

ADAPTIVE FIREFLY ALGORITHM FOR HIERARCHICAL

TEXT CLUSTERING

 ATHRAA JASIM MOHAMMED

DOCTOR OF PHILOSOPHY

UNIVERSITI UTARA MALAYSIA

2016

 i

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the Universiti Library may make it

freely available for inspection. I further agree that permission for the copying of this

thesis in any manner, in whole or in part, for scholarly purpose may be granted by

my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate

School of Arts and Sciences. It is understood that any copying or publication or use

of this thesis or parts thereof for financial gain shall not be allowed without my

written permission. It is also understood that due recognition shall be given to me

and to Universiti Utara Malaysia for any scholarly use which may be made of any

material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

 ii

Abstrak

Penggugusan teks digunakan oleh enjin carian untuk meningkatkan recall dan

precision dalam bidang capaian maklumat. Memandangkan enjin carian beroperasi

menggunakan kandungan Internet yang selalu berubah, maka satu algoritma

penggugusan yang menawarkan pengumpulan item secara automatik tanpa

maklumat awal berkenaan koleksi berkenaan adalah diperlukan. Kaedah

penggugusan sedia ada menghadapi masalah untuk menentukan bilangan gugusan

yang optimal dan gugusan yang padat. Dalam penyelidikan ini, satu algoritma

penggugusan teks hierarki yang adaptif telah dicadang berdasarkan algoritma

Firefly. Algoritma Firefly Adaptive (AFA) yang dicadangkan mempunyai tiga

komponen: penggugusan dokumen, pembaikan gugusan dan penggabungan

gugusan. Komponen pertama memperkenalkan algoritma Weight-based Firefly

(WFA) yang berupaya untuk mengenal pasti pusat awalan dan gugusannya secara

automatik bagi sesuatu koleksi teks. Bagi memperbaiki gugusan yang telah

diperolehi, algoritma kedua iaitu Weight-based Firefly dengan Relocate (WFAR)

telah dicadangkan. Kaedah ini membolehkan penempatan semula dokumen yang

telah ditempatkan ke dalam gugusan yang baharu terhasil. Komponen ketiga,

Weight-based Firefly Algorithm dengan Relocate dan Merging (WFARM),

bertujuan mengurangkan bilangan gugusan yang terhasil dengan menggabungkan

gugusan bukan asli ke dalam gugusan asli. Eksperimen telah dilaksanakan untuk

membandingkan algoritma yang dicadangkan dengan tujuh kaedah sedia ada.

Peratusan kejayaan memperolehi bilangan gugusan yang optimal oleh AFA ialah

100% dengan mendapat purity dan f-measure 83% lebih tinggi daripada kaedah

penanda aras. Bagi ukuran entropy, AFA menghasilkan nilai terendah (0.78) apabila

dibandingkan dengan kaedah sedia ada. Keputusan ini memberi indikasi bahawa

Algoritma Firefly Adaptif boleh menghasilkan gugusan yang padat. Penyelidikan

ini menyumbang kepada domain perlombongan teks memandangkan penggugusan

teks hierarki membantu pengindeksan dokumen dan proses pencapaian maklumat.

Kata kunci: Perlombongan teks, Penggugusan teks hierarki, Swarm Intelligence,

Firefly Algorithm

 iii

Abstract

Text clustering is essentially used by search engines to increase the recall and

precision in information retrieval. As search engine operates on Internet content that

is constantly being updated, there is a need for a clustering algorithm that offers

automatic grouping of items without prior knowledge on the collection. Existing

clustering methods have problems in determining optimal number of clusters and

producing compact clusters. In this research, an adaptive hierarchical text clustering

algorithm is proposed based on Firefly Algorithm. The proposed Adaptive Firefly

Algorithm (AFA) consists of three components: document clustering, cluster

refining, and cluster merging. The first component introduces Weight-based Firefly

Algorithm (WFA) that automatically identifies initial centers and their clusters for

any given text collection. In order to refine the obtained clusters, a second algorithm,

termed as Weight-based Firefly Algorithm with Relocate (WFAR), is proposed. Such

an approach allows the relocation of a pre-assigned document into a newly created

cluster. The third component, Weight-based Firefly Algorithm with Relocate and

Merging (WFARM), aims to reduce the number of produced clusters by merging non-

pure clusters into the pure ones. Experiments were conducted to compare the

proposed algorithms against seven existing methods. The percentage of success in

obtaining optimal number of clusters by AFA is 100% with purity and f-measure of

83% higher than the benchmarked methods. As for entropy measure, the AFA

produced the lowest value (0.78) when compared to existing methods. The result

indicates that Adaptive Firefly Algorithm can produce compact clusters. This

research contributes to the text mining domain as hierarchical text clustering

facilitates the indexing of documents and information retrieval processes.

Keywords: Text mining, Hierarchical text clustering, Swarm Intelligence, Firefly

Algorithm

 iv

Acknowledgement

Firstly, I would like to express my gratitude to Allah (S.W.T.) who helps me to

complete my thesis.

Highly appreciate and gratefully acknowledges to my supervisors, Dr. Yuhanis

Yusof and Dr. Husniza Husni who they support me, continues encourage me and

guides me during my study.

I would like to thank my family for being here with me and supporting me during my

study.

 v

Table of Contents

Permission to Use ... i

Abstrak ... ii

Abstract ... iii

Acknowledgement .. iv

Table of Contents ... v

List of Tables .. ix

List of Figures ... xiii

List of Appendices ... xvii

List of Abbreviations .. xviii

CHAPTER ONE INTRODUCTION ... 1

1.1 Research Background... 4

1.1.1 Clustering ... 5

1.1.2 Text Clustering ... 7

1.2 Problem Statement ... 9

1.3 Research Questions .. 10

1.4 Research Objectives ... 10

1.5 Research Significance .. 11

1.6 Scope and Limitations of the Research .. 12

1.7 Organization of the Research ... 12

CHAPTER TWO LITERATURE REVIEW .. 15

2.1 Introduction .. 15

2.2 Clustering Methods .. 16

2.2.1 Static Approach .. 16

2.2.1.1 Traditional Methods .. 16

2.2.1.1.1 Partitional Text Clustering ... 17

2.2.1.1.2 Density-based Text Clustering ... 22

2.2.1.1.3 Grid-based Text Clustering .. 25

2.2.1.1.4 Model-based Text Clustering ... 27

2.2.1.1.5 Hierarchical Text Clustering .. 29

Agglomerative Clustering ... 29

 vi

Divisive Clustering .. 35

2.2.1.2 Optimization Methods .. 42

2.2.1.2.1 Particle Swarm Optimization ... 46

2.2.1.2.2 Ant Colony Optimization ... 50

2.2.1.2.3 Firefly Algorithm .. 53

2.2.1.2.4 Hybrid of Clustering Techniques and other Search Optimization

 ... 62

2.2.2 Dynamic Approach .. 66

2.2.2.1 Estimation Approach .. 66

2.2.2.2 Population-based Approach .. 68

2.3 Research Gap ... 74

2.4 Summary .. 76

CHAPTER THREE RESEARCH METHODOLOGY .. 78

3.1 Research Design ... 79

3.1.1 Data Acquisition Phase .. 80

3.1.1.1 Data Collection ... 81

3.1.1.2 Data Pre-processing .. 82

Step 1: Data Cleaning ... 83

Step 2: Data Representation .. 86

3.1.2 Clustering Phase ... 88

3.1.3 Cluster Refining Phase ... 93

3.1.4 Cluster Merging Phase ... 95

3.2 Implementation of Algorithms ... 98

3.3 Evaluation .. 99

3.3.1 Performance Metrics .. 100

3.3.1.1 Internal and Relative Quality Metrics ... 100

3.3.1.2 External Quality Metrics ... 101

3.3.2 Statistical Analysis ... 103

3.4 Summary .. 104

CHAPTER FOUR DOCUMENT CLUSTERING .. 106

4.1 Weight-based Firefly Algorithm (WFA) ... 106

 vii

4.1.1 Initialization of Parameters .. 106

4.1.2 Data Clustering .. 108

4.2 Evaluation .. 119

4.3 Summary .. 127

CHAPTER FIVE CLUSTER REFINING ... 128

5.1 Introduction .. 128

5.2 Document Re-locating ... 128

5.3 Evaluation .. 132

1.3.5 Comparison between WFAR and WFA ... 132

5.3.2 Comparison between WFAR and Other Methods 140

5.4 Summary .. 147

CHAPTER SIX CLUSTER MERGING .. 149

6.1 Introduction .. 149

6.2 Cluster Merging Algorithm .. 150

6.2.1 Merge Clusters ... 150

6.2.2 Refine Merged Clusters ... 152

6.3 Evaluation .. 159

1.3.5 Comparison between WFARM and WFAR ... 160

1.3.5.5 Number of Clusters between WFARM and WFAR 160

6.3.1.2 Performance Metrics between WFARM and WFAR 161

6.3.1.3 Paired Samples T-test between WFARM and WFAR 168

6.3.2 Comparison between WFARM and Static Methods 169

1.3.3.5 Number of Clusters between WFARM and Static Methods 169

6.3.2.2 Performance Metrics between WFARM and Static Methods 170

6.3.2.3 Independent Samples T-test between WFARM and Static Methods 177

6.3.3 Comparison between WFARM and Dynamic Methods 179

1.3.3.5 Number of Clusters between WFARM and Dynamic Methods 179

6.3.3.2 Performance Metrics between WFARM and Dynamic Methods 180

6.3.3.3 Independent Samples T-test between WFARM and Dynamic Methods 185

6.4 Summary .. 186

 viii

CHAPTER SEVEN EVALUATION OF ADAPTIVE FA ON VARIOUS

DATASETS ... 188

7.1 Introduction .. 188

7.2 Comparison WFARM with Static Methods ... 188

1.3.5 Evaluation Number of Clusters between WFARM and Static Methods 189

7.2.2 Evaluation of Performance Metrics between WFARM and Static Methods

 ... 190

7.2.3 Evaluation Independent Samples T-test between WFARM and Static

Methods ... 204

7.3 Comparison WFARM with Dynamic Methods ... 213

1.3.5 Evaluation Number of Clusters between WFARM and Dynamic Methods214

7.3.2 Evaluation Performance Metrics between WFARM and Dynamic Methods

 ... 215

7.3.3 Evaluation Independent Samples T-test between WFARM and Dynamic

Methods ... 227

7.4 Summary .. 234

CHAPTER EIGHT CONCLUSION AND FUTURE WORK 236

8.1 Research Contribution .. 236

8.2 Future Work ... 237

 ix

List of Tables

Table 2.1 Summary of existing researches in partitional text clustering. 21

Table 2.2 Summary of existing researches in partitional numerical clustering. 22

Table 2.3 Summary of existing researches in hierarchical text clustering. 40

Table 2.4 Summary of existing researches in hierarchical numerical clustering. 42

Table 2.5 . Summary of existing researches in Particle Swarm Optimization in text clustering.

 ... 49

Table 2.6 Summary of existing researches in Particle Swarm Optimization in numerical

clustering. ... 50

Table 2.7 Summary of existing researches in Ant Colony Optimization in text clustering. .. 52

Table 2.8 Summary of existing researches in Ant Colony Optimization in numerical

clustering. ... 53

Table 2.9 Summary of existing researches in Firefly Algorithm in web intelligent data. 61

Table 2.10 Summary of existing researches in Firefly Algorithm in numerical clustering. .. 61

Table 2.11 Summary of existing researches in the hybridization of clustering techniques and

other search optimization in text clustering. .. 65

Table 2.12 Summary of existing researches in the hybridization of clustering techniques and

other search optimization in numerical clustering. .. 65

Table 3.1 Description of Datasets. ... 81

Table 4.1 Parameters setting in WFA. ... 111

Table 4.2 External quality metrics of clustering: WFA vs. PSO vs. K-means vs. FAK-means

vs. Bisect K-means. .. 120

Table 4.3 Internal and relative quality metrics of clustering: WFA vs. PSO vs. K-means vs.

FAK-means vs. Bisect K-means. ... 121

Table 4.4 Average number of clusters of WFA vs. PSO vs. K-means vs. FAK-means vs.

Bisect K-means. ... 126

Table 4.5 Results of quality performance of WFA vs. PSO vs. K-means vs. FAK-means vs.

Bisect K-means. ... 127

Table 5.1 External quality metrics: WFA vs. WFAR. .. 133

Table 5.2 Internal and relative quality metrics: WFA vs. WFAR. 134

Table 5.3 Average number of clusters: WFA vs. WFAR. .. 139

Table 5.4 Summary of quality performance: WFA vs. WFAR. ... 139

 x

Table 5.5 ... External quality metrics: WFAR vs. PSO vs. K-means vs. FAK-means vs. Bisect

K-means. .. 141

Table 5.6 Internal and Relative quality metrics: WFAR vs. PSO vs. K-means vs. FAK-means

vs. Bisect K-means. .. 142

Table 5.7 Average number of clusters: WFAR vs. PSO vs. K-means vs. FA K-means vs.

Bisect K-means. ... 146

Table 5.8 Summary of quality performance: WFAR vs. PSO vs. K-means vs. FAK-means vs.

Bisect K-means. ... 147

Table 6.1 Average number of clusters of WFAR & WFARM. .. 160

Table 6.2 External quality metrics of clustering and standard deviation: WFAR vs. WFARM.

 ... 162

Table 6.3 Internal and relative quality metrics of clustering and standard deviation: WFAR

vs. WFARM. .. 163

Table 6.4 Quality performance of WFAR & WFARM algorithms. 168

Table 6.5 The P-value between WFAR & WFARM algorithms. ... 169

Table 6.6 Average number of clusters: WFARM vs. PSO vs. K-means vs. Bisect K-means vs.

FA K-means vs. BatK-means... 170

Table 6.7 External quality metrics of clustering: WFARM vs. PSO vs. K-means vs. Bisect K-

means vs. FA K-means vs. BatK-means. ... 172

Table 6 Internal and relative quality metrics of clustering and standard deviation: WFARM vs.

PSO vs. K-means vs. Bisect K-means vs. FA K-means vs. BatK-means. 173

Table 6.9 Summary of external quality performance results: WFARM vs. PSO vs. K-means

vs. Bisect K-means vs. FAK-means vs. BatK-means. ... 176

Table 6.10 Summary of internal and relative quality performance results: WFARM vs. PSO

vs. K-means vs. Bisect K-means vs. FAK-means vs. BatK-means. 177

Table 6.11 The P-value between WFARM & static methods. ... 177

Table 6.12 Average number of clusters: WFARM vs. PGSCM vs. DCPG. 179

Table 6.13 External quality metrics of clustering and standard deviation: WFARM vs.

PGSCM vs. DCPG. .. 180

Table 6.14 Internal and relative quality metrics of clustering and standard deviation: WFARM

vs. PGSCM vs. DCPG. .. 182

Table 6.15 Summary of quality performance results: WFARM vs. PGSCM vs. DCPG. 184

Table 6.16 The P-value between WFARM & dynamic methods. .. 185

Table 7.1 Average numbers of clusters: WFARM vs. PSO vs. K-means vs. Bisect K-means

vs. FAK-means vs. BatK-means using different datasets. ... 189

 xi

Table 7.2 External quality Purity (average, best, worst, standard deviation): WFARM vs. PSO

vs. K-means vs. Bisect K-means vs. FA K-means vs. BatK-means using different datasets

(balanced and un-balanced datasets). ... 191

Table 7.3 External quality F-measure (average, best, worst, standard deviation): WFARM vs.

PSO vs. K-means vs. Bisect K-means vs. FA K-means vs. BatK-means using different

datasets. .. 193

Table 7.4 External quality Entropy (average, best, worst, standard deviation): WFARM vs.

PSO vs. K-means vs. Bisect K-means vs. FAK-means vs. BatK-means using different

datasets. .. 195

Table 7.5 Internal quality ADDC (average, best, worst, standard deviation): WFARM vs. PSO

vs. K-means vs. Bisect K-means vs. FAK-means vs. BatK-means using different datasets.

 ... 197

Table 7.6 Relative quality DBI (Average, Best, Worst, standard deviation): WFARM vs. PSO

vs. K-means vs. Bisect K-means vs. FA K-means vs. BatK-means using different datasets.

 ... 199

Table 7.7 Relative quality DI (average, best DI, worst DI, standard deviation): WFARM vs.

PSO vs. K-means vs. Bisect K-means vs. FA K-means vs. BatK-means using different

datasets. .. 201

Table 7.8 Summary of quality performance results: WFARM vs. PSO vs. K-means vs. Bisect

K-means vs. FAK-means vs. BatK-means. .. 203

Table 7.9 The P-value between WFARM & static methods using average purity results (sig 2

tailed) with different datasets. .. 205

Table 7.10 The P-value between WFARM & static methods using average F-measure results

(sig 2 tailed) with different datasets. .. 207

Table 7.11 The P-value between WFARM & static methods using average Entropy results

(sig 2 tailed) with different datasets. .. 208

Table 7.12 The P-value between WFARM & static methods using average ADDC results (sig

2 tailed) with different datasets. ... 210

Table 7.13 The P-value between WFARM & static methods using average DBI results (sig 2

tailed) with different datasets. .. 211

Table 7.14 The P-value between WFARM & static methods using average DI results (sig 2

tailed) with different datasets. .. 212

Table 7.15 Average number of clusters: WFARM vs. PGSCM vs. DCPG using different

datasets. .. 214

 xii

Table 7.16 External quality Purity (average, best, worst, standard deviation): WFARM vs.

PGSCM vs. DCPG using different datasets. .. 216

Table 7.17 External quality F-measure (average, best, worst, standard deviation): WFARM vs.

PGSCM vs. DCPG using different datasets. .. 218

Table 7.18 External quality Entropy (average, best, worst, standard deviation): WFARM vs.

PGSCM vs. DCPG using different datasets. .. 219

Table 7.19 Internal quality ADDC (average, best, worst, standard deviation): WFARM vs.

PGSCM vs. DCPG using different datasets. .. 221

Table 7.20 Relative quality DBI (average, best, worst, standard deviation): WFARM vs.

PGSCM vs. DCPG using different datasets. .. 222

Table 7.21 Relative quality DI (average, best DI, worst DI, standard deviation): WFARM vs.

PGSCM vs. DCPG using different datasets. .. 224

Table 7.22 Summary of quality performance results: WFARM vs. PGSCM vs. DCPG. 225

Table 7.23 The P-value between WFARM & dynamic methods using average purity results

(sig 2 tailed) with different datasets. .. 228

Table 7.24 The P-value between WFARM & dynamic methods using average F-measure

results (sig 2 tailed) with different datasets. .. 229

Table 7.25 The P-value between WFARM & dynamic methods using average Entropy results

(sig 2 tailed) with different datasets. .. 230

Table 7.26 The P-value between WFARM & dynamic methods using average ADDC results

(sig 2 tailed) with different datasets. .. 231

Table 7.27 The P-value between WFARM & dynamic methods using average DBI results (sig

2 tailed) with different datasets. ... 232

Table 7.28 The P-value between WFARM & dynamic methods using average DI results (sig 2

tailed) with different datasets. .. 233

 xiii

List of Figures

Figure 1.1. Text analytics techniques and external disciplines .. 3

Figure 2.1. Proposed taxonomy of clustering methods .. 15

Figure 2.2. Steps of K-means algorithm .. 17

Figure 2.3. The Single Linkage Hierarchical Clustering (SLHC).. 30

Figure 2.4. The Complete Linkage Clustering Hierarchical (CLHC) 31

Figure 2.5. The Un-weighted Pair Group Method with Arithmetic Mean (UPGMA)

Resource. Manning, Raghavan, and Schütze (2008) ... 32

Figure 2.6. The process of Bisect K-means ... 36

Figure 2.7. The taxonomy of optimization algorithms .. 43

Figure 2.8. The step-by-step process of PSO clustering .. 47

Figure 2.9. Pseudo code of Firefly Algorithm ... 55

Figure 2.10. Pseudo code of integrated Firefly with K-means clustering algorithm 58

Resource. Tang, Fong, Yang, and Deb (2012) ... 58

Figure 2.11. Pseudo code of integrated Bat with K-means clustering algorithm 59

Figure 2.12. Pseudo code of integrating Particle Swarm Optimization with Genetic

Algorithm (DCPG) ... 70

Figure 2.13. Pseudo code of practical General Stochastic Clustering Method (PGSCM) 73

Figure 3.1. The experimental research steps .. 78

Figure 3.2. The components of the proposed Adaptive Firefly algorithm for hierarchical text

clustering .. 79

Figure 3.3. The phases of proposed hierarchical text clustering .. 80

Figure 3.4. An example of document from the Reuters dataset ... 83

Figure 3.5. An example of a cleaned document ... 83

Figure 3.6. An example of extracted terms .. 84

Figure 3.7. An example of words with the length more than two .. 84

Figure 3.8: An example of the removed stop words. ... 85

Figure 3.9. An example of word frequency ... 85

Figure 3.10. The term frequency matrix .. 86

Figure 3.11. TFIDF matrix ... 88

Figure 3.12. Flow of Hierarchical Text clustering using Weight-based Firefly Algorithm

(WFA) .. 89

Figure 3.13. An example of the total weight matrix .. 90

 xiv

Figure 3.14. The process of Weight-based Firefly Algorithm (WFA)................................... 92

Figure 3.15. Process of document re-locating .. 93

Figure 3.16. Comparison between clusters for document re-locating 94

Figure 3.17. Process of merging similar clusters in enhanced Un-weighted Pair Group

Method with Arithmetic Mean (eUPGMA) ... 96

Figure 4.1. One dimension search space .. 107

Figure 4.2. An example of normalized positioning.. 107

Figure 4.3. An example of competition in standard Firefly Algorithm (FA)....................... 109

Figure 4.4. An example of competition in Weight-based Firefly Algorithm (WFA) 109

Figure 4.5. Weight-based Firefly Algorithm (WFA) for hierarchical text clustering 113

Figure 4.6. An example of TFIDF for 20Newsgroups ... 114

Figure 4.7. An example of cosine similarity table for 20Newsgroups dataset 115

Figure 4.8. An example of Euclidean distance table for 20Newsgroups dataset 115

Figure 4.9. An example of total weight for 20Newsgroups dataset 116

Figure 4.10. An example of normalized initial positioning for 20Newsgroups dataset 117

Figure 4.11. Graphical representation of initial document positioning for 20Newsgroups

dataset .. 117

Figure 4.12. An example of graphical representation of final document positioning for

20Newsgroups dataset ... 118

Figure 4.13. Graphical representation of quality metrics of WFA vs. PSO vs. K-means vs.

FAK-means vs. Bisect K-means; a) Purity, b) F-measure, c) Entropy, d) ADDC, e) DBI, and

f) DI. ... 122

Figure 5.1. The pseudo code of Document Re-locating ... 129

Figure 5.2. The process of WFAR .. 129

Figure 5.3. Steps of the WFAR algorithm .. 130

Figure 5.4. Graphical representation of quality metrics between WFA & WFAR; a) Purity, b)

F-measure, c) Entropy, d) ADDC, e) DBI, and f) DI ... 135

Figure 5.5. Graphical representation of quality metrics of WFAR vs. PSO vs. K-means vs.

FAK-means vs. Bisect K-means; a) Purity, b) F-measure, c) Entropy, d) ADDC, e) DBI, and

f) DI. ... 143

Figure 6.1. Process in WFARM ... 149

Figure 6.2. Process of cluster merging Algorithm (eUPGMA) ... 150

Figure 6.3. Pseudo code for selecting pure clusters ... 153

Figure 6.4. Pseudo code of identifying centers for pure clusters ... 153

Figure 6.5. Pseudo code of relocating non-pure clusters ... 154

 xv

Figure 6.6. Cosine similarity matrix between cluster1 and cluster2 155

Figure 6.7. Results of merging clusters for 20Newsgroups dataset 157

Figure 6.8. An example of TFIDF of documents in Cluster1 and center calculation 158

Figure 6.9. An example of TFIDF of document 28 in Cluster 3 .. 158

Figure 6.10. An example of the centers of selected pure clusters .. 158

Figure 6.11. Calculation of minimum distance between centers of pure clusters and members

of non-pure cluster ... 159

Figure 6.12. Number of produced clusters by WFAR and WFARM 161

Figure 6.14. Graphical representation of quality metrics: WFARM vs. PSO vs. K- means vs.

Bisect K-means vs. FA K-means vs. BatK-means (a) Purity, (b) F-measure, (c) Entropy, (d)

ADDC, (e) DBI, and (f) DI. ... 174

Figure 6.15. External quality metrics: WFARM vs. PGSCM vs. DCPG 181

Figure 6.16. Internal and relative quality metrics: WFARM vs. PGSCM vs. DCPG 183

Figure 7.1. Results of the number of generated clusters by WFARM and the real number of

clusters of all static methods .. 190

Figure 7.2. Average Purity results: WFARM vs. PSO vs. K-means vs. Bisect K-means vs. FA

K-means vs. BatK-means using different datasets ... 192

Figure 7.3. Average F-measure result: WFARM vs. PSO vs. K-means vs. Bisect K-means vs.

FA K-means vs. BatK-means using different datasets... 194

Figure 7.4. Average Entropy result: WFARM vs. PSO vs. K-means vs. Bisect K-means vs.

FA K-means vs. BatK-means using different datasets... 196

Figure 7.5. Average ADDC result: WFARM vs. PSO vs. K-means vs. Bisect K-means vs. FA

K-means vs. BatK-means using different datasets ... 198

Figure 7.6. Average DBI result: WFARM vs. PSO vs. K-means vs. Bisect K-means vs. FA K-

means vs. BatK-means using different datasets. .. 200

Figure 7.7. Average DI result: WFARM vs. PSO vs. K-means vs. Bisect K-means vs. FA K-

means vs. BatK-means using different datasets ... 202

Figure 7.8. Number of generated clusters: WFARM vs. the real number of clusters vs.

PGSCM vs. DCPG ... 215

Figure 7.9. Average Purity result: WFARM vs. PGSCM vs. DCPG using different datasets217

Figure 7.10. Average F-measure result: WFARM vs. PGSCM vs. DCPG using different

datasets ... 218

Figure 7.11. Average Entropy result: WFARM vs. PGSCM vs. DCPG using different datasets

 ... 220

 xvi

Figure 7.12. Average Entropy result: WFARM vs. PGSCM vs. DCPG using different datasets

 ... 221

Figure 7.13. Average DBI result: WFARM vs. PGSCM vs. DCPG using different datasets 223

Figure 7.14. Average DI result: WFARM vs. PGSCM vs. DCPG using different datasets. . 225

 xvii

List of Appendices

Appendix A Samples of Documents Datasets ... 253

Appendix B Stop Words List ... 259

 xviii

List of Abbreviations

ACK Ant Colony with Kernal method

ACO Ant Colony Optimization

ACPSO Automatic Clustering Particle Swarm Optimization

ALHC Average Linkage Hierarchical Clustering

AP Affinity Propagation

BIC Bayesian Information Criterion

BKM Bisect K-means

C-bat Bat algorithm with K-means

C-cuckoo Cuckoo algorithm with K-means

C-firefly Firefly algorithm with K-means

CFWS Clustering based on Frequent Word Sequence

CLHC Complete Linkage Hierarchical Clustering

CLIQUE Clustering In QUEst

CMS Clustering based on Maximal Frequent Sequence

CPSO Particle Swarm Optimization with K-means

CRC Corrected Rand Coefficient

C-wolf Wolf algorithm with K-means

DBI Davies Bouldin Index

DBSCAN Density-Based Spatial Clustering of Application with Noise

DCGA Dynamic Clustering Gentic Algorithm

DCPG Dynamic Clustering Particle Swarm Optimization with

Gentic Algorithm

DCPSO Dynamic Clustering using Particle Swarm Optimization

DF Document Frequency

DHC Dynamic Hierarchical Compact

DHS Dynamic Hierarchical Star

DI Dunn Index

ES Evolution Strategy

FA Firefly Algorithm

FIHC Frequent Itemset based Hierarchical Clustering

FTC Frequent Term based Clustering

GA Gentic Algorithm

 xix

GGCA General Grid Clustering Approach

GSA Gravitational Search Algorithm

GSA-KM Gravitational Search Algorithm with K-means

HBMO Honey Bee Mating Optimization

HCM Hierarchical Clustering Method

HS Harmony Search

IDF Inverse Document Frequency

KCPSO K-means with Particlel Swarm Optimization

KFA K-means with Firefly Algorithm

KHM K-Harmonic Means algorithm

KPSO K-means with Particlel Swarm Optimization

NMI Normalized mutual information

NN Neural Networks

OptiGrid Optimal Grid clusteing

PDDP Principal Direction Divisive Partitioning

PGSCM Practical General Stochastic Clustering Method

PSO Particle Swarm Optimization

PSOKHM Particle Swarm Optimization with K-Harmonic Means

RFA Reachback Firefly Algorithm

SA Simulated Annealing

SAP Seed Affinity Propagation

SLHC Single Linkage Hierarchical Clustering

SOM Self Organizing Map

STING Statistical Information Grid-based method

TC Term Contribution

TFIDF Term Frequency–Inverse Document Frequency

TSP Travelling Salesman Problem

UPGMA Un-weighted Pair Group Method with Arithmetic Mean

VI Validity Index

VSM Vector Space Model

WFA Weight-based Firefly Algorithm

WFAR Weight-based Firefly Algorithm with relocating

WFARM Weight-based Firefly Algorithm with relocating with

merging algorithm

 1

CHAPTER ONE

INTRODUCTION

Adaptation in computer science is the process of a system. Adaptive system adapts

its behavior to users depending on the information that can be collected from users

and the environment. An adaptive system is a set of entities that interact between

them and change their behavior in response to their environment. The aim of

adaptive change is to achieve the goal. Artificial systems, such as robots, can adapt

with the environment by sensing the new condition through the use of feedback

loops (i.e. the output of the system becomes input). Furthermore, it can adapt a

parameter from the environment based on the change of the conditions; for example,

a new adaptive parameter (speed) changes based on the color of the agent added in

the adaptive flocking algorithm (Folino, Forestiero, & Spezzano, 2009), and the

value of pheromone at each location introduced in the picking and dropping

probability functions of the adaptive ant colony clustering algorithm, and it also

improves the similarity scaling factor by automatic adoption (El-Feghi, Errateeb,

Ahmadi, & Sid-Ahmed, 2009). The adaptive system utilizes machine learning to

adapt its behavior over time (Glass, 2011). Swarm Intelligence provides a useful

paradigm for implementing adaptive systems (Kennedy & Eberhart, 2001).

Swarm Intelligence or Swarm Computing is “the emergent collective intelligence of

groups of simple agents” (Bonabeau, Dorigo, & Theraulaz, 1999). It is useful to

solve some problems that cannot be processed using traditional methods. It is used to

find optimal solutions in hard problems, such as Travelling Salesman Problem (TSP)

 2

(Dorigo & Gambardella, 1997), sound processing (Muñoz, Llanos, Coelho, & Ayala-

Rincon, 2011), and text clustering (Feng et al., 2010).

An example of Swarm Intelligence algorithms is the Firefly Algorithm (FA). FA is

developed by Xin-She Yang in 2007 at Cambridge University. Firefly algorithm has

two important issues, the light intensity and the attractiveness. For maximum

optimization problems, the light intensity I of a firefly at a particular location x,

termed as I(x), can be determined by objective function f(x). On the other hand, the

attractiveness β is relative where the change depends on the distance between two

fireflies (Yang & He, 2013; Yang, 2010a, 2010b). Firefly algorithm has been used in

many applications, such as economic emission load dispatch problem

(Apostolopoulos & Vlachos, 2011; Yang, Hosseini, & Gandomi, 2012), speech

recognition (Hassanzadeh, Faez, & Seyfi, 2012), image segmentation (Hassanzadeh,

Vojodi, & Moghadam, 2011; Horng & Jiang, 2010), reliability-redundancy

allocation problem (dos Santos Coelho, de Andrade Bernert, & Mariani, 2011),

semantic web service composition (Pop et al., 2011), data classification (Nandy,

Sarkar, & Das, 2012), anomaly detection (Adaniya, Abr˜ao, & Proenc¸a Jr., 2013),

and parallel and distributed systems (Falcon, Almeida, & Nayak, 2011).

The main idea of text analysis is to extract valuable information from various

resources on the Internet, such as web text, social media and blogs. The obtained

information is later converted into numerical values which can be combined with

other structured data before being analyzed using one of the data mining techniques.

Hence, text analytics involves seven different areas, which are document

classification, document clustering, information extraction, natural language

 3

processing, concept extraction, information retrieval, and web mining. These seven

areas are related with six fields, such as statistics, computational linguistics, data

mining, databases, artificial intelligence and machine learning, and information

sciences. Figure 1.1 shows the text analytics techniques and external disciplines

involved (Miner et al., 2012, p.31).

Figure 1.1. Text analytics techniques and external disciplines

Resource. Miner et al., (2012, p.31).

For information retrieval performed via search engines, users suffer from

information overload. They may be presented with irrelevant information that have

been retrieved by the search engine. In order to automate the organization of

documents, text clustering may be useful in enhancing the search and retrieval

process. In practice, when users submit a text query to a search engine, the searching

Computational Linguistics

Text

Analytics

AI and Machine

Learning

Information

Extraction

Natural Language

Processing

 Data

Mining

Classification

Clustering

 Databases

 Information Sciences

Information

Retrieval

Web Mining

Statistics

Concept

Extraction

 4

process will require some time to map the submitted words (i.e. query) against

indexing databases. The larger the amount of documents uploaded in the web, the

larger the indexing database would be. Hence, efficient clustering techniques are

beneficial in creating a better structure of the indexing database.

Existing text clustering techniques suffer from drawbacks such as the determination

of the number of clusters as initial value and random of initial centers, that later

produce poor clustering results. Hence, many researchers have integrated existing

text clustering techniques with Swarm Intelligence (SI) algorithms; for example,

divisive clustering framework was integrated with Particle Swarm Optimization

(PSO) and the result validates the effectiveness of this integration (Feng et al., 2010).

On the other hand, there is an FA that is successful in many domains including

numerical data clustering (Banati & Bajaj, 2013; Senthilnath, Omkar, & Mani,

2011). In addition, it is also noted that FA has a higher capacity to find an optimal

solution compared to PSO (Yang, 2010a). Nevertheless, it has yet to be reported on

work that utilizes FA in text clustering. Hence, this study extends the existing work

of FA by adapting it into hierarchical text clustering.

1.1 Research Background

This study focuses on text clustering based on the behavior of Firefly Algorithm. In

particular, this study looks into the adaptive characteristic of the Firefly Algorithm

(FA) in grouping text documents.

 5

1.1.1 Clustering

Cluster analysis refers to the process of grouping un-labelled patterns or objects into

multi-groups depending on their similarity. Each group is called a cluster, which

contains objects that are similar between them and dissimilar from objects in

different cluster (Das, Abraham, & Konar, 2009; Yin, Kaku, Tang, & Zhu, 2011).

Clustering is unsupervised learning that does not need training data and does not

assign target class for each instance in the dataset (Jensi & Jiji, 2013). Various

clustering algorithms have been proposed by many researchers. In general, these

algorithms are classified into five categories (Zhang, Cao, & Lee, 2013; Zhang &

Cao, 2011): partitional clustering, hierarchical clustering, density-based clustering,

grid-based clustering, and model-based clustering.

Partitional clustering algorithms attempt to split a dataset into a set of dissimilar

clusters. The splitting process depends on the objective function that confirms the

data local structure. The objective function attempts to minimize the summation of

square error between the center of a cluster (centroid point) and all points in a cluster

(Anitha Elavarasi, Akilandeswari, & Sathiyabhama, 2011). Clusters that are

produced must include at least one object and the object must not belong to another

cluster; this is called hard clustering. Another type is called soft clustering, where an

object belongs to multiple clusters with membership degree (Bordogna & Pasi, 2012;

Youssef, 2011).

The hierarchical clustering algorithm constructs a hierarchy of clusters. There are

two approaches of this method (Das, Abraham, & Konar, 2009). The first approach

is agglomerative hierarchical clustering which operates from the bottom to the top,

 6

where every object is located in a single cluster, and merges them based on similarity

between clusters (Gil-Garicia & Pons-Porrata, 2010; Wilson, Boots, & Millward,

2002). The second approach is divisive hierarchical clustering which starts from the

top to the bottom, where all objects are initially being assigned in one cluster, and

splits them using one of the partitional clustering approaches (Bordogna & Pasi,

2012). The advantage of hierarchical clustering is that it does not require the number

of k clusters which is the drawback of the partitional clustering. Hierarchical

clustering is a very suitable method for text clustering (Feng et al., 2010; Zhu, Fung,

Mu, & Li, 2008). Hierarchical clustering methods build a hierarchy of nested quality

clusters (Murugesan & Zhang, 2011a, 2011b; Wilson, Boots, & Millward, 2002).

Density-based clustering is a method to build clusters based on dense regions of

objects in high-dimensional space that are isolated by low density areas. The idea of

this algorithm is to detect the area of high density and the area of lower density (Das,

Abraham, & Konar, 2009). The features of density-based algorithm are noise

tolerate, the ability of handling arbitrary shaped clusters, and requires only a single

scan on the input dataset. Additionally, it also requires the initialization of density

parameters (Anitha Elavarasi et al., 2011).

The grid-based clustering algorithms split the space into finite numbers of

rectangular cells at a high level. Then, in the next lower level, each cell is divided

into a number of smaller cells (Zhao, Cao, Zhang, & Zhang, 2011). Every small cell

contains parameters that are calculated like count, mean, min, and max. Higher level

cells can easily access into parameters in the lower level. There are several methods

 7

such as STING (Wang, Yang, & Muntz, 1997), CLIQUE (Agrawal, Gehrke,

Gunopulos, & Raghavan, 1998), OptiGrid (Hinneburg & Keim, 1999).

On the other hand, the model-based clustering method tries to optimize the fit

between some mathematical models and data. In addition, it characterizes the

description of data groups. Hence, each group appears with a class or concept. The

Neural Networks (NN) (Wang et al., 2011) and Self Organizing Map (SOM)

(Kohonen, 1998) are two types of model-based clustering (Zhang, Cao, & Lee, 2013;

Zhang & Cao, 2011).

1.1.2 Text Clustering

Text clustering or document clustering organizes text documents as clusters; similar

documents are in one group and dissimilar ones in another group (Xinwu, 2010).

Document clustering is applicable in document organization and browsing which the

hierarchical approach can be very beneficial for documents to browse systematically.

It also has been applied in document summarization. Document clustering

summarizes a large quantity of documents using the key concepts that are extracted

from the documents. In addition, it discovers a hidden pattern based on the

similarities between the documents (Aggarwal & Zhai, 2012).

In text clustering, the documents are represented as a vector in a vector space model

(VSM). Each document is treated as a bag of words which represents the document

features (Guan, Shi, Marchese, Yang, & Liang, 2011). Most of the existing texts

clustering algorithms use the similarities between the texts in the text clustering

process. Similarity means points, features, or details that are alike in two documents.

 8

There are many similarity functions, such as Cosine similarity, Jaccard similarity and

Hamman similarity (Yin, Kaku, Tang, & Zhu, 2011), that can be used in determining

the similarity between documents.

The performance of text clustering algorithms is measured by using statistical

mathematical functions. These functions are based on the similarity or dissimilarity

between the documents, such as Davies Bouldin Index (DBI) (Davies & Bouldin,

1979), Dunn Index (DI) (Dunn, 1974), Entropy (Shannon, 1948), F-measure

(Meghabghab & Kandel, 2008), purity (Murugesan & Zhang, 2011a, 2011b), and

Average Distance between Documents and Center (ADDC) (Murugesan & Zhang,

2011a, 2011b). The lower value of DBI, high value of DI, lower value of Entropy,

high value of F-measure, high value of purity, and lower value of ADDC, means

good quality cluster (Das, Abraham, & Konar, 2009). For example, Murugesan and

Zhang (2011a) produced low quality clusters where the result of Entropy was 1.41,

F-measure was 0.29 and purity was 0.49 for TR11 dataset.

There exist various reported works on text clustering. Some of them utilize classical

text clustering algorithms (Gupta & Sharma, 2010; Xinwu, 2010; Zhang, Yoshida,

Tang, & Wang, 2010) and the more recent works introduce meta-heuristics

algorithms for text clustering (Feng et al., 2010; Wang, Shen, & Tang, 2009).

The meta-heuristics text clustering has been applied to achieve global optimal

solutions or nearly optimal without the need for prior knowledge about the data set

(Das, Abraham, & Konar, 2009). Meta-heuristics algorithms, such as Firefly

Algorithm (FA) (Yang & He, 2013; Yang, 2010a, 2010b), Particle Swarm

 9

Optimization (PSO) (J. Kennedy & Eberhart, 1995), and Ant Colony Optimization

(ACO) (Dorigo, 1992), have been used in many clustering works.

1.2 Problem Statement

The problem of text clustering has been studied widely, especially using clustering

techniques such as partitional (Yao, Pi, & Cong, 2012) and hierarchical (Gupta &

Sharma, 2010). Agglomerative clustering does not work well with high dimensional

data (Zhu, Fung, Mu, & Li, 2008), on the other hand, divisive clustering is efficient

and useful in document clustering and information retrieval (Feng et al., 2010;

Kashef & Kamel, 2009). However, existing works on divisive hierarchical clustering

produced clusters with less quality (Bordogna & Pasi, 2012; Gupta & Sharma,

2010).

Recently, there exist hybrid works of hierarchical approaches that combine the

divisive and agglomerative clustering approaches and produced better clusters

(Murugesan & Zhang, 2011a, 2011b; Zhu, Fung, Mu, & Li, 2008). Unfortunately,

the divisive techniques that were utilized in existing hybrid hierarchical approaches,

such as partitional clustering (Zhu, Fung, Mu, & Li, 2008) and Bisect K-means

(Murugesan & Zhang, 2011a, 2011b), have drawbacks in determining an optimal

number of k clusters (Hassanzadeh & Meybodi, 2012; Xu, 2005; Youssef, 2011;

Zhong, Liu, & Li, 2010). Such a problem arises as there is no prior knowledge on the

utilized datasets. The works in Bisect K-means fall into local optima because of the

random initialization of the centroids (Chen et al., 2005; Hassanzadeh & Meybodi,

 10

2012; Rana, Jasola, & Kumar, 2010; Tang, Fong, Yang, & Deb, 2012). Different

initial centers will produce different clusters, and hence, generate different qualities.

In addition, in divisive hierarchical clustering such as Bisect K-means, documents

which are assigned to a cluster cannot be re-assigned to another cluster (Forsati,

Mahdavi, Shamsfard, & Meybodi, 2013; Murugesan & Zhang, 2011a, 2011b; Xu,

2005). This means that a document in a higher level of hierarchy cannot be relocated

into another cluster (at a lower hierarchy) even though it is identified to be more

similar to the center of the newly created cluster. On top of that, the divisive

approach produces a large number of clusters. This later affects the performance

quality (Murugesan & Zhang, 2011a, 2011b).

1.3 Research Questions

i. How to adapt the standard FA in clustering to identify the initial number of

clusters and its centroids?

ii. How to design an approach that allows the re-location of an item once it has

been grouped in a particular cluster?

iii. How to merge between two similar clusters?

iv. How to evaluate the proposed algorithms?

1.4 Research Objectives

The main objective of this thesis is to construct an adaptive hierarchical clustering

algorithm based on the Firefly Algorithm (FA) for text documents. In order to

achieve the main objective, the following sub-objectives must be addressed:

 11

i. To design a divisive algorithm based on the firefly algorithm to identify the

initial centroids.

ii. To design an algorithm for the re-location of a document upon the creation of

a new cluster at a lower hierarchy to improve cluster quality.

iii. To construct an enhanced cluster merging algorithm based on the clusters

obtained from Objective (2) in order to obtain the optimal clusters.

iv. To evaluate the proposed algorithms based on the performance metrics.

1.5 Research Significance

In this research, an algorithm for hierarchical text clustering will be developed based

on the Firefly Algorithm. The importance of the developed algorithm is

demonstrated in the three objectives as described in Section 1.4, where the first

objective provides means in identifying the initial centroids. The benefit of the

second objective is in improving the cluster quality as the assigned document can be

relocated (if required) into a newly created cluster. Additionally, the third objective

contributes in identifying the number of clusters and enhances the performance

quality.

The proposed hierarchical text clustering algorithm can be realized in a search

engine that represents and organizes documents in a structured manner. A well-

structured indexing database would contribute to a better retrieval process, and

hence, facilitate users in decision making.

 12

1.6 Scope and Limitations of the Research

This study focuses on text clustering based on the behavior of Firefly Algorithm. In

particular, this study looks into the adaptive characteristic of the Firefly Algorithm

(FA) in grouping text documents.

In addition, this study focuses on text documents which are obtained from different

resources; UCI machine learning repository (Bache & Lichman, 2013) and 20

Newsgroup website (20NewsgroupsDataSet, 2006). The datasets are of two types:

balanced (the number of documents in each class is equal) and un-balanced. The

20Newsgroups dataset (20NewsgroupsDataSet, 2006; Bache & Lichman, 2013) and

Reuters-21578 dataset (Lewis, 1999) are balanced datasets as each class in the

datasets includes the same number of documents. Each document in the Reuters-

21578 database contains only one topic that means every document refers to only

one class. On the other hand, TR11, TR12, TR23 and TR45 were retrieved from

CLUTO toolkit (Karypis, 2002), and have already been pre-processed by Zhao and

Karypis (2001), and they were derived from Text Retrieval Conference (TREC)

collections (TREC, 1999), is an un-balanced dataset. However, the number of terms

in each resource was less than 10,000.

Furthermore, in this research, the focus is on the quality of the produced clusters

rather than the consumed computational effort (time and resources).

1.7 Organization of the Research

This thesis is organized in eight chapters. Chapter One contains the introduction that

discusses Swarm Intelligence, text analytics, and information retrieval. Furthermore,

 13

this chapter also includes problem statement, research questions, research objectives,

significance and research scope.

The second chapter presents a proposed taxonomy of clustering methods. Existing

literature on different categories of text clustering techniques are discussed and the

utilization of the swarm approach in text clustering is focused.

Chapter Three provides the methodology used in conducting this research. It

includes the architecture of the proposed hierarchical text clustering that includes:

data acquisition, clustering using Weight-based Firefly Algorithm, cluster refining,

and cluster merging.

Chapter Four presents the realization of the proposed clustering using Weight-based

Firefly algorithm. The Weight-based Firefly algorithm is tested on the standard

benchmark dataset that is mostly used in text clustering.

Chapter Five presents the Document Re-locating algorithm combined with Weight-

based firefly algorithm. The proposed Document Re-locating algorithm changes the

location of documents (if necessary) when new clusters are constructed.

Later, in Chapter Six the elaboration on the proposed merging algorithm is

presented. Evaluation is performed based on external and internal metrics and

compared against static and dynamic methods.

Chapter Seven includes experimental results; the evaluation and analysis of the

proposed implementation of the adaptive FA that includes the entire prior proposed

 14

algorithm (WFA, re-locating, and merging algorithm). The adaptive algorithm is

evaluated using balanced and un-balanced datasets.

Finally, Chapter Eight gives the concluding remarks on the proposed hierarchical

text clustering. It includes the research contribution and recommendations for future

research work relating to Firefly algorithm.

 15

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Currently, there exist various methods on text clustering. These include the

development of enhanced algorithms and hybridization of existing clustering

algorithms. Diverse clustering algorithms have been presented over the years.

Algorithms that are based on the initial information of a data collection (for example,

the number of clusters) can be categorized into two approaches: static and dynamic

(Gil-Garicia & Pons-Porrata, 2010). Furthermore, traditional methods are divided

into five types: Partitional clustering, Hierarchical clustering, Density-based

clustering, Model-based clustering and Grid-based clustering (Han et al., 2011;

Zhang, Cao, & Lee, 2013). Figure 2.1 illustrates the proposed taxonomy of

clustering methods. The following sections review the state of the art in text

clustering based on the figure.

Figure 2.1. Proposed taxonomy of clustering methods

Clustering Methods

Dynamic

Population-

based Approach
Estimation Approach

Swarm-based

Clustering

Evolutionary

Clustering

Static

Traditional Approach

Density-based
clustering

Partitional

Clustering
Model-based

Clustering
Hierarchical

Clustering

Optimization Approach

Divisive

Grid-based

Clustering

Agglomerative

 16

2.2 Clustering Methods

In clustering, various clustering methods have been presented over the years to help

optimize the field. These methods can be sighted in two separate types of groups: a)

static methods, and b) dynamic methods, with their respective approaches from

traditional methods to evolutionary ones. This chapter includes the elaboration on the

description of several clustering methods categorized as a static or dynamic

approach.

2.2.1 Static Approach

Clustering involving static approach requires information on the number of clusters

(i.e. the value of k) prior to the clustering process. The static approach can further be

categorized as either using the traditional clustering or optimization methods. To

date, various optimization methods have been utilized to overcome issues that arise

while using the traditional methods.

2.2.1.1 Traditional Methods

Traditional methods include five types of clustering: Partitional clustering (Jain,

2010), Density-based clustering (Sander, 2010), Grid-based clustering (Ilango &

Mohan, 2010), Model-based clustering (Ding & Fu, 2012; Zhang & Cao, 2011), and

Hierarchical clustering (Jain, 2010; Vijayalakshmi, MCA, & Devi, 2012). Details on

these five types of methods are as presented in Sections 2.2.1.1.1 to 2.2.1.1.5.

 17

2.2.1.1.1 Partitional Text Clustering

Partitional clustering algorithms divide a dataset into groups based on the inter-

similarity between documents. The most popular and efficient partitional clustering

algorithm is K-means (Hartigan & Wong, 1979; Hu, Zhou, Guan, & Hu, 2008; Jain,

2010) which was first introduced in 1957 by Hugo Steinhaus and was first utilized

by James MacQueen in 1967. The K-means steps are shown in Figure 2.2.

K-means algorithm

Step 1: Select an initial partition with k clusters; repeat Steps 2 and 3 until cluster

membership is stabilized.

Step 2: Generate a new partition by assigning each pattern to its closest cluster center.

Step 3: Compute new cluster centers.

Figure 2.2. Steps of K-means algorithm

Resource. Jain (2010)

The implementation of K-means generates problems that include the randomly

selected initial centroids. Existing studies (Gu, Zhou, & Chen, 2009; Hu, Zhou, Guan

& Hu 2008; Mishra, Nayak, Rath, & Swain, 2012; Poomagal & Hamsapriya, 2011;

Singh & Bhatia, 2011; Yao, Pi & Cong, 2012) indicate that different initial centroids

produce different quality of clusters. Hence, this indicates that it is important to

accurately determine the initial centroids.

With this, researches have been improving the standard K-means for text clustering

by selecting initial cluster (Xinwu, 2010; Yao, Pi & Cong, 2012). A work by Xinwu

(2010) used the sampling method (random sampling) on online datasets to validate

the proposed algorithm. The results on F-measure scattered from 0.60 and 0.75 in the

 18

standard K-means; while in the improved K-means, the F-measure results scattered

from 0.75 and 0.85, which are better than the one obtained using the standard K-

means. The obtained results were similar to the findings by Yao, Pi and Cong (2012)

which were performed on Chinese corpus from Sogou news site and used isolated

texts. Nevertheless, the number of k cluster was assumed.

The modified K-means algorithm for document clustering was presented by

Poomagal and Hamsapriya (2011), and Singh and Bhatia (2011). Singh and Bhatia

(2011) proposed that the highest frequency of points has the highest probability to be

included as the centroid. Their approach reduced the computational time and

minimized the complexity, but the work was not implemented on a real dataset and

clustering measurements were absent to validate the proposed algorithm. This differs

with the work by Poomagal and Hamsapriya (2011), who calculated the midpoint for

each term. The researchers utilized 200 results that were selected from Yahoo,

Google and Bing. The experimental result demonstrated less intra-cluster and high

inter-cluster than the other two algorithms of Snippets and URL and tag contents.

However, the drawbacks of these two works are the number of k clusters which was

assumed.

A novel partition-based algorithm for text clustering to solve the initial centers of

cluster was presented by Hu, Zhou, Guan and Hu (2008), and Wang, Liu, Chen, and

Tang (2011). A constrained K-means clustering method, named S3-Kmeans,

integrates prior knowledge of documents (pairwise constraints ML terms must link)

into Euclidean distance function of K-means (Hu, Zhou, Guan & Hu, 2008). In the

evaluation, they used two metrics: normalized mutual information (NMI) and

 19

corrected rand coefficient (CRC). The proposed methods of S3-Kmeans performed

better than K-means, Single Linkage and improved Single Linkage. However, the

shortcoming is in determining the number of k clusters and this is similar to the

weakness presented by Wang, Liu, Chen and Tang (2011), in which they calculated

the document average similarity of document k, then, found the document similarity

list based on average similarity, and later, they ordered the list and retrieved the

largest value as centroids. The F-measure result of the proposed algorithm is better

than Agglomerative, Bisect K-means and Graph-based in CLUTO (Karypis, 2002).

Existing researches on k-means are based on initial point and this leads to coverage

local minima. This problem was solved by Yang (2010), who proposed a fast greedy

k-means algorithm. In the experiment, they used a dataset that includes 33,409 web

documents gathered from the Waterloo University website. The precision result

compares k-means against the fast greedy k-means and it is learned that the proposed

method has better precision result than K-means. However, the shortcoming of the

work is the pre-defined value for k.

To minimize the processing complexity for text document clustering, Guan et al.

(2011) introduced two contributions: i.e. a similarity formula and a new Seed

Affinity Propagation (SAP). A similarity formula is based on three feature sets: co-

feature set represents the feature in two objects; unilateral set represents the feature

in one object not belonging to another object; and significant set represents the most

important feature in one object belonging to another object. In the experiment

conducted, the researchers used the Reuters-21578 dataset with three measurements:

Entropy, F-measure and CPU time. The results of the proposed SAP outperformed

 20

the original Affinity Propagation AP(C), SAP(C) and K-means(C) that used cosine

similarity and AP that used Tri-set similarity in F-measure with 0.599 and in Entropy

with 0.472. However, in CPU execution time, the Affinity Propagation AP(C) has

the best time of 12.6 ms. and yet, the evaluation was only based on external

measurement and does not include the compactness of the clusters.

The problem of initial cluster centers was solved using various methods in numerical

datasets (Gu, Zhou & Chen, 2009; Mishra, Nayak, Rath & Swain, 2012). In the first

work, Gu, Zhou and Chen (2009) proposed to refine the initial centers of the K-

means method by utilizing the partition algorithm twice. In the evaluation phase, two

datasets are employed: breast cancer and Iris from the UCI repository. The results

indicated that the proposed refined K-means is better than the standard K-means in

CPU-time, but the clusters’ quality performance is absent. This is different than the

work of Mishra, Nayak, Rath and Swain (2012), who selected the farthest distance

between two pairs and found that the computational time of standard K-means is

better than the proposed far efficient K-means. In addition, the result of Dunn’s

index (DI) in the proposed far efficient K-means is 0.047 and Bouldin’s index (DBI)

is 0.688 which is better than the standard k-means. However, the number of k cluster

is provided by the user.

The aforementioned researches contribute in random initial centroids selection in K-

means algorithm, but the quality of the clusters can still be improved (Hu, Zhou,

Guan, & Hu, 2008; Mishra, Nayak, Rath, & Swain, 2012; Poomagal & Hamsapriya,

2011; Singh & Bhatia, 2011; Yang, 2010; Yao, Pi & Cong, 2012). There is still a gap

in the existing literature which is the determination of the number of k clusters and

 21

initial centers in which this research tries to solve them. Table 2.1 presents the

summary of existing works in partitional text clustering.

Table 2.1

Summary of existing researches in partitional text clustering.

Authors Contribution Problem Solved Dataset Weakness

Hu, Zhou,

Guan, & Hu

(2008)

A constrained K-

means clustering

method, S3-

Kmeans

Random initial

centroids selection

in k-means

algorithm

TREC, Reuters-

21578, Newsgroup-

20 and WebACE.

Predefine k

clusters

Xinwu

(2010)

Improved K-means

sampling method

Initial selection of

centers

Used online

datasets to validate

the algorithm

Predefine k

clusters

Yang (2010)
A fast greedy K-

means algorithm

Existing researches

for K-means not

scaled to large data

point numbers and

are slow depending

on initial point

which lead to

coverage local

minima

33,409 web

documents gathered

from Waterloo

University website

Predefine k

clusters

Poomagal &

Hamsapriya

(2011)

Determination of

initial centroids by

calculating the

midpoint using

optimized K-means

Random initial

centroids selection

in K-means

algorithm

Used 200 queries in

Yahoo, Google and

Bing

Predefine k

clusters

Singh &

Bhatia

(2011)

Modified K-means

algorithm

Initial center of

clusters
No real dataset

Predefine k

clusters.

Wang, Liu,

Chen, &

Tang (2011)

 Partition algorithm

Sensitivity of

partition algorithm

for initial centroids

20 Newsgroups,

Reuters-21578 and

two Chinese

datasets

Predefine k

clusters

 22

Table 2.1 continued

Guan, Shi,

Marchese,

Yang, &

Liang (2011)

A new similarity

formula, Seeds, and

a new Seed Affinity

Propagation (SAP)

Minimized the

processing

complexity

Ruters-21578

Only the

external

evaluation are

conducted and

not measured

the

compactness

of clustering

Yao, Pi, &

Cong (2012)

Improved K-means

for Chinese text

clustering

Improved initial

centers by isolated

text

Corpus from Sogou

news site

Predefine k

clusters

Table 2.2

Summary of existing researches in partitional numerical clustering.

Authors Contribution Problem Solved Dataset Weakness

Gu, Zhou, &

Chen (2009)

K-means with

refined initial center

algorithm.

The members of

clusters are unstable

for a large sample

data, besides, the

initial selection of

seed points

Breast cancer and

Iris

Only measures

computational

time, but

clusters

quality

performance is

absent

Mishra,

Nayak, Rath,

& Swain

(2012)

Far Efficient K-

means algorithm

Finding initial

cluster centers

UCI (Iris, Wine and

Abalone)

Predefine k

clusters

2.2.1.1.2 Density-based Text Clustering

Density-based clustering algorithm is a technique to construct clusters based on the

dense regions of objects in high-dimensional space that are isolated by low density

areas. Density-Based Spatial Clustering of Application with Noise (DBSCAN) is the

 23

most known density-based method used for data clustering (Ester, Kriegel, Sander,

& Xu, 1996). It randomly selects points and finds the neighborhood by using query.

A cluster is constructed based on these points and each neighbor examined to see if it

can be included in the cluster (Chehreghani, Abolhassani, & Chehreghani, 2008).

This type of clustering is useful for this study in constructing clusters which is based

on similarity threshold.

A new density-based clustering method for web data was proposed by Chehreghani,

Abolhassani, and Chehreghani (2008). The proposed method included three stages:

the insertion stage, the extraction stage and the combined stage. It solved the

shortcoming of density-based methods to cluster web data. Three datasets were used

from DMOZ collection, News collection and Reuter’s documents. The results of the

proposed method were better than K-means, Single Linkage and improved Single

Linkage in two measurements; purity and F-measure. The result of the number of

examined data items was compared with DBSCAN (Ester, Kriegel, Sander, & Xu,

1996).

Improving clustering solution by assigning weight to documents and studying the

density-based functions’ performance in three parts, internal, external and hybrid,

was proposed by Aliguliyev (2009a, 2009b). The researcher developed weighted

clustering functions and un-weighted clustering functions, and they used a modified

differential evolution algorithm to optimize these functions. In the evaluation stage,

five datasets were used, namely Reuters-21578, WebACE, TREC-5, 20Newsgroups

and WebKb. The result showed that all twelve criterion functions produced

accuracies of 80% and 77%, except for one weighted function which was most

 24

sensitive. The sensitive function produced 42.17% for inter cluster, 71.65% for intra

cluster, 0.40% for purity, 0.18% for Entropy, 7.47% for Mirkin, 4.16% for F-

measure, 15.36% for variation information, and 0.02% for V-measure.

A review on existing document clustering methods that used frequent patterns and a

method called Maximum Capturing was presented by Zhang, Yoshida, Tang, and

Wang, (2010). The researchers developed three Maximum Capturing methods that

depend on three similarity measures. The researchers solved three problems; the first

one was the similarity between two documents, the second determines the

appropriate number of clusters, and the third was achieving clustered documents

exactly the same as natural clusters. The experimental result showed that Maximum

Capturing performed better than CFWS, CMS, FIHC and FTC in F-measure value

on two benchmark datasets, Reuters-21578 and Chinese corpus.

To sum up the foregoing research (Aliguliyev, 2009a, 2009b; Chehreghani,

Abolhassani, & Chehreghani, 2008; Zhang, Yoshida, Tang, & Wang, 2010), it can

be concluded that Aliguliyev (2009a, 2009b) improved the clustering solution by

designing weight clustering functions and validating performance. Furthermore, the

work of Chehreghani, Abolhassani, and Chehreghani (2008) improved web pages

hierarchical clustering using density-based methods. A part from that, Zhang,

Yoshida, Tang, and Wang (2010) succeeded in solving the problem of similarity

between two documents. However, the number of k clusters is predefined in all the

previous researches.

 25

2.2.1.1.3 Grid-based Text Clustering

The grid-based clustering approach uses a multi-resolution grid data structure. It

divides data space into several levels of cells. The process of clustering is performed

inside these cells. The parameters of higher level cells can be computed using lower

level cells. The quality of clustering is based on the number of cells in lower level

cells. If it is too coarse, this will lead to the quality of cluster being reduced (Han &

Kamber, 2006). In addition, grid clustering does not have a relationship between

neighbors, which means there are no children and parent cells to be represented

hierarchically. There are various recognized grid-based approaches such as STING

(Wang, Yang, & Muntz, 1997), CLIQUE (Agrawal, Gehrke, Gunopulos, &

Raghavan, 1998), and OptiGrid (Hinneburg & Keim, 1999).

The advantage of grid clustering is that it does not require input parameters and this

solved the problem of parameter sensitivity in hierarchical clustering (Yue, Wei,

Wang, & Wang, 2008). An approach of grid clustering was built based on the

combined idea of divisive and agglomerative hierarchical clustering GGCA. The

approach bisects the grid into two grids that are equal in size. This process is the

same process of divisive clustering. The output of this process is the optimal grid

size and the determination of core grid. The core grids are later merged. The merging

process is the same as implemented in agglomerative clustering. The proposed

approach was tested on eight datasets, five artificial and three real datasets. The

researchers measured the robustness of the clustering, runtime, error and

determination of cluster number and compared them against three approaches, HCM,

Clique and Shift. For artificial datasets, HCM is learned to be not suitable. Shift is

 26

appropriate to determine the cluster number, but produced high error rates. Clique

divides the dataset into many clusters that are meaningless. The proposed approach,

GGCA, outperformed in CPU runtime and cluster number and obtained less errors

compared to the other methods. On the other hand, for real datasets, GGCA produces

clusters that are the same as the original clusters, but with less CPU time. The

proposed approach was robust in clustering two types of datasets, but their research

was not evaluated on text datasets.

The problem of high dimensionality data in density-based clustering and

computational time was solved by suggesting a grid-density clustering for large

datasets (Zhao, Cao, Zhang, & Zhang, 2011). The suggestion included four features:

dealing with objects as atomic units; dealing with neighbors as a couple of groups;

density compensation; and finally minimal subspace distance. During

experimentation, they used synthetic and public data. The result of the proposed

AGRID+ approach using synthetic data was compared with AGRID in terms of

density (that is based on threshold) and compared with NAIVE, IORDER and

AGRID in terms of accuracy and CPU time. Whereas, the result of the proposed

AGRID+ approach using public data was compared with Random Projection and

IORDER in terms of Conditional Entropy (CE) and Normalized Mutual Information

(NMI). For density comparison, AGRID+ is better than AGRID because the

proposed approach detected more objects. The accuracy in AGRID+ was 93.7%,

IORDER was 85.3%, AGRID was 83.1% and NAIVE was 95.0%. This means that

NAIVE is more accurate than the proposed AGRID+ despite the CPU time for the

proposed AGRID+ was 4.60, less than NAÏVE’s 44.21. The CE in AGRID+ was

 27

0.466, less than IORDER’s 0.517 and Random Projection’s 0.706. Moreover, NMI

in the proposed AGRID+ was 0.845, which is higher than IORDER’s 0.822 and

Random Projection’s 0.790. This means the proposed AGRID+ approach is a high

quality clustering, but is not implemented on document clustering.

From the aforementioned researches that solved the problem of parameter sensitivity

in hierarchical clustering (Yue, Wei, Wang, & Wang, 2008), and the problem of high

dimensionality of data in density-based clustering and computational time (Zhao,

Cao, Zhang, & Zhang, 2011), It can be concluded that the two approaches were

robust and accurate in the clustering of datasets, but do not measure the robustness in

text datasets.

2.2.1.1.4 Model-based Text Clustering

Model-based clustering is the method that tries to optimize the fit between some

mathematical models and data. The Self Organizing Map (SOM) is a type of model-

based clustering and Neural Network which was presented by Kohonen (1998,

2001). The SOM algorithm has been used in many applications, like semantic map,

clustering, and so on (Yin, Kaku, Tang, & Zhu, 2011). Model-based clustering is

sensitive to the initial selection of weight vector, as well as to its different

parameters, such as the learning rate and neighborhood radius (Rokach & Maimon,

2005).

The problem of text clustering with high dimensional features was solved by Liu,

Wu, and Liu (2011). The researchers used two processes to maintain the text

clustering system with high efficiency, which are semantic quantization and feature

 28

extraction. These processes work in the offline stage. The online stage used fast

similarity and incremental clustering. In the conducted experiment, the researchers

used two datasets, which are 20Newsgroups and news web documents, retrieved

from the Internet. For measuring the performance of fast SOM, F-measure is used in

the 20Newsgroups dataset, while accuracy and CPU time is used in news web

documents (because the datasets were large). The accuracy and CPU time result of

fast SOM were compared with another method that used vector space model (VSM).

Furthermore, the F-measure result is compared with clustering system, GHSOM.

CPU time for fast SOM was 0.13, less than the method that used vector space model

which was 4.70 in 50,000 documents. When the document number was increased,

the time also increased. The accuracy of text clustering in both datasets produced

best results of 0.85 and 0.82 when the documents that were used in clustering were

85% and 80% from all the datasets and the documents that were used in incremental

clustering were 15% and 20%. This work is very efficient in large datasets using

SOM, but needs more improvement by the implementation with other methods.

Ding and Fu (2012) constructed two maps using Self Organizing Maps (SOM) to

solve the problem of easily retrieved relevant documents in search engines and

enhance the search process combining word map with document map. The first map

is word map that clusters the words which appear in one document into one neuron.

The second one is document map that clusters similar documents into one neuron.

Similar documents are measured depending on similar words between documents.

The research finds that integrating two maps will increase the retrieval of relevant

documents by word search. The disadvantage of this work is that it does not use any

 29

real or synthesis dataset and also does not use any measurements to evaluate the

work.

The researches that have been addressed in this section have several weaknesses and

advantages in work and findings (Ding & Fu, 2012; Liu Wu & Liu, 2011). Liu Wu

and Liu (2011) stated that the advantage of their work was that it is very efficient in

large datasets using SOM, but needs more improvement by implementing it in other

methods. Ding and Fu (2012) identified the advantage of their proposed approach as

the increase of the retrieval of relevant documents by word search, but the

shortcoming is the proposed approach not realized in any real or synthesis datasets

and is also not evaluated or compared with other researches.

2.2.1.1.5 Hierarchical Text Clustering

Hierarchical clustering constructs a hierarchical structure for text documents. There

are two types of hierarchical clustering: agglomerative clustering and divisive

clustering (Rafsanjani, Varzaneh, & Chukanlo, 2012).

Agglomerative Clustering

Agglomerative clustering starts with multi-clusters; each cluster includes one

document or more in which two clusters are later merged using the merging

algorithms. There are three agglomerative clustering merging algorithms: The Single

Linkage Hierarchical Clustering (SLHC), the Complete Linkage Hierarchical

Clustering (CLHC) and the Average Linkage Hierarchical Clustering (ALHC) or

 30

called UPGMA (Manning, Raghavan, & Schütze, 2008; Yin, Kaku, Tang, & Zhu,

2011).

The Single Linkage Hierarchical Clustering (SLHC) is a simple agglomerative

clustering that depends on the similarity between two objects. SLHC merges two

objects that have a high similarity or have the least amount of distance. The two

clusters are merged based on a single link between the two elements in different

clusters that have the shortest distance or highest similarity. SLHC is sensitive in

dealing with noise and outliers (Tan, Steinbach, & Kumar, 2006). Figure 2.3

illustrates the Single Linkage Hierarchical Clustering (SLHC).

Figure 2.3. The Single Linkage Hierarchical Clustering (SLHC)

Resource. Manning, Raghavan, and Schütze (2008)

SLHC for merging two clusters is evaluated based on the similarity between objects

where the maximum similarity will be chosen. The formula of merging is based on

cosine similarity as shown in Equation 2.1.

𝑆𝐿𝐻𝐶𝐷𝑖,𝐷𝑗
= 𝑀𝑎𝑥𝑖,𝑗 ∈𝐶𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐷𝑖, 𝐷𝑗) (2.1)

Cluster

A

Cluster

B

 31

Where: Di, Dj are documents in two different clusters i and j, C is all of the clusters.

The formula of merging is based on distance similarity as shown in Equation 2.2.

𝑆𝐿𝐻𝐶𝐷𝑖,𝐷𝑗
= 𝑀𝑖𝑛𝑖,𝑗 ∈𝐶𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐷𝑖, 𝐷𝑗)

(2.2)

On the other hand, the Complete Linkage Hierarchical Clustering (CLHC) merges

two objects with minimum similarity or with maximum distance which is a reverse

of SLHC (Manning, Raghavan, & Schütze, 2008). The two clusters are merged

based on all links between any two elements in different clusters and the highest

distance or lower similarity is chosen. CLHC is less vulnerable to noise and outliers,

but it can break large groups and prefers spherical shapes (Tan, Steinbach, & Kumar,

2006). Figure 2.4 illustrates the Complete Linkage Hierarchical Clustering (CLHC).

Figure 2.4. The Complete Linkage Clustering Hierarchical (CLHC)

Resource. Manning, Raghavan, and Schütze (2008)

For merging two clusters, CLHC is evaluated based on the similarity between

objects and the farthest distance is chosen. The formula of merging is based on

cosine similarity as shown in Equation 2.3.

Farthest

Distance

Cluster

A

Cluster

B

 32

𝐶𝐿𝐻𝐶𝐷𝑖,𝐷𝑗
= 𝑀𝑖𝑛𝑖,𝑗 ∈𝐶𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐷𝑖, 𝐷𝑗)

(2.3)

The formula of merging is based on distance similarity as shown in Equation 2.4.

𝐶𝐿𝐻𝐶𝐷𝑖,𝐷𝑗
= 𝑀𝑎𝑥𝑖,𝑗 ∈𝐶𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐷𝑖, 𝐷𝑗)

(2.4)

The Un-weighted Pair Group Method with Arithmetic Mean (UPGMA) is one of the

most popular agglomerative clustering algorithms that is used for merging two

clusters (Manning, Raghavan, & Schütze, 2008; Yujian & Liye, 2010). UPGMA is

based on the average similarity between all elements in two clusters. The advantage

of this method is that it can transact with dynamic data sets and does not allow for

overlapping (Gil-Garicia & Pons-Porrata, 2010). However, the weakness of UPGMA

is the time complexity (Murugesan & Zhang, 2011a, 2011b). Figure 2.5 illustrates

the UPGMA clustering method.

Figure 2.5. The Un-weighted Pair Group Method with Arithmetic Mean (UPGMA)

Resource. Manning, Raghavan, and Schütze (2008)

All

Distance

Cluster

A

Cluster

B

 33

The formula of merging two clusters based on cosine similarity is shown in Equation

2.5.

𝑈𝑃𝐺𝑀𝐴𝑖,𝑗 =
∑ ∑ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐷𝑖 , 𝐷𝑗)𝑗 ∈𝐶𝑖 ∈𝐶

𝑁𝑖𝑁𝑗

(2.5)

Where: Ni is the number of documents in cluster i, Nj is the number of documents in

cluster j. The formula of merging two clusters based on distance similarity is shown

in Equation 2.6.

𝑈𝑃𝐺𝑀𝐴𝑖,𝑗 =
∑ ∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐷𝑖, 𝐷𝑗)𝑗 ∈𝐶𝑖 ∈𝐶

𝑁𝑖𝑁𝑗

(2.6)

Yujian and Liye (2010) presented an improved Un-weighted Multiple Group Method

with Arithmetic Mean (UMGMA) to solve the problem of tie trees (two or more

trees created from analyzing related populations) in UPGMA. The result enhances

UPGMA and produces a unique tree. However, this process needs high

computational time. Murugesan and Zhang (2011a, 2011b) proposed to utilize

UPGMA to refine the clusters that are generated by Bisect K-means and to reduce

the time complexity of UPGMA. The result of the proposed method outperformed

Bisect K-means in three performance metrics. In CHAMELEON (Karypis, Han, &

Kumar, 1999), two phases of clustering were proposed; the first phase groups the

data based on the graph partition algorithm, the second phase utilizes the

agglomerative clustering algorithm to detect the real clusters.

 34

Recently, several researches integrated partitional clustering with hierarchical

clustering to produce better clusters, and at the same time, solve the problem of time

complexity of hierarchical clustering. Hybrid partitional with hierarchical

agglomerative for document clustering method utilizes the feature of partitional

clustering to handle large datasets efficiently and the feature of agglomerative to

construct a hierarchical structure for documents (Murugesan & Zhang, 2011a,

2011b; Zhu, Fung, Mu, & Li, 2008).

Zhu, Fung, Mu, and Li (2008) grouped the document collection into specific clusters

based on function that maximizes the sum of average pair-wise similarities between

documents, and then splits the lower average pair-wise similarities into the same

specific clusters until the last cluster includes the limited document. Then, the

merging is performed based on internal closeness and internal inter-connectivity

which are adopted from Kalman (1960). The result of the proposed approach showed

lower entropy (0.261) and higher purity (0.7860) and F-measure (0.789), for the

TR12 dataset, and the merging is better than UPGMA. However, the number of

clusters is predefined.

In conclusion, there is no doubt that the aforementioned researches (Murugesan &

Zhang, 2011a, 2011b; Yujian & Liye, 2010; Zhu, Fung, Mu, & Li, 2008) contribute

to clustering, yet there is room to improve the cluster quality and to predict the

cluster number.

 35

Divisive Clustering

Divisive text clustering starts with a single cluster that contains all documents and

splits them into a number of clusters. The Principal Direction Divisive Partitioning

(PDDP) is one of the important divisive hierarchical methods (Boley, 1998). PDDP

builds a binary tree where the root contains the entire set of documents and the leaf

contains the output clusters. The root is divided into two partitions; the right partition

is for cluster more than 0 and the left partition is for less than 0. The results using the

PDDP algorithm on 185 documents retrieved from the World Wide Web in two

scaling norms and TFIDF were compared with the ones from the agglomerative

algorithm. The Entropy result for PDDP was 0.69 in norm scale, which is better than

the agglomerative algorithm. In addition, the CPU execution time is better in PDDP.

Bisect K-means is a well-known divisive hierarchical clustering and is a variant of

K-means (Kashef & Kamel, 2009; Murugesan & Zhang, 2011a, 2011b). In this

algorithm, at each level of constructing a hierarchy, Bisect K-means selects one

cluster C (initially C represents the whole dataset) and classifies the objects in C into

two partitions (C1 and C2) by randomly choosing two centers and assigning objects

to the closest centers (using the K-means algorithm). This process continues until it

reaches the stopping condition of either the number of iterations or specific number

of clusters. At each step of classifying, the chosen cluster is tested by some criteria:

a) minimum intra similarity; b) larger cluster size (cluster includes higher number of

objects); or c) size of cluster and similarity (Kashef & Kamel, 2009; Murugesan &

Zhang, 2011a, 2011b). Figure 2.6 shows the step-by-step process of Bisect K-means.

 36

Bisect K-means algorithm

Step 1: Randomly choose two cluster centers.

Step 2: Cluster using K-means.

Step 3: If number of clusters is not reached, choose the cluster that has smallest intra

similarity.

Step 4: Repeat Step 1 until number of clusters is reached.

Figure 2.6. The process of Bisect K-means

Resources. Kashef and Kamel (2009), and Murugesan and Zhang (2011a, 2011b)

Bisect K-means requires a refinement step to re-cluster the resulting solutions at each

level of constructed tree. This drawback attracts researchers to combine Bisect K-

means with K-means. In the work of Kashef and Kamel (2009, 2010), the clustering

solution of Bisect K-means (also known as BKM) and K-means at each level is

cooperated between them by cooperative and merging metrics, named CBKM, for

clustering text, artificial and gene datasets. The result from BKM was revised using

K-means (KM) at every stage of the construction of the binary tree. In each level, the

process of CBKM includes three stages: general clustering by K-means and BKM,

the cooperation or intersection stage between K-means and BKM, and the merging

stage. For documents dataset, the quality percentage result of F-measure for the

proposed approach on the SN dataset was 31.05%, correspondingly, the result of

Entropy was 37.13% on the UW dataset, the result of Purity was highest in 20NG

dataset, which was 39.25%, the result of NMI was highest in the 20NG dataset,

which was 51.48%, and the result of SI was also highest in the 20NG dataset,

38.41%. In addition, the time complexity of the proposed CBKM was better than the

 37

SL algorithm. This proposed approach improved the quality of clusters; nevertheless,

the number of k cluster is still pre-defined.

UPGMA (a type of agglomerative clustering) merges the obtained clusters from

Bisect K-means (where, Bisect K-means generates clusters larger than k) until it

reaches the k number of clusters (Murugesan & Zhang, 2011a, 2011b). In the Bisect

K-means stage, the document collection groups into a cluster greater than the

predefined cluster. Then, the created centroids are passed from the first stage to

UPGMA stage to merge them and produce k clusters. The result produced an

average Entropy of 1.410, average F-measure of 0.29 and average purity of 0.49 for

the Reuters dataset. Such a result is better than the ones obtained by Bisect K-means.

However, Bisect needs a refinement to re-cluster the resulting solutions and needs to

define k number of clusters.

Bordogna and Pasi (2012) constructed a divisive hierarchical clustering using Fuzzy

technique to solve the problem of diversification of topics in information retrieval. A

cluster is split into sub-clusters based on multi dimensions evaluation such as

cohesion, mass cardinality and fuzziness. In the undertaken experiment, two datasets

were used (20 Newsgroup and Reuters RCV1) and the measurements were the MC

index and Rand Index (RI). The proposed Fuzzy clustering was compared with EM,

FCM and hierarchical Bisect K-means. The result on the average MC index was 0.77

using the Reuters RCV1. The result of Rand Index was 0.93 using the 20Newsgroup.

The proposed Fuzzy approach outperformed other methods and is suitable for large

datasets because of faster convergence. However, the result of this work may contain

irrelevant information retrieved to users.

 38

The determination of the number of clusters was proposed in two different ways

(Gupta & Sharma, 2010; Ye, Gauch, Wang, & Luong, 2010). A map between

documents and concepts was constructed, and then five methods which are already

implemented in CLUTO (Ye, Gauch, Wang, & Luong, 2010) are used. These

methods are repeated bisection, optimized RB, direct clustering, agglomerative and

graph. These methods are utilized with different numbers of cluster from (1-10) with

three tasks (each task is based on the CiteSeer database with known categories of

numbers). The best cluster quality is chosen to compare the predicted number of

cluster with the original number. The result demonstrated that direct clustering has a

better value of maximum Purity and minimum Entropy compared to other methods.

However, most methods used require the number of k cluster. Gupta and Sharma

(2010) selected the first document as the cluster center and identified documents that

are similar to it. Later, the similar document takes the role of the first document to

find more similar documents until there are no more similar documents and the

cluster is completed. Such an approach consumes time, as the numbers of clusters

increases, the execution time of the algorithm will also increase. In addition, the

proposed algorithm has weaknesses in evaluation measurements and was not

implemented on real datasets.

In 2010, two dynamic clustering algorithms were also proposed, which are the

dynamic hierarchical compact (DHC) that created disjoint clusters, and the dynamic

hierarchical star (DHS) that produced overlapping clusters (Gil-Garicia & Pons-

Porrata, 2010). The two proposed algorithms were evaluated using fifteen

benchmark dataset collections. In the evaluation phase, the researchers used overall

 39

F-measure and average BCubed metrics which were proposed by Amigo, Gonzalo,

Artiles, and Verdejo (2009). The results of the two new algorithms were compared

against UPGMA and BKM. The results indicated that the overall F-measure for

DHC was 0.631, 0.662 for DHS, 0.677 for BKM and 0.678 for UPGMA in all

collections. Hence, such a result indicates that UPGMA is a better method than the

others. Furthermore, the result of average BCubed for DHC was 0.426, DHS was

0.340, BKM was 0.236 and UPGMA was 0.038 in all collections. This result

indicated that the proposed method DHC was the best method compared to the other

methods. Nevertheless, the weakness is in validation as the stability of the algorithm

was not determined.

Cao and Yang (2010) proposed a k-medoids that depends on CF-tree, termed as

CFK. The research solved the problem of k-medoids with scalability of large dataset

and time complexity. It employs the idea of radius or diameter of cluster to control

the cluster boundary. In the experimental work, the DSI dataset, used in

CHAMELEON hierarchical clustering (Karypis, Han, & Kumar, 1999) was utilized.

The result indicated that run time of CFK is better than the standard k-medoids and it

also produces better clustering quality. However, the weakness lies in the tree

structure as the CF-tree does not work well when the cluster shape is not spherical.

Lahane, Kharat, and Halgaonkar (2012) proposed a divisive approach for educational

data clustering. The approach includes two phases: the first phase splits the original

cluster into two clusters and then measures the homogeneity (based on intra-cluster

and inter-cluster homogeneity). The second phase checks for the stability of the

cluster by changing the location of one member of a cluster to another. If the quality

 40

(homogeneity) produced from changing the members is better than the existing

homogeneity, the change is performed, or else it remains in the same cluster. The

experimental result showed high quality clusters were created. However, changing

the members from one cluster to another in each split partition is time consuming

and generates memory overflow.

Concluded from previous researches (Bordogna & Pasi, 2012; Gil-Garicia & Pons-

Porrata, 2010; Gupta & Sharma, 2010; Kashef & Kamel, 2009; Murugesan & Zhang,

2011a, 2011b), existing works have drawbacks in the evaluation of the proposed

algorithms. On the other hand, Boley’s work (1998) has problems in relocating

documents. Additionally, Forsati, Mahdavi, Shamsfard, and Meybodi (2013)

mentioned that existing hierarchical clustering methods do not relocate documents.

Hence, such approach will affect the clustering quality, especially the ones on the

higher level. Table 2.3 and Table 2.4 present the summary of existing researches in

hierarchical text clustering and hierarchical numerical clustering.

Table 2.3

Summary of existing researches in hierarchical text clustering.

Authors Contribution Problem Solved Dataset Weakness

Boley

(1998)

A new divisive

algorithm called PDDP

The large data

scalability

185 documents

from WWW

Fixed clusters –

cannot re-locate

Zhu, Fung,

Mu, & Li

(2008)

Hybrid partition with

agglomerative

Agglomerative

clustering has

problems with high

dimensionality data

space

Used three

datasets: TR12,

Re1 and WAP

Predefined k

cluster

Kashef &

Kamel

Cooperative approach

between Bisect K-

To enhance the

Bisect K-means

Nine different

datasets: two

Predefined k

cluster

 41

Table 2.3 continued

(2009)
means and K-means

named CBKM

BKM to construct

and refine better

cluster result

artificial, four

documents and

three gene

expression

Ye, Gauch,

Wang, &

Luong

(2010)

Construct map between

documents and

concepts. Then utilize

five methods to predict

the number of clusters

for CiteSeer

Most existing

works not include

construct mappings

between concepts

and documents and

also the time and

precision

CiteSeer
Predefined k

cluster

Gil-García

& Pons-

Porrata

(2010)

Two dynamic

clustering algorithms

were proposed, which

are dynamic

hierarchical compact

DHC and dynamic

hierarchical star DHS

Created disjoint

clusters and

produced

overlapping

clusters

Fifteen

benchmark text

collections

obtained from

Karypis

Calculation of

the algorithm

stability

Gupta &

Sharma

(2010)

Partitional algorithm to

split the documents to

clusters and applied the

proposed clustering

algorithm in

hierarchical clustering

Large size of index

file
No real dataset

High

computational

time

Murugesan

& Zhang

(2011)

Bisect K-means

clustering algorithm

combined with

UPGMA

Bisect K-means

generates better

clusters. Second

problem is the time

complexity of

UPGMA

Ten datasets

from Karypis

datasets

Bisect K-means

needs a

refinement to

re-cluster the

resulting

solutions and

needs to define

k number of

clusters

Bordogna

& Pasi

Construct a divisive

hierarchical clustering

Diversification of

topics in

20 Newsgroup

and Reuters

Low retrieval

result

 42

(2012) using Fuzzy information

retrieval

RCV1

Table 2.4

Summary of existing researches in hierarchical numerical clustering.

Authors Contribution Problem Solved Dataset Weakness

Yujian &

Liye (2010)

Improving Un-

weighted Multiple

Group Method with

Arithmetic Mean

UMGMA.

Tie trees in

UPGMA that

produced two or

more tree from

analyses related

populations

Drosophila_Adh.

meg and mtDNA

haplotypes.

High

computational

time

Cao & Yang

(2010)

A k-medoids

depending on CF-tree.

Scalability of

large dataset and

time complexity

DS1 dataset

which was used in

CHAMELEON

hierarchical

clustering

CF-tree does

not work well

when the

cluster shapes

are not

spherical

Lahane,

Kharat &

Halgaonkar

(2012)

Proposed divisive

clustering for education

data

Clustering high

dimensional

categorical data

Educational Data

contains 50

instances

Time

consuming

and memory

overflow

2.2.1.2 Optimization Methods

Optimization can be defined as the identification of the optimal or near optimal

solution (best solution) from all appropriate solutions. Finding the best solution is

identified by formulating an objective function (minimum or maximum function),

where, the objective function is designed depending on the problem in-hand

(Rothlauf, 2011). Optimization problems include two categories based on the

variables whether discrete or continuous. When the variable is discrete, the

 43

optimization problem is called a combinatorial optimization problem. In a

combinatorial optimization problem, searching for the best object is from a finite set

in dimensional space (object such as integer or graph). To find the optimal solution

for the system, we must design an objective function (fitness function). The objective

function is the minimizing or maximizing value. This function needs parameters

which can be included in the analysis of the problem. From these parameters, the

function returns values which makes the system response optimal (Das, Abraham, &

Konar, 2009).

Optimization algorithms (as in Figure 2.7) are divided into Traditional Methods

(exact) and Modern Heuristics (approximate).

Figure 2.7. The taxonomy of optimization algorithms

Resource. Das, Abraham, and Konar (2009, p.27)

Optimization Algorithm

Traditional Methods (exact) Modern Heuristics (approximate)

Direct analytical and

work on complete

solutions

Deterministic Probabilistic Construct Solutions

Population-

based solution

Single-based

solution

Tabu

Search

Evolutionary

Computing Techniques

Linear

Programming

Local search

Newton’s

Method

Gradient

Methods

Branch and

Bound

Dynamic

Programming

Divide and

conquer

 44

Exact search algorithms include two classes: the first constructs solutions during the

search in which it can find the optimal solution in the bounded time for a finite

problem such as branch and bound, dynamic programming and divide and conquer.

Another class of exact search works on a complete solution which is split into two

subclasses as linear programming and local search. On the other hand, the heuristic

search algorithms identify a good solution, but are non-optimal in less execution

time.

Modern heuristic search algorithms (meta-heuristics) are divided into two classes:

deterministic and probabilistic. Deterministic approach includes Tabu search

(Glover, 1986), while probabilistic approach can be categorized as either single-

based meta-heuristics solution or population-based meta-heuristics (Boussaïd,

Lepagnot, & Siarry, 2013; Das, Abraham & Konar, 2009; El-Abd & Kamel, 2005).

Over the years, meta-heuristic approach has proven successful to find the best

solution in many disciplines (Beasley, Bull, & Martin, 1993; Cui, Potok, &

Palathingal, 2005; Glover, 1986; He, Hui, & Sim, 2006; Kirkpatrick, Gelatt, &

Vecchi, 1983). The current meta-heuristic approach can be classified into two

categories: single meta-heuristic solution and population meta-heuristic solution

(Boussaïd, Lepagnot & Siarry, 2013). Single meta-heuristic solution operates with a

single solution and keeps trying to enhance it, for example, the two popular

algorithms: Simulated Annealing (Kirkpatrick, Gelatt & Vecchi, 1983), and Tabu

Search (Glover, 1986). On the other hand, population meta-heuristic solution

operates with a set of solutions and evaluates them (using objective function) to

select the best one, such as Genetic Algorithm (Holland, 1992; Beasley, Bull, &

 45

Martin, 1993), Evolutionary Programming (Fogel, 1994), Differential Evolution

(Aliguliyev, 2009a, 2009b), and nature-inspired algorithms (Bonabeau, Dorigo, &

Theraulaz, 1999; Boussaïd, Lepagnot, & Siarry, 2013; Das, Abraham & Konar,

2009).

In meta-heuristic algorithms, there are two important components: exploration

(diversification) and exploitation (intensification). The balance between these

components is the key for success of any optimization algorithms to solve any

problems. The exploration process explores the search space globally and generates

diverse solutions. Meanwhile, exploitation focuses the search on local region and

exploits information in a current good solution found in this region (Boussaïd,

Lepagnot, & Siarry, 2013; Yang & He, 2013). Single-based meta-heuristic solution

contributes in exploitation and population-based meta-heuristic is more exploration

(Boussaïd, Lepagnot & Siarry, 2013).

Meta-heuristic or modern heuristic algorithms are used to discover the optimal

solution by exploring the search space, and at the same time, avoiding local

optimality (Aljanabi, 2010; Rothlauf, 2011). Meta-heuristics are generally applied to

hard optimization problems. Hard problems can be continuous or discrete,

constrained or unconstrained, static or dynamic, and mono or multi objective

functions (Boussaïd, Lepagnot & Siarry, 2013). In clustering, the aim is to achieve

high similarity among objects in a cluster and less similarity between clusters. Such a

situation can be considered as an optimization problem (Banati & Bajaj, 2013). This

research focuses on the population-based meta-heuristic, in particular, investigating

the swarm intelligence algorithm in the area of text mining.

 46

Nature-inspired algorithm (also named Swarm Intelligence) studies the behaviors of

social insects or animals in nature to be mimicked by converting them into heuristic

rules to find solutions for problems faced by humans (Rothlauf, 2011). Examples of

Swarm Intelligence algorithms include Particle Swarm Optimization (PSO)

(Kennedy & Eberhart, 1995), Ant Colony Optimization (ACO) (Dorigo, 1992), and

Firefly Algorithm (Yang, 2010b). These algorithms have proved to be a success in

complex optimization problems. In this section, researches that integrate clustering

techniques with swarm are reviewed (Cui, Potok, & Palathing, 2005; Feng et al.,

2010; Forsati, Mahdavi, Shamsfard, & Meybodi, 2013; Hassanzadeh & Meybodi,

2012; Rana, Jasola, & Kumar, 2010; Tang, Fong, Yang, & Deb, 2012; Youssef,

2011).

2.2.1.2.1 Particle Swarm Optimization

Particle Swarm Optimization Algorithm (PSO) is a computational method and a type

of population-based algorithms. The idea of PSO comes from social behaviors of

swarm groups to reach a goal. Swarm groups include schools of fish, flocks of bird

(Kennedy & Eberhart, 1995). PSO offers advantages such as simple structure,

convergence rate and strong optimization. This leads researchers to apply it in many

applications such as clustering (Cui, Potok, & Palathing, 2005; Feng et al., 2010; Lu,

Wang, Li, & Zhou, 2009; Rana et al., 2010; Youssef, 2011).

Particle Swarm Optimization (PSO) has been presented in partitional document

clustering (Cui, Potok, & Palathing, 2005; Lu, Wang, Li, & Zhou, 2009). Cui, Potok,

and Palathing (2005) worked on the hybridization of PSO with K-means and applied

 47

it on document datasets. The result demonstrated that the proposed hybrid PSO

outperformed K-means and PSO. The step-by-step process of PSO clustering is as

shown in Figure 2.8.

Particle Swarm Optimization algorithm

Step 1: Each particle, randomly choose k cluster centers.

Step 2: For each particle.

Step 3: Assign each document to the closest center.

Step 4: Compute the fitness value based on average distance between documents and

center (ADDC).

Step 5: Update the velocity and position of particle.

Step 6: Repeat Step 2 until one of the stop conditions is reached; the maximum number is

reached or the average change in the center is less than the threshold (predefined

value).

Figure 2.8. The step-by-step process of PSO clustering

Resource. Cui, Potok, and Palathing (2005)

Lu, Wang, Li, and Zhou (2009) proposed an objective function for PSO that

maximized the document similarity in a cluster. This objective function was based

on the extended Jaccard coefficient. The result indicated that the proposed approach

outperformed K-means, agglomerative, Bisect K-means and Graph based. However,

the number of k cluster was pre-assigned in the two approaches (Cui, Potok, &

Palathing, 2005; Lu, Wang, Li, & Zhou, 2009).

Particle Swarm Optimization (PSO) was also utilized in partitional clustering for

numerical datasets (Rana, Jasola, & Kumar, 2010; Toreini & Mehrnejad, 2011;

Youssef, 2011). Rana, Jasola, and Kumar (2010) combined PSO with K-means to

solve the problem of trapping in local optima in K-means and solve the problem of

 48

slow convergence of PSO. They used the Artificial I, Artificial II classification

datasets which were used by Van der Merwe and Engelbrecht (2003), and they used

two real datasets: Wine and Iris. The result of the proposed approach was not better

than PSO, but was positive for Wine and Iris datasets. However, the weakness was

on the number of clusters which was predetermined. This problem was solved by

Youssef (2011) by combining PSO with evolutionary based (EFPSC). In synthetic

datasets, EFPSC has lower fitness indicator 7.45, larger Dunn Index (DI) value 1.46,

and lower Davies Boulden Index (DBI) values 0.41 than K-means, modify ant and

PSDC techniques. The lower fitness indicator, larger DI and lower DBI values mean

better performance. In real data sets, EFPSC performs better than other methods, but

in time execution, it is worse than others. Toreini and Mehrnejad (2011) utilized the

work of Van der Merwe and Engelbrecht (2003) and proposed to improve PSO with

FCM fitness function. The result indicated that PSO with FCM function improved

the quality performance and time.

A novel hierarchical divisive clustering combined with discrete Particle Swarm

Optimization (FPDC) was proposed by Feng et al. (2010). It solved the problem of

the difficulty of getting a better trade-off between clustering performance and

computational execution time. The experiment was implemented in documents

clustering, numerical clustering and image clustering. It used eight document

datasets from different resources and also used six numerical datasets from UCI

machine learning repository. In document datasets, the result of average entropy for

the proposed algorithm FPDC was the lowest value in six datasets out of eight. For

example, in the RE0 dataset, the average entropy was 0.379, less than in Bisect K-

 49

means (BKMS) which was 0.388, Hybrid Genetic K-means (HGKA) was 0.387 and

Canonical Particle Swarm Optimization (PSOC) was 0.450. In numerical datasets,

the result of average adjusted rand index for the proposed algorithm FPDC was the

highest in four datasets out of six. For example, in the Zoo dataset, the average

adjusted rand index was 0.710 in FPDC, 0.632 in BKMS, 0.611 in HGKA, and 0.515

in PSOC.

It can be concluded from the previous researches (Cui, Potok, & Palathing, 2005;

Feng et al., 2010; Lu, Wang, Li, & Zhou, 2009; Rana, Jasola, & Kumar, 2010) that

they have drawbacks in the number of clusters which was determined in the input of

the algorithm. Youssef's (2011) study has a weakness in the execution time. Tables

2.5 and 2.6 clarify the summary of existing researches in the hybridization of

clustering techniques and Particle Swarm Optimization in text clustering and

numerical clustering.

Table 2.5

Summary of existing researches in Particle Swarm Optimization in text clustering.

Authors Contribution Problem Solved Dataset Weakness

Cui, Potok,

&Palathing

(2005)

Hybrid PSO with

K-means

The local optima in

K-means
TREC collections

Predefined k

cluster

Lu, Wang, Li,

& Zhou

(2009)

Objective

function for PSO

which was

extended from

PSOVW

The problem of text

clustering

20 Newsgroup

and text datasets

from CLUTO

Predefined k

cluster

Feng et al.,

(2010)

An improved

discrete particle

swarm optimizer

The difficulty of

getting a better trade-

off between

Eight document

datasets and six

numerical

Predefined k

cluster

 50

Table 2.5 continued

for divisive

clustering

clustering

performance and

computational

execution time

datasets from UCI

Table 2.6

Summary of existing researches in Particle Swarm Optimization in numerical

clustering.

Authors Contribution Problem Solved Dataset Weakness

Rana, Jasola,

& Kumar

(2010)

A hybrid K-

Means with

Particle Swarm

Optimization

algorithm

Trapping in local

optima of K-means

and slow

convergence of

Particle Swarm

Optimization

Artificial I,

Artificial II, Wine

and Iris.

Predefined k

cluster

Youssef

(2011)

A new hybrid

evolutionary-

based data

clustering using

Fuzzy Particle

Swarm

Optimization

The number of k

clusters in large

datasets

Used synthetic

datasets and Iris,

Wine, Breast

cancer and Glass

High

execution time

Toreini &

Mehrnejad

(2011)

Improved PSO

with FCM fitness

function

The problem of

fitness functions of

PSO in Vender

Merwe and

Engelbrecht (2003)

approach

Iris, Glass and

Wine

Predefined k

cluster

2.2.1.2.2 Ant Colony Optimization

Ant Colony Optimization (ACO) is a type of swarm intelligence algorithm that

imitates the behavior of ants in searching for the optimal solution and the shortest

 51

path in space which is proposed by Marco Dorigo (1992). The advantages of ACO

attracted researchers to implement it in many optimization problems, such as

classification (Martens et al., 2007), and clustering (He, Hui, & Sim, 2006; Wang,

Shen, & Tang, 2009; Zhang, Cao, & Lee, 2013; Zhang & Cao, 2011).

The Ant Colony Optimization solved the problem of combinatorial optimization

clustering in document clustering (He, Hui, & Sim, 2006) and solved the problem of

higher number of clusters and slow convergence (Wang, Shen, & Tang, 2009). He,

Hui, and Sim (2006) tested the 20Newsgroups dataset and found that the F-measure

was higher than ant-based method and K-means. Wang, Shen, and Tang (2009)

integrated Ant Colony Optimization with agglomerative clustering algorithm. They

tested it on the Wine dataset and real documents gathered from the Internet. The

result of F-measure is not better than the ACO algorithm, but the CPU time is better.

However, the quality performance needs more improvement.

The clustering of numerical dataset using Ant-based clustering was proposed by

Zhang and Cao (2011) and Zhang, Cao, and Lee (2013). The proposed method

changed the random object projection in the initial running by two ways. Firstly, it

was integrated with kernel method (ACK) which was also integrated in the feature

space to calculate the distance for similarity measure between objects. The results of

the proposed algorithm (ACK) took more time than K-means, kernel based K-means,

LF algorithm, ATTA, ant clustering with PCA, ACP-F and ACK-I, but in clustering

quality, it outperformed the other algorithms (Zhang & Cao, 2011). Secondly, it was

integrated with Kernel Entropy Component Analysis (KECA) and used Renyi

Entropy to determine the object movement after a new object is added to a dataset.

 52

The proposed NAC-RE was efficient only in the DI metric (Zhang, Cao, & Lee,

2013). However, the weakness is in the quality performance.

To sum up the foregoing researches (Zhang, Cao, & Lee, 2013; Zhang & Cao, 2011),

it can be concluded that the time cost is very high in both researches; Zhang and Cao

(2011) focused only on the basic process of ACK, while Zhang, Cao, and Lee (2013)

had a weakness in the quality performance of their algorithm. Both researches

focused only on the numerical datasets. Wang, Shen, and Tang (2009) had a

weakness in quality performance which needs more improvement. Tables 2.7 and 2.8

summarize the existing researches in the hybridization of clustering techniques and

ACO in text clustering and numerical clustering.

Table 2.7

Summary of existing researches in Ant Colony Optimization in text clustering.

Authors Contribution Problem Solved Dataset Weakness

He, Hui, &

Sim (2006)

A novel Ant

Colony

Optimization for

document

clustering

The problem of

combinatorial

optimization

clustering

4 subsets (each set

includes 300

documents) from

20Newsgroup

Experiment

conducted on

small datasets

Wang, Shen,

& Tang

(2009)

Combined Ant

Colony

Optimization with

Agglomerative

clustering

The too high

number of cluster

and slow

convergence

Wine dataset and

real documents

gathered from the

Internet

The weakness

in quality

performance

which needs

more

improvement

 53

Table 2.8

Summary of existing researches in Ant Colony Optimization in numerical clustering.

Authors Contribution Problem Solved Dataset Weakness

Zhang &

Cao (2011)

The Kernel method

combined with ant-

based clustering

ACK for data

clustering

The improvement

of the algorithm’s

efficiency and the

algorithm’s quality

Five synthetic

datasets (square,

ring, line, moon

and 2D3C).Five

real datasets

(Wine, Iris, Zoo,

Wisconsin and

Yeast)

The time cost

was very high

and the

research

focused only

on the basic

process of

ACK and only

on numerical

datasets

Zhang, Cao,

& Lee

(2013)

Ant clustering

algorithm using

Kernel Entropy

Component

Analysis and Renyi

Entropy

The proposed

algorithm solved

three problems: the

algorithm’s

efficiency, the

algorithm’s

adaptability with

special datasets

structure and the

parameters’

simplification

Four synthetic

datasets (square,

ring, line, and

moon), and four

real datasets

(Wine, Iris, Zoo,

Wisconsin)

The weakness

of the

proposed

algorithm was

in quality

performance.

Efficiency in

DI when

Kernel

Entropy

Component

Analysis

(KECA) is

used

2.2.1.2.3 Firefly Algorithm

Fireflies are winged beetles which produce short and rhythmic flashes. The flashing

light is generated by the bioluminescence process. Firefly uses bioluminescence to

attract mates or prey. The firefly flashing characteristics have three idealized rules

(Yang & He, 2013; Yang, 2010a, 2010b):

 54

1. All fireflies are unisex as well one firefly attracters to other.

2. Attractiveness is directly proportional to their brightness, so that the flashing

for any two fireflies, the brighter one will be attractive than the less bright

ones.

3. The firefly brightness is determined by the search space of objective function.

The Firefly Algorithm (FA) was developed by Xin-She Yang in 2007 at Cambridge

University. FA has two important issues: light intensity and attractiveness. For

maximum optimization problems, the light intensity I of a firefly at a particular

location x, termed as I(x), can be determined by objective function f(x). The

attractiveness β is relative. It changes depending on the distance between two

fireflies. The pseudo code of the Firefly Algorithm is shown in Figure 2.9 (Yang &

He, 2013; Yang, 2010a, 2010b).

In Step 8 in Figure 2.9, the movement of less brighter firefly towards brighter one is

calculated based on Equation (2.7) (Yang, 2010b).

 𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝛽 ∗ (𝑋𝑗(𝑡) − 𝑋𝑖(𝑡)) + 𝛼𝜀𝑖 (2.7)

where, Xi(t+1) is a new position of firefly, α is a randomization parameter between

(0, 1) (Yang, 2010b), εi is a vector of random numbers drawn from a Gaussian

distribution or uniform distribution (Yang & He, 2013; Yang, 2010a). In Step 9 in

Figure 2.9, the attractiveness between two fireflies is calculated using Equation (2.8)

(Yang, 2010b).

 55

Firefly Algorithm

Step 1: Objective function f (x), x = (x1 , … , xd)
T

Step 2: Generate initial population of firefly randomly xi where i=1, 2, .., n, n=number of

fireflies.

Step 3: Initial Light Intensity I at xi is determined by f(x).

Step 4: Define light absorption coefficient γ.

Step 5: While (t< Max Generation)

Step 6: For i=1 to N all n fireflies

Step 7: For j=1 to N all n fireflies (inner loop)

Step 8: If (Ii < Ij) { Move firefly i towards j; end if }

Step 9: Vary attractiveness with distance r via exp[-γ r]

Step 10: Evaluate new solutions and update light intensity.

Step 11: End for j

Step 12: End for i

Step 13: Rank the firefly and find the current global best g*.

Step 14: End while

Step 15: Post process results and visualization.

Figure 2.9. Pseudo code of Firefly Algorithm

Resource. Yang (2010b, p.82)

𝛽 = 𝛽0𝑒𝑥𝑝(−𝛾𝑟𝑖𝑗
2) (2.8)

where, β0 is the initial attractiveness, γ is the light absorption coefficient and in most

application sets to 1, rij is the distance between two documents i and j that is

calculated using Cartesian distance (Yang, 2010b) as shown in Equation 2.9.

𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑋𝑗, 𝑋𝑖) = √(𝑋𝑗 − 𝑋𝑖)22

(2.9)

 56

where, Xi, Xj is the position of two fireflies. In Step 10 in Figure 2.9, the new

solution is evaluated using objective function and updates the value of light intensity

that is related with objective function.

Firefly Algorithm has two main advantages over other algorithms. The first

advantage is automatic subdivision which is related with the fact that the whole

population can automatically subdivide into subgroups. The second advantage is the

ability to deal with multimodality and this is related with the fact that each group can

swarm around each mode or local optimum. From all these modes, the best global

solution can exist (Fister, Jr, Yang, & Brest, 2013; Yang & He, 2013).

Firefly Algorithm has been implemented in many optimization problems in different

topics, such as speech recognition (Hassanzadeh, Faez, & Seyfi, 2012), image

segmentation (Hassanzadeh, Vojodi, & Moghadam, 2011; Horng & Jiang, 2010),

reliability-redundancy allocation problems (dos Santos Coelho, de Andrade Bernert,

& Mariani, 2011), discrete optimization problems (Sayadi, Hafezalkotob, & Naini,

2013) , semantic web service composition (Pop et al., 2011), data classification

(Nandy, Sarkar, & Das, 2012), anomaly detection (Adaniya Abr˜ao & Proenc¸a Jr.,

2013), parallel and distributed systems (Falcon, Almeida, & Nayak, 2011), mobile

network (Bojic, Podobnik, Ljubi, Jezic, & Kusek, 2012), and economic dispatch

problems (Yang, Hosseini, & Gandomi, 2012). In all of the previous fields, Firefly

Algorithm has successfully solved the problems and identified the optimal solution.

The Firefly algorithm has also been studied in numerical clustering (Abshouri &

Bakhtiary, 2012; Hassanzadeh & Meybodi, 2012; Senthilnath, Omkar, & Mani,

 57

2011; Tang, Fong, Yang, & Deb, 2012). The algorithm has been represented to

improve the performance of supervised clustering (Senthilnath, Omkar, & Mani,

2011). The goal of the algorithm is to find the center of clusters that minimizes the

sum of distance from the center to each object in the same cluster. In the evaluation

phase, 13 benchmark datasets were used, which are Balance, Cancer, Cancer-int,

Credit, Dermatology, Diabetes, E.Coli, Glass, Heart, Horse, Iris, Thyroid and Wine.

The result was compared with Particle Swarm Optimization (PSO), Artificial Bee

Colony (ABC), and nine other methods. It is noted that FA was efficient, robust, and

reliable for generating optimal cluster centers. Banati and Bajaj (2013) presented a

new approach of Firefly Algorithm for unsupervised clustering. They used trace

within criteria and variances ratio criteria to evaluate the solutions. The results

indicated that the proposed approach performed better than PSO and DE.

Furthermore, Firefly Algorithm was also integrated into two different clustering

techniques, one with K-means (KFA) and one with K-harmonic (Abshouri &

Bakhtiary, 2012; Hassanzadeh & Meybodi, 2012). Both methods solved the problem

of local optima for K-means and K-harmonic and the identification of the center of

clusters. The proposed hybrid, KFA, has the ability to minimize the intra-cluster

distance in five datasets and has been compared against K-means, PSO and KPSO

(Hassanzadeh & Meybodi, 2012). However, the validation of the proposed algorithm

is only based on intra-cluster which determines the similarity between objects and

does not use inter-cluster measurement. The result of the proposed hybrid K-

harmonic (Abshouri & Bakhtiary, 2012) on four datasets indicated that F-measure is

the highest value and KHM is the least value in all datasets compared to KHM,

 58

PSOKHM, and Genetic PSO-KHM. The weakness of the proposed methods is

random initialization of the centers of clusters.

Due to the random initial centroids, K-means is always caught in the trapping in

local optima, this problem has attracted researchers to hybrid K-means with five

nature-inspired optimization algorithms; Firefly, Cuckoo, Bat, Ant, and Wolf (Tang,

Fong, Yang, & Deb, 2012), termed as C-firefly, C-cuckoo, C-bat, C-Ant, and C-

wolf. The pseudo code of the hybrid Firefly with K-means is shown in Figure 2.10.

Hybrid Firefly with K-means Algorithm

Step 1: Determine the number of k clusters; initialize the population of fireflies N, and

related parameters.

Step 2: Randomly assign k clusters for each N firefly.

Step 3: For each firefly, Select k objects from S data objects as initial centroids, by taking

the mean values of the attributes of the objects within their given clusters.

Step 4: Calculate the fitness of the centroid in each firefly, and find the best solution that is

represented by the total fitness values of centroid in a firefly.

Step 5: For each firefly, update its light intensity according to its fitness value (objective

function).

Step 6: For each firefly, update its attractiveness that varies with distance.

Step 7: Merge the fireflies by allowing the less bright one to be attracted by the brighter

one.

Step 8: Are there no brighter fireflies than the given firefly, if yes continue, else go to

Step11.

Step 9: The firefly will move randomly.

Step 10: Update centroids in each firefly according to their latest positions.

Step 11: Rank the fireflies and find the current best.

Step 12: Reassign the clusters according to the best solution.

Step 13: Output the best cluster configuration that is represented by the firefly that has the

greatest fitness.

Step14: Are the exit criteria met yet? If yes end, or else return to Step 5.

Figure 2.10. Pseudo code of integrated Firefly with K-means clustering algorithm

Resource. Tang, Fong, Yang, and Deb (2012)

In the experiment, five datasets from the UCI repository were employed. For the

evaluation, the squared error function was used to measure the objective function

 59

and measure the execution time for each algorithm. The experiment results compared

five proposed algorithms with the benchmark K-means algorithm and indicated that

C-cuckoo, C-bat, and C-wolf performed the best objective values compared with C-

firefly and C-ant. Furthermore, C-bat requires less time for execution, hence, C-bat is

indicated as the fastest algorithm for finding the optimal solution. However, the

drawback with these proposed algorithms was the number of k clusters which was

determined in the initial part of the clustering. The pseudo code of the hybrid Bat

algorithm with K-means is shown in Figure 2.11.

Hybrid Bat with K-means Algorithm

Step 1: Determine the number of k clusters, initialize the population of bats N, for each bat

define the frequency factor Q and loudness A.

Step 2: Randomly assign k clusters for each N bat.

Step 3: For each bat, select k objects from S data objects as initial centroids, by taking the

mean values of the attributes of the objects within their given clusters.

Step 4: Calculate the fitness of the centroid in each bat, and find the best solution that is

represented by the total fitness values of centroid in a bat.

Step 5: Generate a new solution by adjusting the frequency, updating the velocity and

creating new centroid values.

Step 6: If random (0, 1) > pulse rate R

Step 7: For each bat, select a solution among a set of best solutions from the other bats, and

generate a new local solution around the selected best solution.

Step 8: If random (0, 1) < A and f(xi) < f(x*)

Step 9: Accept the new solution, increase r and reduce A.

Step 10: Reassign the clusters.

Step 11: Output the best cluster configuration represented by the bat that has the greatest

fitness.

Step 12: End if.

Step 13: End if.

Step 14: Are the exit criteria met yet, if yes end, else return to Step 4.

Figure 2.11. Pseudo code of integrated Bat with K-means clustering algorithm

Resource. Tang, Fong, Yang, and Deb (2012)

Rui, Fong, Yang, and Deb (2012) applied the previous work of Tang, Fong, Yang,

and Deb (2012) of hybrid K-means with four nature-inspired optimization

 60

algorithms: Firefly, Cuckoo, Bat and Wolf on web intelligence data. The results

demonstrated that this hybridization outperformed hybrid PSO with K-means (C-

PSO) and K-means. However, C-Firefly requires high CPU time to execute. Further

experiment has been reported by Fong, Deb, Yang, and Zhuang (2014) by testing the

combined four optimization algorithms named ACO, Bat, Cuckoo, and Firefly with

K-means on real-life datasets and image segmentation.

Demir and Karci (2015) used golden ratio method to set the parameters of Firefly

algorithm. They tested their proposed clustering method on breast cancer data. The

result of Firefly algorithm with golden ratio shows better success rate compared to

the standard Firefly algorithm.

For detecting the brain tumor, Alsmadi (2014) proposed a dynamic clustering

method that is based on hybrid model of Firefly algorithm and Fuzzy c-means

(FCM). The use of the Firefly algorithm is to overcome the drawbacks of the FCM

which has slow convergence rate, trapped in local optima, and is sensitive to initial

centers. The hybridization method was able to detect the number of clusters and the

location of the points. It shows better results than state-of-the-art methods such as the

hybridization between harmony search and FCM, and combination between Genetic

algorithm and point symmetry-based index.

It can be concluded that in the validation part of Hassanzadeh and Meybodi (2012),

the weakness is in measuring the inter-cluster (Abshouri & Bakhtiary, 2012;

Hassanzadeh & Meybodi, 2012; Senthilnath, Omkar & Mani, 2011; Tang, Fong,

Yang & Deb, 2012). Moreover, Tang, Fong, Yang, and Deb (2012) tested only the

 61

proposed algorithm, but did not measure the validation of the clusters’ output from

each algorithm. Abshouri and Bakhtiary (2012) had a weakness in the proposed

method, which is the random center of clusters. Senthilnath, Omkar, and Mani

(2011) studied the firefly algorithm for supervised clustering for numerical data set.

Table 2.9 and Table 2.10 present the summary of existing researches in Firefly

Algorithm in web intelligent data and numerical clustering.

Table 2.9

Summary of existing researches in Firefly Algorithm in web intelligent data.

Authors Contribution Problem Solved Dataset Weakness

Rui, Fong,

Yang, &

Deb (2012)

Adopting work of

Tang, Fong, Yang,

and Deb (2012) and

testing on web

intelligent data

Testing nature

optimization

algorithms in web

data clustering

Page Blocks, Ipod

Auctions on eBay,

Internet Usage

and Spam base

C-Firefly

requires high

CPU time to

execute

Table 2.10

Summary of existing researches in Firefly Algorithm in numerical clustering.

Authors Contribution Problem Solved Dataset Weakness

Senthilnath,

Omkar, &

Mani (2011)

Studied the Firefly

Algorithm

performance in

clustering

Studied the

performance of

the Firefly

Algorithm in data

clustering

Balance, Cancer,

Cancer-int,

Credit,

Dermatology,

Diabetes, E.Coli,

Glass, Heart,

Horse, Iris,

Thyroid and Wine

Implemented only

on numerical data

set

Hassanzadeh

& Meybodi

(2012)

Hybrid Firefly

Algorithm and K-

means for data

clustering KFA

Initial centroid for

K-means and

local optimal

convergence

UCI (Iris, Wdbc,

Sonar, Glass and

Wine)

Used only intra-

cluster which

determines the

similarity between

 62

Table 2.10 continued

objects in one

cluster, but did

not used inter-

cluster

measurement

which determines

the differences

between clusters

Tang, Fong,

Yang, &

Deb (2012)

Hybrid Firefly,

Cuckoo, Bat, Ant

and Wolf with K-

means

K-means trapped

in local optima

due the random

initial centroids

Five datasets from

UCI

Testing only the

proposed

algorithm, but did

not measure the

validation of the

clusters’ output

from each

algorithm

Abshouri &

Bakhtiary

(2012)

Hybrid Firefly with

K-harmonic means

algorithm

Local optima
Iris, Glass, Wine

and contraceptive

Predefined k

cluster

Banati &

Bajaj (2012)

Firefly algorithm

for data clustering

Clustering

problem

Iris, Wine, Cancer

and Thyroid

Predefined k

cluster

Fong, Deb,

Yang, &

Zhuang

(2014)

Extensive

experiments on

Hybrid Firefly,

Cuckoo, Bat, and

Ant with K-means

Testing nature

optimization

algorithms

real life

datasets and

image

segmentation

Predefined k

cluster

Demir &

karci (2015)

Golden ratio

method to set

parameters of

firefly algorithm.

Heuristic

algorithm find

only near optimal

solutions.

Breast cancer data

Not compare the

result with others

in same data

2.2.1.2.4 Hybrid of Clustering Techniques and other Search Optimization

Hybridization integrates different data mining techniques or meta-heuristic

algorithms in one approach to construct a clustering model (Stahlbock, Crone, &

 63

Lessmann, 2010). Many researchers suggest to hybrid partitional clustering with an

optimization algorithm to enhance the quality performance of partitional clustering

(Forsati, Mahdavi, Shamsfard, & Meybodi, 2013; Hatamlou, Abdullah, &

Nezamabadi-pour, 2012; Luo, Li, & Chung, 2009; Mahmuddin, 2008; Zhong, Liu, &

Li, 2010).

A new approach for text document clustering was proposed by Luo, Li, and Chung

(2009) and Forsati, Mahdavi, Shamsfardand, and Meybodi (2013). The problem of

similarity measure between documents was solved based on mixed cosine and link

functions (Luo, Li, & Chung, 2009). This approach determines the initial cluster

centers based on document ranks. The split between clusters is based on heuristic

function which depends on neighbors. The researchers used thirteen datasets from

different resources and used two quality metrics: F-measure and Purity. The

proposed method acquired the best result of F-measure 0.75 on MED1 and Top1

datasets. Furthermore, the purity value was 0.8 in the CACM1 dataset and 0.818 in

the Top1 dataset.

In addition, the problem of randomly selecting initial centers was solved by the

hybridization of k-means with Harmony search (HS) in three different versions,

based on the stage of k-means during execution (Forsati, Mahdavi, Shamsfard, &

Meybodi, 2013). The versions are sequential hybrid, interleaved hybrid and one step

of HS hybrid. The quality results of one step of HS are better than K-means,

HSCLUST, Sequential hybrid, interleaved hybrid and GA. However, this version is

not suitable for large datasets due to the increasing execution time when the number

of documents increases (linear relation).

 64

A hybrid K-means with optimization algorithm to solve the problem of trapping in

local optima in numerical datasets was presented in Hatamlou, Abdullah, and

Nezamabadi-pour (2012), and Mahmuddin (2008). A hybrid Bee’s algorithm with K-

means algorithm to find the optimum cluster centers for un-labelled data was

proposed by Mahmuddin (2008). A hybrid gravitational search algorithm (Rashedi,

Nezamabadi-pour, & Saryazdi, 2009) with K-means GSA-KM for data clustering

was proposed (Hatamlou, Abdullah, & Nezamabadi-pour, 2012). The hybridization

is useful to speed up the convergence of GSA. The GSA-KM is learned to be the

best in intra-cluster distance and fitness function compared to K-means, GA, SA,

ACO, HBMO, PSO, and GSA. However, the initial cluster number is determined in

GSA-KM.

Zhong, Liu, and Li (2010) solved the weakness of the FCM algorithm for outliers’

sensitization and determination of exact cluster number. They presented Fuzzy C-

means (FCM) algorithm for clustering that depends on gravity, which identifies the

initial centers and isolates outliers by calculating the force between two point

masses. One point mass is represented as the number of objects around point mass,

so the bigger the mass is represented, the larger the density is. In addition, a novel

FCM merged the produced clusters to obtain an appropriate cluster number. The

result of the proposed FCM improves the standard FCM, where the average recall

improvement was 1.34% in the Iris dataset and 1.72% in the breast cancer Wisconsin

dataset. Furthermore, the average precision was 1.03% in the Iris dataset and 0.12%

in the breast cancer Wisconsin dataset. However, the number of k cluster is

identified and the algorithm is also tested on small datasets. Tables 2.11 and 2.12

 65

contain the summary of existing researches in the hybridization of clustering

techniques and other search optimization in text clustering and numerical clustering.

Table 2.11

Summary of existing researches in the hybridization of clustering techniques and

other search optimization in text clustering.

Authors Contribution Problem Solved Dataset Weakness

Luo, Li, &

Chung

(2009)

A new approach for text

documents clustering. The

determination of initial

cluster centers depending

on document ranks, the

similarity between

documents based on mixed

cosine and link functions

and lastly the splitting of

the clusters based on

heuristic function which

depends on neighbors

Similarity measure

between documents

when using cosine

function

Thirteen

datasets from

different

resources such

as Reuters -

21578,

MEDLINE,CA

CM, CISI and

TREC

Predefined

k cluster

Forsati,

Mahdavi,

Shamsfard,

&

Meybodi

(2013)

A new approach of

Harmony search

optimization

method for document

clustering, and hybrid

Harmony Search

optimization with K-means

K-means randomly

selected initial

cluster centers

Politics,

Trec,Dmoz,20

Newsgroup and

WebAce

Computati

onal cost is

high

Table 2.12

Summary of existing researches in the hybridization of clustering techniques and

other search optimization in numerical clustering.

Authors Contribution Problem-Solved Dataset Weakness

Zhong,

Liu, & Li

(2010)

A novel Fuzzy C-means

FCM depending on gravity

The weakness for

FCM algorithm for

outliers’ sensitization

Iris, and Breast

cancer

Wisconsin

Predefined

k cluster

and the

 66

Table 2.12 continued

and determination of

exact cluster number

algorithm

is tested on

small

numerical

datasets

Hatamlou ,

Abdullah,

&

Nezamaba

di-pour

(2012)

Hybrid gravitational search

algorithms with K-means

K-means is trapped in

local optima and

convergence of GSA

Wine, Iris,

CMC, Cancer

and Glass

Predefined

k cluster

2.2.2 Dynamic Approach

In contrast to the static approach of clustering, dynamic clustering has an ability to

automatically identify the number of clusters. Hence, the literature covering this

matter is categorized into two approaches: estimation and population-based.

2.2.2.1 Estimation Approach

Estimation clustering is initialized by identifying a range of k value (minimum and

maximum) and using one of the validity indices. Clustering is undertaken for

identifying the number of clusters and clusters with the best quality (best value of

validity indices). Bayesian Information Criterion (BIC) has been proposed as a

solution for K-means problem (the number of cluster), where it can estimate the best

k (Pelleg & Moore, 2000). BIC is used to measure the improvement of the cluster

structure between a cluster and its two children clusters. The result shows that the

use of BIC can reveal the actual number of classes and it outperforms K-means. The

number of clusters in a dataset has been estimated by integrating a modified K-

 67

means and Bees algorithm. The purpose of using Bees algorithm is to identify the

possible optimal or near optimal centroids, whilst, the aim of utilizing K-means is to

detect the best cluster (Mahmuddin, 2008).

In the work of Sayed, Hacid, and Zighed (2009), the agglomerative hierarchical

clustering with validity index (VI) has been presented. VI for two closest clusters is

measured before and after the merging step, where the merging of these two clusters

occurs if the VI improves after merging. The process of merging continues until the

optimal clustering solution is reached.

Besides that, the combination between K-means and Particle Swarm Optimization

has been proposed for dynamic data clustering, named as KCPSO (Kao & Lee,

2009). KCPSO has the capability to identify the optimal number of clusters without

any information given before performing the clustering process. The aim of using

PSO is to optimize the number of clusters, while the aim of using K-means is to

identify the best clustering result. The results indicated that KCPSO can obtain the

best or equal clustering results with less time compared with two dynamic clustering

algorithms: Dynamic Clustering using Particle Swarm Optimization (DCPSO) and

Genetic Clustering for Unknown K (GCUK).

Another automatic clustering method has been proposed by Kuo and Zulvia (2013),

termed as Automatic Clustering using Particle Swarm Optimization (ACPSO). In

this method, Particle Swarm Optimization is used to identify the number of clusters

and K-means to adjust the clustering centers. ACPSO initializes by determining a

range of cluster numbers [2, Nmax]. The experimental results indicated that ACPSO

 68

outperforms Dynamic Clustering Genetic algorithm (DCGA), Dynamic Clustering

using Particle Swarm Optimization (DCPSO) and Dynamic Clustering using Particle

Swarm Optimization and Genetic Algorithm (DCPG) in producing better accuracy

and less CPU time.

It is learned from previous studies (Kao & Lee, 2009; Kuo & Zulvia, 2013;

Mahmuddin, 2008; Pelleg & Moore, 2000; Sayed, Hacid, & Zighed, 2009) that the

estimation approach is appropriate to find solutions for problems (i.e. determining

the number of clusters that requires little or no knowledge of datasets). However,

there exists a difficulty to identify the range of clusters (lower and upper values of

cluster numbers).

2.2.2.2 Population-based Approach

This approach can be classified into two sub-approaches: evolutionary clustering

methods and swarm-based methods. Evolutionary clustering methods are such as

Evolution Strategies (Lee & Antonsson, 2000), Evolutionary Programming (Sarkar,

Yegnanarayana, & Khemani, 1997), Differential Evolution Algorithm (Das,

Abraham, & Konar, 2008) and Genetic Algorithms (Kuo, Syu, Chen, & Tien, 2012),

while, Swarm-based methods are such as Flocking-based approach (Cui, Gao, &

Potok, 2006; Picarougne, Azzag, Venturini, & Guinot, 2007) and Ant-based

clustering (Tan, Ting, & Teng, 2011a, 2011b).

Lee and Antonsson (2000) developed an Evolution Strategy (ES) to overcome the

problem of static number of clusters in partitional clustering. ES effectively searches

for both the optimal center and optimal number for clusters by performing variable

 69

length genomes. Evolutionary programming-based clustering algorithm for

discovering the number of clusters and cluster centers has been proposed by Sarkar,

Yegnanarayana, and Khemani (1997). They used two object functions (minimization

functions) in the algorithm; Davies Bouldin Index (DBI) for global view (i.e. to give

the optimum number of clusters) and the overall sum of the squared errors between

objects and cluster center for local view (i.e. to determine which object belongs to

which cluster). The result demonstrated the usefulness of the proposed Evolutionary

Programming to avoid local minima and generate proper numbers of clusters.

A genetic-based clustering method (Liu, Wu, & Shen, 2011) has been proposed for

automatically identifying the number of clusters. In the design, a balance between

selection and variety of the solution was retained by implementing two operations:

noising selection and division absorption mutation. The Davies Bouldin Index was

used for evaluating the fitness of individuals. The experimental results indicated that

the genetic-based clustering method has the ability to construct the number of

clusters and obtain the clustering solution automatically.

The integrating between Particle Swarm Optimization (PSO) and Genetic Algorithm

(GA), termed as the DCPG method, has been proposed by Kuo, Syu, Chen, and Tien

(2012). It operates without any knowledge of the k number of clusters (a dynamic

approach). As presented in Figure 2.12, the DCPG method initially selects cluster

centroids M from a set of dataset Z, and randomly determines the position and

velocity. The length of particle is equal to the number of cluster centroids M, where

if the bit in M is equal to 1, then the point is centroid, otherwise, it will not be

selected as a centroid.

 70

Integrating Particle Swarm Optimization & Genetic Algorithm

Step 1: Generate the initial cluster centroid, position and velocity randomly.

Step 2: While not reach the pre-specified number of iterations does.

Step 3: Calculate the fitness value of each particle.

Step 4: Select personal best (Pid) and a global best (Pgd).

Step 5: Update the position and velocity of each particle.

Step 6: Perform Steps 6.1 and 6.2 for the updated parent.

Step 6.1: copy all particles to generate population one.

Step 6.2: perform a two point crossover for Pid and Pgd in Step 4 and mutation for

Pgd to generate population two.

Step 7: Combine populations one and two and calculate the fitness value of each particle.

Step 8: Perform an elitist selection for populations one and two.

Step 9: Do while not reach pre-specified number of iterations, return to Step 3.

Step 10: Perform K-means algorithm.

Step 11: Resolved the optimal center of clusters.

Step 12: End While.

Figure 2.12. Pseudo code of integrating Particle Swarm Optimization with Genetic

Algorithm (DCPG)

Resource. Kuo, Syu, Chen, and Tien (2012)

 The calculation of the fitness function for each particle is performed by constructing

the clusters of each particle, and calculating the sum of Euclidean distance between

objects and centroids. Then, a personal best (Pid) and a global best (Pgd) are

selected, followed by updating the position and velocity of each particle by two

steps: 1) Copy all particles to generate population one and perform a two-point

crossover for Pid and Pgd and mutation for Pgd to generate population two; 2)

Combine these two populations and calculate the fitness for each particle. The next

iterative population is generated by performing an elitist selection for the two

populations. The previous processes continue until the number of iterations is

satisfied. After that, the K-means algorithm is applied to adjust the number of

 71

clusters. The result indicates that the DCPG algorithm can generate the right number

of clusters and can realize the best clustering results compared to DCPSO,

ACMPSO, and DCGA algorithms.

Swarm-based methods utilize swarm like agents to group data directly without the

need to define the number of clusters. The dynamic swarm-based approach can

automatically discover the appropriate number of clusters, in a given data collection,

without any support. Hence, it offers a more convenient cluster analysis. Dynamic

swarm-based approach adapts the mechanism of a specific insect or animal that is

found in the nature and converts it to heuristic rules. Each swarm is treated like an

agent that follows the heuristic rules to carry out the sorting and grouping of objects

(Tan, 2012). In literature, there are examples of such approach in solving clustering

problems such as flocking-based approach (Cui, Gao, & Potok, 2006; Picarougne,

Azzag, Venturini, & Guinot, 2007) and ant-based clustering (Tan, Ting, & Teng,

2011a, 2011b).

The flocking-based approach is related with the behaviors of swarm intelligence

(Bonabeau, Dorigo, & Theraulaz, 1999) where a group of flocks of swarm move in a

2D or 3D search space following the same rules of flocks; get close to similar agents

or far away from dissimilar agents (Picarougne, Azzag, Venturini, & Guinot, 2007).

In general, the flocking model includes three rules of behavior: separation, cohesion

and alignment. In separation, the agent has the ability to maintain a specific distance

from other agents; while in cohesion, the agent has the ability to associate with other

nearby agents. In the alignment rule, the agent aligns with closer characters. Folino,

 72

Forestiero, and Spezzano (2009) presented the adaptive flocking algorithm that is

based on the simple flocking model. They introduced a new adaptive parameter

(speed) that changes based on the color of the agent, and the new position of the

agent is based the position of other agents (red and white agents). This approach is

computationally expensive as it requires multiple distance computations.

On the other hand, the ant-based approach deals with the behaviors of ants, where

each ant can perform the sorting and corpse cleaning. This approach works by

distributing the data object randomly in the 2D grid search space, then determining a

specific number of ants (agents) that move randomly in this grid to pick up a data

item if it does not hold any object (item) and drop the object (item) if it finds a

similar object. This process continues until it reaches a specific number of iterations

(Deneubourg et al., 1991).

El-Feghi, Errateeb, Ahmadi, and Sid-Ahmed (2009) proposed an adaptive ant colony

clustering algorithm, termed as AACA, which improved the picking and dropping

probability functions of standard ant-based clustering. The improvement is done by

adding a new parameter which represents the value of pheromone at each location on

the grid search space. Additionally, it improves the similarity scaling factor by

automatic adoption (by reflecting the frequency of the agents’ successful picking and

dropping processes). The AACA performs K-means and agglomerative hierarchical

clustering in terms of accuracy and obtained number of clusters.

A practical General Stochastic Clustering Method (PGSCM) that is a simplification

of the ant-based clustering approach has been proposed (Tan, Ting, & Teng, 2011a).

 73

PGSCM is used to cluster multivariate real world data. The pseudo code of PGSCM

is illustrated in Figure 2.13. The input of PGSCM is a dataset, D, that contains n

objects and the output is the number of clusters discovered by the PGSCM method,

without any prior knowledge.

Practical General Stochastic Clustering Method

Step 1: Input the dataset D with n objects.

Step 2: The dissimilarity threshold is calculated for all n objects.

Step 3: Each object in the dataset is allocated to a bin.

Step 4: Do while iteration <= Max iteration

Step 5: Choose two objects from dataset D randomly and they must not be equal.

Step 6: If the distance between two selecting objects < minimum dissimilarity threshold of

two objects.

Step 7: Store the comparison outcome.

Step 8: If the level of support (first object) < level of support (second object)

Step 9: Move first object to second object.

Step 10: Else move second object to first object.

Step 11: End If

Step 12: End While

Step 13: Output a set of clusters that represent all non-empty bins.

Figure 2.13. Pseudo code of practical General Stochastic Clustering Method

(PGSCM)

Resource. Tan, Ting, and Teng (2011a)

In the initialization of PGSCM, the dissimilarity threshold for n objects is estimated.

Then, it creates n bins where each bin includes one object from the dataset D.

Through the work of PGSCM, it selects two objects randomly from a dataset; if the

distance between these two objects is less than the dissimilarity threshold of them,

then the level of support of the two objects is compared. If object i has less support

than j, then the lesser one is moved to the greater one and vice versa. At the end of

 74

the iterations, a number of small and large bins are created. The large bins are

selected as output clusters, while the small bins are reassigned to large bins (objects

in small bins are assigned to similar centers in large bins). The selection process of

large bins is based on the threshold of (50, n/20) (i.e. the threshold is 5% of the size

of dataset, n), this threshold is based on the criterion used in Picarougne, Azzag,

Venturini, and Guinot (2007). The result of the PGSCM method performs well

compared to the state-of-the-art methods. However, randomly selecting two objects

in every iteration may create other issues. There is a chance that in some iterations,

the same objects are selected or some objects are not selected at all. Furthermore, the

selection process initially requires a large number of iterations to increase the

probability of selecting different objects.

2.3 Research Gap

Partitional clustering such as K-means suffers from local optima due to the random

initial centers (Wang Liu, Chen, & Tang, 2011; Yang, 2010). It needs to define the

number of k clusters as the initial value. Density-based clustering has a weakness in

clustering documents which is usually of high dimensionality data (Chehreghani,

Abolhassani, & Chehreghani, 2008; Zhao, Cao, Zhang, & Zhang, 2011). Grid-based

clustering needs to determine the number of cells as the initial value (Han &

Kamber, 2006). Model-based clustering, such as SOM and NN, is sensitive to the

initial selection of weight and needs to set the parameters of the learning rate and

neighborhood radius (Rokach & Maimon, 2005). All of the previous approaches

produce a flat clustering which present users with single level clusters. On the other

hand, hierarchical clustering organizes the documents in a hierarchical structure

 75

(Murugesan & Zhang, 2011a, 2011b; Zhu, Fung, Mu, & Li, 2008). It is an efficient

method for clustering documents in information retrieval which can create taxonomy

of structure set of clusters.

Hierarchical clustering includes two approaches: divisive and agglomerative (Das,

Abraham, & Konar, 2009). Agglomerative is not efficient with large datasets (Zhu,

Fung, Mu, & Li, 2008). On the other hand, the divisive approach such as Bisect K-

means needs to refine the cluster result and needs to determine the initial centers

(Kashef & Kamel, 2009; Murugesan & Zhang, 2011a, 2011b).

The existing works of hybrid hierarchical clustering which merges partitional and

agglomerative methods, such as in Murugesan and Zhang (2011a, 2011b), and Zhu,

Fung, Mu, and Li (2008) still suffer from local optima in partitional steps and needs

to define k clusters. Many researchers attempted to solve these problems by utilizing

meta-heuristic optimization algorithms such as harmony search (Forsati, Mahdavi,

Shamsfard, & Meybodi, 2013), gravitational search (Hatamlou, Abdullah, &

Nezamabadi-pour, 2012) and swarm algorithms (Feng et al., 2010; Lu, Wang, Li, &

Zhou, 2009; Wang, Shen, & Tang, 2009). All of the pervious solutions still need to

determine the number of k clusters as the initial value.

Over the years, the problem of determining the number of k clusters has been solved

by two approaches: estimation approach and swarm-based approach. From the

literature (Kao & Lee, 2009; Kuo & Zulvia, 2013; Mahmuddin, 2008; Pelleg &

Moore, 2000; Sayed, Hacid, & Zighed, 2009), the first approach (estimation

approach) is appropriate to identify a solution for problems (i.e. determining the

 76

number of clusters that requires little or no knowledge of datasets). However, there

exists a difficulty to identify the range of clusters (lower and upper values of cluster

numbers). In the second approach, the swarm-based approach, such as ant-based

clustering, generates too many clusters and it is possible that the objects are still

carried by ants or left alone in the 2D grid when the stopping condition is reached

(He, Hui, & Sim, 2006). In the flocking approach, the computational process is

expensive as it requires multiple distance computations.

2.4 Summary

Many resources are available on the Internet and they are of various areas, such as

sports, news, science articles, etc. These resources need a technique that is able to

organize them in a structural form. The most significant technique is the hierarchical

text clustering.

From previous researches, it can be concluded that hierarchical text clustering is an

efficient method to organize text documents. However, in divisive hierarchical text

clustering, there exists a problem in relocating documents when it has been assigned

to one cluster. Furthermore, the divisive hierarchical clustering utilizes partitional

clustering techniques that require the determination of k number of clusters. Previous

researches have been suggested to solve the problem of local optima by integrating

clustering techniques with swarm intelligence algorithms such as Ant Colony

Optimization, Particle Swarm Optimization, Bees Algorithm, etc. These algorithms

are efficient in finding the optimal solution. A new swarm intelligence algorithm

called Firefly Algorithm (FA) which was presented by Yang (2007) has been

 77

efficient in finding the global optimal solution. There exist researches in utilizing

Firefly Algorithm to improve the performance of clustering in numerical datasets,

but works on text documents have yet to be reported.

Additionally, previous works have been suggested a pre-defined value for k which

represents the number of clusters, but this is not appropriate for text clustering as

there is no prior knowledge about the datasets.

 78

CHAPTER THREE

RESEARCH METHODOLOGY

This chapter includes the methodology that was utilized to undertake the research. It

is based on the experimental methodology which was widely used in computer

science fields such as NP-hard problems, games, neural network, and machine

learning (Doding, 2002). The utilized experimental research steps are as illustrated in

Figure 3.1.

Figure 3.1. The experimental research steps

Research

Design

Implementation

of Algorithms

Evaluation

 Data Acquisition Phase:

 Data Collection

 Data Preprocessing

 Clustering Phase (Weight-based Firefly Algorithm (WFA))

 Cluster Refining Phase (Document Re-locating algorithm)

 Cluster Merging Phase (Cluster Merging Algorithm)

Implement the designed algorithms and implement benchmark

algorithms (if required):

 WFA

 WFA + Re-locating algorithm (WFAR)

 WFA + Re-locating algorithm + Merging algorithm (WFARM)

 K-means
 Hybrid Bat algorithm with K-means

(BatK-means)

 PSO
 Practical General Stochastic Clustering

Method (PGSCM)

 Bisect K-means
 Dynamic Hybrid Genetic algorithm with

Particle Swarm Optimization (DCPG)

 Hybrid Firefly Algorithm with

K-means (FAK-means)

 Analyze the performance of the proposed Adaptive FA using

o Benchmark performance measurements.

o Benchmark clustering algorithms.

 Analyze the statistical significance of the proposed Adaptive FA using T-test.

 79

3.1 Research Design

This research suggests a hierarchal text clustering algorithm based on Firefly

Algorithm. Figure 3.2 shows the components of the proposed Adaptive Firefly

Algorithm for hierarchical text clustering.

Figure 3.2. The components of the proposed Adaptive Firefly algorithm for

hierarchical text clustering

The proposed algorithm merges two approaches: divisive and agglomerative. For the

divisive approach, this research proposes a divisive algorithm using a new objective

function based on the standard FA and a re-locating algorithm. The re-locating

algorithm changes the location of documents between clusters based on an identified

similarity measurement. The re-locating algorithm helps to enhance the performance

metrics (i.e. purity) that happen in the early stage of clustering. On the other hand,

the Un-weighted Pair Group Method with Arithmetic Mean (UPGMA) is adapted as

Adaptive Firefly Algorithm

 Document Clustering

 Weight-based Firefly Algorithm (WFA)

Cluster Refining (WFAR)

WFA + Re-locating Algorithm

Cluster Merging (WFARM)

WFAR + E-UPGMA

 80

the agglomerative approach. An alternative mean of merging clusters is introduced to

merge two similar clusters. The enhanced UPGMA reduces the number of k clusters

which later contributes to the performance of text clustering.

The proposed hierarchical text clustering contains four main phases: Data

Acquisition, Clustering, Cluster Refining, and Cluster Merging. Figure 3.3 illustrates

the phases of the proposed hierarchical text clustering.

Figure 3.3. The phases of proposed hierarchical text clustering

3.1.1 Data Acquisition Phase

Data acquisition includes two steps: data collection and data pre-processing.

 Output Clusters Evaluation

T-test Statistical

Performance

Metrics

 Data Acquisition Phase

Documents

Document

Collection

Data Cleaning

Vector Space Model

Pre-processing

Data Reduction

 Clustering Phase

Weight-based

Firefly Algorithm

(WFA)

 Cluster Merging

Phase

Cluster merging

algorithm

(eUPGMA)

 Cluster Refining

Phase

Document Re-locating

algorithm

 81

3.1.1.1 Data Collection

In this research, six benchmark datasets from different resources are employed. The

datasets include 20Newsgroups (20NewsgroupsDataSet, 2006; Bache & Lichman,

2013), Reuters-21578 (Lewis, 1999), and TREC collection (Karypis, 2002).

Samples of the datasets are presented in Appendix A. The 20Newsgroups and

Reuters-21578 datasets are balanced datasets, where each class in the datasets

includes the same number of documents, while the TREC collection datasets

represent the un-balanced datasets as the numbers of documents in each class are

different. Table 3.1 summarizes the characteristics of these datasets.

Table 3.1

Description of Datasets.

Datasets Resources

Number

of

documen

ts

Number

of

classes

Minimum

number of

documents

in class

Maximum

number of

documents

in class

Number

of terms

20Newsgroups
20 Newsgroup

datasets
300 3 100 100 2275

Reuters Reuters-21578 300 6 50 50 1212

TR11
TREC

Collection from

CLUTO toolkit

414 9 6 132 6429

TR12 313 8 9 93 5804

TR23 204 6 6 91 5832

TR45 690 10 14 160 8261

The first dataset which is denoted by 20Newsgroups (Bache & Lichman, 2013) was

extracted from the UCI machine learning repository and is available online

(http://archive.ics.uci.edu/ml). The 20Newsgroups dataset contains 300 documents

 82

that it distributed in three different classes, which are: hardware, baseball and

electronic. Each class includes 100 documents and the number of terms involved is

2275.

The second dataset, Reuters, comes from Reuters-21578 (Lewis, 1999), and was also

obtained from the UCI machine learning repository. It includes 300 documents with

six different classes, which include: earn, sugar, trade, ship, money-supply and gold.

Each class contains 50 documents and the number of terms is 1212.

The four remaining datasets are TR11, TR12, TR23 and TR45, and were retrieved

from CLUTO toolkit (Karypis, 2002). These datasets have already been pre-

processed by Zhao and Karypis (2001), and they originated from the Text Retrieval

Conference (TREC) collections (TREC, 1999). TR11 includes 414 documents from

nine different classes and the number of terms is 6429. TR12 contains 313

documents from eight different classes with 5804 terms. TR23 includes 204

documents distributed in six classes and the number of terms is 5832. The last

dataset, TR45, contains 690 documents from ten classes and consists of 8261 terms.

3.1.1.2 Data Pre-processing

The data pre-processing phase is a significant phase in text mining, where it extracts

features from large documents and represents them in the form of a database. This

phase contains two steps:

 83

Step 1: Data Cleaning

Figure 3.4 shows an example of document source code from the Reuters database. In

this step, documents are entered as source code. Later, the text will be extracted from

them which are the tags that contain title and body.

Figure 3.4. An example of document from the Reuters dataset

The selected text is cleaned from special characters and digits. Upon the completion

of data cleaning, the output will be such as in Figure 3.5.

Figure 3.5. An example of a cleaned document

 84

The second step is to split the cleaned text into words. Figure 3.6 shows an example

of the output.

Figure 3.6. An example of extracted terms

In the third step, all of the words in each document are analyzed for their length.

Words with a length of at least three are left for further processing. Figure 3.7 shows

an example of words with the length greater than two.

Figure 3.7. An example of words with the length more than two

 85

Later, the word is removed if it is listed as stop words, as shown in Appendix B.

Examples of stop words are the, they, that, etc. Figure 3.8 shows an example of the

removed stop words.

Figure 3.8: An example of the removed stop words.

The fifth step is stemming all the words by returning them to their original form such

as “running” becomes “run”, and “evaluated” becomes “evaluate”. Finally, the

frequency of the words is calculated as shown in Figure 3.9.

Figure 3.9. An example of word frequency

 86

Step 2: Data Representation

Vector Space Model (VSM) is widely used in text mining to represent the words in

documents. In VSM, let D = {D1, D2, …, Dn} be a document collection and n

represents the number of documents in the collection. Let T = {T1, T2, …, Tm} be the

terms in each documents and m represents the number of terms. In vector space

model, the document D is represented as a vector in the m dimensional space

(Aliguliyev, 2009a, 2009b). The vector D is related with the terms by a degree value.

This degree is the occurrence of the term in the document; this relation is called term

frequency (TF). Figure 3.10 shows the term frequency matrix.

 Documents D = {D1, D2, …, Dn}

T
er

m
s

T

=
{

T
1
, T

2
, …

, T
m

} TF11 TF 12 ……………. TF 1n

TF 21 TF 22 ……………. TF 2n

.

.

.

.

.

.

.

.

.

TF m1 TF m2 ……………. TFmn

Figure 3.10. The term frequency matrix

When the number of documents increases, the term frequency matrix will also

increase. This can cause high dimensionality of dataset. There are some benefits of

dimensionality reduction: 1) The clustering algorithm works better in lower

attributes; 2) The model can understand in fewer attributes; 3) Data can visualize

easily; and 4) The time of execution and memory can be reduced in lower

dimensionality (Tan, Steinbach, & Kumar, 2006). In this research, data

 87

dimensionality will be reduced by removing the terms that appear in all documents.

These terms are not useful to discriminate the documents (Aggarwal & Zhai, 2012).

The Euclidean Normalized database, known as EN, is the second step in creating a

vector space model. Where, the occurrence of terms is normalized to the value

between (0, 1) through, initially calculating the document length using Equation 3.1

(Manning, Raghavan, & Schütze, 2008).

𝐿𝑒𝑛𝑔𝑡ℎ = √∑ 𝑇𝐹𝑖(𝑑)2

𝑚

𝑖=1

 (3.1)

where, TF is the term frequency and d is the document. Later, term frequency is

divided over document length using the Equation 3.2 (Manning, Raghavan, &

Schütze, 2008).

𝐸𝑁 =
𝑇𝐹

𝐿𝑒𝑛𝑔𝑡ℎ
 (3.2)

The weight of every term in the document is calculated using TFIDF (Term

Frequency-Inverse Document Frequency). The inverse documents frequency, idf, is

calculated using Equation 3.3 (Manning, Raghavan, & Schütze, 2008).

𝑖𝑑𝑓 = log 𝑁 𝑑𝑓𝑡⁄ (3.3)

where, N is the number of documents in the collection, and dft is the number of

documents containing a term in the collection. Then, the weight of the term is

calculated using Equation 3.4 (Manning, Raghavan, & Schütze, 2008).

 88

𝑡𝑓𝑖𝑑𝑓𝑡,𝑑 = 𝑡𝑓𝑡,𝑑 ∗ 𝑖𝑑𝑓𝑡 (3.4)

TFIDF is one of the most famous techniques that is used to represent documents as

numerical weights in the search space. Figure 3.11 illustrates the TFIDF matrix.

 Terms
T={ T1, T2, …, Tm}

D
o

cu
m

en
ts

 D
 =

 {
D

1
,

D
2
, …

, D
n
}

𝑡𝑓𝑖𝑑𝑓1,1 𝑡𝑓𝑖𝑑𝑓1,2 ……………. 𝑡𝑓𝑖𝑑𝑓1,𝑚

𝑡𝑓𝑖𝑑𝑓2,1 𝑡𝑓𝑖𝑑𝑓2,2 ……………. 𝑡𝑓𝑖𝑑𝑓2,𝑚

.

.

.

.

.

.

.

.

.

𝑡𝑓𝑖𝑑𝑓𝑛,1 𝑡𝑓𝑖𝑑𝑓𝑛,2 ……………. 𝑡𝑓𝑖𝑑𝑓𝑛,𝑚

Figure 3.11. TFIDF matrix

3.1.2 Clustering Phase

This section includes the flow of the proposed Weight-based Firefly Algorithm

(WFA) (refer to Figure 3.12). As mentioned previously, each document has a

relation with terms, which is term weight, TFIDF. Documents that include large term

weights have a higher probability to be represented as the center of clusters. As

learned in the literature, whenever the term frequency increases in one document and

appears in a small number of documents, then, this term will be more discriminative

for splitting the documents. The increase of term frequency in one document leads to

the increase of the total weight of the document. The total weight of a document is

the summation of term weights in that document. The total weight of each document

is calculated using Equation 3.5.

 89

Figure 3.12. Flow of Hierarchical Text clustering using Weight-based Firefly

Algorithm (WFA)

𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑒𝑔ℎ𝑡 (𝑑𝑗) = ∑ 𝑡𝑓𝑖𝑑𝑓𝑡𝑖,𝑑𝑗

𝑚

𝑖=1

 (3.5)

where, j is the number of documents, i is the number of the terms. Figure 3.13 shows

an example of the total weight matrix.

In the standard firefly algorithm (Yang, 2010b), it has two important factors: light

intensity and attractiveness. The brighter firefly has a higher probability to become a

center and attract other fireflies. In the proposed WFA algorithm, each document is

represented by a single firefly. The total weight of each document represents the

initial value of brightness, I0, in WFA.

Cluster 4 Cluster 3

Cluster 2

Cluster

1

Cluster

2

Cluster 1 Cluster

1

Cluster 2

Similar Simila

r

Similar Dissimila

r

Dissimila

r

Simila

r

Dissimilar Simila

r

Dissimila

r

Simila

r

Dissimila

r

Simila

r
Data

 90

 Documents D = {D1, D2, …, Dn}

T
er

m
s

T

=
{

T
1
, T

2
, …

, T
m

} 𝑡𝑓𝑖𝑑𝑓1,1 𝑡𝑓𝑖𝑑𝑓1,2 ……………. 𝑡𝑓𝑖𝑑𝑓1,𝑛

𝑡𝑓𝑖𝑑𝑓2,1 𝑡𝑓𝑖𝑑𝑓2,2 ……………. 𝑡𝑓𝑖𝑑𝑓2,𝑛

.

.

.

.

.

.

.

.

.

𝑡𝑓𝑖𝑑𝑓𝑚,1 𝑡𝑓𝑖𝑑𝑓𝑚,2 ……………. 𝑡𝑓𝑖𝑑𝑓𝑚,𝑛

Total
Weight ∑ 𝑡𝑓𝑖𝑑𝑓𝑡𝑖,𝑑1

𝑚

𝑖=1

 ∑ 𝑡𝑓𝑖𝑑𝑓𝑡𝑖,𝑑2

𝑚

𝑖=1

…………….

∑ 𝑡𝑓𝑖𝑑𝑓𝑡𝑖,𝑑𝑛

𝑚

𝑖=1

Figure 3.13. An example of the total weight matrix

The attractive, 𝛽, of a firefly as shown in Equation 2.8 varies based on the distance

between two fireflies (Yang, 2010b), where, 𝛽0 is the initial attractiveness, in this

research, it sets to 1, 𝛾 is the light absorption coefficient and set to 1, 𝑟𝑖𝑗 is the

distance between two documents i and j. The setting of the initial attractiveness and

the light absorption coefficient to 1 make the attractiveness mostly related with the

changing of distance between two fireflies and this setting is based on suggestion of

Banati and Bajaj (2013), and Yang (2009).

The distance between two documents is calculated using the real position of the

documents, where the initial position is the position of the document in the datasets.

The distance is calculated using Cartesian distance (Yang, 2010b) as shown in

Equation 2.9, where, Xi, Xj is any two documents in the data set. The Weight-based

Firefly Algorithm (WFA) compares between two lights (two documents). The

brightest light will attract the less bright, then, the position of the less bright finally

will change based on Equation 2.7 (Yang, 2010b), where, Xi(t+1) is a new position

of firefly, α is a randomization parameter between (0, 1) (Yang, 2010b), εi is a vector

 91

of random numbers drawn from a Gaussian distribution or uniform distribution

(Yang & He, 2013; Yang, 2010a). Later, the brightness of the wining firefly will be

increased based on β value as shown in Equation 3.6.

L𝑖𝑔ℎ𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐼 (𝑑𝑗)(𝑡 + 1) = 𝐼 (𝑑𝑗)(𝑡) + 𝛽 (3.6)

In Weight-based Firefly Algorithm (WFA), a firefly with the brightest light is used

as a centroid (i.e. center of a cluster). Documents that are similar to the centroid will

be identified using the most widely applied similarity measurement in text mining,

which is the cosine similarity. Formula 3.7 represents the equation of cosine

similarity (Luo, Li, & Chung, 2009).

𝐶𝑜𝑠𝑖𝑛𝑒_𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐶𝑗) = ∑(𝑑𝑗 ∗ 𝑂𝑗

𝑚

𝑗=1

)

(3.7)

where, dj is a document in cluster Cj, Oj is the center of cluster Cj, and j is the

number of terms in the collection. The value of dj and Oj is taken from the Euclidean

Normalized database. If the similarity is greater than the pre-defined threshold, the

document is assigned into the first cluster, otherwise into another cluster. Later, the

documents in the second cluster undergo the same process, which is finding a new

centroid by sorting the brightness of fireflies (documents). Figure 3.14 shows the

introduced process in Weight-based Firefly Algorithm (WFA).

WFA will evaluate the output cluster by measuring the average distance between

each center and documents of clusters using the Euclidean distance function

(Hassanzadeh & Meybodi, 2012) which is shown in Equation 3.8.

 92

Figure 3.14. The process of Weight-based Firefly Algorithm (WFA)

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂𝑗, 𝑑𝑗) = √∑(𝑑𝑗,𝑖 − 𝑂𝑗,𝑖)2

𝑚

𝑖=1

2

(3.8)

where, Oj is the center of the cluster j, dj is the documents in the cluster. The value

of Oj and dj is derived from TFIDF. A detail of the proposed WFA is presented in

Chapter Four.

Center

Cluster1 Cluster2

Dissimilar Similar

Weight-based

Firefly

Algorithm

(WFA)

Cartesian

Distance Matrix

TotalWeight of

Documents

Cosine

Similarity

Matrix

 93

3.1.3 Cluster Refining Phase

This phase includes re-locating algorithm. Re-locating refers to the process of

changing the location of a document from one cluster to another. An example of the

process is illustrated in Figure 3.15.

Figure 3.15. Process of document re-locating

The proposed document re-locating starts to operate once the construction of the

second cluster is completed (using the Weight-based Firefly Algorithm (WFA)).

When the second cluster is constructed, the document re-locating algorithm is

invoked to check the similarities between the centroids of the second cluster (newly

constructed) and the content (documents) of the first cluster. Whenever a new cluster

is created, the process of document re-locating is repeated. Figure 3.16 shows the

comparison in document re-locating.

For example, assume k=3, so Figure 3.16 includes three clusters. Assume Cluster 1

contains five documents (D1, D3, D5, D7 and D9) and the center is D5.

Dissimilar Similar

Cluster 2 Cluster 1

Datasets

Dissimilar

Cluster 2

Dissimilar
Similar

Relocate

Cluster

1

Similar

Cluster 3
Similar

Cluster 4 Cluster 3

Cluster

2

Cluster 1

Similar Dissimilar

Dissimilar Similar

Relocate

 94

Figure 3.16. Comparison between clusters for document re-locating

Further, assume Cluster 2 contains six documents (D2, D8, D10, D12, D13 and D16)

and the center is D10. A newly constructed cluster is Cluster 3 that contains six

documents (D4, D6, D11, D14, D15 and D17) and D6 is the center. The document

re-locating algorithm will check the similarity between D6 (center of Cluster 3)

firstly with all documents in Cluster 1 (D1, D3, D7 and D9) excluding the center D5.

If the similarity of D6 with any document in Cluster 1 is higher than the similarity of

D5 with any document in Cluster 1, then the location of the particular document is

changed from Cluster 1 to Cluster 3. Later, the document re-locating algorithm will

check the similarity between D6 (center of Cluster 3) and all documents in Cluster 2,

Cluster 1

Cluster K-1

Cluster K

Check-Similarity

 95

where the same process with Cluster1 is repeated. A detailed explanation on the

document re-locating algorithm is presented in Chapter Five.

3.1.4 Cluster Merging Phase

In the cluster merging phase, this research proposed an enhanced Un-weighted Pair

Group Method with Arithmetic Mean (eUPGMA). It includes two steps: merge

clusters and refine merged clusters.

The proposed merge clusters step is based on the Un-weighted Pair Group Method

with Arithmetic Mean (UPGMA) (Manning, Raghavan, & Schütze, 2008; Yujian &

Liye, 2010) and starts to operate after the clustering and refining phases are

completed. Figure 3.17 illustrates the structure of the merging similar clusters

process introduced in eUPGMA.

The refine merged clusters step chooses clusters that exceed an identified threshold.

Experientially, in this research two threshold (values are utilized; (50, n/20) and (50,

n/40), where n represents the number of documents in dataset). The first threshold is

based on the criterion used by Tan et al. (2011a) and the idea of refine merging

clusters is adopted from Picarougne et al. (2007). The first threshold (50, n/20) is

proposed to be used on balanced datasets, while the second threshold (50, n/40) is

used on un-balanced datasets. Once the clusters are selected, a new center for the

cluster is identified. This is followed by assigning the un-selected clusters to the

nearest centers.

 96

Figure 3.17. Process of merging similar clusters in enhanced Un-weighted Pair

Group Method with Arithmetic Mean (eUPGMA)

The process of merging similar clusters in eUPGMA algorithm is illustrated in the

following steps:

Step 1: Check to merge the first cluster in the output clusters with the remaining

clusters in the output clusters, if no merge, eliminate the first cluster from the

output clusters (not included in the merge process), then the second cluster

becomes the first cluster. The process of Steps 2-10 continues until the last

cluster becomes the first cluster, so the merge process is stopped.

Step 2: Suppose that C1 and C2 are two clusters that want to merge, and suppose that

P1 and P2 are the numbers of documents in the two clusters respectively.

Suppose that CSim is the Cosine similarity matrix between the two clusters

C1 and C2. The documents in C1 are represented by the row and the

Cluster

3

Merge similar

cluster

Cluster

1

Similar

Cluster

4

Cluster

3

Cluster

2 Similar

Similar Dissimilar

Dissimilar Similar

Cluster

2

Dissimilar Similar

Cluster

1

Dissimilar Similar

 97

documents in C2 are represented by the column. The value of the CSim

matrix is equal to 1 if the document in C1 is similar to the document in C2,

else it equals 0. The similarity between the two documents is based on the

threshold.

Step 3: If (the number of documents in cluster C1 >= 2 and the number of documents

in cluster C2 >= 2) OR If (the number of documents in cluster C1 >= 3 and the

number of documents in cluster C2 == 1) OR If (the number of documents in

cluster C2 >= 3 and the number of documents in cluster C1 == 1) then

Step 4: Calculate the average similarity between the two clusters as in Equation 3.9.

1

𝑃1
∑ ∑

𝐶𝑆𝑖𝑚 (𝐶𝑖, 𝐶𝑗)

𝑃2

𝑃2

𝑗=1

𝑃1

𝑖=1

 (3.9)

where, P1is the number of document in the first cluster,P2is the number of document

in the second cluster, 𝐶𝑖 is the first cluster, 𝐶𝑗is the second cluster.

Step 5: Calculate the merge threshold as in Equation 3.10 below.

MergeThreshold (𝑀𝑇) = 𝑓𝑙𝑜𝑜𝑟 (
𝑟𝑜𝑢𝑛𝑑(

𝑃1∗𝑃2
2

)−1

𝑃1∗𝑃2
∗ 10) /10 (3.10)

Step 6: If Equation 3.9 passed the merge threshold in Equation 3.10 as shown in

Equation 3.11, then, combine two clusters C1 and C2 into one cluster.

1

𝑃1
∑ ∑

𝐶𝑆𝑖𝑚 (𝐶𝑖, 𝐶𝑗)

𝑃2

𝑃2

𝑗=1

𝑃1

𝑖=1

>= 𝑀𝑒𝑟𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑀𝑇) (3.11)

Step 7: If (the number of documents in cluster C1 >= 2 and the number of documents

in cluster C2 >= 1) OR If (the number of documents in cluster C2 >= 2 and the

number of documents in cluster C1 >= 1)

 98

Step 8: Combine C1 and C2, if Equation 3.11 is true using Equation 3.12 to obtain

merge threshold.

MergeThreshold (𝑀𝑇) =
𝑟𝑜𝑢𝑛𝑑(

𝑃1∗𝑃2
2

)

𝑃1∗𝑃2
 (3.12)

Step 9: If (number of documents in cluster C1 >= 1 and the number of documents in

cluster C2 >= 1)

Step 10: Combine C1 and C2, if CSim (C1, C2) equals to 1.

3.2 Implementation of Algorithms

The three proposed algorithms are developed as follows:

1- The Weight-based Firefly algorithm (WFA) is implemented on text datasets

that have been mentioned in Section 3.1.1.1. The results are extracted in

order to compare them with the state-of-the-art methods as presented in

Chapter Four.

2- The Weight-based Firefly algorithm (WFA) that includes the document re-

locating algorithm denoted as WFAR is executed on text datasets. The results

are extracted in order to compare them with state-of-the-art methods as

presented in Chapter Five.

3- As for the Weight-based Firefly algorithm (WFA) that includes the

document re-locating algorithm and cluster merging algorithm denoted as

WFARM, the results are extracted in order to compare them with the state-of-

the-art methods as presented in Chapters Six and Seven.

 99

In addition, Particle Swarm Optimization (PSO), K-means, Bisect K-means, FAK-

means, BatK-means, PGSCM and DCPG have been implemented in the simulation

program for a fair comparison with the proposed algorithms on the same text

datasets. The implementations of the algorithms were carried out using Matlab

version R2008a under Windows 8.

3.3 Evaluation

This section discusses the evaluation of the proposed algorithms. The evaluation

includes two parts: based on performance metrics and Independent T-test. These

evaluations are conducted in three parts as shown in the following.

1- Comparison between the Weight-based Firefly algorithm (WFA) against

Particle Swarm Optimization (PSO), K-means, Bisect K-means and FAK-

means as reported in Chapter Four.

2- Comparison between WFAR against Particle Swarm Optimization (PSO), K-

means, Bisect K-means and FAK-means as reported in Chapter Five.

3- Comparison between the proposed WFARM against Particle Swarm

Optimization (PSO), K-means, Bisect K-means, FAK-means, BatK-means,

PGSCM and DCPG as reported in Chapters Six and Seven.

The evaluation is based on clustering performance metrics that are presented in the

following section.

 100

3.3.1 Performance Metrics

The metrics involved in the evaluation of the clustering performance are of internal,

external and relative quality metrics. The average distance between documents and

center (ADDC) is used as the internal metrics, while the Davies-Bouldin Index

(DBI) and Dunn Index (DI) are as the relative metrics. On the other hand, F-

measure, Entropy and Purity are used as the external metrics.

3.3.1.1 Internal and Relative Quality Metrics

Average Distance between Documents and Centers (ADDC) (Cui, Potok, &

Palathingal, 2005; Forsati, Mahdavi, Shamsfard, & Meybodi, 2013) evaluates the

compactness of the clustering solution, where a smaller ADDC value indicates a

more compact solution. Equation 3.13 illustrates the ADDC metric.

ADDC = ∑
∑ Ec(Oi,Di)ni

i=1
ni

K

K
j=1 (3.13)

where, K is the number of clusters, ni is the number of documents in cluster i, Oi is

the center of cluster i and di is the document in cluster i, and Ec is the Euclidian

distance (Murugesan & Zhang, 2011a, 2011b) that can be calculated by Equation

3.8.

Davies-Bouldin Index (DBI) measures the ratio with the cluster and between the

average distances for the cluster (Davies & Bouldin, 1979). The DBI is calculated as

shown in Equation 3.14.

 101

𝐷𝐵𝐼 =
1

𝑘
 ∑ 𝑚𝑎𝑥𝑖≠𝑗

𝛿𝑖 + 𝛿𝑗

𝑑(𝑖, 𝑗)

𝑘

𝑖=1

(3.14)

where, k is the number of clusters,δi, δj are the average distance of all objects in

cluster i and j, d(i, j) is the distance between the center of cluster i and center of

cluster j. The good cluster algorithm has a lower value of DBI.

Dunn Index (DI) measures the ratio between the minimum inter cluster distance and

the maximum intra cluster distance (Dunn, 1974). DI is calculated as shown in

Equation 3.15.

𝐷𝐼 = 𝑚𝑖𝑛1≤𝑖≤𝑛 {𝑚𝑖𝑛1≤𝑗≤𝑛,𝑖≠𝑗 {
𝑑(𝑖, 𝑗)

𝑑(𝑘)1≤𝑘≤𝑛
𝑚𝑎𝑥 }}

(3.15)

where, d(i, j) is the distance between cluster i and cluster j. d(k) is the maximum

intra cluster between any two objects in cluster k. The high value of DI means good

cluster quality.

3.3.1.2 External Quality Metrics

The goodness of a cluster is measured using three external measures: Entropy, F-

Measure, and Purity (Kashef & Kamel, 2010; Murugesan & Zhang, 2011a, 2011b).

Entropy is a measure of goodness and randomness (Murugesan & Zhang, 2011a,

2011b; Shannon, 1948). The entropy of output cluster C j is in Equation 3.16.

𝐻(𝑗) = − ∑
|Θ𝑘 ∩ 𝐶𝑗|

|𝐶𝑗|

𝐶

𝑘=1

𝑙𝑜𝑔
|Θ𝑘 ∩ 𝐶𝑗|

|𝐶𝑗|

(3.16)

 102

where, Cj is the output clustering from the clustering algorithm, |Cj| represents the

number of document in cluster Cj, Θk is known class and c is the number of known

classes, |Θk ∩ Cj| represents the number of document in a class Θk, in a cluster Cj and

in both class Θk and cluster Cj respectively. The entropy value for a clustering

algorithm is calculated using Equation 3.17.

𝐻 = ∑
𝐻𝑗 ∗ |𝐶𝑗|

𝑁

𝑘

𝑗=1

(3.17)

where, N is the number of documents in the collection.

F-Measure measures the accuracy (Murugesan & Zhang, 2011a, 2011b) as it

depends on the recall and precision values (Meghabghab & Kandel, 2008). The

recall measure formula is shown in Equation 3.18 while Equation 3.19 represents the

precision.

𝑅𝑒𝑐𝑎𝑙𝑙 𝑅(Θ𝑘 , 𝐶𝑗) =
|Θ𝑘 ∩ 𝐶𝑗|

|Θ𝑘|
 (3.18)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃(Θ𝑘 , 𝐶𝑗) =
|Θ𝑘 ∩ 𝐶𝑗|

|𝐶𝑗|
 (3.19)

where, |Θk| represents the number of document in a class Θk. The F-measure formula

is shown in Equation 3.20.

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑅(Θ𝑘 , 𝐶𝑗) ∗ 𝑃(Θ𝑘 , 𝐶𝑗)

𝑅(Θ𝑘 , 𝐶𝑗) + 𝑃(Θ𝑘 , 𝐶𝑗)
 (3.20)

The total F-measure is the summation average of F-measures for all classes. It

depends on the maximum value of F-measure for all of the classes as Equation 3.21

shows the maximum value of F-measure.

 103

𝐹(Θ𝑘) =
𝑚𝑎𝑥

𝐶𝑗 ∈ {𝐶1, … , 𝐶𝑘} (𝐹(Θ𝑘, 𝐶𝑗))

(3.21)

The equation for total F-measure is shown in Equation 3.22.

𝑇𝑜𝑡𝑎𝑙 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = ∑
|Θ𝑘|

𝑁

𝐶

𝑘=1

∗ 𝐹(Θ𝑘) (3.22)

Purity is a measure of cluster quality (Murugesan & Zhang, 2011a, 2011b). It

depends on the maximum number of documents in class Ω k and in cluster Cj

respectively. The formula of purity is shown in Equation 3.23.

𝑃(Θ𝑘, 𝐶𝑗) = 𝑀𝑎𝑥𝑘 |Θ𝑘 ∩ 𝐶𝑗| (3.23)

The cluster purity is calculated as in Equation 3.24.

𝑃𝑢𝑟𝑖𝑡𝑦 = ∑
𝑃(Θ𝑘 , 𝐶𝑗)

𝑁
Θ𝑘 ∈{Θ1,…,Θ𝑐}

 (3.24)

3.3.2 Statistical Analysis

The T-test is a statistical hypothesis test which “is a function of the sample data and

critical region” (Ross, 2010). There are two types of hypotheses; the null hypothesis

that is denoted as H0 and the alternative hypothesis that is called H1. The null

hypothesis (H0) tests if the test statistic value (p-value) falls in the critical area or not,

if it falls in the critical area, the null hypothesis is rejected, otherwise not, while the

alternative hypothesis is accepted if the null hypothesis is rejected. The probability to

reject the null hypothesis is based on the identified value α, named as the

significance level of the test. The values of the significance level are α=0.10, α=0.05,

and α=0.01, where, α=0.05 is the most common used value.

 104

The hypotheses for Independent Samples T-test can be expressed in mathematical

equivalents.

H0: Mean (WFARM) = Mean (any static methods)

H1: Mean (WFARM) ≠ Mean (any static methods)

Where, Mean (WFARM) and Mean (any static methods) are the means of the

population for WFARM and any static methods. The null hypothesis is rejected if (P-

value < 0.05) and the alternative hypothesis is accepted, otherwise, if (P-value >

0.05), the null hypothesis is accepted.

3.4 Summary

The main objective of this research is to design a hierarchical clustering algorithm

for text documents based on Firefly Algorithm. The three main phases in the

proposed hierarchical clustering algorithm design includes: clustering using Weight-

based Firefly Algorithm, refining using document re-locating algorithm, and

merging using eUPGMA algorithm. In the clustering phase, this research proposes

an objective function for the firefly algorithm that is based on the total weight of

documents. The objective function used in WFA will increase the light of a

document (initial total weight) based on the distance between two documents. In this

research, the goal of WFA is to determine the center of clusters by identifying the

one with the brightest light (i.e. document with the highest total weight).

In the cluster refining phase, this research proposes a document re-locating

algorithm, known as WFAR, which changes the location of documents between

 105

clusters when a new cluster is constructed. The aim of WFAR is to produce more

compact clusters which lead to enhancement of the quality performance (i.e. purity).

On the cluster merging phase, this research proposes an enhanced Un-weighted Pair

Group Method with Arithmetic Mean (eUPGMA). It includes two steps: merge

clusters and refine merged clusters. The goal of eUPGMA is to obtain the optimal

clusters.

The proposed Firefly Algorithm is later compared against existing state-of-the-art

clustering algorithms, such as Particle Swarm Optimization (PSO), K-means, Bisect

K-means, Hybrid Firefly algorithm with K-means, Hybrid Bat algorithm with K-

means, General Stochastic Clustering method and Hybrid Genetic algorithm with

Particle Swarm Optimization. The evaluation of the proposed algorithm is based on

performance metrics, namely internal, external and relative metrics, using text

datasets. Furthermore, the evaluation is also based on T-test statistical hypotheses.

 106

CHAPTER FOUR

DOCUMENT CLUSTERING

4.1 Weight-based Firefly Algorithm (WFA)

Weight-based Firefly Algorithm (WFA) is designed based on Firefly Algorithm

which was introduced to solve the problem of optimization. In WFA, the number of

k clusters is not pre-determined, but will be automatically identified. The proposed

WFA operates through two (2) stages: initialization of parameters and data

clustering.

4.1.1 Initialization of Parameters

In order to operate WFA, the required input includes the total weight of each

document which represents the initial light of a firefly, the initial position for each

firefly and a distance matrix that represents the distance between all fireflies.

In WFA, the initial light of a firefly is represented by the total weight of the

document using Equations 4.1 and 4.2.

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑖𝑔ℎ𝑡 𝐼(𝑑𝑗) = 𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑒𝑔ℎ𝑡 (𝑑𝑗) (4.1)

𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑒𝑔ℎ𝑡 (𝑑𝑗) = ∑ 𝑡𝑓𝑖𝑑𝑓𝑡𝑖,𝑑𝑗

𝑚

𝑖=1

(4.2)

Upon obtaining the total weight of a document, the search space reduces to one

dimension as shown in Figure 4.1.

 107

Figure 4.1. One dimension search space

The initial positioning of a firefly in the search space is represented by two

coordinates, X and Y. In this study, the value of Y is fixed as (0.5) (because the

search space is one dimension), while the value of X can be obtained using the

normalization method, where the search space is represented between (0, 1). For

example, the firefly that represents a document may be positioned at (0.7, 0.5) or

(0.2, 0.5) or any number between (0, 1). Figure 4.2 shows an example of normalized

positioning.

Figure 4.2. An example of normalized positioning

In this thesis, the initial positioning is normalized in the range of (0, 1) using a

sample normalization process which is called Rescaling Method (Yunrong &

Liangzhong, 2009). Equation 4.3 illustrates the Rescaling Method.

Firefly1=

document1

Firefly2=

document2

... Firefly n=

document n

 1 2 n

 108

𝑋° =
(𝑋 − min(𝑋))

(max(𝑋) − min(𝑋))

(4.3)

Where, Xº is the normalized positioning, X is the current positioning.

The third parameter required for the operation of WFA is the distance between

fireflies. It is the distance between two positions which is calculated using the

Cartesian distance (Yang, 2010b) as shown in Equation 4.4.

𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑋𝑗, 𝑋𝑖) = √(𝑋𝑗 − 𝑋𝑖)22
 (4.4)

where, Xj is the position of first firefly and Xi is the position of second firefly.

4.1.2 Data Clustering

The data clustering phase in WFA includes two processes: identification of center

and construction of clusters. These two processes are repeated until all data

(documents) are clustered. The second process starts after the first center has been

identified and it will return to the first process once the first cluster is created.

In the standard Firefly Algorithm (FA) (Yang, 2010b), every firefly needs to be

compared (in terms of the brightness) with all other fireflies. Figure 4.3 illustrates an

example of the competition between fireflies. Assume, the triangle symbol represents

Class 1 and the circle symbol represents Class 2. Further, assume firefly A has the

total weight of 20. It will need to compete with all other fireflies. Such a process

requires high computational effort (i.e. processing time). So, in the WFA algorithm,

the exploration of the firefly is improved by introducing a condition that permits the

comparison of brightness if and only if the documents are similar. Figure 4.4 shows

 109

an example of the competition between fireflies in WFA. Firefly A that has a total

weight of 20 will only need to compete with five similar fireflies.

Figure 4.3. An example of competition in standard Firefly Algorithm (FA)

Figure 4.4. An example of competition in Weight-based Firefly Algorithm (WFA)

In detail, the process of center identification in WFA is based on two conditions: the

first condition is based on the brightness of fireflies, and the second condition relies

on the similarity (i.e. cosine similarity) between two documents. If there exists a

document that passed the specified similarity threshold (the setting of similarity

threshold is illustrated in Table 4.1), then, the movement of the less bright firefly

10

9

17

15

11

13
14

15

20

A

20

17

Ne

are

st

Di

sta

nc

e

 Class 1

 Class 2

20

10

9

17

15

11

13
14

15

20

A

17

 Class 1

 Class 2

1.

 110

towards the brightest firefly is executed using Equation 2.7 (Yang, 2010b), and the

light intensity of the brightest firefly is updated (i.e. increased) using Equation 4.8.

In Equation 2.7, Xi is the position of the less bright firefly and Xj is the position of

the brighter one. α is a randomization parameter between (0, 1) (Yang, 2010b). In

this study, experimentally, α is set to 0.2, while, β (the attractiveness between two

fireflies) is obtained using Equation 2.8 (Yang, 2010b), where, β0 is the initial

attractiveness and in this algorithm sets to 1, Y is the absorption coefficient and also

sets to 1. The rij is the distance between document i and document j which is

computed by Equation 4.4.

The value of εi in Equation 2.7 is a vector of random numbers drawn from a

Gaussian distribution or uniform distribution (Yang & He, 2013; Yang, 2010a). For

example, the simplest form of εi can be replaced by (rand - ½) where rand refers to

the random number uniformly distributed in [0 and 1] (Yang, 2010b). In this study,

the εi value is an adaptive value that is computed using Equations 4.5, 4.6 and 4.7. It

is in the range between the minimum TFIDF of two documents and the maximum

TFIDF of the same documents.

𝜀𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚 (𝑀𝑖𝑛 𝑇𝐹𝐼𝐷𝐹, 𝑀𝑎𝑥𝑇𝐹𝐼𝐷𝐹) (4.5)

𝑀𝑖𝑛 𝑇𝐹𝐼𝐷𝐹 = 𝛼 ∗ 𝑀𝑖𝑛 (𝑇𝐹𝐼𝐷𝐹𝑖, 𝑇𝐹𝐼𝐷𝐹𝑗) (4.8) (4.6)

𝑀𝑎𝑥 𝑇𝐹𝐼𝐷𝐹 = 𝛼 ∗ 𝑀𝑎𝑥 (𝑇𝐹𝐼𝐷𝐹𝑖, 𝑇𝐹𝐼𝐷𝐹𝑗) (4.7)

Finally, the light of the brighter firefly increases based on the value of attractiveness

β which depends on the distance between two fireflies as shown in Equation 4.8.

 111

𝑙𝑖𝑔ℎ𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐼 (𝑑𝑗)(𝑡 + 1) = 𝐼 (𝑑𝑗)(𝑡) + 𝛽 (4.8)

The competition between fireflies continues until it reaches the predefined number of

iteration. Then, the fireflies are ranked based on their brightness, where the brightest

firefly is identified as a centroid. Once this is done, clusters can be constructed,

where documents that have a high similarity value with the centroid (using cosine

similarity) are assigned to the same cluster with the centroid (first cluster). On the

other hand, the ones with lower values will be assigned in another cluster (second

cluster). Such an approach requires a pre-defined threshold value; in this study, each

dataset has a different threshold value (the best setting is chosen experimentally) and

are shown in Table 4.1.

Table 4.1

Parameters setting in WFA.

Datasets
Similarity threshold in

identifying centers

Similarity threshold in

constructing clusters

20Newsgroups 0.2 0.15

Reuters 0.2 0.15

TR11 0.3 0.3

TR12 0.4 0.25

TR23 0.3 0.3

TR45 0.3 0.25

The process of clustering construction repeats on the second cluster where the

fireflies carrying documents in cluster two is sorted to identify the one with the

brightest light. The formulation of cluster two continues by identifying similar

 112

documents and the process is completed once all documents are grouped into

clusters.

On the other hand, the cosine similarity is as defined in Equation 4.9 (Luo, Li &

Chung, 2009). The value of cosine similarity is in the range between (0, 1); when the

value of cosine similarity approaches 1, this means the two documents are identical,

and when it approaches 0, this means the two documents are far away and are not

identical. Equation 4.9 displays the formula to calculate the Cosine similarity.

𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑑𝑖, 𝑑𝑗) =
𝑑𝑖 ∗ 𝑑𝑗

||𝑑𝑖 || ∗ ||𝑑𝑗 ||

(4.9)

In this thesis, the Cosine similarity is based on the normalized term frequency (term

frequency is normalized to the length of documents), hence Equation 4.9 becomes

the following Equation 4.10 (Luo, Li & Chung, 2009).

𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑑𝑖, 𝑑𝑗) = ∑(𝑑𝑖,𝑡 ∗ 𝑑𝑗,𝑡

𝑚

𝑡=1

)
(4.10)

where, m is the number of terms in the collection, dj and di are two different

documents. The proposed WFA algorithm is presented in Figure 4.5.

The outcome of a clustering process is the constructed clusters and their centroid. In

order to measure the quality of the produced clusters, performance metrics such as

the average distance between center and documents in clusters (ADDC), DBI, DI,

Purity, F-measure and Entropy, which are explained in the previous chapter in

Section 3.3.1, are employed.

 113

Weight-based Firefly Algorithm (WFA)

Step 1: Generate initial population of firefly randomly x
i
 where i=1, 2... n,

n=number of fireflies (documents).

Step 2: Initial Light Intensity, I=total weight of document using Equations 4.1 and

4.2.

Step 3: Define light absorption coefficient γ, initial γ=1.

Step 4: Define the randomization parameter α, α=0.2.

Step 5: Define initial attractiveness𝛽0 = 1.0.

Step 6: While t < Maximum number of iteration (t= number of iteration)

Step 7: For i=1 to N

Step 8: For j=1 to N

Step 9: IF (Light Ii < Light Ij) (Light=total weight)

Step 10: IF (CosineSimilarity (i, j) >= Threshold (CosineSimilarity using Equation

4.10)

Step 11: Calculate distance between i, j using Equation 4.4.

Step 12: Calculate attractiveness using Equation 2.8.

Step 13: Calculate random parameter εi using Equations 4.5, 4.6 and 4.7.

Step 14: Move document i to j using Equation 2.7.

Step 15: Update light intensity using Equation 4.8.

Step 16: End For j

Step 17: End For i

Step 18: t=t+1

Step 19: End While

Step 20: Rank the Light List to find best document (brightest light) and represent as

center.

Step 21: Find document similar to center using Equation 4.10 and construct cluster

Step 22: Remove produced clusters from Light List.

Step 23: Return to Step 20 until remains one document in Light List.

Step 24: Output clusters.

Figure 4.5. Weight-based Firefly Algorithm (WFA) for hierarchical text clustering

 114

Example

The following elaboration is on the process of applying the proposed WFA. The

dataset that is used for this example includes thirty documents obtained from the

20Newsgroups dataset. It contains of three topics: Comp.sys.mac.hardware,

Rec.sport.baseball and Sci.electronic. Figure 4.6 shows an example of TFIDF for the

particular dataset.

Figure 4.6. An example of TFIDF for 20Newsgroups

The proposed WFA first calculates the cosine similarity between documents using

Equation 4.10. Figure 4.7 shows an example of the cosine similarity table. For

example, the value of similarity between document 1 and document 2 can calculate

as follows:

Cosine Similarity (d1, d2) = [(first term)d1* (first term)d2] +[(second term)d1* (second

term)d2] + …. + [(m term)d1* (m term)d2]

 115

Figure 4.7. An example of cosine similarity table for 20Newsgroups dataset

Figure 4.8. An example of Euclidean distance table for 20Newsgroups dataset

 116

Then, the Euclidean distance is calculated; Figure 4.8 shows the Euclidean distance

table. The total weight (initial light for each firefly) for each document also

determines the initial position of each document (firefly) and the Cartesian distance

between these positions. In Figure 4.9, the table includes the information on the total

weight (initial light for each firefly) for each document.

Figure 4.9. An example of total weight for 20Newsgroups dataset

The initial positioning of each document (firefly) is represented randomly between 1

and 30, which is later normalized between 0 and 1 as shown in Figures 4.10 and

4.11.

 117

Initial positioning between 1 and 30

Normalized positioning between 0 and 1

Figure 4.10. An example of normalized initial positioning for 20Newsgroups dataset

Figure 4.11. Graphical representation of initial document positioning for

20Newsgroups dataset

When WFA operates, document 1 will compete with documents 2 until 30. In this

example, the light for document 1 is (5.7950) and it is lesser than the light for

document 11 which is (6.2443). The cosine similarity between document 1 and

document 11 is (0.2420) and this value exceeds the threshold (in this experiment, it

is set to 0.15). Hence, document 1 will be moved towards document 11. The amount

of attraction, β, is equal to (0.7921) and is obtained using Equation 2.8 (in Step 12 of

the proposed WFA). The initial attraction β0 is 1 and the absorption coefficient γ

 118

equals to 1. The distance between the position of document 1 and document 11 is

equal to (0.4828). The position of document 1 is changed using Equation 2.7, where

it becomes (0.3555). In addition, the light of document 11 increases based on

Equation 4.8 and it becomes (7.0364).

After 20 iterations, the brightest document will be chosen as the centroid. In this

example, document 10 has (348.49), which is the brightest light, and it becomes the

centroid for the first cluster. Similar documents in the dataset are grouped with the

centroid into this cluster. Cluster 1 later includes 21 documents including the center.

The second center has document 25 as the center with seven other documents. The

last cluster includes only one document which is the center. A graphical

representation of the final position of the documents is illustrated in Figure 4.12.

Cluster1 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30]

Cluster2 [21, 22, 23, 24, 25, 26, 27, 29]

Cluster3 [28]

Figure 4.12. An example of graphical representation of final document positioning

for 20Newsgroups dataset

 119

4.2 Evaluation

The proposed WFA is later evaluated to study the effectiveness of WFA in

automatically producing clusters without prior information on the dataset. A

comparison is later made against Particle Swarm Optimization (PSO) (Cui, Potok, &

Palathingal, 2005), K-means (Jain, 2010), Hybrid Firefly algorithm with K-means

(FAK-means) (Tang, Fong, Yang, & Deb, 2012) and Bisect K-means (Murugesan &

Zhang, 2011a, 2011b), which they require a predefined k number of cluster. Tables

4.2 and 4.3 include the results of the five algorithms: WFA, PSO, K-means, FAK-

means and Bisect K-means. Each algorithm was executed thirty times and the

average values of the metrics were calculated. Figure 4.13 includes a graphical

representation of the results.

As shown in Table 4.2, the WFA algorithm generates the highest average purity and

smallest average Entropy and DBI in all iterations compared with PSO, K-means,

FAK-means and Bisect K-means, while PSO produces a higher average F-measure,

and K-means generates a smaller ADDC and the highest average DI. The purity

results of five methods, namely WFA, PSO, K-means, FAK-means and Bisect K-

means, are compared and represented graphically as shown in Figure 4.13.a. It is

noticed that the purity of WFA is generated the highest value in all iterations, while

K-means produced a smaller purity. Furthermore, it is noticed that Bisect K-means

has a higher purity than K-means, FAK-means and PSO. As learned from the

literature, (Forsati, Mahdavi, Shamsfard, & Meybodi, 2013; Luo, Li, & Chung,

2009; Murugesan & Zhang, 2011a, 2011b), a higher value of purity (approaching to

1) indicates that it is a better clustering solution.

 120

Table 4.2

External quality metrics of clustering: WFA vs. PSO vs. K-means vs. FAK-means vs.

Bisect K-means.

External

Metrics
Algorithms

Iterations

1 2 5 10 20

Purity

WFA
0.6150

(0.0335)

0.5928

(0.0161)

0.5898

(0.0258)

0.5934

(0.0186)

0.5230

(0.0137)

PSO
0.3823

(0.0432)

0.3861

(0.0643)

0.3726

(0.0433)

0.3731

(0.0403)

0.3772

(0.0516)

K-means
0.3468

(0.0242)

0.3451

(0.0226)

0.3531

(0.0414)

0.3561

(0.0575)

0.3459

(0.0258)

FAK-means
0.3658

(0.0133)

0.3701

(0.0150)

0.3738

(0.0138)

0.3719

(0.0147)

0.3731

(0.0132)

Bisect K-means
0.3759

(0.0300)

0.3806

(0.0397)

0.3872

(0.0446)

0.3939

(0.0601)

0.4031

(0.0818)

External

Metrics
Algorithms

Iterations

F-measure

WFA
0.4533

(0.0220)

0.4499

(0.0053)

0.4495

(0.0053)

0.4488

(0.0038)

0.4639

(0.0025)

PSO
0.4947

(0.0188)

0.5062

(0.0414)

0.4907

(0.0118)

0.4951

(0.0110)

0.4986

(0.0237)

K-means
0.4910

(0.0213)

0.4935

(0.0138)

0.4975

(0.0196)

0.4999

(0.0316)

0.4954

(0.0081)

FAK-means
0.3656

(0.0134)

0.3692

(0.0140)

0.3747

(0.0155)

0.3723

(0.0143)

0.3737

(0.0132)

Bisect K-means
0.4698

(0.0297)

0.4757

(0.0284)

0.4775

(0.0336)

0.4785

(0.0567)

0.4908

(0.0644)

External

Metrics
Algorithms

Iterations

Entropy

WFA
1.1275

(0.0724)

1.1966

(0.0215)

1.1989

(0.0194)

1.1964

(0.0137)

1.2328

(0.0237)

PSO
1.5350

(0.0393)

1.5230

(0.0858)

1.5403

(0.0513)

1.5309

(0.0619)

1.5276

(0.0691)

K-means
1.5782

(0.013)

1.5794

(0.0100)

1.5722

(0.0341)

1.5636

(0.072)

1.5755

(0.0215)

FAK-means
1.5782

(0.0042)

1.5770

(0.0059)

1.5751

(0.0054)

1.5750

(0.0067)

1.5754

(0.0056)

Bisect K-means
1.5620

(0.0223)

1.5571

(0.0285)

1.5466

(0.0914)

1.5325

(0.0841)

1.5150

(0.1193)

Note: the best value is highlighted in ‘bold’, standard deviation in ().

 121

Table 4.3

Internal and relative quality metrics of clustering: WFA vs. PSO vs. K-means vs.

FAK-means vs. Bisect K-means.

Internal &

Relative

Metrics

Algorithms

Iterations

1 2 5 10 20

ADDC

WFA
0.8063

(0.0481)

0.7819

(0.0469)

0.8289

(0.0514)

0.8159

(0.0348)

0.6694

(0.0884)

PSO
1.7630

(0.2124)

1.7775

(0.2738)

1.8053

(0.2751)

1.9379

(0.1862)

1.8736

(0.0430)

K-means
0.7547

(0.2978)

0.7041

(0.2861)

0.6783

(0.2396)

0.6367

(0.2511)

0.7056

(0.3190)

FAK-means
1.4434

(0.0010)

1.4436

(0.0007)

1.4436

(0.0009)

1.4432

(0.0009)

1.4436

(0.0007)

Bisect K-means
1.3238

(0.1874)

1.2545

(0.2808)

1.2633

(0.2378)

1.3332

(0.2318)

1.3494

(0.1817)

Internal &

Relative

Metrics

Algorithms
Iterations

DBI

WFA
1.3452

(0.0217)

1.3369

(0.0235)

1.3631

(0.0358)

1.3527

(0.0222)

1.3249

(0.0460)

PSO
1.7069

(0.0261)

1.6100

(0.2168)

1.5559

(0.2303)

1.6092

(0.1732)

1.6472

(0.2269)

K-means
2.8159

(3.5419)

2.3565

(3.1847)

2.4741

(3.1267)

1.9649

(3.1855)

1.9090

(2.5369)

FAK-means
14.2277

(0.2063)

14.2834

(0.2025)

14.2549

(0.3551)

14.2637

(0.2862)

14.2158

(0.2801)

Bisect K-means
8.1636

(3.0869)

7.3146

(3.0355)

6.9485

(3.0605)

7.8287

(2.8864)

7.7189

(2.7763)

Internal &

Relative

Metrics

Algorithms
Iterations

DI

WFA
0.9312

(0.0195)

0.9236

(0.0129)

0.9208

(0.0185)

0.9273

(0.0074)

0.9040

(0.0364)

PSO
1.0162

(0.0950)

1.0331

(0.0574)

1.0357

(0.0650)

1.0119

(0.0583)

0.9908

(0.0899)

K-means
2.3413

(2.3505)

2.9315

(2.4566)

2.9671

(2.5302)

3.7363

(2.3653)

3.4078

(2.4518)

FAK-means
0.1380

(0.0026)

0.1372

(0.0027)

0.1377

(0.0039)

0.1374

(0.0035)

0.1382

(0.0035)

Bisect K-means
0.2393

(0.1483)

0.2876

(0.2299)

0.2998

(0.1887)

0.2715

(0.2178)

0.2698

(0.2008)

Note: the best value is highlighted in ‘bold’, standard deviation in ().

 122

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.13. Graphical representation of quality metrics of WFA vs. PSO vs. K-

means vs. FAK-means vs. Bisect K-means; a) Purity, b) F-measure, c) Entropy, d)

ADDC, e) DBI, and f) DI.

 123

Standard Deviation measures how much variation or dispersion from the average

exists. A small value of standard deviation indicates that the documents tend to be

very close to the mean (center). Based on the observation, the overall standard

deviation of WFA algorithm is smaller than PSO, K-means, Bisect K-means in most

iterations (refer to iterations 2, 5, 10 and 20) which indicates it is more reliable and

more robust.

Table 4.2 also includes the average F-measure of thirty executions for each WFA,

PSO, K-means, FAK-means and Bisect K-means. F-measure tries to capture how

well the groups of the investigated partition best match the groups of the reference.

A high F-measure (near to 1) means perfect clustering (Forsati, Mahdavi, Shamsfard,

& Meybodi, 2013; Luo, Li, & Chung, 2009; Murugesan & Zhang, 2011a, 2011b). F-

measure is based on two important metrics, precision and recall, which are widely

used in information retrieval for evaluation. Precision measures the accuracy of a

cluster that produces a specific class, while recall measures the completeness of a

specific class. As shown in Table 4.2, the PSO algorithm generates the highest

average F-measure in iterations 1, 2 and 20 compared to all the algorithms, while K-

means generates the highest average F-measure in iterations 5 and 10. The F-

measure of the WFA algorithm is only is better than FAK-means in all iterations. In

addition, the overall standard deviation of the WFA algorithm is smaller than other

algorithms (refer to iterations 2, 5, 10 and 20) which indicates it is more reliable and

more robust. Figure 4.13.b presents the F-measure result of five algorithms: WFA,

PSO, K-means, FAK-means, and Bisect K-means.

 124

Table 4.2 involves the average Entropy of thirty executions for each WFA, PSO, K-

means, FAK-means, and Bisect K-means. Entropy measures the distribution of

various classes in each cluster. The smallest Entropy (near to 0) indicates a better

clustering solution (Forsati, Mahdavi, Shamsfard, & Meybodi, 2013; Murugesan &

Zhang, 2011a, 2011b). As shown in Table 4.2, the average Entropy that is produced

by WFA is the smallest than other algorithms in all iterations. On the other hand,

PSO produces a smaller Entropy compared to FAK-means, K-means, and Bisect K-

means in most iterations. Furthermore, the standard deviation of the WFA algorithm

is smaller than PSO, K-means, and Bisect K-means in most iterations (refer to

iterations 5 and 10) which indicates it is more reliable and more robust. This result

implies that WFA is best to produce clusters with single class than others. Figure

4.13.c illustrates the result of the average Entropy in a graphical representation of

five methods: WFA, PSO, K-means, FAK-means and Bisect K-means.

Table 4.3 includes the quality performance results of internal metrics, which are

ADDC, DBI and DI for five algorithms: WFA, PSO, K-means, FAK-means and

Bisect K-means. All algorithms are implemented in the same environment and are

run thirty times for different iterations. The average values of ADDC, DBI and DI

are calculated. As shown in Table 4.3, K-means generates a smaller average ADDC

in most iterations (refer to iterations 1, 2, 5 and 10) compared against WFA, K-

means, FAK-means, and Bisect K-means, while WFA produces a smaller average

ADDC in iteration 20 against other methods. Furthermore, the standard deviation of

FAK-means is the smallest value against others, followed by the proposed WFA

algorithm which is better than PSO, K-means, and Bisect K-means. This result

 125

indicates that WFA obtains more compact clusters. The ADDC values of the five

techniques, namely WFA, PSO, K-means, FAK-means, and Bisect K-means, are

illustrated in Figure 4.13.d.

In Table 4.3, the average DBI of thirty executions for each WFA, PSO, K-means,

FAK-means, and Bisect K-means are reported. DBI measures the validation of how

well the output clusters are done (minimum intra distance of clusters and maximum

inter distance) using quantities and features inherent to the dataset. Whereby, the

summations of the maximum ratio between the average distances of two clusters (not

similar) over the distance between the centers of the same two clusters are calculated

for all of the produced clusters. The smallest DBI means a more compact clustering

solution (Das, Abraham, & Konar, 2009). As shown in Table 4.3, WFA generates

the smallest average DBI in all iterations. Furthermore, the standard deviation of

WFA is the smallest in all runs, which shows that the solutions are more reliable.

Figure 4.13.e illustrates the result of the average DBI in a graphical representation.

Table 4.3 also involves the average DI of thirty executions for each WFA, PSO, K-

means, FAK-means, and Bisect K-means. DI measures the ratio of the smallest

distance between observations not in the same cluster to the largest intra cluster

distance. DI has a value between 0 and ∞ and the largest value of DI means a more

compact clustering solution (Das, Abraham, & Konar, 2009). As shown in Table 4.3,

WFA generates the largest average of DI against FAk-means and Bisect K-means in

all iterations, while K-means produces the best DI value against all other methods,

followed by PSO. In addition, it is noticed that the value of standard deviation in

WFA is smaller than PSO, K-means, and Bisect K-means in all iterations, which

 126

shows that the solutions in WFA are more reliable. Figure 4.13.f illustrates the result

of the average DI in a graphical representation.

Table 4.4 displays the average number of clusters that are automatically generated by

WFA and without any prior knowledge about the dataset. As seen in Table 4.4, the

number of clusters produced by WFA is higher than the number of clusters in other

methods.

Table 4.4

Average number of clusters of WFA vs. PSO vs. K-means vs. FAK-means vs. Bisect

K-means.

Iterations

Number of clusters of algorithms

WFA PSO K-means FAK-means
Bisect

K-means

1 19.30 ≈ 19 3 3 3 3

2 18.73 ≈ 19 3 3 3 3

5 17.57 ≈ 18 3 3 3 3

10 17.80 ≈ 18 3 3 3 3

20 14.80 ≈ 15 3 3 3 3

The obtained results indicate that WFA generates betters clusters as it is the best in

two of the external metrics, purity and entropy; meanwhile in internal metrics DBI, it

obtained the best value. Table 4.5 illustrates the results of different quality

performance metrics in five algorithms.

 127

Table 4.5

Results of quality performance of WFA vs. PSO vs. K-means vs. FAK-means vs.

Bisect K-means.

Algorithms External Metrics Internal Metrics

Purity F-measure Entropy ADDC DBI DI

WFA

PSO

K-means

FAK-means

Bisect K-

means

In the upcoming chapters, the performance of WFA will be improved by integrating

the algorithm with document re-locating algorithm and merging algorithm.

4.3 Summary

This chapter presentes text clustering using one of the swarm intelligence algorithms,

known as Weight-based Firefly Algorithm (WFA). Experiments were conducted on

the 20Newsgroups dataset and a comparsion of the proposed WFA was made against

the other algorithms (PSO, K-means, FAK-means, and Bisect K-means).

It is learned that WFA generates better results in Purity, Entropy and DBI metrics.

WFA has not only generated a better reading in the measures, but it also does not

rely on a pre-determined k number of clusters. Such a result indicates the rival of

WFA in text clustering. Furthermore, the result was obtained without initial

information on the dataset.

 128

CHAPTER FIVE

CLUSTER REFINING

5.1 Introduction

The construction of clusters in the proposed WFA (Chapter Four) is based on a static

threshold, where documents that are similar to the centroid are assigned to the first

cluster. However, there is a possibility that these documents are more similar to one

of the upcoming centroids. Such a situation will lead to poor cluster purity. Hence, it

is proposed that WFA allows the re-location of an assigned document.

In this chapter, a document re-locating algorithm is introduced. Later, it will be

combined with the Weight-based Firefly Algorithm. Empirical studies will be

conducted on the combinations to measure the performance evaluation of the

proposed algorithm.

5.2 Document Re-locating

Documents re-locating can be introduced when every new cluster in Weight-based

Firefly Algorithm (WFA) is constructed starting from the second cluster. It operates

by identifying the similarity between the newly identified centroid (the center of the

new cluster) and documents that have been assigned in the previous clusters. If the

similarity is higher, then the document is moved from the original cluster to the

newly created cluster. The pseudo code of documents re-locating is shown in Figure

5.1.

 129

Document Re-locating

Step 1: Initial m=number of clusters.

Step 2: If m>=2

Step 3: For K=1 to (m-1)

Step 4: If length (current cluster (K))>1

Step 5: For Z=1 to length (current cluster (K))

Step 6: If current document (Z) not equal to center (K)

Step 7: If similarity(center(m), current document (Z)) > similarity(center(K), current

document (Z))

Step 8: Move (Z) from current cluster to recent cluster

Step 9: End for Z

Step 10: End for K

Figure 5.1. The pseudo code of Document Re-locating

In a further attempt to improve the solutions produced by WFA, another variant of

FA that is termed as Weight-based Firefly Algorithm with Relocate (WFAR) is

proposed. WFAR includes the relocating mechanism as illustrated in Figure 5.2.

Figure 5.2. The process of WFAR

Identification of Centers

Construction Clusters

Document Re-locating Algorithm

Obtained Clusters

 130

The steps of WFAR are shown in Figure 5.3.

Weight-based Firefly Algorithm with Relocate (WFAR)

Step 1: Generate initial population of firefly randomly x
i
 where i=1, 2... n,

n=number of fireflies (documents).

Step 2: Initial Light Intensity, I=total weight of document using Equations 4.1 and

4.2.

Step 3: Define light absorption coefficient γ, initial γ=1.

Step 4: Define the randomization parameter α, α=0.2.

Step 5: Define initial attractiveness𝛽0 = 1.0.

Step 6: While t < Maximum number of iteration (t = number of iteration)

Step 7: For i=1 to N

Step 8: For j=1 to N

Step 9: IF (Light Ii < Light Ij) (Light=total weight)

Step 10: IF (CosineSimilarity (i, j) >= Threshold (CosineSimilarity using Equation

4.10)

Step 11: Calculate distance between i, j using Equation 4.4.

Step 12: Calculate attractiveness using Equation 2.8.

Step 13: Calculate random parameter u using Equations 4.5, 4.6 and 4.7.

Step 14: Move document i to j using Equation 2.7.

Step 15: Update light intensity using Equation 4.8.

Step 16: End For j

Step 17: End For i

Step 18: t=t+1

Step 19: End While

Step 20: Rank the Light List to find best document (brightest light) and represent as

center.

Step 21: Find document similar to center using Equation 4.10 and construct cluster

Step 22: Remove produced clusters from Light List.

Figure 5.3. Steps of the WFAR algorithm

 131

Figure 5.3 continued

Step 23: Initial m=number of clusters.

Step 24: If m>=2

Step 25: For K=1 to (m-1)

Step 26: If length (current cluster (K))>1

Step 27: For Z=1 to length (current cluster (K))

Step 28: If current document (Z) not equal center (K)

Step 29: If similarity(center(m), current document(Z)) > similarity(center(K),

current document (Z))

Step 30: Move (Z) from current cluster to recent cluster

Step 31: End for Z

Step 32: End for K

Step 33: Return to Step 20 until remains one document in Light List.

Step 34: Output clusters.

Example

The process involved in the proposed WFAR is explained using the same example

presented in Chapter Four. Upon completing the construction of the second cluster

by WFA (in the previous example), then only, the process of relocating documents

will be started. Initially, WFA produced the following clusters:

Cluster1 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30]

Cluster2 [21, 22, 23, 24, 25, 26, 27, 29]

The document re-locating algorithm compares the center of the second cluster

(cluster 2) with all documents in cluster 1. If the cosine similarity between the center

of cluster 2 and the document in cluster 1 is greater than the cosine similarity

between the center of cluster 1 and the document in cluster 1, then this document is

 132

assigned to cluster 2 and is removed from cluster 1. Upon checking all documents,

two documents D2 and D30 are assigned to cluster 2 and removed from cluster 1.

The newly produced clusters are as shown below.

Cluster1 [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

Cluster2 [21, 22, 23, 24, 25, 26, 27, 29, 2, 30]

Then, WFAR constructs cluster 3, where there exists only a single document in

cluster 3 (i.e. 28). Later, the last cluster (i.e. cluster 3) is compared against

documents in cluster 1 and documents in cluster 2. Since there is no change, the

clusters remain the same.

5.3 Evaluation

This section includes two evaluations; the first evaluation is on the comparison

between WFAR and WFA, and the second between WFAR and state-of-the-art

methods.

5.3.1 Comparison between WFAR and WFA

For comparison purposes, the evaluation on Purity, F-measure and Entropy is

presented in Table 5.1, while Table 5.2 includes the results on ADDC, DBI and DI in

the form of average, best, worst, and standard deviation of the two methods (WFAR

and WFA). Figure 5.4 includes the graphical representation of the obtained results.

 133

Table 5.1

External quality metrics: WFA vs. WFAR.

Iterations

Algorithms

Purity Metric

Average

Purity

Best

Purity

Worst

Purity

Standard

Deviation

1
WFA 0.6150 0.7500 0.5467 0.0335

WFAR 0.8300 0.9467 0.7967 0.0255

2
WFA 0.5928 0.6233 0.5467 0.0161

WFAR 0.8258 0.8700 0.8100 0.0095

5
WFA 0.5898 0.5966 0.4933 0.0258

WFAR 0.8177 0.8233 0.7900 0.0058

10
WFA 0.5934 0.6033 0.4933 0.0186

WFAR 0.8182 0.8267 0.8100 0.0036

20
WFA 0.5230 0.5300 0.4933 0.0137

WFAR 0.7868 0.8100 0.7433 0.0129

Iterations

Algorithms

F-measure Metric

Average

F-measure

Best

F-measure

Worst

F-measure

Standard

Deviation

1
WFA 0.4533 0.5693 0.4481 0.0220

WFAR 0.5199 0.6625 0.4930 0.0339

2
WFA 0.4499 0.4659 0.4481 0.0053

WFAR 0.5145 0.5423 0.4983 0.0126

5
WFA 0.4495 0.4694 0.4481 0.0053

WFAR 0.5194 0.5657 0.5080 0.0174

10
WFA 0.4488 0.4694 0.4481 0.0038

WFAR 0.5295 0.6589 0.5034 0.0365

20
WFA 0.4639 0.4694 0.4628 0.0025

WFAR 0.6186 0.6589 0.5551 0.0426

Iterations

Algorithms

Entropy Metric

Average

Entropy

Best

Entropy

Worst

 Entropy

Standard

Deviation

1
WFA 1.1275 0.8906 1.2382 0.0724

WFAR 0.6676 0.2806 0.7250 0.0830

2
WFA 1.1966 1.1042 1.2382 0.0215

WFAR 0.6921 0.5299 0.7396 0.0345

5
WFA 1.1989 1.1830 1.2727 0.0194

WFAR 0.7282 0.7008 0.7453 0.0135

10
WFA 1.1964 1.1855 1.2686 0.0137

WFAR 0.7315 0.6587 0.7453 0.0206

20
WFA 1.2328 1.2195 1.2828 0.0237

WFAR 0.7244 0.6587 0.8381 0.0328

Note: the best value is highlighted in ‘bold’.

 134

Table 5.2

Internal and relative quality metrics: WFA vs. WFAR.

Iterations

Algorithms

ADDC Metric

Average

ADDC

Best

ADDC

Worst

ADDC

Standard

Deviation

1
WFA 0.8063 0.6992 0.9629 0.0481

WFAR 1.4282 1.3688 1.4557 0.0233

2
WFA 0.7819 0.7047 0.9232 0.0469

WFAR 1.4228 1.3640 1.4557 0.0156

5
WFA 0.8289 0.7373 0.9232 0.0514

WFAR 1.4171 1.3683 1.4413 0.0130

10
WFA 0.8159 0.7373 0.8578 0.0348

WFAR 1.4085 1.1994 1.4488 0.0408

20
WFA 0.6694 0.6152 0.9122 0.0884

WFAR 1.2222 1.1569 1.3949 0.0744

Iterations

Algorithms

DBI Metric

Average

DBI

Best

DBI

Worst

DBI

Standard

Deviation

1
WFA 1.3452 1.2832 1.4143 0.0217

WFAR 1.6585 1.6313 1.6740 0.0117

2
WFA 1.3369 1.3198 1.4317 0.0235

WFAR 1.6562 1.6386 1.6828 0.0092

5
WFA 1.3631 1.3079 1.4317 0.0358

WFAR 1.6514 1.6386 1.7012 0.0128

10
WFA 1.3527 1.3079 1.4157 0.0222

WFAR 1.6508 1.5967 1.7104 0.0153

20
WFA 1.3249 1.2971 1.4209 0.0460

WFAR 1.6176 1.5744 1.7104 0.0427

Iterations

Algorithms

DI Metric

Average

DI

Best

DI

Worst

DI

Standard

Deviation

1
WFA 0.9312 0.9602 0.8582 0.0195

WFAR 0.9017 0.9415 0.8522 0.0290

2
WFA 0.9236 0.9358 0.8828 0.0129

WFAR 0.9167 0.9287 0.8522 0.0215

5
WFA 0.9208 0.9510 0.8828 0.0185

WFAR 0.9064 0.9287 0.8808 0.0170

10
WFA 0.9273 0.9289 0.8879 0.0074

WFAR 0.8946 0.9016 0.8495 0.0118

20
WFA 0.9040 0.9510 0.8490 0.0364

WFAR 0.9156 0.9264 0.8495 0.0202

Note: the best value is highlighted in ‘bold’.

 135

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.4. Graphical representation of quality metrics between WFA & WFAR; a)

Purity, b) F-measure, c) Entropy, d) ADDC, e) DBI, and f) DI

 136

As shown in Table 5.1, the WFAR algorithm generates the highest average purity in

all iterations compared to the WFA algorithm. The best purity value is 0.9467 which

is generated by WFAR in iteration 1, while WFA generates 0.7500 in the same

iteration. In addition, the overall standard deviation of the WFAR algorithm is

smaller than WFA in all iterations, which indicates it is more reliable and high in

robustness. From this result, it can be concluded that the document re-locating

algorithm has an impact on clustering. WFAR is better than WFA in producing pure

subsets of documents. Figure 5.4.a illustrates the result of purity in a graphical

representation of these methods. It shows that the purity curve of WFAR is higher

than the curve of WFA in all iterations.

Table 5.1 illustrates the average F-measure results of two different algorithms, WFA

and WFAR. As shown in Table 5.1, the WFAR algorithm generates a higher average

F-measure in all iterations. Furthermore, it is observed that the best F-measure

produced is 0.6589 in iterations 10 and 20 by WFAR, while WFA generates the best

F-measure value is 0.5693 in iteration 1. The previous observations mean that the

document re-locating algorithm affects the result of F-measure in WFA, despite the

overall standard deviation of WFA is smaller than WFAR in all iterations, which

indicates it is more reliable and high in robustness. Figure 5.4.b demonstrates the

result of average F-measure in a pictorial representation of WFA and WFAR. It

shows the F-measure curve of WFAR increases when the iteration increases, and

rises in all iterations compared to the curve of WFA.

The average Entropy of thirty executions for each WFA and WFAR algorithm which

includes the best, worst Entropy and standard deviation is reported in Table 5.1. As

 137

shown in the table, the average Entropy of WFAR is smaller than WFA in all

iterations. Additionally, the best Entropy value is 0.2806 which is generated by

WFAR in iteration 1, while WFA generates 0.8906, better Entropy in the same

iteration. Furthermore, the standard deviation of WFAR is smaller than WFA only in

iteration 5, while WFA is the smaller in the remaining iterations that means the

solutions are nearer to the average Entropy and contains less abnormal solutions.

This result indicates that WFAR is best for producing more pure clusters. Figure 5.4.c

shows the result of average Entropy in a graphical representation of WFA and

WFAR.

Table 5.2 includes the average ADDC of thirty executions for each WFA and WFAR

algorithm and also includes the best ADDC, worst ADDC and standard deviation. As

shown in Table 5.2, the average ADDC that is produced by WFA is smaller than

WFAR in all iterations. The best ADDC value is 0.6152 which is generated by WFA

in iteration 20, while WFAR generates 1.1569 in the same iteration. Based on

previous observations, WFA outperforms WFAR, regardless of the overall standard

deviation of WFAR that is smaller than WFA, which means the solutions that are

generated by WFAR are more robust and do not contain abnormal solutions. The

ADDC result of WFA and WFAR is illustrated in a graphical representation in Figure

5.4.d. It shows that the ADDC of WFA has the smallest value 0.6152 in iteration 20,

while WFAR is 1.1569 in the same iteration. From this result, it can be concluded

that the document re-locating algorithm does not affect the ADDC result in WFA.

Table 5.2 includes the average DBI of thirty executions for each WFA and WFAR

algorithm and also includes the best, worst DBI and standard deviation. As shown in

 138

Table 5.2, WFA generates the smallest average DBI in all iterations compared

against WFAR. In spite of the standard deviation of WFAR that is the smallest in

most runs, this shows that the solutions are more reliable. The best DBI values are

1.2832 and 1.2971 that are generated by WFA in iterations 1 and 20, while WFAR

generates 1.5744 in iteration 20. From previous results, it can be concluded that the

document re-locating algorithm does not make any changes on the DBI value on

WFA. Figure 5.4.e illustrates the result of the average DBI in a graphical

representation between WFA and WFAR.

Table 5.2 reports the average DI of thirty executions for each WFA and WFAR

algorithm and also includes the best, worst DI and standard deviation. DI measures

the ratio of the smallest distance between observations not in same cluster to the

largest intra cluster distance. DI has a value between 0 and ∞ and the largest value of

DI means a more compact clustering solution. Examining Table 5.2, it is clear that

WFA generated the largest average DI in most iterations (refer to iterations 1, 2, 5

and 10), while WFAR produced the largest average DI on the last iteration 20. In

addition, it is noticed that the value of standard deviation in WFA is the smallest in

some iterations (refer to iterations 1, 2 and 10) and larger in the remaining iterations

(5 and 20). The best DI value is 0.9602 that is generated by WFA in iteration 1,

while WFAR generates 0.9415 in the same iteration. These results demonstrate that

the document re-locating mechanism enhances the DI metrics in WFA only in the

last iteration 20. Figure 5.4.f illustrates the result of the average DI in a graphical

representation. It presents that the curve of DI is highest in WFA than WFAR, but it

falls only in iteration 20 where WFAR increases in this iteration.

 139

For an easy comparison between the number of clusters from WFA and WFAR, in

Table 5.3, it reports the average number of clusters produced by the WFA and WFAR

algorithms. As seen in Table 5.3, the number of clusters of the two algorithms is

equal. It can be concluded that document re-locating mechanism did not affect the

number of produced clusters in WFA.

Table 5.3

Average number of clusters: WFA vs. WFAR.

Iterations
Number of clusters of algorithms

WFA WFAR

1 19.30 ≈ 19 19.80 ≈ 20

2 18.73 ≈19 19.06 ≈ 19

5 17.57 ≈ 18 18.03 ≈ 18

10 17.80 ≈ 18 17.63 ≈ 18

20 14.80 ≈ 15 14.36 ≈ 14

Table 5.4 presents the summary of comparison between WFA and WFAR.

Table 5.4

Summary of quality performance: WFA vs. WFAR.

Performance

Metrics

Algorithms

WFA WFAR

Purity

F-measure

Entropy

ADDC

DBI

DI

Number of clusters

 140

As depicted in Table 5.4, the document re-locating mechanism improves the results

of external metrics: Purity, F-measure and Entropy. However, the mechanism does

not affect the number of obtained clusters which are still large and need to be

improved.

5.3.2 Comparison between WFAR and Other Methods

From the previous sections, it is learned that the results of external metrics of the

Weight-based Firefly Algorithm with Relocate (WFAR) is better than the WFA

algorithm. This section includes the comparison between WFAR and the selected

state-of-the-art methods: Particle Swarm Optimization (PSO) (Cui, Potok, &

Palathingal, 2005), K-means (Jain, 2010), Hybrid Firefly algorithm with K-means

(FAK-means) (Tang, Fong, Yang, & Deb, 2012), and Bisect K-means (Murugesan &

Zhang, 2011a, 2011b). The purpose of this comparison is to investigate the

effectiveness of WFAR in producing quality clusters, even though it has not been

provided with the same support (i.e. number of clusters) as the other methods.

Table 5.5 includes the results of external metrics, while Table 5.6 includes the results

on internal and relative metrics. Figure 5.3 includes a graphical representation of

quality metrics obtained by WFAR and the state-of-the-art methods. All algorithms

are implemented in the same environment and are executed thirty times on different

iterations, and the average values for each metric are calculated.

As shown in Table 5.5, the WFAR algorithm generates the highest average Purity in

all iterations compared against PSO, K-means, FAK-means, and Bisect K-means,

while PSO produced the smallest purity.

 141

Table 5.5

External quality metrics: WFAR vs. PSO vs. K-means vs. FAK-means vs. Bisect K-

means.

External

Metrics
Algorithms

Iterations

1 2 5 10 20

Purity

WFAR
0.8300

(0.0255)

0.8258

(0.0095)

0.8177

(0.0058)

0.8182

(0.0036)

0.7868

(0.0129)

PSO
0.3823

(0.0432)

0.3861

(0.0643)

0.3726

(0.0433)

0.3731

(0.0403)

0.3772

(0.0516)

K-means
0.3468

(0.0242)

0.3451

(0.0226)

0.3531

(0.0414)

0.3561

(0.0575)

0.3459

(0.0258)

FAK-means
0.3658

(0.0133)

0.3701

(0.0150)

0.3738

(0.0138)

0.3719

(0.0147)

0.3731

(0.0132)

Bisect K-means
0.3759

(0.0300)

0.3806

(0.0397)

0.3872

(0.0446)

0.3939

(0.0601)

0.4031

(0.0818)

External

Metrics
Algorithms

Iterations

1 2 5 10 20

F-measure

WFAR
0.5199

(0.0399)

0.5145

(0.0126)

0.5194

(0.0174)

0.5295

(0.0365)

0.6186

(0.0426)

PSO
0.4947

(0.0188)

0.5062

(0.0414)

0.4907

(0.0118)

0.4951

(0.0110)

0.4986

(0.0237)

K-means
0.4910

(0.0213)

0.4935

(0.0138)

0.4975

(0.0196)

0.4999

(0.0316)

0.4954

(0.0081)

FAK-means
0.3656

(0.0134)

0.3692

(0.0140)

0.3747

(0.0155)

0.3723

(0.0143)

0.3737

(0.0132)

Bisect K-means
0.4698

(0.0297)

0.4757

(0.0284)

0.4775

(0.0336)

0.4785

(0.0567)

0.4908

(0.0644)

External

Metrics
Algorithms

Iterations

1 2 5 10 20

Entropy

WFAR
0.6676

(0.0830)

0.6921

(0.0345)

0.7282

(0.0135)

0.7315

(0.0206)

0.7244

(0.0328)

PSO
1.5350

(0.0393)

1.5230

(0.0858)

1.5403

(0.0513)

1.5309

(0.0619)

1.5276

(0.0691)

K-means
1.5782

(0.013)

1.5794

(0.0100)

1.5722

(0.0341)

1.5636

(0.072)

1.5755

(0.0215)

FAK-means
1.5782

(0.0042)

1.5770

(0.0059)

1.5751

(0.0054)

1.5750

(0.0067)

1.5754

(0.0056)

Bisect K-means
1.5620

(0.0223)

1.5571

(0.0285)

1.5466

(0.0914)

1.5325

(0.0841)

1.5150

(0.1193)

Note: the best value is highlighted in ‘bold’, standard deviation in ().

 142

Table 5.6

Internal and Relative quality metrics: WFAR vs. PSO vs. K-means vs. FAK-means vs.

Bisect K-means.

Internal

&

Relative

Metrics

Algorithms

Iterations

1 2 5 10 20

ADDC

WFAR
1.4282

(0.233)

1.4228

(0.0156)

1.4171

(0.0130)

1.4085

(0.0408)

1.2222

(0.0744)

PSO
1.7630

(0.2124)

1.7775

(0.2738)

1.8053

(0.2751)

1.9379

(0.1862)

1.8736

(0.0430)

K-means
0.7547

(0.2978)

0.7041

(0.2861)

0.6783

(0.2396)

0.6367

(0.2511)

0.7056

(0.3190)

FAK-means
1.4434

(0.0010)

1.4436

(0.0007)

1.4436

(0.0009)

1.4432

(0.0009)

1.4436

(0.0007)

Bisect K-means
1.3238

(0.1874)

1.2545

(0.2808)

1.2633

(0.2378)

1.3332

(0.2318)

1.3494

(0.1817)

External

&

Relative

Metrics

Algorithms

Iterations

1 2 5 10 20

DBI

WFAR
1.6585

(0.0117)

1.6562

(0.0092)

1.6514

(0.0128)

1.6508

(0.0153)

1.6176

(0.0427)

PSO
1.7069

(0.0261)

1.6100

(0.2168)

1.5559

(0.2303)

1.6092

(0.1732)

1.6472

(0.2269)

K-means
2.8159

(3.5419)

2.3565

(3.1847)

2.4741

(3.1267)

1.9649

(3.1855)

1.9090

(2.5369)

FAK-means
14.2277

(0.2063)

14.2834

(0.2025)

14.2549

(0.3551)

14.2637

(0.2862)

14.2158

(0.2801)

Bisect K-means
8.1636

(3.0869)

7.3146

(3.0355)

6.9485

(3.0605)

7.8287

(2.8864)

7.7189

(2.7763)

External

&

Relative

Metrics

Algorithms

Iterations

1 2 5 10 20

DI

WFAR
0.9017

(0.0290)

0.9167

(0.0215)

0.9064

(0.0170)

0.8946

(0.0118)

0.9156

(0.0202)

PSO
1.0162

(0.0950)

1.0331

(0.0574)

1.0357

(0.0650)

1.0119

(0.0583)

0.9908

(0.0899)

K-means
2.3413

(2.3505)

2.9315

(2.4566)

2.9671

(2.5302)

3.7363

(2.3653)

3.4078

(2.4518)

FAK-means
0.1380

(0.0026)

0.1372

(0.0027)

0.1377

(0.0039)

0.1374

(0.0035)

0.1382

(0.0035)

Bisect K-means
0.2393

(0.1483)

0.2876

(0.2299)

0.2998

(0.1887)

0.2715

(0.2178)

0.2698

(0.2008)

Note: the best value is highlighted in ‘bold’, standard deviation in ().

 143

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.5. Graphical representation of quality metrics of WFAR vs. PSO vs. K-

means vs. FAK-means vs. Bisect K-means; a) Purity, b) F-measure, c) Entropy, d)

ADDC, e) DBI, and f) DI.

 144

Furthermore, it is noticed that Bisect K-means has a higher purity than K-means,

FAK-means, and PSO. In addition, the overall standard deviation of the WFAR

algorithm is smaller than others in most iterations (refer to iterations 2, 5, 10 and 20),

which indicates it is more reliable and high in robustness. From these results, it can

be concluded that the document re-locating algorithm highly affect the result of

performance (purity) in WFAR which is the best than other methods. Figure 5.5.a

shows the purity results of five methods: namely WFAR, PSO, K-means, FAK-

means, and Bisect K-means, in graphical representation.

For the F-measure metrics as can be seen in Table 5.5, WFAR has a higher F-

measure result compared to the other methods, while FAK-means has a smaller F-

measure result compared to the other methods. For the overall standard deviation, the

WFAR algorithm’s value is smaller only than Bisect K-means in iterations 2, 5, 10

and 20. It can be concluded that the document re-locating algorithm highly affects

the result of performance (F-measure) in WFAR, which is the best than other

methods. Figure 5.5.b presents the F-measure result of five algorithms: WFAR, PSO,

K-means, FAK-means, and Bisect K-means.

Table 5.5 reports the Entropy result of five methods: WFAR, PSO, K-means, FAK-

means, and Bisect K-means. It is observed that the Entropy of WFAR is smaller than

FAK-means, K-means, Bisect K-means, and PSO. The best Entropy values are

0.6676 and 0.6921 that are generated by WFAR in iterations 1 and 2. On the other

hand, Bisect K-means is the best method after the proposed method which produced

1.5150 in iteration 20 that it is a smaller Entropy value compared than FAK-means,

K-means, and PSO. Furthermore, the standard deviation of WFAR is smaller than

 145

PSO, K-means, and Bisect K-means only in iterations 5 and 10 that means the

solutions are more nearer to the average Entropy and contains less abnormal

solutions. This result indicates that WFAR is best for producing more pure clusters.

Figure 5.5.c shows the Entropy result in a graphical representation of five methods:

WFAR, PSO, K-means, FAK-means, and Bisect K-means.

The ADDC values of the five techniques, WFAR, PSO, K-means, FAK-means, and

Bisect K-means, are reported in Table 5.6 and presented in a graphical representation

in Figure 5.5.d. The plotted graph shows that the curve of WFAR is smaller than

FAK-means and PSO in all iterations and is better than Bisect K-means only in

iteration 20. Whereas, K-means generates a smaller average ADDC value in all

iterations. The standard deviation of WFAR is smaller than PSO, K-means, and

Bisect K-means in most iterations (refer to iterations 2, 5 and 10), while FAK-means

has a smaller standard deviation which is better than WFAR in generating abnormal

solutions.

For the DBI metric, Table 5.6 reports the result of the five methods: WFAR, PSO, K-

means, FAK-means, and Bisect K-means, and Figure 5.5.e presents a graphical

representation of these methods. It shows that the DBI curve of the proposed WFAR

algorithm is lower than K-means, Bisect K-means, and FAK-means in all iterations,

excluding PSO, which is better than WFAR in generating a smaller DBI value in

most iteration (refer to iterations 2, 5 and 10). In addition, it is noticed that the value

of standard deviation in WFAR is smaller than other comparative methods. This

result demonstrates that the document re-locating mechanism affects the DBI metrics

in WFAR.

 146

In Table 5.6 and Figure 5.5.f, the DI results of five methods are reported: WFAR,

PSO, K-means, FAK-means, and Bisect K-means. The result of DI in K-means is

better than other methods, followed by PSO and the proposed method, WFAR which

is better than FAK-means and Bisect K-means in producing a higher DI.

Furthermore, the standard deviation of WFAR is smaller than PSO, K-means, and

Bisect K-means, while FAK-means’s value is smaller than the proposed WFAR. This

result indicates that the documents re-locating mechanism does not affect the DI

metrics in WFAR.

Table 5.7 displays the average number of clusters that is automatically generated by

WFAR and without any prior knowledge about the dataset. As can be seen in Table

5.7, the number of clusters obtained by WFAR is higher than the number of clusters

in other techniques. This result indicates that the document re-locating algorithm

does not affect the number of clusters.

Table 5.7

Average number of clusters: WFAR vs. PSO vs. K-means vs. FA K-means vs. Bisect

K-means.

Iterations

Number of clusters of algorithms

WFAR PSO K-means
FAK-

means

Bisect

K-means

1 19.80 ≈ 20 3 3 3 3

2 19.06 ≈ 19 3 3 3 3

5 18.03 ≈ 18 3 3 3 3

10 17.63 ≈ 18 3 3 3 3

20 14.36 ≈ 14 3 3 3 3

 147

The previous results indicate that WFAR generates the best quality results in external

performance metrics, Purity, F-measure, and Entropy, and relative metric, DBI.

Table 5.8 illustrates the results of different quality performance metrics in five

methods.

Table 5.8

Summary of quality performance: WFAR vs. PSO vs. K-means vs. FAK-means vs.

Bisect K-means.

Algorithms External Metrics Internal & Relative Metrics

Purity F-measure Entropy ADDC DBI DI

WFAR

PSO

K-means

FAK-means

Bisect K-means

In the next chapters, this study will try to enhance the quality performance and the

number of produced clusters of WFAR by integrating it with merging algorithm.

5.4 Summary

This chapter presents a new mechanism to change the location of documents from

existing clusters to the newly created cluster. The proposed document re-locating

mechanism is introduced into the Weight-based Firefly Algorithm (WFA), presented

in Chapter Four, and is termed as WFAR. Two experiments are conducted to study

the effect of WFAR on the obtained clustering. First, is the experiment between WFA

and WFAR, while the second experiment compares between WFAR and the state-of-

 148

the-art methods: PSO, K-means, FAK-means, and Bisect K-means. These

comparisons are undertaken using external performance metrics, Purity, F-measure

and Entropy, and internal and relative metrics, ADDC, DBI and DI. The results

indicate that WFAR produced better external metrics (Purity, F-measure and

Entropy) compared to WFA. Furthermore, WFAR also produces better results in

external performance metrics: Purity, F-measure and Entropy, and also in relative

metrics: DBI when compared against the state-of-the-art methods; PSO, K-means,

FAK-means, and Bisect K-means.

 149

CHAPTER SIX

CLUSTER MERGING

6.1 Introduction

This chapter proposes a cluster merging algorithm for text clustering. The algorithm

is integrated in WFAR (as in Chapter Five) and is known as WFARM. The use of the

merging algorithm is to minimize the number of clusters produced by WFAR which

is not near the optimal number of clusters. In the undertaken experiments on the

20Newsgroups dataset, a comparison has been made between WFARM and WFAR.

The proposed WFARM works automatically without any prior knowledge or any

information about the datasets. Figure 6.1 displays the process in WFARM which

includes three phases: clustering using Weight-based Firefly Algorithm (WFA) as in

Chapter Four, documents re-locating as mentioned theoretically and experimentally

in Chapter Five, and the last phase which is cluster merging.

Figure 6.1. Process in WFARM

Merging

Re-locating

Clustering

using WFA

Cluster Merging Algorithm

Produced Clusters

Identification of Center

Identification of Center

Construction Clusters

Document Re-locating Algorithm

 150

6.2 Cluster Merging Algorithm

The merging algorithm can be introduced once clusters are constructed. It is an

extension of the un-weighted pair group method with arithmetic mean (UPGMA)

(Murugesan & Zhang, 2011a, 2011b) to produce less numbers of cluster. The cluster

merging algorithm consists of two steps, merge clusters and refine merged clusters,

as shown in Figure 6.2.

Figure 6.2. Process of cluster merging Algorithm (eUPGMA)

The merge clusters step combines similar clusters, while the refine merged clusters

step includes three sub steps: select pure clusters, identify the centers of pure

clusters, and relocate documents from non-pure clusters.

6.2.1 Merge Clusters

The process of merging similar clusters is illustrated in the following steps:

Step 1: Check to merge the first cluster in the output clusters with the remaining

clusters in the output clusters, if no merge, eliminate the first cluster from the

output clusters (not included in the merge process), then the second cluster

Clusters Merging

Select Pure Clusters

Identify Centers for Pure Clusters

Merge Clusters

Refine Merged

Clusters

Relocate Documents from Non-Pure Clusters

 151

becomes the first cluster. The process of Steps 2-11 continues until the last

cluster becomes the first cluster, so the merge process is stopped.

Step 2: Suppose that C1 and C2 are two clusters that want to merge, and suppose that

P1 and P2 are the numbers of documents in two clusters respectively. Suppose

that CSim is the Cosine similarity matrix between two clusters C1 and C2.

The documents in C1 are represented by the row and the documents in C2 are

represented by the column. The value of the CSim matrix is equal to 1 if the

document in C1 is similar to the document in C2, else it equals 0. The

similarity between two documents is based on threshold.

Step 3: If (the number of documents in cluster C1 >= 2 and the number of documents

in cluster C2 >= 2) OR If (the number of documents in cluster C1 >= 3 and the

number of documents in cluster C2 == 1) OR If (the number of documents in

cluster C2 >= 3 and the number of documents in cluster C1 == 1) then

Step 4: Calculated the average similarity between two clusters as in Equation 6.1.

1

𝑃1
∑ ∑

𝐶𝑆𝑖𝑚 (𝐶𝑖, 𝐶𝑗)

𝑃2

𝑃2

𝑗=1

𝑃1

𝑖=1

 (6.1)

where, P1is the number of document in the first cluster, P2is the number of document

in the second cluster, 𝐶𝑖 is the first cluster, 𝐶𝑗is the second cluster.

Step 5: Calculate the merge threshold as in Equation 6.2 below.

MergeThreshold (𝑀𝑇) = 𝑓𝑙𝑜𝑜𝑟 (
𝑟𝑜𝑢𝑛𝑑(

𝑃1∗𝑃2
2

)−1

𝑃1∗𝑃2
∗ 10) /10

(6.2)

Step 6: If Equation 6.1 passed the merge threshold in Equation 6.2 as shown in

Equation 6.3, then, combine two clusters C1 and C2 into one cluster.

 152

1

𝑃1
∑ ∑

𝐶𝑆𝑖𝑚 (𝐶𝑖, 𝐶𝑗)

𝑃2

𝑃2

𝑗=1

𝑃1

𝑖=1

>= 𝑀𝑒𝑟𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑀𝑇) (6.3)

Step 7: If (the number of documents in cluster C1 >= 2 and the number of documents

in cluster C2 >= 1) OR If (the number of documents in cluster C2 >= 2 and the

number of documents in cluster C1 >= 1)

Step 8: Combine C1 and C2, if Equation 6.3 is true using Equation 6.4 to obtain

merge threshold.

MergeThreshold (𝑀𝑇) =
𝑟𝑜𝑢𝑛𝑑(

𝑃1∗𝑃2
2

)

𝑃1∗𝑃2
 (6.4)

Step 9: If (the number of documents in cluster C1 >= 1 and the number of documents

in cluster C2 >= 1)

Step 10: Combine C1 and C2, if CSim (C1, C2) equals to 1.

6.2.2 Refine Merged Clusters

Once the clusters are merged, there is a need to ensure that the obtained clusters

contain pure members. This is implemented by checking the clusters’ size by

identifying the threshold, and in this research it is set to (50, n/20). This threshold is

based on the criterion used by Tan, Ting, and Teng (2011a), and the idea of the

selected clusters is adopted from Picarougne, Azzag, Venturini, and Guinot (2007).

The pseudo code of selecting pure clusters is illustrated in the following in Figure

6.3.

Once the pure clusters are identified, a new center for the selected pure clusters

needs to be defined. The center is obtained by the sum of all TFIDF values of

 153

documents in the specific cluster and divided by the number of documents in the

cluster. The pseudo code for identifying centers is illustrated in Figure 6.4.

Selecting pure clusters

Step 1: Set selected threshold equal min (50, n/20).

Step 2: For i= 1 to number of clusters

Step 3: If length (Ci) >= selected threshold

Step 4: Save Ci in selected clusters.

Step 5: Else Save Ci in non-selected clusters.

Step 6: End.

Figure 6.3. Pseudo code for selecting pure clusters

Identifying centers for pure clusters

Step 1: For i= 1 to k (number of selected clusters)

Step 2: Calculate the center for each cluster as shown in equation 6.5.

𝐶𝑒𝑛𝑡𝑒𝑟(𝐶𝑘) =
∑ 𝑇𝐹𝐼𝐷𝐹𝐷𝑗

𝑁𝐶𝑘
𝑗=1

𝑁𝐶𝑘
 (6.5)

Step 3: End.

Figure 6.4. Pseudo code of identifying centers for pure clusters

Later, all documents in the non-pure clusters need to be relocated into the pure

clusters. This is done by measuring the distance between the documents and the

newly identified centers. Figure 6.5 illustrates the proposed pseudo code of

relocating non-pure clusters.

 154

Relocating non-pure clusters

Step 1: For i= 1 to (number of documents in non-pure clusters)

Step 2: Find minimum distance between document Di and center of C1 using Euation 6.6 as

shown below.

𝑚𝑖𝑛𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐷𝑖, 𝐶𝑒𝑛𝑡𝑒𝑟𝐶1
) = ∑(𝐷𝑖𝑗 − 𝐶𝑒𝑛𝑡𝑒𝑟𝐶1

)
2

𝑚

𝑗=1

 (6.6)

Step 3: Assign Di=1

Step 4: For k= 2 to (number of selected pure clusters)

Step 5: Find minimum distance between document Di and center of Ck using Equation 6.7 as

shown below.

𝑚𝑖𝑛𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2(𝐷𝑖, 𝐶𝑒𝑛𝑡𝑒𝑟𝐶𝑘
) = ∑(𝐷𝑖𝑗 − 𝐶𝑒𝑛𝑡𝑒𝑟𝐶𝑘

)
2

𝑚

𝑗=1

 (6.7)

Step 6: If (mindistance >= mindistance2)

Step 7: Assign Di=k

Step 8: mindistance = mindistance2

Step 9: End For

Step 10: Assign Di to Ck

Step 11: End For

Figure 6.5. Pseudo code of relocating non-pure clusters

The following example (based on the example presented in Chapter Five)

demonstrates the proposed cluster merging algorithm. The produced clusters by

WFAR are as follows.

Cluster1 [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

Cluster2 [21, 22, 23, 24, 25, 26, 27, 29, 2, 30]

Cluster3 [28]

 155

 Cluster 2 (10 documents)

Result of

average

similarity D21 D22 D23 D24 D25 D26 D27 D29 D2 D30
C

lu
st

er
 1

 (
1
9
 d

o
cu

m
en

ts
)

D1 0 0 0 0 0 0 0 0 1 0 = 1/10

D3 0 0 0 1 1 1 0 1 1 1 = 6/10

D4 0 0 0 0 0 0 0 0 1 0 = 1/10

D5 0 0 0 0 0 0 0 0 1 0 = 1/10

D6 0 0 0 0 1 0 0 0 1 0 = 2/10

D7 0 0 0 0 0 0 0 0 1 0 = 1/10

D8 1 0 0 0 1 0 0 0 1 1 = 4/10

D9 1 0 0 0 1 0 0 0 1 1 = 4/10

D10 0 0 0 0 0 0 0 0 1 1 = 2/10

D11 0 0 0 0 0 0 0 0 0 0 = 0

D12 0 0 0 0 0 0 0 0 0 0 = 0

D13 0 0 0 0 1 0 0 0 1 0 = 2/10

D14 0 1 0 0 0 0 0 0 1 0 = 2/10

D15 0 0 0 0 0 0 0 0 0 1 = 1/10

D16 0 0 0 0 0 0 0 0 0 1 = 1/10

D17 0 0 0 0 1 0 0 0 1 1 = 3/10

D18 0 0 0 0 0 0 0 0 1 0 = 1/10

D19 0 0 0 0 0 0 0 0 1 0 = 1/10

D20 0 0 0 0 0 0 0 0 1 0 = 1/10

 = 34/10

= 3.4/19

 = 0.178

Figure 6.6. Cosine similarity matrix between cluster1 and cluster2

 156

Where, the number of documents in Cluster 1 is P1=19, the number of documents in

Cluster 2 is P2=10, the number of documents in Cluster 3 is P3=1, and the total

number of documents is 30. In the proposed WFARM, the cosine similarity between

Cluster 1 and Cluster 2 (CSim) is checked as illustrated in Figure 6.6.

The similarity between document D1 in Cluster 1 and D2 in Cluster 2 exceeds the

similarity threshold; hence, the cosine similarity matrix (CSim matrix) is set to 1.

The average similarity is calculated using Equation 6.1, as shown in Figure 6.6,

where in this example, it is equal to 0.178.

The merge threshold value is calculated using Equation 6.2, and it is noted to be 0.4.

In detail, the calculation is as follows.

Merge Threshold = Floor [(((round ((19*10)/2)) -1) / 190) *10)] /10

 = Floor [(((95-1)/190)* 10] /10

 = Floor [0.4947 *10] /10

 = 4/10 = 0.4

The value of average similarity, which is 0.178, is smaller than the merge threshold

value of 0.4. Thus, the two clusters, Cluster 1 and Cluster 2, cannot be merged. The

same process is repeated for Cluster 3. Figure 6.7 presents the produced clusters at

the end of the merging process.

 157

Figure 6.7. Results of merging clusters for 20Newsgroups dataset

The process of selecting pure clusters starts after the merging cluster has completed.

The produced clusters from the merging clusters step are Cluster 1, Cluster 2 and

Cluster 3. Where, the number of documents in each cluster is P1=19, P2=10, P3=1.

The selected threshold is (50, 30/20) which equal to (50, 1.5), and this means the

cluster which contains documents more than 1.5 will be identified as the selected

cluster, and the ones less than 1.5 will be known as non-selected cluster. The

selected pure clusters are Cluster 1 and Cluster 2, while, non-pure cluster is Cluster

3.

The third step is to identify the centers for the pure clusters. Figure 6.8 presents the

example of TFIDF of the documents in the first cluster, Cluster 1, and presents the

calculation of the center.

Cluster1

P1=19

Cluster2

P2=10

Cluster3

P3=1

Cluster1

P1=19

Cluster2

P2=10

Cluster3

P3=1

Check

to

merge

Check

to

merge

Cluster1

P1=19

Cluster2

P2=10

Cluster3

P3=1

No merge No merge

 158

Figure 6.8. An example of TFIDF of documents in Cluster1 and center calculation

Once the centers are identified, the process of the relocating mechanism of non-pure

clusters can be performed. The non-pure cluster is Cluster 3 which includes only one

document, D28. In this example, D28 is assigned to Cluster 2. Figure 6.9 presents an

example of TFIDF of D28 in Cluster 3, and Figure 6.10 presents an example of the

centers of selected pure clusters.

Figure 6.9. An example of TFIDF of document 28 in Cluster 3

Figure 6.10. An example of the centers of selected pure clusters

 Term1 Term2 ... Termm=549

D1 0.5 0.1 ... 0.7

D2 0.2 0.2 ... 0.6

.

.

.

.

.

.

 .

.

D19 0.5 0.3 ... 0.4

Center 𝑆𝑢𝑚(𝐷1: 𝐷19)

19

𝑆𝑢𝑚(𝐷1: 𝐷19)

19

... 𝑆𝑢𝑚(𝐷1: 𝐷19)

19

 Term1 Term2 Term3 Term4

D28 0.2 0.3 0.4 0.7

 Term1 Term2 Term2 Term4

Center Cluster1 0.5 0.3 0.2 0.6

Center Cluster2 0.3 0.2 0.4 0.6

 159

This is achieved by calculating the distance between document D28 and the center of

Cluster 1 and Cluster 2. The calculation process is illustrated in Figure 6.11. As can

be seen in Figure 6.11, the minimum distance is (0.0300) between document D28

and the center of Cluster 2, so D28 is relocated to Cluster 2.

D28 0.2 0.3 0.4 0.7

Center Cluster 1 0.5 0.3 0.2 0.6

Mindistance (D1, Center Cluster 1) 0.3 0.0 0.2 0.1

Mindistance (D1, Center Cluster 1)
2

0.09 0.0 0.04 0.01

Mindistance (D1, Center Cluster 1)
2
 0.1400

D28 0.2 0.3 0.4 0.7

Center Cluster 2 0.3 0.2 0.4 0.6

Mindistance (D1, Center Cluster 2) 0.1 0.1 0.0 0.1

Mindistance (D1, Center Cluster 2)
2

0.01 0.01 0.0 0.01

Mindistance (D1, Center Cluster 2)
2
 0.0300

Figure 6.11. Calculation of minimum distance between centers of pure clusters and

members of non-pure cluster

Finally, the following clusters are obtained:

Cluster1 [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

Cluster2 [21, 22, 23, 24, 25, 26, 27, 29, 2, 30, 28]

6.3 Evaluation

The evaluation of WFARM clustering is performed in three parts: comparison

between WFAR and WFARM, comparison between WFARM against state-of-the-art

methods (static methods), and comparison between WFARM and state-of-the- art

methods (dynamic methods).

 160

6.3.1 Comparison between WFARM and WFAR

The comparison between WFARM and WFAR consists of three parts of evaluation:

number of clusters, performance metrics, and paired samples T-test.

6.3.1.1 Number of Clusters between WFARM and WFAR

In Table 6.1, it reports the average number of clusters produced by the WFAR and

WFARM algorithms. As seen in the table, the number of clusters obtained by WFARM

in iteration 20 equals the cluster number of the 20Newsgroups dataset (i.e. 3). It can

be concluded that the cluster merging highly affects the number of produced clusters

in WFAR. Figure 6.12 shows the number of produced clusters in the two algorithms.

Table 6.1

Average number of clusters of WFAR & WFARM.

Iterations
Number of clusters of algorithms

WFAR WFARM

1 19.80 ≈ 20 3.9 ≈ 4

2 19.06 ≈ 19 3.93 ≈ 4

5 18.03 ≈ 18 4.63 ≈ 5

10 17.63 ≈ 18 4.7 ≈ 5

20 14.36 ≈ 14 3

 Note: the best value is highlighted in ‘bold’

 161

Figure 6.12. Number of produced clusters by WFAR and WFARM

6.3.1.2 Performance Metrics between WFARM and WFAR

The produced clusters by WFARM are evaluated using the Purity, F-measure,

Entropy, ADDC, DBI and DI metrics. Tables 6.2 and Table 6.3 include the average,

best, worst and standard deviation for the metrics. Additionally, Figure 6.13 presents

the graphical representation of metrics between WFARM and WFAR.

As shown in Table 6.2, the WFARM algorithm generates the highest average purity in

the last iteration (refer to iteration 20) compared to the WFAR algorithm. The best

purity value is 0.7948 that is generated by WFARM in iteration 20, while WFAR

generates 0.7868 in the same iteration. In addition, the overall standard deviation of

the WFARM algorithm in iteration 20 is nearly similar to WFAR, which indicates the

solution that is generated by WFARM is more reliable and high in robustness.

 162

Table 6.2

External quality metrics of clustering and standard deviation: WFAR vs. WFARM.

Iterations

Algorithms

Purity Metric

Average

Purity
Best Purity

Worst

Purity

Standard

Deviation

1
WFAR 0.8300 0.9467 0.7967 0.0255

WFARM 0.7758 0.9133 0.7233 0.0319

2
WFAR 0.8258 0.8700 0.8100 0.0095

WFARM 0.7547 0.7733 0.7300 0.0080

5
WFAR 0.8177 0.8233 0.7900 0.0058

WFARM 0.7881 0.8100 0.7300 0.0165

10
WFAR 0.8182 0.8267 0.8100 0.0036

WFARM 0.7898 0.8067 0.7300 0.0134

20
WFAR 0.7868 0.8100 0.7433 0.0129

WFARM 0.7948 0.8100 0.7800 0.0132

Iterations

Algorithms

F-measure Metric

Average

F-measure

Best

F-measure

Worst

F-measure

Standard

Deviation

1
WFAR 0.5199 0.6625 0.4930 0.0339

WFARM 0.7052 0.9110 0.6474 0.0606

2
WFAR 0.5145 0.5423 0.4983 0.0126

WFARM 0.6765 0.7681 0.6545 0.0182

5
WFAR 0.5194 0.5657 0.5080 0.0174

WFARM 0.6676 0.8143 0.6473 0.0463

10
WFAR 0.5295 0.6589 0.5034 0.0365

WFARM 0.6575 0.8116 0.6473 0.0300

20
WFAR 0.6186 0.6589 0.5551 0.0426

WFARM 0.7997 0.8143 0.7842 0.0129

Iterations

Algorithms

Entropy Metric

Average

Entropy

Best

Entropy

Worst

Entropy

Standard

Deviation

1
WFAR 0.6676 0.2806 0.7250 0.0830

WFARM 0.8089 0.4412 0.8916 0.0775

2
WFAR 0.6921 0.5299 0.7396 0.0345

WFARM 0.8584 0.7986 0.9063 0.0178

5
WFAR 0.7282 0.7008 0.7453 0.0135

WFARM 0.8206 0.7642 0.8963 0.0246

10
WFAR 0.7315 0.6587 0.7453 0.0206

WFARM 0.8183 0.7472 0.8963 0.0232

20
WFAR 0.7244 0.6587 0.8381 0.0326

WFARM 0.7827 0.7472 0.8130 0.0267

Note: the best value is highlighted in ‘bold’

 163

Table 6.3

Internal and relative quality metrics of clustering and standard deviation: WFAR vs.

WFARM.

Iterations

Algorithms

ADDC Metric

Average

ADDC

Best

ADDC

Worst

ADDC

Standard

Deviation

1
WFAR 1.4282 1.3688 1.4557 0.0233

WFARM 1.4158 1.3914 1.4366 0.0138

2
WFAR 1.4228 1.3640 1.4557 0.0156

WFARM 1.4058 1.3980 1.4327 0.0067

5
WFAR 1.4171 1.3683 1.4413 0.0130

WFARM 1.4153 1.3918 1.4304 0.0083

10
WFAR 1.4085 1.1994 1.4488 0.0408

WFARM 1.4180 1.4005 1.4304 0.0072

20
WFAR 1.2222 1.1569 1.3949 0.0744

WFARM 1.4263 1.4229 1.4273 0.0018

Iterations

Algorithms

DBI Metric

Average

DBI

Best

DBI

Worst

DBI

Standard

Deviation

1
WFAR 1.6585 1.6313 1.6740 0.0117

WFARM 7.3303 6.6973 8.1854 0.6042

2
WFAR 1.6562 1.6386 1.6828 0.0092

WFARM 7.1238 6.6986 8.1854 0.2775

5
WFAR 1.6514 1.6386 1.7012 0.0128

WFARM 7.3802 6.8186 9.2199 0.6246

10
WFAR 1.6508 1.5967 1.7104 0.0153

WFARM 7.3298 6.8264 9.4829 0.4761

20
WFAR 1.6176 1.5744 1.7104 0.0427

WFARM 9.2225 9.0828 9.4829 0.1518

Iterations

Algorithms

DI Metric

Average

DI

Best

DI

Worst

DI

Standard

Deviation

1
WFAR 0.9017 0.9415 0.8522 0.0290

WFARM 0.2330 0.2489 0.2248 0.0070

2
WFAR 0.9167 0.9287 0.8522 0.0215

WFARM 0.2328 0.2341 0.2297 0.0011

5
WFAR 0.9064 0.9287 0.8808 0.0170

WFARM 0.2283 0.2339 0.2066 0.0071

10
WFAR 0.8946 0.9016 0.8495 0.0118

WFARM 0.2292 0.2339 0.1980 0.0060

20
WFAR 0.9156 0.9264 0.8495 0.0202

WFARM 0.2058 0.2087 0.1980 0.0044

Note: the best value is highlighted in ‘bold’.

 164

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.13. Graphical representation of quality metrics: WFAR vs. WFARM, (a) Purity, (b)

F-measure, (c) Entropy, (d) ADDC, (e) DBI, and (f) DI

 165

From these results, it can be concluded that the cluster merging algorithm highly

affects the result of performance (purity) in WFAR. Figure 6.13.a illustrates the result

of purity in a graphical representation of these two methods, WFARM and WFAR. It

shows that the purity curve of WFARM increases when the iteration increases, in

contrast with WFAR which decrease when the iteration increases.

Table 6.2 presents the average F-measure results of the two different methods,

WFARM and WFAR. As shown in Table 6.2, WFARM generates the highest average

F-measure in all iterations. Furthermore, it is observed that the best F-measure

produced is 0.7997 in iteration 20 by WFARM when the number of clusters equals 3,

while WFAR generates the best F-measure value of 0.6186 in iteration 20 when the

number of clusters equals 14.36. The previous observations mean that the cluster

merging algorithm highly affects the result of F-measure in WFAR. Moreover, the

overall standard deviation of WFARM is smaller than WFAR in the last two iterations

(refer to iterations 10 and 20), which indicates that the solution generated by WFARM

is highly reliable and high in robustness. Figure 6.13.b demonstrates the result of the

average F-measure in a pictorial representation of WFARM and WFAR. It shows the

F-measure curve of WFARM increases when the iteration increases, and rises in all

iterations as compared to the curve of WFAR.

In Table 6.2, it reports the average Entropy value, best Entropy value, worst Entropy

value and standard deviation of thirty executions for each WFARM and WFAR

method. As shown in the table, the average Entropy of WFAR is smaller than

WFARM in all iterations, where, the best average Entropy value is 0.7244 generated

by WFAR in iteration 20, while WFARM generates 0.7827 in the same iteration. This

 166

result indicates that WFAR is better than WFARM in Entropy value, despite the

number of produced clusters by WFARM which is near optimal clusters (3). The

standard deviation of WFARM is smaller than WFAR in iterations 1, 2 and 20, while

WFAR is smaller in the remaining iterations. This result means the solutions are

nearer to the average Entropy and contain less abnormal solutions. It indicates that

WFARM is best for producing more pure clusters. Figure 6.13.c shows the result of

the average Entropy in a graphical representation of WFARM and WFAR.

Table 6.3 includes the average ADDC of thirty executions for each WFARM and

WFAR algorithm, and also includes the best ADDC, worst ADDC and standard

deviation. As shown in Table 6.3, the average ADDC produced by WFARM is

smaller than WFAR in most iterations (refer to iterations 1, 2, and 5). The best

average ADDC value is 1.2222 generated by WFAR in iterations 20 with the number

of clusters of 14.36, while WFARM generates 1.4263 in the same iteration with the

number of clusters of 3. The overall standard deviation of WFARM is smaller than

WFAR in all iterations, which means the solutions generated by WFARM are more

robust and do not contain abnormal solutions. Based on previous observations,

WFARM outperforms WFAR in ADDC value. Figure 6.13.d shows the result of the

average ADDC in a graphical representation of WFARM and WFAR.

Table 6.3 presents the average DBI of thirty executions for each WFARM and WFAR

algorithm, and also includes the best, worst DBI and standard deviation. As shown in

table, WFAR generates a higher average DBI in all iterations compared to WFARM.

This result occurs because the number of clusters in WFARM is smaller than WFAR.

The standard deviation of WFAR is smaller in most runs. From previous results, it

 167

can be concluded that cluster merging algorithm makes changes on the DBI value on

WFAR. Figure 6.13.e shows the result of the average DBI in a graphical

representation of WFARM and WFAR.

Table 6.3 includes the average DI of thirty executions for each WFARM and WFAR

algorithm, and also includes the best, worst DI, and standard deviation. DI measures

the ratio of the smallest distance between observations not in the same cluster to the

largest intra cluster distance. The largest value of DI means a more compact

clustering solution. Examining Table 6.3, it is clear that WFAR generates the largest

average DI in all iterations, despite the value of standard deviation of WFARM is

smaller in all iterations. The DI metric is highly effective with the number of

clusters. As it can be seen, when the number of clusters in WFAR is 14.36 in iteration

20, the DI value is 0.9156 while the number of clusters in WFARM is 3 in the same

iteration with a DI value of 0.2058. These results demonstrate that the cluster

merging algorithm makes changes on the DI metrics in WFAR. Figure 6.13.f

illustrates the result of the average DI in a graphical representation of WFARM and

WFAR.

From previous discussion, it can be concluded that the cluster merging algorithm

enhances the external metrics, namely purity, F-measure and ADDC, in producing

clusters in WFAR, and also enhances the number of obtained clusters where it gets

near optimal cluster 3. Table 6.4 presents the summary of comparison between

WFARM and WFAR algorithms.

 168

Table 6.4

Quality performance of WFAR & WFARM algorithms.

Performance

Metrics

Algorithms

WFAR WFARM

Purity

F-measure

Entropy

ADDC

DBI

DI

Number of clusters

6.3.1.3 Paired Samples T-test between WFARM and WFAR

The statistical analysis of paired samples T-test is performed on the differences

between the pairs of WFARM and WFAR. The null hypotheses, H0, refers to no

difference between the mean result of the WFARM and WFAR algorithms, while the

alternative hypotheses, H1, means that there is a difference between the mean result

of the WFARM and WFAR algorithms.

H0: There is no difference between the mean of two algorithms.

H1: There is a difference between the mean of two algorithms.

Table 6.5 illustrates the p-value using the samples of purity, F-measure, Entropy,

ADDC, DBI and DI metrics of iteration 20 for WFARM and WFAR. As can be seen

in Table 6.5, the p-value between WFARM and WFAR is less than (0.05). This means

that the cluster merging algorithm has an effect on the evaluated metrics. Hence, the

null hypothesis is rejected and this concludes that there is sufficient evidence to

 169

accept the alternative hypotheses that there is a difference between the mean of the

WFARM and WFAR algorithms.

Table 6.5

The P-value between WFAR & WFARM algorithms.

Metrics P-value between WFARM & WFAR

Purity 0.02852000

F-measure 2.7299E-20

Entropy 9.16548E-9

ADDC 3.1431E-15

DBI 1.2419E-51

DI 2.1466E-46

6.3.2 Comparison between WFARM and Static Methods

In this section, a comparison is made between the WFARM algorithm and several

state-of-the-art methods; Particle Swarm Optimization (PSO) (Cui, Potok, &

Palathingal, 2005), K-means (Jain, 2010), Bisect K-means (Murugesan & Zhang,

2011a, 2011b), Hybrid Firefly algorithm with K-means (FAK-means) (Tang, Fong,

Yang, & Deb, 2012), and BatK-means (Tang, Fong, Yang, & Deb, 2012). The

comparison consists of three parts of evaluation: number of clusters, performance

metrics, and independent samples T-test.

6.3.2.1 Number of Clusters between WFARM and Static Methods

Table 6.6 displays the average number of clusters that has been automatically

produced by WFARM. As seen in Table 6.6, the number of clusters produced by

WFARM in iteration 20 is equal to the number of clusters in other algorithms.

 170

Table 6.6

Average number of clusters: WFARM vs. PSO vs. K-means vs. Bisect K-means vs. FA

K-means vs. BatK-means.

Iterations

Number of clusters of algorithms

WFARM PSO K-means
Bisect

K-means

FAK-

means

BatK-

means

1 3.9 ≈ 4 3 3 3 3 3

2 3.93 ≈ 4 3 3 3 3 3

5 4.63 ≈ 5 3 3 3 3 3

10 4.7 ≈ 5 3 3 3 3 3

20 3 3 3 3 3 3

6.3.2.2 Performance Metrics between WFARM and Static Methods

In this section, WFARM is compared against two types of static methods: single

methods such as PSO, K-means, and Bisect K-means, and also hybrid methods such

as Hybrid Firefly algorithm with K-means (FAK-means) and Hybrid Bat algorithm

with K-means (BatK-means). Table 6.7 includes the quality performance results of

external metrics, which are Purity, F-measure and Entropy, for six algorithms:

WFARM, PSO, K-means, Bisect K-means, FAK-means, and BatK-means. Table 6.8

includes the quality performance results of internal and relative metrics, which are

ADDC, DBI and DI, for the mentioned algorithms. A graphical representation of the

results is shown in Figure 6.14.

As shown in Table 6.7, the WFARM algorithm generates the highest average purity in

all iterations compared to other algorithms. The best purity value is 0.7948 generated

by WFARM in iteration 20, while BatK-means generates 0.6650 in the same iteration

and K-means generates the worst value of 0.3459. This is because K-means is

 171

trapped in local optima. In addition, the overall standard deviation of the WFARM

algorithm in iteration 20 is smaller than the other methods. This result indicates that

the solution generated by WFARM is more reliable and high in robustness. From

these results, it can be concluded that the cluster merging algorithm highly affects

the result of performance (purity) in WFARM. Figure 6.14.a illustrates the purity

result in a graphical representation of the following methods: WFARM, PSO, K-

means, Bisect K-means, FAK-means, and BatK-means.

For the F-measure metric, as seen in Table 6.7, WFARM generates the highest

average F-measure in all iterations. Besides that, it can be observed that the best F-

measure produced is 0.7997 in iteration 20 by WFARM when the value of precision

and recall is higher (0.8047, 0.7948) respectively, and when the number of generated

clusters is equal to 3, while BatK-means generates 0.6649 in the same iteration with

a static number of clusters. The previous observations mean that WFARM is better

than other methods. Figure 6.14.b demonstrates the result of the average F-measure

in a pictorial representation of WFARM, PSO, K-means, Bisect K-means, FAK-

means, and BatK-means.

In Table 6.7, it reports the average Entropy value and standard deviation of thirty

executions for WFARM, PSO, K-means, Bisect K-means, FAK-means, and BatK-

means. As shown in Table 6.7, the average Entropy of the WFARM is smaller than

other methods in all iterations, where, the best average Entropy value is 0.7827

generated by WFARM in iteration 20, while BatK-means generates 1.0162 in the

same iteration.

Table 6.7

External quality metrics of clustering: WFARM vs. PSO vs. K-means vs. Bisect K-means vs. FA K-means vs. BatK-means.

External

Metrics
Algorithms

Iterations External

Metrics

Iterations

1 2 5 10 20 1 2 5 10 20

Purity

WFARM
0.7758

(0.0319)

0.7547

(0.0080)

0.7881

(0.0165)

0.7898

(0.0134)

0.7948

(0.0132)

Entropy

0.8089

(0.0775)

0.8584

(0.0178)

0.8206

(0.0246)

0.8183

(0.0232)

0.7827

(0.0267)

PSO
0.3823

(0.0432)

0.3861

(0.0643)

0.3726

(0.0433)

0.3731

(0.0403)

0.3772

(0.0516)

1.5350

(0.0393)

1.5230

(0.0858)

1.5403

(0.0513)

1.5309

(0.0619)

1.5276

(0.0691)

K-means
0.3468

(0.0242)

0.3451

(0.0226)

0.3531

(0.0414)

0.3561

(0.0575)

0.3459

(0.0258)

1.5782

(0.013)

1.5794

(0.0100)

1.5722

(0.0341)

1.5636

(0.072)

1.5755

(0.0215)

Bisect

K-means

0.3759

(0.0300)

0.3806

(0.0397)

0.3872

(0.0446)

0.3939

(0.0601)

0.4031

(0.0818)

1.5620

(0.0223)

1.5571

(0.0285)

1.5466

(0.0914)

1.5325

(0.0841)

1.5150

(0.1193)

FAK-means
0.3658

(0.0133)

0.3701

(0.0150)

0.3738

(0.0138)

0.3719

(0.0147)

0.3731

(0.0132)

1.5782

(0.0042)

1.5770

(0.0059)

1.5751

(0.0054)

1.5750

(0.0067)

1.5754

(0.0056)

BatK-means
0.3822

(0.0158)

0.4239

(0.0267)

0.5161

(0.0703)

0.6283

(0.0777)

0.6650

(0.0811)

1.5715

(0.0066)

1.5390

(0.2002)

1.3942

(0.1274)

1.1216

(0.1916)

1.0162

(0.1819)

External

Metrics
Algorithms Iteration 1 Iteration 2 Iteration 5 Iteration 10 Iteration 20

F-

measure

WFARM
0.7052 (0.0606)

[0.6464, 0.7758]

0.6765 (0.0182)

[0.6130,0.7547]

0.6676 (0.0046)

[0.5791, 0.7881]

0.6575 (0.0300)

[0.5632, 0.7898]

0.7997 (0.0129)

[0.8047, 0.7948]

PSO
0.4947 (0.0188)

[0.7007, 0.3823]

0.5062 (0.0414)

[0.7348, 0.3861]

0.4907 (0.0118)

[0.7184, 0.3726]

0.4951 (0.0110)

[0.7357, 0.3731]

0.4986 (0.0237)

[0.2493, 0.3772]

K-means
0.4910 (0.0213)

[0.8405, 0.3468]

0.4935 (0.0138)

[0.8658, 0.3451]

0.4975 (0.0196)

[0.8417, 0.3531]

0.4999 (0.0316)

[0.8385, 0.3561]

0.4954 (0.0081)

[0.8725, 0.3459]

Bisect K-means
0.4698 (0.0297)

[0.6262, 0.3759]

0.4757 (0.0284)

[0.6342, 0.3806]

0.4775 (0.0336)

[0.6227, 0.3872]

0.4785 (0.0567)

[0.6094, 0.3939]

0.4908 (0.0644)

[0.6273, 0.4031]

FAK-means
0.3656 (0.0134)

[0.3654, 0.3658]

0.3692 (0.0140)

[0.3683, 0.3701]

0.3747 (0.0155)

[0.3756, 0.3738]

0.3723 (0.0143)

[0.3727, 0.3719]

0.3737 (0.0132)

[0.3743, 0.3731]

BatK-means
0.3813 (0.0164)

[0.3804, 0.3822]

0.4227 (0.0245)

[0.4215, 0.4239]

0.5126 (0.0720)

[0.5092, 0.5161]

0.6345 (0.0765)

[0.6408, 0.6283]

0.6649 (0.0768)

[0.6648, 0.6650]

 Note: the best value is highlighted in ‘bold’, standard deviation in (), average precision and average recall in [].

 173

Table 6.8

Internal and relative quality metrics of clustering and standard deviation: WFARM

vs. PSO vs. K-means vs. Bisect K-means vs. FA K-means vs. BatK-means.

Internal &

Relative

Metrics

Algorithms

Iterations

1 2 5 10 20

ADDC

WFARM
1.4158

(0.0138)

1.4058

(0.0067)

1.4153

(0.0083)

1.4180

(0.0072)

1.4263

(0.0018)

PSO
1.7630

(0.2124)

1.7775

(0.2738)

1.8053

(0.2751)

1.9379

(0.1862)

1.8736

(0.0430)

K-means
0.7547

(0.2978)

0.7041

(0.2861)

0.6783

(0.2396)

0.6367

(0.2511)

0.7056

(0.3190)

Bisect K-means
1.3238

(0.1874)

1.2545

(0.2808)

1.2633

(0.2378)

1.3332

(0.2318)

1.3494

(0.1817)

FAK-means
1.4434

(0.0010)

1.4436

(0.0007)

1.4436

(0.0009)

1.4432

(0.0009)

1.4436

(0.0007)

BatK-means
1.4428

(0.0035)

1.4505

(0.0044)

1.4489

(0.0099)

1.4459

(0.0144)

1.4563

(0.0171)

Internal &

Relative

Metrics

Algorithms

Iterations

1 2 5 10 20

DBI

WFARM
7.3303

(0.6042)

7.1238

(0.2775)

7.3802

(0.6346)

7.3298

(0.4761)

9.2225

(0.1518)

PSO
1.7069

(0.0261)

1.6100

(0.2168)

1.5559

(0.2303)

1.6092

(0.1732)

1.6472

(0.2269)

K-means
2.8159

(3.5419)

2.3565

(3.1847)

2.4741

(3.1267)

1.9649

(3.1855)

1.9090

(2.5369)

Bisect K-means
8.1636

(3.0869)

7.3146

(3.0355)

6.9485

(3.0605)

7.8287

(2.8864)

7.7189

(2.7763)

FAK-means
14.2277

(0.2063)

14.2834

(0.2025)

14.2549

(0.3551)

14.2637

(0.2862)

14.2158

(0.2801)

BatK-means
14.2657

(0.3657)

12.3838

(0.4195)

11.3361

(1.2888)

10.7060

(1.4489)

10.9907

(1.5131)

Internal &

Relative

Metrics

Algorithms

Iterations

1 2 5 10 20

DI

WFARM
0.2330

(0.0070)

0.2328

(0.0011)

0.2283

(0.0071)

0.2292

(0.0060)

0.2058

(0.0044)

PSO
1.0162

(0.0950)

1.0331

(0.0574)

1.0357

(0.0650)

1.0119

(0.0583)

0.9908

(0.0899)

K-means
2.3413

(2.3505)

2.9315

(2.4566)

2.9671

(2.5302)

3.7363

(2.3653)

3.4078

(2.4518)

Bisect K-means
0.2393

(0.1483)

0.2876

(0.2299)

0.2998

(0.1887)

0.2715

(0.2178)

0.2698

(0.2008)

FAK-means
0.1380

(0.0026)

0.1372

(0.0027)

0.1377

(0.0039)

0.1374

(0.0035)

0.1382

(0.0035)

BatK-means
0.1369

(0.0043)

0.1560

(0.0075)

0.1698

(0.0212)

0.1775

(0.0254)

0.1721

(0.0256)

Note: the best value is highlighted in ‘bold’, standard deviation in ().

 174

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.14. Graphical representation of quality metrics: WFARM vs. PSO vs. K-

means vs. Bisect K-means vs. FA K-means vs. BatK-means (a) Purity, (b) F-

measure, (c) Entropy, (d) ADDC, (e) DBI, and (f) DI.

 175

This result indicates that WFARM is better than other methods. Figure 6.14.c shows

the results of the average Entropy in a graphical representation of the mentioned

methods.

As shown in Table 6.8, K-means is better than the others methods to generate a

smaller average ADDC in most iterations. Furthermore, it can be noticed that

WFARM is best as compared to hybrid methods, FAK-means and BatK-mean, in

producing a smaller ADDC value, where the best average ADDC is 1.4263 produced

by WFARM normalized in iteration 20 with the number of clusters 3, while FAK-

means generates 1.4436 and BatK-mean generates 1.4563 in the same iteration. This

result means that WFARM is best to generate the right number of clusters with the

highest performance (lower ADDC) against hybrid methods. Figure 6.14.d shows a

plotted graph of the average ADDC result of WFARM, PSO, K-means, Bisect K-

means, FAK-means and BatK-means.

For DBI metrics, in Table 6.8 notices that PSO is best to generate smaller DBI

values against other methods, where the best average DBI value is 1.6472 in iteration

20. It can be seen that WFARM is best to generate smaller average DBI values against

Bisect K-means in most iterations (refer to iterations 1, 2, 5 and 10) and better than

hybrid methods, FAK-means and BatK-means, in all iterations, where the best value

generated by WFARM in iteration 20 is 9.2225, whilst FAK-means is 14.2158 and

BatK-means is 10.9907. Figure 6.14.e illustrates the average DBI results of six

methods represented in a graphical representation.

 176

For DI metrics, Table 6.8 reports the DI value of six methods in different iterations.

As can be seen in the table, K-means is better than other methods in generating the

highest DI value in all iterations, followed by PSO, Bisect K-means, and WFARM

which is better than FAK-means and BatK-means, where the best average DI is

0.2058 generated by WFARM in iteration 20, while FAK-means generates 0.1382,

and BatK-means is 0.1721. Figure 6.14.c illustrates the average DI result in a

graphical representation of six methods: WFARM, PSO, K-means, Bisect K-means,

FAK-means, and BatK-means.

The previous results indicate that WFARM generates the best quality results in

external metrics against all static methods as shown in Table 6.9, while, for the

internal and relative metrics, the algorithm is generated best quality results against

FAK-means and BatK-means as shown in Table 6.10.

Table 6.9

Summary of external quality performance results: WFARM vs. PSO vs. K-means vs.

Bisect K-means vs. FAK-means vs. BatK-means.

Algorithms
External Metrics

Purity F-measure Entropy

WFARM

PSO

K-means

Bisect K-means

FAK-means

BatK-means

 177

Table 6.10

Summary of internal and relative quality performance results: WFARM vs. PSO vs.

K-means vs. Bisect K-means vs. FAK-means vs. BatK-means.

Algorithms
Internal and Relative Metrics

ADDC DBI DI

WFARM

FAK-means

BatK-means

6.3.2.3 Independent Samples T-test between WFARM and Static Methods

In Table 6.11, the associated P-value (2-tailed test) is illustrated. Since the P-value

between WFARM and any other methods is smaller than (0.05), the null hypothesis is

rejected as the mean in any metrics for WFARM and any static methods is the same,

and thus, the alternative hypothesis is accepted to conclude that there is a significant

difference in the mean of any metric for WFARM and any static methods.

Table 6.11

The P-value between WFARM & static methods.

Algorithms

P-value using average Purity (sig 2 tailed)

Equal variances

assumed

Equal variances not

assumed

WFARM and PSO 1.1679E-45 2.2618E-30

WFARM and K-means 1.3371E-17 6.4988E-13

WFARM and Bisect K-means 3.5568E-33 4.3610E-22

WFARM and FAK-means 2.2263E-49 4.9800E-36

WFARM and BatK-means 1.5587E-13 1.4414E-10

P-value using average F-measure(sig 2

tailed)

WFARM and PSO 2.3898E-54 1.0052E-44

 178

Table 6.11 continued

WFARM and K-means 8.5237E-69 1.5193E-60

WFARM and Bisect K-means 4.4436E-33 2.0948E-22

WFARM and FAK-means 2.6931E-72 3.5099E-72

WFARM and BatK-means 2.1750E-13 1.2784E-10

 P-value using average Entropy (sig 2 tailed)

WFARM and PSO 8.9082E-52 1.8034E-37

WFARM and K-means 2.2156E-72 3.4567E-70

WFARM and Bisect K-means 2.0342E-37 5.8592E-25

WFARM and FAK-means 2.8653E-78 1.8479E-47

WFARM and BatK-means 3.4760E-09 9.5530E-08

 P-value using average ADDC (sig 2 tailed)

WFARM and PSO 3.6977E-19 8.2027E-14

WFARM and K-means 1.3371E-17 6.4988E-13

WFARM and Bisect K-means 0.0313400 0.0354400

WFARM and FAK-means 2.2263E-49 4.9800E-36

WFARM and BatK-means 1.5587E-13 1.4414E-10

 P-value using average DBI (sig 2 tailed)

WFARM and PSO 3.8237E-77 5.1042E-69

WFARM and K-means 2.7754E-22 1.2587E-15

WFARM and Bisect K-means 0.0050800 0.00681500

WFARM and FAK-means 2.7274E-62 3.3236E-50

WFARM and BatK-means 3.3339E-8 5.3186E-7

 P-value using average DI (sig 2 tailed)

WFARM and PSO 2.9919E-48 3.1977E-29

WFARM and K-means 2.5542E-9 9.7372E-8

WFARM and Bisect K-means 0.0918500 0.0971700

WFARM and FAK-means 4.6142E-56 5.6757E-54

WFARM and BatK-means 2.0596E-9 6.0452E-8

Hint: The value highlighted in bold indicates not significance.

The P-value between WFARM and Bisect K-means (bold value in Table 6.11), which

is (0.09185 and 0.09717), is larger than (0.05), which means the mean DI metric for

 179

WFARM and Bisect K-means method are the same (accepting the null hypothesis in

this situation).

6.3.3 Comparison between WFARM and Dynamic Methods

This section includes the evaluation of WFARM against two dynamic methods:

Practical General Stochastic Clustering Method (PGSCM) (Tan, Ting, & Teng,

2011a), and Dynamic Hybrid Genetic algorithm with Particle Swarm Optimization

(DCPG) (Kuo, Syu, Chen, & Tien, 2012). The evaluation process is conducted in

three parts: the comparison of the number of generated clusters in the methods, the

comparison between WFARM with PGSCM and DCPG by performance metrics such

as Purity, F-measure, Entropy, ADDC, DBI, and DI, and the last evaluation part is

the comparison between WFARM with PGSCM and DCPG by statistical approach

(Independent samples T-test).

6.3.3.1 Number of Clusters between WFARM and Dynamic Methods

Table 6.12 displays the average number of clusters automatically generated by

WFARM, PGSCM and DCPG without any information support about the dataset.

Table 6.12

Average number of clusters: WFARM vs. PGSCM vs. DCPG.

Average number

of clusters

Algorithms

WFARM PGSCM DCPG

3 6.13 ≈ 6 8.27 ≈ 8

Note: the best value is highlighted in ‘bold’

 180

As can be seen in Table 6.12, the average number of clusters produced by WFARM in

iteration 20 is near the natural number of clusters in other algorithms, while PGSCM

produces 6.13 and DCPG produces 8.27. This result means that WFARM is better

than PGSCM and DCPG.

6.3.3.2 Performance Metrics between WFARM and Dynamic Methods

In this section, WFARM is evaluated against two dynamic methods named PGSCM

and DCPG. The evaluation is carried using external quality metrics such as Purity, F-

measure, and Entropy, and using internal and relative quality metrics such as ADDC,

DBI, and DI. Table 6.13 shows the external quality metrics of clustering.

Table 6.13

External quality metrics of clustering and standard deviation: WFARM vs. PGSCM

vs. DCPG.

E
x
te

rn
a
l

M
et

ri
cs

Metrics
Algorithms

WFARM PGSCM DCPG

Purity 0.7948 (0.0132) 0.3948 (0.0172) 0.4243 (0.0783)

F-measure

0.7997 (0.0129)

[0.8047, 0.7948]

0.3406 (0.0421)

[0.2995, 0.3948]

0.5003 (0.5003)

[0.6095, 0.4243]

Entropy 0.7827 (0.0267) 1.5584 (0.0122) 1.4532 (0.1016)

 Note: the best value is highlighted in ‘bold’, standard deviation in (), average precision

and average recall in [].

As shown in Table 6.13, the WFARM algorithm generates the highest average purity

compared with PGSCM and DCPG. The best average purity value is 0.7948

generated by WFARM in iteration 20, while DCPG generates 0.4243 in the same

iteration and PGSCM generates the worst value 0.3948. The overall standard

deviation of the WFARM algorithm in iteration 20 is smaller than PGSCM and

 181

DCPG, which means that the solution generated by WFARM is more reliable and

high in robustness. Figure 6.15 shows a plotted graph of the external quality metrics:

average purity, average F-measure, and average Entropy results of WFARM, PGSCM

and DCPG.

Figure 6.15. External quality metrics: WFARM vs. PGSCM vs. DCPG

For F-measure metric, it can observed in Table 6.13 that WFARM generates the

highest average F-measure of 0.7997, higher average precision of 0.8047, and

higher average recall of 0.7948 against PGSCM and DCPG, where they generate an

average F-measure of 0.3406 and 0.5003, respectively. The overall standard

deviation of the WFARM algorithm is 0.0129, smaller than PGSCM which is 0.0421

and smaller than DCPG which is 0.5003. It can be concluded that the solution

generated by WFARM is more reliable and high in robustness.

 182

Furthermore, in Table 6.13, it can be seen that the Entropy of WFARM is better

(smaller) than PGSCM and DCPG, where the best average Entropy is 0.7827

outputted by WFARM, whereas, PGSCM and DCPG produced 1.5584 and 1.4532,

respectively. The highest value of Purity and F-measure and the lower value of

Entropy means the best clustering algorithm (Forsati, Mahdavi, Shamsfard, &

Meybodi, 2013; Murugesan & Zhang, 2011a, 2011b); and it can be concluded from

the previous result that WFARM is the best as compared to PGSCM and DCPG in

external quality metrics.

Table 6.14 includes the internal and relative quality metrics for the three methods:

WFARM, PGSCM, and DCPG.

Table 6.14

Internal and relative quality metrics of clustering and standard deviation: WFARM

vs. PGSCM vs. DCPG.

In
te

rn
a
l

&

R
el

a
ti

v
e

M
et

ri
cs

Metrics
Algorithms

WFARM PGSCM DCPG

ADDC 1.4263 (0.0018) 1.7440 (0.0159) 0.7459 (0.2123)

DBI 9.2225 (0.1518) 2.6506 (0.1160) 2.8584 (1.4431)

DI 0.2058 (0.0044) 0.6302 (0.0455) 0.4328 (0.2085)

 Note: the best value is highlighted in ‘bold’, standard deviation in ().

As shown in Table 6.14, the WFARM algorithm generates a lower average ADDC

compared to PGSCM, while DCPG produces a lower average ADDC compared

against WFARM and PGSCM. The best average ADDC value is 0.7459 generated by

DCPG, followed by WFARM which produces 1.4263 in iteration 20, followed by

PGSCM which generates the worst value of 1.7440. The overall standard deviation

 183

of the WFARM algorithm is 0.0018, smaller than PGSCM and DCPG, which they

have a standard deviation of 0.0159 and 0.2123, respectively; this result indicates

that the solution generated by WFARM is more reliable and high in robustness. Figure

6.16 shows a plotted graph of the internal and relative quality metrics, average

ADDC, average DBI and average DI results, of WFARM, PGSCM and DCPG.

Figure 6.16. Internal and relative quality metrics: WFARM vs. PGSCM vs. DCPG

For DBI quality metric, in Table 6.14, it is noticed that PGSCM is the best to

generate a smaller DBI value against WFARM and DCPG methods, where the best

average DBI value is 2.6506 outputted by PGSCM, while WFARM produces the

worst value of 9.2225 and DCPG produces 2.8584. The overall standard deviation of

the WFARM algorithm is 0.1518 smaller than DCPG which has a standard deviation

of 1.4431; however, PGSCM has the smallest standard deviation of 0.1160 than

 184

WFARM and DCPG. This result indicates that PGSCM is more accurate despite of

the number of generated clusters is 6.13, which is higher than the actual number of

clusters.

As can be seen in Table 6.14, the average DI value for PGSCM is 0.6302. It is larger

than the DI value of WFARM which is 0.2058 and the DI value of DCPG which is

0.4328. The overall standard deviation of the WFARM algorithm is 0.0044, smaller

than DCPG which has a standard deviation of 0.2085 and PGSCM has a standard

deviation of 0.0455. Lower ADDC and DBI values and larger DI value indicates the

best clustering algorithm.

The previous results indicate that WFARM generates the best quality results in

external performance metrics, Purity, F-measure and Entropy, against all dynamic

methods, PGSCM and DCPG, as shown in Table 6.15. While, for the internal and

relative metrics of ADDC, DBI and DI, the DCPG generates the best ADDC quality

results and PGSCM generates the best DBI and DI.

Table 6.15

Summary of quality performance results: WFARM vs. PGSCM vs. DCPG.

Algorithms
External Metrics Internal and Relative Metrics

Purity F-measure Entropy ADDC DBI DI

WFARM

PGSCM

DCPG

 185

6.3.3.3 Independent Samples T-test between WFARM and Dynamic Methods

This section includes the analysis of Independent Samples T-test between WFARM

and PGSCM, and between WFARM and DCPG methods as shown in Table 6.16.

Table 6.16

The P-value between WFARM & dynamic methods.

Algorithms

P-value using average Purity (sig 2 tailed)

Equal variances

assumed

Equal variances not

assumed

WFARM and PGSCM 6.0521E-67 1.5895E-63

WFARM and DCPG 2.9644E-33 3.2203E-22

 P-value using average F-measure(sig 2 tailed)

WFARM and PGSCM 1.1457E-52 1.2077E-35

WFARM and DCPG 1.9432E-46 1.4369E-33

 P-value using average Entropy (sig 2 tailed)

WFARM and PGSCM 6.9327E-76 9.2948E-57

WFARM and DCPG 1.1415E-40 1.1919E-27

 P-value using average ADDC (sig 2 tailed)

WFARM and PGSCM 1.0321E-68 3.3946E-40

WFARM and DCPG 7.1148E-25 5.4648E-17

 P-value using average DBI (sig 2 tailed)

WFARM and PGSCM 1.5079E-82 4.3476E-78

WFARM and DCPG 7.8719E-32 5.5106E-21

 P-value using average DI (sig 2 tailed)

WFARM and PGSCM 7.8781E-50 2.4346E-30

WFARM and DCPG 1.5863E-07 1.7713E-06

The hypotheses for Independent Samples T-test can be expressed in mathematical

equivalents.

 186

Null hypothesis H0: M(WFARM) = M(any dynamic methods)

Alterative hypothesis H1: M(WFARM) ≠ M(any dynamic methods)

Where, M(WFARM), M(any dynamic methods) are the means of the population for

WFARM method and any dynamic method.

In Table 6.16, the associated P-value (2-tailed test) is reported. Since the P-value

between WFARM and PGSCM, and between WFARM and DCPG methods is smaller

than (0.05), the null hypothesis is rejected so that the mean of any metrics for

WFARM and any dynamic methods are the same and the alternative hypothesis is

accepted to conclude that there is a significant difference in the mean of any metric

for WFARM and any dynamic methods.

6.4 Summary

This chapter presented the proposed Adaptive Firefly Algorithm for text clustering,

termed as WFARM. The aim of incorporating the clusters merging procedure is to

minimize the number of clusters produced by WFAR. The cluster merging algorithm

includes two steps: merge clusters and refine merged clusters.

Three experiments are conducted in this chapter: 1) Comparison between WFARM

and WFAR, 2) Comparison between the proposed WFARM and statics clustering

methods such as K-means, PSO, Bisect K-means, FAK-means and BatK-means, 3)

The performance of the proposed WFARM against dynamic clustering methods such

as DCPG and PGSCM.

 187

In addition, the analyses of paired samples T-test between WFARM with WFAR and

Independent Samples T-test between WFARM and state-of-the-art methods are also

performed.

 188

CHAPTER SEVEN

EVALUATION OF ADAPTIVE FA ON VARIOUS DATASETS

7.1 Introduction

This chapter includes the evaluation and analysis of the proposed adaptive firefly

algorithm, termed as WFARM. The experiments were conducted on datasets with

different sizes (balanced and un-balanced).

A comparison is made between WFARM and state-of-the-art methods (static and

dynamic methods). Each comparison consists of three evaluation parts: the

evaluation of produced number of clusters, the evaluation of performance metrics,

namely external, internal and relative metrics such as Purity, F-measure, Entropy,

ADDC, DBI and DI, and the third part of evaluation is a statistical analysis of

Independent Samples T-test (Ross, 2010).

7.2 Comparison WFARM with Static Methods

This section involves a comparison between the WFARM algorithm with some state-

of-the-art methods (static methods), Particle Swarm Optimization (PSO), K-means,

Bisect K-means, Hybrid Firefly algorithm with K-means (FAK-means), and Hybrid

Bat algorithm with K-means (BatK-means). The comparison includes the evaluation

of produced number of clusters, the evaluation using performance external, internal

and relative metrics such as Purity, F-measure, Entropy, ADDC, DBI and DI, and the

evaluation using a statistical analysis of Independent Samples T-test (Ross, 2010)

that performs on the differences between the pairs, WFARM and other methods (static

methods).

 189

7.2.1 Evaluation Number of Clusters between WFARM and Static Methods

The purpose of this comparison is to examine the k number of cluster automatically

generated by the proposed WFARM algorithm, and compare it with other static

methods that provide the number of k cluster. Table 7.1 displays the average number

of clusters automatically generated by WFARM (set the number of iterations equal to

20) using different datasets.

Table 7.1

Average numbers of clusters: WFARM vs. PSO vs. K-means vs. Bisect K-means vs.

FAK-means vs. BatK-means using different datasets.

Datasets

Number of clusters of algorithms

WFARM PSO K-means
Bisect

K-means

FAK-

means

BatK-

means

Reuters

(300 documents

and 6 classes)

6 6 6 6 6 6

TR11

(414 documents

and 9 classes)

9.27 ≈ 9 9 9 9 9 9

TR12

(313 documents

and 8 classes)

8 8 8 8 8 8

TR23

(204 documents

and 6 classes)

6.07≈ 6 6 6 6 6 6

TR45

(690 documents

and 10 classes)

9.83≈ 10 10 10 10 10 10

As can be seen in Table 7.1, the number of clusters produced by the proposed

WFARM is 6 using the Reuters dataset, is 9.27 using TR11, is 8 using TR12, is 6.07

using TR23, and is 9.83 using TR45. The percentage of success to obtain a near

 190

natural number of clusters in the proposed WFARM is 100 %. Figure 7.1 shows the

results of the number of obtained clusters by WFARM and the real number of clusters

of all static methods.

Figure 7.1. Results of the number of generated clusters by WFARM and the real

number of clusters of all static methods

7.2.2 Evaluation of Performance Metrics between WFARM and Static Methods

In this section, the performance results of WFARM are compared against two types of

static methods; single methods such as Particle Swarm Optimization (PSO) (Cui,

Potok, & Palathingal, 2005), K-means (Jain, 2010), and Bisect K-means (Murugesan

& Zhang, 2011a, 2011b), and hybrid methods are such as Hybrid Firefly algorithm

with K-means (FAK-means) (Tang, Fong, Yang, & Deb, 2012), and Hybrid Bat

algorithm with K-means (BatK-means) (Tang, Fong, Yang, & Deb, 2012). The

purpose of this comparison is to investigate the effectiveness of the non-determined

k number of cluster in the WFARM algorithm in producing quality clusters, even

though it has not been provided the same support as the other algorithms that require

 191

Table 7.2

External quality Purity (average, best, worst, standard deviation): WFARM vs. PSO

vs. K-means vs. Bisect K-means vs. FA K-means vs. BatK-means using different

datasets (balanced and un-balanced datasets).

Datasets Algorithms
Average

Purity

Best

Purity

Worst

Purity

Standard

Deviation

Reuters

(300 documents

and 6 classes)

WFARM 0.7351 0.7433 0.7300 0.0051

PSO 0.3389 0.5033 0.2167 0.0791

K-means 0.3270 0.5267 0.2000 0.0692

Bisect K-means 0.4073 0.6033 0.2100 0.1065

FAK-means 0.2361 0.2567 0.2200 0.0098

BatK-means 0.6514 0.7733 0.5200 0.0667

Datasets Algorithms Average

Purity

Best

Purity

Worst

Purity

Standard

Deviation

TR11

(414 documents

and 9 classes)

WFARM 0.6810 0.7246 0.6594 0.0224

PSO 0.4159 0.5290 0.3237 0.0622

K-means 0.3860 0.5290 0.3188 0.0722

Bisect K-means 0.5333 0.7778 0.3720 0.1004

FAK-means 0.3239 0.3430 0.3188 0.0060

BatK-means 0.6657 0.7899 0.3961 0.0793

Datasets Algorithms Average

Purity

Best

Purity

Worst

Purity

Standard

Deviation

TR12

(313 documents

and 8 classes)

WFARM 0.4752 0.4760 0.4696 0.0022

PSO 0.3891 0.5911 0.3163 0.0672

K-means 0.4370 0.6038 0.3163 0.0827

Bisect K-means 0.4850 0.5847 0.3195 0.0629

FAK-means 0.3013 0.3259 0.2971 0.0065

BatK-means 0.5808 0.6997 0.4760 0.0639

Datasets Algorithms Average

Purity

Best

Purity

Worst

Purity

Standard

Deviation

TR23

(204 documents

and 6 classes)

WFARM 0.6266 0.6324 0.6176 0.0032

PSO 0.5444 0.6569 0.4608 0.0503

K-means 0.5451 0.6471 0.4657 0.0559

Bisect K-means 0.5159 0.5441 0.4657 0.0239

FAK-means 0.4495 0.4706 0.4461 0.0072

BatK-means 0.5956 0.7059 0.5245 0.0524

Datasets Algorithms Average

Purity

Best

Purity

Worst

Purity

Standard

Deviation

TR45

(690 documents

and 10 classes)

WFARM 0.6355 0.6609 0.5812 0.0161

PSO 0.3277 0.4986 0.2406 0.0592

K-means 0.4416 0.6348 0.2580 0.0988

Bisect K-means 0.4280 0.6609 0.2449 0.1059

FAK-means 0.2422 0.2580 0.2348 0.0056

BatK-means 0.6083 0.7594 0.4580 0.0789

Note: the best value is highlighted in ‘bold’.

a predefined number of k clusters.

 192

As shown in Table 7.2, the WFARM algorithm generates the highest average purity in

most datasets, balanced and un-balanced datasets (refer to Reuters, TR11, TR23 and

TR45) compared to other algorithms, where the average purity value is 0.7351

generated by WFARM in the Reuters dataset, is 0.6810 in TR11 dataset, is 0.6266 in

TR23 dataset, and is 0.6355 in TR45 dataset, while, BatK-means generates the

highest average purity of 0.5808 in the TR12 dataset. In addition, the overall

standard deviation of the WFARM algorithm is smaller than other methods in most

datasets. This result indicates that the solution generated by WFARM is more reliable

and high in robustness. The percentage of success to obtain the highest purity is 80%

by WFARM. Figure 7.2 illustrates the purity result in a graphical representation of the

methods: WFARM, PSO, K-means, Bisect K-means, FAK-means, and BatK-means.

Figure 7.2. Average Purity results: WFARM vs. PSO vs. K-means vs. Bisect K-

means vs. FA K-means vs. BatK-means using different datasets

 193

Table 7.3

External quality F-measure (average, best, worst, standard deviation): WFARM vs.

PSO vs. K-means vs. Bisect K-means vs. FA K-means vs. BatK-means using different

datasets.

Datasets Algorithms
Average F-measure

[precision, Recall]

Best

F-measure

Worst

F-measure

Standard

Deviation

Reuters

(300

documents

and 6

classes)

WFARM 0.7069 [0.6808, 0.7351] 0.7138 0.7022 0.0045

PSO 0.3536 [0.3696, 0.3389] 0.5152 0.2766 0.0720

K-means 0.3531 [0.3837, 0.3270] 0.4870 0.2770 0.0705

Bisect K-means 0.4339 [0.4642, 0.4073] 0.6703 0.2749 0.1048

FAK-means 0.2357 [0.2353, 0.2361] 0.2569 0.2095 0.0108

BatK-means 0.6260 [0.6025, 0.6514] 0.7780 0.5049 0.0722

Datasets Algorithms Average F-measure

[precision, Recall]

Best

F-measure

Worst

F-measure

Standard

Deviation

TR11

(414

documents

and 9

classes)

WFARM 0.5631 [0.4800, 0.6810] 0.6547 0.4615 0.0520

PSO 0.3620 [0.3205, 0.4159] 0.4906 0.2723 0.0651

K-means 0.3627 [0.3421, 0.3860] 0.5273 0.2990 0.0769

Bisect K-means 0.4869 [0.4479, 0.5333] 0.7366 0.2677 0.1069

FAK-means 0.1916 [0.1360, 0.3239] 0.2119 0.1731 0.0098

BatK-means 0.5780 [0.5107, 0.6657] 0.7509 0.3225 0.0884

Datasets Algorithms Average F-measure

[precision, Recall]

Best

F-measure

Worst

F-measure

Standard

Deviation

TR12

(313

documents

and 8

classes)

WFARM 0.3649 [0.2962, 0.4752] 0.3676 0.3467 0.0071

PSO 0.3305 [0.2872, 0.3891] 0.4953 0.2608 0.0630

K-means 0.3856 [0.3450, 0.4370] 0.5861 0.2458 0.0954

Bisect K-means 0.4468 [0.4142, 0.4850] 0.5630 0.3161 0.0651

FAK-means 0.2037 [0.1539, 0.3013] 0.2233 0.1833 0.0104

BatK-means 0.5463 [0.5157, 0.5808] 0.6750 0.4270 0.0714

Datasets Algorithms Average F-measure

[precision, Recall]

Best

F-measure

Worst

F-measure

Standard

Deviation

TR23

(204

documents

and 6

classes)

WFARM 0.4337 [0.3316, 0.6266] 0.4460 0.4024 0.0089

PSO 0.4277 [0.3522, 0.5444] 0.6158 0.3439 0.0678

K-means 0.4286 [0.3531, 0.5451] 0.5682 0.3436 0.0575

Bisect K-means 0.4068 [0.3358, 0.5159] 0.4544 0.3749 0.0210

FAK-means 0.2727 [0.1957, 0.4495] 0.3377 0.2398 0.0199

BatK-means 0.4573 [0.3711, 0.5956] 0.5890 0.3275 0.0699

Datasets Algorithms Average F-measure

[precision, Recall]

Best

F-measure

Worst

F-measure

Standard

Deviation

TR45

(690

documents

and 10

classes)

WFARM 0.5031 [0.4164, 0.6355] 0.5489 0.4314 0.0227

PSO 0.2772 [0.2402, 0.3277] 0.4063 0.2246 0.0539

K-means 0.3772 [0.3292, 0.4416] 0.5845 0.2186 0.1046

Bisect K-means 0.4017 [0.3785, 0.4280] 0.6224 0.2394 0.1064

FAK-means 0.1658 [0.1260, 0.2422] 0.1825 0.1560 0.0080

BatK-means 0.5448 [0.4933, 0.6083] 0.7059 0.3445 0.0893

Note: the best value is highlighted in ‘bold’, average precision and average recall in [].

 194

For F-measure metric, as can be seen in Table 7.3, the WFARM algorithm generates

the highest average F-measure (higher precision and recall) in the balanced dataset

(Reuters dataset) compared against other methods. In the TR11, TR23 and TR45

datasets, WFARM generates the highest F-measure (higher precision and recall)

compared to all methods excluding the BatK-means method that generates the

highest F-measure in most datasets (refer to TR11, TR12, TR23 and TR45). The

overall standard deviation of the WFARM algorithm is smaller than other methods in

most datasets, which indicates that the solution generated by WFARM is more

reliable and high in robustness. The percentage of success to obtain the highest F-

measure is 20% by WFARM against the BatK-means method and 80% against other

methods. Figure 7.3 demonstrates the result of the average F-measure in a pictorial

representation of WFARM PSO, K-means, Bisect K-means, FAK-means, and BatK-

means.

Figure 7.3. Average F-measure result: WFARM vs. PSO vs. K-means vs. Bisect K-

means vs. FA K-means vs. BatK-means using different datasets

 195

Table 7.4

External quality Entropy (average, best, worst, standard deviation): WFARM vs. PSO

vs. K-means vs. Bisect K-means vs. FAK-means vs. BatK-means using different

datasets.

Datasets Algorithms
Average

Entropy

Best

Entropy

Worst

Entropy

Standard

Deviation

Reuters

(300

documents

and 6 classes)

WFARM 1.0420 1.0044 1.0653 0.0258

PSO 2.1709 1.8116 2.4480 0.1797

K-means 2.0872 1.4561 2.5022 0.2450

Bisect K-means 1.8843 1.2484 2.4687 0.3393

FAK-means 2.5205 2.4831 2.5500 0.0161

BatK-means 1.2260 0.7787 1.6723 0.2145

Datasets Algorithms Average

Entropy

Best

Entropy

Worst

Entropy

Standard

Deviation

TR11

(414

documents

and 9 classes)

WFARM 1.2584 1.0489 1.3384 0.0798

PSO 2.2701 1.9254 2.5870 0.1948

K-means 2.3809 1.7211 2.7022 0.3310

Bisect K-means 1.7906 0.9504 2.4933 0.3271

FAK-means 2.5788 2.5465 2.6085 0.0166

BatK-means 1.3774 0.9481 2.0766 0.2525

Datasets Algorithms Average

Entropy

Best

Entropy

Worst

Entropy

Standard

Deviation

TR12

(313

documents

and 8 classes)

WFARM 1.9200 1.9154 1.9531 0.0119

PSO 2.3761 1.7145 2.6743 0.2435

K-means 2.1587 1.4495 2.6577 0.3273

Bisect K-means 1.9298 1.4824 2.4222 0.2317

FAK-means 2.6492 2.6103 2.6984 0.0238

BatK-means 1.5966 1.3047 1.9511 0.2124

Datasets Algorithms Average

Entropy

Best

Entropy

Worst

Entropy

Standard

Deviation

TR23

(204

documents

and 6 classes)

WFARM 1.4980 1.4295 1.5306 0.0198

PSO 1.7316 1.3594 1.9449 0.1332

K-means 1.7211 1.3142 1.9014 0.1445

Bisect K-means 1.8156 1.7402 1.8938 0.0706

FAK-means 1.9890 1.9224 2.0324 0.0254

BatK-means 1.5146 1.2221 1.7800 0.1656

Datasets Algorithms Average

Entropy

Best

Entropy

Worst

Entropy

Standard

Deviation

TR45

(690

documents

and 10

classes)

WFARM 1.6742 1.5923 1.7450 0.0434

PSO 2.6552 2.1542 2.9531 0.2053

K-means 2.2262 1.4110 2.9282 0.4016

Bisect K-means 2.2180 1.5735 2.9614 0.3370

FAK-means 2.9417 2.9162 2.9650 0.0124

BatK-means 1.6049 1.1448 2.1046 0.2625

Note: the best value is highlighted in ‘bold’.

 196

In Table 7.4, it is reported the average Entropy value, best Entropy value, worst

Entropy value and standard deviation of thirty executions for WFARM, PSO, K-

means, Bisect K-means, FAK-means, and BatK-means. As shown in the table, the

average Entropy of WFARM is smaller than other methods in most datasets (refer to

Reuters, TR11 and TR23), while BatK-means generates the best Entropy (minimum

value) in the TR12 and TR45 datasets. The overall standard deviation of the WFARM

algorithm is smaller than other methods in most datasets (refer to TR12 and TR23)

which means the solution generated by WFARM is more reliable and high in

robustness. The percentage of success to obtain a lower Entropy is 60% by WFARM

against BatK-means method and 100% against other methods. Figure 7.4 shows the

result of the average Entropy in a graphical representation of WFARM, PSO, K-

means, Bisect K-means, FAK-means, and BatK-means.

Figure 7.4. Average Entropy result: WFARM vs. PSO vs. K-means vs. Bisect K-

means vs. FA K-means vs. BatK-means using different datasets.

 197

Table 7.5

Internal quality ADDC (average, best, worst, standard deviation): WFARM vs. PSO

vs. K-means vs. Bisect K-means vs. FAK-means vs. BatK-means using different

datasets.

Datasets Algorithms
Average

ADDC

Best

ADDC

Worst

ADDC

Standard

Deviation

Reuters

(300 documents

and 6 classes)

WFARM 1.1786 1.1737 1.1807 0.0027

PSO 1.3637 0.9185 1.5835 0.1775

K-means 0.7317 0.3505 1.1354 0.1769

Bisect K-means 0.9847 0.6169 1.3227 0.1423

FAK-means 1.2206 1.2137 1.2240 0.0023

BatK-means 1.3018 1.1162 1.3884 0.0517

Datasets Algorithms Average

ADDC

Best

ADDC

Worst

ADDC

Standard

Deviation

TR11

(414 documents

and 9 classes)

WFARM 0.8293 0.8198 0.8529 0.0088

PSO 0.7293 0.4713 0.9598 0.1301

K-means 0.5355 0.0977 0.9981 0.3026

Bisect K-means 0.7109 0.4604 0.8667 0.0935

FAK-means 0.8709 0.8677 0.8728 0.0012

BatK-means 1.0203 0.7509 1.1085 0.0680

Datasets Algorithms Average

ADDC

Best

ADDC

Worst

ADDC

Standard

Deviation

TR12

(313 documents

and 8 classes)

WFARM 0.7928 0.7821 0.7942 0.0033

PSO 0.7366 0.356 1.0787 0.1902

K-means 0.5478 0.3172 0.7796 0.1244

Bisect K-means 0.7264 0.4565 0.9008 0.1231

FAK-means 0.8820 0.8785 0.8850 0.0012

BatK-means 0.9822 0.7064 1.1904 0.1190

Datasets Algorithms Average

ADDC

Best

ADDC

Worst

ADDC

Standard

Deviation

TR23

(204 documents

and 6 classes)

WFARM 0.6527 0.6407 0.6559 0.0030

PSO 0.7542 0.5855 0.9681 0.0966

K-means 0.4335 0.2660 0.6187 0.0795

Bisect K-means 0.5079 0.4166 0.7092 0.0644

FAK-means 0.7406 0.7346 0.7447 0.0020

BatK-means 0.8897 0.6039 1.0372 0.1305

Datasets Algorithms Average

ADDC

Best

ADDC

Worst

ADDC

Standard

Deviation

TR45

(690 documents

and 10 classes)

WFARM 0.9448 0.9284 0.9503 0.0068

PSO 0.8453 0.4458 1.1363 0.1599

K-means 0.6297 0.3120 0.8525 0.1209

Bisect K-means 0.8030 0.6266 1.0189 0.1169

FAK-means 0.9993 0.9971 1.0013 0.0009

BatK-means 1.1668 0.8785 1.3934 0.1270

Note: the best value is highlighted in ‘bold’.

 198

Table 7.5 includes the quality performance results of internal metric ADDC for six

algorithms, namely WFARM, PSO, K-means, Bisect K-means, FAK-means, and

BatK-means. All algorithms are implemented in the same environment and are run

thirty times. As shown in the table, K-means is better than the others methods in

generating the smaller average ADDC in all datasets, while the proposed WFARM

generates a smaller ADDC against FAK-means and BatK-means in all types of

dataset and a smaller ADDC against PSO only in the Reuters and TR23 datasets.

This result means that WFARM is best to generate the right number of clusters with

the highest performance (lower ADDC) against hybrid methods (refer to FAK-means

and BatK-means). The percentage of success to obtain a lower ADDC is 100% by

WFARM against hybrid methods, and 40% against the PSO method. Figure 7.5 shows

a plotted graph of the average ADDC result for WFARM, PSO, K-means, Bisect K-

means, FAK-means, and BatK-means.

Figure 7.5. Average ADDC result: WFARM vs. PSO vs. K-means vs. Bisect K-

means vs. FA K-means vs. BatK-means using different datasets

 199

Table 7.6

Relative quality DBI (Average, Best, Worst, standard deviation): WFARM vs. PSO vs.

K-means vs. Bisect K-means vs. FA K-means vs. BatK-means using different

datasets.

Datasets Algorithms
Average

DBI

Best

DBI

Worst

DBI

Standard

Deviation

Reuters

(300 documents

and 6 classes)

WFARM 4.1820 4.1148 4.2540 0.0395

PSO 1.6825 1.4268 1.9790 0.1461

K-means 2.6385 1.4703 4.3945 0.7094

Bisect K-means 3.7740 1.8275 5.1108 0.6847

FAK-means 10.3502 9.8647 10.8133 0.2656

BatK-means 5.9289 4.2084 8.8921 1.0682

Datasets Algorithms Average

DBI

Best

DBI

Worst

DBI

Standard

Deviation

TR11

(414 documents

and 9 classes)

WFARM 4.6518 4.4176 4.8660 0.1022

PSO 1.6241 1.3495 2.1186 0.1725

K-means 1.7858 0.1227 3.9547 0.7849

Bisect K-means 3.8466 2.3599 5.1885 0.5293

FAK-means 9.8927 9.6783 10.1788 0.1123

BatK-means 6.5040 3.2826 8.9772 1.6546

Datasets Algorithms Average

DBI

Best

DBI

Worst

DBI

Standard

Deviation

TR12

(313 documents

and 8 classes)

WFARM 4.9590 4.8340 4.9750 0.0361

PSO 1.5605 1.2371 1.9013 0.1733

K-means 2.8110 1.6858 4.0169 0.7292

Bisect K-means 4.0448 2.4865 5.3419 0.8268

FAK-means 9.1618 8.8490 9.5123 0.1481

BatK-means 6.0015 4.0032 9.9218 1.4734

Datasets Algorithms Average

DBI

Best

DBI

Worst

DBI

Standard

Deviation

TR23

(204 documents

and 6 classes)

WFARM 3.1373 3.0462 3.2194 0.0373

PSO 1.7271 1.3798 3.5081 0.3786

K-means 2.3197 1.5730 3.1529 0.4317

Bisect K-means 2.0830 1.5591 3.3308 0.4410

FAK-means 8.6446 7.7680 9.1920 0.2983

BatK-means 4.4182 2.1310 7.2550 1.2898

Datasets Algorithms Average

DBI

Best

DBI

Worst

DBI

Standard

Deviation

TR45

(690 documents

and 10 classes)

WFARM 4.2858 4.1705 4.3443 0.0399

PSO 1.6252 1.3379 1.9207 0.1258

K-means 2.9692 1.3755 4.0272 0.6142

Bisect K-means 3.5129 2.2107 4.5727 0.5629

FAK-means 12.1014 11.8120 12.4824 0.1786

BatK-means 6.7070 3.4809 10.9666 2.2131

Note: the best value is highlighted in ‘bold’.

 200

For DBI metrics, in Table 7.6, it is noticed that PSO is the best to generate a smaller

DBI value against other methods in all datasets. Furthermore, it can be seen that

WFARM is the best to generate a smaller average DBI value against hybrid methods

FAK-means and BatK-means in balanced and un-balanced datasets, where the best

value generated by WFARM is (4.1820, 4.6518, 4.9590, 3.1373 and 4.2858) in

(Reuters, TR11, TR12, TR23 and TR45) respectively. The percentage of success to

obtain a lower DBI is 100% by WFARM against hybrid methods. Figure 7.6

illustrates the average DBI result of six methods; namely WFARM, PSO, K-means,

Bisect K-means, FAK-means, and BatK-means represented in a graphical

representation.

Figure 7.6. Average DBI result: WFARM vs. PSO vs. K-means vs. Bisect K-means

vs. FA K-means vs. BatK-means using different datasets.

 201

Table 7.7

Relative quality DI (average, best DI, worst DI, standard deviation): WFARM vs.

PSO vs. K-means vs. Bisect K-means vs. FA K-means vs. BatK-means using different

datasets.

Datasets Algorithms
Average

DI

Best

DI

Worst

DI

Standard

Deviation

Reuters

(300 documents

and 6 classes)

WFARM 0.3909 0.3955 0.3642 0.0054

PSO 0.9244 1.0712 0.7079 0.0842

K-means 0.4432 0.6457 0.2494 0.1163

Bisect K-means 0.3202 0.7293 0.2188 0.0999

FAK-means 0.1776 0.1954 0.1623 0.0082

BatK-means 0.2515 0.3459 0.1825 0.0361

Datasets Algorithms Average

DI

Best

DI

Worst

DI

Standard

Deviation

TR11

(414 documents

and 9 classes)

WFARM 0.3673 0.3770 0.3412 0.0096

PSO 0.7479 0.9954 0.0959 0.1862

K-means 0.4668 5.6201 0.0458 0.9887

Bisect K-means 0.2613 0.5005 0.2074 0.0517

FAK-means 0.1842 0.1947 0.1752 0.0052

BatK-means 0.1624 0.3728 0.0911 0.0611

Datasets Algorithms Average

DI

Best

DI

Worst

DI

Standard

Deviation

TR12

(313 documents

and 8 classes)

WFARM 0.2857 0.2870 0.2816 0.0015

PSO 0.8539 1.0377 0.6548 0.0737

K-means 0.3971 0.8110 0.2245 0.1455

Bisect K-means 0.2576 0.4154 0.1969 0.0474

FAK-means 0.2004 0.2112 0.1910 0.0061

BatK-means 0.1886 0.3186 0.1017 0.0523

Datasets Algorithms Average

DI

Best

DI

Worst

DI

Standard

Deviation

TR23

(204 documents

and 6 classes)

WFARM 0.4747 0.5046 0.4626 0.0109

PSO 0.7205 1.0782 0.0822 0.2466

K-means 0.5051 0.7027 0.3103 0.1009

Bisect K-means 0.5954 0.7642 0.3497 0.1057

FAK-means 0.2066 0.2317 0.1854 0.0105

BatK-means 0.2824 0.5977 0.1281 0.1141

Datasets Algorithms Average

DI

Best

DI

Worst

DI

Standard

Deviation

TR45

(690 documents

and 10 classes)

WFARM 0.2824 0.2903 0.2719 0.0059

PSO 0.7414 0.9313 0.5170 0.1065

K-means 0.3419 0.6684 0.2448 0.0920

Bisect K-means 0.2512 0.4020 0.1933 0.0544

FAK-means 0.1501 0.1566 0.1396 0.0033

BatK-means 0.1469 0.2685 0.0774 0.0517

Note: the best value is highlighted in ‘bold’.

 202

For DI metrics, Table 7.7 reports the DI value of six methods in balanced and un-

balanced datasets. As can be seen in Table 7.7, PSO is better than the other methods

in generating the highest DI value in all datasets, while WFARM generates better than

FAK-means and BatK-means, where the best average DI is (0.3909, 0.3673, 0.2857,

0.4747 and 0.2824) in (Reuters, TR11, TR12, TR23 and TR45) respectively. The

overall standard deviation of the WFARM algorithm is smaller than the other methods

in most datasets (refer to Reuters and TR12). The percentage of success to obtain a

high DI is 100% by WFARM against hybrid methods. This result means the solution

is more reliable and high in robustness. Figure 7.7 illustrates the average DI result of

the six methods represented in a graphical representation.

Figure 7.7. Average DI result: WFARM vs. PSO vs. K-means vs. Bisect K-means vs.

FA K-means vs. BatK-means using different datasets

 203

Table 7.8

Summary of quality performance results: WFARM vs. PSO vs. K-means vs. Bisect K-

means vs. FAK-means vs. BatK-means.

Datasets Algorithms
External Metrics Internal & Relative Metrics

Purity F-measure Entropy ADDC DBI DI

Reuters

(300

document

s and 6

classes)

WFARM

PSO

K-means

Bisect K-means

FAK-means

BatK-means

Datasets Algorithms Purity F-measure Entropy ADDC DBI DI

TR11

(414

document

s and 9

classes)

WFARM

PSO

K-means

Bisect K-means

FAK-means

BatK-means

Datasets Algorithms Purity F-measure Entropy ADDC DBI DI

TR12

(313

document

s and 8

classes)

WFARM

PSO

K-means

Bisect K-means

FAK-means

BatK-means

Datasets Algorithms Purity F-measure Entropy ADDC DBI DI

TR23

(204

document

s and 6

classes)

WFARM

PSO

K-means

Bisect K-means

FAK-means

BatK-means

Datasets Algorithms Purity F-measure Entropy ADDC DBI DI

TR45

(690

document

s and 10

classes)

WFARM

PSO

K-means

Bisect K-means

FAK-means

BatK-means

 204

The previous results indicate that WFARM generates the best quality results in

external performance metrics; namely Purity, and Entropy, against all static methods

(PSO, K-means, Bisect K-means, FAK-means, and BatK-means), but in F-measure,

WFARM produces the highest F-measure compared to all methods excluding the

BatK-means method as shown in Table 7.8. For the internal and relative metrics,

ADDC, DBI, and DI are generated as the best quality results only against hybrid

methods, FAK-means and BatK-means.

7.2.3 Evaluation Independent Samples T-test between WFARM and Static

Methods

Independent Samples T-test compares the means of two unrelated groups on similar

dependent variable. Alternately, Independent Samples T-test is used to understand

whether there is a significant (statistically) difference in the dependent variable

based on the independent variable (Ross, 2010). In the evaluation of WFARM against

other static methods, it is questioned whether the average of [any metrics] for

WFARM is significantly (statistically) different from the average of [any metrics] for

any other static methods. This involves testing whether the sample means for the

average of any metrics among any two methods subjects in the sample are

statistically different. The hypotheses for Independent Samples T-test can be

expressed in mathematical equivalents.

Null hypothesis H0: Mean (WFARM) = Mean (any static methods)

Alterative hypothesis H1: Mean (WFARM) ≠ Mean (any static methods)

Where, Mean (WFARM), Mean (any static methods) are the population means for the

WFARM algorithm and any other static method.

 205

Table 7.9

The P-value between WFARM & static methods using average purity results (sig 2

tailed) with different datasets.

Datasets

Algorithms

P-value using average Purity (sig 2

tailed)

Equal variances

assumed

Equal variances not

assumed

Reuters

(300 documents

and 6 classes)

WFARM and PSO 7.5357E-35 2.1850E-22

WFARM and K-means 1.0720E-38 1.9788E-24

WFARM and Bisect K-means 5.4242E-24 1.5012E-16

WFARM and FAK-means 2.3550E-89 4.5275E-70

WFARM and BatK-means 5.1725E-09 1.4877E-07

TR11

(414 documents

and 9 classes)

WFARM and PSO 8.2885E-30 1.2987E-22

WFARM and K-means 3.5848E-29 1.7263E-21

WFARM and Bisect K-means 1.0471E-10 5.8665E-09

WFARM and FAK-means 2.4134E-62 2.8869E-40

WFARM and BatK-means 0.3136 0.3166

TR12

(313 documents

and 8 classes)

WFARM and PSO 2.7896E-09 1.0220E-07

WFARM and K-means 0.0141 0.0171

WFARM and Bisect K-means 0.3972 0.4006

WFARM and FAK-means 5.0969E-75 1.7287E-50

WFARM and BatK-means 1.0808E-12 5.8565E-10

TR23

(204 documents

and 6 classes)

WFARM and PSO 1.7600E-12 7.5911E-10

WFARM and K-means 6.5395E-11 7.984E-09

WFARM and Bisect K-means 7.1881E-33 1.0171E-21

WFARM and FAK-means 6.2078E-72 3.5164E-53

WFARM and BatK-means 0.00199 0.00299

TR45

(690 documents

and 10 classes)

WFARM and PSO 5.9420E-35 1.8525E-24

WFARM and K-means 3.3588E-15 9.2252E-12

WFARM and Bisect K-means 3.2908E-15 9.8506E-12

WFARM and FAK-means 1.7519E-72 4.6537E-49

WFARM and BatK-means 0.0697 0.0740

Hint: The value highlighted in bold indicates not significance value.

 206

In Table 7.9, the associated P-value (sig 2-tailed test) using average Purity is

illustrated. Since the P-value between WFARM and any other methods is smaller than

(0.05), the null hypothesis is rejected, the mean of any metrics for WFARM and any

static methods is the same and the alternative hypothesis is accepted to conclude that

there is a significant difference in the mean of purity metric for WFARM and any

static methods. This excludes the P-value between WFARM and BatK-means (bold

value in Table 7.9) in two datasets, TR11 and TR45, which are (0.3136 and 0.3166,

0.0697 and 0.0740), larger than (0.05), and the P-value between WFARM and K-

means (bold value in Table 7.9) in the TR12 dataset. This means that the sample

means for average purity between WFARM and BatK-means and between WFARM

and K-means subjects in the sample are statistically not different (accepting the null

hypothesis in this situation).

In Table 7.10, the associated P-value (sig 2-tailed test) using average F-measure is

reported. As seen in the table, the P-value between WFARM and any other methods is

smaller than (0.05), the alternative hypothesis is accepted to conclude that there is a

significant difference in the mean of purity metric for WFARM and any static

methods and the null hypothesis is rejected. This excludes the P-value between

WFARM and BatK-means (bold value in Table 7.10) in the TR11 dataset, which is

larger than (0.05), and the P-value between WFARM and K-means (bold value in

Table 7.10) in the TR12 and TR23 datasets, and also between WFARM and PSO in

the TR23 dataset, where, the null hypothesis is accepted because the sample means

for average F-measure are statistically not different.

 207

Table 7.10

The P-value between WFARM & static methods using average F-measure results (sig

2 tailed) with different datasets.

Datasets

Algorithms

P-value using average F-measure (sig 2

tailed)

Equal variances

assumed

Equal variances not

assumed

Reuters

(300 documents

and 6 classes)

WFARM and PSO 2.1661E-34 3.8607E-22

WFARM and K-means 6.6481E-35 2.0587E-22

WFARM and Bisect K-means 1.3424E-20 1.1775E-14

WFARM and FAK-means 1.4353E-86 1.1085E-61

WFARM and BatK-means 8.5899E-08 1.1067E-06

TR11

(414 documents

and 9 classes)

WFARM and PSO 3.6937E-19 9.1096E-19

WFARM and K-means 4.3328E-17 3.2146E-16

WFARM and Bisect K-means 8.6466E-04 0.0011

WFARM and FAK-means 5.5624E-43 8.8676E-28

WFARM and BatK-means 0.4309 0.4316

TR12

(313 documents

and 8 classes)

WFARM and PSO 0.0043 0.0058

WFARM and K-means 0.2412 0.2459

WFARM and Bisect K-means 5.2691E-09 1.4151E-07

WFARM and FAK-means 1.0036E-57 1.9769E-52

WFARM and BatK-means 4.8149E-20 1.8406E-14

TR23

(204 documents

and 6 classes)

WFARM and PSO 0.6291 0.6308

WFARM and K-means 0.6298 0.6315

WFARM and Bisect K-means 2.4755E-08 1.2238E-07

WFARM and FAK-means 3.1148E-44 2.9028E-34

WFARM and BatK-means 0.07152 0.0763

TR45

(690 documents

and 10 classes)

WFARM and PSO 5.7629E-29 5.7274E-23

WFARM and K-means 2.5187E-08 3.1646E-07

WFARM and Bisect K-means 3.8213E-06 1.5047E-05

WFARM and FAK-means 4.4715E-60 1.2379E-41

WFARM and BatK-means 0.0161 0.0185

Hint: The value highlighted in bold indicates not significance value.

 208

Table 7.11

The P-value between WFARM & static methods using average Entropy results (sig 2

tailed) with different datasets.

Datasets

Algorithms

P-value using average Entropy (sig 2

tailed)

Equal variances

assumed

Equal variances not

assumed

Reuters

(300 documents

and 6 classes)

WFARM and PSO 4.8503E-40 1.1814E-25

WFARM and K-means 4.5425E-31 1.4058E-20

WFARM and Bisect K-means 1.2400E-19 3.6375E-14

WFARM and FAK-means 3.0772E-91 1.6751E-78

WFARM and BatK-means 1.8770E-05 6.0939E-05

TR11

(414 documents

and 9 classes)

WFARM and PSO 6.0493E-34 3.3017E-26

WFARM and K-means 1.7498E-25 1.8388E-18

WFARM and Bisect K-means 4.9078E-12 6.0876E-10

WFARM and FAK-means 1.1813E-63 2.2057E-39

WFARM and BatK-means 0.0169 0.0190

TR12

(313 documents

and 8 classes)

WFARM and PSO 1.2506E-14 3.5941E-11

WFARM and K-means 1.8669E-04 4.0755E-04

WFARM and Bisect K-means 0.8171 0.8179

WFARM and FAK-means 7.7271E-77 1.2582E-59

WFARM and BatK-means 1.7514E-11 3.3768E-09

TR23

(204 documents

and 6 classes)

WFARM and PSO 2.0144E-13 1.3595E-10

WFARM and K-means 1.4415E-11 2.2316E-09

WFARM and Bisect K-means 1.5171E-31 1.5072E-22

WFARM and FAK-means 3.9209E-62 1.7294E-59

WFARM and BatK-means 0.5874 0.5894

TR45

(690 documents

and 10 classes)

WFARM and PSO 2.6751E-33 1.0892E-22

WFARM and K-means 4.5030E-10 2.5965E-08

WFARM and Bisect K-means 3.2437E-12 9.0738E-10

WFARM and FAK-means 1.8378E-77 1.3670E-49

WFARM and BatK-means 0.1590 0.1638

Hint: The value highlighted in bold indicates not significance value.

 209

In Table 7.11, the associated P-value (sig 2-tailed test) using average Entropy is

recorded. The P-value between WFARM and other methods is smaller than (0.05). In

this situation, the null hypothesis is rejected and the alternative hypothesis is

accepted. The alternative hypothesis indicates that statistically, there is a significant

difference in the mean of Entropy metric for WFARM and any static methods.

However, this excludes the P-value between WFARM and Bisect K-means (illustrates

in bold value in Table 7.11) in the TR12 dataset, and also the P-value between

WFARM and BatK-means (highlight in bold value in Table 7.11) in the two datasets,

TR23 and TR45, which are larger than (0.05). In this case, the null hypothesis is

accepted, which indicates that there is no difference in the mean of Entropy.

In Table 7.12, the associated P-value (sig 2-tailed test) using average ADDC is

reported. As seen in Table 7.12, the P-value between WFARM and any other methods

is smaller than (0.05), the alternative hypothesis is accepted to conclude that there is

a significant difference in the mean of ADDC metric for WFARM and any static

methods and the null hypothesis is rejected. This excludes the P-value between

WFARM and PSO (highlighted value in bold in Table 7.12) in the TR12 dataset

which is (0.1116 and 0.1170), larger than (0.05); in this status, the null hypothesis H0

is accepted because the sample means for average Entropy are statistically not

different.

 210

Table 7.12

The P-value between WFARM & static methods using average ADDC results (sig 2

tailed) with different datasets.

Datasets

Algorithms

P-value using average ADDC (sig 2

tailed)

Equal variances

assumed

Equal variances

not assumed

Reuters

(300 documents

and 6 classes)

WFARM and PSO 4.1111E-07 3.5550E-06

WFARM and K-means 5.0850E-20 2.6432E-14

WFARM and Bisect K-means 4.9067E-10 3.1703E-08

WFARM and FAK-means 4.0892E-56 5.3011E-55

WFARM and BatK-means 6.7768E-19 1.0681E-13

TR11

(414 documents

and 9 classes)

WFARM and PSO 9.3507E-05 2.2941E-04

WFARM and K-means 1.7647E-06 1.0468E-05

WFARM and Bisect K-means 4.2178E-09 1.2511E-07

WFARM and FAK-means 1.9093E-33 5.0490E-22

WFARM and BatK-means 5.8447E-22 1.1521E-15

TR12

(313 documents

and 8 classes)

WFARM and PSO 0.1116 0.1170

WFARM and K-means 1.7738E-15 1.1452E-11

WFARM and Bisect K-means 0.0046 0.0062

WFARM and FAK-means 9.3256E-75 1.8792E-50

WFARM and BatK-means 3.8691E-12 1.3257E-09

TR23

(204 documents

and 6 classes)

WFARM and PSO 3.5086E-07 3.1477E-06

WFARM and K-means 9.5827E-22 2.7166E-15

WFARM and Bisect K-means 8.1957E-18 4.5868E-13

WFARM and FAK-means 1.0029E-73 6.4749E-66

WFARM and BatK-means 3.7862E-14 7.3691E-11

TR45

(690 documents

and 10 classes)

WFARM and PSO 0.0012 0.0019

WFARM and K-means 1.3067E-20 1.1072E-14

WFARM and Bisect K-means 1.2275E-08 2.7890E-07

WFARM and FAK-means 3.5010E-46 8.6433E-29

WFARM and BatK-means 1.5965E-13 1.7110E-10

Hint: The value highlighted in bold indicates not significance value.

 211

Table 7.13

The P-value between WFARM & static methods using average DBI results (sig 2

tailed) with different datasets.

Datasets

Algorithms

P-value using average DBI (sig 2

tailed)

Equal variances

assumed

Equal variances

not assumed

Reuters

(300 documents and

6 classes)

WFARM and PSO 3.9736E-64 2.4535E-41

WFARM and K-means 3.3554E-17 1.0197E-12

WFARM and Bisect K-means 0.0019 0.0028

WFARM and FAK-means 2.1062E-72 9.6453E-43

WFARM and BatK-means 1.5944E-12 7.4668E-10

TR11

(414 documents and

9 classes)

WFARM and PSO 6.9172E-62 1.1491E-52

WFARM and K-means 1.6095E-27 8.6671E-19

WFARM and Bisect K-means 3.0579E-11 2.9550E-09

WFARM and FAK-means 1.2605E-82 5.0308E-82

WFARM and BatK-means 8.6388E-08 1.1116E-06

TR12

(313 documents and

8 classes)

WFARM and PSO 6.6255E-68 1.0582E-41

WFARM and K-means 4.3956E-23 4.7159E-16

WFARM and Bisect K-means 1.1245E-07 1.3654E-06

WFARM and FAK-means 5.5711E-77 9.2456E-48

WFARM and BatK-means 2.7468E-04 5.6162E-04

TR23

(204 documents and

6 classes)

WFARM and PSO 4.9061E-28 6.5693E-19

WFARM and K-means 9.0250E-15 2.6256E-11

WFARM and Bisect K-means 6.6772E-19 9.1849E-14

WFARM and FAK-means 5.9442E-67 1.7099E-39

WFARM and BatK-means 1.1302E-06 7.4928E-06

TR45

(690 documents and

10 classes)

WFARM and PSO 4.0577E-69 7.1991E-46

WFARM and K-means 6.3778E-17 1.4437E-12

WFARM and Bisect K-means 4.1942E-10 2.6889E-08

WFARM and FAK-means 5.4503E-88 3.6790E-53

WFARM and BatK-means 1.4078E-07 1.6264E-06

Hint: The value highlighted in bold indicates not significance value.

 212

Table 7.14

The P-value between WFARM & static methods using average DI results (sig 2 tailed)

with different datasets.

Datasets

Algorithms

P-value using average DI (sig 2 tailed)

Equal variances

assumed

Equal variances not

assumed

Reuters

(300 documents

and 6 classes)

WFARM and PSO 1.9596E-40 2.7765E-25

WFARM and K-means 0.0170 0.0201

WFARM and Bisect K-means 2.745E-04 5.5816E-04

WFARM and FAK-means 4.6583E-71 5.6965E-63

WFARM and BatK-means 1.0172E-28 1.4515E-19

TR11

(414 documents

and 9 classes)

WFARM and PSO 4.2066E-16 4.6106E-12

WFARM and K-means 0.5833 0.5854

WFARM and Bisect K-means 7.0952E-16 2.8851E-12

WFARM and FAK-means 1.7237E-64 2.4456E-52

WFARM and BatK-means 1.3589E-25 7.0368E-18

TR12

(313 documents

and 8 classes)

WFARM and PSO 3.0417E-45 1.3087E-27

WFARM and K-means 9.4771E-05 2.3518E-04

WFARM and Bisect K-means 0.0020 0.0030

WFARM and FAK-means 3.2519E-59 4.8446E-38

WFARM and BatK-means 1.6991E-14 4.4805E-11

TR23

(204 documents

and 6 classes)

WFARM and PSO 1.0636E-06 7.1099E-06

WFARM and K-means 0.1057 0.1108

WFARM and Bisect K-means 5.8999E-08 7.9744E-07

WFARM and FAK-means 8.1165E-66 9.812E-66

WFARM and BatK-means 6.5333E-13 3.6776E-10

TR45

(690 documents

and 10 classes)

WFARM and PSO 2.1441E-31 1.5248E-20

WFARM and K-means 8.0575E-04 0.0014

WFARM and Bisect K-means 0.0028 0.0040

WFARM and FAK-means 1.9527E-68 1.8833E-56

WFARM and BatK-means 1.2840E-20 7.7344E-15

Hint: The value highlighted in bold indicates not significance value.

 213

In Table 7.13, the associated P-value (sig 2-tailed test) using average DBI is

reported. From the table, the P-value between WFARM and any other methods is

smaller than (0.05), the alternative hypothesis is accepted to conclude that there is a

significant difference in the mean of ADDC metric for WFARM and any static

methods and the null hypothesis is rejected.

In Table 7.14, the associated P-value (sig 2-tailed test) using average DI is shown.

As see in the table, the P-value between WFARM and any other methods is smaller

than (0.05), the alternative hypothesis is accepted to conclude that there is a

significant difference in the mean of DI metric for WFARM and any static methods

and the null hypothesis is rejected. This excludes the P-value between WFARM and

K-means (highlighted value in bold in Table 7.14) in the TR11 and TR23 datasets,

which are (0.1116 and 0.1170, 0.1057 and 0.1108), and are larger than (0.05); the

null hypothesis H0 is accepted in this case because the sample means for average DI

are statistically not different.

7.3 Comparison WFARM with Dynamic Methods

This section includes the evaluation of WFARM against two dynamic methods,

Practical General Stochastic Clustering Method (PGSCM) (Tan, Ting, & Teng,

2011a), and Dynamic Hybrid Genetic algorithm with Particle Swarm Optimization

(DCPG) (Kuo, Syu, Chen, & Tien, 2012). The comparison is conducted in three

parts; evaluation of the produced number of clusters among WFARM, PGSCM and

DCPG, evaluation of the performance metrics among WFARM, PGSCM and DCPG,

 214

and evaluation of the statistical Independent Samples T-test among WFARM,

PGSCM and DCPG.

7.3.1 Evaluation Number of Clusters between WFARM and Dynamic Methods

Table 7.15 displays the average number of clusters automatically generated by

WFARM, PGSCM and DCPG without any information support about the dataset.

Table 7.15

Average number of clusters: WFARM vs. PGSCM vs. DCPG using different datasets.

Datasets

 Average number of clusters

WFARM PGSCM DCPG

Reuters

(300 documents and 6 classes)
6 6.07 ≈ 6 9.03 ≈ 9

TR11

(414 documents and 9 classes)
9.27 ≈ 9 6.93 ≈ 7 9.80 ≈ 10

TR12

(313 documents and 8 classes)
8 6.27 ≈ 6 8.90 ≈ 9

TR23

(204 documents and 6 classes)
6.07 ≈ 6 3.63 ≈ 4 6.53 ≈ 7

TR45

(690 documents and 10 classes)
9.83 ≈ 10 3.90 ≈ 4 13.77 ≈ 14

As can be seen in Table 7.15, the average number of clusters produced by the

WFARM in iteration 20 is approximately (6, 9, 8, 6, and 10) in the (Reuters, TR11,

TR12, TR23 and TR45) datasets respectively, these values are near to the real

number of clusters; while PGSCM only produces 6 in the Reuters dataset. This result

means that WFARM is better than PGSCM and DCPG. Figure 7.8 presents the results

of the number of generated clusters by WFARM, PGSCM, DCPG and the real

number of clusters of the datasets.

 215

Figure 7.8. Number of generated clusters: WFARM vs. the real number of clusters vs.

PGSCM vs. DCPG

7.3.2 Evaluation Performance Metrics between WFARM and Dynamic Methods

In this section, WFARM is evaluated against two dynamic methods, namely PGSCM

and DCPG. The evaluations are carried out using external quality metrics such as

Purity, F-measure and Entropy, and using internal and relative quality metrics such

as ADDC, DBI and DI. Table 7.16 reports the average purity, best and worst purity,

and standard deviation of WFARM, PGSCM and DCPG.

As observed in Table 7.16, WFARM generates a higher purity against PGSCM and

DCPG, where the best average purity value is 0.7351, 0.6810, 0.4752, 0.6266, and

0.6355 generated by WFARM in Reuters, TR11, TR12, TR23 and TR45 respectively.

The overall standard deviation of the WFARM algorithm is smaller than PGSCM and

DCPG in most datasets (refer to Reuters, TR12, TR23 and TR45), which means the

 216

solution generated by WFARM is more reliable and high in robustness. The

percentage of success to obtain the highest purity is 100% by WFARM.

Table 7.16

External quality Purity (average, best, worst, standard deviation): WFARM vs.

PGSCM vs. DCPG using different datasets.

Datasets Algorithms
Average

Purity

Best

Purity

Worst

Purity

Standard

Deviation

Reuters

(300 documents

and 6 classes)

WFARM 0.7351 0.7433 0.7300 0.0051

PGSCM 0.2333 0.2633 0.1967 0.0160

DCPG 0.3226 0.5967 0.1933 0.1091

Datasets Algorithms Average

Purity

Best

Purity

Worst

Purity

Standard

Deviation

TR11

(414 documents

and 9 classes)

WFARM 0.6810 0.7246 0.6594 0.0224

PGSCM 0.3385 0.3671 0.3188 0.0160

DCPG 0.3874 0.5290 0.3261 0.0582

Datasets Algorithms Average

Purity

Best

Purity

Worst

Purity

Standard

Deviation

TR12

(313 documents

and 8 classes)

WFARM 0.4752 0.4760 0.4696 0.0022

PGSCM 0.3036 0.3195 0.2971 0.0065

DCPG 0.3714 0.4441 0.3131 0.0435

Datasets Algorithms Average

Purity

Best

Purity

Worst

Purity

Standard

Deviation

TR23

(204 documents

and 6 classes)

WFARM 0.6266 0.6324 0.6176 0.0032

PGSCM 0.4472 0.4706 0.4461 0.0046

DCPG 0.5209 0.6569 0.4608 0.0489

Datasets Algorithms Average

Purity

Best

Purity

Worst

Purity

Standard

Deviation

TR45

(690 documents

and 10 classes)

WFARM 0.6355 0.6609 0.5812 0.0161

PGSCM 0.2681 0.3464 0.2319 0.0321

DCPG 0.3258 0.5145 0.2478 0.0616

Note: the best value is highlighted in ‘bold’.

Figure 7.9 shows a plotted graph of the external quality metrics; namely the average

purity result for WFARM, PGSCM and DCPG.

 217

Figure 7.9. Average Purity result: WFARM vs. PGSCM vs. DCPG using different

datasets

For F-measure metric, Table 7.17 reports the average F-measure (precision and

recall), best and worst F-measure and standard deviation of WFARM, PGSCM and

DCPG. As observed in Table 7.17, WFARM generates the highest average F-measure

(0.7069, 0.5631, 0.3649, and 0.5031) against PGSCM and DCPG in most datasets,

Reuters, TR11, TR12 and TR45 respectively. However, DCPG generates a higher F-

measure of 0.4457 only in the TR23 dataset. Further, the precision and recall for

WFARM are higher in most datasets which highly affect the F-measure value of

WFARM. The overall standard deviation of the WFARM algorithm is smaller than

PGSCM and DCPG in most datasets (refer to Reuters, TR12, TR23 and TR45). It

can be concluded that the solution generated by WFARM is more reliable and high in

robustness. The percentage of success to obtain the highest F-measure is 80% by

WFARM. Figure 7.10 shows a plotted graph of the external quality metrics, the

average F-measure result for WFARM, PGSCM and DCPG.

 218

Table 7.17

External quality F-measure (average, best, worst, standard deviation): WFARM vs.

PGSCM vs. DCPG using different datasets.

Datasets Algorithms
Average F-measure

[Precision, Recall]

Best

F-measure

Worst

F-measure

Standard

Deviation

Reuters

(300 documents

and 6 classes)

WFARM 0.7069 [0.6808, 0.7351] 0.7138 0.7022 0.0045

PGSCM 0.2369 [0.2406, 0.2333] 0.2740 0.2067 0.0178

DCPG 0.3565 [0.3984, 0.3226] 0.5585 0.2755 0.0839

Datasets Algorithms Average F-measure

[Precision, Recall]

Best

F-measure

Worst

F-measure

Standard

Deviation

TR11

(414 documents

and 9 classes)

WFARM 0.5631 [0.4800,0.6810] 0.6547 0.4615 0.0520

PGSCM 0.2566 [0.2066, 0.3385] 0.3092 0.1950 0.0321

DCPG 0.3346 [0.2945, 0.3874] 0.5345 0.2661 0.0690

Datasets Algorithms Average F-measure

[Precision, Recall]

Best

F-measure

Worst

F-measure

Standard

Deviation

TR12

(313 documents

and 8 classes)

WFARM 0.3649 [0.2962, 0.4752] 0.3676 0.3467 0.0071

PGSCM 0.2273 [0.1817, 0.3036] 0.2563 0.1974 0.0167

DCPG 0.3121 [0.2691, 0.3714] 0.4097 0.2705 0.0490

Datasets Algorithms Average F-measure

[Precision, Recall]

Best

F-measure

Worst

F-measure

Standard

Deviation

TR23

(204 documents

and 6 classes)

WFARM 0.4337 [0.3316, 0.6266] 0.4460 0.4024 0.0089

PGSCM 0.3465 [0.2828, 0.4472] 0.4061 0.2779 0.0327

DCPG 0.4457 [0.3895, 0.5209] 0.5839 0.3719 0.0479

Datasets Algorithms Average F-measure

[Precision, Recall]

Best

F-measure

Worst

F-measure

Standard

Deviation

TR45

(690 documents

and 10 classes)

WFARM 0.5031 [0.4164, 0.6355] 0.5489 0.4314 0.0227

PGSCM 0.2399 [0.2171, 0.2681] 0.3131 0.2061 0.0312

DCPG 0.2581 [0.2137, 0.3258] 0.4495 0.2301 0.0470

Note: the best value is highlighted in ‘bold’, average precision and average recall in [].

Figure 7.10. Average F-measure result: WFARM vs. PGSCM vs. DCPG using

different datasets

 219

For Entropy metric, Table 7.18 reports the average Entropy, best and worst Entropy,

and standard deviation of WFARM, PGSCM and DCPG. In Table 7.18, it can be seen

that the Entropy of WFARM is better (smaller) than PGSCM and DCPG in all

datasets (balanced and un-balanced datasets), where the best average Entropy is

1.0420, 1.2584, 1.9200, 1.4980, and 1.6742 outputted by WFARM. The overall

standard deviation of the WFARM algorithm is smaller than PGSCM and DCPG in

most un-balanced datasets (refer to TR12, TR23 and TR45). The percentage of

success to obtain a lower Entropy is 100% by WFARM.

Table 7.18

External quality Entropy (average, best, worst, standard deviation): WFARM vs.

PGSCM vs. DCPG using different datasets.

Datasets Algorithms
Average

Entropy

Best

Entropy

Worst

Entropy

Standard

Deviation

Reuters

(300 documents

and 6 classes)

WFARM 1.0420 1.0044 1.0653 0.0258

PGSCM 2.5176 2.4590 2.5687 0.0255

DCPG 2.1418 1.4689 2.5154 1.4689

Datasets Algorithms Average

Entropy

Best

Entropy

Worst

Entropy

Standard

Deviation

TR11

(414 documents

and 9 classes)

WFARM 1.2584 1.0489 1.3384 0.0798

PGSCM 2.5603 2.4322 2.6168 0.0521

DCPG 2.3780 1.7252 2.6227 0.2371

Datasets Algorithms Average

Entropy

Best

Entropy

Worst

Entropy

Standard

Deviation

TR12

(313 documents

and 8 classes)

WFARM 1.9200 1.9154 1.9531 0.0119

PGSCM 2.6613 2.6006 2.7138 0.0301

DCPG 2.4581 2.1306 2.7122 0.1844

Datasets Algorithms Average

Entropy

Best

Entropy

Worst

Entropy

Standard

Deviation

TR23

(204 documents

and 6 classes)

WFARM 1.4980 1.4295 1.5306 0.0198

PGSCM 2.0439 1.9702 2.0828 0.0245

DCPG 1.7994 1.4088 2.0245 0.1720

Datasets Algorithms Average

Entropy

Best

Entropy

Worst

Entropy

Standard

Deviation

TR45

(690 documents

and 10 classes)

WFARM 1.6742 1.5923 1.7450 0.0434

PGSCM 2.9460 2.7703 3.0147 0.0584

DCPG 2.6581 1.8688 2.9685 0.2258

Note: the best value is highlighted in ‘bold’.

 220

The highest values of Purity and F-measure and a lower value of Entropy indicate

the best clustering algorithm (Forsati, Mahdavi, Shamsfard, & Meybodi, 2013;

Murugesan & Zhang, 2011a, 2011b), It can be concluded from the previous results

that WFARM is better than PGSCM and DCPG in external quality metrics. Figure

7.11 shows a plotted graph of the external quality metrics, namely the average

Entropy result for WFARM, PGSCM and DCPG.

Figure 7.11. Average Entropy result: WFARM vs. PGSCM vs. DCPG using different

datasets

For ADDC metric, Table 7.19 reports the average ADDC, best and worst ADDC and

standard deviation of WFARM, PGSCM and DCPG. As shown in Table 7.19, the

WFARM algorithm generates a lower average ADDC compared to PGSCM in all

balanced and un-balanced datasets, while DCPG produces a lower average ADDC

compared against WFARM and PGSCM in all balanced and un-balanced datasets. A

smaller ADDC value means the best quality clustering algorithm (Cui, Potok, &

Palathingal, 2005; Forsati, Mahdavi, Shamsfard, & Meybodi, 2013). The overall

standard deviation of the WFARM algorithm is smaller than PGSCM and DCPG in

all datasets.

 221

Table 7.19

Internal quality ADDC (average, best, worst, standard deviation): WFARM vs.

PGSCM vs. DCPG using different datasets.

Datasets Algorithms
Average

ADDC

Best

ADDC

Worst

ADDC

Standard

Deviation

Reuters

(300 documents

and 6 classes)

WFARM 1.1786 1.1737 1.1807 0.0027

PGSCM 1.4079 1.3891 1.4453 0.0134

DCPG 0.6047 0.1802 0.9780 0.2046

Datasets Algorithms Average

ADDC

Best

ADDC

Worst

ADDC

Standard

Deviation

TR11

(414 documents

and 9 classes)

WFARM 0.8293 0.8198 0.8529 0.0088

PGSCM 1.0379 1.0226 1.0670 0.0093

DCPG 0.4833 0.2257 0.7256 0.1211

Datasets Algorithms Average

ADDC

Best

ADDC

Worst

ADDC

Standard

Deviation

TR12

(313 documents

and 8 classes)

WFARM 0.7928 0.7821 0.7942 0.0033

PGSCM 1.0605 1.0467 1.0832 0.0077

DCPG 0.4924 0.1566 0.7368 0.1662

Datasets Algorithms Average

ADDC

Best

ADDC

Worst

ADDC

Standard

Deviation

TR23

(204 documents

and 6 classes)

WFARM 0.6527 0.6407 0.6559 0.0030

PGSCM 0.8644 0.8091 0.8907 0.0156

DCPG 0.4474 0.1800 0.7969 0.1736

Datasets Algorithms Average

ADDC

Best

ADDC

Worst

ADDC

Standard

Deviation

TR45

(690 documents

and 10 classes)

WFARM 0.9448 0.9284 0.9503 0.0068

PGSCM 1.1178 1.0716 1.1733 0.0261

DCPG 0.5339 0.2264 1.1048 0.2193

Note: the best value is highlighted in ‘bold’.

Figure 7.12. Average Entropy result: WFARM vs. PGSCM vs. DCPG using different

datasets

 222

This result indicates that the solution generated by WFARM is more reliable and high

in robustness. The percentage of success to obtain a lower ADDC is 100% by

WFARM against PGSCM and 0% against DCPG. Figure 7.12 shows a plotted graph

of the result of the internal quality metrics, average ADDC, for WFARM, PGSCM

and DCPG.

For DBI metric, Table 7.20 illustrates the average DBI, best and worst DBI and

standard deviation of WFARM, PGSCM and DCPG.

Table 7.20

Relative quality DBI (average, best, worst, standard deviation): WFARM vs. PGSCM

vs. DCPG using different datasets.

Datasets Algorithms
Average

DBI

Best

DBI

Worst

DBI

Standard

Deviation

Reuters

(300 documents

and 6 classes)

WFARM 4.1820 4.1148 4.2540 0.0395

PGSCM 9.1919 2.8720 19.6237 4.9623

DCPG 2.3574 1.0284 3.8852 0.9094

Datasets Algorithms Average

DBI

Best

DBI

Worst

DBI

Standard

Deviation

TR11

(414 documents

and 9 classes)

WFARM 4.6518 4.4176 4.8660 0.1022

PGSCM 2.8577 2.6030 3.6195 0.1954

DCPG 2.5883 1.3649 4.9672 0.8395

Datasets Algorithms Average

DBI

Best

DBI

Worst

DBI

Standard

Deviation

TR12

(313 documents

and 8 classes)

WFARM 4.9590 4.8340 4.9750 0.0361

PGSCM 2.6426 2.5128 2.9368 0.1039

DCPG 2.3300 1.1849 3.7710 0.6423

Datasets Algorithms Average

DBI

Best

DBI

Worst

DBI

Standard

Deviation

TR23

(204 documents

and 6 classes)

WFARM 3.1373 3.0462 3.2194 0.0373

PGSCM 3.6783 5.0163 2.8169 0.6700

DCPG 2.6989 0.9209 6.6405 1.6553

Datasets Algorithms Average

DBI

Best

DBI

Worst

DBI

Standard

Deviation

TR45

(690 documents

and 10 classes)

WFARM 4.2858 4.1705 4.3443 0.0399

PGSCM 3.3990 4.3600 2.6893 0.4044

DCPG 2.4342 1.3880 5.6184 0.9863

Note: the best value is highlighted in ‘bold’.

 223

In Table 7.20, it is noticed that DCPG is the best to generate a smaller DBI value in

balanced and un-balanced datasets against the WFARM and PGSCM methods, where

the best average DBI value is 2.3574, 2.5883, 2.3300, 2.6989 and 2.4342 in Reuters,

TR11, TR12, TR23, TR45 respectively outputted by DCPG; while WFARM produces

the worst DBI values in all datasets. The standard deviation of the WFARM algorithm

is smaller than DCPG and PGSCM. This result indicates that WFARM is more

accurate. Figure 7.13 shows a plotted graph of the result of the relative quality

metrics, average DBI, for WFARM, PGSCM and DCPG.

Figure 7.13. Average DBI result: WFARM vs. PGSCM vs. DCPG using different

datasets

Table 7.21 illustrates the average DI, best and worst DI and standard deviation of

WFARM, PGSCM and DCPG. As noticed in the table, the average DI value for

PGSCM is larger than the DI value of WFARM and DCPG in three un-balanced

datasets; TR11, TR12, and TR45; while in the remaining datasets, the balanced

dataset (Reuters) and un-balanced (TR23) dataset show the WFARM outperforming

PGSCM.

 224

Table 7.21

Relative quality DI (average, best DI, worst DI, standard deviation): WFARM vs.

PGSCM vs. DCPG using different datasets.

Datasets Algorithms
Average

DI

Best

DI

Worst

DI

Standard

Deviation

Reuters

(300 documents

and 6 classes)

WFARM 0.3909 0.3955 0.3642 0.0054

PGSCM 0.1818 0.6402 0.0532 0.1763

DCPG 0.4494 0.9944 0.0997 0.2863

Datasets Algorithms Average

DI

Best

DI

Worst

DI

Standard

Deviation

TR11

(414 documents

and 9 classes)

WFARM 0.3673 0.3770 0.3412 0.0096

PGSCM 0.5964 0.7188 0.3914 0.0723

DCPG 0.3657 0.6937 0.1460 0.1579

Datasets Algorithms Average

DI

Best

DI

Worst

DI

Standard

Deviation

TR12

(313 documents

and 8 classes)

WFARM 0.2857 0.2870 0.2816 0.0015

PGSCM 0.6743 0.7453 0.5101 0.0591

DCPG 0.4125 0.7973 0.1316 0.1642

Datasets Algorithms Average

DI

Best

DI

Worst

DI

Standard

Deviation

TR23

(204 documents

and 6 classes)

WFARM 0.4747 0.5046 0.4626 0.0109

PGSCM 0.4721 0.6442 0.2968 0.1268

DCPG 0.5094 1.0303 0.1080 0.3291

Datasets Algorithms Average

DI

Best

DI

Worst

DI

Standard

Deviation

TR45

(690 documents

and 10 classes)

WFARM 0.2824 0.2903 0.2719 0.0059

PGSCM 0.5364 0.7113 0.4036 0.0870

DCPG 0.3277 0.7490 0.0758 0.1667

Note: the best value is highlighted in ‘bold’.

Furthermore, in Table 7.21, it can be observed that DCPG is the best in generating a

high DI value against PGSCM and WFARM in the Reuters and TR23 datasets.

According to Youssef (2011), a higher DI value indicates the best quality clustering.

The standard deviation of solution found by the WFARM algorithm is smaller than

DCPG and PGSCM in balanced and un-balanced datasets, which means that WFARM

can find a near optimal solution in most runs. Figure 7.14 shows a plotted graph of

the result of the relative quality metrics, average DI, for WFARM, PGSCM and

DCPG.

 225

Figure 7.14. Average DI result: WFARM vs. PGSCM vs. DCPG using different

datasets.

The previous results indicate that WFARM generates the best quality results in

external performance metrics, namely Purity, F-measure and Entropy, against two

dynamic methods, PGSCM and DCPG, as shown in Table 7.22. Whereas, for the

internal and relative metrics, ADDC, DBI and DI, DCPG generates the best quality

results in ADDC and DBI metrics, and PGSCM produces the best DI in most

datasets.

Table 7.22

Summary of quality performance results: WFARM vs. PGSCM vs. DCPG.

Datasets Algorithms

External Metrics
Internal and Relative

Metrics

Purity
F-

measure
Entropy ADDC DBI DI

Reuters

(300

documents

and 6

classes)

WFARM

PGSCM

DCPG

 226

Table 7.22 continued

Datasets Algorithms

External Metrics
Internal and Relative

Metrics

Purity
F-

measure
Entropy ADDC DBI DI

TR11

(414

documents

and 9

classes)

WFARM

PGSCM

DCPG

Datasets Algorithms

External Metrics
Internal and Relative

Metrics

Purity
F-

measure
Entropy ADDC DBI DI

TR12

(313

documents

and 8

classes)

WFARM

PGSCM

DCPG

Datasets Algorithms

External Metrics
Internal and Relative

Metrics

Purity
F-

measure
Entropy ADDC DBI DI

TR23

(204

documents

and 6

classes)

WFARM

PGSCM

DCPG

Datasets Algorithms

External Metrics
Internal and Relative

Metrics

Purity
F-

measure
Entropy ADDC DBI DI

TR45

(690

documents

and 10

classes)

WFARM

PGSCM

DCPG

 227

7.3.3 Evaluation Independent Samples T-test between WFARM and Dynamic

Methods

This section includes the analysis of Independent Samples T-test between WFARM

and PGSCM, and between WFARM and DCPG. The hypotheses for Independent

Samples T-test can be expressed in mathematical equivalents.

Null hypothesis H0: Mean (WFARM) = Mean (any dynamic methods)

Alterative hypothesis H1: Mean (WFARM) ≠ Mean (any dynamic methods)

Where, Mean (WFARM), Mean (any dynamic methods) are the population means for

WFARM method and any dynamic method.

In Table 7.23, the associated P-value (2-tailed test) using thirty samples of average

purity between WFARM and PGSCM, and between WFARM and DCPG are reported.

Since the P-value is smaller than (0.05), the null hypothesis is rejected, so that the

mean of purity metric for WFARM and dynamic methods are the same and the

alternative hypothesis is accepted to conclude that there is a significant difference in

the mean of purity for WFARM and any dynamic methods.

 228

Table 7.23

The P-value between WFARM & dynamic methods using average purity results (sig 2

tailed) with different datasets.

Datasets

Algorithms

P-value using Average Purity (sig 2 tailed)

Equal variances

assumed

Equal variances not

assumed

Reuters

(300 documents

and 6 classes)

WFARM and PGSCM 4.4059E-79 6.4431E-52

WFARM and DCPG 1.8942E-28 5.8698E-19

TR11

(414 documents

and 9 classes)

WFARM and PGSCM 4.9219E-57 7.1252E-53

WFARM and DCPG 1.8024E-33 1.9460E-25

TR12

(313 documents

and 8 classes)

WFARM and PGSCM 1.9896E-74 5.8563E-50

WFARM and DCPG 6.3600E-19 1.0330E-13

TR23

(204 documents

and 6 classes)

WFARM and PGSCM 7.3247E-81 1.9843E-73

WFARM and DCPG 4.5355E-17 1.1807E-12

TR45

(690 documents

and 10 classes)

WFARM and PGSCM 3.2665E-52 1.1143E-41

WFARM and DCPG 3.1525E-34 7.0949E-24

Hint: The value highlighted in bold indicates not significance value.

In Table 7.24, the associated P-value (2-tailed test) using thirty samples of average

F-measure between WFARM and PGSCM, and between WFARM and DCPG are

reported. As see in the table, all P-values are smaller than (0.05), so it can be

concluded that the mean of purity metric for WFARM and dynamic methods are not

similar. In this case, the null hypothesis is rejected and the alternative hypothesis is

accepted. This excludes the P-value highlighted in bold in Table 7.24 between

 229

WFARM and DCPG in the TR23 dataset that indicates a not significant value, so in

this situation, the null hypothesis is accepted.

Table 7.24

The P-value between WFARM & dynamic methods using average F-measure results

(sig 2 tailed) with different datasets.

Datasets

Algorithms

P-value using average F-measure (sig 2

tailed)

Equal variances

assumed

Equal variances not

assumed

Reuters

(300 documents

and 6 classes)

WFARM and PGSCM 3.9511E-75 5.3917E-47

WFARM and DCPG 1.1051E-30 3.6710E-20

TR11

(414 documents

and 9 classes)

WFARM and PGSCM 6.0046E-35 3.6873E-31

WFARM and DCPG 6.2278E-21 3.1001E-20

TR12

(313 documents

and 8 classes)

WFARM and PGSCM 8.5602E-45 6.3043E-34

WFARM and DCPG 2.4536E-07 2.0968E-06

TR23

(204 documents

and 6 classes)

WFARM and PGSCM 2.2552E-20 1.3820E-15

WFARM and DCPG 0.1892 0.1937

TR45

(690 documents

and 10 classes)

WFARM and PGSCM 2.8176E-42 1.0575E-39

WFARM and DCPG 2.0262E-33 2.9935E-27

Hint: The value highlighted in bold indicates not significance value.

In Table 7.25, the associated P-values (2-tailed test) using thirty samples of average

Entropy between WFARM and PGSCM, and between WFARM and DCPG are

reported. From the table, all P-values are smaller than (0.05), so it can be concluded

 230

that the mean of Entropy metric for WFARM and dynamic methods are not similar. In

this case, the null hypothesis is rejected and the alternative hypothesis is accepted.

Table 7.25

The P-value between WFARM & dynamic methods using average Entropy results (sig

2 tailed) with different datasets.

Datasets

Algorithms

P-value using average Entropy (sig 2 tailed)

Equal variances

assumed

Equal variances not

assumed

Reuters

(300 documents

and 6 classes)

WFARM and PGSCM 9.8114E-87 1.0031E-86

WFARM and DCPG 6.0191E-27 2.9564E-18

TR11

(414 documents

and 9 classes)

WFARM and PGSCM 2.1753E-59 5.8230E-53

WFARM and DCPG 2.6886E-32 7.7915E-24

TR12

(313 documents

and 8 classes)

WFARM and PGSCM 2.2843E-72 3.4215E-51

WFARM and DCPG 7.0966E-23 5.7373E-16

TR23

(204 documents

and 6 classes)

WFARM and PGSCM 2.5191E-65 3.2335E-63

WFARM and DCPG 1.7835E-13 1.4925E-10

TR45

(690 documents

and 10 classes)

WFARM and PGSCM 1.4465E-65 1.4555E-61

WFARM and DCPG 2.8654E-31 2.4103E-21

Hint: The value highlighted in bold indicates not significance value.

In Table 7.26, the associated P-values (2-tailed test) using thirty samples of average

ADDC between WFARM and PGSCM, and between WFARM and DCPG are

reported. As can be seen in Table 7.25, all P-values are smaller than (0.05), so it can

 231

be concluded that the mean of ADDC metric for WFARM and dynamic methods are

not similar. In this case, the null hypothesis is rejected and the alternative hypothesis

is accepted.

Table 7.26

The P-value between WFARM & dynamic methods using average ADDC results (sig

2 tailed) with different datasets.

Datasets

Algorithms

P-value using average ADDC (sig 2 tailed)

Equal variances

assumed

Equal variances not

assumed

Reuters

(300 documents

and 6 classes)

WFARM and PGSCM 1.6385E-64 1.2136E-39

WFARM and DCPG 4.1734E-22 1.7973E-15

TR11

(414 documents

and 9 classes)

WFARM and PGSCM 7.4487E-64 1.0987E-63

WFARM and DCPG 1.9985E-22 9.7693E-16

TR12

(313 documents

and 8 classes)

WFARM and PGSCM 1.4968E-80 1.3753E-58

WFARM and DCPG 4.5782E-14 8.3039E-11

TR23

(204 documents

and 6 classes)

WFARM and PGSCM 8.4728E-59 1.9617E-36

WFARM and DCPG 2.2122E-08 4.3436E-07

TR45

(690 documents

and 10 classes)

WFARM and PGSCM 8.9946E-41 1.2422E-27

WFARM and DCPG 1.2082E-14 3.6333E-11

Hint: The value highlighted in bold indicates not significance value.

In Table 7.27, the associated P-values (2-tailed test) using thirty samples of average

DBI between WFARM and PGSCM, and between WFARM and DCPG are reported.

From the table, all P-values are smaller than (0.05), so it can be concluded that the

 232

mean of DBI metric for WFARM and dynamic methods are not similar. In this case,

the null hypothesis is rejected and the alternative hypothesis is accepted. This

excludes, the P-value highlighted in bold in Table 7.27 between WFARM and DCPG

in the TR23 dataset that indicates a not significant value, so in this situation, the null

hypothesis is accepted.

Table 7.27

The P-value between WFARM & dynamic methods using average DBI results (sig 2

tailed) with different datasets.

Datasets

Algorithms

P-value using average DBI (sig 2 tailed)

Equal variances

assumed

Equal variances not

assumed

Reuters

(300 documents

and 6 classes)

WFARM and PGSCM 8.0093E-07 5.8255E-06

WFARM and DCPG 8.0761E-16 7.2634E-12

TR11

(414 documents

and 9 classes)

WFARM and PGSCM 1.4588E-46 4.2161E-38

WFARM and DCPG 2.3359E-19 3.9018E-14

TR12

(313 documents

and 8 classes)

WFARM and PGSCM 3.2801E-70 9.9954E-48

WFARM and DCPG 3.2043E-30 6.3391E-20

TR23

(204 documents

and 6 classes)

WFARM and PGSCM 4.4507E-05 1.2669E-04

WFARM and DCPG 0.1524 0.1577

TR45

(690 documents

and 10 classes)

WFARM and PGSCM 2.7752E-17 7.5703E-13

WFARM and DCPG 1.1293E-14 3.4333E-11

Hint: The value highlighted in bold indicates not significance value.

 233

In Table 7.28, the associated P-values (2-tailed test) using thirty samples of average

DI between WFARM and PGSCM, and between WFARM and DCPG are reported. As

seen in Table 7.28, the P-values between WFARM and PGSCM in most datasets

(Reuters, TR11, TR12 and TR45) and between WFARM and DCPG in TR12 are

smaller than (0.05), so it can be concluded that the mean of DI metric for WFARM

and dynamic methods are not similar.

Table 7.28

The P-value between WFARM & dynamic methods using average DI results (sig 2

tailed) with different datasets.

Datasets

Algorithms

P-value using average DI (sig 2 tailed)

Equal variances

assumed

Equal variances not

assumed

Reuters

(300 documents

and 6 classes)

WFARM and PGSCM 2.0658E-08 4.1150E-07

WFARM and DCPG 0.2679 0.2725

TR11

(414 documents

and 9 classes)

WFARM and PGSCM 1.8436E-24 4.2055E-17

WFARM and DCPG 0.9583 0.9585

TR12

(313 documents

and 8 classes)

WFARM and PGSCM 2.1910E-41 1.1876E-25

WFARM and DCPG 8.3758E-05 2.1282E-04

TR23

(204 documents

and 6 classes)

WFARM and PGSCM 0.9099 0.9103

WFARM and DCPG 0.5665 0.5687

TR45

(690 documents

and 10 classes)

WFARM and PGSCM 7.3197E-23 5.7341E-16

WFARM and DCPG 0.1427 0.1481

Hint: The value highlighted in bold indicates not significance value.

 234

In this case, the null hypothesis is rejected and the alternative hypothesis is accepted.

However, this excludes the P-value between WFARM and PGSCM in the TR23 and

between WFARM and DCPG in most datasets (Reuters, TR11, TR23 and TR45)

highlighted in bold in Table 7.28 are not significant values, so in this situation, the

null hypothesis is accepted.

7.4 Summary

This chapter includes the experimental results, evaluation and analysis of the

proposed hybrid of WFAR with the merging algorithm for text clustering (WFARM)

using different sizes of datasets. It is distributed in three sections.

Section one is the evaluation of the proposed WFARM against WFAR, where each

evaluation is conducted in three parts: 1) Evaluation of produced number of clusters,

2) Evaluation using performance metrics, namely external, internal and relative

metrics such as Purity, F-measure, Entropy, ADDC, DBI and DI, and 3) Evaluation

using a statistical analysis of paired samples T-test (Ross, 2010) that performs on the

differences between the pair of WFARM and WFAR.

Section Two is the evaluation of WFARM against state-of-the-art methods (static

method) such as Bisect K-means (Murugesan & Zhang, 2011a, 2011b), K-means

(Jain, 2010), PSO (Cui, Potok, & Palathingal, 2005), FAK-means (Tang, Fong,

Yang, & Deb, 2012), BatK-means (Tang, Fong, Yang, & Deb, 2012). The evaluation

is also conducted in three parts: 1) Evaluation of produced number of clusters, 2)

Evaluation using performance metrics, and 3) Evaluation using a statistical analysis

 235

of Independent Samples T-test (Ross, 2010) that performs on the differences

between the pair of WFARM and one of any static methods.

Finally, in Section Three the proposed WFARM has been evaluated against state-of-

the-art methods (dynamic method) such as Practical General Stochastic Clustering

Method (PGSCM) (Tan, Ting, & Teng, 2011a), and Dynamic hybrid Genetic

algorithm with Particle Swarm Optimization (DCPG) (Kuo, Syu, Chen, & Tien,

2012). The evaluation has the similar evaluation parts in Section Two.

 236

CHAPTER EIGHT

CONCLUSION AND FUTURE WORK

The main goal of this thesis is to propose an Adaptive Firefly Algorithm for

hierarchical text clustering. To achieve this goal, first, this research proposes a

Weight-based Firefly algorithm (WFA) to identify the centers and its cluster. Later,

this research introduces a document re-locating procedure into the Weight-based

Firefly Algorithm to enhance the quality of the obtained clusters, and this is

presented as WFAR. Finally, WFAR is improved by incorporating it with a cluster

merging algorithm to discover the optimal number of clusters.

8.1 Research Contribution

In this thesis, there are four main contributions. The first contribution classifies the

existing clustering methods and represent them in a taxonomy (refer to Figure 2.1).

Each of the categories are explained in detail with some related works in Chapter

Two.

The second contribution is the proposed Weight-based Firefly Algorithm that

identifies the centers and the clusters for text documents, termed as WFA (illustrated

in Figure 4.5). It has been included in Chapter Four. The WFA algorithm works in a

dynamic manner without any specific information about the number of clusters. The

fireflies in this algorithm operate with a normalized positioning in the search space.

Experiments in Chapter Four reveal that the Weight-based Firefly Algorithm

performed better than some of the state-of-the-art methods.

 237

The third contribution includes the document re-locating procedure which was later

integrated into the Weight-based Firefly Algorithm, and termed as WFAR (illustrated

in Figure 5.2). The proposed algorithm enhanced the quality of the obtained clusters.

Experiments in Chapter Five indicated that the document re-locating procedure

WFAR performed better as compared to several existing methods.

In addition, this thesis also contributes WFARM that integrates WFAR and a cluster

merging algorithm (illustrated in Figure 6.1). The merging algorithm is based on the

un-weighted pair group method with arithmetic mean (UPGMA), and termed as

eUPGMA (refer to Figure 6.2). Experiments in Chapters Six and Seven

demonstrated that the WFARM algorithm generates better results compared than

existing static and dynamic methods and achieved the optimal number of clusters in

most datasets used in the research

As a conclusion, the proposed Adaptive FA for hierarchical text clustering produces

satisfied results which make it a competitive method in the text clustering field.

8.2 Future Work

In future, it is suggested to test the performance of the adaptive hierarchical text

clustering, WFARM, on large text documents such as the ones with more than 1000

documents. Additionally, the research can also be performed on designing a

distributed hierarchical text clustering algorithm.

Future works can also propose a dynamic function for the similarity threshold, where

the existing similarity threshold is static predefined.

 238

Furthermore, for future work, it is suggested to enhance the local search in the

Weight-based Firefly Algorithm by integrating with single meta-heuristic algorithm

such as Tabu search, and simulated annealing.

 239

REFRENCES

20NewsgroupsDataSet. (2006). http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-

4/text-learning/www/datasets.html.

Abshouri, A. A., & Bakhtiary, A. (2012). A new clustering method based on Firefly

and KHM. Journal of Communication and Computer, 9, 387–391. Retrieved

from retrieved from:

http://www.davidpublishing.com/davidpublishing/Upfile/6/4/2012/2012060483

417489.pdf

Adaniya, M. H. A. C., Abr˜ao, T., & Proenc¸a Jr., M. L. (2013). Anomaly Detection

Using Metaheuristic Firefly Harmonic Clustering. Journal of Networks, 8(1),

82–91. Retrieved from doi:10.4304/jnw.8.1.82-91

Aggarwal, C. C., & Zhai, C. X. (2012). A survey of text clustering algorithms. In In

Mining Text Data, Springer US (pp. 77–128). Retrieved from doi:10.1007/978-

1-4614-3223-4_4

Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan, P. (1998). automatic subspace

clustering of high dimensional data. SIGMOD ’98 Proceedings of the 1998

ACM SIGMOD International Conference on Management of Data, 94–105.

Retrieved from doi: 10.1145/276304.276314

Aliguliyev, R. M. (2009a). Clustering of document collection-A weighted approach.

Elsevier, Expert Systems with Applications, 36(4), 7904–7916. Retrieved from

doi: 10.1016/j.eswa.2008.11.017

Aliguliyev, R. M. (2009b). Performance evaluation of density-based clustering

methods. Elsevier, Information Sciences, 179(20), 3583–3602. Retrieved from

doi: 10.1016/j.ins.2009.06.012

Aljanabi, A. I. (2010). Interacted multiple ant colonies for search stagnation

problem. College of Arts and Sciences. Universiti Utara Malaysia.

Alsmadi, M. K. (2014). A hybrid firefly algorithm with fuzzy-c mean algorithm for

MRI brain segmentation. American Journal of Applied Sciences, 11(9), 1676–

1691.

Amigo, E., Gonzalo, J., Artiles, J., & Verdejo, F. (2009). A comparison of extrinsic

clustering evaluation metrics based on formal constraints. Springer,

Information Retrieval (Vol. 12, pp. 461–486). Retrieved from doi:

10.1007/s10791-008-9066-8

Anitha Elavarasi, S., Akilandeswari, J., & Sathiyabhama, B. (2011). A survay on

partition clustering algorithms. International Journal of Enterprise Computing

 240

and Business Systems, 1(1). Retrieved from Retrieved from at

http://www.ijecbs.com

Apostolopoulos, T., & Vlachos, A. (2011). Application of the Firefly Algorithm for

Solving the Economic Emissions Load Dispatch Problem. International Journal

of Combinatorics, Volume 201, 23 pages. Retrieved from

doi:10.1155/2011/523806

Bache, K., & Lichman, M. (2013). UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine: CA: University of California, School of

Information and Computer Science.

Banati, H., & Bajaj, M. (2013). Performance analysis of Firefly algorithm for data

clustering. Int. J. Swarm Intelligence, 1(1), 19–35.

Beasley, D., Bull, D. R., & Martin, R. R. (1993). An Overview of Genetic

Algorithms : Part 1, Fundamentals. University Computing, 15(2), 58–69.

Bojic, I., Podobnik, V., Ljubi, I., Jezic, G., & Kusek, M. (2012). A self-optimizing

mobile network: Auto-tuning the network with firefly-synchronized agents.

Elsevier, Information Sciences, 182(1), 77–92.

Boley, D. (1998). Principal Direction Divisive Partitioning. ACM, Data Mining and

Knowledge Discovery, 2(4), 325–344. Retrieved from doi:

10.1023/A:1009740529316

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm Intelligence: From

Natural to Artificial Systems. New York, NY: Oxford University Press, Santa

Fe Institute Studies in the Sciences of Complexity.

Bordogna, G., & Pasi, G. (2012). A quality driven Hierarchical Data Divisive Soft

Clustering for information retrieval. Elsevier, Knowledge-Based Systems, 26, 9–

19. Retrieved from doi:10.1016/j.knosys.2011.06.012

Boussaïd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization

metaheuristics. Elsevier, Information Sciences, 237, 82–117.

Cao, D., & Yang, B. (2010). An improved k-medoids clustering algorithm. In The

2nd International Conference on Computer and Automation Engineering

(ICCAE) (Vol. 3, pp. 132–135). Singapore: IEEE. Retrieved from doi:

10.1109/ICCAE.2010.5452085

Chehreghani, M. H., Abolhassani, H., & Chehreghani, M. H. (2008). Improving

density-based methods for hierarchical clustering of web pages. Elsevier, Data

& Knowledge Engineering, 67(1), 30–50. Retrieved from doi:

10.1016/j.datak.2008.06.006

 241

Chen, T. S., Tsai, T. H., Chen, Y. T., Lin, C. C., Chen, R. C., Li, S. Y., & Chen, H.

Y. (2005). A combined K-means and hierarchical clustering method for

improving the clustering efficiency of microarray. In Proceedings of intelligent

signal processing and communication systems, IEEE (pp. 405–408). IEEE.

Retrieved from doi: 10.1109/ISPACS.2005.1595432

Cui, X., Gao, J., & Potok, T. E. (2006). A flocking based algorithm for document

clustering analysis. Journal of Systems Architecture, 52(8-9), 505–515.

Cui, X., Potok, T. E., & Palathingal, P. (2005). Document Clustering using Particle

Swarm Optimization. In Proceedings 2005 IEEE Swarm Intelligence

Symposium, SIS 2005. (pp. 185–191). IEEEXplore. Retrieved from

doi:10.1109/SIS.2005.1501621

Das, S., Abraham, A., & Konar, A. (2008). Automatic Clustering Using an Improved

Differential Evolution Algorithm. IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans, 38(1), 218–237.

doi:10.1109/TSMCA.2007.909595

Das, S., Abraham, A., & Konar, A. (2009). Metaheuristic Clustering. Verlag Berlin

Heidelberg: Springer. Retrieved from doi: 10.1007/978-3-540-93964-1

Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE

Transactions on Pattern Analysis and Machine Intelligence (Vol. PAMI-1, pp.

224–227). Retrieved from doi:10.1109/TPAMI.1979.4766909

Demir, M., & Karci, A. (2015). Data Clustering on Breast Cancer Data Using Firefly

Algorithm with Golden Ratio Method. Advances in Electrical and Computer

Engineering, 15(2), 75–84. doi:10.4316/AECE.2015.02010

Deneubourg, J. L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., &

Chrétien, L. (1991). The dynamics of collective sorting: robot-like ants and ant-

like robots. In Proceedings of the first international conference on simulation of

adaptive behavior on From animals to animats (pp. 356–363). MIT Press

Cambridge, MA, USA.

Ding, Y., & Fu, X. (2012). The Research of Text Mining Based on Self-Organizing

Maps. Procedia Engineering, 29(0), 537–541.

doi:http://dx.doi.org/10.1016/j.proeng.2011.12.757

Doding, G. (2002). Computer Science in a Theory of Science Discourse. Department

of Computer Science. Malardalen University, Swedan.

Dorigo, M. (1992). Optimization, Learning and Natural Algorithms. Politecnico di

Milano, Italie.

 242

Dorigo, M., & Gambardella, L. M. (1997). Ant colonies for the traveling salesman

problem. Elsevier, Biosystems, 43(2), 73–81. Retrieved from

doi:10.1016/S0303-2647(97)01708-5

Dos Santos Coelho, L., de Andrade Bernert, D. L., & Mariani, V. C. (2011). A

chaotic firefly algorithm applied to reliability-redundancy optimization. In 2011

IEEE Congress on Evolutionary Computation (CEC) (pp. 517–521). New

Orleans, LA. Retrieved from doi:10.1109/CEC.2011.5949662

Dunn, J. (1974). Well separated clusters and optimal fuzzy partitions. Journal of

Cybernetics, 4, 95–104. Retrieved from doi:10.1080/01969727408546059

El-Abd, M., & Kamel, M. (2005). A taxonomy of cooperative search algorithms.

Hybrid Metaheuristics, 3636, 32–41. Retrieved from doi:10.1007/11546245_4

El-Feghi, I., Errateeb, M., Ahmadi, M., & Sid-Ahmed, M. a. (2009). An adaptive

ant-based clustering algorithm with improved environment perception. In

Conference Proceedings - IEEE International Conference on Systems, Man and

Cybernetics (pp. 1431–1438). doi:10.1109/ICSMC.2009.5346291

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for

discovering clusters in large spatial databases with noise. In Proceedings of the

Second International Conference on Knowledge Discovery and Data Mining

(KDD-96). AAAI Press. (pp. 226–231).

Falcon, R., Almeida, M., & Nayak, A. (2011). Fault Identification with Binary

Adaptive Fireflies in Parallel and Distributed Systems. In 2011 IEEE Congress

on Evolutionary Computation (CEC), (pp. 1359–1366). New Orleans, LA:

IEEE Explore. Retrieved from doi:10.1109/CEC.2011.5949774

Feng, L., Qiu, M. H., Wang, Y. X., Xiang, Q. L., Yang, Y. F., & Liu, K. (2010). A

fast divisive clustering algorithm using an improved discrete particle swarm

optimizer. Elsevier, Pattern Recognition Letters, 31(11), 1216–1225. Retrieved

from doi: 10.1016/j.patrec.2010.04.001

Fister, I., Jr, I. F., Yang, X. S., & Brest, J. (2013). A comprehensive review of Firefly

Algorithms. Elsevier, Swarm and Evolutionary Computation, 13, 34–46.

Folino, G., Forestiero, A., & Spezzano, G. (2009). An adaptive flocking algorithm

for performing approximate clustering. Information Sciences, 179(18), 3059–

3078.

Fong, S., Deb, S., Yang, X. S., & Zhuang, Y. (2014). Towards Enhancement of

Performance of K-Means Clustering Using Nature-Inspired Optimization

Algorithms. The Scientific World Journal, 2014(564829), 16 pages.

 243

Forsati, R., Mahdavi, M., Shamsfard, M., & Meybodi, M. R. (2013). Efficient

stochastic algorithms for document clustering. Elsevier,Information Sciences,

220, 269–291. Retrieved from doi: 10.1016/j.ins.2012.07.025

Gil-Garicia, R., & Pons-Porrata, A. (2010). Dynamic hierarchical algorithms for

document clustering. Elsevier, Pattern Recognition Letters, 31(6), 469–477.

Retrieved from doi: 10.1016/j.patrec.2009.11.011

Glass, A. (2011). Explanation of Adaptive Systems. Stanford University.

Glover, F. (1986). Future paths for integer programming and links to artificial

intelligence. Computers and Operations Research, 13(No.5), 533–549.

Gu, J., Zhou, J., & Chen, X. (2009). An Enhancement of K-means Clustering

Algorithm. In IEEE, International Conference on Business Intelligence and

Financial Engineering (pp. 237–240). Beijing: IEEE. Retrieved from doi:

10.1109/BIFE.2009.204

Guan, R., Shi, X., Marchese, M., Yang, C., & Liang, Y. (2011). Text Clustering with

Seeds Affinity Propagation. IEEE Transactions on Knowledge and Data

Engineering, 23(4), 627–637. Retrieved from doi: 10.1109/TKDE.2010.144

Gupta, P., & Sharma, A. K. (2010). A framework for hierarchical clustering based

indexing in search engines. In Proceedings of 1st International Conference on

Parallel, Distributed and Grid Computing (PDGC - 2010) (pp. 372–377).

Solan: IEEE. Retrieved from doi: 10.1109/PDGC.2010.5679966

Han, J., & Kamber, M. (2006). Data mining: Concepts and techniques (2nd ed.). San

Francisco: Morgan Kaufman.

Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques, 3rd

edition. The Morgan Kaufmann Series in Data Management Systems (p. 744

pages). Morgan Kaufmann.

Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-Means Clustering

Algorithm. JStor, Journal of the Royal Statistical Society. Series C (Applied

Statistics), 28(No.1). Retrieved from http://www.jstor.org/stable/2346830

Hassanzadeh, T., Faez, K., & Seyfi, G. (2012). A Speech Recognition System Based

on Structure Equivalent Fuzzy Neural Network Trained by Firefly Algorithm.

In International Conference on Biomedical Engineering (ICoBE) (pp. 63–67).

Penang: IEEE Explore. Retrieved from doi:10.1109/ICoBE.2012.6178956

Hassanzadeh, T., & Meybodi, M. R. (2012). A new hybrid approach for data

clustering using Firefly algorithm and k-means. In The 16th CSI International

Symposium on Artificial Intelligence and Signal Processing (AISP 2012),IEEE

(pp. 7–11). Retrieved from doi: 10.1109/AISP.2012.6313708

 244

Hassanzadeh, T., Vojodi, H., & Moghadam, A. M. E. (2011). An Image

Segmentation Approach Based on Maximum Variance Intra-Cluster Method

and Firefly Algorithm. In Seventh International Conference on Natural

Computation (ICNC) (Vol. 3, pp. 1817–1821). Shanghai: IEEE Explore.

Retrieved from doi:10.1109/ICNC.2011.6022379

Hatamlou, A., Abdullah, S., & Nezamabadi-pour, H. (2012). A combined approach

for clustering based on K-means and gravitational search algorithms. Elsevier,

Swarm and Evolutionary Computation, 6, 47–52. Retrieved from doi:

10.1016/j.swevo.2012.02.003

He, Y., Hui, S. C., & Sim, Y. (2006). Anovel ant-based clustering approach

document clustering. Information Retrieval Technology, 4182, 537–544.

Hinneburg, A., & Keim, D. (1999). Optimal Grid-Clustering: Towards Breaking the

Curse of Dimensionality in High-Dimensional Clustering. In Proceedings of the

25th International Conference on Very Large Data Bases (pp. 506–517).

Morgan Kaufmann Publishers Inc.

Holland, J. (1992). Adaptation in Natural and Artificial Systems : An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence (p.

211). Cambridge, MA, USA.

Horng, M. H., & Jiang, T. W. (2010). Multilevel Image Thresholding Selection

based on the Firefly Algorithm. In 7th International Conference on Ubiquitous

Intelligence & Computing and 7th International Conference on Autonomic &

Trusted Computing (UIC/ATC), (pp. 58–63). Xian, Shaanxi: IEEE Explore.

Retrieved from doi:10.1109/UIC-ATC.2010.47

Hu, G., Zhou, S., Guan, J., & Hu, X. (2008). Towards effective document clustering:

A constrained K-means based approach. Elsevier , Information Processing &

Management, 44(4), 1397–1409. Retrieved from doi:

10.1016/j.ipm.2008.03.001

Ilango, M., & Mohan, V. (2010). A Survey of Grid Based Clustering Algorithms.

International Journal of Engineering Science and Technology, 2(8), 3441–

3446.

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Elsevier, Pattern

Recognition Letters, 31(8), 651–666. Retrieved from doi:

10.1016/j.patrec.2009.09.011

Jensi, R., & Jiji, D. G. W. (2013). A Survey on optimization approaches to text

document clustering. International Journal on Computational Sciences &

Applications (IJCSA), 3(6), 31–44.

 245

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

Transaction of the ASME-Journal of Basic Engineering, 82 (series, 35–45.

Kao, Y., & Lee, S.-Y. (2009). Combining K-means and particle swarm optimization

for dynamic data clustering problems. In Intelligent Computing and Intelligent

Systems, 2009. ICIS 2009. IEEE International Conference on (Vol. 1, pp. 757–

761).

Karypis, G. (2002). CLUTO a clustering toolkit,Technical Report 02-017. Dept. of

Computer Science, University of Minnesota. Retrieved from Available at

http://glaros.dtc.umn.edu/gkhome/views/cluto

Karypis, G., Han, E. H., & Kumar, V. (1999). Chameleon: Hierarchical Clustering

Using Dynamic Modeling. IEEE Computer Society, 32(8), 68–75. Retrieved

from doi: 10.1109/2.781637

Kashef, R., & Kamel, M. (2010). Cooperative clustering. Elsevier, Pattern

Recognition, 43(6), 2315–2329. Retrieved from doi:

10.1016/j.patcog.2009.12.018

Kashef, R., & Kamel, M. S. (2009). Enhanced bisecting k-means clustering using

intermediate cooperation. Elsevier, Pattern Recognition, 42(11), 2557–2569.

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of

IEEE International Conference on Neural Networks IV. Perth, WA: IEEE.

Retrieved from doi:10.1109/ICNN.1995.488968

Kennedy, J. F., & Eberhart, R. C. (2001). Swarm intelligence (p. 512). Morgan

Kaufmann.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated

Annealing. New Series, 220(No. 4598), 671–680.

Kohonen, T. (1998). The self-organizing map. Elsevier, Neurocomputing, 21(1-3),

1–6. Retrieved from doi: 10.1016/S0925-2312(98)00030-7

Kohonen, T. (2001). Self organizing map 3rd ed. Springer-Verlag Berlin Heidelberg

NewYork.

Kuo, R. J., Syu, Y. J., Chen, Z., & Tien, F. C. (2012). Integration of particle swarm

optimization and genetic algorithm for dynamic clustering. Elsevier,Information

Sciences, 195, 124–140.

Kuo, R. J., & Zulvia, F. E. (2013). automatic clustering using an improved particle

swarm optimization. Journal of Industrial and Intelligent Information, 1(1), 46–

51.

 246

Lahane, S. V, Kharat, M. U., & Halgaonkar, P. S. (2012). Divisive approach of

Clustering for Educational Data. In Fifth International Conference on Emerging

Trends in Engineering and Technology (pp. 191–195). Himeji: IEEE. Retrieved

from doi:10.1109/ICETET.2012.55

Lee, C. Y., & Antonsson, E. K. (2000). Dynamic partitional clustering using

evolution strategies. In IEEE (Vol. 4, pp. 2716–2721).

Lewis, D. (1999). The reuters-21578 text categorization test collection. Retrieved

from Available online

at :http://kdd.ics.uci.edu/database/reuters21578/reuters21578.html

Liu, Y. C., Wu, C., & Liu, M. (2011). Research of fast SOM clustering for text

information. Elsevier, Expert Systems with Applications, 38(8), 9325–9333.

Retrieved from doi: 10.1016/j.eswa.2011.01.126

Liu, Y. C., Wu, X., & Shen, Y. (2011). Automatic clustering using genetic

algorithms. Elsevier, Applied Mathematics and Computation, 218(4), 1267–

1279.

Lu, Y., Wang, S., Li, S., & Zhou, C. (2009). Text Clustering via Particle Swarm

Optimization. In Swarm Intelligence Symposium, 2009. SIS ’09. IEEE (pp. 45–

51). Nashville, TN: IEEEXplore. Retrieved from

doi:10.1109/SIS.2009.4937843

Luo, C., Li, Y., & Chung, S. M. (2009). Text document clustering based on

neighbors. Elsevier, Data & Knowledge Engineering, 68(11), 1271–1288.

Retrieved from doi: 10.1016/j.datak.2009.06.007

MacQueen, J. B. (1967). Kmeans Some Methods for classification and Analysis of

Multivariate Observations. 5th Berkeley Symposium on Mathematical Statistics

and Probability 1967, 1(233), 281–297. doi:citeulike-article-id:6083430

Mahmuddin, M. (2008). Optimisation using Bees algorithm on unlabelled data

problems. Manufactoring engineering centre. Cardif university, Cardiff, UK.

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information

Retrieval, 1 ed. New York, USA: Cambridge University Press.

Martens, D., Backer, M. D., Haesen, R., Vanthienen, J., Snoeck, M., & Baesens, B.

(2007). Classification With Ant Colony Optimization. IEEE Transactions on

Evolutionary Computation, 11(5), 651–665. Retrieved from doi:

10.1109/TEVC.2006.890229

Meghabghab, G., & Kandel, A. (2008). Search engines, link analysis, and user’s web

behaviour (Vol. 99). Springer Berlin Heidelberg. Retrieved from

doi:10.1007/978-3-540-77469-3

 247

Miner, G., Elder, J., Fast, A., Hill, T., Nisbet, R., & Delen, D. (2012). Practical Text

Mining and Statistical Analysis for Non-structured Text Data Applications, 1st

ed. Elsevier.

Mishra, B. K., Nayak, N. R., Rath, A., & Swain, S. (2012). Far Efficient K-Means

Clustering Algorithm. In Proceedings of the International Conference on

Advances in Computing, Communications and Informatics (pp. 106–110).

ACM. Retrieved from doi:10.1145/2345396.2345414

Muñoz, D. M., Llanos, C. H., Coelho, L. D. S., & Ayala-Rincon, M. (2011).

Opposition-based shuffled PSO with passive congregation applied to FM

matching synthesis. In 2011 IEEE Congress on Evolutionary Computation

(CEC), (pp. 2775–2781). New Orleans, LA: IEEE Xplore. Retrieved from

doi:10.1109/CEC.2011.5949966

Murugesan, K., & Zhang, J. (2011a). Hybrid Bisect K-means clustering algorithm. In

International Conference on Business Computing and Global Informatization

(pp. 216–219). Retrieved from doi:10.1109/BCGIn.2011.62

Murugesan, K., & Zhang, J. (2011b). Hybrid hierarchical clustering : An

expermintal analysis (p. 26). university of Kentucky.

Nandy, S., Sarkar, P. P., & Das, A. (2012). Analysis of a Nature Inspired Firefly

Algorithm based Back-propagation Neural Network Training. International

Journal of Computer Applications, 43(22), 8–16. Retrieved from

doi:10.5120/6401-8339

Pelleg, M., & Moore, A. (2000). X-means:Extending K-means with efficient

estimation of the number of clusters. In Proceedings of the Seventeenth

International Conference on Machine Learning (pp. 727–734). Morgan

Kaufmann Publishers Inc. San Francisco, CA, USA.

Picarougne, F., Azzag, H., Venturini, G., & Guinot, C. (2007). A New Approach of

Data Clustering Using a Flock of Agents. Evolutionary Computation,

Cambridge: MIT Press (2007), 15(3), 345–367.

Poomagal, S., & Hamsapriya, T. (2011). Optimized k-means clustering with

intelligent initial centroid selection for web search using URL and tag contents.

In Proceedings of the International Conference on Web Intelligence, Mining

and Semantics (pp. 1–8). Sogndal, Norway: ACM. Retrieved from

doi:10.1145/1988688.1988764

Pop, C. B., Chifu, V. R., Salomie, I., Baico, R. B., Dinsoreanu, M., & Copil, G.

(2011). A Hybrid Firefly-inspired Approach for Optimal Semantic Web Service

Composition. Scientific International Journal for Parallel and Distributed

Computing, 12(3), 363–369. Retrieved from retrived from:

http://www.scpe.org/index.php/scpe/article/view/730/0

 248

Rafsanjani, M. K., Varzaneh, Z. A., & Chukanlo, N. E. (2012). A survey of

hierarchical clustering algorithms. The Journal of Mathematics and Computer

Science, TJMCS, 5, No. 3, 229–240. Retrieved from Available online at :

http://www.TJMCS.com

Rana, S., Jasola, S., & Kumar, R. (2010). A hybrid sequential approach for data

clustering using K-Means and particle swarm optimization algorithm.

International Journal of Engineering, Science and Technology, 2, No.6, 167–

176. Retrieved from Available online at :

http://www.ajol.info/index.php/ijest/article/view/63708

Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational

Search Algorithm. Elsevier, Information Sciences, 179(13), 2232–2248.

Rokach, L., & Maimon, O. (2005). Clustering Methods, Data Mining and

Knowledge Discovery Handbook. Springer (pp. 321–352.).

Ross, S. M. (2010). Introductory Statistics. Elsevier Science. Retrieved from

http://books.google.com.my/books?id=ZKswvkqhygYC

Rothlauf, F. (2011). Design of Modern Heuristics Principles and Application.

Springer-Verlag Berlin Heidelberg. Retrieved from doi:10.1007/978-3-450-

72962-4

Rui, T., Fong, S., Yang, X. S., & Deb, S. (2012). Nature-Inspired Clustering

Algorithms for Web Intelligence Data. In 2012 IEEE/WIC/ACM International

Conferences on Web Intelligence and Intelligent Agent Technology (WI-IAT)

(Vol. 3, pp. 147–153). Macau. Retrieved from doi:10.1109/WI-IAT.2012.83

Sander, J. (2010). Density-Based Clustering. Encyclopedia of Machine Learning SE

- 211. Springer US DA - 2010/01/01. Retrieved from doi:10.1007/978-0-387-

30164-8_211

Sarkar, M., Yegnanarayana, B., & Khemani, D. (1997). A clustering algorithm using

an evolutionary programming-based approach. Elsevier, Pattern Recognition,

18(10), 975–986.

Sayadi, M. K., Hafezalkotob, A., & Naini, S. G. J. (2013). Firefly-inspired algorithm

for discrete optimization problems: An application to manufacturing cell

formation. Elsevier, Journal of Manufacturing Systems, 32(1), 78–84.

Sayed, A., Hacid, H., & Zighed, D. (2009). Exploring validity indices for clustering

textual data. In Mining Complex Data, 165, 281–300.

Senthilnath, J., Omkar, S. N., & Mani, V. (2011). Clustering using firefly algorithm:

Performance study. Elsevier, Swarm and Evolutionary Computation, 1(3), 164–

171. Retrieved from doi: 10.1016/j.swevo.2011.06.003

 249

Shannon, C. E. (1948). A Mathematical theory of communication. Bell System

Technical Journal, 27, 379–423, 623–656,. Retrieved from Retrieved from:

http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf

Singh, R. V, & Bhatia, M. P. S. (2011). Data clustering with modified K-means

algorithm. In International Conference on Recent Trends in Information

Technology (ICRTIT) (pp. 717–721). Chennai, Tamil Nadu: IEEE. Retrieved

from doi:10.1109/ICRTIT.2011.5972376

Stahlbock, R., Crone, S. F., & Lessmann, S. (2010). Data Mining Special Issue in

Annals of Information Systems (Vol. 8). Springer US. Retrieved from doi:

10.1007/978-1-4419-1280-0

Tan, P. N., Steinbach, M., & Kumar, V. (2006). Introduction to data mining. Pearson

Education, Addition Wesley.

Tan, S. C. (2012). Simplifying and improving swarm based clustering. In IEEE

Congress on Evolutionary Computation (CEC) (pp. 1–8). Brisbane, QLD:

IEEE.

Tan, S. C., Ting, K. M., & Teng, S. W. (2011a). A general stochastic clustering

method for automatic cluster discovery. Elsevier, Pattern Recognition, 44(10-

11), 2786–2799.

Tan, S. C., Ting, K. M., & Teng, S. W. (2011b). Simplifying and improving ant-

based clustering. In Procedia computer science (pp. 46–55).

Tang, R., Fong, S., Yang, X. S., & Deb, S. (2012). Integrating nature-inspired

optimization algorithms to K-means clustering. In Seventh International

Conference on Digital Information Management (ICDIM), 2012 (pp. 116–123).

Macau: IEEE. Retrieved from doi:10.1109/ICDIM.2012.6360145

Toreini, E., & Mehrnejad, M. (2011). Clustering Data with Particle Swarm

Optimization Using a New Fitness. In 2011 3rd Conference on Data Mining

and Optimization (DMO) (pp. 266–270). Putrajaya: IEEEXplore. Retrieved

from doi:10.1109/DMO.2011.5976539

TREC. (1999). Text REtrieval Conference (TREC). Retrieved from Available online

at :http://trec.nist.gov/

Van der Merwe, D. W., & Engelbrecht, A. P. (2003). Data clustering using particle

swarm optimization. In The 2003 Congress on Evolutionary Computation,

2003. CEC ’03. (Vol. 1, pp. 215–220). Retrieved from

doi:10.1109/CEC.2003.1299577

Vijayalakshmi, M., MCA, M., & Devi, M. R. (2012). A survey of different issue of

different clustering algorithms used in large data sets. International Journal of

 250

Advance Research in Computer Science and Software Engineering, 2(3), 305–

307. Retrieved from Available online at : http://www.ijarcsse.com

Wang, H., Yang, X., Zhang, J., Zhang, M., Bai, X., Yin, W., & Dong, J. (2011). BP

neural network model based on cluster analysis for wind power prediction. In

2011 IEEE International Conference on Service Operations, Logistics, and

Informatics (SOLI) (pp. 278–280). Beijing: IEEE Xplore. Retrieved from

doi:10.1109/SOLI.2011.5986570

Wang, W., Yang, J., & Muntz, R. (1997). STING : A Statistical Information Grid

Approach to Spatial Data Mining. In VLDB ’97 Proceedings of the 23rd

International Conference on Very Large Data Bases (pp. 186–195). Morgan

Kaufmann Publishers Inc. San Francisco, CA, USA.

Wang, X., Shen, J., & Tang, H. (2009). Novel hybrid document clustering algorithm

based on Ant Colony and agglomerate. In Second International Symposium on

Knowledge Acquisition and Modeling (Vol. 3, pp. 65–68). Wuhan: IEEE

computer society. Retrieved from doi:10.1109/KAM.2009.182

Wang, Z., Liu, Z., Chen, D., & Tang, K. (2011). A New Partitioning Based

Algorithm For Document Clustering. In Eighth International Conference on

Fuzzy Systems and Knowledge Discovery (FSKD) (Vol. 3, pp. 1741–1745).

Shanghai: IEEE. Retrieved from doi: 10.1109/FSKD.2011.6019857

Wilson, H. G., Boots, B., & Millward, A. A. (2002). A comparison of hierarchical

and partitional clustering techniques for multispectral image classification. In

IEEE (Vol. 3, pp. 1624–1626). IEEE International Geoscience and Remote

Sensing Symposium, 2002. IGARSS. Retrieved from doi:

10.1109/IGARSS.2002.1026201

Xinwu, L. (2010). Research on Text Clustering Algorithm Based on Improved K-

means. In International Conference On Computer Design And Appliations

(ICCDA 2010) (Vol. 4, pp. V4–573 – V4–576). Qinhuangdao: IEEE. Retrieved

from doi: 10.1109/ICCDA.2010.5540727

Xu, Y. (2005). Hybrid clustering with application to web mining. In Proceedings of

the International Conference on Active Media Technology (AMT 2005). (pp.

574–578). Retrieved from doi: 10.1109/AMT.2005.1505425

Yang, H. (2010). A Document Clustering Algorithm for Web Search Engine

Retrieval System. In International Conference on e-Education, e-Business, e-

Management, and e-Learning, 2010. IC4E ’10 (pp. 383–386). Sanya: IEEE.

Retrieved from doi:10.1109/IC4E.2010.72

Yang, X. S. (2009). Firefly Algorithms for Multimodal Optimization. In O.

Watanabe & T. Zeugmann (Eds.), Stochastic Algorithms: Foundations and

 251

Applications (pp. 169–178). Springer Berlin Heidelberg. doi:10.1007/978-3-

642-04944-6_14

Yang, X. S. (2010a). Firefly Algorithm, Stochastic Test Functions and Design

Optimisation. Int. J. Bio-Inspired Computation, 2(2), 78–84.

Yang, X. S. (2010b). Nature-inspired metaheuristic algorithms 2nd edition. United

Kingdom: Luniver press.

Yang, X. S., & He, X. (2013). Firefly algorithm: recent advances and applications.

Int. J. Swarm Intelligence, 1(1), 36–50. Retrieved from

doi:10.1504/IJSI.2013.055801

Yang, X. S., Hosseini, S. S. S., & Gandomi, A. H. (2012). Firefly Algorithm for

solving non-convex economic dispatch problems with valve loading effect.

Elsevier, Applied Soft Computing, 12(3), 1180–1186. Retrieved from

doi:10.1016/j.asoc.2011.09.017

Yao, M., Pi, D., & Cong, X. (2012). Chinese text clustering algorithm based k-

means. In 2012 International Conference on Medical Physics and Biomedical

Engineering (ICMPBE2012) (Vol. 33, pp. 301–307). Elsevier. Retrieved from

doi: 10.1016/j.phpro.2012.05.066, Available online at www.sciencedirect.com

Ye, N., Gauch, S., Wang, Q., & Luong, H. (2010). An adaptive ontology based

hierarchical browsing system for CiteSeerX. In Second International

Conference on Knowledge and Systems Engineering (KSE), IEEE (pp. 203–

208). Retrieved from doi: 10.1109/KSE.2010.32

Yin, Y., Kaku, I., Tang, J., & Zhu, J. (2011). Data Mining Concepts, Methods and

Application in Management and Engineering Design. Springer-Verlag London.

Youssef, S. M. (2011). A New Hybrid Evolutionary-based Data Clustering Using

Fuzzy Particle Swarm Optimization. In 23rd IEEE International Conference on

Tools with Artificial Intelligence (pp. 717–724). IEEE. Retrieved from doi:

10.1109/ICTAI.2011.113

Yue, S., Wei, M., Wang, J. S., & Wang, H. (2008). A general grid-clustering

approach. In Elsevier, Pattern Recognition Letters (Vol. 29, pp. 1372–1384).

Retrieved from doi: 10.1016/j.patrec.2008.02.019

Yujian, L., & Liye, X. (2010). Unweighted Multiple Group Method with Arithmetic

Mean. In IEEE Fifth International Conference on Bio-Inspired Computing:

Theories and Applications (BIC-TA) (pp. 830–834). Changsha: IEEE. Retrieved

from doi:10.1109/BICTA.2010.5645232

 252

Yunrong, X., & Liangzhong, J. (2009). Water quality prediction using LS-SVM and

particle swarm optimization. In Knowledge Discovery and Data Mining, 2009.

WKDD 2009. Second International Workshop on (pp. 900–904).

Zhang, L., & Cao, Q. (2011). A novel ant-based clustering algorithm using the

kernel method. Elsevier,Information Sciences, 181(20), 4658–4672. Retrieved

from doi:10.1016/j.ins.2010.11.005

Zhang, L., Cao, Q., & Lee, J. (2013). A novel ant-based clustering algorithm using

Renyi entropy. Elsevier, Applied Soft Computing, 13(5), 2643–2657. Retrieved

from doi:10.1016/j.asoc.2012.11.022

Zhang, W., Yoshida, T., Tang, X., & Wang, Q. (2010). Text clustering using

frequent itemsets. Elsevier, Knowledge-Based Systems, 23(5), 379–388.

Retrieved from doi:10.1016/j.knosys.2010.01.011

Zhao, Y., Cao, J., Zhang, C., & Zhang, S. (2011). Enhancing grid-density based

clustering for high dimensional data. Elsevier, Journal of Systems and Software,

84(9), 1524– 1539. Retrieved from doi:10.1016/j.jss.2011.02.047

Zhao, Y., & Karypis, G. (2001). Criterion functions for document clustering:

Experiments and analysis.

Zhong, J., Liu, L., & Li, Z. (2010). A novel clustering algorithm based on gravity

and cluster merging. Advanced Data Mining and Applications, 6440, 302–309.

Retrieved from doi:10.1007/978-3-642-17316-5_30

Zhu, Y., Fung, B. C. M., Mu, D., & Li, Y. (2008). An efficient hybrid hierarchical

document clustering method. In IEEE, Fifth international conference on Fuzzy

systems and knowledge discovery (Vol. 2, pp. 395–399). Retrieved from

doi:10.1109/FSKD.2008.159

	Title Page
	Permission to Use
	Abstrak
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations
	CHAPTER ONE: INTRODUCTION
	1.1 Research Background
	1.1.1 Clustering
	1.1.2 Text Clustering

	1.2 Problem Statement
	1.3 Research Questions
	1.4 Research Objectives
	1.5 Research Significance
	1.6 Scope and Limitations of the Research
	1.7 Organization of the Research

	CHAPTER TWO: LITERATURE REVIEW
	2.1 Introduction
	2.2 Clustering Methods
	2.2.1 Static Approach
	2.2.1.1 Traditional Methods
	2.2.1.1.1 Partitional Text Clustering
	2.2.1.1.2 Density-based Text Clustering
	2.2.1.1.3 Grid-based Text Clustering
	2.2.1.1.4 Model-based Text Clustering
	2.2.1.1.5 Hierarchical Text Clustering

	2.2.1.2 Optimization Methods
	2.2.1.2.1 Particle Swarm Optimization
	2.2.1.2.2 Ant Colony Optimization
	2.2.1.2.3 Firefly Algorithm
	2.2.1.2.4 Hybrid of Clustering Techniques and other Search Optimization

	2.2.2 Dynamic Approach
	2.2.2.1 Estimation Approach
	2.2.2.2 Population-based Approach

	2.3 Research Gap
	2.4 Summary

	CHAPTER THREE: RESEARCH METHODOLOGY
	3.1 Research Design
	3.1.1 Data Acquisition Phase
	3.1.1.1 Data Collection
	3.1.1.2 Data Pre-processing

	3.1.2 Clustering Phase
	3.1.3 Cluster Refining Phase
	3.1.4 Cluster Merging Phase

	3.2 Implementation of Algorithms
	3.3 Evaluation
	3.3.1 Performance Metrics
	3.3.1.1 Internal and Relative Quality Metrics
	3.3.1.2 External Quality Metrics

	3.3.2 Statistical Analysis

	3.4 Summary

	CHAPTER FOUR: DOCUMENT CLUSTERING
	4.1 Weight-based Firefly Algorithm (WFA)
	4.1.1 Initialization of Parameters
	4.1.2 Data Clustering

	4.2 Evaluation
	4.3 Summary

	CHAPTER FIVE: CLUSTER REFINING
	5.1 Introduction
	5.2 Document Re-locating
	5.3 Evaluation
	5.3.1 Comparison between WFAR and WFA
	5.3.2 Comparison between WFAR and Other Methods

	5.4 Summary

	CHAPTER SIX: CLUSTER MERGING
	6.1 Introduction
	6.2 Cluster Merging Algorithm
	6.2.1 Merge Clusters
	6.2.2 Refine Merged Clusters

	6.3 Evaluation
	6.3.1 Comparison between WFARM and WFAR
	6.3.1.1 Number of Clusters between WFARM and WFAR
	6.3.1.2 Performance Metrics between WFARM and WFAR
	6.3.1.3 Paired Samples T-test between WFARM and WFAR

	6.3.2 Comparison between WFARM and Static Methods
	6.3.2.1 Number of Clusters between WFARM and Static Methods
	6.3.2.2 Performance Metrics between WFARM and Static Methods
	6.3.2.3 Independent Samples T-test between WFARM and Static Methods

	6.3.3 Comparison between WFARM and Dynamic Methods
	6.3.3.1 Number of Clusters between WFARM and Dynamic Methods
	6.3.3.2 Performance Metrics between WFARM and Dynamic Methods
	6.3.3.3 Independent Samples T-test between WFARM and Dynamic Methods

	6.4 Summary

	CHAPTER SEVEN: EVALUATION OF ADAPTIVE FA ON VARIOUS DATASETS
	7.1 Introduction
	7.2 Comparison WFARM with Static Methods
	7.2.1 Evaluation Number of Clusters between WFARM and Static Methods
	7.2.2 Evaluation of Performance Metrics between WFARM and Static Methods
	7.2.3 Evaluation Independent Samples T-test between WFARM and Static Methods

	7.3 Comparison WFARM with Dynamic Methods
	7.3.1 Evaluation Number of Clusters between WFARM and Dynamic Methods
	7.3.2 Evaluation Performance Metrics between WFARM and Dynamic Methods
	7.3.3 Evaluation Independent Samples T-test between WFARM and Dynamic Methods

	7.4 Summary

	CHAPTER EIGHT: CONCLUSION AND FUTURE WORK
	8.1 Research Contribution
	8.2 Future Work

	REFRENCES

