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Abstrak 

Model lokasi ialah model klasifikasi ramalan yang menentukan kumpulan objek 

yang mengandungi campuran pembolehubah berkategori dan selanjar. Model lokasi 

paling ringkas dikenali sebagai model lokasi klasik, yang boleh dibina dengan 

mudah menggunakan penganggaran kebolehjadian maksimum. Model ini 

berprestasi secara ideal dengan beberapa pembolehubah binari. Walau 

bagaimanapun, terdapat isu banyak sel kosong apabila melibatkan sejumlah besar 

pembolehubah binari, b disebabkan oleh pertumbuhan sel multinomial secara 

eksponen dengan 2b. Isu ini memberi kesan buruk kepada ketepatan klasifikasi 

apabila tiada maklumat yang boleh diperolehi daripada sel kosong untuk 

menganggar parameter yang diperlukan. Isu ini boleh diselesaikan dengan 

menggunakan pendekatan pengurangan dimensi ke dalam model lokasi klasik. Oleh 

itu, objektif kajian ini adalah untuk mencadangkan satu strategi klasifikasi baharu 

untuk mengurangkan pembolehubah binari yang besar. Ini boleh dilakukan dengan 

mengintegrasikan model lokasi klasik dan analisis komponen utama tak linear yang 

mana pengurangan pembolehubah binari adalah berdasarkan kepada variance 

accounted for, VAF. Model lokasi yang dicadang telah diuji dan dibanding dengan 

model lokasi klasik menggunakan kaedah leave-one-out. Keputusan membuktikan 

bahawa model lokasi yang dicadang boleh mengurangkan bilangan sel kosong dan 

mempunyai prestasi yang lebih baik dari segi kadar salah klasifikasi daripada model 

lokasi klasik. Model yang dicadang juga telah disahkan dengan menggunakan data 

sebenar. Dapatan kajian menunjukkan bahawa model ini adalah setanding atau lebih 

baik daripada kaedah-kaedah klasifikasi yang sedia ada. Kesimpulannya, kajian ini 

menunjukkan bahawa model lokasi cadangan yang baharu boleh menjadi satu 

kaedah alternatif dalam menyelesaikan masalah klasifikasi pembolehubah 

campuran, terutamanya apabila berhadapan dengan sejumlah besar pembolehubah 

binari. 

 

Kata kunci: Pengurangan dimensi, Model lokasi, Kadar salah klasifikasi, 

Pembolehubah campuran, Analisis komponen utama tak linear. 
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Abstract 

Location model is a predictive classification model that determines the groups of 

objects which contain mixed categorical and continuous variables. The simplest 

location model is known as classical location model, which can be constructed 

easily using maximum likelihood estimation. This model performs ideally with few 

binary variables. However, there is an issue of many empty cells when it involves a 

large number of binary variables, b due to the exponential growth of multinomial 

cells by 2b. This issue affects the classification accuracy badly when no information 

can be obtained from the empty cells to estimate the required parameters. This issue 

can be solved by implementing the dimensionality reduction approach into the 

classical location model. Thus, the objective of this study is to propose a new 

classification strategy to reduce the large binary variables. This can be done by 

integrating classical location model and nonlinear principal component analysis 

where the binary variables reduction is based on variance accounted for, VAF. The 

proposed location model was tested and compared to the classical location model 

using leave-one-out method. The results proved that the proposed location model 

could reduce the number of empty cells and has better performance in term of 

misclassification rate than the classical location model. The proposed model was 

also validated using a real data. The findings showed that this model was 

comparable or even better than the existing classification methods. In conclusion, 

this study demonstrated that the new proposed location model can be an alternative 

method in solving the mixed variable classification problem, mainly when facing 

with a large number of binary variables. 

 

Keywords: Dimensionality reduction, Location model, Misclassification rate, 

Mixed variables, Nonlinear principal component analysis. 
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Glossary of Terms 

Binary variable: Variables which only take two values. It can be coded as 0 or 1, for 

yes or no, male or female and true or false respectively. Categorical types of data can 

be converted into binary structure as many variables are naturally binary. 

Case study: In-depth studies of a phenomenon with cases and solutions presented. It 

can provides a deeper understanding to assist a person in gaining experience about a 

certain historical situation. 

Categorical variable: Variable that can take on one of a limited or fixed number of 

possible values, then each individual can be assigned into a particular category as it 

has two or more categories. 

Continuous variable: Variable that can take on any value between its minimum and 

maximum values. It is a quantity that has a changing value. Thus, it has an infinite 

number of possible values. 

Dimensionality reduction: Process of reducing the number of variables under 

consideration. It can be divided into variable extraction and variable selection. 

High dimensional data: Data that has many measurements from each sample 

concurrently. 

Homogeneous covariance matrix: Formed of covariance matrix across groups that is 

all same. 
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Misclassification rate: A prediction error used in a classification problem for 

evaluation purposes. It is determined with a confusion matrix. A good prediction is 

able to identify true positive and true negative, otherwise, it is a bad prediction. 

Mixed variables classification: Process of classifying an object into one of several 

populations based on data consisting a mixture of categorical and continuous 

variables. 

Monte Carlo study: A statistical evaluation of mathematical functions using random 

samples. It is a simulation that uses repeated random sampling to obtain numerical 

results. 

Principal component: A set of linearly uncorrected underlying variables that are 

extracted from a set of possibly correlated variables based on total variance 

explained through an orthogonal transformation. The first principal component has 

the largest possible variance. Thus, the number of principal components is less than 

or equal to the number of original variables. 

Supervised classification: Classifying an object into one of few predefined groups. 

The group structures are known a priori. 

Variable extraction: Reduce a large number of measured variables by extracting a 

small number of new variates that contain maximum variance explained. 

Variable selection: Reduce irrelevant variables by choosing a subset of the original 

variables. 
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Variance accounted for: Explained variation measures the proportion to which a 

mathematical model accounted for the variation of a given dataset. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

Classification problems abound in both theory and practical applications concerning 

the group memberships which in turn assign a new entity (e.g. a company, people, 

plant) into some predefined groups (e.g. category, department, class) (Olosunde & 

Soyinka, 2013). This process of discrimination is defined as a supervised 

classification (Hand, 2006). One of the earliest methods of classification is 

discriminant analysis (Crook, Edelman, & Thomas, 2007). The focus of discriminant 

analysis is to find a predictive classification model that can be used to classify an 

entity correctly to the predetermined groups (Banerjee & Pawar, 2013; Birzer & 

Craig-Moreland, 2008). As a matter of fact, discriminant analysis has been widely 

used for the classification problems to predict a group for future entities or events 

(Guo, Hastie, & Tibshirani, 2007). 

Classification is a worth study area to be explored because it helps support major of 

the decision making. Volumes have been written about predictive discriminant 

analysis to solve classification problems in our real life. For example, classification 

has been applied in business and finance to predict the bankruptcy of a corporate in 

order to maximize the profit gained in future (Alrawashdeh, Sabri, & Ismail, 2012; 

Altman, 1968; Eisenbeis, 1977). Classification also has been employed in medical 

sciences to provide diagnostic information such as the prediction of the patients’ 

future condition (Carakostas, Gossett, Church, & Cleghorn, 1986; Goulermas, 

Findlow, Nester, Howard, & Bowker, 2005; Maclaren, 1985; Poon, 2004; Takane, 
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Bozdogan, & Shibayama, 1987). Moreover, classification is performable in the area 

of business marketing to forecast the purchase intention of the consumers in order to 

investigate the business value of a branded product (Banerjee & Pawar, 2013).  

Classification for diagnostic research especially in medical science always works 

with a mixture of variables to classify patients into healthy or unhealthy groups 

(Berchuck et al., 2009; de Leon, Soo, & Williamson, 2011; Kim et al., 2009). In this 

case, classification is much precise to be conducted with mixed variables rather than 

single type of variable as the patient’s medical reports often involves different types 

of variables, range from categorical to continuous. Thus, interpretation of single type 

variable only might not sufficient to make any helpful decision (Bar-Hen & Daudin, 

2007; Daudin, 1986; Little & Schluchter, 1985; Marian, Villarroya, & Oller, 2003).  

Besides, mixtures of variables is collected massively to explore representative of 

information (Gupta, 2013; Russom, 2013). Utilization of all available variables 

simultaneously is essential in order to obtain an accurate classification model. The 

statistical treatment to analyse such multivariate mixed data becomes a very 

powerful methodology in real life applications (Donoho, 2000; Fan & Lv, 2010). 

However, studies on mixed variables are limited, especially much less work has been 

done on mixtures of many categorical and continuous variables in classification 

studies areas. This situation has drawn attention of this study to design high 

dimensional classification analysis with data composed of few continuous with large 

categorical variables. 
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1.1.1 Some Existing Strategies for Mixed Variables Classification 

Mixed variables classification is useful to provide respective authorities as much 

meaningful information as possible for future prediction and decision making 

(Holden & Kelley, 2010; Lillvist, 2009). Generally, classification with mixed 

variables gains more attention among researchers than single type of variable 

(Knoke, 1982; X. Li & Ye, 2006; Moustaki & Papageorgiou, 2005; Vlachonikolis & 

Marriott, 1982). However, handling of all mixed variables together in a classification 

task may lead to technical complication because different type of variables needs to 

be treated differently (Deakin, 1972; Titterington et al., 1981). Thus, selection of the 

most appropriate classification method in handling mixed variables is necessary. 

Following are some possible strategies presented in the past studies to handle mixed 

variables classification problems such as: 

i. Transformation of mixed variables into single type of variable 

This transformation is needed to make sure that all variables are in the same type i.e. 

categorical or continuous variables, before the construction of the classification 

model. However, the transformation process usually entails some loss of information 

(Krzanowski, 1975). This is because when facing the distortion problem for single 

type of variable classification methods, these methods initially fail to investigate the 

underlying interaction effect between mixed variables (Cochran & Hopkins, 1961; 

Schmitz, Habbema, & Hermans, 1983). 

For example, logistic discrimination is a semi-parametric classification method using 

a logistic function to determine a group membership (Day & Kerridge, 1967). This 
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discriminant function is concerned more on cause and effect relationship among the 

categorical variables (Anderson, 1972). On the other hand, parametric classification 

method based on linear discriminant analysis (LDA) emphasized more on continuous 

variables (Fisher, 1936). This shows that logistic discrimination is more suitable to 

deal with categorical variables and LDA with continuous variables (Cochran & 

Hopkins, 1961; Glick, 1973; Holden, Finch, & Kelley, 2011; Nasios & Bors, 2007; 

Wernecke, 1992). 

ii. Combination of the results from two different classification models 

Apart from the first strategy, the second strategy combines different classification 

models to deal with categorical and continuous variables. This strategy has been 

applied in medical diagnostics in order to obtain desirable results based on the 

interest of each variables (Wernecke, Unger, & Kalb, 1986). Later, this strategy has 

been proposed purposely to handle classification problems with mixed variables 

(Wernecke, 1992). Wernecke (1992) modified and connected a group of 

classification models such as LDA, quadratic discriminant analysis (QDA), kernel 

discriminant analysis (KDA) and others through a coupling procedure. In other 

word, this strategy combines multiple classification models. As a result, it  performs 

better than other individual classification models that concern only on single type of 

variables (Xu, Krzyzak, & Suen, 1992). 

Based on many studies (Al-Ani & Deriche, 2002; Albanis & Batchelor, 2007; Brito, 

Celeux, & Ferreira, 2006; Chen, Wang, & Chi, 1997; Hothorn & Lausen, 2003; 

LeBlanc & Tibshirani, 1996; van Heerden et al., 2010), a comprehensive 

understanding of available single classification model required before the 
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combination of results from different classification models. Besides, Brito et al. 

(2006) highlighted that the study of Yang (2005) has theoretical proved that this 

strategy not performs well with large measured variables. Therefore, this study 

prefers to focus on the utilization of different variables more optimally using single 

model. 

iii. Utilization of all measured variables simultaneously 

This strategy is able to deal with both categorical and continuous variables 

simultaneously. For example, non-parametric classification methods such as KDA 

(Qi Li & Racine, 2003), neural network (NN) (Jin & Kim, 2015), support vector 

machines (SVM) (Hsiao & Chen, 2010) as well as parametric method such as 

location model (LM) can be used to deal with mixtures of variables. Both parametric 

and non-parametric classification methods have their own advantages and 

disadvantages. Non-parametric classification methods are less effective than 

parametric classification methods when the data is normally distributed  (Basu, Bose, 

& Purkayastha, 2004; Schmitz et al., 1983; Takane et al., 1987; Vlachonikolis & 

Marriott, 1982). Parametric methods taken the conditional distribution of the 

underlying data into account. Thus, this study is interested on parametric method 

based on the LM as it is particularly amenable to be generalized to mixtures of all 

types of variables (Krzanowski, 1980). 

Besides, LM has been proven to provide optimal classification results when dealing 

with mixed variables problems (Krzanowski, 1975, 1995). Additionally, LM 

assumes that overlapping between different groups exists (Mahat, 2006). This 

assumption is important as overlapping between groups is commonly occurs in 
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practice. Besides, the discrimination based on the LM assumes minimum loss of 

generality that all categorical variables are treated as binary variables (Daudin & 

Bar-Hen, 1999; Krzanowski, 1975; Olkin & Tate, 1961). Therefore, LM can be 

considered as a potential parametric classification method when facing with both 

categorical and continuous variables. 

1.1.2 The Location Model 

In the development of the location model (LM), past studies dealt with two-group 

classification with different number of binary and continuous variables 

(Asparoukhov & Krzanowski, 2000; Hamid & Mahat, 2013; Mahat, Krzanowski, & 

Hernandez, 2007; Mahat, 2006). Those studies have been conducted mostly to 

increase the possible strategies that can be applied and to further investigate the 

performance of LM in different conditions for better classification purposes. 

However, indeed, at most six binary variables are being considered in a classical LM 

using maximum likelihood estimation (Krzanowski, 1983). This is because the 

inclusion of many binary variables in this classification model led to technical 

complications. 

Figure 1.1 shows that the number of multinomial cells is growing exponentially as 

the number of cells is generated from number of groups to the power of binary 

variables (Asparoukhov & Krzanowski, 2000; Krzanowski, 1975). As a matter of 

fact, the higher the number of binary variables the higher the probability of getting 

many empty cells. A situation with many empty cells will lead to bias in parameters 

estimation due to no information can be obtained from those empty cells (Daudin, 

1986; Krzanowski, 1975, 1993).  
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Figure 1.1 The number of multinomial cells versus the number of binary variables  

A preliminary experiment has been conducted in this study to show that the classical 

LM has misclassification rates of 45% on average in dealing with more than six 

binary variables for an increasing sample sizes from n = 100 to n = 400, which lead 

to highly incorrect prediction of discrimination. Table 1.1 presents the performance 

of the classical LM based on number of binary variable (b), number of continuous 

variable (c) and sample size (n). The misclassification rate ( ), percentage of empty 

cells ( em ) and the computational time (t) are also displayed in the table. 

In line with the preliminary experimental results from Table 1.1, we can see that 

classical LM show misclassification rates  , 42%-54% especially for n = 100, 

dealing with more than six categorical variables. Besides, this table shows that the 

misclassification rates are still high which is almost 50% even we increased the 

sample size. These preliminary experiments showed that the misclassification rate 

increases when the percentage of the empty cells increases. In this case, non-

parametric smoothing has been used to estimate parameters when researchers facing 
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the issue of some empty cells which cannot be done by maximum likelihood 

estimation. The non-parametric smoothing could replaces these empty cells by 

borrowing the information from the neighbour cells (Asparoukhov & Krzanowski, 

2000). Mahat (2006) also explained that the estimated parameter in each cell are 

assigned a weight. For example, the estimated means will take some contribution 

from other cells in the same group with respect to their weights obtained. However, 

this non-parametric smoothed location model is still facing similar issue in mixed 

dataset that contains large categorical variables. 

With large binary variables in comparison to number of observations, many 

multinomial cells will become empty if there is no object can be classified into these 

cells. Consequently, this will lead to high misclassification rate. One way to reduce 

the misclassification rate is by increasing sample size as shown in Table 1.1.  

One requires very large sample that is sufficient to provide enough information in 

each multinomial cells. However, results in Table 1.1 shows that the 

misclassification rate is still high even with larger sample. Besides, the 

computational time required to estimate misclassification rate increases 

proportionately with the increasing number of binary variables. Katz (2011) also 

highlighted that increasing the size of sample is good, but it is usually impossible to 

be carried out in any study. Moreover, sample size is usually limited in practical. 
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Table 1.1 

The Performance of the Classical LM for Different Data Conditions 

n = 100, c = 10 

 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7 b = 8 b = 9 b = 10 

  (%) 3.00 20.00 29.00 40.00 41.00 42.00 46.00 46.00 54.00 

em  (%) 0.00 0.00 3.13 12.50 52.34 69.92 83.98 91.60 95.22 

t  (mins) 0.058 0.090 0.139 0.240 0.630 0.816 1.550 3.139 7.084 

n = 200, c = 10 

 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7 b = 8 b = 9 b = 10 

  (%) 1.00 6.00 13.50 28.50 36.00 41.00 47.50 51.50 48.50 

em  (%) 0.00 0.00 0.00 3.13 31.25 53.13 70.70 83.89 41.46 

t  (mins) 0.109 0.180 0.311 0.569 0.949 1.848 3.798 7.422 16.622 

n = 300, c = 10 

 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7 b = 8 b = 9 b = 10 

  (%) 2.00 6.30 12.30 24.30 28.30 40.70 42.00 44.00 43.00 

em  (%) 0.00 0.00 0.00 4.69 13.28 39.84 63.28 77.73 95.22 

t  (mins) 0.159 0.241 0.428 0.811 1.555 3.161 5.821 11.663 21.043 

n = 400, c = 10 

 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7 b = 8 b = 9 b = 10 

  (%) 1.30 2.00 6.80 13.80 28.50 30.50 43.30 45.50 47.30 

em  (%) 0.00 0.00 0.00 1.56 12.50 35.16 50.78 71.68 84.38 

t  (mins) 0.264 0.536 0.640 1.226 2.175 4.305 8.434 17.050 35.542 
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Therefore, most researchers will search for alternative by reducing the number of 

variables that are considered. Li (2006) addressed that reducing the dimension of the 

objects’ appearance helps to improve both recognition accuracy and efficiency. 

Keeping the dimensionality of measured variables as compact as possible is more 

desirable to obtain the most significant features that can describe informative 

phenomenon of data and eliminate the redundant information (Young, 2009). 

Adoption of dimensional reduction such as variable selection or variable extraction 

can be beneficial to downsizing the variables effectively (Zheng & Zhang, 2008). 

Concerning on mixed dataset with large number of categorical variables in the 

construction of LM, Mahat, Krzanowski and Hernandez (2007) as well as Hamid and 

Mahat (2013) have contributed the reduction of the number of large variables using 

variable selection and variable extraction respectively. 

Past studies has implemented different techniques of variable selection before the 

construction of the LM (Krzanowski, 1983, 1995; Mahat et al., 2007). In variables 

selection, a subset of variables must be selected carefully to fit the interpretation of 

the analysis (Fan & Lv, 2010). The implementation of variable selection could 

reduce the number of large variables involved through the selection of useful 

variables (Mahat et al., 2007). However, this implementation is not suitable when 

most of the variable are meaningful (Hamid & Mahat, 2013). Otherwise, variable 

extraction can be an alternative technique to obtain an extracted subset without 

abandoning some measured variables (Ramadevi & Usharaani, 2013). Extracting 

significant features is not only for the reason of computational time but also to 

improve the accuracy of the multivariate analysis (Ramadevi & Usharaani, 2013). 
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Additionally, better improvement have been achieved when the techniques of 

variable extraction i.e. principal component analysis (PCA) and multiple 

corresponding analysis (MCA) are implemented in the LM using nonparametric 

smoothing estimation (Hamid & Mahat, 2013; Hamid, 2010, 2014). 

Literatures have revealed that PCA is widely used but naturally suited to continuous 

variables for variable extraction of multivariate data (Lee, Huang, & Hu, 2010; 

Schein, Saul, & Ungar, 2003). Unfortunately, PCA suffers from two shortcomings 

(Linting, 2007). First, it assumes that the relationships between variables are linear 

(Linting, Meulman, Groenen, & van der Kooij, 2007a). Second, its interpretation is 

only sensible if all variables are assumed to be scaled at the numeric level such as 

interval or ratio level of measurement (Linting et al., 2007a). Practically, these 

assumptions are frequently not justified and hence PCA may not be considered to be 

an appropriate way to extract binary variables. 

In order to extract binary variables, MCA has been applied (Hamid, 2014). Her study 

proved that MCA performs better than PCA towards the performance of the LM. 

Instead of MCA, there is another variable extraction technique designed for binary 

variables which is nonlinear principal component analysis (NPCA) (De Leeuw, 

2006; Prokop & Řezanková, 2011, 2013). 

The outstanding result of MCA opened up the possibility of integrating NPCA which 

is known as the extension to MCA into the LM. NPCA has been developed to reduce 

of a large binary variables (Linting & van der Kooij, 2012). Furthermore, NPCA is 

beneficial as it is able to incorporates nominal and ordinal variables where this 
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technique can handle and discover nonlinear relationships between variables (Linting 

& van der Kooij, 2012). 

Consequently, this situation opens up the strategy of how to reduce the large binary 

variables which act as the segmentation of the multinomial cell in the LM. Hence, 

this argument highlights the importance of considering the reducing of large binary 

variables appropriately before the construction of the LM. 

1.2 Problem Statement 

In the literatures, researchers have extended the applicability of the LM and reached 

a consensus that a LM is a natural choice for mixed variables classification task. 

However, its usage is severely limited when large measured binary variables are 

considered in the study (Krzanowski, 1975). In constructing the LM, binary variables 

play an essential role of creating segmentation in the group called multinomial cell. 

Thus, higher possibility that the inclusion of large binary variables will lead to the 

occurrence of many empty cells (Hamid & Mahat, 2013; Hamid, 2014; Mahat, 

Krzanowski, & Hernandez, 2009).  

The occurrence of many empty cells in the LM effects directly the construction of 

the classification model, where biased estimators will be obtained or at worst the 

classification model could not be constructed. In such a case, the construction of the 

LM with large binary variables will be bias and infeasible when most of the 

multinomial cells are empty due to no information can be obtained from those cells 

(Hamid, 2014). High misclassification rate showed in Table 1.1 is a symptom that 
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explains the constructed LM is facing the problem due to the excessive number of 

empty cells. 

To avoid many empty cells occur in the construction of the classical LM, this study 

investigate the extraction of large binary variables using nonlinear principal 

component analysis (NPCA) before the construction of the classical LM. To the best 

of our knowledge, no study has been done to tackle the issue of many empty cells in 

the classical LM using NPCA. Therefore, this study intends to decrease the 

occurrence of many empty cells through the reduction of large binary variables. We 

expect this modification (integration between NPCA and LM) manages to minimize 

the misclassification rate for two-group classification based on classical LM. Then, 

this study measures the performance of the new proposed location model by 

comparing the misclassification rates, time computation with the establish method 

such as classical LM, linear discriminant analysis, quadratic discriminant analysis, 

logistic discrimination, linear regression model, classification and regression tree as 

well as location model using exponential smoothing estimation. 

1.3 Research Objectives 

The main objective of this study is to develop a new model for mixed variables 

classification problem by integrating nonlinear principal component analysis 

(NPCA) and classical location model (classical LM) for handling the issue of many 

empty cells due to the existence of large number of binary variables. To achieve the 

main objective, there are four specific objectives need to be accomplished as: 
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i. to identify the optimal number of extracted binary variables retained in 

location model based on the percentage of variance accounted for (VAF) 

using NPCA under different settings of sample sizes, binary and continuous 

variables through simulated datasets.  

ii. to construct a new classical LM based on the optimal amount of binary 

variables obtained, named proposed LM. 

iii. to evaluate and compare the performance of the proposed LM with the 

classical LM based on the percentage of empty cells and classification 

accuracy under different conditions of simulated datasets. 

iv. to compare the misclassification rates between proposed LM with other 

establish classification methods on a real dataset. 

1.4 Significance of Study 

The current study contributes to the related literature by addressing four significance 

issues. First, the proposed strategy is the first attempt in applying NPCA in classical 

LM to extract binary variables which help to handle the issue of many empty cells. 

This proposed strategy will help academics in enlarge existing knowledge of data 

reduction on categorical variables for mixed variables classification. 

Second, the proposed LM can be an alternative to other classification methods, 

mainly when involved with large categorical variables. This proposed model will 

help researchers to work with other similar classification task. For example, medical 
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diagnosis that determines a patient’s disease symptoms usually contains large 

number of categorical variables. 

Lastly, the methodology proposed is a systematic procedure to apply NPCA in 

extracting meaningful categorical variables using the percentage of variance 

accounted for. This procedure will help practitioners in adapting NPCA in the 

parametric classification model which can enhance the classification performance. 

The proposed procedure can be also a guidance as a data pre-processing step in 

multivariate analysis with high categorical data. 

1.5 Research Scopes 

This study covers the problems of mixed variables classification based on the LM. In 

details, this thesis focuses on classifying objects into one of the two groups that 

involves mixtures of binary and continuous variables. The advantage of LM in 

handling mixtures of variables has been proved previously in Krzanowski (1975), 

Asparoukhov and Krzanowski (2000), Mahat et al. (2007), Hamid (2010), Hamid 

and Mahat (2013) as well as Hamid (2014). This study will continue to tackle the 

issue of many empty cells in the LM for two-group case using another variable 

extraction technique. 

Krzanowski (1975), Mahat (2006) and Hamid (2014) have discussed all possible 

methods for parameters estimation of the LM such as maximum likelihood 

estimation, linear model estimation, MANOVA-log linear estimator and non-

parametric smoothing estimation. Although there are some methods has been 

discovered, this study focuses on maximum likelihood estimation as it is more 
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suitable to be used with the classical LM as discussed in Krzanowski (1975). In fact, 

this estimation is needed to construct the classical LM in order to achieve the 

objectives of this study as to compare the proposed LM with the classical LM and 

other existing methods. 

Several criteria are used to simulate artificial datasets that included both binary and 

continuous variables in order to investigate the integration of the classical LM and 

NPCA from various conditions. The artificial datasets generated in this study are 

assumed to have multivariate normal distribution with homogeneous covariance 

matrix across groups and cells. However, we do not consider the existence of 

correlation among the binary variables in this thesis. 

In predictive discriminant analysis, the most frequently used measurement to 

evaluate performance is classification accuracy. The thesis considers the 

measurement for model evaluation that express the accuracy of the proposed LM. 

This is because the major issue arise in classification is the impact of misclassifying 

of the objects. Thus, this study compares the performance of the proposed LM with 

other existing classification methods based on misclassification rates occurred.  

1.6 Outline of Thesis 

This thesis is organized in five chapters. Chapter 1 provides the background about 

mixed variable classification. It summarizes several existing classification strategies 

for handling mixed variables classification problems. This chapter also carefully 

describes the overview of the location model and the occurrence of empty cells in 

location model. 
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Next, Chapter 2 addresses the development of the location model. It starts with the 

historical review of the location model. The procedures for obtaining estimated 

parameters which are used to compute the classical location model are subsequently 

presented. This chapter also explains the importance of dimensionality reduction in 

classification. Then, this chapter continuous to review techniques of variable 

extraction for categorical variables from the viewpoint of location model. 

Justifications of which NPCA was selected as the appropriate technique in order to 

reduce the dimensions of large categorical variables considered in this study are 

provided. Some criteria that can be used as a guideline to determine the number of 

components to be retained are given in the end of this chapter. 

Chapter 3 discusses the generation of artificial dataset and methodology designed for 

carrying out all the investigations. The research plan to integrate variable extraction 

technique using NPCA and classical location model using maximum likelihood 

estimation are outlined. Then, a case study is used to compare and evaluate the 

performance of the proposed location model among other existing classification 

methods. 

Chapter 4 presents the outcomes of these investigations. This chapter observes the 

number of empty cells occurred and interprets the classification performance for 

both of the proposed location model and the classical location model via 

classification accuracy using some simulated datasets under various setting of 

sample size, numbers of binary and continuous variables. The leave-one-out 

misclassification rate was used to measure the classification accuracy. The proposed 
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location model has been tested under 18 dataset conditions in order to verify the 

suitability and validity of the proposed model. 

Finally, Chapter 5 demonstrates the application of classification task using the 

proposed location model in real case study. This chapter compares the proposed 

location model with other existing classification methods in order to understand and 

verify the classification accuracy of the suggested model relative to the existing 

methods.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter discusses the practices leading to the development of classical location 

model to handle the problem of many empty cells through nonlinear principal 

component analysis (NPCA). This chapter focuses on three main sections. The first 

section presents the historical review of the location model (LM) together with the 

origin of classical LM and its formation of classification model as well as its 

parameter estimation using maximum likelihood estimation. The second section 

discusses the importance of dimensionality reduction in classification and the 

fundamental of NPCA as a variable extraction technique to be adapted in the 

classical LM. Lastly, this chapter lays out the evaluation process of the proposed 

classification model based on misclassification rate estimated by leave-one-out 

fashion. 

2.2 Historical Review of the Location Model 

LM was originally introduced by Olkin and Tate (1961) to propose mixed 

distributions which is limited to one continuous variable and one binary variable. 

LM has been used successfully with mixed variables classification starting from one 

set of binary and continuous variable (Chang & Afifi, 1974). Later, Krzanowski 

(1975) further investigated LM to cope with multivariate mixed variables 

classification of the two-group. 
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Suppose that there are two known groups denoted as 1  for group 1 and 2  for 

group 2, with respective sample sizes 1n  and 2n . All the objects can be observed as a 

vector in the form of  TTT
yxz  , , where  b

T xxx  , , , 21 x  is the vector of b 

binary variables, while  c

T yyy  , , , 21 y  is the vector c continuous variables. The 

binary variables can be treated as a single multinomial cell,  smmm  , , , 21 m , 

where bs 2 . Each different pattern of x  defines unique multinomial cell, with x  

falling in cell 



b

q

q

qxm
1

121 , where q is the level of binary variables.  

LM assumes minimum loss of generality that b categorical variables are all binary, 

each taking on either 0 or 1 values. The combination of the binary values give rise to 

bs 2  different multinomial cells. Meanwhile, the continuous variables are assumed 

to have multivariate normal distribution with a homogeneous covariance matrix with 

different means from cell to cell, denoted as   ,imN μ  for i = 1, 2; m = 1, 2, …, s; 

where imμ  are the means in cell m of i  and   is the homogeneous covariance 

matrix across groups and cells. Besides, the probability when an object falls in cell m 

of i  is im . Therefore, we can classify an object  ttt
yxz  ,  into 1  if 
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






 




μμyμμ     (2.1) 

or otherwise classify into 2 , where a is based on the information of the 

classification, i.e. the misclassification and prior probabilities for the two groups. It 

is equal to zero when equal costs and prior probabilities happen in the two groups. 
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Krzanoswski (1975) demonstrated that LM performs better than linear discriminant 

analysis (LDA). This is because LM fully utilizes both binary and continuous 

variables while LDA is usually ignores such discrete variables and is concerned 

more on continuous variables. This is a competitive advantage gained for LM when 

dealing with mixed variables. However, from a theoretical perspective, parameters 

are usually unknown for most of the time in practice. Hence, the unknown 

parameters such as imim   and    , μ  in equation (2.1) can be estimated from the 

sample collected (Krzanowski, 1975). 

From the sample, all means imμ  can be estimated through 

 


imn

j

jim

im

im
n 1

,

1
ˆ yμ

,  smcji  , 2, 1, ; , 2, 1, 2; 1,       (2.2) 

where 

imn  is the number of objects in cell m of i . 

jimy  is the vector of continuous variables of jth object in cell m of i . 

Next, the estimated means are used to estimate the homogeneous covariance matrix 

  is estimated using 

 
  
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where 

in  is the number of objects in i . 
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is  is the number of non-empty cells in the training set of i . 

Lastly, the cell probability im  can be measured by  

i

im
im

n

n
̂     (2.4) 

However, the deficiency is found when many empty cells occurs and this might limit 

the performance of the LM as explained in Section 1.4. In order to extend the 

classification power of LM when parameters are unknown for large binary variables, 

variable selection and variable extraction are introduced for building the 

classification model of LM using non-parametric smoothing estimation (Hamid & 

Mahat, 2013; Mahat et al., 2007, 2009). Mahat et al. (2007) investigated the variable 

selection in smoothed LM thoroughly. A subset of variables is selected concurrently 

with the development of the LM, and showed that the misclassification rate is 

reduced. 

Meanwhile, Hamid and Mahat (2013) proposed a systematic procedure to extract 

significant variables and once again this ideology utilizes the benefits of variable 

reduction techniques in the building of the smoothed LM. Their studies provided the 

integration between variable extraction and LM. Latest study by Hamid (2014) also 

highlighted that LM can work well with principal component analysis (PCA) and 

multiple correspondence analysis (MCA) but this implementation is still heavily 

computing. Table 2.1 briefly presents the major development of the LM. Thus, this 

study attempts to increase the acceptability of involving large number of binary 
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variables in the development of LM through another context of variable extraction 

technique such as NPCA. 

Table 2.1  

The Development of Multivariate Location Model 

Researcher Method Strength Weakness 

Krzanowski (1975) Classical 

location 

model 

Easiest, general and 

satisfactory method for 

mixed variables 

classification (Mahat, 

2006). 

Not practical when 

the number of binary 

variable is large 

(Krzanowski, 1983). 

Krzanowski (1980) Log-linear 

location 

model 

Designed especially for 

categorical variables with 

more than two states 

(Krzanowski, 1980). 

Not practical as it 

requires too many 

parameters to be 

estimated (Mahat, 

2006). 

Asparoukhov & 

Krzanowski (2000), 

Mahat (2006), Mahat, 

Krzanowski & 

Hernandez (2009) 

Smoothed 

location 

model 

Overcome the problem of 

empty cells (Mahat, 

Krzanowski & Hernandez, 

2009). 

Heavily computing 

when large number of 

variables involved 

(Hamid, 2010). 

Mahat, Krzanowski & 

Hernandez (2007) 

Smoothed 

location 

model, 

variable 

selection 

Reduce the number of 

large variables involved 

through the selection of 

useful variables (Mahat, 

Krzanowski & Hernandez, 

2007). 

Not practical when 

most of the variable 

are meaningful 

(Hamid & Mahat, 

2013). 

Hamid & Mahat 

(2013), Hamid (2014) 

Smoothed 

location 

model, PCA 

and MCA 

Reduce the dimensionality 

of data when most of the 

variables involved are 

meaningful based on the 

type of variables (Hamid, 

2014). 

The implementation 

of variable extraction 

is feasible but the 

model is rather 

complexity and still 

heavily computing. 
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2.3 Importance of Dimensionality Reduction for Large Variables 

Tamara Dull, the Director of Emerging Technologies for SAS Best Practices has 

stressed that she sees big data everywhere in practice. Also, Donoho (2000) has 

strongly convinced that the new trends of the century of data are moving toward the 

great significance of high dimensionality. Donoho has provided reader a 

comprehensive aspect of the high dimensional data condition with the advantages 

and disadvantages of dimensionality in data analysis. 

In reality, data recording is complex because it takes into account different type of 

measurement level such as continuous and categorical variables. In other words, the 

existence of multidimensionality of the datasets is high in order to express real case 

study (Meulman, 2003). For example, the examination of medical diagnosis requires 

multiple types of variables because many aspects are needed to compose and express 

the medical report of a patient (Betz, 1987; Kim et al., 2009; Zhang, 2000). 

In order to exploit the goodness of dimensionality while alleviating the 

disadvantages of dimensionality, dimensional reduction is necessary to be conducted 

as a data pre-processing step (Fan & Fan, 2008; Fan & Lv, 2010). Many theoretical 

and practical reviews have focused on the techniques and application of 

dimensionality reduction techniques for example variable selection and variables 

extraction (see Ramadevi & Usharaani, 2013). In the recent context of LM, Mahat 

(2007) and Hamid (2014) have also demonstrated a good guidance on the application 

of variable selection and variable extraction to reduce large number of measured 

variables in the context of LM. 
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Both variable selection and extraction offer slightly different objectives in data 

analysis. Ramadevi and Usharaani (2013) explained that the aim of variable selection 

is to choose an optimal subset of variables while the aim of variable extraction is to 

map the original high dimensional data onto a lower dimensional space. Variable 

extraction is more preferable in this study due to it is able to handle both irrelevant 

and redundant features instead of evaluating only a subset of the original variables 

(Ramadevi & Usharaani, 2013). Moreover, it is less costly and time complexity 

(Ramadevi & Usharaani, 2013). 

2.4 Variable Extraction for Categorical Variables in Location Model 

Although datasets involving different types of variables give a lot of information, but 

large categorical variables create difficulties in computation (Ferrari & Manzi, 2010; 

Ferrari & Salini, 2011; Manisera, van der Kooij, & Dusseldorp, 2010). As 

demonstrated in Section 1.1.2, the higher the number of binary variables, the higher 

the number of empty cells will be existed (Asparoukhov & Krzanowski, 2000; 

Hamid & Mahat, 2013; Krzanowski, 1980). Consequently, not only the 

computational time is burdensome but the misclassification rate of a classification 

model will be increased exponentially as the number of binary variables increases. 

An overview of variable extraction techniques especially for categorical data are 

comprehensively reviewed by Prokop and Řezanková (2011). They discussed in 

detail on the mathematical equations, strengths and complexities of relevant 

techniques such as multidimensional scaling, latent class model and NPCA. A 

comparison among these techniques are conducted using two research datasets with 

emphasis on categorical data obtained from questionnaire surveys (for details see 
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Prokop & Řezanková, 2013). Based on their findings, NPCA resulted as the most 

satisfactory goodness of the data structure of categorical variables, followed by latent 

class model and multidimensional scaling. Therefore, NPCA can be considered as a 

potential tool to be used to reduce large categorical variables that considered in this 

study. 

Another similar research has been conducted by Hamid (2014). In her research, 

variable extraction techniques such as PCA and MCA are used to perform variable 

reduction for continuous and categorical variables respectively before the 

construction of the LM. The findings also proved that MCA performs better than 

PCA on categorical data. This is in line with the fact that PCA is most suitable and 

PCA concerns on numeric measurement level such as continuous variables (Linting 

et al., 2007a; Manisera et al., 2010). Due to the outstanding performance of MCA 

towards the extraction of large binary variables in Hamid (2014) inspires further 

investigation of another well-known technique, i.e. NPCA which allows to deal with 

categorical variables involved in the LM. Indeed NPCA can be seen as the extension 

to MCA and also known as the extension of PCA with optimal scaling of categorical 

variables (De Leeuw, 2011; Gifi, 1990). 

2.5 NPCA for Reducing Large Categorical Variables 

NPCA has been developed during the last 40 years (Linting, van Os, & Meulman, 

2011; Meulman, 1992). In fact, NPCA is known as categorical PCA (Blasius & 

Gower, 2005) as it is designed to reduce categorical variables such as nominal 

variable. Optimal scaling approach has been addressed to treat multivariate data 

through the optimal transformation of qualitative scales to quantitative values where 
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both nominal and ordinal variables can be optimally transformed to variables with 

numeric properties (Markos, Vozalis, & Margaritis, 2010). On the other hands, 

NPCA can be defined as homogeneity analysis with restrictions on the quantification 

matrix in Gifi terminology (Prokop & Řezanková, 2011). As argued by Guttman 

(1941) that the homogeneity analysis of Gifi (1990) can be expressed as NPCA and 

also quite equivalent to MCA. This is because the Gifi terminology has been 

introduced to account for the scaling level of the categorical variables (Mair & 

Leeuw, 2008). Homogeneity analysis of Gifi (1990) implies the concept of “optimal 

scaling” that later applied by PCA with optimal scaling as well as MCA and NPCA. 

De Leeuw (2011) explained that they are very related with each other but their 

objectives are slightly different. In PCA-OS, the subsets are separated by parallel 

hyperplanes, and loss is defined as squared Euclidean distance to approximate 

separating hyperplanes. In MCA, small subsets where smallness is defined in terms 

of total squared Euclidean distance from the centroid. While in NPCA, these 

category subsets are required to be either small that relative to the whole set and also 

separated well from each other for all variables simultaneously. A comprehensive 

review on the development of the NPCA and its relation to PCA with optimal scaling 

(OS) as well as MCA with Gifi theory can be found in De Leeuw (2013). 

It can be summarized that PCA, MCA and NPCA is a family of techniques that 

reveal patterning in high dimensional datasets (Costa, Santos, Cunha, Cotter, & 

Sousa, 2013). PCA is used to reduce a large number of continuous variables through 

a linear combination of these variables (Peres-Neto, Jackson, & Somers, 2005). 

Thus, PCA requires two important settings: linear relationships between the 

variables and those variables should have numeric scaled.  
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On the contrary, MCA can be introduced as an optimal scaling technique or in terms 

of a PCA of the quantified data matrix (Lombardo & Meulman, 2010). In descripting 

MCA, different weighting schemes to combine quantitative variables to an index that 

optimizes some variance-based discrimination or homogeneity criterion (De Leeuw, 

2011). Thus, MCA can be connected with PCA when OS is used to optimize the 

fitting of PCA. MCA are conducted by weighting the categories of variables as 

suggested by Nishisato and Arri (1975). The transformed numerical information will 

be presented in a cross tabulation (Costa et al., 2013). MCA is also known as a 

nonlinear transformation of the categorical variables (Meulman, van der Kooij, & 

Heiser, 2004). The similarity and difference between MCA and NPCA are well 

explained in De Leeuw and Mair (2009). 

Apart from MCA, NPCA is an alternative technique to reduce large categorical 

variables. NPCA is defined as Gifi’s homogeneity analysis with restrictions on the 

quantification matrix as it is formulated to look for a nonlinear transformation of 

each variable for measurement scales such as nominal, ordinal or numerical with 

optima scaling (Prokop & Řezanková, 2011). The settings of NPCA showed that it is 

distinct from PCA as it concerns on the categorical variables and does not assume 

linear combinations of the variables (Prokop & Řezanková, 2013). In Gifi’s 

terminology, the solution of the homogeneity analysis is obtained by alternating least 

squares in the form of the minimization of a least squares loss function (Lombardo & 

Meulman, 2010).  

The objective of NPCA is to reduce a large number of categorical variables to a 

smaller set of uncorrected underlying variables, called principal components that 
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produce as much variance as possible (Manisera et al., 2010). Unlike PCA, NPCA 

takes into account the nature and role of categorical variables (Manisera et al., 2010; 

Meulman, 2003). Few software that can performs NPCA are designed such as SPSS, 

SAS and R (De Leeuw & Mair, 2009; De Leeuw, 2011; Linting & van der Kooij, 

2012). NPCA is available from the program CATPCA in SPSS (Linting & van der 

Kooij, 2012), PRINQUAL in SAS and the function called homals in R (De Leeuw & 

Mair, 2009). 

2.5.1 The Details of NPCA 

The categorical variables are assigned as numeric values prior in NPCA. Such 

numeric values are referred as category quantifications in such a way that as much as 

possible of the variance in the quantified variables is accounted for through a process 

called optimal quantification (Linting et al., 2007a). The variables are transformed 

by assigning optimal scale values to the categories, resulting in numeric-valued 

transformed variables (Manisera et al., 2010). 

In detail, NPCA finds category quantifications that are optimal in the sense that the 

overall variance accounted for in the transformed variables is maximized (Linting & 

van der Kooij, 2012). The most important thing is that the information in the original 

categorical variable is retained in the optimal quantifications (Linting, Meulman, 

Groenen, & van der Kooij, 2007b). Thus, the distinctions among the different 

measurement levels of variables are critically based on the decisions of the 

researcher. This means that researchers have to decide the analysis level of a variable 

to be analysed as different analysis levels imply different requirements (Gifi, 1990; 

Linting & van der Kooij, 2012). For example, in the case of nominal analysis level, 
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the objects who scored the same category on the original variable should receive the 

same quantified value. 

Besides, NPCA are formulated to compute the correlations between the quantified 

variables, its correlation matrix is depended on the type of quantification called an 

analysis level that is chosen for each of the variables (Linting et al., 2007a; Linting, 

2007). In this study, the term categorical is referred as nominal variables that consist 

of unordered categories, so that this system is appropriate to be implemented in the 

construction of LM. For instance, gender has two possible categories: male and 

female, in which such variables with unordered categories can be coded as zero for 

male and one for female. In other word, the optimal category quantification can be 

any value as long as the objects of the same category obtain the same score on the 

quantified variable. 

Thus, NPCA’s solution is using the optimal scaling process to quantify the nominal 

variables. This process maximizes the variance accounted for of the correlation 

matrix that computed from the quantified variables, in order to determine the number 

of components that are chosen in the analysis (Linting et al., 2007a). Therefore, this 

study intends to investigate the possibility of NPCA in reducing large binary 

variables prior to the construction of the LM.  

2.5.2 Stopping Rule for Determining the Number of Components to Retain 

A critical problem in variables extraction techniques is the determination of the 

number of components to retain (Dray, 2008). This is an important step for the 

interpretation of subsequent classification task in this study. The choice of the 
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number of retained components required careful investigation to avoid under-

estimation or over-estimation (Dray, 2008). This subsection briefly discussed some 

common stopping rules used in past studies and choose the most appropriate for in 

this study. 

In the analysis, NPCA provides eigenvalues as the overall summary measures that 

indicate the variance accounted for (VAF) by each component (Linting et al., 

2007a). Each principal component can be viewed as a composite variable 

summarizing the original variables, and the function of the eigenvalue is to express 

how meaningful the variables are (Manisera et al., 2010). The sum of the eigenvalues 

over all possible components is equal to the number of original variables. However, 

only a few principal components are adequate to describe the data if all the variables 

are highly correlated. Before extraction, all components are arranged in decreasing 

order based on their eigenvalues. This order provides a list of components, starts 

from the first component that is associated with the largest eigenvalue and counts for 

the highest variance. Meanwhile the second component is accounted as much as 

possible of the remaining variance which has not counted in the first component 

(Linting & van der Kooij, 2012). 

A group of stopping rules to determine the number of components has been 

developed in the past. Peres-Neto et al. (2005) compared a number of rules and 

addressed that impact of categorical data has to be concerned carefully in the 

selection of a stopping rule. Some of these stopping rules have been applied in the 

context of NPCA. Linting, Meulman, Groenen and Van der Kooij (2007) have 

implemented a few well-known rules in NPCA such as the scree plot, Kaiser-
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Guttman or eigenvalues greater than one and the amount of VAF. This study 

discusses the strength among these three rules and choose one to retain adequate 

components. 

The scree plot is well known as the simplest rule. However, it is not considered in 

this study due to its subjective nature as mentioned by Peres-Neto et al. (2005). Scree 

plot displays a break (look like an elbow) in order to determine the number of 

components to retain but such elbow is not always clearly show (Linting et al., 

2007a). Furthermore, scree plot is not suitable to deal with large variable. Therefore, 

both Kaiser-Guttman rule and VAF are more preferred. Kaiser-Guttman rule 

suggested that the number of reliable components is as large as the number of the 

ones with eigenvalues greater than one (Solanas, Manolov, Leiva, & Richard’s, 

2011). As a rule of thumb, Kaiser-Guttman is always fixed as a default option in 

many statistical packages. This rule has been applied with NPCA in the study of job 

satisfaction (Manisera, Dusseldorp, & van der Kooij, 2005). However, it is not 

recommended especially when the measured variables are categorical variables 

(Solanas et al., 2011). 

The VAF of a variable is defined as the sum of squared component loadings across 

components (Linting et al., 2007a). Blasius and Gower (2005) showed that the 

proportion of VAF can be obtained by dividing each eigenvalues by the number of 

variables. An investigation of retaining components for categorical variables has 

been conducted by Solanas et al. in 2011. Their findings showed that the amount of 

VAF decreases for larger samples size and variables. They also found that the 

amount of VAF ranges from 53% to 80% for all the components have met Kaiser-
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Guttman rule. This suggested that the percentage of VAF can be a rule to justify 

relevant components in presence of categorical variables. Costa et al. (2013) also 

supported that VAF acts as a good indicator to determine the number of components 

to retain. This study plans to investigate the appropriate percentage of VAF required 

from 50% and 80% by NPCA that can be used in the proposed location model in this 

study. 

2.6 Evaluation of the Proposed Location Model 

In practice, the evaluation of the classification model is necessary to be conducted to 

assess the performance of the proposed classification model (Eisenbeis, 1977; 

Lachenbruch & Goldstein, 1979). Besides, the quality of the classification model and 

the utilization of the available sample should be examined before further used 

(Wernecke, 1992). This is because biased estimate from the constructed 

classification model will increases the probability of classifying an object incorrectly 

(Simon, Radmacher, Dobbin, & McShane, 2003). 

Generally, the major target of classification is the impact of misclassifying of the 

objects (Kristensen, 1992). The impact of misclassification is acts as the fundamental 

of classification to support the decision making (Greenland, 1988; Simon et al., 

2003). Thus, misclassification rate can provides a quantifiable result to express the 

accuracy of the proposed model (Berardi & Zhang, 1999). 

From past studies, there are some methods introduced to estimate the 

misclassification rate. For example, resubstitution is the simplest method for 

evaluating such classification model (Lachenbruch & Goldstein, 1979). However, 
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resubstitution is considered quite optimistic towards model accuracy and hence 

produces much bias results (Eisenbeis, 1977). Another method is bootstrapping 

which offers improved performance in accordance to variance (Braga-Neto & 

Dougherty, 2004; Takane et al., 1987). Although bootstrapping produces results with 

less bias than the resubstitution, it requires higher computational cost (Braga-Neto, 

Hashimoto, Dougherty, Nguyen, & Carroll, 2004). On the other hand, cross-

validation can be considered as an appropriate method to evaluate the proposed 

model (Krzanowski, 1982). Cross-validation method i.e. leave-one-out is able to 

produce an unbiased results consistently (Eisenbeis, 1977; Krzanowski, 1979; 

Lachenbruch & Goldstein, 1979). 

Leave-one-out (LOO) method is a cross validation method of Lachenbruch and 

Mickey in 1968. In fact, it has been applied to assess the classification model with 

mixed variables successfully (Knoke, 1982; Vlachonikolis & Marriott, 1982). 

Moreover, this method has been implemented directly to assess the classification 

performance of the location model (Krzanowski, 1975, 1982) as well as the 

smoothed location model (Hamid & Mahat, 2013; Mahat et al., 2007). 

Based on past literatures, LOO method leaves only one object as a test set while 

objects (n -1) are treated as a training set which used to construct the classification 

model. This shows that, LOO utilizes maximum dataset for estimating 

misclassification rate (Hamid & Mahat, 2013; Hamid, 2014; Krzanowski, 1975; 

Mahat et al., 2007). In this study, misclassification rate is estimated through leave-

one-out method using 



 

 35 

n

error
n

k

k
1

    (2.5) 

where k is an omitted object from the sample, n. 

2.7 Summary 

Past literatures have shown that many efforts have been devoted to improve the LM 

in solving problems of mixed variable classifications. A fruitful summary of the 

model development has been reported, but we realize that many efforts are 

concerned on the acceptability of the number of binary variables in which the LM 

can be constructed. Variable extraction is helpful to reduce the dimension of the 

binary variables when it is large and most of them are meaningful. However, limited 

studies have discussed the implementation of variable extraction in the context of 

LM in order to perform classification tasks with large number of binary variables. 

Therefore, this study is interested to examine the raised up issue through the 

application of another alternative variable extraction technique using NPCA in the 

LM. The next chapter discusses the research plan and procedures for the integration 

of NPCA and classical LM in handling large number of binary variables measured in 

the study. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

The purpose of this study is to extract binary variables using nonlinear principal 

component analysis (NPCA) to be used in the location model (LM). Previous chapter 

discussed related literatures on the development of LM and overview of NPCA. This 

chapter covers the systematic procedures to build the classification model based on 

the integration of classical LM and NPCA to extract and reduce large binary 

variables considered in the study. 

The first step is the implementation of nonlinear principal component analysis to 

extract only the most significant binary variables based on variance accounted for. In 

this step, an investigation on the best cutting point is carried out to determine the best 

percentage of variance accounted for (VAF) to retain components for further used. 

Meanwhile, the second step is the construction of the proposed LM using the 

extracted set of binary variables from NPCA. Lastly, the classification performance 

of the proposed LM is from various conditions of simulation datasets and a real 

dataset based on the misclassification rate. Meanwhile, the misclassification rate is 

estimated using the leave-one-out fashion. 

3.2 Artificial Dataset  

The proposed LM with extracted set of binary variables are tested via Monte Carlo 

study. The artificial datasets were generated such that they represent various data 

conditions. The process of generating the artificial datasets with multivariate normal 
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distribution requires some settings such as the number of group (i), sample size (n), 

vector of means (μ ), covariance matrix ( ), number of binary variables (b) as well 

as the number of continuous variables (c). 

3.2.1 Generation of Artificial Dataset 

The similar process to simulate the artificial datasets that contain mixtures of binary 

and continuous variables has been discussed in Hamid (2014). Let 

   bciciicii yyyyy   , , , , , , 121   be a generated set of continuous variables for each 

group with n samples having a multivariate normal distribution with mean ( iμ ) and 

a homogeneous covariance matrix ( ). The first c continuous variables, 

icii yyy  , , , 21   are treated as observed continuous variables whilst the remaining 

     bcicici yyyy   , , , 21   are treated as unobserved ones. Then, the b binary variables 

are created by applying thresholds to the unobserved continuous variables via 

discretization process. In the discretization process, suppose      bcicici yyy   , , , 21   

are related to a set of observed binary variables  ibii xxxx  , , , 21   where 






0

1
ikx

 

    otherwise  

, if    kciy
   

, , 2, 1, bk 
    (3.1) 

with   as a specified threshold value. For this study purpose, the   is set to zero as 

for simplicity. Also, this study is just concerned to obtain many empty cells rather 

than which cell having high percentage of empty cells. This setting could provide us 

different distribution of objects to the categories variables in both groups. Then, this 
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process will generate the observed binary variables ibii xxx  , , , 21   from the 

unobserved continuous variables      bcicici yyy   , , , 21   for both groups. At last, c + 

b variables are generated from c continuous variables  cyy  , ,y , 21   and b binary 

variables  bxx  , , x, 21   for both 1  and 2 . 

R Programming provides an easy environment to generate multivariate data from a 

normal distribution. To initiate the data simulation, all the key factors such as n, b 

and c are fixed to cover as wide a range of conditions as possible within reasonable 

practical scopes. There are two sample sizes are fixed as n = 100 and n = 200. Each 

set of sample sizes contains 5, 10 and 15 binary variables. In the context of LM, b = 

10 and b = 15 can be considered as large number of categorical variables due to the 

structure of the LM itself. As these binary sizes will create 1024 cells and 32768 

cells per group respectively. The continuous variables also are set as 5, 10 and 15 for 

the purpose to test from different condition as b < c, b = c and b > c as displayed in 

Table 3.1. The vector of means for binary variables is assumed to be zero and the 

diagonal of covariance matrix is assumed to be unity. Meanwhile, the mean values of 

the continuous variables are set as 0 and 1 so that small separation between the two 

groups are obtained following Everitt and Merette (1990). In total, there are 18 

simulated datasets in order to investigate the performance of the proposed LM. 
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Table 3.1 

All 18 Simulation of Artificial Datasets 

Number of 

continuous 

and binary 

variables 
 

n = 100 

 
n = 200 

  (%) em  (%) t   (%) em  (%) t 

For c = 5 

b = 5, 

b = 10 

b = 15 

 

Dataset 1, small size of b 

Dataset 2, medium size of b 

Dataset 3, large size of b 

 

 

Dataset 10, small size of b 

Dataset 11, medium size of b 

Dataset 12, large size of b 

For c = 10 

b = 5 

b = 10 

b = 15 

 

Dataset 4, small size of b 

Dataset 5, medium size of b 

Dataset 6, large size of b 

 

 

Dataset 13, small size of b 

Dataset 14, medium size of b 

Dataset 15, large size of b 

For c = 15 

b = 5 

b = 10 

b = 15 

 

Dataset 7, small size of b 

Dataset 8, medium size of b 

Dataset 9, large size of b 

 

 

Dataset 16, small size of b 

Dataset 17, medium size of b 

Dataset 18, large size of b 
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3.3 Research Plan 

The discrimination procedures designed in this study are as follows: 

i. Extract binary variables using NPCA. 

ii. Construct the classification model based on the classical LM using the extracted 

binary variables obtained in Step (i). 

iii. Evaluate the proposed LM built in Step (ii). 

As previously discussed, NPCA is necessary to extract the large measured binary 

variables before the construction of the LM. The implementation of NPCA is to 

rectify or at least reduce the occurrence of many empty cells in the LM. It is hope 

that the proposed LM is able to reduce the misclassification rate with large 

consideration of binary variables. 

This study designed three important phases in order to construct and evaluate the 

proposed LM producing from the integration of the classical LM and NPCA 

systematically using some simulated datasets. Figure 3.1 shows the flow chart of the 

research plan in this study. These phases are then discussed in the following sub-

sections.  
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Figure 3.1 The flow chart of the research plan 
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3.3.1 Phase I: Extraction of Large Binary Variables 

As previously discussed in Section 2.4, the implementation of variable extraction 

will be helpful to reduce the number of binary variables and improve the 

classification accuracy of the LM. Table 3.2 presents the application procedures of 

using NPCA. 

Table 3.2  

The Procedures of NPCA 

Procedure Description 

Data quantification Perform the quantification on the categorical data. 

 

Principal 

components 

construction 

Construct the components in such a way that as much as 

possible of the variance in the quantified data is accounted for. 

For example, the first component constructed explains the 

largest amount of variance accounted for while the subsequent 

component constructed explains the largest amount of the remaining 

variance. 

 

Selection of the 

components  

Select the components to be retained based on the cutting point 

defined using the percentage of the variance accounted for. 

 

 

In this study, NPCA is integrated with the classical LM. The objective of this 

algorithm is to reduce and to accumulate relevant variables that contain much 

variance accounted for (VAF) from the large measured binary variables that is 

sufficient to the construction of the proposed LM. 
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The amount of VAF has to be justified through an experiment in order to obtain 

adequate components retained prior to construct the proposed LM. Table 3.3 

displays the experimental design to find the best cutting point of the percentage of 

VAF setting from 50% to 80%. There are 42 tests in this experiment to justify the 

percentage of VAR for extraction the large number of binary variables using NPCA. 

Then, the proposed LM is performed based on this searching cutting point to extract 

binary variables considered in this study. 

The continuous variables will be used directly for the construction of the proposed 

LM. however, the extracted b  components among the binary variables are from 

continuum and do not fit to the proposed LM. Therefore, the extracted b  

components have to be transformed to their original type via a discretization process 

where the values greater than zero are deemed as one and the remaining values are 

deemed as zero. Then, the discretized db  will be combined with the continuous 

variables at last. Algorithm 3.1 displays the steps of binary variables extraction using 

NPCA. 

Algorithm 3.1 Extraction of Large Binary Variables using NPCA 

Step 1 Execute NPCA on the training set for b binary variables. 

Step 2 Select b binary components according to the percentage of VAF from 

50% to 80% which then defined it as b , where bb  . 

Step 3 Discretized the extracted b  components to binary values which then 

defined as db . 

Step 4 Combine the discretized db  and the c continuous variables. The data 

now contains db  extracted binary components and c continuous 

variables. 
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Table 3.3 

The Experimental Design to Investigate the Percentage of VAF from 42 Simulation 

Datasets 

n = 100, c = 10 

% of VAF b = 5 b = 10 b = 15 

50 Test 1 Test 8 Test 15 

55 Test 2 Test 9 Test 16 

60 Test 3 Test 10 Test 17 

65 Test 4 Test 11 Test 18 

70 Test 5 Test 12 Test 19 

75 Test 6 Test 13 Test 20 

80 Test 7 Test 14 Test 21 

n = 200, c = 10 

% of VAF b = 5 b = 10 b = 15 

50 Test 22 Test 29 Test 36 

55 Test 23 Test 30 Test 37 

60 Test 24 Test 31 Test 38 

65 Test 25 Test 32 Test 39 

70 Test 26 Test 33 Test 40 

75 Test 27 Test 34 Test 41 

80 Test 28 Test 35 Test 42 
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3.3.2 Phase II: Construction of the Proposed Location Model 

After the extraction of large binary variables using NPCA, this study employs the 

classical LM as specified by Krzanowski (1975). Let the vector of binary variables 

denoted as  b

T xxx  , , , 21 x  and vector of continuous variables as 

 c

T yyy  , , , 21 y . Upon the completion of the extraction of binary variables using 

NPCA, we write the new extracted components for binary variables as 

 **

2

*

1

*  , , ,
b

T xxx x . Therefore, all objects in the two groups can be written as 

 TTT
yxz   ,**  . By assuming that the costs due to misallocation future objects in both 

groups are equal and that the covariance matrices in both groups are homogeneous, 

the future object  TTT
yxz  ,**   is classified to 1  if 

     a
m

m

mm

T

mm loglog
2

1

1

2

21

*1

21 



















 




μμyμμ     (3.2) 

or otherwise it will be classified to 2 , where m is a set of multinomial cell obtained 

from the b  extracted binary components such that m = 1, 2, …, s and b
s 2 . 

Following Equation 2.2, imμ̂  is obtained using the following function 

 


imn

j

jim

im

im
n 1

*1
ˆ yμ , (i = 1, 2; j = 1, 2, …, c; m = 1, 2, …, s)    (3.3) 

where 

imn  is the number of objects in cell m of i . 

jim
*

y  is the vector of continuous variables of jth object in cell m of i . 
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Next, following Equation 2.3, the estimated means are used to estimate the 

homogeneous covariance matrix ̂  through 

 
  

  





2

1 1 1

**

2121

ˆˆ
1ˆ

i

s

m

n

j

T

imjimimjim

im

ssnn
μyμy     (3.4) 

where 

in  is the number of objects in i . 

is  is the number of non-empty cells in the training set of i . 

Lastly, the cell probability im̂  can be measured by  

i

im
im

n

n
̂     (3.5) 

Then, the proposed LM is constructed using all estimators as summarized in 

Algorithm 3.2. 

Algorithm 3.2 Construction of the Proposed Location Model 

Step 1 Omit an object k as a test set, where k = 1, 2, …, n and let the remaining 

(n - 1) objects act as a training set. 

Step 2 Perform NPCA steps using Algorithm 3.1 on the training set. 

Step 3 Compute estimators imμ̂ , ̂  and im̂  using the data obtained in Step 2. 

Step 4 Construct the proposed LM by using the estimators computed in Step 3 

respectively. 
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3.3.3 Phase III: Model Evaluation 

At last, the proposed LM constructed in Phase III is evaluated based on the leave-

one-out with the steps as described in Algorithm 3.3. 

Algorithm 3.3 Evaluation of the Proposed Location Model 

Step 1 Predict the group of the omitted object k using the proposed LM 

developed in Algorithm 3.2.  

Step 2 Obtain the group prediction result of k in Step 1. 

Step 3 Check the accuracy of the prediction and record the correct prediction 

as error = 0, otherwise error = 1. 

Step 4 Repeat Steps 1 to 3 for all objects in turn. 

Step 5 Calculate the overall error for misclassifying object using Equation 2.5. 

 

 

3.4 A Case Study using Full Breast Cancer Dataset 

In this section, the proposed LM is validated using a real dataset. The performance of 

the proposed LM will be compared with the classical LM and other existing methods 

in term of misclassification rate. The real dataset of full breast cancer from King’s 

college Hospital, London is used to investigate the possible extent of the proposed 

LM in a practical application. This dataset consists of 137 patients having breast 

cancer and was divided into two groups. There are 78 women being benign in 1  

while 59 women are malignant in 2 . 

This full breast cancer contains 15 variables that included two continuous variables, 

four nominal variables with three states each, six ordinal variables with eleven states 

each and 3 binary variables. Then, all the ordinal variables are treated as continuous 
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variables while all the nominal variables are transformed into binary variables 

according to the past studies and due to the structure of the LM itself (Hamid, 2014; 

Krzanowski, 1975; Mahat et al., 2007). This pre-processing gives a new dimension 

with eight continuous and eleven binary variables of a full breast cancer data. With 

this new dataset, this study compares the discrimination performance of the proposed 

LM with some existing classification methods available include linear discriminant 

analysis, quadratic discriminant analysis, logistic discrimination, linear regression 

model and classification tree. 
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CHAPTER FOUR 

RESULTS OF ANALYSIS 

4.1 Introduction 

This chapter gives the findings on the evaluations conducted on the proposed 

location model (LM) with variable extraction technique for a mixture of binary and 

continuous variables. Sub-section 3.3.1 has outlined the extraction of large binary 

variables using nonlinear principal component analysis (NPCA). Then the extracted 

components are used to construct the LM. 

First of all, a preliminary investigation of the percentage of the variance accounted 

for (VAF) has been conducted in order to investigate the best cutting point that can 

be used to select components to be retained. Then, these components were used to 

construct the proposed LM. After that, the proposed LM was evaluated using the 

simulated artificial datasets and full breast cancer dataset that has been discussed in 

Section 3.2 and Section 3.4 respectively.  

By using the simulated datasets, the proposed LM was tested and compared with 

classical LM under various conditions to evaluate its classification performance. The 

performance of the proposed LM was discussed with respect to the percentage of the 

empty cells occurred, number of binary variables, the misclassification rate as well 

as the computational time required. Next, the proposed LM was applied to real 

practical problem using full breast cancer data. It was compared with other existing 

classification methods. 
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4.2 Preliminary Investigation of Variance Accounted For 

In this study, NPCA is used to extract the most significant components based on the 

percentage of variance accounted for (VAF) and then later the extracted components 

will be used for constructing the location model (LM). As a matter of fact, the 

amount of VAF needed to be intensively investigate in order to obtain adequate 

components to be retained and then this VAF will be used to construct the proposed 

LM. In order to obtain the best cutting point of VAF, an experimental design was 

developed as discussed in Section 3.3.1. The investigations on VAF is important to 

be conducted as to select only the component with mostly contribute to the variance 

explained. Table 4.1 displays the results of the experimental design conducted in the 

proposed LM to investigate the best cutting point based on VAF setting from 50% to 

80% for n = 100 and n = 200. 

The experimental outcomes in Figure 4.1 and Figure 4.2 shows the effect of the 

percentage of VAF on the misclassification rates in the proposed LM. The 

misclassification rate was increasing proportionately with the percentage of VAF 

except when VAF is equal to 65%. Thus, the most outperformed result is obtained 

when VAF is equal to 65%. It remains constant in both Figure 4.1 and Figure 4.2 

when the binary components extracted is based on 65% of VAF in all 42 simulated 

data that tested as presented in Table 4.1. 
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Figure 4.1 The percentage of VAR versus misclassification rate when n = 100 

 

 

Figure 4.2 The percentage of VAR versus misclassification rate when n = 200 
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Table 4.1 

The Percentage of VAF Resulted from 42 Simulation Datasets 

n = 100, c = 10 

Binary used b = 5 b = 10 b = 15 b = 5 b = 10 b = 15 

% of VAF Component retained   (%) 

50 2 4 5 4.00 24.00 31.00 

55 3 4 5 16.00 30.00 37.00 

60 3 4 6 18.00 36.00 51.00 

65 3 5 7 15.00 36.00 50.00 

70 3 5 7 21.00 36.00 51.00 

75 4 6 8 24.00 41.00 50.00 

80 4 7 9 19.00 52.00 54.00 

  

n = 200, c = 10 

Binary used b = 5 b = 10 b = 15 b = 5 b = 10 b = 15 

% of VAF Component retained   (%) 

50 3 4 5 1.50 18.00 27.00 

55 3 4 5 5.50 23.50 24.00 

60 3 5 6 13.00 30.50 36.00 

65 3 5 7 11.50 22.00 34.50 

70 3 5 8 14.00 35.50 45.50 

75 4 6 8 20.00 35.50 50.00 

80 4 7 9 14.50 47.00 50.00 

  

 

The overall findings from 42 simulations proved that 65% of VAF could be the best 

cutting point for retaining components which in turn provide better classification 

task to classify objects correctly. This is in line with the finding of Solanas et al. 

(2011), also suggested that almost 67% of VAF is good to be used as a cutting point 
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to retain components especially for categorical variables. Therefore, NPCA was 

performed based on this cutting point in order to extract large measured binary 

variables before further used to construct the proposed LM in this study. 

4.3 Results from the Simulation Study 

This section analyses the outcomes on the proposed LM from 18 simulation datasets.  

In order to investigate the classification performance of the proposed LM under 

various conditions, the important elements were split into three evaluations included 

(i) the number of binary variables that is considered, (ii) the number of continuous 

variables involved and (iii) the sample sizes with respect to (i) the percentage of 

empty cells occurred, (ii) the misclassification rates and (iii) the computational time 

required for each classification procedures. Lastly, the overall results of the proposed 

LM are discussed and compared with the classical LM. 

4.3.1 The Percentage of Empty Cells Occurred 

Figure 4.3 presents the percentage of empty cells occurred in the classical LM. 

Datasets with small number of binary variables (b = 5) obtained lower percentage of 

empty cells (21% for n = 100 and 12% for n = 200). The percentage of empty cells is 

increased up to at least 90% when the binary variables increased from b = 5 to b = 10 

and almost reach 100% empty cells when b = 15 for both n = 100 and n = 200. 

This outcome demonstrates that almost 90% of the multinomial cells are empty when 

ten binary variables are measured in the study. For example, as shown in Figure 4.3, 

the percentage of empty cells occurred was increased from 12.5% (b = 5), 91.8% (b 

= 10) to 99.7% (b = 15) under n = 200, c = 5. The same increasing pattern occurred 
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in all conditions for different size of sample and different number of variables used 

as shown in Figure 4.3. 

 

Figure 4.3 The percentage of empty cells occurred in the classical LM 

On the other hand, the results obtained based on the proposed LM as illustrated in 

Figure 4.4, the most outstanding outcome is that the proposed LM has resulted none 

empty cells for all data conditions with b = 5. This indicates that all multinomial cell 

created are fully covered by the objects. Furthermore, datasets with medium size of 

binary variables (b = 10) only obtained 25% empty cells as maximum. 

When sample size was increased from n = 100 to n = 200, the occurrence of empty 

cells decreased 3% on average. This finding shows that the effect of sample sizes is 

contribute to the occurring of empty cells in the developed model. As proved in 

Figure 4.4 that there was a different percentage of empty cells occurred between n = 

100 and n = 200. For example, datasets with large number of binary variables (b = 
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15) obtained the highest percentage of empty cells, i.e. range from 42% to 66% for n 

= 100 and 25% to 47% for n = 200 respectively. 

Another result that should be highlighted in this study is no differences can be found 

between the percentage of empty cells occurred and the number of continuous 

variables considered. This is due to the percentage of empty cells did not influent by 

the increasing number continuous variables. It can be concluded, the percentage of 

empty cells is strongly affected by the number of binary used and the size of sample 

considered in the study. 

 

Figure 4.4 The percentage of empty cells occurred in the proposed LM 

The preliminary analysis in Section 1.4 reveals that the percentage of empty cells 

occurred ( em %) in the classical LM affects the estimation of parameters and further 

decrease the accuracy of the classification model. As shown in Figure 1.1, the 

number of multinomial cells (s) grows exponentially according to the number of 
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binary variables (b) due to the structure of the location model, bs 2 . For example, 

5 binary variables created 32 cells per group while 15 binary variables created 32768 

cells per group. Therefore, the probability for these cells to become empty is higher 

when large categorical variables involved. 

Figure 4.5 shows that the percentage of the empty cells occurred in classical LM was 

resulted up to 90% for b = 10 and b = 15. The difference between the proposed LM 

and classical LM in term of the percentage of the empty cells occurred was 

highlighted. This finding confirms that the empty cells occurred in the proposed LM 

is much lower than the classical LM for all conditions evaluated. 

 

Figure 4.5 The percentage of the empty cells in proposed LM (pLM) and classical 

LM (cLM) 
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4.3.2 The Misclassification Rates Achieved 

Figure 4.6 shows an overview of the misclassification rates obtained based on the 

classical LM for all datasets investigated. The misclassification rates resulted from 

all data conditions were relatively high. The best performance was only found when 

n = 200 with b = c = 5, which resulted 19% of misclassification rate. On average, the 

classical LM obtained misclassification rates, range from 19% to 51% and for n = 

100 and n = 200 respectively. These results reveal that the classification accuracy of 

the classical LM is unacceptable for large binary variables considered, i.e.  b = 10 

and b = 15 for all c and both n = 100 and n = 200 respectively. 

Generally, datasets with 200 samples obtain slightly lower misclassification rates 

than those datasets with 100 samples. This is because a larger sample size will 

reduce the number of empty cells and hence could increase the classification 

accuracy. More information can be obtained from a larger sample size. For example, 

the misclassification rates obtained is higher under n = 200, which were 31% (b = 5), 

50.5% (b = 10) and 51.5% (b = 15) as compared to n = 100, misclassification rates 

were reduced to 47% (b = 5), 48% (b = 10) and 50% (b = 15). This result also 

indicates that the larger the binary variables the higher the misclassification rate. 

Most of the misclassification rates presented in Figure 4.6 are high (more than 40%) 

except if b =5 in all conditions. 

Figure 4.7 shows the overall performance of the proposed LM for all b, c and sample 

sizes tested. The performance of the proposed LM is outstanding when b = 5, in 

which the misclassification rates is 21% on average. The best performance of the 

proposed LM was found in b = c = 5 when n = 200 with misclassification rate of 
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7.5%. On average, the proposed LM resulted 17% of misclassification rate when n = 

100 and it is reduced to 10.3% when n = 200. 

 

Figure 4.6 The misclassification rates based on the classical LM 

 

Figure 4.7 The misclassification rates based on the proposed LM 
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Apparently, Figure 4.8 revels that the proposed LM performed better than classical 

LM. The proposed LM utilized the strengths of NPCA to extract the large number of 

binary variables into smaller number of components with 65% variance accounted 

for. The outputs of all 18 datasets proved that NPCA manages to reduce the 

percentage of the empty cells occurred on average of 51.52%. Consequently, the 

ability of NPCA also helps to reduce the misclassification rate of LM. 

 

Figure 4.8 The misclassification rates based on proposed LM (pLM) and classical 

LM (cLM) 

There were two relationships can be identified from this analysis. First, there was a 

strong effect between sample size and misclassification rate. For example, datasets 

with n = 100, the range of misclassification rates obtained by the proposed LM was 

36% to 43% while 23.5% to 35% if n = 200 (for b = 10 case). The misclassification 

rates were reduced on an average of 10%. 
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Second, datasets with large binary variables resulted higher misclassification rates 

compared to small binary variables. As shown in Figure 4.7 and 4.8, the range of 

misclassification rates resulted by the proposed LM was increasing with the number 

binary variables. For example, the misclassification rate resulted was decreased from 

48% (when b = 15) to 20% (when b =5). It can be concluded that a large number of 

binary variables lead to higher misclassification rate.   

4.3.3 The Computational Time Required 

The time required to complete simulation study of both classical LM and proposed 

LM are presented in Figure 4.9 and Figure 4.10 respectively. In term of binary 

variables involved, the larger the number of binary variables the longer the 

computational time required to complete a classification procedure. As shown in 

Figure 4.9 that the computational time of the classical LM was increased from less 

than one minute (b = 5), to 4-12 minutes (b = 10) and to 621-1567 minutes (b = 15). 

These results indicate that the classical LM needs about 20 seconds to handle five 

binary variables, less than fourteen minutes to work on ten binary variables as well 

as at least ten hours to cope with fifteen binary variables. 

On the other hand, the computational time of classical LM was longer when n = 200 

compared to n = 100. For example, in datasets having b = c = 15, classical LM used 

1570 minutes when n = 100. With the same number of binary and continuous 

variables, it used 2866 minutes when n = 200, which was the longest computational 

time in the simulation study. 
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Figure 4.10 illustrates the computational time of the proposed LM under various 

conditions. The overall computational time of the proposed LM reported was range 

in between 0.55 minutes (the shortest time) and 17 minutes (the longest time). These 

findings reveal that the classification performance of the proposed LM works within 

a reasonable computational time even with larger number of mixed variables (b = c = 

15). 

Two important factors that can affect the computational time of the proposed LM 

were found in Figure 4.8. First, an outstanding effect was found between the binary 

numbers and the computational time of the proposed LM. As shown in all datasets 

with n = 100, the proposed LM required approximately one minute to perform five 

binary variables, two minutes for ten binary variables and at most seven minutes for 

fifteen binary variables. 

Another factor was found when sample size increased from n = 100 to n = 200. On 

average, the proposed LM used 1 to 7 minutes when n = 100 with different binary 

and continuous variables. In the same condition, the proposed LM required 2 to 17 

minutes when n = 200. However, there was not much increase of computational time 

associated with the number of continuous variables. 



 

 62 

 

Figure 4.9 The computational time of the classical LM 

 

Figure 4.10 The computational time of the proposed LM 
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As showed in Figure 4.9, the classical LM needed at least ten hours to complete one 

classification task when dealing with large dimensional mixed data (i.e., 15 binary 

variables and 5 to 15 continuous variables in this study). However, longer 

computational time does not ensure better classification accuracy. For example, 

classical LM used approximately two days to classify a new entity with up to 50% 

correct prediction. In fact, the proposed LM is able to reduce the computational time 

from hours/days to minutes in the same dataset conditions with up to 61% correct 

prediction. This finding reveal that the proposed LM is a better option for mixed 

variables classification with large categorical variables, in term of computational 

time and cost can be saved. 

4.3.4 Overall Findings of Classical LM and Proposed LM 

The results from all simulation study for 18 different data conditions are illustrated 

in Table 4.2. The performance of both proposed LM and classical LM in mixed 

variables classification have been investigated based on different combination 

factors such as sample size, number of binary as well as continuous variables toward 

the percentage of empty cells, the misclassification rates and also the computational 

time required to complete the classification task. 

This study shows different classification performance on both classical LM and 

proposed LM based on small, medium and large number of binary numbers. The 

findings indicate that large number of binary variables affected the percentage of 

empty cells, the misclassification rates and the computational time that are required. 

When the number of binary variables increases, the misclassification rates increases. 

Large binary variables will create many empty cells which in turn affect the 
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performance of the LM. This is due to empty cells do not have any information 

which later should be used to estimate the parameter in constructing LM. Thus, the 

estimated parameters from those cells is assumed to be zero which cause biased and 

lead to the increasing of the misclassification rate of the LM. 

However, sample size improved the performance of the proposed LM as it revealed 

better classification performance when n is increased from 100 to 200 under all data 

conditions tested. The sample size has stronger influence on the proposed LM 

compared to classical LM for b = 10 and b = 15 mainly. The proposed LM 

performed better because this study implements NPCA to extract and reduce those 

large size binary variables before constructing the LM.  

As overall, performance of the proposed LM is better than classical LM for all data 

conditions tested. This is due to the integration of NPCA before constructing the 

proposed LM. With the help of NPCA, the proposed LM is dealing with smaller 

extracted binary variables compared to the classical LM who handle all the original 

binary variables. When b is smaller, the percentage of the empty cells is also small. 

This means that smaller b will creates smaller empty cells which will provide better 

classification performance of the proposed LM. 

Furthermore, time required to complete the classification process of the proposed 

LM is much shorter than the classical LM. This situation occurred especially for 

large binary size (b = 15). The computational time is decreasing from hours and days 

in the classical LM to minutes in the proposed LM. 
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Table 4.2 

The Overall Classification Performance for Both Proposed LM (pLM) and Classical 

LM (cLM) 

5021  nn , c = 5 

   (%) em  (%) t  

 pLM cLM pLM cLM pLM cLM 

b = 5 10.00 29.00 0.00 26.56 33.16 secs 8.53 secs 

b = 10 36.00 49.00 21.88 99.90 2.36 mins 3.99 mins 

b = 15 43.00 48.00 42.19 99.85 6.80 mins 10.36 hours 

5021  nn , c = 10 

   (%) em  (%) t  

 pLM cLM pLM cLM pLM cLM 

b = 5 21.00 37.00 0.00 28.13 45.36 secs 21.13 secs 

b = 10 37.00 45.00 15.63 95.46 2.60 mins 12.26 mins 

b = 15 48.00 51.00 46.09 99.85 4.12 mins 17.70 hours 

5021  nn , c = 15 

   (%) em  (%) t  

 pLM cLM pLM cLM pLM cLM 

b = 5 20.00 47.00 0.00 21.88 35.29 secs 13.44 secs 

b = 10 43.00 48.00 25.00 95.41 2.43 mins 6.21 mins 

b = 15 48.00 50.00 66.41 99.85 5.34 mins 1.09 days 

10021  nn , c = 5 

   (%) em  (%) t  

 pLM cLM pLM cLM pLM cLM 

b = 5 7.50 19.00 0.00 12.50 1.19 mins 20.75 secs 

b = 10 27.50 41.50 3.13 91.80 6.07 mins 9.80 mins 

b = 15 43.00 49.00 47.27 99.70 15.67 mins 21.30 hours 

10021  nn , c = 10 

   (%) em  (%) t  

 pLM cLM pLM cLM pLM cLM 

b = 5 10.00 28.00 0.00 12.50 1.58 mins 23.46 secs 

b = 10 23.50 45.00 3.13 91.11 7.09 mins 12.24 mins 

b = 15 47.00 50.50 25.78 99.70 16.78 mins 1.73 days 

10021  nn , c = 15 

   (%) em  (%) t  

 pLM cLM pLM cLM pLM cLM 

b = 5 13.50 31.00 0.00 15.63 1.78 mins 27.31 secs 

b = 10 35.00 50.50 3.13 91.00 8.39 mins 13.48 mins 

b = 15 39.00 51.50 47.26 99.70 15.11 mins 1.99 days 
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4.4 Application of the Proposed LM on Real Case Study 

This section provides the results of the proposed LM to be compared with other 

existing classification methods in a real practical problem. The performance of the 

proposed LM was validated and compared using a full breast cancer data. This full 

breast cancer data is conducted to investigate the possible extent of the proposed LM 

in a practical application. This dataset is concerning on the influences of 

psychosocial behaviour among breast cancer women in King’s College Hospital, 

London. It contains an observation sample of 137 patients which divided into two 

groups. Group one ( 1 ) consists of 78 patients having benign tumour growths while 

group two ( 2 ) has 59 women with malignant tumour growth under 15 measured 

variables as listed in Table 4.3. 

According to Mahat (2006) and Hamid (2014), the ordinal variables have been 

treated as continuous variables, while nominal variables have been converted to 

binary variables. They further explained that the new binary variables have been 

coded as Temper 1, Temper 2, Feel 1, Feel 2, Size 1, Size 2, Delay 1 and Delay 2. 

After converting these variables, the full breast cancer data contains eight continuous 

and eleven binary variables. This dataset has been verified to meet the assumption of 

normality (related details can be referred in Mahat (2006) and Hamid (2014)). Thus, 

this study is able to use them without any modification. 
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Table 4.3 

The Description of the Full Breast Cancer Data 

Type of measurement scale Variable name (with Symbol) 

1. Two continuous variables i. Patient age in years (Age) 

ii. Age of having menarche (AgeM) 

2. Six ordinal variables 

    (with 11 states each) 

Psychosocial observations with a range score of 0-10: 

i. Acting out hostility (AH) 

ii. Criticism of others (CO) 

iii. Paranoid hostility (PH) 

iv. Self-criticism (SC) 

v. Guilt (G) 

vi. Hostility direction (DIR) 

3. Four nominal variables 

    (with 3 states each) 

Following three variables take value of 0, 1 or 2: 

i. Level of temper (Temper) 

ii. Level of feeling (Feel) 

iii. Size of breast (Size) 

Following one variable takes value of 1, 2 or 3: 

iv. Delay (Delay) 

4. Three binary variables These three variables represent the absence as 0 or 

presence as 1: 

i. Post-menopausal status of patients (Postm) 

ii. Thyroid of patients (Thyroid) 

iii. Allergy of patients (Allergy) 

 

This real data can be considered as mimics with simulated data. First of all, the 

binary variables in real data, b = 11 is in the range of b = 10 and b = 15 as simulated 

artificial dataset. In addition, the sample size of this real data is 137 which falls 

between n = 100 and n = 200 as generated in the simulation study. In this chapter, 
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the proposed LM will be tested in real case study to observe whether it is appropriate 

to be used in real applications.  

Past studies have suggested and used some existing classification methods that we 

can used to compare with the proposed LM in this study. We take the results of other 

classification methods from past study by Mahat (2006) which represent three 

groups of statistical approaches, i.e. parametric, semi-parametric and non-parametric 

approaches such as linear discriminant analysis (LDA), quadratic discriminant 

analysis (QDA), logistic discrimination (Logistic), regression model (Regression), 

classification and regression tree (CART) as well as location model using smoothing 

estimation (smoothed LM). This study further compares and validates the 

performance of the proposed LM among these classification methods plus with the 

classical LM. Table 4.4 displays the list of all classification methods to be compared 

with the proposed one. 

The proposed LM has been conducted using leave-one-out fashion in order to 

determine its performance compared to others. Table 4.5 presents the performance 

ranking of all classification methods that considered in this section. This 

performance ranking is to show which method is performed best in term of 

misclassification rate. 
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Table 4.4 

The List of All Classification Methods for Comparison 

Classification methods Integrated strategy Symbol  

Classical LM 

Classical LM + NPCA 

All variables included 

NPCA for binary variables 

Classical LM 

Proposed LM 

 

LDA All variables included LDA  

QDA All variables included QDA  

Logistic All variables included Logistic  

Regression Forward selection 

Backward selection 

Stepwise selection 

Regression-1 

Regression-2 

Regression-3 

 

CART Auto-termination CART  

Smoothed LM Forward selection 

Backward selection 

PCA for continuous and PCA  

for binary variables 

 

PCA and MCA for continuous  

and binary variables respectively 

 

Smoothed LM-1 

Smoothed LM-2 

Smoothed LM-3 

 

 

Smoothed LM-4 
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Table 4.5 

The Performance Ranking of All Classification Methods based on Misclassification 

Rate 

Classification methods Misclassification rate Ranking 

Classical LM 

Proposed LM 

39.42% 

29.20% 

12 

4 

LDA 29.20% 4 

QDA 44.53% 13 

Logistic 28.47% 3 

Regression-1 

Regression-2 

Regression-3 

31.39% 

29.20% 

29.20% 

8 

4 

4 

CART 31.39% 8 

Smoothed LM-1 

Smoothed LM-2 

Smoothed LM-3 

Smoothed LM-4 

31.39% 

31.39% 

27.74% 

23.36% 

8 

8 

2 

1 

 

This study further illustrates the performance ranking clearly from the best to the 

worst in Figure 4.11. The results reveal that the top three best are Smoothed LM-4, 

Smoothed LM-3 and Logistic with misclassification rates of 23.36%, 27.74% and 

28.47% respectively. Then, the fourth best method goes to the proposed LM as well 

as LDA, Regression-2 and Regression-3 with the same rates of misclassification, i.e. 

29.20%. Next, the other methods resulted more than 30% of errors. From this 

ranking, the classical LM and QDA show worst performance. 

Figure 4.11 also reveals that the proposed LM obtains a quite comparative result 

among the popular methods. First, proposed LM obtained similar performance with 
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LDA. Second, it is slightly better than some common methods such as CART and 

QDA. The obtained results indicate that using fewer variables is better than using 

them all. Therefore, all classification models with variable extractions are among the 

best which indicate that some of the variables may be harmful to the classification. 

Meanwhile, the strategy of extracting the variables turns bad as we might include the 

extracted components that contain harmful variables, thus affect the result of 

classification. 

The misclassification rate of the proposed LM is apparently lower than the classical 

LM. All findings indicate that the proposed LM result from the integration of NPCA 

and classical LM has significant improvement from the classical LM itself. This 

shows that the implementation of NPCA manages to work well with a large number 

of categorical variables as it improves the classification performance of the proposed 

LM. With the help of NPCA, the classification performance ranking improved from 

the worst (classical LM = 39.42%) to top four (proposed LM = 29.20%). 

In the context of LM, the performance of the proposed LM is lower than Smoothed 

LM-4 and Smoothed LM-3 but higher than Smoothed LM-1, Smoothed LM-2 and 

classical LM. There are several possible explanations for these results. Significantly, 

classical LM performs the worst. This result may explain the necessary of integrating 

any dimensionality reduction techniques in the construction of classification models, 

especially when dealing with large categorical variables. Second, variable extraction 

is much helpful than variable selection in this case study. This finding matches with 

those past studies as discussed in Section 2.3. 
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Figure 4.11 The misclassification rates among the classification methods studied 

Third, Smoothed LM-4 performs better than proposed LM. As shown in Figure 4.11, 

the difference between Smoothed LM-4 and the proposed LM is near to 6% of 

misclassification rates (29.20% - 23.36% = 5.84%). This finding reveals that non-

parametric smoothing estimation might be a better option than the maximum 

likelihood estimation in enhancing the classification performance of LM as it 

obtained lower misclassification rate. This finding further supports the research of 

Asparoukhov and Krzanowski (2000) which use non-parametric smoothing to 

construct the smoothed LM when facing with some empty cells. 

On the contrary, the proposed LM is able to provide a quick response within only 

five minutes in this real application. It needs significant shorter time than smoothed 
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LM as demonstrated in Mahat (2006). In her study, smoothed LM used 5.5 minutes 

for moderate sample size (n = 100) and 10.8 minutes for large sample size (n = 200) 

in the ideal conditions with three continuous variables and two binary variables. 

Besides, Smoothed LM-3 and Smoothed LM-4 required 9 minutes when n = 25 and 

at least 48 minutes when n = 50 in the conditions with five binary variables in the 

study of Hamid (2014). This implies that the proposed LM can be applied as another 

method to obtain a quick result with comparative performance. 
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CHAPTER FIVE 

DISCUSSION AND FUTURE WORK 

5.1 Discussion and Conclusion 

This thesis reports the investigations that have been conducted on the proposed 

location model (LM) which uses input variables from nonlinear principal component 

analysis (NPCA). The investigation concerned on classification tasks with large 

number of categorical variables. Chapter 1 has discussed the importance of the LM 

in handling with mixed categorical and continuous variables and outlined the issue of 

many empty cells occurred in LM as the number of binary variables increased. 

Therefore, this study applied variable extraction techniques, NPCA to minimize the 

effect of large number of binary variables on the classification performance of the 

classical LM. The implementation of variable extraction techniques in the context of 

LM has been supported by Hamid (2014). This implementation is necessary because 

the application of the LM has been restricted to a limited number of binary variables 

as highlighted in Krzanowski (1975), Asparoukhov and Krzanowski (2000) and 

Hamid (2014). 

The experimental evidences from the simulation study in chapter 4 describe the 

influences of the empty cell, the binary number and the sample size toward the 

misclassification rate on the proposed LM. From the findings, there are two 

relationships identified. First, the smaller the number of binary variables the lower 

misclassification rate of the LM. This finding is in line with Mahat (2006) as well as 

Hamid and Mahat (2013). In order to reduce the effect of large binary variables on 

LM, the dimensionality reduction acts as a data pre-processer before the construction 
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of LM. Second, the larger the sample size, the lower the misclassification rate of 

LM. This finding is supported by Hamid (2014). It is due to a large sample size 

provides adequate information that enhances the classification performance of LM. 

Another result that can be highlighted from the real practical application in Section 

4.4 depicts the implication of the proposed LM on medical diagnosis problems. This 

case study indicates that the proposed LM is capable to handle mixed variables 

classification especially for large number of categorical variables. Moreover, the 

proposed LM is also provide a comparable classification performance as compared 

to other existing methods such as linear discriminant analysis and linear regression 

model.  

In summary, this study has provided two important outcomes: mixed variables 

classification with large number of categorical variables and data reduction on large 

categorical variables. First, this study has introduced an alternative classification 

strategy that integrated the classical LM and NPCA producing new LM which is able 

to provide a quick prediction for mixed variables classification with large number of 

categorical variables. The proposed LM has been tested under various conditions and 

further proved to extend the applicability range of the classical LM that has been 

limited to datasets with a small binary variable. This study also applied and 

evaluated the proposed LM in a real problem. The findings gave evidence and 

emphasized the potential of the proposed LM as an alternative method to handle 

classification problems with mixed variables. 

Second, this study has demonstrated that NPCA is applicable to reduce high 

categorical data in classification analysis. This study also introduces 65% of variance 
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accounted for as a cutting point to retain adequate components from a large number 

of categorical variables. This cutting point has successfully improved the 

classification performance of the proposed LM. The theoretical and practical reviews 

of NPCA can be a guidance for practitioners who are dealing with large categorical 

variables in their analysis. 

5.2 Contribution and Future Work Recommendation 

The current study contributes to our knowledge by addressing four significance 

issues. First, the proposed strategy is the first attempt in applying NPCA in the LM 

to extract large binary variables which help to handle the issue of many empty cells 

of the LM. This proposed strategy will help academics in enlarge existing knowledge 

of data reduction on categorical variables for mixed variables classification 

problems. 

Second, the proposed LM can be an alternative to other classification methods, 

mainly when involved mixed variables with large categorical variables. This 

proposed model will help researchers to work with other similar classification task. 

For example, medical diagnosis that determining a patient’s disease symptoms 

usually contains large number of categorical variables. 

Third, the methodology proposed is a systematic procedure by applying NPCA in 

extracting categorical variables using the percentage of variance accounted for. This 

procedure will help practitioners in adapting NPCA in parametric classification 

model to enhance the classification performance. The proposed procedure also can 
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be a guidance for data pre-processing step in multivariate analysis with high 

categorical variables. 

This study has focused on two-group classification problems with visible 

improvement, but some classification problems involve more than two groups in 

nature. Thus, future research might explore the possible application of location 

model in problems with more than two groups. 

Besides, this study has considered the implementation of the proposed model in 

datasets with normal distribution. It would be beneficial to replicate this study on 

larger and non-normal dataset. Future trials regarding the suitability of the proposed 

model in other data structure such as non-normal dataset would be interesting. 
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