSO, K-means, FAK-means, and 

Bisect K-means, are reported in Table 5.6 and presented in a graphical representation 

in Figure 5.5.d. The plotted graph shows that the curve of WFAR is smaller than 

FAK-means and PSO in all iterations and is better than Bisect K-means only in 

iteration 20. Whereas, K-means generates a smaller average ADDC value in all 

iterations. The standard deviation of WFAR is smaller than PSO, K-means, and 

Bisect K-means in most iterations (refer to iterations 2, 5 and 10), while FAK-means 

has a smaller standard deviation which is better than WFAR in generating abnormal 

solutions. 

For the DBI metric, Table 5.6 reports the result of the five methods: WFAR, PSO, K-

means, FAK-means, and Bisect K-means, and Figure 5.5.e presents a graphical 

representation of these methods. It shows that the DBI curve of the proposed WFAR 

algorithm is lower than K-means, Bisect K-means, and FAK-means in all iterations, 

excluding PSO, which is better than WFAR in generating a smaller DBI value in 

most iteration (refer to iterations 2, 5 and 10). In addition, it is noticed that the value 

of standard deviation in WFAR is smaller than other comparative methods. This 

result demonstrates that the document re-locating mechanism affects the DBI metrics 

in WFAR. 
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In Table 5.6 and Figure 5.5.f, the DI results of five methods are reported: WFAR, 

PSO, K-means, FAK-means, and Bisect K-means. The result of DI in K-means is 

better than other methods, followed by PSO and the proposed method, WFAR which 

is better than FAK-means and Bisect K-means in producing a higher DI. 

Furthermore, the standard deviation of WFAR is smaller than PSO, K-means, and 

Bisect K-means, while FAK-means’s value is smaller than the proposed WFAR. This 

result indicates that the documents re-locating mechanism does not affect the DI 

metrics in WFAR. 

Table 5.7 displays the average number of clusters that is automatically generated by 

WFAR and without any prior knowledge about the dataset. As can be seen in Table 

5.7, the number of clusters obtained by WFAR is higher than the number of clusters 

in other techniques. This result indicates that the document re-locating algorithm 

does not affect the number of clusters. 

Table 5.7 

Average number of clusters: WFAR vs. PSO vs. K-means vs. FA K-means vs. Bisect 

K-means. 

Iterations 

Number of clusters of algorithms 

WFAR  PSO K-means 
FAK-

means 

Bisect  

K-means 

1 19.80 ≈ 20 3 3 3 3 

2 19.06 ≈ 19 3 3 3 3 

5 18.03 ≈ 18 3 3 3 3 

10 17.63 ≈ 18 3 3 3 3 

20 14.36 ≈ 14 3 3 3 3 
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The previous results indicate that WFAR generates the best quality results in external 

performance metrics, Purity, F-measure, and Entropy, and relative metric, DBI. 

Table 5.8 illustrates the results of different quality performance metrics in five 

methods. 

Table 5.8 

Summary of quality performance: WFAR vs. PSO vs. K-means vs. FAK-means vs. 

Bisect K-means. 

Algorithms External Metrics Internal & Relative Metrics 

Purity F-measure Entropy ADDC DBI DI 

WFAR           

PSO        

K-means         

FAK-means      

 

 

Bisect K-means       

 

In the next chapters, this study will try to enhance the quality performance and the 

number of produced clusters of WFAR by integrating it with merging algorithm. 

5.4 Summary 

This chapter presents a new mechanism to change the location of documents from 

existing clusters to the newly created cluster. The proposed document re-locating 

mechanism is introduced into the Weight-based Firefly Algorithm (WFA), presented 

in Chapter Four, and is termed as WFAR. Two experiments are conducted to study 

the effect of WFAR on the obtained clustering. First, is the experiment between WFA 

and WFAR, while the second experiment compares between WFAR and the state-of-
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the-art methods: PSO, K-means, FAK-means, and Bisect K-means. These 

comparisons are undertaken using external performance metrics, Purity, F-measure 

and Entropy, and internal and relative metrics, ADDC, DBI and DI. The results 

indicate that WFAR produced better external metrics (Purity, F-measure and 

Entropy) compared to WFA. Furthermore, WFAR also produces better results in 

external performance metrics: Purity, F-measure and Entropy, and also in relative 

metrics: DBI when compared against the state-of-the-art methods; PSO, K-means, 

FAK-means, and Bisect K-means. 
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CHAPTER SIX 

CLUSTER MERGING  

6.1 Introduction 

This chapter proposes a cluster merging algorithm for text clustering. The algorithm 

is integrated in WFAR (as in Chapter Five) and is known as WFARM. The use of the 

merging algorithm is to minimize the number of clusters produced by WFAR which 

is not near the optimal number of clusters. In the undertaken experiments on the 

20Newsgroups dataset, a comparison has been made between WFARM and WFAR. 

The proposed WFARM works automatically without any prior knowledge or any 

information about the datasets. Figure 6.1 displays the process in WFARM which 

includes three phases: clustering using Weight-based Firefly Algorithm (WFA) as in 

Chapter Four, documents re-locating as mentioned theoretically and experimentally 

in Chapter Five, and the last phase which is cluster merging. 

 

 

 

 

 

 

 

Figure 6.1. Process in WFARM 

 

Merging 

Re-locating 

Clustering 

using WFA 

Cluster Merging Algorithm 

Produced Clusters 

Identification of Center 

Identification of Center  

Construction Clusters   

Document Re-locating Algorithm 
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6.2 Cluster Merging Algorithm 

The merging algorithm can be introduced once clusters are constructed. It is an 

extension of the un-weighted pair group method with arithmetic mean (UPGMA) 

(Murugesan & Zhang, 2011a, 2011b) to produce less numbers of cluster. The cluster 

merging algorithm consists of two steps, merge clusters and refine merged clusters, 

as shown in Figure 6.2.  

 

 

 

 

 

 

Figure 6.2. Process of cluster merging Algorithm (eUPGMA) 

The merge clusters step combines similar clusters, while the refine merged clusters 

step includes three sub steps: select pure clusters, identify the centers of pure 

clusters, and relocate documents from non-pure clusters.  

6.2.1 Merge Clusters 

The process of merging similar clusters is illustrated in the following steps: 

Step 1: Check to merge the first cluster in the output clusters with the remaining 

clusters in the output clusters, if no merge, eliminate the first cluster from the 

output clusters (not included in the merge process), then the second cluster 

 

Clusters Merging 

Select Pure Clusters 

Identify Centers for Pure Clusters 

Merge Clusters 

Refine Merged 

Clusters 

Relocate Documents from Non-Pure Clusters 



 

 151 

becomes the first cluster. The process of Steps 2-11 continues until the last 

cluster becomes the first cluster, so the merge process is stopped. 

Step 2: Suppose that C1 and C2 are two clusters that want to merge, and suppose that 

P1 and P2 are the numbers of documents in two clusters respectively. Suppose 

that CSim is the Cosine similarity matrix between two clusters C1 and C2. 

The documents in C1 are represented by the row and the documents in C2 are 

represented by the column. The value of the CSim matrix is equal to 1 if the 

document in C1 is similar to the document in C2, else it equals 0. The 

similarity between two documents is based on threshold. 

Step 3: If (the number of documents in cluster C1 >= 2 and the number of documents 

in cluster C2 >= 2) OR If (the number of documents in cluster C1 >= 3 and the 

number of documents in cluster C2 == 1) OR If (the number of documents in 

cluster C2 >= 3 and the number of documents in cluster C1 == 1) then 

Step 4: Calculated the average similarity between two clusters as in Equation 6.1. 

1

𝑃1
∑ ∑

𝐶𝑆𝑖𝑚 (𝐶𝑖, 𝐶𝑗)

𝑃2

𝑃2

𝑗=1

𝑃1

𝑖=1

 (6.1) 

where, P1is the number of document in the first cluster, P2is the number of document 

in the second cluster, 𝐶𝑖 is the first cluster, 𝐶𝑗is the second cluster. 

Step 5: Calculate the merge threshold as in Equation 6.2 below. 

MergeThreshold  (𝑀𝑇) =  𝑓𝑙𝑜𝑜𝑟 (
𝑟𝑜𝑢𝑛𝑑(

𝑃1∗𝑃2
2

)−1

𝑃1∗𝑃2
∗ 10) /10 

 

(6.2) 

Step 6: If Equation 6.1 passed the merge threshold in Equation 6.2 as shown in 

Equation 6.3, then, combine two clusters C1 and C2 into one cluster. 
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1

𝑃1
∑ ∑

𝐶𝑆𝑖𝑚 (𝐶𝑖, 𝐶𝑗)

𝑃2

𝑃2

𝑗=1

𝑃1

𝑖=1

>=  𝑀𝑒𝑟𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑀𝑇) (6.3) 

Step 7: If (the number of documents in cluster C1 >= 2 and the number of documents 

in cluster C2 >= 1) OR If (the number of documents in cluster C2 >= 2 and the 

number of documents in cluster C1 >= 1) 

Step 8: Combine C1 and C2, if Equation 6.3 is true using Equation 6.4 to obtain 

merge threshold. 

MergeThreshold  (𝑀𝑇) =  
𝑟𝑜𝑢𝑛𝑑(

𝑃1∗𝑃2
2

)

𝑃1∗𝑃2
 (6.4) 

Step 9: If (the number of documents in cluster C1 >= 1 and the number of documents 

in cluster C2 >= 1) 

Step 10: Combine C1 and C2, if CSim (C1, C2) equals to 1. 

6.2.2 Refine Merged Clusters 

Once the clusters are merged, there is a need to ensure that the obtained clusters 

contain pure members. This is implemented by checking the clusters’ size by 

identifying the threshold, and in this research it is set to (50, n/20). This threshold is 

based on the criterion used by Tan, Ting, and Teng (2011a), and the idea of the 

selected clusters is adopted from Picarougne, Azzag, Venturini, and Guinot (2007). 

The pseudo code of selecting pure clusters is illustrated in the following in Figure 

6.3. 

Once the pure clusters are identified, a new center for the selected pure clusters 

needs to be defined. The center is obtained by the sum of all TFIDF values of 
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documents in the specific cluster and divided by the number of documents in the 

cluster. The pseudo code for identifying centers is illustrated in Figure 6.4. 

Selecting pure clusters  

Step 1: Set selected threshold equal min (50, n/20).  

Step 2: For i= 1 to number of clusters 

Step 3: If length (Ci) >= selected threshold  

Step 4: Save Ci in selected clusters. 

Step 5: Else Save Ci in non-selected clusters. 

Step 6: End. 

 

Figure 6.3. Pseudo code for selecting pure clusters 

Identifying centers for pure clusters  

Step 1: For i= 1 to k (number of selected clusters) 

Step 2: Calculate the center for each cluster as shown in equation 6.5. 

𝐶𝑒𝑛𝑡𝑒𝑟(𝐶𝑘) =
∑ 𝑇𝐹𝐼𝐷𝐹𝐷𝑗

𝑁𝐶𝑘
𝑗=1

𝑁𝐶𝑘
 (6.5) 

Step 3: End. 

 

Figure 6.4. Pseudo code of identifying centers for pure clusters 

Later, all documents in the non-pure clusters need to be relocated into the pure 

clusters. This is done by measuring the distance between the documents and the 

newly identified centers. Figure 6.5 illustrates the proposed pseudo code of 

relocating non-pure clusters.  
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Relocating non-pure clusters  

Step 1: For i= 1 to (number of documents in non-pure clusters) 

Step 2: Find minimum distance between document Di and center of C1 using Euation 6.6 as 

shown below. 

𝑚𝑖𝑛𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐷𝑖, 𝐶𝑒𝑛𝑡𝑒𝑟𝐶1
) = ∑(𝐷𝑖𝑗 − 𝐶𝑒𝑛𝑡𝑒𝑟𝐶1

)
2

𝑚

𝑗=1

 (6.6) 

Step 3: Assign Di=1 

Step 4: For k= 2 to (number of selected pure clusters) 

Step 5: Find minimum distance between document Di and center of Ck using Equation 6.7 as 

shown below. 

𝑚𝑖𝑛𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2(𝐷𝑖, 𝐶𝑒𝑛𝑡𝑒𝑟𝐶𝑘
) = ∑(𝐷𝑖𝑗 − 𝐶𝑒𝑛𝑡𝑒𝑟𝐶𝑘

)
2

𝑚

𝑗=1

 (6.7) 

Step 6: If (mindistance >= mindistance2) 

Step 7: Assign Di=k 

Step 8: mindistance = mindistance2 

Step 9: End For 

Step 10: Assign Di to Ck 

Step 11: End For 

 

Figure 6.5. Pseudo code of relocating non-pure clusters 

The following example (based on the example presented in Chapter Five) 

demonstrates the proposed cluster merging algorithm. The produced clusters by 

WFAR are as follows.  

Cluster1 [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] 

Cluster2 [21, 22, 23, 24, 25, 26, 27, 29, 2, 30] 

Cluster3 [28] 
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 Cluster 2 (10 documents) 

 

Result of 

average 

similarity   D21 D22 D23 D24 D25 D26 D27 D29 D2 D30 
C

lu
st

er
 1

 (
1
9
 d

o
cu

m
en

ts
) 

D1 0 0 0 0 0 0 0 0 1 0 = 1/10 

D3 0 0 0 1 1 1 0 1 1 1 = 6/10 

D4 0 0 0 0 0 0 0 0 1 0 = 1/10 

D5 0 0 0 0 0 0 0 0 1 0 = 1/10 

D6 0 0 0 0 1 0 0 0 1 0 = 2/10 

D7 0 0 0 0 0 0 0 0 1 0 = 1/10 

D8 1 0 0 0 1 0 0 0 1 1 = 4/10 

D9 1 0 0 0 1 0 0 0 1 1 = 4/10 

D10 0 0 0 0 0 0 0 0 1 1 = 2/10 

D11 0 0 0 0 0 0 0 0 0 0 = 0 

D12 0 0 0 0 0 0 0 0 0 0 = 0 

D13 0 0 0 0 1 0 0 0 1 0 =  2/10 

D14 0 1 0 0 0 0 0 0 1 0 = 2/10 

D15 0 0 0 0 0 0 0 0 0 1 = 1/10 

D16 0 0 0 0 0 0 0 0 0 1 = 1/10 

D17 0 0 0 0 1 0 0 0 1 1 = 3/10 

D18 0 0 0 0 0 0 0 0 1 0 = 1/10 

D19 0 0 0 0 0 0 0 0 1 0 = 1/10 

D20 0 0 0 0 0 0 0 0 1 0 = 1/10 

 = 34/10 

= 3.4/19 

   = 0.178 

 

Figure 6.6. Cosine similarity matrix between cluster1 and cluster2 
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Where, the number of documents in Cluster 1 is P1=19, the number of documents in 

Cluster 2 is P2=10, the number of documents in Cluster 3 is P3=1, and the total 

number of documents is 30. In the proposed WFARM, the cosine similarity between 

Cluster 1 and Cluster 2 (CSim) is checked as illustrated in Figure 6.6. 

The similarity between document D1 in Cluster 1 and D2 in Cluster 2 exceeds the 

similarity threshold; hence, the cosine similarity matrix (CSim matrix) is set to 1. 

The average similarity is calculated using Equation 6.1, as shown in Figure 6.6, 

where in this example, it is equal to 0.178. 

The merge threshold value is calculated using Equation 6.2, and it is noted to be 0.4. 

In detail, the calculation is as follows.  

Merge Threshold = Floor [(((round ((19*10)/2)) -1) / 190) *10)] /10 

                             = Floor [(((95-1)/190)* 10] /10 

                             = Floor [0.4947 *10] /10 

                             = 4/10 = 0.4 

                               

The value of average similarity, which is 0.178, is smaller than the merge threshold 

value of 0.4. Thus, the two clusters, Cluster 1 and Cluster 2, cannot be merged. The 

same process is repeated for Cluster 3. Figure 6.7 presents the produced clusters at 

the end of the merging process.  
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Figure 6.7. Results of merging clusters for 20Newsgroups dataset  

The process of selecting pure clusters starts after the merging cluster has completed. 

The produced clusters from the merging clusters step are Cluster 1, Cluster 2 and 

Cluster 3. Where, the number of documents in each cluster is P1=19, P2=10, P3=1. 

The selected threshold is (50, 30/20) which equal to (50, 1.5), and this means the 

cluster which contains documents more than 1.5 will be identified as the selected 

cluster, and the ones less than 1.5 will be known as non-selected cluster. The 

selected pure clusters are Cluster 1 and Cluster 2, while, non-pure cluster is Cluster 

3. 

The third step is to identify the centers for the pure clusters. Figure 6.8 presents the 

example of TFIDF of the documents in the first cluster, Cluster 1, and presents the 

calculation of the center. 
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Figure 6.8. An example of TFIDF of documents in Cluster1 and center calculation 

Once the centers are identified, the process of the relocating mechanism of non-pure 

clusters can be performed. The non-pure cluster is Cluster 3 which includes only one 

document, D28. In this example, D28 is assigned to Cluster 2. Figure 6.9 presents an 

example of TFIDF of D28 in Cluster 3, and Figure 6.10 presents an example of the 

centers of selected pure clusters. 

 

 

Figure 6.9. An example of TFIDF of document 28 in Cluster 3 

 

 

 

Figure 6.10. An example of the centers of selected pure clusters 

 Term1 Term2 ... Termm=549 

D1 0.5 0.1 ... 0.7 

D2 0.2 0.2 ... 0.6 

. 

. 

. 

. 

. 

. 

 . 

. 

D19 0.5 0.3 ... 0.4 

Center 𝑆𝑢𝑚(𝐷1: 𝐷19)

19
 

𝑆𝑢𝑚(𝐷1: 𝐷19)

19
 

... 𝑆𝑢𝑚(𝐷1: 𝐷19)

19
 

 

 Term1 Term2 Term3 Term4 

D28 0.2 0.3 0.4 0.7 

 

 Term1 Term2 Term2 Term4 

Center Cluster1 0.5 0.3 0.2 0.6 

Center Cluster2 0.3 0.2 0.4 0.6 
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This is achieved by calculating the distance between document D28 and the center of 

Cluster 1 and Cluster 2. The calculation process is illustrated in Figure 6.11. As can 

be seen in Figure 6.11, the minimum distance is (0.0300) between document D28 

and the center of Cluster 2, so D28 is relocated to Cluster 2.  

D28 0.2 0.3 0.4 0.7 

Center Cluster 1 0.5 0.3 0.2 0.6 

Mindistance (D1, Center Cluster 1) 0.3 0.0 0.2 0.1 

Mindistance (D1, Center Cluster 1)
2 

0.09 0.0 0.04 0.01 

Mindistance (D1, Center Cluster 1)
2
 0.1400 

 

D28 0.2 0.3 0.4 0.7 

Center Cluster 2 0.3 0.2 0.4 0.6 

Mindistance (D1, Center Cluster 2) 0.1 0.1 0.0 0.1 

Mindistance (D1, Center Cluster 2)
2 

0.01 0.01 0.0 0.01 

Mindistance (D1, Center Cluster 2)
2
 0.0300 

Figure 6.11. Calculation of minimum distance between centers of pure clusters and 

members of non-pure cluster 

Finally, the following clusters are obtained:  

Cluster1 [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] 

Cluster2 [21, 22, 23, 24, 25, 26, 27, 29, 2, 30, 28] 

6.3 Evaluation 

The evaluation of WFARM clustering is performed in three parts: comparison 

between WFAR and WFARM, comparison between WFARM against state-of-the-art 

methods (static methods), and comparison between WFARM and state-of-the- art 

methods (dynamic methods).  
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6.3.1 Comparison between WFARM and WFAR  

The comparison between WFARM and WFAR consists of three parts of evaluation: 

number of clusters, performance metrics, and paired samples T-test. 

6.3.1.1 Number of Clusters between WFARM and WFAR 

In Table 6.1, it reports the average number of clusters produced by the WFAR and 

WFARM algorithms. As seen in the table, the number of clusters obtained by WFARM 

in iteration 20 equals the cluster number of the 20Newsgroups dataset (i.e. 3). It can 

be concluded that the cluster merging highly affects the number of produced clusters 

in WFAR. Figure 6.12 shows the number of produced clusters in the two algorithms. 

Table 6.1 

Average number of clusters of WFAR & WFARM. 

Iterations 
Number of clusters of algorithms 

WFAR WFARM 

1 19.80 ≈ 20 3.9 ≈  4 

2 19.06 ≈ 19 3.93 ≈  4 

5 18.03 ≈ 18 4.63 ≈  5 

10 17.63 ≈ 18   4.7 ≈  5 

20 14.36 ≈ 14 3 

         Note: the best value is highlighted in ‘bold’ 
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Figure 6.12.  Number of produced clusters by WFAR and WFARM 

6.3.1.2 Performance Metrics between WFARM and WFAR  

The produced clusters by WFARM are evaluated using the Purity, F-measure, 

Entropy, ADDC, DBI and DI metrics. Tables 6.2 and Table 6.3 include the average, 

best, worst and standard deviation for the metrics. Additionally, Figure 6.13 presents 

the graphical representation of metrics between WFARM and WFAR. 

As shown in Table 6.2, the WFARM algorithm generates the highest average purity in 

the last iteration (refer to iteration 20) compared to the WFAR algorithm. The best 

purity value is 0.7948 that is generated by WFARM in iteration 20, while WFAR 

generates 0.7868 in the same iteration. In addition, the overall standard deviation of 

the WFARM algorithm in iteration 20 is nearly similar to WFAR, which indicates the 

solution that is generated by WFARM is more reliable and high in robustness. 
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Table 6.2 

External quality metrics of clustering and standard deviation: WFAR vs. WFARM. 

 

Iterations 

 

Algorithms 

Purity Metric 

Average 

Purity 
Best Purity 

Worst 

Purity 

Standard 

Deviation 

1 
WFAR 0.8300 0.9467 0.7967 0.0255 

WFARM 0.7758 0.9133 0.7233 0.0319 

2 
WFAR 0.8258 0.8700 0.8100 0.0095 

WFARM 0.7547 0.7733 0.7300 0.0080 

5 
WFAR 0.8177 0.8233 0.7900 0.0058 

WFARM 0.7881 0.8100 0.7300 0.0165 

10 
WFAR 0.8182 0.8267 0.8100 0.0036 

WFARM 0.7898 0.8067 0.7300 0.0134 

20 
WFAR 0.7868 0.8100 0.7433 0.0129 

WFARM 0.7948 0.8100 0.7800 0.0132 

 

 

 

Iterations 

 

Algorithms 

F-measure Metric 

Average  

F-measure 

Best  

F-measure 

Worst 

F-measure 

Standard 

Deviation 

1 
WFAR 0.5199 0.6625 0.4930 0.0339 

WFARM 0.7052 0.9110 0.6474 0.0606 

2 
WFAR 0.5145 0.5423 0.4983 0.0126 

WFARM 0.6765 0.7681 0.6545 0.0182 

5 
WFAR 0.5194 0.5657 0.5080 0.0174 

WFARM 0.6676 0.8143 0.6473 0.0463 

10 
WFAR 0.5295 0.6589 0.5034 0.0365 

WFARM 0.6575 0.8116 0.6473 0.0300 

20 
WFAR 0.6186 0.6589 0.5551 0.0426 

WFARM 0.7997 0.8143 0.7842 0.0129 

 

 

 

Iterations 

 

Algorithms 

Entropy Metric 

Average  

Entropy 

Best 

Entropy 

Worst 

Entropy 

Standard 

Deviation 

1 
WFAR 0.6676 0.2806 0.7250 0.0830 

WFARM 0.8089 0.4412 0.8916 0.0775 

2 
WFAR 0.6921 0.5299 0.7396 0.0345 

WFARM 0.8584 0.7986 0.9063 0.0178 

5 
WFAR 0.7282 0.7008 0.7453 0.0135 

WFARM 0.8206 0.7642 0.8963 0.0246 

10 
WFAR 0.7315 0.6587 0.7453 0.0206 

WFARM 0.8183 0.7472 0.8963 0.0232 

20 
WFAR 0.7244 0.6587 0.8381 0.0326 

WFARM 0.7827 0.7472 0.8130 0.0267 

Note: the best value is highlighted in ‘bold’ 
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Table 6.3 

Internal and relative quality metrics of clustering and standard deviation: WFAR vs. 

WFARM. 

 

Iterations 

 

Algorithms 

ADDC Metric 

Average  

ADDC 

Best 

ADDC 

Worst 

ADDC 

Standard 

Deviation 

1 
WFAR 1.4282 1.3688 1.4557 0.0233 

WFARM 1.4158 1.3914 1.4366 0.0138 

2 
WFAR 1.4228 1.3640 1.4557 0.0156 

WFARM 1.4058 1.3980 1.4327 0.0067 

5 
WFAR 1.4171 1.3683 1.4413 0.0130 

WFARM 1.4153 1.3918 1.4304 0.0083 

10 
WFAR 1.4085 1.1994 1.4488 0.0408 

WFARM 1.4180 1.4005 1.4304 0.0072 

20 
WFAR 1.2222 1.1569 1.3949 0.0744 

WFARM 1.4263 1.4229 1.4273 0.0018 

 

 

 

Iterations 

 

Algorithms 

DBI Metric 

Average  

DBI 

Best 

DBI 

Worst 

DBI 

Standard 

Deviation 

1 
WFAR 1.6585 1.6313 1.6740 0.0117 

WFARM 7.3303 6.6973 8.1854 0.6042 

2 
WFAR 1.6562 1.6386 1.6828 0.0092 

WFARM 7.1238 6.6986 8.1854 0.2775 

5 
WFAR 1.6514 1.6386 1.7012 0.0128 

WFARM 7.3802 6.8186 9.2199 0.6246 

10 
WFAR 1.6508 1.5967 1.7104 0.0153 

WFARM 7.3298 6.8264 9.4829 0.4761 

20 
WFAR 1.6176 1.5744 1.7104 0.0427 

WFARM 9.2225 9.0828 9.4829 0.1518 

 

 

 

Iterations 

 

Algorithms 

DI Metric 

Average 

DI 

Best 

DI 

Worst 

DI 

Standard 

Deviation 

1 
WFAR 0.9017 0.9415 0.8522 0.0290 

WFARM 0.2330 0.2489 0.2248 0.0070 

2 
WFAR 0.9167 0.9287 0.8522 0.0215 

WFARM 0.2328 0.2341 0.2297 0.0011 

5 
WFAR 0.9064 0.9287 0.8808 0.0170 

WFARM 0.2283 0.2339 0.2066 0.0071 

10 
WFAR 0.8946 0.9016 0.8495 0.0118 

WFARM 0.2292 0.2339 0.1980 0.0060 

20 
WFAR 0.9156 0.9264 0.8495 0.0202 

WFARM 0.2058 0.2087 0.1980 0.0044 

Note: the best value is highlighted in ‘bold’. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

 

Figure 6.13. Graphical representation of quality metrics: WFAR vs. WFARM, (a) Purity, (b) 

F-measure, (c) Entropy, (d) ADDC, (e) DBI, and (f) DI 
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From these results, it can be concluded that the cluster merging algorithm highly 

affects the result of performance (purity) in WFAR. Figure 6.13.a illustrates the result 

of purity in a graphical representation of these two methods, WFARM and WFAR. It 

shows that the purity curve of WFARM increases when the iteration increases, in 

contrast with WFAR which decrease when the iteration increases. 

Table 6.2 presents the average F-measure results of the two different methods, 

WFARM and WFAR. As shown in Table 6.2, WFARM generates the highest average 

F-measure in all iterations. Furthermore, it is observed that the best F-measure 

produced is 0.7997 in iteration 20 by WFARM when the number of clusters equals 3, 

while WFAR generates the best F-measure value of 0.6186 in iteration 20 when the 

number of clusters equals 14.36. The previous observations mean that the cluster 

merging algorithm highly affects the result of F-measure in WFAR. Moreover, the 

overall standard deviation of WFARM is smaller than WFAR in the last two iterations 

(refer to iterations 10 and 20), which indicates that the solution generated by WFARM 

is highly reliable and high in robustness. Figure 6.13.b demonstrates the result of the 

average F-measure in a pictorial representation of WFARM and WFAR. It shows the 

F-measure curve of WFARM increases when the iteration increases, and rises in all 

iterations as compared to the curve of WFAR.  

In Table 6.2, it reports the average Entropy value, best Entropy value, worst Entropy 

value and standard deviation of thirty executions for each WFARM and WFAR 

method. As shown in the table, the average Entropy of WFAR is smaller than 

WFARM in all iterations, where, the best average Entropy value is 0.7244 generated 

by WFAR in iteration 20, while WFARM generates 0.7827 in the same iteration. This 



 

 166 

result indicates that WFAR is better than WFARM in Entropy value, despite the 

number of produced clusters by WFARM which is near optimal clusters (3). The 

standard deviation of WFARM is smaller than WFAR in iterations 1, 2 and 20, while 

WFAR is smaller in the remaining iterations. This result means the solutions are 

nearer to the average Entropy and contain less abnormal solutions. It indicates that 

WFARM is best for producing more pure clusters. Figure 6.13.c shows the result of 

the average Entropy in a graphical representation of WFARM and WFAR.  

Table 6.3 includes the average ADDC of thirty executions for each WFARM and 

WFAR algorithm, and also includes the best ADDC, worst ADDC and standard 

deviation. As shown in Table 6.3, the average ADDC produced by WFARM is 

smaller than WFAR in most iterations (refer to iterations 1, 2, and 5). The best 

average ADDC value is 1.2222 generated by WFAR in iterations 20 with the number 

of clusters of 14.36, while WFARM generates 1.4263 in the same iteration with the 

number of clusters of 3. The overall standard deviation of WFARM is smaller than 

WFAR in all iterations, which means the solutions generated by WFARM are more 

robust and do not contain abnormal solutions. Based on previous observations, 

WFARM outperforms WFAR in ADDC value. Figure 6.13.d shows the result of the 

average ADDC in a graphical representation of WFARM and WFAR. 

Table 6.3 presents the average DBI of thirty executions for each WFARM and WFAR 

algorithm, and also includes the best, worst DBI and standard deviation. As shown in 

table, WFAR generates a higher average DBI in all iterations compared to WFARM. 

This result occurs because the number of clusters in WFARM is smaller than WFAR. 

The standard deviation of WFAR is smaller in most runs. From previous results, it 
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can be concluded that cluster merging algorithm makes changes on the DBI value on 

WFAR. Figure 6.13.e shows the result of the average DBI in a graphical 

representation of WFARM and WFAR.  

Table 6.3 includes the average DI of thirty executions for each WFARM and WFAR 

algorithm, and also includes the best, worst DI, and standard deviation. DI measures 

the ratio of the smallest distance between observations not in the same cluster to the 

largest intra cluster distance. The largest value of DI means a more compact 

clustering solution. Examining Table 6.3, it is clear that WFAR generates the largest 

average DI in all iterations, despite the value of standard deviation of WFARM is 

smaller in all iterations. The DI metric is highly effective with the number of 

clusters. As it can be seen, when the number of clusters in WFAR is 14.36 in iteration 

20, the DI value is 0.9156 while the number of clusters in WFARM is 3 in the same 

iteration with a DI value of 0.2058. These results demonstrate that the cluster 

merging algorithm makes changes on the DI metrics in WFAR. Figure 6.13.f 

illustrates the result of the average DI in a graphical representation of WFARM and 

WFAR. 

From previous discussion, it can be concluded that the cluster merging algorithm 

enhances the external metrics, namely purity, F-measure and ADDC, in producing 

clusters in WFAR, and also enhances the number of obtained clusters where it gets 

near optimal cluster 3. Table 6.4 presents the summary of comparison between 

WFARM and WFAR algorithms.  
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Table 6.4 

Quality performance of WFAR & WFARM algorithms. 

Performance 

Metrics 

Algorithms 

WFAR  WFARM  

Purity    

F-measure    

Entropy 
   

ADDC    

DBI 
   

DI    

Number of clusters    

6.3.1.3 Paired Samples T-test between WFARM and WFAR 

The statistical analysis of paired samples T-test is performed on the differences 

between the pairs of WFARM and WFAR. The null hypotheses, H0, refers to no 

difference between the mean result of the WFARM and WFAR algorithms, while the 

alternative hypotheses, H1, means that there is a difference between the mean result 

of the WFARM and WFAR algorithms. 

H0: There is no difference between the mean of two algorithms. 

H1: There is a difference between the mean of two algorithms. 

 

Table 6.5 illustrates the p-value using the samples of purity, F-measure, Entropy, 

ADDC, DBI and DI metrics of iteration 20 for WFARM and WFAR. As can be seen 

in Table 6.5, the p-value between WFARM and WFAR is less than (0.05). This means 

that the cluster merging algorithm has an effect on the evaluated metrics. Hence, the 

null hypothesis is rejected and this concludes that there is sufficient evidence to 
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accept the alternative hypotheses that there is a difference between the mean of the 

WFARM and WFAR algorithms. 

Table 6.5 

The P-value between WFAR & WFARM algorithms. 

Metrics P-value between WFARM & WFAR 

Purity 0.02852000 

F-measure 2.7299E-20 

Entropy 9.16548E-9 

ADDC 3.1431E-15 

DBI 1.2419E-51 

DI 2.1466E-46 

 

6.3.2 Comparison between WFARM and Static Methods  

In this section, a comparison is made between the WFARM algorithm and several 

state-of-the-art methods; Particle Swarm Optimization (PSO) (Cui, Potok, & 

Palathingal, 2005), K-means (Jain, 2010), Bisect K-means (Murugesan & Zhang, 

2011a, 2011b), Hybrid Firefly algorithm with K-means (FAK-means) (Tang, Fong, 

Yang, & Deb, 2012),  and BatK-means (Tang, Fong, Yang, & Deb, 2012). The 

comparison consists of three parts of evaluation: number of clusters, performance 

metrics, and independent samples T-test. 

6.3.2.1 Number of Clusters between WFARM and Static Methods 

Table 6.6 displays the average number of clusters that has been automatically 

produced by WFARM. As seen in Table 6.6, the number of clusters produced by 

WFARM in iteration 20 is equal to the number of clusters in other algorithms.  
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Table 6.6 

Average number of clusters: WFARM vs. PSO vs. K-means vs. Bisect K-means vs. FA 

K-means vs. BatK-means. 

Iterations 

Number of clusters of algorithms 

WFARM PSO K-means 
Bisect  

K-means 

FAK-

means 

BatK-

means 

1 3.9  ≈ 4 3 3 3 3 3 

2 3.93 ≈ 4 3 3 3 3 3 

5 4.63 ≈  5 3 3 3 3 3 

10 4.7  ≈  5 3 3 3 3 3 

20 3 3 3 3 3 3 

 

6.3.2.2 Performance Metrics between WFARM and Static Methods  

In this section, WFARM is compared against two types of static methods: single 

methods such as PSO, K-means, and Bisect K-means, and also hybrid methods such 

as Hybrid Firefly algorithm with K-means (FAK-means) and Hybrid Bat algorithm 

with K-means (BatK-means). Table 6.7 includes the quality performance results of 

external metrics, which are Purity, F-measure and Entropy, for six algorithms: 

WFARM, PSO, K-means, Bisect K-means, FAK-means, and BatK-means. Table 6.8 

includes the quality performance results of internal and relative metrics, which are 

ADDC, DBI and DI, for the mentioned algorithms. A graphical representation of the 

results is shown in Figure 6.14.  

As shown in Table 6.7, the WFARM algorithm generates the highest average purity in 

all iterations compared to other algorithms. The best purity value is 0.7948 generated 

by WFARM in iteration 20, while BatK-means generates 0.6650 in the same iteration 

and K-means generates the worst value of 0.3459. This is because K-means is 
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trapped in local optima. In addition, the overall standard deviation of the WFARM 

algorithm in iteration 20 is smaller than the other methods. This result indicates that 

the solution generated by WFARM is more reliable and high in robustness. From 

these results, it can be concluded that the cluster merging algorithm highly affects 

the result of performance (purity) in WFARM. Figure 6.14.a illustrates the purity 

result in a graphical representation of the following methods: WFARM, PSO, K-

means, Bisect K-means, FAK-means, and BatK-means. 

For the F-measure metric, as seen in Table 6.7, WFARM generates the highest 

average F-measure in all iterations. Besides that, it can be observed that the best F-

measure produced is 0.7997 in iteration 20 by WFARM when the value of precision 

and recall is higher (0.8047, 0.7948) respectively, and when the number of generated 

clusters is equal to 3, while BatK-means generates 0.6649 in the same iteration with 

a static number of clusters. The previous observations mean that WFARM is better 

than other methods. Figure 6.14.b demonstrates the result of the average F-measure 

in a pictorial representation of WFARM, PSO, K-means, Bisect K-means, FAK-

means, and BatK-means. 

In Table 6.7, it reports the average Entropy value and standard deviation of thirty 

executions for WFARM, PSO, K-means, Bisect K-means, FAK-means, and BatK-

means. As shown in Table 6.7, the average Entropy of the WFARM is smaller than 

other methods in all iterations, where, the best average Entropy value is 0.7827 

generated by WFARM in iteration 20, while BatK-means generates 1.0162 in the 

same iteration. 



 

Table 6.7 

External quality metrics of clustering: WFARM vs. PSO vs. K-means vs. Bisect K-means vs. FA K-means vs. BatK-means. 

External 

Metrics 
Algorithms 

Iterations External 

Metrics 

Iterations 

1 2 5 10 20 1 2 5 10 20 

Purity 

WFARM  
0.7758 

(0.0319) 

0.7547 

(0.0080) 

0.7881 

(0.0165) 

0.7898 

(0.0134) 

0.7948 

(0.0132) 

Entropy 

0.8089 

(0.0775) 

0.8584 

(0.0178) 

0.8206 

(0.0246) 

0.8183 

(0.0232) 

0.7827 

(0.0267) 

PSO 
0.3823 

(0.0432) 

0.3861 

(0.0643) 

0.3726 

(0.0433) 

0.3731 

(0.0403) 

0.3772 

(0.0516) 

1.5350 

(0.0393) 

1.5230 

(0.0858) 

1.5403 

(0.0513) 

1.5309 

(0.0619) 

1.5276 

(0.0691) 

K-means 
0.3468 

(0.0242) 

0.3451 

(0.0226) 

0.3531 

(0.0414) 

0.3561 

(0.0575) 

0.3459 

(0.0258) 

1.5782 

(0.013) 

1.5794 

(0.0100) 

1.5722 

(0.0341) 

1.5636 

(0.072) 

1.5755 

(0.0215) 

Bisect  

K-means 

0.3759 

(0.0300) 

0.3806 

(0.0397) 

0.3872 

(0.0446) 

0.3939 

(0.0601) 

0.4031 

(0.0818) 

1.5620 

(0.0223) 

1.5571 

(0.0285) 

1.5466 

(0.0914) 

1.5325 

(0.0841) 

1.5150 

(0.1193) 

FAK-means 
0.3658 

(0.0133) 

0.3701 

(0.0150) 

0.3738 

(0.0138) 

0.3719 

(0.0147) 

0.3731 

(0.0132) 

1.5782 

(0.0042) 

1.5770 

(0.0059) 

1.5751 

(0.0054) 

1.5750 

(0.0067) 

1.5754 

(0.0056) 

BatK-means 
0.3822 

(0.0158) 

0.4239 

(0.0267) 

0.5161 

(0.0703) 

0.6283 

(0.0777) 

0.6650 

(0.0811) 

1.5715 

(0.0066) 

1.5390 

(0.2002) 

1.3942 

(0.1274) 

1.1216 

(0.1916) 

1.0162 

(0.1819) 

External 

Metrics 
Algorithms Iteration 1 Iteration 2 Iteration 5 Iteration 10 Iteration 20 

F-

measure 

WFARM 
0.7052 (0.0606) 

[0.6464, 0.7758] 

0.6765 (0.0182) 

[0.6130,0.7547] 

0.6676 (0.0046) 

[0.5791, 0.7881] 

0.6575 (0.0300) 

[0.5632, 0.7898] 

0.7997 (0.0129) 

[0.8047, 0.7948] 

PSO 
0.4947 (0.0188) 

[0.7007, 0.3823] 

0.5062 (0.0414) 

[0.7348, 0.3861] 

0.4907  (0.0118) 

[0.7184, 0.3726] 

0.4951 (0.0110) 

[0.7357, 0.3731] 

0.4986 (0.0237) 

[0.2493, 0.3772] 

K-means 
0.4910 (0.0213) 

[0.8405, 0.3468] 

0.4935 (0.0138) 

[0.8658, 0.3451] 

0.4975 (0.0196) 

[0.8417, 0.3531] 

0.4999 (0.0316) 

[0.8385, 0.3561] 

0.4954 (0.0081) 

[0.8725, 0.3459] 

Bisect K-means 
0.4698 (0.0297) 

[0.6262, 0.3759] 

0.4757 (0.0284) 

[0.6342, 0.3806] 

0.4775 (0.0336) 

[0.6227, 0.3872] 

0.4785 (0.0567) 

[0.6094, 0.3939] 

0.4908 (0.0644) 

[0.6273, 0.4031] 

FAK-means 
0.3656 (0.0134) 

[0.3654, 0.3658] 

0.3692 (0.0140) 

[0.3683, 0.3701] 

0.3747 (0.0155) 

[0.3756, 0.3738] 

0.3723 (0.0143) 

[0.3727, 0.3719] 

0.3737 (0.0132) 

[0.3743, 0.3731] 

BatK-means 
0.3813 (0.0164) 

[0.3804, 0.3822] 

0.4227 (0.0245) 

[0.4215, 0.4239] 

0.5126 (0.0720) 

[0.5092, 0.5161] 

0.6345 (0.0765) 

[0.6408, 0.6283] 

0.6649 (0.0768) 

[0.6648, 0.6650] 

    Note: the best value is highlighted in ‘bold’, standard deviation in (), average precision and average recall in []. 
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Table 6.8 

Internal and relative quality metrics of clustering and standard deviation: WFARM 

vs. PSO vs. K-means vs. Bisect K-means vs. FA K-means vs. BatK-means. 

Internal & 

Relative 

Metrics 

Algorithms 

Iterations 

1 2 5 10 20 

ADDC 

WFARM 
1.4158 

(0.0138) 

1.4058 

(0.0067) 

1.4153 

(0.0083) 

1.4180 

(0.0072) 

1.4263 

(0.0018) 

PSO 
1.7630 

(0.2124) 

1.7775 

(0.2738) 

1.8053 

(0.2751) 

1.9379 

(0.1862) 

1.8736 

(0.0430) 

K-means 
0.7547 

(0.2978) 

0.7041 

(0.2861) 

0.6783 

(0.2396) 

0.6367 

(0.2511) 

0.7056 

(0.3190) 

Bisect K-means 
1.3238 

(0.1874) 

1.2545 

(0.2808) 

1.2633 

(0.2378) 

1.3332 

(0.2318) 

1.3494 

(0.1817) 

FAK-means 
1.4434 

(0.0010) 

1.4436 

(0.0007) 

1.4436 

(0.0009) 

1.4432 

(0.0009) 

1.4436 

(0.0007) 

BatK-means 
1.4428 

(0.0035) 

1.4505 

(0.0044) 

1.4489 

(0.0099) 

1.4459 

(0.0144) 

1.4563 

(0.0171) 

 

Internal & 

Relative 

Metrics 

Algorithms 

Iterations 

1 2 5 10 20 

DBI 

WFARM 
7.3303 

(0.6042) 

7.1238 

(0.2775) 

7.3802 

(0.6346) 

7.3298 

(0.4761) 

9.2225 

(0.1518) 

PSO 
1.7069 

(0.0261) 

1.6100 

(0.2168) 

1.5559 

(0.2303) 

1.6092 

(0.1732) 

1.6472 

(0.2269) 

K-means 
2.8159 

(3.5419) 

2.3565 

(3.1847) 

2.4741 

(3.1267) 

1.9649 

(3.1855) 

1.9090 

(2.5369) 

Bisect K-means 
8.1636 

(3.0869) 

7.3146 

(3.0355) 

6.9485 

(3.0605) 

7.8287 

(2.8864) 

7.7189 

(2.7763) 

FAK-means 
14.2277 

(0.2063) 

14.2834 

(0.2025) 

14.2549 

(0.3551) 

14.2637 

(0.2862) 

14.2158 

(0.2801) 

BatK-means 
14.2657 

(0.3657) 

12.3838 

(0.4195) 

11.3361 

(1.2888) 

10.7060 

(1.4489) 

10.9907 

(1.5131) 

 

Internal & 

Relative 

Metrics 

Algorithms 

Iterations 

1 2 5 10 20 

 

DI 

WFARM 
0.2330 

(0.0070) 

0.2328 

(0.0011) 

0.2283 

(0.0071) 

0.2292 

(0.0060) 

0.2058 

(0.0044) 

PSO 
1.0162 

(0.0950) 

1.0331 

(0.0574) 

1.0357 

(0.0650) 

1.0119 

(0.0583) 

0.9908 

(0.0899) 

K-means 
2.3413 

(2.3505) 

2.9315 

(2.4566) 

2.9671 

(2.5302) 

3.7363 

(2.3653) 

3.4078 

(2.4518) 

Bisect K-means 
0.2393 

(0.1483) 

0.2876 

(0.2299) 

0.2998 

(0.1887) 

0.2715 

(0.2178) 

0.2698 

(0.2008) 

FAK-means 
0.1380 

(0.0026) 

0.1372 

(0.0027) 

0.1377 

(0.0039) 

0.1374 

(0.0035) 

0.1382 

(0.0035) 

BatK-means 
0.1369 

(0.0043) 

0.1560 

(0.0075) 

0.1698 

(0.0212) 

0.1775 

(0.0254) 

0.1721 

(0.0256) 

Note: the best value is highlighted in ‘bold’, standard deviation in (). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 6.14. Graphical representation of quality metrics: WFARM vs. PSO vs. K- 

means vs. Bisect K-means vs. FA K-means vs. BatK-means (a) Purity, (b) F-

measure, (c) Entropy, (d) ADDC, (e) DBI, and (f) DI. 
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This result indicates that WFARM is better than other methods. Figure 6.14.c shows 

the results of the average Entropy in a graphical representation of the mentioned 

methods. 

As shown in Table 6.8, K-means is better than the others methods to generate a 

smaller average ADDC in most iterations. Furthermore, it can be noticed that 

WFARM is best as compared to hybrid methods, FAK-means and BatK-mean, in 

producing a smaller ADDC value, where the best average ADDC is 1.4263 produced 

by WFARM normalized in iteration 20 with the number of clusters 3, while FAK-

means generates 1.4436 and BatK-mean generates 1.4563 in the same iteration. This 

result means that WFARM is best to generate the right number of clusters with the 

highest performance (lower ADDC) against hybrid methods. Figure 6.14.d shows a 

plotted graph of the average ADDC result of WFARM, PSO, K-means, Bisect K-

means, FAK-means and BatK-means. 

For DBI metrics, in Table 6.8 notices that PSO is best to generate smaller DBI 

values against other methods, where the best average DBI value is 1.6472 in iteration 

20. It can be seen that WFARM is best to generate smaller average DBI values against 

Bisect K-means in most iterations (refer to iterations 1, 2, 5 and 10) and better than 

hybrid methods, FAK-means and BatK-means, in all iterations, where the best value 

generated by WFARM in iteration 20 is 9.2225, whilst FAK-means is 14.2158 and 

BatK-means is 10.9907. Figure 6.14.e illustrates the average DBI results of six 

methods represented in a graphical representation. 
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For DI metrics, Table 6.8 reports the DI value of six methods in different iterations. 

As can be seen in the table, K-means is better than other methods in generating the 

highest DI value in all iterations, followed by PSO, Bisect K-means, and WFARM 

which is better than FAK-means and BatK-means, where the best average DI is 

0.2058 generated by WFARM in iteration 20, while FAK-means generates 0.1382, 

and BatK-means is 0.1721. Figure 6.14.c illustrates the average DI result in a 

graphical representation of six methods: WFARM, PSO, K-means, Bisect K-means, 

FAK-means, and BatK-means.  

The previous results indicate that WFARM generates the best quality results in 

external metrics against all static methods as shown in Table 6.9, while, for the 

internal and relative metrics, the algorithm is generated best quality results against 

FAK-means and BatK-means as shown in Table 6.10. 

Table 6.9 

Summary of external quality performance results: WFARM vs. PSO vs. K-means vs. 

Bisect K-means vs. FAK-means vs. BatK-means. 

Algorithms 
External Metrics 

Purity F-measure Entropy 

WFARM       

PSO    

K-means    

Bisect K-means    

FAK-means    

BatK-means    
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Table 6.10 

Summary of internal and relative quality performance results: WFARM vs. PSO vs. 

K-means vs. Bisect K-means vs. FAK-means vs. BatK-means. 

Algorithms 
Internal and Relative Metrics 

ADDC DBI DI 

WFARM       

FAK-means    

BatK-means    

6.3.2.3 Independent Samples T-test between WFARM and Static Methods 

In Table 6.11, the associated P-value (2-tailed test) is illustrated. Since the P-value 

between WFARM and any other methods is smaller than (0.05), the null hypothesis is 

rejected as the mean in any metrics for WFARM and any static methods is the same, 

and thus, the alternative hypothesis is accepted to conclude that there is a significant 

difference in the mean of any metric for WFARM and any static methods.  

Table 6.11 

The P-value between WFARM & static methods. 

Algorithms 

P-value using average Purity (sig 2 tailed) 

Equal variances 

assumed 

Equal variances not 

assumed 

WFARM and PSO 1.1679E-45 2.2618E-30 

WFARM and K-means 1.3371E-17 6.4988E-13 

WFARM and Bisect K-means 3.5568E-33 4.3610E-22 

WFARM and FAK-means 2.2263E-49 4.9800E-36 

WFARM and BatK-means 1.5587E-13 1.4414E-10 

 
P-value using average F-measure(sig 2 

tailed) 

WFARM and PSO 2.3898E-54 1.0052E-44 
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Table 6.11 continued   

WFARM and K-means 8.5237E-69 1.5193E-60 

WFARM and Bisect K-means 4.4436E-33 2.0948E-22 

WFARM and FAK-means 2.6931E-72 3.5099E-72 

WFARM and BatK-means 2.1750E-13 1.2784E-10 

 P-value using average Entropy (sig 2 tailed) 

WFARM and PSO 8.9082E-52 1.8034E-37 

WFARM and K-means 2.2156E-72 3.4567E-70 

WFARM and Bisect K-means 2.0342E-37 5.8592E-25 

WFARM and FAK-means 2.8653E-78 1.8479E-47 

WFARM and BatK-means 3.4760E-09 9.5530E-08 

 P-value using average ADDC (sig 2 tailed) 

WFARM and PSO 3.6977E-19 8.2027E-14 

WFARM and K-means 1.3371E-17 6.4988E-13 

WFARM and Bisect K-means 0.0313400 0.0354400 

WFARM and FAK-means 2.2263E-49 4.9800E-36 

WFARM and BatK-means 1.5587E-13 1.4414E-10 

 P-value using average DBI (sig 2 tailed) 

WFARM and PSO 3.8237E-77 5.1042E-69 

WFARM and K-means 2.7754E-22 1.2587E-15 

WFARM and Bisect K-means 0.0050800 0.00681500 

WFARM and FAK-means 2.7274E-62 3.3236E-50 

WFARM and BatK-means 3.3339E-8 5.3186E-7 

 P-value using average DI (sig 2 tailed) 

WFARM and PSO 2.9919E-48 3.1977E-29 

WFARM and K-means 2.5542E-9 9.7372E-8 

WFARM and Bisect K-means 0.0918500 0.0971700 

WFARM and FAK-means 4.6142E-56 5.6757E-54 

WFARM and BatK-means 2.0596E-9 6.0452E-8 

Hint: The value highlighted in bold indicates not significance.  

The P-value between WFARM and Bisect K-means (bold value in Table 6.11), which 

is (0.09185 and 0.09717), is larger than (0.05), which means the mean DI metric for 
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WFARM and Bisect K-means method are the same (accepting the null hypothesis in 

this situation). 

6.3.3 Comparison between WFARM and Dynamic Methods  

This section includes the evaluation of WFARM against two dynamic methods: 

Practical General Stochastic Clustering Method (PGSCM) (Tan, Ting, & Teng, 

2011a), and Dynamic Hybrid Genetic algorithm with Particle Swarm Optimization 

(DCPG) (Kuo, Syu, Chen, & Tien, 2012). The evaluation process is conducted in 

three parts: the comparison of the number of generated clusters in the methods, the 

comparison between WFARM with PGSCM and DCPG by performance metrics such 

as Purity, F-measure, Entropy, ADDC, DBI, and DI, and the last evaluation part is 

the comparison between WFARM with PGSCM and DCPG by statistical approach 

(Independent samples T-test).  

6.3.3.1 Number of Clusters between WFARM and Dynamic Methods 

Table 6.12 displays the average number of clusters automatically generated by 

WFARM, PGSCM and DCPG without any information support about the dataset.  

Table 6.12 

Average number of clusters: WFARM vs. PGSCM vs. DCPG. 

 

 

Average number 

of clusters 

 

Algorithms 

WFARM  PGSCM    DCPG 

3 6.13 ≈ 6 8.27 ≈ 8 

Note: the best value is highlighted in ‘bold’ 
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As can be seen in Table 6.12, the average number of clusters produced by WFARM in 

iteration 20 is near the natural number of clusters in other algorithms, while PGSCM 

produces 6.13 and DCPG produces 8.27. This result means that WFARM is better 

than PGSCM and DCPG. 

6.3.3.2 Performance Metrics between WFARM and Dynamic Methods 

In this section, WFARM is evaluated against two dynamic methods named PGSCM 

and DCPG. The evaluation is carried using external quality metrics such as Purity, F-

measure, and Entropy, and using internal and relative quality metrics such as ADDC, 

DBI, and DI. Table 6.13 shows the external quality metrics of clustering. 

Table 6.13 

External quality metrics of clustering and standard deviation: WFARM vs. PGSCM 

vs. DCPG.  

E
x
te

rn
a
l 

M
et

ri
cs

 

Metrics 
Algorithms 

WFARM PGSCM DCPG 

Purity 0.7948 (0.0132) 0.3948 (0.0172) 0.4243 (0.0783) 

F-measure 

 

0.7997 (0.0129) 

[0.8047, 0.7948] 

 

0.3406 (0.0421) 

[0.2995, 0.3948] 

 

0.5003 (0.5003) 

[0.6095, 0.4243] 

Entropy 0.7827 (0.0267) 1.5584 (0.0122) 1.4532 (0.1016) 

    Note: the best value is highlighted in ‘bold’, standard deviation in (), average precision 

and average recall in []. 

As shown in Table 6.13, the WFARM algorithm generates the highest average purity 

compared with PGSCM and DCPG. The best average purity value is 0.7948 

generated by WFARM in iteration 20, while DCPG generates 0.4243 in the same 

iteration and PGSCM generates the worst value 0.3948. The overall standard 

deviation of the WFARM algorithm in iteration 20 is smaller than PGSCM and 
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DCPG, which means that the solution generated by WFARM is more reliable and 

high in robustness. Figure 6.15 shows a plotted graph of the external quality metrics: 

average purity, average F-measure, and average Entropy results of WFARM, PGSCM 

and DCPG. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15. External quality metrics: WFARM vs. PGSCM vs. DCPG 

For F-measure metric, it can observed in Table 6.13 that WFARM generates the 

highest average F-measure of 0.7997, higher average precision of 0.8047, and  

higher average recall of 0.7948 against PGSCM and DCPG, where they generate an 

average F-measure of 0.3406 and 0.5003, respectively. The overall standard 

deviation of the WFARM algorithm is 0.0129, smaller than PGSCM which is 0.0421 

and smaller than DCPG which is 0.5003. It can be concluded that the solution 

generated by WFARM is more reliable and high in robustness.  
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Furthermore, in Table 6.13, it can be seen that the Entropy of WFARM is better 

(smaller) than PGSCM and DCPG, where the best average Entropy is 0.7827 

outputted by WFARM, whereas, PGSCM and DCPG produced 1.5584 and 1.4532, 

respectively. The highest value of Purity and F-measure and the lower value of 

Entropy means the best clustering algorithm (Forsati, Mahdavi, Shamsfard, & 

Meybodi, 2013; Murugesan & Zhang, 2011a, 2011b); and it can be concluded from 

the previous result that WFARM is the best as compared to PGSCM and DCPG in 

external quality metrics.  

Table 6.14 includes the internal and relative quality metrics for the three methods: 

WFARM, PGSCM, and DCPG.  

Table 6.14 

Internal and relative quality metrics of clustering and standard deviation: WFARM 

vs. PGSCM vs. DCPG. 

In
te

rn
a
l 

&
 

R
el

a
ti

v
e 

M
et

ri
cs

 

Metrics 
Algorithms 

WFARM PGSCM    DCPG 

ADDC 1.4263 (0.0018) 1.7440 (0.0159) 0.7459 (0.2123) 

DBI 9.2225 (0.1518) 2.6506 (0.1160) 2.8584 (1.4431) 

DI 0.2058 (0.0044) 0.6302 (0.0455) 0.4328 (0.2085) 

    Note: the best value is highlighted in ‘bold’, standard deviation in (). 

As shown in Table 6.14, the WFARM algorithm generates a lower average ADDC 

compared to PGSCM, while DCPG produces a lower average ADDC compared 

against WFARM and PGSCM. The best average ADDC value is 0.7459 generated by 

DCPG, followed by WFARM which produces 1.4263 in iteration 20, followed by 

PGSCM which generates the worst value of 1.7440. The overall standard deviation 
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of the WFARM algorithm is 0.0018, smaller than PGSCM and DCPG, which they 

have a standard deviation of 0.0159 and 0.2123, respectively; this result indicates 

that the solution generated by WFARM is more reliable and high in robustness. Figure 

6.16 shows a plotted graph of the internal and relative quality metrics, average 

ADDC, average DBI and average DI results, of WFARM, PGSCM and DCPG. 

 

 

 

 

 

 

 

 

Figure 6.16. Internal and relative quality metrics: WFARM vs. PGSCM vs. DCPG  

For DBI quality metric, in Table 6.14, it is noticed that PGSCM is the best to 

generate a smaller DBI value against WFARM and DCPG methods, where the best 

average DBI value is 2.6506 outputted by PGSCM, while WFARM produces the 

worst value of 9.2225 and DCPG produces 2.8584. The overall standard deviation of 

the WFARM algorithm is 0.1518 smaller than DCPG which has a standard deviation 

of 1.4431; however, PGSCM has the smallest standard deviation of 0.1160 than 
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WFARM and DCPG. This result indicates that PGSCM is more accurate despite of 

the number of generated clusters is 6.13, which is higher than the actual number of 

clusters.  

As can be seen in Table 6.14, the average DI value for PGSCM is 0.6302. It is larger 

than the DI value of WFARM which is 0.2058 and the DI value of DCPG which is 

0.4328. The overall standard deviation of the WFARM algorithm is 0.0044, smaller 

than DCPG which has a standard deviation of 0.2085 and PGSCM has a standard 

deviation of 0.0455. Lower ADDC and DBI values and larger DI value indicates the 

best clustering algorithm.  

The previous results indicate that WFARM generates the best quality results in 

external performance metrics, Purity, F-measure and Entropy, against all dynamic 

methods, PGSCM and DCPG, as shown in Table 6.15. While, for the internal and 

relative metrics of ADDC, DBI and DI, the DCPG generates the best ADDC quality 

results and PGSCM generates the best DBI and DI.  

Table 6.15 

Summary of quality performance results: WFARM vs. PGSCM vs. DCPG. 

Algorithms 
External Metrics Internal and Relative Metrics 

Purity F-measure Entropy ADDC DBI DI 

WFARM          

PGSCM          

DCPG        
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6.3.3.3 Independent Samples T-test between WFARM and Dynamic Methods  

This section includes the analysis of Independent Samples T-test between WFARM 

and PGSCM, and between WFARM and DCPG methods as shown in Table 6.16.  

Table 6.16 

The P-value between WFARM & dynamic methods. 

Algorithms 

P-value using average Purity (sig 2 tailed) 

Equal variances 

assumed 

Equal variances not 

assumed 

WFARM and PGSCM  6.0521E-67 1.5895E-63 

WFARM and DCPG 2.9644E-33 3.2203E-22 

 P-value using average F-measure(sig 2 tailed) 

WFARM and PGSCM  1.1457E-52 1.2077E-35 

WFARM and DCPG 1.9432E-46 1.4369E-33 

 P-value using average Entropy (sig 2 tailed) 

WFARM and PGSCM  6.9327E-76 9.2948E-57 

WFARM and DCPG 1.1415E-40 1.1919E-27 

 P-value using average ADDC (sig 2 tailed) 

WFARM and PGSCM  1.0321E-68 3.3946E-40 

WFARM and DCPG 7.1148E-25 5.4648E-17 

 P-value using average DBI (sig 2 tailed) 

WFARM and PGSCM  1.5079E-82 4.3476E-78 

WFARM and DCPG 7.8719E-32 5.5106E-21 

 P-value using average DI (sig 2 tailed) 

WFARM and PGSCM  7.8781E-50 2.4346E-30 

WFARM and DCPG 1.5863E-07 1.7713E-06 

 

The hypotheses for Independent Samples T-test can be expressed in mathematical 

equivalents. 
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Null hypothesis H0: M(WFARM) = M(any dynamic methods) 

Alterative hypothesis H1: M(WFARM) ≠ M(any dynamic methods) 

Where, M(WFARM), M(any dynamic methods) are the means of the population for 

WFARM method and any dynamic method.  

In Table 6.16, the associated P-value (2-tailed test) is reported. Since the P-value 

between WFARM and PGSCM, and between WFARM and DCPG methods is smaller 

than (0.05), the null hypothesis is rejected so that the mean of any metrics for 

WFARM and any dynamic methods are the same and the alternative hypothesis is 

accepted to conclude that there is a significant difference in the mean of any metric 

for WFARM and any dynamic methods.  

6.4 Summary 

This chapter presented the proposed Adaptive Firefly Algorithm for text clustering, 

termed as WFARM. The aim of incorporating the clusters merging procedure is to 

minimize the number of clusters produced by WFAR. The cluster merging algorithm 

includes two steps: merge clusters and refine merged clusters.  

Three experiments are conducted in this chapter: 1) Comparison between WFARM 

and WFAR, 2) Comparison between the proposed WFARM and statics clustering 

methods such as K-means, PSO, Bisect K-means, FAK-means and BatK-means, 3) 

The performance of the proposed WFARM against dynamic clustering methods such 

as DCPG and PGSCM.  
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In addition, the analyses of paired samples T-test between WFARM with WFAR and 

Independent Samples T-test between WFARM and state-of-the-art methods are also 

performed. 
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CHAPTER SEVEN 

EVALUATION OF ADAPTIVE FA ON VARIOUS DATASETS  

7.1 Introduction 

This chapter includes the evaluation and analysis of the proposed adaptive firefly 

algorithm, termed as WFARM. The experiments were conducted on datasets with 

different sizes (balanced and un-balanced).  

A comparison is made between WFARM and state-of-the-art methods (static and 

dynamic methods). Each comparison consists of three evaluation parts: the 

evaluation of produced number of clusters, the evaluation of performance metrics, 

namely external, internal and relative metrics such as Purity, F-measure, Entropy, 

ADDC, DBI and DI, and the third part of evaluation is a statistical analysis of 

Independent Samples T-test (Ross, 2010). 

7.2 Comparison WFARM with Static Methods  

This section involves a comparison between the WFARM algorithm with some state-

of-the-art methods (static methods), Particle Swarm Optimization (PSO), K-means, 

Bisect K-means, Hybrid Firefly algorithm with K-means (FAK-means), and Hybrid 

Bat algorithm with K-means (BatK-means). The comparison includes the evaluation 

of produced number of clusters, the evaluation using performance external, internal 

and relative metrics such as Purity, F-measure, Entropy, ADDC, DBI and DI, and the 

evaluation using a statistical analysis of Independent Samples T-test (Ross, 2010) 

that performs on the differences between the pairs, WFARM and other methods (static 

methods).  
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7.2.1 Evaluation Number of Clusters between WFARM and Static Methods 

The purpose of this comparison is to examine the k number of cluster automatically 

generated by the proposed WFARM algorithm, and compare it with other static 

methods that provide the number of k cluster. Table 7.1 displays the average number 

of clusters automatically generated by WFARM (set the number of iterations equal to 

20) using different datasets.  

Table 7.1 

Average numbers of clusters: WFARM vs. PSO vs. K-means vs. Bisect K-means vs. 

FAK-means vs. BatK-means using different datasets. 

Datasets 

Number of clusters of algorithms 

WFARM PSO K-means 
Bisect  

K-means 

FAK-

means 

BatK-

means 

Reuters 

(300 documents 

and 6 classes) 

6 6 6 6 6 6 

TR11 

(414 documents 

and 9 classes) 

9.27 ≈ 9 9 9 9 9 9 

TR12 

(313 documents 

and 8 classes) 

8  8 8 8 8 8 

TR23 

(204 documents 

and 6 classes) 

6.07≈ 6 6 6 6 6 6 

TR45 

(690 documents 

and 10 classes) 

9.83≈ 10 10 10 10 10 10 

As can be seen in Table 7.1, the number of clusters produced by the proposed 

WFARM is 6 using the Reuters dataset, is 9.27 using TR11, is 8 using TR12, is 6.07 

using TR23, and is 9.83 using TR45. The percentage of success to obtain a near 
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natural number of clusters in the proposed WFARM is 100 %. Figure 7.1 shows the 

results of the number of obtained clusters by WFARM and the real number of clusters 

of all static methods. 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. Results of the number of generated clusters by WFARM and the real 

number of clusters of all static methods 

7.2.2 Evaluation of Performance Metrics between WFARM and Static Methods 

In this section, the performance results of WFARM are compared against two types of 

static methods; single methods such as Particle Swarm Optimization (PSO) (Cui, 

Potok, & Palathingal, 2005), K-means (Jain, 2010), and Bisect K-means (Murugesan 

& Zhang, 2011a, 2011b), and hybrid methods are such as Hybrid Firefly algorithm 

with K-means (FAK-means) (Tang, Fong, Yang, & Deb, 2012), and Hybrid Bat 

algorithm with K-means (BatK-means) (Tang, Fong, Yang, & Deb, 2012). The 

purpose of this comparison is to investigate the effectiveness of the non-determined 

k number of cluster in the WFARM algorithm in producing quality clusters, even 

though it has not been provided the same support as the other algorithms that require 
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Table 7.2 

External quality Purity (average, best, worst, standard deviation): WFARM vs. PSO 

vs. K-means vs. Bisect K-means vs. FA K-means vs. BatK-means using different 

datasets (balanced and un-balanced datasets). 

Datasets Algorithms 
Average 

Purity 

Best 

Purity 

Worst 

Purity 

Standard 

Deviation 

Reuters 

(300 documents 

and 6 classes) 

 

WFARM 0.7351 0.7433 0.7300 0.0051 

PSO 0.3389 0.5033 0.2167 0.0791 

K-means 0.3270 0.5267 0.2000 0.0692 

Bisect K-means 0.4073 0.6033 0.2100 0.1065 

FAK-means 0.2361 0.2567 0.2200 0.0098 

BatK-means 0.6514 0.7733 0.5200 0.0667 

Datasets Algorithms Average 

Purity 

Best 

Purity 

Worst 

Purity 

Standard 

Deviation 

 

TR11 

(414 documents 

and 9 classes) 

WFARM 0.6810 0.7246 0.6594 0.0224 

PSO 0.4159 0.5290 0.3237 0.0622 

K-means 0.3860 0.5290 0.3188 0.0722 

Bisect K-means 0.5333 0.7778 0.3720 0.1004 

FAK-means 0.3239 0.3430 0.3188 0.0060 

BatK-means 0.6657 0.7899 0.3961 0.0793 

Datasets Algorithms Average 

Purity 

Best 

Purity 

Worst 

Purity 

Standard 

Deviation 

 

TR12 

(313 documents 

and 8 classes) 

WFARM 0.4752 0.4760 0.4696 0.0022 

PSO 0.3891 0.5911 0.3163 0.0672 

K-means 0.4370 0.6038 0.3163 0.0827 

Bisect K-means 0.4850 0.5847 0.3195 0.0629 

FAK-means 0.3013 0.3259 0.2971 0.0065 

BatK-means 0.5808 0.6997 0.4760 0.0639 

Datasets Algorithms Average 

Purity 

Best 

Purity 

Worst 

Purity 

Standard 

Deviation 

 

TR23 

(204 documents 

and 6 classes) 

WFARM 0.6266 0.6324 0.6176 0.0032 

PSO 0.5444 0.6569 0.4608 0.0503 

K-means 0.5451 0.6471 0.4657 0.0559 

Bisect K-means 0.5159 0.5441 0.4657 0.0239 

FAK-means 0.4495 0.4706 0.4461 0.0072 

BatK-means 0.5956 0.7059 0.5245 0.0524 

Datasets Algorithms Average 

Purity 

Best 

Purity 

Worst 

Purity 

Standard 

Deviation 

 

TR45 

(690 documents 

and 10 classes) 

WFARM 0.6355 0.6609 0.5812 0.0161 

PSO 0.3277 0.4986 0.2406 0.0592 

K-means 0.4416 0.6348 0.2580 0.0988 

Bisect K-means 0.4280 0.6609 0.2449 0.1059 

FAK-means 0.2422 0.2580 0.2348 0.0056 

BatK-means 0.6083 0.7594 0.4580 0.0789 

Note: the best value is highlighted in ‘bold’. 

a predefined number of k clusters. 
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As shown in Table 7.2, the WFARM algorithm generates the highest average purity in 

most datasets, balanced and un-balanced datasets (refer to Reuters, TR11, TR23 and 

TR45) compared to other algorithms, where the average purity value is 0.7351 

generated by WFARM in the Reuters dataset, is 0.6810 in TR11 dataset, is 0.6266 in 

TR23 dataset, and is 0.6355 in TR45 dataset, while, BatK-means generates the 

highest average purity of 0.5808 in the TR12 dataset. In addition, the overall 

standard deviation of the WFARM algorithm is smaller than other methods in most 

datasets. This result indicates that the solution generated by WFARM is more reliable 

and high in robustness. The percentage of success to obtain the highest purity is 80% 

by WFARM. Figure 7.2 illustrates the purity result in a graphical representation of the 

methods: WFARM, PSO, K-means, Bisect K-means, FAK-means, and BatK-means. 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. Average Purity results: WFARM vs. PSO vs. K-means vs. Bisect K-

means vs. FA K-means vs. BatK-means using different datasets 
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Table 7.3 

External quality F-measure (average, best, worst, standard deviation): WFARM vs. 

PSO vs. K-means vs. Bisect K-means vs. FA K-means vs. BatK-means using different 

datasets. 

Datasets Algorithms 
Average F-measure 

[precision, Recall] 

Best  

F-measure 

Worst  

F-measure 

Standard 

Deviation 

Reuters 

(300 

documents 

and 6 

classes) 

WFARM  0.7069 [0.6808, 0.7351] 0.7138 0.7022 0.0045 

PSO 0.3536 [0.3696, 0.3389] 0.5152 0.2766 0.0720 

K-means 0.3531 [0.3837, 0.3270] 0.4870 0.2770 0.0705 

Bisect K-means 0.4339 [0.4642, 0.4073] 0.6703 0.2749 0.1048 

FAK-means 0.2357 [0.2353, 0.2361] 0.2569 0.2095 0.0108 

BatK-means 0.6260 [0.6025, 0.6514] 0.7780 0.5049 0.0722 

Datasets Algorithms Average F-measure 

[precision, Recall] 

Best  

F-measure 

Worst  

F-measure 

Standard 

Deviation 

TR11 

(414 

documents 

and 9 

classes) 

WFARM 0.5631 [0.4800, 0.6810] 0.6547 0.4615 0.0520 

PSO 0.3620 [0.3205, 0.4159] 0.4906 0.2723 0.0651 

K-means 0.3627 [0.3421, 0.3860] 0.5273 0.2990 0.0769 

Bisect K-means 0.4869 [0.4479, 0.5333] 0.7366 0.2677 0.1069 

FAK-means 0.1916 [0.1360, 0.3239] 0.2119 0.1731 0.0098 

BatK-means 0.5780 [0.5107, 0.6657] 0.7509 0.3225 0.0884 

Datasets Algorithms Average F-measure 

[precision, Recall] 

Best  

F-measure 

Worst  

F-measure 

Standard 

Deviation 

TR12 

(313 

documents 

and 8 

classes) 

WFARM 0.3649 [0.2962, 0.4752] 0.3676 0.3467 0.0071 

PSO 0.3305 [0.2872, 0.3891] 0.4953 0.2608 0.0630 

K-means 0.3856 [0.3450, 0.4370] 0.5861 0.2458 0.0954 

Bisect K-means 0.4468 [0.4142, 0.4850] 0.5630 0.3161 0.0651 

FAK-means 0.2037 [0.1539, 0.3013] 0.2233 0.1833 0.0104 

BatK-means 0.5463 [0.5157, 0.5808] 0.6750 0.4270 0.0714 

Datasets Algorithms Average F-measure 

[precision, Recall] 

Best  

F-measure 

Worst  

F-measure 

Standard 

Deviation 

TR23 

(204 

documents 

and 6 

classes) 

WFARM 0.4337 [0.3316, 0.6266] 0.4460 0.4024 0.0089 

PSO 0.4277 [0.3522, 0.5444] 0.6158 0.3439 0.0678 

K-means 0.4286 [0.3531, 0.5451] 0.5682 0.3436 0.0575 

Bisect K-means 0.4068 [0.3358, 0.5159] 0.4544 0.3749 0.0210 

FAK-means 0.2727 [0.1957, 0.4495] 0.3377 0.2398 0.0199 

BatK-means 0.4573 [0.3711, 0.5956] 0.5890 0.3275 0.0699 

Datasets Algorithms Average F-measure 

[precision, Recall] 

Best  

F-measure 

Worst  

F-measure 

Standard 

Deviation 

TR45 

(690 

documents 

and 10 

classes) 

WFARM 0.5031 [0.4164, 0.6355]  0.5489 0.4314 0.0227 

PSO 0.2772 [0.2402, 0.3277] 0.4063 0.2246 0.0539 

K-means 0.3772 [0.3292, 0.4416]  0.5845 0.2186 0.1046 

Bisect K-means 0.4017 [0.3785, 0.4280] 0.6224 0.2394 0.1064 

FAK-means 0.1658 [0.1260, 0.2422] 0.1825 0.1560 0.0080 

BatK-means 0.5448 [0.4933, 0.6083] 0.7059 0.3445 0.0893 

Note: the best value is highlighted in ‘bold’, average precision and average recall in []. 
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For F-measure metric, as can be seen in Table 7.3, the WFARM algorithm generates 

the highest average F-measure (higher precision and recall) in the balanced dataset 

(Reuters dataset) compared against other methods. In the TR11, TR23 and TR45 

datasets, WFARM generates the highest F-measure (higher precision and recall)  

compared to all methods excluding the BatK-means method that generates the 

highest F-measure in most datasets (refer to TR11, TR12, TR23 and TR45). The 

overall standard deviation of the WFARM algorithm is smaller than other methods in 

most datasets, which indicates that the solution generated by WFARM is more 

reliable and high in robustness. The percentage of success to obtain the highest F-

measure is 20% by WFARM against the BatK-means method and 80% against other 

methods. Figure 7.3 demonstrates the result of the average F-measure in a pictorial 

representation of WFARM PSO, K-means, Bisect K-means, FAK-means, and BatK-

means. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3. Average F-measure result: WFARM vs. PSO vs. K-means vs. Bisect K-

means vs. FA K-means vs. BatK-means using different datasets 

 



 

 195 

Table 7.4 

External quality Entropy (average, best, worst, standard deviation): WFARM vs. PSO 

vs. K-means vs. Bisect K-means vs. FAK-means vs. BatK-means using different 

datasets. 

Datasets Algorithms 
Average  

Entropy 

Best  

Entropy 

Worst  

Entropy 

Standard 

Deviation 

Reuters 

(300 

documents 

and 6 classes) 

 

WFARM 1.0420 1.0044 1.0653 0.0258 

PSO 2.1709 1.8116 2.4480 0.1797 

K-means 2.0872 1.4561 2.5022 0.2450 

Bisect K-means 1.8843 1.2484 2.4687 0.3393 

FAK-means 2.5205 2.4831 2.5500 0.0161 

BatK-means 1.2260 0.7787 1.6723 0.2145 

Datasets Algorithms Average  

Entropy 

Best  

Entropy 

Worst  

Entropy 

Standard 

Deviation 

TR11 

(414 

documents 

and 9 classes) 

WFARM 1.2584 1.0489 1.3384 0.0798 

PSO 2.2701 1.9254 2.5870 0.1948 

K-means 2.3809 1.7211 2.7022 0.3310 

Bisect K-means 1.7906 0.9504 2.4933 0.3271 

FAK-means 2.5788 2.5465 2.6085 0.0166 

BatK-means 1.3774 0.9481 2.0766 0.2525 

Datasets Algorithms Average  

Entropy 

Best  

Entropy 

Worst  

Entropy 

Standard 

Deviation 

TR12 

(313 

documents 

and 8 classes) 

WFARM 1.9200 1.9154 1.9531 0.0119 

PSO 2.3761 1.7145 2.6743 0.2435 

K-means 2.1587 1.4495 2.6577 0.3273 

Bisect K-means 1.9298 1.4824 2.4222 0.2317 

FAK-means 2.6492 2.6103 2.6984 0.0238 

BatK-means 1.5966 1.3047 1.9511 0.2124 

Datasets Algorithms Average  

Entropy 

Best  

Entropy 

Worst  

Entropy 

Standard 

Deviation 

TR23 

(204 

documents 

and 6 classes) 

WFARM 1.4980 1.4295 1.5306 0.0198 

PSO 1.7316 1.3594 1.9449 0.1332 

K-means 1.7211 1.3142 1.9014 0.1445 

Bisect K-means 1.8156 1.7402 1.8938 0.0706 

FAK-means 1.9890 1.9224 2.0324 0.0254 

BatK-means 1.5146 1.2221 1.7800 0.1656 

Datasets Algorithms Average  

Entropy 

Best  

Entropy 

Worst  

Entropy 

Standard 

Deviation 

TR45 

(690 

documents 

and 10 

classes) 

WFARM 1.6742 1.5923 1.7450 0.0434 

PSO 2.6552 2.1542 2.9531 0.2053 

K-means 2.2262 1.4110 2.9282 0.4016 

Bisect K-means 2.2180 1.5735 2.9614 0.3370 

FAK-means 2.9417 2.9162 2.9650 0.0124 

BatK-means 1.6049 1.1448 2.1046 0.2625 

Note: the best value is highlighted in ‘bold’. 
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In Table 7.4, it is reported the average Entropy value, best Entropy value, worst 

Entropy value and standard deviation of thirty executions for WFARM, PSO, K-

means, Bisect K-means, FAK-means, and BatK-means. As shown in the table, the 

average Entropy of WFARM is smaller than other methods in most datasets (refer to 

Reuters, TR11 and TR23), while BatK-means generates the best Entropy (minimum 

value) in the TR12 and TR45 datasets. The overall standard deviation of the WFARM 

algorithm is smaller than other methods in most datasets (refer to TR12 and TR23) 

which means the solution generated by WFARM is more reliable and high in 

robustness. The percentage of success to obtain a lower Entropy is 60% by WFARM 

against BatK-means method and 100% against other methods. Figure 7.4 shows the 

result of the average Entropy in a graphical representation of WFARM, PSO, K-

means, Bisect K-means, FAK-means, and BatK-means. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4. Average Entropy result: WFARM vs. PSO vs. K-means vs. Bisect K-

means vs. FA K-means vs. BatK-means using different datasets. 
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Table 7.5 

Internal quality ADDC (average, best, worst, standard deviation): WFARM vs. PSO 

vs. K-means vs. Bisect K-means vs. FAK-means vs. BatK-means using different 

datasets. 

Datasets Algorithms 
Average  

ADDC 

Best  

ADDC 

Worst  

ADDC 

Standard 

Deviation 

Reuters 

(300 documents 

and 6 classes) 

 

WFARM 1.1786 1.1737 1.1807 0.0027 

PSO 1.3637 0.9185 1.5835 0.1775 

K-means 0.7317 0.3505 1.1354 0.1769 

Bisect K-means 0.9847 0.6169 1.3227 0.1423 

FAK-means 1.2206 1.2137 1.2240 0.0023 

BatK-means 1.3018 1.1162 1.3884 0.0517 

Datasets Algorithms Average  

ADDC 

Best  

ADDC 

Worst  

ADDC 

Standard 

Deviation 

TR11 

(414 documents 

and 9 classes) 

WFARM 0.8293 0.8198 0.8529 0.0088 

PSO 0.7293 0.4713 0.9598 0.1301 

K-means 0.5355 0.0977 0.9981 0.3026 

Bisect K-means 0.7109 0.4604 0.8667 0.0935 

FAK-means 0.8709 0.8677 0.8728 0.0012 

BatK-means 1.0203 0.7509 1.1085 0.0680 

Datasets Algorithms Average  

ADDC 

Best  

ADDC 

Worst  

ADDC 

Standard 

Deviation 

TR12 

(313 documents 

and 8 classes) 

WFARM 0.7928 0.7821 0.7942 0.0033 

PSO 0.7366 0.356 1.0787 0.1902 

K-means 0.5478 0.3172 0.7796 0.1244 

Bisect K-means 0.7264 0.4565 0.9008 0.1231 

FAK-means 0.8820 0.8785 0.8850 0.0012 

BatK-means 0.9822 0.7064 1.1904 0.1190 

Datasets Algorithms Average  

ADDC 

Best  

ADDC 

Worst  

ADDC 

Standard 

Deviation 

TR23 

(204 documents 

and 6 classes) 

WFARM 0.6527 0.6407 0.6559 0.0030 

PSO 0.7542 0.5855 0.9681 0.0966 

K-means 0.4335 0.2660 0.6187 0.0795 

Bisect K-means 0.5079 0.4166 0.7092 0.0644 

FAK-means 0.7406 0.7346 0.7447 0.0020 

BatK-means 0.8897 0.6039 1.0372 0.1305 

Datasets Algorithms Average  

ADDC 

Best  

ADDC 

Worst  

ADDC 

Standard 

Deviation 

TR45 

(690 documents 

and 10 classes) 

WFARM 0.9448 0.9284 0.9503 0.0068 

PSO 0.8453 0.4458 1.1363 0.1599 

K-means 0.6297 0.3120 0.8525 0.1209 

Bisect K-means 0.8030 0.6266 1.0189 0.1169 

FAK-means 0.9993 0.9971 1.0013 0.0009 

BatK-means 1.1668 0.8785 1.3934 0.1270 

Note: the best value is highlighted in ‘bold’. 
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Table 7.5 includes the quality performance results of internal metric ADDC for six 

algorithms, namely WFARM, PSO, K-means, Bisect K-means, FAK-means, and 

BatK-means. All algorithms are implemented in the same environment and are run 

thirty times. As shown in the table, K-means is better than the others methods in 

generating the smaller average ADDC in all datasets, while the proposed WFARM 

generates a smaller ADDC against FAK-means and BatK-means in all types of 

dataset and a smaller ADDC against PSO only in the Reuters and TR23 datasets. 

This result means that WFARM is best to generate the right number of clusters with 

the highest performance (lower ADDC) against hybrid methods (refer to FAK-means 

and BatK-means). The percentage of success to obtain a lower ADDC is 100% by 

WFARM against hybrid methods, and 40% against the PSO method. Figure 7.5 shows 

a plotted graph of the average ADDC result for WFARM, PSO, K-means, Bisect K-

means, FAK-means, and BatK-means. 

 

 

 

 

 

 

 

 

 

 

Figure 7.5. Average ADDC result: WFARM vs. PSO vs. K-means vs. Bisect K-

means vs. FA K-means vs. BatK-means using different datasets 
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Table 7.6 

Relative quality DBI (Average, Best, Worst, standard deviation): WFARM vs. PSO vs. 

K-means vs. Bisect K-means vs. FA K-means vs. BatK-means using different 

datasets. 

Datasets Algorithms 
Average  

DBI 

Best  

DBI 

Worst  

DBI 

Standard 

Deviation 

Reuters 

(300 documents 

and 6 classes) 

 

WFARM 4.1820 4.1148 4.2540 0.0395 

PSO 1.6825 1.4268 1.9790 0.1461 

K-means 2.6385 1.4703 4.3945 0.7094 

Bisect K-means 3.7740 1.8275 5.1108 0.6847 

FAK-means 10.3502 9.8647 10.8133 0.2656 

BatK-means 5.9289 4.2084 8.8921 1.0682 

Datasets Algorithms Average  

DBI 

Best  

DBI 

Worst  

DBI 

Standard 

Deviation 

 

TR11 

(414 documents 

and 9 classes) 

WFARM 4.6518 4.4176 4.8660 0.1022 

PSO 1.6241 1.3495 2.1186 0.1725 

K-means 1.7858 0.1227 3.9547 0.7849 

Bisect K-means 3.8466 2.3599 5.1885 0.5293 

FAK-means 9.8927 9.6783 10.1788 0.1123 

BatK-means 6.5040 3.2826 8.9772 1.6546 

Datasets Algorithms Average  

DBI 

Best  

DBI 

Worst  

DBI 

Standard 

Deviation 

 

TR12 

(313 documents 

and 8 classes) 

WFARM 4.9590 4.8340 4.9750 0.0361 

PSO 1.5605 1.2371 1.9013 0.1733 

K-means 2.8110 1.6858 4.0169 0.7292 

Bisect K-means 4.0448 2.4865 5.3419 0.8268 

FAK-means 9.1618 8.8490 9.5123 0.1481 

BatK-means 6.0015 4.0032 9.9218 1.4734 

Datasets Algorithms Average  

DBI 

Best  

DBI 

Worst  

DBI 

Standard 

Deviation 

 

TR23 

(204 documents 

and 6 classes) 

WFARM 3.1373 3.0462 3.2194 0.0373 

PSO 1.7271 1.3798 3.5081 0.3786 

K-means 2.3197 1.5730 3.1529 0.4317 

Bisect K-means 2.0830 1.5591 3.3308 0.4410 

FAK-means 8.6446 7.7680 9.1920 0.2983 

BatK-means 4.4182 2.1310 7.2550 1.2898 

Datasets Algorithms Average  

DBI 

Best  

DBI 

Worst  

DBI 

Standard 

Deviation 

TR45 

(690 documents 

and 10 classes) 

WFARM 4.2858 4.1705 4.3443 0.0399 

PSO 1.6252 1.3379 1.9207 0.1258 

K-means 2.9692 1.3755 4.0272 0.6142 

Bisect K-means 3.5129 2.2107 4.5727 0.5629 

FAK-means 12.1014 11.8120 12.4824 0.1786 

BatK-means 6.7070 3.4809 10.9666 2.2131 

Note: the best value is highlighted in ‘bold’. 
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For DBI metrics, in Table 7.6, it is noticed that PSO is the best to generate a smaller 

DBI value against other methods in all datasets. Furthermore, it can be seen that 

WFARM is the best to generate a smaller average DBI value against hybrid methods 

FAK-means and BatK-means in balanced and un-balanced datasets, where the best 

value generated by WFARM is (4.1820, 4.6518, 4.9590, 3.1373 and 4.2858) in 

(Reuters, TR11, TR12, TR23 and TR45) respectively. The percentage of success to 

obtain a lower DBI is 100% by WFARM against hybrid methods. Figure 7.6 

illustrates the average DBI result of six methods; namely WFARM, PSO, K-means, 

Bisect K-means, FAK-means, and BatK-means represented in a graphical 

representation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6. Average DBI result: WFARM vs. PSO vs. K-means vs. Bisect K-means 

vs. FA K-means vs. BatK-means using different datasets. 
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Table 7.7 

Relative quality DI (average, best DI, worst DI, standard deviation): WFARM vs. 

PSO vs. K-means vs. Bisect K-means vs. FA K-means vs. BatK-means using different 

datasets. 

Datasets Algorithms 
Average  

DI 

Best  

DI 

Worst  

DI 

Standard 

Deviation 

Reuters 

(300 documents 

and 6 classes) 

 

WFARM 0.3909 0.3955 0.3642 0.0054 

PSO 0.9244 1.0712 0.7079 0.0842 

K-means 0.4432 0.6457 0.2494 0.1163 

Bisect K-means 0.3202 0.7293 0.2188 0.0999 

FAK-means 0.1776 0.1954 0.1623 0.0082 

BatK-means 0.2515 0.3459 0.1825 0.0361 

Datasets Algorithms Average  

DI 

Best  

DI 

Worst  

DI 

Standard 

Deviation 

TR11 

(414 documents 

and 9 classes) 

WFARM 0.3673 0.3770 0.3412 0.0096 

PSO 0.7479 0.9954 0.0959 0.1862 

K-means 0.4668 5.6201 0.0458 0.9887 

Bisect K-means 0.2613 0.5005 0.2074 0.0517 

FAK-means 0.1842 0.1947 0.1752 0.0052 

BatK-means 0.1624 0.3728 0.0911 0.0611 

Datasets Algorithms Average  

DI 

Best  

DI 

Worst  

DI 

Standard 

Deviation 

TR12 

(313 documents 

and 8 classes) 

WFARM 0.2857 0.2870 0.2816 0.0015 

PSO 0.8539 1.0377 0.6548 0.0737 

K-means 0.3971 0.8110 0.2245 0.1455 

Bisect K-means 0.2576 0.4154 0.1969 0.0474 

FAK-means 0.2004 0.2112 0.1910 0.0061 

BatK-means 0.1886 0.3186 0.1017 0.0523 

Datasets Algorithms Average  

DI 

Best  

DI 

Worst  

DI 

Standard 

Deviation 

TR23 

(204 documents 

and 6 classes) 

WFARM 0.4747 0.5046 0.4626 0.0109 

PSO 0.7205 1.0782 0.0822 0.2466 

K-means 0.5051 0.7027 0.3103 0.1009 

Bisect K-means 0.5954 0.7642 0.3497 0.1057 

FAK-means 0.2066 0.2317 0.1854 0.0105 

BatK-means 0.2824 0.5977 0.1281 0.1141 

Datasets Algorithms Average  

DI 

Best  

DI 

Worst  

DI 

Standard 

Deviation 

TR45 

(690 documents 

and 10 classes) 

WFARM 0.2824 0.2903 0.2719 0.0059 

PSO 0.7414 0.9313 0.5170 0.1065 

K-means 0.3419 0.6684 0.2448 0.0920 

Bisect K-means 0.2512 0.4020 0.1933 0.0544 

FAK-means 0.1501 0.1566 0.1396 0.0033 

BatK-means 0.1469 0.2685 0.0774 0.0517 

Note: the best value is highlighted in ‘bold’. 
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For DI metrics, Table 7.7 reports the DI value of six methods in balanced and un-

balanced datasets. As can be seen in Table 7.7, PSO is better than the other methods 

in generating the highest DI value in all datasets, while WFARM generates better than 

FAK-means and BatK-means, where the best average DI is (0.3909, 0.3673, 0.2857, 

0.4747 and 0.2824) in (Reuters, TR11, TR12, TR23 and TR45) respectively. The 

overall standard deviation of the WFARM algorithm is smaller than the other methods 

in most datasets (refer to Reuters and TR12). The percentage of success to obtain a 

high DI is 100% by WFARM against hybrid methods. This result means the solution 

is more reliable and high in robustness. Figure 7.7 illustrates the average DI result of 

the six methods represented in a graphical representation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7. Average DI result: WFARM vs. PSO vs. K-means vs. Bisect K-means vs. 

FA K-means vs. BatK-means using different datasets 
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Table 7.8 

Summary of quality performance results: WFARM vs. PSO vs. K-means vs. Bisect K-

means vs. FAK-means vs. BatK-means. 

Datasets Algorithms 
External Metrics Internal & Relative Metrics 

Purity F-measure Entropy ADDC DBI DI 

Reuters 

(300 

document

s and 6 

classes) 

WFARM          

PSO         

K-means        

Bisect K-means       

FAK-means       

BatK-means       

Datasets Algorithms Purity F-measure Entropy ADDC DBI DI 

TR11 

(414 

document

s and 9 

classes) 

WFARM         

PSO         

K-means        

Bisect K-means       

FAK-means       

BatK-means        

Datasets Algorithms Purity F-measure Entropy ADDC DBI DI 

TR12 

(313 

document

s and 8 

classes) 

WFARM         

PSO         

K-means        

Bisect K-means       

FAK-means       

BatK-means        

Datasets Algorithms Purity F-measure Entropy ADDC DBI DI 

TR23 

(204 

document

s and 6 

classes) 

WFARM         

PSO         

K-means        

Bisect K-means       

FAK-means       

BatK-means        

Datasets Algorithms Purity F-measure Entropy ADDC DBI DI 

TR45 

(690 

document

s and 10 

classes) 

WFARM         

PSO         

K-means        

Bisect K-means       

FAK-means       

BatK-means        
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The previous results indicate that WFARM generates the best quality results in 

external performance metrics; namely Purity, and Entropy, against all static methods 

(PSO, K-means, Bisect K-means, FAK-means, and BatK-means), but in F-measure, 

WFARM produces the highest F-measure compared to all methods excluding the 

BatK-means method as shown in Table 7.8. For the internal and relative metrics, 

ADDC, DBI, and DI are generated as the best quality results only against hybrid 

methods, FAK-means and BatK-means.  

7.2.3 Evaluation Independent Samples T-test between WFARM and Static 

Methods 

Independent Samples T-test compares the means of two unrelated groups on similar 

dependent variable. Alternately, Independent Samples T-test is used to understand 

whether there is a significant (statistically) difference in the dependent variable 

based on the independent variable (Ross, 2010). In the evaluation of WFARM against 

other static methods, it is questioned whether the average of [any metrics] for 

WFARM is significantly (statistically) different from the average of [any metrics] for 

any other static methods. This involves testing whether the sample means for the 

average of any metrics among any two methods subjects in the sample are 

statistically different. The hypotheses for Independent Samples T-test can be 

expressed in mathematical equivalents. 

Null hypothesis H0: Mean (WFARM) = Mean (any static methods) 

Alterative hypothesis H1: Mean (WFARM) ≠ Mean (any static methods) 

Where, Mean (WFARM), Mean (any static methods) are the population means for the 

WFARM algorithm and any other static method. 
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Table 7.9 

The P-value between WFARM & static methods using average purity results (sig 2 

tailed) with different datasets. 

Datasets 

 
Algorithms 

P-value using average Purity (sig 2 

tailed) 

Equal variances 

assumed 

Equal variances not 

assumed 

 

Reuters 

(300 documents 

and 6 classes) 

 

WFARM and PSO 7.5357E-35 2.1850E-22 

WFARM and K-means 1.0720E-38 1.9788E-24 

WFARM and Bisect K-means 5.4242E-24 1.5012E-16 

WFARM and FAK-means 2.3550E-89 4.5275E-70 

WFARM and BatK-means 5.1725E-09 1.4877E-07 

   

 

TR11 

(414 documents 

and 9 classes) 

WFARM and PSO 8.2885E-30 1.2987E-22 

WFARM and K-means 3.5848E-29 1.7263E-21 

WFARM and Bisect K-means 1.0471E-10 5.8665E-09 

WFARM and FAK-means 2.4134E-62 2.8869E-40 

WFARM and BatK-means 0.3136 0.3166 

   

 

TR12 

(313 documents 

and 8 classes) 

WFARM and PSO 2.7896E-09 1.0220E-07 

WFARM and K-means 0.0141 0.0171 

WFARM and Bisect K-means 0.3972 0.4006 

WFARM and FAK-means 5.0969E-75 1.7287E-50 

WFARM and BatK-means 1.0808E-12 5.8565E-10 

   

 

 

TR23 

(204 documents 

and 6 classes) 

WFARM and PSO 1.7600E-12 7.5911E-10 

WFARM and K-means 6.5395E-11 7.984E-09 

WFARM and Bisect K-means 7.1881E-33 1.0171E-21 

WFARM and FAK-means 6.2078E-72 3.5164E-53 

WFARM and BatK-means 0.00199 0.00299 

   

 

 

TR45 

(690 documents 

and 10 classes) 

WFARM and PSO 5.9420E-35 1.8525E-24 

WFARM and K-means 3.3588E-15 9.2252E-12 

WFARM and Bisect K-means 3.2908E-15 9.8506E-12 

WFARM and FAK-means 1.7519E-72 4.6537E-49 

WFARM and BatK-means 0.0697 0.0740 

Hint: The value highlighted in bold indicates not significance value.  
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In Table 7.9, the associated P-value (sig 2-tailed test) using average Purity is 

illustrated. Since the P-value between WFARM and any other methods is smaller than 

(0.05), the null hypothesis is rejected, the mean of any metrics for WFARM and any 

static methods is the same and the alternative hypothesis is accepted to conclude that 

there is a significant difference in the mean of purity metric for WFARM and any 

static methods. This excludes the P-value between WFARM and BatK-means (bold 

value in Table 7.9) in two datasets, TR11 and TR45, which are (0.3136 and 0.3166, 

0.0697 and 0.0740), larger than (0.05), and the P-value between WFARM and K-

means (bold value in Table 7.9) in the TR12 dataset. This means that the sample 

means for average purity between WFARM and BatK-means and between WFARM 

and K-means subjects in the sample are statistically not different (accepting the null 

hypothesis in this situation). 

In Table 7.10, the associated P-value (sig 2-tailed test) using average F-measure is 

reported. As seen in the table, the P-value between WFARM and any other methods is 

smaller than (0.05), the alternative hypothesis is accepted to conclude that there is a 

significant difference in the mean of purity metric for WFARM and any static 

methods and the null hypothesis is rejected. This excludes the P-value between 

WFARM and BatK-means (bold value in Table 7.10) in the TR11 dataset, which is 

larger than (0.05), and the P-value between WFARM and K-means (bold value in 

Table 7.10) in the TR12 and TR23 datasets, and also between WFARM and PSO in 

the TR23 dataset, where, the null hypothesis is accepted because the sample means 

for average F-measure are statistically not different.  
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Table 7.10 

The P-value between WFARM & static methods using average F-measure results (sig 

2 tailed) with different datasets. 

Datasets 

 
Algorithms 

P-value using average F-measure (sig 2 

tailed) 

Equal variances 

assumed 

Equal variances not 

assumed 

 

Reuters 

(300 documents 

and 6 classes) 

 

WFARM and PSO 2.1661E-34 3.8607E-22 

WFARM and K-means 6.6481E-35 2.0587E-22 

WFARM and Bisect K-means 1.3424E-20 1.1775E-14 

WFARM and FAK-means 1.4353E-86 1.1085E-61 

WFARM and BatK-means 8.5899E-08 1.1067E-06 

   

 

TR11 

(414 documents 

and 9 classes) 

WFARM and PSO 3.6937E-19 9.1096E-19 

WFARM and K-means 4.3328E-17 3.2146E-16 

WFARM and Bisect K-means 8.6466E-04 0.0011 

WFARM and FAK-means 5.5624E-43 8.8676E-28 

WFARM and BatK-means 0.4309 0.4316 

   

 

TR12 

(313 documents 

and 8 classes) 

WFARM and PSO 0.0043 0.0058 

WFARM and K-means 0.2412 0.2459 

WFARM and Bisect K-means 5.2691E-09 1.4151E-07 

WFARM and FAK-means 1.0036E-57 1.9769E-52 

WFARM and BatK-means 4.8149E-20 1.8406E-14 

   

 

 

TR23 

(204 documents 

and 6 classes) 

WFARM and PSO 0.6291 0.6308 

WFARM and K-means 0.6298 0.6315 

WFARM and Bisect K-means 2.4755E-08 1.2238E-07 

WFARM and FAK-means 3.1148E-44 2.9028E-34 

WFARM and BatK-means 0.07152 0.0763 

   

 

 

TR45 

(690 documents 

and 10 classes) 

WFARM and PSO 5.7629E-29 5.7274E-23 

WFARM and K-means 2.5187E-08 3.1646E-07 

WFARM and Bisect K-means 3.8213E-06 1.5047E-05 

WFARM and FAK-means 4.4715E-60 1.2379E-41 

WFARM and BatK-means 0.0161 0.0185 

Hint: The value highlighted in bold indicates not significance value.  
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Table 7.11 

The P-value between WFARM & static methods using average Entropy results (sig 2 

tailed) with different datasets. 

Datasets 

 
Algorithms 

P-value using average Entropy (sig 2 

tailed) 

Equal variances 

assumed 

Equal variances not 

assumed 

 

Reuters 

(300 documents 

and 6 classes) 

 

WFARM and PSO 4.8503E-40 1.1814E-25 

WFARM and K-means 4.5425E-31 1.4058E-20 

WFARM and Bisect K-means 1.2400E-19 3.6375E-14 

WFARM and FAK-means 3.0772E-91 1.6751E-78 

WFARM and BatK-means 1.8770E-05 6.0939E-05 

   

 

TR11 

(414 documents 

and 9 classes) 

WFARM and PSO 6.0493E-34 3.3017E-26 

WFARM and K-means 1.7498E-25 1.8388E-18 

WFARM and Bisect K-means 4.9078E-12 6.0876E-10 

WFARM and FAK-means 1.1813E-63 2.2057E-39 

WFARM and BatK-means 0.0169 0.0190 

   

 

TR12 

(313 documents 

and 8 classes) 

WFARM and PSO 1.2506E-14 3.5941E-11 

WFARM and K-means 1.8669E-04 4.0755E-04 

WFARM and Bisect K-means 0.8171 0.8179 

WFARM and FAK-means 7.7271E-77 1.2582E-59 

WFARM and BatK-means 1.7514E-11 3.3768E-09 

   

 

 

TR23 

(204 documents 

and 6 classes) 

WFARM and PSO 2.0144E-13 1.3595E-10 

WFARM and K-means 1.4415E-11 2.2316E-09 

WFARM and Bisect K-means 1.5171E-31 1.5072E-22 

WFARM and FAK-means 3.9209E-62 1.7294E-59 

WFARM and BatK-means 0.5874 0.5894 

   

 

 

TR45 

(690 documents 

and 10 classes) 

WFARM and PSO 2.6751E-33 1.0892E-22 

WFARM and K-means 4.5030E-10 2.5965E-08 

WFARM and Bisect K-means 3.2437E-12 9.0738E-10 

WFARM and FAK-means 1.8378E-77 1.3670E-49 

WFARM and BatK-means 0.1590 0.1638 

Hint: The value highlighted in bold indicates not significance value.  
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In Table 7.11, the associated P-value (sig 2-tailed test) using average Entropy is 

recorded. The P-value between WFARM and other methods is smaller than (0.05). In 

this situation, the null hypothesis is rejected and the alternative hypothesis is 

accepted. The alternative hypothesis indicates that statistically, there is a significant 

difference in the mean of Entropy metric for WFARM and any static methods. 

However, this excludes the P-value between WFARM and Bisect K-means (illustrates 

in bold value in Table 7.11) in the TR12 dataset, and also the P-value between 

WFARM and BatK-means (highlight in bold value in Table 7.11) in the two datasets, 

TR23 and TR45, which are larger than (0.05). In this case, the null hypothesis is 

accepted, which indicates that there is no difference in the mean of Entropy.  

In Table 7.12, the associated P-value (sig 2-tailed test) using average ADDC is 

reported. As seen in Table 7.12, the P-value between WFARM and any other methods 

is smaller than (0.05), the alternative hypothesis is accepted to conclude that there is 

a significant difference in the mean of ADDC metric for WFARM and any static 

methods and the null hypothesis is rejected. This excludes the P-value between 

WFARM and PSO (highlighted value in bold in Table 7.12) in the TR12 dataset 

which is (0.1116 and 0.1170), larger than (0.05); in this status, the null hypothesis H0 

is accepted because the sample means for average Entropy are statistically not 

different. 
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Table 7.12 

The P-value between WFARM & static methods using average ADDC results (sig 2 

tailed) with different datasets. 

Datasets 

 
Algorithms 

P-value using average ADDC (sig 2 

tailed) 

Equal variances 

assumed 

Equal variances 

not assumed 

 

Reuters 

(300 documents 

and 6 classes) 

 

WFARM and PSO 4.1111E-07 3.5550E-06 

WFARM and K-means 5.0850E-20 2.6432E-14 

WFARM and Bisect K-means 4.9067E-10 3.1703E-08 

WFARM and FAK-means 4.0892E-56 5.3011E-55 

WFARM and BatK-means 6.7768E-19 1.0681E-13 

   

 

TR11 

(414 documents 

and 9 classes) 

WFARM and PSO 9.3507E-05 2.2941E-04 

WFARM and K-means 1.7647E-06 1.0468E-05 

WFARM and Bisect K-means 4.2178E-09 1.2511E-07 

WFARM and FAK-means 1.9093E-33 5.0490E-22 

WFARM and BatK-means 5.8447E-22 1.1521E-15 

   

 

TR12 

(313 documents 

and 8 classes) 

WFARM and PSO 0.1116 0.1170 

WFARM and K-means 1.7738E-15 1.1452E-11 

WFARM and Bisect K-means 0.0046 0.0062 

WFARM and FAK-means 9.3256E-75 1.8792E-50 

WFARM and BatK-means 3.8691E-12 1.3257E-09 

   

 

 

TR23 

(204 documents 

and 6 classes) 

WFARM and PSO 3.5086E-07 3.1477E-06 

WFARM and K-means 9.5827E-22 2.7166E-15 

WFARM and Bisect K-means 8.1957E-18 4.5868E-13 

WFARM and FAK-means 1.0029E-73 6.4749E-66 

WFARM and BatK-means 3.7862E-14 7.3691E-11 

   

 

 

TR45 

(690 documents 

and 10 classes) 

WFARM and PSO 0.0012 0.0019 

WFARM and K-means 1.3067E-20 1.1072E-14 

WFARM and Bisect K-means 1.2275E-08 2.7890E-07 

WFARM and FAK-means 3.5010E-46 8.6433E-29 

WFARM and BatK-means 1.5965E-13 1.7110E-10 

Hint: The value highlighted in bold indicates not significance value.  
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Table 7.13 

The P-value between WFARM & static methods using average DBI results (sig 2 

tailed) with different datasets. 

Datasets 

 
Algorithms 

P-value using average DBI (sig 2 

tailed) 

Equal variances 

assumed 

Equal variances 

not assumed 

 

Reuters 

(300 documents and 

6 classes) 

 

WFARM and PSO 3.9736E-64 2.4535E-41 

WFARM and K-means 3.3554E-17 1.0197E-12 

WFARM and Bisect K-means 0.0019 0.0028 

WFARM and FAK-means 2.1062E-72 9.6453E-43 

WFARM and BatK-means 1.5944E-12 7.4668E-10 

   

 

TR11 

(414 documents and 

9 classes) 

WFARM and PSO 6.9172E-62 1.1491E-52 

WFARM and K-means 1.6095E-27 8.6671E-19 

WFARM and Bisect K-means 3.0579E-11 2.9550E-09 

WFARM and FAK-means 1.2605E-82 5.0308E-82 

WFARM and BatK-means 8.6388E-08 1.1116E-06 

   

 

TR12 

(313 documents and 

8 classes) 

WFARM and PSO 6.6255E-68 1.0582E-41 

WFARM and K-means 4.3956E-23 4.7159E-16 

WFARM and Bisect K-means 1.1245E-07 1.3654E-06 

WFARM and FAK-means 5.5711E-77 9.2456E-48 

WFARM and BatK-means 2.7468E-04 5.6162E-04 

   

 

 

TR23 

(204 documents and 

6 classes) 

WFARM and PSO 4.9061E-28 6.5693E-19 

WFARM and K-means 9.0250E-15 2.6256E-11 

WFARM and Bisect K-means 6.6772E-19 9.1849E-14 

WFARM and FAK-means 5.9442E-67 1.7099E-39 

WFARM and BatK-means 1.1302E-06 7.4928E-06 

   

 

 

TR45 

(690 documents and 

10 classes) 

WFARM and PSO 4.0577E-69 7.1991E-46 

WFARM and K-means 6.3778E-17 1.4437E-12 

WFARM and Bisect K-means 4.1942E-10 2.6889E-08 

WFARM and FAK-means 5.4503E-88 3.6790E-53 

WFARM and BatK-means 1.4078E-07 1.6264E-06 

Hint: The value highlighted in bold indicates not significance value.  
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Table 7.14 

The P-value between WFARM & static methods using average DI results (sig 2 tailed) 

with different datasets. 

Datasets 

 
Algorithms 

P-value using average DI (sig 2 tailed) 

Equal variances 

assumed 

Equal variances not 

assumed 

 

Reuters 

(300 documents 

and 6 classes) 

 

WFARM and PSO 1.9596E-40 2.7765E-25 

WFARM and K-means 0.0170 0.0201 

WFARM and Bisect K-means 2.745E-04 5.5816E-04 

WFARM and FAK-means 4.6583E-71 5.6965E-63 

WFARM and BatK-means 1.0172E-28 1.4515E-19 

 

 

TR11 

(414 documents 

and 9 classes) 

WFARM and PSO 4.2066E-16 4.6106E-12 

WFARM and K-means 0.5833 0.5854 

WFARM and Bisect K-means 7.0952E-16 2.8851E-12 

WFARM and FAK-means 1.7237E-64 2.4456E-52 

WFARM and BatK-means 1.3589E-25 7.0368E-18 

 

 

TR12 

(313 documents 

and 8 classes) 

WFARM and PSO 3.0417E-45 1.3087E-27 

WFARM and K-means 9.4771E-05 2.3518E-04 

WFARM and Bisect K-means 0.0020 0.0030 

WFARM and FAK-means 3.2519E-59 4.8446E-38 

WFARM and BatK-means 1.6991E-14 4.4805E-11 

 

 

 

TR23 

(204 documents 

and 6 classes) 

WFARM and PSO 1.0636E-06 7.1099E-06 

WFARM and K-means 0.1057 0.1108 

WFARM and Bisect K-means 5.8999E-08 7.9744E-07 

WFARM and FAK-means 8.1165E-66 9.812E-66 

WFARM and BatK-means 6.5333E-13 3.6776E-10 

 

 

 

TR45 

(690 documents 

and 10 classes) 

WFARM and PSO 2.1441E-31 1.5248E-20 

WFARM and K-means 8.0575E-04 0.0014 

WFARM and Bisect K-means 0.0028 0.0040 

WFARM and FAK-means 1.9527E-68 1.8833E-56 

WFARM and BatK-means 1.2840E-20 7.7344E-15 

Hint: The value highlighted in bold indicates not significance value.  
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In Table 7.13, the associated P-value (sig 2-tailed test) using average DBI is 

reported. From the table, the P-value between WFARM and any other methods is 

smaller than (0.05), the alternative hypothesis is accepted to conclude that there is a 

significant difference in the mean of ADDC metric for WFARM and any static 

methods and the null hypothesis is rejected.  

In Table 7.14, the associated P-value (sig 2-tailed test) using average DI is shown. 

As see in the table, the P-value between WFARM and any other methods is smaller 

than (0.05), the alternative hypothesis is accepted to conclude that there is a 

significant difference in the mean of DI metric for WFARM and any static methods 

and the null hypothesis is rejected. This excludes the P-value between WFARM and 

K-means (highlighted value in bold in Table 7.14) in the TR11 and TR23 datasets, 

which are (0.1116 and 0.1170, 0.1057 and 0.1108), and are larger than (0.05); the 

null hypothesis H0 is accepted in this case because the sample means for average DI 

are statistically not different. 

7.3 Comparison WFARM with Dynamic Methods  

This section includes the evaluation of WFARM against two dynamic methods, 

Practical General Stochastic Clustering Method (PGSCM) (Tan, Ting, & Teng, 

2011a), and Dynamic Hybrid Genetic algorithm with Particle Swarm Optimization 

(DCPG) (Kuo, Syu, Chen, & Tien, 2012). The comparison is conducted in three 

parts; evaluation of the produced number of clusters among WFARM, PGSCM and 

DCPG, evaluation of the performance metrics among WFARM, PGSCM and DCPG, 
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and evaluation of the statistical Independent Samples T-test among WFARM, 

PGSCM and DCPG.  

7.3.1 Evaluation Number of Clusters between WFARM and Dynamic Methods 

Table 7.15 displays the average number of clusters automatically generated by 

WFARM, PGSCM and DCPG without any information support about the dataset.  

Table 7.15 

Average number of clusters: WFARM vs. PGSCM vs. DCPG using different datasets. 

Datasets 

 

 Average number of clusters 

WFARM   PGSCM   DCPG 

Reuters 

(300 documents and 6 classes) 
6 6.07  ≈   6 9.03 ≈  9 

TR11 

(414 documents and 9 classes) 
9.27 ≈  9 6.93 ≈   7 9.80  ≈  10 

TR12 

(313 documents and 8 classes) 
8  6.27 ≈   6 8.90 ≈   9 

TR23 

(204 documents and 6 classes) 
6.07  ≈  6 3.63 ≈   4 6.53 ≈  7 

TR45 

(690 documents and 10 classes) 
9.83  ≈  10 3.90  ≈   4 13.77  ≈  14 

 

As can be seen in Table 7.15, the average number of clusters produced by the 

WFARM in iteration 20 is approximately (6, 9, 8, 6, and 10) in the (Reuters, TR11, 

TR12, TR23 and TR45) datasets respectively, these values are near to the real 

number of clusters; while PGSCM only produces 6 in the Reuters dataset. This result 

means that WFARM is better than PGSCM and DCPG. Figure 7.8 presents the results 

of the number of generated clusters by WFARM, PGSCM, DCPG and the real 

number of clusters of the datasets. 
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Figure 7.8. Number of generated clusters: WFARM vs. the real number of clusters vs. 

PGSCM vs. DCPG 

7.3.2 Evaluation Performance Metrics between WFARM and Dynamic Methods  

In this section, WFARM is evaluated against two dynamic methods, namely PGSCM 

and DCPG. The evaluations are carried out using external quality metrics such as 

Purity, F-measure and Entropy, and using internal and relative quality metrics such 

as ADDC, DBI and DI. Table 7.16 reports the average purity, best and worst purity, 

and standard deviation of WFARM, PGSCM and DCPG.  

As observed in Table 7.16, WFARM generates a higher purity against PGSCM and 

DCPG, where the best average purity value is 0.7351, 0.6810, 0.4752, 0.6266, and 

0.6355 generated by WFARM in Reuters, TR11, TR12, TR23 and TR45 respectively. 

The overall standard deviation of the WFARM algorithm is smaller than PGSCM and 

DCPG in most datasets (refer to Reuters, TR12, TR23 and TR45), which means the 
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solution generated by WFARM is more reliable and high in robustness. The 

percentage of success to obtain the highest purity is 100% by WFARM. 

Table 7.16 

External quality Purity (average, best, worst, standard deviation): WFARM  vs. 

PGSCM vs. DCPG using different datasets. 

Datasets Algorithms 
Average 

Purity 

Best 

Purity 

Worst 

Purity 

Standard 

Deviation 

Reuters 

(300 documents 

and 6 classes) 

WFARM   0.7351 0.7433 0.7300 0.0051 

PGSCM   0.2333 0.2633 0.1967 0.0160 

DCPG 0.3226 0.5967 0.1933 0.1091 

Datasets Algorithms Average 

Purity 

Best 

Purity 

Worst 

Purity 

Standard 

Deviation 

TR11 

(414 documents 

and 9 classes) 

WFARM   0.6810 0.7246 0.6594 0.0224 

PGSCM   0.3385 0.3671 0.3188 0.0160 

DCPG 0.3874 0.5290 0.3261 0.0582 

Datasets Algorithms Average 

Purity 

Best 

Purity 

Worst 

Purity 

Standard 

Deviation 

TR12 

(313 documents 

and 8 classes) 

WFARM   0.4752 0.4760 0.4696 0.0022 

PGSCM   0.3036 0.3195 0.2971 0.0065 

DCPG 0.3714 0.4441 0.3131 0.0435 

Datasets Algorithms Average 

Purity 

Best 

Purity 

Worst 

Purity 

Standard 

Deviation 

TR23 

(204 documents 

and 6 classes) 

WFARM   0.6266 0.6324 0.6176 0.0032 

PGSCM   0.4472 0.4706 0.4461 0.0046 

DCPG 0.5209 0.6569 0.4608 0.0489 

Datasets Algorithms Average 

Purity 

Best 

Purity 

Worst 

Purity 

Standard 

Deviation 

TR45 

(690 documents 

and 10 classes) 

WFARM   0.6355 0.6609 0.5812 0.0161 

PGSCM   0.2681 0.3464 0.2319 0.0321 

DCPG 0.3258 0.5145 0.2478 0.0616 

Note: the best value is highlighted in ‘bold’. 

 

Figure 7.9 shows a plotted graph of the external quality metrics; namely the average 

purity result for WFARM, PGSCM and DCPG. 
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Figure 7.9. Average Purity result: WFARM vs. PGSCM vs. DCPG using different 

datasets 

For F-measure metric, Table 7.17 reports the average F-measure (precision and 

recall), best and worst F-measure and standard deviation of WFARM, PGSCM and 

DCPG. As observed in Table 7.17, WFARM generates the highest average F-measure 

(0.7069, 0.5631, 0.3649, and 0.5031) against PGSCM and DCPG in most datasets, 

Reuters, TR11, TR12 and TR45 respectively. However, DCPG generates a higher F-

measure of 0.4457 only in the TR23 dataset. Further, the precision and recall for 

WFARM are higher in most datasets which highly affect the F-measure value of 

WFARM. The overall standard deviation of the WFARM algorithm is smaller than 

PGSCM and DCPG in most datasets (refer to Reuters, TR12, TR23 and TR45). It 

can be concluded that the solution generated by WFARM is more reliable and high in 

robustness. The percentage of success to obtain the highest F-measure is 80% by 

WFARM. Figure 7.10 shows a plotted graph of the external quality metrics, the 

average F-measure result for WFARM, PGSCM and DCPG. 
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Table 7.17 

External quality F-measure (average, best, worst, standard deviation): WFARM vs. 

PGSCM vs. DCPG using different datasets. 

Datasets Algorithms 
Average F-measure 

[Precision, Recall] 

Best  

F-measure 

Worst  

F-measure 

Standard 

Deviation 

Reuters 

(300 documents 

and 6 classes) 

WFARM   0.7069 [0.6808, 0.7351] 0.7138 0.7022 0.0045 

PGSCM   0.2369 [0.2406, 0.2333] 0.2740 0.2067 0.0178 

DCPG 0.3565 [0.3984, 0.3226] 0.5585 0.2755 0.0839 

Datasets Algorithms Average F-measure 

[Precision, Recall] 

Best  

F-measure 

Worst  

F-measure 

Standard 

Deviation 

TR11 

(414 documents 

and 9 classes) 

WFARM   0.5631 [0.4800,0.6810] 0.6547 0.4615 0.0520 

PGSCM   0.2566 [0.2066, 0.3385] 0.3092 0.1950 0.0321 

DCPG 0.3346 [0.2945, 0.3874] 0.5345 0.2661 0.0690 

Datasets Algorithms Average F-measure 

[Precision, Recall] 

Best  

F-measure 

Worst  

F-measure 

Standard 

Deviation 

TR12 

(313 documents 

and 8 classes) 

WFARM   0.3649 [0.2962, 0.4752] 0.3676 0.3467 0.0071 

PGSCM   0.2273 [0.1817, 0.3036] 0.2563 0.1974 0.0167 

DCPG 0.3121 [0.2691, 0.3714] 0.4097 0.2705 0.0490 

Datasets Algorithms Average F-measure 

[Precision, Recall] 

Best  

F-measure 

Worst  

F-measure 

Standard 

Deviation 

TR23 

(204 documents 

and 6 classes) 

WFARM   0.4337 [0.3316, 0.6266] 0.4460 0.4024 0.0089 

PGSCM  0.3465 [0.2828, 0.4472] 0.4061 0.2779 0.0327 

DCPG 0.4457 [0.3895, 0.5209] 0.5839 0.3719 0.0479 

Datasets Algorithms Average F-measure 

[Precision, Recall] 

Best  

F-measure 

Worst  

F-measure 

Standard 

Deviation 

TR45 

(690 documents 

and 10 classes) 

WFARM   0.5031 [0.4164, 0.6355] 0.5489 0.4314 0.0227 

PGSCM  0.2399 [0.2171, 0.2681] 0.3131 0.2061 0.0312 

DCPG 0.2581 [0.2137, 0.3258] 0.4495 0.2301 0.0470 

Note: the best value is highlighted in ‘bold’, average precision and average recall in []. 

 

 

 

 

 

 

 

 

 

Figure 7.10. Average F-measure result: WFARM vs. PGSCM vs. DCPG using 

different datasets 
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For Entropy metric, Table 7.18 reports the average Entropy, best and worst Entropy, 

and standard deviation of WFARM, PGSCM and DCPG. In Table 7.18, it can be seen 

that the Entropy of WFARM is better (smaller) than PGSCM and DCPG in all 

datasets (balanced and un-balanced datasets), where the best average Entropy is 

1.0420, 1.2584, 1.9200, 1.4980, and 1.6742 outputted by WFARM. The overall 

standard deviation of the WFARM algorithm is smaller than PGSCM and DCPG in 

most un-balanced datasets (refer to TR12, TR23 and TR45). The percentage of 

success to obtain a lower Entropy is 100% by WFARM.   

Table 7.18 

External quality Entropy (average, best, worst, standard deviation): WFARM vs. 

PGSCM vs. DCPG using different datasets. 

Datasets Algorithms 
Average  

Entropy 

Best  

Entropy 

Worst  

Entropy 

Standard 

Deviation 

Reuters 

(300 documents 

and 6 classes) 

 

WFARM   1.0420 1.0044 1.0653 0.0258 

PGSCM   2.5176 2.4590 2.5687 0.0255 

DCPG 2.1418 1.4689 2.5154 1.4689 

Datasets Algorithms Average  

Entropy 

Best  

Entropy 

Worst  

Entropy 

Standard 

Deviation 

TR11 

(414 documents 

and 9 classes) 

WFARM   1.2584 1.0489 1.3384 0.0798 

PGSCM   2.5603 2.4322 2.6168 0.0521 

DCPG 2.3780 1.7252 2.6227 0.2371 

Datasets Algorithms Average  

Entropy 

Best  

Entropy 

Worst  

Entropy 

Standard 

Deviation 

TR12 

(313 documents 

and 8 classes) 

WFARM   1.9200 1.9154 1.9531 0.0119 

PGSCM   2.6613 2.6006 2.7138 0.0301 

DCPG 2.4581 2.1306 2.7122 0.1844 

Datasets Algorithms Average  

Entropy 

Best  

Entropy 

Worst  

Entropy 

Standard 

Deviation 

TR23 

(204 documents 

and 6 classes) 

WFARM   1.4980 1.4295 1.5306 0.0198 

PGSCM   2.0439 1.9702 2.0828 0.0245 

DCPG 1.7994 1.4088 2.0245 0.1720 

Datasets Algorithms Average  

Entropy 

Best  

Entropy 

Worst  

Entropy 

Standard 

Deviation 

TR45 

(690 documents 

and 10 classes) 

WFARM   1.6742 1.5923 1.7450 0.0434 

PGSCM   2.9460 2.7703 3.0147 0.0584 

DCPG 2.6581 1.8688 2.9685 0.2258 

Note: the best value is highlighted in ‘bold’. 
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The highest values of Purity and F-measure and a lower value of Entropy indicate 

the best clustering algorithm (Forsati, Mahdavi, Shamsfard, & Meybodi, 2013; 

Murugesan & Zhang, 2011a, 2011b), It can be concluded from the previous results 

that WFARM is better than PGSCM and DCPG in external quality metrics. Figure 

7.11 shows a plotted graph of the external quality metrics, namely the average 

Entropy result for WFARM, PGSCM and DCPG. 

 

 

 

 

 

 

 

 

 

Figure 7.11. Average Entropy result: WFARM vs. PGSCM vs. DCPG using different 

datasets 

For ADDC metric, Table 7.19 reports the average ADDC, best and worst ADDC and 

standard deviation of WFARM, PGSCM and DCPG. As shown in Table 7.19, the 

WFARM algorithm generates a lower average ADDC compared to PGSCM in all 

balanced and un-balanced datasets, while DCPG produces a lower average ADDC 

compared against WFARM and PGSCM in all balanced and un-balanced datasets. A 

smaller ADDC value means the best quality clustering algorithm (Cui, Potok, & 

Palathingal, 2005; Forsati, Mahdavi, Shamsfard, & Meybodi, 2013). The overall 

standard deviation of the WFARM algorithm is smaller than PGSCM and DCPG in 

all datasets.  
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Table 7.19 

Internal quality ADDC (average, best, worst, standard deviation): WFARM vs. 

PGSCM vs. DCPG using different datasets. 

Datasets Algorithms 
Average  

ADDC 

Best  

ADDC 

Worst  

ADDC 

Standard 

Deviation 

Reuters 

(300 documents 

and 6 classes) 

 

WFARM   1.1786 1.1737 1.1807 0.0027 

PGSCM   1.4079 1.3891 1.4453 0.0134 

DCPG 0.6047 0.1802 0.9780 0.2046 

Datasets Algorithms Average  

ADDC 

Best  

ADDC 

Worst  

ADDC 

Standard 

Deviation 

TR11 

(414 documents 

and 9 classes) 

WFARM   0.8293 0.8198 0.8529 0.0088 

PGSCM   1.0379 1.0226 1.0670 0.0093 

DCPG 0.4833 0.2257 0.7256 0.1211 

Datasets Algorithms Average  

ADDC 

Best  

ADDC 

Worst  

ADDC 

Standard 

Deviation 

TR12 

(313 documents 

and 8 classes) 

WFARM   0.7928 0.7821 0.7942 0.0033 

PGSCM   1.0605 1.0467 1.0832 0.0077 

DCPG 0.4924 0.1566 0.7368 0.1662 

Datasets Algorithms Average  

ADDC 

Best  

ADDC 

Worst  

ADDC 

Standard 

Deviation 

TR23 

(204 documents 

and 6 classes) 

WFARM   0.6527 0.6407 0.6559 0.0030 

PGSCM   0.8644 0.8091 0.8907 0.0156 

DCPG 0.4474 0.1800 0.7969 0.1736 

Datasets Algorithms Average  

ADDC 

Best  

ADDC 

Worst  

ADDC 

Standard 

Deviation 

TR45 

(690 documents 

and 10 classes) 

WFARM   0.9448 0.9284 0.9503 0.0068 

PGSCM   1.1178 1.0716 1.1733 0.0261 

DCPG 0.5339 0.2264 1.1048 0.2193 

Note: the best value is highlighted in ‘bold’. 
 

 

 

 

 

 

 

 

 

 

Figure 7.12. Average Entropy result: WFARM vs. PGSCM vs. DCPG using different 

datasets 
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This result indicates that the solution generated by WFARM is more reliable and high 

in robustness. The percentage of success to obtain a lower ADDC is 100% by 

WFARM against PGSCM and 0% against DCPG. Figure 7.12 shows a plotted graph 

of the result of the internal quality metrics, average ADDC, for WFARM, PGSCM 

and DCPG. 

For DBI metric, Table 7.20 illustrates the average DBI, best and worst DBI and 

standard deviation of WFARM, PGSCM and DCPG.  

Table 7.20 

Relative quality DBI (average, best, worst, standard deviation): WFARM vs. PGSCM 

vs. DCPG using different datasets. 

Datasets Algorithms 
Average  

DBI 

Best  

DBI 

Worst  

DBI 

Standard 

Deviation 

Reuters 

(300 documents 

and 6 classes) 

 

WFARM   4.1820 4.1148 4.2540 0.0395 

PGSCM   9.1919 2.8720 19.6237 4.9623 

DCPG 2.3574 1.0284 3.8852 0.9094 

Datasets Algorithms Average  

DBI 

Best  

DBI 

Worst  

DBI 

Standard 

Deviation 

TR11 

(414 documents 

and 9 classes) 

WFARM   4.6518 4.4176 4.8660 0.1022 

PGSCM   2.8577 2.6030 3.6195 0.1954 

DCPG 2.5883 1.3649 4.9672 0.8395 

Datasets Algorithms Average  

DBI 

Best  

DBI 

Worst  

DBI 

Standard 

Deviation 

TR12 

(313 documents 

and 8 classes) 

WFARM   4.9590 4.8340 4.9750 0.0361 

PGSCM   2.6426 2.5128 2.9368 0.1039 

DCPG 2.3300 1.1849 3.7710 0.6423 

Datasets Algorithms Average  

DBI 

Best  

DBI 

Worst  

DBI 

Standard 

Deviation 

TR23 

(204 documents 

and 6 classes) 

WFARM   3.1373 3.0462 3.2194 0.0373 

PGSCM   3.6783 5.0163 2.8169 0.6700 

DCPG 2.6989 0.9209 6.6405 1.6553 

Datasets Algorithms Average  

DBI 

Best  

DBI 

Worst  

DBI 

Standard 

Deviation 

TR45 

(690 documents 

and 10 classes) 

WFARM   4.2858 4.1705 4.3443 0.0399 

PGSCM   3.3990 4.3600 2.6893 0.4044 

DCPG 2.4342 1.3880 5.6184 0.9863 

Note: the best value is highlighted in ‘bold’. 
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In Table 7.20, it is noticed that DCPG is the best to generate a smaller DBI value in 

balanced and un-balanced datasets against the WFARM and PGSCM methods, where 

the best average DBI value is 2.3574, 2.5883, 2.3300, 2.6989 and 2.4342 in Reuters, 

TR11, TR12, TR23, TR45 respectively outputted by DCPG; while WFARM produces 

the worst DBI values in all datasets. The standard deviation of the WFARM algorithm 

is smaller than DCPG and PGSCM. This result indicates that WFARM is more 

accurate. Figure 7.13 shows a plotted graph of the result of the relative quality 

metrics, average DBI, for WFARM, PGSCM and DCPG. 

 

 

 

 

 

 

 

 

 

Figure 7.13. Average DBI result: WFARM vs. PGSCM vs. DCPG using different 

datasets 

Table 7.21 illustrates the average DI, best and worst DI and standard deviation of 

WFARM, PGSCM and DCPG. As noticed in the table, the average DI value for 

PGSCM is larger than the DI value of WFARM and DCPG in three un-balanced 

datasets; TR11, TR12, and TR45; while in the remaining datasets, the balanced 

dataset (Reuters) and un-balanced (TR23) dataset show the WFARM outperforming 

PGSCM. 
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Table 7.21 

Relative quality DI (average, best DI, worst DI, standard deviation): WFARM vs. 

PGSCM vs. DCPG using different datasets. 

Datasets Algorithms 
Average  

DI 

Best  

DI 

Worst  

DI 

Standard 

Deviation 

Reuters 

(300 documents 

and 6 classes) 

 

WFARM   0.3909 0.3955 0.3642 0.0054 

PGSCM   0.1818 0.6402 0.0532 0.1763 

DCPG 0.4494 0.9944 0.0997 0.2863 

Datasets Algorithms Average  

DI 

Best  

DI 

Worst  

DI 

Standard 

Deviation 

TR11 

(414 documents 

and 9 classes) 

WFARM   0.3673 0.3770 0.3412 0.0096 

PGSCM   0.5964 0.7188 0.3914 0.0723 

DCPG 0.3657 0.6937 0.1460 0.1579 

Datasets Algorithms Average  

DI 

Best  

DI 

Worst  

DI 

Standard 

Deviation 

TR12 

(313 documents 

and 8 classes) 

WFARM   0.2857 0.2870 0.2816 0.0015 

PGSCM   0.6743 0.7453 0.5101 0.0591 

DCPG 0.4125 0.7973 0.1316 0.1642 

Datasets Algorithms Average  

DI 

Best  

DI 

Worst  

DI 

Standard 

Deviation 

TR23 

(204 documents 

and 6 classes) 

WFARM   0.4747 0.5046 0.4626 0.0109 

PGSCM   0.4721 0.6442 0.2968 0.1268 

DCPG 0.5094 1.0303 0.1080 0.3291 

Datasets Algorithms Average  

DI 

Best  

DI 

Worst  

DI 

Standard 

Deviation 

TR45 

(690 documents 

and 10 classes) 

WFARM   0.2824 0.2903 0.2719 0.0059 

PGSCM   0.5364 0.7113 0.4036 0.0870 

DCPG 0.3277 0.7490 0.0758 0.1667 

Note: the best value is highlighted in ‘bold’. 

Furthermore, in Table 7.21, it can be observed that DCPG is the best in generating a 

high DI value against PGSCM and WFARM in the Reuters and TR23 datasets. 

According to Youssef (2011), a higher DI value indicates the best quality clustering. 

The standard deviation of solution found by the WFARM algorithm is smaller than 

DCPG and PGSCM in balanced and un-balanced datasets, which means that WFARM 

can find a near optimal solution in most runs. Figure 7.14 shows a plotted graph of 

the result of the relative quality metrics, average DI, for WFARM, PGSCM and 

DCPG. 
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Figure 7.14. Average DI result: WFARM vs. PGSCM vs. DCPG using different 

datasets. 

The previous results indicate that WFARM generates the best quality results in 

external performance metrics, namely Purity, F-measure and Entropy, against two 

dynamic methods, PGSCM and DCPG, as shown in Table 7.22. Whereas, for the 

internal and relative metrics, ADDC, DBI and DI, DCPG generates the best quality 

results in ADDC and DBI metrics, and PGSCM produces the best DI in most 

datasets. 

Table 7.22 

Summary of quality performance results: WFARM vs. PGSCM vs. DCPG. 

Datasets Algorithms 

External Metrics 
Internal and Relative 

Metrics 

Purity 
F-

measure 
Entropy ADDC DBI DI 

Reuters 

(300 

documents 

and 6 

classes) 

WFARM            

PGSCM         

DCPG          
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Table 7.22 continued 

Datasets Algorithms 

External Metrics 
Internal and Relative 

Metrics 

Purity 
F-

measure 
Entropy ADDC DBI DI 

TR11 

(414 

documents 

and 9 

classes) 

WFARM            

PGSCM          

DCPG         

Datasets Algorithms 

External Metrics 
Internal and Relative 

Metrics 

Purity 
F-

measure 
Entropy ADDC DBI DI 

TR12 

(313 

documents 

and 8 

classes) 

WFARM            

PGSCM          

DCPG         

Datasets Algorithms 

External Metrics 
Internal and Relative 

Metrics 

Purity 
F-

measure 
Entropy ADDC DBI DI 

TR23 

(204 

documents 

and 6 

classes) 

WFARM           

PGSCM         

DCPG           

Datasets Algorithms 

External Metrics 
Internal and Relative 

Metrics 

Purity 
F-

measure 
Entropy ADDC DBI DI 

TR45 

(690 

documents 

and 10 

classes) 

WFARM            

PGSCM          

DCPG         
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7.3.3 Evaluation Independent Samples T-test between WFARM and Dynamic 

Methods  

This section includes the analysis of Independent Samples T-test between WFARM 

and PGSCM, and between WFARM and DCPG. The hypotheses for Independent 

Samples T-test can be expressed in mathematical equivalents. 

Null hypothesis H0: Mean (WFARM) = Mean (any dynamic methods) 

Alterative hypothesis H1: Mean (WFARM) ≠ Mean (any dynamic methods) 

Where, Mean (WFARM), Mean (any dynamic methods) are the population means for 

WFARM method and any dynamic method. 

In Table 7.23, the associated P-value (2-tailed test) using thirty samples of average 

purity between WFARM and PGSCM, and between WFARM and DCPG are reported. 

Since the P-value is smaller than (0.05), the null hypothesis is rejected, so that the 

mean of purity metric for WFARM and dynamic methods are the same and the 

alternative hypothesis is accepted to conclude that there is a significant difference in 

the mean of purity for WFARM and any dynamic methods.  
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Table 7.23 

The P-value between WFARM & dynamic methods using average purity results (sig 2 

tailed) with different datasets. 

Datasets 

 
Algorithms 

P-value using Average Purity (sig 2 tailed) 

Equal variances 

assumed 

Equal variances not 

assumed 

Reuters 

(300 documents 

and 6 classes) 

WFARM  and PGSCM  4.4059E-79 6.4431E-52 

WFARM  and DCPG 1.8942E-28 5.8698E-19 

    

TR11 

(414 documents 

and 9 classes) 

WFARM  and PGSCM  4.9219E-57 7.1252E-53 

WFARM  and DCPG 1.8024E-33 1.9460E-25 

    

TR12 

(313 documents 

and 8 classes) 

WFARM  and PGSCM  1.9896E-74 5.8563E-50 

WFARM  and DCPG 6.3600E-19 1.0330E-13 

    

TR23 

(204 documents 

and 6 classes) 

WFARM  and PGSCM  7.3247E-81 1.9843E-73 

WFARM  and DCPG 4.5355E-17 1.1807E-12 

    

TR45 

(690 documents 

and 10 classes) 

WFARM  and PGSCM  3.2665E-52 1.1143E-41 

WFARM  and DCPG 3.1525E-34 7.0949E-24 

Hint: The value highlighted in bold indicates not significance value.  

In Table 7.24, the associated P-value (2-tailed test) using thirty samples of average 

F-measure between WFARM and PGSCM, and between WFARM and DCPG are 

reported. As see in the table, all P-values are smaller than (0.05), so it can be 

concluded that the mean of purity metric for WFARM and dynamic methods are not 

similar. In this case, the null hypothesis is rejected and the alternative hypothesis is 

accepted. This excludes the P-value highlighted in bold in Table 7.24 between 
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WFARM and DCPG in the TR23 dataset that indicates a not significant value, so in 

this situation, the null hypothesis is accepted. 

Table 7.24 

The P-value between WFARM & dynamic methods using average F-measure results 

(sig 2 tailed) with different datasets. 

Datasets 

 
Algorithms 

P-value using average F-measure (sig 2 

tailed) 

Equal variances 

assumed 

Equal variances not 

assumed 

Reuters 

(300 documents 

and 6 classes) 

WFARM  and PGSCM  3.9511E-75 5.3917E-47 

WFARM  and DCPG 1.1051E-30 3.6710E-20 

    

TR11 

(414 documents 

and 9 classes) 

WFARM  and PGSCM  6.0046E-35 3.6873E-31 

WFARM  and DCPG 6.2278E-21 3.1001E-20 

    

TR12 

(313 documents 

and 8 classes) 

WFARM  and PGSCM  8.5602E-45 6.3043E-34 

WFARM  and DCPG 2.4536E-07 2.0968E-06 

    

TR23 

(204 documents 

and 6 classes) 

WFARM  and PGSCM  2.2552E-20 1.3820E-15 

WFARM  and DCPG 0.1892 0.1937 

    

TR45 

(690 documents 

and 10 classes) 

WFARM  and PGSCM  2.8176E-42 1.0575E-39 

WFARM  and DCPG 2.0262E-33 2.9935E-27 

Hint: The value highlighted in bold indicates not significance value.  

In Table 7.25, the associated P-values (2-tailed test) using thirty samples of average 

Entropy between WFARM and PGSCM, and between WFARM and DCPG are 

reported. From the table, all P-values are smaller than (0.05), so it can be concluded 
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that the mean of Entropy metric for WFARM and dynamic methods are not similar. In 

this case, the null hypothesis is rejected and the alternative hypothesis is accepted.  

 

Table 7.25 

The P-value between WFARM & dynamic methods using average Entropy results (sig 

2 tailed) with different datasets. 

Datasets 

 
Algorithms 

P-value using average Entropy (sig 2 tailed) 

Equal variances 

assumed 

Equal variances not 

assumed 

Reuters 

(300 documents 

and 6 classes) 

WFARM  and PGSCM  9.8114E-87 1.0031E-86 

WFARM  and DCPG 6.0191E-27 2.9564E-18 

 

TR11 

(414 documents 

and 9 classes) 

WFARM  and PGSCM  2.1753E-59 5.8230E-53 

WFARM  and DCPG 2.6886E-32 7.7915E-24 

 

TR12 

(313 documents 

and 8 classes) 

WFARM  and PGSCM  2.2843E-72 3.4215E-51 

WFARM  and DCPG 7.0966E-23 5.7373E-16 

 

TR23 

(204 documents 

and 6 classes) 

WFARM  and PGSCM  2.5191E-65 3.2335E-63 

WFARM  and DCPG 1.7835E-13 1.4925E-10 

 

TR45 

(690 documents 

and 10 classes) 

WFARM  and PGSCM  1.4465E-65 1.4555E-61 

WFARM  and DCPG 2.8654E-31 2.4103E-21 

Hint: The value highlighted in bold indicates not significance value.  

In Table 7.26, the associated P-values (2-tailed test) using thirty samples of average 

ADDC between WFARM and PGSCM, and between WFARM and DCPG are 

reported. As can be seen in Table 7.25, all P-values are smaller than (0.05), so it can 
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be concluded that the mean of ADDC metric for WFARM and dynamic methods are 

not similar. In this case, the null hypothesis is rejected and the alternative hypothesis 

is accepted.  

Table 7.26 

The P-value between WFARM & dynamic methods using average ADDC results (sig 

2 tailed) with different datasets. 

Datasets 

 
Algorithms 

P-value using average ADDC (sig 2 tailed) 

Equal variances 

assumed 

Equal variances not 

assumed 

Reuters 

(300 documents 

and 6 classes) 

WFARM  and PGSCM  1.6385E-64 1.2136E-39 

WFARM  and DCPG 4.1734E-22 1.7973E-15 

 

TR11 

(414 documents 

and 9 classes) 

WFARM  and PGSCM  7.4487E-64 1.0987E-63 

WFARM  and DCPG 1.9985E-22 9.7693E-16 

 

TR12 

(313 documents 

and 8 classes) 

WFARM  and PGSCM  1.4968E-80 1.3753E-58 

WFARM  and DCPG 4.5782E-14 8.3039E-11 

 

TR23 

(204 documents 

and 6 classes) 

WFARM  and PGSCM  8.4728E-59 1.9617E-36 

WFARM  and DCPG 2.2122E-08 4.3436E-07 

 

TR45 

(690 documents 

and 10 classes) 

WFARM  and PGSCM  8.9946E-41 1.2422E-27 

WFARM  and DCPG 1.2082E-14 3.6333E-11 

Hint: The value highlighted in bold indicates not significance value.  

In Table 7.27, the associated P-values (2-tailed test) using thirty samples of average 

DBI between WFARM and PGSCM, and between WFARM and DCPG are reported. 

From the table, all P-values are smaller than (0.05), so it can be concluded that the 
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mean of DBI metric for WFARM and dynamic methods are not similar. In this case, 

the null hypothesis is rejected and the alternative hypothesis is accepted. This 

excludes, the P-value highlighted in bold in Table 7.27 between WFARM and DCPG 

in the TR23 dataset that indicates a not significant value, so in this situation, the null 

hypothesis is accepted. 

Table 7.27 

The P-value between WFARM & dynamic methods using average DBI results (sig 2 

tailed) with different datasets. 

Datasets 

 
Algorithms 

P-value using average DBI (sig 2 tailed) 

Equal variances 

assumed 

Equal variances not 

assumed 

Reuters 

(300 documents 

and 6 classes) 

WFARM  and PGSCM  8.0093E-07 5.8255E-06 

WFARM  and DCPG 8.0761E-16 7.2634E-12 

 

TR11 

(414 documents 

and 9 classes) 

WFARM  and PGSCM  1.4588E-46 4.2161E-38 

WFARM  and DCPG 2.3359E-19 3.9018E-14 

 

TR12 

(313 documents 

and 8 classes) 

WFARM  and PGSCM  3.2801E-70 9.9954E-48 

WFARM  and DCPG 3.2043E-30 6.3391E-20 

 

TR23 

(204 documents 

and 6 classes) 

WFARM  and PGSCM  4.4507E-05 1.2669E-04 

WFARM  and DCPG 0.1524 0.1577 

 

TR45 

(690 documents 

and 10 classes) 

WFARM  and PGSCM  2.7752E-17 7.5703E-13 

WFARM  and DCPG 1.1293E-14 3.4333E-11 

Hint: The value highlighted in bold indicates not significance value.  
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In Table 7.28, the associated P-values (2-tailed test) using thirty samples of average 

DI between WFARM and PGSCM, and between WFARM and DCPG are reported. As 

seen in Table 7.28, the P-values between WFARM and PGSCM in most datasets 

(Reuters, TR11, TR12 and TR45) and between WFARM and DCPG in TR12 are 

smaller than (0.05), so it can be concluded that the mean of DI metric for WFARM 

and dynamic methods are not similar.  

Table 7.28 

The P-value between WFARM & dynamic methods using average DI results (sig 2 

tailed) with different datasets. 

Datasets 

 
Algorithms 

P-value using average DI (sig 2 tailed) 

Equal variances 

assumed 

Equal variances not 

assumed 

Reuters 

(300 documents 

and 6 classes) 

WFARM  and PGSCM  2.0658E-08 4.1150E-07 

WFARM  and DCPG 0.2679 0.2725 

 

TR11 

(414 documents 

and 9 classes) 

WFARM  and PGSCM  1.8436E-24 4.2055E-17 

WFARM  and DCPG 0.9583 0.9585 

 

TR12 

(313 documents 

and 8 classes) 

WFARM  and PGSCM  2.1910E-41 1.1876E-25 

WFARM  and DCPG 8.3758E-05 2.1282E-04 

 

TR23 

(204 documents 

and 6 classes) 

WFARM  and PGSCM  0.9099 0.9103 

WFARM  and DCPG 0.5665 0.5687 

 

TR45 

(690 documents 

and 10 classes) 

WFARM  and PGSCM  7.3197E-23 5.7341E-16 

WFARM  and DCPG 0.1427 0.1481 

Hint: The value highlighted in bold indicates not significance value.  
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In this case, the null hypothesis is rejected and the alternative hypothesis is accepted. 

However, this excludes the P-value between WFARM and PGSCM in the TR23 and 

between WFARM and DCPG in most datasets (Reuters, TR11, TR23 and TR45) 

highlighted in bold in Table 7.28 are not significant values, so in this situation, the 

null hypothesis is accepted. 

7.4 Summary 

This chapter includes the experimental results, evaluation and analysis of the 

proposed hybrid of WFAR with the merging algorithm for text clustering (WFARM) 

using different sizes of datasets. It is distributed in three sections. 

Section one is the evaluation of the proposed WFARM against WFAR, where each 

evaluation is conducted in three parts: 1) Evaluation of produced number of clusters, 

2) Evaluation using performance metrics, namely external, internal and relative 

metrics such as Purity, F-measure, Entropy, ADDC, DBI and DI, and 3) Evaluation 

using a statistical analysis of paired samples T-test (Ross, 2010) that performs on the 

differences between the pair of WFARM and WFAR. 

Section Two is the evaluation of WFARM against state-of-the-art methods (static 

method) such as Bisect K-means (Murugesan & Zhang, 2011a, 2011b), K-means 

(Jain, 2010), PSO (Cui, Potok, & Palathingal, 2005), FAK-means (Tang, Fong, 

Yang, & Deb, 2012), BatK-means (Tang, Fong, Yang, & Deb, 2012). The evaluation 

is also conducted in three parts: 1) Evaluation of produced number of clusters, 2) 

Evaluation using performance metrics, and 3) Evaluation using a statistical analysis 
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of Independent Samples T-test (Ross, 2010) that performs on the differences 

between the pair of WFARM and one of any static methods. 

Finally, in Section Three the proposed WFARM has been evaluated against state-of-

the-art methods (dynamic method) such as Practical General Stochastic Clustering 

Method (PGSCM) (Tan, Ting, & Teng, 2011a), and Dynamic hybrid Genetic 

algorithm with Particle Swarm Optimization (DCPG) (Kuo, Syu, Chen, & Tien, 

2012). The evaluation has the similar evaluation parts in Section Two. 
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CHAPTER EIGHT 

CONCLUSION AND FUTURE WORK  

The main goal of this thesis is to propose an Adaptive Firefly Algorithm for 

hierarchical text clustering. To achieve this goal, first, this research proposes a 

Weight-based Firefly algorithm (WFA) to identify the centers and its cluster. Later, 

this research introduces a document re-locating procedure into the Weight-based 

Firefly Algorithm to enhance the quality of the obtained clusters, and this is 

presented as WFAR. Finally, WFAR is improved by incorporating it with a cluster 

merging algorithm to discover the optimal number of clusters.  

8.1 Research Contribution 

In this thesis, there are four main contributions. The first contribution classifies the 

existing clustering methods and represent them in a taxonomy (refer to Figure 2.1). 

Each of the categories are explained in detail with some related works in Chapter 

Two. 

The second contribution is the proposed Weight-based Firefly Algorithm that 

identifies the centers and the clusters for text documents, termed as WFA (illustrated 

in Figure 4.5). It has been included in Chapter Four. The WFA algorithm works in a 

dynamic manner without any specific information about the number of clusters. The 

fireflies in this algorithm operate with a normalized positioning in the search space. 

Experiments in Chapter Four reveal that the Weight-based Firefly Algorithm 

performed better than some of the state-of-the-art methods. 
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The third contribution includes the document re-locating procedure which was later 

integrated into the Weight-based Firefly Algorithm, and termed as WFAR (illustrated 

in Figure 5.2). The proposed algorithm enhanced the quality of the obtained clusters. 

Experiments in Chapter Five indicated that the document re-locating procedure 

WFAR performed better as compared to several existing methods. 

In addition, this thesis also contributes WFARM that integrates WFAR and a cluster 

merging algorithm (illustrated in Figure 6.1). The merging algorithm is based on the 

un-weighted pair group method with arithmetic mean (UPGMA), and termed as 

eUPGMA (refer to Figure 6.2). Experiments in Chapters Six and Seven 

demonstrated that the WFARM algorithm generates better results compared than 

existing static and dynamic methods and achieved the optimal number of clusters in 

most datasets used in the research 

As a conclusion, the proposed Adaptive FA for hierarchical text clustering produces 

satisfied results which make it a competitive method in the text clustering field. 

8.2 Future Work 

In future, it is suggested to test the performance of the adaptive hierarchical text 

clustering, WFARM, on large text documents such as the ones with more than 1000 

documents. Additionally, the research can also be performed on designing a 

distributed hierarchical text clustering algorithm. 

Future works can also propose a dynamic function for the similarity threshold, where 

the existing similarity threshold is static predefined. 
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Furthermore, for future work, it is suggested to enhance the local search in the 

Weight-based Firefly Algorithm by integrating with single meta-heuristic algorithm 

such as Tabu search, and simulated annealing. 
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