
A PROCESS BASED APPROACH SOFTWARE CERTIFICATION

MODEL FOR AGILE AND SECURE ENVIRONMENT

 SHAFINAH FARVIN PACKEER MOHAMED

DOCTOR OF PHILOSOPHY

UNIVERSITI UTARA MALAYSIA

2015

 i

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely

available for inspection. I further agree that permission for the copying of this thesis

in any manner, in whole or in part, for scholarly purpose may be granted by my

supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School

of Arts and Sciences. It is understood that any copying or publication or use of this

thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to

Universiti Utara Malaysia for any scholarly use which may be made of any material

from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to :

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

 ii

Abstrak

Di dalam persekitaran perniagaan hari ini, proses perisian Agil dan selamat menjadi

penting kerana kedua-dua proses ini dapat menghasilkan perisian yang berkualiti

tinggi dan terjamin keselamatannya untuk dipasarkan dengan lebih cepat dan kos

efektif. Malangnya, terdapat di kalangan para pengamal perisian yang tidak mengikuti

amalan yang sesuai bagi kedua-dua proses ketika membangunkan perisian. Terdapat

banyak kajian telah dijalankan untuk menilai kualiti proses perisian, walau

bagaimanapun, tumpuan kajian tersebut hanya diberikan kepada proses perisian

lazim. Tambahan pula, kajian yang sedia ada tidak mengambil kira nilai pemberat di

dalam penilaian walaupun setiap kriteria penilaian mungkin mempunyai kepentingan

yang berbeza. Oleh yang demikian, pensijilan perisian diperlukan untuk menjamin

kualiti bagi proses perisian Agil dan selamat. Justeru, objektif tesis ini adalah untuk

mencadangkan Model Pensijilan dan Penilaian Proses Perisian Lanjutan (ESPAC)

yang memberi fokus kepada kedua-dua proses perisian ini dan mengambil kira nilai

pemberat ketika menjalankan penilaian. Kajian ini telah dijalankan dalam empat fasa:

1) kajian teori untuk mengkaji faktor dan amalan yang mempengaruhi kualiti proses

perisian Agil dan selamat serta teknik untuk memperuntukkan nilai pemberat, 2)

kajian penerokaan yang disertai oleh 114 pengamal perisian untuk mengkaji amalan

pembangunan perisian mereka, 3) pembangunan model pensijilan proses perisian

lanjutan yang mengambil kira proses, manusia, teknologi, kekangan projek dan

persekitaran serta menyediakan garis panduan pensijilan dan menggunakan Proses

Hierarki Analitik (AHP) untuk memperuntukkan nilai pemberat dan 4) penentusahan

proses perisian Agil dan selamat serta AHP melalui kajian pakar, diikuti dengan

pengesahsahihan terhadap tahap kepuasan dan praktikal model yang dicadangkan

melalui perbincangan kumpulan berfokus. Keputusan pengesahsahihan menunjukkan

bahawa Model ESPAC telah mencapai kepuasan pengamal perisian dan didapati

praktikal untuk dilaksanakan di dalam persekitaran sebenar. Sumbangan kajian ini

mencakupi perspektif Pensijilan dan Penilaian Proses Perisian dan Kriteria Berbilang

Membuat Keputusan, serta perspektif praktikal dengan menyediakan satu mekanisma

yang boleh digunakan oleh pengamal dan penilai perisian untuk menentukan tahap

kualiti proses perisian dan membantu pelabur serta pelanggan dalam membuat

keputusan pelaburan.

Kata kunci: Pensijilan proses perisian, Proses perisian Agil, Proses perisian selamat,

Proses Hierarki Analitik, Model Pensijilan dan Penilaian Proses Perisian Lanjutan.

 iii

Abstract

In today’s business environment, Agile and secure software processes are essential

since they bring high quality and secured software to market faster and more cost-

effectively. Unfortunately, some software practitioners are not following the proper

practices of both processes when developing software. There exist various studies

which assess the quality of software process; nevertheless, their focus is on the

conventional software process. Furthermore, they do not consider weight values in the

assessment although each evaluation criterion might have different importance.

Consequently, software certification is needed to give conformance on the quality of

Agile and secure software processes. Therefore, the objective of this thesis is to

propose Extended Software Process Assessment and Certification Model (ESPAC)

which addresses both software processes and considers the weight values during the

assessment. The study is conducted in four phases: 1) theoretical study to examine the

factors and practices that influence the quality of Agile and secure software processes

and weight value allocation techniques, 2) an exploratory study which was

participated by 114 software practitioners to investigate their current practices, 3)

development of an enhanced software process certification model which considers

process, people, technology, project constraint and environment, provides certification

guideline and utilizes the Analytic Hierarchy Process (AHP) for weight values

allocation and 4) verification of Agile and secure software processes and AHP

through expert reviews followed by validation on satisfaction and practicality of the

proposed model through focus group discussion. The validation result shows that

ESPAC Model gained software practitioners’ satisfaction and practical to be executed

in the real environment. The contributions of this study straddle research perspectives

of Software Process Assessment and Certification and Multiple Criteria Decision

Making, and practical perspectives by providing software practitioners and assessors a

mechanism to reveal the quality of software process and helps investors and

customers in making investment decisions.

Keywords: Software process certification, Agile software process, Secure software

processes, Analytic Hierarchy Process, Extended Software Process Assessment and

Certification Model.

 iv

Acknowledgement

 بسم الله الرحمن الرحيم

First and foremost all praise and thanks go to Allah for giving me the strength and

patience to accomplish this study. Besides, completing this thesis would not have

been possible without a number of people who offered their unfailing support

throughout the period of the study.

I would like to express my sincerest thanks and deepest gratitude to my supervisors

Assoc. Prof. Dr. Fauziah Baharom and Prof. Dato’ Dr. Aziz Deraman for their

excellent guidance, caring, patience, encouragement and sharing of all their research

experiences throughout these challenging years.

My sincere thanks must also go to the members of viva committee: Prof. Dr. Suhaidi

Hassan as the chairman, Prof. Dr. Saadiah Yahya from University Technology Mara

(UiTM) and Assoc. Prof. Dr. Suhaimi Ibrahim from University Technology Malaysia

(UTM) as the external examiners for sharing their constructive advices and comments

to improve my thesis.

I would also like to extend my thanks to the Ministry of Higher Education Malaysia

and Universiti Utara Malaysia for providing funds and opportunity to conduct this

study. My high appreciation also goes to the School of Computing staff for their kind

supports and comments. Also I would like to thank the knowledge and domain experts

who provided their insights on this study. Their fruitful comments and suggestions are

utmost important for my study.

On a more personal level, I would like to express my gratitude to my parents and my

beloved family members for their continuous prayers, patience and supports

throughout my four years plus of difficult endeavour. My gratitude also goes to all my

colleagues in the PhD journey, especially for the discussions and suggestions on

the better ways to perform my study.

 v

Table of Contents

Permission to Use ... i

Abstrak ... ii

Abstract ... iii

Acknowledgement .. iv

Table of Contents ... v

List of Tables ... x

List of Figures .. xii

List of Appendices .. xiv

List of Abbreviations ... xv

CHAPTER ONE INTRODUCTION ... 1

1.1 Overview .. 1

1.2 Background .. 1

1.3 Problem Statements ... 7

1.4 Research Questions .. 12

1.5 Objectives .. 13

1.6 Scope .. 13

1.7 Significance.. 14

1.8 Thesis Organization ... 16

CHAPTER TWO LITERATURE REVIEW .. 18

2.1 Introduction .. 18

2.2 Software Certification .. 18

2.2.1 Evaluation Theory: The Theory That Underpins Software Certification .. 21

2.2.2 Software Certification Process... 22

2.2.3 Existing Process Based Software Certification Model 24

2.2.4 Current Issues in Software Process Certification 31

2.2.5 Software Process Certification for Agile Software Process 35

2.2.6 Software Process Certification for Secure Software Process 37

2.2.7 Factors that Influence the Quality of Agile and Secure Software Processes

 .. 39

2.2.8 The Agile and Secure Software Practices .. 53

 vi

2.3 Multiple Criteria Decision Making (MCDM).. 72

2.3.1 Analytic Hierarchy Process (AHP) .. 77

2.3.2 Weighted Sum Method (WSM) ... 80

2.4 Measurement Approach in Software Process Certification 82

2.5 Summary .. 85

CHAPTER THREE RESEARCH METHODOLOGY .. 86

3.1 Introduction .. 86

3.2 Research Design... 86

3.3 Phase One: Theoretical Study .. 88

3.4 Phase Two: Exploratory Study .. 88

3.4.1 Instrument Design .. 89

3.4.2 Sampling for the Survey .. 90

3.4.3 Instrument Testing ... 91

3.4.4 Data Collection .. 91

3.4.5 Data Analysis ... 92

3.5 Phase Three: ESPAC Model Development ... 92

3.5.1 Defining the target ... 93

3.5.2 Defining the evaluation criteria ... 93

3.5.3 Building the Reference Standard ... 94

3.5.4 Determining the Data Gathering Techniques .. 94

3.5.5 Determining the Assessment Process .. 95

3.5.6 Determining the Synthesis Technique ... 95

3.5.7 Determining the Achievement Index ... 96

3.6 Phase Four: ESPAC Model Evaluation ... 96

3.6.1 Verification Stage .. 96

3.6.2 Validation Stage ... 98

3.7 Summary .. 100

CHAPTER FOUR EXPLORATORY STUDY ... 101

4.1 Introduction .. 101

4.2 Instrument Design .. 101

4.3 Sampling .. 103

 vii

4.4 Instrument Testing ... 104

4.5 Data Collection .. 105

4.6 Data Analysis ... 106

4.7 Findings.. 107

4.7.1 Demographic Information.. 107

4.7.1.1 Respondents’ Background ... 107

4.7.1.2 Organizational Background ... 109

4.7.2 Current Practices of Agile Software Process ... 109

4.7.2.1 Software Practitioners’ Familiarity of Agile 110

4.7.2.2 Level of Exposure to Agile ... 110

4.7.2.3 Years of Experience Implementing Agile 111

4.7.2.4 Number of Agile Team Members ... 111

4.7.2.5 Agile Methods ... 112

4.7.2.6 Benefits of Agile ... 112

4.7.2.7 Implementation of Agile Principles .. 113

4.7.3 Current Practices of Secure Software Process ... 114

4.7.3.1 Software Practitioners’ Familiarity of Secure Software Process 115

4.7.3.2 Common Attacks Prevention Technique 115

4.7.3.3 Security Trainings ... 116

4.7.3.4 Notations for Security Requirements .. 117

4.7.3.5 Security Requirement Elicitation Practice 117

4.7.3.6 Security Incidents Faced ... 118

4.7.4 Agile Software Practices that Influence the Quality of Software 119

4.7.5 Secure Software Practices that Influence the Quality of Software 123

4.7.6 Perceptions on The Importance of Agile and Secure Software Processes in

Producing High Quality Software. ... 125

4.7.7 Characteristics of People Who Involve in Agile and Secure Software

Processes ... 125

4.7.8 Current Practices of Software Certification ... 127

4.7.8.1 Software Practitioners’ Opinion on the Importance of Software

Certification ... 127

 viii

4.7.8.2 The Implementation of Internal Assessment/Audit and the

Techniques Used ... 128

4.7.8.3 The Use of Standards .. 129

4.8 Discussions .. 131

4.9 Summary .. 154

CHAPTER FIVE ESPAC MODEL DEVELOPMENT 155

5.1 Introduction .. 155

5.2 Overview of ESPAC Model... 155

5.3 The Components of the ESPAC Model ... 161

5.3.1 Target ... 161

5.3.2 Evaluation Criteria ... 161

5.3.3 Reference Standard .. 165

5.3.4 Data Gathering Techniques ... 168

5.3.5 Assessment Process ... 169

5.3.6 Synthesis Technique .. 177

5.3.7 The Achievement Index ... 197

5.3.7.1 The Quality Levels .. 197

5.3.7.2 The Certification Level ... 197

5.4 Discussions .. 198

5.5 Summary .. 201

CHAPTER SIX ESPAC MODEL EVALUATION .. 202

6.1 Introduction .. 202

6.2 Verification through Expert Reviews .. 202

6.2.1 Experts for AHP Technique Verification .. 203

6.2.2 Experts for the Agile and Secure Software Processes 204

6.2.3 Results for the AHP Technique Verification ... 205

6.2.4 Results for the Factors, Sub Factors and the Agile and Secure Software

Processes ... 206

6.3 Verification and Validation through Focus Group .. 209

6.3.1 Plan the Focus Group ... 210

6.3.1.1 Define the Objectives of the Focus Group 210

 ix

6.3.1.2 Participants Identification and Recruitment 210

6.3.1.3 Meeting Scheduling ... 211

6.3.1.4 Preparation of the Focus Group Interview Guide and Materials . 212

6.3.1.5 Remind the Participants... 212

6.3.2 Conduct the Focus Group .. 213

6.3.2.1 Obtain the Weight Values for Evaluation Criteria 215

6.3.2.2 The Agile and Secure Software Processes Verification 216

6.3.2.3 The ESPAC Model Validation .. 217

6.3.3 Data Analysis and Results Reporting .. 217

6.3.4 The Focus Group Discussion Findings .. 218

6.4 Validation Results and Discussions ... 221

6.4.1 Gain Satisfaction .. 222

6.4.2 Interface Satisfaction ... 224

6.4.3 Task Support Satisfaction .. 225

6.5 Summary .. 227

CHAPTER SEVEN CONCLUSIONS ... 228

7.1 Introduction .. 228

7.2 Study Recapitulation .. 228

7.3 Contributions.. 233

7.3.1 The ESPAC Model .. 233

7.3.2 The Reference Standard ... 234

7.3.3 The Synthesis Technique ... 235

7.3.4 The AHP Technique Implementation through Planning Poker 236

7.3.5 Utilize the QFD for the Reference Standard .. 236

7.4 Limitations and Future Directions ... 237

7.5 Conclusions .. 239

REFERENCES ... 241

 x

List of Tables

Table 2.1 Achievement Grades Scale for ISO/IEC 15504 PA (Galin, 2004) 29

Table 2.2 Comparisons of Existing Software Process Certification Models and Standards.... 30

Table 2.3 Lacking Issues in Existing Software Process Certification Models and Standards . 34

Table 2.4 The Factors Regarding Development Team .. 40

Table 2.5 The Factors Regarding Organization ... 41

Table 2.6 The Factors Regarding Customer .. 42

Table 2.7 The Factors Regarding Process.. 43

Table 2.8 The Organizational Factors .. 46

Table 2.9 The People Factors .. 48

Table 2.10 The Technical Factors .. 49

Table 2.11 Other Factors That Influence the Successful Implementation of Information

Security .. 50

Table 2.12 Summary of Factors Influencing the Software Process Quality 51

Table 2.13 Factors, Sub Factors and The Evaluation Criteria ... 53

Table 2.14 The Agile Software Practices .. 55

Table 2.15 The Secure Software Practices .. 62

Table 2.16 The Skills Needed for Software Practitioners .. 69

Table 2.17 MCDM Techniques ... 73

Table 2.18 AHP Preference Scale (Saaty, 1990) ... 78

Table 2.19 The Existing AHP Studies on Evaluation .. 78

Table 2.20 The Existing WSM Studies on Evaluation .. 81

Table 3.1 Validation Criteria for ESPAC Model ... 99

Table 4.1 Overview of Respondents .. 106

Table 4.2 Respondents’ Position in Company ... 108

Table 4.3 Respondents’ Experience ... 108

Table 4.4 Sectors of Organization ... 109

Table 4.5 Interval Values ... 113

Table 4.6 Agile Principles Implementation ... 114

Table 4.7 Prevention Techniques from Common Attacks ... 115

Table 4.8 Percentages of Security Training Provided.. 116

Table 4.9 Notations for Security Requirements ... 117

Table 4.10 Eliciting Security Requirements Explicitly during Requirement Gathering........ 118

 xi

Table 4.11 Interval Values ... 119

Table 4.12 The Mean Values for Agile Software Practices ... 120

Table 4.13 The Mean Values for Secure Software Practices ... 123

Table 4.14 Team and Organizational Characteristics .. 126

Table 4.15 The Importance of Software Certification Based on Respondents’ Familiarity .. 128

Table 4.16 Assessment Techniques ... 128

Table 4.17 The Use of Standards Based on Respondents’ Experience.................................. 130

Table 5.1 The Comparisons of the SPAC and ESPAC Models ... 160

Table 5.2 The Assessed Factors ... 164

Table 5.3 The Data Gathering Techniques .. 168

Table 5.4 Descriptions of the Pre-Assessment Phase .. 171

Table 5.5 Descriptions of the Assessment Phase ... 173

Table 5.6 Descriptions of the Post-Assessment Phase ... 175

Table 5.7 The Pair Wise Matrix ... 180

Table 5.8 The Pair Wise Comparison Matrix for Level One ... 181

Table 5.9 The Pair wise Comparison Matrix for Level Two ... 181

Table 5.10 Summary of the Pair Wise Comparison Matrixes for the ESPAC Model 182

Table 5.11 Scale of Pair Wise Comparison (Saaty, 1990) ... 182

Table 5.12 Pair Wise Comparisons for Sub Factors of Software Development 183

Table 5.13 Weight Values for Sub Factors of Software Development 186

Table 5.14 Random Index (Saaty, 1988 as cited in Padumadasa et al., 2009) 187

Table 5.15 The Consistency Vectors ... 188

Table 5.16 The Achievement Index ... 198

Table 6.1 Experts’ Background ... 205

Table 6.2 Results for the AHP Verification ... 206

Table 6.3 Descriptions of Verification Criteria ... 207

Table 6.4 Summary of Experts’ Comments ... 208

Table 6.5 The Reorganizing and Updating Actions ... 208

Table 6.6 Anonymized Overview of the Participants .. 219

Table 6.7 The Suggested Software Processes .. 221

Table 6.8 The Results of Evaluation for Gain Satisfaction Criteria 222

Table 6.9 The Results of Evaluation for Interface Satisfaction Criteria 224

Table 6.10 The Results of Evaluation for Task Support Satisfaction Criteria 225

Table L.1 The grouping of projects ... 340

Table L.2: Certification results .. 364

 xii

List of Figures

Figure 2.1. Certification scenario simplified in Fauziah (2008) .. 20

Figure 2.2. Software Process Assessment and Certification Model (SPAC) (Fauziah, 2008) 25

Figure 2.3. The basic structure of HOQ (Cohen, 1995) ... 83

Figure 3.1. Research framework .. 87

Figure 3.2. The structure of evaluation criteria .. 94

Figure 4.1. Level of exposure to Agile .. 110

Figure 4.2. Years of experience ... 111

Figure 4.3. Number of Agile team members ... 111

Figure 4.4. Agile methods being practiced .. 112

Figure 4.5. Benefits of Agile practices .. 112

Figure 4.6. The security incidents faced ... 119

Figure 4.7. The use of standards .. 129

Figure 5.1. The proposed ESPAC Model .. 158

Figure 5.2. The hierarchy tree of the evaluation criteria .. 163

Figure 5.3. The structure of the reference standard ... 166

Figure 5.4. The example of reference standard for requirement engineering in Agile 167

Figure 5.5. Assessment process of the ESPAC Model .. 170

Figure 5.6. Steps to calculate the weight values .. 179

Figure 5.8. The example of assessment form for Agile requirement engineering 192

Figure 5.9. Activities for performing the assessment .. 193

Figure 5.10. The part of hierarchy tree with score and global weight values 196

Figure 6.1. The meeting place setting .. 214

Figure 6.2. The selection of the pair wise comparison value by the participants 216

Figure 6.3. The process of verifying and validating the ESPAC model 217

Figure L.1. Assessment results for requirement engineering ... 342

Figure L.2. Assessment results for software design ... 343

Figure L.3. Assessment results for coding ... 344

Figure L.4. Assessment results for testing ... 345

Figure L.5. Assessment result for project management ... 346

Figure L.6. Assessment results for change management ... 347

Figure L.7. Assessment results for support process ... 348

Figure L.8. Assessment results for requirement engineering ... 350

 xiii

Figure L.9. Assessment results for software design ... 351

Figure L.10. Assessment results for coding ... 352

Figure L.11. Assessment results for testing ... 353

Figure L.12. Assessment results for security management .. 354

Figure L.13. Assessment results for risk management .. 355

Figure L.14. Assessment results for support process ... 356

Figure L.15. Assessment results for technology .. 357

Figure L.16. Assessment results for software practitioners’ characteristics 358

Figure L.17. Assessment results for organization and customers .. 360

Figure L.18. Assessment results for project constraint .. 362

Figure L.19. Assessment results for environment .. 363

 xiv

List of Appendices

Appendix A The Objectives and Sources for Instrument Development 271

Appendix B The Instrument ... 274

Appendix C The Brochure ... 286

Appendix D Hierarchy Tree for Agile Software Process... 287

Appendix E Hierarchy Tree for Secure Software Process ... 288

Appendix F Pair wise Comparison Form ... 289

Appendix G The AHP Verification Form .. 292

Appendix H The Verification and Assessment Form .. 293

Appendix I The Overall Verification Form ... 295

Appendix J The Validation Form .. 297

Appendix K The Assessment Form ... 299

Appendix L The Assessment and Certification Results ... 335

Appendix M The Local/Global/Ideal Weights ... 365

Appendix N The Global Weights and Scores for Agile Software Process 367

Appendix O Publications ... 369

 xv

List of Abbreviations

AHP Analytic Hierarchy Process

AM Agile Modeling

ANC Average of Normalized Columns

ASD Adaptive Software Development

CI Consistency Index

CLASP Comprehensive, Lightweight Application Security Process

CR Consistency Ratio

CMMI Capability Maturity Model Integrated

DSDM Dynamic Systems Development Method

ESPAC Model Extended Software Process Assessment and Certification Model

FDD Feature-Driven Development

GQM Goal Question Metric

HOQ House of Quality

ISO International Organization for Standardization

LSPCM Laquso Software Product Certification Model

MCDM Multiple Criteria Decision Making

MS SDL Microsoft Security Development Lifecycle

NGM Normalization of the Geometric Mean of the Rows

NRA Normalization of Row Average

NRC Normalization of the Reciprocal Sum of Columns

OWASP Open Web Application Security Project

QFD Quality Function Deployment

SCAMPI Standard CMMI Appraisal Method for Process Improvement

SCM_prod Software Product Certification Model

SEI Software Engineering Insitute

SPAC Model Software Process Assessment and Certification Model

SPSS Statistical Package for Social Science

SSE-CMM System Security Engineering CMM

TDD Test Driven Development

TOPSIS Technique for Order Preference by Similarity to Ideal Solution

WSM Weighted Sum Method

XP Extreme Programming

1

CHAPTER ONE

INTRODUCTION

1.1 Overview

This chapter provides an introduction to the study which begins with the background of

the study, followed by the discussion on the problem. Then, research questions are

provided and used to construct the objectives. Finally, this chapter presents the scope as

well as the significance of the research. This chapter is concluded with an overview of the

remaining chapters of this thesis.

1.2 Background

The use for software has become indispensable in today’s world since its usage has

become more and more critical in every domain of our life. Surprisingly, as indicated by

Jones and Bonsignour (2012), even though software is among the most widely used

product in human history, its failure rate is one of the highest among any other products

in human history. Consequently, customers are always concerned with the quality of the

software produced for them, whether the software meets their needs and follows certain

standards. On top of that, in today’s business environment, the customers expect that the

software can be produced in the market faster and have good security features.

Nevertheless, complains about customers’ dissatisfactions on the software still exist even

though the software developers claimed that the software they produced is in good

quality (The Standish Group, 2013; Weber-Jahnke, 2011; Cerpa & Verner, 2009;

Charette, 2005; Lindstrom & Jeffries, 2004).

2

Therefore, one way of getting conformance on the software quality is through

certification (Heck, Klabbers & Eekelen, 2010; Aziz, Jamaiah, Fauziah, Amalina Farhi,

& Abdul Razak, 2007). Referring to The International Organization for Standardization

(ISO), certification is defined as “the procedure by which a third party gives written

assurance that a product, process or service conforms to a specified characteristics”

(ISO, 2015; Rae, Robert, & Hausen,1995). With certification, customers will feel more

confident on the quality and dependability in selecting organizations when making

investment because it involves independent assessment which will then reduce the

possibility of software failure (Sun-Jen & Wen-Ming, 2006; Rae et al., 1995). This is

supported by the outcome from a survey conducted by Fauziah, Aziz and Abdul Razak

(2005) and the exploratory study conducted in this study. The findings from these studies

provide evidence that software certification is certainly needed in order to give assurance

on the quality of software in Malaysia.

Voas (1998) points out that there are three approaches in certifying the quality of

software, which are: process, product and personnel. There are several studies focusing

on the product approach such as Heck et al. (2010) and Jamaiah (2007). However, it is

hard to determine the quality of newly developed software without implementing it for a

certain period of time (Fauziah, Jamaiah, Aziz, & Abdul Razak, 2011; Heck et al., 2010;

Sommerville, 2004). Thus, process approach is chosen in this study as an alternative to

product approach. By applying software certification based on the process approach,

customers are able to know about the quality level of software process in a particular

organization. This can help them in making decision on whether to invest in a particular

3

organization or not as it reveals the capability of an organization in producing high

quality software (Gonzalez, Rubio, Gonzalez, & Velthuis, 2010).

Software process is defined as “set of activities undertaken to manage, develop and

maintain software systems in order to produce a software system, executed by a group of

people organized according to a given organizational structure and counting on the

support of techno-conceptual tools” (Acuna, Antonio, Ferre, Lopez, & Mate, 2000). The

underlying idea behind this is, by certifying that the software process performed in a

particular organization is well-defined, it reflects that the produced software also has

good quality, as stated by Deming (1982) and Humphrey (1989) “the quality of product is

influenced by the quality of process used to develop it”. Consequently, it is vital to

conduct software certification based on process approach in order to ensure that software

process has been effectively and efficiently performed.

A considerable amount of literature has been published on models and standards which

assess the quality of software process. For example, the Capability Maturity Model

Integrated (CMMI) (CMMI Product Team, 2010) and ISO/IEC 15504 (Mas, Fluxa, &

Amengual, 2012; Van Loon, 2007; Galin, 2004; El Emam & Birk, 2000). However, as

indicated by Acuna, Antonio, Ferre, Lopez and Mate (2000), the aim of these existing

models and standards is more on assessing and improving the software process rather

than providing mechanism for certification. Furthermore, these assessments focus more

on the conventional software process (Gandomani & Hazura, 2013; Lami & Falcini,

2009; Diaz, Garbajosa, & Calvo-Manzano, 2009; Marcal et al., 2008; Salo &

Abrahamsson, 2005). Sommerville (2007) defines conventional software process as

4

“specification-based software development, which is based on completely specifying the

requirements up front then designing, building and testing the system with emphasize

given on documentation rather than the software itself”.

Nonetheless, nowadays with the modern business environment which is fast-paced and

ever-changing, incorporating agility during software development has become very

essential as it brings high quality software to market faster and more cost-effectively

(Mehta & Adlakha, 2012; Santos, Bermejo, Oliveira, & Tonelli, 2011; Lee & Xia, 2010;

Pressman, 2010; Sommerville, 2007). Thus, developers are increasingly incorporating

agility in their software process. By the year 2002, approximately 67% of pioneering

software developers has used Extreme Programming which represents one of the Agile

methods (VersionOne, 2011; Rico, Sayani, & Sone, 2009; Salo & Abrahamsson, 2008).

This shows high acceptance of this approach in the industry. A similar outcome is found

in the survey conducted by this study, whereby majority of the software practitioners

(64%) are familiar with Agile. As defined by Boehm & Turner (2005), Agile is

“lightweight software development approach which emphasizes on iterative, incremental,

self-organizing and emergent practices”. Agile supports close collaboration between

software development and business team, face-to-face communication, frequent delivery,

changes acceptation and adaptive organizational capability.

Additionally, Erdogan, Meland and Mathieson (2010), Nunes, Belchior and Albuqurque

(2010) and Suhazimah, Ainin and Ali Hussein (2009) indicate that the security aspect has

gained high concern in today’s business environment since the current application

environment has become more complex, distributed and easily exposed to malicious

5

attacks. Moreover, Jones and Bonsignour (2012), Kazemi, Khajouei and Nasrabadi

(2012), Nunes et al. (2010) and Julia, Barnum, Ellison, McGraw and Mead (2008)

highlight security aspect as the major concern among the customers since most computer

applications nowadays store numerous confidential data. As a consequence of these

situations, there exist numerous incidents that lead the customers to lose hundred million

of dollars every year caused by frauds and computer crime activities.

Koi (2012) reveals that there are around 15,218 incidents reported through the Cyber999

Help Centre in Malaysia in year 2012, compared to only 8,095 incidents in 2010. On top

of that, recently, Malaysia was attacked by a Latin American gang who hacked 14 ATM

machines in Selangor, Johor and Malacca and ran away with approximately three

millions ringgit in cash (Kumar, Cheng, Nadirah, & Natasya, 2014). For that reason,

currently the quality of software does not only focus on maintainability, usability and

functionality (Guceglioglu & Demirors, 2005), but also emphasizes security (O’Regan,

2014; Hui, Dongyan, Min, Weizhe, & Dongmin, 2014; Merkow & Raghavan, 2010;

Voas, 2008; Julia et al., 2008; Offut, 2002).

Researchers believe that security activities should be considered from the very beginning

of the software development lifecycle and continuous in all phases, rather than having it

as a sub-segment of software development in order to produce software for secured

environment (McGraw, 2011; Muniraman & Damodaran, 2007; Essafi, Labed, &

Ghezala, 2006; Lipner, 2006). According to McGraw (2004), secure software process is

“about building secure software: designing software to be secure, making sure that

software is secure, and educating software developers, architects, and users about how to

6

build secure things”. Nevertheless, despite the importance of Agile and secure software

processes in today’s business environment, so far the awareness on the software process

certification related to both software processes is still limited. This is the reason why both

the Agile and secure software processes are not included in the existing software process

certification model.

Additionally, the existing software process certification models and standards also lack

appropriate synthesis technique in the certification process. Fauziah (2008) observes that

the existing software process certification models and standards do not include weight

value in the certification process. On the other hand, it has conclusively been shown that

when an assessment involves multiple criteria, they will have different importance.

Therefore, these criteria should be weighted (Saaty, 2008; Brugha, 2004; Malczewski,

1999; Yoon & Hwang, 1995). Furthermore, Triantaphyllou and Mann (1995) and Yoon

and Hwang (1995) posit that the process of assigning weight values to the evaluation

criteria is significant especially when the qualitative information is needed from the

decision makers. Accordingly, this study enhances the existing software process

certification model to overcome the lacking issues by including the Agile and secure

software processes which are essential in today’s business environment. Also, the

synthesis technique is improved in order to produce more consistent and better quality of

certification results.

7

1.3 Problem Statements

The existing software process certification models and standards have thus far focused

primarily on determining the software process maturity of an organization and proposing

improvement to their software process, as what has been applied by Capability Maturity

Model Integrated (CMMI) (CMMI Product Team, 2010), ISO/IEC 15504 (Mas et al.,

2012; Van Loon, 2007; Galin, 2004; El Emam & Birk 2000) and System Security

Engineering-Capability Maturity Model (SSE-CMM) (Davis, 2013; Carnegie Mellon

University, 2003) which is now accepted as ISO/IEC 21827 standard. On the other hand,

even though the ISO/IEC 27001 series (ISO, 2015; Evans, Tsohou, Tryfonas, & Morgan,

2010; Humphreys, 2008) provide mechanism for certification, they only focus on the

general software process. To date, only Software Process Assessment and Certification

(SPAC) Model (Fauziah, 2008) provides certification by assessing and certifying

software process that have been carried out effectively and efficiently by organizations.

The subsequent subsections discuss several shortcomings of the SPAC Model which need

further investigation.

1) The needs of software process certification model that give emphasis on the Agile

and secure software processes

It is vital for the software practitioners in today’s business environment to implement best

practices of Agile and secure software processes towards producing high quality and

secured software faster and more cost effectively. However, based on the observations

made by previous studies, the software practitioners are left far behind the theoretical best

practices. This was observed by Brooks back in the year 1987 (Cater-Steel, 2004;

8

McConnell, 2002), and still can be seen today (Fauziah et al., 2005; McConnell, 2002;

Ludewig, 2001).

Numerous studies have been conducted to investigate the current practice of Agile.

Among them are by VersionOne (2011) and West and Grant (2010) that investigated the

status of the Agile adoption and practices in the software industry. Salo and Abrahamsson

(2008) on the other hand, investigate the usefulness of XP and Scrum in the European

embedded software development organizations. Furthermore, Santos et al. (2011) study

the perception of software practitioners on the relationship of Agile with the quality of

software. In Malaysia, Ani Liza (2012) investigates on the perception of software

practitioners when adopting Agile.

Regarding the secure software process, the existing studies focus more on showing the

importance of considering security measures in developing software. For instance,

Whitehat Security has investigated the number of vulnerabilities in small, medium and

large organizations (Whitehat Security, 2013), while National Cyber Security Alliance

(National Cyber Security Alliance, 2012) has done a survey on the security trainings

provided in software companies, the awareness of security initiatives and the security

problems faced. On the other hand, Elahi, Yu, Tong and Lin (2011) and Wilander and

Gustavsson (2005) have investigated the software practitioners’ practices in security

requirement engineering.

It appears from the aforementioned studies that most of the existing studies were

conducted in Western countries (Sison, Jarzabek, Hock, Rivepiboon, & Hai, 2006).

9

However, the adoption level of best practices related to Agile and secure software

processes is still scarce in Malaysia. Furthermore, instead of focusing on the software

certification or software quality, these studies were more concerned on a particular Agile

method suh as XP or Scrum. Albeit study by Santos et al. (2011) relates Agile with

software quality, it did not include the Agile Modeling (AM) method. In fact, research

on the effectiveness of AM is still scarce (Erickson, Lyytinen, & Siau, 2005).

Additionally, very few studies have been conducted to reveal the secure software process

adopted by software practitioners (Tondel, Jensen & Rostad, 2010). Even though studies

by Elahi et al. (2011) and Wilander and Gustavsson (2005) addressed this issue, they just

focus on the security requirement engineering, which represents a small part of the

software process. Hence, this has motivated this study to investigate the awareness on the

importance of software process certification with relation to the Agile and secure

software processes among software practitioners in Malaysia.

In addition, the existing software process certification models and standards are more

focused on the conventional software process (Gandomani & Hazura, 2013; Lami &

Falcini, 2009; Diaz et al, 2009; Marcal et al., 2008; Salo & Abrahamsson, 2005). The

SPAC Model considers five factors that influence the quality of software process as the

reference model, which are the process performed, quality of people involved, working

environment, technology and project condition, which focuses on the conventional

software process. The Capability Maturity Model Integrated (CMMI) (CMMI Product

Team, 2010) on the other hand, includes project management, process management,

engineering and support. The CMMI has also included guidelines and notes for software

practitioners who implement the CMMI in the Agile environment (CMMI Product Team,

10

2010). However, those are only general guidelines and included for certain process area.

Therefore, it is significant to investigate and include the Agile software process because

the process and work products are different from the conventional software process

(Abrahamsson, Oza, & Siponen, 2010; Pikkarainen & Mantynie, 2006). Pressman (2010)

also highlights that agility should be included in the current software process to ensure

the quality of software.

Similarly, even though secure software process has also become a determinant factor of

high quality software, the existing security standard such as ISO/IEC 27001 tends to

focus on information security management system and only focuses generally on the

software development process. ISO/IEC 21827 (Davis, 2013; Carnegie Mellon

University, 2003) on the other hand concentrates on security engineering, which includes

the risk, engineering and assurance processes. In spite of that, the aim of this model is

more towards achieving the maturity of system security management.

As discussed above, it should be noted that limited studies are available on both software

processes in the existing software process certification models and standards. For that

reason, this has motivated the present study. Moreover, these two software processes

have been partially addressed by the two most influential software process models and

standards providers; the Software Engineering Institute (SEI) and ISO. The SEI addresses

agility issue through CMMI, while ISO provides standards which emphasize on security

issue through ISO/IEC 27001 and ISO/IEC 21827. This shows that both software

processes are important to be addressed in today’s business environment.

11

2) Improving the synthesis technique in software certification

The synthesis technique used in the software certification of the existing software process

certification models and standards need further improvement to produce better quality

and consistency on the certification decision made. This is necessary because the

software certification process involves multiple criteria assessment whereby each of the

criteria must be weighted since they might have different importance (Saaty, 2008;

Brugha, 2004; Malczewski, 1999; Yoon & Hwang, 1995). Weight can be defined as “a

value assigned to an evaluation criterion that indicates its importance relative to other

criteria under consideration” (Malczewski, 1999). Nevertheless, despite of its

importance, little attention has been directed to consider weight values for the assessed

criteria in the existing software process certification models and standards, including the

SPAC Model (Fauziah, 2008).

Since software process assessment involves multiple criteria, the Multiple Criteria

Decision Making (MCDM) technique is an appropriate technique for determining the

weight for each assessed criteria. The MCDM refers to “making preference decision over

the available alternatives that are characterized by multiple, usually conflicting

attributes” (Triantaphylluo, 2000). Although the MCDM provides numerous techniques

in determining the weight, the most widely used is the Analytic Hierarchy Process (AHP)

(Ishizaka & Labib, 2011; Rao & Davim, 2008; Vaidya & Kumar, 2006).

The AHP technique has been successfully implemented in the evaluation domain. Zhou

and Liang (2013) utilize the AHP to evaluate the network course in China, while Chen,

Pham and Yuan (2013) employ the AHP to evaluate potential outsourcing partner. In

12

addition, the AHP has also been used in conducting evaluation on component-based

software (Al-Tarawneh, 2014) and tender (Padumadasa, Colombo and Rehan, 2009). The

AHP utilization increases the consistency of judgments (Liberatore & Nydick, 1997).

Thus, this has motivated the study to improve the synthesis technique in the software

certification process by incorporating weight values through the adaptation of the AHP

technique.

Based on the initiative made by the SPAC Model, this study has overcome the above

mentioned shortcomings by enhancing the existing software process certification model.

With the proposed model, the software certification can be conducted in a broader aspect

which suits the current business environment and needs, since it includes Agile and

secure software processes; and improves the synthesis technique in software certification.

1.4 Research Questions

The research questions aimed to be answered at the end of this study are as follows:

1. What are the current practices of software process certification in relation to Agile

and secure software processes?

2. How to enhance software process certification model by including the Agile and

secure software processes?

3. What are the techniques that can be used to improve the synthesizing process in

software certification?

4. How to evaluate the proposed software process certification model?

13

1.5 Objectives

With regards to the above discussed problems, the following objectives are outlined for

this study:

1. To investigate the current practices of software process certification in relation to

Agile and secure software processes.

2. To enhance software process certification model by including the Agile and secure

software processes.

3. To improve the synthesis technique in software certification by using the Analytic

Hierarchy Process (AHP).

4. To evaluate the enhanced software process certification model by using expert review

and focus group.

1.6 Scope

The scope of this study includes the certification approach and the software processes.

The followings are further descriptions on the certification approach and the software

processes:

 Certification Approach Scope

Although there are three approaches in the software certification, this study only focuses

on the software process approach. The choice is made because if the product approach

were to be used, it is hard to determine the quality of newly developed software without

implementing it for a certain period of time (Fauziah et al., 2011; Heck et al., 2010;

Sommerville, 2004). The advantage of the process approach is that the investors are able

14

to know the quality of the software development process performed in a particular

organization before making any decision on whether to invest in the organization or not

since the organization’s process is one of the fundamental assets of organization

(Guceglioglu & Demirors, 2005). The process approach reveals the capability of the

organization in producing high quality software, as it is believed that a software failure is

a consequence from the process failure (Doernhoefer, 2006).

 Software processes scope

The proposed model focuses on the software processes which concern about the latest

business environment and needs, which are Agile and secure software processes, rather

than only focusing on the conventional approach. This needs to be highlighted because

currently these two approaches has become the determinant factor for producing high

quality software in today’s business environment. The software processes included in the

proposed model were identified from the theoretical and exploratory study.

1.7 Significance

By achieving the objectives of this study, a systematic approach to ensure the

effectiveness and efficiency of software process is offered to the software practitioners

and assessors. Besides that, it is beneficial to the investors and customers. On top of that,

this study supports the body of knowledge in several fields. These are discussed further

subsequently.

15

 Body of knowledge

The main aim of this study is to provide an assessment and certification model which

focuses on the Agile and secure software processes. Consequently, by achieving this aim,

the study contributes to the field of Software Engineering particularly in the Software

Process Assessment and Certification area. In addition, the study also contributes to the

field of MCDM. Since this study focuses on the Agile and secure software processes,

thus the factors and practices that influence the quality of software process which focuses

on these two software processes are revealed. Moreover, this study has incorporated the

AHP technique for the synthesizing process, which is relatively new in the Software

Process Assessment and Certification area.

 Software developers and assessors

For the software developers, the assessment and certification provides a mechanism to

reveal the quality of software process currently being performed in their projects.

Consequently, the outcome from the assessment and certification can be used to plan and

improve their upcoming software processes. Additionally, as the proposed model

provides a proper guideline for assessing and certifying software process, thus the

software assessors can refer to the proposed model for assuring the quality of software

process performed by an organization.

 Investors and customers

The proposed model can help investors and customers in making investment decisions.

This is because, before making investment, investors and customers can get conformance

on the quality of software process implemented in an organization, which directly

16

influences the quality of produced software in the organization. Thus, it reveals the

capability of an organization. It will give them higher confidence level on the quality of

organization or software which they will invest on.

1.8 Thesis Organization

This thesis consists of seven chapters including this chapter. The outline of the remaining

chapters of the thesis is as follows:

 Chapter Two: Literature Review

This chapter presents a review on the existing studies in related area, which is software

certification. The focus is given on factors and practices that influence the quality of

software process by concentrating on the Agile and secure software processes.

Additionally, focus is given on the synthesis technique. Outcome from the review is

important for constructing instrument for the exploratory study and gives support for

producing the proposed model.

 Chapter Three: Research Methodology

This chapter discusses the research methodology that was used to achieve the objectives

of this study. It discusses the four phases that were conducted in order to construct the

software process assessment and certification model which emphasize on the Agile and

secure software processes in detail.

17

 Chapter Four: Exploratory Study

This chapter confers the outcomes obtained from the exploratory study conducted among

software practitioners in Malaysia. It reveals their opinions and experiences on the

software certification which relates to the Agile and secure software processes. The

outcomes from this study have been used to support the construction of the proposed

model.

 Chapter Five: ESPAC Model Development

This chapter discusses in detail about the proposed model. The discussion is organized

based on the components of the proposed model, which are the target, evaluation criteria,

reference standard, data gathering techniques, synthesis technique assessment process

and Achievement Index.

 Chapter Six: ESPAC Model Evaluation

This chapter reports the evaluation of the proposed model through two stages, which are

verification and validation. The verification was performed through expert review and

focus group. Meanwhile, during the focus group, the proposed model was validated on its

practicality and ability to meet users’ satisfaction.

 Chapter seven: Conclusions

This chapter concludes the study by recapitulating the study. Then, the contributions of

this study are highlighted. Finally the limitations of the study are addressed followed by

the future directions in related field.

18

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter describes the state-of-the-art concerning the software process certification

issues. The discussion is started with overview of software certification in Section 2.2,

whereby the concepts of software certification, the existing software certification models

and the issues are explained. Then the factors that influence the quality of Agile and

secure software processes are elaborated. In Section 2.3, the MCDM is described and

continued with the measurement approach in software process certification in Section

2.4. This chapter is ended with the summary in Section 2.5.

2.2 Software Certification

Certification has become an established activity in many industries for decades, however,

it is very hard to assess software as it is intangible. Nonetheless, the need for this activity

has been realized caused by the dangers of software failure which are becoming more

obvious. Fauziah et al. (2005) reported complaints in a study conducted at software

development organizations in Malaysia. 75% of the organizations mentioned that their

software products need to be improved after they were released, 55% of them faced

problem with delivery time, 20% faced budgetary problems and 22.5% of them face

problem with customers who are unhappy of the quality of software that they produce.

More recently, study conducted by the Standish Group (Standish Group, 2013), revealed

that even though the success rate of software projects is reported to be increased, from

19

37% in year 2010 to 39% in year 2012, there still exist projects which failed and

challenged, 18% and 43% respectively.

In general, a software is considered as in good quality if it: 1) meets the expected

requirements, 2) completed within budget, 3) completed on time, 4) completed in its

entirety, 5) delivered together with a solid and thoroughly tested code, 6) can be used

easily (Nasution & Weistroffer, 2009), with good security features (O’Regan, 2014;

Jones & Bonsignour, 2012; Merkow & Raghavan, 2010; Offut, 2002; Mouratidis &

Giorgini, 2007) and follows certain standards (Sommerville, 2007; Jamaiah, Fauziah,

Aziz, & Abdul Razak, 2005). Investing on bad quality software will cause negative

impacts to the users. Due to this, nowadays customers are more concerned with the

quality of the software that they invest on (O’Regan, 2014; Jones & Bonsignour, 2012;

Heck et al., 2010). Consequently, the customers need confirmation about the quality of

software they are investing on. One way to have assurance on quality of software is by

having certification.

Fabbrini, Fusani, and Lami (2006) have illustrated the basic scenario of certification, as

simplified by Fauziah (2008), shown in Figure 2.1. Certification Body is an organism

with internal rules, human resources and skills which are used to perform the certification

procedures. Certification object is what is usually certified, which are process, product or

people. Standard for certification process consist of well-known standards being applied

worldwide. The usage depends on which certification object being certified and the rules

implemented by certification body are same for all object of the same type. The standard

20

requirement relating to an object of interest (product, process or people) will be used by

the Certification Body to assess the object.

Figure 2.1. Certification scenario simplified in Fauziah (2008)

Besides providing a written statement about the level of software quality, there are many

reasons for the need of software certification, to be exact it leads to a better quality and

increased productivity of software product (Fabbrini et al., 2006), serves as a tool for

improving development and maintenance processes (Galin, 2004), increases disciplines

among development team by encouraging best practices in software development and

emphasize standardization implementation (Tripp, 2002), increases the ability to compete

in the market (Heck et al., 2010; Fauziah, Aziz, & Abdul Razak, 2007) and increases

customers’ trustworthiness towards the claim made by organizations about the quality of

their software (Rathfelder, Groenda, & Reussner, 2008).

 rules

assess

 reference model for conformity to

CERTIFICATION

BODY

Standard for certification

process {process, product,

people}

 Certification object

{process, product,

people}

Standard for certification

object requirement

{process, product, people}

21

2.2.1 Evaluation Theory: The Theory That Underpins Software Certification

The key activity in software certification is assessing the certification object. Thus, the

Evaluation Theory (Scriven, 1991) is very closely related. Generally, an evaluation

involves: 1) identification of relevant standards of merit, worth or value, 2) investigation

of the performance of targets (whatever is being assessed) on these standards and 3)

integration or synthesis of the results to achieve an overall evaluation result or a set of

association evaluation results. In conducting evaluation, six evaluation components need

to be considered. They are common to any type of evaluation, regardless of the

discipline, field or evaluand considered (Acuna et al., 2000). The six components are

listed below (Al-Tarawneh, 2014; Zarour, 2009; Acuna et al., 2000; Ares, Garcia, Juristo,

Lopez, & Moreno, 2000; Scriven, 1991):

1. Target: the object under evaluation.

2. Evaluation criteria: the characteristics of evaluated object.

3. Reference standard / Yardstick: the ideal target which is compared with the real target.

4. Data gathering techniques: techniques used to assess the criteria under analysis.

5. Synthesis technique: technique used to judge each criterion, and in general, to judge

the target, obtaining the results of the evaluation.

6. Evaluation process: series of activities and tasks to be performed for the evaluation

process.

Several researchers in software engineering field have used the Evaluation Theory as the

benchmark for their studies (Al-Tarawneh, 2014; Zarour, 2009; Ares et al., 2000). Al-

Tarawneh utilized the theory to develop an evaluation method for the Component off-The

Shelf (COTS) software. On the other hand, Zarour (2009) develop a method to evaluate

22

lightweight software process assessment methods, while Ares et al. (2000) utilized the

theory to construct a framework for software process assessment. Thus the Evaluation

Theory was used in this study by adapting the six components to develop the proposed

model.

2.2.2 Software Certification Process

Software certification process can be categorized by its methods and approaches. There

are four methods in conducting software certification, which are self-certification,

second-party certification, third-party certification (Voas, 1999; Vermesan, 1998) and

collaborative assessment (Jamaiah, 2007; Fauziah, 2008). With self-certification,

organizations declare by themselves that their product conforms to a certain standard.

The advantage of this method is the certification process can be done faster, because the

project is already understood by the developer (Voas, 1999). However, certification

process using this method may cause biased assessment. Nevertheless, self-certification

which involves self-assessment can cut the cost down since the assessment is performed

within an organization (Ritchie & Dale, 2000).

For second-party certification, user will require a particular specified body to certify the

product. Third-party certification on the other hand occurs when the certification process

is carried out by a body which is independent of both user and organization (Vermesan,

1998). Alternatively, collaborative assessment is introduced by Fauziah (2008) and

Jamaiah (2007) in their studies. This method is implemented by the users, developers and

independent assessor collaboratively. They pointed out that there are advantages in the

collaborative approach compared to other methods, which are: 1) it eliminates bias

23

assessment and evaluation of the product by including independent assessor in the team,

2) it removes unfairness evaluation by including the owner or users of the product to

participate in the assessment process and 3) it accelerates the process because the team is

familiar with the product and its’ environment, and 4) it protects data confidentiality and

privacy by only permitting direct users to have access to the software (Jamaiah, Aziz, &

Abdul Razak, 2006). In this study, the collaborative self-assessment method is proposed

by combining the self-certification/ self-assessment with the collaborative assessment,

considering the advantages of both methods.

Voas (1998) pointed out that there are three approaches in certifying software, which are:

process, product and personnel. Process approach ensures that the software was

developed by following the development processes properly, while product approach

assesses the software itself and personnel approach ensures that developers has specific

skill sets. These three approaches are known as ‘The Software Quality Certification

Triangle’ (Voas, 1998).

Although software certification can be conducted in three approaches, however based on

the literature, most of the existing software certification models focus on the product

approach. Among them are the Software Product Certification (SCM_prod) (Jamaiah,

2007) and Laquso Software Product Certification Model (LSPCM) (Heck et al., 2010).

Furthermore, Alvaro, Almeida and Meira (2007) have produced Software Component

Maturity Model, a certification model which is aimed for certifying software

components. However, these models cover only the product quality, without taking into

account management and development factors.

24

The only certification model found in the literature for personnel approach thus far is the

People CMM (PCMM) (Curtis, Hefley, & Miller, 2009). Besides that, there are various

certifications which certify the knowledge and competence of software engineers, for

instance The Certified Tester and Certified Profesional for Requirements Engineering

(Rathfelder et al., 2008).

On the other hand, there are a number of studies which assesses the quality of process

(CMMI Product Team, 2010; Galin, 2004; Davis, 2013; ISO, 2015). They are discussed

further in the next sub section since this study focuses on the software certification based

on the quality of software process. This approach is chosen since the quality assessment

for product based approach is hard to be practiced without implementing the software for

a certain period of time. Thus, considering Deming’s (1982) and Humphrey’s (1989)

premise; ‘the quality of product is influenced by the quality of process used to develop it’,

this study focuses on the process approach.

2.2.3 Existing Process Based Software Certification Model

Although there are various models and standards which assess the quality of software

process, their focus is on improving the software process (Acuna et al., 2000), except

SPAC Model which emphasis on assessing and certifying the software process (Fauziah,

2008). Nevertheless, this model need further improvement since it does not include the

software processes which are essential for producing high quality software in today’s

business environment: the Agile and secure software processes (Fauziah et al., 2011).

Thus, this study adapted the SPAC Model as the basis model and utilized other software

25

process models and standards which give emphasis on these two software processes.

Consequently, these models and standards are elaborated further subsequently.

i. Software Process Assessment and Certification Model (SPAC Model)

Fauziah (2008) has developed software certification model based on software

development process approach, Software Process Assessment and Certification Model

(SPAC), as depicted in Figure 2.2. The ultimate goal of this model is to assure that the

proper software development processes have been carried out effectively and efficiently

in order to meet the expected quality criteria, delivered on time and within budget. It is

formulated based on existing models, which are Capability Maturity Model (CMM), ISO

9000, ISO/IEC 15504 and Bootstrap.

Figure 2.2. Software Process Assessment and Certification Model (SPAC) (Fauziah,

2008)

SPAC Model consists of seven (7) components: 1) completed software, 2) process quality

factor, 3) certification level component, 4) quality level component, 5) assessment and

26

certification process, 6) assessment team and 7) repository. This model focuses in

assessing five main factors that influence software quality: 1) the process performed, 2)

the quality of people involved, 3) the working environment, 4) the use of development

technology and 5) project condition. Each of these factors is decomposed into sub factors

and measures. Nevertheless, this model only focuses on the conventional software

process. Thus this study enhances the assessment by including the Agile and secure

software processes.

Furthermore, two assessment methods are constructed in this model, which are quality

assessment and certification determination. At the end, the certification level is

determined by referring to the quality assessment. This model adopts the CGPA

calculation method for its synthesis technique. However, the weights for evaluated

factors are set to equal value. Thus, this study overcomes this shortcoming by addressing

the weight values for the synthesis technique.

ii. Capability Maturity Model Integrated (CMMI)

CMMI (Rout, 2011; CMMI Product Team, 2010; Hoggerl & Sehorz, 2006) is the

successor of the Capability Maturity Model (CMM) or Software CMM. In 2002, CMMI

Version 1.1 was released, version 1.2 followed in August 2006, and version 1.3 was

recently released in October 2010. CMMI is a process improvement approach by

Software Engineering Institute at Carnegie Mellon University that provides organizations

with the essential elements of effective processes to improve their performance.

27

Unlike the previous versions, CMMI version 1.3 considers its implementation for Agile

practitioners (Philips & Shrum, 2010; CMMI Product Team, 2010). In this version,

CMMI provides interpretation guideline on how to interpret Agile practices and includes

notes to the relevant process areas. The process areas which include the guideline and

notes are: configuration management, product integration, project monitoring and control,

project planning, process and product quality assurance, requirement development,

requirement management, risk management, technical solution and verification.

Accordingly, the relevant Agile software practices are adapted from CMMI Version 1.3

to be used in this study.

iii. ISO/IEC 27001

ISO/IEC 27001 (ISO, 2015; Evans et al., 2010; Humphreys, 2008) originated from

ISO/IEC 1779 standard, which is a comprehensive set of controls comprising best

practices in information security management. It is intended for providing certification

for organizations and aims to ensure information’s confidentiality, integrity and

availablity.

The implementation of security management is based on the common management

system model, the Plan-Do-Check-Act Model. It is ended with a third-party evaluation

and certification awards. However, the ISO/IEC 27001 only certifies software

development process in general and focuses more on the management of information

security management. The relevant practices of this standard are adapted in the study.

This standard consists of fourteen (14) sections, which are: information security policies,

organization of information security, human resource security, asset management, access

28

control, cryptography, physical and environmental security, operations security,

communications security, systems acquisition, development and maintenance, supplier

relationships, information security incident management, information security aspects of

business continuity management and compliance (ISO, 2015; ISECT, 2015).

iv. ISO/IEC 21827

ISO/IEC 21827 is an International Standard based on System Security Engineering CMM

(SSE-CMM) (Davis, 2013; Davis, 2005; Carnegie Mellon University, 2003). It is a

process reference model by Software Engineering Institute which describes the maturity

level of an organization’s security engineering. This standard provides security

engineering activities that span the entire trusted product or secure system life

cycle, including concept definition, requirements analysis, design, development,

integration, installation, operations, maintenance and decommissioning. However, this

standard is aimed for organizations to improve their security engineering. Nunes et al.

(2010) pointed out that SSE-CMM does not restrict organizations to a particular process,

whereas, organizations should use the model in its existing process. Thus, security

engineering should be integrated with other engineering disciplines, such as software

engineering. The relevant security practices, in particular the security management are

adapted in this study.

v. ISO/IEC 15504

The ISO/IEC 15504 (Mas et al., 2012; Van Loon, 2007; Galin, 2004; El Emam & Birk

2000) is a software process assessment International standard which emerged due to the

multiple models for software process assessment and improvement, which are the ISO

29

9000, Bootstrap, Trilium and CMM (O’Regan, 2014). It was formerly known as ISO

SPICE (Software Process Improvement and Capability Determination). This standard is

essential for the organizations to know its performance against the competitors in its

market by assessing its process. Consequently improvements can be made based on the

outcomes of the assessment.

The achievement levels required for each relevant attributes are determined based on four

levels of rating scale, as described in Table 2.1. This Achievement Index is adapted in

this study to determine the quality and certification levels. The assessment in ISO/IEC

15504 constitutes the engineering, customer-supplier, management, support and

organization process. However, this standard focuses on software process improvement

and disregards the human aspects in its assessment (Fauziah, 2008).

Table 2.1

Achievement Grades Scale for ISO/IEC 15504 PA (Galin, 2004)

Grade Rating (%) Achievements

F (Fully achieved) 86-100 Systematic and complete or almost complete

performance of process attributes

L (Largely achieved) 51-85 Significant achievement and systematic approach

are evident. Some areas of low performance

exists

P (Partially achieved) 16-50 Some achievements and partial adoption of

systematic approach are evident. Other aspects of

process attributes are uncontrolled

N (Not achieved) 0-15 Little or no achievement of the process attributes

The existing models are compared in Table 2.2 based on their purposes, achievement

levels, measurement aspects, data gathering techniques and the general descriptions.

30

Table 2.2

Comparisons of Existing Software Process Certification Models and Standards

Criteria SPAC Model CMMI ISO/IEC

27001

ISO/IEC

21827

ISO/IEC

15504

Purpose Certify the

software

process quality

Software

process

improvement

Certify the

information

security

process

Security

process

improvement

Software

process

improvement

Achieve-

ment

Levels

5 certification

levels and 5

quality levels

5 maturity

levels

4 capability

levels

2 levels 5 levels 6 levels

Measure-

ment

aspects

 Process

 People

 Technology

 Working

Environment

 Project

Constraint

 Project

Manage-

ment

 Process

Manage-

ment

 Engineering

 Support

 14 sections of

information

security

management

 Risk Process

 Engineering

Process

 Assurance

Process

 Engineering

 Customer-

supplier

 Manage-

ment

 Support and

organization

process

Data

gathering

techniques

 Document

review

 Interview

 Observation

 Document

review

 Interview

 Document

review

 Interview

 Observation

 Document

review

 Interview

 Document

review

 Interview

 Observation

General

descrip-

tions

 Focuses on

software

lifecycle

processes as

well as

people,

environment

and project

condition as

assessment

factors

 Uses the

conventional

software

development

 Focused

more on the

project

management

aspect

 The

assessment

process

starts from

the

beginning of

development

process

 Focused on

the security

information

management

in

organization

.

 Does not

include

software

development

processes in

detail

 Aims at

security

process

maturity and

improvement

 Focused

more on

system

security

management

 Focused

more on

process

maturity

 Does not

consider

human

aspects in

the

assessment

31

From the comparison made in Table 2.2, majority of the existing models focus on the

software process improvement, rather than software process certification. Furthermore,

they focus on the management aspect of assessment and only assess the software process

in general. Though SPAC Model assesses the software process and other factors that

influence the quality of software process, it only considers the conventional software

process. On the other hand, albeit CMMI addresses the Agile software process, it is only

a general guideline and intended for a certain process area. Moreover, The ISO/IEC

27001 standard focuses more on information security management system and only focus

generally in software process. Additionally, the ISO/IEC 21827 is aimed for security

maturity, while ISO/IEC 15504 focuses on process improvement and do not consider

human aspects in its assessment. Based on the comparison made, the current issues in the

software process certification are highlighted. Next section discusses the issues in detail.

2.2.4 Current Issues in Software Process Certification

Based on the comparison made in previous section, there exist two (2) issues which need

to be addressed in the existing software process certification and standards in order to

ensure that the software process certification is aligned with the current business needs.

First issue is regarding the reference standard. As mentioned earlier, most of the existing

software process certification models focus more on the conventional software

development process in their assessment (Gandomani & Hazura, 2013; Lami & Falcini,

2009; Diaz, Garbajosa, & Calvo-Manzano, 2009; Marcal et al., 2008; Salo &

Abrahamsson, 2005).

32

However, currently the software industry is facing challenges to bring software products

to market as quickly as possible, with shorter development life cycles, lower cost and

able to accept rapid requirement changes during development (Santos et al., 2011;

Pressman, 2010; Pikkarainen, 2009; Dyba & Dingsoyr, 2008; Lan & Ramesh, 2007

Sommerville, 2004). Thus, the software practitioners are incorporating Agile software

process during software development towards producing high quality software. This is

because being Agile could bring high quality software to market faster and most cost-

effective manner (Abbas, Gravell, & Wills, 2010; Pressman, 2010; Rico et al., 2009;

Livermore, 2007). Several studies support that agility brings higher quality software, for

instance Rico et al. (2009) and Charrate (2001).

Moreover, the software nowadays is exposed to malicious attack due to the application

environment which is more complex and distributed (Erdogan et al., 2010), especially the

Web enabled application. On top of that, most computer applications nowadays keep

confidential data which is exposed to malicious attack (Jones & Bonsignour, 2012).

There are many problems faced in Web based application, such as Website crashes and

security breaches. These circumstances have influenced the level of system performance,

quality and integrity of a system. Thus, in recent years, there are many serious computer

crimes have been reported.

For instance, in 2009, Albert Gonzalez and two other coconspirators were charged to

steal more than 130 million credit and debit cards numbers as well as account information

from corporate organizations such as 7-Eleven and Hannaford Brothers using an ‘SQL

injection’ attack (Marra, 2009). Similarly, the computer crime activities are increasing

33

highly in Malaysia. 6167 cases were reported in 2010 which caused RM 63 million loss.

Among the frequent crime reported are in Internet banking, VoIP (Voice over Internet

Protocol) and e-Commerce. Mostly it involves identity theft and fraud (Lee, 2011). On

top of that, Malaysia has been listed in the Sophos Security Threat Report 2013 as the

sixth most vulnerable country in the world for cyber crime, which involves the malware

attacks in computer or smart phone (Bernama, 2013).

As a result, nowadays customers are concerned about the security level of the software

produced to them, not only concerning on the usability, maintainability and functionality

(O’Regan, 2014; Hui et al., 2014; Merkow & Raghavan, 2010; Voas, 2008; Julia et al.,

2008; Offut, 2002), besides expecting the software could be delivered fast to them with

the ability to accept change and move quickly (Isawi, 2011; Pikkarainen, 2009; Dyba &

Dingsoyr, 2008; Sliger & Broderick, 2008; Boehm, 2008). Although these two software

processes are very important in determining the quality of software, they are not

considered in the reference standard of the existing software process certification model.

As a consequent, there is a need to enhance the reference standard by considering these

new approaches of developing software, as they give impact on delivering high quality

software in today’s business environment.

The second issue in the software process assessment and certification models is regarding

the synthesis technique used during the software certification. The software certification

involves with multiple criteria, as mentioned by Kroeger (2011) and Guceglioglu and

Demirors (2005). Typically when the assessment involves multiple criteria, the factors

will have different importance, thus it should be weighted (Saaty, 2008; Brugha, 2004;

34

Malczewski, 1999; Yoon & Hwang, 1995). In addition, determining the weight becomes

vital particularly when it involves eliciting qualitative information from the decision

makers (Trianphyllou & Mann, 1995; Yoon & Hwang, 1995). Nevertheless, the synthesis

technique used in the existing software process assessment and certification do not

include weight values. Thus, the synthesis technique needs to be improved by

incorporating weights to the assessed criteria in the proposed model. Table 2.3 compares

the issues that are lacking in the existing software process certification models and

standards.

Table 2.3

Lacking Issues in Existing Software Process Certification Models and Standards

It follows from the table that the Agile software process has not been addressed by

majority of the existing software process certification models and standards, although it is

such an important aspect which determines the quality of developed software in today’s

business environment. However, CMMI version 1.3 addresses this aspect partially, by

including notes to Agile practitioners who implement CMMI. Nevertheless, as

Model

Reference standard

Synthesis Technique Agile Software

Process

Secure Software

Process

SPAC Model Not Addressed Not Addressed Does not consider weight value

CMMI 1.3 Partially Addressed Not Addressed Does not consider weight value

ISO/IEC 27001 Not Addressed Partially

Addressed

Does not consider weight value

ISO/IEC 21827 Not Addressed Partially

Addressed

Does not consider weight value

ISO/IEC 15504 Not Addressed Not Addressed Does not consider weight value

35

documented in CMMI Product Team (2010), it does not cover the whole process areas;

rather it only covers several process areas such as requirement management and risk

management. Moreover, the secure software process has not been included in existing

software process certification model (Fauziah et al., 2011). Although security issue has

been addressed in ISO/IEC 27001, they are only in general and do not include the

software process in particular. On the other hand, ISO/IEC 21827 focuses more on

system security engineering and intended for security process maturity.

Additionally, all of the software process certification models compared do not consider

weight that should be allocated to the assessed criteria. This issue is important to be

addressed as the weight value will influence the quality and consistency of the

certification result.

Since the Agile and secure software processes are seen as essential for producing high

quality software in today’s business environment, they are considered as the reference

standard for the proposed model. In addition, this study adapted the MCDM technique in

order to obtain the weight values for the synthesis technique. They are discussed further

in the subsequent sub sections.

2.2.5 Software Process Certification for Agile Software Process

The needs of incorporating the Agile software process in software process certification

are revealed in the previous discussion. Agile software process is introduced recently as a

consequence from the problems faced in conventional software process which is not

flexible in accepting unstable and volatile requirements (Lohan, Conboy, & Lang, 2010;

36

Rico et al., 2009). Agile software process follows the twelve (12) principles and its

values, as defined in the Agile Manifesto (2001). Additionally, it comprises of several

methods.

Among the Agile methods are Adaptive Software Development (ASD), The Crystal

Methodologies, Dynamic Systems Development Method (DSDM), Extreme

Programming (XP), Feature-Driven Development (FDD), Agile Modeling (AM), Lean

Software Development and Scrum (Abrahamsson et al., 2010). These methods focus on

different phases in software development lifecycle. Some focus more on software

development practices, such as XP and AM, some focus more on management of

software development practices, such as Scrum. On the other hand, there are methods

which fully support the software development lifecycle, for instance DSDM, while FDD

is more suitable for requirement specification phase (Tarhan & Yilmaz, 2013;

Abrahamsson et al., 2010). However, regardless of their focus, they have similarities

whereby all of the methodologies are iterative, incremental, self-organizing and emergent

(Stamelos & Sfetsos, 2007; Boehm & Turner, 2005; Lindvall et al., 2002).

In this study, the common Agile principles and values were investigated, as well as the

XP (Wells, 2013; Beck 1999) and Scrum (Abrahamsson et al., 2010) practices, as they

are the most popular and mostly being adopted (Fernandes & Almeida, 2010;

Abrahamsson et al., 2010). They are often used together during software development, as

Scrum focuses on project management, while XP focuses on software development

(Maurer & Martel, 2002). Furthermore, they complement each other, as Fitzgerald,

Hartnett, and Conboy (2006) found out in their studies. In addition, the Agile Modeling

37

also referred, since it is claimed to provide a methodology for effective Agile modeling

and documentation (Ambler, 2014). By taking these methods into consideration, the

practices are covered from a wider perspective instead of only focusing on the software

development practices.

2.2.6 Software Process Certification for Secure Software Process

Secure software process has become an important software process in today’s business

environment, nevertheless it is not addressed in the existing software process assessment

and certification model. It has become essential since the traditional perimeter defenses

like firewalls, intrusion detection and anti-virus systems are unable to protect software

since hackers are concerning on the software layer (Shafiq, Erwin, & Dunne, 2011;

Muniraman & Damodaran, 2007). It is estimated that 80% of all breaches are application-

related (Colley, 2009). Therefore, building, deploying, operating and using software

which does not consider security during its development can be risky (Julia et al., 2008).

The researchers emphasis on building secure software, rather than securing software.

Both of them differs in each other, whereby building secured software is meant for

designing and implementing secured software. On the other hand, securing software

means building software and then securing it after the software is completed (Goertze,

2009). Thus, security activities should be considered from the starting of software

development and continuous in all phases, rather than having it as a sub-segment of

software development. By incorporating security in later stages of software development

as an afterthought, the risks of introducing security vulnerabilities into software will be

higher (Shafiq et al., 2011; McGraw, 2006).

38

As consequence, many researchers have come out with software lifecycle models which

support security activities throughout the lifecycle (Microsoft, 2012; Davis, 2013;

OWASP, 2006; Futcher & Von Solms, 2007; McGraw, 2006). Among the most

prominent and used software lifecycle models which emphasize on security activities in

industry to date are Comprehensive, Lightweight Application Security Project (CLASP)

by Open Web Application Security Project (OWASP) (Merkow & Ragavhan, 2010;

OWASP, 2006), Microsoft’s Security Development Lifecycle (MS SDL) (Microsoft,

2012; Merkow & Ragavhan, 2010) and Cigital’s Touchpoints (McGraw, 2011; Julia,

2008; McGraw, 2006), as cited by McGraw (2011) and De Win, Scandariato, Buyens,

Gregoire and Joosen (2009).

DeWin et al. (2009) highlighted that these models provide an extensive set of activities

which emphasize on secure software processes during the entire software development

lifecycle. On top of that, they have gone through extensive validation. MS SDL has been

used during the development of Vista project, CLASP was reviewed by several leading

companies of OWASP consortium, while Touchpoints has been validated over time as it

uses the experience from several industrial projects. There are observable differences

among these three models, however they agree on three points: 1) supports security

education throughout organization, 2) the most important activity in developing secured

software is security management and 3) it is vital to implement best practices in order to

succeed (Simpson, 2008; Howard & Lipner, 2006). Consequently, the security practices

from these models are considered in this study.

39

2.2.7 Factors that Influence the Quality of Agile and Secure Software Processes

In order to perform assessment on the Agile and secure processes, the factors that

influence their quality are identified, as discussed further subsequently.

i. Agile software process

Focusing on the Agile software process, the factors are concerned more on the people and

process factors.

 People factor

Evidently, the people factor is the most imperative factor towards successful Agile

implementation, since the nature of Agile emphasizes on individuals and interactions,

customer collaboration and responding to changes. Commonly the issues regarding the

people factor concentrates on the development team, organization and customers. They

are discussed further:

 The development team

The attitude of the development team is very crucial, since they are the main people who

perform the Agile practices. Consequently, it is essential that they are able to adapt with

working practices (Lindvall et al., 2002), willing to learn continuously (Misra, Kumar, &

Kumar, 2009), motivated (Rumpe & Schroder, 2002) and have societal culture such as

being honest, collaborative and responsible (Misra et al., 2009). However, study by Misra

et al. (2009) concluded that staff competent is not essential for the success of Agile. On

the contrary, staff competent has been found as significant for Agile success (Franca et

al., 2010; Tsun & Dac-Buu, 2008; Rumpe & Schroder, 2002; Lindvall et al., 2002).

Furthermore, the development team must be motivated in order to perform Agile

40

successfully (Rumpe & Schroder, 2002). Pertaining to the Agile principle which is self-

organization, it also has been found as the success factor (Franca et al., 2010; Tsun &

Dac-Buu, 2008). The time taken to make decisions is essential (Misra et al., 2009), since

everything needs to be performed fast. Thus, having good communication with the

customers is also influential (Rumpe & Schroder, 2002), since they also involve in

decision making process. Table 2.4 provides the summary.

Table 2.4

The Factors Regarding Development Team

Factors Authors

Competent team members Franca et al. (2010); Tsun & Dac-Buu

(2008); Rumpe & Schroder (2002);

Lindvall et al. (2002)

Competent team members is not influential Misra et al. (2009)

Team’s ability to adapt with working practices Lindvall et al. (2002)

Team members that willing to learn continuously through

informal traininigs

Misra et al. (2009)

Societal culture in team: honest, collaborative and

responsible

Misra et al. (2009)

Motivated team Rumpe & Schroder (2002)

Coherent, self organizing team Franca et al. (2010); Tsun & Dac-Buu

(2008)

Team is able to make fast decisions Misra et al. (2009)

Team that have good communication with customers Rumpe & Schroder (2002)

 The organization

Eventhough organization’s support plays a significant role in order to ensure the success

of Agile implementation, suprisingly study by Tsun and Dac-Buu (2008) found that it is

not a significant factor for the success of Agile. However, studies of Misra et al. (2009)

and Lindvall et al. (2002) concluded contradictly. For that reason, the organization must

41

support cooperative culture of management instead of hierarchical culture. Besides that,

the organization must trust the decisions made by the development team without second-

guessing their decision (Lindvall et al., 2002). On top of that, in order to encourage rapid

communication, the organization must provide facilities that is appropriate for the Agile

environment such as meeting rooms, co-located workstations and meeting room facilities

(Lindvall et al., 2002). These factors are summarized in Table 2.5.

Table 2.5

The Factors Regarding Organization

Factors Authors

Organization that supports cooperative culture of

management

Misra et al. (2009); Lindvall et al.

(2002)

Organization’s support is not influential Tsun & Dac-Buu (2008)

Organization that trusts the teams’ decisions Lindvall et al. (2002)

Organization that provides Agile environment

facilities
Lindvall et al. (2002)

 The customer

Referring to the Agile Manifesto, customer collaboration is among the most influential

requirement for the success of Agile. Thus, their satisfaction, collaboration (Misra et al.,

2009), as well as commitment to the project is noteworthy (Misra et al., 2009; Lindvall et

al., 2002). Therefore, good relationship with the customer must exist (Franca et al.,

2010). However, the attitude of the customer is also influential to the success of Agile,

whereby they must be able to give constant feedback (Lindvall et al., 2002). The factors

related to customer are summed up in Table 2.6.

42

Table 2.6

The Factors Regarding Customer

Factors Authors

Customers’ satisfaction Misra et al. (2009)

Customers’ collaboration Misra et al. (2009)

Customers’ commitment
Misra et al. (2009); Tsun & Dac-Buu

(2008)

Good customer relationship Franca et al. (2010)

Customer able to give fast feedback Lindvall et al. (2002)

 Process factor

Besides the people factor, the Agile process gives high influence on the success of Agile

implementation. Study by Rumpe and Schroder (2002) concluded that testing, pair

programming, tasks prioritization and achieving the goals as the success factor.

Furthermore, proper Agile software engineering and Agile project management are also

essential (Tsun & Dac-Buu, 2008). Among the management needed for the Agile

environment are the Agile-oriented requirement management process and configuration

management process (Franca et al., 2010). Also, correct integration testing (Franca et al.,

2010), delivering the most important features first, as well as regular delivery has been

found as vital (Franca et al., 2010; Tsun & Dac-Buu, 2008). Besides, the technical

trainings are also important to be provided to the team members. Table 2.7 shows the

summary of process factor.

43

Table 2.7

The Factors Regarding Process

Factors Authors

Testing Rumpe & Schroder (2002)

Pair programming Rumpe & Schroder (2002)

Task prioritization Rumpe & Schroder (2002)

Achieving the goals Rumpe & Schroder (2002)

Proper Agile software engineering Tsun & Dac-Buu (2008)

Follow good Agile project management Tsun & Dac-Buu (2008)

Follow Agile-oriented requirement management

process
Franca et al. (2010)

Follow Agile-oriented configuration management

process
Franca et al. (2010)

Agile style delivery of software (regular and

delivering most important features first)

Franca et al. (2010); Tsun & Dac-Buu

(2008)

Correct integration testing Franca et al. (2010)

Appropriate technical trainings provided Tsun & Dac-Buu (2008)

Besides the process and people factors, study by Tsun and Dac-Buu (2008) also insists on

the well-defined coding standards up-front. Furthermore, a detailed and realistic project

schedule is also essential (Doherty, 2012).

ii. Secure software process

When concentrating on factors that influence the quality of security issue, most of the

previous studies concentrated on the information security (Ai, Md Mahbubur and Leon,

2007), and there is a lack of empirical research in the security risk management area

(Kotulic & Clark, 2004). Therefore, the factors that affecting the success of information

security has been consulted in order to obtain the factors that influence the quality of

secure software process. Previous literature (Von Solms & Von Solms, 2004; Dutta &

44

McRohan, 2002) concluded that information security is not mainly a technical problem,

instead, it is a management or business issue.

As a consequence, the success factors of information security has been studied from the

perspectives of organizational, people and technological aspects. Organizational aspects

are the issues related to the managerial decisions. People aspects on the other hand, are

issues related to cognition at the invidual level, as well as culture and interaction with

other people, while technological aspects involve technical solutions such as applications

and protocols (Werlinger, Hawkey, & Besnosov, 2009). In addition, Bulgurcu, Cavusoglu

and Benbasat (2010) stated that the success of information security can be accomplished

by expending in both technical and socio-organizational resources. They are discussed

further subsequently.

 Organizational factor

The organizational factor has been studied on the management support, policies, and

organizational capabilities. The often cited success factor that influence the success of

information security is the management support (Kazemi et al., 2012; Pierce, 2012;

Kraemer, Carayon, & Clem, 2009; Ai et al., 2007; Torres et al., 2006; Knapp, Marshall,

Rainer, & Ford, 2006; Kankanhalli et al., 2003; Fulford & Doherty, 2003). The

respondent in the study of Knapp et al. (2006) stated that without management support

and involvement, the creation, training and enforcement of the security policy will not be

successful, as the employees will not take it seriously. Furthermore, Kankanhalli (2003)

stated that with management support, the financial and technical ressources are likely to

be made available for security intitatives.

45

Furthermore, the implementation of security policy has been highlighted as a significant

factor for the success of information security (Kazemi et al., 2012; Kraemer et al., 2009;

Kraemer & Carayon, 2007; Ai et al., 2007; Fulford & Doherty, 2003). Therefore, studies

have been conducted to investigate the employees’ behaviour towards security

compliance (Waly, Tassabehji, & Kamala, 2012; Bulgurcu et al., 2010; Pahnila, Siponen,

& Mahmood, 2007). Bulgurcu et al. (2010) and Pahnila et al. (2007) concluded that

employees’ attitude, normative beliefs and habits have significant effect on their intention

to comply with the security policy. Moreover, Pahnila et al. (2007) found that sanctions

and rewards do not influence the intention to comply with the security policy. On

contrary, Waly et al. (2012) found that communication, motivation, santions and reward

and are the most effective factors contributing to the application of information security

policy in the business sector.

Besides, Hall, Sarkani, & Mazzuchi (2011) examined the impacts of organizational

capabilities on the effective implementation of information security strategy. They

concluded that the ability to develop awareness of the current and future threat

environment, the ability to possess appropriate budget, and the ability to coordinate the

budget to respond to information security threats, are positively associated with the

effective implementation of information security strategy. Table 2.8 summarizes the

factors related to organizational factor for the successful information security

implementation.

46

Table 2.8

The Organizational Factors

Factors Authors

Management support Kazemi, Khajouei, & Nasrabadi

(2012); Pierce (2012); Kraemer et al.

(2009); Ai et al. (2007); Torres et al.

(2006); Knapp (2006); Kankanhalli et

al. (2003); Fulford & Doherty (2003)

Implementation of security policy Kazemi et al. (2012); Kraemer et al.

(2009); Kraemer & Carayon (2007); Ai

et al. (2007); Fulford & Doherty (2003)

Intention to comply with security policy among

staffs: staffs’ attitude, normative beliefs and habits

have significant effect on their intention to comply

with the security policy

Bulgurcu et al. (2010); Pahnila et al.

(2007)

Intention to comply with security policy among

staffs: sanctions and rewards do not influence the

intention to comply with the security policy

Pahnila et al. (2007)

Intention to comply with security policy among

staffs: communication, motivation, santions and

reward influence the intention to comply with the

security policy

Waly et al. (2012)

Organizational capabilities: ability to develop

awareness of the current and future threat

environment, the ability to possess appropriate

budget, and the ability to coordinate the budget to

respond to information security threats, are

positively associated with the effective

implementation of information security strategy

Hall, Sarkani, & Mazzuchi (2011)

 People factor

From the view of people factor, previous studies investigated the awareness among the

staffs, trainings provided to them, their competence and communication. The awareness

on the security issue among the staffs plays a major role for the successful

implementation of information security (Kazemi et al. 2012; Pierce, 2012; Siponen,

Pahnila, & Mahmood, 2010; Ai et al., 2007; Lane, 2007; Torres et al., 2006). Bulgurcu et

al. (2010) found that awareness among the staffs highly influences their willingness to

47

comply with the security initiatives. In addition, the training provided to them is vital

(Kazemi et al., 2012; Pierce, 2012; Kraemer & Carayon, 2005). With the trainings

provided to them, the staffs will be more responsible with their job and motivated on the

work they are performing, which directly will influence the quality of their job (Kazemi

et al., 2012). On top of that, the staffs must be competent so that all security risks are

identified and mitigated (Ai et al., 2007; Torres et al., 2006)

Furthermore, communicating on the security risks is vital in order to create common

perception and understanding on the security requirements. Koskosas and Paul (2004)

found that communicating risks among the organization members plays significant role in

the success of information security. Tsohou, Karyda, Kokolakis and Kiountouzis (2006)

added that the security risks should be communicated among the stakeholders by using

different strategies in order to reach common perception among the stakeholders. As

evidence, Kraemer and Crayon (2007) concluded in the study that the communication

breakdown can cause the failure in information security implementation. Moreover, study

by Fulford and Doherty (2003) concluded that good understanding of security risks and

security requirements plays a significant role in the successful implementation of

information security. Therefore, the staffs need to get involved during the communication

and get involved with the decision making process within the organization (Kraemer &

Carayon, 2005). Table 2.9 recapitulates the discussed factors.

48

Table 2.9

The People Factors

Factors Authors

Awareness on the security issue among the

staffs

Kazemi, Khajouei, & Nasrabadi (2012);

(Pierce, 2012); Ai et al. (2007); Lane (2007);

Torres et al. (2006); Siponen et al. (2010)

Trainings provided to the staffs Kazemi et al., (2012); Pierce (2012);

Kraemer & Carayon (2005)

Staff competence Ai et al. (2007); Torres et al. (2006)

Communicating on the security risks Kraemer & Crayon (2007); Tsohou (2006) ;

Koskosas & Paul (2004)

Good understanding of security risks and

security requirements

Kraemer & Carayon (2005); Fulford &

Doherty (2003)

 Technological factor

Technological aspect has been studied widely in the area of information security

(Dunkerley & Tejay, 2011). Whitman and Mattord (2012) emphasized that access control

is very important in information security since it restricts the access only to authorized

personnel. Furthermore, access control has been highlighted as an important element in

information security (La Reau, 2006). In the same manner, Torres et al. (2006) concluded

that business connections, which are the external and internal connection to the

organization’s intranet, must be protected from unauthorized users. In addition, the use of

software tools such as vulnerability assessment tools and intrusion detection tools can

increase the effectiveness of information security implementation (Ai et al., 2007). Table

2.10 summarizes the factors.

49

Table 2.10

The Technical Factors

Factors Authors

Access control Torres et al. (2006); La Reau (2006);

Whitman and Mattord (2012)

Use of software tools Ai et al. (2007)

 Other factors

Besides the abovementioned factors, the previous studies also highlighted other factors

that influence the success of information security which involves the process itself. The

study of Ai et al. (2007) concluded that effective planning was found to have a paramount

influence on the success of information security. Likewise, Torres et al. (2006) concluded

that defining information security strategy is vital. By doing so, the plan of security goals

are clearly defined. Furthermore, risk management has been found as a significant

activity which must be performed in order to carry out a successful information security

(Tohidi, 2011; Torres, 2006). La Reau (2006) convinced that information security is

actually the process of risk management, whereby it is the ongoing process in identifying

the risks and implementing mitigation plans to address them. Therefore, it has been

emphasized as crucial to be considered from the beginning of software development

lifecycle and continuous in all phases by numerous exisiting studies (Muniraman &

Damodaran, 2007; Essafi et al., 2006; Lipner, 2006; McGraw, 2006).

In the study of Torres et al. (2006), the identified factors are: information system security

architecture, information security integration, which aligns the information security

activities with the business objectives, project accomplishment and law enforcement and

compliance. In addition, another important success factor concluded in Fulford &

50

Doherty (2003) is the distribution of guidance on IT security policy. Also, the

relationship between budget and information security performance has also been

emphasized in previous studies (Ai et al., 2007; Torres et al., 2006). Table 2.11

summarizes the discussed factors.

Table 2.11

Other Factors That Influence the Successful Implementation of Information Security

Factors Authors

Effective planning Ai et al. (2007); Torres et al. (2006)

Risk management Tohidi (2011); Torres (2006); La Reau

(2006)

Information system security architecture,

information security integration, project

accomplishment and law enforcement and

compliance

Torres et al. (2006)

Distribution of guidance on IT security

policy

Fulford & Doherty (2003)

Security budget Ai et al. (2007); Torres et al. (2006)

Based on the factors that influence the quality of the two software processes, they can be

classified into five main factors, which are process, people, technology, project constraint

and environment. This classification is similar to the software process quality factors

proposed by Fauziah (2008). However, they are considered from the perspectives of

Agile and secure software processes. The factors are summarized in Table 2.12.

51

Table 2.12

Summary of Factors Influencing the Software Process Quality

Factors Agile Software Process Factors Secure Software Process Factors

Process Pair programming

 Task prioritization

 Achieving the goals

 Proper Agile software

engineering

 Follow good Agile project

management

 Follow Agile-oriented

requirement management process

 Follow Agile-oriented

configuration management

process

 Agile style delivery of software

(regular and delivering most

important features first)

 Correct integration testing

 Appropriate technical trainings

 Effective planning

 Risk management

 Information system security

architecture

 Information security integration

 Project accomplishment

 Law enforcement and compliance

 Trainings provided to the staffs

People Development team:

 Competent team members

 Team’s ability to adapt with

working practices

 Team members that willing to

learn continuously through

informal traininigs

 Societal culture in team: honest,

collaborative and responsible

 Motivated team

 Coherent, self organizing team

 Team is able to make fast

decisions

 Team that have good

communication with customers

Organization:

 Organization that supports

cooperative culture of

management

 Organization that trusts the

teams’ decisions

 Organization that provides Agile

environment facilities

Staffs:

 Awareness on the security issue

among the staffs

 Staff competence

 Communicating on the security

risks

 Good understanding of security

risks and security requirements

 Staffs’ attitude, normative beliefs

and habits have significant effect

on their intention to comply with

the security policy

Organization:

 Management support

 Implementation of security policy

 Intention to comply with security

policy among staffs: staffs’

attitude, normative beliefs, habits,

communication, motivation,

santions and reward have

significant effect on their intention

to comply with the security policy

 Organizational capabilities: ability

to develop awareness of the

52

Customer:

 Customers’ satisfaction

 Customers’ collaboration

 Customers’ commitment

 Good customer relationship

 Customer able to give fast

feedback

current and future threat

environment, the ability to possess

appropriate budget, and the ability

to coordinate the budget to

respond to information security

threats, are positively associated

with the effective implementation

of information security strategy.

Technology - Well-defined coding standards
 Use of software tools

 Access control

Constraint - A detailed and realistic project

schedule

 Security budget

Environment Agile environment facilities Authorized access

Referring to this study, the characteristics of evaluated object is the effectiveness and

efficiency of software process. These characteristics are important in order to ensure the

quality of software (Fauziah, 2008). The effectiveness of the software process is

measured in terms of the level of completeness, consistency and accuracy of the process

of developing products that fulfill users’ expectation through the involvement of good

quality people, use of appropriate technology and stability of working environment. On

the other hand, the efficiency is measured in terms of the capability of the process to

produce products according to estimated budget and time (Fauziah et al., 2011). Based on

the five factors that influence the Agile and secure software processes as discussed in the

previous section, the sub factors are defined by adapting from Fauziah (2008). The

summary of the factors, sub factors, as well as the evaluation criteria is depicted in Table

2.13.

53

Table 2.13

Factors, Sub Factors and the Evaluation Criteria

Factors Sub factors Evaluation criteria

Software development

process

Requirement engineering

Completeness

Consistency

Accuracy

Design

Coding

Testing

Management process Project management

Change management

Security management

Risk management

Support process Staff initiative

Documentation

Resource management

Training

People Developer Interpersonal skills

Management skills

Technical skills

Knowledge

Experience

Team commitment

Customer Involvement

Organization

Technology Tools and techniques Completeness

Standard and procedure

Project constraint

Budget Accuracy

Schedule

Environment Working environment Safety

Comfort

2.2.8 The Agile and Secure Software Practices

Referring to the defined factors in previous section, this study has identified the Agile

and secure software practices that need to be performed in order to produce high quality

software. They are used as the reference standard in this study.

54

 The process factor for Agile software proces:

The Agile practices are gathered by referring to the Agile Principles and values and Agile

methods which are XP, Scrum and Agile Modeling. Additionally, the relevant practices

are adopted from CMMI. Furthermore, the findings from existing empirical studies which

gather the opinions of software practitioners are also included. Among the studies which

investigate the current practice of Agile are VersionOne (2011) and West and Grant

(2010) which investigated the status of the Agile adoption and practices in the software

industry. Furthermore, Salo and Abrahamsson (2008) investigate the usefulness of XP

and Scrum in the European embedded software development organizations. In addition,

Santos et al. (2011) study the perception of software practitioners on the relationship of

Agile with the quality of software. In Malaysia, Ani Liza, Gravell and Wills (2012a)

investigate on the perception of software practitioners when adopting Agile.

The Agile software practices which are considered as having high importance in the

empirical studies are labeled as (+), while the ones with less importance are labeled as (-).

Table 2.14 summarizes the Agile software practices and the resources. The main

resources for Agile principles and values is Agile Manifesto (2001) while for XP and

Scrum are Wells (2013), Abrahamsson et al. (2010), Dyba & Dingsoyr (2012) Cockburn

and Highsmith (2001) and Beck (2001). Additionally, Ambler (2014) and Ambler (2006)

are used mainly for the Agile Modeling. The symbol (√) is used to indicate that the

practices are obtained from the main references, while additional references are listed in

the ‘Other References’ column.

55

Table 2.14

The Agile Software Practices

P
h

a
se

s

Practices

References

P
ri

n
ci

p
le

s

V
a

lu
es

X
P

S
cr

u
m

A
M

C
M

M
I

Other References

R
eq

u
ir

em
en

t
E

n
g
in

ee
ri

n
g

Gathering requirements

iteratively and

incrementally

√ √

Williams, Rubin, & Cohn,

(2010); Liu, Wang, & Gao

(2010); Ramesh, Lan, &

Baskerville (2010); Lan &

Ramesh (2008) (+)

Emphasizing on face-to-

face communication
√ √

Williams et al. (2010); Liu

et al. (2010); Ramesh et al.

(2010); Lan & Ramesh

(2008) (+)

Identifying the scope at

the beginning of the

project to create initial

prioritized stack of

requirements

√ √
Ambler (2014); O’Sheedy

& Sankaran (2013) (+)

Producing product backlog

and iteration backlog for

ensuring the consistency

and traceability of

requirements

 √
Salo & Abrahamsson

(2008) (+)

Using releases (working

software) for validating

requirements at the end of

each iterations

 √

Liu et al. (2010); Ramesh

et al. (2010); Lan &

Ramesh (2008) (+)

The requirements are

gathered with little detail

in the beginning and

detailed up during

iterations

√ √ Williams et al. (2010) (+)

Enabling customers to

prioritize and reprioritize

requirements throughout

the development

√ √

Liu et al. (2010); Ramesh

et al. (2010); Lan &

Ramesh (2008) (+)

56

P
h

a
se

s
Practices

References

P
ri

n
ci

p
le

s

V
a

lu
es

X
P

S
cr

u
m

A
M

C
M

M
I

Other References
S

o
ft

w
a
re

 D
es

ig
n

Implementing model

storming
 √ Ambler (2014) (+)

Start designing with

simple initial design and

integrating it continuously

√ √ √

Rumpe and Schroder

(2002); Tsun & Dac-Buu

(2008); Sison & Yang

(2007); Tessem (2003) (+)

Designing with multiple

models
 √ (From main reference)

Refactoring (reorganize)

the design
√ √

Tsun & Dac-Buu (2008);

Moser et al. (2008);

Fowler (1999) (+)

Using metaphor as

architecture of the system
 √

Begel & Nagappan (2007)

(+)

Rumpe & Schroder

(2002);West & Grant

(2010) (-)

Creating an initial model

at the beginning of

iteration
√ √ √

Ambler (2014) (+)

Producing just barely good

enough artifacts (for

situation at hand only)

 √ √ Ambler (2014) (+)

C
o

d
in

g

Following

coding/database/interface

standards

 √

VersionOne (2011);

Williams et al. (2010);

Salo and Abrahamsson

(2008); Begel and

Nagappan (2007); Tsun &

Dac-Buu (2008); Sison &

Yang (2007); Rumpe

Schroder (2002) (+)

Delivering the software

frequently with increments

of features

√ √ √

Franca et al. (2010); Sison

& Yang (2007); Tsun &

Dac-Buu (2007); Rumpe

& Schroder (2002) (+)

Having customers on-site

to get continuous and

immediate feedback from

customer for clarification

√ √ √ √

 Ani Liza, Gravell, &

Wills (2012a); Tsun &

Dac-Buu (2007); Tessem

(2003) (+)

Rumpe & Schroder (2002)

(-)

57

P
h

a
se

s
Practices

References

P
ri

n
ci

p
le

s

V
a

lu
es

X
P

S
cr

u
m

A
M

C
M

M
I

Other References

Deploying the software

gradually in real

environment
√ √

Williams & Erdogmus

(2002) (+)

VersionOne (2011) (-)

Giving authority to team

members to make changes

at any part of the code

 √

Williams et al. (2010);

Salo & Abrahamsson

(2008); Rumpe &

Schröder (2002) (+)

Implementing pair

programming (two

programmers working

together)

 √ √

Williams et al. (2010);

Schindler (2008); Begel &

Nagappan (2007); Tessem

(2003); Rumpe &

Schroder (2002) (+)

VersionOne (2011); Salo

& Abrahamsson (2008) (-)

Implementing test driven

development (TDD): write

tests first, then write the

code to pass the tests

 √ √ √

Williams et al. (2010);

Sanchez, Williams, &

Maximilien (2007);

Ambler (2006); Nagappan,

Maximilien, Bhat, &

Williams (2008); George

& Williams (2004) (+)

West & Grant (2010); Salo

& Abrahamsson (2008);

Begel & Nagappan (2007)

(-)

Integrating the newly

produced code to system

baseline frequently

 √

VersionOne (2011); West

& Grant (2010); Williams

et al. (2010); Salo &

Abrahamsson (2008);

Begel & Nagappan (2007);

Rumpe & Schroder (2002)

(+)

Determining code

integration strategy and

revising it

 √ (From main reference)

Producing deliverable

documentation late
 √ √ Ambler (2014) (+)

Refactoring the code and

database
 √

Moser et al. (2008);

Ambler (2006) (+)

Alshayeb (2009) (-)

C
o
d

in
g

58

P
h

a
se

s
Practices

References

P
ri

n
ci

p
le

s

V
a

lu
es

X
P

S
cr

u
m

A
M

C
M

M
I

Other References
T

es
ti

n
g

Using acceptance tests to

validate and verify user’s

requirements

 Lan & Ramesh (2008) (+)

Implementing user

interface testing

Liu et al. (2010);

VersionOne (2011) (+)

Implementing database

regression testing
 Ambler (2006) (+)

Producing executable

specification
 √ √ Ambler (2014) (+)

Implementing automated

tests

VersionOne (2011);

Williams et al. (2010); Liu

et al. (2010) (+)

Implementing tests

continuously throughout

the development

VersionOne (2011); Liu et

al. (2010) (+)

Implementing frequent

integration testing
 √

Franca et al. (2010); Tsun

& Dac-Buu (2008); Rumpe

& Schroder (2002) (+)

Acceptance tests are

written or at least modeled

by customers
√ √

Lan & Ramesh (2008);

Paetsch et al. (2003) (+)

P
ro

je
ct

 M
a

n
a

g
em

en
t

Performing project

planning jointly and

continuously with team

members

√ √ √ √

Liu et al. (2010); Lan &

Ramesh (2008) (+)

Salo & Abrahamsson

(2008) (+)

Conducting continuous

review meetings at end of

each iteration to

demonstrate the latest

version of software

 √ √ Lan & Ramesh (2008) (+)

Carrying out release

meeting at the beginning

of project to plan releases

 √ √ √ Sison & Yang (2007) (+)

Carrying out iteration

meeting at the beginning

of each iteration to plan

iterations

 √ √ √ Sison & Yang (2007) (+)

59

P
h

a
se

s
Practices

References

P
ri

n
ci

p
le

s

V
a

lu
es

X
P

S
cr

u
m

A
M

C
M

M
I

Other References

Carrying out daily stand-

up meetings for daily plan
 √ √ √

Li, Moe, & Dyba (2010);

West & Grant (2010); Salo

& Abrahamsson (2008);

Sison & Yang (2007) (+)

Planning and estimating

(cost and schedule) are

based on features/

functions/stories of system

 √ √ √ Wells (2013) (+)

Enabling development

team to re-estimate the

time and velocity (speed

of accomplishing tasks) of

user stories

 √

Liu et al. (2010); Ramesh

et al. (2010); Lan &

Ramesh (2008) (+)

Conducting retrospective

(postmortem) at end of

each iteration to look back

what worked well and

what need to be improved

√ √ √
Abbas et al. (2010); Sison

& Yang (2007) (+)

Monitoring customer

involvement and end-user

in project activity

 √ √ (From main references)

Delivering the features

with high priority first
√ √ √ Franca et al. (2010) (+)

Revealing the current

progress of iteration/sprint

to everyone on sprint burn

down chart

 √ √

Williams et al. (2010),

VersionOne (2011); West

& Grant (2010) (+)

C
h

a
n

g
e

M
a

n
a
g

em
en

t

Controlling changes using

product backlog

(prioritized user stories)

 √ √

Koskela (2003) (+)

Not allowing changes once

an iteration has begin,

until the iteration ends

 √ √
Blankenship et al. (2011);

Schuh (2005) (+)

Assigning the individual

who will be responsible

for ensuring Change

Management activities are

implemented correctly

 √

(From main references)

P
ro

je
ct

 M
a
n

a
g
em

en
t

60

P
h

a
se

s
Practices

References

P
ri

n
ci

p
le

s

V
a

lu
es

X
P

S
cr

u
m

A
M

C
M

M
I

Other References

Automating the Change

Management activities

(e.g. building scripts)

 √

(From main references)

R
es

o
u

rc
e

M
a

n
a

g
em

en
t

Sufficient resources are

allocated for the needed

periods in order to

accelerate the software

development process

 √

T
ra

in
in

g
 Technical and

management trainings

must be provided for the

staffs

 √

D
o
cu

m
en

ta
ti

o
n

The amount of documents

is minimized, by replacing

them with informal

documents, face to face

communication and onsite

customer

 √ √

Emphasizing on single

source information
 √ √ Ambler (2014) (+)

S
ta

ff

In
it

ia
ti

v
e

Ensuring that working

hours do not exceed 40

hours per week
√ √

Salo & Abrahamsson

(2008); Sison & Yang

(2007); Rumpe &

Schroder (2002) Sliger &

Broderick (2008) (+)

Indicators:

(√) : Practices obtained from the main references

Other references: Practices obtained from the additional references

 The process factor for secure software process

Even though there are several studies which focuses on secure software process, their

focus is more on showing the criticality of considering security measures in developing

software, for instance Whitehat website security investigated the number of

61

vulnerabilities in small, medium and large organizations (Tudor, 2013), while National

Cyber Security Alliance (National Cyber Security Alliance, 2010) surveyed the security

trainings provided in software companies, the awareness of security initiatives and the

security problems they are facing. Nevertheless, these studies do not reveal the methods

and processes adopted by software practitioners in eliciting, documenting and analyzing

security requirements in the real environment (Elahi et al., 2011; Tondel et al., 2010).

Therefore, Elahi et al. (2011) and Wilander and Gustavsson (2005) investigated the

software practitioners’ practices in requirement engineering which focus on security.

Also, Wilander and Gustavsson (2005) analyzed the requirement documents of 11

Swedish software projects. However, both studies only focus on the security requirement

engineering, which is only a small phase of software process. Therefore, considering this

limitation, the secure software development practices were gathered from the three most

prominent secure software development lifecycle: the Touchpoints, MS SDL and

CLASP, besides the security standards: the ISO/IEC 27001 and ISO/IEC 21827.

The main references for the Touchpoints are McGraw (2011), Julia (2008) and McGraw

(2006), while for MS SDL the references are Microsoft (2012) and Merkow and

Ragavhan (2010). Additionally, for CLASP, OWASP (2006) was referred. On the other

hand for the ISO/IEC 27001, ISO (2015), Evans, Tsohou, Tryfonas and Morgan (2010)

and Humphreys (2008) were referred, while the main references for the ISO/IEC 21827

are Davis (2013) and Carnegie Mellon University (2003). Besides, the available

empirical studies are also taken into consideration. Table 2.15 summarizes the sources for

the secure software process. The symbol (√) is used to indicate that the practices are

62

obtained from the main references, while additional references are listed in the ‘Other

References’ column.

Table 2.15

The Secure Software Practices

P
h

a
se

s

Practices

References

 M
S

 S
D

L

 C
L

A
S

P

 T
o
u

ch
p

o
in

ts

 I
S

O
/I

E
C

 2
1

8
2
7

 I
S

O
/I

E
C

 2
7

0
0
1

Other references

R
eq

u
ir

em
en

t
E

n
g
in

ee
ri

n
g

Updating security

requirements iteratively,

taking place as changes occur

√ √ √ √ Mead (2010)

Documenting and maintaining

a set of well-defined security

requirements to prevent from

introducing common attacks

that occurred previously

√ √
Christian (2010); McGraw

(2006)

Obtaining security

requirements explicitly
√ √ √ √

Wilander & Gustavsson

(2005); Karpati, Sindre, &

Opdahl (2011)

Considering attackers’

perspective while eliciting

security requirements

√ √ √ √ Mead (2010)

The available guidelines,

internal or external guidelines/

standards/ policies, or

established compliance

requirements were referred

while gathering security

requirements

 √
Elahi et al. (2011); OWASP

(2006)

The identified security

requirements are validated

with stakeholders

√ √ √ Christian (2010)

S
o
ft

w
a
re

D
es

ig
n

Referring the latest lists of

common attack patterns,

vulnerabilities and threats in

order to keep up-to-date with

current trends

 √ √ Julia et al. (2008)

63

P
h

a
se

s
Practices

References

 M
S

 S
D

L

 C
L

A
S

P

 T
o

u
ch

p
o

in
ts

 I
S

O
/I

E
C

 2
1

8
2
7

 I
S

O
/I

E
C

 2
7

0
0
1

Other references

Defining the attack surfaces √

(From main references)

Identifying, classifying and

rating the possible impacts,

vulnerables and threats
√ √ √ √

The countermeasures are

designed and documented
√ √ √

Modeling the possible threats √ √ √

Performing an external (by

someone outside the design

team)
√ √

C
o
d

in
g

Refering to the secure coding

guidelines
√ √ √

Coding countermeasures for

the identified threats
√ √ √ √

Evans et al., (2010);

Ashbaugh (2009)

Implementing pair

programming to reduce

vulnerability (with continuos

review)

√ Ashbaugh (2009)

Comparing outcome from

automated and manual code

review

 √ Merkow & Raghavan (2010)

The security features provided

by programming language

used are identified

 √

(From main references)

 T
es

ti
n

g

Creating test cases by focusing

on the identified threats and

vulnerabilities

√ √ √

S
o
ft

w
a

re
 D

es
ig

n

64

P
h

a
se

s
Practices

References

 M
S

 S
D

L

 C
L

A
S

P

 T
o

u
ch

p
o

in
ts

 I
S

O
/I

E
C

 2
1

8
2
7

 I
S

O
/I

E
C

 2
7

0
0
1

Other references

Performing risk analysis again

at the end of the phase to

ensure all risks are mitigated

and to consider remaining

risks

 √

(From main references)

Performing penetration test

(simulate attack from

malitious outsiders)

√ √

Performing fuzz testing (use

random data as input for tests)
√ √

Performing integration tests by

focusing on the threats and

vulnerabilities

 √ Julia et al. (2008)

S
ec

u
ri

ty
 M

a
n

a
g
em

en
t

Producing and revising

security policy regularly
 √ √ √

Ai et al. (2007); Tondel et al.

(2008); Syed Irfan et al.

(2010)

Producing security plan √ Ai et al. (2007)

The security goals are

established
√ √

(From main references)
Defining the security roles and

responsibilities up-front
 √

The valuable assets that must

be protected are identified
 √

R
is

k
 M

a
n

a
g

em
en

t

Performing risk analysis

iteratively throughout the

software development to

identify the possible threats,

vulnerabilities and impacts of

the application

 √ √ √ √
Evans et al. (2010); Davis

(2013)

Planning mitigation strategy

to countermeasure the

identified threats,

vulnerabilities and impacts

√ √ √ √ √

Evans et al. (2010); Davis

(2013)

65

P
h

a
se

s
Practices

References

 M
S

 S
D

L

 C
L

A
S

P

 T
o

u
ch

p
o

in
ts

 I
S

O
/I

E
C

 2
1

8
2
7

 I
S

O
/I

E
C

 2
7

0
0
1

Other references

Ensuring the newly identified

risks are reported and

mitigated as soon as possible

√ √ √ √

Evans et al. (2010)

Monitoring the identified

threats, vulnerabilities and

impacts throughout the

development

 √ √ √

Evans et al. (2010); Davis

(2013)

S
ta

ff
 I

n
it

ia
ti

v
es

Provide rewards for successful

security implementation
 √

Waly et al. (2012)

D
o
cu

m
en

ta
ti

o
n

Preparing documentation for

installing and operating the

application securely

√ √ (From main references)

Document and maintain a set

of well-defined security

requirements to prevent from

introducing common attacks

that occurred previously

 √

Elahi et al. (2011)

Share the security artifacts

among the team members
 √

Evans et al. (2010); Davis

(2013); OWASP (2006)

Indicators:

(√) : Practices obtained from the main references

Other references: Practices obtained from the additional references

R
is

k
 M

a
n

a
g

em
en

t

66

 The people factor

The people factors comprises of the software practitioners, organization and customer.

The related studies are presented subsequently.

 The software practitioners

Current software industry does not only acquire technical skills for the software

practitioners (Abdul Rahman, Yusri, Mohd Adam, & Husnayati, 2010; Jiang & Klein,

1995), whereas it urges the software practitioners to have other various skill sets

(Gallagher et al., 2011; Gallivan, Truex, & Kvasny, 2004). Existing studies commonly

discusses the skills from the perspective of technical and non-technical skills. Khan and

Kukalis (1990) concluded that technical and non-technical skills are important;

nevertheless the technical skills are considered as less important compared to the non-

technical skills. This is supported by Bolton (1986) in Ahmed, Capretz, Bouktif, &

Campbell (2012) who reported that 80% of the workers who failed at work are caused by

their inability to relate well with others, rather than having lack of technical skills.

The software practitioners are expected to have good non-technical skills such as

interpersonal skills (Bassellier & Benbasat, 2003; Rodina & Zaitun, 2000; Mohd. Noah,

Md. Mahbubur, Afzaal, & Awg Yussof, 1999), management skills, skills in business

processes, leadership skills, global awareness (Gallagher et al., 2011; Abdul Rahman et

al., 2010; Benamati & Mahaney, 2007; Rodina & Zaitun, 2000), teamwork (Azrina,

Safura Zuriati, & Nafisah, 2012; Abdul Rahman et al., 2010), writing (Abdul Rahman et

al., 2010), problem solving, listening, time management skills, ability to apply knowledge

67

(Azrina et al., 2012), negotiation and communication skills (Gallagher et al., 2011), as

well as being creative (Sterling, 2003).

Management skill is defined as the ability to manage project and time management

(Sanders & Curran, 1994), while interpersonal skill is a person’s ability to convey

information, thoughts, feelings and attitude (Mohd Noah et al., 1999). Additionally, the

software practitioners are expected to mange the risks of the project (Gallagher et al.,

2011). On the other hand, communication skill is described as the ability to write, talk,

read, listen and make presentation (Leitheiser, 1992). Mohd Noah et al. (1999) clearly

provide the skills needed to measure the interpersonal skill, which are the ability to work

effectively as a member of a team, ability to listen to others, ability to manage own roles

and responsibilities, ability to work alone to accomplish goals, ability to communicate in

writing, ability to train others and ability to give oral presentations.

On the other hand, the technical skill is also valuable. It includes the use of hardware,

software, telecommunication, database, advanced software development (Jiang & Klein,

1995). Among the technical skills cited in previous studies are the ability to design user

friendly applications (Azrina et al., 2012; Rodina & Zaitun, 2000) and ability to do

programming (Litecky et al., 2012; Azrina et al., 2012; Abdul Rahman et al., 2010;

Benamati & Mahaney, 2007; Rodina & Zaitun, 2000).

Additionally, specifically for the Agile environment, the developers are supposed to have

attitudes such as able to work in changing situations, willing to learn continuously

(Schuh, 2005) and able to handle and respond to changes quickly (Agile Manifesto,

68

2001). Furthermore, the team should emphasize on face-to-face communication (Rao,

Naidu, & Chakka, 2011; Liu et al., 2010; Lan & Ramesh, 2008; Coram & Bohner, 2005),

cross functional team (Cohn & Ford, 2003), co-located (Tsun & Dac-Buu, 2008; Parsons,

Ryu, & Lal, 2007; Lindval et al., 2002) and self-organized (Franca et al., 2010; Tsun &

Dac-Buu, 2008; Moe, Dingsoyr, & Dyba, 2008). Besides, the team size should be small

(O’Sheedy & Sankaran, 2013). Furthermore, the developers should be engaged with daily

activities, only concerned with the progress of the entire iteration, responsible to the

overall project’s progress and ensure that news is spread between customers and team

(Schuh, 2005), knowledgeable in Agile process, implement adaptive management style

(Tsun & Dac-Buu, 2008), responsible to maintain relationship with customers (Tsun &

Dac-Buu, 2008, Schuh, 2005), acts like a facilitator (Sliger, 2006; Schuh, 2005) and

responsible to build team cohesion (Sliger, 2006).

Meanwhile, for the secure software process, the team is expected to adopt the security

activities and become familiar with the security requirement of the system (Davis, 2013;

Microsoft, 2012). Furthermore, common understanding about the security needs must be

reached among all applicable parties, including customer (Microsoft, 2012; McGraw,

2006). Table 2.16 recapitulates the skills needed for software practitioners.

69

Table 2.16

The Skills Needed for Software Practitioners

Type Skills References

N
o

n
-t

ec
h

n
ic

a
l

sk
il

ls

Interpersonal skills Bassellier & Benbasat (2003); Rodina &

Zaitun (2000); Noah et al. (1999)

Management skills, communication skills,

business skills, leadership skills, global

awareness

Gallagher et al. (2011); Abdul Rahman et

al. (2010); Benamati & Mahaney (2007);

Rodina & Zaitun (2000)

Teamwork Azrina et al. (2012); Abdul Rahman et al.

(2010)

Writing skill Abdul Rahman et al. (2010)

Problem solving skills, listening skills,

time management skills and ability to

apply knowledge

Azrina et al. (2012)

T
ec

h
n

ic
a
l

S
k

il
ls

Use of hardware, software,

telecommunication, database, advanced

software development

Jiang & Klein (1995)

Ability to design user friendly

applications

Azrina et al. (2012); Rodina & Zaitun

(2000)

Ability to do programming Litecky et al. (2012); Azrina et al. (2012);

Abdul Rahman et al., (2010); Benamati &

Mahaney (2007); Rodina & Zaitun (2000)

A
g

il
e

so
ft

w
a

re
 p

ro
ce

ss

Able to work in changing situations Schuh (2005)

Emphasize on face-to face

communication

Rao et al. (2011); Liu et al. (2010); Lan

and Ramesh (2008); Coram & Bohner

(2005)

Cross functional team Cohn & Ford (2003)

Co-located Tsun & Dac-Buu (2008); Parsons et al.

(2007); Lindval et al. (2002)

Self-organized Franca et al. (2010); Tsun & Dac-Buu

(2008); Moe et al. (2008)

Small sized team O’Sheedy & Sankaran (2013)

Engaged with daily activities

Schuh (2005)

Only concerned with the progress of the

entire iteration

Responsible to ensure that news is spread

between customer and team.

70

Responsible to the overall project’s

progress

Schuh (2005)

Knowledgeable in Agile process Tsun & Dac-Buu(2008)

Has adaptive management style Tsun & Dac-Buu (2008)

Responsible to maintain relationship with

customers

Tsun & Dac-Buu(2008); Schuh (2005)

Acts more like a facilitator than a foreman Sliger (2006); Schuh (2005)

Responsible to build team cohesion Sliger (2006)

S
ec

u
re

 s
o

ft
w

a
re

p
ro

ce
ss

Adopt the security activities and become

familiar with the security requirement of

the system

Davis (2013); Microsoft (2012)

Common understanding about the

security needs must be reached among all

applicable parties, including the customer

Microsoft (2012); McGraw (2006)

 The organization

The organization which adapts Agile should have essential characteristics that can

support the implementation of Agile. Among them are encouraging customers’

participation, providing cooperative organizational culture instead of hierarchical,

provide facilities with proper Agile-style work environment and ensure that Agile way of

software development is universally accepted (Sheffield & Lemetayer, 2013; Ani Liza et

al., 2012b; Hoda, Noble, & Marshall, 2011; Tsun & Dac-Buu, 2008; Strode et al., 2009;

Lindvall et al., 2002). Also, Sliger and Broderick (2008) point out that empowered team

is important in the Agile team, thus organization should implement this. Furthermore, in

order to ensure that security initiatives are successful, the organization must produce the

security policy and ensures it is being implemented (Syed Irfan et al., 2010; Tondel et al.,

2008). The organization also should provide a separate security team to engineer and

evaluate the security of software (Microsoft, 2012; OWASP, 2006) and ensure that all

members of the project team are aware of and involved with security engineering activities

(Siponen et al., 2010; Syed Irfan et al., 2010; Lane, 2007; Ai et al., 2007; Torres et al.,

2006) .

A
g

il
e

so
ft

w
a

re

p
ro

ce
ss

71

 The customers

The customers of Agile environment are expected to be able to give constant feedback

(Lindvall et al., 2002), able to give commitment to the team (Misra et al., 2009; Tsun &

Dac-Buu, 2008), able to present on-site (Tsun & Dac-Buu, 2008), as well as able to

collaborate with the team (Misra et al., 2009), empowered to make decisions on behalf of

other stakeholders (Boehm & Turner, 2003; Paetsch et al., 2003), knows the business

domain and knowledgeable (Schuh, 2005; Boehm & Turner, 2003), do not feel afraid to

be responsible to the decisions made, understands and appreciates objective of the project

and willing to compromise (Schuh, 2005).

 The technology factor

The technology factor is comprised of tools and techniques, as well as the use of standard

and procedure. The practices in this factor are the same from the perspective of Agile and

secure software processes. The use of standard and procedure is obviously vital to ensure

that the software process implemented correctly throughout the organization (Limaye,

2011; Wheeler & Duggins, 1998; Addison & Vallabh, 2002). On the other hand, the use

of tools and technique is imperative to accelerate the development process (Ai et al.,

2007; Yazrina et al., 2002).

 The project constraint factor

The project constraint factor contains the budget and schedule. Both are vital in order to

ensure a project’s success. Nevertheless, the schedule must be realistic to avoid under

pressure work (Procaccino et al., 2005; Linberg, 1999). The schedule for Agile

implementation is dynamic and accelerated in order to handle the fast changing

72

environment (Wells, 2013; Tsun & Dac-Buu, 2008). Also, the budget is not estimated up-

front, rather, it is estimated based on the features (Wells, 2013; Tsun & Dac-Buu, 2008).

 The environment factor

The organization must provide necessary environmental facilities to encourage the

successful implementation of projects (Lindvall et al., 2002; Linberg, 1999).

As discussed in Section 2.2.4, the second issue that needs to be addressed in the process

based software certification models is the synthesis technique, whereby the weight values

allocation need to be addressed for the evaluation criteria. Accordingly, the MCDM

technique is suitable for that purpose. It is discussed in the next sub section.

2.3 Multiple Criteria Decision Making (MCDM)

MCDM refers to “making preference decision over the available alternatives that are

characterized by multiple, usually conflicting attributes” (Triantaphylluo, 2000). In

MCDM, the assignment of weight is an important step (Ishizaka & Labib, 2011; Brugha,

2004; Yoon & Hwang, 1995). Among the MCDM techniques commonly being used for

evaluation are the Weighted Sum Method (WSM), Technique for Order Preference by

Similarity to Ideal Solution (TOPSIS), outranking methods fuzzy multiple criteria and

Analytic Hierarchy Process (AHP). The brief descriptions of these techniques are

provided in Table 2.17.

73

Table 2.17

MCDM Techniques

Techniques Descriptions Strengths Weaknesses

Examples of existing

studies using the

MCDM techniques

WSM The score is calculated by

multiplying the comparable

rating of each attribute with

the weight values assigned

to the attributes and

summing these values over

all attributes

 Easy to be used (Jadhav &

Sonar, 2008)

 It is a proportional linear

transformation of the raw data

which means that the relative

order of magnitude of the

standardized scores remains

equal (Afshari, Mojahed, &

Mohd Yusuff, 2010)

 Weights to attribute are

assigned arbitrary.

 Common numerical scaling is

required to obtain score in this

method. (Jadav & Sonar, 2008)

 Does not provide technique for

determining weight

 Inherent problem with the

formula losing dependency

information between attributes

(Maxville, Armarego, & Lam,

2004)

Jain & Raj (2013);

Savitha &

Chandrasekar (2011);

Afshari et al. (2010);

Setiawan, Bouk, and

Sasase (2008)

TOPSIS TOPSIS was first introduced

by Hwang and Yoon (1981).

Referring to this technique,

the best alternative is the one

which is nearest to the

positive ideal solution and

the farthest from the

negative ideal solution. This

shows that an ideal solution

is composed of all best

values which can be attained

by the evaluation criteria,

while the negative ideal

solution is comprised of all

worst values which can be

 It is a sound logic that represents

the rationale of human choice.

 It is a scalar value that accounts

for both the best and worst

alternatives simultaneously.

 It provides a simple computation

process that can be easily

programmed into a spreadsheet.

 The performance measures of all

alternatives on attributes can be

visualized on a polyhedron, at

least for any two dimensions.

(Shih, Shyur, & Lee, 2007)

 Can be computed easily and easy

to be understood since the final

 Do not provide specific

technique for weight allocation

(Rao & Davim, 2008).

 The operation of normalized

decision matrix in which the

normalized scale for each

criterion is usually derived a

narrow gap among the

performed measures. That is, a

narrow gap in the TOPSIS

method is not good for ranking

and cannot reflect the true

dominance of alternatives.

 The risk assessment for a

decision maker is never

Chen, Lin, Lee, Chen,

& Huang (2012);

Joshi, Banwet, &

Shankar (2011); Rao

& Davim (2008);

Gumus (2009);

Ertugul & Karakasoglu

(2009)

74

obtained by the evaluation

criteria Benitez, Martin, &

Roman (2007)

results are calculated based on

the definite values given directly

by the experts (Wang, Cheng, &

Huang, 2009)

considered (Tsaur, 2011)

Outranking

methods

Outranking methods orders

the alternatives by finding

the ones that outperform or

dominate. This is done by

differentiating the preferred

alternatives with non

preferred ones by

establishing outranking

relationships. The

preferences are modelled by

using binary values, for

instance, A outranks B.

When the comparisons are

made between candidates on

each attribute, the issue of

units and attribute types are

removed (Linkov & Moberg,

2012; Figueira, Greco &

Ehrgott, 2005).

 Able to consider both objective

and subjective criteria.

 Least amount of information

required from the decision

maker (Mollaghasemi and Pet-

Edwards, 1997 as cited in

Kunda, 2003).

 Does not indicate how much an

alternative outranks another

alternative, for example

ELECTRE I (Yatsalo et al.,

2007; Mollaghasemi and Pet-

Edwards, 1997 as cited in

Kunda, 2003).

 Issues with explaining the

reasoning for decisions and a

complete ranking may not be

possible, for instance with

ELECTRE I (Ruth, 2008;

Kunda, 2003).

 PROMETHEE does not

provide specific guideline for

determining weights

(Behzadian, Kazemzadeh,

Albadvi, & Aghdasi, 2010;

Macharis, Springael, Brucker,

& Verbeke, 2004).

Taillandier &

Stinckwich (2011);

Dagdeviren (2008);

Bollinger & Pictet

(2008)

Fuzzy

multiple-

criteria

It handles the vagueness and

uncertainty of users’ thought

and perception, where the

linguistic terms of criteria

are represented by the fuzzy

numbers. It uses the

linguistic terms to assign the

weights of the criteria (Patil

& Kant, 2014; Al Tarawneh,

2014; Ruth, 2008)

 Suitable for subjective problem

 Beneficial to tackle the

ambiguities involved in the

process of linguistic estimation

(Patil & Kant, 2014)

 Associated with criteria whose

values are not numbers, but

words or sentence in natural

language

 Does not support the objective

data

Chou, & Cheng

(2012); Gumus, Yayla,

& Gurbuz (2011);

Chou, Chang, & Shen

(2008); Benitez et al.

(2007)

http://link.springer.com/search?facet-author=%22Metin+Da%C4%9Fdeviren%22

75

AHP It decomposes the evaluation

criteria and estimating the

software alternatives using

the hierarchy structure where

the weights and the score of

the alternatives are

calculated through the pair

wise comparisons.

 The decision making problem

are structured into a hierarchy,

which helps in understanding

and simplifying the problem.

 Can be applied for individual or

group decision making (Jadhav

& Sonar, 2008)

 The calculation method can be

easily integrated into any

software structure.

 The calculation takes

reasonable time to be

completed. (Xuhua &

Pattinson, 2010)

 Can be effective because

decision makers can give

thorough consideration to all

elements in the decision

problem (Hajkowicz,

McDonald, & Smith, 2000)

 Pairwise comparison is arbitrary

because they are subjectively

interpreted (Eckman, 1989).

 Relies on expertise and

knowledge of decision makers

(Xuhua & Pattinson, 2010).

 If the number of alternatives,

evaluation criteria or user

requirements needs changes, the

final score need to be calculated

again (Jadhav & Sonar, 2008;

Lin, Hsu, & Sheen, 2007).

 The pairwise comparisons and

mathematical calculations

becomes time consuming when

the number of alternatives and

criteria increases (Jadhav &

Sonar, 2008).

Al-Tarawneh (2014);

Cay & Uyan (2013);

Zhou & Liang (2013);

Chen, Pham and Yuan

(2013); Padumadasa,

Colombo, & Rehan

(2009); Kunda (2003);

Lai, Wong, & Cheung

(2002); Akarte,

Surendra, Ravi, &

Rangaraj (2001); Jung

(2001)

76

This study adapted the AHP technique for assigning the weight values due to several

reasons. The advantage of the AHP technique is that it provides a systematic approach

for synthesizing information, by providing a structured hierarchy. The hierarchy of

specific criteria and sub criteria helps the understanding of problem and simplify the

problem by providing a better focus during the weight allocation for criteria and sub

criteria (Ishizaka & Labib, 2011; Jadhav & Sonar, 2008). This is the advantage gained

by this study, as it involves with numerous factors, sub factors and evaluation criteria.

By using the hierarchy three, the criteria are systematically organized. (Rafikul &

Shuib, 2006). Also, it is the most widely used technique in various fields and has been

considered as the most reliable one (Rao & Davim, 2008; Trianphyllou & Mann,

1995). On top of these, AHP can increase the accuracy of the judgments, as the

judgments are not made arbitrarily. This is because the accuracy of judgments made is

largely influenced by the quality of input quantity (Crostack, Hackenbroich,

Refflinghaus, & Winter, 2007).

Moreover, AHP is appropriate to be used for group decision making by reaching

favorable agreement among the group members (Marjani, Soh, Majid, Mohd Sofian,

Nur Surayyah, & Mohd Rizam, 2012; Lai et al., 2002; Liberatore & Nydick, 1997).

This is important as the study involves group decision making in determining the

weight values. On top of that, AHP includes the consistency checking in the

judgment, which is essential in order to ensure that the judgments have been made

consistently (Liberatore & Nydick, 1997). AHP is discussed in detail in the next sub

section.

77

2.3.1 Analytic Hierarchy Process (AHP)

AHP (Saaty, 2008; Saaty, 1990) enables decision-makers to structure a multiple

criteria decision making problem into a hierarchy, whereby there are at least three

levels in a hierarchy. The overall goal of the problem is placed at the top, the

evaluation criteria in the middle and the alternatives at the lowest level. However, in

this study, the hierarchy tree only contains the goal and several levels of evaluation

criteria, without the alternatives. This is because AHP is used only for obtaining the

weight values. The weight values are obtained through pair wise comparisons which

are performed among the evaluation criteria of each level.

From the pair wise comparisons, a normalized ranking is calculated by using the eigen

value method. Besides, there are other simpler methods that can be used, which are

the normalization of row average (NRA), normalization of the reciprocal sum of

columns (NRC), average of normalized columns (ANC) and normalization of the

geometric mean of the rows (NGM) (Hsiao. 2002). The basic steps involved in the

AHP technique are as provided below (Vaidya & Kumar, 2006):

1. Identify the evaluation criteria that influence the quality of software process.

2. Structure the evaluation criteria in a hierarchy which comprises the factors, sub

factors and evaluation criteria.

3. Construct pair wise matrixes which requires n(n − 1)/2 comparisons.

4. Compare the importance of factors/sub factors/evaluation criteria in each pair wise

matrixes. The importance values are as depicted in Table 2.18.

6. Synthesize the pair wise comparisons to find the weights, consistency index (CI),

consistency ratio (CR).

7. If the CR is less than 0.1 the weight is usable, otherwise the process is repeated.

78

Table 2.18

AHP Preference Scale (Saaty, 1990)

Intensity of Importance Definition

1 Equal importance

3 Moderate importance of one over another

5 Essential or strong importance

7 Very strong importance

9 Extreme importance

2,4,6,8 Intermediate values

Review from literature shows that AHP has been widely used in different domains,

such as planning, selecting the best alternative, resource allocations, resolving conflict

and evaluation (Vaidya & Kumar, 2006). In the area of software process assessment,

AHP has been used for the purpose of software process improvement (Jung, 2001),

however, it has not been used for the software process certification. Table 2.19

summarizes the AHP usage in the assessment/evaluation, since this study focuses on

the assessment.

Table 2.19

The Existing AHP Studies on Evaluation

Descriptions Methods Authors

This study utilized AHP for preference reallocation, which is

the most important phase of land consolidation. At the same

time, the traditional method of preference reallocation, which is

interview-based reallocation model, was used.

ANC Cay & Uyan

(2013)

AHP was performed to evaluate the network course in China.

The AHP technique was used for the evaluation.

NRA Zhou &

Liang (2013)

AHP was utilized to help firms in making decisions in

evaluating potential outsourcing partner. There were four

evaluation criteria used, which are: cost competiveness, human

resources, business and economic environments and

Eigenvalue Chen, Pham,

& Yuan

(2013)

79

government policies and legal framework.

The component based software (COTS) is evaluated by using

the AHP technique. There are five main criteria for evaluating

the COTS software, which are quality, domain, architecture,

operational environment, and vendor.

ANC Al Tarawneh

(2014)

AHP was performed to select and evaluate tender. In order to

enhance the efficiency rate and accuracy of the final tender

decision, the tendering process is automated by changing the

manual process to the use of website. Therefore, the process

can be performed 24/7 and this gives convenient to the

suppliers and give flexibility to decision makers.

ANC Padumadasa

et al. (2009)

AHP is applied in a framework for evaluating and selecting

component-off-the-shelf (COST) software components. This

framework use the AHP technique to decompose the

requirements into hierarchical criteria set and calculate the

weight by using pair wise comparison.

Eigenvalue Kunda

(2003)

Evaluate and select three multimedia authorizing systems. They

found that AHP is more preferable than Delphi, another group

decision making approach. Besides, AHP is found to be more

conducive to consensus to building in group decision setting.

Eigenvalue Lai, Wong et

al. (2002)

Evaluate supplier with 18 different criteria which are

categorized into four groups, namely, product development

capability, manufacturing capability, quality capability and cost

and delivery.

NGM Akarte et al.

(2001)

AHP was utilized to rate the process attribute in the SPICE-

based process assessment. Mainly AHP was utilized to solve

boundary problems faced by the assessors. To compute the final

score, the simple additive weighting technique was used.

NGM Jung (2001)

Referring to Table 2.19, the commonly applied method for calculating the weight in

AHP is the eigenvalue method. However, the NGM method is applied in this study

since the approximation to the correct answer is higher (Coyle, 2004). Additionally, it

is statistically better and easier to calculate (Ishizaka & Labib, 2011; Crawford &

Williams, 1985). On top of that, geometric mean of rows and columns provide the

same ranking due to the absence of rank reversals, which is not necessarily the case

with eigen value method (Ishizaka & Labib, 2011). Also, it gives good approximation

80

(Hsiao, 2002). The next section discusses another MCDM technique used in this

study, which is Weighted Sum Method (WSM).

2.3.2 Weighted Sum Method (WSM)

WSM (Mollaghasemi, 1997), which is also known as Simple Additive Weighting

technique is one of the simplest methods in MCDM. It is a widely used method for

calculating the final grade values in the multiple criteria problems (Kontos, Komilis,

& Halvadakis, 2005). The total score for each alternative then can be computed by

multiplying the comparable rating for each attribute by the importance weight

assigned to the attribute and then summing these products over all the attributes. The

sum of the weight allocated to each attribute must be 1.

Jadhav & Sonar (2008) pointed out that the main advantage of the WSM is its ease of

use. However, this technique does not provide the technique for weight allocation

explicitly (Jadav & Sonar, 2008; Maxville et al., 2004). Therefore, other weight

allocation techniques need to be adapted, instead of assigning weights arbitrarily. The

succeeding equation is used for the calculation.

𝐴𝑖 = ∑ 𝑤𝑗 . 𝑥𝑖𝑗 (2.1)

Where

Ai = Score for ith alternative

wj = Weight for jth criterion

xij = Score of the ith alternative in term of jth criterion

Table 2.20 provides the existing studies related to the assessment/evaluation by using

the WSM technique.

81

Table 2.20

The Existing WSM Studies on Evaluation

Descriptions
Technique for

assigning weight
Authors

WSM was used to build a decision support system which

evaluates alternatives in the procurement of goods based

on particular criteria. The evaluation is made based on

the benefit and cost criteria. Finally, the winner of the

procurement is determined based on the achieved score.

No specific

technique

Nugraha (2013)

This study combined the WSM with the weighted

product method (WPM) and AHP in order to determine

the flexibility in manufacturing sector, which is the

Flexible Manufacturing System (FMS). The AHP is used

to obtain the weights and the other two techniques are

used for ranking.

AHP Jain & Raj

(2013)

This study applied the WSM to evaluate and select

personnel for an organization, based on seven criteria.

Finally the best personnel was selected.

AHP Afshari et al.

(2010)

The WSM is used to evaluate the suitable landfill site.

There were four main criteria used for the evaluation.

Each of these criteria has its sub criteria and spatial

attributes.

AHP Kontos et al.

(2005)

Referring to the existing studies on WSM, majority of them utilized AHP as the

technique for determining the weight values for the evaluation criteria. This confirms

that both techniques are applicable to be used in the software process certification.

Thus, as stated earlier, this study adapts the AHP for weight calculation. Additionally,

to calculate the score of assessment and certification in the ESPAC Model, the WSM

is adapted. The discussion is continued in next section with the measurement

approach used for the software process certification.

82

2.4 Measurement Approach in Software Process Certification

Software process assessment and certification involves with measuring the

effectiveness and efficiency of the software process. To measure successfully, the top-

down approach is needed. This study adapted the Quality Function Deployment

(QFD) approach as it is being used widely in various industries and businesses,

including software development (Zultner, 1992). On top of that, it is an appropriate

tool for making a consistent, non-intuitive decision-making processes with a

structured approach (Bouchereau & Rowlands, 2000). Therefore, in this study, this

approach assists in organizing the evaluation criteria and the assessed Agile and

secure software processes in a structured manner.

QFD is a quality tool that helps to translate the Voice of the Customer (VoC) into new

products systematically. It involves building the matrix which is House of Quality

(HOQ), as depicted in Figure 2.3. The VoC (the WHATS) which is customers’

requirements are matched with the appropriate technical response along the top (the

HOWS). Therefore, the appropriate technical response for each customer’s

requirement can be organized systematically (Cohen, 1995). Additionally, each of the

customers’ requirements is assigned with the weight value, which is right after the

customers’ requirements on the left side.

The rating scales are represented as the relationship matrix, in the middle of HOQ. At

the end, the technical ratings are calculated for each HOWs. It indicates the basic

importance of the HOWs in relation to the WHATs. These values are obtained by

using the weighted sum method (Chan & Wu, 2005; Park & Kim, 1998). Finally, the

83

importance ratings for the WHATs are determined, which is placed on the right hand

side of the HOQ. The customer requirements which obtained higher relative

importance should receive higher attention for future improvements (Chan & Wu,

2005). This study adapted the structure of HOQ to organize the evaluation criteria and

the Agile and secure software practices.

Figure 2.3. The basic structure of HOQ (Cohen, 1995)

The major functions of QFD have been prolonged from product development to wider

fields such as quality management, product design, planning, engineering, decision

making, management, manufacturing, customers’ needs analysis, software systems,

and services as well (Lai-Kow & Ming-Lu, 2002; Bouchereau and Rowlands, 2000).

In the area of software process, it has been used for software process improvement by

several studies; Richardson and Ryan (2001), Zultner (1992), SAP (Hierholzer,

RELATIONSHIP MATRIX

D
eg

re
e

o
f

Im
p

o
rt

a
n

ce
 (

W
ei

g
h

ts
)

W
H

A
T

S

C
u

st
o

m
er

’s
 R

eq
u

ir
em

en
ts

HOWS

Technical Responses

Im
p

o
rt

a
n

ce
 R

a
ti

n
g

s
o

f
W

H
A

T
S

Correlation Matrix

Technical Ratings of HOWS

84

Herzwurm, & Schlang, 2003), Yan (2008) and more recently by Wei and Yonghui

(2013).

On top of that, the QFD approach is also used for evaluations, for instance, quality

performance assessment (Yumin & Jichao, 2006), evaluation of digital library

(Garibay, Gutierrez, & Figueroa, 2010) and evaluation of technical textbook (Chen &

Chen, 2001). Therefore, considering its ability to structure the evaluation criteria and

the assessed practices in a structured manner and its appropriateness for assessment,

as well as its suitability for software process, thus this approach was adapted for

structuring the reference standard of the ESPAC Model.

One of the important and crucial steps in QFD is determining the importance of the

weights for the customer requirements (Alinezad, Seif, & Esfandiari, 2013; Garibay et

al., 2010). As mentioned earlier, AHP is the widely used and reliable technique for

deriving weight values (Ishizaka & Labib, 2011; Jadhav & Sonar, 2008). The AHP

and QFD have been used in combination in numerous studies, among them are

Taghizadeh and Mohamadi (2013), Dai and Blackhurst (2012), De Felice and Petrillo

(2011), Tu, Zhang, He, Zhang and Li (2011) and Hsiao (2002). Similar to the

abovementioned studies, the AHP and the QFD are adapted in this study.

85

2.5 Summary

This chapter has successfully discussed about the existing work found in the literature

regarding the software process certification and related issues. The discussion is

started with the overview of software certification. The methods and approaches in

software certification are discussed. Subsequently the discussion is further continued

with the current issues in software process certification. It indicates the gaps identified

in the literature which are addressed by this study. The first issue is the needs of

incorporating the Agile and secure software processes in the reference standard, while

the second issue is to allocate the weight value during the synthesis process in the

assessment and certification process. The Agile and secure software processes, as well

as the MCDM techniques are elaborated in detail. At the end, the software process

measurement approach which is the QFD approach is explained. The next chapter

explains how the study has been conducted.

86

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

The previous chapter provides review on the literature. It gives understanding on the

issues related to the domain of the study. This chapter discusses the method used and

processes involved in answering the research questions and achieving the objectives

as stated in Chapter 1. It starts by presenting the research design in Section 3.2,

continues with the phases of the study from Section 3.3 until Section 3.6. The chapter

is ended with a summary in Section 3.7.

3.2 Research Design

To achieve the aims of this study, deductive approach, which is also known as ‘top-

down’ approach, was performed (Srivastava & Shailaja, 2011; Trochim, 2006). The

deductive approach begins from general ideas and ends with specific conclusions,

whereby the conclusions are made based on a known general premise or something

known to be true (Cooper & Schindler, 2008). Using this approach, the theory and

concept of software process certification were derived from the theoretical and the

exploratory studies’ findings in order to construct the proposed model. Then, the

proposed model was applied and validated by the potential users of the model who are

the software practitioners.

87

 Objective 3 achieved Objective 1 achieved Objective 2 achieved Objective 4 achieved

 Identify the problems in

software certification

 Analyze and identify generic

features of software

certification

 Identify the factors, evaluation

criteria and Agile and secure

software process

 Review techniques for

determining weight and related

theories

 Problems and generic features

of existing software process

certification models

 Factors, evaluation criteria and

practices of Agile and secure

software process that influence

the quality of software process

 Techniques for determining

weight

 Related theories

PHASE 1:

THEORETICAL
STUDY

• Instrument design

• Sampling for the survey

• Instrument testing

• Data collection

• Data analysis

 Instrument

 Pilot test report

 Survey analysis report

 A set of Agile and secure

software process

 Improved reference standard

PHASE 2:

EXPLORATORY

STUDY

• Determine the components

• Build the reference standard by

including the factors, sub

factors, evaluation criteria as

well as Agile and secure

software processes

• Determine the data gathering

techniques

• Determine the assessment process

• Determine the synthesis

technique

• Determine the Achievement Index

 Proposed software process

certification model which

focuses on the Agile and secure

software process and includes

weight values for evaluation

criteria

PHASE 3: ESPAC

MODEL

DEVELOPMENT

 Verification: Expert review

 Identify experts

 Determine verification criteria

 Collect and analyze feedbacks

 Validation: Focus group

 Identify experts

 Determine validation criteria

 Collect and analyze feedbacks

 Feedbacks from the performed

verification

 Improved ESPAC Model

 Feedbacks from the performed

validation

PHASE 4:

ESPAC MODEL

EVALUATION

VALIDATION

O

U
T

C
O

M
E

S

 A

C
T

IV
IT

IE
S

P
H

A
S

E
S

--

Figure 3.1. Research framework

87

88

Figure 3.1 depicts the research framework which illustrates the phases, activities involved

and outcomes for each phase. Additionally, it also clearly illustrates the achievement of

the objectives of the study. There were four phases in conducting this study, which are 1)

Theoretical study, 2) Exploratory study, 3) ESPAC Model development and 4) ESPAC

Model evaluation. Each phase is explained in detail in the next sub sections of this

chapter.

3.3 Phase One: Theoretical Study

The theoretical study was performed by reviewing the literature in order to identify the

issues and gaps related to the domain of the study. Consequently, the main ideas were

gained through the literature by reading the printed and online references. Among them

are journals, proceeding papers, standards documentation, books and unpublished thesis.

From the knowledge gained, the problem and scope of the study were defined. Among

the activities conducted were identifying the problems in software certification, analyzing

and identifying the generic features of the existing software certification models, and

identifying the factors, evaluation criteria and practices of Agile and secure software

processes. Since software certification involves multiple criteria assessment, the

techniques for determining weight and related theories were investigated from the

MCDM techniques.

3.4 Phase Two: Exploratory Study

The second phase of the study is the exploratory study on the current practices of

software certification in relation to the Agile and secure software processes among

Malaysian software practitioners. More specifically, the objectives of the study are: 1) to

89

study the software practitioners’ current practices of the Agile and secure software

processes, 2) to investigate the software practitioners’ opinion on the Agile and secure

software processes that are important in producing high quality software, 3) to examine

the software practitioners’ opinion on the importance of the Agile and secure software

processes in producing high quality software 4) to investigate the software practitioners’

opinion on the good characteristics of those involved in the Agile and secure software

processes, and 5) to inspect the software practitioners’ awareness on the importance of

software certification and its implementation.

The exploratory study was conducted using the quantitative approach, which is survey.

The survey was used since it is a useful and powerful approach to measure opinions and

awareness (Sekaran & Bougie, 2010). In order to realize this aim, the self-administered

instrument was used because of several advantages such as cost effective, easy to analyze

data, wider area coverage, and high degree of secrecy. Furthermore, the instrument

allows more time for respondents to think, is perceived as more anonymous and reduces

biasness as it is not influenced by personel qualities of researcher (Sekaran & Bougie,

2010; Cooper & Schindler, 2008). There were five main activities performed in

conducting the exploratory study, as laid out in the next sub sections.

3.4.1 Instrument Design

The instrument was designed based on the guideline provided by Gay, Mills, & Airasian

(2006) and Zikmund, Babin, Carr and Griffin (2010). Among the suggestions are as

follows: the instrument should be attractive and concise, only consider the items that are

related to the objectives of the study and use simple and understandable language. Any

90

leading and loaded questions must be avoided, as well as being specific to avoid

ambiguity. The instrument should then be pilot tested to ensure it is not too lengthy.

The content of the instrument was established by referring to various theoretical findings

and adapting several existing instruments which emphasize on the Agile and secure

software processes. Among the existing instruments are those by VersionOne (2011),

Corbucci et al. (2011) and Elahi et al. (2011) (more detail in Appendix A). There are four

(4) main sections in the instrument: 1) demographic information, 2) Agile software

process, 3) secure software process, and 4) the implementation of software certification.

Refer to Section 4.2 for further explanation.

3.4.2 Sampling for the Survey

The purposive sampling (judgment) was used in this study, which involved the selection

of unique sample with specific feature that is important for the study (Nardi, 2003). The

sample was chosen among the software practitioners in Malaysia. The main constrain of

selecting these software practitioners is that they are very busy people and cannot be

reached easily. Consequently, this sampling technique is appropriate since it is intended

to be used when only a limited number or category of people can be approached (Sekaran

& Bougie, 2010). Furthermore, the sample is guaranteed to meet the objectives of the

study since they are chosen based on specific characteristics (Zikmund et al., 2010). A

total of 114 samples participated in this study, which should be acceptable, referring to

Bailey’s (2008) recommendation that the sample size of 100 is sufficient. Additionally,

Fisher (2007) and Sekaran (2003) stated that the minimum sample acceptable size for

statistical analysis is 30. Refer to Section 4.3 for further explanation.

91

3.4.3 Instrument Testing

The instrument was validated through a pilot study, which was answered by 32 software

practitioners in Kedah and Penang. The number of appropriate subjects for the pilot study

is suggested as between 25 to 100, which constitutes the subjects from the target

population (Cooper & Schindler, 2011). The key purposes of conducting pilot study are

to ensure the instrument’s validity, completeness of the included items and readability (to

avoid misinterpretation of questions). The pilot study helped to improve the instrument

by simplifying the questions to be more readable and understandable, reorganizing the

presentation of questions and reducing the number of questions. Additionally, the time

taken to answer the instrument was determined as well. More details on the pilot study

can be obtained in Section 4.4. The finalized draft of the instrument is provided in

Appendix B.

3.4.4 Data Collection

The potential respondents were contacted through telephone to ask their willingness to

participate in the study. Then, the instruments were delivered via mail postage or meeting

them face-to-face. Additionally, an online survey was created and the link was emailed to

the potential respondents who agreed to participate in the study. By using the online

survey, the response rate was higher. Furthermore, it is beneficial since the turnaround

time for results are shorter. Similarly, the turnaround time from drafting the instrument to

the execution of the study is shorter since everything is performed online and accessible

on real-time basis (Cooper & Schindler, 2011).

92

3.4.5 Data Analysis

Data obtained from the exploratory study were coded by using the Software Package for

Social Science (SPSS) Version 14.0. The analysis was performed by using descriptive

statistical analysis. Among the analysis used were frequency, mean and cross tabulation.

The main findings from the exploratory study are discussed in Section 4.7.

3.5 Phase Three: ESPAC Model Development

The next phase was to develop the proposed model. The proposed model was constructed

based on three main elements, which are: 1) the evaluation components as recommended

by the Evaluation Theory (Scriven, 1991), 2) the outcomes from the theoretical study

such as the problems and generic features of existing software process certification

models, current software processes which influence the quality of software and the

techniques for obtaining weights, and 3) the findings from the exploratory study which

highlights the important Agile and secure software processes, characteristics of people

who involve in both software processes, as well as data gathering techniques for

certification. In addition, the existing software process certification models and standards

were referred as the baseline models to get insight of the software process certification.

Among them are the SPAC Model, CMMI version 1.3, ISO/IEC 15504, ISO/IEC 27001

and ISO/IEC 21827.

There are seven main components in the proposed model, which are the target, evaluation

criteria, reference standard, data gathering techniques, assessment process, synthesis

technique and Achievement Index. They are discussed further subsequently.

93

3.5.1 Defining the target

The target for the assessment and certification process is determined to decide on the

scope of assessment. It is determined by referring to the previous studies which relates to

the software process assessment and certification models. Thus, the target is the software

process implemented in the project that has been completed and ready to be delivered to

customers. In addition, the scope of the assessed software process is limited to the Agile

and secure software processes.

3.5.2 Defining the evaluation criteria

The evaluation criteria were defined for assessing the described target, which are the

Agile and secure software processes. Thus, the goal is to assess the quality of Agile and

secure software processes. Additionally, other influencing factors taken into

consideration are the people, technology, project constraint and environment. Each of

them is decomposed into at least one sub factor that are measureable. For each sub factor,

at least one evaluation criterion is defined. They are structured by using hierarchy tree, as

depicted in Figure 3.2. This hierarchical structure is adapted from the AHP technique,

whereby the goal is placed on top of the hierarchy tree and continues with the factors, sub

factors and evaluation criteria in the subsequent levels. This hierarchy tree was used as

the basis for developing the reference standard. Further explanation can be found in

Section 5.3.2.

94

Figure 3.2. The structure of evaluation criteria

3.5.3 Building the Reference Standard

Based on the hierarchy of the evaluation criteria, the Agile and secure software practices

were defined. Each evaluation criterion is assigned with appropriate practices to achieve

the specified evaluation criterion. Furthermore, each evaluation criterion is assigned with

weight value and the score achieved. They are arranged by adapting the Quality Function

Deployment approach (Cohen, 1995; Zultner, 1992). More details are discussed in

Section 5.3.3.

3.5.4 Determining the Data Gathering Techniques

The proposed model adapted multiple techniques for data gathering. These techniques

were adopted from the existing software process certification model (Fauziah, 2008), as

well as the outcomes from the exploratory study. Among the data gathering techniques

are document review, interview and observation. They act as evident that are needed for

Factor 1 Factor 2 Factor n

Goal

Sub

Factor 1

Sub

Factor 2

Sub

Factor n
Sub

 Factor 1

Sub

Factor 2

Sub

Factor n

Sub

Factor 1

Sub

Factor 2

Sub

Factor n

Sub-sub

Factor n

Sub-sub

Factor 1

Evaluation

Criterion

Sub-sub

Factor 1

Evaluation

Criterion

Evaluation

Criterion

Sub-sub

Factor 1
Sub-sub

Factor n

Evaluation

Criterion

Evaluation

Criterion

Sub-sub

Factor n

F
ac

to
rs

S

u
b
 F

ac
to

rs

E
v

al
u
at

io
n

C
ri

te
ri

a

95

assessing and certifying software process which focuses on the Agile and secure software

processes. More details are explained in Section 5.3.4.

3.5.5 Determining the Assessment Process

The assessment process gives guidance on how to perform the assessment and

certification. Referring to Ares et al. (2000), a comprehensive and rigorous model should

include the assessment process. Therefore, the assessment process was determined. There

are three (3) main phases for conducting the software process certification, which are pre-

assessment, assessment and post-assessment. Each of these phases has several processes

and activities. Basically, the structure of the assessment process was adapted from the

SCAMPI for CMMI version 1.3 (SCAMPI Upgrade Team, 2011), SPAC Model

(Fauziah, 2008) and Lascelles and Peacock (1996). The ESPAC Model proposes the

collaborative self-assessment method to perform the assessment. They are further

discussed in Section 5.3.5.

3.5.6 Determining the Synthesis Technique

Another main contribution of this study is the synthesis technique that has been improved

by incorporating weight allocation for the evaluation criteria. This is realized by adapting

the AHP technique for allocating the weight values. This model suggests the ideal weight

value for each evaluation criterion to the assessment team, which was obtained after

conducting the proposed model validation (Refer to Section 6.3.4 for more details).

Having the ideal weight values will be useful for the assessment team especially when

they are novice in conducting software process assessment and certification. On the other

hand, if the assessment team consists of experienced assessors, they can assign the weight

96

values based on their expertise and experience. This is to ensure flexibility in determining

the weight. Moreover, the WSM was adapted for calculating the scores for the

assessment. The detailed implementation of the synthesis technique is provided in

Section 5.3.6.

3.5.7 Determining the Achievement Index

To determine the Achievement Index, the score ranges are adapted from the ISO/IEC

15504 (Galin, 2004; Jung, 2001) and Patel and Ramachandran (2009). There are two

types of achievements, which are quality and certification levels. Further explanation can

be obtained from Section 5.3.7.

3.6 Phase Four: ESPAC Model Evaluation

With the intention of ensuring that the ESPAC Model has been constructed conforming

to its specification and ensuring that it performs according to the users’ expectation, the

evaluation was performed (Sommerville, 2007). It was evaluated through two stages

which are verification and validation. They are discussed further in the next section.

3.6.1 Verification Stage

The verification is performed in order to verify whether the proposed model conforms to

its specification (Sommerville, 2007) and ensures that all required components are

present in right quantity (Chemuturi, 2011). In this study, the verification stage was

intended to verify: i) the AHP technique used in the proposed model, and ii) the factors,

sub factors and the Agile and secure software processes included in the proposed model.

To accomplish this, the expert review was used because it can be easily conducted, costs

97

less and is faster. Moreover, it has been accepted as a significant way to detect and

remove defects (Komuro & Komoda, 2008; Wiegers, 2002). Basically, there were three

activities involved in verifying the proposed model:

i. Identifying the experts

The experts were chosen among the academicians (knowledge experts) by following the

characteristics of experts as suggested by Rogers and Lopez (2002) and Hallowell and

Gambatese (2010). The characteristics include i) currently attached to the field of the

study under examination, ii) hold an advanced degree (PhD.), iii) faculty members at an

accredited university, iv) authorship, and v) have at least 5 years of experience.

Additionally, as the proposed model is intended to be used by the software practitioners,

therefore, they were included as the domain experts to perform the verification as well as

to give their insights from the real life environment point of view. The characteristics of

the domain experts are discussed in the validation stage section.

ii. Determining the verification criteria

The AHP technique was verified by ensuring the correctness of performing the steps as

well as the outcomes of the steps, which was adapted from Goerigk and Hoffmann (1999)

and Moody (1998). Furthermore, the factors, sub factors, as well as the Agile and secure

software processes were verified for their comprehensiveness, understandability,

accurateness and organization. These criteria were adapted from previous studies (Al

Tarawneh, 2014; Behkamal, Kahani, & Akbari, 2009; Kunda, 2003). The checklists

which were used to obtain comments from the experts can be found in Appendix G, H

and I.

98

iii. Collecting and analyzing the feedbacks

The knowledge experts’ feedbacks were collected and analyzed for further

improvements. Detailed explanation can be found in Section 6.2.3 and 6.2.4.

3.6.2 Validation Stage

Validation is the process of determining whether a model meets users’ expectation, as

well as whether it represents the real world accurately from the perspective of the

proposed usage (Sommerville, 2007). Therefore, with the aim of revealing the practicality

of the proposed model in the real working environment, a focus group discussion was

conducted, which was participated by domain experts. The focus group technique was

chosen as the validation approach because it can provide valuable feedbacks quickly, as

well as can be conducted easily (Martakis & Daneva, 2013; Kontio, Bragge, & Lehlota,

2008; Krueger, 1994). On top of that, it is a convenient way to collect data concurrently

from the software practitioners, who are really busy and cannot be reached easily

(Martakis & Daneva, 2013). This approach also has been used in the field of software

engineering for evaluation or obtaining practitioners’ experience (Daneva & Ahituv,

2011; Mazza & Berre, 2007; Kontio, Lehlota, & Bragge, 2004). It is also suitable for

confirmation studies (Krueger & Casey, 2008; Morgan, 1998).

The key steps for performing the focus group were adapted from Martakis and Daneva

(2013), Daneva and Ahituv (2011), Mazza and Berre (2007), Morgan (1998) and Krueger

(1994). The three main activities were carried out to perform the validation as described

subsequently.

99

i. Identifying the participants

The participants of the focus group were chosen by using the purposive sampling

(Liamputtong, 2011). They were chosen based on four characteristics: 1) Agile software

practitioners, 2) work in Kuala Lumpur or nearby area 3) have experience in secure

software process, 4) have software development experience for more than 3 years.

ii. Determining the validation criteria

The validation criteria for the proposed model were determined by adapting them from

the studies of Al Tarawneh (2014) and Kunda (2003) to reveal the success of the

proposed model, as listed in Table 3.1. The feedbacks on the validation of the proposed

model are discussed in Section 6.4. Similar to the verification stage, checklists were used

to obtain feedbacks from the experts (Refer Appendix J).

Table 3.1

Validation Criteria for ESPAC Model

Evaluation criteria Variables

Gain satisfaction Perceived usefulness

 Decision support satisfaction

 Comparing with current method

 Cost-effectiveness

 Clarity

 Appropriateness for task

Interface satisfaction Perceived ease of use

 Internally consistent

 Organization (Well organized)

 Appropriate for audience

 Presentation (readable and useful format)

Task support satisfaction Ability to produce expected results

 Ability to produce usable results

 Completeness

 Ease to implementation

 Understandability (easy to understand)

100

iii. Collecting and analyzing the feedbacks

The participants’ feedbacks were collected, analyzed and reported. Detailed explanation

can be found in Section 6.4.

3.7 Summary

This chapter has elaborated the methodology that was used in performing this study,

which is the deductive approach. It consists of four phases: theoretical study, exploratory

study, ESPAC Model development and ESPAC Model evaluation. Each of the phases

was performed in order to achieve the objectives indicated in Chapter One. By executing

those phases, the enhanced software process assessment and certification model has been

developed. This model enables the assessment and certification to be performed in wider

perspectives and matches current business needs. Additionally, the quality and

consistency of certification decision is improved. The proposed model is targeted to be

used by software practitioners as a mechanism to assess and certify their software

process, besides to help investors and customers in making investment decisions. At the

end, the proposed model was evaluated through verification and validation. The next

chapter dicusses about the exploratory study conducted in this study.

101

CHAPTER FOUR

EXPLORATORY STUDY

4.1 Introduction

This chapter discusses about the findings from the exploratory study conducted among

software practitioners in Malaysia. The exploratory study aims to investigate the current

practices of software certification in relation to Agile and secure software processes

implemented in the Malaysian software industry. The findings from this exploratory

study facilitated the development of the proposed software process assessment and

certification model which focuses on the Agile and secure software processes.

The discussion in this chapter starts with the instrument design in Section 4.2, continues

with the sampling, instrument testing, data collection and data analysis in Section 4.3,

4.4, 4.5 and 4.6 respectively. The findings are presented in Section 4.7 followed by

discussions in Section 4.8. This chapter ends with a summary in Section 4.9.

4.2 Instrument Design

The contents of the instrument were obtained from previous works such as those from

Elahi et al. (2011) and Misra et al. (2009). Additionally, findings from the theoretical

study as discussed in Chapter 2 were also utilized. In general, 7-point semantic

differential scale ranging from Extremely Not Important to Extremely Important was used

in most of the questions (Zikmund et al., 2010; Nardi, 2003). This scale is used since it is

reliable and valid for many research purposes, flexible, easy to be adapted, as well as

quick and economical to administer and score, as mentioned by Kerlinger (1973) in

102

Thompson and Stapleton (1979). It is also an alternative to reduce the acquiescence bias

which is found in Likert Scale (Friborg, Martinussen & Rosenvinge, 2006) besides

reducing the survey completion time (Chin, Johnson, & Schwarts, 2008). In addition,

multiple responses questions and yes/no questions were also included. The objectives and

sources for each question are presented in Appendix A. The instrument for this study

consists of 32 questions with sub questions, organized in four main sections:

Section I: Demographic Information

This section assesses the respondent’s background such as their position in the

organization, years of experience and the sector of the organization they are attached to.

This section was answered by all of the respondents.

Section II: Agile Software Process

Since this section focuses mainly on the Agile software process, it was answered only by

the respondents who had prior knowledge in it. Most of the questions in this section

relates to the software practitioners’ perception on the importance of the Agile software

process in producing high quality software, as well as their familiarity and experience

with the approach. Among the questions are the Agile principles and the Agile practices

that they perform. These questions are important towards providing an insight on the

important Agile software practices that have influence on the quality of software.

Section III: Secure Software Process

Similar to Section II, this section was only answered by the respondents who had prior

knowledge in secure software process. From this section, the respondents who did not

103

have preceding knowledge on the approach were directed to Section IV. Basically this

section investigates the awareness regarding the secure software process among software

practitioners in Malaysia. Additionally, the current practices of the secure software

practices are also explored.

Section IV: The Implementation of Software Certification

This section seeks for the software practitioners’ opinion on the importance of software

certification. Furthermore, questions regarding the assessment or audit as well as the

techniques being used for the assessment/audit are asked. Finally, the standards currently

used in the respondents’ organizations are also inquired.

4.3 Sampling

In this study, a non-probability sampling was used, which is the purposive (judgmental)

sampling. The possible software organizations were obtained from 1) the list of software

SME organizations in Malaysia, 2) the private and government companies attained

through the Internet and 3) contacting friends who are working in the software industry.

The potential samples were identified from Kuala Lumpur and Selangor, as these are the

places where software development companies are most located in Malaysia (Ani Liza et

al., 2012b; Mohd Hassan, Md. Mahbubur, & Noor Maizura, 1996). Moreover, Kedah has

a big technology park which places a number of International software companies, while

Penang has many software industries concentrated there (Ani Liza, 2012). Therefore,

effort in distributing the instruments concentrated in these states.

104

4.4 Instrument Testing

The instrument went through several rounds of reviews and revisions after it was

constructed to ensure that the content is comprehensive and appropriate. Additionally, the

layout of the instrument needs to be friendly, with clear instructions and understandable

language. These characteristics were used to validate the instrument through a pilot study

before distributing it and collecting the actual data from the selected sample.

The pilot study involved thirty two (32) respondents. This number of respondents is

appropriate since Cooper and Schindler (2011) suggests the size of pilot group may range

from 25 to 100. The instruments were distributed face-to-face, which involved project

managers, system analysts and programmers who have at least 3 years’ of working

experience in the related field. Through the pilot study, the ambiguities that might arise,

difficulties that might be faced when answering the instrument, misinterpretation on the

questions and incompleteness of the items in the instrument can be identified.

Additionally, the time and motivation for answering the questions can also be looked

into.

The pilot study respondents agreed that the questions make sense and covers the domain

of the Agile and secure software processes, as well as software certification. However,

there are some suggestions for improving the quality of the instrument. Among the

suggestions were to simplify the questions to be more readable and understandable,

reorganize the presentation of questions and reduce the number of questions since the

time taken to answer was too long. Consequently, the instrument was refined based on

105

their feedbacks. Refer to Appendix B for the final version of the instrument after the

refinement.

4.5 Data Collection

From the lists of organizations obtained, the researcher contacted all of the potential

respondents through telephone or email and asked their willingness to participate in the

survey, within July and August 2012 (230 of them). Out of the possible contacted

respondents, only 169 organizations actually involved in software development and

willing to participate, while the other 61 of them refused to participate.

A total of 114 instruments are usable for the study, which is acceptable according to

Bailey (2008), Fisher (2007) and Sekaran (2003). Different approaches were used to

gather the data, namely face-to-face meetings, mail postages and online survey. Face-to-

face meeting was used to ensure that the respondents clearly understand each question

and answer them properly. Furthermore, if they have doubts on any question, they can

immediately request for clarification. However, most of the respondents preferred to

answer the survey via online or mail postage rather than face-to-face. Therefore, an

online survey was created by using the SurveyMonkey and the link was emailed to the

corresponding respondents who agreed to participate in the survey. The instrument was

posted for two months in the Internet (October to November 2012). By using this

increasingly popular way of data collection, the response rate was higher compared to the

face-to-face meeting, as well as reduced the cost and can be done faster.

106

One month was allocated for the respondents to return the instruments. Reminders were

sent to the ones who failed to do so. Unfortunately, there were 35 unreturned instruments,

whilst 20 were rejected due to incomplete answers. The overview of the respondents is

provided in Table 4.1.

Table 4.1

 Overview of Respondents

Details Details Percentage

Number of respondents willing to participate 169 100

Unreturned instruments 35 20.7

Face-to-face respondents 14 8.3

Online respondents 84 49.7

Mail postage respondents 16 9.5

Rejected/ Incomplete online survey 20 11.8

Total usable 114 67.5

4.6 Data Analysis

Data obtained from the survey were analyzed using descriptive statistical analysis,

whereby it is not intended to explain or show any causal relationships between the

variables. On the other hand, it focuses on describing the respondents’ opinion or the

frequency of certain events to occur (Oppenheim, 1992). Among the analysis used were

frequency, mean and cross tabulation. The SPSS Version 14.0 software was used for this

purpose.

107

4.7 Findings

This section aims to report the findings of the exploratory study. They are classified into

eight (8) sub sections, which are 1) demographic information, 2) current practices of

Agile software process, 3) current practices of secure software process, 4) Agile software

practices that influence the quality of software, 5) secure software practices that influence

the quality of software 6) perceptions on the importance of Agile and secure software

processes in producing high quality software, 7) characteristics of people who involve in

Agile and secure software processes and 8) current practices of software certification.

4.7.1 Demographic Information

This section is aimed for assessing the background of the respondents and the

organization.

4.7.1.1 Respondents’ Background

To understand the respondents’ background, they were asked to indicate their position in

the company and years of experience in software development. Table 4.2 portrays the

frequency and percentages of respondents according to their positions. Majority of the

respondents are programmers (40%), followed by system analysts (26%), project

managers (13%) and team leaders (13%). The rest of them are the quality

assurance/testers (7%) and security advisors (1%).

108

Table 4.2

 Respondents’ Position in Company

Positions Frequency Percentage

Programmers 45 40

System Analysts 30 26

Project Managers 15 13

Team Leaders 15 13

Quality Assurance/Testers 8 7

Security Advisors 1 1

Total 114 100

Cross tabulation analysis was used in order to classify the respondents based on their

experience and position, as depicted in Table 4.3. Out of the 114 respondents, only 20

have experience more than 10 years. Most of the respondents (53 of them) have 1 to 5

years experience and among them, 28 are programmers.

Table 4.3

Respondents’ Experience

Positions <1 year 1-5 years 6-10 years 11-20 years Total

Project Managers 2 4 4 5 15

Programmers 9 28 5 3 45

Quality

Assurance/Testers

1 6 0 1 8

System Analysts 2 11 12 5 30

Security Advisors 1 0 0 0 1

Team Leaders 1 4 4 6 15

Total 16 53 25 20 114

109

4.7.1.2 Organizational Background

Table 4.4 lists the sectors of organization of the respondents. Software development

sector is found to be in the highest ranking (42.1%). The ranking continues with

education/training (22.8%), service and public administration (10.5%) and manufacturing

(6.1%). Other sectors include consultation, telecommunication, health and social work,

banking/financial/insurance and agriculture, hunting and forestry.

Table 4.4

Sectors of Organization

Organization’s Sectors Frequency Percentage

Software Development 48 42.1

Education/Training 26 22.8

Service and Public Administration 12 10.5

Manufacturing 7 6.1

Consultation 6 5.3

Telecommunication 7 6.1

Health & Social Work 5 4.4

Banking/Financial/Insurance 2 1.8

Agriculture, Hunting & Forestry 1 0.9

Total 114 100

4.7.2 Current Practices of Agile Software Process

This section addresses the software practitioners’ opinion and experiences regarding

Agile software process by describing their familiarity, level of exposure, years of

experience, the number Agile team members in their teams, Agile methods that they are

familiar with, the benefits of Agile and the implementation of Agile principles.

110

4.7.2.1 Software Practitioners’ Familiarity of Agile

To ensure the validity of the data, the respondents were asked whether they are familiar

with the Agile. Majority of them (64%) claimed that they are familiar with Agile, whilst

only 36% are not familiar.

4.7.2.2 Level of Exposure to Agile

Furthermore, they were asked about their experience in implementing Agile. 64% among

the respondents are either current member of Agile (19%) or currently leading Agile team

(12%) or previously were in Agile team (11%) or Agile coach (6%) or have heard about

it, but not in depth (16%), while 36% of them have never heard about Agile. Figure 4.1

exhibits the analysis result. Therefore, the subsequent questions regarding Agile were

answered by the respondents who have knowledge in it (73 of them), while the others

continued answering the questions about the secure software process and software

certification.

Figure 4.1. Level of exposure to Agile

36%

19%

16%

12%

11%

6%

Never heard about it

Current member of agile team

Have heard about it, but not in depth

Currently leading an agile development team

Previously a member of agile team

Agile coach or consultant

111

4.7.2.3 Years of Experience Implementing Agile

The respondents were then asked about their years of experience in implementing Agile.

Majority of them (78%) have experience in it for two years or less’ duration. Only 7%

have experience in it for more than five years while 15% have experience for three (3) to

five (5) years (Refer to Figure 4.2).

Figure 4.2. Years of experience

4.7.2.4 Number of Agile Team Members

The respondents were then asked about the number of team members in their team. Most

of them work in a team with less than five members (37%) or five to ten members (34

%), as shown in Figure 4.3.

Figure 4.3. Number of Agile team members

< 6

months,

36%

1-2

years,

36%

3-5

years,

15%

6-11

months,

6%

>5 years,

7%

<5

37%

5 to 10

34%

11 to 20

18%

21 to 40

8%

>40

3%

112

4.7.2.5 Agile Methods

Figure 4.4 shows the Agile methods that the respondents are familiar with. They were

allowed to choose more than one answer for this question. Most of them are familiar with

Extreme Programming (XP) (52%), followed by Scrum (32%). The rest are familiar with

DSDM, Crystal Family, FDD and Agile Modeling.

Figure 4.4. Agile methods being practiced

4.7.2.6 Benefits of Agile

Additionally, the respondents were asked about the benefits that they gain by practicing

Agile. This question allowed multiple answers. It is apparent from Figure 4.5 that most of

the respondents agree that Agile can enhance the ability to manage changing

requirements (59%), increase productivity (55%) and accelerate time-to-market (48%).

 Figure 4.5. Benefits of Agile practices

52%

32%

18%
10% 10% 7%

XP Scrum DSDM Crystal

Family

FDD Agile

Modeling

59%

55%

48%

41%

37%

37%

Enhance ability to manage changing requirements

Increase productivity

Accelerate time-to-market

Reduced software defects

Reduce cost

Improved team morale

113

4.7.2.7 Implementation of Agile Principles

The respondents were then asked about the frequency of the Agile principles being

practiced in their organizations. The 7-point numerical scale (Zikmund et al., 2010) was

used for this question, which ranged from Never to Every time. This scale was then

mapped to equal intervals. The interval ranges are calculated by using the following

formula (Ismail, Abedlazeez, & Hussin, 2011):

Interval ranges = (n-1) / n (4.1)

Where n is the maximum number in the used scale, which is to equal 7. Thus, the interval

size of the consideration level between one through seven is 0.86, as depicted in Table

4.5.

Table 4.5

Interval Values

Degree of Importance (DI) Interval Values

Never 1.00 – 1.86

Rarely 1.87 – 2.72

Occasionally 2.73 – 3.58

Sometimes 3.59 – 4.44

Frequently 4.45 - 5.30

Usually 5.31 - 6.16

Every time 6.17 - 7.00

As can be seen in Table 4.6, the results demonstrate that none of the Agile principles was

used ‘Every time’ by the respondents. Nevertheless, majority of the principles were

performed frequently. Only principles 1 to 5 were performed ‘Usually’.

114

Table 4.6

Agile Principles Implementation

Agile Principles Mean DI

1) Satisfy the customer through early and continuous delivery of valuable

software
5.82

U
su

a
ll

y

2) Emphasize on face-to-face conversation for conveying information to and

within a development team
5.67

3) Emphasize on simplicity throughout the development process (estimation,

design, coding, etc)
5.34

4) At regular intervals, the team reflects on how to become more effective in

future iterations/sprints
5.33

5) Continuous attention is given to technical excellence and good design 5.32

6) Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale
5.30

F
re

q
u

en
tl

y

7) Working software is the primary measure of progress 5.14

8) The sponsors, developers, and customers maintain a sustainable

development
5.12

9) The projects are built around motivated individuals 5.08

10) Customers work closely with the Agile team and are readily available 5.01

11) Welcome changing requirements, even late in development 4.88

12) Self-organized teams (team members make their decisions and plans

without depending on managers)
4.45

4.7.3 Current Practices of Secure Software Process

This section investigates the current practices of software practitioners regarding secure

software process in terms of their familiarity with it, how they prevent from common

attacks, the security trainings provided for them, the notations that they use to represent

the security requirements, how they elicit security requirements and the security incidents

that they faced.

115

4.7.3.1 Software Practitioners’ Familiarity of Secure Software Process

From the 114 respondents, majority of the respondents (82%) have knowledge about the

secure software process (93 of them). Consequently, the questions regarding the secure

software process were only answered by the ones who have prior knowledge and

experience on secure software process.

4.7.3.2 Common Attacks Prevention Technique

The respondents were asked about how they prevent from introducing common attacks

that occurred previously. Surprisingly, majority of them do not consider the attacks that

have happened in the past (41%). However, fortunately the remaining respondents refer

to the document which records the security attacks that have occurred previously (37%),

while 35% of them consult with the security experts. On the other hand, 34% of them

look for well-known common security attacks and vulnerability databases. Table 4.7

shows the analysis result.

Table 4.7

Prevention Techniques from Common Attacks

Prevention Techniques Frequency Percentage

Do not consider attacks that have happened in the past 38 41

Refer to document which records the security attacks that

have occurred previously
34 37

Consult with security experts to prevent common attacks 33 35

Look for well-known common security attacks in attack and

vulnerability databases
32 34

116

4.7.3.3 Security Trainings

The respondents were then asked about the percentage of security trainings provided for

the staff. Cross tabulation analysis was used in order to classify the respondents based on

their position and amount of security training provided for them. Most of the respondents

(38.7%) are provided with 25% or less security trainings in a year. Quite a big percentage

is not provided with any security trainings (19.4%). Only 24.7% are provided with

security trainings within 25 to 50 percent in a year. The result of analysis is depicted in

Table 4.8. Meanwhile, the trainings are provided mostly for the programmers and system

analysts, 41.9% and 28% respectively, while majority of the project managers who

participated in this study are provided with security trainings yearly.

Table 4.8

Percentages of Security Training Provided

Positions

Percentages of Trainings per Year

Total

None
25% or

less

25% but

less than

50%

50%

but less

than

75%

Greater

than

75%

Project Manager
1

(1.1%)

3

(3.2%)

3

(3.2%)

2

(2.2%)

1

(1.1%)
10

(10.8%)

Programmer
7

(7.5%)

14

(15.1%)

11

(11.8%)

2

(2.2%)

5

(5.4%)
39

(41.9%)

Quality

Assurance/Tester

2

(2.2%)

3

(3.2%)

1

(1.1%)

0

(0%)

0

(0%)
6

(6.5%)

System Analyst
7

(7.5%)

10

(10.8%)

5

(5.4%)

2

(2.2%)

2

(2.2%)
26

(28%)

Security Advisor
0

(0%)

0

(0%)

1

(1.1%)

0

(0%)

0

(0%)
1

(1.1%)

Team leader
1

(1.1%)

6

(6.5%)

2

(2.2%)

0

(0%)

2

(2.2%)
11

(11.8%)

Total
18

(19.4%)

36

(38.7%)

23

(24.7%)

6

(6.5%)

10

(10.8%)

93

(100%)

117

4.7.3.4 Notations for Security Requirements

Table 4.9 represents the analysis result regarding the notations used to represent security

requirements. Multiple answers were allowed for this question. Unfortunately, the

analysis result found that majority of them (76%) do not document the security

requirements, while 4% do not use any specific notation to represent the security

requirements. Only 11% use abuse case, 10% use misuse case, 8% use attack tree, and

2% use misuser stories.

Table 4.9

Notations for Security Requirements

Notations Frequency Percentage

Do not document 71 76

Abuse case 10 11

Misuse case 9 10

Attack tree 7 8

No specific notation 4 4

Misuser stories 2 2

4.7.3.5 Security Requirement Elicitation Practice

The respondents were asked whether they elicit and document security requirements

explicitly from early stage. 21.5% of the respondents discuss about the security

requirement from early stage. Unfortunately, the requirements are not documented.

However, 24% of them are aware of this, whereby they gather and document the security

requirements explicitly during requirement gathering. Meanwhile, 32% of the

respondents only deal with security issues during the implementation phase or after the

118

system being developed. On top of that, 22.5% do not even deal with the security

requirements. Table 4.10 presents the analysis result.

Table 4.10

Eliciting Security Requirements Explicitly during Requirement Gathering

Answers Frequency Percentage

Security issues are only dealt during the implementation phase

or after the system being developed
30 32

Security requirements are gathered and documented

in the early stages of the projects before the development starts
22 24

Do not deal with security requirements 21 22.5

Security requirements are discussed from early stages but

are not documented
20 21.5

Total 93 100

4.7.3.6 Security Incidents Faced

The respondents were asked about the security incidents that they faced. They were

allowed to provide multiple answers for this question. The analysis result found that

respondents face many security incidents, as depicted in Figure 4.6. The most common

security incidents faced by them are password cracking (45%), followed by malicious

code (39%) and SQL injection (35%). Other security incidents are spamming, denial of

service, eavesdropping, spoofing. Only small percentage (9%) of them never face any

security incidents.

119

Figure 4.6. The security incidents faced

4.7.4 Agile Software Practices that Influence the Quality of Software

The respondents were further inquired about the Agile software practices that need to be

performed in order to produce high quality software. They are categorized into

requirement engineering, software design, coding, testing, project management and

change management. The mean value for each practice is obtained from the analysis, as it

represents the most selected answers in average. The 7-point numerical scale was used

for this question, which ranges from Extremely Not Important to Extremely Important.

The scale is then mapped to equal intervals, by using Equation 4.1. The interval values

are depicted in Table 4.11.

Table 4.11

Interval Values

Degree of Importance (DI) Interval Values

Extremely Not Important (ENI) 1.00 – 1.86

Not important (NI) 1.87 – 2.72

Less Important (LI) 2.73 – 3.58

Moderately Important (MI) 3.59 – 4.44

Important (I) 4.45 - 5.30

Very Important (VI) 5.31 - 6.16

Extremely Important (EI) 6.17 - 7.00

45%
39%

35% 32% 30%
23%

17%
9%

120

Table 4.12 exhibits the mean values obtained by the important practices in each phase of

the Agile software process. Outcomes from the study show that mostly these Agile

software processes obtained high consideration among the respondents, whereby the

mean values are in the range of Important to Very Important.

Table 4.12

The Mean Values for Agile Software Practices

P
h

a
se

s

Practices Mean DI

R
eq

u
ir

em
en

t
E

n
g
in

ee
ri

n
g

Identifying the scope at the beginning of the project to create initial

prioritized stack of requirements
5.58

(V
I)

 Gathering requirements iteratively and incrementally 5.51

Emphasizing on face-to-face communication 5.51

Producing product backlog and iteration backlog for ensuring the

consistency and traceability of requirements
5.42

Emphasizing on single source information 5.30

(I
)

Using releases (working software) for validating requirements at the end

of each iterations
5.23

The requirements are written on cards in short statements 5.11

Enabling development team to re-estimate the time and velocity (speed of

accomplishing tasks) of user stories
5.03

Enabling customers to prioritize and reprioritize requirements throughout

the development
4.42

(M
I)

S
o

ft
w

a
re

 D
es

ig
n

 Implementing model storming 5.36

(V
I)

Creating an initial model at the beginning of iteration 5.27

(I
)

Start designing with simple initial design and integrating it continuously 5.21

Producing just barely good enough artifacts (for situation at hand only) 5.07

121

P
h

a
se

s

Practices Mean DI

Refactoring (reorganize) the design 4.85

Using metaphor as architecture of the system 4.64

C
o
d

in
g

Delivering the features with high priority first 5.59

(V
I)

Following coding/database/interface standards 5.47

Delivering the software frequently with increments of features 5.42

Deploying the software gradually in real environment 5.42

Having customers on-site to get continuous and immediate feedback from

customer for clarification
5.34

Integrating the newly produced code to system baseline frequently 5.14

(I
)

Determining code integration strategy and revising it 5.05

Implementing test driven development (TDD): write tests first, then write

the code to pass the tests
5.01

Producing deliverable documentation late 5.01

Refactoring the code and database 4.85

Implementing pair programming (two programmers working together) 4.79

Giving authority to team members to make changes at any part of the

code

4.77

T
es

ti
n

g

Implementing user interface testing 5.77

(V
I)

 Using acceptance tests to validate and verify user’s requirements 5.64

Implementing database regression testing 5.51

Producing executable specification 5.41

Acceptance tests are written or at least modeled by customers 5.26

(I
)

Implementing automated tests 5.23

 (I
)

122

P
h

a
se

s

Practices Mean DI

Implementing frequent integration testing 5.23

Implementing tests continuously throughout the development 5.18

P
ro

je
ct

 M
a
n

a
g
em

en
t

Performing project planning jointly and continuously with team members 5.41

(V
I)

Conducting continuous review meetings at end of each iteration to

demonstrate the latest version of software
5.32

Planning and estimating (cost and schedule) are based on features/

functions/stories of system
5.23

(I
)

Revealing the current progress of iteration/sprint to everyone on sprint

burn down chart
5.19

Carrying out release meeting at the beginning of project to plan releases 5.18

Ensuring that working hours do not exceed 40 hour per week (no

overtime)
5.14

Carrying out iteration meeting at the beginning of each iteration to plan

iterations
5.11

Conducting retrospective (postmortem) at end of each iteration to look

back what worked well and what need to be improved
4.81

Monitoring customer involvement and end-user in project activity 4.71

Carrying out daily stand-up meetings for daily plan 4.68

C
h

a
n

g
e

M
a

n
a
g

em
en

t

Controlling changes using product backlog (prioritized user stories) 5.40
(V

I)

Assigning the individual who will be responsible for ensuring Change

Management activities are implemented correctly
5.12

(I
)

Automating the Change Management activities (e.g. building scripts) 4.99

Not allowing changes once an iteration has begin, until the iteration ends 4.93

(I
)

123

4.7.5 Secure Software Practices that Influence the Quality of Software

Additionally, the respondents were asked about the secure software practices needed in

order to produce high quality software, which are categorized into requirement

engineering, software design, coding, testing, security management and risk management.

Similar to Agile software practices, the 7-point numerical scale was used for this question

and mapped to equal intervals, as shown in Table 4.11. Results were obtained by

calculating the mean score gained by each secure software process, as depicted in Table

4.13. It shows that mostly the secure software processes obtained high consideration,

whereby the mean values are in the range of Important to Very Important.

Table 4.13

The Mean Values for Secure Software Practices

P
h

a
se

s

Practices Mean DI

R
eq

u
ir

em
en

t
E

n
g
in

ee
ri

n
g
 Updating security requirements iteratively, taking place as changes

occur

5.51

(V
I)

Documenting and maintaining a set of well-defined security

requirements to prevent from introducing common attacks that occurred

previously

5.47

Obtaining security requirements explicitly 5.41

Considering attackers’ perspective while eliciting security requirements 5.39

S
o
ft

w
a

re
 D

es
ig

n

Referring the latest lists of common attack patterns, vulnerabilities and

threats in order to keep up-to-date with current trends

5.52

(V
I)

Documenting security requirements in a particular notation (e.g.: misuse

case, attack tree)

5.33

Modeling the possible threats 5.23

(I
)

Performing an external (by someone outside the design team)

5.13

124

C
o

d
in

g

Refering to the secure coding guidelines 5.40

(V
I)

Coding countermeasures for the identified threats 5.35

Preparing documents for installing and operating the application securely 5.32

Implementing pair programming to reduce vulnerability: continuos

review

4.81

(I
)

Comparing outcome from automated and manual code review 4.72

T
es

ti
n

g

Performing integration tests focusing on the threats and vulnerabilities 5.31

(V
I)

Creating unit tests by focusing on identified threats and vulnerabilities 5.26

(I
)

Performing risk analysis again at the end of the phase to ensure all risks

are mitigated and to consider remaining risks

5.23

Performing penetration test (simulate attack from malitious outsiders) 5.23

Performing fuzz testing (use random data as input for tests) 5.17

S
ec

u
ri

ty
 M

a
n

a
g
em

en
t Sharing the produced artifacts among team members 5.63

(V
I)

Producing and revising security policy regularly 5.59

Ensuring that all members of the project team are aware of and involved

with security engineering activities

5.43

Planning and documenting security plan 5.42

Defining the security roles and responsibilities up-front 5.34

R
is

k
 M

a
n

a
g
em

en
t

Performing risk analysis iteratively throughout the software development

to identify the possible threats, vulnerabilities and impacts of application

5.35

(V
I)

Planning mitigation strategy to countermeasure the identified threats,

vulnerabilities and impacts

5.32

Ensuring the newly identified risks are reported and mitigated as soon as

possible

5.24

(I
)

Monitoring the identified threats, vulnerabilities and impacts throughout

the development

5.18

125

4.7.6 Perceptions on The Importance of Agile and Secure Software Processes in

Producing High Quality Software.

The respondents who have knowledge about Agile were asked whether they agree that

Agile can influence the quality of produced software. 96% of them answered ‘Yes’, while

only 4% answered ‘No’. Furthermore, the respondents who have prior knowledge on

secure software process were asked whether they agree that it is important to consider

secure software process and its implementation from early phases of software

development in order to ensure software quality. Akin to the Agile software process, 96%

of them answered ‘Yes’, while only 4% answered ‘No’.

4.7.7 Characteristics of People Who Involve in Agile and Secure Software Processes

In this section, respondents were asked about the characteristics that should exist among

the team and organization in order to successfully develop high quality software which

concerns on the Agile and secure software processes. These characteristics are presented

below. The 7-point numerical scale was used for this question, which ranged from

Extremely Not Important to Extremely Important. The scale was then mapped to equal

intervals, as presented in Table 4.11. Results are obtained by calculating the mean score

gained by each characteristic, as depicted in Table 4.14. They obtained high

consideration among the respondents, whereby the mean values are between Very

Important and Important.

126

Table 4.14

Team and Organizational Characteristics

T
y

p
es

Characteristics Mean DI

T
ea

m
s

Emphasize on face-to-face communication 5.97

(V
I)

The team members consists of people with different functional

expertise
5.96

Every team member adopts the security activities 5.71

Every team member being familiar with the security requirement of

the system
5.70

Reach a common understanding about the security needs among all

applicable parties, including the customer.
5.60

Small sized team 5.60

Co-located team 5.23

(I
)

Self-organized team 5.14

O
rg

a
n

iz
a
ti

o
n

Encourage customer participation and face-to-face communication 5.96

(V
I)

Provide basic security knowledge training for staff 5.80

Provide cooperative organizational culture instead of hierarchical 5.86

Provide facilities with proper Agile-style work environment 5.73

Ensure that Agile way of software development is universally

accepted
5.71

Give rewards for successful security handling 5.57

Provide sufficient budget for security initiative 5.35

Provide a separate security team to engineer and evaluate the security

of software
5.16 (I

)

127

4.7.8 Current Practices of Software Certification

This section presents the software practitioners’ opinion on the importance of software

certification, as well as the internal assessment or audit that they performed, besides the

assessment techniques that they used. Additionally, they were also asked about the use of

standards in their organizations.

4.7.8.1 Software Practitioners’ Opinion on the Importance of Software Certification

In this section, the respondents were asked whether they agree that certifying software

process is necessary to improve and enhance the quality of software. Majority of them

(86%) answered ‘Yes’, while only 14% answered ‘No’. When further investigated

through cross tabulation analysis, the results reveal that majority of the respondents who

are familiar with Agile and secure software processes agree on the importance of

software certification, 56% and 74% respectively. On the other hand, only small

percentage from the respondents did not agree, same percentage (8%) from the

respondents who are familiar with Agile and secure software processes.

In the meantime, the respondents who are not familiar with Agile and secure software

processes also agreed on software certification’s importance, 31% and 13%

correspondingly. Additionally, only small percent of them did not agree on this, 5% of

respondents who are not familiar with Agile and secure software processes. Table 4.15

provides the analysis results.

128

Table 4.15

The Importance of Software Certification Based on Respondents’ Familiarity

Familiarity
Software Certification Importance

Total
Yes No

Agile software

process

Yes
64

(56%)

9

(8%)

73

(64%)

No
35

(31%)

6

(5%)

41

(36%)

Secure

software

process

Yes
84

(74%)

9

(8%)

93

(82%)

No
15

(13%)

6

(5%)

21

(18%)

4.7.8.2 The Implementation of Internal Assessment/Audit and the Techniques Used

Most of the respondents’ companies did not implement internal assessment/audit on the

software process (53%), while only 37% implemented it. The respondents who

implement the assessment/audit provide the techniques used for the assessment. Table

4.16 shows the analysis result. Most of them use document review (35%), followed by

observation (28%) and interview (21%). They are allowed to choose more than one

answer for this question.

Table 4.16

Assessment Techniques

Assessment Techniques Frequency Percentage

Document review 41 35

Observation 33 28

Interview 24 21

129

4.7.8.3 The Use of Standards

The respondents were asked about the standards that their organization implementing.

Unpredictably, almost half of them did not implement any standard (48%). Only 22% use

ISO/IEC 9000, 15% use IEEE Standards, 5% use ISO/ IEC 27001 and 2% use CMMI,

while the rest 8% use other standard. The analysis result is shown in Figure 4.7.

Figure 4.7. The use of standards

The above result is further detailed out by performing cross tabulation analysis to classify

the use of standards based on the respondents’ familiarity with the Agile and secure

software processes. The analysis results are shown in Table 4.17.

Do not

implement

48%

ISO/IEC

9000

22%

IEEE

Standards

15%

Other Std

8%

ISO/IEC

27001

5%

CMMI

2%

130

Table 4.17

The Use of Standards Based on Respondents’ Experience

Familiarity

Standards use

Total Do not

implement

IEEE

Standards

ISO/IEC

9000

ISO/IEC

27001
CMMI

Other

International

Standards

Agile

software

process

Yes
33

(28.9%)

11

(9.7%)

20

(17.5%)

2

(1.8%)

2

(1.8%)

5

(4.4%)

73

(64%)

No
22

(19.3%)

6

(5.3%)

5

(4.4%)

4

(3.5%)

0

(0%)

4

(3.5%)

41

(36%)

Secure

software

process

Yes
39

(34%)

17

(15%)

22

(19.3%)

5

(4.4%)

2

(1.8%)

8

(7.1%)

93

(81.6%)

No
16

(14%)

0

(0%)

3

(2.6%)

1

(0.9%)

0

(0%)

1

(0.9%)

21

(18.4%)

It is apparent from the table that the most of the respondents who are familiar with Agile

software process do not implement any standards (28.9%), while 17.5% implement

ISO/IEC 9000 and 9.7% apply IEEE Standards. Meanwhile, CMMI and ISO/IEC 27001

are only implemented by 1.8% each. Also, 4.4% of them execute other International

Standards. Similarly, most of the respondents who are familiar with secure software

process do not implement any standards (34%). However, there are among them who

implement ISO/IEC 9000 and IEEE Standards, 19.3% and 15% respectively, while 7.1%

apply other International Standards, ISO/IEC 27001 (4.4%) and CMMI (1.8%).

Additionally, the respondents who are not familiar with Agile do not implement any

standard (19.3%). Additionally, 5.3% of them implement IEEE Standards while 4.4% use

ISO/IEC 9000. Furthermore, the same percentages of the respondents (3.5% each) utilize

the ISO/IEC 27001 and other International Standards. On the other hand, 14% of the

respondents who are not familiar with secure software process do not implement any

standard, while 2.6% implement ISO/IEC 9000. Additionally, only small percent of them

(0.9%) use ISO/IEC 27001 and other International Standards (0.9%).

131

4.8 Discussions

Generally, this study has investigated several issues regarding software certification

which relates to Agile and secure processes. The findings of the study are discussed in the

next sub sections according to the exploratory study’s objectives.

Objective 1: To study the software practitioners’ current practices of the Agile and

secure software processes

 Exposure on Agile software process

Most of the respondents have 6 months’ to 2 years’ experience (Refer Figure 4.2).

Additionally, there are among the respondents who have experienced using Agile

software process for more than five years (7%). This result is opposed to the outcome

from the study by Fauziah et al. (2005) ten years back, by which majority of the

respondents were implementing the ‘Waterfall’ model during software development. This

shows that Agile software process is gradually being implemented in the Malaysian

software industry. This outcome is consistent with the study by Ani Liza et al. (2012b).

However, there still exist among the respondents who never heard about it (Refer Figure

4.1). The study by Ani Liza et al. (2011) supports this. It indicates that even though Agile

software process is gradually being implemented among Malaysian software

practitioners, there still exist among them who are not aware of this important software

process.

132

 The number of Agile team members

Furthermore, most of the respondents work in smaller teams, with less than 10 people in

a team (71%) (Refer Figure 4.3). This is consistent with the literature whereby smaller

teams are more effective in producing high quality software. Having a larger team might

pose great obstacles to fast communication and decision making in projects. This is

essential for Agile as it involves frequent communication. Having more people will make

communication tougher (Abbas et al., 2010; Lindvall et al., 2002).

 Agile methods being implemented

Most of the respondents are familiar with Extreme Programming (XP) (52%), followed

by Scrum (32%) (Refer Figure 4.4). This result is supported by the findings from the

study conducted by VersionOne (2011) and Abrahamsson et al. (2010). One of the main

reasons is that XP and Scrum complement each other, since Scrum focuses on project

management, while XP focuses on project development (Fernandes & Almeida, 2010).

AM is the least implemented method, although it provides effective way of modeling and

documenting in the Agile software process, as claimed by Ambler (2014).

 Implementation of Agile principles

Additionally, in implementing Agile, its basic principles should be followed. There are

12 principles common to all Agile methodologies (Agile manifesto, 2001). There are only

five (5) Agile principles which achieved Usually. The least implemented is self-

organizing team (Refer Table 4.6). These principles are essential to be considered by the

software practitioners as they are the backbone of the Agile software process. By

emphasizing the principles, the proper Agile values can be delivered (Williams, 2012). If

133

they are violated, it means that the Agile software process is not being implemented

properly. However, the respondents did not follow the Agile principles constantly, since

none of the principles was implemented as Every time.

 Common attack prevention technique

Majority of the respondents referred to the documents which record the previous attacks

occurred, which is aligned with the findings from the study of Elahi et al. (2011). They

also consulted security experts and looked for the common attacks from the attack and

vulnerability database. However, almost half of the respondents did not make any

security references while eliciting security requirements (Refer Table 4.7). This might

cause the software practitioners to be outdated from the current threats, attacks and

countermeasure available in the industry, as well as repeating the same threats which

occurred in previous projects. Consequently, they faced a lot of security attacks, as

discussed before.

 The security trainings provided for the staff

Trainings have been accepted as one of the major ways to create awareness on the

security issues among the software practitioners. Less security trainings are provided for

the respondents, whereby majority of them attended security trainings only for the

percentage of 25% or less (Refer Table 4.8). On top of that, there still exist among them

who did not receive any security trainings. This result is contradict with the findings in

the study of Elahi et al. (2011), whereby majority of their respondents attended security

trainings. Without attending proper trainings may lead to improper implementation of

secure software process, since proper guideline on its actual implementation is not

134

received. Moreover, the security trainings were provided for majority of the project

managers for at least the percentage of 25, which is essential. By providing trainings for

them, they can understand the importance of secure software process and problems that

might arise by neglecting it (Geer, 2010). Consequently, they will enforce the software

development team to include secure software process during software development.

 The notation used for representing security requirements

Representing the security requirements in particular notation is vital in order to get good

understanding about the requirement of proposed system. Yet, majority of the

respondents do not even document the security requirements (Refer Table 4.9). In

contrast, Elahi et al. (2011) indicated that their respondents used modeling notations

widely. By neglecting this important software process, the software practitioners might

ignore relevant threats that might surface in the proposed system. This is because by

explicitly presenting the security requirements, analysts may get ideas about possible

threats that not thought before (Sindre & Opdahl, 2001). Fortunately, there exist among

them who use abuse case, use misuse case, attack tree, misuse stories, while some do not

follow any specific notations.

 Security incidents and consideration of security requirements from early stage

Although the respondents faced many security incidents such as password cracking,

malicious code attacks and SQL injection (Refer Figure 4.6), most of them did not

consider security requirements from the early stage of software development (Refer

Table 4.10). They only dealt with security requirements during the implementation phase

or after the system being developed. This result is aligned with the outcomes of Elahi et

135

al. (2011), whereby most of their respondents left the security requirements

undocumented and only consider them implicitly. However, according to Shafiq et al.,

(2011), incorporating security in later stages of software development as an afterthought

will increase the risks of introducing security vulnerabilities into software. On the other

hand, the outcome of Errata Security survey (Geer, 2010) found that half of the

respondents gave high concern on security during software development.

Furthermore, 21.5% of the respondents discuss the security requirement from early

stages. Yet, they do not document the requirements. Fortunately, 24% of the respondents

gather and document the security requirements from early stage. This explains that some

of the respondents are aware of the importance of security activities during software

development, however some are not aware on this important software process.

Objective 2: To investigate the software practitioners’ opinion on the Agile and secure

software processes that are important in producing high quality software

 Requirement engineering for Agile

Following the Agile principles, Agile requirement engineering is performed iteratively

and incrementally, in contrast with the conventional software development approach

which emphasizes completed and well-defined requirements up-front (Wells, 2013;

CMMI Product Team, 2010; Liu et al., 2010; Lan & Ramesh, 2008). In this way, the

requirements evolve over time throughout the development. Furthermore, Agile give

importance on face-to-face communication during the requirement elicitation, with

minimal documentation. These software practices are identified as Very Important by the

136

respondents of this study that aligned with the previous studies by Liu et al. (2010),

Williams et al. (2010), Ramesh et al. (2010), as well as Lan and Ramesh (2008).

Furthermore, towards ensuring the consistency and traceability of requirements, the uses

of product and iteration backlog have been agreed by the respondents as Very Important.

Similar result is reported in Salo and Abrahamsson (2008). Additionally, the scope is

identified at the beginning of the project to create initial prioritized stack of requirements,

as emphasized by Ambler (2014) and performed by O’Sheedy and Sankaran (2013) in

their studies.

Moreover, the requirements are gathered with little detail in the beginning of the project

and detailed up during iterations through discussions and negotiations (Williams et al.,

2010). In order to verify the requirements and show the progress to customers after

completing each iteration, the working software (releases) are demonstrated to the

customers. These software practices have been rated as important Agile requirement

engineering practices for ensuring software quality by the respondents of this study.

Similar results were obtained in the studies of Liu et al. (2010), Ramesh et al. (2010) and

Lan and Ramesh (2008). However, even though the studies of Liu et al. (2010), Ramesh

et al. (2010) and Lan and Ramesh (2008) found that their respondents appreciated when

the customers continuously prioritized the requirements, the result of this study is

contradict. The result obtained is Moderately Important.

In addition, emphasizing on the single source information also reduces the maintenance

and traceability burden, as well as increases the consistency (Ambler, 2014). The

documentations produced are minimized by documenting repeating information only

137

once, such as the business rules. This single source of information can be a reference in

producing other documents, rather than repeating them again and again (Ambler, 2014).

However, the importance of this software practice has not been studied previously.

 Software design for Agile

The Agile software process emphasizes on simple initial design which continuously

evolve over time, in contrast with the traditional approach which design everything up-

front. Simple design is one of the Agile software process’s success factors concluded by

Rumpe and Schroder (2002), as well as Tsun and Dac-Buu (2008), Sison and Yang

(2007) and Tessem (2003) in their studies. Similarly, it was rated as Important in this

study. Designing in simple way can be accomplished by producing just barely good

enough artifacts/documents. This means to produce documentation for the situation in-

hand only, rather than documenting the whole project. This is done by modeling and

documenting during the iterations. The iteration modeling is implemented during each of

the iteration planning meetings, whereby the requirements in a particular iteration are

modeled. The detailed modeling is then implemented through model storming for the in-

hand solution before the development. The issues that need to be resolved is identified

and explored together in a small group. During this discussion, the models are sketched

on the whiteboard or paper and made visible to everybody (Ambler, 2014). These

practices have not been studied by previous studies. However, in this study, model

storming attained Very Important, while iteration modeling and producing just barely

good enough artifacts obtained Important.

138

Furthermore, refactoring is another important Agile software design practice. It is a

valuable tool that can be used to improve the software design (Tsun and Dac-Buu, 2008;

Moser et al., 2008; Fowler, 1999). This is also agreed by the respondents in this study.

Besides, the importance of metaphor was revealed by the respondents in Begel and

Nagappan (2008), as well as the result of this study. Conversely, studies by Rumpe and

Schroder (2002) and West and Grant (2010) did not support this observation since this

practice was least used.

 Coding for Agile

Similar to the requirement engineering and designing, coding in Agile is also

implemented iteratively and incrementally. In addition, before starting the coding, all

programmers have to agree upon a set of coding/database/interface standard that

everybody will follow during development. This practice assists in giving better

understanding on the code, improves communication and facilitates maintenance. Studies

in VersionOne (2011), Williams et al. (2010), Salo and Abrahamsson (2008), Tsun and

Dac-Buu (2008), Begel and Nagappan (2008), Sison and Yang (2007) and Rumpe and

Schroder (2002) indicated that coding standard is a highly adopted practice among their

respondents.

The next practice is about delivering software frequently with features increments. By

doing so, the software can be demonstrated earlier to customers and enable them to

review the software, identify defects and make adjustment for future requirements

(Abrantes & Travassos, 2011). This practice has been considered as Very Important by

the respondents in this study, as well as in the studies by Franca et al. (2010), Tsun and

139

Dac-Buu (2008), Sison and Yang (2007), Rumpe and Schroder (2002). This practice is

closely related with deploying the software gradually in real environment, which gained

high consideration in study by Williams and Erdogmus (2002). On contrary, in

VersionOne’s study (VersionOne, 2011), this practice was rated as low percentage.

However, deploying the software gradually in the real environment reduces the risk of

deploying all at once. Furthermore, the feedbacks can be obtained earlier (Agile Alliance,

2013).

In addition, having customer on-site facilitates in providing continuous and immediate

feedback. It is one of the essential Agile principles and has high influence on the success

of Agile (West & Grant, 2010; Misra et al., 2009; Alshayeb, 2009; Tsun & Dac-Buu,

2008; Nerur, Mahapatra, & Mangalaraj, 2005; Tessem, 2003). It denotes that customer

should be a member in the development team so that the uncertainties can be cleared as

soon as it occurs (Abrantes & Travassos, 2011). This is contradicting to the traditional

software development approach, whereby the customers typically involved during the

initial requirements elicitation. Only towards the end they will then give their feedback

on the developed software (Nerur et al., 2005). Customer involvement has also been

identified as an important practice in Asnawi et al. (2012b), Tsun and Dac-Buu (2008),

Tessem (2003). On contrary, study by Rumpe and Schroder (2002) concluded that on-site

customer was least implemented and hard to be performed.

Delivering features with high priority is one of the Agile principles. It can ensure that

most of the important business values are to be delivered first (Paetsch et al., 2003). This

Agile principle is highly considered among the respondents in this study. Moreover,

140

study by Franca et al. (2010) concludes that it is one of the factors that influence the

success of the Agile implementation. All of the previously discussed coding practices

obtained Very Important for this study. The practices which obtained Important are

discussed next.

Agile emphasizes collective code ownership, whereby all programmers in a team are

empowered to make any changes to any part of the code they are working on. This

practice gained high consideration among the respondents in this study. Even previous

studies by Williams et al. (2010), Salo and Abrahamsson (2008) and Rumpe and

Schroder (2002) provide the same report. Moreover, pair programming is one of the most

accepted and succeeded practices in the industry and academic. The most significant

result is improvement in the quality of design and code, as reported by Sfetsos, Stamelos,

Angelis and Deligiannis (2009), Begel and Nagappan (2008), Schindler (2008) and

Canfora, Cimitile, Garcia, Piattini and Vissagio (2007). This practice encourages two

programmers to work together when accomplishing their tasks which enable them to

transfer their knowledge as well as to review the code permanently (Schindler, 2008).

Studies by Williams et al. (2010), Begel & Nagappan (2008), Tessem (2003), Rumpe and

Schroder (2002) found out that pair programming is among the top Agile practices. On

the contrary, studies by VersionOne (2011) and Salo and Abrahamsson (2008) found that

this practice is rated as the least practiced. Although the respondents of (Schindler, 2008)

practiced pair programming, they did not use it regularly. They usually used it based on

demand especially for complex code or debugging.

141

Test driven development (TDD) is a critical practice in producing high quality software

(Sfetsos & Stamelos, 2010). The developers create the unit tests before writing the

production code. Many studies have proven its ability to produce high quality software,

such as Huang and Holcombe (2009), Gupta and Jalote (2007) and Desai, Janzen and

Clements (2009). Meanwhile, Sanchez et al. (2007) stated that the complexity of code

and design is reduced with this practice. Similarly, Desai et al. (2009) report the same in

their study. Study by Williams et al. (2010), Nagappan et al. (2008), Sanchez et al.

(2007), Ambler (2006), George and Williams (2004) signified that the TDD is an

important practice, similar to this study. On the other hand, studies by West and Grant

(2010), Begel & Nagappan (2008); Salo and Abrahamsson (2008) gave contradict

reports.

Continuous integration of source code to the system baseline has been found as an

important practice in VersionOne (2011), Williams et al. (2010), West and Grant (2010),

Begel and Nagappan (2008), Salo and Abrahamsson (2008), Rumpe and Schroder (2002).

By performing this practice, compatibility problems can be detected or avoided earlier

(Wells, 2013). In fact, the definition and revision of the code integration strategy has

been included in the CMMI Version 1.3 (CMMI Product Team, 2010), which indicates it

as an important practice.

By practicing refactoring on code and database, the software will be easier to be

understood, helps in finding bugs and performing program faster. The refactoring focuses

on the internal code restructuring (attributes and methods) across existing classes, without

changing its external behavior (Fowler, 1999). Moser and his co-researchers (2008)

142

pointed out that refactoring increases the software quality as well as improves the

productivity. Additionally, this practice gained high consideration in study by Ambler

(2006). On the other hand, Alshayeb (2009) indicated that refactoring does not influence

the quality (adaptability, maintainability, understandability, reusability, and testability) of

the developed software. As for this study, refactoring is highly considered.

As Agile involves frequent changes, the production of the deliverable documentations is

deferred to the end of development. The documents are created just before delivering the

software. In preparing documentation, this can be risky because the earlier details of the

requirements or design might change (Ambler, 2014). However, the importance of this

practice has not been studied in previous studies.

 Testing for Agile

The Agile testing practices attained either Very Important or Important, which indicates

that the practices are important towards producing high quality software. Testing in the

Agile environment is done continuously throughout the development, as reported by

VersionOne (2011) and Liu et al. (2010). It involves unit, system integration, user

interface, database regression, and user acceptance tests. This differs to the conventional

approach which conducts testing after the implementation stage. Database regression

testing attained high importance in the study of Ambler (2006), while user interface tests

was emphasized in studies by VersionOne (2011) as well as Liu et al. (2010).

Furthermore, the integration testing must be done frequently as performed by the

respondents in Franca et al. (2010), Tsun and Dac-Buu (2008) and Rumpe and Schroder

(2002).

143

Moreover, the user acceptance tests are written by the customers to assure that the

systems fulfill their needs, as reported in (Lan & Ramesh, 2008; Paetsch et al., 2003). In

cases where the customers do not have technical knowledge, the developers will help the

customers in writing the acceptance tests. Referring to the study by Lan and Ramesh

(2008), the acceptance tests acts as a mechanism to validate and verify user’s

requirements. In addition, Agile also emphasizes on automating these tests (Wells, 2013).

This practice gained high consideration by the respondents in this study, as well as

studies by VersionOne (2011), Liu et al. (2010), Williams et al. (2010). The well-written

tests act as executable specification. For instance, unit test is a portion of technical

documentation and acceptance test is part of requirement documentation (Ambler, 2014).

However, the importance of this practice has not been studied for the real world

implementation.

 Project management for Agile

Project management in Agile is different than that in the conventional software

development approach. The project management consists of three planning levels which

obtained high consideration in previous studies; release plan, iteration plan and daily plan

(Li et al., 2010; West & Grant, 2010; Salo & Abrahamsson, 2008; Sison & Yang (2007).

These planning are done iteratively and collaboratively, rather than planning the whole

project up-front, as reported in (Liu et al., 2010; Lan & Ramesh, 2008). A study by

Tessem (2003) indicates that conducting these planning leads to better estimation of the

work size. However, in Salo and Abrahamsson (2008), the collaborative planning was

rated as low. Additionally, the Agile project management emphasizes on the sprint

review and retrospectives which are held at the end of a sprint (Blankenship et al., 2011;

144

Lan & Ramesh, 2008). The retrospective was found to be more beneficial when applied

to small teams, participated by the whole team and when the comments are recorded

(Abbas et al., 2010). Similarly, Sison and Yang (2007) concluded that retrospective is

important. Additionally, Sliger and Broderick (2008) explained that the planning must be

done according to the features/requirements. However, the importance of this practice has

not been studied before. Furthermore, the developers are able to re-estimate the time and

velocity of accomplishing the requirements (Liu et al., 2010; Ramesh et al., 2010; Lan &

Ramesh, 2008).

In addition, the progress of the team should be revealed in an open space so that everyone

is aware of the current progress of the project. This practice gained high consideration in

this study, as well as in the studies by VersionOne (2011), Williams et al. (2010) and

West and Grant (2010). At the same time, the working hours should not exceed 40 hours

in a week to ensure productivity. This practice obtained high consideration among the

respondents not only in this study but also in Rumpe and Schroder (2002), Salo and

Abrahamsson (2008), and Sison and Yang (2007) studies. Furthermore, the involvement

of customers and end-users is monitored by the management, as Agile enforces their

collaboration with the development team (CMMI Product Team, 2010; Sliger &

Broderick, 2008).

 Change management for Agile

Since Agile involves a lot of frequent changes, the changes need to be adapted, rather

than controlling them. Thus, change management and traceability is imperative (Jyothi &

Rao, 2011). Furthermore, a particular individual who will be responsible in managing the

145

changes must be identified (CMMI Product Team, 2010). To enable the change

management activities to be more efficient, the change management activities are

automated. For example, the use of automated tool for scripts creation. In order to avoid

scope crepe, the changes are controlled by monitoring the product backlog and by

restricting changes once the iteration starts (Ambler, 2014; Blankenship et al., 2011).

However, previous studies that studied about the importance of these practices are hardly

found.

 Requirement engineering for secure software process

Eliciting security requirements explicitly, accurately and consistently has been one of the

most fundamental activities for engineering secured software (McGraw, 2004; Wilander

& Gustavsson, 2005; Karpati et al., 2011). However, security requirements are mostly

dealt when the system has been designed or put in operation (Mellado, Blanco, Sanchez,

& Fernandez-Medina, 2010; Christian, 2010). Only low percentage of respondents (9%)

admitted that they document security requirements explicitly in study by Elahi et al.

(2010), while majority of them (59%) considered it implicitly. On top of that, 31% do not

elicit security requirements at all. Furthermore, most of the researchers (McGraw, 2006;

Microsoft, 2012; Mead, 2010 OWASP, 2006) stress that security requirements should be

established from an attacker’s perspective and updated iteratively as soon as changes

occur. In addition, the security requirements must be documented and maintained for

reuse purpose (Christian, 2010; McGraw, 2006). By doing so, it will help developers to

improve the software security as well as learn from past mistakes. In addition, the

available guidelines, internal or external guidelines/ standards/ policies, or established

compliance requirements shall be referred while gathering security requirements (Elahi et

146

al., 2011; OWASP, 2006) and the identified security requirements shall be validated with

stakeholders (Microsoft, 2012; Christian, 2010; McGraw, 2006; OWASP, 2006).

Majority of the respondents in this study expressed that all of these practices as important

towards producing secured software.

 Software Design for secure software process

Designing security is similarly important as eliciting security requirements explicitly

(Karpati et al., 2011). MS SDL (Microsoft, 2012) emphasizes on defining the attack

surfaces. Furthermore, during this phase, the possible impacts, vulnerable and threats

must be identified, classified, rated (Davis, 2013; Microsoft, 2012; McGraw, 2006;

OWASP, 2006) and the countermeasures are documented (Microsoft, 2012; McGraw,

2006; OWASP, 2006). This activity will be more efficient by performing external review

(Microsoft, 2012; McGraw, 2006) and referring to the latest list of common attack from

online database (Julia et al., 2008; McGraw, 2006; OWASP, 2006).

 Coding for secure software process

During this phase, the secure coding guideline should be referred to (Microsoft, 2012;

McGraw, 2006; OWASP, 2006). There are websites which gives this guideline such as

Software Engineering Institute (SEI). The most important part in this phase is coding the

countermeasure for the identified risks- threats, vulnerabilities and impacts (Microsoft,

2012; Evans et al., 2010; Ashbaugh 2009; McGraw, 2006; OWASP, 2006). Besides,

these codes must be reviewed with automated tools as well as manual review and both

results should be compared (McGraw, 2006; Merkow & Raghavan, 2010). Also, the

security features provided by programming language used are identified (McGraw,

147

2006). In addition, pair programming is useful to reduce vulnerability- by having

continuous review (Ashbaugh, 2009). Besides producing security emphasized coding,

CLASP (OWASP, 2006) insists of producing document for installing and operating the

application securely.

 Testing for secure software process

Testing for secure software process is different from traditional testing as it emphasizes

what an application should not do rather than what it should do (Julia et al., 2008). Thus,

testing in secure software process must include testing the security functionality besides

the standard functional testing. They are the fuzz test and penetration test (Microsoft,

2012; McGraw, 2006). Traditional tests such as unit tests and integration tests are

performed as well, but focused more on the threats and vulnerabilities (Julia et al., 2008).

Consequently, the test cases created focuses on the identified mitigation strategies

(Microsoft, 2012; McGraw, 2006; OWASP, 2006). Additionally, to ensure all risks are

mitigated and to consider other residual risks, McGraw (2006) includes analyzing the

risks again at the end of testing phase.

 Security management

In managing the security, the usage of security policy is very important to ensure that

appropriate controls are put in place (Ai et al., 2007; Tondel et al., 2008; Colley, 2009;

Syed Irfan, Abdulrahman, & Khaled, 2010). Besides, it should be reviewed and revised

regularly (Syed Irfan et al., 2010) as well as ensuring that it is being properly followed by

the workers (Syed Irfan et al., 2010). Additionally, security plan is another means of

148

ensuring good security management (Ai et al., 2007; Microsoft, 2012). Furthermore,

CLASP (OWASP, 2006) defines security roles upfront for the team members.

 Risk management for secure software process

Risk management is the main activity in secure software process (Davis, 2013). Basically

all of the traditional risk management activities exist in this approach: risk identification,

risk analysis, risk planning and risk monitoring (Sommerville, 2007). However, their

concern is more on the threat, vulnerabilities and impacts (Davis, 2013; Evans et al.,

2010; McGraw, 2006; OWASP, 2006). These activities are implemented iteratively

throughout the software development and ensuring the newly identified risks are reported

and mitigated as soon as possible (Microsoft, 2012; Evans et al., 2010; McGraw, 2006;

OWASP, 2006). The mitigation strategy is planned to countermeasure the identified

threats, vulnerabalities and impacts (Evans et al., 2010). Also, these threats,

vulnerabalities and impacts are monitored throughout the software development (Davis,

2013; Evans et al., 2010).

The Agile and secure software practices which obtained the value of 4.45 and above for

the Degree of Importance (DI) are deemed as important practices that influence the

quality of software. Consequently, they are considered as the reference standard in the

proposed model.

149

Objective 3: To examine the software practitioners’ opinion on the importance of the

Agile and secure software processes in producing high quality software

Based on the literature, Agile software process is important and should be included in

current software process as it ensures that high quality software could be marketed faster

in most cost-effective manner (Pressman, 2010; Rico et al., 2009). This issue has been

supported by majority of the respondents who have experience in implementing Agile

software process (96%). They also agreed this approach can enhance the ability to

manage changing requirements, increase productivity and accelerate time-to-market.

Besides, secure software process also has become a determinant factor for producing high

quality software (O’Regan, 2014; Hui et al., 2014; Merkow & Raghavan, 2010; Voas,

2008; Julia et al., 2008; Offut, 2002). The respondents supported this, whereby majority

of them (96%) agreed that considering security and its implementation from early phases

of software development is essential. Accordingly, these have become as evidences to

support the needs of incorporating both software processes in the proposed model.

Objective 4: To investigate the software practitioners’ opinion on the good

characteristics of those involved in the Agile and secure software processes

It is widely accepted that software development processes is highly influenced by the

team performances, as it involves human interactions (Hazzan & Dubinsky, 2009). This

is same with Agile software process, whereby emphasis is given on individuals and

interactions, as well as customer collaboration and responds to changes, contradict with

the the individual role assignment implemented in the conventional software

150

development (Nerur et al., 2005). The respondents were asked about the characteristics

that should exist among the team and the support that should be given by organization in

order to successfully develop high quality software.

The important factors that need to be considered in order to achieve high performance

teams are through feedback and communication (Guzzo & Dickson, 1996). Therefore,

Agile stresses face-to-face communication and this practice was reported as beneficial in

studies of Rao et al. (2011), Liu et al. (2010), Lan and Ramesh (2008), Coram & Bohner

(2005) and Paetsch et al. (2003). In order to make these possible, the team must be small

sized, as concluded by O’Sheedy and Sankaran (2013) in their study. However, study by

Misra and his colleagues (2009) reported as opposed. Furthermore, they should be placed

at the same workplace area. This is essential for intense interaction and knowledge

sharing (Lindvall et al., 2002). It is also agreed that team members must have high

competence and expertise (Tsun & Dac-Buu, 2008; Parsons et al., 2007; Lindvall et al.,

2002). On contrary, collocated team was found as not beneficial in Misra et al. (2009).

Furthermore, in Agile, the self-organized team is essential because it can make decisions

and plans without depending on managers (Sliger & Broderick, 2008; Tsun & Dac-Buu,

2008; Cockburn & Highsmith, 2001; Agile Manifesto, 2001). This practice has been

identified as able to influence the team effectiveness (Franca et al., 2010; Tsun & Dac-

Buu, 2008; Moe et al., 2008). Moreover, to enable that the secure software process being

implemented properly, team members play a significant role. All team members must be

familiar with the security requirements of the system and reach a common understanding

151

about the security needs. This will help them to adopt the security activities (Microsoft,

2012; McGraw, 2006).

Organization plays an important role in enabling the implementation of Agile principle

on the team (Ani Liza et al., 2012b; Mazni, Sharifah Lailee, & Azman, 2011; Strode et

al., 2009; Misra et al., 2009; Tsun & Dac-Buu, 2008), as well as the implementation of

secure software process (Geer, 2010). The organization must provide environment that

supports Agile software process throughout the organization by providing cooperative

organizational culture instead of hierarchical, encouraging face-to-face communication,

ensuring that the Agile way of software development is universally accepted and offering

facilities with proper Agile-style work environment (Sheffield & Lematayer, 2013; Tsun

& Dac-Buu, 2008). In relation to the previous studies: Sheffield and Lematayer (2013),

Hoda et al. (2011), Strode et al. (2009), Tsun and Dac-Buu (2008), Lindvall et al. (2002),

this study also indicates that these are the important practices.

On the other hand, to successfully encourage on the security activities, organizations

must give rewards for successful security handling, provide sufficient budget for security

initiatives and provide basic security trainings for the staffs. Moreover, providing a

separate security team to engineer and evaluate the security of software will be useful as

well (Microsoft, 2012; OWASP, 2006).

Similar to Agile and secure software practices, the characteristics of team and

organization which obtained the value of 4.45 and above for the Degree of Importance

152

(DI) are considered as important practices that influence the quality of software. Thus,

they are considered as the reference standard in the proposed model.

Objective 5: To inspect the software practitioners’ awareness on the importance of

software certification and its implementation

 Software practitioners’ opinion regarding the importance of software

certification

As discussed in the findings, the respondents were facing security problems, which

indicate that the quality of produced software is still low. Thus, one way to give

conformance on the quality of software is through certification (Heck et al., 2010;

Rathfelder et al., 2008). Majority of the respondents regardless their familiarities with

Agile and secure software processes agree that software certification can lead to higher

quality software. In the mean time, majority of the respondents also agree that Agile and

secure software processes are essential in today’s business environment. However, as

discussed earlier, some of the software practitioners are not practicing proper practices of

Agile and secure software processes. Consequently, a mechanism to assess and certify the

Agile and secure software processes is needed. Thus, this supports the needs of producing

a process based software certification model which focuses on the Agile and secure

software processes.

 The implementation of internal assessment/audit and the techniques used

Although the assessment/audit is very important in order to monitor the quality of

software process, surprisingly majority of the respondents did not implement internal

153

assessment/audit on the software process. This shows that the software processes were

implemented as ‘ad-hoc’, without considering formal procedures and monitoring.

However, the assessment can help in doing corrective or preventive actions, whereby the

differences between the implemented processes can be differentiated with the actual. By

doing so, the root causes can be detected and actions can be taken to eliminate them

(Limaye, 2011). Without proper monitoring on the software process, it might cause the

quality of produced software to be low, as stated by Deming (1982) and Humphrey

(1979), ‘the quality of process is influenced by the quality of produced product’. Among

the respondents who implement the assessment/audit, conduct internal assessment/audit

by using document review, observation and interview, similar to the implementation of

SPAC Model (Fauziah, 2008) (Refer Table 4.16). These techniques are considered in the

proposed software process certification model as the data gathering techniques.

 The use of standards

The use of standards has become as the key for quality management (Sommerville,

2007). It is intended to ensure that the processes are implemented correctly throughout

the organization in all circumstances (Limaye, 2011) and bring uniformity and control to

the process of developing software product (Wheeler & Duggins, 1998). Surprisingly,

almost half of the respondents do not implement any security standards (Refer Figure

4.7). Furthermore, when the results are classified based on respondents’ familiarity with

Agile and secure software processes, it indicates that most of respondents do not

implement any standards regardless of their familiarity in both software processes. This

shows that the use of standard is still being neglected by software practitioners in

Malaysia.

154

4.9 Summary

This chapter has described the instrument design, sampling, instrument testing, data

collection and analysis performed in the exploratory study. The study aims to investigate

the current practices of software certification which relate to the Agile and secure

software processes. Findings from the study reveal the implementation of the software

certification, as well as the Agile and secure software processes among the software

practitioners in Malaysia. The significance of both software processes in today’s business

environment is highlighted. Besides, the Agile and secure software processes which

influence the quality of software are also revealed. On top of that, the needs of software

certification in software industry have been disclosed as a consequence from the quality

problems faced by the software practitioners. Accordingly, these findings form the basis

for constructing the software process assessment and certification model which focus on

Agile and secure software processes. Mainly the Agile and secure software processes as

well as the characteristics of people who involve in the Agile and secure software

processes are considered in the proposed model. Besides, the data gathering techniques

for software process certification are adapted for the proposed model. The proposed

model is discussed in the next chapter.

155

CHAPTER FIVE

ESPAC MODEL DEVELOPMENT

5.1 Introduction

Findings from the theoretical and exploratory studies reveal the main shortcomings in the

existing software process certification such as lack of attention given on the Agile and

secure software processes, as well as inappropriate synthesis technique used during the

certification process. In this chapter, the solutions for the shortcomings are proposed as

an enhanced software process certification model. The proposed model is known as

Extended Software Process Assessment and Certification Model (ESPAC).

The chapter starts by describing the overview of the ESPAC Model in Section 5.2 whilst

its components are explained in details in Section 5.3. Section 5.4 provides the discussion

related to the development of the ESPAC Model and Section 5.5 ends the chapter with a

summary.

5.2 Overview of ESPAC Model

The main aim of the ESPAC Model is to assess and certify the Agile and secure software

processes. It is constructed by adapting the Evaluation Theory (Scriven, 1991) as the base

theory besides the outcomes from the theoretical and exploratory studies. The Evaluation

Theory consists of six (6) components which are target, evaluation criteria, reference

standard, data gathering techniques, synthesis technique and assessment process.

However, this study adapts the theory by including another component which is the

156

Achievement Index that consists of quality levels and certification level. Furthermore,

when constructing the proposed model, the following existing studies are referred:

 SPAC Model (Fauziah, 2008): This model was referred as the base model,

whereby most of the components are adapted. These include the target, evaluation

criteria, reference standard, assessment process, and certification outcomes. One

component is adopted which is the data gathering techniques, besides the

practices for process origin, resource management, tools and techniques,

standards & procedures, technical skills, knowledge, experience and environment.

 CMMI Version 1.3 (CMMI Product Team, 2010): This model was referred to

obtain the relevant Agile software practices and the assessment process.

 ISO/IEC 15504 (Mas et al., 2012; Van Loon, 2007; Galin, 2004; El Emam & Birk

2000): This model was utilized by adapting its Achievement Index.

 Agile Manifesto (Agile Manifesto, 2001): The Agile principles and values are

obtained.

 Agile methods (XP, Scrum and Agile Modeling) (Abrahamsson et al., 2010): The

Agile software practices were gathered.

 The characteristics of people who involve in Agile and secure software processes:

existing studies such as O’Sheedy & Sankaran (2013) and Litecky et al. (2012).

 ISO/IEC 27001 (ISO, 2015; Evans et al., 2010; Humphreys, 2008) and ISO/IEC

21827 (Davis, 2013; Carnegie Mellon University, 2003): These security standards

were referred to obtain the relevant secure software practices.

 MS SDL (Microsoft, 2012; Merkow & Ragavhan, 2010), Touchpoints (McGraw,

2011; Julia, 2008; McGraw, 2006) and CLASP (Merkow & Ragavhan, 2010;

OWASP, 2006): These models were referred to obtain the secure software

practices.

Apart from the theoretical study, this study also conducted an exploratory study which

gathers the opinion and perceptions of software practitioners in Malaysia on the software

certification which relates to the Agile and secure software processes. Besides the Agile

157

and secure software processes which influence the quality of software, the outcome that

obtained high consideration among the software practitioners is the characteristics of

people who involve in these two software processes (Refer Chapter Four). These

software processes and characteristics are used to build the reference standard of the

ESPAC Model. The Quality Function Deployment (QFD) approach (Zultner, 1992;

Cohen, 1995) is used to systematically organize the reference standard. Furthermore, the

data gathering techniques used by the respondents are adopted in the proposed model.

Moreover, software certification involves multiple criteria assessment whereby each

evaluation criterion might have different influence to the project. Thus, to produce better

quality and consistent certification decisions, the synthesis technique is improved by

adapting the Analytic Hierarchy Process (AHP) (Saaty, 2008) to assign the weight values

for the evaluated criteria in the ESPAC Model. Figure 5.1 illustrates the proposed

ESPAC Model.

158

Asses

s

Certification Outcomes

C
o

ll
a
b

o
ra

ti
ve

 S
el

f
A

ss
es

sm
en

t

Assessment Process

Synthesis Technique

AHP + WSM

1) Pre-Assessment

3) Post-assessment

Data Gathering

Techniques

Document Review –

Interview – Observation

Software Process

Quality Factors:

-process

-technology

-people

-project constraint

-environment

Evaluation Criteria

-completeness

-consistency

-accuracy

-interpersonal skills

-management skills

-technical skills

-knowledge

-experience

-team commitment

-involvement

-safety

-comfort

Reference

Standard

Achievement Index
(Certification &

Quality Levels)

IV: Fully Achieved

III: Largely Achieved

II: Partially Achieved

I: Not Achieved

Assessment Team

2) Assessment

Conventional

software practices

(Only in SPAC

Model)

Agile software

practices

Secure software

practices

Target
Completed Software

Agile & Secure Software Processes

Figure 5.1. The proposed ESPAC Model

159

Most of the ESPAC Model components are adapted from the SPAC Model. The assessment

target of the SPAC Model is similar to that of the ESPAC Model, whereby it is intended for

a project that has been completed and ready to be delivered to customer. However, the

difference is that the SPAC Model assesses the conventional software process, while the

ESPAC Model assesses the Agile and secure software processes. Consequently, the

reference standard in the SPAC Model only focus on conventional software process,

whereas in the ESPAC Model, the Agile and secure software processes are considered.

Basically, there is a slight difference between the sub factors considered in the reference

standard for the conventional, Agile and secure software processes, specifically in the

management process sub factors. For the conventional software process, the project, quality,

risk, and configuration management, as well as the formal technical reviews are considered.

Conversely, only change and project management are appropriate for the Agile software

process, while the security and risk management are appropriate for the secure software

process. On the other hand, the resource management, training, tools and techniques,

standards and procedure, technical skills, knowledge, experience and environment, as well

as process origin remain the same as in the SPAC Model.

The assessment process in the ESPAC Model is not only adapted from the SPAC Model but

also from other studies (SCAMPI Upgrade Team, 2011, Lascelles & Peacock, 1996). On the

other hand, the data gathering techniques are adopted from the SPAC Model and the

outcome of the exploratory study. As for the assessment method, the SPAC Model uses the

collaborative assessment method. This method is adapted in the ESPAC Model by

proposing collaborative self-assessment method, which combines the collaborative and self-

assessment methods.

160

Additionally, the synthesis technique in the ESPAC Model considers weight values for the

evaluation criteria by using the AHP technique. Previously, the SPAC Model uses equal

weight values. Even though the ESPAC Model uses the same outcomes as the SPAC Model

which are the quality and certification levels, the calculations for obtaining both outcomes

are different since the ESPAC Model considers weight values for the evaluation criteria.

Furthermore, the achievement levels are determined based on the Achievement Index as

adapted from the ISO/ IEC 15504. Table 5.1 summarizes the comparisons between both

models. The discussions in the next section focus on the components of the ESPAC Model

that have been enhanced from the SPAC Model.

Table 5.1

The Comparisons of the SPAC and ESPAC Models

Descriptions SPAC Model ESPAC Model

Target Completed project and ready

to be delivered to customers

 Focuses on conventional

software process

 Completed projects and ready to be

delivered to customers

 Focuses on Agile and secure

software processes

Evaluation criteria

&

Reference standard

Focuses on conventional

software process

Focuses on Agile and secure software

processes

Assessment process Three phases of assessment Three phases of assessment, adapted

from SPAC, SCAMPI for CMMI V1.3

and Lascelles and Peacock (1996)

Data gathering

techniques

Document review, interview and

observation

Adopt from the SPAC Model and

outcome from exploratory study

Assessment method Collaborative assessment

method

Adapt from the SPAC Model and self-

assessment method: collaborative self-

assessment method

Synthesis

Technique

Equal weight values Define weight values by using AHP.

Certification

outcomes

Quality levels and certification

level

Same quality and certification levels,

however the calculations are different,

as well as the Achievement Index

161

5.3 The Components of the ESPAC Model

The ESPAC Model consists of seven (7) components which are target, evaluation criteria,

reference standard, data gathering techniques, assessment process, synthesis technique and

the Achievement Index. The next sub sections discuss in detail about the components.

5.3.1 Target

Referring to this study, the target is the software process implemented in the projects that

have been completed and the software that is ready to be delivered to customers.

Furthermore, the software process comprises of the Agile and secure software processes,

since the aim of the ESPAC Model is to assess the quality of Agile and secure software

processes.

5.3.2 Evaluation Criteria

In this component, the required evaluation criteria for evaluating the target are defined. The

evaluation criteria describe WHAT should be assessed by the ESPAC Model. It comprises

the factors that influence the quality of Agile and secure software processes (Refer to

Section 2.2.7).

It is already known that if the process is in good quality, the produced product would also

have high quality. However, given that the software process is implemented by people,

there are other influential factors that can indirectly influence the software quality. Thus, to

ensure the correctness of the assessment and certification outcomes, these factors have been

taken into consideration.

162

Based on the literature findings in Chapter Two, the five factors that have influence on the

quality of software are as follows:

 Process: the quality of implemented process

 Technology: the technology used during software development

 People: the quality of people who involved during the development

 Project constraints: the ability to produce software on-time and within budget.

 Environment: the safety and comfort of working environment where the software is

developed

However, these factors cannot be measured directly, thus they are decomposed to sub

factors and criteria. Each of the factors comprises of at least one sub factor. For each sub

factor, at least one evaluation criterion is defined. Since the ESPAC Model focuses on the

Agile and secure software process assessment, these factors, sub factors and evaluation

criteria are considered from the perspectives of both software processes. The complete

factors and evaluation criteria are provided in Figure 5.2. They are organized in a

hierarchical structure, as adapted from the AHP technique.

There are three (3) types of factors/sub factors/evaluation criteria: 1) factors/sub

factors/evaluation criteria for both Agile and secure software processes, labeled as (A, S), 2)

sub factors/evaluation criteria that are solely for Agile or secure software processes, labeled

as (A) or (S) respectively, 3) sub factors/evaluation criteria that contains same practices for

conventional, Agile and secure software processes, shaded (assessment is performed only

once for both Agile and secure software processes). The assessment is performed depending

on the background of the assessed project, either it is developed by using Agile or secure

software processes. On the other hand, if the project is developed by using the conventional

approach, then the SPAC Model is used.

163

Agile and Secure

Software Process

Quality

Process

(A,S)
People

(A,S)

Project

Constraint

(A,S)

Technology

(A,S)
Environment

(A,S)

Software

Development

(A,S)

Management

(A,S)

Support

(A,S)

RE

(A,S)

DES

 (A,S)

CODE

(A,S)

TEST

(A,S)

Comp

Cons

Acc

(A,S)

PrM

(A)

Comp

Cons

Acc

(A,S)

Comp

Cons

Acc

(A,S)

Comp

Cons

Acc

(A,S)

ChM

(A)

SecM

(S)

RiM

(S)

Comp

Cons

Acc

(A)

Comp

Cons

Acc

(A)

Comp

Cons

Acc

(S)

Comp

Cons

Acc

(S)

DEV

(A,S)
ORGA

(A,S)

CUST

(A,S)

Team

Comm

(A,S)

INV

(A,S)

INV

(A,S)

Sch

(A,S)

Budg

(A,S)TRG
STI

(A,S)

DOC

(A,S)

Comp

Acc

(A,S)
Comp

(A,S)

Comp

(A,S)

Acc

(A,S)

WEnv

STDTo&Te

Comp Comp

ReM

Comp

IPS

 (A,S)

Mgmnt

Skills

(A,S)

Tech

Skills

Know

Exper

Safety

Comf

Figure 5.2. The hierarchy tree of the evaluation criteria

Legend:

A: Agile Software Process

Acc: Accuracy

Budg: Budget

ChM: Change Management

CODE: Coding

Comp : Completeness

Cons: Consistency

RE: Requirement Engineering

RiM: Risk Management

S: Secure Software Process

STI: Staff Initiative

Sch: Schedule

SecM: Security Management

STD: Standard & Procedure

IPS: Interpersonal Skills

Know: Knowledge

Mgmnt Skills: Management

Skills

ORGA: Organization

PrM: Project Management

ReM: Resource Management

Team Comm: Team Commitment

To&Te: Tools & Techniques

Tech Skills: Technical Skills

TEST: Testing

TRG: Training

WEnv: Working Environment

 : Similar Practices

Comf: Comfort

CUST: Customer

DES: Software Design

DEV: Developer

DOC: Documentation

Exper: Experience

INV: Involvement

F
ac

to
rs

S

u
b
 F

ac
to

rs

E
v

al
u

at
io

n
 C

ri
te

ri
a

164

The Agile and secure software processes are assessed based on their effectiveness

and efficiency. The effectiveness is assessed based on the completeness, consistency

and accuracy of performing the software process in order to produce high quality

software. The effectiveness is influenced by the characteristics of people who

involved in the development, use of technology and working environment. On the

other hand, the efficiency is assessed based on the capability of producing the

software within the estimated budget and on-time (Fauziah, 2008). Referring to

Figure 5.2, the descriptions for each factor are provided in Table 5.2.

Table 5.2

The Assessed Factors

Factors Descriptions Sub Factors

Process Three types of processes are assessed: software

development, management and support. The

software development and management process

are assessed in terms of completeness,

consistency and accuracy, while support process

is assessed in terms of completeness.

Completeness of software process denotes the

correctness in performing the process and the

production of appropriate documentation.

Consistency on the other hand refers to the use of

standard and procedure, while accuracy indicates

the use of tools, methods and technology.

 Software development

 Requirement

Engineering

 Software Design

 Coding

 Testing

 Management

 Project

Management

 Change

Management

 Security

Management

 Risk Management

 Support

 Resource

Management

 Training

 Staff Initiatives

 Documentation

People The developers are assessed in terms of

interpersonal, management, and technical skills,

knowledge, experience and team commitment,

while the organization and customer are assessed

based on the involvement.

 Developers

 Customers

 Organization

165

Technology The technology is assessed in terms of

completeness in the standard and procedure’s

implementation, as well as the completeness in

the use of tools and technique.

 Standard & procedure

 Tools & technique

Project

constraint

The project constraint is assessed in terms of the

accuracy in developing software within the

budget and schedule.

 Budget

 Schedule

Environment The environment is assessed based on the safety

and comfort of the organization’s working

environment.

 Working environment

5.3.3 Reference Standard

The reference standard is the benchmark used by the assessors to perform the

assessment and certification process. The ESPAC Model does not only define

WHAT need to be assessed through the evaluation criteria, but also HOW these

evaluation criteria are assessed through the list of Agile and secure software

practices. Each evaluation criterion is assigned with appropriate Agile and secure

software practices that need to be performed towards achieving the specified

evaluation criterion. By having this structure, the assessors are guided on what they

should assess during the assessment.

In order to systematically organize the WHATs and HOWs, the Quality Function

Deployment (QFD) approach is adapted, whereby the first phase of QFD is

performed by developing the House of Quality (HOQ) (Cohen, 1995; Zultner, 1992).

The other three phases of the QFD are not necessary for this study as the structures

and analyzing methods are the same (Lai-Kow & Ming-Lu, 2005). There are five

main areas in the HOQ adapted in this study as the reference standard: the WHATs,

166

HOWs, relationships between WHATs and HOWs, weight for each evaluation

criterion and evaluation criteria scores, as shown in Figure 5.3

Figure 5.3. The structure of the reference standard

The first and second areas in the reference standard are the WHATS and HOWS.

Each evaluation criterion represents the WHATs while the Agile and secure software

processes that need to be performed represent the HOWs. There are 36 evaluation

criteria for Agile as well as secure software processes defined in the ESPAC Model.

Furthermore, there are 189 practices defined for Agile software process, whereas for

secure software process, 146 practices are defined.

The third area in the reference standard is the area of relationship matrix among

WHATs and HOWs. This area acts as the scoreboard for the assessment. A scale of

five values is used; 1= Never, 2= Rarely, 3= Sometimes, 4= Often, and 5= Always,

which is adapted from the Likert Scale (Zikmund et al., 2010). Using this scale, the

RELATIONSHIP MATRIX

The scores

W
ei

g
h

t
v

a
lu

es

W
H

A
T

S

T
h
e

ev
al

u
at

io
n

 c
ri

te
ri

a

HOWS

The Agile or secure software practices

T
o
ta

l
sc

o
re

 o
f

ith
 e

v
al

u
at

io
n
 c

ri
te

ri
a

167

assessors assign the score for each assessed practice. The fourth area of the reference

standard is the weight values. Generally, the weight values are determined arbitrarily

in the QFD which may lead to the inconsistency and degrade of the quality of

decisions made (Ho, 2008). Therefore, this model adapted the AHP technique to

overcome this drawback. Section 5.3.6 presents the detailed explanation about the

AHP implementation. The fifth area is the total scores obtained for each evaluation

criterion. The calculation for obtaining these scores is also provided in Section 5.3.6.

The example of the reference standard is illustrated in Figure 5.4.

Agile

Requirement

Engineering

W
E

IG
H

T
 V

A
L

U
E

S
 F

O
R

 E
V

A
L

U
A

T
IO

N
 C

R
IT

E
R

IA

T
h

e
sc

o
p

e
o

f
p

ro
je

ct
 w

er
e

id
en

ti
fi

ed
 a

t
th

e
b

eg
in

n
in

g
 o

f
p

ro
je

ct
 t

o
 c

re
at

e

in
it

ia
l

p
ri

o
ri

ti
ze

d
 s

ta
ck

 o
f

re
q
u

ir
em

en
ts

C
u

st
o

m
er

s
w

er
e

av
ai

la
b

le
 o

n
-s

it
e

fo
r

fa
ce

-t
o

-f
ac

e
d

is
cu

ss
io

n
s

d
u

ri
n
g

re
q

u
ir

em
en

t
el

ic
it

at
io

n
 o

r
at

 l
ea

st
 c

an
 b

e
ea

si
ly

 r
ea

ch
ed

 t
h

ro
u

g
h

 p
h

o
n

e
o

r

sk
y

p
e

o
r

te
le

co
n

fe
re

n
ci

n
g

T
h

e
re

q
u
ir

em
en

ts
 w

er
e

g
at

h
er

ed
,
el

ab
o

ra
te

d
,

an
al

y
ze

d
 a

n
d

 v
al

id
at

ed

it
er

at
iv

el
y

 a
n
d

 i
n

cr
em

en
ta

ll
y

T
h

e
re

q
u
ir

em
en

ts
 w

er
e

w
ri

tt
en

 s
h
o

rt
 s

ta
te

m
en

ts
 u

si
n

g
 c

ar
d

s
o

r
to

o
ls

R
eq

u
ir

em
en

ts
 w

er
e

p
ri

o
ri

ti
ze

d
 a

n
d

 c
an

 b
e

re
p

ri
o

ri
ti

ze
d

 b
y

 c
u

st
o

m
er

s

th
ro

u
g
h

o
u

t
th

e
d

ev
el

o
p

m
en

t

T
h

e
re

q
u
ir

em
en

ts
 w

er
e

v
al

id
at

ed
 b

y
 c

u
st

o
m

er
s

in
 r

ev
ie

w
 m

ee
ti

n
g

s
b

y
 u

si
n
g

re
le

as
es

T
h

e
p

ro
d
u

ct
 b

ac
k

lo
g
 a

n
d
 i

te
ra

ti
o
n
 b

ac
k

lo
g

 w
er

e
p

ro
d
u

ce
d

 t
o
 e

n
su

re
 t

h
e

co
n

si
st

en
cy

 a
n

d
 t

ra
ce

ab
il

it
y

 o
f

re
q

u
ir

em
en

ts

A
p

p
ro

p
ri

at
e

p
ro

ce
d

u
re

 i
s

u
se

d
 t

o
 h

an
d

le
 f

re
q

u
en

tl
y

 c
h

an
g

in
g
 r

eq
u
ir

em
en

ts

T
h

e
re

q
u
ir

em
en

ts
 w

er
e

d
o

cu
m

en
te

d
 b

y
 f

o
ll

o
w

in
g

 a
 p

ar
ti

cu
la

r
st

an
d
ar

d

T
h

e
re

q
u
ir

em
en

ts
 w

er
e

g
at

h
er

ed
 u

si
n

g
 p

ar
ti

cu
la

r
m

et
h

o
d

 (
s)

A
p

p
ro

p
ri

at
e

to
o

ls
 w

er
e

u
se

d
 t

o
 f

ac
il

it
at

e
d

ef
in

in
g

 a
n

d
 t

ra
n

sl
at

in
g

 t
h
e

re
q

u
ir

em
en

ts

P
ar

ti
cu

la
r

n
o

ta
ti

o
n

 (
s)

 w
as

/w
er

e
u
se

d
 t

o
 r

ep
re

se
n

t
th

e
re

q
u

ir
em

en
ts

 T
O

T
A

L
 S

C
O

R
E

 O
F

 E
V

A
L

U
A

T
IO

N
 C

R
IT

E
R

IA

Completeness

Consistency

Accuracy

Figure 5.4. The example of reference standard for Agile Requirement Engineering

168

5.3.4 Data Gathering Techniques

The data are gathered by using multiple techniques, which are the document review

interview, and observation. These techniques are adopted from the SPAC Model.

Furthermore, the outcomes from the exploratory study also reveal that these

techniques are widely used among the software practitioners. Using multiple data-

gathering techniques can improve the understanding for the assessment team and

give better confirmation on the assessment made (SCAMPI Upgrade Team, 2011).

The documents that are reviewed can be direct documents or indirect documents.

Direct documents are the tangible outputs resulting directly from the implementation

of a practice, while indirect documents are outputs produced as a consequence of

performing some other related activities. Table 5.3 lists the data gathering techniques

for each of the sub factors.

Table 5.3

The Data Gathering Techniques

Factors Sub factors
Data gathering

techniques

Software Development

Requirement engineering

Document review

+

Interview

(for clarification)

Design

Coding

Testing

Management

Project management

Change management

Security management

Risk management

Support

Staff initiative

Documentation

Resource management

Training

People

Developer

Interview Customer

Organization

169

Technology
Tools and techniques Interview

+

Observation Standard and procedure

Project constraint

Budget
Document review

Schedule

Environment Working environment Observation

5.3.5 Assessment Process

The assessment process is the series of activities that need to be performed during

the certification process. Figure 5.5 depicts the assessment process of ESPAC

Model. The activities and workflow of the assessment process is presented using one

of the quality tools, which is the flow chart (Ishikawa, 1976 in Mach & Guaqueta,

2001). There are three (3) main phases in conducting the software process

certification: pre-assessment, assessment and post-assessment. Each of the

assessment phases consists of several processes and activities. These phases,

processes and activities are adapted from the SCAMPI for CMMI version 1.3

(SCAMPI Upgrade Team, 2011), SPAC Model (Fauziah, 2008) and Lascelles and

Peacock (1996). They are elaborated further subsequently.

170

The Assessment Process of ESPAC Model

P
H

A
S

E
 3

:
P

o
s
t

-

A
s
s
e

s
s
m

e
n

t
P

H
A

S
E

 2
:
A

s
s
e

s
s
m

e
n

t
P

H
A

S
E

 1
:
P

re
 -

 A
s
s
e

s
s
m

e
n

t

P2.1

Prepare assessment

participants

N

Start

P2.4

Observe

P2.3

Perform interviews

P1.6

Prepare for assessment

conduct

P3.4

Collect lessons learned

P3.3

Present assessment

results and gather

feedbacks

Fully

Achieved?

P3.5

Prepare technical report

P1.5

Prepare the assessment

team

Y

P3.2

Determine the

certification level

P1.3

Identify & analyse the

candidate project

P2.2

Review documents

P2.6

Synthesize the data

A

P2.5

Record the information

gathered

Use ideal weight

values?

P1.2

Form the assessment

team

B

Y

End

P1.1

Develop commitment

P3.1

Determine the quality

levels

Award with

Certification Level 1

N

End

Y

P1.4

Plan the assessment

Figure 5.5. Assessment process of the ESPAC Model

1) Pre- assessment

This phase consists the process of developing commitment senior management on

the use of self-assessment as a mechanism to ensure software quality. Then the

assessment team is formed and then the assessment is planned and prepared. The

input needed for this phase is the certification kit which will guide the

171

implementation of the assessment. At the end of this phase, the assessment plan is

produced and the assessment forms are printed. At the same time, the project

documentations are also gathered, which will be the input for the next phase. There

are six (6) processes and seventeen (17) activities that need to be performed during

this phase, as presented in Table 5.4.

Table 5.4

Descriptions of the Pre-Assessment Phase

Processes Purposes Activities

P1.1 Develop

commitment

Establish organizational

leaders’ commitment.

A1.1.1 Educate senior management on

the use of self-assessment for the

software process certification as a

mechanism to ensure quality.

A1.1.2 Obtain senior management’s

agreement to perform the

assessment and certification.

P1.2 Form the

assessment team

Select the assessment

team members which

consist of project

manager, assessors from

other team and

representative of the

assessed team.

A1.2.1 Identify the project manager for

the assessment.

A1.2.2 Identify the assessors among

software practitioners from outside

of the assessed project.

A1.2.3 Identify the representative among

the software practitioners of the

assessed project.

P1.3 Identify &

analyse the

candidate project

Determine whether the

assessment can be

conducted or not.

A1.3.1 Identify the project that will be

assessed.

A1.3.2 Perform the ‘Process Origin’

assessment. If the score achieves

‘Fully Achieved’, then the

assessment can be conducted. If

the score is less than that, then the

assessment cannot be conducted

and the certification level I will be

awarded.

A1.3.3 Identify the background of the

project in term of its software

process (conventional/Agile/secure

software processes)

172

P1.4 Plan the

assessment

Plan the assessment

activities, the resources

needed and the duration of

assessment.

A1.4.1 Describe the activities that will be

performed.

A1.4.2 Plan the logistics, for example

access to rooms, equipments and

supplies needed for administrative

purposes.

A1.4.3 Determine the assessment

schedule.

P1.5 Prepare the

assessment team

Brief to the assessment

team to make them

familiar with the

assessment plan, the

ESPAC Model and the

assessment process, as

well as the tools and

techniques that will be

used during assessment.

A1.5.1 The project manager briefs the

assessment team:

i. Purpose and benefits of the

ESPAC Model.

ii. How the certification will be

conducted?

iii. Who will be involved in the

assessment?

iv. Decide whether to use the

suggested ideal weight or to

perform AHP.

v. How to conduct the AHP

technique in order to obtain the

weights of evaluation criteria? (if

they decide to assign their own

weight values).

P1.6 Prepare for

assessment

conduct

Prepare for assessment

and ensure the readiness to

conduct assessment,

including confirmation on

the availability of

documents, staffs,

logistics arrangements and

assessment team’s

commitment.

A1.6.1 Print out the assessment forms.

A1.6.2 Select the documents that will be

reviewed.

A1.6.3 Select who will be interviewed

(assessment participants) e.g.

developers, customers, security

advisors.

A1.6.4 Ensure that the assessment

logistics has been arranged and

confirmed.

A1.6.5 Ensure that the assessment team is

available and prepared to conduct

the assessment.

173

2) Assessment

This phase is the main phase in the software process certification. The major activity

is to assess the software process by comparing them with the reference standard.

This is done by reviewing the documents, interviewing and observing. The score is

assigned by referring to the five scales provided in the assessment form.

Additionally, the weight for each evaluation criterion is obtained by performing the

AHP technique (Refer Section 5.3.6). However, if the assessment team is not

familiar with the AHP technique, the suggested ideal weight can be used (Refer

Appendix M). The inputs for this phase are the assessment plan, assessment forms

and the project’s documentation. At the end of this phase, the team will have the

score for evaluation criteria as well as the overall certification score in hand. There

are six (6) processes and eleven (11) activities that need to be implemented during

this phase, as provided in Table 5.5.

Table 5.5

Descriptions of the Assessment Phase

Processes Purposes Activities

P2.1 Prepare

assessment

participants

Ensure that the assessment

participants are available to

participate in the assessment and

informed on the assessment that will

be conducted, as well as the

purposes and objectives.

A2.1.1 Check the availability of

assessment participants.

A2.1.2 Brief to the assessment

participants on the

assessment, its purposes

and objectives.

P2.2 Review

documents

Assess the documents produced

during the development of the

project. The documents can be the

direct documents (tangible outputs

resulting directly from the

implementation of a practice), such

as:

A2.2.1 Assess the documents.

174

- Product backlog

- Sprint backlog

- User stories

- High level requirements,

architecture

- Iteration models

- Code

- Unit tests

- Acceptance tests

- Burn down charts

OR indirect documents (outputs

produced as a consequence of

performing some other related

activities), such as:

- User manual

- Meeting minutes (review,

retrospectives and planning

meetings)

- Presentations

P2.3 Perform

interviews

Interview the assessment

participants to get information about

the organization and also to clarify

any information that could not be

obtained by document review.

A2.3.1 Interview the assessment

participants.

P2.4 Observe Observe the working environment,

whether the organization provides

comfortable, suitable and safe

environment.

A2.4.1 Observe the working

environment. For Agile

environment, the

following can be

observed:

- Informative workspace

(whiteboard sketch/burn

down charts)

- Team placement

- Daily working routine

P2.5 Record the

information

gathered

Create lasting records of the

information gathered.

A2.5.1 Record the existence or

absence of reviewed

documents.

A2.5.2 Record the outcomes

from the interviews.

A2.5.3 Record the outcomes

from the observation

made.

P2.6 Synthesize

the data

Assign weight for the evaluation

criteria and allocate score for each

assessed practices. Then, the score

A2.6.1 Obtain the weight values

for each evaluation

criterion (Refer to A2.6.1
for the implementation

175

for each evaluation criterion as well

as the overall certification score are

obtained (Detailed explanation in

Section 5.3.6).

steps).

A2.6.2 Assign scores by using

the assessment form

(Refer to A2.6.2 for the

detailed process).

A2.6.3 Calculate the score for

evaluation criteria and

overall certification score

(Refer to A2.6.3 for

detailed process)

3) Post- assessment

The final phase in the software process assessment and certification is the post-

assessment. During this phase, the final outcomes from the assessment process are

obtained. There are five (5) processes and nine (9) activities need to be performed, as

described in Table 5.6. The input for this phase is the assessment data. At the end of

this phase, the quality levels and certification level are determined and the technical

report is produced. Also, the lessons learned are collected.

Table 5.6

Descriptions of the Post-Assessment Phase

Processes Purposes Activities

P3.1 Determine

the quality levels

The quality levels are

determined based on the

proposed Achievement Index,

which are Level I to Level IV.

A3.1.1 Map the scores obtained for

each evaluation criteria with

the Achievement Index to

determine the quality levels.

P3.2 Determine

the certification

level

The certification level is

determined based on the overall

score obtained. There are four

levels of certification, which

are Level I to Level IV.

A3.2.1 Map the scores obtained for

overall assessment with the

Achievement Index to

determine the certification

level.

P3.3 Present

assessment

results and

Present the assessment result to

the assessment team as well as

the organization and get

A3.3.1 Project manager presents the

assessment result to the

assessed team.

176

gather feedbacks agreement on the result. The

future improvements that can

be made are suggested as well.

A3.3.2 Get feedback from the

assessed team on the

assessment results.

A3.3.3 Project manager presents to

the top management on the

assessment result.

A3.3.4 Highlight on the practices that

can be improved.

P3.4 Collect

lessons learned

Document important issues

which were identified during

the assessment for future

improvement.

A3.4.1 Identify the issues that

worked well and what need to

be improved.

A3.4.2 Identify suggestions for

improving the method or its

execution.

P3.5 Prepare

technical report

Prepare a technical report for

the team.

A3.5.1 Prepare the technical report

which consists of:

 The project’s profile.

 The achieved scores, quality

levels and certification level.

 Suggestion of practices that

can be improved.

The assessment is performed by the assessment team which consists of the

organization’s own people. This is intended to reduce the cost since the assessment

is only performed within the organization (Ritchie & Dale, 2000). The ESPAC

Model proposes collaborative self-assessment method, which is adapted from self-

assessment (Serkani, Mardi, Najafi, Jahanian, & Heart, 2013; Tari & Heras-

Saizarbitoria, 2012; Lascelles & Peacock, 1996) and collaborative assessment

(Fauziah et al., 2011; Jamaiah, 2007).

The assessment team is led by a project manager and composed of assessors from

outside of the team being assessed (software practitioners from other software

development team in the organization). This is aimed to eliminate biased assessment

(Fauziah, 2008; Jamaiah, 2007; Fabbrini et al., 2006; Voas, 1999). Additionally, one

177

representative from the assessed team will co-operate as the assessment team to

facilitate ideas exchanges between the assessment team (Lascelles & Peacock,

1996). Moreover, the assessment process can be accelerated since the project is

already understood by the representative (Fauziah, 2008; Jamaiah, 2007; Voas, 1999;

Vermesan, 1998).

The ESPAC Model calls for at least five assessors in a team, based on Byrnes and

Philips (1996). The team leader should have technical and managerial experiences

and have participated in two or more assessment and certification exercises as an

assessor before being appointed as a team leader. Meanwhile, the assessors are

selected among software practitioners who have experience in software development

for at least five (5) years and have knowledge in assessment and certification.

5.3.6 Synthesis Technique

After all of the required information are collected, the synthesis technique is applied

to synthesize the information gathered. Basically the synthesis technique in the

ESPAC Model is aimed to improve the quality and consistency of the certification

decision made whereby the weight value allocation is considered. There are three (3)

main activities that need to be accomplished for synthesizing the information, as

described in Table 5.5 (Activities A2.6.1. to A2.6.3). They are elaborated further

subsequently.

178

A2.6.1 Obtain the weight values for each evaluation criterion

The first activity is to obtain the weight values for the evaluation criteria. The weight

values should be assigned to each evaluation criterion since each of them might have

different importance, depending on the assessment team’s preference. This indicates

the importance of an evaluation criterion relative to other evaluation criteria under

consideration. For example, the requirement engineering phase is usually considered

more important than the software design. On the other hand, coding is typically

considered as more important than the requirement engineering. Thus more attention

is given to the phases which are considered as more important.

The ESPAC Model suggests the ideal weight values for each evaluation criterion.

However, they are flexible and can be changed based on the assessors’ preference.

These ideal weight values are obtained through the focus group discussion which

was held in this study (Refer to Chapter Six for detailed explanations). They are

gathered based on the opinions of seven software practitioners who have similar

backgrounds. Based on their opinions, the same weight values can be used for the

evaluation criteria of both Agile and secure software processes. Currently the weight

values are suitable for web based projects, since the software practitioners assigned

the weight values based on their experience in developing web based applications.

The list of ideal weight values are provided in Appendix M.

Nevertheless, if the assessment team decided not to utilize the ideal weight values as

suggested, the team has to obtain weight values for the evaluation criteria on its own.

To accomplish this, the group AHP technique is applied, since it provides a

179

systematic technique to evaluate the priorities among the evaluated criteria (Saaty,

2008). The detailed steps for obtaining the weight values are provided in Figure 5.6

and discussed further in the next sub sections. The entry point for this process is

synthesizing the data (P2.6). It starts from A2.6.1.1 by constructing pair wise matrix

and ends with A2.6.1.5, whereby the global weight value for each evaluation

criterion is obtained.

A2.6.1.2

Perform judgments of pair wise

comparisons

A2.6.1.3

Synthesize the pair wise

comparisons

A2.6.1.4

Perform consistency analysis

A2.6.1.5

Obtain the global weight values

A

CR<10%

B

A2.6.1.1

Construct the pair wise matrix

Figure 5.6. Steps to calculate the weight values

180

A2.6.1.1: Construct the pair wise matrix

The pair wise matrixes are used to perform the pair wise comparison. Accordingly,

before performing the pair wise comparison, the pair wise matrixes need to be

constructed for the assessed evaluation criteria. The evaluation criteria of the ESPAC

Model are organized into two hierarchy trees whereby each of them consists of four

levels. One tree composes evaluation criteria for the Agile software process (Refer

Appendix D), while the other is for the secure software process (Refer Appendix E).

Thus, to perform the pair wise comparisons, the sibling criteria at each level are

compared in pairs to judge their importance. They are organized in matrix of two

dimensions (square matrix) whereby the compared criteria are sorted vertically in the

first column and horizontally in the first row of the matrix, as depicted in Table 5.7.

The evaluation criteria are represented by (Ci...Cn). The relative importance of each

Ci in the column are compared to the Cj in the row, which are represented by aij by

following the rules of aij = 1/ aij when i≠j, and aii=1 when i=j.

Table 5.7

The Pair Wise Matrix

Criteria C1 C2 .. Cn

C1 1 a1,2 .. a1,n

C2 a2,1 1 .. a2,n

.

.

Cn an,1 an,2 an,3 an,n

181

As an example, the five factors that influence the quality of software in the first level

of the Agile software process hierarchy tree are compared using one pair wise

comparison matrix, as shown in Table 5.8.

Table 5.8

The Pair Wise Comparison Matrix for Level One

Criteria Process Technology People Project

Constraint
Environment

Process 1 a1,2 a1,3 a1,4 a1,5

Technology 1/ a2,1 1 a2,3 a2,4 a2,5

People 1/ a3,1 1/ a2,3 1 a3,4 a3,5

Project

Constraint
1/ a4,1 1/ a4,2 1/ a4,3 1 a4,5

Environment 1/ a5,1 1/ a5,2 1/ a5,3 1/ a5,4 1

Furthermore, in the second level, the sub factors for the process are software

development, management and support. These sub factors are compared to one

another with respect to the process by using one pair wise matrix, as depicted in

Table 5.9. The same procedure is used for the other factors/sub factors/evaluation

criteria for the whole hierarchy tree.

Table 5.9

The Pair wise Comparison Matrix for Level Two

Criteria Software Development Management Support

Software Development 1 a1,2 a1,3

Management 1/a2,1 1 a2,3

Support 1/ a3,1 1/ a3,2 1

There is a total of 32 pair wise comparison matrixes need to be implemented for both

the Agile and secure software processes, as summarized in Table 5.10.

182

Table 5.10

 Summary of the Pair Wise Comparison Matrixes for the ESPAC Model

Approaches Description Level 1 Level 2 Level 3 Level 4

Agile software

process

Number of criteria 5 11 24 22

Number of pair wise

comparison matrixes

1 4 5 6

Secure software

process

Number of criteria 5 11 24 22

Number of pair wise

comparisons matrixes

1 4 5 6

A2.6.1.2 Perform judgments of pair wise comparisons

To perform the judgments of a pair wise comparison, the relative importance of each

two criteria in the matrix is compared, for example “is C1 is more/equally/less

important than/to C2 by a factor of 2/3/4/5/6/7/8/9 (aij)”. In order to determine the

importance value for each pair wise comparison (aij), the scale of 1 to 9 by Saaty

(1990) is used, as presented in Table 5.11.

Table 5.11

Scale of Pair Wise Comparison (Saaty, 1990)

Intensity of Importance Definition

1 Equal importance

3 Moderate importance of one over

another

5 Essential or strong importance

7 Very strong importance

9 Extreme importance

2,4,6,8 Intermediate values

183

The number of the pair wise comparisons that need to be performed for each matrix

is determined by the following formula:

Pair wise comparisons in each matrix = n (n-1)/2 (5. 1)

 where n is the number of criteria in the matrix.

For instance, there are five criteria listed in Table 5.8. Thus, n= 5. Consequently, the

number of pair wise comparisons that need to be performed can be determined by

performing Equation 5.1, whereby: 5(5-1)/2 = 10 pair wise comparisons.

Table 5.12 shows the pair wise comparison for the sub factors of the software

development. There are four criteria, thus the number of pair wise comparison is 4(4-

1)/2=6. The diagonal elements of the matrix are assigned with value 1, since aii=1

when i=j. Comparisons are only made for the upper triangular matrix, as the lower

triangular matrix comprise of the reciprocals of these values. In the first row of the

matrix, the software design and testing are considered as 7 times more important

compared to requirement engineering, while coding is considered as 8 times more

important compared to requirement engineering.

Table 5.12

Pair Wise Comparisons for Sub Factors of Software Development

Software Development RE DES CODE TEST

Requirement engineering (RE) 1 7 8 7

Software Design (DES) 1/7 1 3 1

Coding (CODE) 1/8 1/3 1 1

Testing (TEST) 1/7 1 1 1

184

The process of performing judgment of each evaluation criteria is conducted by a

group of assessors. During the session, the assessment team leader (project manager)

shall raise each of the pair wise comparisons one by one, while probing open ended

questions to the assessment team on their opinion about the evaluation criteria being

compared. The assessors shall use the pair wise comparison form as a guideline to

perform the judgments (Refer Appendix F). This representation of pair wise

comparisons can help the assessors to complete the lengthy process of pair wise

comparisons faster (Hajkowicz, McDonald, & Smith, 2000).

To perform the judgments, the ESPAC Model adapts the planning poker which is

used in Agile environment for doing estimations (Dyba, Dingsoyr, & Moe, 2014;

Mahnic & Hovelja, 2012). By using this technique, each assessor is provided with a

set of cards which consists of numbers 1 to 9. These numbers represent the

importance values which are used for making judgments of pair wise comparisons in

AHP. When the team leader raises the pair wise comparison for particular criteria,

the assessors shall discuss and exchange their experiences and opinions on the

compared evaluation criteria. Then, each of them shall choose the importance value

for the compared evaluation criteria from the cards. However, all selected values are

kept private until all team members have chosen a card. Then when everyone is

ready, the cards shall be revealed to the group at once. Thus, the chosen values can

be observed clearly.

If consensus is reached among the assessors, the agreed importance value shall be

chosen. However, when consensus is hard to be reached, the majority vote is

185

selected or the group may compromise on a preferred value. On the other hand,

when consensus cannot be reached, and the group is not willing to choose the

majority vote or compromise, then the average shall be calculated for the voted

values by using geometric mean (Lai, Wong, & Cheung, 2002; Dyer & Forman,

1992). The geometric mean is used for aggregating the individual judgments

(Forman & Peniwati, 1998). To calculate the geometric mean, the following formula

is used:

𝐺𝑀 = √𝑎1 ∗ 𝑎2 ∗ 𝑎3 ∗ 𝑎𝑛
𝑛

 (5. 2)

Where

n = 1,2,….n

an = The importance value voted by n assessors

GM= Geometric mean for an

For instance, if there are five assessors in a team and each of them choose the

importance value differently (5, 7, 5, 8, 9), the following calculation is performed:

GM = √5 ∗ 7 ∗ 5 ∗ 8 ∗ 9
5

 = 7

Accordingly, this value is accepted as the agreed importance value for a particular

judgment.

A2.6.1.3: Synthesize the pair wise comparisons

Based on the pair wise comparison matrixes constructed, the weight values are

calculated by using the Normalization of the Geometric Mean (NGM) is used

(Akarte, Surendra, Ravi, & Rangaraj, 2001; Hsiao, 2002). By using this method, the

approximation to the correct answer is higher (Coyle, 2004). Additionally, it is

186

statistically better and easier to calculate (Crawford & Williams, 1985). The n

elements in each row are multiplied and the nth root is calculated to obtain the weight

values. Then, the resulting numbers are normalized. The equation for this method is

provided subsequently.

wi= (∏ aij

n

j=1

)

1/n

/ ∑ (∏ aij

n

j=1

)

1
nn

i=1

Where: (5. 3)

wi = Weight of evaluation criteria i

i = 1,2….,n

j = 1,2…..,n

aij = Pairwise comparison in matrix ij

Considering the pair wise comparison made in Table 5.12, the weight of RE is

calculated as below:

Weight for RE = (1*7*8*7)1/4 / (4.45+0.809+0.452+0.615)

 = 4.45 / 6.326

 = 0.703

Table 5.13 shows the weight values obtained for the sub factors of software

development.

Table 5.13

Weight Values for Sub Factors of Software Development

Software

Development

RE DES CODE TEST nth Root values Weight values

RE 1 7 8 7 4.45 0.703

DES 1/7 1 3 1 0.809 0.128

CODE 1/8 1/3 1 1 0.452 0.071

TEST 1/7 1 1 1 0.615 0.097

 Total 6.326 1.000

187

A2.6.1.4: Perform consistency analysis

As the pair wise comparison involves with subjective judgments, thus the

Consistency Ratio (CR) needs to be calculated in order to eliminate the

inconsistency of the judgments made. This is the advantage of using AHP, whereby

the consistency of decisions can be revealed. Consequently, with the CR values, the

certification decision will become more consistent. The acceptable CR value is less

than 0.1 (Saaty, 1990). The CR is calculated by using the subsequent equations.

CR = Consistency Index (CI) / Random Index (RI) (5. 4)

Where CI is calculated using this formula:

CI = (λmax – n) / (n-1) (5. 5)

Where n = number of evaluation criteria in the matrix

λmax = the average value of consistency vectors

The RI is obtained for the appropriate value of ‘n’, as depicted in Table 5.14.

Table 5.14

Random Index (Saaty, 1988 as cited in Padumadasa et al., 2009)

n 1 2 3 4 5 6 7 8 9 10 11 12 13

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56

Considering the software development pair wise comparison in Table 5.12, λmax is

calculated as provided subsequently.

188

Weight

(RE)

PWC

(RE)

Weight

(DES)

PWC

(DES)

Weight

(CODE)

PWC

(CODE)

Weight

(TEST)

PWC

(TEST)

Weighted

sum

vectors

0.703

1

0.128

7

0.071

8

0.097

7 2.846

1/7 1 3 1 0.538

1/8 1/3 1 1 0.299

1/7 1 1 1 0.396

* PWC: Pair wise comparison of

First, the weighted sum vectors are calculated by multiplying the first weight value

by the first column of the original pair wise comparison table (Refer to Table 5.12).

Then, the second weight value is multiplied by the second column and so forth.

Next, the values obtained are summed up over the rows. For instance, the weighted

sum vector for the first row is calculated as below:

Weighted sum vector (1st row) = (0.703*1) + (0.128*7) + (0.071*8) + (0.097*7)

 = 2.846

Similarly, they are 0.538, 0.299, and 0.396 for the 2nd, 3rd and 4th rows respectively.

Next, the consistency vectors are calculated by dividing the weighted sum vectors

with the respective weight values obtained previously. They are depicted in Table

5.15.

Table 5.15

 The Consistency Vectors

Criteria Weighted sum vectors Weight values
Consistency

vectors

RE 2.846 0.703 4.048

DES 0.538 0.128 4.203

CODE 0.299 0.071 4.211

TEST 0.396 0.097 4.082

189

The average of consistency vectors are then calculated to obtain λmax, where

λmax = (4.048 + 4.203 + 4.211 + 4.082) / 4 = 4.136

Therefore,

CI = (λmax – n) / (n-1)

 = (4.136 – 4) / (4-1)

 = 0.136/3

 = 0.045

CR = CI / RI

 = 0.045/0.90

 = 0.05

As the CR value is less than 0.1, thus the pair wise comparison made is considered

as consistent. However, if the CR value is more than 0.1, then the judgments on the

criteria need to be performed again (A2.6.1.2).

A2.6.1.5: Obtain the global weight values

The weight values obtained in the previous activities are known as the local weight

values. The final weight values are obtained by calculating the global weight values.

If the CR value for the pair wise comparison is less than 0.1, then the global weight

values can be calculated. They are obtained by multiplying the local weight value of

a child by its parents’ local weight values (the calculation starts from the lowest level

to the first level of hierarchy tree). The equation for the global weight is provided

subsequently.

190

𝐺𝑊𝑖 = 𝐿𝑊𝑖 ∗ ∏ 𝑃𝑗
𝑛
𝑗=1 (5. 6)

Where:

GWi = Global weight value for ith evaluation criteria

LWi = Local weight value for ith evaluation criteria

Pj = Local weight for jth parents

i = 1,2……,n

j = 1,2……,n

For example, Equation 5.6 is used to obtain the global weight value for the

completeness of requirement engineering (GWCompRE) by multiplying the local

weight value for completeness of requirement engineering with the local weights of

its parents (requirement engineering, software development and process) as

illustrated in Figure 5.7. In the same way, this calculation is performed to obtain the

global weight values for other factors/sub factors/evaluation criteria. The complete

local and global weight values can be obtained from Appendix M. These global

weight values are the ideal weight values suggested by the ESPAC Model.

GWCompRE = 0.691 *0.703 * 0.659 * 0.378

 = 0.121

191

Agile Software

Process Quality

Process

0.378

Software Development

0.659

Requirement

Engineering

0.703

Software Design

0.128

Completeness

0.691

Consistency

0.16

Accuracy

0.149

Completeness

0.691

Consistency

0.16

Accuracy

0.149

Figure 5.7. The part of hierarchy tree with local weight values

A2.6.2 Assign scores by using the assessment form

In the second activity, the scores are assigned for each assessed Agile and secure

software processes. The reference standard is compared with the practices

implemented by the organization. Each of these practices is assigned with the score

based on the scale of 1= Never, 2= Rarely, 3= Sometimes, 4= Often, and 5=

Always. As mentioned in Section 5.3.3, the reference standard comprises of the

WHATs, HOWs, relationships among WHATs and HOWs, the weight values for

each evaluation criterion and the score for each evaluation criterion. This

representation is used as the assessment form. Figure 5.8 shows the example of the

assessment form.

192

Figure 5.8. The example of assessment form for Agile Requirement Engineering

A2.6.3 Calculate the score for evaluation criteria and overall certification

The third activity in the synthesis technique is to calculate the score for evaluation

criteria and overall certification score. This task is carried out through three (3) steps,

as depicted in Figure 5.9. They are discussed further in the next sub sections.

*EC: Evaluation Criteria

Score: 1-Never 2-Rarely 3-Sometimes 4- Often 5-Always

E
C

W
ei

g
h

ts

Practices Scores

 C
o

m
p

le
te

n
es

s

 The scope of project were identified at the beginning of project to create initial

prioritized stack of requirements
1 2 3 4 5

Customers were available on-site for face-to-face discussions during requirement

elicitation or at least can be easily reached through phone or skype or teleconferencing
1 2 3 4 5

The requirements were gathered, elaborated, analyzed and validated iteratively and

incrementally
1 2 3 4 5

The requirements were written short statements using cards or tools 1 2 3 4 5

Requirements were prioritized and can be reprioritized by customers throughout the

development
1 2 3 4 5

The requirements were validated by customers in review meetings by using releases 1 2 3 4 5

The product backlog and iteration backlog were produced to ensure the consistency

and traceability of requirements
1 2 3 4 5

Total Score

C

o
n

si
st

en
cy

Appropriate procedure is used to handle frequently changing requirements 1 2 3 4 5

The requirements were documented by following a particular standard 1 2 3 4 5

Total Score

A
cc

u
ra

cy

The requirements were gathered using particular method (s) 1 2 3 4 5

Appropriate tools were used to facilitate defining and translating the requirements 1 2 3 4 5

Particular notation (s) was/were used to represent the requirements 1 2 3 4 5

Total Score

193

A2.6.3.1

Retrieve the global weight values

A2.6.3.2

Calculate the score for evaluation

criteria

A2.6.3.3

Calculate the score for overall

achievement

B

P3.1

Figure 5.9. Activities for performing the assessment

A 2.6.3.1: Retrieve the global weight values

The global weight values are retrieved, either from the group discussion or the ideal

weight values as suggested by the ESPAC Model.

A 2.6.3.2: Calculate the score for evaluation criteria

After the global weight values for each evaluation criteria are obtained, the scores of

the evaluation criteria (the WHATS) are calculated. This is done by multiplying each

global weight values of the evaluation criteria with the total score assigned for each

practices (the HOWS). This equation adapts the WSM calculation (Park & Kim,

1998; Mollaghasemi, 1997). Then, the value is divided by the maximum score that

can be obtained for a particular evaluation criterion to get the relative score. The

maximum score is calculated by multiplying the global weight with 5 (the maximum

194

score for each HOWS), then multiplied with the number of HOWS. Finally, the

value is aggregated by multiplying with 100 to get the percentage. The equation for

this calculation is:

𝑆𝑖 = (𝐺𝑊𝑖 ∗ (∑ 𝑅𝑖𝑗

𝑛

𝑖=1

)) / (𝐺𝑊𝑖 ∗ 𝐻 ∗ 5) ∗ 100

 (5. 7)

Where:

Si = Score of ith evaluation criteria

GWi = Global weight value for ith evaluation criteria

Rij = The total score rating for each assessed practices in matrix ij

H = The number of HOWS

j = 1,2,….,n

i = 1,2,….,n

As an example, as obtained in A2.6.1.5, the global weight value for the completeness

of requirement engineering for the Agile software process is 0.121. Additionally,

there is a total of seven (7) practices assessed for this evaluation criterion which

obtained the score of 5, 3, 4, 5, 3, 4 and 3 respectively. Thus, the number of HOWS

is 7. By using this information, the calculation is performed to obtain the score for

the completeness of requirement engineering (SCompRE) by using Equation 5.7, as

shown accordingly. Finally, the score obtained for the completeness of requirement

engineering is 77%.

SCompRE = (0.121 * (5+3+4+5+3+4+3)) / (0.121*7*5) * 100

 = 3.267 / 4.235 * 100

 = 77%

The same calculation is performed for the other evaluation criteria. The example of

score obtained for each evaluation criterion is presented in Appendix N. They are the

195

scores obtained by Project C during the validation of ESPAC Model (Refer Chapter

Six). By using these scores, the quality level of the completeness is determined by

referring to the Achievement Index provided in Table 5.16. Thus, the achieved

quality level for the completeness of requirement engineering in Agile software

process is Level III (Largely Achieved).

A 2.6.3.3: Calculate the score for overall achievement

To obtain the overall achievement, the score for the root of the hierarchy tree is

calculated. The calculation starts from the lowest level of the hierarchy tree to the

top. In the beginning, only the scores of evaluation criteria in the lowest level are

available, however the scores for their parents are not known. Thus, the score for

each parent is calculated by multiplying the global weights of its children with their

scores. Then, the multiplication results are summed up. The total of the sum is then

divided by the total of global weight values of the children. The same calculation is

performed for all parents until the root is reached. The equation for this calculation is

as below:

𝑆𝑝 = ∑(𝐺𝑊𝑖

𝑛

𝑖=1

∗ 𝑆𝑐𝑜𝑟𝑒𝐶𝑖) / ∑ 𝐺𝑊𝑖

𝑛

𝑖=1

 (5. 8)

Where:

Sp = Parent’s score

ScoreCi = Score of ith child (evaluation criteria/sub factors/factors)

GWi = Global weight value of ith child

i = 1,2….,n

Figure 5.10 shows part of the hierarchy tree as provided in Appendix D. It is

apparent that the requirement engineering is one of the parents; therefore the

196

children are the completeness, consistency and accuracy. In the beginning, only the

scores of the completeness, consistency and accuracy are available (obtained from

Equation 5.7). However, the score for the requirement engineering (their parent) is

not known. Accordingly, to obtain the score for the requirement engineering (SRE),

Equation 5.8 is performed, as below:

SRE = ((0.121*77) + (0.028*70) + (0.026*53.3)) / (0.121 + 0.028 + 0.026)

 = 72.46%

Agile Software

Process Quality

(71.48%)

Process

0.378

(68.27%)

Software Development

0.249

(72.24%)

Requirement

Engineering

 0.175

(72.46%)

Software Design

0.032

(71.71%)

Completeness

0.121

(77%)

Consistency

0.028

(70%)

Accuracy

0.026

(53.3%)

Completeness

0.022

(74%)

Consistency

0.005

(60%)

Accuracy

0.05

(73.33%)

Figure 5.10. The part of hierarchy tree with score and global weight values

Likewise, the same procedure of calculation is performed to all parents in the

hierarchy tree until the root is reached. The root’s score indicates the overall

certification score obtained. This score is then aligned with the Achievement Index

(Refer Table 5.16) to determine the certification level. As per the example given, the

certification level achieved for 71.48% (root’s score) is Level III (Largely

197

Achieved). The complete global weight values and scores for each parent and child

are provided in Appendix N.

5.3.7 The Achievement Index

The ESPAC Model produces the Achievement Index that can be used to determine

the certification outcomes: quality level, which indicates the achievement level for

each evaluation criterion, and certification level, which indicates the overall

achievements for the assessed Agile and secure software processes. They are

elaborated in the next sub sections. The Achievement Index is adapted from the

ISO/IEC 15504 (Galin, 2004; Jung, 2001) and Patel and Ramachandran (2009).

5.3.7.1 The Quality Levels

Based on the score obtained for the evaluation criteria (Si) by using Equation 5.7, the

quality level is determined. The highest quality level is ‘Fully achieved’, obtained

when the Si value is between 86% and 100%, while the lowest quality level is ‘Not

Achieved’, for the Si value between 0% and 15%. The complete Achievement Index

for the quality levels are presented in Table 5.16, as well as their descriptions.

5.3.7.2 The Certification Level

The certification level is determined for the overall achievements, whereby the score

is obtained from the root of the hierarchy tree (by using Equation 5.8). The value is

obtained by performing calculation for Sp in Equation 5.8. The levels of

198

achievement are similar to the quality levels, by referring to the Achievement Index

as provided in Table 5.16.

Table 5.16

The Achievement Index

Score Values Quality/

Certification

Levels

Descriptions

86 ≤ Si /Sp ≤ 100 Level IV

Fully Achieved

This level indicates a fully satisfying

achievement. The software processes were

implemented effectively, systematically and

perfectly or almost perfectly.

51≤ Si /Sp ≤ 85 Level III

Largely Achieved

This level indicates a largely satisfying

achievement. The software processes were

implemented quite systematically. However,

some software processes of low performance

exist.

16 ≤ Si /Sp ≤ 50 Level II

Partially Achieved

This level indicates a partially satisfying

achievement. A systematic approach has been

used; however almost all of the assessed

software processes were not implemented

properly.

0 ≤ Si /Sp ≤ 15 Level I

Not Achieved

This level indicates unsatisfying level of

achievement. The software processes were not

implemented systematically and below

average. The methodology usage was

neglected. The software process is considered

as fail to achieve its goal.

5.4 Discussions

This chapter has described the ESPAC Model, which is a software process

certification model that focuses on the Agile and secure software processes. The

main aim of this model is to assess the effectiveness and efficiency of software

process which concerns on both processes. By doing so, the quality of produced

software can be revealed, as the quality of product is influenced by the quality of

199

process used to develop it (Humphrey, 1989; Deming, 1982). The assessment is

conducted for the software that has been completed and ready to be delivered to

customer.

The ESPAC Model is constructed by considering the outcomes from the theoretical

and exploratory study, as well as considering the Evaluation Theory as the base

theory. The SPAC Model is referred as the base model, as well as other existing

software process standards and models such as CMMI Version 1.3, ISO/IEC 15504,

ISO/IEC 21827 and ISO/IEC 27001. Furthermore, the main outcomes from the

exploratory study which are the Agile and secure software practices and the

characteristics of people who involve in both software processes are used to

construct the reference standard. Also, the data gathering techniques are considered.

There are seven (7) components in the model, which are adapted based on the

Evaluation Theory: the target, evaluation criteria, reference standard, data gathering

techniques, assessment process, synthesis technique and Achievement Index.

Basically, the major improvements are made on the reference standard and the

synthesis technique. The reference standards of the existing software process

certification models and standards focus more on the conventional software process.

However in today’s business environment, incorporating Agile and secure software

processes are essential in order to produce high quality software. Therefore, these

two software processes are included in the reference standard of ESPAC Model. The

reference standard which consists of the evaluation criteria, scoreboard, Agile and

secure software practices, weight values and total score are organized by adapting

200

the Quality Function Deployment (QFD) approach (Cohen, 1995; Zultner, 1992). By

using this approach, the reference standard is organized systematically.

Additionally, the existing software process certification models and standards lack

an appropriate synthesis technique in the certification process. This is because they

do not include weight values in their assessment. However, weight value allocation

is essential especially when the assessment includes multiple criteria and involves

qualitative data. Consequently, the AHP technique is adapted in the synthesis

technique to provide better quality and consistency on the certification decision

made. Also, the WSM is adapted to calculate the score obtained for the certification.

Among the data gathering techniques included in the model are document reviews,

interviews and observations. Using multiple approaches gives better understanding

and confirmation on the assessment made. Furthermore, the assessment method is

proposed as collaborative self-assessment. This means that the assessment team is

comprised of software practitioners from other software development team from the

same organization and a representative from the assessed team. This approach has

several benefits such as cost-effective, accelerates the assessment process,

encourages ideas exchange between assessment team members and produces

unbiased certification results.

There are three phases in the assessment process, which are pre-assessment,

assessment and post-assessment. Each of them has several processes and at least one

activity. The outcomes of the certification model are the quality levels, which

201

indicates the achievement of each evaluation criterion and certification level, which

indicates the overall achievement for the assessed software process. At the end of the

certification process, a technical report is produced and presented to the top

management and assessed team for future reference and improvement.

5.5 Summary

As a conclusion, this chapter has discussed the development of an enhanced software

process certification model, which is the ESPAC Model. The proposed model has

addressed the research problems, by including the Agile and secure software

processes which are needed to produce high quality software in today’s business

environment as the reference standard. Furthermore, the synthesis technique has

been improved by including AHP for determining weights of the evaluation criteria.

The model is constructed based on the outcomes from the theoretical and exploratory

studies, besides adapting the Evaluation Theory as the base theory. There are seven

(7) components in the proposed model. By having this model, the assessment and

certification can be performed in wider perspectives and matches the current

business needs. Additionally, the quality and consistency of certification decision is

improved. The next chapter elaborates on the evaluation of the ESPAC Model.

202

CHAPTER SIX

ESPAC MODEL EVALUATION

6.1 Introduction

The process of evaluating the proposed model was carried out by performing the

verification and validation stages. The verification stage was performed by experts

from academic field, who are the knowledge experts as well as software

practitioners, who are the domain experts. Furthermore, the validation was carried

out by the domain experts. The verification and validation which involved the

domain experts were performed through focus group discussion. These stages are

discussed further in this chapter.

This chapter starts with the discussion on verification through expert reviews in

Section 6.2, continues with verification and validation through focus group in

Section 6.3. Section 6.4 provides the validation results and discussions, while

Section 6.5 ends the chapter with the summary.

6.2 Verification through Expert Reviews

Expert reviews have been accepted as a significant way to detect and remove defects

(Komuro & Komoda, 2008; Wiegers, 2002). Therefore, this study adapted this

technique for the verification process. Verification is intended to ensure that the

proposed model conforms to its specification (Sommerville, 2007) and all required

components are present in the right quantity (Chemuturi, 2011). The two main

issues that need to be verified in this study are the correctness of the AHP technique

203

(Goerigk & Hoffmann, 1999; Moody, 1998) and the comprehensiveness,

understandability, accurateness and organization of the factors, sub factors and Agile

as well as the secure software processes (Al Tarawneh, 2014; Behkamal, Kahani, &

Akbari, 2009; Kunda, 2003). Therefore, the potential experts who had knowledge

and experience in MCDM, focusing on AHP, as well as those in software

engineering, which focus on Agile and secure software processes were identified.

They were chosen by following the characteristics of experts as suggested by Rogers

and Lopez (2002) and Hallowell and Gambatese (2010), which is discussed in

Chapter Three.

6.2.1 Experts for AHP Technique Verification

Seven experts of AHP were identified and contacted through e-mails. Three of them

were willing to verify the technique, which is considered sufficient (Schneiderman,

1998; Nielsen & Molich, 1990). Consequently, appointments were made and face to

face meetings were held. Basically, the following activities were conducted during

the review sessions:

1. Researcher presented the overview of the study and the steps for performing

the AHP to the experts.

2. The experts reviewed the steps of implementing the AHP and obtaining the

weight values which were also presented in the related documents. The

experts had the opportunity to ask questions to the researcher for further

clarification.

3. The experts gave feedbacks by filling in the verification form.

4. Researcher then updated the calculation as suggested by the experts.

204

6.2.2 Experts for the Agile and Secure Software Processes

Eight knowledge experts from the software engineering field were identified as the

potential experts. However, only four of them were willing to verify the Agile and

secure software processes. Invitations to become experts for the study were sent

through e-mails. The related documents were then sent to the experts who agreed to

verify the Agile and secure software processes. Feedbacks were provided by them

either through e-mails or face-to-face meeting. Unfortunately, out of the four

experts, only three sent their feedbacks, which is sufficient for the purpose of expert

review (Schneiderman, 1998; Nielsen & Molich, 1990). The following are activities

involved during the expert review process:

1. Researcher presented the overview of the study or explained it through e-

mail.

2. The experts would then review the factors, sub factors and the Agile and

secure software processes.

3. The experts gave their comments by filling in the verification form.

4. The researcher would then update the software processes based on the

experts’ comments.

Besides the knowledge experts, this study also incorporated the domain experts from

software industry since they are the potential users of the model and can give

feedbacks based on their practices in the real world projects. Seven domain experts

verified the factors, sub factors and the Agile and secure software processes included

in the proposed model through focus group discussion. Table 6.1 summarizes the

knowledge experts’ background. The background about domain experts and the

205

activities related to the review are discussed in Section 6.3, since they verified the

Agile and secure software processes through focus group discussion.

Table 6.1

Experts’ Background

 ID Qualifications Expertise
Years of

Experience
Institutions

A
H

P

Expert

A
Ph. D

MCDM , Analytic

Hierarchy Process,

Analytic Network Process

19 years

International

Islamic

Universiti of

Malaysia

Expert

B
Ph. D MCDM, Performance

Measurement
16 years

Universiti

Utara

Malaysia

Expert

C
Ph. D

MCDM, Decision making

problems involving

uncertainty

21 years

International

Islamic

Universiti of

Malaysia

A
g
il

e
a
n

d
 s

ec
u

re
 s

o
ft

w
a
re

 p
ro

ce
ss

e
s

Expert

D

Ph. D

Agile software

development, data mining,

empirical software

engineering

12 years
Universiti

Utara

Malaysia

Expert

E
Ph. D

Requirements Engineering,

Component-based

Software Engineering,

Modeling

14 years

International

Islamic

Universiti of

Malaysia

Expert

F
Ph. D

Software maintenance,

program comprehension,

information seeking,

programmers behavior

13 years
Universiti

Putera

Malaysia

6.2.3 Results for the AHP Technique Verification

The AHP technique was verified by ensuring the correctness of performing it, which

is adapted from Goerigk and Hoffmann (1999) and Moody (1998). Correctness

refers to whether the AHP technique which was performed in the study conforms to

206

the steps of AHP implementation. It starts from creating the hierarchy tree and

finally ends with obtaining the weight values. There are five steps in the AHP

implementation, as listed in Table 6.2. All of the experts agreed that the AHP

technique was implemented correctly. Refer Appendix G for the verification form.

Table 6.2

Results for the AHP Verification

Steps Expert

A

Expert

B

Expert

C

1.The criteria have been arranged in the hierarchy trees

correctly
Agree Agree Agree

2.The judgments of pair wise comparisons have been

performed correctly
Agree Agree Agree

3.The pair wise comparisons have been synthesized correctly Agree Agree Agree

4.The consistency of judgments have been analyzed correctly Agree Agree Agree

5.The weight values have been obtained correctly Agree Agree Agree

Overall comments:

Expert A: The researcher is on the right track

Expert B: The researcher is on the right track, however, different calculation technique can

be used, for example by using eigen value method

Expert C: The researcher has implemented the AHP technique correctly.

6.2.4 Results for the Factors, Sub Factors and the Agile and Secure Software

Processes

The factors, sub factors and the Agile and secure software processes were verified

based on their comprehensiveness, understandability, accurateness and organization.

These criteria are adapted from previous studies (Al Tarawneh, 2014; Behkamal,

Kahani, & Akbari, 2009; Kunda, 2003). The descriptions of these criteria are as

207

listed in Table 6.3. The experts provided their feedbacks by filling in the checklist

form (Refer Appendix H).

Table 6.3

Descriptions of Verification Criteria

Criteria Descriptions

Comprehensiveness This criterion shows that the required factors, sub factors and

software processes for assessing the quality software process are

included in the model.

Understandability The criterion suggests that the factors, sub factors and software

processes are decomposed clearly and unambiguously.

Accurateness The criterion indicates that the factors, sub factors and software

processes are adequately decomposed to achieve accurate

assessment.

Organization The criterion denotes that the factors, sub factors and software

processes are organized well.

In a nutshell, all of the experts agreed that the factors, sub factors and the Agile and

secure software processes are comprehensive, understandable and accurate.

However, they had some comments on the organization of the sub factors and

software practices. For example, Expert D suggested that the software practices

should be organized based on the steps in the software development lifecycle.

Meanwhile, Expert E found that there were redundancies of software practices in the

Agile and secure software processes. On the other hand, Expert F concluded that the

sub factors that are similar between the Agile and secure software processes should

be placed only once. In addition, some of terms or words used in the processes were

inappropriate. For example, the term ‘release’ is more appropriate to be used in the

Agile environment instead of ‘prototyping’. Hence, the Agile and secure software

208

practices were updated accordingly as suggested. Table 6.4 recapitulates the

comments from the knowledge experts.

Table 6.4

Summary of Experts’ Comments

Criteria Expert D Expert E Expert F

Comprehensive-

ness

 Agreed Agreed Agreed

Understandable Agreed Agreed Agreed

Accurate Agreed Agreed Agreed

Well-organized -May organize the

software processes

based on the steps

in the software

development

lifecycle.

-Some of the Agile

software processes

are included in the

secure software

process, and vice

versa.

-Some of the

software processes

are redundant in

the Agile and

secure software

processes.

-The similar factors among

the Agile and secure

software processes should be

placed only once. For

example, the tools and

techniques as well as the

resource management and

training.

-Some processes used

inappropriate word, such as

‘prototyping’ instead of

‘release’.

Based on the comments from the experts, the Agile and secure software processes

were reorganized and updated. The actions taken are summarized in Table 6.5.

Table 6.5

 The Reorganizing and Updating Actions

Descriptions Problems/Actions taken

Resource management, training, tools and

techniques, standards and procedure, technical

skills, knowledge, experience, and

environment (safety and comfort)

The assessed software practices for these

sub factors and evaluation criteria are the

same for the Agile and secure software

processes/ Assessed only once

The requirements are written on cards in short It is not necessary to use cards for user

209

statements stories. It can also use the tools/ Updated

The requirements are validated by customers

in the review meetings by using prototypes

‘Prototype’ is not appropriate with the

Agile environment/ Updated

The features with high priorities are delivered

first

Priority is considered in planning, not

during coding/ Moved to Project

Management

The schedule estimation is done by the

developer who is going to implement a

particular user story

The estimation is done by the team, not

individually/ Updated

The development team was enabled to re-

estimate the time and velocity of user stories

This software process is more related to

planning / Moved to Project Management

The deliverable documentation were produced

late

Redundant with documentation/ Removed

A common understanding about the security

needs was reached among all applicable

parties, including the customers.

Redundant with team commitment/

Removed

6.3 Verification and Validation through Focus Group

The ESPAC Model was validated through focus group, which was attended by the

domain experts from various software organizations. Through the focus group

discussion, the experts verified the Agile and secure software processes, performed

the AHP technique to obtain the weight values for the evaluation criteria and

validated the proposed model. The next sub sections discuss the implementation of

the focus group, which constitutes the planning, executing, along with analyzing the

data and reporting the result of the focus group (Martakis & Daneva, 2013; Daneva

& Ahituv, 2011; Mazza & Berre, 2007; Morgan, 1998; Krueger, 1994).

210

6.3.1 Plan the Focus Group

A thorough planning is needed to effectively implement the focus group. The focus

group planning involved five (5) activities which are defining the objectives,

identifying the participants, scheduling the meeting, preparing the materials for the

focus group and sending reminder to the participants. These activities are further

elaborated in the next sub sections.

6.3.1.1 Define the Objectives of the Focus Group

Basically the objectives of the focus group are threefold. In particular, the objectives

are as follows:

1. To obtain the weight values for the evaluation criteria by using AHP

technique.

2. To verify the comprehensiveness, accuracy, understandability and

organization of the factors, sub factors and Agile and secure software

processes that are included in the software process certification model.

3. To validate the model based on its practicality to be implemented in the real

environment and satisfaction (gain, interface and task support satisfactions)

6.3.1.2 Participants Identification and Recruitment

The participants were selected by using purposive sampling. They were chosen

based on several common characteristics that they have (Liamputtong, 2011) such

as: 1) Agile software practitioners, 2) work in Kuala Lumpur or nearby area 3) have

experience in secure software process, 4) have software development experience for

more than 3 years. Initially, the respondents of the exploratory study which was

previously conducted in this study were approached through telephone and E-mails.

211

Unfortunately, only one of them was willing to participate. It was hard to get

participation among the software practitioners as they were busy.

Since the focus group needs a range of six to ten participants (Morgan, 1998; Powel

& Single, 1996; Krueger, 1994), alternative ways were used to gather the

participants. The potential participants were approached through the places they tend

to assemble, either virtually or actual meetings (Stewart, Shamdasani & Rook,

2007). Consequently, they were also approached through social networking groups

such as the Agile Malaysia group in Face book and Scrum Malaysia Community by

Google. The invitation was posted on the wall of these groups, as well as randomly

emailed them on a personal basis. In addition, they were approached face-to-face

during the Agile Symposium in Melaka, Scrum Master Training in Kuala Lumpur,

APAC Agile & Lean Conference 2013 organized by Intel Malaysia (Penang

Campus) and Agile Malaysia group monthly meet up which was held in one of the

software development companies in Putrajaya. Brochures relaying about the focus

group were distributed to them during these meet ups (Refer Appendix C). By using

these various approaches, finally eight participants agreed to participate.

6.3.1.3 Meeting Scheduling

The suitable meeting place was identified and booked based on the guidelines

provided by Stewart et al. (2007), Powel and Single (1996) and Krueger (1994). The

place which was central for all of the participants was chosen, which is one of the

hotels in Kuala Lumpur that provide meeting room facilities such as discussion table

and LCD projector. Also, the meeting place is considered neutral, as it did not have

212

special significance to the participants and no bearing to the objectives of the focus

group. Additionally, it provided pleasant and comfort environment for the

participants. Furthermore, the focus group was scheduled on Saturday, which was

convenient for the participants.

6.3.1.4 Preparation of the Focus Group Interview Guide and Materials

Prior to conducting the focus group, the interview guide was developed. The

principles of preparing interview guides were adapted, whereby the discussion was

planned to be started by general topic, which is the introduction of the study. Then,

the next agenda was to obtain the weight values, continued with the verification and

validation of the proposed model. These key sequential activities were determined

based on their relative importance to the study, as suggested by the second principle

of preparing interview guide (Stewart et al., 2007). Additionally, the materials that

were used during the focus group session were prepared, namely the presentation

slides, documents for the participants and numerical cards for the voting process

(obtain the weight values by using AHP technique). In addition, certificates of

participation were also prepared.

6.3.1.5 Remind the Participants

One day before the focus group was conducted, the participants were reminded about

the session and their attendance was confirmed. This was to ensure that they would

not miss the session as well as to make them feel their importance in attending the

session (Stewart et al., 2007).

213

6.3.2 Conduct the Focus Group

The focus group was conducted on the scheduled day and time. However, one of the

participants who agreed to come could not attend the session. Thus, only seven of

participants turned up to attend the session, which is considered sufficient number of

participants for a focus group (Morgan, 1998; Powell & Single, 1996; Krueger,

1994). In order to conduct the focus group, the guideline provided by Stewart et al.

(2007), Powel and Single (1996) and Krueger (1994) were followed.

Upon arrival at the meeting room, the participants were greeted and a friendly

contact was established in order to create rapport. This was done by having an

informal conversation among the participants and moderators before the formal

discussion begins. They were also served with refreshments. This was intended to

make the participants feel comfortable and relaxed. On top of that, this enabled the

moderators and participants to get to know each other.

In the formal session, the participants were seated in a U-Shaped discussion table to

facilitate interactions. They were provided with the materials that needed for the

session. Figure 6.1 exhibits the settings of the meeting place. Once all of the

participants were seated, they were welcomed with a speech from the moderator.

Then, the moderator introduced herself and the assistant moderators. In the same

manner, each of the participants introduced themselves to the group. This is a useful

way to build rapport and a good sense of building group cohesion (Liamputtong,

2011). Then, they were briefed about the objectives of the focus group. They were

encouraged to express their experience and points of view freely and spontaneously.

214

The participants were also reminded that the data gathered from them will be

confidential and only will be used strictly for the study purposes. Then, they were

briefed about the ESPAC Model and the AHP Technique. During this presentation,

the participants started to interact freely by clarifying the issues that they were not

clear from the presentation.

Figure 6.1. The meeting place setting

The participants worked in three stages, first was to obtain the weight values for

evaluation criteria. The second stage was to verify the Agile and secure software

processes and the third stage was to validate the ESPAC Model. The discussion took

approximately three hours to be completed. This duration is acceptable, even though

the common duration is one to two hours (Liamputtong, 2011). In between the

session, the participants were provided with lunch. Furthermore, at the end of the

session, certificate of participation were presented to them. The activities involved

during the focus group discussion are further discussed in the following sub sections.

215

6.3.2.1 Obtain the Weight Values for Evaluation Criteria

To obtain the weight values for the evaluation criteria, the group AHP technique was

implemented, as the decisions were made in a group. The planning poker (Dyba,

Dingsoyr, & Moe, 2014; Mahnic & Hovelja, 2012) which is used in Agile

environment is adapted to simplify the AHP process. Each of the participants was

given a set of card which contains numbers from 1 to 9. They represent the

importance values which are used for making judgments of pair wise comparisons in

AHP. The participants were also provided with a list of pair wise comparisons that

need to be performed (Refer Appendix F). Referring to the document, the moderator

raised each of the pair wise comparisons one by one, while probing open ended

questions to the participants on their opinion about the evaluation criteria being

compared. The participants discussed and exchanged their experiences and opinions.

Then, they chose the importance value for the compared evaluation criteria from the

cards. All selected values are kept private until all team members have chosen a

card. Then once everyone is ready, the cards are revealed to the group

simultaneously.

When consensus was reached among the participants, the agreed importance value

was chosen. Nevertheless, when neither consensus could be reached, nor majority

vote or compromise can be reached, then the average was calculated by using the

geometric mean. The judgments made on the pair wise comparisons were then

keyed-in the Excel file for each pair wise comparisons. The AHP technique was

implemented to obtain the weight values. When any of the pair wise comparisons

was not consistent, the process was repeated again until a consistent judgment was

216

obtained. The detailed steps of the AHP technique implementation is provided in

Section 5.3.6. Figure 6.2 shows the participants raising the cards with their preferred

values for a pair wise comparison.

Figure 6.2. The selection of the pair wise comparison value by the participants

6.3.2.2 The Agile and Secure Software Processes Verification

The second stage of the focus group was to verify the Agile and secure software

processes. The participants were instructed to fill in the forms for verification.

Appendix H presents the example of the form for the Agile requirement engineering

process. The participants checked the Agile and secure software practices included

in the model one by one. Then, they verified whether the Agile and secure software

practices are comprehensive, understandable, accurate and well-organized (Refer

Appendix I).

217

6.3.2.3 The ESPAC Model Validation

The third stage of the focus group was to validate the ESPAC Model. During this

stage, the participants were asked to implement the proposed model by assessing one

of the projects that they have completed. The assessment form was provided for

them to assign the score for each software process. Example of this form is provided

in Appendix H. Based on their experience in the project, they self- assess the project

and assigned the score for each of the software processes in the proposed model.

Figure 6.3 presents the verifying and validating process by the domain experts.

Figure 6.3. The process of verifying and validating the ESPAC model

6.3.3 Data Analysis and Results Reporting

After completing the focus group session with the participants, the data obtained

from the focus group were analyzed. The verification of the factors, sub factors and

218

Agile and secure software processes was examined. Additionally, the total score for

the assessment and certification exercise were calculated. Then, the quality levels as

well as the certification level for each project were obtained. The outcomes were

then reported in the technical reports by representing them in tables and charts.

These technical reports were then emailed to the participants.

Based on the technical report provided, the participants were asked to validate

whether they were satisfied with the ESPAC Model and determine its practicality to

be implemented in the real environment. The participants then provided their

feedbacks either through emails or phone calls. They filled in the validation form to

provide the feedbacks (Refer Appendix J). The findings are discussed in the next sub

sections.

6.3.4 The Focus Group Discussion Findings

This section describes the findings from the implementation of the ESPAC Model

among the focus group participants. The participants’ background is provided

together with the weight values obtained for each evaluation criteria. Then, the

verification results as well as the assessment and certification results are presented.

i. Participants’ Background

Participants of the focus group included seven Agile practitioners from different

organizations around the Kuala Lumpur area. They were the team leaders, Scrum

Master, Application Lifecycle Program Manager, architect and programmers. All of

them had experience in software development for more than three years. Basically

219

the participants work in private software development companies. Four out of the

seven participants work in large companies, whereby the employees are more than

250 people. All of the participants had experience in Agile and secure software

processes. Majority of them had three to five years’ experience in Agile. The most

popular Agile method used by them seemed to be Scrum and Extreme Programming

(XP). In addition, Feature Driven Development (FDD), Test Drive Development

(TDD), Agile Modeling (AM) as well as Lean Programming were also used by the

participants. Table 6.6 presents the anonymized overview of the participants.

Table 6.6

Anonymized Overview of the Participants

ID Positions

Size of

Organization

Years of

Software

Development

Experience

Years of

Agile

Experience

Agile

Methods

A Team Leader >250 11-20 1-2 FDD

B Scrum Master >250 6-10 3- 5 Scrum,

XP, AM,

Lean

C Programmer 51-250 6–10 3-5 Scrum, XP

D Architect >250 11-20 >5 Scrum, XP

E Team Leader 51-250 6–10 1-2 Scrum

F Programmer >250 6-10 3-5 Scrum, XP

G Application

Lifecycle Manager

20-50 11-20 3-5 Scrum,

TDD

220

ii. The weight values obtained

As discussed in Section 6.3.2.1, the weight values were obtained through the

planning poker. The outcomes from the discussion are the ideal weight values for the

evaluation criteria of the ESPAC Model. The ideal weight values obtained can be

referred to Appendix M. These ideal weight values are suggested for the potential

users of ESPAC Model, whereby they can use these values during the assessment.

However, the values are flexible. They can decide whether to use the suggested ideal

weight values or obtained the values of their own by performing the AHP technique

(Refer Section 5.3.6).

iii. Verification results

As mentioned before, the factors, sub factors and Agile and secure software

processes were verified by the knowledge and domain experts. This section

provides results from the verification performed by the domain experts. Majority of

the software processes included in the model were accepted by them. They agreed

that the Agile and secure software processes included in the model are

comprehensive, understandable, accurate and well-organized. However, they gave

suggestion of software processes that need to be updated and reorganized in the

proposed model as well. These are described in Table 6.7.

221

Table 6.7

The Suggested Software Processes

Descriptions Issues / Actions taken

Customers are available on-site for face-

to-face discussions during requirement

elicitation

Sometimes customers are not able to be on-

site, however they can be reached through

phone calls or Skype or teleconferencing /

Updated

Able to communicate in various languages This is not necessary for all projects /

Removed

Budget Estimation The budget estimation is performed by the

customer, not the team. It is only

communicated to the team clearly / Updated

iv. Assessment and certification results

The assessment and certification results for the seven projects are discussed by

focusing on the background of the projects, the results obtained from the assessment

and certification exercise and the certification levels achieved by the projects. They

are elaborated further in Appendix L.

6.4 Validation Results and Discussions

After implementing the ESPAC Model and obtaining the results, the domain experts

are satisfied with it and agree that the proposed model is practical to be implemented

in the real world environment. They validated the proposed model based on a

predefined set of criteria, which are adapted from previous studies (Al Tarawneh,

2014; Kunda, 2003). These criteria include gain, interface and task support

satisfactions. Each of these criteria was assessed based on a set of variables. They

are discussed further in the next sub sections.

222

6.4.1 Gain Satisfaction

Among the variables that were assessed for gain satisfaction are perceived

usefulness, decision support satisfaction, current assessment initiatives comparison,

cost-effectiveness, clarity and task appropriateness. These are described based on the

comments from the participants. Table 6.8 provides the results.

Table 6.8

The Results of Evaluation for Gain Satisfaction Criteria

 Variables Results of evaluation/ explanation

Perceived

usefulness

The participants pointed out that the proposed model is useful for their

working environment. By having this model, they can know the current

quality level of their software process. In addition, the outcomes from the

assessment and certification process can guide them in improving their

software process. Furthermore, Participant C and E appreciated the secure

software process included in the reference standard, as nowadays security

aspect need to be addressed during the development to ensure that the end

product is secured. In addition, the software processes cover from start to

the end of software development. Besides these benefits, Participant F

added that this model can guide new organizations which plan to adapt

the Agile software process.

Decision

support

satisfaction

The participants were satisfied with the decision that they made for the

weight values, whereby it can reduce individual bias since the weight

values were obtained in a team. The weight values are important as it will

influence the score obtained for the certification. Furthermore, Participant

F highlighted that the model allows equal participation since the decision

on the weight values are obtained in a team. Thus, it supports the Agile

environment because it allows interaction and active team, which is the

core value of Agile. On the other hand, Participant C added that conflicts

can be resolved by reaching consensus when deciding on the weight

values in a team.

223

Comparison

with current

assessment

initiatives

Participant A compared the proposed model to the ISO 9001: 2008

performed in his organization. It is found that the proposed model focuses

on the software process, which is more suitable for software development

organizations. Conversely, Participants B, C and G admitted that they did

not perform assessment on their software process. Therefore the proposed

model will be beneficial for them.

Cost-

effectiveness

The proposed model is deemed as very cost-effective, as compared to

other certification models such as ISO 9000: 2008 which costs a lot of

money, as highlighted by Participant A. This is because the assessment

and certification is performed by the software practitioners in the same

organization. Therefore, it does not require any payment for other

assessing organizations.

Clarity The assessment phases and the activities provided in the proposed model

are found to be very clear to the participants, whereby the phases clearly

presents the activities that need to be performed, besides the data

gathering techniques that can be used to perform the activities.

Additionally, Participant F emphasized that the model clearly defines the

certification levels, which gives guidance on the level of software

processes.

Task

appropriateness

The participants agreed that the proposed model is appropriate for

assessing and certifying the software process systematically and

effectively because it considers the approaches that are essential in order

to produce high quality software in today’s business environment: Agile

and secure software processes. In addition, Participant C highlighted that

the assessment and certification by using proposed model can be

performed to any type of project. Furthermore, Participant F added that

by having Agile and secure software processes as the reference standard

in isolation, the assessment and certification can be performed based on

the needs of the project.

224

6.4.2 Interface Satisfaction

The interface satisfaction was assessed based on five variables, which are perceived

ease of use, internally consistent, organization (well organized), appropriate for

audience and presentation (readable and usable format). The results of the evaluation

are provided based on the participants’ thoughts, as depicted in Table 6.9.

Table 6.9

The Results of Evaluation for Interface Satisfaction Criteria

Variables Results of evaluation/explanation

Perceived

ease of use

According to the responses of the participants, the proposed model was

perceived as easy to be used because it uses a well-defined processes,

activities, and techniques.

Internally

consistent

The participants found out that the proposed model is internally consistent,

mainly because the components complement each other. In particular, it

starts with forming the assessment team, then analyzing the candidate

project to ensure that it achieves the minimum score for performing the

certification assessment. The process is then continued with proper

planning and preparing the assessment team and assessment conduct,

whereby the documents that will be reviewed are determined, the persons

who will be interviewed are selected and the logistics are arranged. The

assessment is performed after checking the availability of the participants’

assessment. In addition, the AHP technique is performed in a group for

obtaining consensus among the assessment team members on the weight

values (optional).

Organization

(Well

organized)

The model is found to be well organized and structured where the

sequence of the assessment processes and activities are organized in a

clear and understandable manner.

Appropriate

for audience

The proposed model is found to be appropriate for audience. Participant G

added that the assessment could be performed faster and easier since it is

225

performed by a representative of the assessed team because the

implementation of the project is already understood by the representative.

This facilitates the understanding of the software processes performed

among the assessment team. Furthermore, Participant F added that the

proposed model also could be used as a guide for organizations which

would like to adopt Agile software process, since it provides the best

practices of Agile software process.

Presentation

(readable and

useful

format)

The proposed model is found to produce the results in a readable and

useful format, which is the technical report. Participant F added, by having

the technical report, it acts like a guidance for the team to improve their

software process in upcoming projects.

6.4.3 Task Support Satisfaction

Ability to produce expected result, ability to produce relevant results, ability to

produce usable results, completeness, ease of implementation and understandability

(easy to understand) were the variables used to assess the task support satisfaction

criterion. Table 6.10 describes the results of the evaluation.

Table 6.10

The Results of Evaluation for Task Support Satisfaction Criteria

 Variables Results of evaluation/explanation

Ability to

produce expected

results

The proposed model is able to produce expected results. The

participants indicated that they were satisfied with the quality levels

and certification level obtained for their projects. Participant D added

that he was satisfied with the result obtained as the assessment used

various techniques for assessment: document review, interview and

observation. By doing so, the assessed software processes can be

understood better before appropriate score can be assigned.

226

Ability to

produce relevant

results

The participants highlighted that the five factors which are assessed in

the proposed model were sufficient to produce relevant results.

Participant A stressed that the proposed model does not only consider

the software development factor, it also included other factors that

have influence on the quality of software process. Thus, the

assessment is comprehensive enough. In addition, Participant F added

that the proposed model assesses the core values and principles of

Agile, consequently the results are relevant.

Ability to

produce usable

results

The proposed model is able to produce usable results. From the quality

levels obtained, the participants were able to identify which software

processes need to be improved. Furthermore, with the certification

level obtained, they could know how well they performed the software

processes, as stated by Participants C and D. Additionally, Participant

F pointed out that by having the proposed model, the team could

understand and perform the best practices in Agile software process.

Completeness The proposed model is found to be adequate and sufficient in assessing

the Agile and secure software processes in the real world environment.

The participants indicated that the evaluation criteria used in the

proposed model are sufficient for assessing the quality of both

software processes.

Ease of

implementation

The participants indicated that the proposed model is easy to be

implemented, as it provides a series of activities as a guideline that can

be followed easily. Additionally, the technique for obtaining the

weight values is also explained with examples which can be

understood easier.

Understandability

(easy to

understand)

The proposed model is found to be readable and understandable. The

participants highlighted that the assessment phases and their activities

are organized well, which leads to easy understanding. Moreover, as

stated by Participant C, the steps to implement the AHP technique are

easy to be understood and applied.

227

In a nutshell, based on the feedbacks from the domain experts, the proposed ESPAC

Model gained satisfaction from them and deemed as practical to be implemented in

the real world projects. Besides assessing the current level of software process being

performed by an organization, this model also supports continuous improvements.

6.5 Summary

This chapter has discussed the evaluation of the proposed ESPAC Model, which

consists of verification and validation stages. Verification was performed on the

AHP technique and the Agile and secure software processes by the knowledge and

domain experts. Based on the feedbacks, the ESPAC Model was improved. For the

validation stage, a focus group discussion was conducted among seven domain

experts. They implemented the ESPAC Model by assessing one of their completed

projects. Based on the assessment, the certification results were obtained and

presented in technical reports. Then, the experts validated the proposed model. In

this case, their feedbacks indicated that they are satisfied with the proposed model,

and suggested that the model is practical to be implemented in the real world

environment. Furthermore, during the focus group discussion, the domain experts

agreed upon the ideal weight values for evaluation criteria in the ESPAC Model.

These ideal weight values can be used by the potential users of ESPAC Model

during the assessment or can be changed based on their preferences. The next

chapter concludes the study by highlighting the contributions based on the achieved

objectives. Furthermore, the limitations and future directions of the study are also

provided.

228

CHAPTER SEVEN

CONCLUSIONS

7.1 Introduction

This chapter concludes the study reported in this thesis. The discussion starts by

recapitulating the study in Section 7.2, continues with the contributions in Section

7.3. The limitations and future directions of the study are described in Section 7.4.

The chapter ends with the conclusions in Section 7.5.

7.2 Study Recapitulation

The main aim of this study is to enhance the software process assessment and

certification model by addressing the Agile and secure software processes as well as

improving the synthesis technique used in the software certification. This aim was

achieved through four objectives which have been defined earlier in Section 1.4. The

study is recapitulated based on these objectives accordingly.

Objective 1: To investigate the current practices of software process certification

in relation to Agile and secure software process.

This objective was achieved through the exploratory study as discussed thoroughly

in Chapter Four. This study has drawn attention to the current practices of software

certification which relates to the Agile and secure software processes being

implemented by Malaysian software practitioners. The outcome from the study

revealed the significance of both software processes in today’s business

environment.

229

However, when further investigated their current practices, it was found that the

respondents only followed the best practices of Agile and secure software processes

occasionally. As a result, they faced a lot of problems in the quality of software that

they produced. Conversely, towards producing high quality software within budget

and schedule, the software process must be performed effectively and efficiently, by

following the best practices. Furthermore, the respondents gave high consideration to

most of the Agile and secure software processes which can influence the quality of

software as well as the characteristics of the people involved in both software

processes which are included in the study. Accordingly, those processes and

characteristics were included as the reference standard of the ESPAC Model.

Additionally, the needs of software certification in software industry have been

revealed. However, most of the respondents do not implement any standards

regardless of their familiarity with the Agile and secure software processes. On the

other hand, the use of standard is vital towards ensuring that the software process is

implemented correctly throughout the organization. This explains that the software

process is implemented as ‘ad-hoc’, without considering formal procedures and

monitoring. Without proper monitoring on the software development process, the

quality of produced software can be low. Consequently, a mechanism to assess and

certify the Agile and secure software processes is needed. Thus, this supports the

needs of producing a process based software certification model which focuses on

the Agile and secure software processes in this study.

230

Objective 2: To enhance software process certification model by including the

Agile and secure software processes.

This study has successfully enhanced a software process certification model which

focuses on the Agile and secure software processes, as discussed in Chapter Five.

The ESPAC Model was constructed based on the Evaluation Theory and the findings

from theoretical and exploratory studies (Chapter Two and Four). The components

of the proposed model were determined by adapting the Evaluation Theory, which

are the target, evaluation criteria, reference standard, data gathering techniques,

assessment process, synthesis technique and Achievement Index. Additionally,

among the findings from the theoretical study comprise of the problems and generic

features of the existing software process and certification models and standard. On

the other hand, findings from the exploratory study reveals the Agile and secure

software processes which influence the quality of software, as well as the

characteristics of people who involve in these two software processes, besides the

data gathering technique in performing the assessment and certification.

The enhancements are made on the reference standard and the synthesis technique

used. The ESPAC Model assesses the software process and other influencing factors

such as the people involved during the development, the technology used, the project

constraint and the environment by focusing on the Agile and secure software

processes. Each of these factors is decomposed to at least one sub factor that is

measurable, while each of them has at least one evaluation criterion. For each

evaluation criterion, appropriate Agile and secure software practices that need to be

performed towards achieving the specified evaluation criterion are assigned. To

231

organize the reference standard systematically, the Quality Function Deployment

(QFD) approach is adapted. Furthermore, to improve the synthesis technique, each

of the evaluation criteria is assigned with different weight values by adapting the

AHP technique. Consequently, the quality of the certification results is better and

more consistent as the judgments are not made arbitrarily in AHP.

This model has clearly defined three phases in the assessment process, which are

pre-assessment, assessment and post-assessment, which is carried out by using the

collaborative self-assessment method. During the assessment, three techniques are

used to gather the data which are document review, interview and observation. At

the end of assessment and certification exercise, the quality levels and certification

level are produced. They are determined based on a defined Achievement Index,

which comprises of four levels. The comprehensive explanation on the proposed

model is presented in Chapter Five.

Objective 3: To improve the synthesis technique in software certification by using

Analytic Hierarchy Process.

The study has fulfilled this objective by improving the synthesis technique used in

the software process certification. This is done by including weight values for the

evaluation criteria. This is necessary since the assessment in software process

certification involves multiple criteria. Different evaluation criteria might have

different influence on a particular project. Therefore, weight value allocation is

necessary. To accomplish this objective, the Analytic Hierarchy Process technique is

adapted in determining the weight values for each evaluation criterion. The weight

232

values are obtained through group discussion which is participated by the assessment

team. The detailed explanation on the AHP implementation is provided in Chapter

Five.

Objective 4: To evaluate the enhanced software process certification model by

using expert reviews and focus group

This objective was fulfilled by performing the evaluation in two stages, which are

verification and validation. In the verification stage, the correctness of the AHP

technique and the comprehensiveness, understandability, accurateness and

organization of the Agile and secure software processes were verified by the experts.

Results from the verification process revealed that the AHP technique is

implemented correctly. Similarly, the Agile and secure software processes are found

to be comprehensive, understandable and accurate. However, some modifications

were performed on the organization of the software processes to make them well-

organized. More details about the verification are described in Sections 6.2 and 6.3.

The second stage is the validation, which aims to reveal the practicality of the

ESPAC Model in the real environment, besides to disclose software practitioners’

satisfaction. The proposed model was validated by domain experts who are the

software practitioners, according to a predefined set of criteria of satisfaction such as

gain, interface, and task support. Taken as a whole, the findings as described in

Section 6.4 indicate that the ESPAC Model gained the experts’ satisfaction and

considered practical to be implemented in the real environment. Detailed discussions

about the evaluation of the proposed model are presented in Chapter Six.

233

7.3 Contributions

This study has several implications on the theory and practice, especially in the field

of Software Process Assessment and Certification and MCDM. The contributions of

the study can be outlined in two categories: main and extra. They are elaborated in

the next sub sections. The main contributions of the study include the ESPAC

Model, the reference standard and the synthesis technique.

7.3.1 The ESPAC Model

The main contribution of this study is the ESPAC Model. It was built based on the

outcomes of the theoretical and exploratory studies. The existing software process

assessment and certification model only focus on the conventional software process

and uses equal weight values for the synthesis technique. Accordingly, this study has

overcome these shortcomings by incorporating the Agile and secure software

processes in the reference standard and adapting the AHP technique for weight value

allocation.

To construct the model, the Evaluation Theory is used as the base theory. It consists

of six main components. However, this study has added another component which is

the Achievement Index. This index is used to determine the outcomes of the ESPAC

Model which are the quality levels and certification level.

Moreover, the ESPAC Model proposes an improved method to perform the

assessment. Previously there are four assessment methods, which are first-party,

second-party, third-party and collaborative methods. The collaborative self-

234

assessment method is adapted from the collaborative assessment method and self-

assessment approach. This method suggests that the assessment and certification

process is performed internally in an organization to ensure cost-effectiveness.

However, to avoid biasness, the assessment is performed by software practitioners

from other team in the organization. Additionally, to facilitate ideas exchange and

accelerate the assessment process, a representative from the assessed team becomes

as one of the assessment team members.

Theoretically, this study contributes to the field of Software Engineering,

particularly in the Software Process Assessment and Certification by providing a

software process certification model for the Agile and secure software processes.

Practically, by having the proposed model, software developers are able to reveal the

quality of software process being performed in their projects in broader aspects,

which are Agile and secure software processes. Furthermore, this model provides

proper guidelines which can be used by the assessors to perform the assessment and

certification. In addition, the investors and customers can get benefit from the

ESPAC Model since it provides conformance on the quality of software that they

invest on.

7.3.2 The Reference Standard

The main component of the ESPAC Model is the reference standard, which is used

as a benchmark for performing the assessment. The existing software process and

certification models do not address the Agile and secure software processes in their

reference standards. However, these software processes have become determinant

235

factors in producing high quality software in today’s business environment.

Consequently, the reference standard of ESPAC Model which comprises of software

process quality factors, evaluation criteria and practices are enhanced by addressing

the Agile and secure software processes. By doing so, the assessment and

certification can be performed in broader aspects which is suitable for the current

business environment and needs. Furthermore, the assessment and certification can

be customized based on the background of the project: whether the project was

developed by using Agile or conventional software process, as well as whether the

project requires high safety environment.

The enhancement made on the reference standard contributes to the Software

Engineering, specifically to the Software Process Assessment and Certification area.

Mainly, the factors and practices of Agile and secure software processes that

influence high quality software are revealed.

7.3.3 The Synthesis Technique

The synthesis technique is another essential component of the ESPAC Model. It is

used to synthesize the data gathered during the assessment and obtain the score of

the assessment and certification. The synthesis technique has been improved by

considering the weight values during the assessment. The weight value allocation is

vital since the software process assessment involves multiple criteria, whereby each

of the criteria might have different influence. Consequently, the AHP technique is

adapted for this purpose. It is one of the most widely used MCDM techniques. The

236

AHP technique is chosen since the consistency of judgment can be increased, which

indirectly influence the quality of the certification decision made.

The use of the AHP improves the certification outcomes in the field of Software

Process Assessment and Certification since the existing studies only used equal

weights for the evaluation criteria. This study also contributed to the MCDM field as

it proposes the use of AHP in the Software Process Assessment and Certification

area.

Besides the main contributions, there are two (2) extra contributions in this study, as

elaborated subsequently.

7.3.4 The AHP Technique Implementation through Planning Poker

The planning poker technique which is used in Agile environment to do estimation

has been adapted in this study. This technique is used to determine the importance

values for evaluation criteria of the ESPAC Model (Refer Section 5.3.6 and Section

6.3.2.1). By doing so, the implementation of the AHP technique is simplified and

consensus can be reached easier. The use of planning poker for the AHP

implementation is reasonably another contribution in the field of Software Process

Assessment and Certification.

7.3.5 Utilize the QFD for the Reference Standard

The reference standard of the ESPAC Model involves numerous evaluation criteria

and practices. Thus, the QFD approach has been utilized to systematically organize

237

them. In the reference standard, each of the evaluation criteria is allocated with the

Agile or secure software practices. Thus, it facilitates the process of aligning the

evaluation criterion with its appropriate practices (Refer Section 5.3.3). This

approach has been used for Software Process Improvement. However, it is fairly

new for the Software Process Assessment and Certification field.

7.4 Limitations and Future Directions

The limitations faced and future efforts that can be performed towards enhancing

this study are discussed below:

 The ESPAC Model involves numerous evaluation criteria and practices for the

assessment and certification. Thus, careful attention had to be taken in order to

organize them and to perform the calculation of the certification scores, as well

as to perform the AHP technique. These processes were time consuming and

need extra effort to be accomplished. Thus, in future, an automated tool

support can be built to facilitate the procedure and tasks that need to be

performed during assessment. Additionally, the errors made by human can be

reduced and the assessment and certification process can be performed faster

and easier.

 The evaluation criteria and practices of the ESPAC Model are suitable for

today’s business environment. However, some of them become obsolete from

time to time especially when the Agile and secure software processes become

more mature in the software industry. Consequently, they need to be managed

238

and these will consume a lot of time since they involve a lot of data. Therefore,

future enhancement can be made to aid the process of storing the data in a

systematic repository. By having this repository, the historical data related to

the assessment and certification can be managed, organized and stored safely.

Furthermore, the data can be retrieved easier at any time.

 Currently the ESPAC Model only focuses on the process approach. Therefore,

the ESPAC Model can be enhanced in the future by including the assessment

for the software product as well. By doing so, the assessment can provide

broader certification results. In addition, the outcomes from both assessments

can be compared and their relation can be revealed.

 The ESPAC Model considers Agile and secure software processes as the

reference standard. Nevertheless, Agile software process is criticized that it is

not a reliable software process especially for big projects and produces low

quality software with minimal documentation. Additionally, the outcomes

from the Exploratory Study (Refer Chapter 4) indicates that most of the

software practitioners do not implement proper secure software process

eventhough they are facing a lot of security incidents. On the other hand, the

ESPAC Model has already included the best practices of Agile and secure

software processes that must be followed in order to produce high quality

software. Thus, future enhancement can be made by utilizing the reference

standard to produce a methodology that supports continuous software process

improvement for both software processes.

239

7.5 Conclusions

In a nutshell, the importance of the software quality is a major concern in the

software industry since low quality software may cause many problems. Because of

the uncertainty on the quality of the software, the customers are becoming concerned

on the ability of an organization to produce high quality software. Consequently,

software certification has been found as a way to give conformance on the quality of

the produced software. Nonetheless, the existing software process certification

models and standards emphasize more on the product approach. Meanwhile, even

though there are several studies which have been conducted in the field of process

based software certification, most of the studies are intended to produce models and

standards for SPI, except the SPAC Model.

However, two lacking issues need to be addressed in this model: i) the reference

standard which focuses on the conventional software process and do not address the

Agile and secure processes which are essential to produce high quality software in

today’s business environment and ii) the synthesis technique which uses equal

weight values for evaluation criteria, even though the software certification involves

multiple criteria.

Therefore, this study has overcome these shortcomings by making enhancement on

the software processes included in the reference standard which comprises of Agile

and secure software processes. Besides, the AHP technique is utilized for weight

value allocation for the evaluation criteria. As a result, the software certification can

240

be performed in broader aspects and produces better quality and consistency of

certification results.

The model was validated by seven software practitioners. The feedbacks from them

revealed that the ESPAC Model is beneficial to be implemented in the real world

environment. Furthermore, they highly believe that it can achieve its objectives.

Taken as a whole, the software practitioners are satisfied with the proposed model.

241

REFERENCES

Abbas, N., Gravell, A. M., & Wills, G. B. (2010). The impact of organization,

project and governance variables on software quality and project success. Agile

Conference, 77-86. doi: 10.1109/AGILE.2010.16

Abdul Rahman Ahlan, Yusri Arshad, Mohd Adam Suhaimi, & Husnayati Hussin.

(2010). The Malaysia IT outsourcing industry skill-sets requirements of future

IT graduates. WSEAS Transactions on Computers, 9(7), 738-747. Retrieved

from http://www.wseas.us/e-library/transactions/computers/2010/89-744.pdf

Abrahamsson, P., Oza, N., & Siponen, M. T. (2010). Agile software development

methods: A comparative review, Information and Software Technology, 50 (9-

10), 833-859. doi: 10.1007/978-3-642-12575-1_3

Abrantes, J. F., & Travassos, G. H. (2011). Common Agile practices in software

processes. International Symposium on Empirical Software Engineering and

Measurement, 355-358. doi: 10.1109/ESEM.2011.47

Acuna, S. T., Antonio, A. D., Ferre, X., Lopez, M., & Mate, L. (2000). The software

process: modeling, evaluation and improvement. In Chang, S. K. Handbook of

Software Engineering and Knowledge Engineering (pp. 193-237). River Edge:

World Scientific Publishing Co. Pte. Ltd.

Addison, T., & Vallabh, S. (2002). Controlling software project risks - an empirical

study of methods used by experienced project managers. Proceedings of the

2002 Annual Research Conference of the South African Institute of Computer

Scientists and Information Technologists on Enablement through Technology,

128-140.

Afshari, A., Mojahed, M., & Yusuff, R. M. (2010). Simple additive weighting

approach to personnel selection problem. International Journal of Innovation,

Management and Technology, 1(5), 511-515. Retrieved from

http://www.ijimt.org/papers/89-M474.pdf

Agile Alliance. (2013). Continuous Deployment. Retrieved from

http://guide.Agilealliance.org/guide/cd.html

Agile Manifesto. (2001). Retrieved from www.Agilemanifesto.org

Ahmed, F., Capretz, L. F., Bouktif, S., & Campbell, P. (2012). Soft skills

requirements in software development jobs: a cross-cultural empirical study.

Journal of Systems and Information Technology, 14(1), 58-81. doi:

http://dx.doi.org/10.1108/13287261211221137

Ai, C. Y., Md Mahbubur Rahim, & Leon, M. (2007). Understanding factors

affecting success of information security risk assessment: the case of an

Australian higher educational institution. Proceedings of PACIS. Paper 74.

Retrieved from http://aisel.aisnet.org/pacis2007/74

Akarte, M. M., Surendra, N. V., Ravi, B., & Rangaraj, N. (2001). Web based casting

supplier evaluation using analytical hierarchy process. Journal of the

http://dx.doi.org/10.1109/AGILE.2010.16
http://dx.doi.org/10.1109/ESEM.2011.47
http://guide.agilealliance.org/guide/cd.html
http://www.agilemanifesto.org/
http://aisel.aisnet.org/pacis2007/74

242

Operational Research Society, 52, 511-522. Retrieved from

http://www.jstor.org/stable/253987

Alinezad, A., Seif, A., & Esfandiari, N. (2013). Supplier evaluation and selection

with QFD and FAHP in a pharmaceutical company. The International Journal

of Advanced Manufacturing Technology, 68(1-4), 355-364. doi:

10.1007/s00170-013-4733-3

Alshayeb, M. (2009). Empirical investigation of refactoring effect on software

quality. Information and Software Technology, 51(9), 1319-1326. doi:

10.1016/j.infsof.2009.04.002

Al-Tarawneh, F. H. (2014). A framework for COTS software evaluation and

selection for COTS mismatches handling and non-functional requirements.

(Unpublished doctoral dissertation). Universiti Utara Malaysia, Kedah,

Malaysia.

Alvaro, A., Almeida, E. S., & Meira, S. L. (2007). A software component maturity

model (SCMM). 33rd EUROMICRO Conference on Software Engineering and

Advanced Applications, 83-92. doi: 10.1109/EUROMICRO.2007.11

Ambler, S. (2014). Agile project planning tips. Retrieved from

http://www.ambysoft.com/essays/AgileProjectPlanning.html

Ambler, S. W. (2006). Survey says: Agile works in practice. Dr. Dobb's

Journal, 31(9), 62-64. Retrieved from http://www.drdobbs.com/architecture-

and-design/survey-says-Agile-works-in-practice/191800169?pgno=1

Ani Liza Asnawi, Gravell, A. M., & Wills, G. B. (2012a). Emergence of Agile

methods: perceptions from software practitioners in Malaysia. AGILE India,

30-39. doi: 10.1109/AgileIndia.2012.14

Ani Liza Asnawi, Gravell, A. M., & Wills, G. B., (2012b). Factor analysis:

investigating important aspects for Agile adoption in Malaysia. AGILE India,

60-63. doi: 10.1109/AgileIndia.2012.13

Ani Liza Asnawi. (2012). Investigating adoption of and success factors for Agile

software development in Malaysia. (Doctoral dissertation). Retrieved from

http://eprints.soton.ac.uk/340352/1.hasCoversheetVersion/PhD_Thesis_Ani_Li

za_Asnawi.pdf

Ani Liza Asnawi, Gravell, A. M., & Wills, G. B. (2011). Empirical investigation on

Agile methods usage: issues identified from early adopters in Malaysia. In

Sillitti, A., Hazzan, O., Bache, E., & Albaladejo, X. Agile Processes in

Software Engineering and Extreme Programming (pp. 192-207). Berlin

Heidelberg: SpringerLink Verlag.

Ares, J., Garcia, R., Juristo, N., Lopez, M., & Moreno, A. M. (2000). A more

rigorous and comprehensive approach to software process assessment.

Software Process: Improvement and Practice, 3-30. John Wiley & Sons Ltd.

doi:10.1002/(SICI)1099-1670(200003)5:1<3::AID-SPIP113>3.0.CO;2-T.

http://dx.doi.org/10.1109/EUROMICRO.2007.11
http://www.ambysoft.com/essays/agileProjectPlanning.html
http://dx.doi.org/10.1109/AgileIndia.2012.14
http://dx.doi.org/10.1109/AgileIndia.2012.13

243

Ashbaugh, D. A. (2009). Security software development assessing and managing

security risks. Boca Raton: CRC Press.

Aziz Deraman, Jamaiah Yahya, Fauziah Baharom, Amalina Farhi Ahmad Fadzlah,

& Abdul Razak Hamdan. (2007). Continuous quality improvement in software

certification environment. Proceedings of the International Conference on

Electrical Engineering and Informatics, 11-17.

Azrina, S., Safura, A. D., Zuriati, I., & Nafisah, A. (2012). Skills needed by IT

graduates as perceived by Malaysian IT professionals. Proceedings of

International Conference on Management, Economics and Finance, 224-230.

Retrieved from

http://globalresearch.com.my/proceeding/icmef2012_proceeding/018_078_IC

MEF2012_Proceeding_PG0224_0230.pdf

Bailey, K. (2008). Methods of social research (4th Edition). New York: Free Press.

Bassellier, G., & Benbasat, I. (2004). Business competence of information

technology professionals: conceptual development and influence on IT-

business partnerships. MIS quarterly, 28(4), 673-694. doi:

http://www.jstor.org/stable/25148659

Beck, K. (1999). Embracing change with extreme programming, IEEE Computer,

70-77. doi: 10.1109/2.796139

Begel, A., & Nagappan, N. (2008). Pair programming: what's in it for me?

Proceedings of the Second ACM-IEEE International Symposium on Empirical

Software Engineering and Measurement, 120-128. doi:

10.1145/1414004.1414026

Behkamal, B., Kahani, M., & Akbari, M. K. (2009). Customizing ISO 9126 quality

model for evaluation of B2B applications. Information and Software

Technology, 51(3), 599-609. doi: 10.1016/j.infsof.2008.08.001

Behzadian, M., Kazemzadeh, R. B., Albadvi, A., & Aghdasi, M. (2010).

PROMETHEE: A comprehensive literature review on methodologies and

applications. European Journal of Operational Research, 200(1), 198-215. doi:

10.1016/j.ejor.2009.01.021

Benamati, J. S., & Mahaney, R. C. (2007). Current and future entry-level IT

workforce needs in organizations. Proceedings of the 2007 ACM SIGMIS CPR

Conference on Computer Personnel Research: The Global Information

Technology Workforce, 101-104. doi: 10.1145/1235000.1235024

Benitez, J. M., Martin, J. C., & Roman, C. (2007). Using fuzzy number for

measuring quality of service in the hotel industry. Tourism Management, 28(2),

544-555. doi: 10.1016/j.tourman.2006.04.018

Bernama (2013, May 6). Malaysia sixth most vulnerable to cyber crime. The Star.

Retrieved from

http://www.thestar.com.my/News/Nation/2013/05/16/Malaysia-sixth-most-

vulnerable-to-cyber-crime/

http://dx.doi.org/10.1109/2.796139
http://dx.doi.org/10.1145/1414004.1414026
http://dx.doi.org/10.1145/1235000.1235024

244

Blankenship, J., Bussa, M., & Millett, S. (2011). Managing Agile projects with

Scrum. In Blankenship, J., Bussa, M., & Millett, S. Pro Agile .NET

Development with Scrum (pp 13-27). Apress.

Boehm, B. (2008). Making a difference in the software century. Computer, 41(3),

32-38. doi: 10.1109/MC.2008.91

Boehm, B., & Turner, R. (2005). Management challenges to implement Agile

processess in traditional development organizations, Software, 30-39. doi:

10.1109/MS.2005.129

Boehm, B., & Turner, R. (2003). Observations on balancing discipline and agility.

Proceedings of the Agile Development Conference, 32-39. doi:

 10.1109/ADC.2003.1231450

Bollinger, D., & Pictet, J. (2008). Multiple criteria decision analysis of treatment and

land-filling technologies for waste incineration residues. Omega, 36(3), 418-

428. doi: 10.1016/j.omega.2006.07.008

Bouchereau, V., & Rowlands, H. (2000). Methods and techniques to help quality

function deployment (QFD). Benchmarking: An International Journal, 7(1), 8-

20. doi:

http://www.emeraldinsight.com/doi/pdfplus/10.1108/14635770010314891

Brugha, C. (2004). Structure of Multi-Criteria Decision-Making. Journal of the

Operational Research Society, 55(11), 1156-1168. doi:

10.1057/palgrave.jors.2601777

Bulgurcu, B., Cavusoglu, H., & Benbasat, I. (2010). Information security policy

compliance: an empirical study of rationality-based beliefs and information

security awareness. MIS Quarterly, 34(3), 523-548.

Byrnes, P., & Phillips, M. (1996). Software capability evaluation, version 3.0,

method description (Technical Report No. CMU/SEI-96-TR-002). Retrieved

from

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=A

DA309160

Canfora, G., Cimitile, A., Garcia, F., Piattini, M., & Visaggio, C. A. (2007).

Evaluating performances of pair designing in industry. Journal of Systems and

Software, 80(8), 1317-1327. doi: http://dx.doi.org/10.1016/j.jss.2006.11.004

Carnegie Melon University. (2003). System Security Engineering Capability

Maturity Model SSE-CMM Version 3.0.

Cater-Steel (2004). An evaluation of software development practice and assessment-

based process improvement in small software development firms. (Doctoral

Disertation). Retrieved from https://eprints.usq.edu.au/1256/3/Cater-

Steel_PhD_%28non_USQ%29_Main_document.pdf

Cay, T., & Uyan, M. (2013). Evaluation of reallocation criteria in land consolidation

studies using the Analytic Hierarchy Process (AHP). Land Use Policy, 30(1),

541-548. doi: 10.1016/j.landusepol.2012.04.023

http://link.springer.com/search?facet-author=%22Jerrel+Blankenship%22
http://link.springer.com/search?facet-author=%22Matthew+Bussa%22
http://link.springer.com/search?facet-author=%22Scott+Millett%22
http://link.springer.com/book/10.1007/978-1-4302-3534-7
http://link.springer.com/book/10.1007/978-1-4302-3534-7
http://dx.doi.org/10.1109/MC.2008.91
http://dx.doi.org/10.1109/MS.2005.129
http://dx.doi.org/10.1109/ADC.2003.1231450
http://dx.doi.org/10.1016/j.jss.2006.11.004

245

Cerpa, N., & Verner, J. M. (2009). Why did your software fail?. Communication of

ACM, 52(12), 130-134. doi: 10.1145/1610252.161028

Chan, L. K., & Wu, M. L. (2005). A systematic approach to Quality Function

Deployment with a full illustrative example. Omega, 33(2), 119-139. doi:

10.1016/j.omega.2004.03.010

Charrate, R. N. (2001). Fair fight? Agile versus heavy methodologies, Agile

Methodologies: the great debate. Arlington: Cutter Consortium, 2(13).

Chemuturi, M. (2011). Mastering software quality assurance. Florida: J.Ross

Publishing.

Chen, C. C., Lin, M. L., Lee, Y. T., Chen, T. T., & Huang, C. L. (2012). Selection

best starting pitcher of the Chinese professional baseball league in 2010 using

AHP and TOPSIS methods. In Sambath, S. & Zhu, E. Frontiers in Computer

Education (pp. 643-649). Berlin Heidelberg: SpringerLink Verlag.

Chen, J. K., Pham, V. K., & Yuan, B. J. (2013). Adopting AHP approach on

evaluation and selection of outsourcing destination in East and Southeast Asia.

Technology Management in the IT-Driven Services (PICMET), 528-537.

Retrieved from

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6641715

Chen, J., & Chen, J. C. (2001). QFD-based technical textbook evaluation–procedure

and a case study. Journal of Industrial Technology, 18(1), 1-8.

Chin, W. W., Johnson, N., & Schwarz, A. (2008). A fast form approach to

measuring technology acceptance and other constructs. MIS Quarterly, 32(4),

687-703. Retrieved from http://www.jstor.org/stable/25148867

Chou, S. Y., Chang, Y. H., & Shen, C. Y. (2008). A fuzzy Simple Additive

Weighting system under group decision-making for facility location selection

with objective/subjective attributes. European Journal of Operational

Research, 189(1), 132-145. doi: 10.1016/j.ejor.2007.05.006

Chou, W. C., & Cheng, Y. P. (2012). A hybrid fuzzy MCDM approach for

evaluating website quality of professional accounting firms. Expert Systems

with Applications, 39(3), 2783-2793. doi: 10.1016/j.eswa.2011.08.138

Christian, T. (2010). Security requirements reusability and the SQUARE

methodology. (Technical Note No. CMU/SEI-2010-TN-027). Retrieved from

https://resources.sei.cmu.edu/asset_files/TechnicalNote/2010_004_001_15197.

pdf

CMMI Product Team. (2010). CMMI for Development V1.3. (Technical Report No.

CMU/SEI-2010-TR-033). Retrieved from

http://www.sei.cmu.edu/reports/10tr033.pdf

Cockburn, A., & Highsmith, J. (2001). Agile software development: the people

factor. IEEE Computer, 131-133. doi: 10.1109/2.963450

http://dx.doi.org/10.1109/2.963450

246

Cohen, L. (1995). Quality Function Deployment: how to make QFD work for you.

Reading, MA: Addison-Wesley.

Cohn, M., & Ford, D. (2003). Introducing an Agile process to an organization. IEEE

Computer, 36(6), 74-78. doi: 10.1109/MC.2003.1204378

Colley, J. (2009). Why secure coding is not enough: professionals' perspective. In

Pohlmann, N., Reimer, H. & Schneider, W. ISSE 2009 Securing Electronic

Business Processes (pp. 302-311). Wiesbaden: Vieweg+Teubner Verlag.

Cooper, D. R., & Schindler, P. S. (2011). Business research methods. New York:

McGraw-Hill/Irwin.

Coram, M., & Bohner, S. (2005). The impact of Agile methods on software project

management. 12th IEEE International Conference and Workshops on the

Engineering of Computer-Based Systems, 363-370. doi:

10.1109/ECBS.2005.68

Corbucci, H., Goldman, A., Katayama, E., Kon, F., Melo, C., & Santos, V. (2011).

Genesis and evolution of the Agile movement in Brazil- perspective from

academia and industry. 25th Brazilian Symposium on Software Engineering,

98-107. doi: 10.1109/SBES.2011.26

Coyle, G. (2004). The Analytic Hierarchy Process (AHP). Practical strategy:

Structured tools and techniques. Retrieved from

http://www.booksites.net/download/coyle/student_files/AHP_Technique.pdf

Crawford, G., & Williams, C. (1985). A note on the analysis of subjective judgment

matrices. Journal of Mathematical Psychology, 29(4), 387-405. doi:

10.1016/0022-2496(85)90002-1

Crostack, H. A., Hackenbroich, I., Refflinghaus, R., & Winter, D. (2007).

Investigations into more exact weightings of customer demands in QFD. Asian

Journal on Quality, 8(3), 71-80. doi:

http://dx.doi.org/10.1108/15982688200700026

Curtis, B., Hefley, B., & Miller, S. (2009). People capability maturity model.

(Technical Report No. CMU/SEI-2009-TR-003). Retrieved from

http://www.sei.cmu.edu/reports/09tr003.pdf

Dagdeviren, M. (2008). Decision making in equipment selection: an integrated

approach with AHP and PROMETHEE. Journal of Intelligent Manufacturing,

19(4), 397-406. doi: 10.1007/s10845-008-0091-7

Dai, J., & Blackhurst, J. (2012). A four-phase AHP-QFD approach for supplier

assessment: a sustainability perspective. International Journal of Production

Research, 50(19), 5474-5490. doi: 10.1080/00207543.2011.639396

Daneva, M., & Ahituv, N. (2011). What practitioners think of inter-organizational

ERP requirements engineering practices: focus group results. International

Journal of Information System Modeling and Design, 2(3), 49-74. doi:

10.4018/jismd.2011070103

http://dx.doi.org/10.1109/MC.2003.1204378
http://dx.doi.org/10.1109/ECBS.2005.68
http://dx.doi.org/10.1109/SBES.2011.26

247

Davis, N. (2013). Secure software development lifecycle process. Retrieved from

https://buildsecurityin.us-cert.gov/articles/knowledge/sdlc-process/secure-

software-development-life-cycle-processes

Davis, N. (2005). Secure software development lifecycle processes: a technology

scouting report. Retrieved from

http://www.dtic.mil/dtic/tr/fulltext/u2/a447047.pdf

De Felice, F., & Petrillo, A. (2011). A multiple choice decision analysis: an

integrated QFD-AHP model for the assessment of customer needs.

International Journal of Engineering, Science and Technology, 2(9). Retrieved

from http://www.ajol.info/index.php/ijest/article/view/63849/51665

Deming, W. (1982). Out of the crisis. Cambridge, MA: MIT Center for Advanced

Engineering Study.

Desai, C., Janzen, D. S., & Clements, J. (2009). Implications of integrating test-

driven development into CS1/CS2 curricula. SIGCSE Bull., 41(1), 148-152.

doi: 10.1145/1539024.1508921

De Win, B., Scandariato, R., Buyens, K., Gregoire, J., & Joosen, W. (2009). On the

secure software development process: CLASP, SDL and Touchpoints

compared. Information and Software Technology, 51(7), 1152-1171. doi:

10.1016/j.infsof.2008.01.010

Diaz, J., Garbajosa, J., & Calvo-Manzano, J. A. (2009). Mapping CMMI level 2 to

Scrum practices: an experience report. Software Process Improvement, 93-104.

doi: 10.1007/978-3-642-04133-4_8

Doernhoefer. (2006). Surfing the Net for Software Engineering notes. SIGSOFT

Software Engineering Notes, 31(1), 5–13. doi: 10.1145/1874391.1874395

Doherty, M. J. (2012). Examining project manager insights of Agile and traditional

success factors for Information Technology projects: A Q-Methodology study.

(Report from Doctoral Dissertation). Retrieved from

http://www.asapm.org/articles//MJDoherty.pdf

Dunkerley, K. D., & Tejay, G. (2011). A confirmatory analysis of information

systems security success factors. Hawaii International Conference on System

Sciences, 1530-1605. doi: 10.1109/HICSS.2011.5

Dutta, A., & McCrohan, K. (2002). Management’s role in information security in a

cyber economy. California Management Review, 45 (1). Retrieved from

http://irps.ucsd.edu/assets/001/501280.pdf

Dyba, T., & Dingsoyr, T. (2008). Empirical studies of Agile software development:

a systematic review. Informatics Software Technology, 50(9-10), 833-859. doi:

10.1016/j.infsof.2008.01.006

Dyba, T., Dingsoyr, T., & Moe, N. B. (2014). Agile project management. In Ruhe,

G. & Wohlin, C. Software Project Management in a Changing World (pp. 277-

300). Springer Berlin Heidelberg.

http://dx.doi.org/10.1016/j.infsof.2008.01.010
http://dx.doi.org/10.1109/HICSS.2011.5

248

Dyer, R. F., & Forman, E. H. (1992). Group decision support with the Analytic

Hierarchy Process. Decision Support Systems, 8(2), 99-124. doi: 10.1016/0167-

9236(92)90003-8

Eckman, M. H. (1989). A counterpoint to the Analytic Hierarchy Process. Medical

Decision Making, 9(1), 57–58. doi: 10.1177/0272989X8900900110

Elahi, G., Yu, E., Tong, L., & Lin, L. (2011). Security requirements engineering in

the wild: a survey of common practices. IEEE Annual Computer Software and

Applications Conference, 314-319. doi: 10.1109/COMPSAC.2011.48

El Emam, K., & Birk, A. (2000). Validating the ISO/IEC 15504 measures of

software development process capability. Journal of Systems and Software,

51(2), 119-149. doi: 10.1016/S0164-1212(99)00117-X

Erdogan, G., Meland, P.H., & Mathieson, D. (2010). Security testing in Agile web

application development-a case study using the east methodology. In Sillitti,

A., Martin, A., Xiao., F. W., & Whitworth, E. Agile Processes in Software

Engineering and Extreme Programming (pp. 14-27). Berlin Heidelberg:

SpringerLink Verlag.

Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile Modeling, Agile software

development, and Extreme Programming: the state of research. Journal of

Database Management, 16(4), 88-100. doi: 10.4018/jdm.2005100105

Ertugrul, I., & Karakasoglu, N. (2009). Performance evaluation of Turkish cement

firms with Fuzzy Analytic Hierarchy Process and TOPSIS methods. Expert

Systems with Applications, 36(1), 702-715. doi: 10.1016/j.eswa.2007.10.014

Essafi, M., Labed, L., & Ghezala, H. B. (2006). S2D-ProM: A strategy oriented

process model for secure software development. International Conference on

Software Engineering Advances. doi: 10.1109/ICSEA.2007.59.

Evans, R., Tsohou, A., Tryfonas, T., & Morgan, T. (2010). Engineering secure

systems with ISO 26702 and 27001. 5th International Conference on System of

Systems Engineering (SoSE), 1-6. doi: 10.1109/SYSOSE.2010.5544065

Fabbrini, F., Fusani, M., & Lami, G. (2006). Basic concepts of software certification.

First International Workshop on Software Certification. Retrieved from

http://www.cas.mcmaster.ca/sqrl/papers/SQRLreport37.pdf#page=10

Fauziah Baharom, Jamaiah Yahya, Aziz Deraman, & Abdul Razak Hamdan. (2011).

SPQF: Software Process Quality Factor for software process assessment and

certification. International Conference on Electrical Engineering and

Informatics, 1-7. doi: 10.1109/ICEEI.2011.6021526

Fauziah Baharom. (2008). A software certification model based on development

process quality assessment. (Unpublished doctoral dissertation). Universiti

Kebangsaan Malaysia, Selangor, Malaysia.

Fauziah Baharom, Aziz Deraman, & Abdul Razak Hamdan. (2007). Introducing

Software Process Assessment and Certification (SPAC) Model. The 3rd

Malaysian Software Engineering Conference, 59-63.

http://dx.doi.org/10.1109/COMPSAC.2011.48
http://www.springerlink.com/index/R51628787UR30W49.pdf
http://www.springerlink.com/index/R51628787UR30W49.pdf
http://link.springer.com/book/10.1007/978-3-642-13054-0
http://link.springer.com/book/10.1007/978-3-642-13054-0
http://ieeexplore.ieee.org.eserv.uum.edu.my/xpl/mostRecentIssue.jsp?punumber=4299876
http://dx.doi.org/10.1109/ICSEA.2007.59
http://dx.doi.org/10.1109/SYSOSE.2010.5544065
http://dx.doi.org/10.1109/ICEEI.2011.6021526

249

Fauziah Baharom, Aziz Deraman, & Abdul Razak Hamdan. (2005). A survey on the

current practices of software development process in Malaysia. Journal of ICT,

57-76.

Fernandes, J. M., & Almeida, M. (2010). Classification and comparison of Agile

methods. Seventh International Conference on the Quality of Information and

Communications Technology, 391-396. doi: 10.1109/QUATIC.2010.71

Figueira, J., Greco, S., & Ehrgott, M. (2005). Multiple Criteria Decision Analysis

state of the art of surveys. New York: Springer.

Fisher, C. M. (2007). Researching and writing a dissertation: a guidebook for

business students. England: Prentice Hall.

Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customising Agile methods to

software practices at Intel Shannon. European Journal of Information System,

15, 200-213. doi: 10.1057/palgrave.ejis.3000605.

Forman, E., & Peniwati, K. (1998). Aggregating individual judgments and priorities

with the Analytic Hierarchy Process. European Journal of Operational

Research, 108, 165–169. doi: 10.1016/S0377-2217(97)00244-0

Fowler M. (1999) Refactoring improving the design of existing code. Westford:

Addison-Wesley.

Franca, A. C. C., Silva, F. Q. B., & Sousa Mariz, L. M. R. (2010). An empirical

study on the relationship between the use of Agile practices and the success of

Scrum projects. Proceedings of the 2010 ACM-IEEE International Symposium

on Empirical Software Engineering and Measurement, 1-4. doi:

10.1145/1852786.1852835

Friborg, O., Martinussen, M., & Rosenvinge, J. H. (2006). Likert-based vs. semantic

differential-based scorings of positive psychological constructs: A

psychometric comparison of two versions of a scale measuring resilience.

Personality and Individual Differences, 40(5), 873-884. doi:

10.1016/j.paid.2005.08.015

Fulford, H., & Doherty, N. F. (2003). The application of information security

policies in large UK-based organizations: an exploratory investigation.

Information Management & Computer Security, 11(3), 106-114. doi:

http://dx.doi.org/10.1108/09685220310480381

Futcher, L., & Von Solms, R. (2007). SecSDM: A Model for Integrating Security

into the Software Development Life Cycle. Fifth World Conference on

Information Security Education, 41-48. doi: 10.1007/978-0-387-73269-5_6

Gallagher, K. P., Goles, T., Hawk, S., Simon, J. C., Kaiser, K. M., Beath, C. M., &

Martz, W. B. (2011). A typology of requisite skills for Information Technology

professionals. 44th Hawaii International Conference on System Sciences, 1-10.

doi: 10.1109/HICSS.2011.39

Galin, D. (2004). Software Quality Assurance. England: Pearson Education Limited.

http://dx.doi.org/10.1109/QUATIC.2010.71
http://dx.doi.org/10.1016/S0377-2217(97)00244-0
http://dx.doi.org/10.1016/j.paid.2005.08.015

250

Gallivan, M. J., Truex, D. P., & Kvasny, L. (2004). Changing patterns in IT skill sets

1988-2003: a content analysis of classified advertising. ACM SIGMIS

Database, 35(3), 64-87. doi: 10.1145/1017114.1017121

Gandomani, T. J., & Hazura Zulzalil. (2013). Compatibility of Agile software

development methods and CMMI. Indian Journal of Science and

Technology, 6(8), 5089-5094. doi: 10.17485/ijst/2013/v6i8/36349

Garibay, C., Gutierrez, H., & Figueroa, A. (2010). Evaluation of a digital library by

means of quality function deployment (QFD) and the Kano model. The Journal

of Academic Librarianship, 36(2), 125-132. doi: 10.1016/j.acalib.2010.01.002

Gay, L. R., Mills, G. E., & Airasian, P. (2006). Educational research: Competencies

for Analysis and Application (8th Edition). Upper Saddle River, NJ: Pearson

Merrill Prentice Hall.

Geer, D. (2010). Are companies actually using secure development life cycles?

Computer, 43(6), 12-16. doi:

http://doi.ieeecomputersociety.org/10.1109/MC.2010.159

George, B., & Williams, L. (2004). A structured experiment of Test-Driven

Development. Information and Software Technology, 46(5), 337-342. doi:

10.1016/j.infsof.2003.09.011

Goerigk, W., & Hoffmann, U. (1999). Rigorous compiler implementation

correctness: how to prove the real thing correct. In Hutter, D., Stephan, W.,

Traverso, P. & Ullmann, M. Applied Formal Methods-FM-Trends 98 (pp. 122-

136). Berlin Heidelberg: SpringerLink Verlag.

Goertze, K. M. (2009). Introduction to software security. Retrieved from

https://buildsecurityin.us-cert.gov/introduction-software-security

Gonzalez, L. S., Rubio, F. G., Gonzalez, F. R., & Velthuis, M. P. (2010).

Measurement in business processes: a systematic review. Business Process

Management Journal, 16(1), 114-134. doi:

http://dx.doi.org/10.1108/14637151011017976

Guceglioglu, A., & Demirors, O. (2005). Using software quality characteristics to

measure business process quality. Business Process Management, 374-379.

doi: 10.1007/11538394_26

Gumus, A. T. (2009). Evaluation of hazardous waste transportation firms by using a

two step fuzzy-AHP and TOPSIS methodology. Expert Systems with

Applications, 36(2), 4067-4074. doi: 10.1016/j.eswa.2008.03.013

Gumus, A. T., Yayla, A. Y., & Gurbuz, K. (2011). Performance evaluation of ERP

implementation by using fuzzy MCDM. International Symposium on

Innovations in Intelligent Systems and Applications. doi:

10.1109/INISTA.2011.5946114

Gupta, A., & Jalote, P. (2007). An experimental evaluation of the effectiveness and

efficiency of the Test Driven Development. First International Symposium on

http://dx.doi.org/10.1145/1017114.1017121
http://dx.doi.org/10.17485/ijst%2F2013%2Fv6i8%2F36349
http://doi.ieeecomputersociety.org/10.1109/MC.2010.159
http://dx.doi.org/10.1109/INISTA.2011.5946114

251

Empirical Software Engineering and Measurement, 285 – 294. doi:

 10.1109/ESEM.2007.41

Guzzo, R. A., & Dickson M. W. (1996) Teams in organizations: recent research on

performance and effectiveness. Annual Review of Psychology, 47, 307-338.

doi: 10.1146/annurev.psych.47.1.307

Hajkowicz, S. A., McDonald, G. T., & Smith, P. N. (2000). An evaluation of

multiple objective decision support weighting techniques in natural resource

management. Journal of Environmental Planning and Management, 43(4),

505-518. doi: 10.1080/713676575

Hall, J. H., Sarkani, S., & Mazzuchi, T. A. (2011). Impacts of organizational

capabilities in information security. Information Management & Computer

Security, 19(3), 155-176. doi: http://dx.doi.org/10.1108/09685221111153546

Hallowell, M. R., & Gambatese, J. A. (2010). Qualitative research: application of the

Delphi method to CEM research. Journal of construction engineering and

management, 136(1), 99-107. doi: 10.1061/_ASCE_CO.1943-7862.0000137

Hazzan, O., & Dubinsky, Y. (2009). Workshop on human aspects of Software

Engineering. Proceeding Of The 24th ACM SIGPLAN Conference Companion

on Object Oriented Programming Systems Languages and Applications, 725-

726. doi: 10.1145/1639950.1639984

Heck, P., Klabbers, M., & Eekelen, M. (2010). A software product certification

model. Software Quality Journal, 18(1)37-55. doi: 10.1007/s11219-009-9080-0

Hierholzer, A., Herzwurm, G., & Schlang, H. (2003). Applying QFD for software

process improvement at SAP AG, Walldorf, Germany. Proceedings of the

Third Workshop on Software Quality, 85-95. Retrieved from

www.researchgate.net/publication/2817508_Applying_QFD_For_Software_Pr

ocess_Improvement_At_SAP_AG_Walldorf_Germany/file/9fcfd50cb1d481fcd

7.pdf

Ho, W. (2008). Integrated Analytic Hierarchy Process and its applications–a

literature review. European Journal of Operational Research, 186(1), 211-228.

doi: 10.1016/j.ejor.2007.01.004

Hoda, R., Noble, J., & Marshall, S. (2011). The impact of inadequate customer

collaboration on self-organizing Agile teams. Information and Software

Technology, 53(5), 521-534. doi: 10.1016/j.infsof.2010.10.009

Hoggerl, M., & Sehorz, B. (2006). An introduction to CMMI and its assessment

procedure. Seminar for Computer Science, University of Salzburg, 1-17.

Retrieved from

http://softwareresearch.sbg.ac.at/fileadmin/src/docs/teaching/WS05/SaI/Paper_

Hoeggerl_Sehorz.pdf

Howard, M., & Lipner, S. (2006). The Security Development Lifecycle SDL: a

process for developing demonstrably more secure software. Retrieved from

http://dx.doi.org/10.1109/ESEM.2007.41

252

download.microsoft.com/download/f/c/7/fc7d048b-b7a5-4add-be2c-

baaee38091e3/9780735622142_SecurityDevLifecycle_ch01.pdf

Hsiao, S. W. (2002). Concurrent design method for developing a new product.

International Journal of Industrial Ergonomics, 29(1), 41-55. doi:

10.1016/S0169-8141(01)00048-8

Huang, L., & Holcombe, M. (2009). Empirical investigation towards the

effectiveness of test first programming. Information and Software Technology,

51(1), 182-194. doi: http://dx.doi.org/10.1016/j.infsof.2008.03.007,

Hui, H., Dongyan, L., Min, Z., Weizhe., & Dongmin, G. (2014). A coverage and

slicing dependencies analysis for seeking software security defects. The

Scientific World Journal. doi: http://dx.doi.org/10.1155/2014/463912

Humphrey, W. (1989). Managing the software process. Mass: Addison-Wesley.

Humphreys, E. (2008). Information security management standards: compliance,

governance and risk management. Information Security Technical Report,

13(4), 247-255. doi: 10.1016/j.istr.2008.10.010

Hwang, C., & Yoon, K. (1981). Multiple Attribute Decision Making: methods and

application. New York: Springer

Isawi, A. B. M. (2011). Software development process improvement for small

Palestinian software development companies. (Master’s thesis). Retrieved from

http://scholar.najah.edu/sites/default/files/all-

thesis/software_development_process_improvement_for_small_palestinian_sof

tware_development_companies.pdf

ISECT (2015). Information security standards. Retrieved from

http://www.iso27001security.com

Ishizaka, A., & Labib, A. (2011). Review of the main developments in the Analytic

Hierarchy Process. Expert Systems with Applications, 38(11), 14336-14345.

doi: 10.1016/j.eswa.2011.04.143

Ismail, W., Abedlazeez, N., & Hussin, Z. (2011). Epistemological beliefs of students

at high schools: a survey study in Malaysia. OIDA International Journal

of Sustainable Development, 2(08), 39-46. Retrieved from

http://ssrn.com/abstract=1974094

ISO (2015). ISO Standards. Retrieved from https://www.iso.org

Jadhav, A. S., & Sonar, R. M. (2008) A hybrid system for selection of the software

packages. International Conference on Emerging Trends in Engineering and

Technology, 337-342. doi: 10.1109/ICETET.2008.7

Jain, V., & Raj, T. (2013). Evaluation of flexibility in FMS using SAW and WPM.

Decision Science Letters, 2(4), 223-230. doi: 10.5267/j.dsl.2013.06.003

Jamaiah Haji Yahya, Fauziah Baharom, Aziz Deraman, & Abdul Razak. (2005). A

conceptual framework for software certification. KUTPM Journal of

Technology and Management, 3(2), 99-111.

http://dx.doi.org/10.1016/j.infsof.2008.03.007
http://dx.doi.org/10.1155/2014/463912
https://www.iso.org/
http://dx.doi.org/10.1109/ICETET.2008.7

253

Jamaiah Haji Yahya, Aziz Deraman, & Abdul Razak Hamdan. (2006). A conceptual

model for software product certification process, Proceedings of Conference on

Information Science, Technology and Management.

Jamaiah Yahya. (2007). The development of software certification model based on

product quality approach. (Unpublished doctoral dissertation). Universiti

Kebangsaan Malaysia, Selangor, Malaysia.

Jiang, J. J., & Klein, G. (1995). Requisite technical skills for technical support

analysts: A survey. Computer Personnel, 16(2), 12-20. doi:

10.1145/202896.202899 .

Jones, C., & Bonsignour, O. (2012). The economics of software quality. Boston:

Pearson Education.

Joshi, R., Banwet, D., & Shankar, R. (2011). A Delphi-AHP-TOPSIS based

benchmarking framework for performance improvement of a cold chain.

Expert Systems with Applications, 38(8), 10170-10182. doi:

10.1016/j.eswa.2011.02.072

Julia, H. A., Barnum, S., Ellison, R. J., McGraw, G., & Mead, N. R. (2008).

Software security engineering. Boston: Addison-Wesley.

Jung, H. W. (2001). Rating the process attribute utilizing AHP in SPICE‐based

process assessments. Software Process: Improvement and Practice, 6(2), 111-

122. doi: 10.1002/spip.139

Jyothi, V. E., & Rao, K. N. (2011). Effective implementation of Agile practices.

International Journal of Advanced Computer Science and Applications, 2(3),

41-48. Retrieved from

http://www.Agilemethod.csie.ncu.edu.tw/Agilemethod/download/2011papers/2

011%20Effective%20Implementation%20of%20Agile%20Practices%20-

%20Ingenious%20and%20Organized%20Theoretical%20Framework/1005220

15%20%E8%94%A1%E6%9D%B1%E7%A9%8E.pdf

Kankanhalli, A., Teo, H. H., Tan, B. C. Y., & Wei, K. K. (2003). An integrative

study of information systems security effectiveness. International Journal of

Information Management, 23(2), 139-154. doi:

http://dx.doi.org/10.1016/S0268-4012(02)00105-6

Karpati, P., Sindre, G., & Opdahl, A. L. (2011). Characterising and analysing

security requirements modelling initiatives. Sixth International Conference

on Availability, Reliability and Security, 710-715. doi:

10.1109/ARES.2011.113

Kazemi, M., Khajouei, H., & Nasrabadi, H. (2012). Evaluation of information

security management system success factors: case study of municipal

organization. African Journal of Business Management, 6(14), 4982-4989. doi:

10.5897/AJBM11.2323

Khalane, T., & Tanner, M. (2013). Software quality assurance in Scrum: The need

for concrete guidance on SQA strategies in meeting user expectations.

http://dx.doi.org/10.1145/202896.202899
http://dx.doi.org/10.1016/S0268-4012(02)00105-6
http://dx.doi.org/10.1109/ARES.2011.113

254

International Conference on Adaptive Science and Technology, 1-6. doi:

10.1109/ICASTech.2013.6707499

Khan, M., & Kukalis, S. (1990). MIS professionals: education and performance.

Information & Management, 19(4), 249-255. doi: 10.1016/0378-

7206(90)90034-F

Knapp, K. J., Marshall, T. E., Rainer, R. K., & Ford, F. N. (2006). Information

security: management's effect on culture and policy. Information Management

& Computer Security, 14(1), 24-36. doi:

http://dx.doi.org/10.1108/09685220610648355

Koi, K. L. (2012, January 11). 15200 cases of cyber crimes last year. New Straits

Times. Retrieved from http://www.nst.com.my/opinion/columnist/15-200-

cases-of-cyber-crimes-last-year-1.30592

Komuro, M., & Komoda, N. (2008). An explanation model for quality improvement

effect of peer reviews. International Conference on Computational Intelligence

for Modelling Control & Automation. 1159-1164. doi:

10.1109/CIMCA.2008.187

Kontio, J., Bragge, J., & Lehtola, L. (2008). The focus group method as an empirical

tool in software engineering. In Shull, F., Singer, J., & Sjoberg, D. D. K. Guide

to advanced empirical software engineering (pp. 93-116). London:

SpringerLink Verlag.

Kontio, J., Lehtola, L., & Bragge, J. (2004). Using the focus group method in

software engineering: obtaining practitioner and user experiences.

International Symposium on Empirical Software Engineering, 271-280. doi:

10.1109/ISESE.2004.1334914

Kontos, T. D., Komilis, D. P., & Halvadakis, C. P. (2005). Siting MSW landfills

with a spatial multiple criteria analysis methodology. Waste management,

25(8), 818-832. doi: 10.1016/j.wasman.2005.04.002

Koskela, J. (2003). Software configuration management in Agile methods. (Research

Report No. 514). Retrieved from

http://www2.vtt.fi/inf/pdf/publications/2003/P514.pdf

Koskosas, I. V., & Paul, R. J. (2004). The interrelationship and effect of culture and

risk communication in setting internet banking security goals. Proceedings of

the 6th International Conference on Electronic Commerce, 341-350. doi:

10.1145/1052220.1052264

Kotulic, A. G., & Clark, J. G. (2004). Why there aren’t more information security

research studies. Information & Management, 41(5), 597-607. doi:

10.1016/j.im.2003.08.001

Kraemer, S., Carayon, P., & Clem, J. (2009). Human and organizational factors in

computer and information security: pathways to vulnerabilities. Computers &

Security, 28(7), 509-520. doi: 10.1016/j.cose.2009.04.006

http://dx.doi.org/10.1109/ICASTech.2013.6707499
http://www.nst.com.my/opinion/columnist/15-200-cases-of-cyber-crimes-last-year-1.30592
http://www.nst.com.my/opinion/columnist/15-200-cases-of-cyber-crimes-last-year-1.30592
http://ieeexplore.ieee.org.eserv.uum.edu.my/xpl/mostRecentIssue.jsp?punumber=5172579
http://ieeexplore.ieee.org.eserv.uum.edu.my/xpl/mostRecentIssue.jsp?punumber=5172579
http://dx.doi.org/10.1109/CIMCA.2008.187
http://dx.doi.org/10.1109/ISESE.2004.1334914
http://dx.doi.org/10.1145/1052220.1052264

255

Kraemer, S., & Carayon, P. (2007). Human errors and violations in computer and

information security: The viewpoint of network administrators and security

specialists. Applied Ergonomics, 38(2), 143-154. doi:

10.1016/j.apergo.2006.03.010

Kraemer, S., & Carayon, P. (2005). Computer and information security culture:

findings from two studies. Proceedings of the Human Factors and Ergonomics

Society Annual Meeting, 1483-1488. doi: 10.1177/154193120504901605

Kroeger, T. A. (2011). Understanding the characteristics of quality for software

engineering processes. (Doctoral dissertation). Retrieved from

http://ura.unisa.edu.au/view/action/singleViewer.do?dvs=1412756066477~544

&locale=en_US&VIEWER_URL=/view/action/singleViewer.do?&DELIVER

Y_RULE_ID=10&adjacency=N&application=DIGITOOL-

3&frameId=1&usePid1=true&usePid2=true

Krueger, R. A. (1994). Focus group a practical guide for applied research.

Thousand Oaks: SAGE Publications.

Krueger, R. A., & Casey M. A. (2008). Focus groups a practical guide for applied

research. Thousand Oaks: Sage Publications.

Kumar, M., Cheng, N., Nadirah Rodzi, & Natasya Joibi. (2014, September 30).

Gang steals RM3m from ATMs. The Star Online. Retrieved from

http://www.thestar.com.my/News/Nation/2014/09/30/Gang-steals-RM3m-

from-ATMs-Thieves-use-malware-to-bypass-authentication-process/

Kunda, D. (2003). STACE: Social technical approach to COTS software evaluation.

In Cechich, A., Piayyini, M., & Vallecillo, A. Component-Based Software

Quality (pp. 64-84). Berlin Heidelberg: Springer-Verlag.

Lai, V. S., Wong, B. K., & Cheung, W. (2002). Group decision making in a multiple

criteria environment: a case using AHP in software selection. European

Journal of Operational Research, 137, 134-144. doi: 10.1016/S0377-

2217(01)00084-4

Lai-Kow, C., & Ming-Lu, W. (2002). Quality Function Deployment: a literature

review. European Journal of Operational Research, 143(3), 463-497. doi:

10.1016/S0377-2217(02)00178-9

Lami, G., & Falcini, F. (2009). Is ISO/IEC 15504 Applicable to Agile methods? In

Abrahamsson, P., Marchesi, M., & Maurer, F. Agile Processes in Software

Engineering and Extreme Programming (pp. 130-135). Berlin Heidelberg:

SpringerLink Verlag.

Lan, C., & Ramesh, B. (2008). Agile requirements engineering practices: an

empirical study. IEEE Software, 60-67. doi: 10.1109/MS.2008.1

Lane, T. (2007). Information security management in Australian universities-an

exploratory analysis. (Master’s thesis). Retrieved from

http://eprints.qut.edu.au/16486/1/Tim_Lane_Thesis.pdf

http://link.springer.com/book/10.1007/b11721
http://link.springer.com/book/10.1007/b11721
http://dx.doi.org/10.1109/MS.2008.1

256

LaReau, B. S. (2006). An engineer’s primer on information security [White Paper].

Retrieved from Brent Scott LeReau:

http://w.designsbylareau.com/pdf/AnEngineersPrimerOnInformationSecurity_.

pdf

Lascelles, D., & Peacock, R. (1996). Self-assessment for business excellence.

Berkshire: McGraw-Hill.

Lee, H. B. (2011, July 26). RM 63 juta rugi angkara jenayah siber. Utusan Malaysia.

Retrieved from

http://www.utusan.com.my/utusan/info.asp?y=2011&dt=0726&pub=Utusan_

Malaysia&sec=Jenayah&pg=je_01.htm

Lee, G., & Xia, W. (2010). Toward Agile: An integrated analysis of quantitative and

qualitative field data on software development agility. MIS Quarterly, 34(1),

87-114.

Leitheiser, R. L. (1992). MIS skills for the 1990s: a survey of MIS managers'

perceptions. Journal of Management Information Systems, 9(1), 69-91.

Retrieved from

http://www.jstor.org/discover/10.2307/40398019?uid=3738672&uid=2&uid=4

&sid=21104154371041

Li, J., Moe, N. B., & Dyba, T. (2010). Transition from a plan-driven process to

Scrum: a longitudinal case study on software quality. Proceedings of the 2010

ACM-IEEE International Symposium on Empirical Software Engineering and

Measurement. doi: 10.1145/1852786.1852804

Liamputtong, P. (2011). Focus group methodology principles and practices.

London: SAGE Publication.

Liberatore, M. J., & Nydick, R. L. (1997). Group decision making in higher

education using the Analytic Hierarchy Process. In Liberatore, M. & Nydick,

R. L. Research in Higher Education (pp. 593-614). Netherlands: Springer.

Limaye, M. (2011). Software Quality Assurance. New Delhi: Tata McGraw-Hill.

Lin, H., Y., Hsu, P. Y., & Sheen, G. J. (2007). A fuzzy-based decision-making

procedure for data warehouse system selection. Expert systems with

applications, 32(3), 939-953. doi: 10.1016/j.eswa.2006.01.031

Linberg, K. R. (1999). Software developer perceptions about software project

failure: a case study. The Journal of Systems and Software (49): 177-192. doi:

10.1016/S0164-1212(99)00094-1

Lindstrom, L., & Jeffries, R. (2004). Extreme programming and Agile software

development methodologies. Information Systems Management, 21(3), 41-52.

doi: 10.1201/1078/44432.21.3.20040601/82476.7

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F., . . . Zelkowitz,

M. (2002). Empirical findings in Agile methods. In Wells, D. & Williams, L.

Proceedings of Extreme Programming and Agile Methods, Extreme

http://www.utusan.com.my/utusan/info.asp?y=2011&dt=0726&pub=Utusan_Malaysia&sec=Jenayah&pg=je_01.htm
http://www.utusan.com.my/utusan/info.asp?y=2011&dt=0726&pub=Utusan_Malaysia&sec=Jenayah&pg=je_01.htm
http://dx.doi.org/10.1145/1852786.1852804
http://link.springer.com/book/10.1007/3-540-45672-4

257

Programming and Agile Methods — XP/Agile Universe 2002 (pp. 197-207).

Berlin Heidelberg: Springer.

Linkov, I., & Moberg, E. (2012). Multi-criteria decision analysis environmental

applications and case studies. New York: Taylor & Francis Group.

Lipner, S. (2006). The trustworthy computing security development lifecycle. 20th

Annual Computer Security Applications Conference, 2-13. doi:

10.1109/CSAC.2004.41

Liu, J., Wang, Q., & Gao, L. (2010). Application of Agile requirement engineering

in modest-sized information systems development. Second WRI World

Congress on Software Engineering, 207-210. doi: 10.1109/WCSE.2010.105

Litecky, C., Igou, A. J., & Aken, A. (2012). Skills in the management oriented IS

and enterprise system job markets. Proceedings of the 50th annual conference

on Computers and People Research, 35-44. doi: 10.1145/2214091.2214104

Livermore, J. A. (2007). Factors that impact implementing an Agile software

development methodology. Proceedings of SoutheastCon, 82-86. doi:

 10.1109/SECON.2007.342860

Lohan, G., Conboy, K., & Lang, M. (2010). Beyond budgeting and Agile software

development: A conceptual framework for the performance management of

Agile software development teams. International Journal of Information

Systems, 1-13. Retrieved from

http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1158&context=icis2010_sub

missions

Ludewig, J. (2000). 10 Years Back, 10 Years Ahead. In Wilhelm, R. Software

Engineering in the Years 2000 Minus and Plus Ten (pp. 102-111). Berlin

Heidelberg: Springer Berlin Heidelberg.

Mach, P., & Guaqueta, J. (2001). Utilization of the seven Ishikawa tools (old tools)

in the Six Sigma strategy. 24th International Spring Seminar on Electronics

Technology: Concurrent Engineering in Electronic Packaging, 51-55. doi:

10.1109/ISSE.2001.931009

Macharis, C., Springael, J., De Brucker, K., & Verbeke, A. (2004). PROMETHEE

and AHP: The design of operational synergies in multicriteria analysis:

strengthening PROMETHEE with ideas of AHP. European Journal of

Operational Research, 153(2), 307-317. doi: 10.1016/S0377-2217(03)00153-X

Mahnic, V., & Hovelja, T. (2012). On using planning poker for estimating user

stories. Journal of Systems and Software, 85(9), 2086-2095. doi:

10.1016/j.jss.2012.04.005

Malczewski, J. (1999). GIS and multicriteria decision analysis. New York: John

Wiley & Sons.

Marcal, A. S. C., de Freitas, B. C. C., Soares, F. S. F., Furtado, M. E. S., Maciel, T.

M., & Belchior, A. D. (2008). Blending Scrum practices and CMMI project

management process areas. In Marcal, A. S. C., de Freitas, B. C., Soares, F. S.

http://link.springer.com/book/10.1007/3-540-45672-4
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9473
http://dx.doi.org/10.1109/CSAC.2004.41
http://dx.doi.org/10.1145/2214091.2214104
http://dx.doi.org/10.1109/SECON.2007.342860
http://dx.doi.org/10.1109/ISSE.2001.931009
http://dx.doi.org/10.1016/j.jss.2012.04.005

258

F., Furtado, M. E. S., Maciel, T. M., & Belchior, A. D. Innovations in Systems

and Software Engineering (pp. 17-29). Springer-Verlag

Marjani, M. E., Soh, K. G., Majid, M., Mohd Sofian, O. F., Nur Surayyah, M. A., &

Mohd Rizam, A. B. (2012). Usage of group decision making approach in

karate agility test selection. Proceedings of the International Symposium on the

Analytic Hierarchy Process, 1-11. Retrieved from

http://www.isahp.org/uploads/59.pdf

Marra, R. J. (2009, August 17). Three men indicted for hacking into five corporate

entities, including heartland, 7-Eleven, and Hannaford, with over 130 million

credit and debit card numbers stolen. United States Department of Justice

Online News. Retrieved from http://www.usdoj.gov/usao/nj/press/

Martakis, A., & Daneva, M. (2013). Handling requirements dependencies in Agile

projects: A focus group with Agile software development practitioners. Seventh

International Conference on Research Challenges in Information Science, 1-

11. doi: 10.1109/RCIS.2013.6577679

Maruping, L. M., Venkatesh, V., & Agarwal, R. (2009). A control theory perspective

on Agile methodology use and changing user requirements. Information

Systems Research, 20(3), 377-399. doi: 10.1287/isre.1090.0238

Mas, A., Fluxa, B., & Amengual, E. (2012). Lessons learned from an ISO/IEC

15504 SPI programme in a company. Journal of Software: Evolution and

Process, 24(5), 493-500. doi: 10.1002/smr.501

Maurer, F., & Martel, S. (2002). Extreme programming. rapid development for Web-

based applications. Internet Computing, 6(1), 86-90. doi:

10.1109/4236.989006

Maxville, V., Armarego, J., & Lam, C. P. (2004). Intelligent component selection.

Proceedings of Computer Software and Applications Conference, 244-249. doi:

10.1109/CMPSAC.2004.1342839

Mazni Omar, Sharifah-Lailee Abdullah, & Azman Yassin. (2011). The impact of

Agile approach on software engineering teams. American Journal of

Economics and Business Administration, 3(1), 12-17. doi:

10.3844/ajebasp.2011.12.17

Mazza, R., & Berre, A. (2007). Focus group methodology for evaluating information

visualization techniques and tools. 11th International Conference Information

Visualization, 74-80. doi: 10.1109/IV.2007.51

McConnell, S. (2000). Closing the gap. Software, IEEE. 1(19). doi:

http://doi.ieeecomputersociety.org/10.1109/MS.2002.976933

McGraw, G. (2011). Technology transfer: A software security marketplace case

study. Software, IEEE, 28(5), 9-11. doi: 10.1109/MS.2011.110

McGraw, G. (2006). Building security in. Boston: Pearson Education.

http://www.usdoj.gov/usao/nj/press/
http://dx.doi.org/10.1109/RCIS.2013.6577679
http://dx.doi.org/10.1109/4236.989006
http://dx.doi.org/10.1109/CMPSAC.2004.1342839
http://dx.doi.org/10.1109/IV.2007.51
http://doi.ieeecomputersociety.org/10.1109/MS.2002.976933
http://dx.doi.org/10.1109/MS.2011.110

259

McGraw, G. (2004). Software security. Security & Privacy, IEEE, 2(2), 80-83. doi:

10.1109/MSECP.2004.1281254

Mead, N. R. (2010). Security requirement engineering. Retrieved from

https://buildsecurityin.us-cert.gov/articles/best-practices/requirements-

engineering/security-requirements-engineering

Mehta, M., & Adlakha, N. (2012). Manifestation of Agile methods for prompt

software development: a review. International Journal of Research in IT &

Management, 2(2), 249-255. Retrieved from

http://www.euroasiapub.org/IJRIM/Feb2012/paper3.pdf

Mellado, D., Blanco, C., Sanchez, L. E., & Fernandez-Medina, E. (2010). A

systematic review of security requirements engineering. Computer Standards

& Interfaces, 32(4), 153-165. doi: 10.1016/j.csi.2010.01.006

Merkow, S. M. & Raghavan, L. (2010). Secure and resilient software development.

Boca Raton: Auerbach Publications.

Microsoft. (2012). Microsoft Security Development Lifecycle SDL Process Guidance

Version 5.2. Retrieved from http://www.microsoft.com/en-

my/download/confirmation.aspx?id=29884

Misra, S., Kumar, V., & Kumar, U. (2009). Identifying some important success

factors in adopting Agile software. The Journal of Systems and Software, 82,

1869–1890. doi:10.1016/j.jss.2009.05.052

Mollaghasemi, M. (1997). Technical briefing: making multiple-objective decisions.

California: IEEE Computer Society Press.

Moe, N. B., Dingsoyr, T., & Dyba, T. (2008). Understanding self-organizing teams

in Agile software development. 19th Australian Conference on Software

Engineering, 76-85. doi: 10.1109/ASWEC.2008.4483195

Mohd Hassan Selamat, Md. Mahbubur Rahim, & Noor Maizura Mohamad Noor.

(1996). Perceptions of selected Malaysian information systems practitioners

towards software prototyping: An exploratory study. Malaysian Journal of

Computer Science, 9 (2), 14-28. Retrieved from

http://icmsm2009.um.edu.my/filebank/published_article/1688/12.pdf

Mohd. Noah A. Rahman, Md. Mahbubur Rahim, Afzaal H. Seyal, & Awg Yussof

Awg Mohamed. (1999). Interpersonal skill requirements for fresh computer

programmers: expectation of Brunei-based organizations. Malaysian Journal of

Computer Science, 12(2), 10-18. Retrieved from

www.researchgate.net/publication/241032508_INTERPERSONAL_SKIL_RE

QUIREMENTS_FOR_FRESH_COMPUTER_PROGRAMMERS_EXPECTA

TION_OF_BRUNEI-BASED_ORGANISATIONS/file/72e7e52c0192835.pdf

Moody, D. L. (1998). Metrics for evaluating the quality of Entity Relationship

Models. In Tok-Wang, L., Ram, S., & Mong, L.L. Conceptual Modeling–

ER’98 (pp. 211-225). Berlin Heidelberg: Springer Berlin Heidelberg.

Morgan, D. L. (1998). Planning focus groups. Thousand Oaks: SAGE Publications.

http://ezproxy.upm.edu.my:2111/10.1109/MSECP.2004.1281254
http://dx.doi.org/10.1109/ASWEC.2008.4483195

260

Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A., & Succi, G. (2008). A case

study on the impact of refactoring on quality and productivity in an Agile team.

In Meyer, B., Nawrocki, J. R., & Walter, B. Balancing Agility and Formalism

in Software Engineering, (pp. 252-266). Berlin:Springer Berlin Heidelberg.

Muniraman, C., & Damodaran, M. (2007). A practical approach to include security

in software development. Issues in Information Systems, 8(2), 193-199.

Retrieved from http://iacis.org/iis/2007/Muniraman_Damodaran.pdf

Nagappan, N., Maximilien, E. M., Bhat, T., & Williams, L. (2008). Realizing quality

improvement through Test Driven Development: results and experiences of

four industrial teams. Empirical Software Engineering, 13(3), 289-302. doi:

10.1007/s10664-008-9062-z

Nardi, P. M. (2003). Doing survey research–a guide to quantitative methods. Boston:

Pearson Education.

Nasution, M. F., & Weistroffer, H. R. (2009). Documentation in systems

development: a significant criterion for project success. Proceedings of the

42nd Hawaii International Conference on System Sciences, 1-9. doi:

10.1109/HICSS.2009.167

National Cyber Security Alliance. (2012). National small business study. Retrieved

from https://www.staysafeonline.org

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to

Agile methodologies. Communications of ACM, 48(5), 72-78. doi:

10.1145/1060710.1060712

Nielsen, J., & Molich, R. (1990). Heuristic evaluation of user interfaces.

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems: Empowering People, 249-256. doi: 10.1145/97243.97281

Nugraha, F. (2013). Decision support system for evaluation procurement of goods

with Simple Additive Weighting Method (SAW). International Conference on

Information Systems for Business Competitiveness, 211-215. Retrieved from

http://eprints.undip.ac.id/41795/1/38-_Fajar_Nugraha.pdf

Nunes, F. J. B., Belchior, A. D., & Albuquerque, A. B. (2010). Security engineering

approach to support software security. 6th World Congress on Services. 48-55.

doi:10.1109/SERVICES.2010.37

Offut, M. (2002). Quality attributes of web software applications. IEEE Software,

19(2), 25-32. doi:10.1109/52.991329

Oppenheim, A. N. (1992). Questionnaire design, interviewing and attitude

measurement. London: Pinter Publishers.

O’Regan, G. (2014). Software Process Improvement. In O’Regan, G. Introduction to

software quality (pp.199-209). Switzerland: Springer International Publishing.

O’Sheedy, D., & Sankaran, S. (2013). Agile Project Management for IT Projects in

SMEs: a framework and success factors. The International Technology

http://dx.doi.org/10.1109/HICSS.2009.167
https://www.staysafeonline.org/
http://dx.doi.org/10.1145/1060710.1060712
http://dx.doi.org/10.1145/97243.97281
http://dx.doi.org/10.1109/SERVICES.2010.37
http://dx.doi.org/10.1109/52.991329

261

Management Review, 3(3), 187-195. Retrieved from www.atlantis-

press.com/php/download_paper.php?id=9613

OWASP. (2006). CLASP best practices. Retrieved from

https://www.owasp.org/index.php/Category:CLASP_Best_Practice

Padumadasa, E. U., Colombo, S., & Rehan, S. (2009). Investigation in to Decision

Support Systems and Multiple Criteria Decision Making to develop a Web-

based tender management system. Proceedings of the International Symposium

on the Analytic Hierarchy Process, 1-17. Retrieved from

http://www.isahp.org/2009Proceedings/Final_Papers/66_Padumadasa_Evaluati

ngTenderOffers_REV_FIN.pdf

Paetsch, F., Eberlein, A., & Maurer, F. (2003). Requirements Engineering and Agile

software development. Proceedings of the IEEE International Workshops on

Enabling Technologies: Infrastructure for Collaborative Enterprises, 308-313.

doi: 10.1109/ENABL.2003.1231428

Pahnila, S., Siponen, M., & Mahmood, A. (2007). Employees’ behavior towards IS

security policy compliance. Proceedings of the 40th Hawaii International

Conference on System Sciences, 156-166. doi: 10.1109/HICSS.2007.206

Park, T., & Kim, K. J. (1998). Determination of an optimal set of design

requirements using House of Quality. Journal of Operations

Management, 16(5), 569-581. doi: 10.1016/S0272-6963(97)00029-6

Parsons, D., Ryu, H., & Lal, R. (2007). The impact of methods and techniques on

outcomes from Agile software development projects. In McMaster, T., Wastell,

D., Ferneley, E., & DeGross, J. I. Organizational Dynamics of Technology-

Based Innovation: Diversifying the Research Agenda (pp. 235-249). US:

Springer.

Patel, C., & Ramachandran, M. (2009). Agile Maturity Model (AMM): a Software

Process Improvement framework for Agile software development practices.

International Journal of Software Engineering, 2(1), 3-28. Retrieved from

http://www.ijse.org.eg/content/vol2/no1/vol2_no1_1.pdf

Patil, S. K., & Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ranking the

solutions of Knowledge Management adoption in supply chain to overcome its

barriers. Expert Systems with Applications, 41(2), 679-693. doi:

10.1016/j.eswa.2013.07.093

Phillips, M., & Shrum, S. (2010). Process improvement for all: what to expect from

CMMI Version 1.3. Crosstalk--The Journal of Defense Software Engineering.

Retrieved from

http://www.cs.cmu.edu/~bam/uicourse/2011hasd/Phillips%202010%20-

%20What%20to%20Expect%20from%20CMMI%20Version%201.3%20(Cros

stalk).pdf

Pierce, R. E. (2012). Key factors in the success of an organization's information

security culture: A quantitative study and analysis. (Doctoral dissertation).

Retrieved from http://search.proquest.com/docview/1143268791

http://dx.doi.org/10.1109/HICSS.2007.206

262

Pikkarainen, M. (2009). Towards a better understanding of CMMI and Agile

integration-multiple case study of four companies. In Bomarius, F., Oivo, M.,

Jaring, P., & Abrahamsson, P. Product-Focused Software Process

Improvement (pp. 401-415). Berlin Heidelberg: Springer.

Pikkarainen, M., & Mantyniemi, A. (2006). An approach for using CMMI in Agile

software development assessments: experiences from three case studies. The

SPICE 2006 Conference. Retrieved from

http://Agile.vtt.fi/docs/publications/2006/2006_Agile_cmmi_camera_ready.pdf

Powell, R. A., & Single, H. M. (1996). Focus groups. International Journal for

Quality in Health Care, 8(5), 499-504. doi: 10.1093/intqhc/8.5.499

Pressman, R. S. (2010). Software Engineering a practitioner's approach 7th Ed.

New York: McGraw-Hill Higher Education.

Procaccino, J. D., Verner, J. M., Shelfer, K. M., & Gefen, D. (2005). What do

software practitioners really think about project success: an exploratory study.

The Journal of Systems and Software (78): 194-203. doi:

10.1016/j.jss.2004.12.011

Rae, A., Robert, P., & Hausen, H. L. (1995). Software evaluation for certification

principles, practice and legal liability. England: McGraw-Hill.

Rafikul, I., & Shuib, M. R. (2006). Employee performance evaluation by the AHP:

A case study. Asia Pacific Management Review, 11(3), 163-176. Retrieved

from

http://apmr.management.ncku.edu.tw/comm/updown/DW0711300438.pdf

Ramesh, B., Lan, C., & Baskerville, R. (2010). Agile Requirements Engineering

practices and challenges: an empirical study. Information Systems Journal,

20(5), 449-480. doi: 10.1111/j.1365-2575.2007.00259.x

Rao, K. N., Naidu, G. K., & Chakka, P. (2011). A Study of the Agile software

development methods, applicability and implications in industry. International

Journal of Software Engineering & Its Applications, 5(2), 35-45. Reterived

from http://www.sersc.org/journals/IJSEIA/vol5_no2_2011/4.pdf

Rao, R., & Davim, J. (2008). A decision-making framework model for material

selection using a combined Multiple Attribute Decision-Making method. The

International Journal of Advanced Manufacturing Technology, 35(7-8), 751-

760. doi: 10.1007/s00170-006-0752-7

Rathfelder, C., Groenda, H., & Reussner, R. (2008). Software industrialization and

architecture certification. Proceedings of Industrialization of Software

Management. 169-180. Retrieved from

http://subs.emis.de/LNI/Proceedings/Proceedings139/P-139.pdf#page=170

Richardson, I., & Ryan, K. (2001). Software Process Improvements in a very small

company. Software Quality Professional, 3(2), 23-35. Retrieved from

http://www.itu.dk/~katten/speciale/Software%20Process%20Improvements%2

0in%20a%20Very%20Small%20Company.pdf

http://subs.emis.de/LNI/Proceedings/Proceedings139/P-139.pdf#page=170

263

Rico, D., Sayani, H., & Sone, S. (2009). The business value of Agile software

methods. Fort Lauderdale: J.Ross.

Ritchie, L., & Dale, B. G. (2000). Self-assessment using the business excellence

model: a study of practice and process. International Journal of Production

Economics, 66(3), 241-254. doi: 10.1016/S0925-5273(99)00130-9

Rodina Ahmad, & Zaitun Abu Bakar. (2000). Information Systems skills

requirements in Malaysia. Malaysian Journal of Computer Science, 13 (2), 64-

69. Retrieved from http://e-

journal.um.edu.my/filebank/published_article/1772/96.pdf

Rogers, M. R., & Lopez, E. C. (2002). Identifying critical cross-cultural school

psychology competencies. Journal of School Psychology, 40(2), 115-141.

doi:10.1016/S0022-4405(02)00093-6

Rout, T. (2011). High levels of process capability in CMMI and ISO/IEC 15504. In

O’Connor, R. V., Rout, T., McCaffery, F., & Dorling, A. Software Process

Improvement and Capability Determination (pp. 197-199). Berlin Heidelberg:

Springer Berlin Heidelberg

Rumpe, B., & Schroder, A. (2002). Quantitative survey on Extreme Programming

projects. Third International Conference on Extreme Programming and

Flexible Processes in Software Engineering, 26-30. Retrieved from

http://www.se-rwth.de/~rumpe/publications/Quantitative-Survey-on-Extreme-

Programming-Projects.pdf

Ruth, N. (2008). A Multi Criteria Decision Making support to software selection.

(Master’s thesis). Retrieved from http://hdl.handle.net/10570/784

Saaty, T. L. (2008). Decision making with the Analytic Hierarchy Process.

International Journal of Services Sciences, 1(1/2008), 83-98. doi:

10.1504/IJSSci.2008.01759

Saaty, T. L. (1990). How to make a decision: the Analytic Hierarchy Process,

European Journal of Operation Research, 48 (1), 9–26. doi: 10.1016/0377-

2217(90)90057-I

Salo, O., & Abrahamsson, P. (2008). Agile methods in European embedded software

development organizations: A survey study of Extreme Programming and

Scrum, IET Software, 2(1), 58-64. doi: 10.1049/iet-sen:20070038

Salo, O., & Abrahamsson, P. (2005). Integrating Agile software development and

Software Process Improvement: a longitudinal case study. International

Symposium on Empirical Software Engineering, 193-202. doi:

10.1109/ISESE.2005.1541828

Sanchez, J. C., Williams, L., & Maximilien, E. M. (2007). On the sustained use of a

Test-Driven Development practice at IBM. Agile Conference, 5-14. doi:

 10.1109/AGILE.2007.43

Sanders, J., & Curran, E. (1994). Software Quality: A framework for success in

software development and support. Wokingham: Addison-Wesley.

http://dx.doi.org/10.1016/S0925-5273(99)00130-9
http://hdl.handle.net/10570/784
http://dx.doi.org/10.1016/0377-2217(90)90057-I
http://dx.doi.org/10.1016/0377-2217(90)90057-I
http://dx.doi.org/10.1049/iet-sen:20070038
http://dx.doi.org/10.1109/ISESE.2005.1541828
http://dx.doi.org/10.1109/AGILE.2007.43

264

Santos, M. D. A., Bermejo, P. H. D. S., Oliveira, M. S. D., & Tonelli, A. O. (2011).

Agile practices: an assessment of perception of value of professionals on the

quality criteria in performance of projects. Journal of Software Engineering

and Applications, 700-709. doi:10.4236/jsea.2011.412082

Savitha, K., & Chandrasekar, C. (2011). Vertical handover decision schemes using

SAW and WPM for network selection in heterogeneous wireless networks.

Global Journal of Computer Science and Technology. 11(9). Retrieved from

http://arxiv.org/ftp/arxiv/papers/1109/1109.4490.pdf

SCAMPI Upgrade Team. (2011). Standard CMMI® appraisal method for process

improvement (SCAMPISM) A, Version 1.3: Method Definition Document

Handbook

Schindler, C. (2008). Agile software development methods and practices in Austrian

IT-industry: results of an empirical study. International Conference

on Computational Intelligence for Modelling Control & Automation, 321-326.

doi: 10.1109/CIMCA.2008.100

Schneiderman, B. (1998). Designing the user interface: strategies of effective

Human-Computer Interaction 3rd edition. Boston: Addison-Wesley Longman.

Schuh, P. (2005). Integrating Agile development in the real world. Hingham:

Charles River Media.

Scriven, M. (1991). Evaluation thesaurus: fourth edition. Newbury Park: Sage

Publications.

Sekaran, U., & Bougie, R. (2010). Research methods for business. New York: John

Wiley & Sons.

Sekaran, U. (2003). Research methods for business (4th edition). New York, USA:

John Wiley & Sons.

Serkani, E. S., Mardi, M., Najafi, E., Jahanian, K., & Herat, A. T. (2013). Using

AHP and ANP approaches for selecting improvement projects of Iranian

Excellence Model in healthcare sector. African Journal of Business

Management, 7(23). Retrieved from

http://www.academicjournals.org/article/article1380702998_Serkani%20et%20

al.pdf

Setiawan, F. P., Bouk, S. H., & Sasase, I. (2008). An optimum multiple metrics

gateway selection mechanism in MANET and infrastructure networks

integration. IEEE Wireless Communications and Networking Conference, 2229

– 2234. doi: 10.1109/WCNC.2008.394

Sfetsos, P., Stamelos, I., Angelis, L., & Deligiannis, I. (2009). An experimental

investigation of personality types impact on pair effectiveness in pair

programming. Empirical Software Engineering, 14(2), 187-226. doi:

10.1007/s10664-008-9093-5

Sfetsos, P., & Stamelos, I. (2010). Empirical studies on quality in Agile practices: a

systematic literature review. Proceedings of the 2010 Seventh International

http://dx.doi.org/10.1109/CIMCA.2008.100
http://ieeexplore.ieee.org.eserv.uum.edu.my/xpl/mostRecentIssue.jsp?punumber=4489030
http://ieeexplore.ieee.org.eserv.uum.edu.my/xpl/mostRecentIssue.jsp?punumber=4489030
http://dx.doi.org/10.1109/WCNC.2008.394

265

Conference on the Quality of Information and Communications Technology,

44-53. doi: 10.1109/QUATIC.2010.17

Shafiq Hussain, S., Erwin, H., & Dunne, P. (2011). Threat modeling using formal

methods: A new approach to develop secure web applications. 7th

International Conference of Emerging Technologies. 1-5. doi:

10.1109/ICET.2011.6048492

Sheffield, J., & Lematayer, J. (2013). Factors associated with the software

development agility of successful projects. International Journal of Project

Management, 31(3), 459-472. doi: 10.1016/j.ijproman.2012.09.011

Shih, H. S., Shyur, H. J., & Lee, E. S. (2007). An extension of TOPSIS for group

decision making. Mathematical and Computer Modelling, 45(7-8), 801-813.

doi: 10.1016/j.mcm.2006.03.023

Simpson, S. (2008). Fundamental practices for secure software development: A

guide to the most effective secure development practices in use today:

SAFECODE. Retrieved from http://www.safecode.org, 2008

Sindre, G., & Opdahl, A. L. (2001). Capturing security requirements through misuse

cases. Retrieved from http://www.nik.no/2001/21-sindre.pdf

Siponen, M., Pahnila, S., & Mahmood, M. (2010). Compliance with information

security policies: an empirical investigation. Computer. 43(2), 64–71. doi:

10.1109/MC.2010.35

Sison, R., & Yang, T. (2007). Use of Agile methods and practices in the Philippines.

14th Asia-Pacific Software Engineering Conference, 462-469. doi:

 10.1109/ASPEC.2007.35

Sison, R., Jarzabek, S., Hock, O. S., Rivepiboon, W., & Hai, N. N. (2006). Software

practices in five ASEAN countries: an exploratory study. Proceedings of the

28th International Conference on Software engineering, 628-631. doi:

10.1145/1134285.1134378

Sliger, M., & Broderick, S. (2008). The software project manager's bridge to agility.

Boston: Addison-Wesley.

Sliger, M. (2006). A project manager's survival guide to going Agile. Retrieved from

http://www.rallydev.com/documents/rally_survival_guide.pdf

Sommerville, I. (2004). Software Engineering 7th Ed. Harlow: Pearson Education

Limited.

Sommerville, I. (2007). Software Engineering 8th Ed. Harlow: Pearson Education

Limited.

Srivastava, T. N., & Shailaja, R. (2011). Business research methodology. New Delhi:

Tata McGrawHill Education Private Limited.

Stamelos, I. G., & Sfetsos, P. (2007). Agile software development quality assurance:

IGI Global.

http://dx.doi.org/10.1109/ICET.2011.6048492
http://dx.doi.org/10.1109/MC.2010.35
http://dx.doi.org/10.1109/ASPEC.2007.35
http://dx.doi.org/10.1145/1134285.1134378
http://www.rallydev.com/documents/rally_survival_guide.pdf

266

Sterling, G. D., & Brinthaupt, T. M. (2003). Faculty and industry conceptions of

successful computer programmers. Journal of Information Systems Education,

14(4), 417-424. Retrieved from http://jise.org/Volume14/14-4/Pdf/14(4)-

417.pdf

Stewart, D. W., Shamdasani, P. N., & Rook, D. W. (2007). Focus groups theory and

practices. Thousand Oaks: Sage Publications.

Strode, D. E., Huff, S. L., & Tretiakov, A. (2009). The impact of organizational

culture on Agile method use. 42nd Hawaii International Conference on System

Sciences, 1-9. doi: 10.1109/HICSS.2009.436

Suhazimah Dzazali, Ainin Sulaiman, & Ali Hussein Zolait. (2009). Information

security landscape and maturity level: case study of Malaysian public service

(MPS) organizations. Government Information Quarterly, 26(4), 584-593. doi:

10.1016/j.giq.2009.04.004

Sun-Jen, H., & Wen-Ming, H. (2006). Selection priority of process areas based on

CMMI continuous representation. Information & Management, 43(3), 297-307.

doi: 10.1016/j.im.2005.08.003

Syed Irfan Nabi, Abdulrahman A. Mirza, & Khaled Alghathbar. (2010). Information

assurance in Saudi organizations- an empirical study. In Tai-Hoon, K., Wai-

Chi, F., Muhammad Khurram Khan, Arnett, K. P., Heau-jo, K., & Slezak, D.

Security technology, disaster recovery and business continuity (pp. 18-28).

Berlin Heidelberg: Springer Berlin Heidelberg

Taghizadeh, H., & Mohamadi, P. (2013). Identifying educational services quality

using Quality Function Deployment model (QFD) and, Analytic Hierarchy

Process (AHP). African Journal of Business Management, 7(15), 1250-1257.

doi: 10.5897/AJBM10.1613

Taillandier, P., & Stinckwich, S. (2011). Using the PROMETHEE Multi-Criteria

Decision Making method to define new exploration strategies for rescue robots.

IEEE International Symposium on the Safety, Security, and Rescue Robotics,

321-326. doi: 10.1109/SSRR.2011.6106747

Tarhan, A., & Yilmaz, S. G. (2013). Systematic analyses and comparison of

development performance and product quality of Incremental Process and

Agile Process. Information and Software Technology, 56(5), 477-494. doi:

10.1016/j.infsof.2013.12.002

Tarí, J. J., & Heras–Saizarbitoria, I. (2012). The self-assessment process and impacts

on performance: A case study. International Journal for Quality

Research, 6(4). Retrieved from http://www.ijqr.net/journal/v6-n4/5.pdf

Tessem, B. (2003). Experiences in learning XP practices: A qualitative study. In

Marchesi, M. & Succi, G. Extreme Programming and Agile Processes in

Software Engineering (pp. 131-137). Berlin Heidelberg: Springer Berlin

Heidelberg.

http://dx.doi.org/10.1109/HICSS.2009.436
http://www.springerlink.com/content/?Author=Syed+Irfan+Nabi
http://www.springerlink.com/content/?Author=Abdulrahman+A.+Mirza
http://www.springerlink.com/content/?Author=Khaled+Alghathbar
http://www.springerlink.com/content/978-3-642-17609-8/
http://dx.doi.org/10.1109/SSRR.2011.6106747

267

The Standish Group. (2013). Chaos manifesto 2013, think big, act small. Retrieved

from http://www.versionone.com/assets/img/files/ChaosManifesto2013.pdf

Thompson, B., & Stapleton, J. C. (1979). A method for validating semantic

differential referents. The Journal of Experimental Educational, 48 (2), 110-

113. Retrieved from http://www.jstor.org/stable/20151324

Tohidi, H. (2011). The role of risk management in IT systems of organizations.

Procedia Computer Science, 3, 881-887. doi: 10.1016/j.procs.2010.12.144

Tondel, I. A., Jensen, J., & Rstad, L. (2010). Combining misuse cases with attack

trees and security activity models. International Conference on Availability,

Reliability, and Security, 438-445. doi: 10.1109/ARES.2010.101

Tondel, I. A., Jaatun, M. G., & Meland, P. H. (2008). Security requirements for the

rest of us: A survey. IEEE Software, 25(1), 20-27. doi: 10.1109/MS.2008.19

Torres, J., Sarriegi, J., Santos, J., & Serrano, N. (2006). Managing information

systems security: critical success factors and indicators to measure

effectiveness. In Katsikas, S. K., Lopez, J., Backes, M., Gritzalis, S., &

Preneel, B. Information Security (pp. 530-545). Berlin Heidelberg: Springer

Berlin Heidelberg

Triantaphylluo, E. (2000). Multi-Criteria Decision Making methods: a comparative

study. Netherlands: Kluwer Academic Publishers.

Triantaphyllou, E., & Mann, S. H. (1995). Using the Analytic Hierarchy Process for

decision making in engineering applications: some challenges. International

Journal of Industrial Engineering: Applications and Practice, 2(1), 35-44.

Retrieved from http://bit.csc.lsu.edu/trianta/Journal_PAPERS1/AHPapls1.pdf

Tripp, L. L. (2002). Benefits of certification. Computer, 35(6), 31-33. doi:

10.1109/MC.2002.1009164

Trochim, W. M. (2006). The research methods knowledge base. Retrieved from

http://www.socialresearchmethods.net/kb/dedind.php

Tsaur, R. C. (2011). Decision risk analysis for an interval TOPSIS method. Applied

Mathematics and Computation, 218(8), 4295-4304. doi:

10.1016/j.amc.2011.10.001

Tsohou, A., Karyda, M., Kokolakis, S., & Kiountouzis, E. (2006). Formulating

information systems risk management strategies through cultural theory.

Information Management & Computer Security, 14(3), 198-217. doi:

http://dx.doi.org/10.1108/09685220610670378

Tsun, C., & Dac-Buu, C. (2008). A survey study of critical success factors in Agile

software projects. The Journal of Systems and Software, 81(6), 961–971.

doi:10.1016/j.jss.2007.08.020

Tu, N., Zhang, T., He, Q., Zhang, H., & Li, Y. (2011). Applying combined AHP-

QFD method in new product development: A case study in developing new

http://www.jstor.org/stable/20151324
http://dx.doi.org/10.1109/ARES.2010.101
http://dx.doi.org/10.1109/MS.2008.19
http://books.google.com/books?hl=en&lr=&id=tuPGe_ur-TYC&oi=fnd&pg=PR15&dq=Triantaphylluo,+2000&ots=8CFkKH2UQg&sig=WxRkTBg99BnVsvHZl7lM1lgFAlo
http://books.google.com/books?hl=en&lr=&id=tuPGe_ur-TYC&oi=fnd&pg=PR15&dq=Triantaphylluo,+2000&ots=8CFkKH2UQg&sig=WxRkTBg99BnVsvHZl7lM1lgFAlo
http://dx.doi.org/10.1109/MC.2002.1009164
http://dx.doi.org/10.1016/j.jss.2007.08.020

268

sports earphone. International Conference on Management Science and

Industrial Engineering, 80-85. doi: 10.1109/MSIE.2011.5707520

Tudor, J. (2013). Web application vulnerability statistics 2013. [White Paper].

Retrieved from Context Information Security:

http://www.contextis.com/documents/70/Web_Application_Vulnerability_Stati

stics_Appendix_-_June_2013.pdf

Vaidya, O. S., & Kumar, S. (2006). Analytic Hiearachy Process: An overview of

applications, European Journal of Operational Research, 169(1), 1-29.

doi:10.1016/j.ejor.2004.04.028.

Van Loon, H. (2007). Process assessment and improvement a practical guide.

Switzerland: Springer.

Vermesan, A. I. (1998). Software certification for industry-verification and

validation issues in expert systems. Proceedings of Database and Expert

Systems Applications, 3-14. doi: 10.1109/DEXA.1998.707373

VersionOne. (2011). State of Agile survey. Retrieved from

http://www.versionone.com/pdf/2011_State_of_Agile_Development_Survey_

Results.pdf

Voas, J. (1998). The software quality certification triangle: crosstalk. The Journal of

Defense software engineering, 12-14. Retrieved from

http://www.crosstalkonline.org/storage/issue-archives/1998/199811/199811-

Voas.pdf

Voas, J. (1999). User participation-based software certification. In Vermesan, A. &

Coenen, F. Validation and Verification of Knowledge Based Systems (pp. 267-

276). US: Springer-Verlag.

Voas, J. (2008). Software quality unpeeled. STSC CrossTalk, 27-30. Retrieved from

http://www.celler.com.br/ICSI'08/Artigo/Jeffrey%20Voas.pdf

Von Solms, B., & Von Solms, R. (2004). The 10 deadly sins of information security

management. Computers & Security, 23(5), 371-376. doi:

10.1016/j.cose.2004.05.002

Waly, N., Tassabehji, R., & Kamala, M. (2012). Improving organisational

information security management: The impact of training and awareness. 9th

International Conference on Embedded Software and Systems High

Performance Computing and Communication, 1270-1275. doi:

10.1109/HPCC.2012.187

Wang, J. W., Cheng, C. H., & Huang, K. C. (2009). Fuzzy hierarchical TOPSIS for

supplier selection. Applied Soft Computing, 9(1), 377-386. doi:

10.1016/j.asoc.2008.04.014

Weber-Jahnke, J. H. (2011). A preliminary study of apparent causes and outcomes of

reported failures with patient management software. 3rd Workshop on Software

Engineering in Health Care, 5-8. doi: 10.1145/1987993.1987996

http://dx.doi.org/10.1109/MSIE.2011.5707520
http://dx.doi.org/10.1109/DEXA.1998.707373
http://www.versionone.com/pdf/2011_State_of_Agile_Development_Survey_Results.pdf
http://www.versionone.com/pdf/2011_State_of_Agile_Development_Survey_Results.pdf
http://link.springer.com/book/10.1007/978-1-4757-6916-6
http://dx.doi.org/10.1016/j.cose.2004.05.002
http://dx.doi.org/10.1109/HPCC.2012.187
http://dx.doi.org/10.1145/1987993.1987996

269

Wei, X., & Yonghui, C. (2013). Comments on Software Process Improvement

methodologies using QFD. Applied Mathematics & Information Sciences, 7(3),

1137-1143. Retrieved from

http://t.naturalspublishing.com/files/published/68vp82lzf77ig9.pdf

Wells, D. (2013). Extreme Programming. Retrieved from

http://www.extremeprogramming.org

Werlinger, R., Hawkey, K., & Beznosov, K. (2009). An integrated view of human,

organizational, and technological challenges of IT security management.

Information Management & Computer Security, 17(1), 4-19. doi:

http://dx.doi.org/10.1108/09685220910944722

West, D., & Grant, T. (2010). Agile development: mainstream adoption has changed

agility. Forrester Research.

Wheeler, S., & Duggins, S. (1998). Improving software quality. Proceedings of the

Southest Regional Conference. 300-309. doi: 10.1145/275295.275375

Whitehat Security. (2013). Website security statistics report, WhiteHat Security,

Santa Clara, California: Whitehat Security. Retrieved from

https://www.whitehatsec.com/assets/WPstatsReport_052013.pdf

Whitman, M., & Mattord, H. J. (2012). Principles of information security. Thomson

Course Technology. Boston: Course Technology.

Wiegers, K. E. (2002). Seven truths about peer reviews. Cutter IT Journal. Retrieved

from http://www.processimpact.com/articles/seven_truths.pdf

Wilander, J., & Gustavsson, J. (2005). Security requirements–A field study of

current practice. Symposium on Requirement Engineering for Information

Security. Retrieved from

http://www.ida.liu.se/labs/pelab/publications/documents/2005/08_wilander_sre

is.pdf

Williams, L. (2012). What Agile teams think of Agile principles. Communications of

the ACM, 55(4), 71-76. doi: 10.1145/2133806.2133823

Williams, L., Rubin, K., & Cohn, M. (2010). Driving process improvement via

comparative agility assessment. Agile Conference, 3-10. doi:

10.1109/AGILE.2010.12

Williams, L., & Erdogmus, H. (2002). On the economic feasibility of pair

programming. International Workshop on Economics-Driven Software

Engineering Research. Retrieved from

http://collaboration.csc.ncsu.edu/laurie/Papers/EDSER02WilliamsErdogmus.p

df

Xuhua, J., & Pattinson, C. (2010). AHP implemented security assessment and

security weight verification. International Conference on Social Computing,

1026-1031. doi: 10.1109/SocialCom.2010.153

http://www.extremeprogramming.org/
http://dx.doi.org/10.1145/275295.275375
http://dx.doi.org/10.1145/2133806.2133823
http://dx.doi.org/10.1109/AGILE.2010.12
http://ezproxy.upm.edu.my:2111/10.1109/SocialCom.2010.153

270

Yan, S. (2008). Business oriented software process improvement based on CMM and

CMMI using QFD. (Doctoral dissertation). Retrieved from

https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/26432/Sun_2008

.pdf?sequence=1

Yatsalo, B. I., Kiker, G. A., Kim, J., Bridges, T. S., Seager, T. P., Gardner, K., . . .

Linkov, I. (2007). Application of multicriteria decision analysis tools to two

contaminated sediment case studies. Integrated Environmental Assessment and

Management, 3(2), 223-233. doi: 10.1897/IEAM_2006-036.1

Yoon, K. & Hwang, C. (1995). Multiple Attribute Decision-Making: An

introduction. Thousand Oaks: Sage Publisher.

Yazrina Yahya, Maryati Mohd Yusof, Mohammed Yusof, & Nazlia Omar. (2002).

The use of Information System development methodology in Malaysia. Jurnal

Antarabangsa (Teknologi Maklumat), 15-34.

Yumin, L., & Jichao, X. (2006). QFD Model for quality performance self-

assessment. Asian Journal on Quality, 7(1), 112-127. doi:

http://dx.doi.org/10.1108/15982688200600008

Zarour Mohammad. (2009). Methods to evaluate lightweight software process

assessment methods based on evaluation theory and engineering design

concepts. (Doctoral dissertation). Retrieved from

http://espace.etsmtl.ca/92/1/ZAROUR_Mohammad.pdf

Zhou, Z., & Liang, K. (2013). Network course evaluation system based on AHP

theory. In Wenjiang, Du. Informatics and Management Science II (pp. 569-

575). London: Springer London.

Zikmund, W. G., Babin, B. J., Carr, J. C., & Griffin, M. (2010). Business research

methods, 8th edition. South-Western: Cengage Learning.

Zultner, R. E. (1992). Quality Function Deployment (QFD) for software. American

Programmer.

http://dx.doi.org/10.1108/15982688200600008

	Title Page
	Permission to Use
	Abstrak
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations
	CHAPTER ONE: INTRODUCTION
	1.1 Overview
	1.2 Background
	1.3 Problem Statements
	1.4 Research Questions
	1.5 Objectives
	1.6 Scope
	1.7 Significance
	1.8 Thesis Organization

	CHAPTER TWO: LITERATURE REVIEW
	2.1 Introduction
	2.2 Software Certification
	2.2.1 Evaluation Theory: The Theory That Underpins Software Certification
	2.2.2 Software Certification Process
	2.2.3 Existing Process Based Software Certification Model
	2.2.4 Current Issues in Software Process Certification
	2.2.5 Software Process Certification for Agile Software Process
	2.2.6 Software Process Certification for Secure Software Process
	2.2.7 Factors that Influence the Quality of Agile and Secure Software Processes
	2.2.8 The Agile and Secure Software Practices

	2.3 Multiple Criteria Decision Making (MCDM)
	2.3.1 Analytic Hierarchy Process (AHP)
	2.3.2 Weighted Sum Method (WSM)

	2.4 Measurement Approach in Software Process Certification
	2.5 Summary

	CHAPTER THREE: RESEARCH METHODOLOGY
	3.1 Introduction
	3.2 Research Design
	3.3 Phase One: Theoretical Study
	3.4 Phase Two: Exploratory Study
	3.4.1 Instrument Design
	3.4.2 Sampling for the Survey
	3.4.3 Instrument Testing
	3.4.4 Data Collection
	3.4.5 Data Analysis

	3.5 Phase Three: ESPAC Model Development
	3.5.1 Defining the target
	3.5.2 Defining the evaluation criteria
	3.5.3 Building the Reference Stanrdard
	3.5.4 Determining the Data Gathering Techniques
	3.5.5 Determining the Assessment Process
	3.5.6 Determining the Synthesis Technique
	3.5.7 Determining the Achievement Index

	3.6 Phase Four: ESPAC Model Evaluation
	3.6.1 Verification Stage
	3.6.2 Validation Stage

	3.7 Summary

	CHAPTER FOUR: EXPLORATORY STUDY
	4.1 Introduction
	4.2 Instrument Design
	4.3 Sampling
	4.4 Instrument Testing
	4.5 Data Collection
	4.6 Data Analysis
	4.7 Findings
	4.7.1 Demographic Information
	4.7.1.1 Respondents’ Background
	4.7.1.2 Organizational Background

	4.7.2 Current Practices of Agile Software Process
	4.7.2.1 Software Practitioners’ Familiarity of Agile
	4.7.2.2 Level of Exposure to Agile
	4.7.2.3 Years of Experience Implementing Agile
	4.7.2.4 Number of Agile Team Members
	4.7.2.5 Agile Methods
	4.7.2.6 Benefits of Agile
	4.7.2.7 Implementation of Agile Principles

	4.7.3 Current Practices of Secure Software Process
	4.7.3.1 Software Practitioners’ Familiarity of Secure Software Process
	4.7.3.2 Common Attacks Prevention Technique
	4.7.3.3 Security Trainings
	4.7.3.4 Notations for Security Requirements
	4.7.3.5 Security Requirement Elicitation Practice
	4.7.3.6 Security Incidents Faced

	4.7.4 Agile Software Practices that Influence the Quality of Software
	4.7.5 Secure Software Practices that Influence the Quality of Software
	4.7.6 Perceptions on The Importance of Agile and Secure Software Processes in Producing High Quality Software.
	4.7.7 Characteristics of People Who Involve in Agile and Secure Software Processes
	4.7.8 Current Practices of Software Certification
	4.7.8.1 Software Practitioners’ Opinion on the Importance of Software Certification
	4.7.8.2 The Implementation of Internal Assessment/Audit and the Techniques Used
	4.7.8.3 The Use of Standards

	4.8 Discussions
	4.9 Summary

	CHAPTER FIVE: ESPAC MODEL DEVELOPMENT
	5.1 Introduction
	5.2 Overview of ESPAC Model
	5.3 The Components of the ESPAC Model
	5.3.1 Target
	5.3.2 Evaluation Criteria
	5.3.3 Reference Standard
	5.3.4 Data Gathering Techniques
	5.3.5 Assessment Process
	5.3.6 Synthesis Technique
	5.3.7 The Achievement Index
	5.3.7.1 The Quality Levels
	5.3.7.2 The Certification Level

	5.4 Discussions
	5.5 Summary

	CHAPTER SIX: ESPAC MODEL EVALUATION
	6.1 Introduction
	6.2 Verification through Expert Reviews
	6.2.1 Experts for AHP Technique Verification
	6.2.2 Experts for the Agile and Secure Software Processes
	6.2.3 Results for the AHP Technique Verification
	6.2.4 Results for the Factors, Sub Factors and the Agile and Secure Software Processes

	6.3 Verification and Validation through Focus Group
	6.3.1 Plan the Focus Group
	6.3.1.1 Define the Objectives of the Focus Group
	6.3.1.2 Participants Identification and Recruitment
	6.3.1.3 Meeting Scheduling
	6.3.1.4 Preparation of the Focus Group Interview Guide and Materials
	6.3.1.5 Remind the Participants

	6.3.2 Conduct the Focus Group
	6.3.2.1 Obtain the Weight Values for Evaluation Criteria
	6.3.2.2 The Agile and Secure Software Processes Verification
	6.3.2.3 The ESPAC Model Validation

	6.3.3 Data Analysis and Results Reporting
	6.3.4 The Focus Group Discussion Findings

	6.4 Validation Results and Discussions
	6.4.1 Gain Satisfaction
	6.4.2 Interface Satisfaction
	6.4.3 Task Support Satisfaction

	6.5 Summary

	CHAPTER SEVEN: CONCLUSIONS
	7.1 Introduction
	7.2 Study Recapitulation
	7.3 Contributions
	7.3.1 The ESPAC Model
	7.3.2 The Reference Standard
	7.3.3 The Synthesis Technique
	7.3.4 The AHP Technique Implementation through Planning Poker
	7.3.5 Utilize the QFD for the Reference Standard

	7.4 Limitations and Future Directions
	7.5 Conclusions

	REFERENCES

