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Abstrak 

Penyahkaburan merupakan satu proses kritikal dalam pelaksanaan sistem kabur yang 

menukar nombor kabur kepada pewakilan rangup. Sebilangan kecil penyelidik telah 

memberikan tumpuan pada kes yang mana data rangup asal atau output rangup mesti 

memenuhi suatu set hubungan yang ditentukan dalam data rangup asal. Fenomena 

ini menunjukkan bahawa data rangup ini secara matematiknya saling bersandar 

antara satu sama lain. Tambahan pula, nombor kabur ini boleh wujud sebagai satu 

kumpulan nombor kabur. Oleh itu, tujuan utama tesis ini adalah untuk 

membangunkan satu kaedah yang menyahkabur kumpulan nombor kabur berasaskan 

model Charnes, Cooper, and Rhodes (CCR) – Analisis Penyampulan Data (DEA) 

dengan mengubah suai kaedah pusat graviti (COG) sebagai fungsi objektif.  

Kekangan mewakili hubungan pada output rangup dan beberapa sekatan pada output 

rangup yang dibenarkan bagi memenuhi sifat kebergantungan pada output rangup. 

Berbanding dengan kaedah asas pemprograman linear (LP), kaedah yang dinyatakan 

lebih cekap, dan mampu menyahkabur nombor kabur tak linear dengan penyelesaian 

lebih jitu.  Kaedah penyahkabur asas CCR-DEA yang dicadangkan juga mampu 

untuk menyelesaikan nombor kabur tak linear dan memperoleh penyelesaian yang 

tepat. Selain itu, output rangup yang diperoleh melalui kaedah yang dicadangkan 

adalah titik terdekat bagi kes output rangup tidak bersandar, dan titik terdekat terbaik 

bagi titik terdekat bagi kes output rangup bersandar. Kesimpulannya, kaedah 

penyahkabur CCR-DEA boleh mencipta sama ada output rangup bersandar dengan 

mengekalkan hubungan atau output rangup tak bersandar tanpa hubungan. Selain itu, 

kaedah yang dibangunkan merupakan kaedah umum untuk menyahkabur kumpulan 

nombor kabur atau nombor kabur individu dengan andaian kecembungan bagi fungsi 

atau keahlian linear atau tak linear. 

 

Kata kunci: Penyahkabur, Analisis penyampulan data, Kumpulan nombor kabur, 

Output rangup bersandar, Output rangup tak bersandar. 
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Abstract 

Defuzzification is a critical process in the implementation of fuzzy systems that 

converts fuzzy numbers to crisp representations. Few researchers have focused on 

cases where the crisp outputs must satisfy a set of relationships dictated in the 

original crisp data. This phenomenon indicates that these crisp outputs are 

mathematically dependent on one another. Furthermore, these fuzzy numbers may 

exist as a group of fuzzy numbers. Therefore, the primary aim of this thesis is to 

develop a method to defuzzify groups of fuzzy numbers based on Charnes, Cooper, 

and Rhodes (CCR)-Data Envelopment Analysis (DEA) model by modifying the 

Center of Gravity (COG) method as the objective function. The constraints represent 

the relationships and some additional restrictions on the allowable crisp outputs with 

their dependency property. This leads to the creation of crisp values with preserved 

relationships and/or properties as in the original crisp data. Comparing with Linear 

Programming (LP) based model, the proposed CCR-DEA model is more efficient, 

and also able to defuzzify non-linear fuzzy numbers with accurate solutions.   

Moreover, the crisp outputs obtained by the proposed method are the nearest points 

to the fuzzy numbers in case of crisp independent outputs, and best nearest points to 

the fuzzy numbers in case of dependent crisp outputs. As a conclusion, the proposed 

CCR-DEA defuzzification method can create either dependent crisp outputs with 

preserved relationship or independent crisp outputs without any relationship. 

Besides, the proposed method is a general method to defuzzify groups or individuals 

fuzzy numbers under the assumption of convexity with linear and non-linear 

membership functions or relationships. 

Keywords: Defuzzification, Data envelopment analysis, Groups of fuzzy numbers, 

Dependent crisp outputs, Independent crisp outputs. 
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CHAPTER ONE 

INTRODUCTION 

In the theory of classical set, two alternatives are allowed for an element i.e. it either 

should strictly be a member of a set or should not. The fuzzy set concept developed 

by Zadeh in 1965, along with its techniques, is an interesting and promising 

approach to address complex, real-world issues with a new pattern for modelling 

human logic to improve a simplification model. As a result, more robust and 

versatile models have been developed (Lai & Hwang, 1992).  

1.1  Fuzzy System Structure 

The term ‘system’ is defined as an ordered structure containing interdependent and 

interrelated elements (factors, entities, components, etc.). These elements frequently 

affect each other (in a direct or indirect way) for the system to exist, maintaining 

their activity and achieving the system goal. All systems consist of outputs, inputs, 

mechanisms, and boundaries which are usually identified by the system observer 

(Huang & Shi, 2002). However, the precise mathematics or crisp representation for 

modelling a complex system is insufficient due to the imperfect information and 

knowledge (Sladoje, Lindblad, & Nyström, 2011). Hence, the ‘fuzzy system’ term 

could be used in labeling any classification that has a structure and mechanism based 

on the fuzzy theory (Starczewski, 2013). 

In general, a fuzzy representation provides more information about a set than a crisp 

representation. To replace a crisp representation of sets with a fuzzy representation 

in fuzzy system applications, the process of fuzzification is applied. As the objective 
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determination of the fuzzy structures of problematic systems is difficult, the crisp 

representation becomes necessary because it simplifies the conception and 

clarification. A crisp representation is typically easy to interpret and understand 

although it displays less information (Clark, Larson, Mordeson, Potter, & Wierman, 

2008; Runkler, 2013; Yager & Zadeh, 1992). In order to replace a fuzzy 

representation of sets into a crisp representation in fuzzy system applications, the 

process of defuzzification is applied (Siddique, 2014). Figure 1.1 illustrates the 

structure of a fuzzy system in general.  

 

Figure 1.1. The structure of fuzzy system 

Crisp inputs 

Fuzzification 

Defuzzification 

Crisp output 

Fuzzy numbers 
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  Fuzzification 1.1.1

In fuzzy system applications, the original crisp data are commonly characterized as 

crisp. At this stage, crisp inputs are transformed to fuzzy numbers through a process 

of mapping and the original crisp is characterised by an element of membership 

function (Clark et al., 2008). Such functions may be classified as Triangle-shaped 

and Trapezoidal, discussed in Chapter Two.  

  Defuzzification 1.1.2

Defuzzification is the reverse process of fuzzification. Mathematically, 

defuzzification of a fuzzy set is the process of conversion of a fuzzy quantity into a 

crisp value. This process is necessary when a crisp value is to be provided by a fuzzy 

system to the user. Defuzzification is known as a critical fuzzy system stage that 

replaces fuzzy numbers with representative of crisp numbers. This definition allows 

each defuzzification method operation to reduce the fuzzy number to a single 

numerical value “crisp” which carries the best information and makes a kind of 

composition of this fuzzy number (Leekwijck & Kerre, 1999; Runkler, 2013). 

Defuzzification represents the crucial stage in the application of fuzzy systems as it 

processes the fuzzy numbers to be converted into the real line (Esogbue, Song, & 

Hearnes, 2000). In other words, most fuzzy systems use the defuzzification process 

in the last stage of their application.  

To date, in most studies in fuzzy set theory applications, defuzzification is viewed as 

an inevitable phase that involves the reduction of the fuzzy set to single real (crisp) 

value. This phase should accurately describe the fuzzy set influence on the final 
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value of the particular system output whose result has the best information and 

should make a kind of assembly about this fuzzy number (Liu, 2007). For this 

purpose, many defuzzification methods have been suggested, but none of them 

provides a precise sufficient defuzzified output since a different result is given by 

each method (Leekwijck & Kerre, 1999). More precisely, defuzzification can also be 

defined as the process of reversing the core idea of fuzzy sets (Rondeau, Ruelas, 

Levrat, & Lamotte, 1997). Some researchers introduced another description of 

defuzzification as the link connecting a fuzzy model with its application environment 

(Esogbue et al., 2000). Defuzzification is evidently important, if not the most 

significant step in the determination of the fuzzy set applications success (Bede, 

2013; Yager, 1996). Some researchers suggested the defuzzification approach under 

the classification of ranking fuzzy number methods (Chang & Lee, 1994; Lee, 2000; 

Wang & Kerre, 2001). This classification is due to the conversion of fuzzy numbers 

to real tangible numbers (crisp points). These real tangible numbers (crisp points) are 

corresponded to an easy ranking of fuzzy numbers after defuzzification (Hajjari & 

Abbasbandy, 2011; Hajjari, 2011; Rouhparvar & Panahi, 2015).  

Although many defuzzification methods are available and accessible in the literature, 

they failed to give an accurate, efficient defuzzified output for a number of 

applications. Therefore, the selection of an appropriate defuzzification method is 

significant for certain applications (Runkler, 1997; Siddique, 2014). Unfortunately, 

no standard rule has been provided for the selection of a particular defuzzification 

method for certain applications with some conditions or properties.  
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The option for the most appropriate method depends on the decision maker’s 

knowledge and application applied (Liu, 2007; Runkler, 1997; Siddique, 2014).  

The present defuzzification methods are categorized, which are mathematically 

accepted and broadly utilized by the fuzzy systems. This research used one of the 

standard methods under the area category, namely Centre of Gravity (COG) 

developed by Sugeno (1985) and the method suggested by Asady and Zendehnam 

(2007) known as A&Z method under the heading of distance minimization concept. 

1.1.2.1  Method of Center of Gravity  

The method of COG was developed as the most commonly used defuzzification 

method. This method calculates the position at which the left and the right areas are 

equal. COG refers to the centroid of an area, and the defuzzification method could be 

expressed as following: 

  𝑥𝐶𝑂𝐺 =
∫𝜇�̃�(𝑥). 𝑥𝑑𝑥

∫𝜇�̃�(𝑥). 𝑑𝑥
                                                      (1.1) 

where 𝑥𝐶𝑂𝐺  represents the crisp value to the fuzzy number �̃�, 𝜇�̃� is the membership 

function of �̃�. 

1.1.2.2  The Method of Asady and Zendehnam  

On the basis of the nearest point of a fuzzy number, Asady and Zendehnam (2007) 

presented a defuzzification method.  
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The nearest crisp point to a triangular fuzzy number 𝒯 = (𝑥0, 𝛿, 𝛽) to be: 

 𝑥𝐴&𝑍 = 𝑥0 +
𝛽 − 𝛿

4
                                                         (1.2) 

where 𝛿 and 𝛽 are the left and the right fuzzy values respectively, while 𝑥0 is the 

middle value of the fuzzy number 𝒯 and 𝑥𝐴&𝑍  is the crisp value to 𝒯. There is a 

number of defuzzification methods reported in the literature that is based on the 

optimization techniques such as linear programming (LP), non-linear programming 

(NLP) and Data Envelopment Analysis (DEA). The following sub-section discusses 

about the optimization techniques and their relation to defuzzification. 

1.2  Optimization Techniques 

These techniques are described as mathematical programming methods used to 

determine the min and max functions under limitations (Kuester, Mize, & Griffin, 

1974). They comprise many techniques, namely LP, NLP, and DEA. Most 

importantly, these methods have all been utilized in the defuzzification process.  

  Linear Programming 1.2.1

Linear programming (LP) technique is an optimization concept where both the 

objective function to be optimized and all the constraints are linear regarding the 

decision variables. The LP problems are defined as a convex problem because the 

linear functions are convex and the feasible region, which is described as the 

intersection of the convex constraint functions, which is also defined as a convex 

region. This assumption of a convex feasible region and convex objective results in 
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only one optimal solution which is universally optimal (Luptacik, 2010). The convex 

function is defined as follows. 

Definition 1.2.1.1: A function 𝑔(𝑥) is defined on a convex set 𝔾 in ℝ𝔫 called 

convex on 𝔾 if 

𝑔(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑔(𝑥) + (1 − 𝜆)𝑔(𝑦)             (1.3) 

for any 𝑥, 𝑦 ∈  𝔾 and any 𝜆 between 0 and 1. 

LP’s strengths are in the modelling simplicity and the efficient algorithms for its 

solution (Dowsland, 2014). In practical application, various real-world problems are 

solved by LP techniques with more complicated objectives or goals, which require 

optimization rather than one objective. As a result, of the LP limitations, one 

objective was selected, whereas other objectives were given to be constraints. By 

introducing multi-objective linear programming (MOLP), it is possible to model 

these problems more realistically using their techniques such as goal programming 

(GP) that are commonly utilized for an MOLP problems (Eiselt & Sandblom, 2007; 

Luptacik, 2010).  

The theory of fuzzy set was firstly recognized by Bellman and Zadeh (1970) aiming 

to solve issues of decision-making problems. This concept was adopted to problems 

of LP and MOLP by Zimmermann (1978, 1996). The formulation of fuzzy linear 

programming (FLP) was firstly introduced where the goal has maximized the values 

that have the smallest membership grade. One of the studies that focus on using FLP 
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and defuzzification is Kikuchi (2000), where the details of this method is presented 

in Chapter Three. Recently, Verstraete, (2015) proposed a defuzzification method 

based on FLP model with simulation. Then in the case of non-linear objective and or 

constraints, the NLP is also considered as a tool under defuzzification. 

  Non-Linear Programming  1.2.2

NLP is parallel to the LP in that it has one objective function, general constraints, 

and variable bounds. The variation is that the NLP involves at least one non-linear 

form that may be the objective and / or some or whole of the constraints. Besides, the 

objective of NLP problems can be defined as a convex function (if minimizing) and 

concave (if maximizing) and the constraints are defined as a convex set (Luenberger 

& Ye, 2008). Additionally, some complicated issues are designed to non-convex 

NLP problems where the objective or any of the constraints is non-convex. Such 

problems could have multiple feasible regions and locally optimal solution in each 

region. It may take time, depending upon the number of constraints and the 

variables, to get to the objective unbounded, that a non-convex problem is infeasible, 

or that an optimal solution is the "global optimum" across all feasible regions 

(Luenberger & Ye, 2008; Luptacik, 2010).  

Furthermore, the NLP concept covers two parts of problems the constrained and 

unconstrained (Luenberger & Ye, 2008). Many real systems are inherently expressed 

as constrained problems because most cases involve complex issue, for instance, the 

planning, and designing of complex systems. Most frequently, the problems of 

unconstrained optimization occur in various contexts when the formulation of 
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problem is simple, but explicit functional constraints are involved in formulas that 

are more complicated. Nevertheless, many constraints problems are often 

transformed to unconstrained using the constraints to create relations among 

variables through decreasing the sufficient number of variables such as the problem 

of control, approximation, and selection problem.  

So to avoid the problem of constrained optimization from becoming unconstrained 

and having a global solution in using the NLP concept in defuzzification, Yager and 

Filev, (1995) assumed that the crisp outputs have to satisfy a constraint that is 

forcing the defuzzified value in order to be in the allowable area. It is done by using 

an expected value of the probability distributions of the fuzzy sets as an optimization 

problem to find the crisp output. Therefore, there is a need of a guarantee to finding 

an optimal solution for all such problem when the function and region shapes are 

convex (LP and some of NLP) or non-convex (NLP). This led us to define one of the 

powerful optimization techniques that are DEA. 

  Data Envelopment Analysis  1.2.3

DEA is a non-parametric technique, which has been verified to be beneficial for an 

efficient analysis service organization. DEA is a powerful optimization technique to 

assess and ascertain the efficient performance of a group of similar units, which is 

called decision making units (DMUs). It measures the relative efficiency of DMUs 

and identifies the best practice frontier. It also indicates targets for inefficient units to 

improve (Cook & Zhu, 2005). DEA was initially recommended to operations 

research (OR) field, by Charnes, Cooper, and Rhodes (CCR) in the year 1978. The 
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original DEA model the CCR is under the concept of constant returns to scale 

(CRS). Then an extension of the CCR model to accommodate technologies that 

exhibit variable returns to scale (VRS) presented by Banker, Charnes, and Cooper 

(BCC) in (1984). In literature, many models are presented as modifications of 

traditional DEA models (e.g., Andersen & Petersen, 1993; Jahanshahloo, 

Pourkarimi, & Zarepisheh, 2006; Lotfi, Jahanshahloo, Mozaffari, & Gerami, 2011). 

Therefore, all the modification models of DEA are extensions of CCR model, which 

is expressed as follows: 

(CCR model), 

  𝑚𝑖𝑛 𝜃                                                                                               (1.4)  

subject to                                                         

𝜃𝑥𝑝0 −∑𝜆𝑗

𝑛

𝑗=1

𝑥𝑝𝑗 ≥ 0                                                                     

  ∑𝜆𝑗

𝑛

𝑗=1

𝑦𝑘𝑗 ≥ 𝑦𝑘𝑜                                      

  𝜆𝑗 ≥ 0                                                      

                                  𝜃 𝑓𝑟𝑒𝑒,   𝑗 = 1,2, . . , 𝑛 , 𝑘 = 1,2,3, . . , 𝑠, 𝑝 = 1,2,3, . . , 𝑟    

where 𝑗 = 1,2, . . , 𝑛  are the numbers of DMUs,  𝑘 = 1,2,3, . . , 𝑠 are the outputs, 

𝑝 = 1,2,3, . . , 𝑟    are inputs and   𝑥𝑝𝑗  is 𝑝𝑡ℎ input of 𝑗𝑡ℎ DMU, 𝑦𝑘𝑗 is 𝑘𝑡ℎ output of 

𝑗𝑡ℎ DMU. 

DEA can employ multiple outputs and inputs measured in various units without 

assuming any particular functional of the boundary and disregarded error of 

measurements. As an alternative, the best practical technology is the boundary of a 
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reconstructed production possibility subset based on directly enclosing an 

observations set (Cooper, Seiford, & Tone, 2006; Kumar & Gulati, 2014; Luptacik, 

2010). The production possibility set (PPS) is formed which is the collection of all 

feasible DMUs that are capable of producing output 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑟) by 

consuming input   𝑥 = (𝑥1, 𝑥2. . . , 𝑥𝑠). PPS demarcated as 

ℙ = {(𝑥, 𝑦) ∈ ℜ𝑟+𝑠|𝑥 produce 𝑦}, where, in numerous applications the PPS is 

unknown. This implies the way to the utilizing DEA as a vital tool, lies in the 

capacity to give an appraisal ℙ from the set of original crisp DMUs under the convex 

concept (Ali Emrouznejad & Amin, 2009; Fukuyama & Sekitani, 2012). Then the 

PPS is described as smallest convex set that comprises the data points, as following;  

ℙ = {(𝑋, 𝑌) |∑   𝜆𝑗

𝑛

𝑗=1

𝑌𝑗 ≥ 𝑌 ,∑   𝜆𝑗

𝑛

𝑗=1

𝑋𝑗 ≤  𝑋 ,   𝜆𝑗 ≥ 0, 𝑗 = 1,2, . . , 𝑛 }       (1.5) 

In 1984, Deprins, Simar, and Tulkens proposed generalized version of the DEA 

model and then Tulkens (1993) extended it (as cited in Briec & Kerstens, 2006; 

Kumar & Gulati, 2014), and it is called the Free Disposal Hull (FDH). The FDH 

model depends only on the operating free disposability assumption with a dull 

monotone hull as an estimator of technology ℙ. In other words, both DEA and FDH 

are consistent estimators if the PPS is convex. However, FDH reveals a lower 

convergence rate (as a result of requiring the less assumption) for DEA. In contrast, 

supposedly the actual production set not at convex position, the DEA is not 

dependable of the estimator production set, whereas FDH is at dependable position. 
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In general, DEA is defined on original crisp units. Finding the distance of every 

DMU estimated PPS is where the convexity is the underlying conventions of the 

PPS. This means that PPS under DEA concept can generate all appropriate activity, 

since in case of non-convex, another extension of DEA, which is FDH can be used. 

Accordingly, in this research, an approach based on the integration of defuzzification 

and DEA is introduced to solve convex problem.  

1.3 Relationship and Dependency 

In Section 1.1, we have described in detail the term ‘system’ which contains a 

number of components that has inputs and outputs with relationships. Since a 

primary task of system analysis is the determination and evaluation of the 

relationship between the inputs and outputs, knowledge and understanding of this 

relationship is valuable for several reasons (Huang & Shi, 2002). First, an accurate 

knowledge of the relationship between inputs and outputs for a given system leads to 

some understanding of the behaviour and inner operations or internal mechanics of 

that system, and is a vital step to fully understand the operation and nature of the 

system. Second, where the input and output relationship is adequately known, it is 

possible to explain past performance of the system and to predict the output or 

response of the system for any permissible future input. Third, with the output 

response of the system known for any input, it is then possible to develop means for 

controlling or influencing the system in some desirable or optimal manner (Sakawa, 

Nishizaki, & Katagiri, 2011). 
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In any general system, the relationship between or among components, inputs and 

outputs can be described by linear and non-linear functions, or else the system is said 

to have no relationship. In this research, the focus is on the relationships or 

properties already exist in the system and our aim is to have crisp outputs that satisfy 

the relationship. Here, the concept of dependency is not about the outputs depending 

on the inputs, which is naturally the case, but the output also depends on the 

relationship between or among components of system. 

Naturally, a question arises why we need fuzzy systems when we have a crisp 

relationship, crisp input and also a crisp output for a classical system. The reason for 

this fact lies in epistemic uncertainty (Bede, 2013). Here, fuzzy systems can fill in 

the gaps and approximate any desired output with arbitrary precision. In fuzzy 

systems, the inputs and outputs are all fuzzy. Since the crisp representation is still on 

demand, this idea leads to the need of the development of defuzzification method 

that has the ability to deal with a situation where their crisp output depends on a 

relationship that may exist in the crisp inputs. In other words, a specific 

defuzzification has to be developed that undertake the restriction or dependency of 

the output on certain relationship.  

Some trails in the literature are addressed in this research that deal with the 

dependency of the crisp output on relationships or properties in the crisp input. Such 

trails are presented in the next section with three main issues in defuzzification 

techniques. 
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1.4 Issues in Defuzzification Techniques 

As mentioned formerly, to execute the last phase of any fuzzy system, 

defuzzification stage is needed. In this section, we consider some issues referred to 

in the literature. 

  Issue of Dependency in Defuzzification 1.4.1

The inputs in any system usually have some relationships or properties that need to 

be satisfied in their crisp outputs (Kikuchi, 2000). 

Hence, the traditional defuzzification methods such as classical COG or A&Z only 

deal with independent crisp outputs. Thus, these models are not correctly 

representing the actual or nature of systems structure in order to mathematically deal 

with dependency terms as embedded in defuzzification method. Furthermore, these 

methods can generate similar results even though the given data are with various 

relationships (Kikuchi, 2000; Sladoje et al., 2011; Verstraete, 2015). 

In practice, the standard methods lay no restrictions to reach a crisp representative 

that intuitively suits to the fuzzy numbers. Figure 1.2 classifies the original data in 

system with relationships and without relationships and presents some common 

methods used in each case.  
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Figure 1.2. Classification of original data in system 

Based on Figure 1.2 the dependent crisp output can be obtained by using methods 

such as of Kikuchi (2000) and Verstraete ( 2015), but these methods are based on the 

FLP model presented by Zimmermann (1978) which are known as max-min 

approach. It is true that the solution base in the max-min approach may neither be 

unique nor efficient (Li, Zhang, & Li, 2006; Peidro & Vasant, 2011). While Sladoje 

et al., (2011) presented the dependent crisp output in case of there are some 

properties of fuzzy numbers in fuzzification step, that need to be preserved in 

defuzzified output. While in the case of there are no relationships or properties in 

crisp data the standard methods such as COG or other method such as A&Z can be 

used to get the independent crisp output. In this research, we focus on the first case 

Data with relationships Data without relationships 

Original Crisp data 

Dependent Crisp output Independent Crisp output  

Fuzzification Fuzzification 

Defuzzification 

(COG and A&Z) 

Defuzzification 

(Kikuchi, 2000 and 

Verstraete, 2015) 

Fuzzy Numbers Fuzzy Numbers 



 

16 

  

when there are some relationships or properties in original data that need to be 

satisfied in the crisp output. 

  Issue of Defuzzification Groups of Fuzzy Numbers 1.4.2

In most existing methods of defuzzification, fuzzy numbers are being addressed as 

individuals but not as group of fuzzy numbers. This means that, instead of 

considering the fuzzy numbers as individual, this study focuses on a collection of 

fuzzy numbers. Generally, in practical application, implementing the defuzzification 

techniques, such as classical COG or A&Z, leads to finding the defuzzified value for 

each fuzzy number individually (Bede, 2013). Since the computation of defuzzified 

value involves several mathematical operations, these methods require more 

calculations but also take more time to produce the output. It becomes more severe 

when the number of inputs and number of rules increase. Therefore, it is very 

important to reduce the computational time and requirements by reducing the 

mathematical operations involved (Siddique, 2014). 

Moreover, most practical applications contain a large number of components and a 

large number of inputs with relationships within the components. These inputs 

demands the decision makers to employ the fuzzy numbers as groups by applying 

the method in one time (Hou, 2016).  

  Issue of Defuzzification in Prohibited Zones 1.4.3

Unfortunately, analyzing a defuzzification problem under optimization models 

requires extra constraints from decision makers in case of including the nonlinearity 
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as memberships or relationships. In the defuzzification usual approach, any point in 

the output space is assumed to be the permissible values for the defuzzified output. 

The complexity of defuzzification problem lies in the possibility of having 

restrictions when the defuzzified value could have only some values from the whole 

discourse universe (Yager & Filev, 1995). A constraint on this problem must be 

included as well. This constraint is required to assure the location of defuzzified 

value or the crisp output is in the permissible area; then the defuzzification problem 

restricted by legal region could be represented. The problem of constrained 

optimization under some values becomes unconstrained and has a global solution 

(Roychowdhury & Pedrycz, 2001; Siddique, 2014; Yager & Filev, 1995).  

1.5  Problem Statements 

The identified gap or problem of this research can be recapitulated as follows.  

Although the classical defuzzification techniques such as Center of Gravity (COG) 

and Asady and Zendehnam (2007) (A&Z) emerge as the broadly applied 

defuzzification techniques under the concept of area and minimization distance, 

these techniques are being disparaged due to two major shortcomings. Firstly, they 

disregard the interaction between original crisp data and crisp outputs. Secondly, 

these methods are ineffectual in dealing with the aspect of defuzzification of fuzzy 

numbers as groups generated from complex systems.  

The first issue can be elucidated as follows: Normally, in the crisp output of 

defuzzification techniques, some relationships or properties from original data or 

suggested from decision makers are needed to be met in the crisp output.  
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In reality, most existing methods of defuzzification attempted to make the fuzzy set 

estimation (crisp outputs) objectively (Liu, 2007). Nevertheless, being able to 

represent the decision maker’s subjective knowledge is considered to be a significant 

aspect of the fuzzy set application, thus different perceptions for the defuzzification 

outputs may be revealed by various decision makers (Liu, 2007). Also, when the 

estimation of a fuzzy set (crisp outputs) do not satisfy the relationships, each value is 

adjusted until they meet the relationships in original crisp data indicating their 

mathematical dependence on one another (Kikuchi, 2000; Sladoje et al., 2011; 

Verstraete, 2015).  

Nonetheless, the classical defuzzification such as COG and A&Z methods are based 

on independent crisp outputs terms. As a result, these techniques do not exactly 

reflect the actual physical principle of system or thinking pattern of decision makers 

(DM). However, the application of optimization techniques such as LP in 

defuzzification has been found to be helpful in modelling the usual relationships or 

properties that existed in the original crisp data or offered by DMs (Kikuchi, 2000; 

Sladoje et al., 2011). Unfortunately, the process of estimating crisp output by 

applying LP model can turn into unconstrained or global solution in case of non-

linear objective or relationships (Yager & Filev, 1995). These complications could 

limit the decision makers in utilizing the advantageous of LP or NLP techniques as 

tools to be applicable in real problems. 

Meanwhile, the second issue can be highlighted as follows: while implementing 

defuzzification techniques such as classical COG or A&Z, decision makers tend to 
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employ the fuzzy numbers as groups by applying the method in one time (Hou, 

2016). In reality, most real applications contain large number of component with 

inputs, relationships between these components or their inputs as described in the 

first issue.  

However, it is proven that LP is capable of modelling the relationships among 

components or inputs and keeping them in the crisp outputs in case of linearity in 

objective or relationships (Kikuchi, 2000; Verstraete, 2015). While in the case of 

non-linear objective or relationships, the NLP model attempts to defuzzify fuzzy 

numbers. Unfortunately, the process of finding the crisp outputs that satisfy the 

relationships in the original crisp data by applying NLP can turn into a complicated 

process (Roychowdhury & Pedrycz, 2001; Yager & Filev, 1995). With regards to 

above-mentioned issues, it can be simplified as follows: Firstly, using standard 

defuzzification methods to solve the issue in the case of having groups of fuzzy 

numbers demands a higher computational effort by decision makers as it would 

require more computational steps when dealing with complex systems that have a 

large number of components or inputs. Secondly, using optimization techniques, 

such as LP and NLP in a defuzzification problem, demands more effort by decision 

makers, as it would require a restriction on outputs to be in the allowable region. 

As a result, this research discovers an opportunity or need to offer an optimization 

procedure, which can provide a nearest crisp outputs to the fuzzy numbers, minimize 

the number of computational steps in case of groups of fuzzy number. It would be 

done by applying the multi-objective concept and meet the relationships or 
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properties in original crisp data or that DMs offered to be in outputs. In other words, 

there is a necessity for the DMs to have a simple and straightforward defuzzification 

procedure, which concurrently captures the aspect of dependent and independent in 

crisp outputs and gives the optimal crisp outputs that are the nearest point to the 

fuzzy numbers. Figure 1.3 simplifies the gap identified through this research. 

 

Figure 1.3. Problem statement of the research 

In resolving the identified gap, several research questions have been formulated as 

follows.  

Issue 1: Relationships in the 

original crisp data need to 

meet in crisp outputs  

 

Issue 2: Defuzzify groups 

of fuzzy number 

 

Issue 3: using optimization techniques such 

as LP and NLP in a defuzzification problem 

demands higher effort from decision maker 

where it would require a restriction on 

outputs to be in the allowable region 

Present an optimization model to 

defuzzify groups of fuzzy numbers 
with dependent crisp output 

 

However However 

 

Unfortunately 

Identified gap: There is a need for a defuzzification method, which is able to defuzzify the 

groups of fuzzy numbers in which the outputs of this method meet the relationships or 
properties in original crisp data and this output lies in the allowable region in case of 

nonlinearity. 

 

Issues in defuzzification technique 



 

21 

  

1.6  Research Questions  

The following questions are addressed in this research:  

1. How to defuzzify groups of fuzzy numbers that satisfy some relationships in 

the crisp outputs? 

2. How to implement this new method in a real problem? 

3. How to evaluate the proposed method? 

4. How to apply the proposed method in dealing with different types of fuzzy 

numbers and solving other problems? 

1.7  Research Objectives 

The current research primarily aims at developing a new method of defuzzification 

to defuzzify groups of fuzzy numbers based on a DEA model that can lead to the 

creation of crisp output values in which this method is able to satisfy the 

relationships or properties in the original crisp data and keep them in the solution. 

The following are the specific objectives that need to be accomplished to meet the 

desired results: 

1. To develop a new defuzzification method by modifying the center of gravity 

(COG) method. 

2. To modify the DEA model with a new objective and extra constraints. 

3. To implement the new method to solve real problems. 

4. To compare the outcome obtained by the suggested method with other 

corresponding methods. 
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5. To compare the suggested DEA-based model with LP–based model. 

6.  To apply the proposed method to the numerical problems in the literature with 

different types of fuzzy numbers. 

1.8  Scope of the Research 

This research develops defuzzification methods using one of the optimization 

techniques that is DEA of CCR model. Two types of fuzzy numbers are used which 

are triangular and trapezoidal. The proposed method is compared with the original 

COG and A&Z methods in the case of independent crisp output and Kikuchi (2000) 

method in the case of dependent crisp output. 

This research focuses on the development of a general defuzzification method based 

on the assumption of the convex PPS of DEA. A special case of the proposed 

method is presented in case of linear in relationship, membership function that is LP 

based model, and the results under DEA and LP are compared.  

The application of the proposed method is firstly considered in the allocation 

problem in a healthcare sector in Malaysia. In addition, the proposed method is 

applied to finding the optimal weight in GP and solving the issues of ranking of 

fuzzy numbers, in case of the fuzzy numbers are triangular or trapezoidal and fuzzy 

number with non-linear membership function. 
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1.9  Significance of Findings 

The findings of this research will have the following contributions: 

i. New defuzzification methods are constructed based on the DEA model that 

can create crisp values in case, of original crisp data have relationships need 

to satisfy in their crisp outputs (dependent crisp outputs) or do not have such 

relationships (independent crisp outputs)  

ii. Theoretically, this research focuses on developing defuzzification methods to 

address groups of fuzzy number. 

iii. Practically, the developed methods can be applied to solve a real problem 

that is the allocation of an optimal number of beds in hospitals in Malaysia. 

iv. The proposed methods can be used in finding the crisp outputs in the 

following fields: 

 In GP: To determine the ideal weight in the interval weight (IW) 

approach. 

 In ranking fuzzy numbers with triangular, trapezoidal and non-linear 

fuzzy numbers. 

1.10  Overview of the Thesis 

This thesis consists of six chapters. Chapter One introduces the present study and 

fuzzy system structures including fuzzification and defuzzification. The LP, NLP, 

and DEA under the optimization techniques are included. Discussion on the 

relationships and dependency besides of issues in defuzzification techniques are also 
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presented. The chapter also includes the problem statement, followed by research 

questions, outlining the research objectives, research scope and the significance of 

the study.  

Chapter Two presents an overview of fuzzy theory including fuzzy set, fuzzy 

number, fuzzification and defuzzification processes along with their concepts and 

methods. The chapter also includes the ranking of fuzzy numbers, the expected value 

of fuzzy numbers, and the nearest point of fuzzy numbers. 

Then, Chapter Three deals with these conceptions, including LP and multi-criteria 

decision-making (MCDM). Next, it is followed by DEA basic models and their 

modifications. Then, fuzzy DEA, the applications of each DEA and fuzzy DEA in 

different sectors are investigated. Multi-objectives decision-making (MODM) 

concept and one of their techniques, that is GP and its approaches with the interval 

weight (IW) method to find an optimal weight, are also included. Finally, the DEA 

model with the defuzzification concept is discussed.  

Chapter Four describes research methodology, research design, and research 

activities. It also illustrates the data collection procedure by discussing the technical 

approach and developing the methodology and empirical models.  

Chapter Five shows the results of the application of the proposed methods in the 

Malaysian healthcare sector in case where the original crisp data have relationships 

that need to be satisfied in crisp outputs and in case where there is no relationship. 

The estimated number of beds is determined by running the proposed model and 
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comparing it with the three existing methods. Furthermore, the application of the 

proposed method to solve some common issues in the literature, which includes 

finding the optimal weights in the GP model and the ranking of fuzzy numbers.  

The discussion on the results, conclusions, limitations of the study, and suggested 

future work related to the area of this research are covered in Chapter Six. 
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CHAPTER TWO 

AN OVERVIEW OF FUZZY THEORY 

There are two major issues hooked with the conventional defuzzification methods as 

clarified in Chapter One. Firstly, the conventional defuzzification methods ignore the 

aspect of interdependencies among crisp inputs and crisp outputs during 

defuzzification process. Secondly, they are incapable of coping with fuzzy numbers 

as groups in data offered by systems. This chapter is devoted to compiling some 

significant information about the former issue by reviewing the literature about the 

concept and methods that would be helpful in constructing the proposed procedure of 

the research. This chapter begins with the discussion of the basic definitions and 

concepts of fuzzy set, fuzzy numbers, fuzzification, and defuzzification. 

Furthermore, it highlights the notion of fuzzy numbers, fuzzification, and 

defuzzification with their standard types and techniques. 

2.1 Fuzzy Set  

According to the theory of classical set, two alternatives are allowable for an 

element, i.e. it either should strictly be a member of a set or should not. A fuzzy set 

is basically an addition from the classical set theory by defining the set elements that 

do not need to belong to the set but instead require a level of membership (Dubois & 

Prade, 2000). Nevertheless, a function of membership is defined as the fuzzy set, 

which is described in the discourse universe as follows. 
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A universal set is symbolized by  𝕏; thus the definition of a fuzzy set �̃� is achieved 

through its function of membership 𝜇�̃�   :  𝑥 → [0,1]. Each element 𝑥 ∈ 𝕏 is assigned 

a real number 𝜇�̃�(𝑥) in the interval [0,1] by the membership function 𝜇�̃�(𝑥) where 

the value of 𝜇�̃�(𝑥) denotes the 𝔵 membership in �̃�. A pair comprising an element (𝑥) 

denotes a fuzzy set  �̃� and its grade 𝜇�̃�(𝑥), and is therefore shown as.  

�̃� = {(𝑥, 𝜇�̃�(𝑥)), 𝑥 ∈  𝕏}                                                          (2.1) 

whereas, function on membership completely determines the fuzzy set. For a given 

ordinary set, the characteristic function as, 

𝐶ℎ𝐹(𝑥) = {
1           𝑖𝑓 𝑥 ∈ 𝐹
0           𝑖𝑓 𝑥 ∉ 𝐹

                                                     (2.2) 

which defines set 𝐹 as 𝐹 = {𝑥 ∈ 𝕏|𝐶ℎ𝐹(𝑥) = 1}. 

From the above definitions, it is natural to state that a fuzzy set �̃� naturally extends 

from an ordinal set 𝐹. It can be noted that crisp sets represent a special case of fuzzy 

sets since the function range is constrained to the values 0 and 1. In order to produce 

the function of membership defining a fuzzy set, it is initially important to deal with 

the empirical outcome. It is practical for a function shape to be determined for each 

area it examines. The 𝜇𝐹 is a compilation set of membership values constrained by 

the value of zero (0) and one (1), representing notch membership in 𝐹 for every unit, 

𝑥 ∈  𝕏. Therefore, the fuzzy set contains an object set and its values of its 

membership. In the same way, a crisp set is defined, but the values of membership 

for whole elements of the set would be 1. The grade of membership and 

characteristic function are alternative expressions for the function of membership. 
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Fuzzy and traditional sets are mainly distinguished by the image of their membership 

functions. The membership grades of a traditional set take values either 0 or 1in the 

set {0, 1}, whereas those of a fuzzy set are realized in the unit interval [0, 1]. 

Elements partially involved in the set can be included in a fuzzy set (Xexéo, 2002). 

Whenever necessary, a crisp set can be used to define a standard set to be 

distinguished from a fuzzy set. A crisp set is continuously distinct by a generic set of 

𝕏. (Zimmermann, 2010) Further explanation on an important concept, in that the 

fuzzy set is a fuzzy number concept and it is imperative to serve a transfer relation 

between a fuzzy set and an ordinary set. More details on fuzzy numbers are supplied 

in next sections. 

2.2  Types of Fuzzy Number 

Fuzzy numbers are real numbers of generalization, and fuzzy numbers are an 

important part of the fuzzy set that plays essential roles in linguistically-expressions 

such as “approximately” or “close to”. That means a fuzzy number 𝜏 represents the 

real kernel in the application of a theory of fuzzy set. Where 𝜏 is described as a 

convex, regular fuzzy set indicated on the real numbers. In literature, the use of 

fuzzy numbers has been employed in many fields, such as decision sciences (Dubois, 

2011), operations research (Kaufmann, 1986) and medicine (Barro & Marin, 2002). 

The basic definitions in this section are introduced by several scholars (Sakawa et 

al., 2011; Zimmermann, 2001). Formally, the definition is as follows: 
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Definition 2.3.1: 𝒯 expresses as a fuzzy sub-section of a real line ℝ, which is 

described as 𝒯: ℝ →  [0, 1]. If the following characteristics are satisfied, then 𝒯 shall 

be called as a fuzzy number: 

i. 𝒯 is normal, where. ∃ 𝑞 ∈ ℝ 𝑎𝑛𝑑 𝒯 (𝑞0) = 1. 

ii. 𝒯 is fuzzy convex;(∀𝜉 ∈ [0, 1], ∃ 𝑞1, 𝑞2 ∈ ℝ then  𝒯(𝜉𝑞1 + (1 − 𝜉)𝑞2) ≥

𝑚𝑖𝑛{𝒯(𝑞1), 𝒯(𝑞2)}). 

iii. 𝒯 is upper semi-continuous on ℝ i.e. (∀𝜌 > 0 ∃𝛾 > 0 𝑠. 𝑡 𝒯(𝑞) − 𝒯(𝑞0) <

𝜌, |𝑞 − 𝑞0| < 𝛾). 

iv. 𝒯 is compactly supported i.e. 𝑐𝑙{𝑞 ∈ ℝ;  𝒯(𝑞) > 0}, which 𝑐𝑙(𝔸) stands for 

the set 𝔸  closure. 

A fuzzy numbers division depends on the type of their membership function which 

describes them (Bede, 2013; Dubois & Prade, 1980; Zimmermann, 1996, 2001). 

Many types of fuzzy number are addressed in the literature such as Triangular fuzzy 

number (𝑇𝑟𝐹𝑁), Trapezoidal fuzzy number (𝑇𝑝𝐹𝑁) and S–Shaped fuzzy number.  

These varieties of fuzzy numbers are explained as follows. 

  Triangular Fuzzy Numbers  2.2.1

The triangular shape of fuzzy number (𝑇𝑟𝐹𝑁) has two line segments represent its 

functions of membership, one is rising from 〈𝑎, 0〉 to 〈𝑚, 1〉 and other is sliding from 

〈𝑚, 1〉 to  〈𝑏, 0〉. The interval [𝑎, 𝑏] refers to its domain. The specification of this 

number could be by the systematic triplex 〈𝑎,𝑚, 𝑏〉, with 𝑎 ≤ 𝑚 ≤ 𝑏; therefore, its 

function of membership is: 
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𝑇𝑟𝐹𝑁[𝑎,𝑚, 𝑏](𝑥) =

{
 
 

 
 
𝑥 − 𝑎

𝑚 − 𝑎
                      𝑎 ≤ 𝑥 ≤ 𝑚   

                                
𝑥 − 𝑏

𝑚 − 𝑏
                        𝑚 < 𝑥 ≤ 𝑏   

  

         (2.3) 

 

Figure 2.1. Triangular shape of fuzzy number  𝒯 = 𝑇𝑟𝐹𝑁[𝑎,𝑚, 𝑏 ] 

  Trapezoidal Fuzzy Number  2.2.2

Identification of 𝑇𝑝𝐹𝑁, is by a systematic quadrilateral〈𝑎, 𝑙, 𝑟, 𝑏〉 with 𝑎 ≤ 𝑙 ≤ 𝑟 ≤ 𝑏 

and its function of membership includes three line pieces. One line is rising from 

〈𝑎, 0〉 to 〈𝑙, 1〉; the other line is horizontal having one as a fixed value ranging 

between 〈𝑙, 1〉 and 〈𝑟, 1〉, while the last line falls from 〈𝑟, 1〉 to 〈𝑏, 0〉. Its function of 

membership is presented by; 

𝑇𝑝𝐹𝑁[𝑎, 𝑙, 𝑟, 𝑏](𝑥) =

{
 
 

 
 
𝑥 − 𝑎

𝑙 − 𝑎
                      𝑎 ≤ 𝑥 ≤ 𝑙 

  

 1                               𝑙 < 𝑥 < 𝑟  
𝑥 − 𝑏

𝑟 − 𝑏
                       𝑟 ≤ 𝑥 ≤ 𝑏   

  

   (2.4) 

𝑎 𝑏 𝑚 

1 

𝑎
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Figure 2.2. Trapezoidal shape of fuzzy number  𝒯 = 𝑇𝑝𝐹𝑁[𝑎, 𝑙, 𝑟, 𝑏]. 

If 𝑙 =  𝑟 then, the 𝑇𝑝𝐹𝑁 be a T𝑟𝐹𝑁, since  T𝑟𝐹𝑁 is a special situation of the 

trapezoidal fuzzy number. 

2.3  Fuzzy Numbers Representation 

As mentioned before fuzzy numbers could be divided on the basis of the kind of 

their membership function which describes them. The functions of linear 

memberships (trapezoidal and triangular) are appropriate for most cases and offers 

quick computation, whereas other curves, such as Gaussian and Sigmoid, provide 

smooth results (Duch & Jankowski, 1997; Duch, 2005). 

According to Xexéo (2002), a reasonable strategy examines the development 

methods or models in fuzzy set theory by starting with simple functions of 

Triangular and Trapezoidal membership in developing methods; then the models are 

refined later using more complex functions such as S-shaped. 

𝑎 𝑏 𝑟 

𝑎

𝑙

 

1 

𝑎
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Among the main assumptions when determining solutions for fuzzy mathematical 

programming problems is the employment of linear membership functions for the 

entire fuzzy sets primarily in a decision-making process. In this case, a linear 

approximation is widely used owing to its simple functions, and its definition of the 

upper and lower levels of acceptability. If the theory of fuzzy set is deemed to be a 

formal one, then such an assumption can be accepted (Zimmermann, 1983, 2001). 

In contrast, if the theory of fuzzy set is utilized to model actual decision-making 

processes, then an assumption is made that the resulting models are actual models of 

real-life situations. Hence, justification is needed. Suitable membership functions 

were applied to the pioneering study of Zimmermann (1978) to determine a solution 

to a problem of linear programming (LP) with many objective functions. It 

demonstrated the results from fuzzy linear programming (FLP) were efficient. This 

efficiency was also emphasized by Leberling (1981), who made use of hyperbolic 

membership function to resolve a multi objective linear programming (MOLP) 

problem and concluded that solutions are provided by the FLP with non-linear 

memberships function. Meanwhile, Dhingra and Moskowitz (1991) described 

various non-linear membership function types including exponential, quadratic and 

logarithmic that resolve a problem. 

Similarly, Verma, Biswal and Biswas (1997) also reached the same conclusion when 

employing the fuzzy programming approach on non-linear (hyperbolic and 

exponential) membership functions in determining a solution to a multi-objective 

transportation problem. 
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Vasant (2006) proposed FLP as per modified S-shaped membership function. 

Moreover, in a related study, Gupta and Dangar (2010) developed a pair of fuzzy 

primal-dual quadratic programming problems wherein ambiguous aspiration levels 

are reflected by an exponential membership function. Also, De and Yadav (2011) 

utilized a non-linear (exponential) membership function to determine a solution to a 

multi-objective assignment problem (MOAP) via interactive fuzzy goal 

programming (FGP) method.  

To this end, other non-linear shapes for membership functions such as exponential, 

hyperbolic and sigmoid memberships function are deemed as non-linear and fuzzy 

mathematical programming having non-linear membership function that leads to 

NLP. While a linear membership function uses steer clear of non-linearity, some 

issues were encountered during determining a solution to problem written in linear 

membership. In this regard, its non-linear membership counterpart has more 

flexibility in describing the ambiguity found in the fuzzy parameters for actual real 

life (Tiwari, Tiwari, Samuel, & Pandey, 2013; Watada, 2001).  

Based on the above studies, a fuzzy set can be represented graphically using 

functions of membership. The discourse universe is represented by an 𝑥-axis, 

whereas 𝑦-axis denotes of the membership degrees in the interval of [0,1]. In this 

research, membership functions are built by the use of simple functions. In defining 

fuzzy concepts, the use of more complex functions leads to the non-convexity term, 

which is not covered in this research. Next section presents the techniques and 

process to create fuzzy data.  
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2.4 Fuzzification Techniques  

Fuzzification refers to the first process in every fuzzy system to convert or create a 

fuzzy number from data. The linguistic terminology are always used to describe the 

problem (Sivanandam, Sumathi, & Deepa, 2007). This process is performed with 

experience, intuition, and analysis of the rules and conditions set associated with the 

variables of input data. This leads to the lack of fixed procedures set for the 

fuzzification (Pant & Holbert, 2004). Through several studies, some fuzzification 

approaches are identified. Fuzzification techniques have three different categories: 

adaptive, manual, and automatic. Adaptive techniques seek an optimal design of the 

system, whereas manual techniques are most fitting with the obtained evidence from 

human responses. In the third category, data sets are processed using automatic 

techniques in order to decide the proper representation of fuzzy set (Clark et al., 

2008). 

  Adaptive Techniques 2.4.1

Adaptive techniques seek an optimal design of system used for creating the 

membership functions to represent data. The most common methods for adaptive 

techniques are neural networks and genetic algorithms. The neural network 

represents computer systems that simulate the human brain’s operations (Zhou, 

Purvis, & Kasabov, 1997). Neural networks have numerous advantages, including: 

(i) No assumption is made on the fitting shape with an input-output data; (ii) 

empirical well-functioning irrespective of the source and nature of data set; (iii) 
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Could be utilized on-line or off-line for a continuous refinement of the membership 

functions facing a new conduct of the system that is being controlled.  

Other means used to construct fuzzy data represented by genetic algorithms are 

referred to techniques that are inspired ‘biologically’ for evolving better fuzzy sets. 

Accordingly, the computer requires a goal in order to achieve this evolution. The 

fuzzy set theatrical goals are to present improved fuzzy logic controllers 

(Treesatayapun, Kantapanit, & Dumronggittigule, 2003). 

  Manual Techniques 2.4.2

Several statistical methods are often used to determine functions of membership. To 

conclude the fuzzy set shape, various approaches and questions should be 

investigated. Practically, triangular and trapezoidal fuzzy sets have been proven 

effective in several applications for the elicitation of critical values. For instance,  

Watanabe (1993) asserts that the use of frequencies and direct estimation are the two 

broad categories under which these statistical techniques fall (as cited in 

Szczepaniak, Lisboa, & Kacprzyk, 2000). The frequency methodology attains the 

function of membership by measuring the population’s percentage in a test group. 

The direct estimation methodology derives its values from a sliding scale and elicits 

responses from experts that grade the compatibility of the object and the set. All the 

manual techniques suffer from the deficiency that they rely on a very subjective 

interpretation of words (Szczepaniak et al., 2000).  
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  Automatic Techniques 2.4.3

Automatic technique of data transmissions, which primarily process data sets to 

decide proper representation of a fuzzy set. Automated techniques cover various 

approaches. The automatic generation differs from the manual methods in that it 

involves a complete removal of expert(s) from the process (Clark et al., 2008; 

Szczepaniak et al., 2000). Curve fitting and histograms are typical procedures. 

2.4.3.1  Curve Fitting 

When there is information set which could be utilized as a premise for building the 

membership functions of a fuzzy set, a large technique of fuzzification is accessible. 

The basic methods of curve fitting, such as triangular and trapezoidal curves have 

generic formula equations (2.3) and (2.4) sequentially. For example, if the equation 

(2.4) of 𝑇𝑝𝐹𝑁 is considered by assuming the presence of 𝑛 data points 〈𝑐𝑖, 𝑦𝑖〉, 

minimization of error, Er, 

𝐸𝑟 =∑(𝑦𝑖 − 𝑇𝑝𝐹𝑁(𝑐𝑖))
2

𝑛

𝑖=1

                                                    (2.5) 

could be effectively prepared on a computer through the use of standard numerical 

technique. Minimum squared error estimation on 𝑇𝑝𝐹𝑁 will be the solution. 

Practically, a methodology of curve fitting such as methodologies of regression and 

Lagrangian interpolation in the mathematical principle could be adjusted to find the 

fuzzy set’s membership values. 
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2.4.3.2  Histograms 

Sometimes in some cases of fitting the curve to the data set, the use of histogram is 

more logical; for instance when there are no input-output pairs, but there is a broad 

cross-section of non-correlated input values with a controlled output, or when there 

is no satisfactory control whether by human or machine.  

When a data set contains elements of 𝑝 for sets  〈𝑐𝑡, 𝑑𝑡〉 , 𝑡 = 1,2, . . , 𝑝, then the 

leading steps are finding 𝑐𝑚𝑖𝑛  and 𝑐𝑚𝑎𝑥, which represent the minimum nor 

maximum values is achieved by the leading component in the orderly pair. The 

following step will divide the  𝑐𝑚𝑖𝑛  and 𝑐𝑚𝑎𝑥 interlude into 𝑚 sub-intervals. For 

each interval [𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥] of the element 𝑐𝑡 is divided into 𝑚 sub-intervals 

{[𝑐𝑚𝑖𝑛 = 𝑐0, 𝑐1], [𝑐1, 𝑐2]. . , [𝑐(𝑚−1),𝑐𝑚 = 𝑐𝑚𝑎𝑥]}                 (2.6) 

where each sub-interval has the width ∆𝑐 =  
𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛

𝑚
, then each element is labeled 

as; 

𝑐𝑘 = 𝑐
𝑚𝑖𝑛 + 𝑘 ∗ ∆𝑐      𝑘 = 0,1,2, . . , 𝑚                                  (2.7) 

According to preceding description, the points set can be used in sub-intervals for 

curve fitting. 
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 Overview of Fuzzification Techniques 2.4.4

This section illustrates the most common practices or techniques of fuzzification 

used. For instance, some studies used averaging measurement to transform crisp 

(non-fuzzy) numbers into fuzzy numbers. The number is produced as follows: 

�̃� = (𝑐𝑚𝑖𝑛 ,  𝑐𝑚𝑖𝑑 , 𝑐𝑚𝑎𝑥)                                                          (2.8) 

where, 

𝑐𝑚𝑖𝑛   = 𝑚𝑖𝑛{ 𝑐1 ,  𝑐2, … ,  𝑐𝑛}

𝑐𝑚𝑎𝑥  = 𝑚𝑎𝑥{ 𝑐1 , 𝑐2, … , 𝑐𝑛}
}                                                (2.9) 

and 

𝑐𝑚𝑖𝑑 = the average value of { 𝑐1 , 𝑐2, … ,  𝑐𝑛}                   (2.10) 

The  𝑐𝑚𝑖𝑛 represents the lowest value of element 𝑐𝑖, 𝑐
𝑚𝑎𝑥  represents the highest 

value of element 𝑐𝑖, while  𝑐𝑚𝑖𝑑 is the average value of element 𝑐𝑖.  

The mean value is usually at the middle. However, there is some averaging 

measurement used in such cases as mentioned by Dubois and Prade (2000). For 

example, the median or mean value, refers to a non-resistant measure of the center 

because of its sensitivity to unusually small or large data (outliers) (Bodjanova, 

2006), is described as:  

𝑐𝑎𝑟𝑡ℎ =
1

𝑛
∑𝑐𝑖                                                                       

𝑛

𝑖=1

(2.11) 
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The geometric mean which is the 𝑛th
 root of the product of the 𝑛 non-negative 

numerical values is described as;  

𝑐𝑔𝑒𝑜 = (∏𝑐𝑖 )

𝑛

𝑖=1

1
𝑛⁄

                                                                 (2.12) 

The importance of the geometric mean lies in its strength to lessen the (so low or 

high) values effect since such very low or extremely high values could bias the 

arithmetic mean. In other words, the extreme values affect the arithmetic mean more 

than the geometric mean (Angiz & Sajedi, 2012; Chang, Yeh, & Chang, 2013; Yeh 

& Chang, 2009), ranging from the lowest and highest value, so they follow the 

probabilistic path to produce fuzzy sets. The best estimate, in this case, is deemed to 

be a geometric mean. Measurements of central tendency that suited the geometric 

mean is represented as an intermediate value of the fuzzy number (Aref & Javadian, 

2009). 

Some other studies followed another path to create a fuzzy number (Au, Chan, & 

Wong, 2006), which determined the fuzzy sets’ membership functions from the data 

directly. The class interdependence attribute is maximized to improve the results of 

classification. Domańska and Wojtylak (2010) introduced a procedure aimed at 

converting real numbers into fuzzy number. The study generated a particular fuzzy 

number to be used in a model for estimating the concentrations of pollution. 

Nasibov and Peker (2011) investigated the formulas of the parameter for an 

exponential membership function based on the problem of minimization. The 
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method used in their study aimed at obtaining an exponential membership function, 

which assumed that the shape of data is a histogram.  

Grzegorzewski and Mrówka (2005) suggested a new method of the approximations 

of a trapezoidal fuzzy number utilizing other fuzzy numbers as input. Voxman 

(2001) used input represented by a discrete fuzzy number. In their method, Ralescu 

and Visa (2007) achieved a discrete fuzzy number that was not efficiently 

computable because of the necessity of using several elements to denote a discrete 

fuzzy number. Moreno-Garcia, Jimenez Linares, Rodriguez-Benitez, and del Castillo 

(2013) proposed a new technique to calculate a trapezoidal fuzzy number from 

discrete raw data. They utilized a linear regression for obtaining the fuzzy number’s 

membership function. Trapezoidal membership functions were used to simplify the 

use of fuzzy numbers. Their suggested method has a complexity of 0 (𝑛 𝑙𝑜𝑔 𝑛) and 

is unsupervised.  

As mentioned by Starczewski (2013, p. 139), that in the case where is unavailable 

knowledge about the uncertainty of the given input data, the simplest form called a 

singleton fuzzification is chosen. In fact, it is the most commonly used method of 

blurring premises. The singleton fuzzification is a way of representation of a crisp 

value in the fuzzy set form. Additional knowledge about the uncertainty of inputs 

allows us to assume a type of a fuzzification function, e.g., in the form of a triangular 

fuzzy number or Gaussian fuzzy number. The following section discusses the step to 

convert these fuzzy representatives into the crisp representatives i.e. the 

defuzzification process. 
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2.5  Overview of Defuzzification  

Defuzzification is considered important in the field of research since the early 1990s. 

Defuzzification transforms a fuzzy set to single crisp value (Hatzichristos & 

Potamias, 2004; Runkler, 2013). This process occurs by reducing all fuzzy numbers 

to a single number which often loses some information and is, therefore, incapable of 

encapsulating the element of uncertainty (Lee, 2000; Leekwijck & Kerre, 1999; 

Sivanandam et al., 2007). Unfortunately, there is no systematic procedure to be used 

in the selection of a good strategy of defuzzification; therefore, when considering the 

application case properties, a systematic procedure should be selected (Lee, 2006). 

Some methods of defuzzification have a tendency to create an aggregate output by 

seeing all fundamentals of the fuzzy set that has identical weights. Another method 

considers only the elements, which correspond to the optimum of the resulting 

membership functions. The fundamental methods of defuzzification having a 

practical importance are Center of Sums (COS), Center of Area (COA), Middle of 

Maxima (MOM), Height Method (HM), Center of Largest Area (COLA), and First 

of Maxima (FM). 

  Fundamental Methods 2.5.1

This section presents a number of the widely used defuzzification methods. Some 

researchers proposed a classification of defuzzification methods (Leekwijck & 

Kerre, 1999; Runkler, 1997) to evaluate whether the properties are important as the 

following groups: 
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a.  Area methods: The defuzzification value divides the area under the 

membership function in two, more, or less equal parts. 

b.  Distribution methods and derivatives: Conversion of the membership 

functions into probability distributions, and computation of the expected 

value. The main advantage of these approaches is the continuity property.  

c.  Maxima methods and derivatives: Selection of an element from the core of a 

fuzzy set is considered as the defuzzified value. The main advantage of these 

approaches is simplicity. 

Three primary defuzzification methods which are widely used (Driankov, 

Hellendoorn, & Reinfrank, 1996; Lee, 2006) are explained in the following three 

sub-sections. 

2.5.1.1  Centroid Method 

The basic and the most frequently used method for defuzzification is the centroid 

method which is developed by Sugeno (1985) under the classification of area 

method. It is known as the center of gravity (COG) or center of area (COA), which 

calculates the center of area of membership grades μF̃(𝑥) using the Riemann integral 

as 

𝑥𝐶𝑂𝐺 =
∫𝜇�̃� (𝑥). 𝑥 𝑑𝑥

∫ 𝜇�̃� (𝑥) 𝑑𝑥
                                                            (2.13) 

where, 𝑥𝐶𝑂𝐺 is the defuzzified value for the interval fuzzy data. There are two ways 

to calculate the centroid in fuzzy logic systems namely, numerical integration with 
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the use of approximation, and restriction of μF̃(𝑥) to the specific shapes or known as 

integrals. For the discrete case in which 𝜇�̃� is defined on a finite universal set, 

{𝑥1, 𝑥2 , 𝑥3, . . , 𝑥𝑛}, the centroid can be calculated by the discrete centroid given by 

𝑥𝐶𝑂𝐺 =
∑ 𝜇�̃�
𝑛
𝑖=1 (𝑥𝑖). 𝑥𝑖  

∑ 𝜇�̃�
𝑛
𝑖=1 (𝑥𝑖)

                                                               (2.14). 

The origin of the discrete centroid method comes from the height type 

defuzzification (also known as the center average defuzzification) that disregards the 

exact shapes of membership functions of fuzzy rule conclusions and takes into 

account only their height. This approach is equivalent to reducing fuzzy rule 

conclusions to singleton membership grades. The drawback of the height type 

defuzzification is that it cannot be applied directly to fuzzy logic systems with 

logical reasoning, in which the aggregation operation has to be performed previously 

(Starczewski, 2013). Figure 2.3 represents this method graphically. 

 

Figure 2.3. Centroid method 

1 

𝑥𝐶𝑂𝐺 

𝜇 
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2.5.1.2  Weighted Average Method  

Weighted average method (WAM) is one of the most frequent defuzzification 

methods used in the fuzzy application. WAM is computationally faster, easier, gives 

accurate result, and can be expressed as: 

𝑥𝑊𝐴𝑀 =
∑ 𝜇�̃�𝑖(𝑥)𝑤𝑖𝑖

∑ 𝜇�̃�𝑖(𝑥)𝑖
                                                              (2.15) 

Where 𝑥𝑊𝐴𝑀 is the defuzzified output, 𝜇�̃�𝑖(𝑥) is the membership of each fuzzy 

number �̃�, 𝑤𝑖 is the weight associated with each membership of each fuzzy number. 

 

Figure 2.4. Weighted average method 

From Figure 2.4, 
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2.5.1.3  Height Method  

In height method (HM) the defuzzified point is the point that has the highest 

membership function It is also known as the max-membership method which is very 

fast but is limited to peaked output functions as shown in Figure 2.5. The expression 

of HM method is given as follows:  

𝜇�̃�(𝑥𝐻𝑀) ≥ 𝜇�̃�(𝑥)    , ∀𝑥 ∈ 𝑋                                                 (2.16) 

where 𝑥𝐻𝑀 is the defuzzified output, 𝜇�̃�(𝑥) is the membership of fuzzy number �̃�. 

 

Figure 2.5. Height method 

  Modification of Defuzzification Techniques 2.5.2

There is no systematic way for selecting a defuzzification technique (Lee, 1990; 

Siddique, 2014). For this reason, different strategies proposed in the literature are 

explained in this section. To begin with, Mabuchi (1993) introduced a 

defuzzification method to defuzzify fuzzy subsets and interval values using 

sensitivity analysis along with a type of mini-max principle. 

𝑥𝐻𝑀 
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Similarly, Ma et al. (2000) suggested a novel method to defuzzify fuzzy sets through 

metric distance between two symmetric 𝑇𝑟𝐹𝑁. They defuzzified a fuzzy number 

while simultaneously acquiring the fuzziness of original quantity with the help of a 

close symmetric fuzzy number. Shi and Sen (2000) introduced the Height Weighted 

Second Maxima (HWSM) and assessed performance using the simulation results. , 

They Also compared different defuzzification methods as COA, COS, HM and 

MOM, Center of Largest Area (COLA) and First of Maxima (FM), to evaluate the 

HWSM of every output. As a result, the defuzzification using their method HWSM 

provides further enhancements. 

Leekwijck and Kerre (2001) brought forward a continuous maxima defuzzification 

approach by considering the output fuzzy set as the defuzzifed value. The 

computational time of their method is very efficient. Ginart and Sanchez (2002) 

introduced a new fast defuzzification method based on the estimates of the centroid 

position by accommodating the fuzzy output structure in one triangle. This method 

tested the second order plants control and eventually became a model for Continuous 

Stirred Tank Reactor (CSTR). Lancaster and Wierman (2003) proposed two new 

methods in defuzzifying the plateau average (PA) and weighted plateau average 

(WPA). The concept of PA method is the result of a defuzzification output value and 

is calculated as the midpoints of all fuzzy outputs average. Evidently, PA is a 

superior version of the Mean of Maxima (MOM) with the only difference being that 

PA does not overlook any provided rule output. Meanwhile, WPA is an improved 

version of PA, which requires higher computation and acquires higher precision than 
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PA. The final defuzzified output value in WPA is calculated whereas mid-points of 

the entire output platform is the weighted average. 

Banaiyan, Fakhraie, and Mahdiani, (2005) presented three defuzzification method 

namely trapezoid median average (TMA) and the family of weighted trapezoid 

median average (WTMA) method. The WTMA has two methods, which are the 

Trapezoidal WTMA (TWTMA) and the Rectangular WTMA (RWTMA). In TMA 

method, the defuzzified output is obtained by averaging the mid-points of the entire 

output trapezoid medians as opposed to the mid-points of the entire output trapezoid 

platforms by PA method presented by Lancaster and Wierman (2003). TMA is 

advantageous over PA as the latter attempts to estimate trapezoid center of gravity 

whereas TMA considers the top and bottom corner of the slopes as well. The outputs 

of both methods are identical symmetric output membership functions, but TMA 

offers the superior estimation of the COG in asymmetric membership functions. On 

the other hand, the WTMA and TWTMA seem to be improved models of TMA. In 

such methods, the last defuzzified output is calculated through midpoints on entire 

trapezoid medians weighted average. The two WTMA forms only different in their 

weights; for example, TWTMA method weights the same areas of the trapezoids 

membership function. 

Banaiyan, Mahdiani, and Fakhraie (2006) compared their three new defuzzification 

methods introduced in their work in 2005 that were suitable for efficient software 

and hardware implementations. Their comparative results showed that their new 
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methods give the highest accuracy levels while giving faster and lower software 

complexities. 

In their work, Mahdiani, Banaiyan, Javadi, Fakhraie and Lucas (2013) utilized 

Banaiyan et al.'s (2005) approaches, which are also referred to as classic standard 

methods, and applied them in the software field. These methods offer passable 

accuracy levels as compared to the existing methods as they require less costs of 

implementation with regards to area, delay, and power consumption in hardware 

realization while, at the same time, less execution time and instruction count in the 

software implementation. The defuzzification methods of the software models are 

created under three platforms, namely, Intel’s Pentium IV, IBM’s PowerPC, and TI’s 

C62 DSP to reveal that novel methods require less execution time and instruction 

count of the most common methods used. The hardware models are created to 

synthesize the present superiority of the novel methods, with regard to the area, 

delay and power consumption.  

Based on the above discussion, it can be concluded that the past defuzzification 

methods were developed without considering the characteristic of the original crisp 

data.  In this case, the characteristic is referred to any relationship or some properties 

that must be satisfied in their crisp output. 

2.6  Overview of Methods in Ranking Fuzzy Numbers 

Ranking fuzzy numbers is an important component of the decision process, data 

analysis, artificial intelligence and socioeconomic practices. It is due to the essence 
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of the measurements. Ranking of fuzzy numbers was suggested by Jain in 1976 and 

1977 (as mentioned in Abbasbandy & Hajjari, 2009; Hajjari, 2011) on the base of the 

maximizing a set perception to rank the fuzzy numbers. There are several methods 

for ranking fuzzy numbers, which have strengths and weaknesses because of the 

common characteristics of fuzzy numbers. It is unusual to find and modify new 

methods of ranking fuzzy numbers because most of the methods give different orders 

of ranking for the same fuzzy numbers set.  

According to Yong and Qi (2005), Yager (1980) and Murakami and Maeda (1984) 

proposed pioneer methods for ranking fuzzy numbers according to centroid index 

using a procedure for Technique of Order Preference by Similarity to an Ideal 

Solution (TOPSIS). Abbasbandy & Asady (2006) introduced a sign distance method 

of ranking fuzzy numbers to overwhelm the deficiencies in previous methods, such 

as the coefficient of variation (CV) index, the distance between fuzzy sets, centroid 

point and original point, and weighted mean. Deng, Zhenfu and Qi (2006) suggested 

ranking fuzzy numbers method as per radius of gyration. Abbasbandy and Hajjari 

(2009) presented magnitude method of ranking 𝑇𝑝𝐹𝑁[𝑎, 𝑙, 𝑟, 𝑏](𝑥) according to two 

spreads (left and right) towards some 𝛼−cut to the trapezoidal fuzzy numbers as:  

𝑀𝑎𝑔(�̂�) = ∫[𝑥𝑙(𝛼) + 𝑥𝑟(𝛼) + 𝑎 + 𝑏]𝑓(𝛼) 𝑑𝛼

1

0

                     (2.17) 
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where, 𝑓(𝛼) = 𝛼, [𝑎, 𝑏] is the most  possible values and 𝑥𝑙(𝛼), 𝑥𝑟(𝛼) are the left and 

right points of 𝑋𝛼, respectively. In this method, larger fuzzy number �̂� has a larger 

𝑀𝑎𝑔(�̂�). 

Among all the existing methods, Wang, Luo and Liang's (2009) method was one of 

the extensive methods used to solve the fuzziness of coefficients in decision-making 

problem using the DEA approach. Nejad and Mashinchi (2011) proposed a fuzzy 

number ranking method as per areas of two spreads (left and right) of a fuzzy 

number, which can rank several fuzzy numbers and their images (non-normal, 

normal, trapezoidal and triangular). Then, Xu and Zhai (2012) improved the method 

for ranking fuzzy numbers by distance minimization based on the two spreads areas 

(right and left) of the fuzzy number. Their method overcame the drawback of the 

methods by Asady and Zendehnam (2007)(A&Z) and Abbasbandy and Hajjari 

(2009) (A&H) when two fuzzy numbers have the same nearest point.  

As a conclusion, many ranking methods are developed in ranking fuzzy numbers 

based on distance minimization (Asady & Zendehnam, 2007; Xu & Zhai, 2012), the 

areas method (Nejad & Mashinchi, 2011; Wang & Luo, 2009), radius of gyration 

(Deng et al., 2006), sign distance (Abbasbandy & Asady, 2006; Chen & Hwang, 

1992), and the area in between centroid point and original point (Chen, 1985; Chu & 

Tsao, 2002; Yong & Qi, 2005). Other methods used the left and right deviation 

degree of fuzzy numbers (Wang, Liu, Fan, & Feng, 2009). Nevertheless, not all 

method could frequently rank fuzzy numbers and the rankings are acceptable in all 

cases and situations (Modarres & Sadi-Nezhad, 2001; Xu & Zhai, 2012). 
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  Ranking of Fuzzy Numbers Based on the Defuzzification Methods 2.6.1

Defuzzification methods are widely used as effective approach to compare and rank 

fuzzy numbers (Chang et al., 2013; Chen & Hwang, 1992; Lee, 2000). Many studies 

ranked fuzzy numbers under the defuzzification concepts. For instance, Chu and 

Tsao (2002) suggested that fuzzy numbers can be ranked by considering an area in 

between centroid point and original point mean. Saneifard and Saneifard (2011) 

suggested a novel method to tackle the issue of crisp element selection by using the 

information provided by a fuzzy set. This issue arises in fuzzy logic controllers under 

the defuzzification stage. The suggested methods defuzzify fuzzy numbers into a 

crisp approximation of its origin through the probability density function and the 

Mellin transformation of fuzzy numbers. Then, the approximations in crisp values 

are utilized to organize the fuzzy numbers into certain ranking. Likewise, through 

defuzzification, the present study attempts to propose a new method that ranks fuzzy 

numbers. Along with its ranking features, the method eradicates the inaccurate 

results and handles the shortcomings characterized in the prior ranking. 

Rouhparvar and Panahi (2015) presented a method to defuzzify generalized fuzzy 

numbers according to geometric aspects of the membership function in ranking 

several fuzzy numbers and images. Obviously, several defuzzification methods 

proposed in the literature are common methods for evaluating fuzzy numbers in 

decision-making problems and ranking fuzzy numbers (Asady & Zendehnam, 2007; 

Fortemps & Roubens, 1996; Rouhparvar & Panahi, 2015; Yager, 1981; Yoshida & 

Kerre, 2002). There are also researchers who have examined defuzzification methods 

in various applications (De Campos Ibáñez & Muñoz, 1989; Goetschel & Voxman, 
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1986), and these methods are used to reduce fuzzy numbers to a single, crisp, 

numerical value. The result leads to the best information and makes a kind of 

synthesis of the fuzzy number. 

It can be noted that the above review of literature does not indicate that the 

relationships among the inputs and/ or outputs are addressed whether in the modified 

or principal defuzzification methods. One of the few related studies that deals with 

this matter is the work of Kikuchi (2000). He proposed a method to defuzzify fuzzy 

numbers using a FLP model, where the defuzzified results need to satisfy some 

relation of the original crisp data and when finding the set of values such as smallest 

membership grade among them is maximized. Since the Kikuchi’s method is used in 

as comparative method with the proposed method of the study, more details of 

method and formulation of model is available in the next chapter. Finally, the next 

section discusses the measurement of how to find the approximation of fuzzy 

number is done. 

2.7  Expected Value of Fuzzy Numbers  

Initially, the expectation for fuzzy numbers in intervals was defined for the first time 

by Dubois and Prade (1987) as follows; 

𝔼𝕀(𝒯) = [∫ 𝒯(𝑡)
1

0

, ∫ 𝒯(𝑡)]
1

0

                                                 (2.18) 

whereas, 𝒯(𝑡) and 𝒯(𝑡) are parametric form of the fuzzy number 𝒯. The conception 

of the expected values of fuzzy numbers were introduced by Heilpern (1992). Later, 
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Bede (2013) defined the expected value of a fuzzy number as the midpoint of the 

expected interval. Some studies have dealt with the expected value with different 

aims (Liu & Liu, 2002; Moreno-Garcia et al., 2013; Xue, Tang, & Zhao, 2008). 

The expected value (Heilpern, 1992) is employed to prove that the fuzzy number 

representative in comparison with the distribution of possibilities. In this case, if 

their expected value is close, then both representatives have the same concept. The 

qualitative investigation of the fit is then achieved by examining the expected values. 

In this situation, the concept of regression is applied to the (right and left) lines 

which minimize the expected error, leading to fit data.  

  Nearest Point of Fuzzy Number 2.7.1

Some trails in the literature focuses on the nearest point to the fuzzy number. First, 

Grzegorzewski (2002) proved that the interval 𝔼𝕀(𝒯) introduced in Dubois and 

Prade (1987) is the nearest interval to the fuzzy number 𝒯 = (𝑥0, 𝛼, 𝛽) where 𝑥0 

known as the mean value of 𝒯, is a real number and based on the equation (2.3). 

𝛼 = 𝑥0 − 𝑥
𝑙

𝛽 = 𝑥𝑢 − 𝑥0
}                                                                        (2.19) 

where, 𝛼 and 𝛽 are known as the left and right spreads, respectively. 𝑥𝑙 and 𝑥𝑢 are 

the lower value and the upper value of the interval of the fuzzy number. 

Symbolically, 𝒯 is denoted by (𝑥0, 𝛼, 𝛽) or (𝑥𝑙 , 𝑥0, 𝑥
𝑢).  
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Then, its parametric form respectively is; 

𝒯(𝑡) = 𝑥0 − 𝛼(1 − 𝑡)                                                           (2.20) 

𝒯(𝑡)  = 𝑥0 + 𝛽(1 − 𝑡)                                                         (2.21) 

Later, Asady and Zendehnam (2007) presented a defuzzification method based on 

the nearest point of a fuzzy number by utilizing the above interval. They define the 

middle point of interval 𝔼𝕀(𝒯) as follows; 

𝑀𝑖𝑑(𝒯) =
1

2
∫ (𝒯(𝑡)
1

0

+ 𝒯(𝑡))𝑑𝑡                                        (2.22) 

They considered a crisp point as a fuzzy number instead of the nearest interval. 

Asady and Zendehnam (2007) found the nearest point to the fuzzy number 𝒯 which 

is known as the nearest crisp point 𝐶𝑟(𝒯) = 𝑀𝑖𝑑(𝒯). In case of 𝒯 is triangular fuzzy 

number the nearest point is calculated as follows; 

𝐶𝑟(𝒯) = 𝑥0 +
𝛽 − 𝛼

4
                                                           (2.23) 

They proved that the distance between the fuzzy number 𝒯 and his crisp point 𝐶𝑟(𝒯) 

is the smallest distance which is calculated as follows; 

𝐷(𝒯, 𝐶𝑟(𝒯)) = [∫ (𝒯(𝑡)
1

0

− 𝐶𝑟(𝒯))2𝑑𝑡 + ∫(𝒯(𝑡) − 𝐶𝑟(𝒯)

1

0

)2𝑑𝑡]

1
2⁄

     (2.24) 

where, the function 𝐷(𝒯, 𝐶𝑟(𝒯)) is the minimum value of distance between a fuzzy 

number 𝒯 and the crisp point 𝐶𝑟(𝒯) and assumed that if 𝐶𝑟(𝒯) = 𝑀𝑖𝑑(𝒯), then 

𝑀𝑖𝑑(𝒯) is unique. 
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In 2012, Xu and Zhai introduced a method of ranking fuzzy numbers. They defined 

an index based on distance in fuzzy number space for characterizing the uncertain 

degree. Their method is applied and compared with the proposed method of this 

research is available in Section 5.5.2. While other researchers (e.g., Nasibov & 

Peker, 2008) focused on finding the nearest fuzzy numbers approximated to the 

given fuzzy numbers. They found that the most adjacent parametric membership 

function according to decision maker’s willingness by minimization of a distance 

(Hamming, Euclidean, etc.) between fuzzy number and nearest parametric estimate.  

Grzegorzewski and Mrówka (2005) recommended the nearest approximated 

trapezoidal fuzzy number of a given fuzzy number by minimizing the distance 

criterion proposed by Ma et al.(2000), and uses the concept of the symmetric 

triangular fuzzy number to introduce a new approach to defuzzify a general fuzzy 

quantity. The basic idea of the new method is to obtain the nearest symmetric 

triangular fuzzy number which fuzzy quantity are related to. 

Then Grzegorzewski and Mrówka (2007) presented a correction expression for the 

approximation operator in their work in 2005, which is called nearest trapezoidal 

estimate operator preserving expected intermission. Later, Ban (2008) proved by 

giving examples of trapezoidal approximation of fuzzy number provided by 

Grzegorzewski and Mrówka (2007) does not necessarily 𝑇𝑝𝐹𝑁. Therefore, he 

managed to resolve the problem by finding the nearest 𝑇𝑝𝐹𝑁 towards an agreed 

fuzzy number on well-known metric that conserves the predictable interval of the 

initial fuzzy number. Moreover, Ban and Coroianu (2012) found the nearest real 
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interval, nearest triangular (symmetric) fuzzy number and nearest trapezoidal 

(symmetric) fuzzy number of a fuzzy number, with regards to the regular Euclidean 

distance, and preserving the ambiguity. 

2.8  Summary and Discussion 

This chapter commences by presenting a brief survey of the field of fuzzy numbers. 

Practical applications indicated that the current use of fuzzy numbers is triangular 

fuzzy numbers, which are principally attributed by their easiness at conceptual and 

computation. Ideally, merits of utilizing triangular fuzzy numbers in fuzzy modelling 

is greatly acceptable (Pedrycz, 1994). The easiest form of membership function, 

triangular fuzzy numbers create an instant answer to the optimization difficulties in 

fuzzy modelling. Moreover, this chapter provides the ranking fuzzy numbers 

methods and their relation to defuzzification concepts. Then, the necessary steps in 

the fuzzy system including the fuzzification and defuzzification concepts with their 

techniques are also discussed. This chapter shows that a geometric mean is the best-

represented midpoint in triangular fuzzy numbers (Aref & Javadian, 2009). 

The present research discovers the problem of defuzzification of fuzzy numbers 

generated from the systems with some relationships or properties. It reveals that the 

fundamental and modification methods under defuzzification are unable to give a 

crisp output or to keep the relationships or properties on the original crisp data. As a 

result, the present research has set its primary goal to develop a defuzzification 

method that retains the properties or relationships in the original crisp data or in the 

crisp output. Besides, this estimated crisp output is expected to be an optimal output 
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of the systems under the problem. This lead us to combine the optimization 

techniques and one of the fundamental defuzzification methods to develop a new 

defuzzification method that has the ability to perverse the properties in the original 

crisp data as well as in the crisp output. Toward this purpose, next chapter focuses on 

multi-criteria decision- making, particularly the LP, DEA, and their relations to 

defuzzification. By accomplishing the objectives, the present research could offer 

significant contributions to the field of fuzzy theory. 
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CHAPTER THREE 

MULTI-CRITERIA DECISION-MAKING AND DATA 

ENVELOPMENT ANALYSIS CONCEPTS 

Based on previous discussion, specifically in sections 1.4 and 1.5 of Chapter 1, an 

investigation of a defuzzification formulation is crucial in case we have a 

relationship or properties that need to satisfy in the crisp output. This chapter focuses 

on linear programming (LP), and multi-criteria decision-making (MCDM) concepts 

in relation to Data Envelopment Analysis (DEA). Then, the background, 

assumptions, models and applications of DEA and fuzzy DEA are presented. It is 

followed by the discussions on the multi-objective concept and goal programming 

techniques, interval weight approach concept and formulation, and the relation of 

DEA and defuzzification.  

3.1 Overview of Linear Programming  

Linear programming (LP) is a subset of mathematical programming and a powerful 

mathematical modelling technique in operations research (OR). It is designed for 

maximizing or minimizing a linear function to linear inequality constraints 

(Dowsland, 2014). The following is the general formulation of LP. 

 Minimize or Maximize ∑𝑐𝑗𝑥𝑗   

𝑛

𝑗=1

                                                   (3.1a) 

 subject to                                                                  

   ∑𝑎𝑖𝑗  𝑥𝑗

𝑛

𝑗=1

 ≥   𝑏𝑖        𝑖 = 1,2, …𝑚           (3.1b) 

𝑥𝑗  ≥   0                     𝑗 = 1,2, … 𝑛             (3.1c) 
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We seek values of 𝑥𝑗 that optimizes (minimizes or maximizes) the objective 

characteristic equation (3.1a). The constant 𝑐𝑗 , 𝑎𝑖𝑗, and 𝑏𝑖 are known constants. They 

may be positive or negative subject to the situation. The values of 𝑥𝑗   needs to fulfill 

the constraint equations i.e. equation (3.1b) and be non-negative i.e. equation (3.1c). 

In other words, the constraints equation (3.1b) defines the decision space, the goal by 

the objective function, and the type of decision under certainty (Eiselt & Sandblom, 

2007).  

LP is commonly used in engineering schemes, business organization, oil industry, as 

well as in numerous applications. Previously, several researches have revealed that 

variation of practical problems resolved by LP methods have further complications. 

Regularly, these problems are of several objectives, which are to be optimized. Due 

to the restrictions of LP, only one objective is designated, while the others are 

constraints. By the initiation of multi objective linear programming (MOLP), such 

complications could be demonstrated more accurately (Luptacik, 2010). MOLP is 

known as a branch of MCDM that includes the techniques under the LP concept 

(Ishizaka & Nemery, 2013). 

In addition, the classical LP models suffer from making decisions in an uncertain 

environment. So, the fuzzy set concept was adopted to the problems of LP and 

MOLP by Zimmermann (1978, 1996), with the aim of solving decision-making 

problems which includes finding the range of values that maximizes the least 

membership grade between them. This idea of fuzzy LP used by Kikuchi (2000) to 
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defuzzify fuzzy numbers when the original crisp data have some relationships that 

need to be satisfied with their output is described as follows: 

𝑚𝑎𝑥 ℎ                                                                                            (3.2a) 

subject to                                                   

(
�̅�𝑖 − 𝑥𝑖

𝑙

𝑥𝑖
𝑚 − 𝑥𝑖

𝐿) = 𝜇𝑥𝑖
− ≥ ℎ

 

(
�̅�𝑖 − 𝑥𝑖

𝑢

𝑥𝑖
𝑚 − 𝑥𝑖

𝑢) = 𝜇𝑥𝑖
+ ≥ ℎ

                                                             (3.2b) 

 𝑅(�̅�𝑖) = 𝐶                                                                                                  

�̅�𝑖, ℎ ≥ 0                                                                             𝑖 = 1,2. . , 𝑛. 

where, 𝜇𝑥𝑖
−(𝑥𝑖) and 𝜇𝑥𝑖

+(𝑥𝑖) represent the left and right-hand side of the membership of 

fuzzy number and ℎ is the minimum degree of membership where one of the values 

of �̅�1, �̅�2, . . , �̅�𝑛 takes while the  𝑅(�̅�𝑖) = 𝐶   is the relationship in the original crisp 

data. The three values (𝑥𝑖
𝑙 , 𝑥𝑖

𝑚 , 𝑥𝑖
𝑢) are the (low, mid and high) values of the support 

and designated for each 𝑋𝑖.  

In LP problem, the value of ℎ is maximized. As such, the solution to each variable 

lies on the support of the membership function. Amongst all the combinations of the 

values for 𝑥𝑖 that satisfy 𝑅(�̅�𝑖) = 𝐶, the one that maximizes the minimum 

membership grade  𝜇𝑥𝑖(𝑥𝑖) ; 𝑚𝑎𝑥𝑚𝑖𝑛 {𝜇𝑥𝑖
− (𝑥𝑖), 𝜇𝑥𝑖

+ (𝑥𝑖)}, is chosen.  

In the next section, we first consider the MCDM concepts and their relation with LP. 

Then, we discuss DEA, which is commonly known as LP application or a non-

parametric LP approach (Eiselt & Sandblom, 2007; Ishizaka & Nemery, 2013). 
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3.2 Multi-Criteria Decision-Making  

MCDM is a division of a broad class of OR models which are appropriate to address 

complicated problems involving high uncertainty, contradictory objectives, various 

forms of information and data, multi interests and perspectives (Mateo, 2012; 

Ramesh & Zionts, 2013). Practical problems are frequently categorized by numerous 

incommensurable and inconsistent (conflicting) criteria, and there may be no 

solution satisfying all criteria concurrently. Thus, by using MCDM, a compromise 

solution to the problem of conflicting criteria could be determined, and, it will 

provide a solution to solve the problems of attaining the final result among decision-

makers (Gwo-Hshiung & Huang, 2011). In general terms, MCDM is divided into 

two categories of methods (Kahraman, 2008; Mateo, 2012; Zimmermann, 2001).  

a. Multi-attribute decision-making (MADM). Its concept is based on the 

selection of an alternative from a menu or catalog primarily referred on the   

prioritized of the alternatives. 

b.  Multi-objective decision-making (MODM). Its concept is based on the 

synthesis of an alternative or alternatives by prioritized objectives. 

The MODM and MADM are differentiated by the evaluation criteria, i.e. MODM 

represents objectives and MADM represents attributes. Besides, MADM focuses on 

problems with distinct decision possibilities. In such problems, the set of decision 

alternatives are predetermined.  
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The decision maker (DM) chooses, prioritizes or ranks a fixed amount of sequences 

of action. Some of MADM techniques are the analytical hierarchy process (AHP), 

TOPSIS method, the ELECI'RE methods and the DEA (Chen & Hwang, 1992; 

Hajiagha, Mahdiraji, & Sadat, 2013; Lu, Zhang, Ruan, & Wu, 2007; Mateo, 2012; 

Sen & Yang, 1998; Velasquez & Hester, 2013). 

On the other hand, MODM relates decision problems where a decision aspect is 

uninterrupted although MODM is not related to problems where the alternatives are 

decided. The DM's key attention is to produce a "most" promising alternative 

through confined sources. A usual instance is mathematical programming issues with 

several objective functions. Some of MODM techniques commonly used are goal 

programming (GP) (Lu et al., 2007; Mateo, 2012; Sen & Yang, 1998). More 

discussions on MODM are presented in Section 3.5. Some basic concepts used in 

MCDM are also discussed in the next sub-sections. 

 Discrimination of Goals and Constraints 3.2.1

The real difference between goals and constraints is rather vague. In fact, being 

inequalities, both objectives and limitations are of an identical mathematical 

configuration and, thus, are identical. The dissimilarity between both is in the 

denotation that is attached to the right-hand parameter of the inequality. It is a goal 

aspired through the DM, which may or may not be achieved and when it represents 

an inflexible constraint, it has to be satisfied; otherwise, the solution will be 

infeasible (Romero & Rehman, 2003; Spronk, 1981). Generally, a goal can be 

expressed as:  𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 +  𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑎𝑙 =  𝑇𝑎𝑟𝑔𝑒𝑡 
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Or mathematically as; 

𝑓(𝑥) + 𝑑− − 𝑑+ =  𝑡                                                            (3.3)   

The variables 𝑑− and 𝑑+ represent deviations from a goal achievement from its 

target 𝑡. So the amount of violation of a goal in the sense of an under-achievement is  

denoted by the negative deviational variable 𝑑−. The positive deviational variable on 

the other hand is in reverse, in which it specifies the amount by which a goal has 

exceeded its target. So the total violation of a goal in the sense of an over-

achievement is signified by the positive deviational variable 𝑑+. 

The deviational variable is a very useful device for two different reasons. First, it is a 

simple and interesting way to impart flexibility to constraints, that is, to convert rigid 

constraints into goals or soft constraints. Second, it is the first step to building a GP, 

which is the commonly used approach within the general MCDM framework to 

solve MOLP, as would be explained in sub-section 3.5.1. 

 Pareto Optimality 3.2.2

The concept of Pareto optimality performs a critical function in traditional economic 

theory and is, likewise, an essential idea in the MCDM paradigm, as all the methods 

inside this paradigm look for efficient or Pareto optimal solutions. 

Pareto optimal solutions, also known as the efficient solutions are the feasible 

solutions which mean that no other feasible solution can acquire the same or better 

performance for all the criteria under consideration and strictly better for at least one 
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criterion (Ramesh & Zionts, 2013). In other words, a Pareto optimal solution is a 

feasible solution that an increase in the value of one criterion can only be reached by 

degrading the value of at least one additional criterion. All the MCDM techniques 

aim at acquiring solutions that are efficient within the Paretian sense as defined 

above. The next section focuses on one of optimization technique associated with the 

idea of Pareto optimality to find efficiency i.e. DEA (Ray, 2004).  

3.3  An Overview of DEA 

The pioneering idea for the DEA approach was introduced by Farrell (1957) to 

extend the common concept of efficiency measurement as a ratio of output to input. 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑂𝑢𝑡𝑝𝑢𝑡

𝐼𝑛𝑝𝑢𝑡
                                                            (3.4) 

The extension was found to measure the technical efficiency in managing problems 

of several inputs and several outputs as follows: 

 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑢𝑚 𝑜𝑓 𝑂𝑢𝑡𝑝𝑢𝑡𝑠

𝑆𝑢𝑚 𝑜𝑓 𝐼𝑛𝑝𝑢𝑡𝑠
                                          (3.5) 

Charnes, Cooper, and Rhodes (1978) revealed the first model of DEA based on the 

concept of measurement efficiency introduced by Farrell (1957). The DEA concept 

stems from LP model for the evaluation of relative efficiencies of decision-making 

units with many inputs and outputs. In DEA, the under study organizations is termed 

as decision making units (DMUs). DEA is known as a non-parametric mathematical 

programming approach to frontier estimation, which is widely employed in many 

fields as a method to evaluate performance and efficiency of DMUs.  
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The MCDM methods and DEA have been used together in many situations for 

performance measurement. Though DEA was originally developed as a tool for 

performance measurement, the linkages between the fields of the DEA and MCDM 

have been explored. Hence, DEA is now widely accepted as a tool for MCDM 

(Bouyssou, 1999; Ramanathan, 2003, 2006). 

Literature indicates the use of the DEA method as an MCDM tool. The first method 

integrating both concepts was put forth by Golany (1988) where he used an 

interactive multi LP model. This model helps DEA to choose the effective DMU 

rather than just the efficient DMU, the difference being the former will be able to 

achieve its objective more closely. The aim of the DEA is to define the productivity 

of a system or DMU by relating it to the ability of DMUs to convert inputs to 

outputs. Stewart (1996) distinguished and compared traditional goals of DEA and 

MCDM. Combined usage of MCDM and DEA was also available in many studies 

(Belton & Vickers, 1993; Doyle & Green, 1993; Ehrgott & Gandibleux, 2003; 

Keshavarz & Toloo, 2015; Sarkis, 2000; Yougbaré & Teghem, 2007). Moreover, 

using a multi-objective model with the DEA was introduced in many studies. Lotfi, 

Jahanshahloo, Soltanifar, Ebrahimnejad and Mansourzadeh (2010) established a 

similarity between model of DEA and MOLP and presented methods of DEA in 

solving problem interactively by transforming it into MOLP formulation. The 

MCDM problems mentioned in the studies above are taken into consideration as a 

DEA problem without inputs or as a problem in which every alternative has the same 

amount of every input. Hence, the DEA technique can be applied to identify no 

dominating alternatives (Chiang Kao, 2010). 
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The underlying concept of DEA is based on Pareto optimality (Charnes, Cooper, 

Golany, Seiford, & Stutz, 1985; Sengupta, 2012). A DMU is comparatively effective 

without the presence of other DMU or combined DMUs which produce almost the 

similar quantity of all outputs with fewer input and not more of any other input 

(Luptácik, 2010). It calculates the relative proportion of outputs to inputs for 

individual unit, with the score figured as 0 –1 or 0 –100%. 

The strengths of DEA are as follows; 

i.  Objectivity i.e. DEA delivers an efficient score of DMUs based on statistical 

data, and not by means of subjective opinions of individuals (Ramanathan, 

2003).  

ii.  It can be employed by several inputs and outputs and measured in various  

units (Cooper et al., 2006). 

iii.  It is non-parametric which means that the requirement of an assumption of a 

functional form in relation of inputs to outputs is not necessary (Luptácik, 

2010). 

iv.  It differentiates efficient and inefficient DMUs (Ramanathan, 2003). 

v.  It has the possibility of identifying the required improvement (in inputs, 

outputs) and the reference set of non-efficient DMUs (Cooper, Seiford, & 

Tone, 2007). 

However, DEA also has few weaknesses, which are: 
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i.  It is powerful to identify the inefficient DMUs as it lists the efficiency score 

from best to worst. However, it is prosaic in discriminating among the 

efficient DMUs with the same efficiency score (Angulo-Meza & Lins, 2002; 

Ramanathan, 2003). 

ii.  Conventional DEA models have the problem of weak discriminating power 

which identifies too many DMUs as being efficient, and this arises when the 

DMUs being evaluated have several inputs and outputs. 

iii.  Conventional models are characterized with issues attributed to unrealistic 

weight distribution where some DMUs are rated efficiently only because of 

their significant weights in one output and/or significantly light weights in 

one input. In reality, these extreme weights are detrimental and 

unreasonable. As a result, some inputs and outputs that are assumed 

significant via decision maker are overlooked from the analysis, resulting in 

an inaccurate outcome (Allen, Athanassopoulos, Dyson, & Thanassoulis, 

1997; Peaw & Mustafa, 2006).  

iv.  The relation between the number of DMUs and the number of input and 

output is sometimes specified by some rules of thumb (Avkiran, 2001), such 

as the rule of thumb suggested by Golany (1988), who proposed that the 

number of DMUs are ought to be at least twice the number of inputs and 

outputs aggregated. On the other hand, Banker, Charnes, Cooper, Swarts, 

and Thomas (1989) as cited in Cook, Tone, and Zhu (2014) suggested that 

the number of DMUs should be at minimum three times the aggregate of 

inputs and outputs. 
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Several basic DEA concepts are discussed in the following sub-sections. 

  Production Possibility Set  3.3.1

In productivity analysis or efficiency measurement in general, the production 

possibility set (PPS) is the collection of all feasible DMUs that are capable of 

producing output 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑠) and consuming input   𝑥 = (𝑥1, 𝑥2. . . , 𝑥𝑟). The 

PPS is defined as the set: ℙ = {(𝑥, 𝑦) ∈ ℜ𝑟+𝑠|𝑥 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑦}, has the properties as 

follows:  

i. Each observation (𝑋𝑗 , 𝑌𝑗) ∈ ℙ, where 𝑗 = 1,2, . . , 𝑛. 

ii. If (𝑋, 𝑌) ∈ ℙ, and 𝜌 > 0  then ( 𝜌𝑋, 𝜌𝑌) ∈ ℙ, ∀ 𝜌. 

iii. If (𝑋, 𝑌) ∈ ℙ, and  ∃ �̅�  ≥  𝑋 𝑎𝑛𝑑 �̅� ≤  𝑌 then (�̅�, �̅�) ∈ ℙ. 

iv. If (𝑋, 𝑌) ∈ ℙ, and   (�̀�, �̀�) ∈ ℙ then (𝜆𝑋 + (1 − 𝜆)�̀�, 𝜆𝑌 + (1 − 𝜆)�̀�) ∈ ℙ, 

for 𝜆 ∈ [0, 1]. 

Now, the set ℙ defined as the smallest convex set that includes all observation 

activity based on the above properties is: 

ℙ = {(𝑋, 𝑌) |∑𝜆𝑗

𝑛

𝑗=1

𝑌𝑗 ≥ 𝑌 ,∑𝜆𝑗 

𝑛

𝑗=1

𝑋𝑗 ≤  𝑋 ,  𝜆𝑗 ≥ 0, 𝑗 = 1,2, . . , 𝑛}     (3.6) 

This research focuses on this meaning of the smallest convex set.  
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  Types of Orientation  3.3.2

The DEA models are classified into three directions to reach efficiency. In input 

orientation models, a comparative reduction in the input variables is utilized as a way 

to attain competence while in the output models, a comparative upsurge in the output 

is considered. The third option is signified by the additive and slacks-based measure 

(SBM) of efficiency models that deal with the input dissipations and output deficits 

concurrently in a method that jointly maximize both. If the attainment of efficiency 

or inability to do such is the solitary subject of interest, then these different models 

will all produce the same outcome in which technical and combined inefficiency will 

be a concern. It is important to note that the PPS based on the DEA models does not 

depend on the types of orientation (Charnes, Cooper, Lewin, & Seiford, 1994; Lewin 

& Seiford, 1997; Zhu, 2009).  

 Types of Return to Scale  3.3.3

Returns to scale is an economic notion that describes the production frontier in a 

DEA model, which can be either constant or variable. If the change in inputs causes 

a proportional change in outputs, then this is termed as constant returns to scale 

(CRS); otherwise, it is called variable returns to scale (VRS). The VRS is further 

classified as (cumulative) increasing returns to scale (IRS) if the output levels 

increase at the different rate than that of inputs and declining returns to scale (DRS) 

when the output levels decrease at a rate different than that of the input levels 

(Cooper, Seiford, & Tone, 2006, 2007).  
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The input orientation models and the output orientation models give the same 

technical efficiency score under the assumption of CRS while in the case of VRS, 

both models give different efficiency scores (Zhu, 2009). 

  Radial and Non-Radial Models 3.3.4

Radial and non-radial models generally DMUs’ measures of efficiency in DEA (Zhu, 

2009). Radial models assume that inputs/outputs go through proportional changes 

while the remaining slacks are overlooked in the efficiency scores. The DEA 

envelopment models are radial efficiency measures since the models enhance all 

inputs or outputs of a DMU at a definite proportion. The CCR and BCC models 

epitomize these models. One of the first Non-radial models introduced by Färe and 

Lovell (1978), as cited in Thanassoulis, Portela, & Despi (2008) addresses slacks of 

every input/output in an individual and independent level and includes them in an 

efficiency degree stated as SBM. The envelopment models and the non-radial DEA 

models result into same frontier, but may also result into numerous effective targets 

(even when the envelopment models do not have non-zero slacks) (Zhu, 2009). 

3.4  DEA Models  

Charnes et al. (1978) first introduced DEA, and several DEA models were later 

developed and enhanced. All DEA models depend on the maximization of DMUs 

efficiency. The difference between the models stems from the frontier structure and 

the approach utilized in the projection of inefficient DMUs to the frontier (Cooper et 
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al., 2007). The following terminologies are repeatedly used in the discussion of DEA 

models.  

𝑗 = 1,2,3, . . , 𝑛 is the number of DMUs. 

𝑘 = 1,2,3, . . , 𝑠 is the number of outputs, and 𝑝 = 1,2,3, . . , 𝑟 is the number of 

inputs. 

𝐷𝑀𝑈𝑗 is the 𝑗𝑡ℎ 𝐷𝑀𝑈 and 𝐷𝑀𝑈0  is the target DMU under evaluation. 

𝑋𝑗  is the input vector of the 𝑗𝑡ℎ 𝐷𝑀𝑈, and 𝑌𝑗 is the output vector of the 𝑗𝑡ℎ 𝐷𝑀𝑈. 

𝑥𝑝𝑗  is the 𝑝𝑡ℎ input of the 𝑗𝑡ℎ 𝐷𝑀𝑈. 

𝑦𝑘𝑗 is the 𝑘𝑡ℎ output of the 𝑗𝑡ℎ 𝐷𝑀𝑈. 

𝜆 ∈ ℝ𝑛×1 is the column vector of a linear combination of 𝑛 𝐷𝑀𝑈 

𝛾𝑘  is the column vector of output weights. 

𝛿𝑝 is the column vector of input weights. 

Θ is the objective value efficiency. 

 Basic DEA Models  3.4.1

This section introduces two basic DEA models as provided in the literature. 

3.4.1.1  The Charnes, Cooper and Rhodes Model  

Charnes et al. introduced the primary DEA model, the CCR model in 1978, which 

aims at measuring efficiency of each DMU under study. Let DMU0 be the unit to be 

assessed where 0 ranges over 1,2, . . , 𝑛. By finding the solution of the fractional 
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programming problem, the values for the input “weights” (𝛿𝑝) 𝑝 = 1,2, … , 𝑟, and the 

output “weights” (𝛾𝑘 ) 𝑘 = 1,2, … , 𝑠 are the variables that can be obtained. 

(CCR –Fractional Programming model), 

𝑚𝑎𝑥 Θ0   =
∑ 𝛾𝑘𝑦𝑘0
𝑠
𝑘=1

∑ 𝛿𝑝
𝑟
𝑝=1 𝑥𝑝0

                                                           (3.7) 

subject to                                                

∑ 𝛾𝑘𝑦𝑘𝑗
𝑠
𝑘=1

∑ 𝛿𝑝
𝑟
𝑝=1 𝑥𝑝𝑗 

 ≤ 1                                                𝑗 = 1,2, … 𝑛 

𝛾𝑘  ≥ 0                                                               𝑘 = 1,2, … 𝑠  

𝛿𝑝   ≥ 0                                                              𝑝 = 1,2, … 𝑟 

In the above constraints, the “virtual output” vs. “virtual input” ratio must not be 

higher than 1 in each DMU. The aim is to acquire weights and to maximize the 

proportion of assessed DMUs. According to the constraints, the ideal value to be 

achieved is at most 1. 

Now, the conversion of the above fraction program to the LP, which is also known 

as the multiplier approach is presented as follows. 

(CCR – LP model), 

𝑚𝑎𝑥 Θ0  = ∑𝛾𝑘𝑦𝑘0

𝑠

𝑘=1

                                                                 (3.8) 

                                        subject to                                                       

∑𝛾𝑘𝑦𝑘𝑗

𝑠

𝑘=1

−∑𝛿𝑝

𝑟

𝑝=1

𝑥𝑝𝑗 ≤ 0                                  𝑗 = 1,2, … 𝑛  

∑𝛿𝑝

𝑟

𝑝=1

𝑥𝑝0 = 1                                                                                 

 𝛾𝑘 ≥ 0                                                                      𝑘 = 1,2, … 𝑠  
𝛿𝑝 ≥ 0                                                                      𝑝 = 1,2, … 𝑟  
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In the CCR model, the DMU0 is considered efficient if it satisfies the following 

condition; 𝛩∗ = 1 with at least one optimal (𝛾∗, 𝛿∗) with 𝛾∗ ≥ 0 and 𝛿 
∗ ≥ 0. If not, 

then DMU0 is considered inefficient. Therefore, CCR-inefficiency reflects that either 

(i) Θ∗ < 1 or (ii) Θ∗ =1 with at least a single element (𝛾∗, 𝛿∗) is zero for each optimal 

solution of (LP0). For DMU0 with Θ∗ < 1 (CCR-inefficient), it is considered 

inefficient and, hence, there should be at least a single constraint whose weight 

(𝛾∗, 𝛿∗)  equalizes between the left and right hand sides or else,  Θ∗ may perhaps be 

enlarged.  

 

Let the set be such that, 𝑗 ∈ { {1,2, . . . n} and ℜ0
∴ = { 𝑗: ∑  𝛾𝑘

∗ 𝑦𝑘𝑗
𝑠
𝑘=1 = ∑  𝛿𝑝

∗  𝑥𝑝𝑗}
𝑟
𝑝=1 . 

The subset  ℜ0 of ℜ0
∴ containing CCR-efficient DMUs is referred to as the reference 

set or the peer group to DMU0. The presence of this set of efficient DMUs causes the 

DMU0 to be inefficient. Moreover, if the set is stretched by  ℜ0, it is referred to as 

the DMU0 efficient frontier. 

3.4.1.2  The Banker, Charnes and Cooper Model  

Banker, Charnes, and Cooper (BCC) (1984) stretched the CCR model to overcome 

the shortcomings of the CCR model by comparing DMUs according to general 

efficiency with constant returns to scale (CRS). It disregards the point that dissimilar 

DMUs possibly will operate at different scales wherein variable returns to scale 

(VRS) is considered and compared based on technical efficiency.  
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The new model BCC incorporates a novel constraint represented by ∑ 𝜆𝑗 = 1𝑛
𝑗=1  in 

order to determine whether or not the operations are carried out in increasing 

(cumulative), constant or decreasing returns to scale. 

If we add  ∑ 𝜆𝑗 = 1
𝑛
𝑗=1  then we obtain VRS models. If we substitute  ∑ 𝜆𝑗 = 1

𝑛
𝑗=1  to 

∑ 𝜆𝑗
𝑛
𝑗=1 ≤ 1  then we acquire non-increasing return to scale (NIRS). If we substitute 

 ∑ 𝜆𝑗 = 1𝑛
𝑗=1  to ∑ 𝜆𝑗

𝑛
𝑗=1 ≥ 1  then we acquire non-decreasing return to scale (NDRS). 

  Modified DEA Models 3.4.2

After the establishment of the CCR and BCC models, many modifications to DEA 

model appeared in the literature, such as the Free Disposal Hull approach (FDH) 

recommended by Deprins, Simar and Tulkens (1984) and further explored by 

Tulkens in 1993 as generalized form of DEA adaptable returns-to-scale model 

whereas it depend on disposability assumption of production set and does not 

confine itself to convex technologies. The FDH model is expressed by the extra 

limitation 𝜆𝑗 ∈ {0, 1} in which. 𝜆𝑗 to be binary in the BCC model, so as to relax an 

assumption of convexity. The FDH formulation is described as; 

𝑚𝑖𝑛 Θ                                                                                                   (3.9)  
subject to                                                             

𝛩𝑥𝑝0 −∑𝜆𝑗

𝑛

𝑗=1

𝑥𝑝𝑗 ≥ 0                                                 𝑝 = 1,2, … 𝔯  

           ∑𝜆𝑗

𝑛

𝑗=1

𝑦𝑘𝑗 ≥ 𝑦𝑘𝑜                                                            𝑘 = 1,2, . . . 𝑠 

 ∑𝜆𝑗 = 1

𝑛

𝑗=1

                                                           

𝜆𝑗 ∈ {0,1}, Θ 𝑓𝑟𝑒𝑒                                                𝑗 = 1,2, … 𝑛 
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A FDH frontier has the stairway character that envelops on the data firmly rather 

than DEA frontier does. The FDH frontier is congruent with or without interior to 

the DEA frontier. FDH shall naturally create a greater estimation than DEA. The 

DEA and FDH do not accept functional form and disregard measurement error. The 

best exercise for the frontier is to reconstruct PPS grounded upon which enveloping 

a set of observations. However, in FDH, the PPS composed only the DEA vertices 

and FDH points interior to vertices. 

The CCR model is based on the CRS practical production mixtures which could be 

scaled up nor down proportionately, and BCC model accepts VRS and is 

characterized by piecewise linear convex frontier. Thus, FDH, CCR, and BCC 

models describe diverse PPS and efficiency scores. 

In 1985, the additive DEA model suggested by Charnes et al.  which differentiate it 

from the classical DEA model as it does not differentiate between input or output 

oriented models but this additive model combines both into a single objective 

function. The model is invaluable as it measures slack and surplus, which linked 

with every input and output. Sexton, Silkman, and Hogan (1986) suggested the 

cross-efficiency method to rank DMUs fully. The slack-adjusted DEA model 

(SADEA) was proposed by Sueyoshi (1999) while the most significant element of 

ranking DEA models is represented by the super-efficiency DEA models like the 

Andersen and Petersen(AP) (1993) model. Here Andersen and Petersen developed 

the AP model as a modified version of DEA to overcome the drawbacks of the 

conventional DEA models (CCR and BCC) concerning ranking of efficient DMUs. 
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The AP model is consistent with the BCC model with an exception that DMUs are 

omitted in the reference set and, therefore, efficient DMUs may obtain a value of 

more than one. The super-efficiency models approach has its basis in the 

measurement of the distance of the unit under evaluation, DMU0, from a novel 

efficient frontier provided through the removal of the unit from the set of units. The 

AP model provides a rating of the efficient units similar to the rating of the 

inefficient unit. 

Efficient units are where Θ∗ ≥ 1 while inefficient ones are where 0 < Θ∗ ≤ 1. Two 

difficulties are noted in the model. First, for special data in input-oriented case, the 

AP model may not be feasible, and, second, for some DMUs with input /output near 

to zero, the AP model is not suitable. As a final note, it is important to state that 

these difficulties are only in input-oriented models but not in the output-oriented 

ones. 

Mehrabian, Alirezaee and Jahanshahloo (MAJ) (1999) modified the AP model to 

rank efficient units and proposed the MAJ model. The MAJ model eliminates the 

difficulties ascending from the AP model. However, MAJ model may not be feasible 

in certain cases as extreme sensitivity exists in small variations of data because some 

DMUs associate small values for some inputs. So, to solve this issue, Saati, Zerafat 

Angiz, Memariani and Jahanshahloo (2001) suggested some models which remove 

the difficulties of infeasibility in the AP and MAJ models. Moreover, they verified 

that the improved version is always possible and project the DMUs in both input and 

output orientation. 
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Tone (2001) proposed slacks-based measure of efficiency (SBM), a non-radial 

approach which pacts with input/output slacks straight. The SBM returns efficient 

measures in between 0 and 1 and gives unity if the concerned DMU is on the 

frontiers of the production prospect set with no input/output slacks. SBM varies from 

the outdated radial measures of efficiency that does not take into account the 

existence of slacks. Then in 2002, Tone used his proposed SBM model to measure 

super-efficiency and rank efficient DMUs. As Tone’s model is known as Super 

SBM, the SBM must progress first to classify efficient and inefficient DMUs, and 

then Super SBM must progress only for the efficient DMUs. Super SBM may not be 

efficient, but it is useful when the number of DMUs is small compared with the 

number of criteria for evaluation. 

Jahanshahloo et al. (2006) modified the MAJ model to address the problem that 

might occur in the MAJ model where the ranking of efficient DMUs might change 

while some inputs of inefficient DMUs changes, minus inflicting variation on PPS. 

On the other hand, the ranking in the MAJ model is done for each excluded efficient 

DMUs from the set of the original observed DMUs with regards to the new found 

PPS.  

For the MAJ model, if the efficient DMUs and the new PPSs remain unchanged, it is 

expected that the ranking also remains unchanged. Emrouznejad and Amin (2009) 

showed that using the standard DEA models for the observations containing ratio 

data as input and/or output may result in incorrect efficiency scores. A set of 

modification DEA models takes into consideration the correct convexity of DMUs 
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when a ratio variable is included in the assessment model, and these modification 

models can only be used if the nominator and denominator of the ratio variables are 

known. 

Du, Chen, Chen, Cook and Zhu (2012), proposed and developed additive integer-

valued efficiency and super-efficiency models that deal with the case of when some 

inputs and/or outputs can only take integer values. Therefore, they directly dealt with 

slacks to calculate efficiency and super-efficiency scores. In the same vein, Chen, 

Du, Huo and Zhu (2012) proposed an integer DEA model developed based on the 

additive DEA model and an integer super-efficiency with undesirable inputs and 

outputs. Firstly, the proposed model based on the additive DEA model was used in 

which the input and output slacks were used to compute the efficiency scores. Then, 

an integer super-efficiency model was used to discriminate the performance of 

efficient firms. 

Fang, Lee, Hwang and Chung (2013) proposed an alternative two-stage approach so 

that the projection identified would be strongly Pareto efficient and the efficiency 

score is the same as with Tone’s approach. They showed that the proposed approach 

provides the same super-efficiency score as that given by the Super SBM model 

when the evaluated DMU is efficient and the same efficiency score as that obtained 

by the SBM model when the evaluated DMU is inefficient. Toloo (2013) and Toloo 

and Kresta (2014) developed a DEA model without explicit inputs (called DEA-

WEI) and without explicit outputs (called DEA–WEO), respectively, to find the 

most efficient unit when inputs or outputs are not directly considered. In addition, 
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Toloo (2014) proposed a new integrated mixed integer programming and DEA 

(MIP-DEA) model to find the most efficient suppliers in the presence of imprecise 

data. 

Tone and Tsutsui (2015) discussed the case when there exist non-convex frontiers, 

which cannot be identified by the traditional DEA models. They developed a scale 

and cluster-adjusted DEA model that assumes scale efficiency and clustering of 

DMUs. The scale and cluster-adjusted score reflects the inefficiency of the DMUs 

after removing the inefficiencies caused by scale-demerits and accounting for in-

cluster inefficiency. This model can identify non-convex (S-shaped) frontiers 

reasonably. Furthermore, they proposed a new scheme for the evaluation of scale 

elasticity. 

Huguenin (2015) provided an AHP-based approach to select the most suitable DEA 

model. In order to avoid a biased model selection and potential opportunistic 

behavior from decision makers, Huguenin argued that such criteria should not be 

oriented towards the results of the alternative DEA models. Also, Khalili-Damghani, 

Tavana and Haji-Saami (2015) proposed a DEA method for measuring the 

performance of combined cycle power plants in the presence of pollution production 

and data uncertainty. The proposed model contributes to the uncertainties in the 

input and output data, by using interval data when considering undesirable outputs.  

The efficiency scores of the DMUs are determined as interval values, developing a 

group of indices to distinguish between the efficient and inefficient DMUs. 
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In doing so, the most economic scale size for the efficient DMUs is determined, 

beside determining practical benchmarks for the inefficient DMUs. 

It is clear that various types of DEA models have been proposed as a modification or 

an extension of traditional DEA models (CCR and BCC) where some of them are 

under the economic concepts of return to scale (CRS and VRS). Other measures of 

efficiency in the DEA models are radial and non-radial models. Moreover, these 

models assume that all data are known exactly without any variation. In real 

decision-making and evaluation problems, ordinal preference information and/or 

fuzzy data are often encountered. When all or parts of input and output data are 

fuzzy data, several approaches have been proposed to deal with them in the 

framework of DEA under fuzzy DEA. 

  Overview of Fuzzy DEA  3.4.3

In standard DEA models, the contribution, which is in the form of input and output 

statistical information, has a precise value on a proportionate measure. At present, 

DEA models have been transformed in order to highlight undefined information, 

where most of the input and output data have been found to be ambiguous. 

Inaccurate information is often stated through fuzzy numbers, rank ordering or 

restricted data interims. 

Bellman and Zadeh (1970) proposed the fuzzy set theory with the aim of solving 

problems in decision-making. Since 1992, DEA researchers began to use fuzzy 

concepts to measure the exact value and output of DMUs. According to Hatami-
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Marbini, Emrouznejad and Tavana (2011), some of the existing approaches related 

to solving uncertain or fuzzy data for DEA include the tolerance approaches, the 

fuzzy ranking approaches, the 𝛼-level based approaches, the defuzzification 

approaches and the possibility approach. In addition, Emrouznejad, Tavana, and 

Hatami-Marbini (2014) expanded this classification and added two new groups; the 

fuzzy arithmetic and the fuzzy random type-2 fuzzy set. 

Sengupta (1992), a pioneering scholar and author, proposed a mathematical 

programming method wherein fuzziness is included in the DEA model, and the 

tolerance levels in the objective function and constraint abuses are exclusively 

defined. Meanwhile, following Sengupta’s (1992) method, in 1998, Triantis and 

Girod proposed yet another mathematical programming approach which transforms 

fuzziness into a DEA model using the membership function values. In 2000, Kao 

and Liu further improved the fuzzy data input and output into measurable interims 

by using the 𝛼-level sets.  

Fundamentally, Guo and Tanaka (2001) were recognized as pioneers in using the 

developed fuzzy DEA models, grounding their applications on related possibilities 

and necessity measures. In 2002, the α-level sets approach proposed by Kao and Liu 

(2000), was further extended by Saati, Memariani and Jahanshahloo (2002), who 

defined the fuzzy DEA model as a possibilistic programming problem or the 

possibility approach, which was later transformed it into an interval programming.  
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Subsequently, Lertworasirikul, Fang, Joines and Nuttle (2003a) suggested three 

similar fuzzy DEA models. These models considered the uncertainties in fuzzy 

objectives and fuzzy constraints using the possibility approach. Following this, 

Lertworasirikul, Fang, Joines, and Nuttle (2003b) later proposed a fuzzy DEA model 

which uses the credibility approach. In the credibility approach, the fuzzy variables 

were replaced with predictable tributes, identified according to the credibility 

measures. At the same time, Lertworasirikul, Fang, Nuttle and Joines (2003) 

developed a fuzzy BCC model where the possibility and credibility approaches 

provide the relationship between the primal and dual models of fuzzy BCC. They 

used the credibility approach to reveal the way to obtain the efficiency value for each 

DMU as a representative of its potential range. 

Furthermore, Jahanshahloo, Soleimani-damaneh, and Nasrabadi (2004) proposed a 

membership function of two triangular fuzzy numbers to solve the slack-based 

measure (SBM) model with fuzzy inputs and outputs. Their membership function is 

defined based on the Carlsson and Fullér's (2001) determination of the relation 

between two triangular fuzzy numbers by using a possibilistic mean value. Molavi, 

Aryanezhad, and Alizadeh (2005) introduced two more modified models of fuzzy 

DEA, in which the objective function and the ambiguous constraints of the fuzzy 

CCR model were converted into breakable conditions, by integrating LR-fuzzy 

numbers and the ranking method. Meanwhile, Liu (2008) developed an fuzzy DEA 

technique, in order to find the effective measures that are rooted in the concept of the 

assurance region (AR), especially when some observations were deemed to be of 

fuzzy numbers. Noteworthy, in order to develop and accomplish the new technique, 
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Liu (2008) applied an 𝛼-level approach and integrated it with Zadeh's (1978) 

extension principle, in order to transform the fuzzy DEA-AR model into a pair of 

parametric mathematical programs. 

Significantly, Liu (2008) controlled the lower and upper bounds of the efficiency 

scores of the DMUs and determined the membership function of the efficiency by 

using different possibility levels. 

On the other hand, Liu and Chuang (2009) presented fuzzy SBM to evaluate the 

efficiency of DEA models based on 𝛼-cuts when the objective and constraints are 

fuzzy. The presented method overcame the shortcoming of the model of 

Jahanshahloo et al. (2004). Their method, fuzzy SBM, assumed that the solution is in 

the suitable variables interval where their alternatives make the model non-linear. 

Therefore, by maximizing the suitable alternatives, the model is made linear and by 

solving a linear programming problem in 𝛼-cuts, it becomes possible to produce a 

reliable and robust solution for possibilistic mathematical programming problems in 

general and fuzzy SBM model in particular. Wen, You, and Kang (2010) proposed a 

new fuzzy DEA model, fuzzy CCR, based on credibility measure presented in Liu 

and Liu (2002) as well as a ranking method. Due to the character of the fuzzy 

programming, they designed a hybrid algorithm combined with fuzzy simulation and 

genetic algorithm to compute the fuzzy DEA model. 

The advantages and disadvantages of approaches including the fuzzy ranking 

approach, the defuzzification approach, the tolerance approach, and the α-level  
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based approach were addressed by Zerafat, Emrouznejad and Mustafa (2010). They 

recommended the α-level approach to maintain the model fuzziness through the 

maximization of the inputs and outputs membership functions. Hatami-Marbini, 

Saati and Tavana (2011) proposed an interactive evaluation model to measure the 

relative efficiencies of a set of DMUs in fuzzy DEA by considering the DMs’ 

preferences. Meanwhile Wang and Chin (2011) proposed a fuzzy expected value 

approach for DEA in which the fuzzy inputs and fuzzy outputs were first weighted 

and their expected values were then used to measure the optimistic and pessimistic 

efficiencies of DMUs in fuzzy environments. The two efficiencies were finally 

geometrically averaged for the purposes of ranking and identifying the best 

performing DMU.  

In 2012, Zhou, Zhao, Lui and Ma successfully developed a comprehensive fuzzy 

DEA model which could be generalized over related conditions, within the assurance 

regions, based on the DEA model. They used the α-cut approach to calculate the 

upper and lower bounds of the efficiency score, which has been selectively given a 

value of 𝛼. 

Zerafat, Emrouznejad and Mustafa (2012) developed an alternative approach that 

could provide measures of fuzzy efficiency for DMUs when there are fuzzy 

observations. The main idea behind this method is the transformation of the fuzzy 

CCR model into a crisp LP problem through the application of an alternative α- cut 

approach that considers the solution to lie in the interval and describes the 

appropriate variables for it. Their model was presented as a multi-objective 
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programming with three objectives, two being of minimization (the distance function 

of inputs and outputs) and the third one of the basic DEA model. This is described as 

follows; 

 𝑚𝑖𝑛 𝑧𝑝𝑗 =∑𝜇�̌�𝑝𝑗(𝑥𝑝𝑗𝑓) |𝛿𝑝�̅�𝑝𝑗 − 𝛿𝑝
𝑓

𝑥𝑝𝑗𝑓|               ∀𝑝, 𝑗        (3.10) 

𝑚𝑖𝑛 𝑧𝑘𝑗 =∑𝜇�̌�𝑘𝑗(𝑦𝑘𝑗𝑔) |𝛾𝑘�̅�𝑘𝑗 − 𝛾𝑘𝑦𝑘𝑗𝑔|

𝑔

               ∀𝑘, 𝑗                     

𝑚𝑎𝑥 𝑧0 =∑𝛾𝑘𝑦𝑘0

𝑠

𝑘=1

                                                                                        

  subject to                                                             

∑𝛿𝑝�̅�𝑝0 = 1

𝑟

𝑝=1 

                                                                                    

∑𝛾𝑘�̅�𝑘𝑗

𝑠

𝑘=1

−∑𝛿𝑝�̅�𝑝𝑗 ≤ 0                               ∀𝑗

𝑟

𝑝=1

                          

𝑥𝑙𝑝𝑗 ≤ �̅�𝑝𝑗  ≤ 𝑥𝑢𝑝𝑗                                          ∀𝑝, 𝑗                      

 𝑦𝑙
𝑘𝑗
≤ �̅�𝑘𝑗 

≤ 𝑦𝑢
𝑘𝑗
                                          ∀𝑘, 𝑗                      

𝛾𝑘, 𝛿𝑝  ≥ 𝜀                                                           ∀𝑘, 𝑝                     

where, 𝑥𝑝𝑗𝑓 and 𝑦𝑘𝑗𝑔 represent the length of input value and output value of  𝑥𝑝𝑗   

and 𝑦𝑘𝑗  respectively, located in the intersection of 𝛼𝑓 and sides of the corresponding 

𝑇𝑟𝐹𝑁.  
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After including |�̀�𝑝𝑗𝑓| = 𝑥𝑝𝑗𝑓
+ + 𝑥𝑝𝑗𝑓

−  and |�̀�𝑘𝑗𝑔| = 𝑦𝑘𝑗𝑔
+ + 𝑦𝑘𝑗𝑔

−   assumptions model 

(3.10) is defined as,  

 𝑚𝑖𝑛 𝑧𝑝𝑗 =∑𝜇�̌�𝑝𝑗(𝑥𝑝𝑗𝑓)(𝑥𝑝𝑗𝑓
+ + 𝑥𝑝𝑗𝑓

− )     

𝑓

                   ∀𝑝, 𝑗      (3.11) 

          𝑚𝑖𝑛 𝑧𝑘𝑗 =∑𝜇�̌�𝑘𝑗(𝑦𝑘𝑗𝑔)(𝑦𝑘𝑗𝑔
+ + 𝑦𝑘𝑗𝑔

− )

𝑔

                        ∀𝑘, 𝑗   

𝑚𝑎𝑥 𝑧0 = ∑ �̂�𝑘0

𝑠

𝑘=1

                                                                  

    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                        

 ∑ �̂�𝑝0 = 1

𝑟

𝑝=1

                                                                                        

    ∑ �̂�𝑘𝑗

𝑠

𝑘=1

−∑ �̂�𝑝𝑗 ≤ 0                                           ∀𝑗                       

𝑟

𝑝=1

 

�̂�𝑝𝑗 − 𝛿𝑝𝑥𝑝𝑗𝑓 − (𝑥𝑝𝑗𝑓
+ − 𝑥𝑝𝑗𝑓

− ) = 0                    ∀𝑝, 𝑗, 𝑓               

�̂�𝑘𝑗 − 𝛾𝑘𝑦𝑘𝑗𝑔 − (𝑦𝑘𝑗𝑔
+ − 𝑦𝑘𝑗𝑔

− ) = 0                    ∀𝑘, 𝑗, 𝑔               

  𝛿𝑝𝑥𝑝𝑗
𝑙 ≤ �̂�𝑝𝑗 ≤ 𝛿𝑝𝑥𝑝𝑗

𝑢                                            ∀𝑝, 𝑗                   

𝛾𝑘𝑦𝑘𝑗
𝑙  ≤ �̂�𝑘𝑗 ≤  𝛾𝑘𝑦𝑘𝑗

𝑢                                           ∀𝑘, 𝑗                   

 𝛿𝑝 ,  𝛾𝑘  ≥  𝜖                                                            ∀𝑝, 𝑘                  

The model (3.11) is a MOLP, thus it can be solved using one of the multi-objective 

techniques. Puri and Yadav (2013) proposed some fuzzy approaches based on input-

oriented models of CCR and SBM by using 𝛼-cut approach. Next, the results of 

these models were applied to compute input mix-efficiency (IME). Moreover, the 

new correlation method was proposed to calculate the fuzzy correlation coefficients 

between fuzzy inputs and fuzzy outputs by using expected value approach. Then, a 

new ranking method based on fuzzy (FIME) to rank DMUs was also presented. 
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Similarity, Puri and Yadav (2014b) presented the concept of FIME and fuzzy output 

mix-efficiency (FOME), defined by proposing the output-oriented FCCR model and 

output-oriented fuzzy SBM (FSBM) model with fuzzy input and fuzzy output data. 

Puri and Yadav (2014a) proposed a fuzzy DEA model to handle unwanted 

ambiguous outputs, which can be answered using the crisp LP 𝛼-cut approach. 

Furthermore, the cross-efficiency technique was used in order to increase the 

discrimination control of the suggested models and to rank the efficient DMUs at 

every 𝛼 in (0, 1].  

More recently, Dotoli, Epicoco, Falagario and Sciancalepore ( 2015) presented a 

cross-efficiency model to deal with uncertainty in inputs and outputs by estimating 

them using a 𝑇𝑟𝐹𝑁.  Each DMU fuzzy efficiency was obtained by using only a set of 

weights, derived as a compromise between the set targets. It is done by maximizing 

the modal value, minimizing the difference between the pessimistic value and the 

modal value, and maximizing the difference between the optimistic value and the 

modal value. In order to discern the efficient DMUs under uncertainty, coefficients 

resulting from maximizing the efficiency of each DMU, were then used to evaluate 

the efficiency of all the others. The cross efficiency of each DMU is the mean value 

of its efficiency measures while varying the weights i.e. stepping from a self-

evaluation to a comparative one. The results were finally defuzzified by the means of 

the center of the area of their distributions. Bray, Caggiani, and Ottomanelli (2015) 

proposed a fuzzy DEA model to evaluate the efficiency of transport services system 

including a set of international container ports. They used the concept of fuzzy set 
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theory with a DEA model, to offer a more objective evaluation in vague 

environment.  

From the above discussion of the literature, all fuzzy DEA approaches presented are 

powerful, but the shortcomings may appear in the way of the treatment of fuzzy data 

in DEA model. For example, with the defuzzification approach the fuzziness in 

inputs and outputs is effectively ignored. The tolerance approach treats fuzzy 

inequality and equality instead of fuzzy inputs and fuzzy outputs. The ranking 

approach of Guo and Tanaka (2001) uses only one number at a given level to 

compare fuzzy efficiencies. With the possibility approach, the numerical 

computation is more complicated in the case of fuzzy data with non-linear 

membership functions (Tlig & Rebai, 2009). 

  Application of DEA and Fuzzy DEA 3.4.4

The DEA and fuzzy DEA models are widely applied to real world applications, such 

as banking, education, health care, and hospital efficiency.  

3.4.4.1  Application of DEA 

Various applications of DEA have been reported in the literature, such as those to 

banking sector. According to Rangan, Grabowski, Aly, and Pasurka (1988), the 

pioneering DEA work was applied to investigate bank efficiency by Sherman and 

Gold in 1985. Sherman and Gold utilized the CCR model to make a comparison 

between the operating efficiencies of 14 bank branches. Similarly, Brockett, Chames, 

Cooper, Huang and Sun (1997) suggested cone ratio DEA models to monitor the 
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early warning systems that could be used by bank regulatory agencies. Their 

illustrative examples were developed from 1984 and 1985 performances data of the 

16 largest banks in Texas. Meanwhile, Porembski, Breitenstein, and Alpar (2005) 

included German bank branches in determining the outliers and inefficient branches 

by using DEA and Sammon's mapping. This model showed how to conceive the 

relations between the reference set of inefficient and efficient DMUs. This 

conception is useful to obtain the first insight into the situation, particularly when 

there are many DMUs. 

Liu (2010) employed the Malmquist productivity index approach to investigate the 

technical efficiency and productivity change of commercial banks in Taiwan over 

the period 1997–2001. In 2011, Paradi, Rouatt, and Zhu presented a two-stage DEA 

analysis approach applied to a Canadian bank’s national branch network. Both CCR 

and BCC models were used to evaluate the branch performance in three different 

dimensions: production, profitability, and intermediation. Then, the second stage was 

accomplished by using a modified output-oriented SBM model that incorporates the 

efficiency scores of the three first-stage models as outputs with unity as input.  

Wanke and Barros (2014) evaluated the efficiency of Brazilian banks by using a 

two-stage DEA. In the first stage, called cost efficiency, the number of branches and 

employees were used to attain a certain level of administrative and personnel 

expenses per year. In the second stage, called productive efficiency, these expenses 

allowed the consecution of two important net outputs: equity and permanent assets. 

The network-DEA centralized efficiency model was adopted here to optimize both 
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stages simultaneously. The results indicate that Brazilian banks are heterogeneous, 

with some focusing on cost efficiency and others on productive efficiency. 

The other key applications of DEA are in healthcare. For instance, Liu, Lu, Lu, and 

Lin (2013a) examined the performance of hospitals with the inclusion of nursing 

homes, primary care, and care programs. Nunamaker and Sherman conducted two 

independent, empirical tests of DEA on hospitals in 1983 and 1984. Morey, Fine, 

and Loree (1990) compared the allocative efficiencies of 60 hospitals in the USA 

while Al-Share (1998) evaluated the robustness of the DEA-CCR and BCC models 

and compared the efficiency of Jordanian hospitals by using three methods of DEA, 

Ratio Analysis, and Cobb-Douglas. 

Giokas (2001) estimated the relative efficiency of public, general, and teaching 

hospitals in Greece. The efficient cost of hospitals was estimated and compared with 

the original crisp cost. In addition, they were concerned with the use of two different 

estimation techniques (average and frontier estimates) as a means of ascertaining 

specific estimates of the marginal costs of hospital services for public, general, and 

teaching hospitals. Garavaglia, Lettieri, Agasisti and Lopez (2011) applied DEA to 

find the efficiency of nursing homes in Italy. Asandului, Roman, and Fatulescu 

(2014) used DEA to evaluate the efficiency of public healthcare systems in 30 

European states. Furthermore, they used CCR model comprising three output 

variables, including life expectancy at birth, health-adjusted life expectancy, and 

infant mortality rate, in addition to three input variables, which were the number of 
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doctors, the number of hospital beds, and the percentage of public health 

expenditures. 

In general, the above studies not only demonstrated that DEA is an effective 

technique for evaluating the efficiency of healthcare organizations, but they also 

reflect the variety of problems in healthcare management which can be handled by 

DEA (Liu, Lu, Lu, & Lin, 2013b). Moreover, DEA has been applied to evaluate the 

relative efficiencies of universities, university departments, or colleges. Earlier 

studies concerning the applications of DEA in the higher education context include 

Avkiran's (2001) study which examined the relative efficiency of Australian 

universities by developing three models of performance, namely, overall 

performance, performance on delivery of educational services, and performance on 

fee-paying enrollments. The findings based on the 1995 data show that the university 

sector was performing well on technical and scale efficiency. 

Johnes (2006) discussed the issue of the measurement of the technical efficiency of 

English universities. From an output-oriented perspective, efficiency is defined as 

the ratio of a university original crisp output to the maximum output, which could be 

achieved given its input levels. Also, at the same time, Köksal and Nalçaci (2006) 

used a dual CCR-AR model and MCDEA-CCR-AR model to measure the efficiency 

of an engineering college in Turkey. The results of the dual CCR-AR model is found 

to be more appropriate than the MCDEA-CCR-AR model because it is easier to 

apply, and it provides not only an efficiency score but also suggests how an 

inefficient department can become efficient via target setting. 
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Katharaki and Katharakis (2010) estimated the efficiency of 20 public universities in 

Greece through quantitative analysis (including performance indicators, DEA, and 

econometric procedures). The findings show inefficiency in terms of human 

resources management while also identifying a clear opportunity to increase research 

activity and, hence, research income. Kuah and Wong (2011) provided a DEA model 

containing 16 inputs and outputs to measure the efficiency of 30 universities based 

on their teaching and research activities. Altamirano-Corro and Peniche-Vera (2014) 

established an approach to measure institutional efficiency by combining AHP and 

DEA. The majority of the results obtained using AHP correlated with those of DEA 

also reflected a widespread perception about how the performance of a university 

might be evaluated. The modelling of AHP and DEA combined offers DMs an 

opportunity to learn more about the educational systems in order to define policies 

that permit academic authorities to make better decisions in the short and long term. 

Many other studies also used DEA to evaluate and measure the efficiency of 

organizations in different sectors, for instance in agriculture (Khoshroo, Mulwa, 

Emrouznejad, & Arabi, 2013), hotels (Ashrafi, Seow, Lee, & Lee, 2013; Assaf, 

Barros, & Josiassen, 2012), and industry and production (Du, Liang, Chen, & Bi, 

2010), to name a few.  

3.4.4.2  Application of Fuzzy DEA 

In a fuzzy environment, the fuzzy DEA has many applications in different fields as 

shown by previous studies. For instance, Triantis (1997) and Triantis and Girod 

(1998) presented an application of fuzzy DEA to evaluate the efficiency performance 
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of a newspaper preprint insertion production line. Kao and Liu (2003) applied DEA 

to rank 24 libraries in Taiwan university with fuzzy observations while Wu, Yang, 

and Liang (2006) applied input-oriented fuzzy DEA to measure efficiency in 

banking in Canada, where a total of 808 bank branches were involved in their study. 

Of all the branches, 600 branches were from Ontario, 82 branches from Quebec, and 

126 branches from Alberta.  

Liu and Chuang (2009) developed a fuzzy DEA-AR method to measure the 

efficiency of the university libraries in Taiwan with fuzzy observations. They found 

that the proposed method was able to calculate the fuzzy efficiency score when the 

input and output data were represented as convex fuzzy numbers. Wang, Luo, and 

Liang (2009) proposed two new fuzzy DEA models constructed from the perspective 

of fuzzy arithmetic to deal with fuzziness in input and output data in DEA. The new 

fuzzy DEA models were formulated as LP models and can be solved to determine 

fuzzy efficiencies of a group of DMUs. An analytical fuzzy ranking approach was 

developed to compare and rank the fuzzy efficiencies of the DMUs. The proposed 

fuzzy DEA models and the ranking approach were applied to evaluate the 

performances of eight manufacturing enterprises in China. Hsiao, Chern, Chiu, and 

Chiu (2011) proposed the use of a fuzzy super-efficiency SBM (Fuzzy Super SBM) 

DEA to analyze the operational performance of 24 commercial banks facing 

problems on loan and investment parameters with vague characteristics. Then, they 

found that the Fuzzy SBM fuzzy super-efficiency slack-based measure of efficiency 

(Fuzzy Super SBM) can effectively characterize uncertainty, and has a higher 

capability to evaluate bank efficiency than the conventional fuzzy DEA approach. 
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A new approach to computing the Malmquist productivity index (MPI) under the 

VRS and scale efficiency change for every DMU in the fuzzy environment was 

proposed by Hatami-Marbini, Tavana and Emrouznejad (2012). The MPI 

transformation involved the presentation of fuzzy data as trapezoidal fuzzy number 

through the application of the α-level based approach. This study presented an 

application of the proposed approach in the study in healthcare to demonstrate the 

simplicity and efficacy of the procedures and algorithms in hospital efficiency. The 

previous studies have shown that DEA and fuzzy DEA are powerful tools to help 

identify the reference sets for inefficient institutions and objectively determine 

productivity improvements. The DEA models are primarily used in the case of crisp 

data and or fuzzy data in evaluating and finding the efficiency of DMUs. 

3.5  Multi-Objective Decision-Making Methods 

Multi-objective decision-making MODM (also known as multi-objective 

mathematical programming, (MOMP), or Pareto optimization) is an extension to the 

mathematical programming theory that involves decisions, which depend on the 

maximization or minimization of multiple objective functions, that need to be 

optimized subject to a set of constraints (Deb, 2014; Lu et al., 2007). The general 

formulation of an MOMP problem is as follows:  

𝑚𝑎𝑥 𝑜𝑟𝑚𝑖𝑛  {𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝑛(𝑥)}                                                (3.12) 

subject to                                                       

𝑥 ∈ 𝑆                                                           



 

95 

  

where,  𝑥 is the vector of the decision variables, {𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝑛(𝑥) } are the 

objective functions (linear or non-linear) to be optimized, and 𝑆 is the set of all 

feasible solution. 

MOMP methods such as MOLP are techniques used to solve such MCDM problems. 

Many decision-making problems can be formulated as MOLP (also known as multi-

objective optimization problems (MOP)). Normally, there hardly exists a feasible 

solution that optimizes all objective functions in MOP, to be considered candidates 

for a final decision-making solution. Then, the concept of Pareto optimal solution (or 

known as an efficient solution, vector minimum, or non-dominated solution) is 

introduced (Konak, Coit, & Smith, 2006; Lu et al., 2007). It is an issue how decision 

makers decide the final solution from the set of Pareto optimal solutions (Murty, 

2010).  

In contrast to single-objective optimization, a solution to a multi-objective problem 

is more of a concept than a definition. Typically, there is no single global solution, 

and it is often necessary to determine a set of points that all fit a predetermined 

definition for an optimum (Diwekar, 2008). The predominant concept of defining the 

optimal point is that of Pareto optimality which is defined in Section 3.2.4. Hence, 

some other techniques for MOP methods have been developed to this end including 

goal programming (GP), the weighted sum (Scalarization) method, the ε-constraint 

method and Multi-level programming. In this research, we focus on the GP as a 

technique to solve MOLP problem as described next. 
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  Goal Programming  3.5.1

Goal programming (GP) was developed as an extension of the LP model in the 

1950s. GP was originally proposed by Charnes, Cooper, and Ferguson (1955) and 

Charnes and Cooper (1961), which was later improved by Ignizio (1976 and 1983), 

and (Charnes & Cooper, 1977, as cited in Jones & Tamiz, 2010). 

The GP approach could be the most prevalent method used to handle multi-objective 

problems in practice. This approach has the added conveniences in that different 

units can be used to measure different objective functions, as well as all the objective 

functions are not necessary to be in the same form (either maximization or 

minimization) neither in the LP model (Murty, 2010). It can be thought of as an 

extension of LP to handle multiple, normally conflicting objective measures. Each of 

these measures is given a goal or target value to be achieved. Unwanted deviations 

from this set of target values are then minimized in an achievement function. This 

function can be a vector or a weighted sum dependent on the GP variant used. As the 

target is deemed to satisfy the decision maker(s), an underlying satisfying philosophy 

is assumed (Jones & Tamiz, 2010). In other words, the main idea behind the GP 

method is to find solutions that are close to the predefined targets. Therefore, in the 

GP method, the decision maker should fix the targets for each objective function. He 

or she then solves a single objective program aiming at minimizing the sum of 

deviations to the targets.  

The main advantage of GP is its computational efficiency, provided that the target 

values are known, and if the goals are in a feasible region (Jones & Tamiz, 2010). 
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GP will generally produce a dominated solution if the target point is chosen in a 

feasible region (Caramia & Dell’Olmo, 2008; Romero, 2014). However, if the 

targets are wrong, then a feasible region is difficult to approach, in which case GP 

could be very inefficient. Nevertheless, GP may prove useful in situations where a 

linear or piecewise-linear approximation of the objective functions can be made, 

because of the availability of excellent computer programs for such approximations, 

along with the possibility of eliminating dominated goal points easily (Jones & 

Tamiz, 2010). 

Cooper (2005) examined how the two types of models i.e. DEA and GP relate to 

each other where the “additive model” of DEA is shown to have the same structure 

as a GP model in which only “one-sided deviations” are permitted. However, the 

objectives are differently oriented because GP is directed to planning future 

performances, whereas DEA is directed to evaluating past performances, as part of 

the control function of management. In other words, Cooper (2005) defined GP as 

directed to the problems of management “planning” while DEA is directed to 

problems in the “control” and evaluation of activities.  

GP does not pose the question of maximizing multiple objectives, but rather it 

attempts to find specific goal values of these objectives. There are a number of 

different GP techniques developed since GP was introduced in 1961. The major 

approaches are Lexicographic GP, and Min-Max (Chebyshev) GP and Weighted GP. 

There are also other GP variants that have been used including non-linear GP, fuzzy 
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GP, and fractional GP but the formulation of these are not distinctly different from 

single objective forms. These methods are described next. 

3.5.1.1  Lexicographic Goal Programming  

In the lexicographic goal programming (LGP) model, decision makers prioritize 

their goals into different priority levels such as 1, 2, 3 etc. Each of this priority level 

may contain one or more goals. If a priority level contains two or more goals, these 

goals should be weighted as the same. The main idea behind this model is that a 

lower priority level goal must not be achieved at the expense of higher priority goals. 

This means that if the minimum total weighted deviation of priority 1 goals has a 

value of 𝑁1, then it must be ensured that this value remains the same while looking 

to minimize the total weighted deviations of priority 2 goals. Similarly, if the 

weighted deviations of the priority 2 goals are valued as 𝑁2, then this value must 

remain the same while seeking to minimize the total weighted deviation of priority 3 

goals (Jones & Tamiz, 2010; Romero, 2014). 

3.5.1.2  Min-Max Goal Programming  

The notion of min-max GP method is that the solution sought is the one that 

minimizes the maximum deviation from any single goal. Consider a simple problem, 

where there are 3 goals, all on a single priority level. Assume that the detrimental 

deviations from the goals are listed as, 𝐷1, 𝐷2 and 𝐷3 respectively. Weights are 

assigned as   𝑊1, 𝑊2 and  𝑊3, respectively. A dummy variable 𝜓 is used to measure 
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the maximum deviation from any of the goal. Based on the concept of min-max GP, 

the problem is descripted as follows: 

𝑚𝑖𝑛𝜓                                                                                                (3.13) 

subject to                                                       

𝑊𝑖𝐷𝑖 − 𝜓 ≤ 0                                                                   𝑖 = 1,2,3 

The min-max method provides the most balanced solution; it minimizes the 

maximum deviation from the goals, which represents maximum equity (Romero, 

2014). 

3.5.1.3  Weighted Goal Programming  

Charnes and Cooper first presented weighted goal programming (WGP) in 1961. 

This is similar to the weighting method of multi-objective optimization. Instead of 

assigning weights to different objective functions directly, weights are assigned to 

different goals in this method. The WGP considers all goals simultaneously as they 

are embodied in a composite objective function. This composite function tries to 

minimize the sum of all the deviations between the goals and their aspirational 

levels. The deviations are weighted according to the relative importance for the DM 

of each goal. The description of this method involves identifying objectives, setting 

goal (target value for each objective), assigning weights to each goal and then 

developing a normalized single objective function. Each goal, 𝑖 has its achievement 

value 𝑓𝑖 which is equal to the target 𝑡𝑖.  
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Satisficing philosophy allows under-achievement or over-achievement of each of the 

goals; deviational variables 𝑑𝑖
− (for under-achievement) and 𝑑𝑖

+ (for over-

achievement) are introduced as:  𝑓𝑖 + 𝑑𝑖
− − 𝑑𝑖

+ = 𝑡𝑖. 

If under-achievement is desirable then 𝑑𝑖
+ is minimized, while    𝑑𝑖

− can take any 

positive value. Where over-achievement is desirable, 𝑑𝑖
− is minimized while 𝑑𝑖

+ can 

have any positive value. The WGP objective function is then: 

𝑚𝑖𝑛∑(𝑤𝑖𝑛𝑑𝑖
− + 𝑤𝑖𝑝𝑑𝑖

+ )                                                  (3.14)

𝑛

𝑖=1

 

Here, 𝑛 is the total number of objectives, 𝑤𝑖𝑛 is the weights assigned to under-

achievement deviational variables 𝑑𝑖
− and 𝑤𝑖𝑝 is the weights given to over-

achievement deviational variables 𝑑𝑖
+. These weights can be calculated by using 

some techniques such as Analytic Hierarchy Process (AHP) proposed by Saaty, 

(1980 as cited in Saaty, 2008). Some other ways to get these weights are presented in 

the next section. On the other hand, it can be concluded that WGP technique is the 

suitable and important method to solve multi-objective problem of this research 

when DMs do not have any pre-emptive ordering of the objective functions. Instead 

of prioritizing the objective functions in different levels, they assign different 

weights for deviation variable of each objective function in the single priority level.  

3.6  An Overview of Interval Weights  

In multi-objective optimization, the relative importance of one objective over 

another is defined as the weight of the first objective. Weights are significant in 
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determining the solution to a MOLP problem according to the requirements of DMs. 

In GP, weights associated with unwanted deviational variables measure the relative 

importance of the respective objective. Different methodologies that derive weights 

or priorities have been previously studied by (Chen & Tsai, 2001; Pekelman & Sen, 

1974; Srinivasan, 1976; Zhang, Li, & Li, 2011).  

However, the goal values for different objectives cannot be defined precisely in most 

cases. Thus, to address such imprecision, the fuzzy programming (FP) approach in 

the multi-objective linear optimization area based on fuzzy set theory of (Zadeh, 

1965) was introduced by Zimmermann (1978). A membership function in FP is 

defined based on aspiration levels and tolerance limits. A max-min approach is then 

used to achieve the desired solution. In some cases, however, tolerance limits cannot 

be defined in highly sensitive decision situations. In order to resolve this problem, 

the GP approach in a fuzzy environment (FGP) was introduced by Narasimhan, 

(1980). Thereafter, FGP has been extensively studied (e.g. Hannan, 1981; Pal et al., 

2003; Tiwari, Dharmar, & Rao, 1987) and applied to different real-life problems 

(e.g., Biswas & Pal, 2005; Pal & Sen, 2008). In such cases, fuzzy weights were 

employed to solve multi-objective fuzzy fractional programming problems (Pal et 

al., 2003). For previously explored methodologies in GP or FGP, weights of relative 

importance are defined as crisp values. 

Additionally, the interval programming approach is a popular tool for solving MOP 

that involves interval uncertainty. Interval programming, which is based on interval 

arithmetic, was introduced by Moore (1979, as cited in Moore, Kearfortt, & Cloud, 
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2009), but the interval programming approach was introduced in the GP area by 

Inuiguchi and Kume (1991). Meanwhile, Saaty and Vargas (1987) introduced the 

concept of uncertainty in weight structure. The priorities determined from a pairwise 

interval comparison matrix were also suggested by Sugihara, Ishii, and Tanaka 

(2004). Wang and Elhag (2007) determined interval weights from the interval 

comparison matrix.  

In these methodologies, the target achievement function is presented as the weighted 

summation of unwanted deviational variables. Weights (in interval form) are 

regulated by using a pairwise interval judgment matrix via the GP methodology (Pal 

& Sen, 2008). The problem is in the form of an interval programming problem at this 

point. Interval goals are modified into standard goals by using the IGP approach 

(Wang & Elhag, 2007). The sum of unwanted deviations associated with their 

respective goals is considered to achieve the goal values within the specified range 

and construct the regret function of the final executable model. Thus, the problem is 

resolved through standard GP methodology. 

Similarly, Sen and Pal (2013) proposed an alternative method that employs interval 

weights to provide a solution to GP problem. On the other hand, their method 

focused on the interval as (min, max) which includes just two extreme values from 

all responses. In the next sub-sections, we describe the interval concepts and how to 

find the weights by using IGP as proposed by Sen and Pal (2013). 



 

103 

  

  Arithmetic Definition of Interval  3.6.1

An interval 𝔸 can be defined as an ordered pair. A closed interval 𝔸 (called an 

interval number) is defined by 𝔸 = [𝑎𝐿 , 𝑎𝑈] = {𝑎: 𝑎𝐿 ≤ 𝑎 ≤ 𝑎𝑈, 𝑎 ∈ ℜ} where 𝑎𝐿 

and 𝑎𝑈 are the left and right boundaries, respectively, of the interval 𝔸 on the real 

line ℜ. For a precise situation, 𝔸 = [𝑎, 𝑎] signifies the real number which is an 𝑎. 

Now, for intervals 𝔸1 = [𝑎1
𝐿 , 𝑎1

𝑈] and 𝔸2 = [𝑎2
𝐿 , 𝑎2

𝑈] the various interval arithmetic 

operations as presented in Sen and Pal (2013), are defined as follows: 

 The binary operation addition between two interval numbers 𝔸1 and 𝔸2 is 

defined as : 𝔸1 + 𝔸2 = [𝑎1
𝐿 + 𝑎2

𝐿 , 𝑎1
𝑈 + 𝑎2

𝑈] 

 The multiplication of two interval numbers, 𝔸1 and 𝔸2, is defined as: 

𝔸1 ∗ 𝔸2 = [𝑚𝑖𝑛(𝑎1
𝐿𝑎2

𝐿 , 𝑎1
𝐿𝑎2

𝑈 , 𝑎1
𝑈𝑎2

𝐿 , 𝑎1
𝑈𝑎2

𝑈) ,𝑚𝑎𝑥(𝑎1
𝐿𝑎2

𝐿 , 𝑎1
𝐿𝑎2

𝑈 , 𝑎1
𝑈𝑎2

𝐿 , 𝑎1
𝑈𝑎2

𝑈)]. 

 The division of two interval numbers 𝔸1 and 𝔸2, is defined as: 

𝔸1
𝔸2

= [𝑚𝑖𝑛 (
𝑎1
𝐿

𝑎2
𝐿 ,
𝑎1
𝐿

𝑎2
𝑈 ,
𝑎1
𝑈

𝑎2
𝐿 ,
𝑎1
𝑈

𝑎2
𝑈) ,𝑚𝑎𝑥 (

𝑎1
𝐿

𝑎2
𝐿 ,
𝑎1
𝐿

𝑎2
𝑈 ,
𝑎1
𝑈

𝑎2
𝐿 ,
𝑎1
𝑈

𝑎2
𝑈)]    

𝑎2
𝐿 , 𝑎2

𝑈  ≠ 0 

For a particular case, when (𝑎1
𝐿 , 𝑎1

𝑈, 𝑎2
𝐿 , 𝑎2

𝑈) > 0 then,  
𝔸1

𝔸2
= [

𝑎1
𝐿

𝑎2
𝑈  ,

𝑎1
𝑈

𝑎2
𝐿]. 

  Definition of Interval Weights  3.6.2

Interval weights (IW) are a way to compute the weights in the presence of 

uncertainty in decision-making techniques. The IWs are derived from pairwise 

interval judgment matrix. Most real-world assessment issues include numerous 

criteria that are often in conflict and it is occasionally required to conduct a trade-off 
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analysis in MCDM. As such, the estimation of the relative weights of criteria plays 

an important role in the MCDM process. Among many frameworks developed for 

weight estimation, pair wise comparison matrices provide a natural framework to 

elicit preferences from decision makers and have been used in several weight 

generation methods (Wang, Yang, & Xu, 2005a, 2005b). 

  Determination of Interval Weights  3.6.3

Weights of the importance of unwanted deviational variable are used to represent the 

relative importance of the respective criteria. It is more realistic to measure the 

relative importance in interval form rather than the deterministic values. If [𝑊𝑖
𝐿 ,𝑊𝑖

𝑈] 

where 𝑊𝑖
𝐿 ,𝑊𝑖

𝑈 > 0 be IW of an importance of the objective 𝑍𝑖 and also the pairwise 

judgments are precise, then interval comparison matrix 𝔸 can be presented as 

follows: 

 𝔸 =

(

 
 
 
 
 
 
 

 

     1                     
[𝑊1

𝐿,𝑊1
𝑈]

[𝑊2
𝐿,𝑊2

𝑈]
                       …             

[𝑊1
𝐿,𝑊1

𝑈]

[𝑊𝑛
𝐿,𝑊𝑛

𝑈]
   

 
[𝑊2

𝐿,𝑊2
𝑈]

[𝑊1
𝐿,𝑊1

𝑈]
                  1                             …              

[𝑊2
𝐿,𝑊2

𝑈]

[𝑊𝑛
𝐿,𝑊𝑛

𝑈]
 
 

   …                      …                             …                  …    
 

[𝑊𝑛
𝐿,𝑊𝑛

𝑈]

[𝑊1
𝐿,𝑊1

𝑈]
                

[𝑊𝑛
𝐿,𝑊𝑛

𝑈]

[𝑊2
𝐿,𝑊2

𝑈]
                       …                    1     
  )

 
 
 
 
 
 
 

                 (3.15) 

where   
[𝑊𝑖     

𝐿   ,   𝑊𝑖
𝑈]

[𝑊𝑗
𝐿    ,   𝑊𝑗

𝑈 ]
 represents the relative importance of objective 𝑖 over 𝑗 using 

arithmetic of interval as defined in Section 3.6.1. Matrix 𝔸 in 3.15 can be simplified  

as follows: 
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 𝔸 =

(

 
 
 
 
 
 
 
 
 

 

        1                      [ 
𝑊1
𝐿 

𝑊2
𝑈 ,

 𝑊1
𝑈

 𝑊2
𝐿  ]            …              [

𝑊1
𝐿 

𝑊𝑛
𝑈 ,

 𝑊1
𝑈

 𝑊𝑛
𝐿  ]

 

   [ 
𝑊2
𝐿 

𝑊1
𝑈 ,

 𝑊2
𝑈

 𝑊1
𝐿]                    1                      …                   [

𝑊2
𝐿 

𝑊𝑛
𝑈 ,

 𝑊2
𝑈

 𝑊𝑛
𝐿]

    
 
 

 …                            …                       …                   …          
 

[
𝑊𝑛
𝐿 

𝑊1
𝑈 ,

 𝑊𝑛
𝑈

 𝑊1
𝐿]              [

𝑊𝑛
𝐿 

𝑊2
𝑈 ,

 𝑊𝑛
𝑈

 𝑊2
𝐿]               …                        1            

  )

 
 
 
 
 
 
 
 
 

          (3.16) 

If (𝑖 , 𝑗)th element of the matrix defined in (3.16), is designated by [𝐿𝑖𝑗  , 𝑈𝑖𝑗] then 

𝐿𝑖𝑗 = 
𝑊𝑖
𝐿 

𝑊𝑗
𝑈  ,   𝑈𝑖𝑗 = 

𝑊𝑖
𝑈 

𝑊𝑗
𝐿   [𝐿𝑖𝑗 , 𝑈𝑖𝑗] and clearly for 

𝐿𝑖𝑗  ×  𝑈𝑖𝑗 = 1    ,   𝑖 , 𝑗 = 1,2, … , 𝑛                                        (3.17) 

still, the two relations 

𝔸𝐿 𝑊𝑈 = 𝑊𝑈 + (𝑛 − 1)𝑊𝐿                                                 (3.18) 

and 

𝔸𝑈𝑊𝐿 = 𝑊𝐿 + (𝑛 − 1)𝑊𝑈                                                 (3.19) 

satisfied where 
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 𝔸𝐿 =

(

 
 
 
 
 
 
 

 

  1                 
𝑊1
𝐿 

𝑊2
𝑈           …            

𝑊1
𝐿 

𝑊𝑛
𝑈  

 
𝑊2
𝐿 

𝑊1
𝑈                1             …            

𝑊2
𝐿 

𝑊𝑛
𝑈   

 
 

 …              …             …            …    
 

𝑊𝑛
𝐿 

𝑊1
𝑈             

𝑊𝑛
𝐿 

𝑊2
𝑈            …              1   

  )

 
 
 
 
 
 
 

                                  

and, 

  𝔸𝑈 =

(

 
 
 
 
 
 
 

 

  1                 
𝑊1
𝑈 

𝑊2
𝐿           …            

𝑊1
𝑈 

𝑊𝑛
𝐿   

 
𝑊2
𝑈 

𝑊1
𝐿                1             …            

𝑊1
𝐿 

𝑊𝑛
𝐿    

 
 

 …              …             …            …    
 

𝑊𝑛
𝑈 

𝑊1
𝐿             

𝑊𝑛
𝐿 

𝑊2
𝐿            …              1   

  )

 
 
 
 
 
 
 

                    (3.20) 

𝑊𝐿  and 𝑊𝑈 are represent the lower and upper weight vector defined as the first 

interval 𝑊𝐿 = [𝑊1
𝐿 ,𝑊2

𝐿 , … ,𝑊𝑛
𝐿]𝑇 and 𝑊𝑈 = [𝑊1

𝑈, 𝑊2
𝑈, … ,𝑊𝑛

𝑈]𝑇. 

  Determination of Errors  3.6.4

In practical cases, pairwise comparison judgment is not hundred percent correct and, 

obviously the relation (3.17) is not satisfied. 𝔼1 and 𝔼2 are of the several errors that 

occur in satisfying relations (3.18) and (3.19) and these errors can be expressed as 

follows: 

𝔼1  = (𝔸
𝐿 − 𝐼) 𝑊𝑈 − (𝑛 − 1) 𝑊𝐿

𝔼2 = (𝔸𝑈 − 𝐼) 𝑊𝐿 − ( 𝑛 − 1) 𝑊𝑈}                            (3.21) 
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The goal is to achieve the weights 𝑊𝐿 and 𝑊𝑈 in such a way that the error is zero. 

Then considering the target values as zero the goal expression can be written as: 

(𝔸𝐿 − 𝐼) 𝑊𝑈 − ( 𝑛 − 1) 𝑊𝐿 + 𝑑1
−  −  𝑑1

+      = 0     

(𝔸𝑈 − 𝐼) 𝑊𝐿 − (𝑛 − 1) 𝑊𝑈 + 𝑑2
−  −  𝑑2

+      = 0      
}        (3.22) 

where 𝑑𝑖
−, 𝑑𝑖

+(𝑖 = 1,2)   represents the vector of the deviational variables of the 

dimension that is the same as [𝑊𝐿 ,𝑊𝑈] and 𝑖 = 1,2, . . , 𝑛 . is the number of goals. 

Given that our target is to obtain the exact value zero, we have to minimize the sum 

of both under- and over-deviations associated with their respective goals. The 

executable GP model can be expressed according to the proposal by several authors 

(e.g., Makui et al., 2010; Sen & Pal, 2013; Wang & Elhag, 2007) as: 

𝑀𝑖𝑛𝒢 =∑∑ (

𝑛

𝑖=1

𝑑𝑒𝑖
− + 𝑑𝑒𝑖

+

2

𝑒=1  

 

)                                                (3.23) 

Thus, to satisfy the goal equations in (3.21) and (3.22) the following goals should be 

satisfied: 

 𝑊𝑗
𝐿 +  ∑  

𝑛

𝑖=1
𝑖≠𝑗

𝑊𝑖
𝑈    ≥ 1  ,                                                          (3.24) 

𝑊𝑗
𝑈 +∑ 

𝑛

𝑖=1
𝑖≠𝑗

𝑊𝑖
𝐿    ≤ 1                           

𝑊𝑈 −𝑊𝐿   ≥ 0                                     

𝑊𝐿 ,𝑊𝑈 ≥ 0                                            

𝑒 = 1,2. ,   𝑗 = 1,2, . . , 𝑛                                                                      



 

108 

  

By solving the GP model in equations (3.23) and (3.24), the determined weights (in 

an interval form) are presented as follows: 

{[𝑤1
𝐿 , 𝑤1

𝑈], [𝑤2
𝐿 , 𝑤2

𝑈], … [𝑤𝑛
𝐿, 𝑤𝑛

𝑈]}  

3.7  DEA and Defuzzification  

The idea of using the DEA model and defuzzification concept in the literature first 

appeared in Lertworasirikul (2002) and Lertworasirikul, Fang, Joines, et al. (2003a). 

The idea is called the ‘defuzzification approach’ used to solve fuzzy DEA. This 

approach was developed to defuzzify fuzzy inputs and fuzzy outputs into crisp. 

Then, the fuzzy CCR model converts to crisp CCR and solved. According to Hatami-

Marbini, Emrouznejad, et al. (2011), the defuzzification approach suffered from a 

lack of attention may be because, in this approach, the fuzziness in the inputs and 

outputs is effectively ignored. Along the same line, Lee, Shen, and Chyr (2005) also 

proposed fuzzy DEA models for CCR and BCC by defuzzifying fuzzy inputs and 

outputs into crisp values and using them in conventional DEA models. Furthermore, 

Juan (2009) proposed a two-stage decision support model by using a hybrid DEA 

and case-based reasoning model. In this approach, the center of gravity method was 

used to transform the fuzzy data into crisp data and build a conventional CCR model.  

Hatami-Marbini, Saati, and Makui (2009) presented a defuzzification approach to 

solving a fuzzy CCR model with fuzzy inputs and outputs in the form of trapezoidal 

fuzzy numbers. This approach transforms the fuzzy model into crisp LP model by 

ranking fuzzy numbers method proposed by Asady and Zendehnam (2007). Also, the 
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obtained efficiencies from the proposed model reflect the inherent fuzziness in 

assessment problems. As can be seen, most of the previous studies used the 

defuzzification methods with DEA to convert fuzzy inputs and/or fuzzy outputs to 

crisp data before using the DEA models. In this research a new insight of using DEA 

and defuzzification concept is considered, where the DEA is used to develop a new 

defuzzification method, which is the first time addressed in the literature.  

3.8  Summary and Discussion  

Some crucial findings from this chapter, which would be helpful in achieving the 

primary goal of this research, can be recapped as follows: 

The concentration is on the CCR model because it was the original DEA model. All 

other models are extensions of the CCR model obtained by either modifying the PPS 

of the CCR model or adding slack variables in the objective function. Fuzzy sets are 

used with DEA to handle the problems where some data inputs or/and outputs are 

ambiguous. One of the existing approaches to solving fuzzy DEA is the 

defuzzification approach, where some methods under defuzzification are used to 

convert fuzzy inputs and /or outputs to crisp inputs and outputs. Then, the DEA 

model is used with the new crisp data in the second stage.  

Hence, the relation between DEA and MCDM was discussed, followed by the 

MOLP concept and some of their techniques. 
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GP was introduced as one of the flexible techniques used to solve MOP problems. 

On the other hand, the interval weight concept was introduced as one of the common 

methods to find the optimal weights in the GP. 

The next chapter discusses the research methodology and model development. The 

present research develops a new method that uses some modifications on the COG 

with DEA as a tool to solve a defuzzification problem in the case where some 

relationships or properties in the original crisp data need to be satisfied with the crisp 

result. Thus, a problem is deciphered by using a standard DEA model, and the 

concept of PPS is explained in the next chapter. 
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CHAPTER FOUR 

RESEARCH METHODOLOGY   

The main problem of defuzzification methods, especially concerning original crisp 

data with relationships or with some properties that need to be kept in crisp output, 

was identified in the previous chapters, particularly in Section 1.5. We also identified 

the promising technique that can be utilized to solve the problem. It should be noted 

that the proposed method is a general one and with slight modifications that can be 

easily applied to all types of relationships that need to be satisfied in crisp output. 

Consequently, this chapter describes the methodology to achieve the objectives, that 

is, to develop a defuzzification technique that has the ability to preserve the 

relationships of the original crisp data. The details of how to accomplish the 

objectives are discussed in this chapter, particularly in terms of 4.1 research design, 

4.2 research activities, 4.3 research framework, 4.4 types of data and source, 4.5 the 

fuzzification steps, 4.6 development of defuzzification method , 4.7 algorithm of the 

proposed defuzzification method, and 4.8 evaluation and comparison of the proposed 

method. This chapter ends with a summary and discussion in 4.9. 

4.1  Research Design 

The main goal of this research is to develop a defuzzification method that is able to 

defuzzify groups of fuzzy numbers created from original crisp data that have some 

relationships or properties that need to be satisfied in crisp outputs. A DEA 

optimization technique is chosen as a basis model because of its good features as 

discussed in Chapter Three.  



 

112 

  

The research focuses on how this defuzzification method is developed by modifying 

the Center of Gravity (COG) method as the objective function. This modification is 

based on the minimization of the distinct of the crisp outputs with all fuzzy numbers 

points in each interval of fuzzy numbers, to find the best approximation of each 

fuzzy numbers that satisfy the properties of the original crisp data. In addition, a 

modification of a DEA model is presented by ignoring the primary objective of the 

CCR model since our focus is not on finding efficiency but in using DEA as a tool by 

considering the PPS of CCR model as the region that has all possible activities. 

Moreover, new constraints are included in the model to represent the relationships. 

Then, the modification of the COG method as the objective is presented as the main 

objective of our proposed model. Furthermore, the suggested method does not only 

depend on the endpoints or midpoints of intervals corresponding to the fuzzy 

numbers, but it is looking at the best approximation of fuzzy number that satisfies 

some properties among these three values. 

On the other hand, two sets of secondary data are collected from the healthcare 

sector in Malaysia. These hospital admission data are used as a basis to implement 

the proposed method to estimate the suitable number of beds for the hospitals. The 

first set of the hospital admission data is presented as having some relationships that 

need to be satisfied in crisp outputs. The other set is considered data that do not have 

the relationships to be preserved in crisp outputs. Experimentation and comparison 

were carried out to validate the two sets of data to fulfill the main and specific 

objectives of this research.  
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Therefore, the results of the proposed method with different cases are compared with 

the results from Kikuchi’s method, the COG, and Assady and Zendemann (A&Z) 

methods to quantify the performance of the proposed method. Since both COG and 

A&Z methods deal with an independent crisp output, which differs from the 

proposed method, the results are reported by ignoring the relationships among the 

data. 

4.2  Research Activities 

The research activities are summarized in Figure 4.1 and 4.2. This section discusses 

how to define the problem, define the variables and the relationships, collect data 

and formulate the mathematical model, and develop a method based on the DEA 

model. 
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Figure 4.1. Structure chart of the research activities 

Start 

 

Investigate systems with relationships on their 

original data, generate fuzzy numbers and 

investigate an appropriate DEA model 
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Crisp output 

Develop a new defuzzification 

method based on the DEA model 

  

Problem definition 

 

Modify the COG method & DEA 

model 

End 
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Figure 4.2. Phase of research and its activities 
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Phase 2: 

Fuzzification step  

 

Phase 6: 
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method 

Phase 4:  

Proposed method 

 

Experimentation on solving the numerical 

problems in the literature with different types 

of fuzzy numbers 

1. Modify the COG method based on the 

minimization of the distance concept to 

the fuzzy number 
2. Modify CCR model  

3. Formulate of new constraints.  

Use two-fuzzification method to generate fuzzy 

numbers; 

1. Histogram method 
2. Curve fitting method 

1. Literature review 
2. Investigate some systems and their original 

crisp data that have some relationships  

3. Define the relationships. 

Mathematical formulation for the proposed model by: 

1. Modifying COG as a new objective function of 
CCR model  

2. Formulating new constraints to add to CCR 

model 

3. Solving the problem of defuzzification as MOP. 

Achieve 

specifies 
Objective 

1&2 

Phase 5: 

Model evaluation 

1. Solving real problems 

2. Three defuzzification methods are used to 

validate of the proposed method. 

a) COG & A&Z methods in case of 
independent crisp output.  

b) Kikuachi method in case of dependent crisp 

output. 
3. A comparison of the proposed method based 

on DEA and LP. 

Achieve 
specifies 

Objective 

3&4&5 
 

Achieve 
specifies 

Objective 6 

Methods 

OBJECTIVES 

The current research primarily aims at developing a new method of defuzzification to defuzzify 

groups of fuzzy numbers based on a DEA model that can lead to the creation of crisp output values 

in which this method is able to satisfy the relationships or properties in the original crisp data and 

keep them in the solution. The following are the specific objectives that need to be accomplished to 

meet the desired results: 

1. To develop a new defuzzification method by modifying the center of gravity (COG) method. 

2. To modify the DEA model with new objective and extra constraints. 

3. To implement the new method to solve real problems. 

4. To compare the outcome obtained by the suggested method with other corresponding 

methods. 

5. To compare the suggested DEA-based model with LP–based model. 

6. To apply the proposed method to the numerical problems in the literature with different 

types of fuzzy numbers 
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4.3  Research Framework 

This research aims at developing methods to defuzzify groups of fuzzy numbers that 

can satisfy some relationships or properties in the crisp output. In order to achieve 

the objective, this research is conducted through six phases of research activities: 

problem definition, data collection and fuzzy numbers generation, model 

development, model evaluation, and generalization of the model. In the model 

evaluation, model validation and a comparison of the proposed model based on DEA 

and LP are involved (refer to Figure 4.1 and 4.2).  

Data are collected by investigating some systems with real problems and generating 

fuzzy numbers using fuzzification. Then, an appropriate DEA model is chosen based 

on the assumption of the production possibility set (PPS). After identifying all 

objectives and constraints, the defuzzification formulation is written in a 

mathematical form. Two variants of the method are then developed using the DEA 

model as a tool. The proposed method is then evaluated through validation and 

comparison. Furthermore, the proposed method can be considered as a general 

method since it has the ability to solve different problems with different relationships 

and fuzzy numbers. Figure 4.3 displays the research framework of the proposed 

defuzzification method, which starts with defining variables from a predefined 

system with some relationship. The next five sub-sections explain the research 

framework in detail.  
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Figure 4.3. Research framework of the defuzzification method  
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  Problem Definition and Data Collection  4.3.1

The foremost concern of this research is to develop a defuzzification method that can 

defuzzify groups of fuzzy numbers. These groups are generated from systems with 

some relationships or properties in the original crisp data that need to be kept in a 

crisp output (or defuzzified value). In other words, the proposed method would deal 

with the original crisp data that have some relationships which lead to the dependent 

output. That is, there exist some additional restrictions to the allowable crisp outputs 

i.e. crisp outputs are dependent. Besides that, the proposed method is also 

implemented to solve problems in the case where the systems do not have 

relationships or properties in the original crisp data need to be kept in the crisp 

output (or defuzzified value), which means that the crisp outputs are independent. 

Data collection is one of the most important components of research since it is 

necessary to verify whether the proposed method can be adopted or not. In this 

research, two sets of secondary data are collected from a Malaysian hospital. More 

details on the data types and source can be found in Section 4.4. 

  Generating Fuzzy Numbers 4.3.2

Generating fuzzy numbers are done by converting the original crisp data to the fuzzy 

number; this process is known as fuzzification. The details of the fuzzification 

method and the generation of fuzzy numbers are presented in Section 4.5. 
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  Method Development 4.3.3

Defuzzification methods were developed to defuzzify groups of fuzzy numbers 

based on systems with relationships in their original crisp data or not. In other words, 

there exist some ancillary restrictions to the allowable crisp outputs i.e. crisp outputs 

are dependent or independent. In this phase, we explain the process to convert fuzzy 

numbers into crisp, which is known as defuzzification. First, a COG method is used 

with some modifications included as an objective in our proposed models. We use 

the modified COG method as the objective, which is included in the DEA model 

with enhancement of some of the constraints. Besides, developing the defuzzification 

method based on the DEA model, we also construct a different defuzzification 

method but based on an LP model.  

On the other hand, each of the proposed methods based on DEA and LP model 

considers both cases of systems with or without relationships in their original crisp 

data. The formulation of each method is then developed and solved using 

Mathematica 9 software. The core of defuzzification, nearest points to the fuzzy 

numbers, and the best nearest point to each fuzzy number are explained. Also, the 

appropriate DEA model is included, and a detailed explanation of the method 

development can be found in Section 4.6. 

  Method Validation 4.3.4

Three defuzzification methods are used to validate the proposed method. Two are 

used in the case where there are no relationships, and one is in the event where there 
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are relationships in the original crisp data. The implementation details of this 

comparison are shown in Chapter Five. 

  Application of the Proposed Method as a General Method 4.3.5

Application of the proposed methods is performed to handle different problems and 

different types of fuzzy numbers in the case whether the original crisp data have 

relationships or not. This phase is important to highlight the ability of the proposed 

defuzzification method in solving other problems in previous studies. The related 

numerical examples of that selected problems are also included in Chapter Five. 

4.4  Types of Data and Data Source  

Two types of data are used in this research, real data, and numerical examples. The 

real data with and without relationships are included and collected from the 

healthcare sector in Malaysia. The source of our real data with relationships is the 

Hospital Tuanku Fauziah (HTF) in Perlis while the data without relationships are 

derived from the database of the Ministry of Health (MOH) in Malaysia. The data 

from HTF cover the number of patients admitted to the hospital for the period of two 

years between 2013 and 2014. The data is considered with relationships since we are 

also given information on the available number of beds in each of the 19 wards in the 

hospital, the total number of available beds in the hospital (384 beds), and the 

number of patients based on their ward entrance. The data without relationships 

cover the number of patients admitted to the seven hospitals in Klang Valley for the 

period of three years between 2008 and 2010 but with no extra information. The only 
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information available is that the patients are categorized into five groups based on 

their age (i.e. Toddler, Schoolchildren, Adult, Old, and Elderly). There is no 

information related to number of beds available that might be considered as the 

relationship of the crisp data.  

The second type of data, related numerical examples with defuzzification, is 

collected from previous studies to evaluate the proposed method to solve other 

different problems. Several types of data needed in this research along with their 

sources are explained in detail in sub-sections 4.4.1 to 4.4.3.  

  Data with Relationships 4.4.1

Nineteen group of patients admitted to the Hospital Tuanku Fauziah (HTF) in Perlis 

are considered in this research based on their record in such wards as (Ward1, 

Ward2,..Ward19) for the period of two years between 2013 and 2014. We consider 

these real data as an original crisp data with relationships because the source 

provides us with the total number of beds in each ward and the hospital in general. 

The total number of available beds in the hospital is considered as the relationship, 

which the crisp outputs (total number of beds to be allocated to the selected number 

of wards) need to satisfy. Other types of relations such as the number of doctors or 

nurses are not considered since the information is not available.  
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  Data without Relationships 4.4.2

Five groups of patients based on their ages (Toddler, Schoolchildren, Adult, Old, and 

Elderly) are considered in this research based on their record. We consider these data 

without relationships because the source provides us with the number of recorded 

patients based on their age without giving any information about the total number of 

available beds, the number of the wards, or any other information. Therefore, the 

proposed method handles this problem by assuming that there are no relationships 

between these five groups. Then, the proposed method estimates the number of beds 

in each group. This process is done by estimating the optimal number of beds in each 

group based on the number of patients admitted every day for the period from 2008 

to 2010. A list of all patients is depicted in Appendix B. 

  Numerical Examples 4.4.3

Two different applications are used to show how the proposed method can handle 

various problems. The first case is about using the proposed method to solve the 

problem of finding the optimal weights in solving a GP model. The second case is 

using the proposed method in the event of no relationships that need to be satisfied in 

crisp outputs (independent crisp outputs) to handle the ranking of the fuzzy number 

problem in finding the correct order. 

4.5  The Fuzzification Steps 

After collecting our real data, i.e. two types of original crisp data with and without 

relationships, the fuzzification process is needed in order to fuzzify our original crisp 
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data because our data come from an uncertain environment. The fuzzification 

process is performed to convert or generate fuzzy numbers from the original crisp 

data by using the methods of curve fitting and histograms based. Automatic 

techniques are used to determine the appropriate fuzzy set of representation as 

described in sub-section 2.4.3. Generating 𝑛 triangular fuzzy numbers that 

correspond to each group is identified via equations (2.8) by using the minimum and 

maximum values as the left and right hand side boundaries respectively, via 

equations (2.9) and the geometric mean as a middle point via equation (2.12). In 

order to generate the triangular fuzzy number in this step, a curve fitting method to 

the data is assumed.  

4.6  Development of Defuzzification Method 

The method used to defuzzify groups of fuzzy number relies on the minimization of 

the distance concept based on their membership function. As mentioned in Section 

3.1, one of the fewer studies that considered the concept of dependent crisp outputs 

is the Kikuchi (2000) method. Therefore, the results by the proposed defuzzification 

method are possible to be compared with results from the Kikuchi’s method since 

they are developed using the same concept addressed in the following chapters. 

However, other studies focused on the concept of the nearest interval and nearest 

point to find the best representative point to the fuzzy numbers as shown in Section 

2.7. 
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  The Best Nearest Point 4.6.1

The notion of the nearest point was discussed in Section 2.7.1 with some methods 

under this concept. One of the common methods is the A&Z method, which presents 

a defuzzification method to defuzzify fuzzy numbers that rely on minimizing the 

distance between them and the new point (crisp point). The core of their method is 

the base of our proposed method where some predefined constraints and a 

modification of COG method is respected, and a new nearest point is considered. In 

our work, we are looking for a crisp point that gives us the minimum distance 

between other elements in the interval of the fuzzy number by considering the 

membership function. Besides that, that crisp point has to satisfy some relationship 

while the A&Z method does not have any constraint or condition on the crisp output 

even through there is a relationship in the data. 

  Appropriate DEA Model 4.6.2

Most of the DEA models presented in the literature and some of them were discussed 

in Section 3.4 are considered an extension of the CCR model under the economic 

concept of constant returns to scale (CRS) or the BCC model under the variable 

returns to scale (VRS). The models are generally used to evaluate DMUs and find 

the efficient one. Model (1.4) is divided such all LP models into the objective 

function and constraints namely, the left- hand sides and right-hand sides of the 

constraints. The left-hand side content the 𝜆’s that generates the PPS corresponding 

to the CCR model which generate all possible solutions. The right-hand side and the 

objective function lead DMUs to the frontier.  
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Thus, the DMUs located on the efficiency frontier have considered the relevant ideal 

points in the DEA evaluation. However, this research is not about evaluation or 

finding the efficient DMU. In this research, a new method is introduced using the 

CCR-DEA model as a tool to defuzzify groups of fuzzy numbers. In other words, we 

use the left hand side of the model (1.4) with our new objective and extra constraints. 

In the traditional efficiency analysis by DEA, the ideal point is always on the 

frontier, but in our case, the ideal may not always be on the frontier, but it can be 

probed within PPS.  

4.7  Algorithm of the Proposed Defuzzification Method 

This section provides the algorithm of the proposed defuzzification method for group 

of fuzzy numbers as portrayed in Figure 4.2 and 4.3. This research is now all set to 

develop a defuzzification method which is able to create a new crisp output which is 

a best approximated value to the fuzzy number when dealing with ‘dependency 

between original crisp data and the crisp output’ and ‘fuzzy numbers as group’ 

simultaneously, for a more reliable result.  

The proposed method is configured with the convergence of five key components 

namely the COG method, A&Z method, CCR-DEA model, LP model and WGP 

model. Figure 4.4 illustrates the algorithm steps of development the proposed 

defuzzification method. 
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Figure 4.4. Algorithm of the proposed defuzzification method 

The details and steps of this algorithm are presented in next sub-sections. 

 Step 1: Defining the Problem and Identifying the Relationship  4.7.1

Based on step 1 of the algorithm as summarized in Figure 4.4, firstly, we define the 

problem of defuzzification of groups of fuzzy numbers that depend on some 

relationships in the original crisp data need to be fulfilled in the crisp outputs. 

Step 1: Defining problem and fuzzy numbers, and identifying the relationship. 

Step 2: Partitioning interval of fuzzy numbers. 

Step 3: Estimating approximated crisp outputs by modification on COG method  

             and CCR-DEA model. 

Step 4: Formulating a general defuzzification method to determining the best  

            approximated crisp output under the convex assumption of PPS of CCR- 

            DEA model. 

Case1: Non-linear objective with any relationship using mathematical 

formulation in Section 4.7.4.1 model (4.9). 

Case 2: Linear objective with any relationship using mathematical formulation 

in Section 4.7.4.2 model (4.10). 

Case 3: Linear objective with a linear relationship using mathematical 

formulation in Section 4.7.4.3 model (4.11).  

Step 5: Solving a MOLP problem using mathematical formulation in Section 4.7.5  

             model (4.12) by using the WGP technique. 
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For this purpose, we assume that 𝑥𝑖𝑝 , is the original crisp data where 𝑖 = 1,2, . . 𝑛, 

and 𝑛 is the number of groups which is collected from the system with relationships. 

While 𝑝 = 1, 2, . . , 𝑃  is the number of observations in each group. Three variables 

for each group are defined as; 

𝑥𝑖
𝑙 = min{𝑥𝑖1 , 𝑥𝑖2, … , 𝑥𝑖𝑝}                                  

𝑥𝑖
𝑢 = max{𝑥𝑖1 , 𝑥𝑖2, … , 𝑥𝑖𝑝}                                 

𝑥𝑖
𝑚 = the average value of{𝑥𝑖1 , 𝑥𝑖2, … , 𝑥𝑖𝑝}  

}                 (4.1) 

Based on equation (4.1), 𝑥𝑖
𝑙, 𝑥𝑖

𝑚, and 𝑥𝑖
𝑢, represent lower, middle, and upper value of 

each group.  

However, if the fuzzy numbers are not defined yet, we need to generate the fuzzy 

numbers using certain methods. In this research, we utilize the method in phase two, 

as presented in Figure 4.2, and explained in Section 2.4.4. The fuzzification process 

is performed where each of 𝑛 triangular fuzzy number (𝑇𝑟𝐹𝑁) correspond to each of 

𝑛 groups is identified via equation (4.1) as follows;  

𝑇𝑟𝐹𝑁 �̃�𝑖 = (𝑥𝑖
𝑙  , 𝑥𝑖

𝑚 , 𝑥𝑖
𝑢)                                                            (4.2)    

Based on equation (4.1), 𝑥𝑖
𝑙, 𝑥𝑖

𝑚, and 𝑥𝑖
𝑢, represent lower, middle, and upper value of 

a 𝑇𝑟𝐹𝑁 �̃�𝑖 . Then the representative interval of each group is presented as [𝑥𝑖
𝑙 , 𝑥𝑖

𝑢]. 

Based on the equations (2.6) and (2.7) each interval of fuzzy number [𝑥𝑖
𝑙 , 𝑥𝑖

𝑢] is 

divided into 𝑚 sub-intervals as; [𝑥0, 𝑥1], [𝑥1, 𝑥2], [𝑥2, 𝑥3], … [𝑥𝑚−1, 𝑥𝑚], where 

 𝑥𝑚𝑖𝑛 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑚−1 < 𝑥𝑚 = 𝑥𝑚𝑎𝑥. This step is known as a partition of 

the interval of fuzzy number, where the number of partition  𝑚 is equal to the 



 

128 

  

number of produced sub-intervals. At the same time, we suggest using the arithmetic 

mean via equation (2.11), as the middle point of the triangular fuzzy number to show 

no real differences appear in the results as described in Chapter 5 when there are no 

outliers. 

Second, the relationship(s) among these groups are expressed as constraint(s). 

𝑅(�̅�𝑖) = C                                                     𝑖 = 1,2, . . 𝑛        (4.3) 

where, 𝑅 represents different types of relationships such as ( ∑ �̅�𝑖 , ∏ �̅�𝑖
𝑛
𝑖=1

𝑛
𝑖=1 ), �̅�𝑖 is 

the optimal solution of each group (the crisp output) and  C is a constant.  

 Step 2: Partitioning Interval of Fuzzy Numbers  4.7.2

Then, the interval [𝑥𝑖
𝑙 , 𝑥𝑖

𝑢], of the fuzzy number �̃�𝑖, is divided into 𝑚  sub-intervals as 

described in Section 2.4.3.2 as  

{[𝑥𝑖
𝑙 = 𝑥𝑖0 , 𝑥𝑖1], [𝑥𝑖1 , 𝑥𝑖2]. . , [𝑥𝑖(𝑚−1) , 𝑥𝑖𝑚 = 𝑥𝑖

𝑢]}                 (4.4) 

Then, each element in this process (called partition) is labeled as 

𝑥𝑘 = 𝑥
𝑙 + 𝑘 ∗ ∆𝑥      𝑘 = 0,1,2, . . , 𝑚                                     (4.5) 

where, ∆𝑥 =  
𝑥𝑢−𝑥𝑙

𝑚
 , is the width of each sub-interval, 𝑚 is the number of sub-

intervals and 𝑘 is the number of elements in these sub-intervals which is equal to the 

number of strips. Finally building the triangular membership functions for the 
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representation problem as equation (2.3) for each element in the sub-intervals is 

done.  

 

Figure 4.5. Building the triangular membership function of sub-intervals elements  

Figure 4.5 illustrates the elements of these sub-intervals with their width ∆𝑥. The 

partition of the region, which is formed by the triangular membership function, 

divides the region into 𝑚 sub-intervals with 𝑘 strips. 

 Step 3: Estimating Approximated Crisp Outputs  4.7.3

Based on the Step 3 of the algorithm in Figure 4.4 a modification on the COG 

method and CCR-DEA model is presented in next sub-sections. 

 

𝒙𝒊
𝑳 =  𝒙𝒊𝟎 𝒙𝒊𝟏  𝒙𝒊𝟐 𝒙𝒊(𝒎−𝟏)𝒙𝒊𝒎 =  𝒙𝒊

𝑼 

𝒙𝒊
𝑳 =  𝒙𝒊𝟎 𝒙𝒊𝟏  𝒙𝒊𝟐 𝒙𝒊(𝒎−𝟏)𝒙𝒊𝒎 =  𝒙𝒊

𝑼 

∆x ∆x 

……… 

…………… 
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4.7.3.1 Modification on the COG method 

The first part of Step 3 of the algorithm, a description of an objective function as a 

modification of the COG method described in equation (2.14) of an optimization 

problem is introduced. In the proposed method we assume that the 𝑥𝑖 in equation 

(2.14) which is a fixed point for each fuzzy number as  𝑥𝑖 = |�̅�𝑖 − 𝑥𝑖𝑘| which 

represents the distance of crisp output �̅�𝑖 with all elements in the interval [𝑥𝑖
𝑙, 𝑥𝑖

𝑢]  by 

partitioning the interval of each fuzzy number into 𝑚 sub-intervals using equation 

(4.4).  

The process of partition the interval [𝑥𝑖
𝑙 , 𝑥𝑖

𝑢]  into 𝑚 sub-intervals improves our 

estimated crisp output. Where the estimated crisp outputs are chosen from the sub-

intervals as an approximation value in that interval for each fuzzy number 𝑖. These 

values are known as the estimated crisp outputs �̅�1, �̅�2, . . , �̅�𝑛, which are changeable, 

and would be the best approximated to the fuzzy numbers. For each partitioning of 

fuzzy numbers under our method, the values of fuzzy numbers are optimized to 

produce best optimal solution which would satisfy the suggested relationships. Then 

a process of partitioning stopped when the stable results are achieved or when the 

solutions remain the same even though the number of partitioning is increasing. The 

new objective is obtained by minimization of distance (Euclidean) between each 

element in the interval of a fuzzy number and its approximated value as given in the 

following equation,  

𝑚𝑖𝑛
∑ 𝜇�̃�𝑖(𝑥𝑖𝑘)
𝑚
𝑘=0 |�̅�𝑖 − 𝑥𝑖𝑘|

∑ 𝜇�̃�𝑖(𝑥𝑖𝑘)
𝑚
𝑘=0

                                                    (4.6) 
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instead of equation (2.14) presented in Section 2.5.1.1. 

The problem is to find �̅�𝑖, which is the approximated values to the fuzzy number 𝑖 

that minimizes the objective function in equation (4.6), and satisfies the constraints 

in crisp outputs.   

4.7.3.2  Modification on the CCR-DEA Model 

The second part of Step 3 of the algorithm, by considering the CCR model presented 

in model (1.4), 𝑘  DMUs are created according to the sub-intervals in equation (4.4) 

where the PPS of these DMUs generates all of the possible solutions in the fuzzy 

interval. That means that the DEA constraints assure us that the defuzzified value 

(crisp outputs) lies in the allowable region. 

In other words, the elements  𝑥1
𝑙  =𝑥10 < 𝑥11 <. . < 𝑥1(𝑚−1) < 𝑥1𝑚 = 𝑥1

𝑢, for the first 

fuzzy number 𝑖 = 1  represents the first input of DMUk (𝑘 = 0,1, 2, …  𝑚)  that are 

used to produce the PPS corresponding to the CCR while the single output 

corresponding to DMUk is assumed to be one. The inputs and a single output of each 

DMUs are illustrated in the following Table 4.1. 
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Table 4.1 

Illustration of Inputs and Outputs of DMUs 

I&O 

 

k 

I1 I2 . . In-1 In O1 

DMU0 𝑥1
𝐿 = 𝑥10  𝑥2

𝐿 = 𝑥
20

 . . 𝑥𝑛−1
𝐿 = 𝑥

(𝑛−1)0
 𝑥𝑛

𝐿 = 𝑥
𝑛0

 1 

DMU1 𝑥11 𝑥21 . . 𝑥(𝑛−1)1 𝑥𝑛1 1 

DMU2 𝑥12 𝑥22 . . 𝑥(𝑛−1)2  𝑥𝑛2 1 

. . . . . . . . 

. . . . . . . . 

DMUm-1 𝑥1(𝑚−1) 𝑥2(𝑚−1) . . 𝑥(𝑛−1)(𝑚−1) 𝑥𝑛(𝑚−1) 1 

DMUm 𝑥1
𝑢 = 𝑥

1𝑚
 𝑥2

𝑢 = 𝑥
2𝑚

 . . 𝑥𝑛−1
𝑢 = 𝑥

(𝑛−1)𝑚
 𝑥𝑛

𝑢 = 𝑥
𝑛𝑚

 1 

In order to explain Table 4.1 further, Figure 4.6 is referred to which illustrates the 

inputs and DMUs created by the partition of the first fuzzy number to produce 𝑚  

sub-intervals with 𝑘  elements (i.e. 𝑘 = 𝑚 + 1 the number of elements in 𝑚  sub-

intervals).  

 

Figure 4.6. Inputs and DMUs created by the partition of the first fuzzy number 
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We replace the main objective of CCR in (1.4) by 𝑛 objective functions based on the 

equation (4.6) where these objective functions are approximated to the COG by 

minimizing the distances from crisp outputs �̅�𝑖 with all elements in the fuzzy interval 

and constraints including λ 's produce the PPS that correspond to the CCR model 

(1.4) as follows; 

𝑚𝑖𝑛
∑ μ�̃�𝑖(𝑥𝑖𝑘)
𝑚
𝑘=0 |�̅�𝑖 − 𝑥𝑖𝑘|

∑ μ�̃�𝑖(𝑥𝑖𝑘)
𝑚
𝑘=0

           𝑖 = 1,2, … , 𝑛               (4.7) 

subject to                                                                                        

 ∑ 𝜆𝑘𝑥𝑖𝑘 ≤ �̅�𝑖   

𝑚

𝑘=0

                                                                            

 ∑ 𝜆𝑘 ≥ 1 

𝑚

𝑘=0

                                   

The last step of CCR modification is achieved by adding extra constraints to the 

model (1.4). In the proposed method, the additional restriction to the allowable crisp 

outputs i.e. dependent crisp outputs are expressed as constraints  𝑅(�̅�𝑖) = 𝐶 where 

𝑅(�̅�𝑖), 𝑖 = 1,2, . . 𝑛 is the relationship and 𝐶 is a constant. Also, the constraint that 

includes all the intervals of the crisp outputs �̅�𝑖 are added  

 𝑥𝑖
𝑙 ≤ �̅�𝑖  ≤ 𝑥𝑖

𝑢,      𝑖 = 1,2, … , 𝑛                                             (4.8) 
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 Step 4: Mathematical Formulation of the Proposed Method 4.7.4

In this section, the fourth step of the algorithm is achieved by introducing the general 

formulation for the proposed method based on the three cases presented as sub-

sections. 

4.7.4.1 Case 1: Non-Linear with Any Relationship 

In this case the general formulation of the proposed method is introduced as 

𝑚𝑖𝑛

 
∑ μ�̃�𝑖(𝑥𝑖𝑘)
𝑚
𝑘=0 |�̅�𝑖  − 𝑥𝑖𝑘|

∑ μ�̃�𝑖(𝑥𝑖𝑘)
𝑚
𝑘=0

                                                    (4.9) 

 subject to                                                                                        

 ∑ 𝜆𝑘𝑥𝑖𝑘 ≤ �̅�𝑖   

𝑚

𝑘=0

                                                                              

 ∑ 𝜆𝑘 ≥ 1 

𝑚

𝑘=0

                                                                                      

𝑅(�̅�𝑖) = 𝐶                                                                                        

 𝑥𝑖
𝑙

𝑥𝑖
𝑢 ≤ �̅�𝑖  ≤ 1                                                                                  

𝜆𝑘 ≥ 0                                  𝑖 = 1,2, …𝑛,     𝑘 = 0,1,2, …𝑚 

The above model is a multi-objective non-linear programming (MONLP) problem 

where its optimal solution takes place at the following intervals; 

 𝑥𝑖
𝑙 ≤ �̅�𝑖  ≤ 𝑥𝑖

𝑢                                                            𝑖 = 1,2, … 𝑛  
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This model is solved only once, unlike DEA models, in which DMU evaluation 

requires the calculation of many models. Moreover, this model can deal with linear 

and non-linear relationships. 

4.7.4.2  Case 2: Linear Objective with any Relationship 

For Case 2, we transfer the non-linear model (4.9) to a linear form by assuming that 

𝑧𝑖𝑘 = �̅�𝑖 − 𝑥𝑖𝑘 and |𝑧𝑖𝑘| = 𝑧𝑖𝑘
+ + 𝑧𝑖𝑘

−    ∀(𝑖, 𝑘). The MONLP model (4.9) is then 

proposed as follows:  

 𝑚𝑖𝑛
∑ μ�̃�𝑖(𝑥𝑖𝑘)
𝑚
𝑘=0 (𝑧𝑖𝑘

+ + 𝑧𝑖𝑘
−)

∑ μ�̃�𝑖(𝑥𝑖𝑘)
𝑚
𝑘=0

                                                (4.10) 

subject to                                                

∑𝜆𝑘𝑥𝑖𝑘 ≤ �̅�𝑖  

𝑚

𝑘=0

                                                                                 

∑𝜆𝑘 ≥ 1 

𝑚

𝑘=0

                                         

𝑅(�̅�𝑖) = 𝐶                                              

𝑥𝑖
𝑙 ≤ �̅�𝑖 ≤ 𝑥𝑖

𝑢                                                                                    

�̅�𝑖 − 𝑥𝑖𝑘 − (𝑧𝑖𝑘
+ − 𝑧𝑖𝑘

−) = 0                                                           

𝜆𝑘 ≥ 0                          𝑖 = 1,2, …𝑛 , 𝑘 = 0,1,2, …𝑚         

When   𝑅  (�̅�𝑖)  the relationship and μ�̃�𝑖(𝑥𝑖𝑘)  the membership function are linear, the 

above model is a multi-objective linear programming model (MOLP). These axioms 

lead us to Case 3.  
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4.7.4.3 Case 3: Linear Objective with a Linear Relationship 

A special case of model (4.10) when each objective and relationships are linear is 

derived using LP concept. The proposed method in model (4.10) is now modified as 

follows; 

𝑚𝑖𝑛
∑ μ�̃�𝑖(𝑥𝑖𝑘)
𝑚
𝑘=0 (𝑧𝑖𝑘

+ + 𝑧𝑖𝑘
−)

∑ μ�̃�𝑖(𝑥𝑖𝑘)
𝑚
𝑘=0

                                           (4.11) 

subject to                                                

 𝑅(�̅�𝑖)  = 𝐶                                            

𝑥𝑖
𝑙 ≤ �̅�𝑖 ≤ 𝑥𝑖

𝑢                                        

�̅�𝑖 − 𝑥𝑖𝑘 − (𝑧𝑖𝑘
+ − 𝑧𝑖𝑘

−) = 0        𝑖 = 1,2, … 𝑛 , 𝑘 = 0,1,2, …𝑚  

The model (4.11) can be used when all objectives and constraints, including the 

relationship(s) are linear. In such cases, no need to use the proposed CCR-DEA 

model. Both, models (4.10) and (4.11), can be solved using the weighted goal 

programming model (WGP).  

  Step 5: Solving a Multi-Objective Problem 4.7.5

The WGP technique is a suitable method to solve multi-objective problem in cases 

when DMs do not have any pre-emptive ordering of the objective functions. Instead 

of prioritizing the objective functions in different levels, they assign different 

weights to deviation variable of each objective function in the single priority level. 

However, we assume that each objective is equally important and allocate equal 

weight without losing generality. Then, the MOLP model described as follows; 
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𝑚𝑖𝑛 ∑𝑤𝑖𝑑𝑖  

𝑛

𝑖=1

                                                                           (4.12) 

    subject to                                                     

  
 ∑ μ�̃�𝑖(𝑥𝑖𝑘)
𝑚
𝑘=0 (𝑧𝑖𝑘

+ + 𝑧𝑖𝑘
−))

∑ μ�̃�𝑖(𝑥𝑖𝑘)
𝑚
𝑘=0

 − 𝑑𝑖 ≤ 𝑡`𝑖                                          

   ∑ 𝜆𝑘𝑥𝑖𝑘 ≤ �̅�𝑖   

𝑚

𝑘=0

                                                                                

∑𝜆𝑘 ≥ 1                                                                                       

𝑚

𝑘=0

  

𝑅  (�̅�𝑖) = 𝐶                                                                                        

𝑥𝑖
𝑙 ≤ �̅�𝑖 ≤ 𝑥𝑖

𝑢                                                                                   

�̅�𝑖 − 𝑥𝑖𝑘 − (𝑧𝑖𝑘
+ − 𝑧𝑖𝑘

−) = 0                                                           

𝜆𝑘 ≥ 0                                           𝑖 = 1,2, … 𝑛, 𝑘 = 0,1,2, …𝑚 

In model (4.12), 𝑤𝑖 (𝑖 = 1,2, … 𝑛 ) denotes positive penalty weights. Weights may be 

assigned to the deviation variables to show preference to a certain group of fuzzy 

numbers. Decision makers could supply the weights or alternatively, determine them 

by using MCDM techniques such as AHP developed by Saaty, (1980 as cited in 

Saaty, 2008).  

It should be noted that the problem in this specific study is not about weights. 

However, we assume that each objective is equally important and allocate equal 

weight without losing generality.  
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That is (𝑤1 = 𝑤2 = ⋯ = 𝑤𝑛 = 1/𝑛 ) allocated to each weight for this model 

𝑑𝑖 (𝑖 = 1,2, … 𝑛 ) measures the over-achievement from the target point that is 

𝑡`𝑖  (𝑖 = 1,2, … 𝑛 ) which is obtained by computing the MOLP model as a single 

objective 𝑛 times (i.e. by considering each objective individually). 

4.8  Evaluation and Comparison of the Proposed Method  

Figure 4.2 and 4.3 illustrate that the fifth phase is about the evaluation of the 

performance of the proposed method. We must carefully check the value of 

defuzzified value obtained by proposed method with others to show how our method 

has satisfied the relationships in the crisp output by comparing it with two common 

methods under defuzzification concept. The two methods under defuzzification 

concept are the COG and the A&Z methods presented in sub-sections 2.5.1.1 and 

2.7.1.  

These methods are used to evaluate the proposed method in cases where whether 

there are relationships or no relationships that need to be satisfied in the crisp 

outputs. The Kikuchi (2000) method presented in model (3.2) is used to evaluate the 

proposed method in the case where there is a relationship that needs to be satisfied in 

the crisp outputs. In addition, a comparison of the proposed method based DEA 

model and LP based model is presented. 

4.9  Summary and Discussion 

In this chapter, we presented how the new methods to defuzzify groups of fuzzy 

numbers are developed, that is, by extending the defuzzification concept with the 
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presence of restrictions to the crisp outputs research. Two alternative approaches to 

defuzzification under restriction in crisp outputs are proposed. The first method is 

based on the modelling of the defuzzification process using the DEA concept. The 

second method involves the modelling of the defuzzification process as a constrained 

LP problem. 

The presented methods focus on defuzzifying groups of fuzzy numbers based on the 

concept of minimizing the distance between the crisp output and the other points in 

the interval of fuzzy numbers. The proposed method in this study is firstly presented 

and discussed. This is because defuzzification with dependent data is a very specific 

case when we deal with real applications problem in fuzzy systems. The structure of 

this method by using DEA model is first presented in the literature. Furthermore, the 

suggested method is not only dependent on the endpoints or midpoints of intervals 

corresponding to the fuzzy numbers but it is looking for the best approximation of 

fuzzy number that satisfies some properties. 

Chapter Five concerns with the implementation, validation, and evaluation of the 

proposed method in solving a real problem and in the case of original crisp data with 

and without relationships. Besides that, an application of the proposed method in 

solving different cases with different types of fuzzy numbers is also provided. In 

doing so, the proposed method works as a general method since it can deal with 

different types of fuzzy numbers.  
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CHAPTER FIVE  

APPLICATION OF THE PROPOSED METHOD  

This chapter describes the steps of applying the proposed defuzzification method to 

solving some problems. First, the beds allocation problems in hospitals in Malaysia 

are introduced with two sets of secondary data. Section 5.1 briefly describes the beds 

allocation problem in Malaysia and some related literature. A detailed elaboration of 

two types of data from hospitals in Malaysia is presented next. The first type is 

considered the original crisp data that have relationships that need to be kept in the 

outputs (dependent crisp outputs). The second type is data without any relationships 

that need to be satisfied in the outputs (independent crisp outputs). These two types 

of data are described in Section 5.2.  

The implementation of the suggested methods based on DEA with the two types of 

data to get dependent crisp outputs and independent crisp outputs is achieved in 

Section 5.3. Our third and fourth specific objectives, which are related to the 

implementation of the proposed method, are discussed in Section 5.3. The 

implementation of the proposed method based on the LP concept with two types of 

data to accomplish the fifth objective of the research is presented in Section 5.4.  

Furthermore, the application of the proposed method for solving some common 

issues in the literature including finding the optimal weights in the goal 

programming (GP) model and the ranking of fuzzy numbers is explained in Section 

5.5 to meet the last research objective. Finally, Section 5.6 offers a summary of the 

discussion of the application of the proposed method. 
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5.1  Background of Beds Allocation Problems 

Hospital facilities are striving to minimize resource use by adopting new strategies 

and tools or by optimizing existing ones. Limited bed availability and the need to 

include growing health costs have intensified the search for options to distribute the 

best number of beds for each branch or organization for patient who require them. 

According to the Malaysian Economic Planning Unit (2013), the three main 

indicators for the healthcare services subcomponent are the number of hospital beds, 

doctor to population ratio and hospital waiting time for outpatients. The number of 

facility hospital admissions in Malaysia has shown to growth, for example by 37.6% 

to 2.1 million people in 2009 compared to 1.5 million people in 2000 (Ministry of 

Health Malaysia, 2011b).  

This phenomenon ought to receive greater attention, in particular by medical 

institution directors and the policy makers, because it impacts the structure and 

organization of the healthcare center and treatment. Also, the affected patient’s level 

of health and satisfaction are jeopardy if their demand no longer fits with the 

hospital’s resources. Overall, the problem of beds allocation, if not addressed well, 

will have a negative effect on the entire health care systems because it impacts the 

destiny, economical price sanatorium, and countrywide care budgets (Bottle, Aylin, 

& Majeed, 2006; Caley & Sidhu, 2011). 

The rates of patients admitted to government hospitals are expanded in various 

states. As an instance in 2003, Negeri Sembilan and Perlis had the highest rates of 

admissions with 9.9% and 10.5%, respectively, while Kedah and Penang had the 
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lowest rates with 1.3% and 1.4%, respectively (Ministry of Health Malaysia, 2011a). 

In 2012, 2.6 million admissions were recorded, and about 19 million were visible as 

outpatients. In the evaluation of approximately 2.1 million admissions registered in 

2010, about 17.6 million were as outpatients. Here is also a growth in the admission 

of oversea patients (110,572 oversea inpatients in 2011 compared to 95,250 in 2008), 

which contributed to using the MOH hospital beds. Through 2015, it was anticipated 

a five percentage increase annually in the quantity of medical institution admission. 

This means additional admissions of about 150,000 to 200,000 patients each year, 

which is likely to have an effect on the infrastructure capacity of current day centers. 

Then again, the variety of hospital beds has only accelerated with the growth from 

33,211 beds to about 38,978 beds from 2010 to 2012 respectively, an increase of 

5,767 beds (Abdullah, 2014). 

  Related Literature of Beds Allocation Problems 5.1.1

The process of determining the optimal number or size of hospital resources is not 

easy because the number of admissions or arrivals and the length of stay behave in 

an uncertain manner. Due to the crucial time and limited resources, such as the 

number of available beds, healthcare professionals need to make wise decisions in 

identifying the optimal number of beds as beds are categorized into many types 

depending on the type of treatments or length of stay (Nguyen et al., 2005). 

The number of beds has been chosen to be the most crucial resource in many studies 

conducted to find suitable methods to solve the problems Marcon, Kharraja, 

Smolski, Luquet, and Viale (2003) used a simulation flow technique, whereas 
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Kokangul (2008) solved it in a stochastic manner by using non-linear mathematical 

models with an opportunity distribution functions of data. A simulation version was 

used to generate data to outline the relationships between the dominance parameters 

and the number of beds. Also, an integer linear programming model was used to 

fixed the problem of beds planning in hospitals by Bachouch, Guinet and Hajri-

Gabouj (2012). 

Very few studies considered a bed allocation problem as a multi-objective problem. 

Kim, Ira, Young and Buckley (2000) demonstrated with the computer-simulation 

model that there is no monocular dominant solution to the bed-allocation trouble, 

consequently indicating the multi-objective nature of the trouble. Meanwhile, 

Oddoye, Yaghoobi, Tamiz, Jones and Schmidt (2007) considered three main 

resources of beds, nurses and doctors by using a WGP model in an MODM problem 

to evaluate the performance of a Medical Assessment Unit (MAU) in the UK and 

minimize the delay time in beds allocation for patients with using different scenarios. 

Oddoye, Jones, Tamiz and Schmidt (2009) extended their work in 2007 by using 

these factors: the length of stay, the number of beds, nurses and doctors in the MAU. 

Thereafter, a GP model and a simulation model were applied to perform a trade-off 

analysis.  

The hourly allocation schemes of resources were deployed, within the MAU, to help 

minimize delays and increase the flow of patients. Manaf and Nooi (2009) discussed 

the quality of employees in public hospitals. There are also studies on optimizing 

other hospital resources, such as operating room planning and scheduling (Cardoen, 
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Demeulemeester, & Beliën, 2010). Ma and Demeulemeester (2013) considered a 

multi-level integrated approach of mathematical programming and simulation 

analysis to hospital case mix and capacity problem.  

The present research contributes to the literature by using the defuzzification method 

as a method to estimate the optimal number of beds under uncertain condition by 

including the total number of available beds as a constraint. 

5.2  Information of the Data Collection 

Both sets of secondary data are about the number of patients warded in hospitals. 

The first set of data is collected from Hospital Tuanku Fauziah (HTF) in Perlis and 

the second set from the database of the Ministry of Health (MOH) of Malaysia. The 

first set of data is classified as data with relationships because the information of the 

available number of beds in each of the 19 wards and the number of available beds in 

the hospital as a total is given. The data covered the recorded number of patients 

admitted in each day for two years (2013 and 2014). 

On the other hand, the second set of data is classified as data without relationships 

because only the recorded numbers of patients admitted on each day during a period 

of three years from 2008 to 2010 in seven hospitals are available. There is no other 

information available, such as the available number of beds in each hospital or the 

total number of beds. The second set of data classifies patients based on their age 

(Toddler, Schoolchildren, Adult, Old, and Elderly). The two sets of data along with 

their sources are explained in detail in the next sub-sections. 
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  Data from Hospital Tuanku Fauziah  5.2.1

Eighteen groups of warded patients are considered which based on their record in 

such wards in Hospital Tuanku Fauziah (HTF) in Perlis for the year 2013 and 2014. 

We consider these data as real with relationships because the source provided us 

with the total numbers of beds in each ward and in the hospital in general. The result 

from the proposed method would offer some recommendations for the management 

of the hospital on how to distribute the correct number of beds for each ward. This 

process is done by estimating the optimal number of beds for each ward based on the 

total number of available beds and recorded number of warded patients every day. A 

list of all 19 wards and the total number of beds in each ward are depicted in Table 

5.1. In this research, we consider only 18 wards and we omit the Ward19, which has 

only one bed. Hence, the total number of available beds is 383 beds instead of 384 

beds. 
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Table 5.1 

List of Wards in HTF and the Number of Available Beds in Years (2013 and 2014) 

No Ward No. of beds 

1 Ward1 4 

2 Ward2 22 

3 Ward3 2 

4 Ward4 27 

5 Ward5 5 

6 Ward6 39 

7 Ward7 10 

8 Ward8 16 

9 Ward9 18 

10 Ward10 20 

11 Ward11 39 

12 Ward12 28 

13 Ward13 28 

14 Ward14 28 

15 Ward15 24 

16 Ward16 28 

17 Ward17 20 

18 Ward18 25 

19 Ward19 1 

Total number of available beds 384 

  Data from Database of the Ministry of Health in Malaysia 5.2.2

The hospital admissions to seven hospitals in Klang Valley for three years from 2008 

to 2010 are obtained from the MOH of Malaysia. The data are classified into five 

groups of patients based on their age (Toddler, Schoolchildren, Adult, Old, and 

Elderly). We consider these real data as without relationships because the source 

provides us with the recorded number of patients based on their age without any 

information of the total number of available beds or the number of wards or any 

other information. Therefore, the proposed method handles this problem by 

assuming this data mathematically as being independent, and there is no relationship 
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between the five groups. Then, the proposed method would estimate the correct 

number of beds for each group. This process is done by estimating the optimal 

number of beds for each group based on the recorded patients warded every day 

from 2008 to 2010. A list of the number of all patients is depicted in Appendix B. 

5.3  Application of the Proposed Method in the Hospital Management 

This section discusses the application of the proposed method in real life to solve the 

problem of allocating the number of beds for the different medical, surgical 

departments and groups of patients in a hospital. The evidence that the patterns of 

patient arrivals differ between departments confounds this task. To reiterate, the 

present case study is an attempt to assist management in determining the optimal 

number of beds in each department where the hospital has a limited number of beds.  

To achieve the third and fourth objectives, five phases of research activities 

explained in Figure 4.1, and 4.2 are carried out. Phase one is about the problem 

definition where two types of problem are considered. The first problem is when the 

original crisp data have some relationships that need to be satisfied in crisp outputs 

(dependent crisp outputs) (see sub-section 5.3.1) while the second problem is 

presented in sub-section 5.3.2 when the original crisp data do not have any 

relationships be satisfied in the crisp outputs (independent crisp outputs). 

  Implementation in Hospital Tuanku Fauziah  5.3.1

We apply the proposed methodology to real-life situations by estimating the required 

number of hospital beds in the different wards of Hospital Tuanku Fauziah (HTF). In 
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the second phase of the research, we collect data and generate the fuzzy numbers. 

The following describes the phase. 

Data are collected on the number of beds used by patients during the period of 2013 

and 2014. The hospital patients are divided into 18 groups based on admissions to 

medical or surgical departments. In order to avoid observations with zero values, we 

gather data every five days. Hence, the total observation is 146 blocks days instead 

of 730 days. 

The overall data of the recorded patients in 18 wards at Hospital Tuanku Fauziah 

(HTF) in Perlis are presented in Appendix A. This case study aims at aiding 

managers in determining the optimal number of beds to be allocated to each ward 

because the number of available beds at this hospital is limited. The minimum value, 

maximum value, geometric mean, and arithmetic mean of each ward are calculated 

by using equations (2.9), (2.11) and (2.12), respectively. The result is shown in Table 

5.2.  
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Table 5.2 

Statistics of Sample for the Recorded Patients in 18 Wards in HTF in Years (2013 

and 2014) 

  Ward Min Max Geometric mean Arithmetic mean 

Ward1 1 10 4.134 4.5 

Ward2 11 39 24.497 25.055 

Ward3 1 9 2.498 2.993 

Ward4 1 14 4.43 4.829 

Ward5 4 24 12.884 13.384 

Ward6 11 44 24.906 25.986 

Ward7 3 90 11.647 13.822 

Ward8 1 44 4.122 5.658 

Ward9 30 179 57.731 59.952 

Ward19 74 154 108.095 109.055 

Ward11 17 154 37.415 40.123 

Ward12 24 180 43.07 45.795 

Ward13 25 158 44.24 46.233 

Ward14 30 174 51.659 54.349 

Ward15 1 182 35.784 42.514 

Ward16 1 69 7.697 10.952 

Ward17 3 61 20.474 22.315 

Ward18 27 155 44.842 47.541 

Table 5.3 provides the generated fuzzy numbers 𝑇𝑟𝐹𝑁 as �̃� = (𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑖𝑑  , 𝑥𝑚𝑎𝑥) 

of each ward by considering the geometric mean in Table 5.2 as the middle point of 

the fuzzy numbers in the second column. Meanwhile, column three in Table 5.3 

presents the fuzzy number of each ward by considering the arithmetic mean in Table 

5.2 as the middle point. Table 5.3 shows the fuzzy numbers with the geometric mean 

and arithmetic mean as the middle points of the fuzzy numbers in column 2 and 3 

respectively. 
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Table 5.3 

Generated Fuzzy Number with Geometric Mean and Arithmetic Mean in Each Ward 

in HTF in Years (2013 and 2014) 

  Ward Fuzzy numbers with Geometric mean Fuzzy numbers with Arithmetic mean 

Ward1 (1,4.134,10) (1,4.500,10) 

Ward2 (11,24.497,39) (11,25.055,39) 

Ward3 (1,2.498,9) (1,2.993,9) 

Ward4 (1,4.430,14) (1,4.829,14) 

Ward5 (4,12.884,24) (4,13.384,24) 

Ward6 (11,24.906,44) (11,25.986,44) 

Ward7 (3,11.647,90) (3,13.822,90) 

Ward8 (1,4.122,44) (1,5.658,44) 

Ward9 (30,57.731,179) (30,59.952,179) 

Ward19 (74,108.095,154) (74,109.055,154) 

Ward11 (17,37.415,154) (17,40.123,154) 

Ward12 (24,43.070,180) (24,45.795,180) 

Ward13 (25,44.240,158) (25,46.233,158) 

Ward14 (30,51.659,174) (30,54.349,174) 

Ward15 (1,35.784,182) (1,42.514,182) 

Ward16 (1,7.697,69) (1,10.952,69) 

Ward17 (3,20.474,61) (3,22.315,61) 

Ward18 (27,44.842,155) (27,47.541,155) 

The fuzzy number of each group represents the inputs in DEA. Then, the interval of 

each fuzzy number  𝑖 is divided into 𝑚 = 500 sub-intervals, where the elements in 

each interval of fuzzy number are considered as  (𝑥1𝑘 , 𝑥2𝑘 , … 𝑥18𝑘)                             

(i.e 𝑖𝑛𝑝𝑢𝑡1𝑘, 𝑖𝑛𝑝𝑢𝑡2𝑘 ,… 𝑖𝑛𝑝𝑢𝑡18𝑘) of DMUk in DEA. We still do the partition until 

we get a stable result that is the solutions are unchanged, and when the results are not 

stable, we increase the number of partition up to 500 sub-intervals. As mentioned in 

sub-section 4.7.3.2 each element in first fuzzy number interval is labeled as the first 

input of DMUk 𝑘 = 0,1,2, …𝑚,  and the elements of the second fuzzy number 

interval are the second inputs of DMUk and so on until we reach the last fuzzy 

number.  
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Figure 5.1 shows that each fuzzy number and its points in the sub-interval represent 

the inputs of 𝑘 DMUs. This figure also illustrates the generating of 𝑘 DMUs as 

presented in Table 4.1. 

 

Figure 5.1. The fuzzy numbers and their points in sub-interval as inputs of 𝑘 DMUs 

5.3.1.1  Implementation with Geometric Mean 

Consider the geometric mean as the middle points for each of the 18 fuzzy numbers. 

For each fuzzy number, the sub-intervals produced are as follows: when 𝑚 = 1 then 

𝑘 = 0, 1, which means one interval and two elements and from equations (4.4 and 

4.5). The element of the corresponding interval is  𝑥0 = 𝑥𝑙 and  𝑥1 = 𝑥𝑢 which lead 

to the main interval of the fuzzy number [𝑥𝑙 , 𝑥𝑢]. Then, when 𝑚 = 2 partition, the 

interval [𝑥𝑙 , 𝑥𝑢] is divided into two sub-intervals with three elements, where 
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𝑘 = 0, 1,2  and so on until we reach 𝑚 sub-intervals with 𝑘 = 𝑚 + 1 which is the 

number of all elements of the corresponding sub-interval.  

The formulation indicates that no result could be obtained that satisfy the 

relationship (the total number of beds is 383) or the objective function and 

constraints when 𝑚 = 1. However, the results start to appear from 𝑚 = 2  until 

 𝑚 = 500. 

Table 5.4 

Results of the Proposed Method with Geometric Mean for Data from HTF 

  Wards Fuzzy numbers Crisp outputs 

      i (𝑥𝑖
𝑙  , 𝑥𝑖

𝑔𝑒𝑚
 , 𝑥𝑖

𝑢) m=2 m=10 m=40 m=50 m=100 m=250 m=500 

Ward1 (1,4.134,10) 4 1 2 2 2 2 2 

Ward2 (11,24.497,39) 11 11 15 15 15 15 15 

Ward3 (1,2.498,9) 5 1 2 2 2 2 2 

Ward4 (1,4.430,14) 5 1 2 2 2 2 2 

Ward5 (4,12.884,24) 5 4 7 6 6 6 6 

Ward6 (11,24.906,44) 27 11 15 15 15 15 15 

Ward7 (3,11.647,90) 3 11 9 8 8 8 8 

Ward8 (1,4.122,44) 22 5 3 3 3 3 3 

Ward9 (30,57.731,179) 30 43 41 42 42 42 42 

Ward19 (74,108.095,154) 114 80 84 84 84 84 84 

Ward11 (17,37.415,154) 17 30 27 28 28 28 28 

Ward12 (24,43.070,180) 24 38 35 34 34 34 34 

Ward13 (25,44.240,158) 25 38 35 35 35 35 35 

Ward14 (30,51.659,174) 30 41 41 41 41 41 41 

Ward15 (1,35.784,182) 1 19 15 16 16 16 16 

Ward16 (1,7.697,69) 1 7 5 5 5 5 5 

Ward17 (3,20.474,61) 32 3 9 9 9 9 9 

Ward18 (27,44.842,155) 27 39 36 36 36 36 36 

Sum of the estimated No. of beds 383 383 383 383 383 383 383 

Table 5.4 shows that a stable result starts to emerge in the partition 𝑚 =  50, which 

means that the optimal solution of the estimated number of beds of each ward 

appears in partition 𝑚 =  50. In other words, a stable result appears when we have 
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50 sub-intervals. Furthermore, it can be noted that the sum of all estimated values 

under each partition (dependent crisp outputs) satisfy the relationship that the total 

number of all beds is 383 (𝑅(�̅�𝑖 ) = 𝐶 = 383) in all cases with different number of 

partitions. 

5.3.1.2  Implementation with Arithmetic Mean 

Table 5.5 shows the estimated number of the beds, but when the middle point of 

fuzzy numbers is the arithmetic mean. 

Table 5.5 

Results of the Proposed Method with Arithmetic Mean for Data from HTF  

  Ward Fuzzy numbers Crisp values 

     i (xi
l , xi

arth , xi
u) m=2 m=10 m=40 m=50 m=100 m=250 m=500 

Ward1 (1,4.500,10) 5 2 2 2 2 2 2 

Ward2 (11,25.055,39) 25 16 15 15 15 15 15 

Ward3 (1,2.993,9) 5 2 2 2 2 2 2 

Ward4 (1,4.829,14) 5 2 2 2 2 2 2 

Ward5 (4,13.384,24) 4 7 7 7 7 7 7 

Ward6 (11,25.986,44) 16 21 20 20 20 20 20 

Ward7 (3,13.822,90) 10 6 5 5 5 5 5 

Ward8 (1,5.658,44) 5 2 2 2 2 2 2 

Ward9 (30,59.952,179) 30 37 39 39 39 39 39 

Ward19 (74,109.055,154) 82 90 92 92 92 92 92 

Ward11 (17,40.123,154) 37 25 23 23 23 23 23 

Ward12 (24,45.795,180) 24 28 30 30 30 30 30 

Ward13 (25,46.233,158) 25 31 31 31 31 31 31 

Ward14 (30,54.349,174) 30 38 36 36 36 36 36 

Ward15 (1,42.514,182) 37 28 28 28 28 28 28 

Ward16 (1,10.952,69) 10 3 4 4 4 4 4 

Ward17 (3,22.315,61) 3 11 9 9 9 9 9 

Ward18 (27,47.541,155) 30 34 36 36 36 36 36 

Sum of the estimated No. of beds 383 383 383 383 383 383 383 

Table 5.5 shows that a stable result starts to emerge from 𝑚 =  40, which means 

that the optimal solution of the number of beds for each ward appeared earlier than 



 

154 

  

in the case of the geometric means. It can be noted that the sum of all estimated 

values under each partition also satisfy the relationship that total number of all beds 

is 383 for all cases with different number of partitions.  

5.3.1.3  Estimated Number of Beds, as an Interval 

So, from the results obtained in Table 5.4 and 5.5 with geometric mean and 

arithmetic mean, respectively, with the real number of available beds in each ward, 

we can introduce an estimated number of beds as an interval for each ward as 

described in Table 5.6. 

Table 5.6 

Available Number of Beds and the Estimated Number of Beds under Geometric and 

Arithmetic Mean for Data from HTF in Years (2013 and 2014) 

  Ward Available beds 
Estimated No. of beds with 

Geometric mean 

Estimated No. of beds with the 

Arithmetic mean 

Ward1 4 2 2 

Ward2 22 15 15 

Ward3 2 2 2 

Ward4 5 2 2 

Ward5 27 6 7 

Ward6 39 15 20 

Ward7 10 8 5 

Ward8 16 3 2 

Ward9 18 42 39 

Ward19 20 84 92 

Ward11 39 28 23 

Ward12 28 34 30 

Ward13 28 35 31 

Ward14 28 41 36 

Ward15 24 16 28 

Ward16 25 5 4 

Ward17 28 9 9 

Ward18 20 36 36 

Total No. of beds 383 383 383 
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The results described in Table 5.6, could help the hospital managers in planning the 

suitable number of available beds in each ward. It is important to be note that the 

estimated number of beds based on the proposed method does not consider the size 

of wards. For instance, in Ward12, the minimum number of beds is 28, and the 

maximum number of beds is 34. This means that the proposed method can give an 

interval of the estimated value of beds in each ward by using different middle points 

for each fuzzy number.  

5.3.1.4 Results of COG and A&Z Methods 

In order to validate the proposed method, we use two defuzzification methods, 

namely, the COG and the method of A&Z (2007) to defuzzify the groups of fuzzy 

numbers. This comparison supports our proposed procedure to defuzzify groups of 

fuzzy numbers and keeps some relationships in the crisp outputs. Table 5.7 shows 

the results of the COG method using equation (2.13) and the A&Z method using 

equation (2.23) to the 18 groups of fuzzy numbers with geometric means as the 

middle point.  

The COG and A&Z methods provide us with the estimated number of beds as 

individuals without fulfilling any requirement to the total number of available beds 

in the hospital. In such case, the total number of estimated numbers of beds by using 

the COG and the A&Z method is 848 and 771, respectively, which are very different 

from the real available number of beds of 383. 
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Table 5.7 

Estimated Number of Beds Based on the COG and A&Z Methods for Data from HTF 

  Ward Fuzzy numbers 

 

COG 

 

A&Z 

Ward1 (1,4.134,10) 5 5 

Ward2 (11,24.497,39) 25 25 

Ward3 (1,2.498,9) 4 4 

Ward4 (1,4.430,14) 6 6 

Ward5 (4,12.884,24) 14 13 

Ward6 (11,24.906,44) 27 26 

Ward7 (3,11.647,90) 35 29 

Ward8 (1,4.122,44) 16 13 

Ward9 (30,57.731,179) 89 81 

Ward19 (74,108.095,154) 112 111 

Ward11 (17,37.415,154) 69 61 

Ward12 (24,43.070,180) 82 73 

Ward13 (25,44.240,158) 76 68 

Ward14 (30,51.659,174) 85 77 

Ward15 (1,35.784,182) 73 64 

Ward16 (1,7.697,69) 26 21 

Ward17 (3,20.474,61) 28 26 

Ward18 (27,44.842,155) 76 68 

Sum of the estimated No. of beds 848 771 

In other words, these methods fail to provide an acceptable solution to the problem 

in such case. In the next sub-section, we compare the performance of our method 

using the Kikuchi’s method. 

5.3.1.5  Results of Kikuchis’ Method 

The current section introduces the estimated number of available beds in each of the 

18 wards in HTF using the Kikuchi’s method presented in Section 3.1. By applying 

Kikuchi’s method model (3.2), the estimated number of beds is shown in Table 5.8. 

Then, the results obtained by the Kikuchi’s’ method is compared with the result of 

the proposed method presented in Table 5.4 with a geometric mean as the middle 

point.  
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The results of the two methods provide us with the estimated number of beds for 

each ward, which is nearly approximated and there is no big difference found in the 

estimated number of beds for each ward. The two methods keep the relationship in 

the crisp output and give the sum of the estimated number of beds equal to the total 

number of available beds, which are 383 beds. 

Table 5.8 

Estimated Number of Beds Based on Kikuchis’ Method and Proposed Method for 

Data from HTF 

  Ward Fuzzy numbers Kikuchis’ method Proposed method 

𝒉 0.3966823 0.225123818 

Ward1 (1,4.134,10) 3 2 

Ward2 (11,24.497,39) 17 15 

Ward3 (1,2.498,9) 2 2 

Ward4 (1,4.430,14) 3 2 

Ward5 (4,12.884,24) 8 6 

Ward6 (11,24.906,44) 17 15 

Ward7 (3,11.647,90) 7 8 

Ward8 (1,4.122,44) 3 3 

Ward9 (30,57.731,179) 41 42 

Ward19 (74,108.095,154) 88 84 

Ward11 (17,37.415,154) 26 28 

Ward12 (24,43.070,180) 32 34 

Ward13 (25,44.240,158) 33 35 

Ward14 (30,51.659,174) 39 41 

Ward15 (1,35.784,182) 15 16 

Ward16 (1,7.697,69) 4 5 

Ward17 (3,20.474,61) 10 9 

Ward18 (27,44.842,155) 35 36 

Sum of the estimated No. of beds 383 383 

But when we consider the objective of Kikuchis’ method that assumes the results are 

the set of values for 𝑥𝑖, such that the smallest membership grade among them is 

maximized.  
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In the other words, among all the values for 𝑥𝑖 that satisfy the relationship, the one 

that maximizes the minimum membership grade 𝜇𝑥𝑖; 𝑚𝑎𝑥𝑚𝑖𝑛{μ𝑥𝑖
− , μ𝑥𝑖

+ }, is chosen as 

equation (5.1), which is presented in model (3.2) as equation (3.2b). 

(
𝑥𝑖 − 𝑥𝑖

𝑙

𝑥𝑖
𝑚 − 𝑥𝑖

𝑙) = 𝜇𝑥𝑖
− ≥ ℎ

 

(
𝑥𝑖 − 𝑥𝑖

𝑢

𝑥𝑖
𝑚 − 𝑥𝑖

𝑢) = 𝜇𝑥𝑖
+ ≥ ℎ

                                                               (5.1) 

where, μ𝑥𝑖
− (𝑥𝑖) and μ𝑥𝑖

+ (𝑥𝑖) represent the left and right hand side of the membership 

of fuzzy number and ℎ is the minimum degree of membership that one of the values 

of 𝑥1, 𝑥2, … 𝑥18  takes.  

Then, by applying equation (5.1), the value of ℎ for all (𝑖 = 1,2, . . . 18) with the 

estimated number of beds obtained from our proposed method is illustrated in Table 

5.9.  
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Table 5.9 

Left and Right Membership Function Values with the Estimated Number of Beds for 

Each Fuzzy Numbers Based on the Proposed Method for Data from HTF 

  Ward Fuzzy numbers 𝝁𝒊
− 𝝁𝒊

+ 

Ward1 (1, 4.134, 10) 0.3190810 1.3637913 

Ward2 (11, 24.497, 39) 0.2963622 1.6548300 

Ward3 (1, 2.498, 9) 0.6675567 1.0765918 

Ward4 (1, 4.430, 14) 0.2915452 1.2539185 

Ward5 (4, 12.884, 24) 0.2251238 1.6192875 

Ward6 (11, 24.906, 44) 0.2876456 1.5188017 

Ward7 (3, 11.647, 90) 0.5782352 1.0465458 

Ward8 (1, 4.122, 44) 0.6406150 1.0281358 

Ward9 (30, 57.731, 179) 0.4327287 1.1297199 

Ward19 (74, 108.095, 154) 0.2932981 1.5248884 

Ward11 (17, 37.415, 154) 0.5388195 1.0807565 

Ward12 (24, 43.070, 180) 0.5243838 1.0662382 

Ward13 (25, 44.240, 158) 0.51975052 1.0812236 

Ward14 (30, 51.659, 174) 0.5078720 1.0871253 

Ward15 (1, 35.784, 182) 0.4312328 1.1353067 

Ward16 (1, 7.697, 69) 0.5972824 1.0439946 

Ward17 (3, 20.474, 61) 0.3433673 1.2831269 

Ward18 (27, 44.842, 155) 0.5044278 1.080267 

maxmin{ 𝜇𝑖
−,𝜇𝑖

+} 0.2251238 

Table 5.9 provides the values of the left and right membership function of each fuzzy 

number 𝑖 = 1,2, . . ,18 with the estimated number of beds obtained by using proposed 

method. While, by using equation (5.1), the value of h is obtained, and this value ℎ 

maximizes the minimum membership grade 𝜇𝑥𝑖 as 𝑚𝑎𝑥𝑚𝑖𝑛 {𝜇𝑥𝑖
− ,  𝜇𝑥𝑖

+ } is              

(ℎ = 0.225123818) by our proposed method. The value ℎ that maximizes the 

minimum membership grade with the estimated number of beds obtained from 

Kikuchi's’ method is (ℎ = 0.3966823) as displayed in Table 5.8. 
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It is clear that the estimated number of beds obtained by using the proposed method 

provides a minimum value of ℎ that maximize the minimum membership grade in 

comparison to the solution obtained by the Kikuchi’s method.  

In this research, the results of the proposed method work under the assumption of the 

nearest point, where the results reach the nearest point of the fuzzy numbers better 

than the points reached by the A&Z method. Since the Kikuchi’s method and the 

proposed method work under the same concept that is the relationship in the original 

crisp data need to be satisfied in the crisp outputs, the results from the Kikuchi’s 

method and proposed method are compared using the equation (2.24) by finding the 

minimum distance between each crisp output and its fuzzy number.  

The results obtained by equation (2.24) based on the Kikuchi’s method and proposed 

method are presented in Table 5.10.   
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Table 5.10 

Minimum Distance between Each Crisp Output and Its Fuzzy Number Based on the 

Kikuchis’ Method and the Proposed Method for Data from HTF 

  Wards Fuzzy numbers 
Distance based on the 

Kikuchis’ method 

Distance based on the 

proposed method 

Ward1 (1, 4.134, 10) 4.5 5.4 

Ward2 (11, 24.497, 39) 15.8 17.9 

Ward3 (1, 2.498, 9) 4.2 4.2 

Ward4 (1, 4.430, 14) 6.9 7.8 

Ward5 (4, 12.884, 24) 11.2 13.3 

Ward6 (11, 24.906, 44) 18.8 20.8 

Ward7 (3, 11.647, 90) 49.4 48.5 

Ward8 (1, 4.122, 44) 24.0 24.0 

Ward9 (30, 57.731, 179) 85.3 84.4 

Ward19 (74, 108.095, 154) 46.2 50.4 

Ward11 (17, 37.415, 154) 77.6 75.8 

Ward12 (24, 43.070, 180) 89.0 87.2 

Ward13 (25, 44.240, 158) 75.8 74.0 

Ward14 (30, 51.659, 174) 82.1 80.3 

Ward15 (1, 35.784, 182) 103.5 102.6 

Ward16 (1, 7.697, 69) 38.7 37.8 

Ward17 (3, 20.474, 61) 33.3 34.3 

Ward18 (27, 44.842, 155) 72.5 71.6 

Table 5.10 shows the results of calculation of minimum distance between crisp 

outputs and the fuzzy numbers by using equation (2.24). It can be seen that the 

proposed method has better approximated crisp outputs to the fuzzy numbers in 9 

wards, which are Ward7, Ward9, Ward11, Ward12 , Ward13, Ward14 , Ward715 , Ward16 , 

and Ward18 since in all cases the minimum distance is less than Kikuchi’s. Kikuchi 

has only six values with less minimum distance compared to our proposed method, 

while they have two equal values in Ward3 and Ward8. As a whole, our proposed 

method performs better than Kikuchi’s.  
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 Implementation with Data from the Malaysia MOH  5.3.2

Data are collected on the number of beds used by patients for the duration of 1096 

days. The data of the hospital patients are provided into five categories based on the 

age of patients as [Toddler (T), Schoolchildren (S), Adult (A), Old (O), and Elderly 

(E)], with the number of patients recorded every day in seven Malaysian hospitals. 

Because the geometric mean is used to find the middle point of each fuzzy number 

and also the DEA model is used, the data with zero observations need to be adjusted. 

For these reasons, we replace the days with zero value of the recorded number of 

patients into one, which include the days (3/9/2008; 19/9/2009; 26/3/2010 and 

19/6/2010).  

Table 5.11 illustrates the five groups of fuzzy numbers with geometric mean as 

�̃�𝑖 = (𝑥𝑖
𝑙 , 𝑥𝑖

𝑔𝑒𝑚
, 𝑥𝑖
𝑢), 𝑖 = 1,2,3,4,5   by using equations (4.2). 

Table 5.11 

Generated Fuzzy Numbers for Each Group of Patients for Data from Malaysia MOH 

 
Toddler School-children Adult Old Elderly 

Min 9 1 3 8 7 

Geometric mean 37.083 7.359 19.120 31.956 54.848 

Max 95 38 77 67 89 

Fuzzy Number (9,37.083,95) (1,7.359,38) (3,19.120,77) (3,19.120,77) (7,54.848,89) 
 

After generating fuzzy numbers to each group of patients as shown in Table 5.11, we 

start partitioning each interval of the fuzzy numbers as follows.  
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When 𝑚 = 1, it means that the interval is considered one part (i.e. one interval) and 

from equation (4.4) and (4.5), the element of the corresponding interval is  𝑥0 =

𝑥𝑙 ,  𝑥1 = 𝑥𝑢 and the interval is  [ 𝑥𝑙 , 𝑥𝑢]. This indicates that no result could be 

obtained that satisfy the objectives or constraints when 𝑚 = 1. Then, when 𝑚 = 2 , 

the interval is partitioned into two sub-intervals indicating that the results start to 

appear from this partition 𝑚 = 2  until  𝑚 = 500. Table 5.12 illustrates the crisp 

outputs of each of the five groups of fuzzy numbers with the number of partitions 

(sub-intervals).  

Table 5.12 

Results of the Proposed Method for Data from Malaysia MOH 

No 
Groups of 

patient 

Fuzzy numbers Crisp outputs 

i  (𝑥𝑖
𝑙 , 𝑥𝑖

𝑚 , 𝑥𝑖
𝑢) m=2 m=10 m=30 m=51 m=52 m=100 m=500 

1 Toddler (9,37.083,95) 52 44 46 45 45 45 45 

2 Schoolchildren (1,7.359,38) 20 15 14 14 14 14 14 

3 Adult (3,19.120,77) 40 32 30 31 31 31 31 

4 Old (8,31.956,67) 37 37 35 35 35 35 35 

5 Elderly (7,54.848,89) 48 48 51 51 51 51 51 

Sum of the estimated No. of beds 
197 176 176 176 176 176 176 

As shown in Table 5.12, the proposed method presents different results and different 

summation of the estimated number of beds under each partition. The total number 

of partition is chosen to be 500 is done at random, and if the stable result does not 

appear until that value, the number of partitions has to be increased. However, the 

results start stabilizing at 𝑚 = 51, where the optimal solution is considered. In this 

case, stable results mean that estimated number of beds for each group is the same 
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even though the number of partitions is more than 51. Besides that, the sum of the 

estimated number of beds is always equal to a specific value, 176, even though we 

do not define any relationship to be satisfied in the crisp output by ignoring all 

constraints that present the relationships in model (4.10).  

5.3.2.1 Results of COG and A&Z with Data from Malaysia MOH  

In order to validate the proposed method in the case where no relationships to be 

satisfied in the crisp outputs (independent crisp outputs), we use two defuzzification 

methods, namely, COG and the method by A&Z.  

Table 5.13 

Results of the COG and A&Z Methods for Data from Malaysia MOH  

No.  

 

Fuzzy numbers 

(𝒙𝒊
𝒍 , 𝒙𝒊

𝒈𝒆𝒐
 , 𝒙𝒊

𝒖) 
COG A&Z 

1 (9,37.083,95) 47 45 

2 (1,7.359,38) 15 14 

3 (3,19.120,77) 33 31 

4 (8,31.956,67) 36 35 

5 (7,54.848,89) 50 51 

Sum of the estimated No. of beds 181 176 

Table 5.13 shows that the results obtained by the A&Z method are the same as those 

obtained by the proposed method in Table 5.12, which appeared in partition 𝑚 = 51. 

However, the results obtained using the COG method are different from those 

obtained by the proposed method  and A&Z method with a different total number of 

estimated numbers of beds. In terms of the distance between each fuzzy number and 

the crisp output obtained by the A&Z method and the proposed method, both 
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methods give the same smallest distance which are calculated using equation (2.24) 

as presented in Table 5.14. 

Table 5.14  

Smallest Distance Based on Crisp Outputs of Proposed Method and A&Z Method for 

Data from Malaysia MOH 

No.  

 

Fuzzy numbers 

 (𝒙𝒊
𝒍 , 𝒙𝒊

𝒈𝒆𝒐
 , 𝒙𝒊

𝒖) 

The smallest distance 

based the proposed 
method 

The smallest distance 

based the A&Z 
method 

1 (9,37.083,95) 35.6395 35.6395 

2 (1,7.359,38) 15.9181 15.9181 

3 (3,19.120,77) 31.4559 31.4559 

4 (8,31.956,67) 24.1958 24.1958 

5 (7,54.848,89) 33.5982 33.5982 

This finding leads us to say that the proposed method gives the nearest point to the 

fuzzy numbers in case of no relationships. Furthermore, this finding and the results 

obtained in Table 5.10 support our proposed method with its new suggestion concept 

that the crisp output is the best nearest point in the case where some relationships in 

the original crisp data need to be satisfied in the crisp outputs.  

5.4  Implementation of the Proposed Method Based on LP Model  

In order to compare the performance of the proposed method based on CCR-DEA 

model, a special case of our proposed method based on LP model is developed as 

discussed in Section 4.7.3.4 and model (4.11). This is probable because the 

relationship  𝑅(�̅�𝑖)  and the membership function μ�̃�𝑖(𝑥𝑖𝑘)  are linear. In this case, 

we consider the data with and without relationships to estimate the number of beds. 

In the first case, we consider the problem of HTF, that is, data with relationships.  
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Table 5.15 

Results Based on LP Model with Geometric Mean for Data from HTF in Years (2013 

and 2014) 

Ward Fuzzy numbers Crisp outputs 

      i   (xi
l , xi

gem
 , xi

u) m=2 m=10 m=50 m=101 m=102 m=250 m=500 

Ward1 (1,4.134,10) 1 1 2 2 2 2 2 

Ward2 (11,24.497,39) 11 13 15 15 15 15 15 

Ward3 (1,2.498,9) 1 1 2 2 2 2 2 

Ward4 (1,4.430,14) 1 1 2 2 2 2 2 

Ward5 (4,12.884,24) 4 6 6 7 7 7 7 

Ward6 (11,24.906,44) 11 11 15 15 15 15 15 

Ward7 (3,11.647,90) 3 11 8 8 8 8 8 

Ward8 (1,4.122,44) 1 5 3 3 3 3 3 

Ward9 (30,57.731,179) 30 44 42 42 42 42 42 

Ward19 (74,108.095,154) 74 76 84 84 84 84 84 

Ward11 (17,37.415,154) 17 30 28 27 27 27 27 

Ward12 (24,43.070,180) 24 39 34 35 34 34 34 

Ward13 (25,44.240,158) 91 38 35 35 35 35 35 

Ward14 (30,51.659,174) 30 44 41 40 41 41 41 

Ward15 (1,35.784,182) 1 14 16 16 16 16 16 

Ward16 (1,7.697,69) 24 7 5 5 5 5 5 

Ward17 (3,20.474,61) 32 3 9 9 9 9 9 

Ward18 (27,44.842,155) 27 39 36 36 36 36 36 

Sum of the estimated No. of beds 383 383 383 383 383 383 383 

Table 5.15 summarizes the results of the proposed method with LP model for the 

number of partitions that start from 𝑚 = 2 to  𝑚 = 500 and the estimated number of 

beds that satisfied the relationships. The stable results under this model appeared in 

𝑚 = 102. Meanwhile, the results in the case of using the proposed method with 

DEA concept as in Table 5.4 show that the stable results appear in 𝑚 = 50. This 

finding leads us to suggest that the proposed method with the DEA concept is 

superior to the proposed method using the LP concept since the stable results 

appeared earlier, that is, at 𝑚 = 50 while with LP the results became stable at 

𝑚 = 102. 
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Table 5.16 

Results of the Proposed Method based LP-Model with Geometric Mean of Data from 

Malaysia MOH. 

No Groups of patient Fuzzy numbers Crisp outputs 

i  (𝑥𝑖
𝑙  , 𝑥𝑖

𝑚 , 𝑥𝑖
𝑢) m=2 m=10 m=30 m=51 m=52 m=100 m=500 

1 Toddler (9,37.083,95) 52 44 46 45 45 45 45 

2 Schoolchildren (1,7.359,38) 20 15 14 14 14 14 14 

3 Adult (3,19.120,77) 40 32 30 31 31 31 31 

4 Old (8,31.956,67) 37 37 35 35 35 35 35 

5 Elderly (7,54.848,89) 48 48 51 51 51 51 51 

Sum of the estimated No. of beds 197 176 176 176 176 176 176 

In addition, Table 5.16 shows the results of the proposed method based on LP model 

when no relationships in the original crisp data needs to be satisfied in the crisp 

outputs using the data from the database of the Ministry of Health. The table shows 

that the proposed method under DEA and LP concepts give stable results under the 

same number of partition, i.e. 𝑚 = 51. 

5.5 Application of the Proposed Method with Numerical Examples 

Another research objective to achieve is related to the applicability of the proposed 

method to solve other problems. It is applied to numerical examples in two different 

applications. Firstly, a new insight of the interval weight (IW) method in goal 

programming (GP) is presented to fulfill the optimal weights. Secondly, the 

application of the proposed method for ranking fuzzy numbers is introduced. In the 

previous sections, the method is applied to only triangular fuzzy numbers. Here, the 

ranking of each triangular and trapezoidal fuzzy numbers is presented. 
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 Interval Weights  5.5.1

The majority of the real-world problems are characterized by their multiple 

objectives, which may contradict one another. In order to determine solutions to 

these problems, GP was proposed by Charnes and Cooper (1961) as an effective 

method. The relative importance of one objective over another in the context of 

multi-objectives programming (MOP) is defined as the first objective’s weight. In 

this regard, weights are significant in the determination of a solution to a problem 

based on diverse DMs subjective requirements. Weights related to unwanted 

deviational variables in GP gauge the relative significance of the relative objective. 

Various approaches deriving weights or priorities have been explored in earlier 

studies as mentioned in Chapter Three. 

Research on IW associated with unwanted deviational variables in the weighted goal 

programming (WGP) or fuzzy weighted goal programming (FWGP) area remains 

lacking in the literature. To discuss such an uncertain weight structure, weights 

associated with unwanted deviational variables in the goal achievement function 

have been considered as a fuzzy interval form in the proposed approach. The interval 

weight goal programming (IWGP) methodology is an appropriate technique for 

solving this problem. Owing to the involvement of interval uncertainty in MOP 

problems, the interval programming approach is an ideal method to be applied. 

Therefore, in order to shed light on the uncertain weight structure, weights related to 

unwanted deviational variables in the goal achievement function are deemed as 

fuzzy numbers form in the proposed method. At this end, the fuzzy interval weight 

goal programming (FIWGP) method is ideally designed to solve this problem. 
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Moreover, the target achievement function is presented as the unwanted deviational 

variables weighted summation, where weights are regulated through the use of a 

pairwise interval judgment matrix in the GP method. At this point, the issue is in the 

form of interval programming, where interval goals are transformed into standard 

ones through IWGP (Wang & Elhag, 2007). The sum of unwanted deviations in 

relation to respective goals is believed to achieve the desired goal values within a 

particular range after which the regret function of the final executable model is 

developed. In other words, the problem is resolved via a standard GP methodology. 

The primary advantage of our proposed method is that the suitable weights for 

achieving goals can be apportioned in the approximate decision environment based 

on their significance. 

On the other hand, prior studies focused on the interval as (min, max) which includes 

just two extreme values from all responses (Sen & Pal, 2013). Since the weights are 

given by the DMs who have different opinions, background, and experience, these 

responses should be treated in a fuzzy environment. Therefore, the need arises to 

find a method covering all weights that come from the DMs. In order to solve such 

cases, the interval weight is represented as a 𝑇𝑟𝐹𝑁 with a geometric mean as a 

middle point for this fuzzy number. Since the fuzzy numbers generalize closed 

intervals (Bede, 2013), this fuzzy number is defined as a fuzzy interval weight (FIW) 

under the problem of solving and of finding the optimal weights in GP. Hence, this 

research contributes by proposing fuzzy IWs to determine solutions for MOLP 

problems. In doing so, this study specifically applies the proposed method to 

defuzzify these groups of fuzzy numbers representing IWs based on DEA. 
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Figure 5.2 illustrates the algorithm of solving a MOLP problem based on the FIW 

and IW methods using GP and FGP techniques.  

 

Figure 5.2. Algorithm of solving an MOLP using GP and FGP  

Two examples of a MOLP problem are addressed in this section to compare the 

results based on the optimal weight using FIW and IW method as follows: 

Example 5.5.1.1 

Consider a three objective problem presented in Sen and Pal (2013) as follows: 

𝑚𝑎𝑥 𝑍1 =70𝑥1 − 30𝑥2                                                              (5.2) 

𝑚𝑎𝑥 𝑍2 =3𝑥1 + 8𝑥2                                     

  𝑚𝑎𝑥 𝑍3 =− 4𝑥1 + 𝑥2                                     

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜                                  

2𝑥1 + 𝑥2 ≥ 8                                                                        

𝑥1 + 𝑥2 ≥ 5                                                                          

𝑥1 − 2𝑥2 ≥ −6                                                                    

5𝑥1 − 2𝑥2 ≤ 18                                                                   

𝑥1, 𝑥2 ≥ 0                                                                             

 

Step 1: Defining the aspiration levels of each objective goals. 

Step 2: Determining the membership goals associated with each objective. 

Step 3: Considering the weights. 

Step 4: Finding the optimal weight.  

Step 5: Solving an MOLP problem using GP and FGP. 
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The solution details of this MOLP problem are obtained based on the algorithm in 

Figure 5.2 in the following steps. In terms of the algorithm introduced in Section 4.7, 

the proposed method (FIW) is used in Step 4 to get the optimal weight, and then 

these weights are used in solving the MOLP problem by using GP model.  

Step 1: Consider the calculated individual minimum and maximum values of each 

the three objectives 𝑍1(𝑥),  𝑍2(𝑥) and  𝑍3(𝑥) as shown in Table 5.17.  

Table 5.17 

Individual Minimum and Maximum Values of Each of Objective Functions 

Step 2: Determine the membership goals associated with each objective that can be 

expressed as shown in Figure 5.3.   

 

Figure 5.3. Membership associated with maximization and minimization objectives  

Objective functions Minimum (Zi(x))=Li Maximum (Zi(x))=Ui 

Z1(x) 20 250 

Z2(x) 20 66 

Z3(x) -18 -4 

𝐿𝑖 

 

𝑀𝑖 

 

 (b) In Minimization 
 Minimization 

(a) In Maximization 
  

𝑈𝑖 

 

1 
𝑍𝑖(x) 𝑍𝑖(x) 

 

𝜇𝑍𝑖(x) 

X X 

𝑀𝑖 

 

1 

𝜇
𝑍𝑖(x)
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The generic form of the FGP problem can be presented as: 

𝑍𝑖(𝑋) ≳  𝑀𝑖                                       𝑖 = 1,2, … , 𝐼1              (5.3) 

𝑍𝑖(𝑋) ≲  𝑀𝑖                                       𝑖 = (𝐼1 + 1), (𝐼1 + 2), . . , 𝐼 

subject to                                                                                           

 𝑋 ∈ 𝐹 = {𝑋 ∈ 𝑅𝑛| {
𝐴𝑋 ≥ 𝐶
𝐴𝑋 ≤ 𝐶

} , 𝑋 ≥ 0, 𝐶 ∈ 𝑅𝑚}                     

Now, description of fuzzy goals is defined as follows: 

The fuzzy goals take the form of either 𝑍𝑖(𝑋) ≳  𝑀𝑖 or 𝑍𝑖(𝑋) ≲  𝑀𝑖 , depending on 

whether the objectives should be maximized or minimized, where 𝑀𝑖 is the 

imprecise aspiration level of the i
th 

objective, X is the vector of the decision variables 

and  ≳  and ≾ represent the fuzziness of ≥ and ≤ restrictions, respectively (Ehrgott 

& Gandibleux, 2003; Zimmermann, 1978). In a decision-making situation, fuzzy 

goals are characterized by their respective membership functions. Thus, the 

following membership function, which corresponds to each objective function are 

introduced as: 

The membership function 𝜇𝑖 for the i
th 

fuzzy goal maximizing 𝑍𝑖(𝑥) can be described 

as; 

𝜇𝑖(𝑥) =

{
 

 
1                                 𝑍𝑖(𝑥) ≥  𝑀𝑖 

𝑍𝑖(𝑥) − 𝐿𝑖
𝑀𝑖  −  𝐿𝑖

                 𝐿𝑖 ≤ 𝑍𝑖(𝑥) ≤  𝑀𝑖     

 0                                   𝑍𝑖(𝑥) < 𝐿𝑖

                        (5.4) 

where, 𝑖 = 1,2, … , 𝐼1     
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On the other hand, the membership function 𝜇𝑖 for the i
th 

fuzzy goal for minimizing 

𝑍𝑖(𝑥) can be defined as. 

𝜇𝑖(𝑥) =

{
 
 

 
 1                                𝑍𝑖(𝑥) ≤  𝑀𝑖

𝑈𝑖 − 𝑍𝑖(𝑥)

𝑈𝑖 −𝑀𝑖  

      𝑀𝑖 ≤ 𝑍𝑖(𝑥) ≤  𝑈𝑖   

 0                             𝑍𝑖(𝑥) ≥ 𝑈𝑖

                                  (5.5) 

where, 𝑖 = (𝐼1 + 1), (𝐼1 + 2),… , 𝐼,  𝐿𝑖 is the minimum value for the i
th 

fuzzy goal 

and   𝑈𝑖   is the maximum value for the i
th

 fuzzy goal, 𝑖 = 1,2, … , 𝐼1, is the number of 

goals under maximization and 𝑖 = (𝐼1 + 1), (𝐼1 + 2), . , 𝐼 is the number of goals under 

minimization and 𝐼 is the total number of goals. 

Consequently, the membership goals of the defined membership functions with the 

highest membership value (unity) are presented as follows: 

𝑍𝑖(𝑥) − 𝐿𝑖
𝑀𝑖 − 𝐿𝑖

+ 𝜌𝑖
− − 𝜌𝑖

+ = 1                 𝑖 = 1,2, … , 𝐼1                           (5.6)  

 
𝑈𝑖 − 𝑍𝑖(𝑥)

𝑈𝑖 −𝑀𝑖
 + 𝜌𝑖

− − 𝜌𝑖
+ = 1                𝑖 = (𝐼1 + 1), (𝐼1 + 2), . . . , 𝐼   (5.7)  

where, 𝜌𝑖
−, 𝜌𝑖

+ ≥ 0 are under and over-deviational variables concerned with 

achieving the aspired level of the i
th

 membership goal. 
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Since the goals in this example are all in maximization, so the membership goals 

associated with each objective can be expressed using equations (5.4) and (5.6) as 

follows: 

(1 230⁄ )(70 𝑥1 − 30 𝑥2 − 20) + 𝜌1
− − 𝜌1

+ = 1                  

(1 46⁄ )(3 𝑥1 + 8 𝑥2 − 20)     + 𝜌2
− − 𝜌2

+  = 1                    

(1 14⁄ )(−4 𝑥1 + 𝑥2 − 18) + 𝜌3
− − 𝜌3

+   = 1                      (5.8) 

Step 3: In order to explain the approach further, weights are used as presented in 

(Chaloob, Ramli, & Nawawi, 2016) with the geometric mean as the middle point. 

The summary of weights is given in Table 5.18. 

Table 5.18 

Summary of the Weights 

 Weight 1 Weight 2 Weight 3 

Max weight 0.799 0.511 0.231 

Min weight 0.42 0.077 0.059 

Geometric mean 0.603 0.216 0.085 

Source: (Chaloob et al., 2016) 

The imprecise pairwise comparison matrix could be presented by using the 

formulations defined in equation (3.20) as follows: 

𝔸𝐿 = (
1 0.822 1.818

0.096 1 0.333
0.074 0.115 1

)

 

    𝔸𝑈 = (
1 10.377 13.542

1.217 1 8.661
0.550 3.0 1

)
}
 
 

 
 

                                     (5.9) 
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Step 4: This step consists of two parts. The first part focuses on how to obtain the 

weights by using our proposed method FIW, while the second part concerns about 

how to get the weights by using the IW. This part would solve the problem of 

finding weights in the example.  

i. Obtaining weights using proposed method FIW 

From Table 5.18, and equation (4.2) the fuzzy number is W̃𝑖 = (𝑊𝑖
𝐿
 
,𝑊𝑖

𝑚𝑖𝑑
 
,𝑊𝑖

𝑈
 
), 

which are the representative of the real weights are obtained as follows: 

�̃�1 = (0.42, 0.603, 0.799)      
�̃�2 = (0.077, 0.216 , 0.511)   
�̃�3 = (0.059, 0.085, 0.231)    

By applying the proposed method using model (4.12), we divided each interval 

[𝑊𝑖
𝐿 ,𝑊𝑖

𝑈] into 𝑚 = 100, sub-intervals. Until we get a stable weight, we stop the 

partition process. If not, we increase the number of partitions. The optimal weights 

are obtained in 𝑚 = 47 partitions, as follows;  

𝑊1 = 0.61 ;  𝑊2 = 0.27; 𝑊3 = 0.12                                       (5.10)
 

ii. Obtaining weights using interval weight IW 

By using the pairwise comparison matrix in (5.9) and the GP model for 

determination of weights (in an interval form) based on equations (3.21, 3.22, 3.23, 

and 3.24) as in Sen and Pal (2013). The formulation of IW can be presented as: 
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𝑚𝑖𝑛 𝑍 =∑∑(𝑑𝑗𝑖
− + 𝑑𝑗𝑖

+)

3

𝑖=1

2

𝑗=1

                                                            (5.11) 

subjected to                                                                                      

(0)𝑤1
𝑈 + (0.822)𝑤2

𝑈 + (1.818)𝑤3
𝑈 − (2)𝑤1

𝐿 + 𝑑11
− − 𝑑11

+ = 0      

(0.096)𝑤1
𝑈 + (0)𝑤2

𝑈 + (0.333)𝑤3
𝑈 − (2)𝑤2

𝐿 + 𝑑12
− − 𝑑12

+ = 0      

(0.074)𝑤1
𝑈 + (0.115)𝑤2

𝑈 + (0)𝑤3
𝑈 − (2)𝑤3

𝐿 + 𝑑13
− − 𝑑13

+ = 0      

(0)𝑤1
𝐿 + (10.377)𝑤2

𝐿 + (13.542)𝑤3
𝐿 − (2)𝑤1

𝑈  + 𝑑21
− − 𝑑21

+ = 0 

(1.217)𝑤1
𝐿 + (0)𝑤2

𝐿 + (8.661)𝑤3
𝐿 − (2)𝑤2

𝑈  + 𝑑22
− − 𝑑22

+ = 0      

(0.550)𝑤1
𝐿 + (3.0)𝑤2

𝐿 + (0)𝑤3
𝐿 − (2)𝑤3

𝑈  + 𝑑23
− − 𝑑23

+ = 0           

𝑤1
𝐿 + 𝑤2

𝑈 + 𝑤3
𝑈 ≥ 1 , 𝑤2

𝐿 + 𝑤1
𝑈 +𝑤3

𝑈 ≥ 1 , 𝑤3
𝐿 + 𝑤1

𝑈 + 𝑤2
𝑈 ≥ 1   

𝑤1
𝑈 + 𝑤2

𝐿 + 𝑤3
𝐿 ≤ 1, 𝑤2

𝑈 + 𝑤1
𝐿 + 𝑤3

𝐿 ≤ 1 ,  𝑤3
𝑈 + 𝑤1

𝐿 + 𝑤2
𝐿 ≤ 1      

𝑤1
𝑈 ≥ 𝑤1

𝐿  , 𝑤2
𝑈 ≥ 𝑤2

𝐿 ,    𝑤3
𝑈 ≥ 𝑤3

𝐿                                

The weights as intervals using LINGO (ver.14) are as follows:
 

[𝑤1
𝐿 , 𝑤1

𝑈] = [0.54, 0.78]

[𝑤2
𝐿 , 𝑤2

𝑈] = [0.10, 0.38]

[𝑤3
𝐿 , 𝑤3

𝑈] = [0.08, 0.12]

}                                                 (5.12) 

At the end of this step, two set of weights are obtained as the first step to solve the 

examples.  

Step 5: By using the results of weights obtained from (5.10) and (5.12), the GP 

formulation can be expressed as follows: 

𝑚𝑖𝑛 𝐺 = 0.61𝜌1
− + 0.27𝜌2

− + 0.12𝜌3
−                                              (5.13) 

𝑚𝑖𝑛𝐺 = [0.54, 0.78]𝜌1
− + [0.10, 0.38]𝜌2

− + [0.08, 0.12]𝜌3
−      (5.14) 
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to satisfy 

(1 230⁄ )(70 𝑥1 − 30 𝑥2 − 20) + 𝜌1
− − 𝜌1

+ = 1

(1 46⁄ )(3 𝑥1 + 8 𝑥2 − 20)     + 𝜌2
− − 𝜌2

+    = 1

(1 14⁄ )(−4 𝑥1 + 𝑥2 − 18)    + 𝜌3
− − 𝜌3

+    = 1

}                             (5.15)  

subject to 

2𝑥1  + 𝑥2 ≥ 8
𝑥1  +  𝑥2   ≥ 5
𝑥1 − 2𝑥2 ≥ −6
5𝑥1 − 2𝑥2 ≤ 18
𝑥1, 𝑥2        ≥ 0 }

 
 

 
 

                                                                                   (5.16)  

First, the objective function in (5.13) based on the weights obtained by using 

proposed method (fuzzy interval weight). The GP and FGP results are; 

(𝑥1, 𝑥2) = (6, 6), with (𝑍1, 𝑍2, 𝑍3) = (250, 66,−18). 

Consequently, using interval arithmetic, the objective function in (5.14) can be 

solved to obtain the target interval as follows: [𝑡1
𝐿 , 𝑡1

𝑈] = [0.1720497, 0.2567702] . 

Using the procedure defined in Sen and Pal (2013), the goal expression can be 

written as follows:  

(0.54)𝜌1
− + (0.10)𝜌2

− + (0.08)𝜌3
− + 𝛾1𝐿

− − 𝛾1𝐿
+  = 0.1720497

(0.78)𝜌1
− + (0.38)𝜌2

− + (0.12)𝜌3
− + 𝛾1𝑈

− − 𝛾1𝑈
+ = 0.2567702

}                (5.17) 

Then, the executable GP model can be expressed as follows: 

𝑚𝑖𝑛𝐺 =𝛾1𝐿
− + 𝛾2𝑈

+  
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Furthermore, the goal relations and a set of constraints in (5.15) and (5.16) are 

satisfied. The problem is solved using LINGO (Ver. 14.0) and the solution is 

obtained as follows: 

The GP results are (𝑥1, 𝑥2) = (3, 2), with (𝑍1, 𝑍2, 𝑍3) = (150, 25, −10). 

The FGP the results are (𝑥1,  𝑥2) = (4, 1), with (𝑍1,  𝑍2,  𝑍3) = (250, 20,−15). 

The preceding results show that the FIW provides optimal weights with the main 

advantage of giving better results in terms of an optimal solution when the main 

interval is divided into sub-intervals.  

Table 5.19 illustrates the advantages of the proposed method (FIW) compared to the 

conventional interval weight (IW) in achieving the objective values of standard and 

fuzzy objectives in GP. 

Table 5.19 

Comparison of the Objective Values Obtained Under FIW and IW 

Methods X1 X2 Z1 Z2 Z3 

FIW by the proposed method under GP&FGP 6 6 250 66 -18 

IW under GP 3 2 150 25 -10 

IW under FGP 4 1 250 20 -15 

 

The results in Table 5.19 show that the FIW method gives optimal solutions for each 

𝑋1 = 6 and 𝑋2 = 6 under standard GP and FGP, where these values give a 
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maximum solution for each objective. The FIW method achieves better objective 

values than the conventional interval weight (IW).  

Examples 5.5.1.2 

Consider the following MOLP problem with three objective presented in (Winston & 

Goldberg, 2004) as follows; 

                                  𝑚𝑎𝑥 𝑍1 =2𝑥1 + 5𝑥2 + 𝑥3                                               (5.18)  

𝑚𝑖𝑛 𝑍2 =4𝑥1 − 3𝑥2 + 𝑥3                          

𝑚𝑖𝑛 𝑍3 =𝑥2 − 2𝑥3                                    

subjected to                                                                                         

4𝑥1 + 𝑥3 ≤ 10                

5𝑥1 + 𝑥2 ≤ 20                 

𝑥1, 𝑥2, 𝑥3 ≥ 0                  

By considering the algorithm steps in Figure 5.3, the calculated individual minimum 

and maximum values of each the three objective 𝑍1(𝑥),  𝑍2(𝑥) and 𝑍3(𝑥), are shown 

in Table 5.20. 

Table 5.20 

Individual Minimum and Maximum Values of Each of Objective Functions in 

Example 5.5.1.2 

Objectives Minimum (Zi(x))=Li Maximum (Zi(x))=Ui 

Z1(x) 50 110 

Z2(x) -60 -30 

Z3(x) -20 20 
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Since the three goals in this example are one maximization and two minimizations, 

the membership goals associated with each objective can be expressed using 

equations (5.4), (5.6) and (5.5), (5.7) as follows: 

(1 60⁄ )(2𝑥1 + 5𝑥2 + 𝑥3 − 50) + 𝜌1
− − 𝜌1

+        = 1

(1 30⁄ )(−4𝑥1 + 3𝑥2 − 𝑥3 − 30)     + 𝜌2
− − 𝜌2

+ = 1

(1 40⁄ ) (20 − 𝑥2 + 2𝑥3) + 𝜌3
− − 𝜌3

+                   = 1

} 

By applying the same pairwise comparison matrix of weights used in example 

5.5.1.1, the problem is solved, and the solution is obtained as described in Table 

5.21. In this example, we use the same values of weights obtained in example 5.5.1.1 

since the purpose of this example is to show that the same set of weights can also 

give optimal solutions for a different problem.  

Table 5.21 

Comparison of Objective Values Obtained under FIW and IW 

Methods X1 X2 X3 Z1 Z2 Z3 

FIW by the proposed method under GP 0 20 0 100 -60 20 

FIW by the proposed method under FGP 0 20 10 110 -50 0 

IW under GP&FGP  0 0 0 0 0 0 

 

From Table 5.21, even though we use the same matrix weights from the first 

example, 5.5.1.1 in the second example, 5.5.1.2, we find that the optimal solution of 

problem is by using weights from the proposed method. This means that the 

proposed method whether under GP or FGP is better than the IW under GP & FGP 

method. 
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  Ranking of Fuzzy Numbers  5.5.2

This section discusses the problem of ranking fuzzy numbers. A critical issue that 

appears in fuzzy numbers is how to compare and rank them. As mentioned in 

Section 2.6, many ranking methods have been developed to rank fuzzy numbers. 

Each of the ranking methods has its strengths and shortcomings. As mentioned in Xu 

and Zhai (2012), A&Z method and Abbasbandy and Hajjari (A&H) (2009) method 

give the same order to two different fuzzy numbers. In this section, another 

application of the proposed method is addressed to solve the problem of ranking of 

fuzzy numbers with some numerical examples from previous studies. 

In this example, the proposed method is used as a case of independent crisp output. It 

should be noted that the proposed method could handle one of the shortcomings of 

the previous methods by ranking the fuzzy numbers as groups with any number of 

them at the same time.  

Up to now, the discussion of the application of the proposed method only deals with 

triangular fuzzy numbers. So, in this section, the ranking problem with triangular 

fuzzy numbers, trapezoidal fuzzy numbers, and non-linear fuzzy numbers are 

constructed. For this purpose, the comparison between the results of the proposed 

method and those of the methods presented in Nejad and Mashinchi (2011) and Xu 

and Zhai (2012) is considered in the following examples. 
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Example 5.5.2.1: Consider a five sets of fuzzy numbers presented in Nejad and 

Mashinchi (2011) as follows: 

Set 1: A1 = (1, 1, 3), A2 = (1, 1, 7);  

Set 2: A1 = (2, 4, 6), A2 = (1, 5, 6), A3 = (3, 5, 6). 

Set 3: A1 = (2, 3, 8), A2 = (2, 3, 7, 8), A3 = (2, 3, 10) 

Set 4: A1 = (1, 5, 5), A2 = (2, 3, 5, 5); 

Set 5: A1 = (2, 4, 6), A2 = (1, 5, 6). 
 

The ranking orders by numerous methods are described in Table 5.22 (as cited in 

Nejad and Mashinchi, 2011). The orders are obtained from Wang et al.'s (2009) 

method for Set 1 and Set 2 and the CV Uniform Distribution by Cheng (1998) is 

applied to Set 2, which varies from other methods and the ranking order caused from 

these methods are improper. The outcomes achieved from the suggested method in 

these parts are alike to the ones acquired from other methods, except for the cases of 

the issues mentioned above. The proposed method gives the same ranking order to 

the fuzzy number A1 and A2, in Set 2 and Set 3 with the same representative value of 

each of them. This means that the proposed method can handle all triangular fuzzy 

numbers in Set 1 to Set 5 and find the representative number or the crisp 

representation for each of them at one time.  

It is found that for the proposed method, the number of times the process is run 

depends on how many types of fuzzy numbers to be ranked. This situation is 

different for other methods because the number of times the process is run depends 

on how many fuzzy numbers that has to be ranked. Table 5.22 shows the comparison 
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of the results of the proposed method to those of other methods that are cited in 

Nejad and Mashinchi (2011). 

Table 5.22 

Results of Ranking Fuzzy Numbers in Example 5.5.2.1 

Methods 
Fuzzy 

number 
Set 1 Set 2 Set 3 Set 4 Set 5 

Wang et al.(2009) A1 0 0 0 0 0.792 

 
A2 0 0 0.444 1.100 0.784 

 
A3  

1.857 0.444  
 

Ranking results A1∼ A2 A1∼ A2≺ A3 A1≺ A2∼ A3 A1≺ A2 A2≺ A1 

Sign distance p = 1  A1 3 8 8 8 8 

 
A2 5 8.5 10 7.5 8.5 

 
A3  

9.5 9  
 

Ranking results 
 

A1≺ A2 A1≺ A2≺ A3 A1≺ A3≺ A2 A2≺ A1 A1≺ A2 

Sign distance p = 2  A1 2.309 5.889 6.218 5.944 5.889 

 
A2 4.472 6.377 7.916 5.598 6.377 

 
A3  

6.831 7.257  
 

Ranking results 
 

A1≺ A2 A1≺ A2≺ A3 A1≺ A3≺ A2 A2≺ A1 A1≺ A2 

Cheng (1998) distance A1 1.725 4.031 4.358 3.707 4.031 

 
A2 3.027 4.035 5.025 3.768 4.035 

 
A3  

4.694 5.020  
 

Ranking results 
 

A1≺ A2 A1≺ A2≺ A3 A1≺ A3≺ A2 A1≺ A2 A1≺ A2 

Chu and Tsao (2002) A1 0.741 2 1.986 1.986 2 

 
A2 1.2 2.118 2.500 1.908 2.118 

 
A3  

2.374 2.222  
 

Ranking results 
 

A1≺ A2 A1≺ A2≺ A3 A1≺ A3≺ A2 A2≺ A1 A1≺ A2 

Deng et al., (2006) A1 0.707 1.667 1.850 1.546 1.667 

 
A2 1.354 1.69 2.850 2.086 1.69 

 
A3  

1.922 2.167  
 

Ranking results 
 

A1≺ A2 A1≺ A2≺ A3 A1≺ A3≺ A2 A1≺ A2 A1≺ A2 

Cheng(1998) CV uniform A1 0.133 0.167 0.397 0.242 0.167 

 
A2 0.667 0.292 0.433 0.151 0.292 

 
A3  

0.083 0.630  
 

Ranking results A2≺ A1 A2≺ A1≺ A3 A3≺ A2≺ A1 A1≺ A2 A2≺ A1 

Nejad and Mashinchi( 2011) A1 0.014 1.35 0.145 1.778 1.277 

 
A2 0.067 1.5 0.259 1.622 1.35 

 
A3  

2.63 0.231  
 

Ranking results A1≺ A2 A1≺ A2≺ A3 A1≺ A3≺ A2 A2≺ A1 A1≺ A2 

proposed method A1 1.59 4 4.13 3.83 4 

 
A2 2.76 4.16 5 3.75 4.16 

 
A3  

4.73 4.71  
 

Ranking results A1≺ A2 A1≺ A2≺ A3 A1≺ A3≺ A2 A2≺ A1 A1≺ A2 

The next examples considered are the cases presented in Xu and Zhai (2012), where 

the A&Z method and A&H method failed to give the correct order to fuzzy numbers 
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in some situations. Three examples are presented to illustrate the efficiency of our 

proposed method in giving the correct ranking order. On the other hand, Xu and Zhai 

(2012) presented an improved method to rank the fuzzy numbers using the distance 

minimization concept. They proved that some existing fuzzy numbers are ranked in 

the same order using the methods of A&Z and A&H. This is not acceptable, since 

these fuzzy numbers do not place in an equivalence class. This means that these 

methods cannot discriminate some types of fuzzy numbers. 

Example 5.5.2.2 

Consider four fuzzy numbers presented in Xu and Zhai, (2012) as follows; 

A1 = (-4, 1, 2), A2 = (-1.75, 0.25, 1.256), A3 = (-7, 2, 3), and A4 = (-2, 0, 1, 1). 

Based on the Xu and Zhai, (2012) A&Z’s distance minimization method gives the 

same nearest point to each of fuzzy numbers. Table 5.23 illustrates the results of Xu 

and Zhai’s method, A&Z method, and the proposed method.  

Table 5.23 

Results of Ranking of Fuzzy Numbers in Example 5.5.2.2 

Fuzzy number 
Asady and 

Zendehnam.(2007) 
Xu and Zhai, (2012) Proposed method 

A1 0 6.67 -0.13 

A2 0 1.54 -0.02 

A3 0 19.33 -0.29 

A4 0 2.33 -0.001 

Ranking results A1∼ A2∼ A3∼ A4 A3≺ A1 ≺ A4≺ A2 A3≺ A1 ≺ A2≺ A4 

Table 5.23 shows that A&Z method gives the same order as 𝐴1~ 𝐴2 ~ 𝐴3~ 𝐴4 to the 

four fuzzy numbers. 
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On the other hand, the ranking order by using the proposed method and Xu and 

Zhai’s method are 𝐴3 ≺ 𝐴1  ≺  𝐴2 ≺ 𝐴4 and 𝐴3 ≺ 𝐴1  ≺  𝐴4 ≺  𝐴2 respectively. 

Since there is no method yet that can always give a satisfactory solution to every 

situation, in this example, the proposed method provides a different ranking order 

than Xu and Zhai’s method. In this case, we have three different rankings by using 

three different methods.  

Example 5.5.2.3 

Consider the following two 𝑇𝑟𝐹𝑁 presented in Xu and Zhai (2012), A1 = (-1, 0, 1), 

and A2 = (-4, 1, 2). 

Table 5.24 

Results of Ranking Fuzzy Numbers in Example 5.5.2.3 

Fuzzy numbers Asady and Zendehnam.(2007) Xu and Zhai, (2012) Proposed method 

A1 0 0.67 0 

A2 0 6.67 -0.13 

Ranking results A1∼ A2 A2≺ A1 A2≺ A1 

 

Table 5.24 shows that the proposed method solves the drawback of A&Z method in 

giving the correct order of fuzzy numbers. Lastly, the proposed method is able to 

give a ranking order that is similar to that in Xu and Zhai’s method as A2≺ A1. 

Example 5.5.2.4 

Two types of fuzzy numbers presented in Nejad and Mashinchi (2011) are 

considered, that are 𝑇𝑟𝐹𝑁 A1=(1, 2, 5), and a fuzzy number with non-linear 

membership, A2=(1,2,2,4,1) as show in Figure 5.4.  
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The non-linear membership function of A2 is described as follows; 

𝜇𝐴2(𝑥) =

{
 
 

 
 
[1 − (𝑥 − 2)2]^(0.5)                                 1 ≤ 𝑥 ≤ 2   

                                

[1 −
1

4
(𝑥 − 2)2]^(0.5)                         2 ≤ 𝑥 ≤ 4

0                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

  

  

 

Figure 5.4. Fuzzy numbers in example 5.5.2.4 

Using the proposed method, we get the crisp output of each fuzzy number A1 = 2.55 

and A2 = 2.4 respectively. Therefore, the ranking order is 𝐴2 ≺ 𝐴1. In comparing the 

results of the proposed method with those presented in Nejad and Mashinchi (2011), 

the results of other methods are the same as those of the proposed method except the 

results of Deng, Zhu, and Liu (2006, as cited in Nejad and Mashinchi, 2011) which 

gives 𝐴1 ≺ 𝐴2, which is an unreasonable result. 
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Table 5.25 

Results of Ranking of Fuzzy Numbers in Example 5.5.2.4 

Method A1 A2 Ranking results 

Nejad and Mashinchi (2011) 0.274 0.190 A2≺ A1 

Wang et al., (2009) 0.2154 0 A2≺ A1 

Asady and Zendehnam (2007) 2.5 2.3600 A2≺ A1 

Chu and Tsao (2012) 1.245 1.182 A2≺ A1 

Deng et al. (2006) 1.143 2.045 A1≺ A2 

Cheng distance 2.717 2.473 A2≺ A1 

Proposed method 2.55 2.4 A2≺ A1 

Table 5.25 shows that the proposed method is successful in giving the correct 

ranking order to the fuzzy number in case of the non-linear membership function. 

Example 5.5.2.5 

Consider the following two trapezoidal fuzzy numbers presented in Xu and Zhai 

(2012) as follows: 

A1= (-4, 0, 0.5, 1.5), and A2= (-1.5, -0.5, 0.5, 1.5) 

Based on Xu and Zhai (2012), the shortcoming of the magnitude method for ranking 

trapezoidal fuzzy numbers in case of having the same ranking order is considered. 

Table 5.26 illustrates the results of Xu and Zhai’s method, A&H’s method, and the 

proposed method. 
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Table 5.26 

Results of Ranking Two Trapezoidal Fuzzy Numbers in Example 5.5.2.5 

Fuzzy numbers A&H (2009) Xu and Zhai (2012) Proposed method 

A1 0 -0.5 -0.536 

A2 0 0 0.001 

Ranking results A1∼ A2 A1≺ A2 A1≺ A2 

Table 5.26 shows that the proposed method is successful in finding the correct order 

of each fuzzy number as 𝐴1 ≺ 𝐴2, which is the same order of Xu and Zhai’s 

method. On the other hand, the A&H’s method cannot discriminate them.  

5.6  Summary and Discussion  

In this chapter, an evaluation of the application of the proposed method to solve real 

problems in the healthcare sector in Malaysia and some numerical examples from 

previous studies is presented. First, two types of data are used to estimate the 

expected number of beds in hospitals in Malaysia. The data are then used to validate 

the feasibility of the procedure in solving the real-world problems. We can 

summarize the finding in this application as follows: 

1. The proposed defuzzification method can be used as a method to estimate 

the optimal number of beds under uncertain matter by including the total 

number of available beds as a constraint. 

2. The proposed methods under DEA concept and LP concept are efficient in 

handling the problem of finding the crisp outputs in a case study of the 
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optimal number of beds. Efficient results in each case with dependent and 

independent crisp outputs are obtained. 

3. The results obtained by using the proposed method with DEA concept are 

superior to those with LP concept because stable results are obtained earlier 

in the case of dependent outputs. 

4. To conduct the validity of the proposed method, we use two defuzzification 

methods, namely, the COG and A&Z methods to defuzzify groups of fuzzy 

numbers. This comparison supports our proposed method to defuzzify 

groups of fuzzy numbers on three accounts: 

a. The proposed method gives crisp outputs, which satisfy the 

relationships in the original crisp data. However, each method of COG 

and A&Z fail to provide the crisp outputs that meet the relationships. 

b. The proposed method provides the nearest point to the fuzzy numbers 

in case of no relationships, and the results obtained are the same as the 

A&Z results. 

c. The results of the minimum distance between the crisp outputs and 

their fuzzy numbers based on the proposed method and Kikuchi’s 

method support our proposed method with its new suggestion concept 

that the crisp output is the best nearest point in the case where some 

relationships in the original crisp data need to be satisfied in crisp 

outputs. 
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5. The implementation of the proposed methods offers recommendations to 

the hospital management how to distribute the correct number of beds for 

each ward. This process is done by estimating the optimal number of beds 

for each ward based on the total number of available beds and recorded 

patients. 

Secondly, this chapter investigated the application of the proposed method in solving 

some problems that appear in the literature using numerical examples. We can 

summarize the findings of this application by the following contributions: 

1. The proposed method is efficient in handling the problem of finding the 

optimal weights used in the GP. 

2. The proposed method contributes to the ranking of fuzzy numbers field as a 

new defuzzification method to ranking fuzzy numbers. 

3. The proposed method is able to handle the shortcoming of two common 

methods in the literature by giving the correct ranking order. 

4. Ranking trapezoidal fuzzy numbers, which is an extension of the proposed 

method to deal with other types of fuzzy numbers. 

5. One of the advantages of using our proposed method for ranking fuzzy 

numbers is that it can deal with fuzzy numbers as groups and find the ranking 

order at the same time. 

6. The proposed method can handle the case of ranking fuzzy numbers with a 

non- linear membership function.  



 

191 

  

CHAPTER SIX 

SUMMARY AND CONCLUSIONS  

This chapter concludes the presentation of this thesis with the following four 

sections. The first section summarizes accomplishment of research objectives. The 

second section describes the significant contribution of this research and includes 

some concluding comments. The limitations of the research and some 

recommendation for future research are prescribed in the third and fourth section. 

The principal goal of this thesis is to develop a new defuzzification method to 

defuzzify groups of fuzzy numbers based on a DEA model, specifically the DEA-

CCR model, which can lead to the creation of crisp values that are able to satisfy 

some relationships or properties in the original crisp data and keep them in the 

solution. In order to achieve the primary objective, there are specific objectives that 

need to be fulfilled.  

The main objective is accomplished by modification of the COG method based on 

the minimization of the distance concept as a new objective function. Then the DEA 

model is further modified with this new objective function and extra constraints that 

consider the relationships and or properties to be fulfilled for the defuzzification 

problem. Then, in order to show the feasibility or ability of the developed method, it 

is implemented to solve real problems. The evaluation of the performance of the 

proposed method is done by comparing the obtained results from the proposed 

method with other existing methods. Also, an application of the proposed method 

based on the DEA as a general method is achieved by comparing the proposed 
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defuzzification methods based on DEA and LP models and solving other problems 

with other types of fuzzy numbers.  

6.1 Accomplishment of Research Objectives 

The research has successfully developed a new defuzzification method that is able to 

create crisp values, which satisfy the relationships that exist in the original crisp data 

through six specific objectives. In the first and second objectives, the new 

defuzzification method is developed based on the DEA model by including the 

modification of COG method based on the minimization of the distance concept as a 

new objective function with additional constraints addressed in the CCR model. The 

development of the methodology is discussed from Sections 4.4 to 4.7. 

The third objective is the implementation of the developed method in solving real 

problems is discussed in Section 5.3. Two cases involving the allocations of beds in 

a hospital are solved where the first one concerns about data with the relationship 

and the second data set has no relationship. This means that the developed 

defuzzification method reads as a generalized method since it can be used for data 

with or without the relationship. 

The fourth objective is the comparison of the outcome obtained by the suggested 

method with other corresponding methods is examined in Section 5.3. Firstly, three 

existing defuzzification methods are used in case where there is a relationship in the 

original crisp data to evaluate the proposed method to show how it is successful in 

providing a crisp output that satisfies the relationships in the original crisp data i.e. 
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the total number of available beds (383 bed). Two of these methods are the COG and 

Asady and Zendehnam’s (2007), which provide 848 and 771 number of estimated 

beds, respectively, which are very different from the real available number of beds, 

383. This means that these methods have failed to provide an acceptable solution to 

the problems in such case. The third method is the Kikuchi's method, which is 

designed to satisfy the crisp output with some relationships in the original crisp data. 

The proposed method and the Kikuchi's method provide an estimated number of 

beds for each ward, which is nearly approximated, and there are no big differences 

found in the estimated number of beds for each ward. Moreover, the two methods 

keep the relationship in the crisp output and give the sum of the estimated number of 

beds equal to the total number of available beds that is 383 beds. However, the 

proposed method provides a minimum value that maximizes the minimum 

membership grade than the solution obtained by Kikuchi’s method. The findings are 

discussed in sub-sections 5.3.1.4 and 5.3.1.5.  

Secondly, only the COG and Asady and Zendehnam (A&Z) method are used to 

evaluate the proposed method in the case where no relationships need to be satisfied 

in the crisp outputs. In this case, the implementation of the proposed method shows 

that our proposed method can deal with data when no relationship needs to be 

satisfied in the crisp output by ignoring all constraints presented in the relationships. 

Furthermore, the obtained results suggest that the proposed method gives the nearest 

point (nearest crisp output) to the fuzzy numbers in the case of no relationship. This 

result is similar to that of A&Z's method. In other words, this leads us to support our 

proposed method with a new suggestion concept that the crisp output obtained is the 
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best nearest point in the case of some relationships in the original data need to be 

satisfied in the crisp outputs. 

The fifth objective is the comparison of the suggested DEA-based model with LP–

based model is discussed in Section 5.4. The implementation shows that the 

proposed method based on the DEA is superior to the LP based, since the stable 

results are obtained earlier at the number of partitions, 𝑚 = 50 while the results 

from the LP based method become stable at 𝑚 = 102 in the case where a 

relationship in the original crisp data needs to be satisfied in the crisp outputs. 

Meanwhile, in the case of no relationship in the crisp original data, the two methods 

give the same results at the same number of partition, 𝑚 = 51.  

The sixth objective is applying the proposed method to the numerical problems in 

the literature with different types of fuzzy numbers is presented and discussed in 

Section 5.5. Two common issues meet this objective, which are the interval weights 

approach in the GP model, and the optimal results of GP and FGP implementation 

described in sub-section 5.5.1. Then the ranking of fuzzy numbers with different 

methods, some shortcomings in the A&Z's method (2007) and Abbasbandy, and 

Hajjari’s (2009) method are explained in sub-section 5.5.2. 

In summary, this research has succeeded in achieving the primary objectives and 

sub-objectives by testing the model through the experiments shown in Chapter Five. 
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6.2  Contributions of the Research 

Our research has contributed modestly towards the understanding of the 

defuzzification formulation problem. The discussion on the contribution of this 

research is divided into two aspects: contribution to the knowledge and the practical 

contribution. The contribution to the knowledge focuses on methodology while the 

practical contribution looks at the application benefits of the defuzzification 

formulation in the real applications. 

 Contribution to the Knowledge 6.2.1

The principal theoretical contribution of this research is to develop a defuzzification 

method that can lead to the creation of crisp values that is able to meet some 

relationships or properties in the original data (original crisp data) and keep them in 

the solution (crisp outputs) since there is no systematic way for selecting a 

defuzzification technique (Lee, 1990). This research develops methods can be 

considered an enhancement in cases where the original crisp data have or do not 

have relationships that need to be met in the solution. For this reason, this study puts 

its main attention to the modification of the COG method under the minimization of 

the distance concept. In addition, new insights into the DEA and LP concepts are 

used to develop two new methods in cases with relationships and without 

relationships in the original crisp data. The DEA model is used as a tool with a new 

objective and further constraints. Besides, the LP model uses the same new objective 

and constraints. Regarding the new insights in the objective and constraints, we 
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propose two new methods under each concept (DEA and LP) to defuzzify fuzzy 

numbers in two cases with and without relationships.  

The proposed method based on the DEA and LP model has successfully provided a 

solution to defuzzify fuzzy numbers and to find the crisp representative values of 

fuzzy numbers based on each of them. However, the main difference between these 

two methods is that the proposed method with DEA can handle the problems with 

linearity as well as nonlinearity in relationships or membership functions. Hence, the 

contribution of this research is in the use of the DEA model with its assumption of 

convexity in PPS that includes some linear and non-linear problems. This leads to 

the generality of the proposed method based on the DEA model that can handle 

different cases of linearity and nonlinearity. 

The most meaningful contribution of this research is the development of a scientific 

method to defuzzify groups of fuzzy numbers, which is a new concept. In addition to 

its ability in handling original data with relationships, the developed defuzzification 

method can also handle cases when the original data have no relationships or 

properties that need to be satisfied in the crisp outputs. Thus, the user can expect an 

optimal solution of any systems, such as healthcare systems or factories systems, 

with any data, relationships, and fuzzy numbers. The appropriate and optimal 

solution depends on the needs of the systems. 
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  Practical Contribution  6.2.2

In terms of practical benefits, this research is useful to DMs, who are working in a 

fuzzy environment. Firstly, the proposed method can be used as a first step to solving 

any problem that needs an optimal solution. In this research, we consider the 

problem of finding the optimal weights as a first step and then used them to solve an 

MOLP problem. Moreover, the proposed method shows that the existing interval 

weight procedures do not always give an optimal solution. However, the proposed 

method can provide optimal weights under each GP and FGP model when the 

particular interval is divided into sub-intervals. In this case, our method does not 

focus on the two values (min, max) of the response, unlike the previous methods. 

The proposed fuzzy interval weights (FIW) enables fuzzy goals to accomplish their 

aspired levels based on their relative importance are considered in an uncertain 

environment of the problem. 

Secondly, the other primary benefits of this research are that the proposed method 

concentrates on using the fuzzy numbers as groups or individuals depending on the 

systems. Furthermore, this study provides a method for ranking fuzzy numbers by 

addressing some of the shortcomings of previous methods, such as the A&Z and 

A&H methods as mentioned in Xu and Zhai (2012)  

Finally, to attest the ability of the proposed methods in solving real problems, this 

study contributes to the research literature in using the defuzzification method as a 

method to estimate the optimal number of beds in an uncertain environment. This 

condition allows us to control the resource allocation, such as the number of beds by 
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including the total number of available beds as a constraint. The results appear in 

Section 5.3 and its sub-sections.  

  Research Contribution and Concluding Comments 6.2.3

In previous studies, defuzzification in DEA has been restricted to convert either the 

individual fuzzy inputs and/or fuzzy outputs to crisp data before using DEA models. 

However, this research has filled the gap on how to use CCR-DEA as a tool to 

defuzzify groups of fuzzy numbers. The DEA model is used to develop a new 

defuzzification method by keeping some relationships or properties in the original 

data as well as in the crisp output. The proposed approach ensures that decisions are 

made by ensuring that the crisp output satisfies the relationships in the original crisp 

data. In cases where there is no solution obtained by the proposed method, this 

means that no optimal solution satisfies the relationships.  

These cases highlight the role of the decision makers in taking the proper 

relationships that need to be filled in the crisp outputs, suggesting that the proposed 

method is a very useful planning tool that gives an optimal solution to the authentic 

relationships. At the same time, its computation is not complicated as in other 

methods for complex membership functions. Besides, in the case of non-linear, no 

extra constraints are needed to find the crisp outputs in the allowable region to be 

adjusted as the solutions. 
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6.3  Limitations of the Research 

This research has some limitations as follows: 

1. Due to the DEA assumptions, each DMU has, at least, one positive input and 

one positive output value. As a result, the method could not deal with inputs 

or outputs (fuzzy numbers) with negative values. 

2. Because the PPS of the CCR model has convexity assumptions, the proposed 

method with complex non-linear relationships or membership functions may 

not give a solution. 

3. In ranking applications, the proposed method could not deal with two 

different types of a fuzzy number at the same time. 

4. Because of the use of a geometric mean to generate the middle point of each 

fuzzy number, the observation cannot be zero. 

6.4  Recommendations for Future Research 

The current research offers the following opportunities for future researchers: 

1. Concerning DEA, the defuzzification approach could be applied to other 

DEA models since this research only focuses on the CCR model. 

Furthermore, the CCR model can be applied to other DEA models to handle 

cases of non-positive inputs or outputs. 
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2. The proposed method can be generalized to the FDH model to handle 

problems with non-convexity assumption in cases of some non-linear 

relationships or membership functions. 

3. The suitability of the pattern of the membership function is an issue of 

interest. Moreover, the impact of the form of the membership function on the 

crisp results also warrants attention. The physical interpretation of the 

membership functions requires investigation. The linear membership 

function may not be satisfactory in all applications. For further research, one 

could experiment with other forms of membership functions, such as 

hyperbolic, logistic, and S-shaped, etc. 

4. In future studies, the developed defuzzification approach can be employed in 

other real problems that occur in different systems with other different 

relationships. 

5. Researchers could also apply other fuzzification techniques to generate 

fuzzy numbers. 

6. An extension of the proposed method can be done to deal with some other 

properties that DMs like to satisfy in crisp outputs that may not appear in the 

original crisp data. This can be done by including other objectives to expect 

the crisp output that meets other priorities. 
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